REPUBLIC OF THE PHILIPPINES DEPARTMENT OF PUBLIC WORKS & HIGHWAYS

Feasibility Study on The Rural Road Network Development Project

FINAL REPORT (Volume 5)

PROJECT EVALUATION
IN
THE PROVINCE OF NUEVA VIZCAYA

OCTOBER, 1990

JAPAN INTERNATIONAL COOPERATION AGENCY

SSF CD(C)

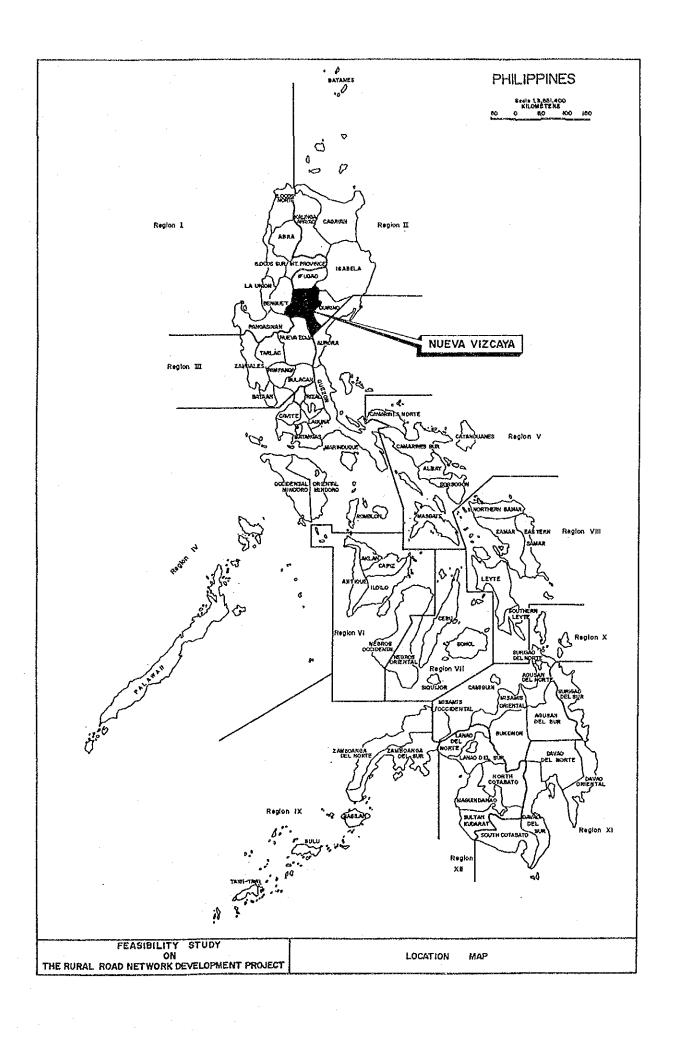
90-112(5/30

|| LIBRARY

21928

REPUBLIC OF THE PHILIPPINES DEPARTMENT OF PUBLIC WORKS & HIGHWAYS

Feasibility Study on The Rural Road Network Development Project


FINAL REPORT (Volume 5)

PROJECT EVALUATION
IN
THE PROVINCE OF NUEVA VIZCAYA

OCTOBER, 1990

JAPAN INTERNATIONAL COOPERATION AGENCY

国際協力事業団 21928

VOLUME - 5 PROVINCE OF NUEVA VIZCAYA

TABLE OF CONTENTS

		PAGE
CHAPTER	1 SOCIO-ECONOMIC PROFILE OF THE PROVINCE	
	1.1 GENERAL 1.2 GEOGRAPHY AND TOPOGRAPHY 1.3 POPULATION 1.4 SOCIO-ECONOMIC PROFILE 1.5 AGRICULTURAL LAND USE AND MAJOR CROPS	1-1 1-1 1-5
CHAPTER	2 ROAD NETWORK OF THE PROVINCE	2-1
	2.1 GENERAL	2-1
	Condition	2-3 2-5 2-6 2-6
CHAPTER	3 TRAFFIC	3-1
	3.1 TRAFFIC SURVEY RESULTS	3-4 3-4 3-9
	3.3 TRAFFIC ANALYSIS AND FORECAST: DEVELOPMENT PROJECT	3-23 3-25 3-25
CHAPTER	4 PROJECT IDENTIFICATION AND SCREENING	4-1
	4.1 PROJECT IDENTIFICATION	4-1

	4.2 PROJECT SCREENING	4-4 4+8 4-9
CHAPTER	5 PROJECT EVALUATION	5-1
	5.1 PRELIMINARY DESIGN AND COST ESTIMATE 5.1.1 Preliminary Design 5.1.2 Cost Estimate 5.1.3 Summary of Preliminary Design 5.2 ECONOMIC EVALUATION 5.2.1 Basic Assumptions 5.2.2 Economic Costs 5.2.3 Benefits 5.2.4 Economic Evaluation	5-1 5-7 5-13 5-15 5-15 5-15 5-17
•		

CHAPTER 1 SOCIO-ECONOMIC PROFILE OF THE PROVINCE

1.1 GENERAL

The Province of Nueva Vizcaya was selected as one of the Study Provinces which represents the province of the following characteristics:

- . Economically less developed
- . High level in road development
- . Topographically inland mountainous

1.2 GEOGRAPHY AND TOPOGRAPHY

The province is located in the northeastern part of Luzon, bounded on the north by Isabela and Ifugao Provinces, on the east by Quirino and Aurora Provinces, on the south by Nueva Ecija and Pangasinan Provinces and on the west by Benguet Province.

The province is situated in the Caraballo and Central Cordillera Mountains, therefore, topography is predominantly mountainous. Magat River runs mostly along the Pan-Philippine Highway. Due to these topographical characteristics, the province is a typical inland mountainous province.

Slope map of the province is shown in Figure 1.2-1.

1.3 POPULATION

The province is composed of fifteen (15) municipalities and the provincial capital is located at Bayombong.

Population in 1990 is estimated at 319,800. The average annual population growth rate for the period of 10 years from 1980 to 1990 was estimated 2.8% which is higher than the national average of 2.4%. Population density of the province in 1990 is 81.9 persons per square kilometer which is much lower than the national average of 205 persons per sq. km.

Population, the average annual population growth rate and population density by municipality are presented in Table 1.3-1. Distribution of municipal towns together with their population is shown in Figure 1.3-1. Most municipal towns are located along the Pan-Philippine Highway, except municipalities of Alfonso Castaneda and Kasibu.

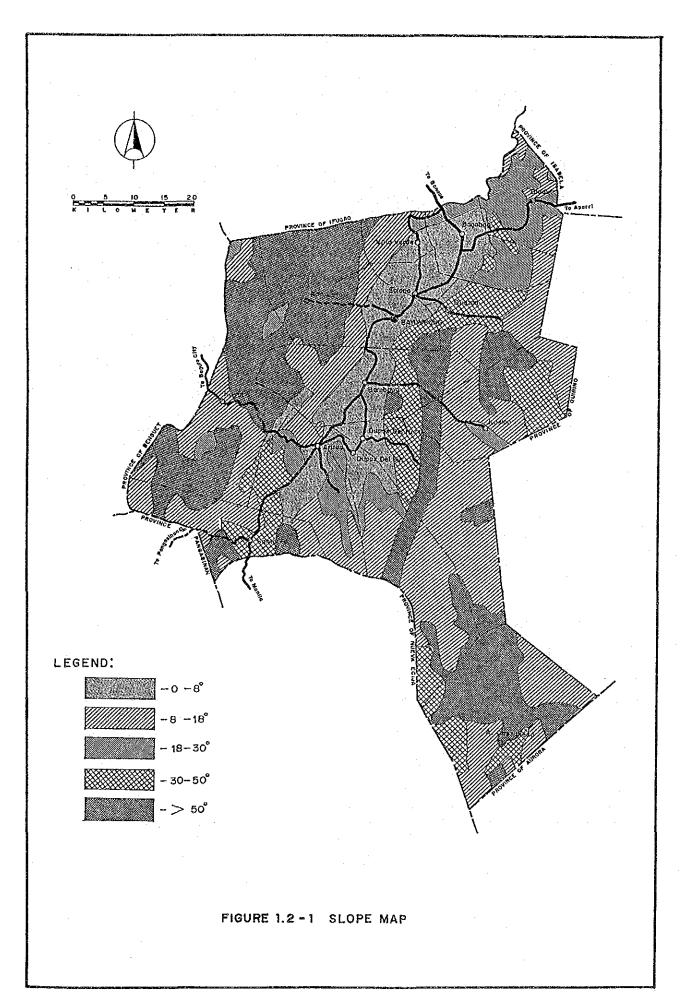
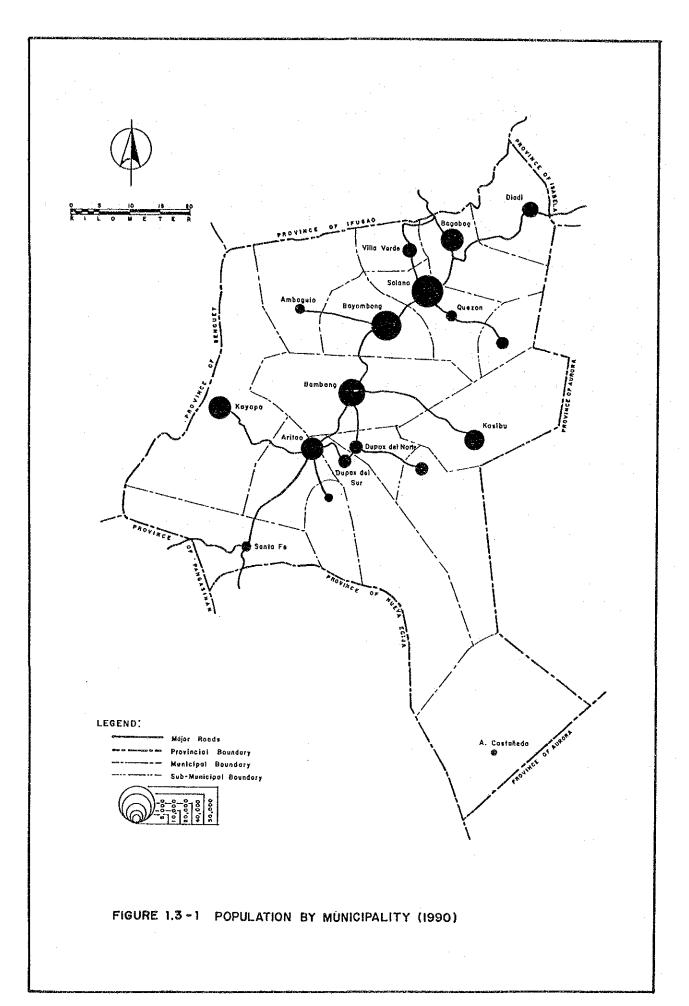



Table 1.3-1

POPULATION, LAND AREA AND DENSITY (1990)

Province of Nueva Vizcaya

		-=======		=======================================
1	Projected	Annual		1
City/Municipality	Population	Growth	Land Area	Density
	— — — · · · · · · · · · · · · · · · · ·		(km^2)	•
		1		
1. Bayombong	41,824	2.6	130.5	320.5
2. Ambaguio	6,260	4.9	178.1	35.2 1
3. Aritao	28,426	1 2.5	254.9	111.5
4. Bagabag	24,912	1.7	176.2	141.4
5. Bambang	33,902	2.6	331.1	102.4
1 6. Diadi	14,142	5.0	173.9	81.3
7. Dupax del Norte	21,630	1 2.5	333.3	64.9
8. Dupax del Sur	12,443	2.5	359.6	34.6
1 9. Kasibu	25,177	5.2	463.5	1 54.3 H
110. Kayapa	23,321	1.2	463.5	50.3
111. Quezon	16,368	5.3	169.1	96.8
112. Sta. Fe	8,188	1 2.5	297.5	27.5
113. Solano	46,320	2.3	134.2	345.2
114. Villa Verde	13,306	2.2	78.2	170.2
115. Alfonso Castanedal	3,613	2.5	360.3	10.0
1		į.		
TOTAL !!	319,832	2.8	3,903.9	81.9

1.4 SOCIO-ECONOMIC PROFILE

Table 1.4-1 shows major socio-economic data of the province in comparison with the national value.

Gross Regional Domestic Product which shows economic output of the province shares 0.3% of the total national output. In view of land area and population share of the province to the country, the province's economic output is slightly lower level than the national average.

Per capita income of the province is higher by 1.12 times than the national average. Incidence of poverty is lower than the national average. Unemployment rate is lower, but underemployment rate is higher than the national average.

Agriculture is the predominant industry of the province and shares 68% in terms of number of workers.

Table 1.4-1
MAJOR SOCIO-ECONOMIC DATA OF PROVINCE OF NUEVA VIZCAYA

	Nueva Vizcaya (A)		 (A)/(B)
	3 904	 300,000	0.013
12. Population in 1990 (1000 persons)	320	61,483	0.005
13. Population Density (persons/sq.km.)	82	1 205	0.40
14. GRDP (Million P at 1 1000 prices)	1,800	[623,051	0.003
15. Per Capita Income in 1985; (P/person)	6,274	5,593	1.12
6. Number of Workers		 	
* Agricultural	47.0 (68%) 5.2 (8%)	2,177 (15%)	0.002
* Service * Total 1/	16.2 (23%) 69.1 (100%)	•	
17. Incidence of Poverty 1 in 1985 (%)	52.4	59.3	- }
18. Unemployment Rate in 1988 (%)	6.6	8.3	-
19. Underemployment Rate in 1988 (%)	16.8	11.6	- 1

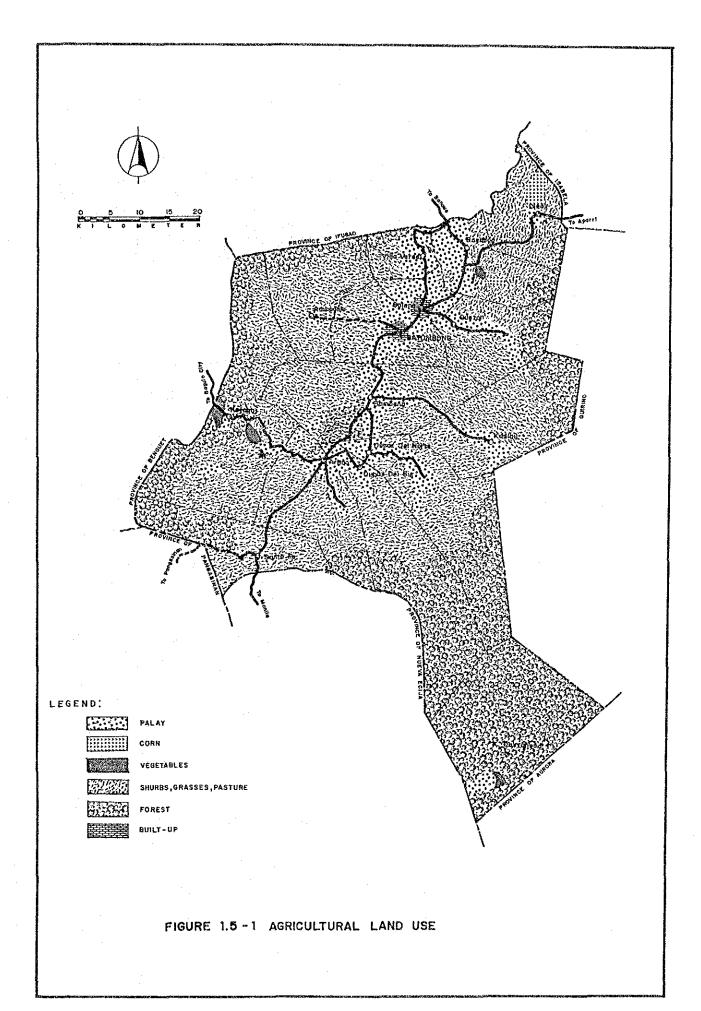
Note: 1/ Includes other workers who cannot be classified as any one of three (3) sectors.

1.5 AGRICULTURAL LAND USE AND MAJOR CROPS

Nueva Vizcaya has a total land area of 3,904 square kilometers, representing 1.3% of the total land area of the Philippines. Table 1.5-1 shows general land use of the province. About 49% of the province is covered by forest. Agricultural area occupies only about 13% of the total land area.

Figure 1.5-1 illustrates the agricultural land use of the province. Table 1.5-2 shows major crops produced in the province. Five (5) major crops of the province are palay, corn, camote, banana and tomato.

Table 1.5-1 LAND USE OF NUEVA VIZCAYA


Land Use	Area in sq.km.	%
Agricultural Area	491.9	12.6
Grass/Shrub Area	1,436.6	36.8
Forest Area	1,901.2	48.7
Water Reservoir	62.5	1.6
Built-up Area	11.7	0.3
Total	3,903.9	100.0

Source: Bureau of Soil

Table 1.5-2
MAJOR CROPS OF PROVINCE OF NUEVA VIZCAYA

Major Crona	Area Utiliz	zed (ha.)	Production	(M.T.)
Major Crops	1985	1986	1985	1986
Palay	37,160	36,510	111,240	109,465
Corn	9,790	9,950	10,445	11,005
Camote	2,571	2,489	7,713	8,886
Banana	1,641	1,444	7,989	7,326
Tomato	787	789	3,745	3,965

Source: Bureau of Agricultural Statistics

1 - 7

CHAPTER 2 ROAD NETWORK OF THE PROVINCE

2.1 GENERAL

The province was classified as one of the provinces of which road network development represents the high level in the Philippines. In this Chapter, present level of road network development is assessed more in details, then general direction of the future road network development is established. Based on the said assessment and the functional road classification criteria, the major road network for the province is proposed.

2.2 PRESENT LEVEL OF ROAD NETWORK DEVELOPMENT

Present level of the road network development level is assessed in terms of road extension (quantity of roads), surface type and conditions (quality of roads) and road network pattern.

2.2.1 Present Level of Road Development in terms of Road Extension

Nueva Vizcaya has a total of 2,403.0 kms. of roads, comprising 313.2 kms. of National, 369.7 kms. of Provincial, 285.7 kms. of Municipal and 1,434.4 kms. of Barangay Roads in 1987.

Table 2.2-1 shows road density by class of road which is compared with national average. In comparison with the national average, road development level of the province in terms of road extension is summarized as follows:

National roadshigher	bу	1.46	times
Provincial roadshigher	bу	1.56	times
Barangay roadshigher	bу	2.05	times
All roadshigher	bу	1.86	times

In terms of road extension, road development of the province is in quite high level.

2.2.2 Present level of Road development in terms of surface type and surface condition

The Study Team conducted an extensive field survey on the existing road conditions of which results are summarized in Table 2.2-2.

TABLE 2.2-1
EXISTING ROAD LENGTH AND ROAD DENSITY Province of Nueva Vizcaya

1	 				_	(L/ PA)
Class	Road I In 1987	(kms.)	Nueva Visca	ya!Phi	lippines	Nueva Viscaya/Phils
National Rd.		(13.0)			0.1994	
!Prov'l. Rd.		7(15.4)	0.3445	ł	0.2211	1.56
Sub-Total	682.9			1	0.4205	1.51
City Rd.		_			0.0304	
Municipal Rd	285.7	(11.9)	0.2663	1	0.0981	2.71
Barangay Rd.	1,434.4	(59.7)	1.3367		0.6536	2.05
TOTAL	2,403.0				1.2026	1.86

SOURCE: DPWH Infrastructure Atlas, 1989

TABLE 2.2-2 EXISTING SURFACE CONDITION (SURVEYED ROADS ONLY) Province of Nueva Vizcaya

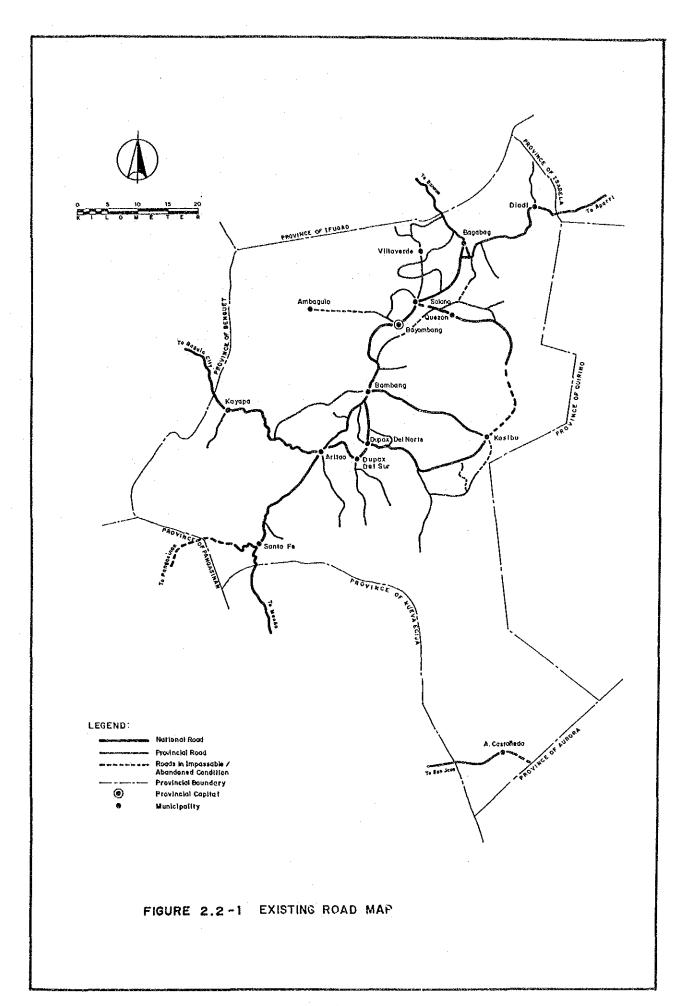
			1107	ince of	INGEVA I	. 204)			
1		Sur	face Cor	ndition	1/			% of Pavemen	t Type <u>2/</u>
Road Class		1 God						Nueva Vizcaya	
	,	114.4	(86.9)	17.2	(13.1)	131.6		•	23.6
National Road	Bituminous		. '	-	ļ	ì	(100.0)		22.3
	Gravel	21.0	(20.3)	82.2	(79.7)	103.2	(100.0)	· ·	51.3
1	Earth	-		4.9	(100.0)	4.9	(100.0)	16.9	2.8
•	Total:	135.4	(56.5)	104.3	(43.5)	239.7	(100.0)	100.0	100.0
]	PCC	-		-	- :		(100.0)	0.4	2.5
 Provincial Road	Bi tumi nous	9.2	(68.7)	4.2	(31.3)	13.4	(100.0)	•	8.9
• • • • • • • • • • • • • • • • • • • •	Gravel	72.5	(33.8)	141.7	,	214.2	(100.0)	1	70.6
	Earth		. '	12.4		12.4	(100.0)	32.6	18.0
•	•	81.7	(34.0)	158.3		240.0	(100.0)	100.0	100.0
•	•	114.4	(87.0)	17.2	(13.0)	131.6	(100.0)	17.7	12.5
	Bi tumi nous	9.2	(68.7)					1.3	15.3
	Gravel	93.5	(29.5)					55.4	61.4
1	Ear th			17.3		17.3	(100.0)	•	10.8
1	•				•				100.0

SOURCE: 1/ Survey by Study Team in 1989 2/ DPWH Infrastructure Atlas, 1989

Present level of road development in terms of surface condition (quality of roads) could be summarized as follows:

National Roads

- . About 39% of national roads in the Province are paved mostly with PCC surfaces. Compared with the national average of 46%, national roads in the Province are in lower level in terms of high type pavement ratio.
- . About 17% of national roads in the Province are still earth roads which frequently become impassable.
- . Only about 56% of national roads are assessed either good or fair. The rest of the roads are in bad/very bad condition.
- . In terms of road quality, national roads in the province are still in poor condition.


Provincial Roads

- . Only about 2% of provincial roads are paved with PCC or bituminous surfaces, which is far below the national average of 11%.
- . About 33% of provincial roads are still earth roads.
- . Only 34% of provincial roads are assessed in good to fair condition.

2.2.3 Present Road Network Pattern

Present road network is presented in Figure 2.2-1, which shows all existing national and provincial roads. Present road network of the Province is assessed as follows:

- . Fish-bone type network with the axis of Pan-Philippine Highway is formed.
- In addition to Pan-Philippine Highway, there are three (3) inter-provincial roads as follows:
 - * Sta. Fe San Nicolas Road which is currently impassable.
 - * Aritao Baguio Road
 - * Bagabag Bontoc Road
- . Two (2) municipal towns, Ambaguio and Castaneda have access problem. The road going to Ambaguio is presently impassable. A. Castaneda located in the remote mountainous area has no access at present.

2.3 GENERAL DIRECTION OF ROAD NETWORK DEVELOPMENT

Results of assessment of present road network development level are summarized as follows:

- . Although development level in terms of road extension is in quite high level, quality of all classes of roads is still in very poor level.
- . Some remote municipal towns are not accessed by land transportation, therefore, the basic road network is not yet completed.

Based on the above assessment, general direction of road network development of the province will be as follows:

- (1) Priority should be given to improvement of existing roads, particularly national and provincial roads.
- (2) Projects to construct new roads could be defered.
- (3) Currently impassable/abandoned national and provincial roads should be carefully studied for their improvement. Technical and economic viability as well as maintenance capability of the District/Provincial Engineering Offices concerned should be assessed.

2.4 PROPOSED MAJOR ROAD NETWORK

2.4.1 Procedure

To identify major roads, all existing roads are firstly classified in accordance with the functional road classification criteria which is shown in Table 2.4-1. Functional classification groups roads according to importance and quality of services they are intended to provide. Individual road links of similar importance and quality of services are organized into systems so that a road network in accordance with the hierarchy of functions can be planned and formed. They can be efficiently managed with consistent policies, design and operation.

After identification of existing major roads, necessity of additional new links is assessed. For example, if a certain municipal town has no access, a new major road is added to the existing major road network. Thus, the initial major road network is proposed and subjected to evaluation whether the proposed one is well-balanced or not. Evaluation is made by two (2) indicators as follows:

a) Network Value

b) Accessibility

If indicators of some blocks show imbalanced value, additions or deletions of major road links are made until indicators show almost balanced values. After these adjustment, the major road network is finally proposed.

Table 2.4-1 Proposed Functional Road Classification Criteria for Rural Road Network

Road Road Road Road Road Road Road Road				Relatio	Relationship with Administrative Classification	ministrati	ve Classifica	ion .
ictpal ital ital ifal ifal ifal ital ifal inform sary own ox cy cy arangays network network itlon ation ital	g	General Definition	General Characterics and Services Provided	National Road	Provincial Road	City	Municipal Road	Barangay Road
own		. Major inter-provincial ronds Intra-provincial roads linking two (2) or more municipal towns to the Frovincial Capital . Intra-provincial roads which form a skelton road network of a province	Provides the highest level of service at the high speed for the long uninterrupted distance. Serves for long distance trips . Hobility is given the highest consideration	•	Market of the Control			
or to the arangays , arangays , network , ork artion , ation , ari an it a fall , a	gamente de la constitución de la	Roads linking municipal towns each other Roads linking a municipal town to the Provincial Capital Roads linking one (1) or more municipal towns to the primary major road network	Provides high level of service . Serves for medium distance trips . Mobility is given high consideration	•	•	•		
arangays network cuters ork ation ation ral		Roads linking secondary major roads each other or a primary road with a secondary road. Roads linking two (2) or more barangays to the municipal town or to the higher level network	Provides rather low level of mobility Serves for short distance trips Collects traffic from feeder roads and connects them with major roads Hobility and land access		•	•		•
		ef 81 6	Primarily provides access to abutting land with little or no through traffic . Serves for local traffic . Land access is given high			•		•
the second secon		. Roads within built-up population centers (Poblacion) with essen- tially urban rather than rural rural functions	. Primarily provides access to abutting land in urban areas	:	- 12. n	•	•	

Relationship between functional classification and administrative classification gives only general guideline, therefore, some national roads may be classified as minor roads, or some barangay roads may be classified as major roads. NOTE:

2.4.2 Proposed Major Road Network

The major road network for the Province of Nueva Vizcaya was proposed as shown in Figure 2.4-1. For establishing the major road network, the following were taken into consideration:

- . Present network of fish-bone type with the main axis of Pan-Philippine Highway was basically considered.
- The inaccessible municipal town of A. Castaneda should be provided with access by a major road, however, due to topographical constraints and farness from Pan-Philippine Highway, it was judged in practical to link the said municipal town from Pan-Philippine Highway. Instead, the said municipal town should be accessed from the Province of Aurora.
- Currently impassable national road which connects Kasibu and Aurora Province was not included in the major road network system, due to low demand of traffic and topographical constraints. However, in the long range planning, it should be considered as one link of major road network system.
- . Existing national roads were mostly included in major road network.
- . As existing national and provincial roads are extensive in length, no new links were considered necessary.

Network value and accessibility of each block were computed to evaluate whether the proposed major road network is a balanced one. Based on these values, addition or deletion of road links was made and finally the major road network was proposed as shown in Figure 2.4-1.

Network value and accessibility of the proposed major road network are presented in Table 2.4-2.

Proposed major road network has a total length of 288.9 kms. and composed of the following roads.

National Road 243.7 kms. (78 % of total national roads)
Provincial Road 45.2 kms. (12 % of total provincial roads)

Total 288.9 kms.

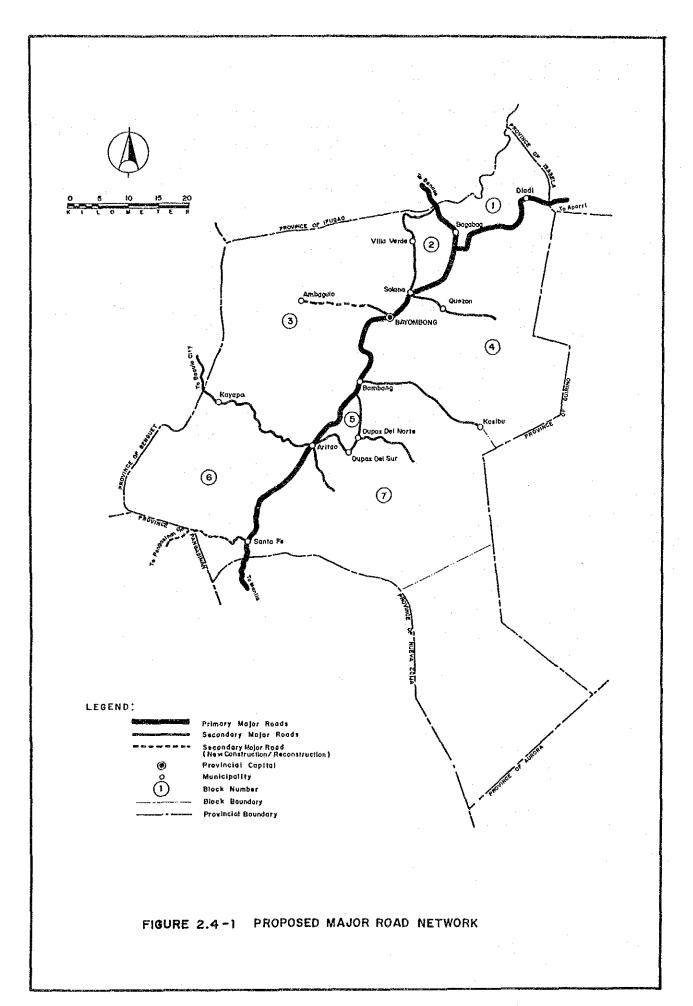


Table 2.4-2

NETWORK VALUE/ACCESSIBILITY
Province of Nueva Vizcaya

=	=======	=======================================		=======	************	
ļ)	1	1 Road	1	lAveragel
					Network Access	
					Value (p.km)	
ŀ				1		-
ŀ	· · 1	16,730	159.00	33.4	0.648 30,443	1 1.820
1	- 2	1 28,377	71.15	37.2	1 0.828 16,829	1 0.593
ŀ	3	84,426	877.95	1 131.9	1 0.484 1177,120	1 2,098 1
ļ	4	88,608	722.77	117.5	0.464 171,632	1.937
;	5	13,673	28.83	32.2	1 1.622 7,938	0.581
ŀ	-6	1 22,282	395.78	1 77.8	1 0.828 46,188	2.073
i	7	56,795	1,011.03	1 122.1	1 0.510 205,621	3.620
i				1		-
i	Ave.	44,413	466.64	78.9	1 0.548 93,682	2.109
=				=======		

CHAPTER 3

3.1 TRAFFIC SURVEY RESULTS

Roadside traffic count survey was conducted on selected roads. Traffic counts were carried out on two (2) consecutive days for 12 hours from 6:00 AM to 6:00 PM each day. Traffic volume was counted by direction and by vehicle type every hour. The vehicle type was classified as follows:

- Car
- Jeep
- Van
- Jeepney
- Bus (mini bus & large bus)
- Truck (including trailer)
- Motor-tricycle
- Motorcycle
- Animal drawn
- Pedestrian
- Others

Figure 3.1-1 shows the location of traffic count stations. Traffic survey results are summarized in Table 3.1-1.

Survey results were converted to Average Daily Traffic (ADT) by using the hourly factors based on the data from the Nationwide Traffic Counts Program (NTCP). Considering other factors such as market days, harvest season, rainy season, etc., AADT were estimated by vehicle type.

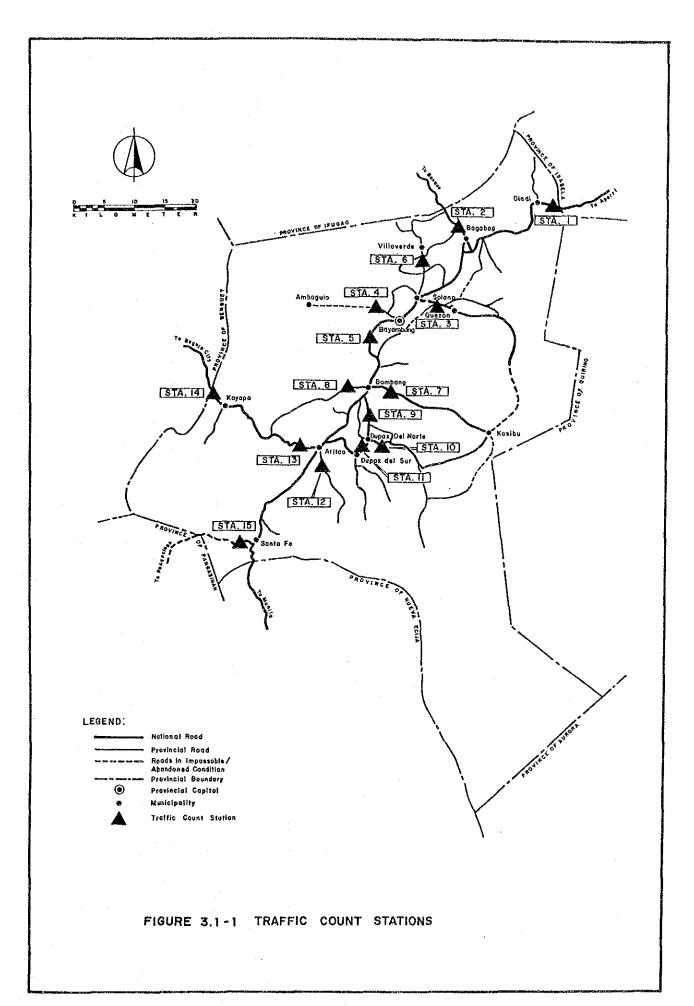


TABLE 3.1-1 SUMMARY OF TRAFFIC SURVEY RESULTS - NUEVA VIZCAYA -

Station No.	Car	Jeep	Pickup /Van	Jeepney	Bus	Truck	Sub-	Tri-	Motor-	Animal	Total
	1 1 2 2 2	100	1 4 5								1 0
-4	200	2	0/1	205	777	D **	1.404	\$*	2	>	1488
67	30	47	126	584	16	73	875	271	152	21	1318
က	7	17	24	2.7		37	114	217	63	rd	394
প	0	۲	Ġ	20	0	10	42	7.4	00	P-4	125
ເກ	252	163	478	925	193	486	2497	273	259	l r-1	3030
9	42	7.1	62	216	0	43	43.4	550	196	10	1190
7	٥	29	~ 4	144	0	46	220	242	68	12	513
œ	0	31	8	122	2	80	177	273	48	(r)	501
0	G	54	67	320	9	107	585	334	157	2	1078
10	H	14	4	94	.4	14	132	122	62	00	323
11	Q	37	42	144	0	18	247	122	85	0	454
12	63	14	10	94	0	25	145	212	52	7	411
13	- 4	20	13	20	0	22	75	62	មា	0	152
14	H	10	œ	49	7	7	82	0	0	0	82
15	0	7	+~ 4	33	0	0	47	7	0	0	54

3.2 TRAFFIC ANALYSIS AND FORECAST: TRAFFIC PROJECTS.

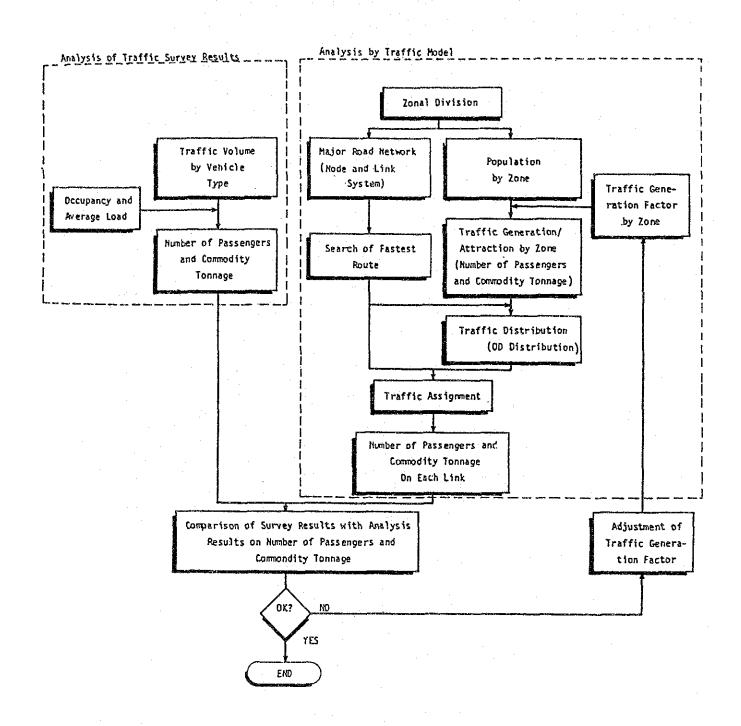
3.2.1 Analysis of Present Traffic

1) General Procedure

Present traffic on each major road network was analyzed according to the procedure shown in Figure 3.2-1.

The analysis is divided into three major steps:

Step I : Analysis of Traffic Survey Results


The number of passengers and commodity tonnage were obtained from the results of the traffic survey. These data are, however, available only on the surveyed road links and used for calibration purposes for the traffic model described below.

Step II : Analysis by Traffic Model

Traffic generation and attraction, in terms of passengers and commodity tons, were estimated based on population and per capita traffic generation factors; traffic distribution (OD distribution) was estimated by the gravity model; then, OD distribution was assigned to the major road network expressed by the node and link system. In the analysis, since only traffic generation factors were unknown, assumed values were used in the first step.

Step III: Comparison of Both Figures

The number of passengers and commodity tonnage estimated by the traffic model were compared with those derived from the traffic survey. On the basis of the comparison, traffic generation factors were appropriately adjusted and the traffic model analysis was reiterated until the traffic model reflected the actual people and freight movements with a high accuracy.

PROCEDURE OF ANALYSIS OF PRESENT TRAFFIC ON MAJOR ROAD NETWORK

2) Analysis of Traffic Survey Results

Traffic volume by vehicle type counted in the traffic survey was converted to number of passengers and commodity tonnage using the occupancy and average load shown in Table 3.2-1.

Table 3.2-1 OCCUPANCY AND AVERAGE LOAD Province of Nueva Vizcaya

	Average Number of Passenger per vehicle	
Car/Taxi	3.40	1.00
Jeep	3.40	1.00
Van/Pickup	3.40	1.00
Jeepney	11.80	1.00
Bus	25.30	1.00
Truck	5.00	3.00
Motor-tricycle	2.90	0.30
Motorcycle	1.60	0.10
Animal Drawn	3.00	0.15

3) Analysis by Traffic Model

i) Zonal Division:

The province was divided into traffic zones corresponding to municipal divisions in principle.

ii) Major Road Network:

The major road network was expressed by a node and link system. Each link was given length and average speed according to the actual road condition. A node and link system of the Province is presented in Figure 3.2-2.

iii) Search for the Fastest Route:

The fastest route for each zone pair was calculated by Moore's Method.

iv) Traffic Generation Factor:

Per capita traffic generation factors (trip/person/day and ton/person/day) vary between zones even in the same province with many factors such as:

- Economic Activity
- Size of Population
- Distance from Provincial Capital
- Road Condition
- Other Physical Conditions

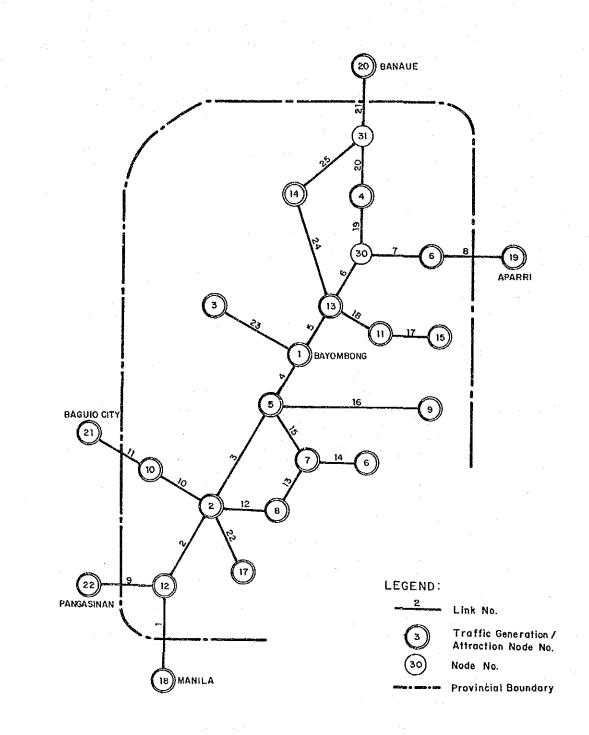


FIGURE 3.2-2 LINK / NODE SYSTEM PROVINCE OF NUEVA VIZCAYA

The generation factors which best illustrate the observed people and freight movement were estimated by the iterative method. The traffic generation factors thus estimated are summarized in Table 3.2-2.

TABLE 3.2-2 PER CAPITA TRAFFIC GENERATION FACTORS (MAJOR ROAD, 1990 W/O)
Province of Nueva Vizcaya

	Passenger Movement (trip/person/day)	Commodity (kg/person/day)
Range Mean Value	0.042 - 0.209 0.148	4.8 - 23.9
		·

v) Traffic Generation and Attraction by Zone:

Traffic generation and attraction were obtained in terms of passengers and commodity tonnage as the product by generation factors.

vi) Traffic Distribution:

Traffic distribution (OD distribution) was estimated by the gravity model:

$$Xij = k \frac{Gi \cdot Aj}{2}$$

$$tiJ$$

Where, Xij = Traffic from zone i to zone j

k = Parameter

Gi = Traffic generation in zone i

Aj = Traffic attraction in zone j

tij = Travel time from zone i to zone j along the fastest route

OD distribution was adjusted so as to satisfy the following conditions by the Frator Method:

$$G_i = \sum_{j+1}^n X_j$$

$$Aj = \sum_{i=1}^{n} Xij$$

Where, n = Number of zones

vii) Traffic Assignment:

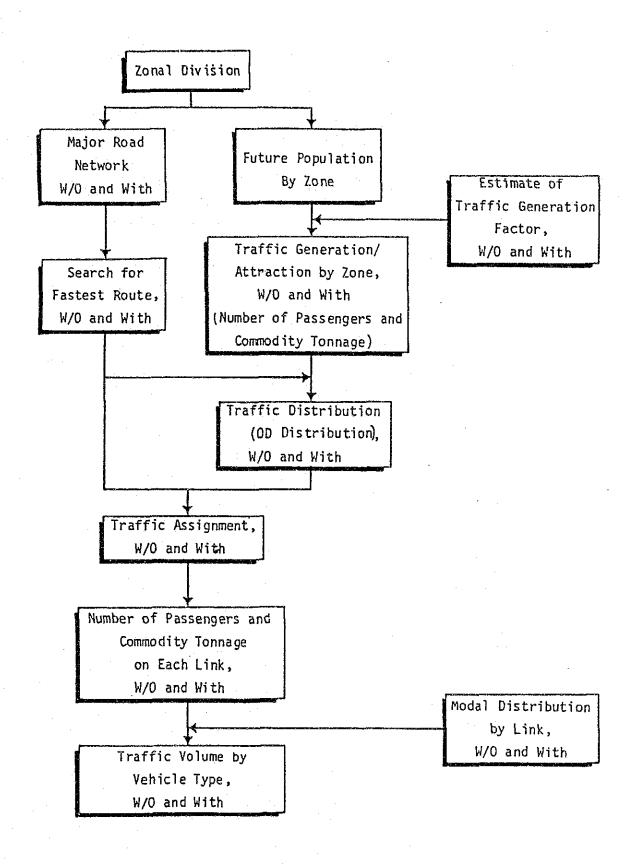
Each OD traffic was assigned to the major road network expressed by the node and link system on an all-or-nothing basis. Thus, the number of passengers and commodity tonnage for each link were calculated.

3.2.2 Traffic Forecast

Figure 3.2-3 illustrates the procedure of traffic forecast.

The traffic model prepared for the analysis of present traffic was basically used for forecasting future traffic on the major road network with the following additions/modifications:

1) Major Road Network and Fastest Route Search


The node and link system for the "with" case was prepared by changing the characteristics of the links included under this feasibility study as well as the links committed to be improved.

The fastest route search was carried out both in the "w/o" and "with" case networks.

2) Traffic Generation/Attraction and Distribution

The future population was based on the NCSO 1980 Census of Population and Housing.

Per capita traffic generation factors in the "with" case were estimated referring to the generated transport demand/transport cost reduction elasticity shown in "Highway Planning Manual, Volume 3, MPWH" and also based on the results of the analysis of present traffic. For instance, a zone showing a small generation factor at present due to poor road conditions is expected to increase the factor to some extent by road improvement, and the degree of increase can be estimated referring to other zones in similar situations but with better road conditions.

PROCEDURE OF FORECASTING TRAFFIC ON MAJOR ROAD NETWORK

The traffic generation factors thus estimated are summarized in Table 3.2-3.

TABLE 3.2-3 PER CAPITA TRAFFIC GENERATION FACTORS (MAJOR ROAD, 1990 WITH)
Province of Nueva Vizcaya

	Passenger Movement (trip/person/day)	Commodity (kg/person/day)
Range Mean Value	0.084 - 0.209 0.167	9.5 - 23.9

The transition period, i.e., the period which will elapse after opening of the improved road before the full impact on generation will take place, was assumed to be three years.

Traffic distribution for the "with" case was estimated by the same method as used in the analysis of present traffic.

3) Traffic Assignment

The number of passengers and commodity tonnage on each link in the "with" case was estimated by assigning OD traffic to the major road network in the "with" case. They were converted to the number of vehicles using the modal distribution in the "with" case. Changes in modal distribution with changes in road condition were estimated reffering to the present distribution in other road links in a similar situation but in the road condition. The transition period of a complete change in modal distribution was assumed to be three years.

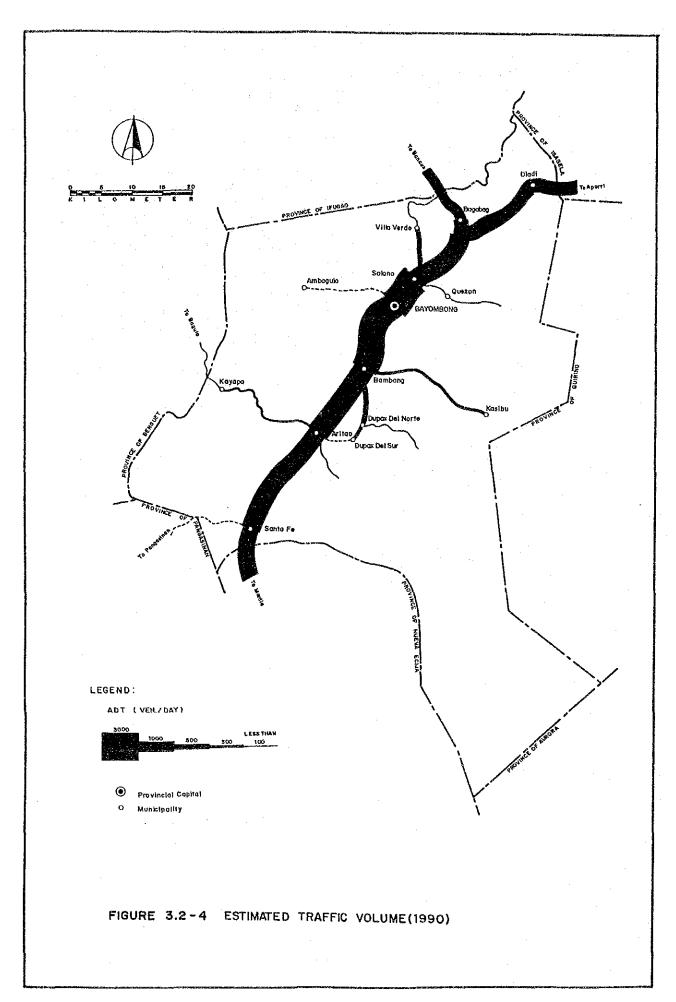
The traffic in the "with" case was broken down into following four categories for convenience of traffic benefit estimation:

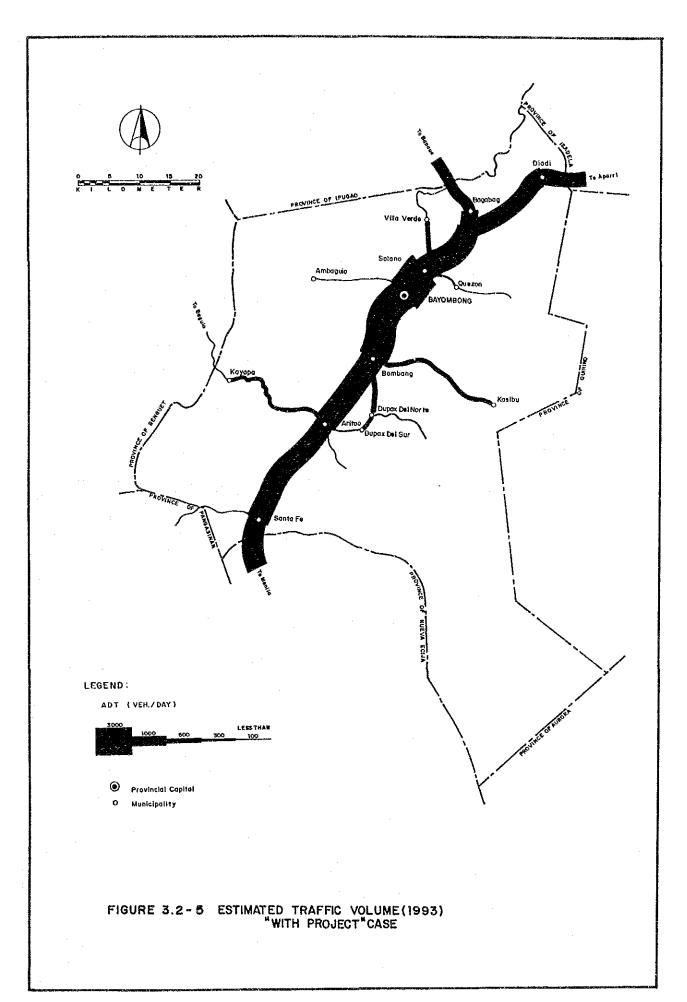
Normal Traffic:

Flow of passengers and freight which will occur even without road improvement. However, changes in the number of vehicles is possible due to changes in modal distribution.

Diverted Traffic-1: Traffic which diverts to a certain road from other routes as a consequence of road improvement.

This is usually called simply diverted traffic.


Diverted Traffic-2: Traffic which changes destination as a consequence of road improvement but for the same trip purpose as in the "w/o" case. This is possible in the case of improvement of the access road to the nearest town which is at present barely accessible due to poor conditions. This traffic is called "Diverted Traffic-2" in this Study, distinguished from Diverted Traffic-1.


Generated Traffic: Increased traffic brought about by road improvement.

3.2.3 Estimated Present and Future Traffic

Estimated present and future traffic on the major road is illustrated in Figure 3.2-4 and Figure 3.2-5, respectively.

Estimated present and future movements of passengers and commodity by link are presented in Table 3.2-4, and estimated traffic volumes are presented in Table 3.2-5.

TRAFFIC PROJECTION

NUEVA VIZCAYA

TABLE 3.2 - 4 (1)

Movement of Passengers and Commodity

			Number	of Pas	sengers	1	1 1 1 1 1	Сошш	Commodity To	Tonnage	
] = =	υ :	Normal	Diver-	Diver- ted-2	Generated	Total	Normal	Diver- ted-1	Diver- ted-2	Generrated	Total
	00000	11423 13553 17023 47294	1 1 1	67 4 10 20	F F T T	11423 13556 17027 28936 47302	2325.74 2580:18 3238.21 4994.34 7409.35	1111	-1.05 -1.30 -2.13 -3.29	. 1 1 1 1	2325.74 2679.13 3236.91 4992.21 7406.05
67	00000	12204 14471 18164 30812 50274		1 2 2 1 1 1 2 8 8 1 1 8 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	321 1157 1787 2687	C F G M &	2369.72 2730.31 3297.97 5082.83 7535.07		-3.76 -4.60 -7.21 -10.75	35.49 123.17 172.53 235.62	2369. 2762. 3416. 5248.
00	1990 1993 1997 2007	14258 16894 21185 35835 58239	- 472 - 587 - 1972 - 1548	1 1 4 7 1 1 8 4 1 1 1 8 4 1 1 1 8 4 1 1 1 8 4 1 1 1 1	1849 1849 3141	14258 16763 22263 37696 61312	2502.26 2882.37 3480.78 5359.29 7935.40	-65.84 -78.86 -118.76 -172.08	-13.73 -16.57 -25.24 -36.65	53.96 196.86 303.44 443.21	8 2 2 7 2 8 6 9 7 2 9 8 9 7 2 7 2 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
· · · · ·	0000	14348 17004 21329 36109 58794	111	-50 -59 -109	1873 3545 6322	14348 17427 23144 39570 65007	2447.32 2817.95 3401.16 5230.15 7735.80	1 1 1 1	-4.63 -5.07 -5.71	52.45 199.56 342.77 554.47	2447.32 2865.77 3595.65 5567.21 8284.87
i w	0000	18869 22312 27904 46871 75755		128	1616 1616 33126 5658	1 & 1/2 D D H	2923.82 3361.27 4048.33 6191.05	1 1 1 I	-3.75 -4.21 -5.03 -5.11	44.76 172.21 302.46 496.28	2923.82 3402.28 4216.34 6488.47
Ι	1999 1999 1997 2007	13952 16485 20601 34624 56114		444 61 124 234	1001 1982 3632	13952 16777 21663 36729 59980	2372.13 2727.01 3284.73 5031.96 7425.18	t t 1 1	7.57 10.03 18.79 32.28	27.41 106.82 191.83 319.06	2372.13 2761.99 3401.58 5242.58 7776.52
- 1	1990 1993 1997 2007 2017	9886 11772 14863 25562 42205		4 to 9 to 1	247 1001 1982 3632	9886 12062 15918 27636 45991	1757.00 2029.32 2459.60 3821.26 5703.80	1 1 1 1	1.64 2.14 3.97 6.81	27.41 106.82 191.84 319.06	
ω :	1990 1993 1997 2007	9179 10890 13677 23241 37989		1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1 1 1 1	C 00 00 00 11	1678.93 1934.66 2337.20 3603.81 5345.35	1 1 1 1	. 82 1.01 1.63 2.49	1 t	1678.93 1938.21 2338.21 3605.43 5347.85

TRAFFIC PROJECTION NUEVA VIZCAYA

TABLE 3.2 - 4 (2)

Movement of Passengers and Commodity

150.83 227.36 405.65 566.97 776.03 356.54 350.23 459.06 705.40 180.59 269.79 480.74 875.28 1471.61 100.01 149.38 214.05 298.26 237.61 301.15 408.81 616.35 48.78 56.21 67.91 104.74 71.28 99.65 162.58 244.48 353.20 Total 18.07 64.91 97.68 141.09 14.72 56.75 98.40 157.56 61.63 212.22 290.73 390.83 35.49 123.17 172.53 235.62 19.91 72.07 110.16 161.35 48.98 192.06 349.57 587.43 Gene-rated 13.78 46.17 58.93 74.02 Commodity Tonnage -7.02 -8.38 -12.49 Diver-ted-2 -7.16 -8.61 -13.06 -19.00 20.39 24.36 36.36 52.17 -3.54 -4.11 -5.75 -7.85 Diver-ted-1 356.54 408.51 -65.84 489.78 -78.86 738.83 -118.76 1071.27 -172.08 65.84 78.86 118.76 172.08 16.30 19.49 29.25 42.24 Normal 150.83 169.28 197.54 281.98 237.61 271.96 325.62 489.44 707.20 71.28 81.58 97.67 146.79 212.10 48.78 56.22 67.92 104.74 155.37 180.59 220.80 288.67 525.69 884.15 321 1157 2587 2587 2587 1406 2135 3918 6077 602 717 900 1530 2501 793 1265 1985 3028 2082 2681 3790 6296 625 900 1526 2528 4026 2998 3130 4269 7229 11722 Total Gene-rated 321 1157 1787 2687 557 1993 3010 4457 180 677 1141 1841 163 610 1011 1610 133 533 1019 1798 443 1805 3619 6703 Number of Passengers Normal Diver- Diver--149 -75 -94 -154 -67 -84 -141 -228 ted-2 122 152 250 397 -472 -587 -972 -1548 ted-1 2082 2454 3054 5059 8055 916 1518 2416 2998 3536 4407 7324 11700 Link! Year 1990 1993 1997 2007 1990 1993 1997 2007 2017 1 1990 1 1993 1 1997 1 2007 1997 2007 2017 1993 1997 1997 2007 2017 O.T

NUEVA VIZCAYA TRAFFIC PROJECTION TABLE 3.2 - 4 (3)

Commodity Tonnage Normal Diver- Diver-ted-1 ted-2 41.40 50.69 66.40 121.46 205.00 88.96 114.08 198.65 321.84 1288.24 1475.62 1769.11 2681.93 3924.32 Total 364 687 1558 3139 5836 8332 9785 12136 20050 32035 592 1262 2443 4813 8804 Gene-275 1112 2192 4020 228 933 1879 3492 Number of Passengers Diver- Diver-ted-1 ted-2 Movement of Passengers and Commodity 253 354 756 1468 Normal 12138 20046 32017 Link! Year

41.40 76.03 165.81 303.88 511.41

25.29 99.35 182.32 306.27

30.48 118.41 212.05 352.44

24.57 33.25 65.10

Total

Gene-rated

1474.50 1767.98 2681.01 3924.00

1.12 1.13 1.32 1.32

24.17 93.80 166.87 275.65 2184.41 3242.86 24.17 93.80 166.87 275.65 -3.60 -4.27 -6.26 -8.84 -3.72 -4.41 -6.49 1019.26 1174.76 1419.62 2190.67 1051.40 1211.58 1463.75 2257.27 323.81 382.88 559.87 791.33 5392 6381 8017 13633 22303 5592 6643 8343 14177 23173 834. 1030 1398 2315 3687 2585 2988 3673 5922 9229 218 880 1726 3142 47 175 289 461 218 880 1726 3142 5592 6634 8333 14160 23147 5392 6398 8037 13667 22355

TRAFFIC PROJECTION

TABLE 3.2 - 4 (4)

Movement of Passengers and Commodity

	1		Number	of Passengers	engers		· i	Comm	Commodity Tonnage	nnage	-
 Ž	Inki rear	Normal	Diver- ted-1	Diver- ted-2	Generrated	Total	Normal	Diver- ted-1	Diver- ted-2	Gener	Total
1 1	1990	! ! !	1 1 1 1 1 1	! ! ! !	 	200	ŀ	! ! ! !	} } !	 	32.14
	1993	237	•	25	1	261	36.82	i	3.70	ı	40.52
25	1997	295		31	1	326	44.13	ı	4.39	ı	48.52
	2007	493	ı	20	1	543	06.60	. 1	6.45	1	1 73.05
	2017	792	•	7.8	1	870 :	96.72		9.15	ı	105.87

NUEVA VIZCAYA TABLE 3.2 - 5 (1)
Traffic Volume

		1	 			0/*				. !					with		٠.		
, E	ě	;	1	Bus	T T C K	Sub- :	Tri-	Mot.	Anir mal	Total	Car (Van	1 4 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Bus	Tru-18	Sub	Tri-	Mot.	Ani- mal	T 0 t
-	000000	l	40 47 59 98 157	271 321 404 686 1122	1 44 CD 00 PU	2228 2228 7228 702		1111		1936 2262 2784 7024	720 889 1450 2280	479 595 985 1573	321 404 686 1122	7411 8961 13811	2262 2783 7024	1 1 1 1	ija a'a.	1 1, 1 1	2262 2783 4503 7024
0	1990 1993 1997 2007 2017	2 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		rapacocole	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 3 6 6 6 7 1 6				1 2 6 6 6 6 7 1 7 6 6 6 6 7 1 7 6 6 6 6 7 1 7 6 6 6 7 1 7 6 6 7 1 7 1	766 977 1587 2487	514 661 1090 1732	350 458 772 1254	7645 9451 14525	23 04 7 6 2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1111	1111		23942 2901 7520
m	300001	843 1041 1697 2667	57 71 117 187	505. 1383	0022 0031 14831 21983	?~~ON!	11111	 		2614 3219 5209 8124	836 1085 1771 2784	569 745 1234 1967	398 528 1454	790; 991; 1527; 2260;	84293 8420 1655	1111	1 1 1 1 1	1111	2593 3349 18465
4, I	1990 1993 1997 2007		98 115 143 236 374		5221 6011 7261 11161	9 12 8 12 6		1 1 1 1 1	11111	ଓ ⇔ ଷ ଶ ≻ା	1172 1508 2444 3817	1185 1546 2568 4107	241 320 547 899	6111 767 11881 1767	3209 4141 6747 0591	1 1 1 1 1		1 L 1 P 1	3209 4141 6747 10591
မာ - - - - -	199 199 199 200 201	17527	126 147 182 299 471	261 309 386 648	6241 7171 8641 19431	337 82 82 93 103	 	; 	1	L 23 50 73 73	1449 1836 2960 4599	1499 1921 3170 5037	314 408 690	726; 899; 1384;	3987 282064 128084 18084		; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3087 8204 128064
() I	000001		555 588 1133 179		6561 7541 9091 13921				11111	~ woon⊩ i	825 1045 1709 2697	565 721 1196 1914	398 514 871	764; 941; 1450; 2152;	2551 3221 81851	· + 1 + 1	. 1 1 1 1	.1 1 1 1	10000
7	990 993 997 997	502 590 732 1210 1926	I		∞ co ∞ co t≻ l		 		3 1 1 1 1	1561 1831 2266 3715 5863	602 776 1295 2076	410 533 903 1471	286 378 655		1867 2398 3965 63061	1 1 1 1] 1 1 1 1 1 1 1 1 1 1		1867 2398 3965 6306
co	993 993 997	7 9 9 7 7	31 37 46 77 123	2222 2528 2524 2514 251	465 535 647 997	1471: 1720: 2118: 3435: 5372:	1 1 1 1 1	11111	1 1 1 1	1471 1720 2118 3435 5372	554 684 1119	375 466 773 1237	2559 326 904 1	5351 6471 998:	1723; 2123; 3443; 5384;	1 1 1 1		1 1 1 1	1723 2123 3443 5384

TRAFFIC PROJECTION
TABLE 3.2 - 5 (2)
Traffic Volume

i 	 	 		 		0/#					-				¥ith				
: : :	හ ව	Car	Jeep	Bus	Tru	Sub- Total	Tric	Mot.	Ani-	Total	Car	Jeep 1	Bus	Trull OK.13	Sub-	Tri-	Mot.	A	Total
σ	00000-	1 1 1 1	1 1 1 1 1	1111	11111		, , , , ,		i i i e e	1111	12112	106 158 230	17 17 32 32		156 231 333	1 1 1 1	F [1]	22.9	22 H 24 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
100	19993 19993 19997 2007	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	129 177 272 409	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 0 4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	216 245 295 447		544 52 153 153	1111	260 297 357 546 818	59 757 78	33.5 73.35 78.0	20 7 4 6 1 0 9	81 113 155	1 2 7 2 1	1111	4111		102201
11	66666	68 68 68 72 72 75 75 75 75 75 75 75 75 75 75 75 75 75		17 17 17 17 17	2011.08	1199		10 22 28 48 78 78	1 1 1 1 1	101 118 147 242 386	16 10 16	0 7 7 2 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1	200	4428 444	0001-1	1 1 1 1	ις (1 1 1 1 1 1 1 1 1	1 1 1 1	107 105 172 271
12	00000	,	11111	11111	1111	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1111	1 1 1 1 1	t 1 1 1 1	1 1 1 1 1	31 30 43 60	76 126 194 291		24 22 24 23 24 18	10/0	37 37 37 37 37 37	9 64 8 9 52 5	142	277 261 395
e	തെത െ ⇔ ⊣	90 104 126 197 295	1922 224 276 444 689	r ! ; ; ; ;	36 41 49 73	317 359 451 7141 1090	111 130 160 256 396	130 153 153 316 503	111;	559 652 801 1286 1989		2.52 371 603 945			398 530 844 1293	121 106 170 263	140 118 197 314	1111	658 755 1211 1870
	6660	3377	58 67 83 133 207	1111	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	111111111111111111111111111111111111111	33 39 48 77 119			100400		1 84 2 4 2 3 7 8	1 1 1 T F				47 48 79 126	1 1 1	1 GC 02 44 1
ر ا ا ا	999999		∞ €1 O €2 ₹ 1		7331	466 542 663 1053 1612	163 190 234 376 582	187 2221 275 458 731	11111	816 953 1172 1887 2925	112 92 141 208	294 417 692 1102		134		141 120 195 306	103 133 366	1111	767 849 1389 2178
9	စစ်စ်ဝင် i		£ 000 m ₹ 1		୍ୟ ଓଡ଼େ ଓଡ଼ା	4000001		40 62 170 314		1 2 2 3 4 2 7 1	51 51 172	1 6946		1 2 0 1 2 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3	9660	1 1 1 t	61 56 113 210	1111	4004

TRAFFIC PROJECTION
TABLE 3.2 - 5 (3)
Traffic Volume

1990 8 19 19 19 19 19 19 19		! !				-	0/4	1 - 1 1 1				1	1 1 1	1	. 1 . 1	with	1			
1990 10 10 10 10 10 10 1	그 유 	ช ผ	Ca / va	1 0 2	Bus	ru-r ck	ab ota	1 54 >- 1	o t .	i ⊈ ¤	. +	ા તત્ત	. OO 1	i sy	CKU	ub- ota	1 5 5	105.	Ani- i mai	Total
1999 1999	•	999 993 997 007	1	1 20 000	 	. 00000	40000		23 29 39 79 147		. 4 - 2 - 2 - 3		2004		2000	21 41 74	1 62 4 60 fC			w00 w
1990 345 823 46 245 1459 57 104 1670 37 1986 54 280 1689 67 122 1890 1993 386 54 280 1880	i · 00	1 5 5 6 6 6 6	1 4 4 2 4 9 1	12000E	 	1741	ା୍ଷଦ ଅପର ।	1 400-0001	1040401	1 1 1 1 1 1	1011011011011		1 70001		288 508 1508	1 L 4 4 W I	I. № 00 m I	1 4040		1 0 8 8 4 1
1990 266 569 30 194 1059 37 67 1164 307 667 35 223 1232 44 80 135 135 130	i, oʻ i	00000m 000000	1 4 8 4 C C C C C C C C C C C C C C C C C	90-100	1 400047	2801 2801 3361 7461	4.0000 13.0000	្រែ១១៣៧។	1 0 00 00 00 1	1 1 1 1 1	1 2 2 2 2 3 2 1	0 6 6 6 9	9879	1 - 43 C) CI	. ccc4:	92088	। ଦେଉପରେ ।	1 800000	1 1	1 2 2 3 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1990 275 589 31 200 1095 39 70 1203 318 693 37 230 1277 46 83 140 1993 318 692 37 230 1277 46 83 140 1405 396 898 46 278 1568 588	50	66600	3000	សេសស⇔⊣		1941 2231 270 416 6181	027047	64000	9801-	1111	16 27 27 27 27 27 27	01.81.	3880	0 4 7 7 1 1 2 3 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2044	8187	ರಣರಣ 1	8014	1111	2000
1990 19 72 18 110 60 52 221 23 93 22 138 58 54 24 1993 22 84 21 127 69 61 258 23 93 22 138 58 54 24 2007 41 168 25 156 85 76 177 65 346 65 346 67 44 27 2007 41 168 25 378 211 202 790 65 346 62 472 96 115 68 1990 6 53 65 346 65 346 65 346 65 346 68 346 178 1993 6 162 6 37 22 92 19 155 19 18 1990 6 54 44 20 16 74 30 65 35 19 1990 162 79 65 34 74 39 25 19 15 1991 162 70 74 309 25 448 25 196 15	i = t	11999	0.00	24.809.81		200 230 278 429 636	92291	39 46 57 98 160	0.40041	+++++	3474	1 4000	0 8 4 9	37 46 78 128	01/010	9527	54 58 160	0.00	1111	739
1990	•	1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1 400 40	10 10 2 2 2 6 2 2 6 2 6 2 6 2 6 2 6 2 6 2 6	i i i		1 - N 10 4 1- 1	1 60 60 60 🗗 🗆	1007001	 	100550	200 1 200 1 000 1 000	1 00004.	; ; ; ; ; ; ;		1 44 64 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 8 8 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1045	1 1 1 1 1 1 1	E 12 12 12 12
1990 162 200 - 38 399 229 162 - 790 159 241 - 48 448 226 156 - 83	m 1	199 199 199 200 201		1111	1111							44.8	0 - 0 1	1111		ി . ⊣നഗന ി	1111	1 00 0 I		L 20 10 10 11
		1999 1999 2000 2001	98241	00041	1 1 1 1 1	388 431 751	တတကတတ	80000T	ω ∞ 10 ∞ ω	1 1 1 1 1	73 73 61	നനത	.4 <0 ← <0		4004	4211	57 ED ED 74	vo⊶∞ ⇔	F 1 ! 1	888 G G.

TRAFFIC PROJECTION
TABLE 3.2 - 5 (4)
Traffic Volume

,						0/*				_						with					
YE C	100 P	Car Jee	Jeep	Bus	Tru-16	p- Bus Tru-1Sub- 1 Tri- Mot. Ani- 1 Totall Car Jeep- Bus Tru-1Sub- 1 Tri- Mot. Ani- 1 Totall cycl cycl mal 1 /Van ney ck Totall cycl cycl mal 1	Tri-	Mot.	Ani- mal	,	(a)	Car /van	Jeep-	Bus.	1 7 %	Sub-	Tri-	Mot.	Ani-		Total
	1990.1 16 1	16	17	,	*	4 37; 21 13	21	13		:	1 1 2	 			 			1 1 1 1 1 1 1	 	! !	
	1.1993	1.8	20	1	S.	43	25	٠-۱ دی	. 1		 83	17	24	ı	9	47		7	1		84
25	1 1997	22	25	1	9	 ເນ	30	18	•) -	01	14	35	1	6	1C)		10	ı		85
	1 2007	34	40	1	6	84:	48	3	,) T	162.	23	: :	ı	13	87	31	17	ı		135
	1 2017	525	63	ı	13:	1283	73	50	ŧ.		51 1	ω 4	80	ı	6.7	134		27			208

3.3 TRAFFIC ANALYSIS AND FORECAST: DEVELOPMENT PROJECT

Traffic on development project roads was forecasted separately for passenger traffic, non-agricultural traffic and agricultural traffic. The number of passengers and commodity tonnage were estimated first, and then they were converted to the number of vehicles assuming modal distribution and occupancy/average load. Figure 3.3.-1 shows the schematic diagram of traffic forecast for development project.

3.3.1 Passenger Traffic and Non-Agricultural Traffic

The population residing within the road influence area, which is defined as the area from which local existing or potential traffic using the road derives, was obtained mainly from distribution of barangays shown in 1:50,000 topographical maps and the NCSO 1980 Census of Population and Housing, and supplemented by information obtained from barangay interviews. The population forecasts were prepared using the NCSO report.

The number of passengers and non-agricultural commodity tonnage were obtained as the product of population by the per capita generation factor. Table 3.3-1 shows the generation factors commodity used in the analysis, which was derived mainly based on the traffic survey and referring to previous studies. In the case of particular roads where the common values were deemed inapplicale, specific values were used.

TABLE 3.3-1 PER CAPITA TRAFFIC GENERATION FACTORS
(MINOR ROAD): Province of Nueva Vizcaya

Existing Road Condition	Passenger (trip/per	Movement son/day)	Non-Agri Comm (kg/pers	odi ty
	w/o	with	w/o	with
Paved/Gravel				
Good/Fair	0.12	0.12	2.0	2.0
Bad	0.10	0.11	1.6	1.8
Very Bad	0.08	0.11	0.6	1.0
Earth Road	0.03	0.06	0.5	1.0
Impassable to				
motoried vehicle	0.01	0.03	0.4	1.0

The modal distribution and the occupancy/average load used in the conversion to traffic volume by vehicle type were estimated individually for each road based on the road

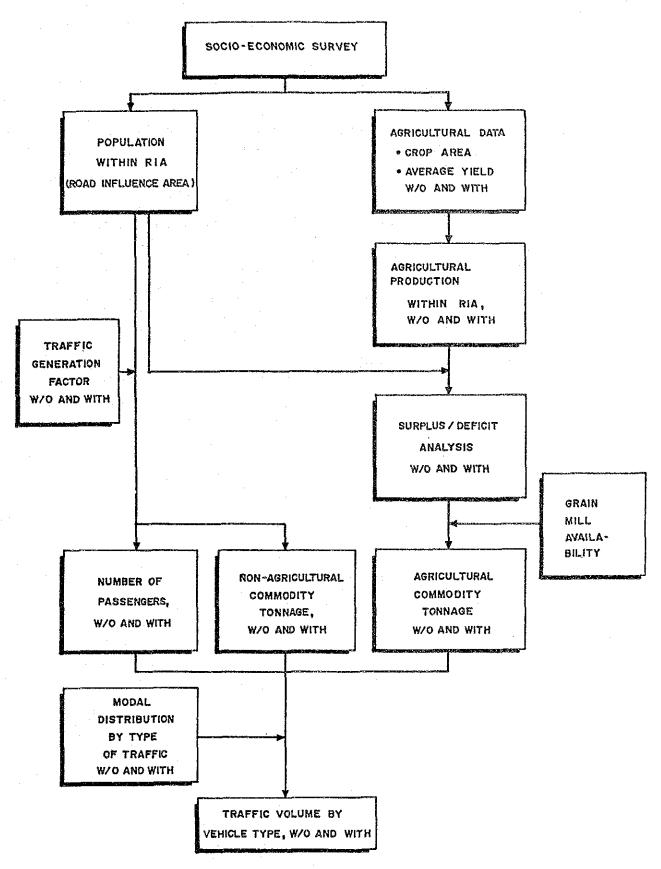


FIGURE 3.3-1
PROCEDURE OF TRAFFIC FORECAST
FOR DEVELOPMENT PROJECTS

inventory survey and the traffic survey.

3.3.2 Agricultural Traffic

Agricultural commodity tonnage was estimated based on the agricultural production within the road influence area, taking into consideration i) home consuption and surplus/deficit and ii) availability of grain mill(s) in the road influence area, as regards food grain.

- i) Home consumption of food grain was calculated as population times per capita grain consumption (assumed to be 130 kg in a milled form), and the surplus or deficit production was calculated based thereupon.
- ii) In case of no mill in the road influence area, all net production is assumed to move out in the form of palay/unmilled corn. Milled grain products for home comsumption are then transported back. An eventual deficit moves into the road influence area in the form of milled products.

Provided one or more mills exist in the road influence area, the transport flows are assumed as follows:

- Home consumption remains in the road influence area (no transport movement assumed).
- Surplus production would be transported out, traditionally in the form of unmilled food grains.
- Deficit production would be moved into the road influence area in milled form.

Agricultural commodity tonnage was enverted to number of vehicles using the modal distribution and average load, which were estimated individually for each road considering the transport circumstances.

3.3.3 Estimated Present and Future Traffic

Estimated present and future traffic is presented in Table 3.4-1 in the next Section.

3.4 SUMMARY OF TRAFFIC VOLUME ON STUDIED ROADS

Estimated present and future traffic volumes of the studied roads comprising of traffic and development projects are presented by each road project in Table 3.4-1.

TABLE 3.4 - 1 (1)

Traffic Volume by Vehicle Type

	Boat	1	ı	1	ì	1	ı
	Walk Boat	,	1	ı	ı	1	
	Ani- mal	156	i	142	ı	ı	1
	Motor Ani- cycle mal	ເລ	140	œ	99	47	36
	Tri- M	0	121	∞	72	40	39
wi th	1	11	398	119	171	133	92
	TruckiTotal	2 - 2	49	12:	28	16	12
	Bus		ı	1	t		ı
	Jeep -ney	i. ∞	252	76	114	84	62
	Car	2	26	31	53	32	15
	1 +2 1 +2 1 0	ŀ		 1	 1	1	 I
	Walk B] [[]	1	ı	1	1	1
	nni + 18	 	ı	ı	1	1	1
	Motor Anit Walk Boat	ı	153	1	46	46	29
	Tri- M	1	130	r	54	38	32
w/o	Car Jeep Bus Truck Total Tri-	 	369 1	 !	66	1111	29
	uck!T		4]	1	17	12	10 1
	Bus Truck		ı	1		ı	ı
	Jeep		224	1	64	67	39
	Car	: 	104 2	1	18	3,7	10
	<u>i</u> 	! ! !					
	Road Numbe	P19	N5-2	N5-1	N7-4	N5-3	N7-3
Type :	Of Of Road Road Impr't! Number	cond'y!Rehab/! P19	: Imp-1				
Class	Road	Second'y!Rehab/! P19	Major				

TABLE 3.4 - 1 (2)
Traffic Volume by Vehicle Type

Class ; Type						0/%	;	•								with	æ				1
	t Number	L.	Jeep	Bus Tr	TruckiTota	i	Tri- M	Motor /	Ani- mal	Yalk B	80 a t : : : : : : : : : : : : : : : : : :	. B D	Jeep	BusT	Trucki	Total	Trl	Motor	Ani	26 1 1 2 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1	r Boat
	<u> </u>	 	49	. 1	i '	49	125		26	335	1 ! !: 1	4	7.0			74	84	9		67	
(Nat'1/ Imp-1	_	r.	20	•	 	26	G F	17	ı	ı	 1	4	49		0	54	6.4		ŀ	t	1
Prov'1);	P7	9	41	1		48	33	30		;	1	4	43	5	ლ	20	2.2		t	ł	1
	P59	,	6	1		 6	40	_		150	 !	9	14			21			ι	ı	ŀ
	1 P6	1	7	ı		7	2.4	1		29	1	8		١	0	13	80		1	1	1
	P14	<u>ლ</u>	22	1		25	46	. •		119	 i	က	28		•	ლ	3.4		1	48	1
<u>.</u>	P52-1	1	1	ı		⁻	นั้ง	29		196	1	ີຕາ	17	ŧ	1	19	355		. 1	92	ı
	1 P33	ო	33	ı	 ,	35	7.5	1		168	 !	က	4	•	ı	47	52	m	t	48	i
	P43	; 	1	1		1	1]	2		32	 J	1	2	•	1	2	7.		ល	33	ı
	1 P36	1.	6/3	ŀ	 1	 2	œ	ľ		24	 i		ıs	•	0	ιΩ	 *		ı	1	1
•	P51		2	ı	-,- 1	 (3)	56	es.		96	 I	2	O	١	1	9-4 9-4			1	35	1
	1 N5-4	9	74	1		20 :	2 2 3	1		75	 1	4	~	•	4	12	•		1	1	ı
	P13-2	1	တ	ī	 I	9	16	ı		64	1	2	r i		0	13			1	1	ŀ
	: P21	1	24	•	 F	24	30	20		115	1	2	27	•	;	53	36	63	7	75	ı
	 Ed.	1	1	1	~- I	1	13	10		64	 1	-	7	١	0	∞	<u>د. </u>		ł	1	1
	1 P52-3		•	1	 I	7	- -⊀			2.	 !	0	2	•	1	2	د.		ì	0.7	1
~-	1 P10	in.	46	. r	 1	5	66	1	j	242	 I	ເລ	47	1	1	52	102	•	1	247	1
	P47		Ħ	,	 I	 `	F-1	Ħ		О.	1	0	.⊷	ŗ	1	- -(ļ	•	4	
Imp-2/ Widen	/; P49	[53	/ 	i I I I I I	23	61	 	18	181	! ! ! !	e .	40	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	! ! ! !	43.	1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	14		A,	1 1
New	N7-2 P58		10	1 1 1	<u> </u>	01	27	6	20	17.1	1 1 1	1 4 4 1 2	19		<u> </u>		37] ;	1	107	
· -	F5Z-Z	1	1	;	 I	1		ភេ	۲.	30	 !	~	4	t	1	~~~		1	ı	5	i

TABLE 3.4 - 1 (3)
Traffic Volume by Vehicle Type

 	Boat	 	ı	1	1	•	ì	1	ı	ı	i) [ı	ŧ
	Walk -ing	32	& O	24	142	23	43	73	0 #	20	56	41	23	99
	Ani- mal	6	1	Ø	œ	1	1	4,	t	1	က	1	1	ល
	Motor	1	•	2	5	ŧ0	. !	۲	1	ı	83	 	1	7
	Tri- Me	4	40	73	ø	12	.00 rr4	က	7	φ		1.4	φ	₹*
¥ith	TruckiTotal		23		6	 	<u>с</u>	-U	2	4	·	6	LO 	.* 2
	uck:T	- - - 	 !	 I	 1	 I	 1	1	 t	1	·		 1	 I
	Bús Trì	; 	1	1	1	1	1	1	ı	1	ŀ	; ; ; ; ; ;	1	
٠	Jeep -ney	 	13		O)	ტ	ထ	4	23	က		7	ঝ	2
	Car J	1 1 	8	- 1	1	-	-4	ì		.	1	 	-	1
	Boat	! 		 1		 1	 1		 1	 I.	 1	! ! !	 1	 - ₁ .
	Walk Bo -ing	32	. 23	35	ස් ස	96	91	.01	20	42	37	80	48	39
	Ani- y mai	1.7					4	9	な	ယ	ب ما	80.1	20	10
	Motor A cycle m	1 1 1	20			တ	6	ı	o.	7	ı	9		.1
1	Tri-	 	01	1	34	٢-	9	9	m	₹.	1	24	ı	თ
0/%		 	14	 I	1	 uo	9	 1		2	1	 1	1	1
1	Bus Truck Total	1 1	 i,	1	 I	1	1	 I	1	 i	1	1 1 1 1	1	 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Bus		ſ	1	1	ı	1	1	1	ı	1		ı	ı
	Jeep		4	1	1	гò	Q	í.	,¢	C 3	1	: 	1	ı
	Car	 	١	1	1	•	•	•	١	3	•	 	١	•
	Number	B10-1	B4-1	B5-4	B5-1	B4-5	B14-2	B10-2	B0-1	B2-4	B12-2	B9-2	B9-5	B8-3
Type	Impr.	Rehab/ B10-	Imp-1									New :	Const.:	
Class	Road	Minor	(Baran-	gay)										3 -

CHAPTER 4 PROJECT IDENTIFICATION AND SCREENING

4.1 PROJECT IDENTIFICATION

4.1.1 Field Surveys

Field survey was conducted by the Study Team to assess present condition of all major roads and some other typical minor roads (these are referred to as "Surveyed Roads").

Road projects (mostly minor roads) proposed by the local officials were also collected and road conditions of these roads were obtained by the interview survey (these are referred to as "Road Projects proposed by local officials").

Road projects surveyed by the Study Team and proposed by the local officials were combined and integrated, because some road projects were both surveyed by the Study Team and also proposed by the local officials, and a list of Studied Roads was prepared.

Summaries of "Surveyed Roads", "Road Projects proposed by Local officials "and" Studied Roads" are shown in Table 4.1-1.

TABLE 4.1-1 SUMMARY OF SURVEYED ROADS
Road Projects Proposed by Local Officials and Studied Roads
Province of Nueva Vizcaya

	Road Class	National Roads	Prov'l/City Roads	Barangay Roads	Total
Surveyed	Major Rd.	234.7	45.2	ET-	279.9
Road	Minor Rd.	5.0	194.8		199.8
.*	Total	239.7	240.0		470.7
Rd. Proj.	Major Rd.	36.0	24.9		60.9
Proposed by Local	Minor Rd.	52.7	401.4	213.4	667.5
Officials	Total	88.7	426.3	213.4	728.4
Studied	Major Rd.	243.7	45.2	-	288.9
Road	Minor Rd.	57.7	427.7	213.4	698.8
	Total	301.4	472.9	213.4	987.7

4.1.2 Project Identification

1) Project Identification Criteria

Project identification criteria are shown in Table 4.1-2.

TABLE 4.1-2 PROJECT IDENTIFICATION CRITERIA

Item	: Condition of Iden	tification
1 (4111	: Major Roads	: Minor Roads
(1) Existing Links * Carriageway Width	: Less than 6.0 meter	: : Less than 4.0 : meters
* Pavement Type	Inferior to recommen ded type in the engineering Standards	
* Surface Condition	Bad or very bad 1/	:Bad or very bad2/
(2) New Links	: Aband	sable oned xisting
(3) Bridges	: Ford crossing Spillway Timber bridge Bailey bridge	: Ford crossing Spillway in structurally un- sound condition Bailey bridge for AADT more than 300

- Notes: 1/ Gravel road which is proposed for improvement by local officials shall be identified, even though surface condition is "fair".
 - 2/ Gravel road of which surface condition is "fair" shall be identified, as the surface condition of gravel minor roads is easily deteriorated.

2) Identified Road Projects

All studied Roads, except those of the national primary roads and committed roads, were evaluated in accordance with the identification criteria. Road projects identified are summarized in Table 4.1-3.

TABLE 4.1-3 SUMMARY OF IDENTIFIED ROAD PROJECTS Province of Nueva Vizcaya

	Road Class	National Road	Prov'l/City Road	Barangay Road	Total
Major Road	: Length (kms.) : (% to Studied	77.7	24.9		102.6
	: Roads)	(32%)	(55%)		(36%)
	: Length (kms.) : (% to Studied	52.7	401.4	213.0	667.5
	Roads)	(91%)	(94%)	(100%)	(96%)
	: Length (kms.) : (% to Studied	130.4	426.3	213.4	770.1
	: Roads)	(43%)	(90%)	(100%)	(78%)

4.2 PROJECT SCREENING

4.2.1 Categorization

Road projects are categorized by the following factors in order to establish comprehensive prioritization criteria:

(1) Class of Roads

Major Roads

Minor Roads

* Primary major roads

*National/provincial/city roads

* Secondary major roads

* Barangay roads

(2) Urgency of work

Improvement criteria for roads and bridges are established as shown in Tables 4.2-1 and 4.2-2, respectively. Improvement works are classified into five (5) types as shown in Table 4.2-3. In view of the urgency of work to be implemented, the types of improvement are grouped into two (2) as follows:

Type A (Urgent Projects)

* Rehabilitation: Improvement of deteriorated road surface, but standard or superior class pavement, to acceptable condition.

* Improvement -1: Improvement of deteriorated road surface and substandard class pavement, to acceptable and standard pavement.

* New Construction: Construction of new road including re-construction of abandoned road.

Type B (Less Urgent Projects)

* Improvement -2: Upgrading of substandard pavement class to standard pavement class, though existing road surface condition is acceptable.

* Widening of roads with substandard carriageway width, other conditions meet engineering standards.

Note: Road projects which include only improvement of bridges are classified as "Rehabilitation".

(3) Economic Viability

Major Roads

Simplified economic evaluation is conducted for major roads. Internal Rate of Return (IRR) is calculated based on roughly estimated construction cost and traffic cost savings. Categorization is made as follows:

Improvment Type A:

- * IRR of 7.5% or more
- * IRR of less than 7.5%

Improvement Type B:

- * IRR of 15% or more
- * IRR of less than 15.0%

Minor Roads

Minor road Pre-evaluation Indicator (MPI) is developed based on Phase-1 Study results. Categorization of minor roads is made based on calculated MPI as follows:

- * MPI of 7.5 or more
- * MPI of less than 7.5

TABLE 4.2-1 IMPROVEMENT CRITERIA FOR ROAD

Road Class	Maj	or Road	:	Minor Road
Class	: Standard/ : Superior	: Substandar	d : Standa : Superi	rd/: Substandard or :
Good/Fair	,	:pavement ty :(improvemen	pe :No impr t- : men	: ove-:No improve- t : ment :
Bad/Very bad	:surface condi : tion	-:pavement ty :(improvemen	pe :surface t- :(Rehabi	
Abandoned/ Non-existi		Construction (New Cons	n of new rostruction)	ad

Note: 1) In case of carriageway width less than 6.0 meters.

TABLE 4.2-2 IMPROVEMENT CRITERIA FOR BRIDGES

Existing	: Prop	osed Improvement
Bridge Type	: Major Road	: Minor Road
Ford Crossing	: 2-lane : permanent : bridge :	: Carriageway width 4.0 m: : 1-lane spillway : Carriageway width 6.0 m: : 2-lane spillway
Spillway	: 2-lane : permanent : bridge	: No improvement :
Timber Bridge	: 2-lane : permanent : bridge :	: AADT less than 200 : 1-lane : permanent bridge : AADT more than 200 : 2-lane : permanent bridge
Bailey Brridge	: 2-lane : permanent : bridge :	: AADT less than 300 : No improvement : AADT more than 300 : 2-lane : permannet : bridge

- Note: 1) Where the site condition is not favorable for a spillway, a permanent bridge should be planned in accordance with the criteria for a timber bridge.
 - 2) When the existing spillway is structurally sound and traffic disturbance is estimated less, the existing one can be utilized. Under other conditions, a permanent bridge should be planned in accordance with the criteria for a timber bridge.

TABLE 4.2-3 TYPES OF IMPROVEMENT

4.0	* .		
Type		: Existing Surfaction	e : Proposed Improvement : Work
	: Standard or : superior	: Bad/ : very bad	: Improvement of : surface condition
Improve- ment-1	: Substandard	: Bad/ : very bad	: Upgrading of surface type
Improve- ment-2	: Substandard	: Good/Fair	: Upgrading of surface : type
Widening		: Good/Fair is narrowed than :	: Widening of existing : road :
New Const	ruction Impa	assable/abandoned non-existing	: Construction of new road
Note: In	provement-2 and	l widening are not	applied to minor roads.

4.2.2 Prioritization and Selection Criteria

Prioritization and selection criteria of road projects for feasibility studies are established as shown in Tables 4.2-4 and 4.2-5.

TABLE 4.2-4 PRIORITIZATION AND SELECTION OF ROAD PROJECTS
- Major Roads -

Catego	ory Road Class	Type of Improvement	IRR	Priority Criteria	Selection Criteria
1	Primary	Α	7.5 ≦ IRR		· 个
2	Secondary	Α	7.5 ≦ IRR	MA-1	1
3	Primary	В	15.0 ≦ IRR	٦	To be
4	Secondary	В	$15.0 \leq 1RR$	- MA-2	selected
5	Primary	Α	IRR < 7.5		for F/S
6	Secondary	Α	IRR < 7.5	J	
7	Primary	В	IRR <15.0	_ MA-3	
.8	Secondary	В	IRR <15.0	.]	

TABLE 4.2-5 PRIORITIZATION AND SELECTION OF ROAD PROJECTS
- Minor Roads -

Category	y Road Class	Type of Improvement	MPI	Priority Criteria	Selection Criteria
1	National/P	rovincial/			
2	City Barangay	A A	7.5 ≤ MPI 7.5 ≤ MPI	MI-1	To be selected
3	National/P	rovincial/	•		for F/S
4	City Barangay	A A	$MPI < 7.5 \\ MPI < 7.5$	M1-2	

Note: Improvement Type A: Rehabilitation, Improvement-1, New Construction

Improvement Type B: Improvement-2, Widening

4.2.3 Priority of Identified Road Projects

Identified projects were evaluated and prioritized in accordance with criteria discussed and summarized in Tables 4.2-6 and 4.2-7.

TABLE 4.2-6 PRIORITY OF IDENTIFIED MAJOR ROADS
Province of Nueva Vizcaya

Category		Type of proveme			ority	Road Length	No. of Road Links
1	Primary	Α	7.5 ≤	IRR	MA-1		
2	Secondary	Α	7.5 ≤	I RR	MA-1	91.3	7
3	Primary	В	15.0 ≤	IRR	MA-2	-	_
4	Secondary	В	15.0 ≤	IRR	MA-2	_	~
5	Primary	Α	IRR<7.5		MA-2		_
6	Secondary	Α	IRR<7.5		MA-2	11.3	2
7	Primary	В	IRR<15.	0	MA-3	-	
8	Secondary	В	IRR<15.	0	MA-3		
	Total					102.6	9

Table 4.2-7 PRIORITY OF IDENTIFIED MINOR ROADS Province of Nueva Vizcaya

Categ	ory Road Class	Type Improv	of vement	MPI	Priority Group	Road Length	No. of Rd.Links
1	Nat'l/Provi/ City	Α	7.5 ≤	MPI	MI-1	241.0	17
2	Barangay	Α	$7.5 \leq$	MPI	MI - 1	105.0	23
3	Nat'l/Provi/	Α	MPI <	7.5	MI-2	213.1	26
4	Barangay	Α	MPI <	7.5	MI-2	108.4	28
	Total					667.5	94

4.2.4 Selection of Road Projects For Feasibility Studies

In accordance with selection criteria discussed above, road projects under priority groups MA-1 and MA-2 for major roads and priority groups MI-1 for minor roads were initially selected, and these were plotted on 1:100,000 map to evaluate the following:

- . Distribution of initially selected road projects (when these are concentrated in certain area, some minor roads were deleted, and where road projects are scarce, some minor roads were added.)
- Linkage of road projects
 (There is a case that a selected lower class road is connected with a higher class road, however, the latter is not selected due to lower priority. Such a case, a higher class road is also selected to maintain similar condition of road after implementation.)

After adjustment mentioned above, road projects were finally selected and summarized as follows:

-			~ -
Total			projects)

CHARTER 5 PROJECT EVALUATION

5.1 PRELIMINARY DESIGN AND COST ESTIMATE

5.1.1 Preliminary Design

- 1) Design Concept There are two options in design concept for rural road improvement, as follows:
 - * Designing rural roads with optimum standards aimed at improving all aspects including horizontal and vertical alignments, which sometimes require massive earth works and is costly.
 - Designing rural roads by basically concentrating on improving surface conditions, thus improving horizontal and vertical alignments is limited to the required minimum.

Rural roads are extensive in the number of road links as well as in length, and their present conditions are still at a poor level. Thus, requirements for rural road improvement are quite huge, while financial resources are limited. Under these circumstances, the Study Team placed priority on improving surface conditions of more roads. The preliminary design was undertaken in line with the concept of the second option.

2) Preliminary Design
On the basis of the findings of the road inventory survey, the type of improvement was determined for each subsection of road in accordance with the engineering standards and the improvement criteria.

Typical road sections for each type of improvement/rehabilitation are summarized as shown in Table 5.1-1.

Special considerations were given to steep gradient sections and flood section.

"PCC pavement for steep gradient section" was applied to sections with steep gradients where otherwise gravel surfacing might be applied, as a countermeasure against excessive gravel losses during heavy rains and impossibility for vehicles to climb. "Grade raising in flood area", was applied to sections located in flood areas.

Table 5.1-2 shows the proposed improvement for each road project subjected to the feasibility study.

TABLE 5.1-1 EXISTING CONDITION VS PROPOSED IMPROVEMENT/REHABILITATION

	DH THE	Road Section	Existing Pavement		Proposed	Pavement	Structure	(cm)
Type of Improvement	Type	Type	Condition	Pavement Type	Surface Course	Base	Subbase	! ! !.
Rehabilitation		PCC	Bad/Very Bad Bad/Very Bad	PCC AC Overlay	20 - 23	1 1 1 1 1 1 1	10 10	! } !
	1 - 3	Bi tuminous	- op -	AC	ເກ	20	10	
	च्यु* । ,	Bi tumi nous	- op -	AC Overlay	ເລ	ŧ	1	
	យ 	Bituminous	- dp -	BMP/DBST	5.5/1.6	ည	ശ	
	1 - 6	Gravel	- do -	Gravel	S .	1	10	
Improvement - 1	2 - 1	Bituminous	Bad/Very Bad	PCC	١,	! ! ! ! ! !	10	! !
	2 - 2	Gravel	- ၀p 1	PCC	20 - 23		20	
	2 - 3	Gravel	ر ا ا	AC	ιΩ	20	20	
	2 - 4	Gravel	- do -	BMP/DBST	5.5/1.6	13	15	
	2 - 5	Earth	Any Condition		20 - 23	£ .	20	
	2 - 6	Earth	- do -	AC	ഹ	20	20	
	2 - 7	Earth	. ор .	BMP/DBST	5.5/1.6	15	15	
	. 8	Earth	- 0p	Gravel	35	1	10	
Improvement - 2	3 - 1	Bituminous	Good/fair	PCC		 	10	
	3 - 2	Gravel	- qo -	PCC	20 - 23	· I	10	
	က 	Gravel	- op -	AC .	ம	20	01.	•
	ा । ल	Gravel	1 0p 1	BMP/DBST	5.5/1.6	15	ហ	
Widening	4 - 1	PCC	Good/fair	Widening w/PCC	20 - 23	! ! ! ! !	20	į
	4 - 2	Bituminous	- qo -	¥idening w/AC	ເນ	20	20	
	4 - 3	Bi tumi nous	- do -		5.5/1.6	15	2	
	4 - 4	Gravel	1 00 L	Widening w/Gravel	15	i.	10	
New Construction	5 - 1	1	1	PCC	20 - 23	 	20	:
	5 - 2	ŧ		AC	ហ	20	20	
	က ၊ က	,	1	BMP/DBST	5.5/1.6	15		
	5 - 4	t	1	Gravel	15	ł	10	-
Special Treatment	တ	PCC pavement	for steep grad	gradient section			 	i
	r	do voicin						

Summary of Proposed Improvement TABLE 5.1 - 2 (1)

Type !	Road	Type ! Road Length! 1993 AADT Existi	1993 A	AADT	<u>ଇ</u>	xisting	Existing Condition	Proposed	Proposed Bridge	(Cost (Million Peso)	RRI
Impr't;	NCMDE	(WIII)	y 0 / x	i th		Width	w/o with L Width Type Condition	Improvement	(Number/lotal Length) :	Road Bridge Total	રે
Rehab/ P19 Imp-1	P19		0	 	12.5	3.6-4.5	18.4 0 11 .5 6.0 BT Fair 12.5 3.6-4.5 GRV Bad/V.Bad	Rehab(6.0-GRV)	1-lane Br (n= 2,L=130m); 28.18 6.47 34.65; 30.2 (T)	28.18 6.47 34.65	30.2 (T)
	N5-2	2.9 369 398 2.4 6.1	369	308	2. 5.	6,1	PCC Good GRV Dad	Imp-1(6.0-BMP);	2-lane Br (n= 1,L=210m)	.88 13.27 14.	26.2 (T)
	N5-1	8.5 0 119 4.5 6.1	0	119	0 119 4.5 6.1	3.6	PCC Good GRV Bad	Rehab(6.0-GRV);	2-lane Br (n= 2,L=206m); 6.22 13.50 19.72 ; 20.3 (T)	6.22 13.50 19.72	20.3 (T)
	N7-4	<u>'</u>	6	171	. 4 0.0		PCC Fair dRV Bad	Rehab(6.0-GRV)	Rehab(6.0-GRV) 2-cell BC (n= 1,L= 6m)	3.39 3.97 7.36 12.3 (T)	12.3 (T)
• ••	N5-3	N6-3 8.1 111 133 .3 5.5	111	133	. w	សល	GRV Fair	Widen(6.0-GRV) Rehab(6.0-GRV)	Widen(6.0-GRV); 2-lane. Br (n= 4,L= 62m); 6.32 5.87 12.19; Rehab(6.0-GRV);	6.32 5.87 12.19	9.2 (T)

(T):Traffic Project (D):Development Project

92 | .3 6.0 BT Bad | 9.2 3.6-6.0 GHV Bad | .6 5.5 GRV Fair

ទ

TABLE 5.1 - 2 (2) Summary of Proposed Improvement

Minor (National/Provincial)

mpr' t Number	Numoer F42												
Mehab			1× 0/*	¥1 (3)	ړ.	Width	Type Conditioni		לואמוווספול וסנמו זיפונל נוול	Road	Bridge Total	a1 t	
P		12.5	49	74.	5.7	4.5-5.0	GRV Bad GRV Fair	Rehab(6.0-GRV)	2-lane Br (n= 1,L= 10m); 2-lane Sp (n= 2,L=100m);	13.88	3.02 16.90	6.91 10	(a) 6
			i io		20 4 1	444	GRV Fair GRY V. Bad EAR Impos	Rchab(4.0-GRV)	1-lane Sp (n= 1,L= 30m)	3.49	.40 3.88	8 1 16.2	(D) 2.
19 19 19 19 19 19 19 19 19 19 19 19 19 1	· ! !	20.7	8	000	9.0	3.6	i G M	hab(4.	Br (n= 1,L= 1 Sp (n= 1,L= 1	10.50	.99 11.49		3.9 (D)
19 19 18 19 19 19 18 18 18 18 18 18 18 18 18 18 18 18 18		22.7	0	21.	15.2	4.0	GRV Bad/Impast	Rehab(4.0-GRV) Imp-1(4.0-GRV) New-C(4.0-GRV)	2-cell BC (n= 1, L= 6m)	12.66	. 49 13.15	10.4	4 (D)
1		 m m	7		က ဆက	3.2-3.6	GRY Bad EAR Bad	Rehab(4.0-GRV) mp~1(4.0-GRV)	1-lane Br (n= 1,L= 20m) 1-lane Sp (n= 4,L=110m)	80.08	2.66 7.64		7.6 (D)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	, ! ! !	10	25	E	5.4	4.4	GRV Fair	Rehab(4.0-GRV)	2-cell BC (n= 2,L= 10m)	. 63	.97 1.60	; 	7.2 (0)
1 60	 1	9.6	0	1.61	9 C	4.0	GRV Fair/Bad 1 EAR Impas	Rehab(4.0-GRV) mp-1(4.0-GRV)	1	14.77	.00 14.77		6.8 (D)
; ;		1 00	33			4.5-6.0	GRV Bad	Rehab(4.0-GRV)	2-cell DC (n= 1,L= 6m)	2.58	.53 3,10	8	(d) 6.
1 P43		1 00	0	2	\$	4.0	EAR Impas	Imp-1(4.0-GRV)		2.40	.00 2.40		(d) E.
9 2		1.2	61	ın.	4 00	5.5 4.0	GRV Bad	Rehab(4.0-GRV)		. 43	.00	6	2 (D)
	· - - -	13.8	62		2.4.0 6.5	4.0	GAV Dad EAR Impas	Rehab(4.0-GRV) Imp-1(4.0-GRV) New-C(4.0-GRV)		7.51	.00 7.51		2.9 (D)
1 S 1 S 1 S 1 S 1 S 1 S 1 S 1 S 1 S 1 S		20.3	20	12	1.2	0.0	CRY Bad EAU Impas	Rehab(4.0-GRV)	1-lane Br (n= 1,L= 30m)	12.44	1.56 14.01		2.8 (D)
P13-2		11.2	ιο	13	χ. υ κ. κ.	4.0	GRV Fair GRV Bad	Rehab(4.0-GRV)	2-cell BC (n= 1,L= 7m)	2.74	. 49 3.23	¦ 	1.7 (b)
	* ** ** ** **	10.0	4	50	3.1.0 1.3	7.0 3.2 6.9	BT Fair GRV Fair GRV Bad PCC Good	Rchab (4.0-GRV)		1.89	00 1.8		1.7 (0)
r L		1 1 1 1 1 1	0	o	ი. -:	3.2	GRY Bad	Rehab(4.0-GRY)	1-lane Sp. (n= 1, L= 30m):	3.51	2.88 6.3		(a) o.
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	· •• •• •• •• • •• •• ••	9.11	0	8	22.439	3.2	GRY Fair 1 CRY Fair/Impasi None	Widen(4.0-GRV)1 Imp-1(4.0-GRV)1 Rehab(4.0-GRV)1 New-C(4.0-GRV)1	1-iane Sp (na 1, La 20m)	0.00	1 .0 1 .0 1 .0 1 .0	 	(a) 0.

TABLE 5.1 - 2 (3)

Summary of Proposed Improvement

NUEVA VIZCAYA

Minor (National/Provincial) (Continued)

Type	Type Road	Length; 1993 AADT; Exis	1993 A	ADT	E	xisting	Existing Condition	Proposed	Proposed Bridge	Cost (Mi	Cost (Million Reso)	IRR
Impr'ti	and and		* 0/*	i th		Width	Type Condition	n nama o ddidd	(wumber/lotal Length)	Road	Road Bridge Total	(*)
Rehab/) Pl0 Imp-1	P10	φ	51 52 2.0 6.0 3.7 4.0-6.0	1 22 1 42 1	26.6	6.0	GRV Fair GRV Bad BT Fair	Rehab(6.0-GRV)		9.16	9.16 .00 9.16	(D) 0.
	P47	12.3	H	 	5.0	4.4	GRV Bad	Rehab(4.0-GRV)		2.11	2.11 .00 2.11	(a) o.
Imp-2/1 P49 Widen 1	P49	0 0	23	43	0.40 0.40	3.2-3.6 4.5 4.5	23 43 3.9 3.2-3.6 GRV Fair 4.4 4.5 GRV Fair 2.2 4.5 GRV Bad	Widen(4.0-GRV) Rehab(4.0-GRV)		3 : 2 : 3	.00 .3.28	25.0 (D)
New N7-2 Const.1		29.6	0	3 1	8 8 8 6 7 7 9 7 9 9	10 23 8.4 3.2-4.5	EAR Impas GRV Impas	Imp-1(4.0-GRV); Rchab(4.0-GRV); New-C(4.0-GRV);	Imp-1(4.0-GRY); 1-jane Sp (n= 9,L=380m); 18.66 5.54 24.21 Rchab(4.0-GRY); 2-cell BC (n= 1,L= 8m); New-C(4.0-GRY);	18.66	5.54 24.21	12.6 (D)
·	P5.8	20.5	0	1 1 60 1	3.3 3.6	3.6-4.0	-4.0 GRV Bad/Impas	Rehab(4.0-GRV); New-C(4.0-GRV);	Rehab(4.0-GRV) 1-lane Sp (n= 2,L= 20m) 16.50 New-C(4.0-GRV)	16.50	.26 16.76	5.3 (D)
 	P52-2		0		2.2	4.0-4.5	4 1 2.0 4.0-4.5 GRV Fair 1 4.5 None	New-C(4.0-GRV)!		2.75	.00 2.75	,4.7 (D)

(T):Traffic Project (D):Development Project

TABLE 5.1 - 2 (4) Summary of Proposed Improvement

	TOTAL .	· Lengtoi	199	SAADI	1 i	EXISTING	Condation	Troposed	Proposed Bridge (Number/Total Carety)	Cost (Mil	(Milion)	1000 L	. K.
•			0/*	35		Width	Type Condition		- 1		Bridge	Totali	
Rehab/	B10-1	. 0				3.6	Æ	ΣX		1.90	:	1.90	7.3 (D)
i Q	, m	2.7	1 1 1 1	21	2,2,6	6.1 6.1 7.5	GRV Fair PCC Good GRV Bad	Rehab(6,0-GRV)		3.30	00	0	5.9 (D)
	B5-4		1 0 1 1 1 1	 	0.1	2.4-3.2	GRV Bad None	Rehab(4.0-GRV)	1-lane Sp (n= 1,L= 20m)		.26	. 92	3.9 (D)
	1 1 132 1	3.7) G 	200	0.00	1 12 12 >	Widen(4.0-GRV) Rehab(4.0-GRV) Imp-1(4.0-GRV)	1-lane Sp (n= 1,L= 20m)	1.77	.26	2.03	3.8 (D)
	ıρı	20.03	1 1 1 1	111	8.4	3.2	GRV Fair/Bad	den (4.0-		2 56	00.	2.56	3.6 (D)
	B14-	0 0	1	 G 	wow	4.0.4	V F S	Rehab(4.0-GRV) Imp-1(4.0-GRV)	1-lane Sp (n= 1,L= 15m)		.20	. 37	3.4 (D)
	B10-		0	1 5" .	2.0	3.2	рД 1	Imp-1(4.0-GRV);		92	00.	. 92	1.5 (D)
	1 1 1	6 9	 		2.00.7	2.4-3.2	GRV Fair GRV Bad GRV Fair	Widen(4.0-GRV); Rehab(4.0-GRV);	L= 35m	1.93	46		
	B2 - 4	(C)	1 1 CV 1 1 1	1 4 1 4	4.1.6	3.2-4.0	PCC Good GRV Fair/Bad GRV Fair	Rehab(4.0-GRV)	1-celi BC (n= 1,L= 4m)	1.98 11	 •	13.40	(d) 0.
	23	3.0	0	- 	 	3.2	GRV V. Dad None	Rehab(4.0-GRV); New-C(4.0-GRV);		1.93	00.	80	(a) o.
New Const.		9	0	1 1 0 1	8 O	3.2	GRV V.Bad/Impal None	ab (4.0-	1-lane Sp (n= 1,L=200m)	6.03	2.64	8.67	10.2 (D)
	B 9	1 10		! ເທ ! ໄ ເທ !	2.7	3.2	EAR Impas None	Imp-1(4.0-GRV)		3.62		3 9 9	9.6 (0)
	. B8-3	0.9	0	2	G	2.8	EAR V.Bad	1 (4. C (4.		4.26	00	4.26	7.1 (D)

5.1.2 Cost Estimate

1) Unit Cost

Unit prices for construction equipment, materials and labor were obtained from Associated Construction Equipment Lessors, Inc. (ACEL), the Price Monitoring Section of DPWH, market price survey by the Study Team and relevant studies. Based on the data collected, unit prices at April 1990 prices were developed. Exchange rates used were: P22.50 = US\$1.00 = Y155.

Unit costs for major construction items are presented in Table 5.1-3.

2) Construction Cost Estimate

Based on the results of the road inventory survey and proposed type of improvement, the quantity of each construction item was computed for each road project. Then the construction cost was estimated. Table 5.1-4 presents estimated quantities and construction cost of each road project.

TABLE 5.1-3 UNIT COST OF MAJOR CONSTRUCTION ITEMS

Unit: Pesus at April 1990 Prices

	Onit. Jesos at	- RPIII	
ltem No.	Description	Unit	Unit Price
100	Clearing nad Grubbing	sq.m.	2.10
102	Stripping	cu.m.	52.00
106	Roadway and Drainage Excavation	cu.m.	58.00
107	Borrow	cu.m.	110.00
108	Aggregate Subbase	cu.m.	225.00
118-1	Preparation Of Previously Constructed Road (Gravel)	sq.m.	7.00
118-2		sq.m.	8.00
118-3	Preparation of Existing	sq.m.	22.50
110-2	Pavement Surface (PCC)	oq.m.	25.00
1 1 0 4	Preparation of Existing	sq.m.	17.00
118-4	Pavement Surface (AC)	34.m.	17.00
200	Crushed Aggregate Base Course	cu.m.	305.00
300	Crushed Aggregate Surface Course	cu.m.	305.00
302	Bituminous Prime Coal	MT	11,100.00
303	Bituminous Tact Coat	MT	11,500.00
306	Bituminous Macadam Pavement	sq.m.	The state of the s
310	Bituminous Concrete Surface Course		1,350.00
314	Double Bituminous Surface Treatment		
316-1	PCC Pavement (t = 23cm)	sq.m.	* .
316-2	PCC Pavement (t = 20cm)	sq.m.	
316-3	PCC Pavement (t = 18cm)	sq.m.	250.00
413-1	RCPC (Ø 910mm)		1,550.00
413-2	Headwal T for RCPC (Ø 910mm)		
500	Grouted Riprap	sq.m.	2,900.00 625.00
517	Side Ditch (Grouted Riprap)	m	360.00
Bridge Cos			
	2-lane Superstructure	m	43,500.00
	Abutment for 2-lane bridge	each	330,000.00
	Pier for 2-lane bridge	each	285,000.00
	1-lane Superstructure		32,000.00
	Abutment for 1-lane bridge		230,000.00
	Pier for 1-lane bridge	each	200,000.00
${\tt Reinforced}$	Concrete Box Culvert		00 000 00
	1-Cell RCBC	m	20,600.00
	2-Cell RCBC		36,000.00
	Wing wall and Apron for 1-Cell RCBC Wing wall and Apron for 2-Cell RCBC		132,000.00 155,000.00
Spillway			
•	2-lane Spillway	m	16,500.00
	1-lane Spillway	m	12,000.00
Slope Prot	ection Cost		
	Cut Slope Protection	m .	23,000.00
	Embankment Slope Protection	m .	25,000.00

TABLE 5.1 - 4 (1)

Quantity and Construction Cost

	. Unit	014 1	N 5 - 2	2 1 2 1	V - L Z	S I S I	N7-3	P42			P5.9	1 4
Length t Length avement Type		18.4 17.9 6.0-GRV	2.9 .5 6.0-BMP	8.5 4.0 6.0-GRV	5.8 4.9 6.0-GRV	8.1 8.1 6.0-GRV	10.1 10.1 6.0-BMP 6.0-GRV	12.5 12.5 6.0-GRV 4	14.9 6.4 .0-GRV	20.4 20.4 4.0-GRV	22.7 22.7 4.0-GRV	9.3 9.3 4.0-GRV
tity Clearing & Grubbing	E 1	200	1	1	1) 	i 	i i i - i i i		i i i i i	25	1
		1 138730	375	37	67	60	Ω Ω (552	0006	I LÓ	37313	77
104 Borrow 200 Aggraphy Subhase	E E	344	1047	3240	2769	5694	CH 6	15748	3076	4126	4 4	5113
	€ 6	134	5210	ខ្មែ	3 62	3 5	4 C	59.0	n O	00	, D	2 .
Preparation of Prev. Road (Asph)	5		•		i	i I	180	, ,	· .	*	1.0	
Preparation of Pave. Surf. (P	6	1	ŀ	١.	ı	1	ı	ì	1	i	š	
202 Crushed Ageregate Base Course :	E 6	. 1	512			1 1	100	1 4	1 1		11.1	1,1
300 Crushed Aggr. Surface Course	: 6	15660	i i	3600	4410	72.90	8820	11250	3780	12240	13500	5580
301 Bituminous Prime Coat			4	ı	•	1	. 23	ı	1	•	•	1 ,
305 Bituminous Macadam Pavement			3000	1 1	1 ,1	1 1	1800	I I	1 1	.)		1 1
310 Bitum.Concrete Surface Cours	e M.T.)))	1	•	1	2 1			4	•	•
304 Double Bitum. Surface Treatme	nt: m2		1	•	ı		1	1	•	• 1	٠	1
311-1 PCC Pavement (t=23 cm)	m2		1	ŧ	ı	i	t .	1	•	ŀ	•	1
Ull-2 FCC Pavement (1#20 cm)	2 £		• 1	1 ,1	i .	1	۱.۱	• !	1 6	•	1 6	1 1
SOO RCPC (dia. 910mm)		750	1.5	150	0 K	240	008	465	104	328	25.5	152
	Set	50		10	10	15	202	2 17		4	57	13
504 Grouted Riprap	m3	1 893	1	514	•	ŧ	1.	2099	1 .	•	ı	1
Side Ditch (Grouted Riprap)	e : 	12710)	1750	ı	2150	3800	4150	1	1		a (
Slope Protection (Embank t &	≅ E		, ,	t s	1 4		1 1				i -1	
2-lane Bridge, Superstructure	£		210	206	40	62	255	10	1	•	ι	١
1-lane Bridge, Superstructure			1	,			۰ `	, '	i '	10	1	20
1-lane Bridge, Abutment			~ 1	4.	4 1	æ ı	∞ ₁	2		۰ '	1 . 1	۱,
2-lane Bridge, Pier	Each		eco	7	1	ı	7	. 1	ı		•	' '
1-lane Bridge, Pier		₹	•	1	1	1		i	1	•	•	ì
Zalane Spilleay	€	l	•	•	1	1	1	100	1	•	•	1 1
	e :		1	1	1	í	ı	ı	30	10	1	110
2-cell actor	e :	1	• 1	1		1	ı	i	ı	ı	, (•
Wington 1 for 1-001 DOD	≕ .		• 1		7	1		ı	ı	(0	• !
Wingwall for 2-cell RCBC	0 K2) 1	, ,	1 1	4	1 l	1 1			, ,
Miscellaneous	·			1	(p-1	1	p=4	-1	,	рH	·	 1
Road Construction Cost	Z.	28.	8	1.5	. 65	1 6	9.5	۱ es	3.45	ı w		1. •
Bridge Construction Cost	•	6.4	13.27	13.50	3.97	5.87	17.30	3.02	.40			2.66
Road Construction Cost/Impr't km	EΣ	2 2	- 6	7 K	ကဖ	÷ 6-	က် ထင	o	89. 88.	طب π.		
Total Construction Cost/Total km	٠.		. ∞		2	- rc	S CO	٠e.	. 26			8.5
E P L	1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1		1 1 1 1 1 1 1 1			1 1 1 1 1 1 1 1 1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

TABLE 5.1 - 4 (2)
Quantity and Construction Cost

! ! !		Unit	P14	P52-1	P33	P43	P36	P51	NS-4	P13-2	P21	e.	P10
Total Ro Improvem Proposed	Total Road Length Improvement Length Proposed Pavement Type	E E	6.6 1.2 4.0-GRV	9.6 9.6 4.0-GRV	9.9 4.6 4.0-GRV	4.8 4.8 4.0-GRV	1.2 .8 4.0-GRV	13.8 13.8 4.0-GRV	20.3 20.3 4.0-GRV	11.2 5.4 4.0-GRV	10.0 3.0 4.0-GRV 4	5.1 5.1 .0-GRV	8.1 3.7 6.0-GRV
Quantity 100 Cl	earing & Grubb	25	1 1	. , ,	1 (i i	ι Οα	.i j	1 1	1 1	1 1	1.51
102	Borrow & Drainage Excavation	66.5		. 20	0 -	6.0	ဝဖ	ေတက	3 35	~~	1 0	77	LC.
200	Aggregate Subbase Preparation of Prev. Road (Grvl)	E E	5 2 2 2 2 2 2 3 2 3 2 3 2 3 3 3 3 3 3 3	3 4 8	2116	2208	368	6348 32140	9338 88040	2484	1380	2346	2442
	Preparation of Prev. Road (Asph)	221			1 1 1	1 1 1	1 1				: 1 I		1 1 1
300 300 300 300 300 300 300 300 300 300	urse		720	5760	2760	2880	1880	8280	10866	3240	1800	3060	3330
,	Dituminous Pilme Coat	×	1	i 1	1		l t	• 1	1	1		• 1	1
	Bituminous Macadam Pavement Bitum.Concrete Surface Course		1 1	1 1	1 1	1 :	1 1	1 1	i ;	1 1	i i	t ì	i i
	le Bitum. Pavement		. ,	1 1	1 1	1 1	1 1	1 ;	1 1	1 1	1 1	4 4	f f
311-2	PCC Pavement (1=20 cm) PCC Pavement (1=18 cm)	2 E	1 1	1 1	1 1		1 1) 1	1 9	1 1			` } `I
	RCPC (dia.910mm)	6 0	16	312	72	80	16	328	C)	88	48	104	315
504		 	1	7703	۱ ٔ	7 1	, ,		Γí	ŧ • 1	۱ ۱	781	2382
	Side Ditch (Grouted Riprap) Slope Protection (Cut Slope)	EE	; t		1 i	1 1	1 1	1 1	i i	1 1	1 1	1 1	1 1
٠	Slope Protection (Embank't SI) 2-lane Bridge Superstructure	 e e	r 1	1 1	I I	1 1	(·)	1 1	1 ')	1 1	()	1 1	1 1
	-lane	E .	ı	r	r	· •		.1 -	30	1	ı	20	•
	2-lane Bridge, Abulment 1-lane Bridge, Abutment	Each!	i +	1 1) i	1 1	ŧΆ	1 1	1 21	r t	ı, ı	. 24	1.4
	2-lane Bridge, Pier	Each!	, ,	1 1	1 1	.i i		1 1	1 1	1 1	t 1	1	1 1
	2-lane Spillway	5 6	•	1	1	ı		1	1	I		١,	t
	1-lane Spillway	E 1		1	1		1	1			1	30	1
	1-cell robc 2-cell RCBC	E E	16	1 1	ı 6	i ;	† 1	1 1·	1.4			r i	ì i
	Wingwall for 1-cell nCBC Wingwall for 2-cell nCBC	Set	- 2	4 · 1	ı.T	ı, ı	1 1	i 1	1,1	1	12-1	ı i	1 - 1
 	Miscellaneous		·		۱ د	7	1	. 		t 1	-4	÷ -4	
Road C	Road Construction Cost	о s	63	14.77	2.58	4	.43	ו וגו (3.51	9.16
Total	Total Construction Cost	 	1.60		3.10	2.40	 	7.51	14.01	3.23			٠
Road C	Cost/I	EΣ	. 53	1.54	രസ	.50	.53	0. P.	.61	മ്പ	. 63	1.25	1.13
1 1 1 1 1 1 1 1 1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			1111111	1 1 1 1 1 1 1	1 1 1 1 1 1 1		1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1				

TABLE 5.1 - 4 (3)
Quantity and Construction Cost

		TUBE to	P52-3	P47	P49	N7-2	ιQ	P52-2	B10-1	B4-1	B5-4	B5-1	B4-5
Total Improv Propos	Total Road Length Improvement Length Proposed Pavement Type	Km	11.9 11.9 4.0-GRV	12.3 5.0 4.0-GRV	i ir i	। ଦେଉପା	20.5 20.5 4.0-GRV	6.5 GRV	4.0 4.0 -GRV	# 1	1.3 GRV		
Quantity 100 Cle	earing & Grubbing		0		, ,	000	800	00	ı	ı	0	\$	ı
60.	A Chroine	2 E	3600	1 12	1 0	27000	25800	540.0	100	↓	360	ıά	1
101		2 E	900	- 10 10	2 0	970	- 80 4 4 55 -) n	2 5	6.5	່ເທ	200	ę
200	Aggregate Subbase		90	2300	1462	361	943	3	1840	0	S S	t-4	1.63
	Preparation of Prev. Road (Grv1)		54	00	56	871	8		40	ŏ	6	69	(L)
	Preparation of Prev. Road (Asph)		1	٠,	•	ı	•	1		ı .	r		
	Preparation of Pave Surf (AC)			ı (1 1		1 1	ı i	ı t				: 1
202	Crushed Aggregate Base Course		1	1	1	1	١		i	1	1	1	1
300	Crushed Aggr. Surface Course		7020	3000	3300	17760	12300	2700	2400	1170	. 780	2220	3000
301	Bituminous Prime Coat	E :	ı	Ì	1	ı	•	ı	1	ı	ı	ı	1
302	Bituminous Tack Coat	 E	ı	ì	1	ı	1	ı	ı	1	•	ı	t
50 C	Bituminous Macadam Favement	2 5	1 , 1	1 /	1 1	ı 1	1 1	. 1	1 1	1 4	ı I	1 l	1 1
304	Double Bitum. Surface Treatmen	m2	ı	i i		t	1	ı	. 1	1	ı	1	1
311-1			1	ı	1	ı	•	ı	1	ı	1	١	ı
311-2	PCC Pavement (t=20	- m2	•	1	ı	ı	1	ı	ı		•	1	ı
311-3		- m2	800	1	2400	ı	1	ì	1	I	ı	ı	ı
200	RCPC (dia.910mm)	 E	240	80	96	760	608	144	64		24	56	80
	Headwall for RCPC (dia.910mm)	Set	30	10	13	တ တ	76				ო	7	10
204	Grouted Ribrap	· 	١.	1	1	1	1	1	1	2003	ı	١.	ı
	Signs Drotockion (Crouted Riphap)	 = = =	. 1	i i	t 1	l i	1 5	t		, 1	1 1	1 1	1 1
	Stope Protection (Car Slope)			1	. 1	, 1)))		ı t		ı 1	1	1
	2-lane Bridge. Superstructure		ı	1	1	ı	١		ı	1	1	Ì	1
	1-lane Bridge, Superstructure	 E	1	1	1	1	ī	ı	1	1	. (1	ı
	2-lane Bridge, Abutment	Eac	1	,	1	•	ì	•	ı	ı	•	1	ι
	1-lane Bridge, Abutment	Each!	•	ı	ŀ	ı	3	1	ı	t	1	1	ı
	2-lane Bridge, Pier	Each	1	1	1	1	i	ı		ı	ı	ı	ι
	1-lane Bridge, Fier	Ü		ı	ı	1	١	ı	•	1	1	ı	ı
		E 1	, (1	1	1 0		ı	1	ı	1 6	1 0	
	ביים מיים מיים	 	0 1	1 1		287	0.7	1	r	1	0.7	7	1
		 = E	1		. 1	, 6	1 1	1 1	: 1	ı i	. •	. 1	ı
	ingwail for 1-cell	Set	ı	į	ı	· I	1		1	1	ı	ı	ı
		Set	1	,	1	-	1	1	,	1	,	1	1
	scellaneous	. s	F=!	~		. = 1	7	гч	1	7			-
Road	Road Construction Cost	1 d	6.30	2.11	1 (1)	1 5	1 ಬಾ	2.75	10	1 (2)	1	1 5	່ເລ
Bridg	Bridge Construction Cost	ď.	8	٥.	٥.	5	ζ,	٥.	٥.	0		Ġ	•
	Construction Cost	o,	10		3.28	2		2.75	S.	ε.		2.03	S.
Total	Construction Cost/Impr't Km Construction Cost/Total Km	Σ.Σ Σ		. 42			08.	. 61	4.7	2.54			Ę.
1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1	1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1	1		1	

TABLE 5.1 - 4 (4)
Quantity and Construction Cost

	l Unit	B14-2	B10-2	B2-4	B12-2	B0-1	B9-2	39-5	B8-3
Total Road Length Improvement Length Proposed Pavement Type	EE	2.8 2.2 4.0-GRV	2.0 2.0 4.0-GRV	3.4 2.1 4.0-GRV	3.0 3.0 4.0-GRV	6.9 4.0 4.0-GRV	9.6 9.6 4.0-CRV	5 1 5 1 4.0-GRV	6.0 6.0 4.0-GRV
uantity 00 Cles	1 6 6	1. t	1 1	1 1	20 1	1 1	500	50	ப ப மை
102 Roadway & Drainage Excavation 104 Borrow		85	€ €	9 2	90	0 10	1200	200	ကဟ
Aggregate Subbase Preparation of Prev. Road	: E E	1012	920	874	1380	1392	4416	2346	(- C)
f Pave Sur	325	1 1 1	1 1 1		,	+ -	i 1 1	1 1 3	
ate Base Co	1 C C C	1266	1200	1260	1740	2400	5706	2760	3600
Bituminous Frime Coat	- H	1 1	1 j	i 1	r , t	ı ı'	. 1	1 1	1 1
Bitum. Concrete Surface Co	Z W	t 1	E F	i I 	I I	1 1	į I	. (1. 1
Double Bitum.Surface PCC Pavement (t=23 cm	- 4 - 3 - 4		1 1	1-4	1 1	l t	: 1 1		1 1
2 PCC Pavement (t=2 3 PCC Pavement (t=1	÷ = =	360		1 1	400	i E	9	2000	, 1
RCPC (dia.910mm)	8	32	32	48	72		232	2,	192
Headwall for RCFC (dia.910mm) 504 Grouted Riprap	3 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =	₹	₹	616	ε	» ,	671	Ω ∹ †	7 -
	E E	1; 1		1 1	1 1	r i	1 I	\$ \$	1 ,1
ion (Embank't	E	ı	ı		r	ı	1	١.	
2-lane Bridge, Superstructure 1-lane Bridge, Superstructure	E E	1 1	1 1	300	L 3	1 1		1 1	Fi
, Abutment	Each:	1	1))		ı	•	1	•
•	Each:		1 1	ا ۲		1 1	i t	1 1	1 1
٠.	Each		ı	·t	ı	1	ı.		1
ক্য ব	E 1	1 +	1	ı	ų i	1 0	1 6	1	1
1-rane Syllings	 = e	e .	ı į	ა		9 1	202)	1 1
	£		ì	1	1	1	ı	ì	1
Wingwall for 1-cell RCBC		ı	1	H	i :	t	t.	1	ŧ
រ (១០ - ១ - ១ - ១ - ១ - ១ - ១ - ១ - ១ - ១ -	1.8	·	. p-4	. "	- T	н	, H	, , ,	. #1
nstruction Cos	Δ.	1.17	.92	0		1.93	100	3.62	4.26
construction Co	 	1.37	. 92	13.40	1.93	2.39	8.67	3.52	
Road Construction Cost/Impr't km Total Construction Cost/Total km	C, C,	 	.46	. 6 . 9 . 9 . 4	49. 40.	8 8 8	. 63	.71	.71
	1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1 1	1111111	1 1 1 1 1 1 1 1		1 4 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1 1 1 1 1

5.1.3 Summary of Preliminary Design

Results of preliminary design were summarized in Tables 5.1-5 and 5.1-6 for major and minor roads, respectively.

TABLE 5.1-5 SUMMARY OF PRELIMINARY DESIGN:
Province of Nueva Vizcaya
- Major Roads -

		Type of Improv	vemen t	
	Rehabilitation/ Improvement - 1			Total
Primary Major Roads	in year 1970, give yaya yaya gafi den den cala men sem sem sem dem dem dem dem de			
1. No. of Links	-	••	•	_
2. Total Length (km)	-	-	-	•
3. Improvement Length (km)	-	-	-	**
4. Construction Cost (million P)	-	_	-	-
5. Const. Cost/Imp. Length (MP/km)	_	-		-
Secondary Major Roads				
1. No. of Links	6	Page 1	-	6
2. Total Length (km)	53.8	· -	-	53.8
3. Improvement Length (km)	45.5	- .	_	45.5
4. Construction Cost (million P)	114.9		· -	114.9
5. Const. Cost/Imp. Length (MP/km)	2.53	-	-	2.53
Major Roads Total				
1. No. of Links	6		**	6
2. Total Length (km)	53.8	-	-	53.8
3. Improvement Length (km)	45.5	-	-	45.5
4. Construction Cost (million P)	114.9	-	-	114.9
5. Const. Cost/Imp. Length (MP/km)	2.53	-	-	2.53

TABLE 5.1-6 SUMMARY OF PRELIMINARY DESIGN Province of Nueva Vizcaya - Minor Roads -

10 mg	الله الله الله الله الله الله الله الله		
	Type of	Improvement	
	ehabilitation/ mprovement-1&2/ Widening		
Minor Roads (National/ Provincial/City)		and and and the time to the the dam below the term of	and the same day
 No. of Links Total Length (km) Improvement Length (km) Construction Cost 	19 215.1 166.6	3 56.6 54.6	22 271.7 221.2
(million P) 5. Const. Cost/Imp. Length	129.5	43.7	
(MP/km)	0.78	0.80	0.78
Minor Roads (Barangay)			* .
1. No. of Links 2. Total Length (km) 3. Improvement Length (km) 4. Construction Cost	10 34.8 28.6	3 20.7 20.7	
<pre>(million P) 5. Const. Cost/Imp. Length (MP/km)</pre>	1.07	0.80	0.96
Minor Roads Total			٠
 No. of Links Total Length (km) Improvement Length (km) Construction Cost (million Const. Cost/Imp. Length (M 		6 77.3 75.3 60.2 0.80	270.5

5.2 ECONOMIC EVALUATION

5.2.1 Basic Assumptions

The commonly used cost-benefit analysis was applied under the following basic assumptions:

i) Analysis Period

1991 - Detailed design 1992 - Construction 1993 - Project life (25 years)

- ii) Discount Rate: 15% pa
- iii) Quantified Cost

Initial construction/improvement costs Periodic maintenance costs

iv) Quantified Benefit

Traffic benefit
Development benefit (only for development projects)
Maintenance cost savings

The periodic maintenance costs, or rehabilitation costs, such as overlay, reconstruction and regravelling which will be needed after completion of the project to prolong the pavement life, were treated as project costs in this study, while the difference between routine maintenance costs and total maintenance costs in the "w/o" case was taken into account as a project benefit. In the case where the routine maintenance costs are higher than the "w/o" maintenance costs, the difference is considered as a negative benefit.

5.2.2 Economic Costs

1) Initial Construction/Improvement Costs

The construction costs discussed in Section 5.2.1 are the financial costs and do not include the costs for detailed design and construction supervision. In the cost-benefit analysis, the following economic cost was used:

Construction Cost	100%
-Tax	-15%
+Detailed Design Cost	4%
+Construction Supervision Cos	t6%
Total Economic Cost	95%

In the cost-benefit stream, 4% for detailed design cost was assumed to be spent in 1991 and the remaining 91% in 1992.

2) Periodic Maintenance Costs

Periodic maintenance, or rehabilitation, will be necessary when the riding quality of a pavement decreases to a certain minimum level of acceptability. Table 5.2-1 shows the periodic maintenance assumed in this Study.

TABLE 5.2-1 PERIODIC MAINTENANCE COST ASSUMED IN THE ANALYSIS

Surface Type	Periodic Maintenance Work		l Financial Cost (millionP/K	Economic Cost
Gravel	10cm Regravelling	When thickness of gravel is reduced by 10cm, assuming 1.5cm loss annually from rainfall and 1.5cm loss every 100,000 vehicles (2-6 years)	4.0 m Gravel: P 0.210 6.0 m Gravel: P 0.320	M 85% of Cost
ВМР	5.5cm BMP Overlay	When pavement serviceability decreases to 2.0, assuming 85,000 ESAL or 350,000 vehicle repetitions (4-10 years)	P 0.830	M 85% of Cost
AC	5 cm AC Overlay	When pavement service ability decreases to 2.0, assuming 800,000 ESAL or 2,300,000 vel repetitions (8-20 years)	₽ 1.170	M 85% of Cost
PCC	5 cm AC Overlay	When pavement service ability decreases to 2.0, assuming 2,000, ESAL or 5,700,000 vehicle repetitions (10-25 years)	₽ 1.200	M 85% of Cost

Note: 1) As of April 1990

5.2.3 Benefits

1) Traffic Benefits

a) Traffic Cost

Basic Traffic Costs

The basic traffic costs were provided by PMO-FS, as shown in Table 5.2-2.

TABLE 5.2-2 BASIC TRAFFIC COSTS EXCLUDING TAX
(AS OF DECEMBER 1989)

	Running Cost (P/km)	Fixed Cost (P/hour)	Time Cost (P/hour)
Car/Van	1.75	6.30	17.70
Jeepney	1.12	23.76	26.40
Bus	2.81	35.64	95.04
Truck	3.48	38.88	0
Motor-			
tricycle	0.36	8.76	4.98
Motorcycle	0.31	0.72	8.34

Actual Traffic Costs

The actual traffic costs were estimated according to the dl-system concerning running costs and the dt-system with regard to fixed and time costs. The dl-values and operating speed for different surface conditions are shown in Tables 5.2-3 and 5.2-4, respectively.

TABLE 5.2-3 DL-VALUES IN KM PER ACTUAL KM

Surface Type Surface Condition		BMP/DBST	Gravel	Earth
Good	()	0.14	0.29	
Fair	0.17	0.38	0.60	
Bad	0.43	0.65	0.87	1.20
Very Bad	0.89	1.04	1.20	1.56
Impassable	1.73	1.73	1.73	1.73

TABLE 5.2-4 OPERATING SPEED IN KM/HOUR

Surface							٠					
Surface	PC	CC//	\C	BMI	2/DI	3ST	. (īrav	l ov	1	Ear t	l h
Condition	٥V	TR	MC	O۷	TR	MC-	OV	TR	MC	O۷	TR	MC
		·			. ~							
Good	65	4 ()	60	63	38	55	-60	35	50		-	-
Fair	55	35°	50	53	33	45	50	30	40	· -	-	-
Bad	30	20	20	30	20	20	30	20	20	20	10	10
Very Bad	20	10	10	20	10	10	20	10	10	10	5	5
Impassable	10	5	5	10	5	5	10	5	5	10	5	5

Note: OV = Car/Jeepney/Bus/Truck

TR = Motor-tricycle

MC = Motorcycle

Traffic Costs of Other Transport Modes

In addition to the land-based motorized vehicles, the traffic costs of other modes were estimated as shown in Table 5.2-5.

TABLE 5.2-5 TRAFFIC COST OF OTHER MODES
(COMMON TO ALL SURFACE TYPES AND CONDITIONS)

Mode	Traffic Cost in P/Km
Animal Drawn Walking (head loading) Banca Boat	$egin{array}{c} 4.0 \ 1.2 \ 2.25 \end{array}$

b) Traffic Benefits in Traffic Projects

Traffic on the project roads wwas broken down into four categories: normal traffic, diverted traffic-1, diverted traffic-2 and generated traffic.

The traffic benefits were estimated as follows:

i) Difference in Normal traffic costs between "w/o" and Traffic "with" The change in traffic cases. results not only from costs the improvement of surface type and condition but also from consequent change i n modal distribution.

- ii) Diverted: Difference between traffic costs
 Traffic-1 along the "w/o" route and those
 along the "with" route. Where
 diverted traffic passes through
 two or more project roads, the
 benefits were allocated to each
 road in proportion to length.
- iii) Diverted Traffic-2 and Generated Traffic:

 Half of the difference in traffic
 costs between "w/o" and "with"
 cases. This is the commonly used
 approximation.

Traffic costs were calculated assuming the following surface conditions:

"W/O" Case: Present surface condition is maintained.
"With" Case: Gravel/BMP are maintained in a fair condition.

AC/PCC are maintained in a good condition

c) Traffic Benefits in Development Projects

No diverted traffic is expected in most development projects. The benefits from normal traffic generated traffic were estimated in the same way as used for the traffic projects paying attention to the following:

- i) The travel distance considered in the benefit calculation is the distrance from the average gravity point of transport (gravity of population for passenger traffic and non-agricultural traffic and gravity of agricultural production for agricultural traffic) to the connecting point with a higher road.
- ii) The benefit from generated agricultural traffic is not considered as a traffic benefit because it is included in the development benefit. Therefore, the generated traffic benefits are only from passenger traffic and non-agricultural traffic.

2) Development Benefits

Development benefits were assessed using the producer surplus approach, under the hypothesis that substantial road improvement which removes constraints on development will permit and encourage farmers to adopt modern agricultural techniques and inputs. The development benefit consists of the difference in the

net value of total production (farmgate value less production costs) between the "w/o" and "with" cases. Changes in the volume and value of agricultural production will be achieved by one or more of the following:

- i) Increase in cultivated area
- ii) Increase in yield
- iii) Increase in intensity of land use through increasing the number of harvest or intercropping
 iv) Changes in the type of crop

Using the data obtained from the socio-economic survey, development benefits were calculated from the following equation:

Benefit = PRODw(FGPw-CPw)-(FGPw-CPw/o)

where, PRODw = Production in metric tons, with PRODw/o= Production in metric tons, w/o

FGPw = Farmgate price in pesos per metric ton, with

CPw = Production cost in pesos per metric ton, with

CPw/o = Production cost in pesos per metric ton, w/o

The increase in farmgate price resulting from reduction in traffic cost is not included in the development benefits, because it is considered a part of the traffic benefits.

Table 5.2-6 presents the summary of demographic and agricultural data.

TABLE 5.2 - 6 (1) Summary of Demographic and Agricultural Data

Class	Type		Road		0.6			1990 Cro	p Area (•	IRR
!	or Impr	Number	Length (Km)	Fopu Tota	at10 /k	Total		6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	jor Cr	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0/*	with.	8
or t'1/	Rehab/		12.5	7220	578	1 520	70	30(Vege.)	20		0 4 10	<u> </u>	16.9
rov'1)		P7	1 20.4	63	26	1 780		(Veg	-			20	çn
	- -	ხვმ	1 22.7	65	C 3	1450	00	20	270(Corn)		Б	21	Ö
		1 P6	9.3	32	14	1 310	80(P	50			7	139	
		.P14	9.9	67	40	430	00	0 (Ban		-	1 25	31	
		P52-1	9.6	5	26	1 680	50	000	50(Banan)		•	19	
		P33	9.9	68	47	1 1050	00	000			35	47	•
		P43	4.8	20	25	1 200	60(P	$\stackrel{>}{\sim}$			o 	c/i	•
		1 P36	1.2	44	37	1 130	: 100(Palay)	ပိ	0			ιΩ	
		P51	13.8	8	P-7	1 710	50(Pal	O(Cor	80(Vege.)			e	*
		NS-4	1 20.3	2	1	11450	50(Pal	0 (Cor	O(Vege		; 20	10	
		3	11.2	٠,	40	300	00 (Pa!		· •				•
			0	0		12.5	000	0000			7	0	
) r i p) (·	200	40.00	C. 0000000			* C) 0	4
		c		٠ (د د	3 -	000	0 7 5 5 7 0 T	10 × × ×				 0 (•
_		, , ,	? - 	ο.	7 6	320	50(Fa)	<u>></u>	80(Bahan)		> <u> </u>	7 (•
		OT4.	·.	ခ	?	780	80(7					25	•
-		747	12.3	∞		06	; 50(Corn)	Ö			,		•
	Imp-2/	P49	10.5	2988	2 8 1	880	800(Corn)	50(Vege.)	30(Palay)	1 1 1 1 1 1 1 1 1 1 1 1 1 1	23	1 64	25.
	1 6	- 1	1	i	1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 	1		 		
-	ė,	[~·	1 29.6	37	38	n		170(Vege.)	0 (Ba		10	23	12,
	O	က	ं	7	12	Ô	00	OCRO	0.Cor		0	ω	•
	:	P52-2	6.	819	126	390	(Pal	O (Veg	O(Ban			য	4.7
0.0	eha	B10-	4.0	8.4	21	370	ı c	10	50 (Vege.)	1 1 1 1 1 1 1 1 1 1 1		 	•
Baran-	Imp-1	4		.2	00	220	00 (Pa1		0		7	6	
gav)	•	۱. ش		1 60	- 4	2 6	90(Da)	, ,			* C		•
•		1 13) (*		7 0	20/10/10/10/10/10/10/10/10/10/10/10/10/10	9					•
		1 LC	•) (Э.U	> C	2011010	1000			- -	n -	٠
		ت بر از	•	о (- Ц) (- - -	2 .	びょうにく	01.468	\$			 ₹	·.
-		* C) r	0 -		は、ないこう	0116	המטי המטי				٠
_		7		٦ (ا	T. T. T	06	40(Pa]	20/) (20(Corn)		۰.	₹'	
•		٥,	٠	77 (١	350	0 (Pal	9			r-	63	•
	, m.	7		200	ιΩ	190	$\overline{}$	10(Vege.)				4	•
		۲. دع	•	<u>-</u> -	22	30	30(Vege.)	•			o 	, ·	0.
	φ	B9~2	-	5.7	1.5	1 6	80 (Ve	100		 	 	 	t ·
- -	Const. ;	B9 - 5	5.1	1049	206	310	Pala	30 (Veg	5			i un	
		d	_	×	.0	1	GO(Vere	0 0	("" () () ()			· -	
		,)		1					•

3) Maintenance Cost Savings

The difference in maintenance costs between the "w/o" and "with" cases is considered one of the benefits. Maintenance costs in the "w/o" case were estimated based on the current EMK system, while maintenance costs in the "with" case were estimated as shown in b) below. It is noted that periodic maintenance cost in the "with" case is not included in the calculation of maintenance cost savings, because it is treated as a part of project costs.

In the case where the routine maintenance costs in the "with" case are higher than the maintenance costs in the "w/o" case (especially in the case of new construction, the maintenance cost in the "w/o" case in zero), the difference is considered as a negative benefit).

a) Maintenance Cost in "w/o" Case

According to the current EMK system, the annual maintenance cost per km was estimated as basic maintenance cost of P17,143.00/km times the EMK factor as shown in Table 5.2-7.

TABLE 5.2-7
EMK FACTOR FOR DIFFERENT SURFACING AND AADT

Surface Type	DT 	25	50	75	100	150	200	300	400
Earth Gravel			1 0.50		0 1.9	1 2.	20 2.4	0 2.5	0 2.60
	 DT!						n _ u _ u _ u _ u		
Surface Type	! !	400	600 1	000	1500	2000	3000	5000	10000
Bituminous Gravel	11.10				0 2.0 5 0.9		95 1.0	0 1 1.0	; 5 1.10

b) Routine Maintenance Costs in "with" Case

The costs deemed necessary to maintain the improved roads in a fair condition were estimated as shown in Table 5.2-8.

TABLE 5.2-8 ESTIMATED ROUTINE MAINTENANCE COSTS

Surface Type	Operation	Annual Cost (peso/km)
Gravel	Vegetation Control Ditch Cleaning Grading Pothole Repair	1,150 4.0 m Gravel: 2,650 + 40 AADT 6.0 m Gravel: 3,000 + 45 AADT
	Total	4.0 m Gravel: 3,800 + 45 AADT 6.0 m Gravel: 4,150 + 45 AADT
ВМР	Vegetation Control Ditch Cleaning Shoulder Repair Patching Regravelling Shoulder	1,150 1,100 2,150 8,000 + 7.5 AADT 8,600
•	Total	21,000 + 7.5 AADT
AC	Vegetation Control Ditch Cleaning Shoulder Repair Crack and Joint Sealing Regravelling Shoulder	1,150 1,100 2,150 9,300 8,600
	Total	20,400
PCC	Vegetation Control Ditch Cleaning Shoulder Repair Crack and Joint Sealing Regravelling Shoulder	1,150 1,100 2,150 5,600 8,600
	Total	18,600

5.2.4 Economic Evaluation

Results of economic evaluation are summarized in Table 5.2-9 and illustrated in Figure 5.2-1. Results of economic evaluation of each project road is presented in Table 5.2-10.

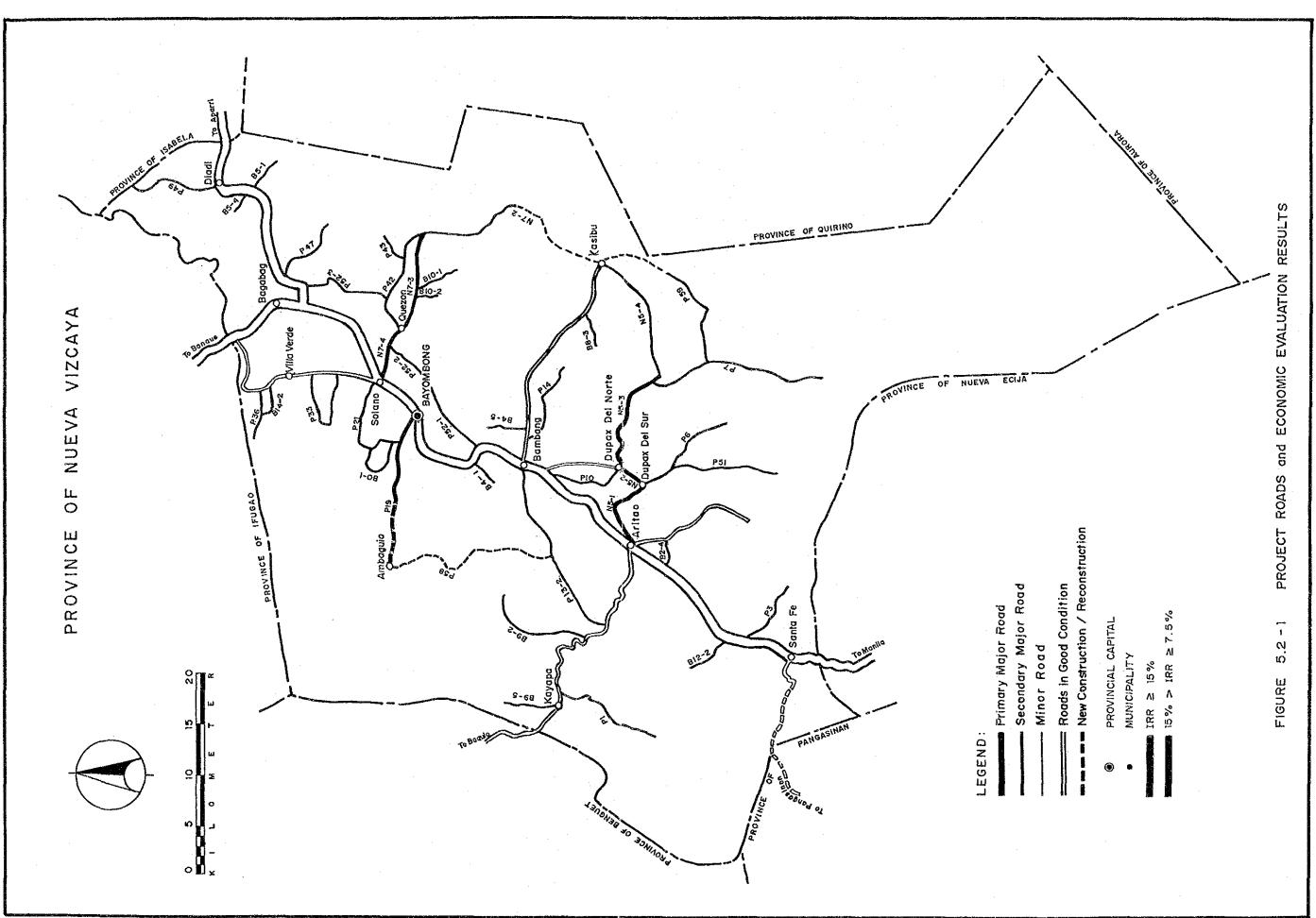


TABLE 5.2 - 9 (1)
Road Length and Construction Cost

NUEVA VIZCAYA

Class	Range	1	ehabi	itati	u	1 >	1-1		[ď[[]	rovemen	t-2/	eni		1	12	1 6	structi	u o	
of Road	# ##	N N	Total	[Road	Bridge	Total	I S	Total Length	Improv Length	Road	Bridge	Total	N N N N N N N N N N N N N N N N N N N	Total ength	Improv Length	Road B	Bridge Cost	Total Cost
Primary Major	101 101 101 151 151		; ; 1 ;															, 1 ; 1 ;	1 1 1 1
Second'y Major	Total 15 10-15 7.5-10	1 0 - 0 1	2 1 5 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1	1 2 2 1 1 8 1 1 2 2 1 1 1 1 1 1 1 1 1 1		33.2	68.5 7.4 39.0	1 1 1 1 1	1 1.4 F 1 t	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1				1 1 1 1 1		1 1 1 1 1		1 1 1 1
	Tot	! 	53.8	45.5	1 123	60.4	114.9	1 1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 	 		 	 	[t f 1 f	 	i i l i t	! ! ! 1
Minor (Nat'1/ Prov'1)	1 . 5	20.11	2 43.	1 × × × × 1	1 0 00 00 1	001	20.8 24.6 7.6 73.2		100		[1 0 1	1 - 1 0	29.6	29.6	18.7	1	19.2
i i i i	Total	8 1	4.	160.5	112.0	14.3	126.2		10.5	6.1		1	ю 0	ဗ	56.6	54.6	37.9	5.8	43.7
Minor (Baran- gay)	15< 10-15 7.5-10		34	Ø 1	18.1	12.6	30.7		1111		i l i i i i i i i i i				1 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 2 2 2	3.00	5 1	80 C 4 1 C C C C C C C C C C C C C C C C C
; ; ; ;	Total	10	∞ i	28.6		12.6	30.7		1	1	ì	ı	ı	ຕ	•	٠,	13.9	2.6	16.5
_			9.787	7	52.7 26.5 20.8 84.6	36.7 5.4 25.8 19.3	889.3 32.0 46.6		10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	F	!	, 	 m •	 	35.2	39.1 1.00 1.00	24.7	1 0 0 1 0 0	00 m 00 m 00 m
; 1 1 1 1 1 1	Total	က ၊ 	0 I	34.	• 1	87.2	271.8		10.5	6.1				1 9 1	77.3	75.3	51.81	8 1	60.3
			1	!!!!!!!!!!	1 1 1 1 1 1	1	E [1	 	1	1 1 1 1	1	1	1	1 1 1 1	!	į	111111111	

TABLE 5.2 - 9 (2)
Road Length and Construction Cost NUEVA VIZCAYA

115 115	90	No.	Total ength	m V		יין ו	0
1157 1157 1157 1157 1157 1157 1157 1157	no i mi u		j	Length	Cost	ပိ	ا ب
10 1 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1111	. 1 1 1 1			1111	
1		ļ. ļ.	i I I		i (! ! ! !	! ! ! ! ! !
10 (tal			i ດ ດ ວ i	22.4	က်က် ျ	33.2	68.5 7.4 39.0
150-1150-1150-1150-1150-1150-1150-1150-	·		(C)			60.4	4
Tota	80. R	00 m	37. 72. 9.	25.0 72.7 9.3	20.6 41.8 5.0 85.7	3.4	
		22	271.7			20.1	173.2
15< 10-1 15-1			9.6	0.03		2.6	8.7 3.6
ं ल					5	15.2	
5-11		2 4 5	ဖြတ်လက်	47.4 87.2 32.6	[v - 4 ∞	36.7 13.6 25.8	92.6 64.9 50.3 127.6
Tota		41,	381.0	316.0	239.7	95.7	335.4

TABLE 5.2 - 10 (1) Summary of Economic Analysis

	 		1 1	1	1 1 1	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;		. (1		800	t/Bene	367:11I	7107-16	Cost/Beneilt:1991-ZOI/ Discounted lotal	1 1 6 6 1 1	0.0
Class Type	Type	7¢ () ()	11993	1993 AADT 1	Len	1993 AADT Length (km)	Reonomi	c Cost	Economic Cost (Mp/km)		ΩQ	Benefit (Mp/km)	(Mp/km			Econom. Indicator	Indic	ator
Road	Road Impr't Number	Number	0/%	with	Total	rovement	Const	Period! Maint.	Total	Const- Period Total Normal Diver Gene Deve Maint Total ted rated lop't sav'g	Diver- ted	Gener	Deve- lop't	Maint:	Total	NPV (Mp)	B/C	1RR (%)
econd'y	Second'y.IRehab/1 P19	P19	0	11	18.4	0 11 18.4 17.9(6.0-GRV)	1.61	į	1.86	 	 	4.61	1 5 1 1 1 1		4.57	48.5	2.5	30.
Major	Imp-1	N5-2	369	398	2.9	.5(6.0-BMP)	1 23.52	.66	24.19	1 42.16	ı	3.68	ı	. 07	45.91	10.9	1.9	26.2
-		N5-3	o 	119		4.0(6.0-GRV)			4.39		3.20	2.75	ı		5.91	: 6.1	.3	20.3
-		N7-4.	66	171	5 8	4.9(6.0-GRV)		.45	1.70	. 82		. 57	ı		1.43	-1.3	∞.	12.
-		N5-3	111	133	8.1	8.1(6.0-GRV)		•	1.57	177	1	.23	,		1.09	-3.9	۲.	5
		N713	62 	25	10.1	.3(6.0-BMP)	2.21.	34	2.55	. 84		.58	1		1.45	1-11.1	တ	ω.
•					**	9.8(6.0-GRV)	~-											

TABLE 5.2 - 10 (2) Summary of Economic Analysis

Cost/Benefit:1991-2017 Discounted Total

with Total Impro 9 74 12.5 12.5 6 54 14.9 6.4 8 50 20.7 20.7 1 3 6.6 1.6 1 9 9.6 9.6 2 4.8 4.8 2 11 13.8 13.8 1 12 20.3 20.3 1 1 12 3 20.6 1 1 12 3 5.0 1 1 12 3 5.0 2 1 1.9 11.9 1 1 2.3 5.0 2 2 1 1.9 2 3 29.6 29.6 3 4.5 4 5.1 4 6.5 4.5		i i i 70 i 70 i 61	11993	AADŢ	Le	Length (km)	Economi	C Cost	(Mp/km)	 	i iii	enefit	(Mp/km		1	Econom	Indic	ator
74 12.5 12.5(6.0-GRV) 1.12 .23 1.36 1.43 -01 .02 .04 1.51 2.0 1.1 16. 54 14.9 6 44(4.0-GRV)	3	3		¥ i t t i t t i	Total	Improvement		0+1	Total	Normal	د د م د	Gene- rated	Deve- log't	ឧដ្ឋ ឧស ⁻	Total	NPV (Mp)	B/C	IRE
54 14.9 6.4(4.0-GRV) 50 13 .63 .43 .02 .19 .04 .67 .3 .11 .60 .28 .03 .66 .8 .93 .20.4 (20GRV) .44 .60 .28 .01 .16 .69 .11 .60 .28 .01 .66 .9 .9 .9 .9 .60 .00 .02 .75 .6 .7 .1 .7 .9 .0 .0 .0 .7 .6 .6 .6 .6 .6 .6 .6 .6 .6 .6 .6 .6 .6 .7 .6 .7 .7 .6 .7 .7 .6 .7 .6 .7 .6 .7 .6 .7 .6 .7 .6 .7 .6 .7 .6 .6 .6 .6 .6 .7 .6 .7 .6 .7 .7 .7 .7 .7 .7 .7 .7	P42	1	1 55	74	12.5	12.5(6.0-GRV)		. 23	1.36	1.43	 	.01	.02	40.	1.51	2.0	 	16.9
50 20.4 20.4(4.0-GRV) 47 14 60 41 -05 .08 .03 .56 8 .9 13 .56 8 .9 15 -0 .01 .44 -3.5 .7 10 .01 .44 -3.5 .7 10 .01 .44 -3.5 .7 .10 .00 .00 .01 .44 -3.5 .7 .10 .00	P1		56	54	14.9	6.4(4.0-GRV)	•	. 13	. 63	43	,	.02	.19	.04	.67	e5		16.2
21 22.7 22.7 (4.0-GRV) .48 .11 .60 .28 .01 .16 .01 .44 -3.5 .7 10 .6 .71 .6 .71 .6 .71 .6 .71 .6 .71 .6 .71 .6 .71 .6 .71 .72 .6 .72 .73 .73 .73 .73 .73 .73 .73 .73 <td>- La</td> <td></td> <td>48</td> <td>20</td> <td>1 20.4</td> <td>20.4(4.0-GRV)</td> <td>•</td> <td>1.14</td> <td>.60</td> <td>41</td> <td>ı</td> <td>.05</td> <td>.08</td> <td>.03</td> <td>. 56</td> <td>ω· ·</td> <td>σ,</td> <td>13.9</td>	- La		48	20	1 20.4	20.4(4.0-GRV)	•	1.14	.60	41	ı	.05	.08	.03	. 56	ω· ·	σ,	13.9
13 9.3 9.3(4.0-GRV) 68 .11	P59		6	21	22.7	22.7(4.0-GRV)!	٠	- 11	.60	. 28	٠,	.01	.16	01	44	•	.7	10.4
31 6.6 1.2(4.0-GRV) 1.11 .11 1.23 .72 .00 .00 .75 6 .5 .75 6 .5 .75 6 .5 .5 .6 .70 6 .5 .5 .6 .70 6 .5 .5 .6 .70 .70 6 .5 .6 .5 .6 .5 .6 .5 .6 .5 .6 .5 .6 .5 .6 .70 .70 6 .5 .6 .5 .6 .5 .6 .5 .6 .5 .6 .5 .6 .5 .6 .5 .6 .5 .6 .5 .6 .5 .6 .5 .6 .5 .6 .7 .7 .1 .5 .7 .1 .6 .0	P6		7	13	9.3	9.3(4.0-GRV)	•	111.	.80	.37	I	.03	90.	. 01	.47	٠	φ,	7.8
19 9.6 9.6 (4.0 - GRV) 1.28 11 1.39 .55 - 0.6 .09 .00 .70 -6.6 .5 5.	P14		25	31	9.9	1.2(4.0-GRV)!	-	.11.	1.23	.72	ı	00.	00.	. 02	.75	٠	φ.	7.2
47 9.9 4.6(4.0-GRV) .56 .13 .69 .33 01 .00 .02 .36 -1.5 .5 5. 2 4.8 4.8(4.0-GRV) .42 .11 .56 .14 05 .08 .01 .27 -1.2 .5 5. 11 13.8 13.8(4.0-GRV) .45 .11 .57 .16 01 .09 .01 .27 -1.2 .5 4.4 15 20.3 20.3(4.0-GRV) .57 .11 .69 .10 .00 .09 .01 .26 .48 .1 .1 13 11.2 5.4(4.0-GRV) .50 .11 .61 .16 .00 .09 .01 .26 .13 .4 .1 29 10.0 3.0(4.0-GRV) .46 .11 .16 .25 .01 .06 .03 .28 -1.1 .4 .1 8 5.1(4.0-GRV) .46 .11 .57 .06 .00 .06 .00 .00 .00 .00 .00 .00 .12 .53 .1 52 8.1 3.7(6.0-GRV) .46 .11 .47 .02 .00 .00 </td <td>P52-1</td> <td>**</td> <td>0</td> <td>19</td> <td>9.6</td> <td>9.6(4.0-GRV)</td> <td></td> <td></td> <td>1.39</td> <td>55</td> <td>ı</td> <td>90.</td> <td>60</td> <td>00.</td> <td>.70</td> <td>٠</td> <td>r,</td> <td>8.9</td>	P52-1	**	0	19	9.6	9.6(4.0-GRV)			1.39	55	ı	90.	60	00.	.70	٠	r,	8.9
2 4.8 4.8(4.0°-GRV) .42 .11 .56 .17 .00 .08 .01 .27 -1.2 .5 4.4 .11 .56 .17 00 .08 .01 .27 -1.2 .5 4.4 .1 .56 .11 .56 .11 .57 .11 .57 .11 .61 .00 .00 .01 .25 -4.4 .2 .2 .4 .2 .2 .4 .2 .2 .2 .00 .00 .01 .26 -1.3 .4 .1 .2 .2 .00 .00 .00 .00 .00 .03 .28 .1 .4 .1 .1 .2 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .1 .00	P33		35	47	6.6	4.6(4.0-GRV);			69	.33	ł	.01	00.	.02	.36	٠	ιΩ	5.9
5 1.2 .8(4.0-GRV) .44 .11 .56 .17 - .00 .08 .01 .27 - 2 .5 .44 .4 .21 .57 .11 .57 .16 - .01 .09 .01 .25 - .4 .4 .2 .5 .4 .4 .2 .2 .4 .4 .2 .2 .4 .4 .2 .2 .6 .11 .57 .10 .00 .00 .03 .28 -1.1 .4 .1 .4 .1 .4 .1 .4 .1 .4 .1 .4 .1 .2 .00 .00 .00 .03 .28 -1.1 .4 .1 .4 .1 .4 .1 .4 .1 .2 .2 .01 .06 .00 <td>P43</td> <td></td> <td>0</td> <td>23</td> <td>4.8</td> <td>4.8(4.0-GRV)</td> <td></td> <td>.13</td> <td>. 53</td> <td>14</td> <td>1</td> <td>.05</td> <td>. 80</td> <td>.01</td> <td>.27</td> <td>•</td> <td>٠.</td> <td>ເນ ເວ</td>	P43		0	23	4.8	4.8(4.0-GRV)		.13	. 53	14	1	.05	. 80	.01	.27	•	٠.	ເນ ເວ
11 13.8 13.8(4.0-GRV) .45	P36 1		N	വ	1.2	.8(4.0-GRV):		.11	.56	.17	1	00.	.08	.01	.27	•	'n.	4.2
15 20.3 20.3(4.0-GRV) .57 .11 .69 .10 .00 .15 .00 .26 8.6 .4 2. 13 11.2 5.4(4.0-GRV) .50 .11 .61 .16 .00 .09 .01 .26 1.9 .4 1. 29 10.0 3.0(4.0-GRV) .52 .12 .64 .25 .00 .00 .03 .28 1.1 .4 1. 8 5.1 5.1(4.0-GRV) 1.04 .11 1.16 .22 .01 .06 .01 .30 .4.4 .3 52 8.1 5.1(4.0-GRV) .46 .11 .57 .05 .00 .00 .01 .03 2.2 .1 1 12.3 5.0(4.0-GRV) .45 .13 .58 .83 .01 .10 .02 .96 .2.3 1.7 .25 43 10.5 6.1(4.0-GRV) .68 .12 .80 .38 .20 .02 .95	P51		0	11	13.8	13.8(4.0-GRV)		.11	25	16	ı	.01	60-	10.1	.25	•	4.	5.9
13 11.2 5.4(4.0-GRV) .50 .11 .61 .16 .00 .09 .01 .26 -1.9 .4 1. 29 10.0 3.0(4.0-GRV) .52 .12 .64 .25 .00 .00 .03 .28 -1.1 .4 1. 8 5.1 5.1(4.0-GRV) 1.04 .11 1.16 .22 .01 .06 .01 .30 -4.4 .3 2 11.9 11.9(4.0-GRV) .46 .11 .57 .06 .00 .06 .00 .12 -5.3 .2 3 10.5 6.1(4.0-GRV) .45 .13 .58 .83 .01 .10 .02 .96 .2.3 1.7 .25 43 10.5 6.1(4.0-GRV) .68 .12 .80 .38 23 .09 .02 .97 .95 .5 5 20.5(4.0-GRV) .68 .11 .79 .28 .10 .22 .25 .17 .4 4.	N5-4		20	ដ	20.3	20.3(4.0-GRV);		.11	69	.10	ı	00.	.15		.26	•	4.	2.8
29 10.0 3.0(4.0-GRV) .52 .12 .64 .25 .00 .00 .03 .28 -1.1 .4 1.5 .22 .01 .06 .01 .30 -4.4 .3 .25	P13-2		ഗ	13	111.2	5.4(4.0-GRV)		.11	.61	.16		00.	60.	.01	. 26	-1.9	۷,	1.7
8 5.1 5.1(4.0-GRV) 1.04 11 1.16 .22 .01 .06 .01 .30 -4.4 .3 .2 .2 .2 .2 .2 .2 .2	F21		24	29	10.0	3.0(4.0-GRV);		.12	64	.25	1	00	00.	.03	28	1-1-1	4.	
2 11.9 11.9(4.0-GRV) .46 .11 .57 .06 .00 .06 .00 .12 -5.3 .2 .2 .2 .2 .2 .2 .2	P3		0	œ	5.	5.1(4.0-GRV);	****	 	1.16	. 22	ı	.01	90.	.01	.30	-4.4	<u>ښ</u>	٥.
52 8.1 3.7(6.0-GRV) 2.06 .21 2.27 .07 .00 .00 .00 .03 -7.9 .1 .12.3 5.0(4.0-GRV) .35 .11 .47 .02 .00 .00 .01 .03 -2.2 .1 .47 .02 .00 .00 .01 .03 -2.2 .1 .25	P52-3		0	~	11.9	11.9(4.0-GRV);	•	 	. 57	.06	1	00.	90.	.00	. 12		.5	٥.
1 12.3 5.0(4.0-GRV) .35 .11 .47 .02 .00 .00 .01 .03 -2.2 .1 .10 .05 .21 .10 .25 .22 .1 .25	P10 :			52	8.1	3.7(6.0-GRV)	د،	. 21	2 27	0.7	ı	00.	00.	90.	.13.	4		Ċ.
43 10.5 6.1(4.0-GRV); .45 .13 .58 .8301 .10 .02 .96 2.3 1.7 25. 23 29.6 29.6(4.0-GRV); .68 .12 .80 .3823 .0902 .67 -3.7 .8 12. 8 20.5 20.5(4.0-GRV); .68 .11 .79 .2810 .0202 .38 -8.5 .5 5. 4 6.5 4.5(4.0-GRV) .51 .11 .62 .0501 .2202 .25 -1.7 .4 4.	P47		ri		12.3	5.0(4.0-GRV);	•	.11	47	.02	1	00.	00.	.01	.03	•	ল •	0
23 29.6 29.6 (4.0-GRV) .68 .12 .80 .38 23 .09 02 .67 -3.7 .8 .8 .20.5 20.5 (4.0-GRV) .68 .11 .79 .28 10 .02 .02 .38 -8.5 .5 .4 6.5 4.5 (4.0-GRV) .51 .11 .62 .05 01 .22 02 .25 -1.7 .4	P49		23	43		6.1(4.0-GRV);	4.	13.		. 83	 	.01	.10	. 02				່ເກ
23 29.6 29.6 (4.0-GRV) .68 .12 .80 .38 .23 .09 .02 .67 -3.7 .8 .8 .20.5 .20.5 (4.0-GRV) .68 .11 .79 .28 .10 .02 .02 .38 -8.5 .5 .4 6.5 4.5 (4.0-GRV) .51 .11 .62 .05 .01 .22 .02 .25 -1.7 .4				•									•					
8 20.5 20.5(4.0-GRV) .68 .11 .79 .2810 .0202 .38 -8.5 .5 4 6.5 4.5(4.0-GRV) .51 .11 .62 .0501 .2202 .25 -1.7 .4	N7-2	! !	101	23	10	29.6(4.0-GRV)	1 89 , 1 9 9 ,	.12	. 08	.38]] [. 23	0.0	02	. 67	1 .		12.6
.5 4.5(4.0-GRV); .51 ,11 ; .62 .0501 .2202 ; .25 -1.7 .4	P58		0	00	O	20.5(4.0-GRV)!	.68	-	1 62	. 28	1	10	0.5	02	38		τυ	53
	P52-2		0	4	ω Ω	(4.0-GR	.51	•	62	:02	ı	.01	22	-:05	.25		4,	4 7

TABLE 5.2 - 10 (3) Summary of Economic Analysis

(1885)	Type	T F	11993	AADT	Len	Length (km)	Economic	ic Cost	(Mp/km);		ñ	Benefit	(Mp/km)	<u> </u>		Econom. Indicator	.Indic	ato
oi Road	Impr.	Number	0/3	ri th	Total	w/o with Total improvement	Const-	Period) Maint.	Total	Normal	Diver- ted	Gene- rated	Deve-	Maint sav'g	Total	NPV (Mp)	B/C	IRI (%)
Minor	Rehab/	B10-1	0	 	4.0	4.0(4.0-GRV)	(!	.51	.07	1 1 1	.02	.18	.01	,29	6	9.	7
(Baran-	! Imp-1 !		14	21	2.7	1.3(6.0-GRV)	2.11	.18	2.29	.71.	1	.02	.24	.01	.97	1-1.7	4.	ຜ
gay)		B5-4	0		1.3	1.3(4.0-GRV)			.70	.15	1	.01	.13	00.	. 29	ر د د	4.	က
		. B5-1	o 	60	3.7	3.7(4.0-GRV)			.57	.19	1	.02	0.4	.01	.25	1-1.2	4.	ເນ
		D4-5	ري دي		0.5	5.0(4.0-GRV)			.54	.05	1	00.	.16	.01	.23	11.6	۲,	ന
		B14-2	و 	5 1	2.8	2.2(4.0-GRV)			.63	.14	1	.01	.10	.01	.26	∞ 1	4.	ຕ
		B10-2	0	7	2.0	2.0(4.0-GRV)			. 49	.04	1	.01	.12	.01	.17	9.1	4.	-
		B0-1		67	6.9	4.0(4.0-GRV)			.61	.05	1	00.	10		, 17	-1.8	က	•
		B2-4	63	4	3.4	2.1(4.0-GRV)	ເລ		5.42	39	ì	00.	.02	.01	.42	1-10.5	+-l •	٠
		B12-2	o 		3.0	3.0(4.0-GRV)!			.65	.05	1	.02	90.	01	,12	-1.6	. 5	•
	Nex	B9-2	0	9	9,6	9.6(4.0-GRV)	•	. 11.	.86	. 29	; ! ! !)	.06	.26	01	, 60	-2.5	2.	10
	!Const.;	B9-5	0	rv 	5.1	5.1(4.0-GRV)	. 59	.11	.70	.22	1	.02	.24	01	.47	-1.2	۲.	9.6
		B8-3	o 	2	0.9	6.0(4.0-GRV)		.11.	. 70	.14	1	.04	21	-,02 1	.37	1 -2.0	٠. س	7

