APPENDIX III

TOPOGRAPHY, GEOLOGY AND SOIL MECHANICS

APPENDIX III

TOPOGRAPHY, GEOLOGY AND SOIL MECHANICS

CONTENTS

			PAG	E
1.	Top	ographic Survey		
	1-1.	Bench Mark Value	<u>III</u> –	1
	1-2.	Presentation of Survey Results	Ⅲ -	1
	1-3.	Error of Closure	Ⅲ -	1
	1-4.	Bench Mark Pillar	Ⅲ-	2
	1-5.	Work Quantity	III -	2
2.	Geo	logy and Soil Mechanics	M -	8
	2-1.	Exploratory Boring	∭ -	8
	2-2.	Laboratory Test	Ⅲ -	9
	2-3.	Soil Mechanical Analysis	Ⅲ-	9
	2-4.	Auger Boring	<u>III - 2</u>	28

LIST OF TABLES

•			PAGE
Table	e∭-1	Basic Bench Mark Values	<u>I</u> II − 3
Table	e∭-2	List of Permanent Bench Mark	Ⅲ − 6
Table	e ∭-3	Summary of Laboratory Test Results	∭ −17
-			
Table	e <u>III</u> -5	Bearing Capacity Factor	Ⅲ -22
Table	e ∭-6	Long-term Allowable Bearing Capacity	∭ −24
Table	e <u>III</u> –7	Computation of Allowable Bearing Capacity (Ra)	∭ −26
Table	e∭-8	Summary of Laboratory Test Results (Auger Boring)	Ⅲ -45
•			
	-	LIST OF FIGURES	
Fig.	<u>II</u> -1	Standard Bench Mark Pillar	III - 7
Fig.	<u></u>	Location of Boring and Auger Borings	Ⅲ −10
Fig.	∭ −3	Bore Log	III -11
Fig.][[-4	Particle Size Gradation	<u>III</u> −12
Fig.	∭ −5	The Relationship between the Internal Friction Angle	
	•	and the Bearing Capacity Coefficient	<u> </u> -22
Fig.]][-6	Calculation Degree of Ultimate Bearing	
		Capacity (qd) at the Pile	Ⅲ-26
Fig.	∭ −7	Auger Bore Log	Ⅲ −29
Fig.	∭ –8	Particle Size Gradation (Auger Boring)	∭ −37
	Table	Table -2 Table -3 Table -4 Table -5 Table -6 Table -7 Table -8 Fig. -1 Fig. -2 Fig. -3 Fig. -4 Fig. -5	Table -1 Basic Bench Mark Values Table -2 List of Permanent Bench Mark Table -3 Summary of Laboratory Test Results Table -4 Shape Factor Table -5 Bearing Capacity Factor Table -6 Long-term Allowable Bearing Capacity (Ra) Table -7 Computation of Allowable Bearing Capacity (Ra) Table -8 Summary of Laboratory Test Results (Auger Boring) LIST OF FIGURES -1 Standard Bench Mark Pillar Fig. -2 Location of Boring and Auger Borings Fig. -3 Bore Log Fig. -4 Particle Size Gradation Fig. -5 The Relationship between the Internal Friction Angle and the Bearing Capacity Coefficient Fig. -6 Calculation Degree of Ultimate Bearing Capacity (qd) at the Pile Fig.

1. Topographic Survey

1-1. Bench Mark Value

The basic bench mark values in the Project area are shown in Table I -1.

For future reference, permanent bench mark pillars of BWDB standard specifications were installed in 10 places at the proposed pump stations and along the main canals.

The heights and locations of these bench mark pillars are shown in Table 11 -2.

1-2. Presentation of Survey Results

1) Longitudinal section of the canal alignments were plotted at a scale of

1/100 vertically and 1/5,000 horizontally.

2) Cross sections were plotted at a scale of 1/100 vertically and 1/1,000

horizontally.

3) Plane table survey results of the pump station and sampled areas were

plotted at a scale of 1/2,000, respectively. Contours on the plane maps

were presented as for intervals of 0.5 m height.

4) All levels were described in meters.

1-3. Error of Closure

The following error rates were adopted as allowable in the leveling work.

 $E = 20 \sqrt{S}$

Where; E: Error of closure (mm)

S: One-way distance of the measurement (km)

1-4. Bench Mark Pillar

Bench mark pillars which have been installed in this survey work were specified as per BWDB standards as shown in Fig. <u>III</u>-1.

1-5. Work Quantity of the second of the seco

The dimensions of the survey work are shown in the following table.

1) Canal Route Survey

Nageswari Main Canal	•	L =	37.3 km
Fulbari Main Canal		L =	28.6 km

2) Plane Table Survey

Pateswari Pumping Station	A = 45.0 ha
Tangonmari Pumping Station	A = 50.0 ha
Sampled Area : Bhurungamari	A = 50.0 ha
Bhurungamari	$\Lambda = 26.3 \text{ ha}$
(Deep Tube Well site)	
Fulbari	A = 50.0 ha
Nageswari	A = 50.0 ha
Nageswari	A = 38.0 ha
(Deep Tube Well site)	

3) River Cross-section Survey

Dudhkumar River

4) B.M. Survey	·
Fly Level Survey	L =127.4 km
Concrete Pillar Setting	N = 10 Nos

N = 31 Nos

No.	B.M. of Value	Location	Remarks
1.	87.92feet	B.M. of value 87.92ft near the house of Md.Aziz Miah of village Madhabgram and which is situated by the Eastern side of R.D.R.S. Go-down, Kurigram.	WAPDA PILLAR No.77
2.	89.39feet	B.M. value of 89.39ft is kept on the top of pucca Tube Well pillar in the north side east corner and which is situated in the house of Sakmat Ali Member of Village Madhabgram.	Staff place on the top of Tube well in the north side east corner.
3.	94.77feet	B.M. value of 94.77ft is kept on the top of plinth floor slab in the Mosque of Pateswari Bazar.	Staff Place on the top of plinth floor in the south side near the middle pillar on Mosque.
4.	92.40feet	B.M. value of 92.40ft is kept on the top of abutment at Madhyakumar Bridge.	Staff place on the top of abutment in the south side east corner and its place in the adjacent of Railway of Bridge.
5.	97. 26feet	B.M. value of 97.26ft is kept on the top of pucca well and which is situated in the compus of Police Station at Nageswari.	Staff place on the top of outer side North corner in the pucca well at Nageswari.
6.	95.9feet	B.M. value of 95.91ft is kept on the top of verandah plinth floor at Nageswari Inspection Bunbalow.	Staff place in the center of B.M. No.6 in the south side of verandah plinth floor at Nageswari Inspection Bungalow.
NAGE	SWARI TO DA	MALGRAM (PHULKUMAR REGULATOR	SITE
7.	102.79feet	B.M. value of 102.79ft is kept on the top of verandah plinth floor in the Krishi Bank at Raygong.	Staff place on the top of verandah plinth floor in the north side west corner of Bank.
8.	108.43feet	B.M. value of 108.43ft is kept on the top of abutment at Raygog Bridge.	Staff place on the top of abutment in the south side east corner of Bridge.

Table III-1 Basic Bench Mark Value (2/3)

	•	Table III-1 Baste bench wark	(2/0)
No.	B.M. of Value	Location	Remarks
9.	97.44feet	B.M. value of 97.44ft is kept on the top of pucca Tube-well slab in 3" brick work at Damalgram (Phulkumar regulator site).	Staff place on the top of 3" brick work in the east side of Tube-well at Damalgram.
MAGI	edulor mo ol	HADAMBUD DECULATION	
10.		HARAMPUR REGULATOR B.M. value of 93.10ft is kept on the top of east side room floor level at Barubari Prymari School.	Staff place on the top of east side room floor at Barubari Prymari School.
11.	95.73feet	B.M. value of 95.73ft is kept on the top of pucca Tube-well pillar at Baharampur in the house	Staff place on the top of Tube-well pillar in the North side West corner.
		of Kamaruddin Fakir and which is situated by the western side of Mosque (Baharampur regulator site).	
37.4.7	ananini ma a	Admidiana programos orgazinas	. BUIDADI DDIDGE GIMBA
12.		AGUNCHARA REGULATOR SITE(VIA B.M. value of 94.21ft is kept on the top of verandah plinth floor level at Newoashi Union Parishad in the vill. of Sukhati(South).	Staff place on the top of verandah plinth floor at Newoash Union Parishad.
13.	97.22feet	B.M. value of 97.22ft is kept on the top of pier in the Newoashi Bridge (Near Negoashi Bazar).	Staff place on the top pire in the south side west pillar at Bridge.
14.	98.32feet	B.M. value of 98.32ft is kept on the top of verandah plinth floor level of Science High School.	Staff place on the top of verandah plinth floor in the south side west corner of Science Laboratory.
15.	100.63feet	B.M. value of 100.63ft is kept on the top of railing of culvert at Chandrahana (Fulbari Bridge site) near the house of Anwar Ali Miah.	Staff place on the top of Railing of culvert in the East side North corner.
16.	99.57feet	B.M. value of 99.57ft is kept on the top of pucca well at Gogharkutti.	Staff place in the center of circle on the top of pucca well in B.M No.10 at Gogharkutti.

Table ∭-1 Basic Bench Mark Value (3/3)

No.	B.M. of Value	Location	Remarks
17.	95.44feet	B.M. value of 95.44ft is kept on the top of R.C.C. pillar and which is situated in front of Kachu Mahammud' House in the village Gogharkutti(Sagonchara Regulator site).	Staff place on the top of R.C.C. pillar.
18.	95.99feet	B.M. of value of 95.99ft is kept on the top of pucca Tube-well pillar and which is situated in front of Mosque in the village of Purba Dhaniram.	Staff place on the top of Tube-well pillar in the north side west corner.
DAM	ALGAM AT PH	ULKUMAR REGULATOR S <u>ITE</u>	
19.	97.74feet	B.M. value of 97.74ft is kept on the floor near the front door of the Khalashi shed.	Staff placed on the floor of main room and just inside the front door of Khalashi shed.
		ULATOR SITE	0. 00 1 1 1
20.	89.97feet	B.M. of value 89.97ft is kept near the Baharampur Regulator site.	Staff placed on the pucca pillar in the front side of the house of Ismail Hossain Fakir.

Table III -2 List of Permanent Bench Mark

No.	B.M. of Number	B.M. of Value(m)	Location	Remarks
1.	NC-1	30.837	The B.M. pillar is embedded in the village of Kumar Andharijhar east of the house of Sekandar Alli.	All B.M. pillars are numbered with red paint.
2.	FC-2	32.179	The B.M. pillar is embedded at N/E corner of Purba Ramkhana High School.	Do
3.	FC-3	33.116	The B.M. pillar is embedded at East side of Ramkhana Tahshit Office.	Do
4.	FC-4	31.411	The B.M. pillar is embedded at N/W corner of the house of Abdul Aziz Mollah, village Paschim Anantapur.	Do B
5.	FC-5	30.558	The B.M. pillar is embedded at N/E corner of Baniarhat Madrassa, south side of Nageswari-Fulbari road.	Do
6.	FC-6	31.218	The B.M. pillar is embedded infront of the Mosque at village Nandi Kuti.	Do
7.	NC-7	30.118	The B.M. pillar is embedded at S/E corner of the house of Abdul Haq Sarker, village Nilukhamar.	Do
8.	NC-8	28.658	The B.M. pillar is embedded infront of the Primary School at village Khamar Hasnabad.	Do
9.	NC-9	26, 491	The B.M. pillar is embedded at West side of the house of Barkat Ali at village Shatibari.	Do
10.	NC-10	26.526	The B.M. pillar is embedded at South side of the Madrassa at village Panchgach	Do nhi.

Note: - The value of B.M. pillars are carried out on the basis of the B.M. list supplied by BWDB Divn.-II, Kurigram.
- NC means Nageswari Canal and FC means Fulbari Canal.
- Reference Level Book No.703.

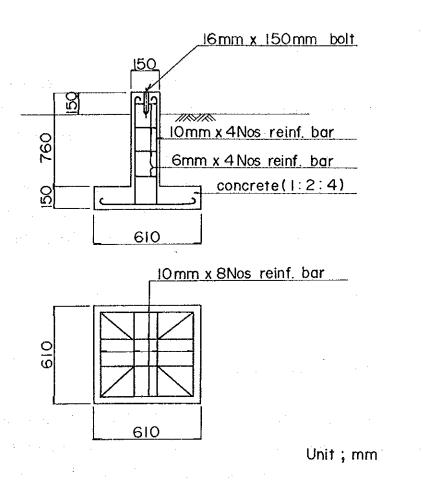


Fig. Ⅲ-1 Standard Bench Mark Pillar

2. Geology and Soil Mechanics

2-1. Exploratory Boring

(1) Bore Hole Drilling

Field work includes the drilling of one 28.5 m deep exploratory bore hole located at the main pumping plant area which is about 1,200 m south-west of the existing Railway Bridge along the Dudhkumar River Embankment.

The drilling percussion method with a 10.16 cm diametre casing pipe was used for the boring. The casing pipe was extended to about 20 m in depth and then bentonite - mud was used to protect the bore hole from caving in.

The location of the bore hole is shown on the attached location map. (see Fig. |||-2|)

(2) Standard Penetration Test (SPT)

The SPT was performed at specified intervals of 1.0 m and 1.5 m by driving standard split spoon samplers at 3.5 cm intervals with a 63.9 kg hammer dropping freely from an average height of 76 cm. The number of blows required to drive the sampler for every 15.2 cm of penetration cace past the initial depth of 45.6 cm were used as the measure of standard penetration resistance - N per 30.5 cm.

(3) Disturbed Soil Samples

The disturbed soil cores in the spoon of the split tube sampler from SPT were collected and preserved in polyethelene bags for laboratory tests.

(4) Ground Water Table (G.W.T)

The G.W.T was measured and recorded from the existing ground level 24 hours after finishing the drilling work.

2-2. Laboratory Test

The following laboratory tests were performed on the disturbed soil samples collected from the bore holes. The tests were performed in accordance with ASTM/ AASHTO standard methods and the test results were evaluated as per the accepted code and practice of applied soil mechanics and foundation engineering.

Name of Test	Number of Tests Performed
- Moisture Content	7
- Mechanical Analysis by Sieve	10
- Mechanical Analysis by Sedimentation	10
- Wet and Dry Density	7
- Index Test (WI & Wp)	1
- Direct Shear Test	2
- Triaxial Shear Test (Qc)	5

These results were summarized as shown in Fig. III-3, III-4 and Table III-3.

2-3. Soil Mechanical Analysis

(1) Mechanical Analysis Test

Effective Grain Size = $D_{1\,0}$ (mm)

Co-Efficient of Uniformity : $Cu = D_{8\,0} / D_{1\,0}$ Co-Efficient of Curvature : $Cz = \frac{(D_{3\,0})^2}{D_{1\,0} \cdot D_{8\,0}}$

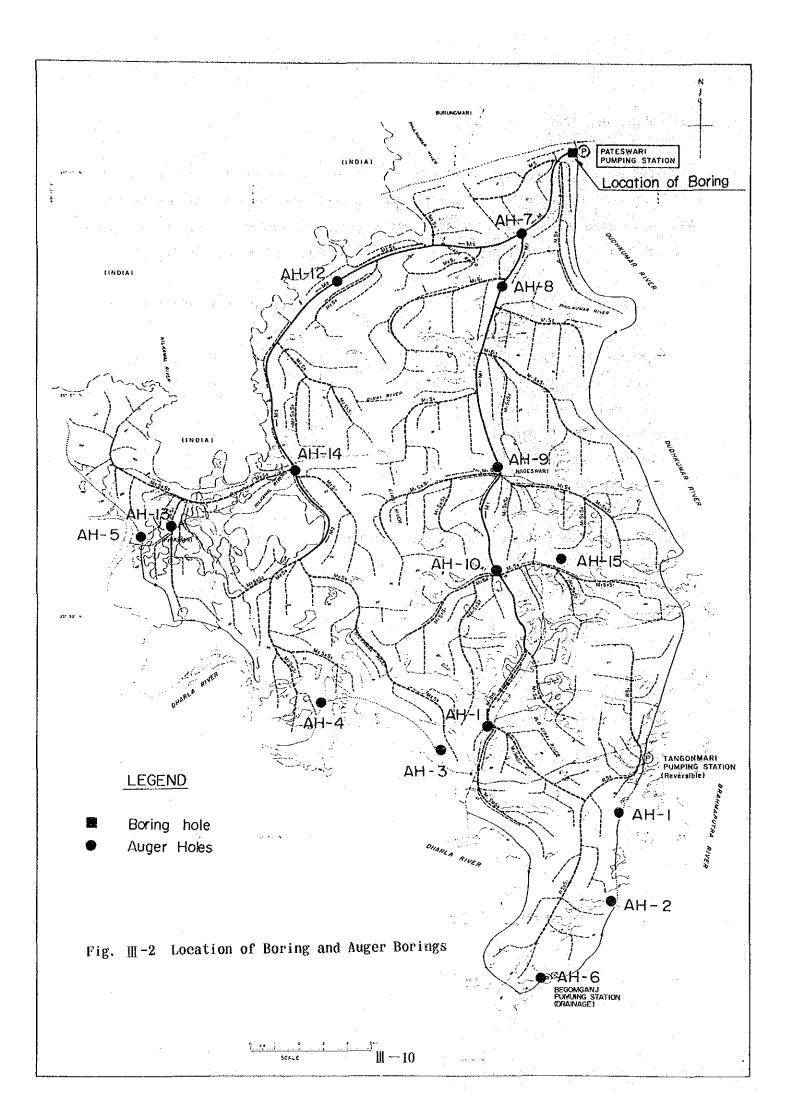


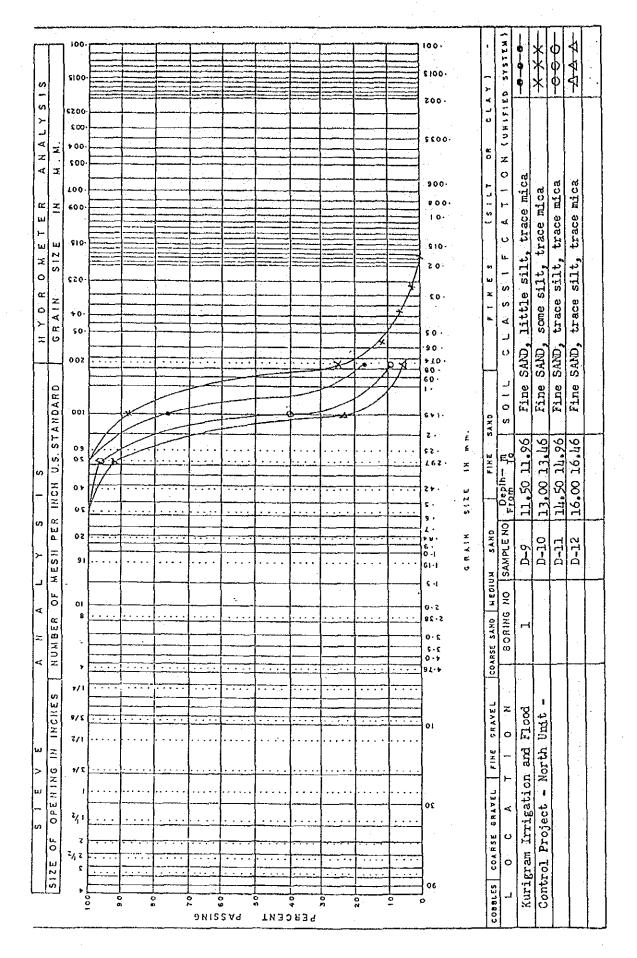
Fig. Ⅲ-3 Bore Log

		j	Fig. ∭-3 Bore Log						
					<u> </u>		3OF	₹E	LOG
					PR	ROJECT-	NORT	H UN	ON AND FLOOD CONTROL HT-PATESHWARI, KURIGRAM R. R.L. 29: 27m. G.W.T.:1-52m.
┢一	Τ.	N			1	I DIAM	_ ((, (, (, (, (, (, (, (, (, (, (, (, (W. K.E. 23. ZIM.
DATE	DEPTH	LAYER	LITHOLOGY	٦٥٥	SAMPLE	Blow	COUN 5/30-5	cm.	60 GL = 29.27 m
	1.45	1 - 45	Brownish grey medium compressible SILT, trace line sand (soft)		D0-1	٦3			y G.W.T
		3 80	Light brown non-plostic SILT, some line sand (loose)		D0-3	6	,		3.6
	5 25	· ·		124		7			9.
				1	D-5 D-6		15		Sandy Soil 11 17 2 = 0.73 1/m ³
7 9.89		5.07	Light grey fine SAND, some sill (med. dense)				22		$\Gamma_{1} = 0.80 \text{ m}^{3}$
	10-32			1 1	3-o		25		
		3-18	Grey fine SAND, some to little sill (med. dense)	1	D-9		20		
	13 -5 0	1,1]0-10		22		
		3-50	Light grey fine SAND, trace silt (dense)	7.7.7]D-11	-		33	
	17- 00	,		1. 1	D-15			4	2
				11	DD-13		26		
9 . 69		4.00	Grey fine SAND, some to little sill (med. dense)		D-14		_ 27		
نو	21-00			2 2	D-15		27		
		3-50	Light grey coorse to fine SAND, trace sitt B grovel (dense to very dense)]0-16 			4	1
	24.50			2 9	D-17				56
		4.00	forey fine SAND, little/sill with	0 / 0 6 0 / a	D-17 D-18		Over	e0	
	28-50		some gravels(very dense)	0]0-20		Ove '	60	(52
L	1				L				

DISTURBED SAMPLE ...

MATERIAL TESTING LABORATORY PARTICLE SIZE GRADATION Particle Size Gradation (1/5) Fig. III-4

-	Carles.	Oleman, which we					Variable lighter comme		-						1	-1	1	П	П	11	\Box
ר"ן	г1	100		1	1	<u> </u>							100	\ \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	• [SYSTEM		$ \mathbf{x} $	фΙ	41	
-		2.4													- 1	<u> -</u>	9	* * *	¥Ι	444	
1 1	1		-	-	-								\$100.	1	_ \	12	1	T	φ φ	31	
S		2100-													,		•	×Ι	ΨI	91	
1-1					-	===						===	200 -	.	4	17120			-		\dashv
S				i	l	İ						1: 1	•••		اد	=	- 1			- 1	
1. 1	l	65'00-		1	T	[1					7. 1	ı		U	=		- 1	- [- 1	
7	١	£00.		 			ļ					<i></i>	,			*	וסי		i		
A	ا, ا				 								.0022			2	g	l	. [
	Σĺ	+00+													80	_	63			1	
Z		\$00.			ļ		ļ	 _	·		/_	-,/-/				x	œ.		1	1	
4	Œ					.	<u> </u>					1.1		,		0	fin	1	- 1	- {	1
		100-	<u></u>								/		800-		۲-	_	44			_	
1 1				 			<u> </u>					/	800-		ا ب	l. I		sand	sand	sand	
E	₹	60 O+					 	ļ		/-		8-4			us	۱۲	trace	ď	ic	ED .	
u											_//		10.		J	4	i.				
J											11				[') '	دد	fine	fine	fine	. '
1 1	اس	\$10-							-9/			X ==	\$10.			U	_ ^	,-	귄	2	
w		į								/	77		- 11		,	և	5	, T			
ו≍	218						-		===	1			-20-		'n		SILT	some	Some	some	
	"	520-			<u> </u>	L				$\angle Z$	2				_ w	-		ŭ	Ö	ŭ	,
1 1		,.,				ر ا	 			//			l		×	S	9			"	
E	z	i		L				م بد_	6	A .			02		1~	S	9	-		6.7	,
		'+O-						12	//				}] _	Ì	S		-	\mathbb{H}	Ì
>-	≪			<u> </u>	<u> </u>		1						1		١.	∢	essibl	SILT,	SILT	SILT	
ι ι	EC.	50.		 > 			1		<u> </u>				60		1	دا	ķ				
그	ات			<u> </u>								ļ	90.				ľ	144	7	₩	:
	l l	200	<u> </u>		 	2		 	 		<u> </u>		+40.		1	Ü	compr	۳۱	5	15	l
\Box	М		7	 	X	1]	 -	 		}	 • • • •	90 -		-	1		Non-plastic	Non-plastic	Non-plastic	
	[<i>I</i>	$\square Z$	ZZ^{\prime}								160.		1	ر ا	Medium	겁	ď	[Z	
1 1	2	. '	V	1//	7	1	1	· · · · ·					١٠.		١]	7	18	رق	1 &	1
	DAR		!	V //	1.	'	1		٠.		!				1	0	ğ	ြို့	õ,	Į Ö	
	اما	001	 *	1 <i>99</i>	-		 	<u> </u>	 	 	 		671-		0	100	-	15	Z	~	
1 1	¥		. //	V		1		1	1						SAND	1 67			İ	l	ſ .
	-	!	-///	1			1		 		<u> </u>	 	{ z ·	É.	۱w		 -	1-		_	-
	S	0 9	. <i> </i> .]]] <i></i>]]]]	sz.	E	Ì.,] ₆₋ ,	0.96	િ	Ø	1.46	1
1 1	vi	0.5	<i>///</i> ··		<u></u>		<u> </u>	<u></u>	<u> </u>	<u> </u>		<u> </u>	162.	×	E SE	-	0	1.96	2,96		
5	>	'	#							<u> </u>			}.	=	12	11	0	1-4	S	∖ -∓	1
1 1	ᆿ	0+	<u> </u>	 	1							ļ	7.		ı	Depth	_	_	_	ا ا	1.
<u> </u>	핑	. 07						' ' ' ' '				1	1	W H	<u> </u>	10.5	ુ જ	8	ম	8	
1 1	≅	20							<u> </u>				١٤٠	. H			13	1.5	2	1]
	æ											1	j 9.•	•		\rightarrow	12	 		=	ļ-—
S	w			 	 -		 -		}	 		 	1 4:		٥	£	1	1	1	Ì	1
	۵.	OZ											1, .	-	SAHO	щ	ᇉ	l _N	~	ļ,	
 -	ו≖ו			 -		-			 -] 6 - 0 -1	ж - ¥	"	ď	굽	Z	2	1	١ :
ľ	l w l	91						• • • •	· · · ·	• • • •			61-1	Ü		SAMPLE	17	1"	-	1-	
	프			į .	, ,			{	ĺ		į				13	5	Ļ	ļ	ļ	ļ	ļ
-1	1 1						1			j		1	Ç ·I		X C IO F X		l	İ		'	l
1 1	님	۸,		i					ĺ				l .		1	웆			ł	[.	
<		01							ļ _			1	0.5		-	- 62	1		1	1	1
1 1	∝ [8							 			 	185.5		0	ĮŽ	Ι.		ļ	-	
]_]	RUNBER			}					} -			}	10.5		SAKO	BORIN	~	1	1	1	1
7	=		 _	 			ļ	ļ	<u> </u>	 			2.2			8			ĺ		
_	Į٦			 -	<u></u>		 		 -			ļ	0.4		COARSE		1	1	1	L.	1
∢	~	>						• • • •					31.5		18		1	1	Γ	1	
[}	Н	ĺ		<u> </u>			ļ	l	<u> </u>	L			1	•		1 .	1	Į	1	[
	ا ہما	*/1		<u> </u>						<u></u>	L	1	}		1	1	-	1	1		1
	w												4.		1:	; ≥		1.	1	1	
	됬	9/5		 	 		 	 	1	,	1		1		13	1	1		ĺ	1	1
	SHOHL			Γ				<u> </u>		 -		1	이		SALVE	0	١ŏ	بر.			
	-	2/1	!					} • • • •	 						1 "	٦,	Flood	Unit		1	1
ш	z∣				l i		1	1		1		1	1.		15	!		٦,			-
, ,		المرا					ļ	1	l	l .	ł	l	ļ		X		뀵	North	1	1	
	2	3/1		 	1		 	 	 	 	 	1	4		-	٠,	12	ļķ			
lu l	OPEHIN			 			J	[l	1	[<i>.</i>		.		1_	,	=	12	1.	į .	1
$\lceil \rceil$	[]	•	ļ					 	<u> </u>	<u> </u>]	<u> </u>	20			1	Irrication	il i	Ì	ì	
-	7	7, .		!			[1]	1		"		CRAVE	. ⊲	1	Ι.	1	ĺ	
S	0	₹1		<u></u>	<u> </u>		· · · · ·		1	1	<u> </u>	1::::	4		1 5	; } .	6	ect	1-	1	
1 1		_				•	!	1]]	1		1		l.	ں ا	1-4	Į a	J	1	
	5	7		* * * *	* * * * *		· · · · ·	1	ļ	***	 	 	1		E 20	1 I	12	0	Ί	1	Ţ
!!	' E	2/ ₁ Z							 	 	 	 	1		9 4 0 3	i	H	Proj	1		
	삤	2		<u> </u>				 	 	 	 	 	┥		15	0	g	124	-	1	1
1	\$12	- 1		· · · · · ·				 	 ` ` ` `	 	1	1	┨`		<u> </u>	_1	1 %	16	1	1	1
Ш	ري ا	٠,								<u> </u>		1	J 06		1 2	2	5	'n	1		1
)	·		2			-	O F)	0	0	0		- E E C L		Kurieran	Control	1	\ .	1
		-	•		•	SING		TNEC			-				1	5		ြ			1
						1111		- 11	, 0, 2, 0						Ľ	1		Ľ	1		۱.,
																	_				


MATERIAL TESTING LABORATORY PARTICLE SIZE GRADATION

Particle Size Gradation (2/5)

Fig. III --4

SYSTEM) 100-444 000 0012 \$100 (トイン) W N (CHIFTED 200 -ഗ \$200 ANALY 200 0022 + 00 e: O 600 Ξ 0 900 trace mica trace mica trace mica trace mica 100 900 Œ 600 10. w OMET 3 21 S silt, silt. some silt, some silt, _ s çto Ω; 02 Sone some GRAIR O ⊁ **+**0 \$0 £0 -Fine SAMD, Fine SAND, Fine SAMD, Fine SAMD, 90 -80. 80. 002 ر. -0 U.S. STANDARD 001 SANO S **z** . 30,00 10.46 5.96 7.46 8,96 cz. 72.7 05 × ን የ TO X 88 S 1 2 E MESH PER ωl BORING NO SAMPLENO X - X & 0 COARSE SAND MEDIUM SAND οz 6 **Σ**−6 7 D-8 9 1 u. O < HUMBER z. 2.2 ∢ SHOKE GRAVEL F100d Unit 0 7 X K = and North OPEXING Kurigram Irrigation COARSE GRAVEL Lui ı Project 2/, 1 S ပ 9 O SIZE Control COSBLES PASSING PERCENT

MATERIAL TESTING LABORATORY PARTICLE SIZE GRADATION Particle Size Gradation (3/5) Fig. III-4

MATERIAL TESTING LABORATORY PARTICLE SIZE GRADATION

Fig. III-4

S		\$100·										2100-	, ,	D SYSTEM!	•	***	000	444	
ANALYS	ж.	\$00.										9500-	0X CLA	N (UNIFIE		ťď	ď	trace silt	
ETERA		\$10- \$00- \$00-										900· 10· 510·	(3127	C A 7 1 0	trace mica	trace mica	trace mica	fine SAMD,	
0 8 0	AIH SIZ	•0.5€									<i>J</i>	50-	FIKES	ASSIF	some silt,	little silt,	little silt,	igh med. to	
λ H	RO GR	00Z								<i>y</i>	;A · ·	90. 90. 50. 20.		ור כר	Fine SAMD, s	ine SAND, 1	Fine SAMD, 1	Coarse through	
S	U.S. STANDAR	0 & 0 9						*	 			2 · £ 52 · £	FIKE SAND	- m s o	17.86	19.46 F	20,96' F	94	
2	PER INCH	20	//		<i>y</i>	/	· · · ·	• • • • •	 			9. 77. 99. 4. K. 4. 6.1 4.	SAND	E NO Fram	D-13 17.50	19.0	w	6 22.	
A L Y	OF MESH	91 01		<i>şl</i>								6-1 &c 81-1 &c 6-2 &c	N COLOR	G NO SAM	4	D-14	1	U-7	
Z	NUMBER											0.¢ 5.¢ 0.+	COARSE SANCE		H	-		 	<u>.</u>
ш	OPENING IN INCHES	*/S */S 2/I				,			 	.,		01	FINE CRAVEL	1	and Flood	Nort Undt -			
٠,		1 1/2 1							 			05	CBAVEL	A	Irrigation	Project - No			
	SIZE OF	2 V ₂				2 2 3 1 1 6 2		SENT				0.6	200 A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-	Kurigram I				

MATERIAL TESTING LABORATORY PARTICLE SIZE GRADATION Particle Size Gradation (5/5) Fig. III-4

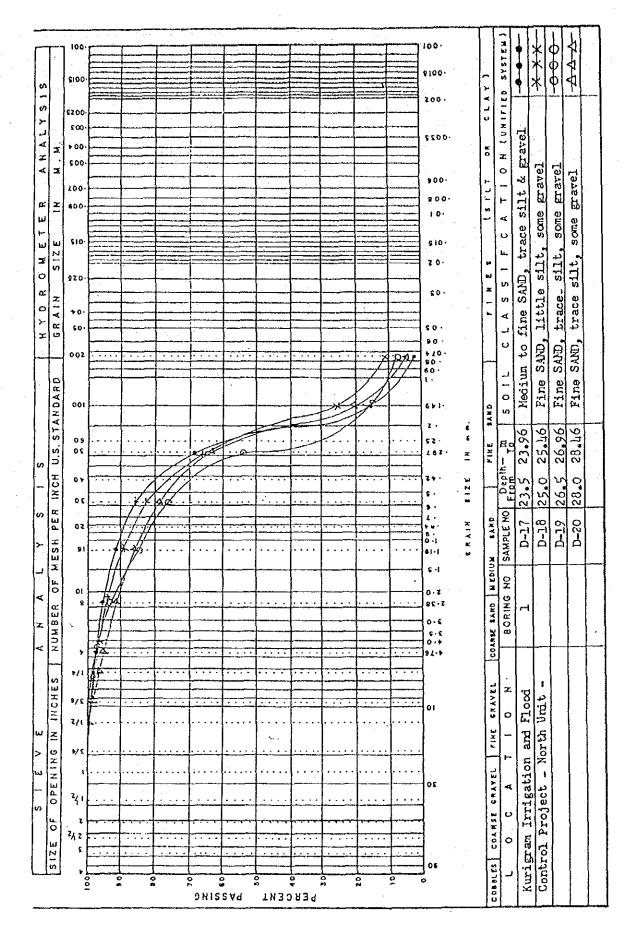


Table III-3 Summary of Laboratory Test Results (1/3)

Kurigram Irrigation & Flood Control

LABORATORY TEST RESULTS

<u>Р</u>

SUMMARY

Project

1.944 1,571 11 12,55 11,86 0.06 83 Ħ 73 10,00 10,16 D-3 3 겂 8,550 8,96 1.926 29.5 0.10 1,550 24.3 65 33 7 503 7 54.5 P-5 2 30 2,50°5° \Im 33 1-100 11-00 11-116 33 29 1.734 1.375 0.07 2,50 2,50 2,96 26,1 36 73 22 1.50 2 38 1-0 1-0 0.96 33 26 C (kg/cm2). (%) Plasticity Index, Ip (%) Compression index, Co Natural void ratio, 80 Strain at failure (%) Ø (degree) Sill % (Fines) or % (Fines) Clay Stress remould! Liquid limit, W. Natural moisture content (%) Stress undist. (wet (gm/cc) Dry (gm/cc (%) Gravet (%) Sensitivity Sand shear Specific gravity Depth- metre ž Š Borehole No. Unconfined Compression tests Consolidation Allerberg Groin size analysis Triaxiol tests Somple Den sity tests

Table III-3 Summary of Laboratory Test Results (2/3)

Kurigram Irrigation & Flood Control Project

SUMMARY OF LABORATORY TEST. RESULTS

Borehole No.										
Sample No.		D-10	D-11	D-12	D-13	D-14	D-15	91-a	21-11	D-18
Depth- Netre	o.	13.00 to 13.46	14.50 14.96	16.00 16.46	17.50 to 17.96	19.00 to 19.46	20.50 20.96	22.0 to 22.16	23.50 23.96	25.30
Notural moistu	moisture content (%)			20.3			21.3		19.1	
Specific gravity	λ									
Alterberg	Liquid limil, W, (%)							-		
Ke its	Plasticity Index, Ip (%)									
Cen sity	Wet (gm/cc)		-	1,919			1.910		1.914	
	Dry (gm/cc)			1,595			1.575		1.603	
	Gravel (%)									
Grain size	(%)	7.17	16	95	78	86	81,	93	16	89
8:50 V	Silt % (Fines) or % (Fines) Clay	56	6	λ	22	14	16	2	~	ជ
Consolidation	Natural void ratio, Co								-	
	Compression index, Cc									
	Strain at failure (%)									
Unconfined	Stress undist ()									
les is	Stress remould.(1 7	
	Sensitivity									
Triaxial shear	r & (degree)			3,1			32.5			
	C (kg/cm2			0			0.04			
Direct shear	b) &								33.5	
tests	ပ								0	

Table III-3 Summary of Laboratory Test Results (3/3)

SUMMARY OF LABORATORY TEST RESULTS

LABORATORY TEST RESULTS Hurigram Irrigation & Flood Control Project			26.50 28.00 26.96 28.46	(%)		, w, (%)	Jex, 10 (%)	e 1	/cc) 1,589	(9)	%) 93 95	ines) 7 5	d ratio, 63	n index, Cc	nilure (%)	() 19:	()pinou		(degree)	m2)	(degree) 34	
		0-19	26.50	content (%)		Liquid limit, W, (%)	Plasticity Index, tp (%)	(gm/cc)	(包) (co)	ve1 (%)	(%)	Silt % (Fines) 7 Gloy	Natural void ratio, 80	Compression index, Cc	Strain at failure (%)	Stress undist.()	Stress remould.	Sensitivity	Ø (degree)	C (kg/an2)	(degree)	10 /
Articles and a second s	Borehole No.	Somple No.	Depth- Metre	Notural maisture co	Specific gravity	Afterberg		Densily	Ory	Gravel	Grain size Sand		Consolidation Natu	lests Com		•	tests	Sen	Triaxial shear	tests	Direct shear	

Sample	Depth -	Meter	D_{10}	D ₃₀	D_{6} 0	Cu	Cz
No.	From	То	(mm)	(mm)	(mm)	· · · · · · · · · · · · · · · · · · · ·	
D - 1	0.5	0.96	0.0035	0,0125	0.0255	7.3	1.8
0 - 2	1.5	1.96	0.008	0.0235	0.053	6.6	1.3
D - 3	2.5	2.96	0.010	0.0275	0.060	6.0	1.3
D - 4	4.0	4.46	0.017	0.0370	0.069	4.1	1.2
D - 5	5.5	5.96	0.027	0.068	0.089	3.3	1.9
D - 6	7.0	7.46	0.0375	0.078	0.100	2.7	1.6
D - 7	8.5	9.96	0.030	0.070	0.094	3.1	1.7
D - 8	10.0	10.46	0.052	0.089	0.1147	2.2	1.3
D - 10	13.0	13.46	0.050	0.080	0.095	1.9	1.3
D - 11	14.5	14.96	0.080	0.1441	0.1643	2.1	1.6
D - 12	16.0	16.46	0.1098	0.1592	0.1898	1.7	1.2
D - 13	17.5	17.96	0.0475	0.0875	0.1049	2.2	1.5
D - 16	22.0	22.46	0.0900	0.1643	0.297	3.3	1.0
D - 17	23.5	23.96	0.1245	0.200	0.250	2.0	1.3
D - 19	26.5	26.96	0.100	0.250	0.3278	3.3	1.9
D - 20	28.0	28.46	0.1049	0.1898	0.250	2.4	1.4

(2) Main Pump Station Foundation Analysis

a) Bearing Capacity of Soil

Formula used for computation:

Qu =
$$1/3 \cdot (\alpha \cdot C \cdot Nc + \beta \cdot \gamma_1 \cdot B \cdot Nr + \gamma_2 \cdot Df \cdot Ng)$$

where;

Qu :Allowable bearing capacity of soil (ton / m²)

C: Ground cohesion below the foundation's load surface (ton / m²)

 γ 1:Unit weight of ground below the foundation's load surface (use submerged weight for soil below the water table) (ton / m³)

 γ 2: Average unit weight of ground above the foundation's load surface (use submerged weight for soil below the water table)

 (ton / m^3)

 α , β :Shape factor (refer to Table \mathbb{II} -4)

Nc, Nr, Ng :Bearing capacity factor (refer to Table III-5 and Fig. III-5)

Df :Depth of the deepest ground surface adjacent to the foundation's load surface (m)

B :Minimum width of the foundation's load surface (m)
In case of a circular shape, use diameter.

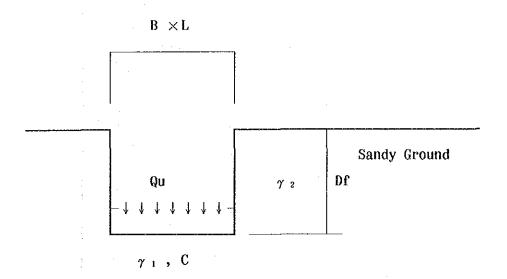
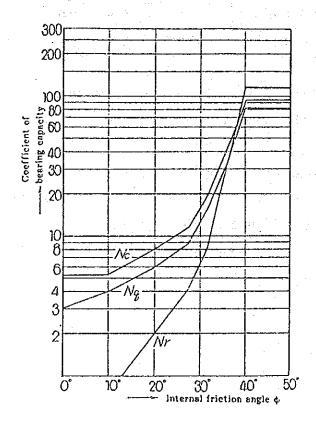


Table II - 4 Shape Factor

Shape of the Foundation Plate	Continuos	Square	Rectangle	Circular
α	1.0	1.3	1.0 + B/L	1.3
β	0.5	0.4	0.5 - B/L	0.3

B: Length of the short side of the rectangle (m)


L: Length of the long side of the rectangle (m)

The value of cohesion C and the angle of internal friction should be determined by a direct shear test or by a triaxial compression test. However, as it is difficult to take undisturbed samples from sandy ground, the value of the angle of internal friction is assumed from the results of the standard penetration test, and cohesion is assumed as C = 0.

Table III - 5 Bearing Capacity Factor

φ	Nc	Nr	Ng
0°	5.3	0	3.0
5°	5.3	0	3.4
10°	5.3	0 4 44	3.9
15°	6.5	1.2	4.7
20°	7.9	2.0	5.9
25°	9.9	3.3	7.6
28.°	11.4	4.4	9.1
32°	20.9	10.6	16.1
36°	42.2	30.5	33.6
over40°	95.7	114.0	83.2

Fig. III-5 The Relationship between the Internal Friction Angle and the Bearing Capacity Coefficient


```
Qu = 1/3 (\alpha \cdot C \cdot Nc + \beta \cdot \gamma_1 \cdot B \cdot Nc + \gamma_2 \cdot Dc \cdot Ng)
where;
   \phi = (16 + 29.5) / 2 = 23^{\circ}
    C = 0
   \alpha = 1.0 + 0.3 \cdot B/L = 1.2
   \beta = 0.5 - 0.1 \cdot B/L = 0.4
   \gamma_1 = 1.80 - \times 1.00 = 0.80 \text{ t/m}^3
   \gamma_2 = 1.73 - \times 1.00 = 0.73 \text{ t/m}^3
           * : unit weight of water.
    No = 10 (refer to Fig - III - 5)
    Nr = 3 (
                         -do-
                                          )
    Ng = 7 (
                         -do-
    Df = 3 m
     B = 26 \text{ m}
    Qu = 13.42 \Rightarrow 13 \text{ ton } / \text{ m}^2
```

The bearing capacity of a foundation should be checked by using the plate bearing test during the construction period.

When the outline of the ground's condition is known and a soil investigation study is not carried out, the normal bearing capacity table shown in Table III-6 can be referred to for the empirical estimation of the long term unit bearing capacity of that ground.

Table III-6 Long-Term Allowable Bearing Capacity

Condition of the	Long-term	Remarks	in the second se
foundation plate	allowable bearing capacity (t/m²)	N value	Qu (t/m²)
Bedrock Cemented sand Mudstone Gravel , dense non-dense	100 50 30 60 30	100 or more 50 or more 30 or more	
Sand, dense medium loose very loose	30 20 10 5	30 - 50 30 - 40 10 - 20 5 - 10 less than 5	
Clay, very hard hard medium soft very soft	20 10 5 2	15 - 30 8 - 30 4 - 8 2 - 4 0 - 2	25 more 10 - 25 5 - 10 2.5- 5 < 2.5

It is possible for a short-term allowable bearing capacity to be applied at double the value of a long-term one. (example: temporary work)

b) Pile Foundation

The following analysis shows the allowable bearing capacity of the foundation piles at the Pateswari main pump station.

lala de cara sa sa antidada de cara de cara de cara de cara de cara de cara de cara de cara de cara de cara de

The results from the allowable bearing capacity of assumptive concrete piles dia. 300 mm, 350 mm and 400 mm are as follows;

```
- dia. 300 mm \Leftrightarrow Ra = 30 ton (refer to Table III-7)

- dia. 350 mm \Leftrightarrow Ra = 36 ton ( - do - )

- dia. 400 mm \Leftrightarrow Ra = 44 ton ( - do - )
```

Allowable bearing capacity (Ra);

 $Ra = 1/n \cdot Ru$

 $Ru = qd \cdot A + U \sum 1i \cdot fi$

where;

Ra: Allowable bearing capacity (ton)

Ru: Ultimate bearing capacity of a pile (ton)

qd : Ultimate bearing strength at the top of the pile (t/m^2)

 $qd = N (4 \cdot h/D + 10)$

Λ : Area of pile tip (m²)

U: Circumference of a pile (m)

li : Length of skin friction (m)

fi: Skin friction strength (t/m^2)

n: Safety factor n = 3

Table III -7 Computation of Allowable Bearing Capacity (Ra)

	φ 300	φ 350	φ 400	Remarks
Pile Length : L (m)	16.0	16.0	16.0	
A (m2)	0.071	0.096	0.126	
U (m2)	0.94	1.10	1.26	
N-value at pile to top:N	5.0	50	50	
Design N-value : N'	40	40	40	
Depth ratio : h/D	5.0	4.3	3.75	
qd/N'	30	27	25	77.
qd (t/m2)	1,200	1,080	1,000	
qd·A (t) ※ -1	85.2	103.7	126.0	
Σli·fi (t/m)	5.5	5.5	5.5	
U Σli·fi(t) ※ -2	5.2	6.1	6.9	. The state of the
Ru = × -1 + × -2	90.4	109.8	132.9	
$Ra = 1/3 \cdot Ru (t)$	<u>30</u>	<u>36</u>	44	

Fig. Ⅲ-6 Calculation Degree of Ultimate Bearing Capacity(qd) at the Pile

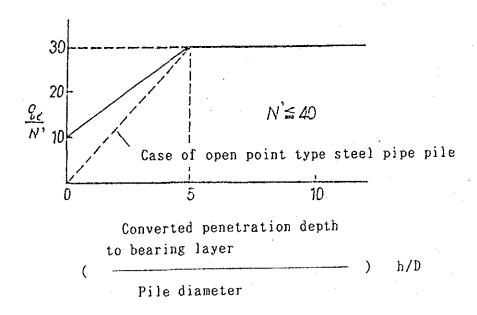


Fig. M-6 is applicable in the case where the ground at the pile's tip is gravel, sand or clay type ground, but not in the case of rock, soft rock, etc. Also, the average N - value of 40 at the pile's tip is treated as its maximum limit.

2-4. Auger Boring

The scope of the work comprises the collection of soil samples, recording of ground water table, stratification of the soil's profile by auger boring and laboratory testing of soil samples.

The field work included the drilling of 15 auger holes 3 m to 5 m deep. Auger boring was performed with 4" dia augers down to a paximum depth of 5 meters below the existing ground level. In most of the holes ground water was met between 3 m and 4 m in depth when further boring was not possible due to the presence of water in the bore hole. (not available soil sampling)

The location of auger boring is shown on the attached location map. (see Fig. III-2)

(1) Disturbed Soil Samples (D)

Disturbed soil samples were collected from the auger blades at one meter intervals and also at every change in strata. The samples were preserved in water polyethelene bags.

(2) Ground Water Table (G.W.T)

The G.W.T was measured and recorded from the existing ground level after the completion auger boring.

(3) Laboratory Test

The following laboratory tests have been performed on the disturbed soil samples collected from the bore holes. The tests were performed in accordance

with ASTM/ AASHTO standard methods and the test results evaluated as per the accepted code and practice of applied soil mechanics and foundation engineering.

mantine from the first fill office and rain of the first fill to be filled by the fill of the

Type of Test	Number of Test Performed
Moisture Content	30
Mechanical Analysis by Sieve	9
Mechanical Analysis by Sedimentation	21
Wet and Dry Density	
Index Test (WI & Wp)	10 m 10 m 10 m 10 m
Direct Shear Test	520 100 4 (26) 10 (51)
Triaxial Shear Test (Qc)	4

These results were summarized as shown in Fig. III-7, III-8 and Table III-8.

and the world to the common and the committee of the design of the committee of the committee of the committee

in proceeding the consequence of the later on a process to the resolution and the consequence of the consequence of

ra filoropa (Proposition), katalogija (proposition), karalogija (propina (Propina), karaĝina propina (propina

Property and a section production of the contract of the contract of the contract of

Fig. III-7 Auger Bore Log (1/8)

-			_				-	-	The same of the sa
							BORE	LOG	
		٠			-	,			
				s	HTE :	KURIG	RAM IRRIGA	ANA NOITA	FLOOD
	1 11				(CONTR	OL PROJEC	T-NORTH (JNIT-BANGLADESH
		,		Į B	ORE HO	LE NO			R.L.
		r	ESS			u Z	rw : Wet		ICON CLANDICE
AT E	R .	DEPTH - M.	HICKN M	LITHOLOGY	0	BORIN	rd : Dry	density	(SOIL SAMPLES, GWT, VANE SHEAR)
ò	4	81.	֡֝֟֞֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓		7	0 0	ϕ : Int	ernal	
			-				friction		Grain Size
			!	AUGER HOLE-I	ľ		C : Cohe	esion	
_		:			1			. / 0	
			1 20	Light brown 8 grey SILT and	127		$\begin{cases} rw = 1.6 \\ rd = 1.6 \end{cases}$	5 t/m3 3 i/m3	sand 66%
	1			fine SAND			$ \phi = 20 $		Dog: silt 34%
		1.50			177		c = 0.4	t/m2	\S11\t\ 346
6			. 50	Yellowish brown SILT & lin		, Q			7D-2
2			1.30	SAND		7 CB.			
2	Ì	2.70			1:2	2	$\begin{cases} rw = 1.5 \\ rd = 1. \end{cases}$	9 t/m3 5 +/m2	Sand 80%
	J .			Yellowish brown fine SAND,	1		$ \phi = 30^{\circ}$		No 3 silt 20%
			1:30	little sill .	1:::;;	}	c = 0.4	· t/m2	
		4.00				<u> </u>			D-4 G.W.T. 4.0m
	· ·			•					
			•						
		ē-							
				411050 11015 0					
				AUGER HOLE-2					
-	-				1773	1	(rw = 1.	6 t/m3	
			7.1 71.1		1//) rd = 1.	3 t/m3	sand 8%
			1 60	Yellowish brown non-plastic SILT, little fine sond		1	$\begin{cases} \phi = 16 \\ c = 6. \end{cases}$	6 t/m2	silt 92%
		1-60		•	1/1/	;	- V.	∪ 6/ III £	
					1::::;]			D-5
8						۵	crw = 1.	7 t/m3	sand 78%
2					 	É	rd = 1.	4 t/m3	XD-3
			3.40	Yellowish brown fine SAND	, [:::::	2:7 cm.	$\begin{cases} \phi = 28 \\ c = 0.6 \end{cases}$		∑0}3 silt 22%
2			3.40	some silt	1	-	0.0	C/ HLZ	D-4
					1]			
						:			
<u> </u>	<u> </u>	5.00	ļ.,			· <u> </u>	<u></u>		D-5 _{GW.T.} 5·0m
		-	•		×				
		X]:	Dire	ct Shear Test	🛱 : T1	iaxi	al Shear	Test	
				DISTURBED SAMPLE	LIN	DISTUR	RBED SAMPL	F 772	
l				D.D. O. O. D. D C.L.,		015101			PLAN NO.

		В	· III ~ '	Auger Bore Log (2	,, 0 ,			
							BORE LOC)
	. •				SITE :	KURIGR CONTRO	AM IRRIGATION AND DL PROJECT - NORTH U	FLOOD INIT-BANGLADESH
DATE	R. L.	059TH - M.	THICKNESS - M	LITHOLOGY	١٥٥	DIA OF BORING	rd : Dry density φ : Internal	
				AUGER HOLE-3			friction angle C: Cohesion	° Grain Size
		0.45	0.45	Light brown medium compressible SILT, trace fine sand	2777		rw = 1.7 t/m3 rd = 1.4 t/m3	
96		1-35	0.90	Light grey fine SAND, trace silt		Ø	$\phi = 28$ $c = 0.3 \text{ t/m2}$	∇D^{-1} $\nabla W = 23.3$
14.2.	:			Grey non-plastic SILT and fine SAND		12.7cm.	rw = 1.6 t/ π 3 rd = 1.3 t/ π 3 ϕ = 19°	D-3 WD = 38% D-3 WD = 9%
		3.00				-	c = 0.4 t/m2	<pre> sand 39% silt 61%</pre>
							•) Wp = 7%
			•	AUGER HOLE-4				
. 90	٠.	1 60		Light brown fine SAND & SILT		.7cm. Ø	$\begin{cases} rw = 1.7 \text{ t/m3} \\ rd = 1.4 \text{ t/m3} \\ \phi = 28.5 \\ c = 0.5 \text{ t/m2} \end{cases}$	Sand 61% silt 39%
15.2	ļ		1-35	Light brown & grey medium compressible SILT	1111	12	1 7 4/2	D-2
		2·95 3·00	0.05	GreyFINE SAND, little sill		1	rw = 1.7 t/m3 rd = 1.4 t/m3 $\phi = 29^{\circ}$	O-3 GWT 3-Om.
							c = 0.3 t/m2	{silt 20%
					707 3		·	
		Wp Wp	l: Lu : P	tural moisture conte quid limit (%) lasticity index (%) rect Shear Test	*	riaxi	al Shear Test	
DRA	١:			DISTURBED SAMPLE			RBED SAMPLE 1222	PLAN NO.

Fig. III-7 Auger Bore Log (3/8)

***************************************		g. III ~		auger Bore Log (3/8)				BORE L	OG	
	÷				SIT			RAM IRRIGATION DL PROJECT-NO		-LOOD JNIT-BANGLADESH
DATE	R. F.	DEPTH - M.	THICKNESS - M.	LITHOLOGY		١٥٥	DIA OF BORING			REMARKS ISOIL SAMPLES, GWT,VANE SHEAR)
			:	AUGER HOLE-5						
06		1.95	1-95	Light brown medium compressi SILT, trace sand	ble		×××××××××××××××××××××××××××××××××××××××	$\begin{cases} rw = 1.6 t, \\ rd = 1.3 t, \\ \phi = 9^{\circ}, \\ c = 1.0 t, \end{cases}$	/m3 /m3 /m2	sand 9% Silt 91% Silt 91% W = 25.2 W = 369 D-2 WP = 8%
12.2.		2.5	1	Light brown fine SAND & SII Light brown medium compressib SILT, trace sand Grey fine SAND, same silt			12.7cm.)	$\begin{cases} rw = 1.8 \text{ t} \\ rd = 1.4 \text{ t} \\ \phi = 27.5^{\circ} \\ c = 0.6 \text{ t/m} \end{cases}$	/m3	sand 63%
										$\begin{cases} W = 24.5 \\ W1 = 39\% \\ Wp = 11\% \end{cases}$
	٠			AUGER HOLE-6		.			.4	
2.90		1-75	1.75	Light grey fine SAND, littl silt	e		æ. Ø	$\begin{cases} rw = 1.9 \\ rd = 1.6 \\ \phi = 31.5 \\ c = 0.4 \end{cases}$	t/m3	sand 88% sand 88% silt 12%
<u>o</u>		3 00	I·25	Light brown tine SAND, some sill	·		12 · 7 cm.	$\begin{cases} rw = 1.7 \\ rd = 1.4 \\ \phi = 28^{\circ} \end{cases}$	t/m3	0-3 _{GWT. 3.0m.}
								c = 0.5	t/m2	silt 21%
DRN	ı:	· · · · · · · · · · · · · · · · · · ·		DISTURBED SAMPLE		NU :3 TAC	DISTUR	RBED SAMP E	7/2	PLAN NO.

Fig. III-7 Auger Bore Log (4/8)

							BORE LOG	
	. :			SI	TE :	KURIGR CONTR	IAM IRRIGATION AND I OL PROJECT-NORTH U	FLOOD NIT-BANGLADESH
DATE	R. L.	DEРТН - М.	THICKNESS - M.	LITHOLOGY	LOG	DIA OF BORING		REMARKS ISOIL SAMPLES, GWT,VANE SHEAR)
				AUGER HOLE-7				
13, 2, 90		2.05	2.95	Light brown fine SAND & SILT		12.7 cm. Ø	rw = 1.7 t/m3 rd = 1.4 t/m3 ϕ = 21° c = 0.4 t/m2 rw = 1.6 t/m3 rd = 1.3 t/m3	sand 74% Silt 26% D-2
		2·95 4 00	1.05	Grey medium compressible SILT, trace sand			\rightarrow rd = 1.3 t/m3 \rightarrow = 8 \rightarrow c = 1.1 t/m2	D-3silt 93% D-4GWI 4 Om. W = 25.6%
				AUGER HOLE-8				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
		1.60	1.60	Light brown fine SAND & SILT		מ אס	$\begin{cases} rw = 1.6 \text{ t/m3} \\ rd = 1.3 \text{ t/m3} \\ \phi = 25 \text{ c} \\ c = 0.6 \text{ t/m2} \end{cases}$	sand 54%
2.90			0.60	Light brown SILT, some fine sand			1.8.7.0]D-2
13.		4-00	1-80	Light brown fine SAND, little sill		12.7 cm	$\begin{cases} rw = 1.7 \text{ t/m3} \\ rd = 1.4 \text{ t/m3} \\ & & & & \\ $	\[\sand 89\chi \] \[\silt 11\chi \] \[\silt 2 \] \[\silt 2 \] \[\silt 3 \] \[\silt 3 \] \[\silt 4 \] \[\si
DRN	1:			DISTURBED SAMPLE	UN DATE:		BED SAMPLE 122	PLAN NO.

Fig. III-7 Auger Bore Log (5/8)

		· · · · · · · · · · · · · · · · · · ·	(1) (10 (10 (10 (10 (10 (10 (10 (10 (10 (10					BORE LO)
			. ·		SITE			AM IRRIGATION AND L PROJECT-NORTH U	5
DATE	R. L.	OEPTH - M.	THICKNESS - M.	LITHOLOGY		-00°	DIA OF BORING		REMARKS (SOIL SAMPLES, GWT,VANE SHEAR)
				AUGER HOLE-9					
. 90			2 60	Light brown fine SAND, little sill	\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.		Ø	$\begin{cases} rw = 1.7 \text{ t/m3} \\ rd = 1.4 \text{ t/m3} \\ \phi = 28 \\ c = 0.4 \text{ t/m2} \end{cases}$	sand 86% Silt 14% D-2
12.2		2·60 3·50 4·00		Light brown fine SAND & SIL Grey SILT, trace fine sand	T //		12 · 7 cm.	$\begin{cases} rw = 1.7 \text{ t/m3} \\ rd = 1.3 \text{ t/m3} \\ \phi = 20.5^{\circ} \\ c = 0.5 \text{ t/m2} \end{cases}$	(sand 53%)
				AUGER HOLE-10					
_		8.60	0.60	Light brown medium compressi SILT	ible	(rw = 1.6 t/m3 lrd = 1.3 t/m3	sand 58%
2.90		}	1.00	Light brown fine SAND & SILT			Ø	rw = 1.6 t/m3 rd = 1.3 t/m3 Ø = 24° c = 0.4 t/m2	$ \begin{array}{c} Dolling the problem of the$
14.		4:00	2.40	Light brown fine SAND, some sill			12.7 cm.	rw = 1.6 t/m3 rd = 1.3 t/m3 Ø = 28.5° c = 0.5 t/m2	(sand 75% D ₁ 3 silt 25%
					•				
DRI	N :			DISTURBED SAMPLE		UN TE:	DISTUR	BED SAMPLE 1222	PLAN NO.

Fig. III-7 Auger Bore Log (6/8)

							BORE	LOC	
					SITE : :: K	(URI GR ON TRO	AM IRRIGA OL PROJEC	TION AND F F-NORTH UN	LOOD IT-BANGLADESH
DATE	4-R.L.	OEPTH - M.	THICKNESS - M.	LITHOLOGY	901	DIA OF BORING			REMARKS ISOIL SAMPLES, GWT,VANE SHEAR)
				AUGER HOLE-(I					
. 2.90		0·60 2·60	2.00	Light brown compressible SILT troce sand Light brown fine SAND same sitt	YAY	7cm, Ø)rd =] \phi = c = { rw = 1	.8 t/m3 i.4 t/m3 28 0.2 t/m2 .7 t/m3 .4 t/m3	sand 64%
14		4.00	1-40	Brown fine SAND & SILT		52	$\begin{cases} \mathbf{c} = 0 \\ \mathbf{c} = 0 \end{cases}$.4 t/m3 29.5° .3 t/m2	silt 39%
				AUGER HOLE-12	·				
	:	1.15	1-15	Light brown medium compressib SILT, little fine sand			$\begin{cases} \mathbf{rw} = 1 \\ \mathbf{rd} = 1 \\ \phi = 1 \\ \mathbf{c} = 0 \end{cases}$	6 t/m3 3 t/m3 5 7 t/m2	sand 11% Silt 89% W = 26.1%
11.2.90			2.85	Light brown fine SAND, some silt	1 /	12.7 cm. Ø	rd = Ø =	1.9 t/m3 1.6 t/m3 29.5° 0.7 t/m2	D-2 W1 = 33% Wp = 79 % (sand 71% D-3 silt 29%
	٠.	4.00					C =	U, 1 U/ HIZ	D-4 GWT. 4-0m.
DR	N:			DISTURBED SAMPLE	UN DATE:	DISTUR	RBED SAME	PL E 1223	PLAN NO.

Fig. III-7 Auger Bore Log (7/8)

AUGER HOLE-13 1.05 Light brown SILT 8 fine SAND Section Sand 54% S								BORE LO	G
AUGER HOLE-13 AUGER HOLE-13 AUGER HOLE-13 AUGER HOLE-14 AUGER HOLE-15 AUGER HOLE-15 AUGER HOLE-15 AUGER HOLE-15 AUGER HOLE-15 AUGER HOLE-15 AUGER HOLE-15 AUGER HOLE-15 AUGER HOLE-15 AUGER HOLE-15 AUGER HOLE-15 AUGER HOLE-15 AUGER HOLE-15 AUGER HOLE-15 AUGER HOLE-15 AUGER HOLE-15 AUGER HOLE-15 AUGER HOLE-14 AUGER HOLE-14 AUGER HOLE-14 AUGER HOLE-14 AUGER HOLE-15 AUGER							KURIGE	RAM IRRIGATION AND DL PROJECT-NORTH	D FLOOD UNIT-BANGLADESH
1.05 Light brown SILT 8 fine SAND	DATE	A. L.	DEPTH - M.	THICKNESS - M.	LITHOLOGY	0	DIA OF BORING		ISOIL SAMPLES,
AUGER HOLE-14 AUGER					AUGER HOLE-13				
AUGER HOLE-14 AUGER HOLE-14 Light brown fine SAND, some sill AUGER HOLE-14 Light brown fine SAND, trace sill Light brown fine SAND, trace sill Light brown fine SAND, trace sill Light brown fine SAND, trace sill Light brown fine SAND, some sill Light brown fine SAND, so	0		1.05	1.05	Light brown SILT & fine SANC		8	$\begin{cases} rd = 1.4 \text{ t/m3} \\ \phi = 22 \end{cases}$	ΙΣΙοξι
AUGER HOLE-14 AUGER HOLE-14	12, 2, 9(1.95	Light brown fineSAND, some sit				
AUGER HOLE-14 1.40 Light brown fine SAND, troce sitt			3.00) $rd = 1.4 t/m3$	Sand 48%
1.40 Light brown fine SAND, troce sitt $V_{\text{Light brown fine SAND}}$ Sand 90% $V_{\text{Light brown 8a grey medium compressible SILT, troce fine sand}}$ Silt 10% $V_{\text{Light brown 8a grey medium compressible SILT, troce fine sand}}$ Silt 10% $V_{\text{Light brown 8a grey medium plostic CLAY, troce sand}}$ Silt 10% $V_{\text{Light brown fine SAND, some silt}}$ Silt 10% V							·	,	
1.40 Light brown fine SAND, troce sitt $V_{\text{Light brown fine SAND}}$ Sand 90% $V_{\text{Light brown 8a grey medium compressible SILT, troce fine sand}}$ Silt 10% $V_{\text{Light brown 8a grey medium compressible SILT, troce fine sand}}$ Silt 10% $V_{\text{Light brown 8a grey medium plostic CLAY, troce sand}}$ Silt 10% $V_{\text{Light brown fine SAND, some silt}}$ Silt 10% V					•				
1.40 Light brown fine SAND, trace sill 2.10 O.60 Light brown & grey medium compressible SILT, trace fine sand 1.10 Brownish grey medium plastic CLAY, trace sand 1.80 Light brown fine SAND, some sill 1.80 Light brown fine SAND, some sill 1.40 $\phi = 28$ $\phi = 28$ $\phi = 0.7 \text{ t/m}$ Tw = 2.0 t/m3 $\phi = 6$					AUGER HOLE-14				
$\begin{array}{c} 2 \cdot 10 \\ 2 \cdot 1$				1.40	Light brown fine SAND, trace sill	7 · · · · · · · · · · · · · · · · · · ·		$\begin{cases} rw = 1.7 \text{ t/m}3 \\ rd = 1.4 \text{ t/m}3 \\ \phi = 28 \\ 0 = 0.7 \text{ t/m}2 \end{cases}$	sand 90%
Brownish grey medium plostic $S_{N} = \frac{1.10}{3.20}$ Brownish grey medium plostic $S_{N} = \frac{1.4 \text{ t/m}}{3}$				0.60		* 1717 * 1717		{ C - 0.7 c/m2	<u> </u>
1.80 Light brown fine SAND, some silt $\frac{N}{N} = \frac{4}{2}$) & &	$\begin{cases} rd = 1.4 \text{ t/m} \\ \phi = 6 \end{cases}$	0/3 silt 93%
5-00 D-5 G.W.T. 5-0 m.			ا	·	Light brown fine SAND, some s	ill 1	12.7 0	/ c = 1.1 t/m2	
			5.00			1			D-5 G.W.T. 5·Om.
			4.5						
DISTURBED SAMPLE UNDISTURBED SAMPLE DATE: PLAN NO.			•		DISTURBED SAMPLE		DISTU	RBED SAMPLE	DI ANI NO

Fig. III-7 Auger Bore Log (8/8)

(Comball								BORE	LOC)	
41 ¹					i i i i i i i i i i i i i i i i i i i	SITE :	KURIGI	RAM IRRIGA DL PROJEC	ATION AND F T-NORTH UN	LOOD HT-BANGLADI	ESH
DATE	4-R.L.	ОЕРТН ~ М.	THICKNESS - M.	LITHO	LOGY	٦٥ ٥	DIA OF BORING			REMARKS (SOIL SAMPL GWT,VANE SI	ES,
				AUGER HO	LE-15						
		0.55	0.55	Light greymedium SILT, trace sand			,	rw = 1	.7 t/m3	sand	7%
90			0.85	Light yellowish bro	wn medium	111		$\begin{cases} \mathbf{p} = 1 \\ \mathbf{c} = 1 \end{cases}$.4 t/m3 10 .0 t/m2	Doll silt	93%
2.		1-40				 	7 cm.			D-S W =	24.2 = 36%
4		7.0	1.60	Light brown fin trace silt	e SAND,		.5.	$\begin{cases} \mathbf{rw} = 1 \\ \mathbf{rd} = 1 \end{cases}$.7 t/m3 .4 t/m3		= 8%
-		3.0			<u> </u>		4	$\phi = \begin{pmatrix} \phi & \phi & \phi \\ \phi & \phi & \phi \end{pmatrix}$	30°). 2 t/m2	∫sand 92	%
									, D V, mD	lsilt 8%	
		*									
					÷				٠		
						·					
								1.			
					•				:		
•								· ·			
							ř	·		•	
								٠.			
										•	
DR	N;			DISTURBED	SAMPLE	UI DATE:	NDISTUI	RBED SAMI	PL E [222]	PLAN NO.	
						III —36					

MATERIAL TESTING LABORATORY PARTICLE SIZE GRADATION

Particle Size Gradation (Auger Boring) (1/8)

O N (UHIFIED SYSTEM 444 100-*** 000 0-0-0 \$100 ここと イン つ .005 ANALYS 0052 \$ \$000 +00 æ × 800 z IJ ⋖ **⊢** 3 ₹ 0 O S 12 E \$10 Fine SAND, little silt SILT, trace fire sand silt S S 920 and fine SAND HYDR 0.7 GRAIN Fine SAWD, some +0. 4 so. ٠ ٥ ٧ r L 90 . 00 · 80 · 10 · 002 SILT SOIL MESH PER INCH U.S. STANDARD 001 SAHO 2. ė E 9 0 2 0 FINE 165 <u>z</u> Depth-0 + SIZE BORING NO SAMPLENO ٥z ν 6 • Ο •Ι 0-3 D-3 4 T 9 t COARSE SAND MEDIUM \$ -1 гг Г N A N A L OI 86.5 Auger 0 · ¢ \$·\$ Irrigation SIZE OF OPENING IN INCHES FINE SRAVEL z 0 2/1 Š Control Project COARSE GRAVEL 20 ⋖ 3/1 Flood O Z/1 Z 0 Kurigram COBBLES PASSING PERCENT

MATERIAL TESTING LABORATORY PARTICLE SIZE GRADATION

Particle Size Gradation (Auger Boring) (2/8)

100-N (URIFIED SYSTEM *** 000 .0012 **6100** CLAY) ... (2) 200 -ANALYS 0052 003 9500-+00 90 i Æ \$00 o 900 100 800 e: Z; 600 M 910 w S 10 -2 | 5 Fine SAND, little silt L æ o Fine SAND, trace silt 20. 050 SILT and fine SAND Fine SAND and SILT н Y D R GRAIN +0 \$0 90 -0 0 0 0 0 0 0 0 200 INCH U.S. STANDARD 0 -001 6 1-1 SAXD ٦. Ė E e 0 2 0 ٠52 EL EC 165. × Depth-0 \$ S 1 Z E OF MESH PER MEDIUM SAND GRALM 92 ⊅ ⊌ · D-3 5 4 겁 91 ۱۰۶ BORING NO A N A A N UNBER COARSE SAND 5.36 2·2 4·0 Irrigation INCHES SRAVEL 0 F T OPENING IN Flood Control & Project COARSE GRAVEL ۲₄ 1 O ir. 2/₁/2 Ö SIZE ٤ Kurigram COBBLES 10 000 9 20 PASSING PERCENT

MATERIAL TESTING LABORATORY PARTICLE SIZE GRADATION

Particle Size Gradation (Auger Boring) (3/8)

ON (UNIFIED SYSTEM) 100. ф Ф Ф 0012 C L A Y 3 ANALYSIS .005 9200 €00 -0022 **₽**00 ď sand 500 900 100 trace M E 900 z 10. . Ε Ε SILT, 3 1 Z E 910 Fine SAND, little silt 2 0 . some silt Medium compressible 920 Fine SAMD and SILT π Ο Ά ٤0٠ GRAIN 60 Fine SAND. 90 -200 0 | | MESH PER INCH U.S. STANDARD 001 SAXO z -0 9 6.5 FINE 20 z -0 > S 1 2 E 20 COARSE SAND MEDIUM SAND BORING NO SAMPLEND 50 GRALX 6 · 5-0 겁 \mathbf{Z} NUMBER OF 01 w Ø o٠٤ Irrigation OPENING IN INCHES COARSE GRAVEL FINE GRAVEL 8/5 2/1 Flood Control & Project o¢ 7/1 <u>ال</u> 7/1 2 0 3718 Kurigram COBBLES 0 φ 9 0 PASSING PERCENT

MATERIAL TESTING LABORATORY PARTICLE SIZE GRADATION

Particle Size Gradation (Auger Boring) (4/8)

N CUNIFIED SYSTEM! 4 4 4 100. *** 000 \$100. \$100 CLAY S .005 S 9052 ANALY 9000 100 æ SILT, trace sand 0 900-_ |-100 ... Z 600 u ⋖ <u>Н</u> v 510 S 12 E Fine SAND, little silt × u. 20 some silt S W X 1 L <u>۔</u> دی Medium compressible 920 Fine SAND and SILT œ GRAIN W 0 7 ٩ \$0. ٠ 0 ء Fine SAMD, 90 -500 80 · ---MESH PER INCH U.S. STANDARD 001 SARD S Ē ε. çz. FIXE 0 \$ z -0. S | Z E ٥٤ SAMPLE NO SANO 50 6 6 검 D-3 Z 61-1 COARSE SAND MEDIUM ۱۰ 2 ş NOWBER OF QΙ BORING ထ 9 - 6 Ç - Ç O - F Irrigation NOHES FINE SHAVEL 0 اڃا لاد Control OPENING 5/5 roject COARSE GRAVEL ш 20 ²/_i i Flood S 9 3/12 SIZE Kurigram COBBLES 06 PASSING PERCENT

MATERIAL TESTING LABORATORY PARTICLE SIZE GRADATION

(2/8)

Particle Size Gradation (Auger Boring)

N (UNIFIED SYSTEM) 10.0 444 100. \$100 CLAY) ANALYSIS 005 500 9 200 **>**00 o o 900 ¥ 0 900 800 Œ Z ш 4 լ iii υ SIZE Fine SAND, little silt æ some silt Fine SAND and SILT Fine SAND and SILT W H Y D R 60. GRAIN ٠٥ CLA co \$ O -SAND, 90. 200 Fine 0.1 NUMBER OF MESH PER INCH U.S. STANDARD 001 SAND S z· E e 0 2 0 FINE z_ 0 7 3115 20 Ø SAMPLE NO SAND 02 6 R A 1 X 2-3 5-7 김 91 COARSE SANO MEDIUM BORING NO ⋖ 10 O, 0 · £ \$.£ Irrigation OPENING IN INCHES GRAVEL 8/£ o 1/5 ઝ 7. T Flood Control Project COARSE GRAVEL 20 3/1 0 7/12 SIZE Kurigram COBBLES 0 ŝ PASSING PERCENT

MATERIAL TESTING LABORATORY PARTICLE SIZE GRADATION

Particle Size Gradation (Auger Boring) (6/8)

-A-A-A-(X31872 OBITIED) 100 000 *** \$100. CLAY \$100 - 005 ANALYS 0052 002 +00 80 z Compressible SILT, little fine sand 900 Σ O (s | LT œ ĭ 600 W E E SIZE 910 Fine SAND, some silt 70 some silt S S 020 Fine SAMD and SILT H Y D H 0.7 GRAIN **>** 0 ⋖ 50 \$0. ن د Fine SAND. 90 60 · 60 · +10 · 200 ە --INCH U.S. STANDARD 001 SAHO S z. 0 9 έz. FINE 05 <u>~</u> Prom From 5 1 Z E P R R S SAMPLE NO G R A I R SAHO 6 0 -1 D-3 김 OF MESH 91 COARSE SAND MEDIUM s٠١ BORING NO 01 2 Η RUMBER ۰٠٤ 2·2 4·0 ⋖ Irrigation INCHES SRAVEL O 2/1 F 1.8 w OPENERO IN Control Project COBBLES COARSE GRAVEL ∢ ۱ 🏋 Kurigram Flood ပ 9 5 ½ 3218 0 9 PASSING PERCENT

MATERIAL TESTING LABORATORY PARTICLE SIZE GRADATION

Particle Size Gradation (Auger Boring) (7/8)

N CURIFIED SYSTEM 100-444 000 *** \$100 C L A Y) 200. 6200 600 ANAL .0022 +00 ď 500 0 900-(S | L T 100 Medium plastic CLAY, trace sand æ Z, 600 W 3 17 E Σ Ω trace silt some silt s s 920 SILT œ 60 GRAIN ۵ ۲ +0 and 90 Fine SAMD, Fine SAND. 90 Fine SAMD 500 0 1. INCH U.S. STANDARD 100 SAND S **z** · E E e 0 ٠ 5 2 FIXE ï. 0+ \$ 1.7 E 20 PER S SAMPLE NO 1 · 6 · 1 SAND A 1 A 5 0-3 5 02 Z HESH 61-1 COARSE SANO MEDIUM ç .j BORING NO NUMBER OF ⋖ H 급 2·0 2·2 4·0 Irrigation NCHES SRAVEL 0 ৺ 7. 7. OPENING IN Flood Control Project COARSE GRAVEL о£ 2/1 0 5 ½ 0 3218 Kurigram COBBLES 9 00 DKISSA9 PERCENT

MATERIAL TESTING LABORATORY PARTICLE SIZE GRADATION

(8/8)

Particle Size Gradation (Auger Boring)

N (UNIFIED SYSTEM) 100. \$100 \$100 C.LAY.) υ ---200 . ANALYS 0052 €00 0022 +00 Ö 900 0 900 (SILLT 100 800 sard ۲œ Ξ 10. IJ Compressible SILT, trace S 12 E H.YOROME \$10 trace silt z o . S W -. . 920 GRAIN ٠ 0 2 S +0 50 ٠ 0 ء Fine SAND, 90. U 60 · 60 • 10 200 بر ه PER INCH U.S. STANDARD 001 SAHO S z· É E 0 9 2 0 ç 2 . 7 X E 162 ¥ S 1 Z E 3 0 S BORING NO SAMPLEND SARD 02 GRALY 5 · D-3 7 KESK 91 COARSE SAND MEDIUM A N A I 01 2·2 4·0 Irrigation NCHES 5R AVEL 0 2/1 ઋ NI ONING IN E XIL Control Project CCARSE GRAVEL 4 41 Flood O D L Z/1 Z 3218 0 Kurigram COBBLES 00 9 PASSING PERCENT

Table II-8 Summary of Laboratory Test Results (Auger Boring) (1/4)

Supple No. (Auger Hole)					SUMMARY O LABORATORY TEST	SUMMARY OF RATORY TEST	RESULTS		Kurig Contr	Kurigram Irrigation & Flo∝ Control Priject	ion & Floo
D-3 D-1 D-3 o Z	Auger Hole)	Ā	H1	₹V		A		AF			
Trace content (%) 25.2 24.20 24.35 22.65 23.25 21.31 23.61 1 1 1 1 1 1 1 1 1	- 1		P-1	P-3	L-0	Ъ-3		ך	1	7	
Ity	Depth-Metre		.Е Н	m	rł	m	-	~	rd	m	
Inquiric limit, Wt. 1%) Plasticity index, p (%) Plasticity index, p (%) 1.585 1.915 1.538 1.651 1.681 1.525 1.330 1.330	! 1		25.2	24.20	24.35	22.65	23.25	24.31	23.81	16.30	
Liquid (Imil, W, 1%) % % % % % % % % %	1										
Piosticity Index, Ip (%) .	Alterberg	, *						* 35			
wet (gm/cc) 1.585 1.915 1.538 1.651 1.5631 1.523 1.641 1.523 1.641 1.523 1.641 1.523 1.641 1.525 1.330 1.561 1.3364 1.325 1.330	IIMITS						6	1			
Dry (gm/oc) 1.266 1.542 1.237 1.346 1.225 1.330 1.364 1.225 1.330 1.364 1.225 1.330 1.364 1.225 1.330 1.364 1.225 1.330 1.364 1.225 1.330 1.225 1.225 1.330 1.225 1.225 1.230 1.225 1.230 1.225 1.225 1.230 1.225 1.225 1.230 1.225 1.225 1.230 1.225 1.225 1.230 1.225 1.225 1.230 1.225 1.225 1.230 1.225 1.225 1.230 1.225 1.225 1.230 1.225 1.225 1.225 1.230 1.225 1.225 1.225 1.230 1.225	Density	ŧ	1,585	1.915	1.538.	1,651	1.681	1.523	7.647	1.640	
Sond (%) 66 80 8 78 39 61 Sill of Cloy Cloy 34 20 92 22 61 39 61 Notural vail of clio, eo 6 6 92 22 61 39 61 Notural vail vail vail vail vail vail vail va		i	1,266	7.5L2	1.237	1.346	1.364	1.225	1.330	1.410	
Sond (%) 66 80 8 78 39 61 9 Sill of clios 31 20 92 22 61 39 61 39 61 39 61 39 61 39 61 39 61 39 61 39 61 39 61 39 61 39 61 89 80											
Sill % (Fines)	Groin size		8	8	8	78		39	.61	80	
Notural void ratio, &o Compression index, Cc Compression index, Cc Strain at failure (%) Compression index, Cc Str		%		20	92	22		ন্ত	. 39	20	
Strain at failure (%) Strain at failure (%) Strain at failure (%) Strass undist. () Stress undist. () Stress remould.	Consolidation	Natural void ratio, 8 ₀									
Strain at failure (%) Stress undist () Stress undist () Stress undist () Stress remould() Stress remould() Sensitivity Se	tests	Compression index, Cc									
Stress undist. () 1 Control () 1 Control () 20 Co		Strain at failure (%)									
Sensitivity Sensitivity 30 28 28 28 28.5 ear Ø (degree) 20 16 28 28.5 28.5 ear Ø (degree) 20 16 28 28.5 28.5 C (kg/cm²) 0.04 0.05 0.05 0.05 0.05	Compression	Stress undist. ()		-							
Sensitivity 30 30 6 (degree) 30 6 (degree) 30 8 16 28 18 28 28.5 <th< td=""><td>tesis</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	tesis										
shear Ø (degree) 30 Action (control of control		Sensitivity									
C (kg/cm²) 0.035 16 28 28 19 28.5 Shear Ø (degree) 20 16 28 28 19 28.5 C (kg/cm²) 0.04 0.05 0.05 0.035 0.05				2							
Shear Ø (degree) 20 16 28 28 19 28.5 C (kg/cm²) 0.04 0.05 0.05 0.035 0.05	#esses	c (kg/cm ²)		0.035							
C (kg/cm²) 0.04 0.06 0.06 0.05 0.035 0.05	Direct Shea	Ø	20		16	28	28	19	28.5	29	
	tests	\sim	70°0		90.0	90.0	0,025	0.035	0.05	0.03	

Table II-8 Summary of Laboratory Test Results (Auger Boring) (2/4)

Kurigram Irrigation & Flood Control Priject

SUM MARY OF LABORATORY TEST RESULTS

Hole)	4 - 5	ŗ'n	iA.	AH -6	HY	-2	AH -B	ဆို	
	D-1	D-3	D-1	D-3	건	D-3	D-1	D-3	
~1	·	m	m	٣	Н	m	гH	3	
	25,15	24.45	22.1	24.08	23.63	25.55	23.18	15.15	
İ									
•	36	39				T [†] l	-		
	έο	11				13			
l · ·	1.524	1.720	106-1	1,647	1.613	1.520	1.539	1.614	
ļ-	1,218	1,382	1.557	1,327	1,305	1.211	1.250	1.402	
ı									
	0	63	88	62	17.2	7	54.	89	
•	16	37	12.	2.1	26	93	146	П	
				-					
						-			
ĺ	-							-	
							•		
1					-				
			31.5						
ı			ηο * 0						
1	6	27.5		28	21	8	25	29.5	
	0,10	90.0		0.05	0.035	0.105	0.055	0.035	

Table II-8 Summary of Laboratory Test Results (Auger Boring) (3/4)

Kurigram Irrigation & Flood Control Project

LABORATORY TEST RESULTS

SUMMARY OF

Borehole No (buston	i								1	
	(arout ragner)	ı	AH - 9	TV.	AH -10	A.	AH -11	A.	AH-12	
Somple No.		D-1	Ъ3	D-1	E Z	77	P.3	D-1	2	
Depth-Metre		· ~	m	٦	3	н	2		, e	
Natural moisture	ire content (%)	21.06	25.67	24.22	22,06	23,15	10 35	26.10	23 RO	
Specific gravity	.		-				7747		23.	
Atterberg	Liquid limit, W, (%)			* 39		* 35		* 33		
23 E 2	Plasticity Index, Ip (%)			12		25				
Density	Wet (Em/cc)	1,692	1,611	1.589	1.588	1.728	1.638	1.546	1.921	
	0ту (gm/cc)	1,398	1.282	1.279	1.301	1,003	1.110	1,226	1.552	
	Gravel (%)									
Grain size	Sand (%)	98	53	238	75	779	61	1	17.	
	Silt or (Fines)	717	77	112	25	36	39	89	. 29	
Consolidation	Natural void ratio, 80									
les is	Compression index, Cc									
	Stroin at failure (%)									
Compression	Stress undist. ()									
tests	Stress remould.(
	Sensilivily									
Triaxial shear	r Ø (degree)						•	-	29.5	
lesis	c (kg/cm ²)							,	0.07	
Direct Shear	1	28	20,5	21,	28,5	28	29.5	15		
tests	C (kg/cm ²)	0.030	0.045	0.035	0.050	0.02	0.03	0,070		

* Upper Part of sample

Table III-8 Summary of Laboratory Test Results (Auger Boring) (4/4)

Kurigram Irrigation & Flood Control Project

SUMMARY OF LABORATORY TEST RESULTS

<u> </u>		·							
Borehole No.	(Auger Hole)	A	AH-13	A	AH-14	A.	AH -15		
Sample No.		<u>P</u>	D-3	1-0	P-3	D-1	7.		
Oepih- Metre		· H	, w	rl	9	H	m		
Notural moisture	ure content (%)	25.2	19.36	15,15	25.26	24.21	16.25		
Specific gravity	<i>۲</i>								
Atterberg	Liquid limit, W. (%)				1.7	36			
limits	Plasticity Index, tp (%)	-		-	23	æ			
Density	wet (Em/cc)	1.782	1.673	1.624	1,960	1,687	1.676		
	Dry (gm/cc)	1.423	1.402	1.10	1.405	1,358	1.442		
	Gravei (%)								
Grain size	Sand (%)	514	ቤმ	90	7	7	35		
	Sill or % (Fines) Clay	917	52	10	93	93	8		•
Consolidation	Natural void ratio, 80	- <u>-</u>							
tests	Compression index, Cc								
	Strain at failure (%)								
Compression	Stress undist. ()		-						
tests	Stress remould.)								
	Sensitivity								
Triaxial shear	r Ø (degree)	22							
tests	c (kg/cm ²)	0.105							
Direct Shear	r 🧳 (degree)		29.5	28	9	10	Ω.		
tests	C (kg/cm ²)		0.02	0.07	0.105	0.10	0.015		
				:	:	:		•	

		·
		·
		;
		.:

APPENDIX IV

SOCIO - ECONOMY

APPENDIX IV

SOCIO-ECONOMY

LIST OF TABLES

1.	Table IV-1	Selected Basic Indicators of the Country	IV - 1
2.	Table IV-2	Damage to Major Crops by Excessive Rainfall, May, 1988	lV - 2
3.	Table IV-3	Damage of Major Crops due to Excessive Rainfall and Early Floods during June and July, 1988	IV - 2
4.	Table IV-4	Damage to Major Crops due to Severe Floods During August and September, 1988	IV - 3
5.	Table IV-5	Damage of Crops by Cyclone/Tidal Bore in November, 1988	IV - 4
6.	Table IV-6	Selected Basic Indicators	IV - 5
7.	Table IV-7	Main Social Indicators of the Study Area	IV - 9
8.	Table IV-8	Food Balance in the Kurigram Zila	IV-10
9.	Table IV-9	Achievement Status of Foodgrains Procurement Programe	IV -13
-		LIST OF FIGURES	
1.	Fig. IV-1	Organization of Upazila Administration	IV-14

i de de de la companya de la companya de la companya de la companya de la companya de la companya de la company La companya de la companya de la companya de la companya de la companya de la companya de la companya de la co

en de la composition de la composition de la composition de la composition de la composition de la composition La composition de la composition de la composition de la composition de la composition de la composition de la La composition de la composition de la composition de la composition de la composition de la composition de la

Table N-1 Selected Basic Indicators of the Country

	Items	Indicat	ors
1)	Total Area (source: Upazila Statistics 1985) (ha)	14,399,880	
2)	Total Land Area (-do-) (ha)	11,655,200	
3)	Population (1981 Population Census) (persons)	87,119,965	(100.0)
	(1) in Urban Areas	13,227,625	(15.2)
	(2) in Rural Areas	73,892,340	(84.8)
4)	Households (-do-) (No.)	15,075,887	(100.0)
	(1) in Urban Areas	2,198,654	(14.6)
	(2) Farm Household Holdings	12,877,233	(85.4)
5)	Cultivated Area (Upazila Statistics 1985) 1) (ha)	9,117,000	
6)	Operated Area (1983-84 Agricultural Census) 2] (ha)	9,316,147	(100.0)
	(1) Non Farm Household Holdings	138,173	(1.5)
 	(2) Farm Household Holdings	9,177,974	(98.5)
7)	Net Cultivated Area (-do-) (ha)	8,157,766	(100.0)
	(1) Non Farm Household Holdings	7,526	(0.1)
	(2) Farm Household Holdings	8,150,240	(99.9)
8)	Farm Households (1983-84 Agricultural Census) (No.)	10,045,299	(100.0)
	(1) Small Scale Farmers	7,065,957	(70.4)
	(2) Medium Scale Farmers	2,483,210	(24.7)
	(3) Large Scale Farmers	496,132	(9.1)
9)	Non Farm Households (-do-) (No.)	3,772,647	<u>.</u>
10)	Landless Farmers (-do-) (No.)	6,831,373	(100.0)
	(1) Landless I	1,198,056	(17.5)
	(2) Landless II	1,965,002	(28,8)
	(3) Landless III	3,668,315	(53.7)
11)	Working Population of 10 Years old and Above (1981 Population Census) (persons)	23,617,000	(100.0)
	(1) Agriculture	14,472,000	(61.3)
:	(2) Manufacturing	1,005,000	(4.3)
	(3) Business	2,622,000	(11.1)
	(4) Others	5,518,000	(23.3)
a) :	Population Density (persons/sq.km)	605	
b)	Population Growth Rate (%)	2.8	
c) .	Per Capita Availability of Land (ha)	0.13	
d)	Per Household Number of Family (persons)	5.7	<u> </u>
e)	Per Farm Household Operated Area (ha)	0.91	
f)	Per Farm Household Net Cultivated Area (ha)	0.81	·
g)	Farm Household as % of total Households (%)	72.3	
h)	Cultivated Area as % of Total Area (%)	63.3	
i)	Net Cultivated Area as % of Total Land Area (%)	70.0	
j)	Landless Farmers as % of total Households (%)	49.4	

Note: 1) Cultivated area is the area actually cropped regardless of the number of

crops grown plus the area under current follow.

2) Operated area is the area owned by the household plus the area rented from others minus the owned area given to others for operation. It also includes uncultivated land operated by the household including homestead area.

Table W-2 Damage to major crops by excessive rainfall, May, 1988

(Area in acre)

				_			
Total loss	of production (M tons)	8	74652	1054	15737	56726	19169
Expected Yield/acre	if there were no damages (Kg)	L	1074	269	370	πεπ	•
	rotal area damaged	9	24159	1523	42534	61697	129913
ırea	Estimated areas fully damaged	I	18919	596	23454	29068	72403
Partially damaged area Extent of Ex	Extent of damage percentage	7	29.20	33.40	31.30	37.40	1
Part	Total affected areas	٤	26149	2879	74932	17721	220324
	Fully damaged areas	5	5240	561	19080	32629	57510
	Name of crops	1	Boro	Jute	Aman	Aus	Total

Source: 1) Agriculture Statistics Wing, B.B.S. 2) 1989 Statistical Yearbook of Bangladesh

Table W-3 Damage of major crops due to excessive rainfall, and early floods during June & July, 1988

(Area in acre)

		Part	Partially damaged area	ırea		Expected	Total lose
Name of crops	Fully damaged areas	Total affected areas	Extent of damage percentage	Estimated areas fully damaged	Total areas damaged	if there were no damages (Kg)	of production (M tons)
	2	E	7	S	9	Ĺ	ထ
Aus	357787	88089	30.61	193108	550895	ηSη	239088
Aman	342159	411570	30.00	123471	465630	575	147741
Jute	17030	82973	28.26	/	££†0†	255	811118
Seed-bed	12797	13151	31.23	201ħ	16904		
Total	729773	1138532	ı	851 th 183	1073906	1	112625

Source: 1) Agriculture Statistics Wing, B.B.S. 2) 1989 Statistical Yearbook of Bangladesh

Table W-4 Damage to major crops due to severe floods during August and September, 1988

(Aria in acre)

	S. L. G	Part	Partially damaged area	агеа	£- 1 1	Expected Yields/acres	Total loss
Name of crops	fully damaged areas	Total affected areas	Extent of damage percentage	Estimated areas fully damaged	areas	if there were no damages (Kg)	of production (M tons)
_	2	3	7	5	9	L	8
Aus	91392	59852	45.31	27107	118499	426	50509
Атап	2871433	1857221	38.88	722042	3593475	573	2059820
Seed bed	31261	11904	18.14	4918	36179	l	l
Sugar cane	15238	59297	24.90	14767	30005	12504	375170
Jute	30995	41067	33.15	13614	609††	588	26240
Vegetables	16742	3290	01. मध	1451	18193	3906	71062
Others	1542	1543	t9.07	1090	3541	7193	25471
Total	3059512	2034144	1	784989	3844501	1	1

Source: 1) Agriculture Statistics Wing, B.B.S. 2) 1989 Statistical Yearbook of Bangladesh

Table IV-5 Damage of crops by cyclone/tidal bore in November, 1988

(Area in acre)

	ģ	Parti	Partially damaged area	ırea	£	Expected Yield/acre	Total loss
Name of crops	rully damaged areas	Total affected areas	Extent of damage percentage	Estimated areas fully damaged	local areas damaged	if there were no damage (Kg)	of production (M tons)
	2	3	7	5	9	2	8
Aman	50184	2218584	27.944	619960	670144	129	449421
Seed-bed	15593	43157	1711-51	19483	35076		
Wheat	14097	81228	30.93	25120	39217	612	28213
Pulses	26825	115283	40.10	50836	77661	614	32569
Vegetables	4360	24267	39.87	9675	14035	3033	Z252#
Others	58170	204199	35.39	72269	130439	1536	200388
Total	169229	2686718	29.68	797343	966572		753163

Note: Other crops include Pepper, Brinjal, Radish, Beans, Potato, Banana, Beetel leaves, Mustard, Cabbage, Tomato, Water Gourd, Groundnut, Onion, Garlic and Sugarcane.

Source: 1) Agriculture Statistics Wing, B.B.S. 2) 1989 Statistical Yearbook of Bangladesh

Table N-6 (a) Selected Basic Indicators

		Upazila1)	Total Area ²)	Total Land Area3)	Adm	inistra Units5		Population 6)
			(ha)	(ha)	Union	Mouza	Village	(persons)
		Bhurungamari	23700 (3556)4)	21800	10 (3)	56 (10)	123 (9)	149454 (25871)
	Study	Nageswari	41760 (22282)	29000	15 (11)	79 (45)	335 (286)	235338 (163278)
	Area	Bulbari	15640 (14813)	14500	6 (6)	48 (46)	123 (121)	103577 (110298)
		Kurigram	25560 (8958)	17400	8 (5)	72 (20)	335 (67)	175945 (53228)
		Total	106660 (49609)	82700	39 (25)	255 (122)	916 (444)	664314 (352675)
ı	Kurigram Zila	9 Upazila	217300	19710	72	585	_	1266425
•	Rangpur Region	5 Zilas 35 Upazilas	958560	90960	346	3714	•	6510050
	Bangladesh	64 Zilas 460 Upazilas 32 thanas	14399880	11655200	4401	60315	-	87119965

- Note: 1) Source 1989 Statistical Yearbook of Bangladesh
 - 2),3) Source Upazila profile 1989 and Upazila Statistics Volumeone. This area is an Upazila wise area.

Total area includes reserve forest, river and land areas.

This figure is Union or Mouza wise which is supposed to be included in the project area according to the 1981 Population

census.

4)

- 5) Source 1981 Population Census and 1989 statistical Yearbook of Bangladesh.
- 6) Source 1981 Populaton Census. (Enumrated)
- 7),8),9) Source the Bangladesh Census of Agriculture and Livestock 1983 84.
- 10) This rate is of the annual intercensus at growth rate during the 1974 81 Population Census.
- 11),12) Source 1981 Population Census
- 13) (1) Source The Bangladesh Census of Agriculture and Livestock 1983 84
 - (2) This figure is that of dividing the net cultivated area farm household holdings by the number of farm households.

Table W-6 (b) Selected Basic Indicators (Continued)

		Net Cult.		Households ⁸	3)	Net Irrigation
	Upazila1)	Area7) (ha)	Total.	Non Farm households	Farm households	Area9) (ha)
	Bhurungamari	16686	25774	7931	17843	1874
	Nageswari	26737	39506	12425	27081	2272
Study	Bulbari	10956	18961	6075	12886	956
Areas	Kurigram	13621	23738	7086	16652	860
	Total	68000	107979 (100.0)	33517 (31.0)	74462 (69.0)	5962
Kurigram Zila	9 Upazila	133872	222127 (100.0)	67727 (30.5)	154400 (69.5)	10655
Rangpur Region	5 Zilas 35 Upazilas	664735	1140525 (100.0)	341982 (30.0)	798543 (70.0)	131414
Bangladesh	64 Zilas 460 Upazilas 32 thanas	(thousand) 8157766	13817646 (100.0)	3772647 (27.3)	10045299 (72,2)	1620305

Table IV-6 (c) Selected Basic Indicators (Continued)

	Upazila	Population Growth Rate (1974-81) (%)10)	Population Density (Persons/ sq.km)	Net Cult. Area as % of Total Land Area (%)	Per Capita Availability of Land (ha)
	Bhurungamari	2.4	633	76.6	0.15
	Nageswari	2.4	579	92.2	0.12
Study	Bulbari	2.1	662	75.6	0.14
Areas	Kurigram	3.1	688	78.3	0.10
	Total	2.4	623	82.3	0.12
Kurigram Zila	9 Upazila	2.2	583	67.9	0.16
Rangpur Region	5 Zilas 35 Upazilas	2.6	677	73.1	0.14
Bangladesh	64 Zilas 460 Upazilas 32 thanas	2.8	605	70.0	0.13

Table W-6 (d) Selected Basic Indicators (Continued)

	Upazila	Per Capita net Cult. Areas (ha)	% of Irrigated Areas to net Cult. Areas (ha)	Amount per Family per Household (in dwelling unit) (persons) 12)		Per Farm- household Operated Areas (ha)14)
	Bhurungamari	0.11	11.2	5.5	0.94	1.10
	Nageswari	0.11	8.5	5.7	0.99	1.26
Study Areas	Bulbari	0.11	8.7	5.5	0.85	1.04
HICAS	Kurigram	0.08	6.3	5.8	0.82	1.12
	Total	0.10	8.8	5.6	0.91	1.17
Kurigram Zila	9 Upazila	0.11	8.0	5.6	0.87	1.10
Rangpur Region	5 Zilas 35 Upazilas	0.10	19.8	5.5	0.83	0.97
Bangladesh	64 Zilas 460 Upazilas 32 thanas	0.09	19.9	5.7	0.81	0.91

Table N-7 Main Social Indicators of the Study Area

ltems	Indicators	Note
Population	664,314 persons (1981)	
Population growth rate (average annual)	2.4% (1974 - 81)	3.0% (1961 - 74)
Population density	623 persons/sq. km. (1981)	Country 605 persons/sq.km. (1981)
Primary school enrolement rate	Both sexes 52.2% Males 70.3% Females 33.7% (1981)	Country Both sexes 57.2% Males 61.0%, Females 53.1% (1981)
Primary school attendance rate	Both sexes 15.9%, Males 18.2% Females 13.6% (1981)	Country Both sexes 21.8% Males 23.0%, Females 20.7% (1981)
Literacy rate (5 years old and above)	Both sexes 15.7%, Males 22.9% Females 8.2% (1981)	Country Both sexes 23.8% Males 31.0%, Females 16.0% (1981)
Hospital beds per 1,000 persons	0.16 beds/1,000 persons (1981)	Country 0.55 beds/1,000 persons (1981)
No. of hand water pumps for drinking water per 1,000 households	(1981) 41 No./1,000 households (1989) 64 No./1,000 households	Country 35 No./1,000 households (1981)
No. of villages with electricity per 1,000 villages	27 villages in the Kurigram upazila	Country (1981) 34 village/1,000 villages
Working population	193,832 persons (44% of all population aged 10 years old and above) (1981)	Country 23,617 thousand persons (44.5%)
Working population with main occupations	Both sexes Agriculture 77.8% Manufacture 0.9 Business 5.1 Others 16.2 (1981)	Country Both sexes Males Females Agriculture 61.3% 63.1% 28.0% Manufactures 4.3 4.2 5.1 Business 11.1 11.4 4.9 Others 23.3 21.3 62.0 (1981)
No. of households without homestead land	13% (of the total households)	Country9%
Structural patterns of dwelling units	Kutcha patlern 87.6% Semi-pucca 11.6% Pucca 0.8%	
Road length per sq. km.	2.18 km (Kutcha roads 2.10 km, pucca roads 0.08 km) (1981)	
No. of transportation means per 1,000 persons	Buses 0.08 No. per 1,000 persons Rickshaws 47 No. per 1,000 persons	
Sex ratio	104 (1981)	Country 106 (1981)
Dependency ratio	101 (1981)	Country 100 (1981)
No. of post offices per 1,000 households	0.36 No./1,000 households	
No. of bank branches per 1,000 households	0.22 No./1,000 households	

Source: Bangladesh pulation Census 1981, Bangladesh Census of Agriculture and Livestock 1983-84 and Upazila Profile (1989)

Table IV-8 Food Balance in the Kurigram Zila

1) Actual paddy production (1985/86 - 1987/88)

(unit: ton)

Varie	Years ties	1985-86	1986-87	1987-88	Total	Average
	H.Y.V.	13,147	20,500	21,972		/
Aus	Local	39,042	55,750	65,023		/
	Sub-total	52,189	76,2580	86,995		/
	B-Aman	2,350	2,250	1,460		
	H.Y.V.	46,391	54,405	51,946	· /	
Т-	Paisan	16,372	23,498	17,201		
Aman	Local	84,852	83,396	96,582		
	Sub-total	147,585	161,299	165,729	./	
	H.Y.V.	33,626	51,866	84,961		
Boro	Local	9,795	11,412	12,198	/	
	Sub-total	43,421	63,278	97,159	/	/
	Total	245,545	606,077	351,343	899,965	299,988

Source: DAE, 'Kurigram Agriculture'

2) Actual wheat production (1985/86 - 1987/88)

(unit: ton)

Years	1985-86	1986-87	1987-88	Total	Average
Production	39,471	41,740	34,264	115,475	38,492

Source: The Above source.

3) Procurement Quantities

(unit: ton)

Years Kind	1985-86	1986-87	1987-88	Total	Average
Rice	5,184	3,753	5,854	14,791	4,930
Wheat	5,605	3,553	3,458	12,616	4,205
Total	10,789	7,306	9,312	27,407	9,135

Source: MOF, Kuringram District.

4) Off-take quantities

(unit: ton)

Years Kind	1985-86	1986-87	1987-88	Total	Average
Rice	2,442	7,073	5,745	15,260	5,087
Wheat	21,360	34,298	40,837	96,495	32,165
Total	23,802	41,371	46,582	111,755	37,252

Source: The above source.

5) Actual Average Production of Foodgrains (rice and wheat) (1984/85-1987/88) (unit: ton)

Kind	Production	Note			
Rice	200,992	Paddy Prod. Milling rate 299,988t x 0.67 = 200,992t			
Wheat	36,567	Paddy Prod. Milling rate 38,492 ^t x 0.95 = 36,567 ^t			
Total	237,559				

Source: The above table.

6) Net Production of Foodgrains (rice and wheat) (unit: ton)

Kind	Net Production	Note				
Rice	196,108	Deduction for seed, waste etc. has been taken as 2.43% of the total production of rice				
Wheat	35,456	Deduction for seed, waste etc. has been taken as 3.01% of the total production of wheat				
Total	231,564					

Source: The above table.

7) Net Availability of Foodgrains (rice and wheat)

(unit: ton)

Net Production of Foodgrains	Note
259,681	Net Procurement Off take Production quan. quan.
en de la companya de la companya de la companya de la companya de la companya de la companya de la companya de La companya de la companya de la companya de la companya de la companya de la companya de la companya de la co	231,564t - 9,135 ^t + 37,252 ^t = 259,681 ^t

Source: The above table.

Note ;

This figure was calculated on the assumption that all

foodgrains produced in the Kurigram zila would be consumed

inside the zila.

8) Population at Present (1988)

Production	Note
persons 1,496,000	This figure as of 1988 was estimated based on the population of 1981, assuming that the average annual population growth rate has been 2.4% as it was between 1974-81.

Source: Bangladesh Population Census 1981.

- 9) Per capita consumption of foodgrains
 - 1) per annum (kg) 174 kg (259,681t / 1,496,000persons)
 - 2) per day (g) 477 g (174kg/ 365days)
- 10) Intake of kcal per capita per day

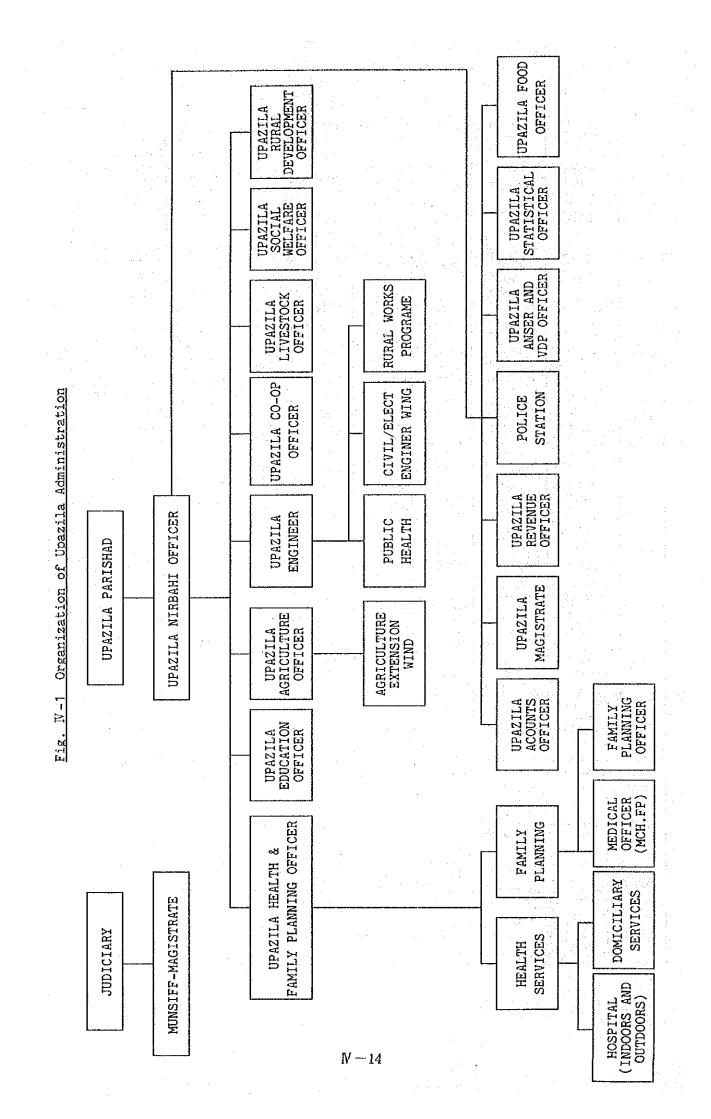

1,673 kcal (477g x 3.5084kcal/g)

Table N-9 Achievement Status of Foodgrains Procurement Programe

Year	Procure- ment	Food- grains	Bhurun- gamari	Nages- wari	Fulbari	Kurigram	Total (study area) (A)	Kurigram Zila (10 upa- zilas) (B)	A/B (%)
1986	Target (ton)	Rice Wheat Sub-total	1,440 800 2,240	1,900 1,200 3,100	700 500 1,200	1,100 800 1,900	5,140 3,300 8,440	7,000 6,000 13,000	73.4 55.0 64.9
1987	Actual (ton)	Rice Wheat Sub-total	1,024 1,166 2,190	1,078 1,516 2,594	238 204 442	428 76 504	2,768 2,962 5,730	3,753 3,553 7,306	73.8 83.4 78.4
	Achieve- ment ratio (%)	Rice Wheat Sub-total	71.1 145.8 97.8	56.7 126.3 83.7	34.0 40.8 36.8	38.9 9.5 26.5	53.9 89.8 67.9	53.6 59.2 56.2	
	Target (ton)	Rice Wheat Sub-total	2,466 1,000 3,466	3,066 1,900 4,966	1,132 400 1,532	666 300 966	7,330 3,600 10,930	9,332 5,000 14,332	78.5 72.0 76.3
1987 1 1988	Actual (ton)	Rice Wheat Sub-total	1,778 561 2,339	2,189 1,409 3,598	619 278 897	299 198 497	4,885 2,446 7,331	5,854 3,458 9,312	83.4 70.7 78.7
	Achieve- ment (ratio (%)	Rice Wheat Sub-total	72.1 56.1 67.5	71.4 74.2 72.5	54.7 69.5 58.6	44.9 66.0 51.4	66.6 67.9 67.1	62.7 69.2 65.0	
	Target (ton)	Rice Wheat Sub-total	2,600 1,000 3,600	3,216 1,900 5,116	861 500 1,361	567 400 967	7,244 3,800 11,044	8,632 6,000 14,632	83.9 63.3 75.5
1988	Actual (ton)	Rice Wheat Sub-total	357 124 481	19 115 134	4 ~ 4	58 - 58	438 239 677	526 255 781	83.3 93.7 86.7
	Achieve- ment ratio (%)	Rice Wheat Sub-total	13.7 12.4 13.4	0.6 6.1 2.6	0.5 0.3	10.2 6.0	6.0 6.3 6.1	6.1 4.3 5.3	
	Target (ton)	Rice Wheat Sub-total	6,506 2,800 9,306	8,182 5,000 13,182	2,693 1,400 4,093	2,333 1,500 3,833	19,714 10,700 30,414	24,964 17,000 41,964	79.0 62.9 72.5
Total	Actual (ton)	Rice Wheat Sub-total	3,159 1,851 5,010	3,286 3,040 6,326	861 482 1,343	785 274 1,059	8,091 5,647 13,738	10,133 7,266 17,399	79.8 77.7 79.0
	Achieve- ment ratio (%)	Rice Wheat Sub-total	48.6 66.1 53.8	40.2 160.8 48.0	32.0 34.4 32.8	33.6 18.3 27.6	41.0 52.8 45.2	40.6 42.7 41.5	

Source: MOF, Kurigram District
Note: The achievement ratios of the procurement amounts of foodgrain in both the four upazilas and Kurigram zila have ranged between 1986/87 and 1987/88 as follows.

Year	Procurement		Bhurun- Nages- gamari wari		Fulbari	Kurigram	Total (study area) (A)	Kurigram Zila (10 upa- zilas) (B)	A/B (%)
	Target	(ton)	5,706	8,066	2,732	2,866	19,370	29,332	66.0
1986/87	Actual	(ton)	4,529	6,192	1,339	1,001	13,061	16,618	78.6
-	Achieve- ment ratio (%)	Food- grains	79.4	76.8	49.0	34.9	67.4	60.8	
1987/88		Rice	71.7	65.8	46.8	41.6	61.4	58.8	
		Wheat	95.9	94.4	53.6	24.9	78.4	63.7	

APPENDIX V

AGRICULTURE

APPENDIX V

AGRICULTURE

LIST OF TABLES

				Page
1.	Table	V-3-1-(1)	Year-wise Crop Production Data	
	1		by BBS : Nageswari	V 1
2,	Table	V-3-1-(2)	Year-wise Crop Production Data	
			by BBS : Bhurungamari	V- 2
3.	Table	V-3-1-(3)	Year-wise Crop Production Data	
			by BBS: Fulbari	V- 3
4,	Table	V-3-1-(4)	Year-wise Crop Production Data	
			by BBS : Kurigram Sadar	V- 4
5.	Table	V-3-2	Year-wise Crop Production Data	
			by BBS: Total of 4 related Upazilas	V- 5
6.	Table	V-3-3	Trends of Cropping (1985~1989)	V- 6
7.	Table	V-3-4-(1)	Estimated Year-wise Crop Production	
			Within the Project Area	V- 7
8.	Table	V-3-4-(2)	Estimated Year-wise Crop Production	
			Within the Project Area	V- 8
9.	Table	V-3-4-(3)	Estimated Year-wise Crop Production	
			Within the Project Area	V- 9
10.	Table	V-3-5	Yield and Average Cropped Area per Farm	
			in the Project Area from the Results of	
-			Farm Interview Survey	V-10
11.	Table	V-3-6-(1)	Use of Iuput from Interview Survey (1)	V-11
12.	Table	V-3-6-(2)	Use of luput from Interview Survey (2)	V-12
13.	Table	V-3-7	Crop Damage from Interview Results	V-13
14.	Table	V-3-8- (1)	Pest-Damaged Area and Pesticide	
			Use in Kurigram District	V-14
15.	Table	V-3-8-(2)	Informed Major Flood Damage by Upazila	V-14
16.	Table	V-3-8-(3)	Cropped Area Flooded by 1988/89 Flood	V-15

17. Table V-3-9-(1) Estimation of Current Livestock Herds V-16
18. Table V-3-9-(2	
101 14010 1 0 0 (2	by Agricultural Census 83/84 V-17
19. Table V-3-10	Estimated Feed Dependency of Draught Animals etc.
10. 10010 1 0 10	on Grainstraw V-18
20. Table V-3-11	Fish Resources in Kurigram District V-19
21. Table V-4-1	Yield Estimation from Improvement Factors V-20
22. Table V-4-2	Long-Term Yield Trends of Selected
DD. IGDIC V 4 D	Crops in Bangladesh V-21
23. Table V-4-3	List of High Yielding/Improved Varieties V-22
24. Table V-4-4	Land Type Distribution under W.P. and W.O.P V-23
25. Table V-4-5-(1	
26. Table V-4-5-(2	
27. Table V-4-5-(3	
28. Table V-4-5-(4	
29. Table V-4-6	Farmgate Prices of Agricultural Inputs
	in Kurigram V-28
30. Table V-4-7-(1	
31. Table V-4-7-(2	
32. Table V-4-8	With-project Livestock Herd Projection
	Within the Project Area V-31
33. Table V-4-9	Available By-Products for Feeds
	in the Project Area V-32
34. Table V-4-10	A Standard Guide-Manual for Crop Production V-33
	and the second second of the second second of
	LIST OF FIGURES
	Page

Table V-3-1-(1) Year-wise Crop Production Data by BBS (contd.)
Upazila: Nageswari

unit : ha. ton/ha.

Crop	-											
	•	Cropped	ed Area i	in hectar	e)	٠.		Yie	ld in t	ton/ha.		
&	84/85	85/86	86/87	84/28	68/88	aver.	84/85	85/86	28/98	82//88	88/88	aver.
	2649	12524	9696	9292	8848	10602	0.65	0.65	0.92	0.92	1.02	0.83
-Aus niv	200	4047 4057	12726	1010 17170	040	12001	35		50			2 2 1 1
. ≥ ≤	100	45054	7759	70°	22521 27872	7207	00.0		- 6 - 6			10.0
- E	1146	1 K	1066	1106	1011	1063	16.	200	35			, c
·	5.5	40	404	288	283	376	- 1	1-	i -			, - - - -
	323	404	485	404	121	347	1.66	. 69	(<u>@</u>			8
HYV	1664	2654	3232	4128	4848	3305	2.68	88 88	2.58			. 5 . 5 . 5 . 5 . 5
jam	1 6	32	40	8	8	92	ı	2.40	2.58			2.42
Paddy	35371	36582	33815	35355	33457	34916	-	i	-	ŧ	1	l
Khrf Kaun	10	73	61	49	71	.99				0.65	0.73	0.76
Kaun	00	4	16	16	10	11				0.74	१५	0.77
	3944	2828	3434	3434	3272	3382				1.57	1.94	2.01
द्ध	4864	6763	6383	4444	4444	5380			1.57	1.66	1.48	1.42
	1325	1539	1818	1495	1101	1456			_	1.85	1.85	j. 68
Sugarcane	27	9	i	18	12	32				36.9	36.9	40.4
Khesari	2	16	<u>0</u>	32	34	27				0.74	<u>0</u>	0.83
Masur	7	61	 	ಹ	71	33				0.74	0.74	0.74
Maskalai	9	ଚ୍ଚ	82	င္တ	င္တ	32				0.83	ص 88	 20
tab Chilli	Z;	77	22	22	92	33				0.74	0.74	0.76
Chilli	25	10	010	15	27.7	FFI 6	ဝ လ	0.63		0.00 0.00	0.65	0 8
JOSEPH T	123	444	280	351 16	40 40 40	545 10				0.00 0.00		⊃;
Justard H	i	,	818	22 7	77	9 <u>1</u> 9				0.74	0.74	47.0
ato L	61	61	32		32	.		6.46		6.46	5.72	6.41
Potato HYV	හි	61	8	91	쩞	74	10.2			8.90	% 8	8. 8.
G'nut	0	.I .	j	♥.	7	₩		ı	1.	0.74	0.83	0.7
Khrf G'nut	1	ı	-1	₹	4	4				0.92		1.02
Rabi Til	9	မှ	16	14	12	I				0.55	0.65	0.65
	14	75	<u></u>	œ	œ	10				0.55	0.55	0.61
	121	121	101	ន	50	22				9.20	7.40	% 79
,	55	28	5 0	5 8	83	28	7.80	7.90	7.80	8.10	8.20	7.90
	14	275	16	16	2 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	123				8.40	% %	8.30 30
Uthers I	10/39	12133	12156	10230	97/0e	46099	- - - - -			- 00700	آ , 	ı
	יסד גם	40(15	TOCOP	49969	49109	40022	(1014)	tal acie	18c · 78		C. I. = 130	/%00

source: the same as the precedent table note: same as above

Table V-3-1-(2) Year-wise Crop Production Data by BBS (contd.) Upazila: Bhurungamari

unit: ha. ton/ha.

_		. :													·												
	aver.	0.76 1.59						1 7 0			1.66				2 2 2 3 3 3 3 3 3											1	6%)
	68/88	1.92						1 " .			1.85 1.85				0.83											i	c. i. =199%
ton/ha	84/88	0.83 1.38							V .		1. 85.		0.95	7.5	288	0.65		0.4 4.4	8	0.74	0.92	က (၃)	36		8.40 40		16972. ha.
ld in	6)	0.65 1.29			1 . 1 .						1.66															ı	
Yie	85/86	0.74 1.94						100			38:				- :			*				0.74 4.72					total acreage
	84/85	0.65 1.85			٠			1			51.0		_							₹.		0.74	• •			ı	(to
	aver.	6219 1159	13405 3846	1012	₹ 8	2139	56 27976	26	34	1562	945 140 140	18	5.	₹	4 <u>13</u>	10	9 9 9	35	146	2	က ! လ	<u>ا</u> د د	ว <u>เ</u>	30	Ħ	5424	33400
a	88/88	4969 808	14382 5050	921	នន	2828	121 29119	30	Q	1414	1212			⊋ 8	152	မ	28	27.5	129	4	Φ.	<i>۳</i> و	* "	# <u>c</u>	12	5424	34543
in hectar	00	4969 1616	15352 3596	949	5. 5. 5.	2424	44 29103	30	.61	1535	1010	1	67	5 5 8	92 174	9	ភ	4.19	158	တ	∞ (∞ ₹	। ਨੂੰ	<u> </u>	201	5383	34486
Area	. జ	5656 1002	3596	1192	101	1822	42 25652	30	27	1535 27,75 15,35 1	1091	16	<u>چ</u>	₹3	162	2	137	⁷ .c	141	∞	∞ (xo «	ř i	192	2	0909	31712
Cronned	85/86	7474	12362 3555	1212	133 133	2206	16 28480	16	4	1366	362 362	87	83	₹ 2	101	91	162	, 22	141	27	ભ	ထဖ	- -	3 6	2	2080	33560
	84/85	8027 1159	12726 3434	28 28 29 20 20 20 20 20 20 20 20 20 20 20 20 20	143	1414	27738	12	∞ :	1958 1958 295	428	23	00 ₹	7 7	80	18	78.	26	162	7	~ 1	10	- 62	7.5	17	5138	32876
Crea		B-Aus L T-Aus HYV	I-Amanityv	T-AmanP jm	I-Aman L Boro L	Boro HYV	Boro Pajam Tral Paddy	Khrf Kaun	Rabi Kaun	Wheat	Jute HYV	Sugarcane	Khesari	Masur	Rab Chilli	Krf Chilli	Mustard L	Mustara n Potato I	Potato HYV	_	Khrf G'nut	Kabi Til	Cripot Doton			С !	Grd Total

source: the same as the precedent table note: same as above

Table V-3-1-(3) Year-wise Crop Production Data by BBS (contd.) Upazila: Fulbari

	aver.	0.1. 1.61. 2.2.1.1. 1.13. 1.13. 1.13. 1.13.		0.72 0.73 1.92 1.93 37.8 37.8 0.88 0.68 0.77 0.77 0.77 0.65 0.65 0.65 0.95 0.95
ton/ha.	68/88	0.1.1.92 0.92 0.92 488 488 488 488 488 488 488 488 488 48		0.74 0.54 1.38 1.38 1.75 36.9 0.74 0.55 0.74 0.55 0.74 0.55 0.74 0.55 0.74 0.55 0.74 0.55 0.74 0.65 0.65 0.92 0.92
: ha.	ton/ha. 87/88	5011338888 1122111 3011111111111111111111111111111		0.65 1.57 1.57 1.57 1.75 1.75 0.92 0.92 0.74 0.92 0.74 0.83 0.92 0.55 0.55 0.92 0.92 0.92 0.92 0.92 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93
unit	ld in 86/87	0.83 1.22 1.20 57		0.55 0.74 1.48 1.57 36.9 0.65 0.74 0.74 0.74 0.55 0.55 0.55 0.92 0.92
	Yie 85/86	0.65 1.57 1.20 1.20 1.20		0.74 1.29 36.93 1.29 36.93 0.74 0.74 0.74 0.55 0.74 0.55 0.74 0.55 0.92 0.92
	84/85	0.1.2.2.1.1.2.2.1.1.2.2.1.1.1.2.2.1.1.1.2.2.1		0.92 1.20 1.20 1.20 1.20 0.93 0.65 0.65 0.83 0.74 0.74 1.04 1.04 (to
	aver.	7122 371 12112 911 379 356	1464 31 22919	16 1947 1947 165 30 21 21 22 20 20 4(4) 10 10 4250 20 20 20 20 20 20 20 20 20 20 20 20 20
	98/88	5232 404 12516 343 333 121 40	2828 61 21878	18 897 1761 1073 36 24 24 40 152 40 152 61 101 (4) 8 4458 26366
	in hectar 87/88	5656 606 12524 786 384 323 323	2020 22 22574	18 889 889 1761 345 345 345 1186 186 14 4 4 4 4 4 4 4 4 113 12 12 12 13 13 14 3788 26362
bari	ed Area 86/87	6060 248 12130 889 384 404 404	1238 20 21607	16 28 889 889 2161 764 178 178 178 19 10 10 10 10 10 10 10 10 10 10 10 10 10
Ful	Cropped 85/86	9290 202 12160 1252 388 485	747 20 24718	16 505 2105 1061 106 20 20 20 20 23 6 6 6 23 6 4 4 4 4 4 4 4 4 4 4 101 101 101 101 101
Upazila	84/85	9373 396 11231 1283 408 61	485 - 23399	12 128 1947 1947 582 582 582 10 10 10 10 10 10 10 10 10 10
	Crop	B-Aus L T-Aus HYV T-Aman L T-AmanHYV T-AmanP jim T-Aman L Boro	Boro HYV Boro Pajam Tral Paddy	Khrf Kaun Rabi Kaun Wheat Jute Local Jute HYV Sugarcane Khesari Maskalai Rab Chilli Krf Chilli Mustard H Potato L Potato L Potato L Potato L Rabi G'nut Khrf G'nut Khrf G'nut Khrf G'nut Khrf Till Khrf Till Khrf Vegtble Rabi Vegtble Rabi Vegtble Rabi Vegtble Rabi Vegtble

source and note: the same as the precedent tables.

Table V-3-1-(4) Year-wise Crop Production Data by BBS (contd.) Upazila : Kurigram Sadar

unit : ha. ton/ha.

1 .									100	. 1						•			-														
	aver.	0.81	1.46	2.10	2, 16	1.05	1.48	9	2.33		0.72	0.92	1.94	1.40	1.66	38 53	0 88 80	0 0	0.76	0.74	0.63	0.08	0.74	გ. 3მ	8 02	0 83		0.61	0.68	8.21	O &	8.2	- - - - - - - - - - - - - - - - - - -
	68/88	0.92																			0.65												c. i. =159%
ton/ha.	82//88	0.92								.	0.65	1									(၃)												18269. ha. c
lă in	28/98	0.83		_	_		_			'	0.55										0.65												
Yie	85/86	0.74								,											9.63									9.23			total acreage
	84/85	0.65							1 1	1											် ကြ									9.69			(to:
	aver.	7245 905	9867	2422	419	44	110	2333	20	20002	40	ရာ	1033	2661	827	ඉ	75	ස	25	0	12	188 188	27	#H #	8	<u></u>	4	·-	₽ ₽	4	24	16	5310 28675
re	68/88	5656 606	9736	2828	40	4	81	4040	92067	70007	40	1	1131	2505	929	63	29	32	50	103	ଷ୍ଟ	₹,	20 §	129	S	88	7	9	ŀ	24	24	82 E	5265 28322
in hecta	82//88	5709 1010	10100	2626	364	9	129	3596	92522	000007	44	1	1323	2505	828	9	7	ဓ	2	121	55	3	3	133	20.	88	ı	∞	I	26	ဓ	ຂ:	5426 29014
ed Area	28/98	6464 808	9979	2101	513	40	129	2040	990066	77000	40	1	1323	3293	1010		쭚	35	30	17	00,	113	ထင္မ	25.	55 .	Ċ,	4	❤		9	7	8	6218 28306
Croppe	85/86	8827	9797	2283	286	4	121	1309	12 24086	74000	61	લ	319	2608	6 88	22	77	8	8	-	010	777	. Ç	4 1		23	廿	∞	7	27	22	12	4608 28694
	84/85	9567	9723	2274	592	61	167	629	93077	13007	12	4	1069	2396	481	33	20	77.	55	6	eji •	424	,	[6	<u>ب</u>	دن	₹,	00	4	61	<u>ල</u>	12	4948 28925
Crop		B-Aus L T-Aus Hyy	T-Aman L	T-AmanHYV	T-AmanP jm	T-Aman L	Boro	Boro HYV	Boro Pajam Tral Paddy	II al I addy	Khrf Kaun	Rabi Kaun	Wheat	Jute Local	Jute HYV	Sugarcane	Khesari	Masur	Maskalai	Rab Chilli	Fr. Crilli	mustara L	Mustard H	Potato L	Potato HYV	Kabi G'nut	Khrf G'nut	Rabi Til	Khrf Til	o.	Krf Vegtble	Rabi Vegtbl	Grd Total

source and note: the same as the precedent tables.

Year-wise Crop Production Data by BBS Total of 4 related Upazilas Table V-3-2

unit: ha. ton/ha.

88/89 aver.	96 0.83 1.64 1.64 1.64 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26	0.74 0.75 1.89 1.96 1.89 1.96 1.90 0.75 0.74 0.73 0.74 0.70 0.83 0.77 0.69 0.77 0.69 0.77 0.69 0.75 0.69 0.61 0.61 0.61 0.61 0.61 0.88 8.72 chazr)
ton/ha. 87/88 &	0. 88 1. 1. 2. 2. 1. 1. 44 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	64 0.65 0.88 0.65 0.88 0.65 0.88 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65
eld in 86/87	0.89 1.47 1.143 1.19 2.57 2.57	0.64 1.222 36.128 36.9 36.9 6.076 7.005 7.68 7.68 7.68 7.68
Yi. 85/86	0. 1.93 1.15 1.15 1.15 2.72 2.72 2.42	0.71 2.12 2.12 1.06 1.31 37.9 0.65 0.65 0.62 0.62 0.56 9.0 8.06 7.78 7.78 7.78
84/85	0.69 1.86 1.06 2.57 2.57	0.99 1.98 1.98 1.98 1.98 0.00 0.07
aver.	54236 5614 95593 15801 3574 3632 1656 16062 425 196593	321 94 17859 21274 7220 1198 969 289 513 569 70 70 70 70 70 70 70 70 70 70 70 70 70
ire 88/89	42622 4735 89462 16055 2709 2222 703 26260 889 185657	382 97 18806 18245 7272 551 683 331 457 79 2355 69 609 784 784 784 784 784 784 784 784 784 784
in hectar 87/88	43612 8052 98576 15400 3206 2497 2361 21844 402 195950	372 123 20733 18285 7179 582 790 315 402 616 67 326 160 392 99 99 234 234 257 13 257 13 257 13 257 254 257 254 257 257 257 251
ped Area 86/87	46783 4680 96455 16160 3927 4000 2242 15176 354 189737	329 111 20059 27080 8355 945 945 913 271 507 600 73 296 618 618 679 679 679 679 679 679 679 679 679 679
Cropped 85/86 8	67185 4919 97816 15635 4097 4355 1644 9425 56 205132	412 44 12076 21499 7573 1780 1071 253 614 537 85 3602 - 412 692 632 10 75 75 78 75 78 75 78 75 75 75 78 75 78 75 78 75 75 75 75 75 75 75 75 75 75 75 75 75
84/85	70387 5684 96564 15753 3929 5086 1331 7603	111 93 17622 21260 5710 2131 1390 277 584 547 747 747 747 83 869 869 869 266 266 275 56466 275 56466
Crop	B-Aus L T-Aus HYV T-Aman L T-AmanHYV T-Aman L Boro L Boro L Boro Pajam Tral Paddy	Khrf Kaun Rabi Kaun Wheat Jute Local Jute HYV Sugarcane Khesari Masur Maskalai Rab Chilli Krf Chilli Mustard H Potato L Potato L Potato L Potato L Rabi G'nut Khrf G'nut Khrf G'nut Khrf G'nut Rabi Til Sweet Potao Krf Vegtble Rabi Vegtble Rabi Vegtble Rabi Vegtble

source : BBS Rangpur, note : data for tobacco not available

Crop	Cro	Cropping	Area ((Ha./year)	ear)	Yi(Yield Tren	Trends (ton/Ha./year	Ha./yea	r)
	Nages	Bhuru	Fulba	K. Sdr	PArea	Nages	Bhuru	Fulba	K. Sdr	Area
B-Aus Local	- 292	- 618	-404	-138	-317	123	075	+ 007	143	03
T-Aus HYV	- 318	- 34	+ 75	-176	166	067	183	1	+. 262	4
B-AmanLocal	1	- 21	0	1	-	+.084	050	- 003	206	-1.07
T-AmanLocal	-1362	+1016	+291	- 67	-516	1.	1	+.018	+.101	+ .02
T-Amsn HYV	- 387	- 260	το +	+142	-177	068	357	019	188	60.
T-AmanPajam	- 174	- 189	+ 34	+ 97	- 70	+.032	+.068	+1.308	÷.060	+ .36
Boro Local	- 26	+ 95	+	+164	+ 25	131	032	+. 109	- 000	03
Boro HYV	+ 536	+ 266	0.4	+369	+361	098	+. 169	+.054	936	17
Wheat HYV	- 84	- 23	'	- 19	- 45	126	+. 294	l	- 001	- 04
W.rainfed	- 184	- 264	+ 47	- 61	-105	ı		l;		1
Jute Local	- 321	- 339	+ 62	-270	- 49	- 030	- 080	- 207	066	11
Jute HYV	- 127	- 36	+295	-168	- 14	+. 106	+.007		101	01
PotatoLocal	- 47	0 ~	ب ج	+ 24	- 17	018	018	011	021	0I
Potato HYV	- 29	က (ි ආ +	+ 76	. + 21	015	+.418	+.033	238	10.
Mustard	- 34	- 116	+	+ w	- 22	+.033	006	+.008	060	01
Kaun	- 15	4	+		0	012	173	1	- 008	. 0.
Chilli]	+	က	်က +	0	i	i	+ 007	223	03
Pulses	<u>-</u>	+ 10	ı		- 5	+.037	006	1	1	0
Sweet Potato	- 31	4	+	+ 13	- 12	1	1	058	-1.670	31
Vegetables	<u>-</u>	0	₽	+ 32	- 36	. 1	- 1.970	691	-3.247	06

note: Most trends show declining or negative values due mainly to two consectiove years of large scale floods. This table is based on the data supplied from agricultural extension offices.

Table V-3-4-(1)Estimated Year-wise Crop Production Within the Project Area (only inside the currently established enbankment) unit: ha. ton/ha.

Crop	Year	Nage Area	swari Yield	Bhurun Area	gamari Yield	Ful Area	bari Yield	kurigra Area	m Sadar Yield
B-Aus L	84/85	5222	0.80	918	1.10	6819	0.63	4278	0.78
D AGO D	85/86	5848	1.10	794	0.98	5667	0.75	4332	0.76
	86/87	4926	0.79	605	0.81	5486	0.73	3173	0.97
	87/88	3552	0.77	572	0.85	4735	0.84	2670	1.09
	88/89	5738	0.46	206	0.69	3109	0.64	2599	1.08
in at	aver.	5057	0.79	619	0.85	5153	0.73	3410	0.90
T-Aus L	84/85	447	1.85	_	-	_			_
1 Mus H	85/86	456	2.37	11	1.13	_	_		
	86/87	452	2.17	11	1.83		_	_	_
	87/88	448	2.17	10	1.32			_	_
		106	1.99	5	0.94		-	_	_
	88/89 aver.	382	1.99 2.14	9	1.33	_	-	-	_
<u> 110 - 110 </u>	110				0.54	484	4 40	AGA	1 477
TAusHYV	84/85	1179	1.75	98	2.54	151	1.13	464	1.47
	85/86	1222	1.96	148	2.46	198	0.94	615	1.30
	86/87	1210	2.14	122	2.35	184	0.86	434	1.22
10	87/88	1291	2.48	130	2.21	533	0.78	507	1.21
1 1 ×	88/89	930	1.59	26	2.37	483	0.86	652	1.33
	aver.	1166	2.01	105	2.37	310	0.86	534	1.31
B-AmanL	84/85	286	2.11	16	1.84	126	0.35	84	0.79
10000	85/86	289	1.81	16	1.86	129	0.31	18	0.75
	86/87	257	2.01	18	1.87	173	0.39	18	1.03
	87/88	265	2.00	64	1.90	160	0.40	. 18	1.07
8	88/89	249	-nil	5	1.86	172	0.10	22	0.79
	aver.	269	1.61	24	1.88	152	0.30	32	0.88
T-Aman L	84/85	7309	1.04	1408	1.78	6454	1.37	3230	1.66
1 TAIRRIE LI	85/86	5546	1.41	1610	1.75	7696	1.56	3245	2.08
		7179		1582	1.66	7017	1.73	3348	1.24
	86/87		1.92	1793	1.45	8937	1.51	3053	1.45
	87/88	7454	1.77	520	1.43	4958	0.54	3385	0.83
	88/89 aver.	3926 6283	0.75 1.44	1383	1.42	7012	1.41	3252	1.45
		0.450	0.00	0.40	0.59			916	2.09
T-Aman P	84/85	2452	2.02	840	2.53	· -	_	216	
To the second	85/86	2802	1.97	854	2.52	-	0.55	198	2.48
Participation of the second	86/87	1374	2.09	752	2.52	207	2.57	158	2.00
	87/88	925	1.79	661	2.32	218	2.05	242	1.93
	88/89	937	1.99	151	2.33	222	1.40	291	2.00
	aver.	1698	1.99	652	2.48	216	1.99	221	2.08
T-Aman H	84/85	3060	1.98	429	3.22	314	1.53	1260	2.51
	85/86	3466	2.15	579	2.43	352	1.53	1270	2.65
	86/87	3750	2.50	704	2.44	336	2.17	1111	2.12
	87/88	3499	3.00	601	2.42	324	2.53	1546	2.47
-	88/89	4307	2.73	121	1.91	500	1.90	1545	1.76
	aver.	3616	2.50	487	2.54	365	1.91	1346	2.29
continuing						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			

Table V-3-4-(2)Estimated Year-wise Crop Production Within the Project Area (contd.)

Crop	Year	Nage	swari	Bhurun		Ful	bari	kurigra	
		Area	Yield	Area	Yield	Area	Yield	Area	Yield
Boro HYV	84/85	1789	3.40	484	2,64	752	2.82	768	2.77
	85/86	2276	3. 12	524	2,90	738	3.19	1149	2.78
	86/87	2475	3.25	534	3.13	967	3.29	1704	2.60
	87/88	3487	2.85	589	3.10	1251	2.78	2130	2.51
en north and the	88/89	4083	2.27	254	2.65			2/172	2.49
	aver.	2822	2.87	477	2.92	927	3.01	1645	2.59
4 - 4 - 35 1	4,000					yar Tirk			
Aus/Aman	84/85	996	1.69	225	1.91	78	1.72	101	1.43
Mixed Pl.	85/86	947	1.74	212	1.77		_	· -	· - .
or BoroL	86/87	917	1.76	258	1.90		· · ·	. · · · · · · · · · · · · · · · · · · ·	-
	87/88	1085	1.68	240	1.88		- · ·		
	88/89	1006	1.39	39	1.47	_	<u>-</u>		
	aver.	990	1.65	195	1.85	78	1.72	101	1.43
Jute L	84/85	983	1.66	365	1.53	401	0.66	1200	1.05
	85/86	1045	1.28	153	1.30	327	0.65	1389	1.72
	86/87	928	1.32	95	1.54	234	0.80	1958	1.41
	87/88	870	1.29	85	1.56	125	1.05	1452	1.70
	88/89	825	1.65	26	1.11	91	0	1454	1.31
•	aver.	930	1.44	145	1.46	236	0.67	1491	1.45
in the state of th	1.4				. ,				
Jute HYV	84/85	820	1.75	212	1.64	815	1.34	419	0.97
	85/86	961	1.39	91	1.60	719	1.68	332	2.12
•	86/87	949	1.57	137	1.59	639	1.62	423	1.46
	87/88	1120	1.74	111	1.75	548	1.46	362	1.53
4	88/89	720	1.98	38	1.46	359	0.82	483	1.52
	aver.	914	1.68	118	1.63	616	1.22	404	1.50
Mustard	84/85	321	0.83	78	0.80	141	0.86	67	0.55
rus tai u	85/86	257	1.03	65	0.96	139	1.02	68	0.52
	86/87	354	0.80	76	0.73	138	1.02	84	0.54
		408	0.93	63	0.13	140	0.91	71	0.59
	87/88				0.70	133	0.52	76	0.53
	88/89	370	0.92	54 67			0.32	73	
. :	aver.	342	0.89	67	0.82	138	0.07	. 19	0.55
Kaun and	84/85	417	0.56	80	0.92	740	0.52	45	0.68
other	85/86	397	0.77	78	0.92	678	0.55	48	0.68
Millets	86/87	570	0.77	99	0.91	539	0.72	44	0.68
THI I CO	87/88	563	0.82	74	0.61	577	0.52	$\overline{53}$	0.58
	88/89	487	0.79	29	0.55	623	0.32	46	0.54
	aver.	487	0.75	72	0.82	631	0.52	47	0.64
	aver.	401	0.10	12	0.02	001	0.02		0.04
Wheat L	84/85	815	1.14	294	1.47	81	0.71	_	_
	85/86	745	1.25	266	1.70	49	0.65	1. 11 <u>. 1</u> 1. 15	
	86/87	821	1.35	237	1.72	$\hat{21}$	0.64	· _	
· -	87/88	1030	1.37	204	0.72			<u>_</u>	
	88/89	723	1.61	23	1.28		e 1 <u>.</u> − 11.	<u>-</u>	_
	aver.	827	1.35	205	1.43	50	0.68	<u>_</u> `	_
		ollowing		200	T: 70	w	0.00	4	

Table V-3-4-(3)Estimated Yea-rwise Crop Production Within the Project Area (contd.)

Crop	Year	Nago	eswari	Bhuru	ngamari	Ful	bari	kurigram	Sadar
	1.	Area	Yield	Area	Yield	Area	Yield	Area	Yield
MeatifyV	84/85	858	1.94	200	2.01	426	1,57	697	1.63
	85/86	979	1.81	222	1.96	387	1.58	711	1.49
	86/87	1005	2.21	218	2.09	339	1.77	789	1.59
	87/88	1094	2.37	259	1.70	321	1.77	758	1.70
	88/89	1006	1.94	46	1.85	272	0.95	821	0.93
	aver.	988	2.07	189	1.93	349	1.56	755	1.46
SweetPto	84/85	188	6.24	9	11.44	21	4.85	15	7.38
	85/86	208	6.82	11	9.63	17	5.93	18	7.50
	86/87	232	8.20	12	8,84	13	5.68	19	7.48
	87/88	228	9.74	6	6.05	10	4.76	18	7.49
	88/89	9	13.03	3	10.53	4	3.47	17	7. 48
	aver.	173	7.90	8	9.50	13	5.20	17	7.47
Potato	84/85	256	10. 19	36	7.77	108	6.27	79	7.08
•	85/86	333	9.46	33	8.97	105	6.34	95	8.22
•	86/87	386	9. 15	31	8.73	97	7.67	111	7.03
	87/88	437	9.95	- 34	8.56	108	7.77	111	8.17
	88/89	400	7.50	34	11.72	64	9.20	124	7.77
	aver.	362	9.64	34	9.35	96	7.32	108	7.65
Vegeta-	84/85	26	8.2	17	8.1	36	8.0	17	8.0
bles	85/86	40	7.9	12	8.0	26	8.0	19	7.9
	86/87	36	7.8	12	7.7	31	7.7	24	7.8
	87/88	42	8.3	11	8.1	30	8.1	28	8.2
	88/89	36	8.7	13	8.4	.36	8.3	23	8.4
	aver.	36	8.2	13	8.1	32	8.0	22	8.1
Pulses	84/85	134	0.92	-	-	62	0.71	-	_
	85/86	107	0.83		-	72	0.74	-	-
	86/87	139	0.92	-	-	76	0.74		-
•	87/88	151	0.89	-	-	90	0.90	-	-
	88/89	143	0.88	· <u>-</u>	_	74	0.83	-	-
	aver.	135	0.89	_	-	7 5	0.79	_	-

Source: estimated from BBS union-wise data collected from upazila S.O.

Note: estimated from his thron-wise data coffected from apazita 5.0.

Note: data for chilli, sugarcane, til, groundnut, tobacco etc. are not perfectly available, and finally omitted. Vegetables and Pulses include both rabi and kharif crops. Virtually, almost all potatoes and HYV wheat are irrigated. As the project area was located inside the existing embankment, only unions inside it were referred to.

Table V-3-5 Yield and Average Cropped Area per Farm in the Project Area from the results of Farm Interview Survey

Unit: ha. ton/ha.

Area/Farm Yield Area/Farm Area/Farm Yield Area/Farm Area/Farm Area/Farm Area/Farm Area/Farm Area/Farm Area/Farm Area/Fa	Crop	Nageswari	ari	Bhurangamari	mari	Fulbari	ri	Kurigram Sader	Sader	Project Area	Area
11 0.23 0.875 0.17 0.580 0.38 0.930 0.32 1.050 0.28 0.14 0.19 0.678 0.08 3.240 0.16 1.826 0.12 2.885 0.14 2. 0.07 0.187 0.00 0.461 0.04 0.1 0.30 1.295 0.35 1.481 0.31 1.530 0.21 0.877 0.29 1. 0.15 2.860 0.16 2.407 0.26 2.582 0.08 1.693 0.16 2. 0.10 0.12 2.324 0.16 2.407 0.20 1.234 0.00 1.616 0.02 0.03 1.352 0.14 2.324 0.15 1.389 0.02 1.234 0.05 1.682 0.01 1.682 0.01 0.15 1.352 0.16 1.302 0.19 1.134 0.00 1.616 0.02 1.00 0.05 1.104 0.04 0.040 0.09 0.09 0.09 0.09 0.14 0.463 0.14 0.463 0.01 1.520 0.15 1.477 0.08 0.09 0.09 0.09 0.09 0.01 0.463 0.01 1.154 0.00 2.631 0.00 0.09 0.09 0.09 0.01 1.736 0.11 0.727 0.05 1.477 0.08 1.00 0.05 0.01 0.08 0.00 0.09 0.00 0.00 0.00 0.11 0.08 0.00 0.00 0.00		Area/Farm	I *	Area/Farm	Yield	Area/Farm	Yield	Area/Farm	Yield	Area/Farm	Yield
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Aus Local	0.23	0.875	0.17	0.580	0.38		0.32	1.050	0.28	0.859
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	HYV	0.19	0.678	0.08	3.240	0.16		0.12	2.885	0.14	2.160
0.30	Aman B	0.04	0.187		· .	1		0.00	0.461	0.04	0.324
0.15 2.860 0.16 2.407 0.26 2.582 0.08 1.693 0.16 2. 2.3 24 0.16 2.391 0.11 2.623 0.01 1.616 0.02 1. 0.12 2.324 0.16 2.391 0.11 2.623 0.01 3.702 0.10 2. 0.10 2.051 0.15 1.389 0.02 1.234 0.05 1.682 0.08 1. 0.15 1.352 0.16 1.302 0.19 1.178 0.11 1.520 0.15 1. 0.02 4.397 0.11 4.474 0.02 5.323 0.01 2.828 0.04 4. 0.05 1.104 0.04 0.463 0.14 0.463 0.00 2.631 0.00 2. 0.05 2.631 0.00 0.810 - 0.00 2.631 0.00 2.631 0.00 2. 0.08 0.909 0.09 1.736 0.11 0.727 0.05 1.477 0.08 1. 0.05 0.914 0.03 0.463 0.01 - 0.980 0.00 0.810 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.	T-Local	0.30		0.35	1.481	0.31	1.530	0.21	0.877	0.29	1.296
231 0.02 0.639 0.04 1.620 0.01 1.134 0.00 1.616 0.02 1. 0.12 2.324 0.16 2.391 0.11 2.623 0.01 3.702 0.10 2. 0.10 2.051 0.15 1.389 0.02 1.234 0.05 1.682 0.09 1. 0.15 1.352 0.16 1.302 0.19 1.178 0.11 1.520 0.15 1. 0.02 4.397 0.11 4.474 0.02 5.323 0.01 2.828 0.04 4. 0.02 4.397 0.11 4.474 0.02 5.323 0.01 2.828 0.04 4. 0.02 2.631 0.04 0.463 0.14 0.463 0.00 0.462 0.06 0.08 0.909 0.09 1.736 0.11 0.727 0.05 1.477 0.06 0.08 0.999 0.09 1.736 0.01 - 0.00 2.631 0.00 0.01 0.983 - - - - 0.09 0.09 0.09 0.01 0.02 0.03 0.463 0.01 0.00 0.380 <	T-HYV	0.15		0.16	2.407	0.26	2. 582	0.08	1.693	0.16	2.386
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Boro Local	0.05		0.04	1.620	0.01	1.134	0.00	1.616	0.02	1.252
0.10 2.051 0.15 1.389 0.02 1.234 0.05 1.682 0.08 1. 0.15 1.352 0.16 1.302 0.19 1.178 0.11 1.520 0.15 1. 0.02 4.397 0.11 4.474 0.02 5.323 0.01 2.828 0.04 4. 0.02 2.631 0.00 0.810 - 0.00 2.631 0.00 2.631 0.00 2. 0.03 0.909 0.09 1.736 0.11 0.727 0.05 1.477 0.08 1. 0.0463 0.090 0.09 1.736 0.11 0.727 0.05 1.477 0.08 1. 0.05 0.914 0.03 0.463 0.01 - 0.05 1.477 0.08 1. 0.06 0.3240 - 0.0 - 0.01 5.323 0.00 7.386 0.01 6. 1.00 0.01 5.323 0.00 7.386 0.01 8. 2.500 0.01 1.154 0.00 2. 2.501 0.05 1.144 - 0.03 1.154 0.01 8. 2.501 0.01 1.154 0.01 1.154 0.01 8. 2.501 0.01 1.154 0.01 1.154 0.01 8. 2.501 0.01 1.154 0.01 1.154 0.01 1.155 0.01 8. 2.501 0.01 0.03 0.03 0.03 0.03 0.03 1.155 0.01 8. 2.501 0.03 0.03 0.03 0.03 0.03 0.03 1.155 0.01 8. 2.502 0.03 0.03 0.03 0.03 0.03 0.03 1.155 0.03 0.03 1.155 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.	HYV	0.12		0.16	2.391	0.11	2.623	0.01	3.702	0.10	2.760
0.15 1.352 0.16 1.302 0.19 1.178 0.11 1.520 0.15 1. 0.02 4.397 0.11 4.474 0.02 5.323 0.01 2.828 0.04 4. 0.05 1.104 0.04 0.463 0.14 0.463 0.00 0.462 0.06 0. 0.05 1.104 0.04 0.463 0.14 0.463 0.00 0.462 0.06 0. 0.08 0.909 0.09 1.736 0.11 0.727 0.05 1.477 0.08 1. 0.05 0.914 0.03 0.463 0.01 - 0.00 0.810 0.02 0. 0.01 0.983 0.980 0.00 0.980 0.00 0. les 0.00 1.154 0.00 2. 1.65 0.01 1.154 0.00 2. 1.77 - 1.00 - 1.44 - 0.81 - 1.15 - 1.15 - 0.38 0.39 0.39 0.39 0.39 0.39 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38	Wheat		٠	0.15	1.389	0.02	1.234	0.05	1.682	0.08	1.589
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Jute		•	0.16	1.302	0.19	1.178	0.11	1.520	0.15	1.338
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Potato	0.05		0.11	4.474	0.05	5.323	0.01	2.828	0.04	4.256
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Mustard	0.02		0.04	0.463	0.14	0.463	0.00	0.462	90.0	0.623
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Chilli	0.05		0.00	0.810		1	0.00	2.631	0.00	2.024
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Kaun	0.08	•	0.09	1.736	0.11		0.05	1.477	0.08	1.212
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Pulses	0.02		0.03	0.463	0.01	3	0.00	0.810	0.05	0.729
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cheena	0.01		1	ì	ı	1	٠i	0.980	0.00	0.985
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sweet Potato	0.00		1	1	1	1	0.01	1.154	0.00	2. 197
$egin{array}{cccccccccccccccccccccccccccccccccccc$	Vegetables		 I	0.01	ı	0.01	5.323	0.00	7.386	0.01	6.354
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sugarcane	1		1	1	0.06	3.372	. 1	1	0.01	3.372
0.39 - 0.54 - 0.35 - 0.16 -	Summer crop	1.17	ı	1.00	1	1.44	ı	0.81	1	1.15	ı
	Winter Crop	0.39	ŧ	0.54	1	0.35	į	0.16	1	0.33	ı

Source : Farm interview survey, by the Team.

Table Y-3-6-(1) Use of Input from Interview Survey (1)

unit : kg/ha

Input Name			Seed					Urea		
Upazila	Nag.	Bhr.	Ful.	K.S.	P. Area	Nag.	Bhr.	Ful.	K.S.	P. Area
Aus Local	68.3	46.2	67.4	69.2	68.3	84.5	84.2	95.0	90.1	89.5
IIYV	75.2	75.7	73.9	73.9	74.9	184.9	247.5	179.4	201.9	189.9
B-Aman	· _	_	·	·	_		-	-	-	_
T-Aman Local	66.1	47.5	67.4	64.4	66.5	81.7	129.2	97.4	85.7	91.0
UYV	69.2	65.4	70.2	67.4	69.2	169.1	185.6	125.2	94.1	148.5
Boro Local	69.1	75.7	71.1	35.1	64.6	153.5	173.3	74.2	-	148.5
HYV	70.2	75.7	80.3	75.7	75.7	207.9	189.7	136. i	148.5	193. 1
Wheat	95.1	101.7	101.6	104.3	99.7	136.1	136.1	113.9	107.2	131.3
Jute	25.9	34.8	21.2	18.5	22.7	88.2	95.5	131.5	67.2	85.1
Potato	4,136	11,080	5,909	5, 263	4,986	146.3	140.2	148.5	_	145.4
Mustard	10.2	7.4	19.4	33. 2	15.7	104.0	74.3	66.0	99.0	92.8
Chilly	14.8	13.8	· · ·	_	13.8	99.0	49.5	_	_	86.6
Kaun(Fox Millet)	16.6	13.8	16.6	16.6	16.6	91.9	61.9	66.6	90.7	82.0
Chena(Ind.Millet)	27.7	_		16.6	20.3	-	_	·	74.3	74.3
Pulses	29.5	20.3	-	7.4	19.4	168.3	-	_	_	168.3
Vegetables	7.4			_	7.4	185.6		_	_	183.7
Sugar Cane		_	97.9	٠ 🚚	100.6	-	_	123.8	**	123.8
Doincha (Sesban)	_	_	-	-	_	- .	-			-
				-						
Input Name	es ta	Triple	Super Pl	hospate			Muria	ata of Po	otash	
Input Name Upazila	Nag.	Triple Bhr.		hospate K.S.	P. Area	Nag.	Muria Bhr.	Ful.	otash K.S.	P. Area
			<u></u>		P. Area 74.3	Nag.	-			P. Area 53. 6
Upazila	Nag.		Ful.	K.S.	74.3		Bhr.	Ful.	K.S.	53.6
Upazila Aus Local	Nag. 96.2	Bhr.	Ful. 173.3	K.S.	74.3	61.9	Bhr.	Ful. 74.3	K.S. 46.0	53.6
Upazila Aus Local HYV	Nag. 96.2	Bhr.	Ful. 173.3 95.2	K.S.	74.3	61.9	Bhr.	Ful. 74.3	K.S. 46.0	53. 6 60. 0
Upazila Aus Local HYV B-Aman	96. 2 120. 4	Bhr 140.2	Ful. 173.3 95.2	K.S. 41.2 94.1 74.3	74.3 115.1	61.9	Bhr 74.3	Ful. 74.3 52.2	K.S. 46.0 39.6	53.6 60.0 - 38.9
Upazila Aus Local HYV B-Aman T-Aman Local HYV	Nag. 96. 2 120. 4 - 99. 0	Bhr. - 140.2 - 90.7	Ful. 173.3 95.2 74.3	K.S. 41.2 94.1	74.3 115.1 - 89.1	61.9 47.3 - 53.0	Bhr 74.3 - 21.8	Ful. 74.3 52.2 - 49.5	K.S. 46.0 39.6 - 99.0	53. 6 60. 0 - 38. 9 43. 0
Upazila Aus Local HYV B-Aman T-Aman Local HYV Boro Local	96. 2 120. 4 - 99. 0 94. 6	Bhr. - 140.2 - 90.7 74.3	Ful. 173.3 95.2 74.3	K.S. 41.2 94.1 74.3	74.3 115.1 - 89.1 90.7	61.9 47.3 - 53.0 40.0	Bhr. - 74.3 - 24.8 57.7	Ful. 74.3 52.2 - 49.5	K.S. 46.0 39.6 - 99.0	53. 6 60. 0 - 38. 9 43. 0 24. 8
Upazila Aus Local HYV B-Aman T-Aman Local HYV Boro Local HYV	96.2 120.4 - 99.0 94.6 74.2	Bhr. - 140.2 - 90.7 74.3 123.8	Ful. 173.3 95.2 74.3 123.8	K.S. 41.2 94.1 74.3 49.5	74.3 115.1 - 89.1 90.7 74.3	61.9 47.3 - 53.0 40.0 24.8	Bhr. - 74.3 - 24.8 57.7 24.8	Ful. 74.3 52.2 - 49.5 49.5	K.S. 46.0 39.6 - 99.0 24.8	53. 6 60. 0 - 38. 9 43. 0 24. 8 69. 3
Upazila Aus Local HYV B-Aman T-Aman Local HYV Boro Local HYV	96. 2 120. 4 - 99. 0 94. 6 74. 2 140. 2	Bhr. - 140.2 - 90.7 74.3 123.8 173.3	Ful. 173.3 95.2 74.3 123.8 - 57.7	K.S. 41.2 94.1 74.3 49.5	74.3 115.1 - 89.1 90.7 74.3 118.8	61.9 47.3 53.0 40.0 24.8 74.3	Bhr. - 74.3 - 24.8 57.7 24.8 74.3	Ful. 74.3 52.2 - 49.5 49.5 - 57.7	K.S. 46.0 39.6 - 99.0 24.8	53.6 60.0 - 38.9 43.0 24.8 69.3 70.1
Upazila Aus Local HYV B-Aman T-Aman Local HYV Boro Local HYV	96.2 120.4 - 99.0 94.6 74.2 140.2 144.0	Bhr. - 140.2 - 90.7 74.3 123.8 173.3 123.8	Ful. 173.3 95.2 74.3 123.8 - 57.7	K.S. 41.2 94.1	74.3 115.1 - 89.1 90.7 74.3 118.8 119.6	61.9 47.3 - 53.0 40.0 24.8 74.3	Bhr. 74.3 - 24.8 57.7 24.8 74.3 74.3	Ful. 74.3 52.2 49.5 49.5 - 57.7	K.S. 46.0 39.6 - 99.0 24.8 - 49.5	53. 6 60. 0 - 38. 9 43. 0 24. 8 69. 3 70. 1 55. 2
Upazila Aus Local HYV B-Aman T-Aman Local HYV Boro Local HYV Wheat Jute Potato	96.2 120.4 - 99.0 94.6 74.2 140.2 144.0 109.6 247.5	Bhr. 140. 2 90. 7 74. 3 123. 8 173. 3 123. 8 173. 3	Ful. 173.3 95.2 74.3 123.8 57.7 123.8	K.S. 41.2 94.1 74.3 49.5 49.5 44.6	74.3 115.1 - 89.1 90.7 74.3 118.8 119.6 108.9	61.9 47.3 - 53.0 40.0 24.8 74.3 74.3	Bhr. - 74.3 - 24.8 57.7 24.8 74.3 74.3	Ful. 74.3 52.2 - 49.5 49.5 - 57.7 - 49.5	K.S. 46.0 39.6 - 99.0 24.8 - 49.5 24.8	53. 6 60. 0 - 38. 9 43. 0 24. 8 69. 3 70. 1 55. 2 74. 3
Upazila Aus Local HYV B-Aman Local HYV Boro Local HYV Wheat Jute Potato Mustard	96. 2 120. 4 - 99. 0 94. 6 74. 2 140. 2 144. 0 109. 6 247. 5 284. 6	Bhr. 140.2 90.7 74.3 123.8 173.3 123.8	Ful. 173.3 95.2 74.3 123.8 57.7 123.8	K.S. 41.2 94.1 74.3 49.5 49.5 44.6	74.3 115.1 - 89.1 90.7 74.3 118.8 119.6 108.9	61.9 47.3 53.0 40.0 24.8 74.3 74.3 44.6 107.2	Bhr. - 74.3 - 24.8 57.7 24.8 74.3 74.3	Ful. 74.3 52.2 - 49.5 49.5 - 57.7 - 49.5 24.8	K.S. 46.0 39.6 - 99.0 24.8 - 49.5 24.8	53.6 60.0 - 38.9 43.0 24.8 69.3 70.1 55.2 74.3
Upazila Aus Local HYV B-Aman T-Aman Local HYV Boro Local HYV Wheat Jute Potato Mustard Chilly	Nag. 96. 2 120. 4 - 99. 0 94. 6 74. 2 140. 2 144. 0 109. 6 247. 5 284. 6 214. 5	Bhr. - 140.2 - 90.7 74.3 123.8 173.3 123.8 173.3	Ful. 173.3 95.2 - 74.3 123.8 - 57.7 - 123.8	K.S. 41.2 94.1 74.3 49.5 49.5 44.6	74.3 115.1 - 89.1 90.7 74.3 118.8 119.6 108.9 195.2 188.1	61.9 47.3 - 53.0 40.0 21.8 74.3 74.3 41.6 107.2	Bhr. 74.3 - 24.8 57.7 24.8 74.3 74.3 107.2 - 74.3	Ful. 74.3 52.2 - 49.5 49.5 - 57.7 - 49.5 24.8	K.S. 46.0 39.6 - 99.0 24.8 - 49.5 24.8 - 24.8	53.6 60.0 - 38.9 43.0 24.8 69.3 70.1 55.2 74.3 86.6
Upazila Aus Local HYV B-Aman T-Aman Local HYV Boro Local HYV Wheat Jute Potato Mustard Chilly Kaun(Fox Millet)	96. 2 120. 4 - 99. 0 94. 6 74. 2 140. 2 144. 0 109. 6 247. 5 284. 6	Bhr. - 140.2 - 90.7 74.3 123.8 173.3 123.8 173.3	Ful. 173.3 95.2 - 74.3 123.8 - 57.7 - 123.8	K.S. 41.2 94.1 74.3 49.5 49.5 44.6	74.3 115.1 - 89.1 90.7 74.3 118.8 119.6 108.9 195.2 188.1 178.2	61.9 47.3 - 53.0 40.0 24.8 74.3 74.3 44.6 107.2 123.8 173.3	Bhr. 74.3 - 24.8 57.7 24.8 74.3 74.3 107.2 - 74.3	Ful. 74.3 52.2 - 49.5 49.5 - 57.7 - 49.5 24.8	K.S. 46.0 39.6 - 99.0 24.8 - 49.5 24.8 - 24.8	53.6 60.0 - 38.9 43.0 24.8 69.3 70.1 55.2 74.3 86.6
Upazila Aus Local HYV B-Aman T-Aman Local HYV Boro Local HYV Wheat Jute Potato Mustard Chilly Kaun(Fox Millet) Chena(Ind.Millet)	96.2 120.4 - 99.0 94.6 74.2 140.2 144.0 109.6 247.5 284.6 214.5	Bhr. - 140.2 - 90.7 74.3 123.8 173.3 123.8 173.3	Ful. 173.3 95.2 - 74.3 123.8 - 57.7 - 123.8	K.S. 41.2 94.1 74.3 49.5 49.5 44.6	74.3 115.1 - 89.1 90.7 74.3 118.8 119.6 108.9 195.2 188.1 178.2 181.5	61.9 47.3 - 53.0 40.0 24.8 74.3 74.3 44.6 107.2 123.8 173.3	Bhr. 74.3 - 24.8 57.7 24.8 74.3 74.3 107.2 - 74.3	Ful. 74.3 52.2 - 49.5 49.5 - 57.7 - 49.5 24.8	K.S. 46.0 39.6 - 99.0 24.8 - 49.5 24.8 - 24.8	53.6 60.0 - 38.9 43.0 24.8 69.3 70.1 55.2 74.3 86.6 123.8 99.0
Upazila Aus Local HYV B-Aman T-Aman Local HYV Boro Local HYV Wheat Jute Potato Mustard Chilly Kaun(Fox Millet) Chena(Ind.Millet) Pulses	Nag. 96. 2 120. 4 - 99. 0 94. 6 74. 2 140. 2 144. 0 109. 6 247. 5 284. 6 214. 5 181. 5 - 173. 3	Bhr. - 140.2 - 90.7 74.3 123.8 173.3 123.8 173.3	Ful. 173.3 95.2 - 74.3 123.8 - 57.7 - 123.8	K.S. 41.2 94.1 74.3 49.5 49.5 44.6	74.3 115.1 - 89.1 90.7 74.3 118.8 119.6 108.9 195.2 188.1 178.2 181.5	61.9 47.3 - 53.0 40.0 24.8 74.3 74.3 44.6 107.2 123.8 173.3 99.0	Bhr. 74.3 - 24.8 57.7 24.8 74.3 74.3 107.2 - 74.3	Ful. 74.3 52.2 - 49.5 49.5 - 57.7 - 49.5 24.8	K.S. 46.0 39.6 - 99.0 24.8 - 49.5 24.8 - 24.8	53.6 60.0 - 38.9 43.0 24.8 69.3 70.1 55.2 74.3 86.6 123.8 99.0
Upazila Aus Local HYV B-Aman T-Aman Local HYV Boro Local HYV Wheat Jute Potato Mustard Chilly Kaun(Fox Millet) Chena(Ind.Millet)	96.2 120.4 - 99.0 94.6 74.2 140.2 144.0 109.6 247.5 284.6 214.5	Bhr. - 140.2 - 90.7 74.3 123.8 173.3 123.8 173.3	Ful. 173.3 95.2 - 74.3 123.8 - 57.7 - 123.8	K.S. 41.2 94.1 74.3 49.5 49.5 44.6	74.3 115.1 - 89.1 90.7 74.3 118.8 119.6 108.9 195.2 188.1 178.2 181.5	61.9 47.3 - 53.0 40.0 24.8 74.3 74.3 44.6 107.2 123.8 173.3	Bhr. 74.3 - 24.8 57.7 24.8 74.3 74.3 107.2 - 74.3	Ful. 74.3 52.2 - 49.5 49.5 - 57.7 - 49.5 24.8	K.S. 46.0 39.6 - 99.0 24.8 - 49.5 24.8 - 24.8	53.6 60.0 - 38.9 43.0 24.8 69.3 70.1 55.2 74.3 86.6 123.8 99.0

Table V-3-6-(2) Use of Input from Interview Survey (2)

Table V-3-6-(2) Us	e or int	,ut 110	m mee	i viçir b	ur voy		unit:	as per s	pecified
Input Name		Man	ure (ton	/ha)			Pesticide (in	Tada∕ha)	
Upazi la	Nag.	Bhr.	Ful.	K.S.	P. Area	Nag.	Bhr. Ful.	K.S.	P. Area
Aus Local	1.74	1.94	1.82	3.29	2. 15	371.6	279.7 247.5	287.3	327.7
HYV	1.75	5.02	2.01	3.93	2.78	357.0	325.5 288.6	378.2	349.0
B-Aman	_			.				et .	
T-Aman Local		1.64	2.53	2.64	2.21	270.6	278.0 185.6	309.4	268.5
HYV	2.01	2.68	1.87	1.15	2.03	350.5	310.2 319.3	· • ·	342.5
Boro Local	1.20	1.20	-	_ :	1.20				-
HYV	2.93	1.94	4.08	1.20	3.05	438.6	495.0 258.2	;	399.7
Wheat	2.22	1.57	1.20	2.22	2.20	243.0	495.0 -	287.1	273.5
Jute	2.08	2.31	3.97	2.12	2.27	341.6	<u> </u>	32.2	149.5
Potato	1.83	2.31	1.20	2.31	1.89	403.4	· · · · · · · · · · · · · · · · · · ·		403.4
Mustard	4.28	3.42	1.38	1.94	2.04	_		_	-
Chilly	1.64	1.20		_	1.57	155.9	<u> </u>	-	155.9
Kaum(Fox Millet)	1.44	1.20	2.14	1.20	1.72	215.3	_ : : _		215.3
Chena(Ind.Millet)	1.20	-	2.1-1		1.20	-		_ :	_
Pulses	1.64		_	_ :	1.64	155.9		_	155.9
	1.20		· _		1.20	32.2		<u>.</u>	32.2
Vegetables	1.20	-	-			32.2		_	02.2
Sugar Cane	-	-	5.77	_	5.77	_	-	·	
Doincha(Sesban)			<u>-</u>						-
Input Name		Labour	(hrs/ha	/year)	e ti	Dı	raught Power (hi	rs/ha/yea	ar)
Upazila	Nag.	Bhr.	Ful.	K.S.	P. Area	Nag.	Bhr. Ful.	K.S.	P. Area
Aus Local	218.4	287.1	228.8	217.2	222.9	80.7	91.9 80.2	75.2	80.2
HYV	243.1	198.0	228.9	269.9	246.1	81.7	74.3 73.6	81.2	80.4
B-Aman	203.0		_	74.3	181.5			-	10 July 1
T-Aman Local	175.3	168.3	179.9	160.3	172.0	67.4	79.2 72.0	66.8	74.3
UYV	203.3	185.6	181.0	203.7	195.7	65.5	68.1 70.1	61.9	66.3
Boro Local	179.4	173.3	173.3	210.1	181.5	64.4	61.9 78.4	37.1	
HYV	218.2	185.6	198.0	222.8	207.7	71.2		74.3	
Wheat	183.8	167.1	165.0		179.7	67.7	68.1 66.8	71.9	70.8
Jute	214.9	272.2	221.5		227.1	78.1	68.1 70.4	73.4	74.7
Potato	172.4	210.4	160.9	282.2	185.1	96.9	71.8 91.6	91.6	
Mustard	104.5	74.3	123.8	90.7	230.2	64.0	61.9 59.1	61.9	61.9
Chilly	178.2	-		-	178.2	76.3	86.6 -	-	80.8
Kaun(Fox Millet)	172.3	173.3	155 Q	195.5	172.4	74.3	66.0 71.2	78.4	74.9
Chena(Ind.Millet)	148.5	173.3	100.0	214.5	176.3	43.3	86.6 -	61.9	53.5
Pulses	116.1	74.3	24.8 222.8	49.5 156.7	107.6	46.6	61.9 -	12.4	45.4
Vomatalilan			77.7.8	150.7	198.0	57.4	- 61.9	28.9	60.0
	206.2								71. C
Vegetables Sugar Cane Doincha(Sesban)	206.2 272.3* 74.3	=	420.8	-	300.5 74.3		- 74.3	i Stern	74.3

^{*} sweet potato

Table V-3-7 Crop Damage from Interview Results

unit:%

Upazi	la	Nage	swari	Bhru	ngamari	Fu	lbari	Kuringr	am sadar	Projec	et Area
Cause of I	emage	F	. D	F	D	F	D	F	D	F	Đ
Aus Local	F.N.	1	38	0	93	9	15	9	43	4	40
	Q' ty	100	85	0	67	88	61	. 88	6/1	87	75
Aus HYV	F.N.	1	17	0	7	9	15	3	16	3	16
	Q' ty	29	47	0	28	95	61	71	52	49	49
B-Aman Local	F.N.	. 1	0	.0	-0	2	. 0	8	0	3	0
	Q' ty	62	0	0	0	43	0	59	0	54	0
T-Aman HYV	F.N.	35	0	42	1	52	0	47	0	41	0
	Q' ty	65	0.	66	100	58	0	62	0	63	0
T-Aman HYV	F.N.	21	0	27	0	27	0	10	0	20	0
	Q' ty	48	0	73	. 0	56	0	84	0	61	0
Boro Local	F.N.	1	2	0	2	. 3	3	0	2	1	2
	Q' ty	100	83	0	43	60	100	0	52	60	75
Boro HYV	F.N.	2	6	2	22	0	16	1	3	2	8
	Q' ty	30	48	33	43	0	29	54	66	32	: 49
Jute	F.N.	5	13	13	22	3	23	8	15	6	16
	Q' ty	89	58	63	56	64	50	65	5	77	43
Meat	F.N.	1	26	. 0	31	0	2	0	16	0	20
	Q' ty	50	45	0	50	0	60	0	41	0	47
Kaun	F.N.	0	9	0	. 11	1	13	0	5	0	9
	Q' ty	100	62	0	66	60	74	0	64	0	65
Mustard	F.N.	0	3	0	6	1	6	0	1	0	3
	Q' ty	0	68	. 0	0	100	83	0	33	0	56
Potato	F.N.	0	4	0	4	0	2	0	0	0	3
	Q' ty	0	62	0	20	0	17	0	0	0	35
Pulses	F.N.	1	4	_	_	_		-	•	1	35
. 0.200	Q' ty	58	52			 .	-	-		29	26
Chilly	F.N.	0	2	_		_	_	_	-	0	1
	Q' ty	0	67	_	_	_	_	_		0	34
Sweet Potato	F.N.	. 0	0	-		- .	_	-		0	0
DIVOTE VILLE	Q' ty	60	0		· -	_	-	-		30	0
Sugar Cane	F.N.	_	_	_	·		-	2	0	***	0
ingui cuic	Q' ty		100					71	0	-	11

Note: 0 includes figures less than 0.4%

Flood damages includes those from heavy rains

F.N. : Farm Number Q'ty : Quantities F : Flood D : Drought

Table V-3-8-(1) Pest-Damaged Area and Pesticide Use in Kurigram District

unit : ba

	Aman-		Mustand	Uboof	Winter	Boro-	Sugar	Aus-	Jute	Summer
Year	Paddy	Potato	Mustard	Wheat	Veget.	Paddy	Cane	Paddy	oute	Veget.
Pest Atta	icked Ar	ea								
1984/85	2262	29	21	8	300	1296	105	1625	46	483
1985/86	2098	23	25	13	273	1250	. 88	1508	45	449
1986/87	1718	27	21	13	296	1323	85	1544	48	414
1987/88	4283	21	15	11	197	186	. 4 🕏	5 — 1		_
Chemical	Sprayed	Area						4	100	
1984/85	2262	29	21	8	300	1296	105	1625	46	483
1985/86	2098	23	25	13	273	1250	88	1508	83*	449
1986/87	1718	27	21	13	296	1323	85	1544	48	410
1987/88	4283	21	15	11	197	186	-			'
% of Atta	icked Ar	ea in Av	erage							
1984-87	2.6	1.0	2.9	0.2	17.8	3.4	26.8	2.0	0.3	69. 1

Source : Kuringram Farmers

Note * Pesticides are usually costly, so they used to be applied after pests are discovered. But in this case some preventive spray must have been performed. Rate of pest-attack is still low except vegetables (especially summer) and continuous sugarcane crop.

Table V-3-8-(2) Informed Major Flood Damage by Upazila

unit: ha. ton 1000taka

			Affected	Lost	Value	Rate	of Loss
Upazi la	Year	Crop	Area(ha)	Otty.	Lost	in ton/ha	% to Std
Nageswari	88/89	T-Aman	6773	14603	120000	2.16	90%
- 645 22 (1612 =	88/89	Jute	199	329	2668	1.65	100%
	88/89	T-A-Pajam	1123	2/130	20000	. . .	- ; ;, ;
Bhurungamari	88/89	T-Aman	1164	1721	8304	1.48	60%
5	88/89	Jute	12		71		60%
Fulbari	88/89	T-Aman	283	848	4571	3.00	100%
	88/89	All Crop	2980	***		-	
Kurigram S.	88/89	T-Aman	4884	7820	2740	1.60	80%
	88/89	Jute	1515	950	225	9.62	40%

An Example of Damage Estimation by BBS in Kurigram Sadar in 1988/89

Crop	Affected wholly		in ha. -damaged	Partly- damaged	Total Damaged	Std. Yield	Total Crop	Rate of	Estimated
	damaged	area	extent(%)		Acreage	ton/ha.	Dama'd	Loss	Loss
Jute	808	1616	50	808	1616*	1.67	2699	60	1619
Aus-L	808	3232	50	1616	2/12/1	1.30	3151	60	1891
BoroL	_ `	323	25	81	81	2.78	225	25	56
BoroHYV	_	2626	25	960	960	3.70	3552	25	888
Kaun	81	162	50	81	162	1.11	180	60	108

Saurce : BBS Officers Unpublished Data. Estmated Loss in metric tons. Note st This figure was finally appraised as 1515 as is seen above.

Table V-3-8-(3) Cropped Area Flooded by 1988/89 Flood (rate of Submergence 25.5%)

unit: ha.

Name of Union	Total Area	Flooded A.	Name of Union	Total Area	Floo	ded A.
Nageswari Upazila			Bhurungamari Upazila			
Bhittorbond	1382	574	Andhari jhar	4529	972	
Kaligonj	1719	384	Joimoni lhat	3150	354	
Hasnabad	1596	265	Bongoshonahat	2889	346	
Newasi	1818	501	Proj. Area Total	10568	1672	(16%)
Rhamkahana	2160	143	Furbari Upazila			•
Nageswari	2635	627	Nowdanga	2061	680	
Raigonj	1626	372	Fulhari	1888	85	
Bhamondanga	1557	582	Shimulbari	1541	693	
Khedar	22/12	651	Kashipur	2190	105	
Shontshpur	2482	579	Bhangamor	2137	216	÷
Proj. Area Total	19217	4681 (23%)	Borobhi ta	2614	1620	
Kurigram Sadar Upaz	ila		Proj. Area Total	12431	3409	(27%)
Paachighachi	1971	808	Grand Total	49397	12617	(25.5%)
Bhogdanga	2831	808	Outside the Project	Area		
Goghadaha	2379	1239	Nageswari 5unions	9274	2694	(29%)
Proj. Area Total	7181	2855 (39%)	Bhurun'ri 2unions	9129	1638	(18%)
	: 1 · 1 · 1 · 1		KurigramS 2unions	4047	3038	(75%)

Source: unpablished upazila data,

Note : area south to the Dharla embankmant such as a part of Fulbari and 4 other unions of Kurigram S. omitted.

Table V-3-9(1)Estimation of Current Livestock Herds

					<u> </u>		
Fulbari	Young	22, 494	410	4,643	1,377	11,753	12, 431 28, 481 2. 3
Ful	Adult	15, 632 15, 632	290	6, 543 654	1,323 132	- 16, 708	12, 28,
Bhrungamari	Young	9,580	200	5,214	871 44	5, 195	7, 449 39, 535 5. 3
Bhrung	Adult	33, 101 33, 101	689	6,510	2,444	34,685	39,
swari	Young	18, 502	605 302	25,975	5,087	11, 106	231 794 3.0
Nageswari	Adult	43, 173	3,426	17,496	3,391	48,688	20, 231 59, 794 3. 0
am S.	Young	17,763	348 174	7,543	1,030	9,484	194 262 2.5
Kurigram S.	Adult	13,361	949	12, 921	1,760	15,778	10, 194 25, 262 2. 5
. Total	Young	68, 339 34, 170	1,563	43,375	8,365	37,538	50, 305 153, 397 3. 1
Upazilas Total	Adult	105, 267 105, 267	5,354	43,470	8,918	-	50, 153,
Upazilas	No of L.S.U.	Cattle Head L.S.U. equiv	Buffaloe H. L.S.U. equiv	Goat H. L.S.U. equiv	Sheep H. L.S.U. equiv	Total H. L.S.U. equiv	Land Area(ha) Total L.S.V L.S.U./ha

Actual carrying capacity will be lower than the calculated figures because of sales/slaughter. Note : Land area also includes a part out of project area. L.S.U. : Livestock Unit (Wt=500Kg)

Table V-3-9-(2)Livestock Holding Patterns by Agricultural Census 83/84

		mbers of ·····1000			Pei	etntage	of Holde	ers	Average Head/Farm
Upazila Name	Nag.	Bhu.	Ful.	K.S.	Nag.	Bhu.	Ful.	K.S.	
	······································	E	ovine A	nimal (Cat	tle and I	suffaloes	s)		
All Holdings	80.4	58.3	36.9	47.6	54.2	60.0	51.4	51.5	2.8 - 3.2
Non Farm Hold'	2.3	1.8	1.0	1.5	14.6	17.1	9.6	10.3	-
Small Holders	23.0	18.8	12.1	15.1	59.2	66.9	57.5	54.8	1.4 - 1.7
Medium Holders	35.8	26.1	16.4	21.3	95.1	97.6	96.4	93.3	4.1 - 4.6
Large Holders	19.3	11.1	7.4	9.8	97.3	99.6	99.2	98.0	7.7 - 8.7
			Number (of Holding	; with Goa	sts/Shee	p	-	
		10	00 hold	dings	% of tot	al farm	holdings	} .	
All Holdings	22.8	14.2	11.8	13.8	57.8	55.2	62.0	58.1	
Non Farm Hold'	0.6	2.3	2.7	2.7	49.8	38.1	44.2	37.8	
Small Holders	9.5	6.2	5.5	6.4	59.7	57.3	65.3	60.6	
MediumHolders	6.4	4.0	2.8	3.7	73.8	70.2	78.4	76.6	
Large Holders	2.0	1.0	0.7	1.0	79.4	76.0	83.5	82.6	
-			Poult	ry (Chiken	and Duck	/Geese)			
٠,									
All Holdings	190.	112.9	82.	115.3	76.6	73.4	69.9	75.6	4.3 - 4.9
Non Farm Hold'	30.8	17.7	11.2	15.9	60.6	57.3	51.3	57.4	3.6 - 4.1
Small Holders	68.7	43.5	32.6	46.9	79.7	76.3	74.2	79.2	3.9 - 4.4
lediumHolders	63.8	38.7	28.0	37.6	89.0	86.7	86.5	90.0	6.9 - 7.7
Large Holders	27.6	13.3	10.5	14.9	93.2	89.2	90.5	93.8	9.9 - 12.8

Source: Agricultural Census 1983/84

Note : Numbers of goats not available

Table V-3-10 Estimated Feed Dependency of Draught Animals etc. on Grainstraw unit: item-wise given

the second second					
Item/Upazila	Nageswari	Bhrungamari	Pulbari	Kurigram Sadar	Project Area
Bullock (bead)	61675	22532	38126	31124	153457
Buffalo (head)	4031	484	700	1297	6512
Unit head *	66714	23137	39001	32745	161597
	(below: i	n tons)			
Produced Paddy	49738	8006	10971	21187	89902
Equiv. Paddystraw	56700	9167	12911	2/153/1	103312
Produced Wheat	3169	677	259	1099	5204
Equiv. Wheatstraw	3486	745	285	1209	5725
Available P. straw	48195	7792	10974	20854	87815
Available W.straw	3137	671	257	1088	5153
Avail.Pstraw/head	0.722	0.337	0.281	0.637	0.543
Avail.Wstraw/head	0.047	0.027	0.007	0.033	0.035
Total Straw/h./yr.	0.769	0.364	0.288	0.670	0.578
	(below: i	n per cent)			
T.D.N. Dependency					
on Grainstraw	84.3	39.9	31.6	73.4	63.3
Estimated Grass	¥ .	f.	.*		25 H D
Intake to/head/yr.	3.2	12.4	: 13.9	5.4	7.5
Estimated Rawgrass	· · · · · · · · · · · · · · · · · · ·	en en en en en en en en en en en en en e	11230		
Intake kg./head/day	8.8	34.0	38.3	14.8	20.7

Source: estimated from the data by upazila profile statistics 1988/89

Note : * estimated under an assumption that average weight of draught animal be 300 kg. including calves and that of buffaloes 375 kg. One unit head = 1 adult bullock = 0.8 adult buffalo. TDN requirement is averagely estimated as 4.5 kg./day/adulthead only for maintenance metabolism.

Table V-3-11 Fish Resources In Kurigram District

unit : itemwise specified

Item	Unit	Number	Item	Unit	Num	Number
Professional Fishermen	men	7252	Production of Fries	thousand nos		550
% of Fishermen/Population	%	0.02	Shortage of Fries	- op -	c.	3400
Fishermen per Village	men	8.6	Annual Fish Catch	metric-ton	4	4170
Fishing Cooperatives	nos.	4	Annal Fish Demand	- op -	12	12286
Number of Rivers	nos.	10	Annal Fish Shortage	ton	00	8116
Water Area of Rivers	ha.	3399	Fries Required	thousand nos.		3950
Number of Beels(lakes)	nos.	251	Comprehensive Fishery Devlpment Scheme	ent Scheme	• •	
Water Area of Beels	ha.	1264	Participating Upazilas	nos.		က
Canals and Ponds	nos.	98	Total Number of Ponds	nos.		15
Water Area of Canal/Pond	ha.	218	Water Surface of Ponds	ha.		3.2
Private Dighis(Ponds)			Total Cost Invested	taka	98	86984
fallow ponds	nos.	1249	Name of NGO		R. D. R. S.	R. I.P
d.o. their water-area	ha.	193	Particpated Group	nos.	41	56
cultivated ponds	nos.	2331	Total Farmers	men	749	1247
d.o. water area	ha.	429	Total Fishponds	nos.	45	10
Grand Total of Ponds	nos.	3666		ha.	13	27
d.o. water surface	ha.	840	Planned Fry Production	nos.	54800	c:
% of Water Surface	%	3.9	Planned Fish Production	kg.	3251	n. a.
Per Capita Area of W.S.	ha.	0.004	Planned Fish Sale 1000	taka	2	155

Souce : personal information from Upazila F.O.s

Table V-4-1 Yield Estimation from Improvement Factors

unit: ton/ha. coefficients

	Current	Techno-	Damage	W.O.Y.	Varie'	Techn'	Flood	Drough	t Complex	W.P.Y.	NPY/NOY
Crop	yield	renova!	Preve	estim'	impro ^t	impro'	prev ^t	P	F	proje ^t	
: : : :	A	В	С	D =ABC	Е	F	G 2 -	II	I=MCH	J=AI	J/D
B-AusL	0.83	1.00	1.00	0.83	1.15	1.30	1. 19	1,32	2.35	1.95	2.3
T-Austi	1.64	1.15	1.13	2.13	1.15	1. 15	1.13	1.14	1.70	2.79	1.3
BAmeniL	1.15	1.00	1.05	1.21	· <u>-</u>	D.S.		_	- ,	,-	_
TAmanL	1.47	1.00	1.05	1.57	1.15	1.40	1, 15	1.00	1.85	2.72	1.7
TAmenP	2.15	1.10	1.05	2.48	-	·	-	-		· : -	_
TAnanH	2.12	1.15	1.13	2.75	1.15	1.40	1.13	1.00	1.82	3.86	1.4
Boro L	1.26	1.00	1.05	1.32	, - ,	-	· -	_	-		· <u>·</u>
Boro H	2.56	1.15	1.05	3.09	1.15	1.20	1.05	1.19	1.72	4.41	1.4
Jute L	1.37	1.00	1.05	1.44	:	-	_	-		:	. : -
Jute H	1.61	1.00	1.05	1.69	1.00	1.10	1.17	1.24	1.60	2.57	1.5
Mustad	0.75	1.15	1.00	0.86	1.15	1.10	1.08	1.31	1.79	1.34	1.6
Kaun	0.79	1.00	1.00	0.79	_	-	-			- ;.	-
wheatL	1.64	1.00	1.00	1.64		_	_	- .	_	-	~
wheatH	1.96	1.15	1.00	2.25	1.15	1.20	1.00	1.26	1.74	3.41	1.5
Potato	8.89	1.15	1.00	10.22	1.15	1.20	1.19	1.34	2.20	18.92	2.1
Sptato	7.75	1.00	1.00	7.75	- .	_	-		_		~
Pulses	0.86	1.05	1.00	0.90	1.15	1.10	1.00	1.25	1.58	1.36	1.5
							7 7 7 7	-	1.1		

Source: based on the BLS statistics used, results of farm interview survey

note : the results obtained here gives only an indicator for checking W.P.Y.

WOP: without-projectyields, WPY: with-project yields

Table V-4-2 Long-Term Yield Trends of Selected Crops in Bangladesh

unit: annual growth rate in %

	Trends for	Trends for	Yield ratio of
Crop	1974 - 82	1978 - 88 *	Local vars/ IIYVs
Total Paddy	1.7	1.4	2.07
Aus Varieties	2.3	-	1.87
Amany Arieties	2.1	-	Transplanted 1.58
		-	Broadcasted 2.26
Boro Varieties	1.0	_	1.84
Potatoes	0.7	0.9	1.62
Wheat	12.6	0.4	2.28
Pulses	-1.9	+1.0	· -
Jute	2.6	1.7	1.22
0i1seeds	1.2	1.1	-
Kaun	-	0.7	
Sugarcane	0.8	_	_ ·

Note: * estimated from FAO prodution yearbooks. An overall five year trend was estimated by adopting rhe average of two major crops i.e. paddy and jute: 0.5 (p+j)* 5 = 9.3% mean of yield ratio 0.5 (yp+yj) = 1.65, 9.3*1.65 = 15%

Source : Bangladesh Agriculture by Mustaq Ahmed, FAO yearbooks

Table V-4-3 List of High Yielding/Improved Varieties

Rejsai L-6, BR R-7, BR Hobig Mnanda, Tri-Shu CVL-1	ii ;	Future Promising BR-21 Iratom-24, BAU-63 (Barsha), BR-18&19 Bolkot**,	* photo-sensitive improved var's short duration * improved var's ** leaf-rust resi-	
es es	23 fil	R-21 ratom-24, BAU-63 Barsha), BR-18&19 olkot**,	<pre>* photo-sensitive improved var's short duration * improved var's ** leaf-rust resi-</pre>	
g.		R-21 ratom-24, BAU-63 Barsha), BR-18&19 olkot**,	short duration * improved var's ** leaf-rust resi-	
p.r.	,	ratom-24, BAU-63 Barsha), BR-18&19 olkot**,	<pre>* improved var's ** leaf-rust resi-</pre>	
roes	•	olkot**,	** leaf-rust resi-	
toes		Kufri-lalima	* late-sowing var.	
srd		Diamond, Serrana, Patroniez	• • • • • • • • • • • • • • • • • • •	,
	-	CVE-3, Choitori	* late sowing var.	
20-73, Kai-5, 13-72		Kalyania, Daulat**	<pre>* improved var's ** drought torelant</pre>	
Mungbean Mubarik, Faridpur-1	Ĥ	Eshordy-16		- 3
Khesari Kalaroa*, 630		Selection-3968	* improved var.	
		Proso-millet		
Maize Bornali Tomato Roma VF,	Ø ∑	Snuvra, knai-bnutta Mamik, Ratan		

Table V-4-4 Land Type Distribution under W.P. and W.O.P. * unit : ha.

land Type	1.1 P	°o	F	, 1	F	2	Tot	al
Project	W.P.	W. O. P.	W. P.	W.O.P.	W.P.	W. O. P.	₩. P.	W. O. P.
Nageswari	12910	11100	2800	5660	0	100	15710	16860
Bhurungamari	1790	1770	200	310	0	0	1990	2080
Fulbari	7300	7210	290	600	0	100	7590	7910
Kurigram Sadar	700	420	5510	5630	1300	2200	7510	8250
Peoject Area	22700	20500	8800	12200	1300	2400	32800	35100

Source: estimated from crop, soil, elevation and flood damage maps. and scheduled canal/drainige lines. Changes in land type acreages reflect drainage improvement in case of increase in Fo or decrease in other land types in one hand, and acquisition of land for canal/drainage construction on the other. *: With/Without Project

Table V-4-5-(1) Input Requirement (With-Project)
unit: ha. kg.or l./ha. ton/project

Crop	Area	See	d	Ur	ea	Т.	S.P.	M.	₽.	Gyr	asum	ZinoS	ulfate
		rate	qtty.	rate	qtty.	rate	qtty.	rate	qtty.	rate	qtty.	rate	qtty.
B-Aus local	3075	100	308	100	308	20	62	20	62	, -			_
T-Aus HYV	12/150	25	311	150	1867	30	374	30	374	-	-	4	50
T-Aman HYV	10175	30	314	190	1990	120	1257	30	314		• ,- ,	. 4	42
T-Aman Local	1975	40	79	110	217	40	79		_	_	•••	_	_
LateT-Amanii	4800	16	77	140	672	100	480	30	144	-	_	4	19
Boro HYV	7100	25	178	210	1491	140	994	40	284	_		4	28
Wheat HYV	7875	125	984	130	1024	120	945	75	591	90	709	4	32
Jute HYV	7875	12	95	130	1024	30	236	60	473	_		4	32
Potato IIYV	1425	1500	2138	100	143	230	328	300	428	260	371	4	-
Mustard HYV	7650	10	77	70	536	160	122/1	50	382	130	995	4	31
Khesari Pulse	7100	30	213	_	-	30	213	20	142	,		4	28
Mungbean	5675	20	114	45	255	40	227	20	114	_		4	23
S. Vegetables	875	0.	3 0.3	170	149	90	79	220	193	100	88	5	4
W. Vegetables	225	0.	4 0.1	250	56	150	34	190	43	50	11	5	1.
Foddermaize	1525	50	76	100	153	60	92	60	92	90	137	4	6
Dhoincha(GM)	1975	40	79	<u></u>	· -	30	59	: -	_				-

contd. to the next page

Table V-4-5(2) Input Requirement (With-Project) (contd.)
unit: kg. or 1./ha. * manday 1000 mandy ** hr. 1000hr.

Crop	Manu	е.	Pestic	ides	Pesti	cides	Labou	ır*	Draug	ht**	Imple	ment
	rate	qtty.	rate	qtty.	rate	qtty.	rate	qtty.	rate	qtty.	rate	qtty.
B-Aus 1	5t.	15375	ma1.0	3		-	130	400	250	769	2.5	7764
T-Aus H	5t.	62250	b 0.5	-6	d 0.5	6	125	1556	280	3486	2.5	31125
T-AmanH			d 0.5	5	bd1.0	10	150	1571	270	2828	2.5	26188
T-AmanL	5t.	9875	ma1.0	2	•••		140	277	280	553	2.5	4938
LateT-A		_	ma1.0	5	-		120	576	260	12/18	2.5	12000
BorollyV	-		đ 0.5	. 4	bd0.5	4	200	1420	280	1988	2.5	17750
Wheat H	4t.	31500	s 1.7	13	d 0.5	4	150	1181	280	2205	2.5	19688
JutellyV	4t.	31500	d:0.5	4	ma0.8	6	250	1969	400	3150	2.5	19688
Potatoll	8t.	11400	s 1.7	2	dz6.0	4	200	285	400	570	2.5	3563
Mustard	6t.	45900	s 1.7	13	_		50	383	375	2869	2.5	19125
Khesari	8t.	56800	s 1.7	12		. –	80	568	60	426	2.5	17750
Mugbean	6t.	34050	ma0.8	- 5	-	-	125	709	2/10	1362	2.5	14188
S. Veget	5t.	4375	ma1.0	1	d 1.0	1	360	315	150	131	2.5	2188
W. Veget	5t.	1125	ma1.0	0	_	-	360	68	150	34	2.5	563
FodderC	2t.	3150	-	_	_	_	50	79	60	95	2.5	3938
Doincha	-			-	-	_	20	40	20	40	2.5	4938

Note: ma:marathion, bd:biddrin, b:basudin, d:dimecron, dz:diazinon,s:sevin qtty.:quantity/project, manure rate expressed in ton/ha Source:calcilated

Table V-4-5(3) Input Requirement (Without-Project)
unit: ha. kg. or 1./ha. ton/project

Crop	Area	See rate			ea qtty.	. 1.	S.P. qtty.		P. qtty.	_	sım qtty.		sulgate qtty.
B-Aus 1	132/12	70	927	25	331	10	132	0	0	0	0	0	0
T-Aus H	2756	20	55	110	303	80	220	40	110	30	83	5	14
B-AmanL	453	100	45	30	14	10	5	: o	0	0	0	0	0
T-AmanL	14474	35	507	100	1447	60	868	40	579	20	289	5	72
T-AmanP	3066	35	107	170	521	100	307	50	153	40	123	5	15
T-AmanH	7879	30	236	150	1182	100	787	50	394	. 30	236	5	39
BorollyV	5745	30	172	170	977	120	689	50	287	30	172	5	29
Boro L	1872	30	56	60	112	30	56	0	0	0	0	0	0
AusAman	1296	40	52	80	104	60	78	40	52	20	26	5	6
Jute L	2795	10	28	50	140	8	22	12	34	20	56	0	0
JutellyV	1962	73	14	60	118	10	20	12	24	30	59	0	0
Mustard	601	8	5	60	36	40	21	30	18	50	30	0	0
Kaun	1175	7.	8	60	71	40	47	. 0	0	0	0	0	0
Wheat L	1140	150	171	60	69	40	46	12	14	30	34	0	0
wheathy	2158	150	324	85	183	50	108	25	54	50	108	2.5	5
SPotato	200	900	180	20	4	8	2	50	10	0	0	0	0
Potatell	660	1500	990	250	165	180	119	50	165	. 0	0	0	0
S. Veget	200	0.3	0	320	61	220	44	230	46	50	10	5	1
W. Veget	300	0.8	1	375	113		68	225	58	50	15	5	. 2
PAULSES	250	30	8	0	0	20	5	0	0	0	0	0	0

(continued)

Table V-4-5(4) Input Requirement (Without-Project) (contd.)
unit: kg. or 1./ha. * manday 1000 mandy ** hr. 1000hr.pair

Crop	Manu	ure	Pesti	cides	Pesti	cides	Lab	our*	Bul 1	ock**	Imple	ment
	rate	qtty.	rate	qtty.	rate	qtty.	rate	gtty.	rate	gtty.	rate	qtty.
B-Aus 1	0	0	0	0	0	. 0	120	1589	66	874	2.0	16/18/1
T-Aus II	1.0	2756	b6.0	2	dm0.7	0	144	397	72	198	2.5	6890
B-AmanL	0	- 0	0	0	0	0	140	63	72	33	2.0	906
T-AmanL	1.0	14474	b6.0	87	dm0.7	10	100	1447	100	1447	2.5	36185
T-AmanP	4.0	12264	d1.0	3	dz1.0	3	150	460	100	307	2.5	7665
T-AmanH	1.5	11819	b6.0	47	dm0.7	6	150	1182	84	662	2.5	19678
BorollyV	1.5	8618	b6.0	34	dm0.7	3	156	896	90	517	2.5	14363
Boro L	1.0	1872	0	. 0	0	0	162	303	123	230	2.5	4680
AusAman	1.5	1947	0	0	0	0	140	181	72	93	2.5	3240
Jute L	5.0	13975	0	0	0	0	200	559	48	134	2.0	5590
JutellyV	6.0	11772	0	0	dn0.5	1	225	441	60	118	2.0	392/1
Mustard	1.5	902	b1.0	2	0	0	115	69	72	43	2.0	1202
Kaun	1.0	1175	0	0	0	0	96	113	48	56	2.0	2350
Wheat L	2.0	2280	. 0	0	0	0	100	114	48	55	2.0	2280
WheatHY	1.5	3237	0	0	dz0.5	1	110	237	60	129	2.0	4316
SPotato	1.0	200	0	0	0	0	100	20	40	8	2.0	1320
Potato	6.0	3960	b6.0	4	dz1.0	1	128	. 84	300	198	2.5	1650
S. Veget			ma1.0	0	dm1.0	0	160	32	80	16	2.0	400
	6.0		mal.O	1	0	9	50	75	170	51	2.5	750
PAULSES		1250	0	0	0	0	80	20	40	10	2.0	500

Note: ma:marathion, bd:biddrin, b:basudin, d:dimecron, dz:diazinon,s:sevin Z.S.:zinc sulphate, qrry:quantity/project, manure rate in ton/ha.

Table V-4-6 Farmgate Prices of Agricultural Inputs in Kurigram unit: kg. or 1. take/kg. or 1.

Item	Qty.	U. Price		Item		Qty.	U.Price	•	Iteman	Qty.	U.Price
Fertilizers			,	Seed(cor	ntd.)	-			Chemicals((contd.)	
urea	kg.	4.85	٠	tomato	import	'kg.	1170.0		basudin10g	granulkg.	81.0
Nitrogen	Nkg.	11.20		caulifle	ower	kg.	1125.0	1.37	diazinon 6	60-EC 1	138.6
T.S.P.	kg.	5.00		radish	import	kg.	350.0		sumithion	20-EC 1.	1100.0
Phosphate P2	05kg.	10.70		okra		kg.	16.0	.194	furadan 3g	ranulkg.	72.5
M.P.	kg.	4.00		waterme	lon	kg.	75.0		Feeds	e Marie	
Potash K	20kg.	7.10		cucumber	•	kg.	10.5		rice bran	ton	357.5
ZincSulphate	kg.	17.25		red-chil	lly	kg.	75.0	.5.3	mustard oi	Icake t	6500.0
Sulphor	Skg.	42.20	200	doincha		kg.	15.0		Livestock	i li leadi	
Zine	Znkg.	6.70		Seedling	g :	Ÿ		•	buffaloes	adul tpa i	r 5-8000
Gypsum	kg.	1.40		boro pac	ldy 10	0bund1	le 31.3		bul locks	adul tpai	r 2-5000
Cowdung	ton	150.00		tomato		100nos	2.0		goat(male)	head	400
Seed				brinjal		100nos	2.0		goat(femal	e) head	300
paddy HYV.	kg.	6.3-8.5	• .	caulifle	ower .	100nos	5.0		cow(yearli	ng) head	500
paddy local	kg.	6.0-11.0		cabbage		100nos	5.0		cull bullo	ck head	1500
jute HYV.	kg.	16.0-60.0	5,	Agrochen	nicals		٠.		chicken	bird	25-40
jute local	kg.	12.0-28.0	. •	dimecror	1	1. 6	300-650		duck	bird	25-30
wheat HYV.	kg.	7:3-8:5		bidrin		1. 6	370-800	() 	Husking ch	arge ton	214.5
mastard L.	kg.	10.7		malathic	n -	I.	200		FlourMilch	arge ton	536.2
mastard HYV.	kg.	20.0		di thane-	M-45	kg.	300	199.	Husker-Eng	ine set	34600
khesari	kg.	10.0	+1	heptachl	or 40	√Pkg. 1	81-345		RiceDehulM	ill set	49600
mungbean	kg.	17.0-28.0		sevin 85	SP		495		IrrigateWa	ter ha. 18	375-2475
potato	kg.	9.0	٠.	dipterex	80-SI	P kg.	356		d.o. upland	cropha.	675-960
maize	kg.	10.0		gramoxor	per la	1.	195	11.5	shallowtub	epumpset	3500
kaun	kg.	7.0		dieldrir			420		shal' tubee	ngineset	13900

source: observed in the area during Aug. 1989-Mar. 1990 by study team

Table V-4-7-(1)Monthly Crop Labour Requirement (With-Project)

unit : manday/ha. manyear/area

Crop	jan.	Feb.	Mar.	Apr.	May.	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Total
B-Aus Local		20	30	5	က	30	35	ιΩ					130
T-Aus HYV			15	đ	ŧΩ	ιO	45	10					125
T-Aman HYV	e F		. *			10	20	10	ល	S	09	10	150
T-Aman Local	20			: :			ŧ	25	<u>S</u>	ည	ιΩ	45	140
Lataman HYV						ć		15	ය	ß	ល	45	120
Boro HYV	25	2	10	10	15	99	10						200
Wheat HYV	ß	ល	65	S							20	8	150
Jute HYV		25	99	10	10	45	2	20	10				250
Potato HYV	09	10							20	99	8	10	200
Mustard HYV	w	20	S								ιĊ	15	20
Khesari	ល	ហ	40								20	10	8
Mungbean			-				15	35	10	10	45	10	125
S. Vegetble		•					20	9	40	140	40		360
W. Vegetabl	120	20					٠			20	09	8	300
Foddercrop	23	ഗ									ശ	ଛ	S
Dhoincha			10	S.	ĘÇ.								20
C. P. Fo-Fo	10	31	53	29	ග	34	71	27	20	9	61	စ္က	381
C. P. F1-F0	35	51	42	20	11	45	63	41	19	51	99	21	465
C. P. FI-F1	ಟ್ಟ	36	53	10	ග	35	83	12	15	 4	ଯ	22	255
C. P. F2-F1	25	43	49	ග	ග	41	37	œ	ഥ	17	42	83	340
C. P. F2-F2	33	46	23	თ	10	33	14	 1	က	12	22	15	233

Area Labour Requirement (million manday/1000man-year) Fo-Fo 7.32/29.3 Fo-F1 1.63/6.5 F1-F1 2.01/8.1 F2-F1 0.31/1.2 F2-F2 0.30/1.2 AreaTotal 11.57/4.63

Source : estimated from farm interview survey and BARI data

Table V-4-7-(2)Monthly Crop Labour Requirement (Without-Project)

unit : manday/ha. manyear/area

									-				
Crop	jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Total
B-Aus Local		20	93	5	22	25	8	5					120
T-Aus HYV		īO	8	6	'n	က က	. ₩	12					144
B-Aman Local					10	S	10	IO	Ŋ	40	20		140
T-Aman Local							10	25	22	မာ	ĸO.	30	100
T-AmanPajam						101	40	8	က	ro	20		150
T-Aman HYV						10	9	20	ເດ	വ	99	10	150
Boro HYV	82	4	88	5	18	45							156
Boro Local	4	35	ເດ	27	45		:					10	162
Aus-AmanMix	10	30	ଛ	Ŋ	ıo	ဓ	က	30	ເດ				140
Jute Local		15	99	ເດ	Ŋ	စ္တ	20	8	15				200
Jute HYV		15	8	ເວ	ഗ	35	99	20	15	10			225
Mustard	S	8	35*	30*	*	including	process	ıng			ß	15	115
Kaun	10	23	10	ιΩ	33	10						τO	96
Wheat Local	5	ß	35			-					8	유	100
Wheat HYV	ιΩ	, LO	4 0								40	20	110
Sweet Potato	ιC	ល	ល	ເນ	40					വ	8		100
Potato HYV	24	27				. ,				22	20	ıo	128
Summer Veget							20	40	15	99	25		160
Winter Veget	100	8								20	20	9	250
Pulses	ശ	30	ເດ						٠.		01	30	8
WeigthedMean	4	23	32	4.	7	30	37	83	16	5	27	23	231

Area Labour Requirement = 8.11million manday = 32.4thousand manyear Source : estimated from the results of farm interview survey

Table V-4-8 With-project Livestock Herd Projection Within The Project Area

Toral Pro

5900 19000

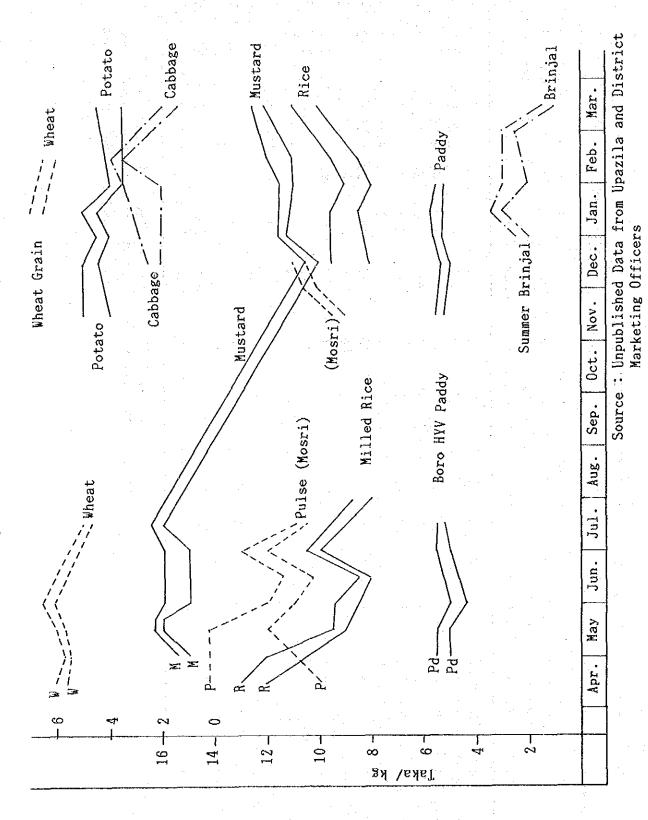
unit: head Buff- Total Year-Cal-Goats Sheep Bul-Oxen llei-Cows Upazila aloes Draught lings ves fers lock Estimated Number of Heads in 1987 from Upazila Livestock Data Nageswari Bhur'mari Fulbari KurigramS 133717 14198 Toral Pro 5258 16908 Projected Number of Heads from TDN/DCP Estimated in the Foregoing Table 200 10400 Nageswari Bhur'mari Fulbari 1000 2400 KurigramS

Source: Kurigram Farmers, Upazila BBS data for 1987, Foregoing Table

150600 15600

Table V-4-9 Available By-Products for Feeds in the Project Area

unit : ton


Crop	Mainprod.	Straw	Bran	0ilcake	Grass	Main Prod.	ď.	Straw	Bran	0i1cake	ke
B-Aus L	6150	6765	246	1	ì	10991		12090	440	1	
T-Aus H	37350	35482	1064	1	t	5870		5577	88	1	
B-AmanL	1	į	1	ı	1	548		603	18	-1	
TAmanL	5530	6083	243	ş	ı	22724		24996	1000	1	
T-AmanP	ı	Ι.	ı		ŧ	7604	:	7604	304		
T-AmanH	41900	39805	1194	ı	ì	21667		20584	099	l'	
LTAmanH	14400	14400	432	ı	·	. 13			.1	1	
BoroHYV	31950	30352	911	į	t	17752		16864	586	1	
Boro L	1	I	1	ı	ı	2471		2347	96	I	
AusAman	ı	1	ı	ı	1	2294	٠	2523	36	1	
Mustard	9945	1	6962		ì	517		1	.1	362	23
Wheat H	27562	44099	4793	ı	ı	4851		7762	725		
Wheat L	l	ı	ı		ı	1870		2992	281	1	
FodderC	137250	ļ	ı		137250			1	. !	1	
GreenMn	59250	l		ŧ	59250	1		ı	1	1	
TotalFd	ı	176986	8451	6962	137250			103942	2085		22
Feedable Qty.	ſ	141589	5916	5569	140363	I		83154	355		S
Equiv. TDN	ı	30172	2660	3598	25581		er N	14824	1597		535
Equiv. DCP	1	1629	890	1773	4070	1		994	53		32

: Increment expected from the project ; TDN equiv. 45055t. DCP equiv. 6741t Source : calculated from prodution data for with- and without-project Note

crop var.	cropping - season sowing or growth transplant period (month) (days)	growth period (days)	seed	in urea TSF - kg./ba.	inp TSP /ha.	input use SP MP com (gy atc	per h dung psum) n/ha.		labour works	irriga- tion cost/crop Taka/ha.	plant protection chemicals kg(l)/ha.	æ	target yield under Std. conditions ton/ha.
B-Aus Local	1Mar-mApr 110-115	110-115	96	27	lr.	0	0.5	44	146		E 0.1	d: 3.0	1,0-1,5
T-AmanLocal	Jul- Aug 145-150	145-150	37	27	വ	0	0	44	150	ı	,	ស់	1.7-2.5
T-Amanimpro	eJul-IJul 120-130	120-130	37	59	27	0	0	43	136	2500	fu u	bi 5.0	2,1-3,1
T-Aman HYV	Jul- Aug 145-150	145-150	37	185	74	70	(0.06)0	49	208	2500	bi &	di10.0	3,7-5.0
Boro Local	INov-mDec 145-15(145-150	37	27	12	12	0	42	169	2500	ŀ		1.5-2.5
Boro HYV	mDec-1Jan 145-150	145-150	37	138	74	70	0(90.0)	54	228	0009	bi &	di 3.0	4.6-5.5
Jute HYV	lMar-mApr	120-140	9	100	25	45	0 :	48	220	- I ,	da	bi 5.0	1.9-2.5
Wheat HYV	mNov-mDec	103-117	138	230	161	70	0	44	131	1500	ща 2		2-4.
MustardImpro	10ct-mNov	90-110	11	22	ლ 	72	1.2	37	97	I	Щ	0	1.2-1.3
KhesariLocal	Oct- Nov	90-105	37	76	120	46	0	30	46	,	da		1.4-1.5
Mungbeanloc.	Sep- Oct	75-80	27	76	120	46	0	30	46	ı	ma or	da 3.0	1.2-1.3
Potato HYV	10ct-INov	85- 95	1173	49	37	27	1.5	51	126	2500	se or	da 9.0	10 -15
Maize HYV	1Sep-mOct	80- 95	10	222	110	20	(0.13)0	36	120	ı	ſ		0.9-3.0
Sweet Potato	mSep-eOct 100-115	100-115	345	140	100	150	0	40	130	ı	ı		4.0-6.0
Onion(spice)	lNov-eJan 140-170	140-170	271	30	0	20	1.5	40	175	ı	!		
R. Vegetables	Oct-Nov	90-100	Ö	5 57	25	12	1.5	53 53	345	4000	ა ი	5	20 -30
K. Vegetables	Jun- Jul 100-110	100-110	r~1	230	173	40	0	56	360	i	ma ନ	bi 2.0	15 -25

note: jute yield; pure fibre basis, season,e; early,m; mid,l; late, chemical, ma; malathion, di; dimecron bi; bidrin, fu; furadan, ba; basudin, da; diazinon, se; sevin. sources: BAE crop diary, Kurigram -Farmers, BRRI crop manual

Fig.V-3-1 Recorded Village-Market Price Fluctuation at Nageswari

		: 1
		N.
		·
		- 1
		$rac{V_{i}}{V_{i}}$