CHAPTER 9. CONSTRUCTION PLAN AND COST ESTIMATE

9.1 Construction Plan

9.1.1 Mode of construction

It is assumed that the construction works of the Project will be carried out by contractors and suppliers, who will be selected through international competitive tenders. The works will be divided into the following contract packages:

(1) <u>Preparatory works</u>: Temporary buildings for the Project's authority and engineers' use with water and power supply system, relocation road and so forth.

(2) Civil works:

- temporary buildings for contractors' and suppliers' use with water and power supply systems, water and power supply systems for construction, temporary plants and equipment.
- access tunnels, a diversion tunnel, coffer dams, a main dam, a spillway tunnel, grouting tunnels, curtain grouting works, a power intake, a headrace tunnel, a headrace surge tank with a ventilation tunnel, pressure shafts, a power house with a ventilation tunnel, a tailrace tunnel, a tailrace surge tank with a ventilation tunnel, a tailrace outlet, an outdoor switchyard.
- Erik intake weir, a desilting basin, Erik diversion tunnel, a headtank, a penstock, an excess water spillway, Erik power house, a tailrace chamber, an

inlet shaft with air trap chamber, a connecting tunnel.

- (3) Supply and installation of hydromechanical equipment and facilities
- (4) Supply and installation of electromechanical equipment
- (5) Supply and installation of transmission lines and substations

9.1.2 Preparatory works

The preparatory works will include construction of temporary buildings, a relocation road, access roads, power and water supply systems, and a communications system.

The following relocation and access roads and temporary buildings will be constructed by local contractors preceding the main civil works.

(1) Relocation road and access road

- Relocation road

- 6m wide X 13.5km long
- Existing road to be improved
- 6m wide X 42.0km long
- Access road to be constructed
- 6m wide X 10.0km long
- Bridges to be constructed
- 2 bridge

(2) Temporary buildings

- (a) <u>Buildings for authority and engineers</u>: The total floor area is estimated to be about 3,400 m², which consist of 420 m² for offices, 150 m² for motor pool, 600 m² for warehouse, 1,900 m² for residential buildings, and 300 m² for others.
- (b) <u>Buildings for contractors</u>: Although these are of contractor's option, the total floor area is

estimated for the purpose of cost estimate to be $8,450~\text{m}^2$, which consist of 770 m² for offices, $450~\text{m}^2$ for workshop in the construction site, $810~\text{m}^2$ for warehouses, $780~\text{m}^2$ for repair shop and motor pool, $5,420~\text{m}^2$ for residential buildings, and $220~\text{m}^2$ for others.

(3) Water supply system

Water supply systems for construction and camp use will be constructed separately for each working area by pumping up water from the Ermenek river. The water will be purified if necessary.

The total required capacity of the water supply system is estimated to be 13.5 m³/min, which consist of 8.7 m³/min for construction plants, 0.2 m³/min for temporary buildings, 5.0 m³/min for construction of dam, 4.3 m³/min for the waterway, power house and other construction works.

(4) Other facilities

The facilities of a first-aid clinic and a fire fighting system will be constructed.

9.1.3 Construction plants, equipment and materials

(1) Construction plants

The Project will require concrete aggregates of about 711,000 m³. Quarried rock will be obtained from the quarry site located on the left bank of the dam site.

A crashing and screening plant for concrete aggregates will have a production capacity of 280 ton/hr. Three concrete batcher plants will be provided. One, having

a capacity of 45 m³/hr, will be located on a banker line at an elevation of 675.0 m on the left bank of dam site, and will be used for the main dam construction works. The second plant of 100 m³/hr in capacity will be located at the intermediate point of the headrace tunnel, and will be used for concreting works of waterway tunnels and power house. The third concrete batcher plant of about 45 m³/hr will be located at a point downstream of the dam site for preparatory works and grouting.

A concrete cooling plant with the capacity of 370 RT and 1.0 \rm{m}^3/\rm{min} will be provided for precooling of aggregates and cooling of the dam concrete.

(2) Cable crane for dam

A cable crane with movable supports will be installed across the valley for placing the dam concrete. Another cable crane of fixed type will also be provided for carrying supplementary materials.

(3) Other major equipment

The other major equipment required for the construction works are estimated as listed below:

Equipment	Capacity	Quantity	
Crawler drill	65	10	
Wheel loader	3.2 m ³ class	4	
Wheel loader	2.1 m ³ side dump	6	
Crawler jumbo	2 booms	12	
Bulldozer	43 ton class	12	
Bulldozer	32 ton class	4	
Bulldozer	24 ton class	4	
Back hoe	0.6 m ³	6	

Equipment	Capacity		Quar	ntity
Loading shovel	3.8 m ³			1
	0.4 m^3			12
Battery locomotive	6-4 ton			12
Concrete spraying machine	1			2
Scaffold		٠		2
Raise climber				1
Concrete pump car	65 m ³ /h			4
Truck mixer	4.5 m^3			20
Boring machine				40
Grout pump				60

(4) Main materials

The main materials required for the construction are estimated as follows:

1.	Cement	267,000	ton
2.	Reinforcement bar	15,000	ton
3.	Steel support	400	ton
4.	Rock bolt	206,000	m
5.	PC anchor	31,000	m
6.	Dynamite and ANFO	1,700	ton

9.1.4 Construction power supply and communications systems

(1) Construction power supply system

The peak power requirement is estimated at 14,250 kVA, which consist of 14,000 kVA for construction plants and equipment and 250 kVA for residential building.

A TEK's 34.5 kV distribution line from the Yerköprü power station to Kazançi via Ermenek is running over the proposed dam site across the valley. This line will need some rerouting before commencement of the dam

construction works. A branch line of this line runs along the Mut-Ermenek road, which will be connected to the Gezende power station in the future. After the completion of the Gezende project, the power supply to these lines will be reinforced with the supply from the Gezende side.

Meanwhile, two 34.5 kV permanent lines will be required for the operation and maintenance purposes as well as to send out the generated power at the Erik power station: Line-1 between the Ermenek power station and the Ermenek dam via the Erik power station; Line-2 between the Erik intake and the Erik power station. These 2 lines will be constructed as permanent structures of the Project preceding the commencement of main construction works. The electric power for construction works will be taken from these 2 lines, by providing metering outfits at appropriate points. Diesel generators will also be provided in order to secure the minimum lighting, ventilation and drainage in the underground work sites in case of power failure.

(2) Communications system for construction use

Two communications systems will be provided for the communication during and after the construction period:

(A) a system connected to the existing public telephone system including facsimile and telex; (B) a radio telephone system.

(A) Public telephone system

The PTT's Ermenek telephone exchange is connected with the national telephone system through a 2 GHz band microwave radio link via Silifke. Both of ordinary telephone lines and multi-channel carrier telephone lines are available at this telephone

exchange in enough quantity. The latter is appropriate for the communications of the Project.

An automatic private digital telephone exchange will be provided in the authority's construction site office for the connection with the public telephone system, and for the communication among the internal extensions and contractors. This telephone exchange will first be placed at the dam site for the communication during the construction period. It will be shifted to the Ermenek power station upon completion of the construction works and will be used for the operation and maintenance of the Project.

(B) Radio communications system

As the backup communications between the site and the authority's head office in Ankara, a short wave radio communications system will be provided. The system will be of single channel press-to-talk pattern.

9.1.5 River diversion works

After construction of an access tunnel DA-1, a temporary bridge will be constructed across the gorge at an elevation of 515 m (see Plate Pl0). From the right bank end of the bridge, another access tunnel of 4.0 m in diameter and 80 m in length will be excavated downwards at a slope of 7 per cent to reach the mid point of the diversion tunnel. The diversion tunnel will be excavated from this point concurrently towards upstream and downstream ends. The tunnel will be excavated by full face method, using 2-boom crawler drill jumbo, 2.1 m³ wheel loaders (side damp), and 11-ton dump trucks. Immediately after the excavation, shotcrete and concrete lining works will be performed.

The river diversion works will be performed in four steps: (A) the Ermenek river will be temporarily dammed up with earth materials available a little upstream of the Görmel bridge; (B) a preliminary upstream coffer dam will be constructed immediately after the temporary damming up of the river flow; (C) after the preliminary coffer dam is filled up to a height of 10 m above the riverbed, the river flow will gradually be released by removing the temporary embankment near the Görmel bridge, and the flow will be diverted to the diversion tunnel; (D) after the diversion, the preliminary downstream coffer dam will be constructed.

Both the upstream and downstream preliminary coffer dams will be of earth embankment type. A 37.5 m high upstream coffer dam of concrete arch type will be constructed after excavation and cleaning of the base rock using back hoes and bulldozers. The dam concrete of about 1,300 m³ will be transported through the access tunnel DA-1. A 18.5 m high downstream coffer dam will be of concrete gravity type having a dam volume of about 2,600 m³.

The machinery and materials for construction of the coffer dams will be transported through the access tunnel DA-1, which have an outlet to the dam site at an elevation of 505 m, being about 7 m above the riverbed. The concrete placing works will be carried out using truck cranes of 40-ton class with a bucket of 2 m³. The concrete will be transported from the concrete bather plant No. 3.

9.1.6 Construction plan of principal structures

(1) Dam and tunnel spillway

After completion of the rock excavation above the banker line and cable crane, the dam excavation works of 570,000 m³ will be performed by bench cut method with a bench height of 5 m using 1-boom crawler drills,

partially on steep cliff using leg drills with a reduced bench height of 2.5 m.

The excavated rock above banker line will be transported by dump trucks to a spoil bank on both the left and right banks. For the transportation of excavated rock, a temporary road will be constructed at EL. 735 m on the left bank and at EL. 720 m on the right bank. An access tunnel to the dam crest will be used for transportation of the excavated rocks below the temporary roads.

The excavated rocks below the dam crest will be gathered on the riverbed and will be transported to a spoil bank located on the left bank through an access tunnel DA-1 of 7.0 m in diameter and 690 m in length. After completion of the excavation, the consolidation grouting of riverbed will be carried out before placing concrete.

The dam concrete will be placed with a block width of 15 m and a lift height of 2 m, using a 9.5-ton cable crane with a 3 m³ bucket. The pipe cooling will be carried out using river water. The secondary cooling and precooling will be made using cold water produced by a cooling plant.

The total length of the curtain grout hole will be 386,000 m. The drilling works will be carried out mainly from inside the grouting tunnel, using rotary boring machines for the areas around the dam, and using percussion machines for the other areas. The grouting will be made by packer grouting method.

The grouting tunnels will be 3.5 m in diameter, 6 lines and 3,730 m in total length in the left bank, 1 line of 130 m in length below the riverbed, 7 lines and 10,300

m in total length in the right bank. The total length of the grouting tunnel will amount to 13,580 m. The tunnels will be concrete lined except for that at HWL. On both left and right banks, access roads and tunnels with a slope of 3 per cent (B=2.6 m, H=2.5 m) will be constructed by rail and rocker shovel method for the access to each grouting tunnel.

Each grouting tunnel will be excavated by rail method using rocker shovel of 0.4 m³ class. Curtain grouting works will be proceeded after lining and placement of the invert concrete. The curtain grouting works will be carried out from the lower tunnels in both banks in accordance with the progress of dam concreting works.

The spillway tunnel of 9.0 m in diameter and 263 m in length will be constructed in the right bank. The tunnel excavation works will be carried out by full face driving method using 2 boom crawler jumbos, 2.1 m³ class wheel loaders (side dump), and 11-ton class dump trucks. The excavated rocks will be hauled out through an access tunnel SAT (see Plate P14). Immediately after completion of the excavation works, rock bolting, shotcreting and concrete lining will be carried out.

The excavation of gate shaft will be carried out in 2 steps; first, a 2 m square pilot shaft will be excavated from the bottom using leg drills and a raise climber; the pilot shaft will be enlarged to the full section using 1 boom drills and 0.6 m³ class back hoes. The excavated rocks will be gathered in the spillway tunnel, and will be hauled out through an access tunnel SAT. After completion of the excavation, rock bolting and concrete lining will be proceeded.

(2) Headrace tunnel and surge tank

The headrace tunnel will be 6.1 m in diameter and 9,042 m in length. Four work adits of 7.0 m wide will be constructed for the tunnel works. The tunnel excavation works will be simultaneously carried out at three excavation faces. The excavation will be made in the similar way to that for the tunnel spillway. The concrete lining will be performed using a teleform centle of 15 m long, followed by the consolidation grouting.

The excavation of headrace surge tank will be carried out in the similar way to that for the spillway gate shaft; a 2 m square pilot shaft will be excavated from the bottom using 2 leg drills and a raise climber and thereafter the pilot shaft will be enlarged to the full section using a 1 boom crawler drill and a 0.6 m³ class back hoe. The excavated rocks will be gathered into the headrace tunnel through the pilot shaft, and will be hauled out through work adit No. 5 using 11-ton class dump trucks. After completion of the excavation works, shotcreting, concrete lining and grouting will be proceeded.

(3) Pressure shaft

The pressure shaft will consist of an upper horizontal tunnel, inclined shaft portion of double lanes, and lower horizontal tunnel portion of double lanes. The horizontal portions will be excavated in the similar way to that for the headrace tunnel. The excavation of an inclined shaft will comprise 2 construction stages: a 2 m square pilot shaft will be excavated from the bottom using 2 leg drills and a raise climber followed by the enlargement to the full section. The excavated rocks will be gathered into the pilot hole and will be

hauled out to the spoil bank through the access tunnel of the power house, using 11-ton class dump trucks.

After completion of excavation, steel liners will be transported into the inclined shaft from the upper side, and will be installed from the bottom upward. Concrete will be filled after fixing each pipe unit.

(4) Tailrace tunnel and surge tank

The tailrace tunnel will be 6.1 m in diameter and 1,764 m in length. The construction of tailrace tunnel will be carried out concurrently from both the upstream and downstream ends, in the similar way to that for the headrace tunnel. The construction of the tailrace surge tank will be carried out in the similar way to that for the headrace surge tank.

(5) Underground power house

For the construction of the underground power house, access tunnels of 1,350 m in total length will be constructed; the ventilation tunnels of 600 m long will also be used for the construction works. These tunnels will be branched to approach the arch crown, generator floor, and bottom of the power house.

The excavation of the arch portion will be performed from adits at the crown and both springings. Enlargement will be conducted, immediately followed by rock bolting and shotcreting. 2 boom crawler jumbos, 2.1 m³ class wheel loaders (side dump), 11-ton class dump trucks and 3.8 m³ class loading shovels will be used for the excavation.

Horizontal tunnels will be constructed at the levels of generator floor and the bottom of power house, followed

by a vertical shaft connecting these. The main cavern will be enlarged by bench cut method with a height of 2 m. The construction machinery will be 1-boom crawler drills, 3.8 m³ class loading shovels and 3.2 m³ class wheel loaders. The excavated rocks will be gathered into the horizontal tunnel through the vertical shafts, and will be hauled out using 11-ton class dump trucks.

PC anchor, rock bolting and shotcreting works will be carried out as soon as the local excavation is completed.

9.1.7 Erik Diversion Scheme

The diversion tunnel will have a semi-horseshoe type section of 2.2 m in width, 2.3 m in height, and 3,580 m in length. The tunnel excavation will be performed concurrently from both the upstream and downstream Because of the topography, no work adit will be provided in the middle of the tunnel. It will be excavated in full face by rail method, using 0.2 m³ class rocker shovels, 4-ton class battery locomotives, and three 2.0 m3 class muck-cars of side dump type. After completion of the excavation works, concrete lining will be proceeded. 30 months will be required for the excavation at a progress rate of 70 m a month. 25 months will be required for concrete lining: 15 months for the arch and side wall portion at a rate of 150 m a month; 10 months for the invert at a rate of 200 m a month.

9.2 Construction time schedule

The construction schedule of the Project was prepared with the base year at the commencement of the detailed design, assuming a local tender for the preparatory works, and international tenders for the main construction works.

As shown in Plate P8, the detailed investigation and design works including the preparation of tender documents will be continued for 3.5 years. Local contractors will construct access roads and tunnels to the proposed dam site in the 2nd and 3rd years counting from the base year, while contractors for the main works will be selected within the 3rd year. Construction works of the main civil works will be started from the 4th year and the river diversion will be performed at the beginning of the 5th year. Supply and erection works of the hydromechanical facilities, electromechanical equipment and a 380 kV power transmission line will be started in the 8th year. All the construction works will be completed at the middle of the 10th year upon completion of the critical path works of the curtain grouting in the limestone block, and the commissioning tests will follow.

when the dam is constructed up to the elevation of 615 m (LWL) in the late 8th year, the river diversion tunnel will be closed to start initial filling of the reservoir. Construction works of the dam body will be completed in the late 9th year. In the late 10th year, the reservoir would be filled to half of the effective storage capacity, and the generating facilities will be commissioned.

The main work schedule will be as follows:

Work Items	from commencement of detailed design				
Relocation & access	1 year from 13th to 24th month				
Access road and tunnel to dam site	1 year from 25th to 36th month				
Access road and tunnel to diversion tunnel	1 year from 25th to 36th month				
Diversion tunnel	1 year from 37th to 48 month				
River diversion	at 49th month				

Number of months

the state of the s	
Dam excavation above crest	5 months from 47th to 51st
Dam excavation below crest	16 months from 53rd to 68th
Dam concrete	3 years from 69th to 104th
Grouting tunnel	56 months from 49th to 104th
Curtain grout	54 months from 61st to 114th

9.3 Construction Costs

9.3.1 Basic conditions and assumptions

Construction costs of the Project were estimated based on the price levels as of November 1989. The then exchange rate was US\$1.00 = TL2,300 = \$143.

The contractor's overhead and profit were assumed at 25 per cent of the direct construction cost. Customs were not included assuming that the Project would be encouraged with the Government's incentive measures. Value added tax of 10 per cent was added.

It was assumed that most of the construction machinery would be imported from the West Europe and/or Japan. The purchase prices were estimated based on the market prices, or were assumed at 80 to 85 per cent of the prices published. The prices included ocean freight and insurance costs, which were assumed at 0.05 times the purchase prices.

The concept and conditions on depreciation costs of construction machinery are different from country to country. Foreign contractors would have their own depreciation system depending on their country. After reviewing the

practice in Turkey, the depreciation costs were estimated with some adjustments for the depreciation period of equipment and costs for non-working time with reference to the standard in Japan.

No indirect cost was accounted for exploiting the riverbed deposits and quarrying rocks, and no right-of-way cost was considered.

To estimate interest during construction (IDC), an implementation mode by a public organization with an international soft loan combined with a commercial loan was assumed.

The following repayment conditions were assumed for the 2 loans:

(1) Loan-1

An international soft loan of the following conditions would be provided in hard currency including IDC for Loan-1:

- amount : 75 per cent of the eligible

cost, which excludes ordinary administration costs, taxes,

and so forth.

- interest rate : 2.9 per cent per annum

- loan period : 30 years including a grace

period

- grace period : the construction period, = 10

years

(B) Loan-2

The rest of the cost was assumed to be financed by a commercial loan including IDC for Loan-2 under the following conditions:

- interest rate : 8.0 per cent per annum

- loan period : 20 years including the grace

period

- grace period : 10 years

9.3.2 Construction Costs

Basic prices of labors, materials and equipment used in the cost estimate are shown in Tables 9.1 to 9.3. The estimated financial costs of the Project are given in Table 9.4, with a bill of quantities in Table 9.5.

IDC was calculated for the above loan conditions as shown in Table 10.4. The IDC for Loan-1 was estimated to be US\$51.6 million, and US\$54.5 million for Loan-2.

The financial costs of the Project were estimated at about US\$552 million including the VAT of US\$41 million and an IDC of US\$106 million. These consisted of about TL773 billion (equivalent to US\$336 million) of local currency portion and about US\$216 million of foreign currency portion, as broken down below:

(US\$ million at Nov. 1989 price levels)

Work Items	Foreign Portion	Local Portion	Total
1. Land acquisition	0.21	11.52	11.73
2. Direct construction cost	139.73	176.51	316.24
3. Administration & engineering	15.45	21.41	36.86
4. Physical contingency	14.59	26.00	40.59
5. Total construction cost	169.98	235.44	405.42
	•		
6. VAT (10 %)	17.00	23.54	. 40.54
7. IDC	28.90	77.20	106.10
8. Total investment costs	215.88	336.18	552.06

CHAPTER 10. PROJECT FEASIBILITY

10.1 Impacts on the Gezende Power Station

As described in Section 4.2 and 7.1, the Project will have both a firming-up effect and an adverse effect on the downstream power stations. These effects were assessed only for the Gezende power station and were reflected to the plan formulation study. The effects on the Kayraktepe power station were not taken into consideration as it is not yet in the construction stage.

These effects on the Gezende power station were assessed as summarized below for the proposed HWL of 675 m:

No.	Items	Unit	without Ermenek	with Ermenek	Increase
Firm	-up effect				
(1)	Firm energy	GWh	118	526	408
(2)	2ndary energy	GWh	448	115	-333
(3)	Annual energy	GWh	566	641	75
(4)	90% dependable power	MW	41	150	109
(5)	Annual benefit	Mil.\$	18.6	34.9	16.3
<u>Adve</u>	rse effect durin	g first	stage fi	lling	
(1)	Firm energy	GWh	118	118	- 1
(2)	2ndary energy	GWh	448	71	-377
(3)	Annual energy	GWh	566	189	-377
(4)	90% dependable power	MW	41	41	. •
(5)	Annual benefit	Mil.\$	18.6	9.8	-8.8

As shown in the table above, the Project would decrease the economic benefit of the Gezende power station by about US\$8.8 million a year during the initial filling period. After completion of the filling however, the Project will increase the Gezende benefit by US\$16.3 million per annum.

10.2 Economic Evaluation

(1) Economic costs

The financial construction costs of the Project were estimated as described in Section 9.3. The economic costs were estimated by adjusting the financial costs in the following way:

- (A) Price contingencies were not included in the economic costs as they were not included in the assessment of power benefits.
- (B) Compensation costs were excluded being transfer payments within the national economy of Turkey. There are few valuable non-movable assets in the proposed reservoir area except for the farmland. The agricultural production forgone was assumed to take place after the start of initial filling of the reservoir, and was capitalized to the starting year of initial filling with a discount rate of 9.5 per cent per annum.
- (C) In addition to the above 2 adjustments, all non-tradable goods were adjusted to economic costs; all tradable goods were adjusted to border prices. This was accomplished by applying a standard conversion factor (SCF) of 0.8 to the local currency cost. This SCF was adopted in accordance with that estimated by the World Bank for the nation's economy.

The economic costs were thus evaluated as summarized below:

(A) Construction cost : US\$346.4 million
(B) Production forgone : US\$6.6 million

(C) Operation

and maintenance cost : US\$0.71 million per yr

(2) Economic power benefit

The economic power benefit of the Project was assessed at US\$79.93 million per annum using the power values described in Section 3.6. Of the benefit US\$16.29 million or 20 per cent are attributable to the firming-up effect to the Gezende power station.

However, due to the adverse effects of initial filling of the large Ermenek reservoir on the Gezende power station, the power benefits after commencement of the initial filling will be as follows:

Year	Power	Bene	efit	(US\$	million)
1			-2.2	0	
2	.*	1.	-8.7	9	
3			10.7	7	
4			79.9	3	
	2		. •		4.
•	* .		, •*		
50		\$	79.9	3	

(3) Economic internal rate of return (EIRR)

The power values were evaluated in Section 3.6 with a discount rate of 9.5 per cent. This rate is the opportunity cost of capital in the energy sector of Turkey (OCC). The disbursement schedule was estimated in

accordance with the construction time schedule shown in Plate P8 (see Sub-section 7.3.5 for the disbursement schedule). The assessment period was taken as 60 years including the 10 years for the detailed design and construction works.

The power benefit and cost streams are shown in Table 10.1. The capitalized benefit will amount to US\$350.8 million at the level of the starting year of the detailed design; the cost US\$198.6 million; and the net benefit US\$152.2 million. The B/C ratio will amount to 1.76.

The EIRR of the Project was assessed at 14.9 per cent. This EIRR much exceeds the OCC of 9.5 per cent.

(4) Economic sensitivity

The economic sensitivity of the Project was examined for the following 5 cases of different costs and benefits:

Case-1: Investment costs increase by 10 per cent

Case-2: Investment costs increase by 20 per cent

Case-3: Relative increase of the fuel prices to other commodities at 20 per cent (in the base case it was assumed at 30 per cent)

Coal US\$52/ton ----> US\$48/ton

Natural gas US\$130/1,000 m³ ---> US\$120

Case-4: Case-1 + Case-3

Case-5: Case-2 + Case-3

In Cases-3, 4 and 5, the power values become US¢6.267 per kWh of the firm energy and US¢2.154 per kWh of the secondary energy.

The EIRR was obtained for the above 5 cases as summarized below:

Case	Economic Construction Costs (Mil.US\$)	Fuel Price in 2004 (US\$)	EIRR (%)
Base	346.4	Coal 52, NG 130	14.9
Case-1	381.0	Coal 52, NG 130	13.9
Case-2	415.7	Coal 52, NG 130	13.0
Case-3	346.4	Coal 48, NG 120	14.5
Case-4	381.0	Coal 48, NG 120	13.6
Case-5	415.7	Coal 48, NG 120	12.7

The Project will have EIRR much higher than OCC of 9.5 per cent for all the cases, that is, the economic feasibility will be sound against the possible changes in the future economic conditions.

10.3 Financial Analysis

The financial construction costs of the Project were estimated in Section 9.3 except for the price contingency and customs.

(1) Price contingency

The recent decade of 1980s had been highly inflationary for the Turkish economy. During this period the Government of Turkey has set long-term goals in which the market forces would be the determining factor of the nation's economy. One of the first programs of the newly elected government in 1983 was to gradually relax the exchange rates and to cut back most of the subsidies.

The wholesale price index (WPI), estimated by the State Institute of Statistics (SIS), was used to project the future inflation. The estimation of the WPIs has been based on long-term policy objectives as set by the Government of Turkey, in which the inflation rates are to be gradually decreased. These long-term plans were assumed herein as decreasing the rate of inflation stepwise over the next 10 years: by 20 per cent for 1990-1994; by 10 per cent for 1995-1999; to eventually attain an inflation rate of 10 per cent by 2000.

A breakdown of these projections is presented in Table 10.2. As seen from the figures, the price escalation will be tremendous for the construction period of 10 years of the Project, or would become 820 per cent in the 10 years. It is therefore considered wise not to include price contingencies in the financial cost estimate at this feasibility study stage, but to express all the costs and power tariff at the November 1989 fixed price levels.

(2) Government's incentive measures

The Government of Turkey publishes/revises investment incentive measures on an annual basis: Foreign Investment Regulation and Application Forms, Foreign Investment Directorate, the State Planning Organization (SPO). The institutional responsibility for determining and implementing the incentive programs are with SPO.

The most recently published version of these measures was in May 1989. Although the basic elements of each of the incentives do not change significantly, there are frequent refinements.

Based on the latest incentive measures, investment projects which may be eligible for an Incentive Certificate by SPO are those with a total fixed investment value over 150 million TL (approximately US\$65,000 in

mid-1989) in Priority Regions and 750 million TL (approximately US\$326,000 in mid-1989) in all other regions.

Since energy-related investments are not included in the investment list as ineligible for an Incentive Certificate, investment in the Project would be encouraged by the Government by benefits from the incentives.

The main form of incentives that are granted to energy related investments are:

- (A) 100 per cent customs exemption for all machinery and equipment needed for the investment.
- (B) Exemption from the value added tax (VAT) during the investment period. However, the cumulative amount of the VAT will be collected after completion of the investment period.

Accordingly, customs were not included in the financial costs. VAT of 10 per cent was added to the financial cost as the conditions for VAT exemption are not very clear.

(3) Power tariff and operating revenue

The power tariff has been often revised to adjust for the inflation. The latest tariff was effective from September 1, 1989. The average tariff per unit energy sold was TL131.23/kWh, equivalent to US¢5.7/kWh (US\$1.00=TL2,300). This average tariff seems to be rather low. It is of the same order as the generation cost of thermal power plants. If the costs for power transmission, distribution and the overhead expenses are included, the overall cost per sold energy would exceed this average tariff.

The operating revenue was, however, estimated with the latest average tariff of US¢5.7/kWh. The revenue was obtained by multiplying this tariff to the salable energy, which was obtained by deducting station use and transmission and distribution losses of 12 per cent in total. This loss rate was assumed based on the average rate of the overall national power system at 14.5 per cent, with an adjustment for the close location of the Project to the demand center.

No financial effect was taken into account as to the increase of firm energy output of the Gezende power station.

The operating revenue was then estimated at US\$52.9 million per annum.

(4) Financial internal rate of return (FIRR)

A financial cash flow table was prepared as shown in Table 10.3. The disbursement schedule was prepared based on the construction time schedule with consideration to the advance payment of 20 per cent and retention money of 10 per cent. FIRR was obtained at 8.7 per cent being slightly lower than the economic OCC. In spite of the high economic viability of the Project, it will need some financial arrangements like provision of soft loans.

The Government of Turkey has an implementing policy of energy related projects by Build-Operate-Transfer system (BOT) in conjunction with its privatization policy. However, as shown above, the Project would need some financial arrangements. Accordingly, an implementation mode by a public organization was assumed as described in Sub-section 9.3.2. In this implementation mode, the Government budget will not be input except for incentive measures.

The Project cash flow table was prepared as shown in Tables 10.4. The total loan amount including IDC was obtained to be about US\$386 million for Loan-1; US\$166 million for Loan-2; or US\$552 million in total. Both the two loans can be paid back out of the operating net income. Upon completion of the repayment to Loan-1, the accumulated operating surplus will amount to US\$270 million.

It is judged that the Project has a financial viability even for the present tariff of US¢5.7/kWh if it is implemented by an public organization with a soft loan.

CHAPTER 11. FURTHER STUDIES

11.1 Decision of Mode of Implementation

As examined in Section 10.3, the unit generation cost of electricity would be acceptable to TEK when the Project is implemented as a public project being financed with a soft loan. It is recommended that the Government of Turkey scrutinize and determine the mode of implementation of the Project at an early stage, so that the financial arrangement can be started.

11.2 Geological Investigations

Further geological investigation is necessary to ensure safe and economical design under such the condition that limestone is prevailing. At the proposed dam site it is necessary to clarify the conditions at the contact zone of the limestone block and the Görmel Formation near the proposed right end of the grout curtain in the right bank and also the underground conditions of the joint systems including faults. The extent, solution condition and mechanical properties of the limestone block for the proposed power house cavern should be examined by means of core boring, test adit and in-site rock test.

Drilling works will also be required at those structure sites as portal of work adits on the waterway routes, outlet of the tailrace tunnel, outdoor switchyard, the Erik headtank, penstock, power house, and inlet shaft sites.

Although EIE is carrying out some geological investigations in order to clarify the problems emerged during the course of study, it is assumed that a lot of time will be required to obtain all the information necessary for the

detailed design. It is recommended that a detailed schedule of geological investigation be prepared and the EIE's investigation be continued accordingly.

11.3 Hydrological Measurements

An automatic water level recorder was installed by ETE in July 1990 near the Ermenek dam site. It will be important to continue water stage observation using this recorder to clarify actual conditions of the daily water level changes due to snow-melt, as well as to collect and analyze information on the shape of the flood hydrograph. It is recommended that automatic raingauges be installed in the Ermenek river basin for clarification of the rainfall characteristics of shorter durations than 24 hour and the basin lag.

Suspended load measurements should be started at the proposed Erik intake weir site, to collect data necessary for the decisions on the necessity and design of a desilting basin.

11.4 Design Works

The Erik Diversion Scheme was designed at only a prefeasibility level, because this scheme was emerged during the progress of the Study. A thorough review of the design is necessary. The detailed design of the Project facilities including detailed construction planning should be started, so that the construction works of the access roads and temporary facilities can be commenced in a good timing.

11.5 Environmental Impact Study

The main environmental issues were identified and countermeasures to them were proposed based on investigations to date. As in any reservoir project, it is important

to have detailed social and environmental studies made so that future problems can be avoided by timely mitigation or avoidance. These studies should include a biological inventory study, fishery and tourism potential studies, and consultations, including questionnaire studies, with local people.

11.6 Effect on the Upper Ermenek Plans

The proposed Ermenek reservoir will extend beyond the Nadire dam site, or up to a point about 3 km downstream of the confluence of the Ermenek river and the Günder river. Accordingly, for the development of hydropower potential of the upper Ermenek river above the HWL of 675 m, a new planning study will be required.

Since no hydrological and geological surveys have been made yet, only a provisional idea conceivable for the upper Ermenek river is shown in Plate A38 for reference.

LIST OF REFERENCES

- 1. Main Economic Indicators, Turkey, SPO, January 1989
- 2. Statistical Yearbook of Turkey, SIS, 1987
- 3. Census of Population, 20.10.1985
- 4. 5th Five Year Development Plan (1985-1989), SPO
- Long-term Generation-Consumption Study (1994-2010), TEK, 1988
- 6. Long-term Development Plan of Generating Facilities for the Period up to 2010, TEK
- 7. World Development Report, World Bank, 1989
- Reconnaissance Report of Göksu Branch of Göksu River, EIE, 1984, (in Turkish)
- 9. Revised Reconnaissance Report of Dam and HPP on the Ermenek-Göksu River Upstream of Gezende Dam (330-600 m AMSL), EIE, 1985, (in Turkish)
- 10. Ermenek Stream Basin, the Preliminary Feasibility Report of Ermenek Dam and HPP, EIE, September 1987, (in Turkish)
- 11. Engineering Hydrology Report for Görmel Dam on Ermenek River in Göksu River System, EIE, 1985, (in Turkish)
- 12. Interim Geotechnical Report for Ermenek Dam Site, EIE, September 1987
- 13. Geophysical Report of Ermenek Dam Site, April 1987, (in Turkish)
- 14. Geophysical Study Report of Tunnel Route of Ermenek HES Project, May 1988, (in Turkish)
- 15. Feasibility Study of Gezende Baraji Ve Hidroelektik Santrali, EWI and DOLSAR, 1976
- 16. Göksu-Kayraktepe Dam and Hydroelectric Power Plant Project, Feasibility Report, EPDC Japan, SE-IS, TMB, SU-YAPI, 1982
- 17. Stratigraphy and Tectonic Evolution of the Central Taurides, Necdet Özgül, International Symposium on the Geology of the Taurus Belt, 1983

- 18. Earthquakes in Turkey, Emin Ilhan, Consulting Geologist, Ankara, Turkey
- 19. A Probabilistic Assessment of the Seismic Hazard in Turkey, K.Edrik, V.Doyuran, N.Akkas and P.Gülkan, Earthquake Engineering Research Center, Middle East Technical University, Ankara, Turkey
- 20. Manual for Expropriation Studies, Planning and Analysis Division, DSI, 1984
- 21. Price Prospects for Major Primary Commodities, 1988-2000, Volume I, Summary, Energy, Metals and Minerals, the World Bank, Feb. 1989
- 22. Foreign Investment and Application Forms, Foreign Investment Directorate, SPO, Ankara, Turkey, May 1989

TABLES

Table 1.1 NAME LIST OF ETE COUNTERPART PERSONNEL (1/2)

Project Department

Mr. Nezih SAYAN

: Head of Project Department

Mr. Engin ERBERİK

: Chief of Reconnaissance and Planning Div.

Mr. Sükrü KARABİBER

: Chief of Dam and HPP Div.

Mr. Necati KUŞKONMAZ

: Chief of Run-of-River HPP

Div.

Mr. Yildirim BARIK

: Chief of Basin Planning

Div.

Mr. Mehmet GÜNGÖR

: Chief of Electrical and

Mechanical Div.

Mr. Erdem ÖZYURT

: Chief of Mapping Div.

Mr. Volkan DİPÇIN

: Civil Engineer

Mr. Muharrem AYBAKIR

: Electrical Engineer

Ms. Muâllâ DEMİRDELEN

: Mechanical Engineer

Ms. Sule AKÇAY

: Civil Engineer

Ms. Gülgün GÜRÇAN

: Civil Engineer

Ms. Hatice TURAN

: Civil Engineer

Geology and Drilling Department

Mr. Aydin KIRMACIOĞLU

: Head of Geology and Drilling Department

Mr. Vedat ÇAĞLAYIK

: Geological Engineer

Mr. Orhan YAĞCI

: Chief of Geotechnical Service Div.

Mr. Yüksel TAN

: Chief of Rock, Foundation and Laboratory Div.

Mr. Mahmut KIRIŞ

: Chief of Drilling Div.

Mr. Osman DEMIRAG

: Chief of Geophysic Div.

Mr. Seyhan ÖNÇ

: Geological Engineer (MSc) Responsible Geologist

Table 1.1 NAME LIST OF ETE COUNTERPART PERSONNEL (2/2)

Hydrological Survey Department

Mr. Mete TÜRKSOY	: Head of Hydrological Survey Department
Mr. Sabahattin YALKIN	: Meteorological Engineer, Hydrologist
Mr. Hüseyin GÜRİPEK	: Chief of Hydrometric Evalu- ation Division
Mr. Halil MERMER	: Chief of Hydrometric Observation Division
Mr. Adil ALIŞIK	: Chief of Sediment Survey Div.
Mr. Mehmet TANRIKULU	: Chief of Project Hydrology Div.
Mr. Hayati HANÇER	: Meteorological Engineer, Hydrologist

Table 3.1 INSTALLED CAPACITIES OF GENERATING PLANTS BASED ON ENERGY SOURCES (1988)

					Prop	Proportion in Turkey	rkey
		Power	Self	Turkey			
	TEK	Companies	Generation	Total	*	34	36
			7				
(1) Solid Fuel							
Hard Coal	129.0	•	52.6	181.6	3.9	2.2	£.,
Lignite	4,328.0	•	128.4	4,456.4	96.1	53.7	30.7
Subtotal	4,457.0	. 1	181.0	4,638.0	100.0	55.9	31.9
(2) Usunid Fuel							`:
Fuel Oil	0.089	106.0	761.6	1,547.6	74.0	18.6	10.7
Motorin, Gas Turbine	333.6		1.	333.6	16.0	0.4	2.3
Diesel	5.6	•	204.8	210.4	10.0	2.5	1.4
Subtotal	1,019.2	106.0	966.4	2,091.6	. 100.0	25.2	14 4
(3) Others							
Geo Thermal	15.0	•	*.	15.0	1.0	0.2	0.1
Natural Gas	1,555.2	•		1,555.2	0.00	18.7	7 0.
Subtotal	1,570.2	•	J .	1,570.2	100.0	18.9	10.8
(4) Thermal Total	7,046.4	106.0	1,147.4	8,299.8	•	100.0	57.2
(5) Hydro Total	5,935.1	272.4	10.8	6,218.3	•	•	42.8
(6) Grand Total	12,981.5	378.4	1,158.2	14,518.1	ŧ	•	100.0

Table 3.2 DEVELOPMENT OF INSTALLED CAPACITY

(Unit: MW)

		Turkey	\\ \alpha_{i}			+ E K		Power	Power Companies	SS	Self Ge	Self Generation,	etc.	
ear	Year Thermal	Hydro.	Total	Increase (%)	Thermai	Hydro.	Total	Thermal Mydro.	Hydro.	Total	Thermal	Hydro.	Total	
1975	1975 2,407.0 1,779.6	1,779.6	4,186.6	. 1	1,708.5	1,520.7	3,229.2	106.0	219.8	325.8	592.5	39.1	631.6	
92	76 2,491.6	1,872.6	4,364.2	2.4	1,771.1	1,613.8	3,384.9	106.0	219.8	325.8	614.5	39.0	653.5	
4	2,854.6	1,872.6	4,727.2	8.3	2,071.1	1,613.8	3,684.9	106.0	219.8	325.8	0.879	39.0	717.0	
82		1,880.8	4,868.7	3.0	2,178.8	1,622.0	3,800.8	106.0	219.8	325.8	703.1	39.0	742.1	
82	2,987.9	2,130.8	5,118.7	5.1	2,178.8	1,872.0	4,050.8	106.0	219.8	325.8	703.1	39.0	742.1	
80	2,987.9	2,130.8	5,118.7	0.0	2,178.8	1,872.0	4,050.8	106.0	219.8	325.8	703.1	39.0	742.1	
జ	3, 181.3	2,356.3	5,537.6	8.2	2,344.7	2,097.5	4,442.2	106.0	219.8	325.8	730.6	39.0	9-692	
엃	3,556.3	3,082.3	6,638.6	19.9	2,719.7	2,823.5	5,543.2	106.0	219.8	325.8	730.6	39.0	769.6	
8	3,695.8	3,239.3	6,935.1	4.5	2,937.6	2,998.5	5,936.1	106.0	218.4	324.4	652.2	7 72	9.479	
8	4,584.3	3,874.8	8,459.1	22.0	3,542.9	3,644.2	7,187.1	106.0	218.4	324.4	935.4	12.2	9.7.6	
88	5,244.3	3,874.8	9,119.1	7.8	4,417.9	3,644.2	7,792.1	106.0	218.4	324.4	7.066	12.2	1,002.6	
8	86 6,235.2	3,877.5	10,112.7	10.9	5,141.8	3,644.2	8,786.0	106.0	222.4	328.4	787.4	10.9	998.3	
87	87 7,489.3	5,003.3	12,492.6	23.5	6,290.8	4,720.1	11,011.0	106.0	772.4	378.4	1,092.4	10.8	1,103.2	
88		8,299.8 6,218.3	14,518.1	16.2	7,046.4	5,935.1	12,981.5	106.0	272.4	378.4	1,147.4	10.8	1,158.2	
					٠.									

TEL

Table 3.3 DISTRIBUTION OF ELECTRICAL ENERGY GENERATION BY PRIMARY ENERGY SOURCES

Year	Hard Coal	Lignite	Oil Products	Other <u>/</u> 1 Fuels	Hydraulic	Total Generation
	(%)	(%)	· : (%)	(%)	(%)	(GWh)
1975	9-1	17.2	34.5	1.4	37.8	15,623
76	7.4	16.3	29.6	0.9	45.8	18,283
77	6.2	17.6	33.4	1.1	41.7	20,565
78	5.6	20.1	30.7	0.6	43.0	21,726
79	4.7	23.8	25.1	0.6	45.8	22,522
80	3.9	21.7	25.0	0.6	48.8	23,275
81	3.6	21.3	23.6	0.4	51.1	24,673
82	3.4	20.8	22.4	•	53.4	26,552
83	2.9	28.5	27.1	•	41.5	27,347
84	2,3	30.7	23.0	0.1	43.9	30,613
85	2.1	41.8	20.7	0.2	35.2	34,219
86	2.0	47.0	17.6	3.5	29.9	39,695
87	1.4	38.4	12.4	5.8	42.0	44,353
88	0.7	25.3	6.9	6.8	60.3	48,049

fire wood generation upto 1981 and natural gas and geothermal after 1984.
However, the share of geothermal is nearly zero in the period.

Table 3.4 TURKEY'S DEVELOPMENT OF ENERGY GENERATION

	,					Distribution	of C	(Unit: GWh)
						~ 4 !	wer or	Self
Thermal Hydro. Total In	H	ncrease (%)	Import	Gross Supply	Increase (%)	*****	nies	ration etc.
9,719 5,904 15,623		ı	96	15,719	1. 1	12,845	1,730	1,048
9,908 8,375 18,283		17.0	332	18,615	18.4	15,454	1,639	1,190
11,973 8,592 20,565		12.5	492	21,057	13.1	17,230	1,716	1,617
12,361 9,365 21,726		5.6	621	22,347	6.1	17,968	1,875	1,883
12,218 10,304 22,522		3.7	1,044	23,566	5.5	18,934	1,554	2,034
11,927 11,348 23,275 3		m	1,341	24,616	4.5	19,414	1,610	2,251
12,057 12,616 24,673 6		0:0	1,616	56,289	6.8	20,588	1,937	2,148
13,385 14,167 26,552 7		9.	1,773	28,325	7.7	23,243	1,590	1,719
16,004 11,343 27,347		3.0	2,221	29,568	4.4	23,689	1,618	2,040
17,187 13,426 30,613 1	뻔	1.9	2,653	33,266	12.5	26,686	1,691	2,237
22,174 12,045 34,219 11	Н	œ	2,142	36,361	9.3	30,249	1,592	2,378
27,822 11,873 39,695 16	16	0	777	40,472	11.3	35,470	1,454	2,771
25,735 18,618 44,353 1.	ក	1.7	572	44,925	11.0	36,679	1,592	3,082
19,099 28,950 48,049		8.3	381	48,430	7.8	43,014	1,858	3,177

Source: TEK

Table 3.5 DEVELOPMENT OF POWER LINE LENGTH IN TURKEY

		Transm	ission Li	nes		Distribution Lines	. *
	380kV	220kV 1/	154kV	66kV <u>2</u> /	Total	3/, 4/	Grand tota
1979	2,870	93	11,393	2,436	16,792	161,678	178,470
80	2,870	93	12,937	2,447	18,347	188,781	207,128
81	2,918	93	12,818	2,418	18,247	198,869	217,116
82	3,679	93	13,388	2,279	19,439	213,473	232,912
83	4,068	93	14,247	2,301	20,709	228,039	248,748
84	4,485	15.7	15,184	2,302	21,987	250,743	272,730
85	4,995	15.7	16,472	2,179	23,662	279,014	302,676
86	5,767	95.7	17,468	2,006	25,257	309,815	335,072
87	6,606	87.5	17,985	1,919	26,598	344,839	371,437
88	7,202	87.5	18,832	1,772	27,894	381,850	409,744

^{1/:} For interconnection with foreign power systems only.

^{2/: 66}kV lines were converted to 33kV where demand is small.

^{3/: 34.5}kV and lower tension lines.

^{4/:} Village electrification lines are included. For 1979-85 period, the total is obtained assuming 5km line length for every village. After 1986, actual length is used.

DEVELOPMENT OF QUANTITY AND CAPACITY OF TRANSFORMER IN TURKEY Table 3.6

	88	380kv, 3/	-	154kV	9	66kV	Sch	Sub Total	Distrib	Distribution Tr.4/	F	Total
Capacity	.₹	Capacity	ifty	Capacity	ţţ	Capacity	ity	Capacity	oi ty	Capacity	ity	
Year	Year Q'ty	(MVA)	o.ty	(MVA)	Q ty	(MVA)	Q*ty	(MVA)	Q'ty	(MVA)	a'ty	(MAA)
1979	17	2,610	248	067'9	262	1,526	558	10,626	34,070	9,241	34,628	19,867
8	80 20	3,060	279	8,067	562	1,544	294	12,671	37,205	11,066	37,799	23,738
8	55	3,360	594	2,224	567	1,571	610	13,155	38,821	11,402	39,431	24,557
82	82	3,810	307	8,585	262	1,585	629	13,981	41,589	13,060	42,218	27,041
83	&	4,410	323	9,219	562	1,691	651	15,320	45,212	13,411	45,863	28,731
ž	30	4,530	354	10,945	298	1,731	682	17,206	47,298	13,566	47,980	30,772
85	38	5,730	392	11,843	592	1,753	269	19,385	51,385	13,823	52,078	33, 149
8	63	7,680	427	13,702	167	1,358	643	22,740	62,639	14,612	63,282	37,352
87	55	8,610	450	15,093	159	1,320	759	25,023	65,317	15,499	65,981	70,522
8	26	8,660	478	16,237	150	1,295	789	26,192	80,632	17,997	81,316	44,189

Figures do not include transformers for voltage regulation, raising and lowering. Quantity and capacity of station service transformers are not included in the total. Quantity and capacity of 220kV transformers are included in the figures for 380kV transformers. 34.5kV and lower tension transformers include village electrification transformers. For 1979-85 period, the totals are obtained assuming 50kVA for every village electrification transformer. After 1986, actual values are used. Note:

Table 3.7 DEVELOPMENT OF NUMBER OF VILLAGE WITH ELECTRICITY BY YEARS

		Total village number	Number of elec- trified village in the year	village with electricity at the end of the	Percentage of village with electricity
Year			· .	year	
1979		-	2,466	15,460	42.8
1980	٠.	36,155	2,885	18,345	50.7
1981		, -	1,466	19,811	54.8
1982		•	2,221	22,032	60.9
1983		-	2,404	24,436	67.6
1984		:_	2,079	26,515	73.3
1985	•	36,155	4,076	30,591	84.6
1986		. •	3,294	33,885	93.7
1987		35,187	672	34,557	98.2
1988		35,167	227	34,834	99.0

Note: Also covers Sub-District.

Table 3.8 VILLAGE ELECTRIFICATION WORK
OF POWER DISTRIBUTION ENTERPRISES
AND NUMBER OF ELECTRIFIED VILLAGES
(1988)

ty the second		10214	VILL	ages Witho	ut Electric	ity
Enterprise	Total No. of Village	Villages with (%) Electricity	Install. Work Underway	Install. Work not Initiated		Total
Bosphorus	938	938 (100)	T -	•	_	-
Southern- Marmara	2,284	2,272 (99.5)	5	1	6	12
Aegean	2,932	2,914 (99,4)	2	1	15	18
Torostar	1,688	1,688 (100)	-	•	-	* : -
Erciyes	1,455	1,451 (99.7)	1	-	. 3	4
KahGazi	2,170	2,143 (98.8)	14	3	10	27
Eastern- Anatoria	2,374	2,318 (97.6)	52	3	1	56
Kízikirmak	1,956	1,946 (99.5)	•	-	10	10
Ondokuzmayis	2,141	2,135 (99.7)	2	1	3	6
Porsuk	1,665	1,664 (99.9)	-	-	1	- 1
Mediterranean	945	945 (100)	•	-	•	•
Meram	1,114	1,113 (99.9)	-	-	1 %	1
Central- Anatolia	3,120	3,113 (99.8)	· -	1	. 6	7
Dicle (Tigris)	1,924	1,832 (95.2)	26	22	44	92
Firat (Euphrates)	1,305	1,254 (96.1)	27	5	- 19	51
Van Golu (Lake Van)	1,366	1,341 (98.2)	4	8	13	25
Eastern Black Sea	2,167	2,159 (99.6)	6	-	2	8
Ilgaz	1,839	1,839 (100)	-	•	-	-
Sakarya	709	705 (99.4)	· -	-	. 4	4
Malatya	512	504 (98.4)	4	•	4	8
Erzinkan	563	560 (99.5)	*		3	-3
Turkey	35,167	34,834 (99.1)	143	45	145	333

Source: 1988 Annual Report of TEK

Table 3.9 SUMMARY OF POWER SYSTEM OPERATION

L @	Gross	installed Capacity	Peak Demand	Equivalent Peak Kour	Utilization Factor	Annual Load Factor
	(GWh)	(MM)	CMM)	(hr, 2/4)	(%, 4/3)	(%, 5/8,760 hr)
	5	× .	4	5	9	
Ĕ	15,623	4,186.6	2,872.4	5,439	9.89	62.1
92	18,283	4,364.2	3,137.9	5,826	71.9	66.3
7	20,565	4,727.2	3,278.8	6,272	7.69	71.6
78	21,726	4,868.7	3,602.4	6,031	74.0	8.89
82	22,521	5,118.7	3,543.6	6,356	69.2	72.5
80	23,275	5,118.7	3,772.1	6,170	73.7	70.4
83	24,673	5,537.6	3,872.6	6,371	6.9	72.7
82	26,552	6,638.6	4,308.2	6,163	64.9	70.1
83	27,347	6,935.1	4,419.0	6,188	63.7	70.6
78	30,613	8,459.1	5,108.3	5,993	7.09	68.2
85	34,219	9,119.1	5,409.9	6,325	59.3	72.2
*	39,695	10, 112.7	6,340.5	6,261	62.7	71.5
87	44,353	12,492.6	7,312.0	990'9	58.5	69.2
8	48.049	14,518,1	7.613.0	6.311	52.4	72.0

Note: Gross generation in 1989 was 51,503 GWh.

Table 3.10 CONSUMPTION OF ELECTRIC POWER

ECONOMIC ACTIVITY	1979	1980	1981	1982	1983	1984	1985	1986
Total	19,663.1	20,398.2	22,030.0	23,586.8	24,464.2	27,671.1	30,250.0	33,540.0
Agriculture, forestry hunting and fishing	149.0	160.3	168.9	187.7	197.2	223.1	243.9	280.4
Coal and lignite mining	548.5	557.3	567.0	620,4	651.8	757.2	806.0	7.506
Mining industries other than coal and lignite mining	202.2	182.2	196.7	184.4	193.7	219.0	239.5	273.5
Food, beverage and tobacco industries	1,487.2	1,539.4	1,587.9	1,751.0	1,809.5	2,046.2	2,236.8	2,490.1
Manufacture of textiles, leather and clothing	1,843.4	1,740.4	1,955.3	2,097.1	2,163.1	2,496.9	2,674.7	2,985.6
Manufacture of wood, paper and allied industries	982.0	1,021.6	1,112.0	1,157.4	1,215.9	1,395.4	1,503.5	1,670.0
Manufacture of rubber products	330.8	336.8	368.7	473.8	8.792	563.1	615.5	4.289
Manufacture of chemicals	1,522.4	1,522.2	1,716.9	1,779.7	1,839.7	2,080.9	2,305.1	2,565.8
Manufacture of eartherware and cement	1,977.2	2,001.7	2,286.4	2,358.1	2,407.3	2,722.8	2,976.7	3,308.4
Iron and steel basic industries	1,647.1	1,824.3	1,809.7	2,020.5	2,072.7	2,344.4	2,613.4	2,904.6
Non-ferrous metal basic industries	1,358.6	1,518.5	1,743.6	1,711.2	1,787.7	2,022.0	2,210.7	2,451.1
Manufacture of electrical machinery and transport equipment	396.3	390.2	459.5	518.6	544.8	656.4	718.7	799.9
Manufacturing industries not elsewhere classified	217.0	186.7	249.0	290.0	304.7	344.6	376.9	417.9
Building and public works	29.8	186.7	189.2	235.4	247.4	279.8	305.9	339.2
Public administration and public utilities	1,940.9	1,879.9	1,957.4	2,124.1	2,171,5	2,456.2	2,685.1	3,171.5
Commerce, services and handicrafts	1,345.3	1,371.2	1,494.7	1,686.0	1,751.2	1,980.8	2,165.3	2,271.0
Transportation and communication	193.6	190.0	203.6	236.4	2.872	291,3	307.4	339.9
Public illumination	290.5	289.5	298.4	309.0	333.1	356.7	386.9	462.3
Households	3,201.3	3,499.3	3,665.1	3,846.0	4,026,4	4,454.3	4,878.0	5,220.7

Table 3.11 RECEIVED ENERGY IN KONYA AND KARAMAN (1988)

	Item	Received Energy (MWh)	Sent out Energy (MWh)	Loss (%)
À.	Substations			
	Konya I	216,740	216,740	-
	Konya II	100,093	96,194	3.9
	Karaman	64,779	64,137	1.0
	Ereģli	59,307	56,923	4.1
	Seydişehir	48,540	46,321	4.6
	Akşehir	46,328	43,859	5.4
	Ladik	43,936	41,572	5.4
	Cihanbeyli	32,902	30,437	7.5
	Çurma	28,394	28,796	-1.4
	Alibeyhöyügü	11,238	10,096	9.8
	Göksu	9,065	7,399	18.4
	Karasinir	8,809	7,785	11.7
•	Subtotal	670,124	650,259	3.0
В.	Other Provinces			
	Received	2,275		and the second
	Sent out	5,315		· _
	bene out	3,343		
c.	Small Hydro	4,517	-	-
D.	Total	671,601	-	-

Source: TEK, Meram Power Distribution Company

Table 3.12 CONSUMED ENERGY IN KONYA AND KARAMAN (1988)

*	Category	Consumed Energy (MWh)	Composition (%)
1.	Official Department	29,893	5.0
2.	Household	204,229	33.9
3.	commerce	29,637	4.9
4.	Small Industry	129,376	21.5
5.	Big Industry	92,888	15.4
6.	State enterprise	48,028	8.0
7.	Construction	3,293	0.6
8.	Agriculture Irrigation	24,299	4.0
9.	Municipality Waterworks	3,629	0.6
10.	Village Water- works	1,684	0.3
11.	Company Employees	1,738	0.3
12.	Charitable Institution	1,732	0.3
13.	Various Selling	5,316	0.9
14.	Interior Illumi- nation	198	0.0
l5.	General Illumni- nation	25,633	4.3
16.	TEK	1,305	0.2
	Total	602,878	100.0

Source: TEK, Meram Power Distribution Company

Table 3.13 (1/3) POWER TARIFF STRUCTURE

(Valid from 1/09/1989)

FOR GENERATION - TRANSMISSION ENTERPRISE

ACTIVE ENERGY	PEAK			POWER	EXCESS POWER	REACTIVE ENERGY
(TL/kWh)	17-22	22-06	06-17	(TL/kW)	(TL/kH)	(TL/kVARh)
	·	 		·		
108.00	106.00	73.00	108.00	4,900.00	7,200.00	47.00
127.00	190.00	85.00	127.00	5,850.00	8,600.00	56.00
133.00	197.00	90.00	133.00	6,100.00	9,100.00	58.00
94.00	135.00	66.00	94.00	3,960.00	7,700.00	41.00
	<u> </u>		L			
120.00	1	Γ	<u> </u>	r	1	47.00
141.00						56.00
148.00				٠		58.00
91.70				· · · · · · · · · · · · · · · · · · ·		
	ENERGY (TL/kWh) 108.00 127.00 133.00 94.00 120.00 141.00 148.00	108.00 106.00 127.00 190.00 133.00 197.00 94.00 135.00 120.00 141.00	ENERGY (TL/kWh) 17-22 22-06 108.00 106.00 73.00 127.00 190.00 85.00 133.00 197.00 90.00 94.00 135.00 66.00 120.00 141.00 148.00	ENERGY (TL/kWh) (TL/kWh) 17-22 22-06 06-17 108.00 106.00 73.00 108.00 127.00 190.00 85.00 127.00 133.00 197.00 90.00 133.00 94.00 135.00 66.00 94.00 120.00 141.00 148.00	ENERGY (TL/kWh) (TL/kWh) 17-22 22-06 06-17 (TL/kW) 108.00 106.00 73.00 108.00 4,900.00 127.00 190.00 85.00 127.00 5,850.00 133.00 197.00 90.00 133.00 6,100.00 94.00 135.00 66.00 94.00 3,960.00 120.00 141.00 148.00	ENERGY (TL/kWh) POWER (TL/kWh) 17-22 22-06 06-17 (TL/kW) (TL/kW) 108.00 106.00 73.00 108.00 4,900.00 7,200.00 127.00 190.00 85.00 127.00 5,850.00 8,600.00 133.00 197.00 90.00 133.00 6,100.00 9,100.00 94.00 135.00 66.00 94.00 3,960.00 7,700.00 120.00 141.00 148.00

Table 3.13 (2/3) POWER TARIFF STRUCTURE

FOR DISTRIBUTION ENTERPRISES

	· · · · · · · · · · · · · · · · · · ·	·			· .		
) TWO-PART TARIFF Industry				:			
he provinces having priority in development	115.00	168.00	80.00	115.00	5,200.00	8,600.00	66.00
ther provinces	136.00	200.00	93.00	136.00	6,200.00	10,200.00	77.00
stanbul, Kocaeli, Izmir, Ankara, Bursa, Adana	143.00	210.00	97.00	143.00	6,500.00	10,750.00	80.00
rc ovens	94.00	135.00	66.00	94.00	3,960.00	7,700.00	41.00
Organized industrial and small industrial d	istricts						
he provinces having priority in development	109.00	160.00	74.00	109.00	5,000.00	8,300.00	61.00
other provinces	128.00	190.00	87.00	128.00	5,900.00	9,700.00	72.00
stanbul, Kocaeli, Izmir, Ankara, Bursa, Adama	135.00	198.00	93.00	135.00	6,200.00	10,200.00	77.00
) ONE-PART TARIFF Industry							
he provinces having priority in development	128.00	,			· -		66.00
ther provinces	151.00						77.00
stanbul, Kocaeli, Izmir, Ankara, Bursa, Adana	159.00	t))	80.00
Organized industrial and small industrial d	istricts						
he provinces having priority in development	120.00	ii				[61.00
ther provinces	142.00	:			1 (a)		72.00
stanbul, Kocaeli, Izmir, Ankara, Bursa, Adana	150.00	L1		L		i	77.00
						1 1.0	<u> </u>
OUSEHOLDS							
-up to and including 150 kWh in a month	85.00	7 * 1			, 1		
-over 150 kWh in a month	185.00	÷					
ommerce - state organization - office	164.00						77.00
tate and public establishments - sport nstallations	115.00	٠					
onstruction sites and temporary subscribers	155.00					4	77.00
ommon parts of buildings	135.00						
ouseholds groups to which whole sale elling is made	135.00		•				
gricultural irrigation	48.00					* * * * * * * * * * * * * * * * * * *	
omestic water for provinces and counties	151.00					:	77.00
omestic water for villages	48.00						
illages and subscribers of village	85.00					The second	
ittages and subscribers of vittage							

Table 3.13 (3/3) POWER TARIFF STRUCTURE

NOTES:

- For electricity consumption of subscribers with arc oven in rolling-mills and elsewhere, industrial tariff shall be applied.
- 2) When measurement is made at the 0.4 kV side, to all items in tariffs 3% price increment shall be applied.
- 3) To the households, offices of the state establishment and organizations, public sport installations, prayer rooms, charities, embassies, public associations, common parts of households, household groups to which whole sale selling is made, villages, villages' subscribers, public part of villages and domestic water installations of villages having total installed capacity of 500 kVA or less than 500 kVA, reactive energy tariff shall not be applied.
- 4) Arc ovens tariff shall be applied at the whole voltage levels identically.
- 5) To the prayer rooms, charities and public associations, the tariff used for state and public organizations and sport installations shall be applied.
- 6) To the subscribers, inhabiting within the villages and having total installed capacity of 100 kVA or less than 100 kVA, the tariff used for villages and village subscribers shall be applied.

Table 3.14 (1/2) LONG-TERM POWER DEMAND FORECAST (High Scenario)

Year	Peak Demand	Growth	Required	Growth
1002	I out Domain	Rate	Energy	Rate
	(MW)	(%)	(GWh)	(%)
1989	9,250		57,925	
1990	10,370	12	64,910	12
1991	11,480	11	71,885	10
1992	12,650	10	79,200	10
1993	13,940	10	87,260	10
1994	15,485	11	96,140	10
1995	17,060	10	105,930	10
1996	18,695	9.6	115,710	9
1997	20,485	9.5	126,790	9.6
1998	22,450	9.6	138,940	9.6
1999	24,600	9.6	152,250	9.6
2000	26,955	9.5	166,830	9.6
2001	28,825	7	177,020	6
2002	30,825	7	189,310	7.
2003	32,965	7	202,450	7
2004	35,255	7	216,500	. S
2005	37,700	7	231,530	7
2006	40,320	7	247,600	** pr -> 7
2007	43,115		264,790	7
2008	46,110	7	283,170	7
2009	49,310	7	302,830	7
2010	52,730	7	323,850	7

Average Growth Rate: 8.5% per annum

Source: 1988 Long-Term Generation-Consumption Study (1994-2010), TEK

Table 3.14 (2/2) LONG-TERM POWER DEMAND FORECAST (Low Scenario)

* /				
Year	Peak Demand (MW)	Growth Rate (%)	Required Energy (GWh)	Growth Rate (%)
1989	8,870		55,545	-
1990	9,860	11	61,760	11
1991	10,890	10	68,180	11
1992	12,020	10	75,260	10
1993	13,270	10	83,080	10
1994	14,815	10	91,785	10
1995	16,335	10	101,210	10
1996	17,820	9	110,610	9
1997	19,435	9	120,640	9
1998	21,195	9	131,575	9
1998	23,115	9	143,505	9
2000	25,210	9	156,515	9
2001	27,160	8	165,290	6
2002	29,265	8	178,085	8
2003	31,530	8	191,865	8
2004	33,970	8	206,715	8
2005	36,600	8	222,710	8
2006	39,430	8	239,945	8
2007	42,480	8	258,515	8
2008	45,770	8	278,520	8
2009	49,310	8	300,075	8
2010	53,125	8	323,295	8

Average growth rate: 8.7% per annum

Source: 1988 Long-Term Generation-Consumption Study (1994-2010), TEK

Table 3.15 (1/2) GROWTH RATE OF GDP AND ENERGY CONSUMPTION (Middle Income Countries, per Capita GDP: US\$500-6,000)

	GDP Gr	owth (%)	Energy Co Growth (%	nsumption
Country	1965-80	1980-87	1965-80	
Lower Middle In	come Count	ries (Per C	apita GDP:	500-2,000)
	•			
1. Philippine	5.9	-0.5	5.8	-1.4
2. Morocco	5.4	3.2	7.9	2.5
3. Egypt	6.8	6.3	6.2	6.6
4. Thailand	7.2	5.6	10.1	7.3
5. Turkey	6.3	5.2	8.5	7.3 (9.7
6. Colombia	5.6	2.9	6.0	2.1
7. Chile	1.9	1.0	3.0	1.5
3. Peru	3.9	1.2	5.0	0.2
9. Jordan	-	4.3	9.7	7.9
10.Syria	8.7	0.3	12.4	4.4
11.Malaysia	7.4	4.5	6.7	6.2
12.Mexico	6.5	0.5	7.9	0.6
13.South Africa	4.1	1.0	4.3	3.7
14.Roland	-		4.8	0.9
Average	5.7	2.1	5.9	2.4
Higher Middle I	ncome Coun	tries (Per	Capita GDP:	2,000-6,000
1. Brazil	9.0	3,3	9.9	4.0
2. Hungary	5.6	1.7	3.8	1.1
3. Argentine	3.5	-0.3	4.3	1.5
4. Yugoslavia	6.0	1.5	6.0	3.2
5. Algeria	7.5	3.8	11.9	5.3
5. Korea	9.5	8.6	12.1	5.9
7. Portugal	<u>-</u>	1.4	6.5	2.7 (4.0
3. Venezuela	3.7	0.2	4.6	2.3
Greece	5.6	1.4	8.5	2.7 (4.2
Average	6.7	3.4	7.3	3.0

Note:

Source: World Development Repot 1989, World Bank

^{1:} The average includes other countries not shown in the above table.

^{2: ()} shows growth rate of electric energy consumption for the period of 1980-87, 1989 OECD statistics.

Table 3.15 (2/2) GROWTH RATE OF GDP AND ENERGY CONSUMPTION (High Income Countries, per Capita GDP: US\$6,000)

	GDP Gr	owth (%)	Energy Consumption Growth (%)			
Country	1965-80	1980-87	1965-80	1980-87		
2 (2-1-	4 6	2 1	<i>c</i>	1 0 /0 7		
1. Spain	4.6	2.1	6.5	1.9 (2.7		
2. Italy	3.8	2.1	3.7	0.0 (1.2		
3. England	2.4	2.6	0.9	1.1 (0.8		
4. Australia	4.2	3.2	5.0	0.6 (4.7		
5. Belgium	3.9	1.3	2.9	0.1 (2.4		
6. Netherlands	4.1	1.5	5.0	1.3 (0.8		
7. Austria	4.3	1.6	4.0	0.9 (2.7		
8. France	4.3	1.6	3.7	0.6 (5.6		
9. W. Germany	3.3	1.6	3.0	0.2 (1.8		
10.Finland	4.0	2.8	5.1	3.1 (4.0		
11.Denmark	2.9	2.5	2.4	1.0 (1.4		
12.Canada	5.0	2.9	4.5	0.9 (4.1		
13.Sweden	2.9	1.3	2.5	2.3 (6.2		
14.Japan	6.3	3.8	6.1	1.7 (3.2		
15.Norway	4.4	3.7	4.1	2.7 (3.1		
16.USA	2.7	3.1	2.3	0.1 (1.7		
17.Switzerland	2.0	1.7	3.1	2.0 (2.8		
OECD Average	3.6	2.7	3.0	0.5		

Note:

- The average includes other countries not shown in the above table.
- 2. () shows growth rate of electric energy consumption for the period of 1980-87, 1989 OECD statistics.

Source: World Development Report 1989, World Bank

Table 3.16 COMPARISON OF VARIOUS DEMAND FORECASTS

		_c			~	***************************************																•		
נו	Scenario	Growth (%)	 - -		7.0	•	•	٠		٠	. •	٠	•	•		•	•	٠	•	٥	•	7.0	٠	•
s Forecast	Low Scel	Energy (GWh)	2,06	5,70	59,606	3,77	8,24	0,02	8,13	3,60	9,45	5,71	02,41	9,58	17,25	25,46	34,24	43,64	53,69	64,45	75,96	88,28	01,46	15,56
Team!	Scenario	Growth (%)	1		8 .S			•	٠	•			•				٠			•	•	•	•	•
	High Scer	Energy (GWh)	2,06	6,48	61,289	6,49	2,15	8,28	4,43	2,15	66,6	08,49	17,71	7,71	38,57	50,35	63,13	76,99	92,04	08,36	26,07	45,29	66,14	88,76
F'cast_1	Low S.	Energy (%)	2,06	7,79	64,145	0,56	7,61	5,38	3,91	02,37	11,58	21,62	32,57	4,50	53,17	65,42	78,66	92,95	08,39	25,06	43,06	62,51	83,51	06,19
Adjusted	High S.		2,06	8,31	64,140	0,55	7,61	5,37	3,91	02,36	12,18	22,95	34,76	7,70	56,56	67,52	79,24	91,79	05,21	19,58	34,95	51,40	00'69	87,83
t,	Scenario	Growth (%)			다 다					σ	O,	o	О	6	9	ω.	œ	8	œ	ω _.	∞	ထ	ထ	ω
8 Forecast	Low Scer	Energy (GWh)	5,54	1,76	8,1	5,26	3,08	1,78	01,21	10,61	20,64	31,57	43,50	6,51	62,29	78,08	91,86	06,71	22,71	39,94	58,51	78,52	00,00	23,29
TEK's 198	enario	Growth (%)	1		10					Ø					9	7	7	7	ŗ	7	7	7	7	
	High Sce	Energy (GWh)	7,92	4,91	_	9,20	7,26	6,14	05,93	15,71	26,79	38,94	52,25	6,83	77,02	89,31	02,45	16,50	31,53	47,60	64,79	83,17	02,83	23,85
			1989	06	91	92	93	40	ເດ	ý	7	œ	<u>ი</u>	0	ল	N	က	4	ເດ	Ģ	~	ω	6	

L1: Actual result is used for 1989 demand and growth rate is same as the 1988 forecast.

Table 3.17 MAJOR FEATURES OF DAILY LOAD CURVES (2000)

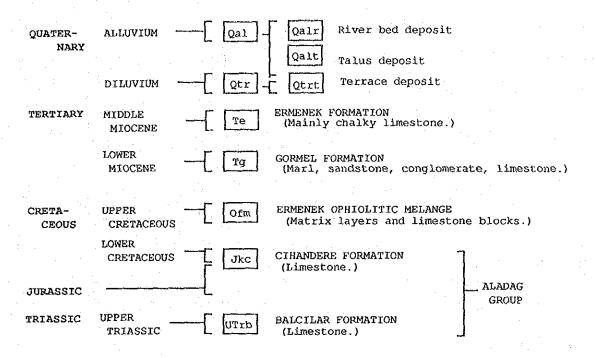

	Item	April	July	December
1.	Maximum demand time in	21	22	18
	a day (o'clock)			
2.	Minimum demand time in	4	7	7
	a day (o'clock)			
3.	Maximum demand day	Thursday	Thursday	Wednesday
4.	Ratio of minimum/maximum d	emand in a	day	
	Weekday	0.647	0.680	0.625
	Saturday	0.668	0.702	0.627
	Sunday	0.655	0.694	0.663
5.	Ratio against maximum dema	nd in a we	ek	
	Sunday peak/weekly peak	0.850	0.855	0.806
	Saturday peak/weekly peak	0.952	0.960	0.986
	Min. of weekday peak/	0.969	0.979	0.976
· · · · ·	weekly peak			
6.	Daily load factor			
	Weekday	0.800	0.826	0.813
	Sunday	0.790	0.800	0.803
	Saturday	0.820	0.829	0.814

Table 3.18 FORECASTED DEMAND OF KONYA AND KARAMAN

•	Gener Deman		Heavy Indust	ry <u>2</u> /	Tot	al
Year	Peak (MW)	Energy (GWh)	Peak (MW)	Energy (GWh)	Peak (MW)	Energy (GWh)
1988	140	671	deta	·		
89	150	721	146	1,114	296	1,835
90	167	801	152	1,147	319	1,948
91	184	889	159	1,182	343	2,071
92	202	978	166	1,217	368	2,195
93	222	1,075	173	1,254	395	2,329
94	245	1,183	180	1,291	425	2,474
95	269	1,301	187	1,330	456	2,631
96	293	1,418	195	1,370	488	2,788
97	320	1,546	203	1,411	523	2,957
98	348	1,685	211	1,454	559	3,139
99	380	1,837	219	1,497	599	3,334
2000	414	2,002	227	1,542	641.	3,544
01	447	2,122	236	1,588	683	3,710
02	483	2,292	245	1,636	728	3,928
03	521	2,475	255	1,685	776	4,160
04	563	2,673	264	1,736	827	4,409
05	608	2,887	274	1,788	882	4,675
06	657	3,118	284	1,841	941	4,959
07	709	3,368	295	1,897	1,004	5,265
80	766	3,637	306	1,953	1,072	5,590
09	828	3,928	317	2,012	1,145	5,940
10	894	4,242	328	2,072	1,222	6,314

Same growth rates as the low scenario forecast are applied. 3% growth per annum is assumed for the energy demand and 60% load factor is assumed for the increased 1/: 2/: portion.

Table 5.1 GEOLOGY OF THE PROJECT AREA

ERMENEK OPHIOLITIC MELANGE

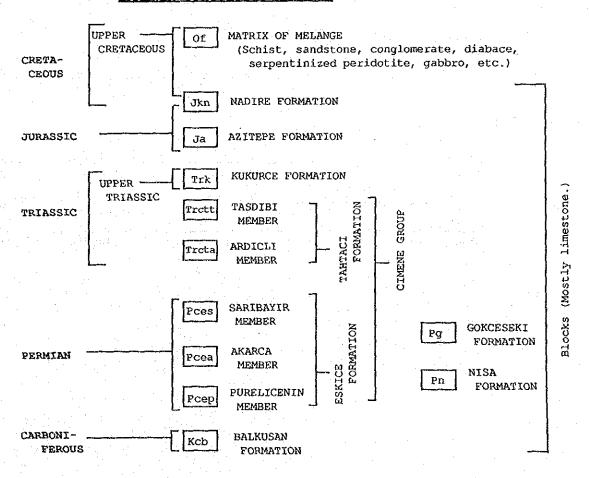


Table 5.2 WORK QUANTITY OF CORE BORING INVESTIGATION (1/4)

1. SUMMARY OF WORK QUANTITY

LOCATION			HOLE	LENGTH	LU.TEST
**			(nos)	(m)	(times)
DAMSITE I-F	AND LANDSLIDE AREA				
	PRE F/S STAGE		17	2005.85	223
	F/S STAGE		. 2	228.00	30
	TOTAL		19	2233.85	253
		• •			
DAMSITE I-C	2	•		* *	
	PRE F/S STAGE		8	2340.65	697
	F/S STAGE		4	1235.90	171
	TOTAL		12	3576.55	868
POWER HOUSE	E AREA				
	PRE F/S STAGE		0	0.00	0
	F/S STAGE		5	754.80	22
	TOTAL		5	754.80	22
	•			and the second	
QUARRY SITE	E				
_	PRE F/S STAGE		0	0.00	0
	F/S STAGE		2	109.00	0
	TOTAL		2	109.00	0
			* :		
LIMESTONE A	AREA NEAR NADIRE				
	PRE F/S STAGE	-	2	546.05	48
	F/S STAGE		0	0.00	0
*	TOTAL		2	546.05	48
HEADRACE TO	INNEL AREA				
	PRE F/S STAGE		1	218.50	0
	F/S STAGE		0	0.00	0
	TOTAL		1	218.50	0
	e, the same	•			
TOTAL	PRE F/S STAGE		28	5111.05	968
	F/S STAGE	2000	13	2327.70	223
	GRAND TOTAL		41	7438.75	1191

Table 5.2 WORK QUANTITY OF CORE BORING INVESTIGATION (2/4)

2. WORK QUANTITY FOR EACH SITE

(1) DAMSITE I-B AND LANDSLIDE AREA

PRE F/S STAG	æ				
HOLE NO.	DEPTH	EL.	LOCATION		LU.TEST
	(m)	(m)	LAT.	LONG.	(times)
SK-201	200.00	544.30	4,048,094.87	495,429.37	12
SK-202	150.00	613.50	4,048,392.96	495,401.29	30
SK-203	35.00	516.76	4,047,818.36	495,383.80	. 6
SK-204	33.00	514.21	4,047,761.60	495,379.33	6
SK-205	150.00	524.89	4,047,958.88	495,399.81	23
SK-206	100.00	538.55	4,048,322.36	494,517.04	33
SK-207	200.00	534.14	4,047,633.45	495,464.86	38
SK-208	127.00	547.35	4,047,443.94	495,457.06	18
SK-209	101.00	619.57	4,048,310.69	495,526.30	9
SK-210	101.00	608.36	4,048,276.01	495,636.52	10
SK-211	50.00	553.43	4,048,136.51	495,337.52	4
SK-212	125.00	602.31	4,047,331.59	495,730.59	16
SK-213	100.00	602.56	4,047,330.54	495,731.04	13
SK-214	160.00	715,51	4,048,587.69	495,564.30	5
SK-217	201.20	713.74	4,048,893.91	495,645.81	0
SK-218	85.00	762.49	4,049,271.13	495,534.45	0
SK-219	87.65	709.72	4,048,914.23	495,933.67	0
SUB TOTAL	2005.85				223
	*				
F/S STAGE					
HOLE NO.	DEPTH	EL.	LOCATION		LU.TEST
	(<i>m</i>)	(m)	LAT.	LONG.	(times)
SK-220	150.00	748.78	4,049,165.13	495,701.12	7
SK-221	78.00	628.26	4,048,465.50	496,032.73	23
SUB TOTAL	228.00				30
	•	*:		1. 1	
TOTAL	2233.85			*, *	253

Table 5.2 WORK QUANTITY OF CORE BORING INVESTIGATION (3/4)

(2) DAMSITE I-C

PRE F/S STAGE				The Control of	Para Principal
HOLE NO.	DEPTH	EL.	LOCATION	•	LU.TEST
e a e	(m)	(m)	LAT.	LONG.	(times)
SK-301	178.00	668.85	4,048,239.23	496,925.74	70
SK-302	200.65	614.76	4,048,523.65	496,492.08	53
SK-303	143.75	651.83	4,048,805.27	496,324.60	2
SK-304	499.35	676.73	4,048,126.64	497,011.07	170
SK-305	426.50	750.07	4,047,939.09	497,744.97	93
SK-306	425.00	708.54	4,047,369.51	497,635.14	124
SK-307	220.20	663.85	4,048,430.70	496,826.69	87
SK-308	247.20	578.42	4,048,180.55	496,628.42	98
SUB TOTAL	2340.65				697
÷ .					
F/S STAGE					
HOLE NO.	DEPTH	EL.	LOCATION		LU.TEST
***	(m)	(m)	LAT.	LONG.	(times)

* •	(m)	(<i>m</i>)	LAT.	LONG.	(cimes)
SK-309	190.80	674.07	4,047,374.28	496,882.20	16
SK-310	169.75	520.00		•	23
SK-313	425.00	729.65	4,048,720.74	497,216.38	87
SK-314	450.35	726.73	4,047,124.12	497,414.95	45
SUB TOTAL	1235.90				171
TOTAL	3576.55		•		868

(3) POWER HOUSE AREA

PRE F/S STAGE: No boring works.

F/S STAGE HOLE NO.	DEPTH (m)	EL.	LOCATION	LONG.	LU.TEST (times)
SK-102	341.60	615.25	4,048,303.56	505,971.89	1
SK-106	90.00	369.55	4,048,499.46	506,424.62	6
SK-107	50.00	368.89	4,049,255.17	507,504.22	15
SK-108a	72.00	484.19	4,048,401.81	506,140.73	0
SK-108b	201.20	484.19	4,048,401.81	506,140.73	0
SUB TOTAL	754.80				22

TOTAL 754.80 (SK-103, 104 & 105: Canceled.)

Table 5.2 WORK QUANTITY OF CORE BORING INVESTIGATION (4/4)

(4) QUARRY SITE

PRE F/S STAGE: No boring works.

F/S STAGE	Samuel Artist				
HOLE NO.	DEPTH	EL.	LOCATION		LU.TEST
	(m)	(m)_	LAT.	LONG.	(times)
SK-311	59.00	789.27	4,049,783.04	496,566.96	0
SK-312	50.00	864.52	4,049,521.46	496,600.14	. 0
SUB TOTAL	109.00				0
TOTAL	109.00				0

(5) LIMESTONE AREA NEAR NADIRE

F/S STAGE: No boring works.

PRE F/S STAGE

HOLE NO.	DEPTH	EL.	LOCATION	· ·	LU.TEST
	(m)	(m)	LAT,	LONG.	(times)
SK-215	201.05	739.88	4,049,449.32	481,050.10	1
SK-216	345.00	838.28	4,049,100.35	482,217.01	47
SUB TOTAL	546.05				48
TOTAL	546.05				48

(6) HEADRACE TUNNEL AREA

F/S STAGE: No boring works.

PRE F/S STAGE

HOLE NO.	DEPTH	EL.	LOCATION		LU.TEST
	(m)	(m)	LAT.	LONG.	(times)
SK-101	218.50	980.61	4,048,252.26	501,596.09	0
SUB TOTAL	218.50				0
TOTAL	218.50				0

SUMMARY OF LABORATORY TEST RESULTS: FOUNDATION ROCKS OF I-C DAM SITE (SK-302, 307 AND 313) Table 5.3

		. 1		Physical Test		Super Sonic Test	nic Test				
٠			Compressive	Water Bulk	specific	Density	Longt.	Transv.	Poisson's	Poisson's Dynum, shear	Dynum. elast.
			strength	absorption	gravity		velocity	velocity	ratio	modulus	modulus
Hole No.	Depth	(m)	(kg/cm2)	(x10-3 %)	13)	(g/cm3)	Vp(m/sn)	Vs(m/sn)		G(kg/cm2)	E(kg/cm2)
SK-302	21.60 -	21.85	499	+	2.04	2.78	5,890	2,896	0.34	245,614	658,534
	21.85 -	22.25	1,036	*-	1.67	2.85	6,273		0.36	248,641	676,906
	22.25 -	22.50	726	•	2.23	2.77	5,847			233,630	626,394
	22.70 -	23.00	647	•	1.67	2.79	5,938	2,836	0.35	228,976	619,264
	Average		727		1.90	2.80	5,987	2,883	0.35	239,215	645,275
SK-307	40.50 -	40.80	601	0.79	2.24	2.83	6,131	2,877	0.36	239,023	649,574
,	40.80	41.07	338		2.23	2.85				241,717	660,293
	45.60 -	45.85	561		2.25	2.89				241,552	665,301
	46.15	46.55	632		2.24	2.80	6,007	-	0.36	225,282	612,854
	Average		533	0.97	2.24	2.84	6,213	2,858	0.37	236,894	647,006
SK-313	22.50 -	23.00	712	1.00	2.34	2.83	6,143	3,052	0.34	268,986	718,802
	23.15 -	23.35	288	1.90	2.33	2.85	6,267	3,091	0.34	277,854	744,242
	26.65 -	27.00	1,301	1.20	2.33	2.89	6,458	3,185	0.34	299,151	801,303
	28.00	28.25	683	1.30	2.31		6,489		0.34	304,917	815,959
	29.20 -	29.40	1,060		2.32		6,500		0.34	303,778	813,835
	51.30 -	51.60	1,366	0.79	2.30		6,402		0.34	296,807	793,365
٠.	57.50	57.70	521	1.70	2 3	2.85	6,258	3,108	0.34	280,919	750,780
	74.70 -	75.00	518	1.80	2.31	2.84	6,224	3,091	0.34	276,879	739,992
,	79.00 -	79.30	1,150	1.40	2.29	2.90	6,475	3,261	0.33	314,683	837,107
	79.30	79.50	518	0.57	2.30	2.85	6,232	3,116	0.33	282,367	752,978
	Average		812	1.32	2.31	2.87	6,345	3,150	0.34	290,634	776,836
*							.				
	Average of	of all	731	1.25	2.2	2.85	6,236	3,025	0.35	267,265	718,749

Table 5.4 ROCK CLASSIFICATION FOR THE ERMENEK PROJECT

(1) HAR Class	DNESS Explanation	3						
OTG02'							~	
A	Hard rocks.			•				
	Very strong.		7.5			. :		
В	Medium hard rocks						.*	
. 15	Strong.	•						
٠.	1				•			
G	Soft rocks and mo		friable	cocks.				
	Moderately strong	g•	,					
ъ.	Very soft rocks a	and highla	, frishla	racics		•		
D	Weak.	ing urgur)	\ TTIWDIE	IUCKS.	5	•		
	iicaki		•					
E	Decomposed rocks					- 14.5 - 14.5		
	Rocks are almost	decompose	ed by wea	thering,	altera	tion a	nd/or	faul
	fracturing.				en en en en en en en en en en en en en e		10	
	Very weak.							
(2) WEA	THERING CONDITION		1		**			
Class.	Explanation	3				1	* .	
	No visible sign o	of weather	ing and	liscolor	ation o	n join	t surfa	ace.
ъ	No visible sign of Slightly weathers Discoloration is	ed rocks.	7.i	:			t surfa	ace.
b c	Slightly weathere Discoloration is Moderately weather Weathering is	ed rocks. generally ered rocks seen along	seen on	joint su	urface. Discolo	ration	and	
	Slightly weathere Discoloration is Moderately weather	ed rocks. generally ered rocks seen along	seen on	joint su	urface. Discolo	ration	and	
	Slightly weathere Discoloration is Moderately weather Weathering is	ed rocks. generally ered rocks seen along ials are g rocks. en along m	y seen on 3. 3 some journally most of journal	joint suints. I seen on	rface. Discolo joint iscolor	ration surfac	and e. and r	
c	Slightly weathered Discoloration is Moderately weather Weathering is weathered mater. Highly weathered Weathering is see	ed rocks. generally ered rocks een along lals are g rocks. en along m naterials	y seen on s. g some jou generally most of journey	joint suints. I seen on pints. Diceved on	irface. Discolo joint iscolor joint s	ration surfac	and e. and r	thi
c	Slightly weathered Discoloration is Moderately weathered weathered material Highly weathered Weathering is see thick weathered material Decomposed rocks.	ed rocks. generally ered rocks een along lals are g rocks. en along m naterials	y seen on s. g some jou generally most of journey	joint suints. I seen on pints. Diceved on	irface. Discolo joint iscolor joint s	ration surfac	and e. and r	thi
c d e	Slightly weathered Discoloration is Moderately weathered weathered material weathered material weathered weathering is see thick weathered in Decomposed rocks. Rocks are almost	ed rocks. generally ered rocks een along lals are g rocks. en along m naterials	y seen on s. g some jou generally most of journey	joint suints. I seen on pints. Diceved on	irface. Discolo joint iscolor joint s	ration surfac	and e. and r	thi
c d e (3) JOI	Slightly weathered Discoloration is Moderately weathered weathered material Highly weathered Weathering is see thick weathered material Decomposed rocks.	ed rocks. generally ered rocks seen along tals are g rocks. en along n materials decompose	y seen on s. g some jou generally most of journey	joint suints. It seen on points. Direct on the charactering.	rface. Discolor Joint iscolor Joint s	ration surfac	and e. and ra	thi
c d e (3) JOI	Slightly weathered Discoloration is Moderately weathered weathering is a weathered mater. Highly weathered Weathering is see thick weathered in Decomposed rocks. Rocks are almost.	ed rocks. generally ered rocks gene along ials are g rocks. en along materials decompose	y seen on g some journerally most of journer observed ed by wear	joint suints. I seen on pints. Dived on thering.	rface. Discolor joint iscolor joint s	ration surface ation urface	and e. and ra	thi
c d e (3) JOI Class.	Slightly weathered Discoloration is Moderately weathered weathering is a weathered material weathered weathering is see thick weathered in Decomposed rocks. Rocks are almost. NT SPACING Extremely wide	ed rocks. generally ered rocks seen along ials are g rocks. en along m naterials decompose	y seen on g some journerally most of journer observed ed by wear oacing(cm	joint suints. I seen on pints. Dived on thering.	rface. Discolor joint iscolor joint s	ration surface ation urface s of j	and e.	thi
c d e (3) JOI Class.	Slightly weathered Discoloration is Moderately weathered weathered mater: Highly weathered Weathering is see thick weathered in Decomposed rocks. Rocks are almost. NT SPACING Extremely wide Very wide	ed rocks. generally ered rocks seen along ials are g rocks. en along m naterials decompose	y seen on 3. 3. 3. 5. 5. 5. 5. 5. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	joint suints. I seen on pints. Dived on thering.	rface. Discolor joint iscolor joint s	ation ation urface s of journal of the contract of the contrac	and e.	thi
c d e (3) JOI Class.	Slightly weathered Discoloration is Moderately weathered weathering is a weathered mater. Highly weathered weathering is see thick weathered in Decomposed rocks. Rocks are almost. NT SPACING Extremely wide Very wide Wide	ed rocks. generally ered rocks seen along ials are g rocks. en along m naterials decompose	y seen on 3. 3. 5. 5. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	joint suints. I seen on pints. Dived on thering.	rface. Discolor joint iscolor joint s	ration surface ation urface s of j	and e.	thi
c d e (3) JOI Class. I II IV	Slightly weathered Discoloration is Moderately weathered weathered mater: Highly weathered Weathering is see thick weathered in Decomposed rocks. Rocks are almost. NT SPACING Extremely wide Very wide	ed rocks. generally ered rocks seen along ials are g rocks. en along m materials decompose	y seen on 3. 3. 3. 5. 5. 5. 5. 5. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	joint suints. I seen on pints. Dived on thering.	orface. Discolor Joint Scolor Joint s	ation surface ation furface s of j	and rand rand	thi

ROCK PROPERTIES IN THE PROJECT AREA Table 5.5

weath. Joint. Back: Nection Weath. Joint. Soft Bock: Soft Rock: Soft Rock: Schist. etc. etc. Schist. etc. etc. Schist. etc. Schist. etc. Schist. etc. Schist. etc. Schist. etc. Schist. etc. Schist. etc. Schist. etc. etc. Schist. etc. etc. Etc. Schist. etc. Etc. Etc. Etc. Etc. Etc. Etc. Etc. etc. etc	Rock for Eri	Class	Rock Classification for Ermenek Project	_ +						Rock Clast Estimated	Rock Classification and Estimated Rock Properties (K.Kikuchi Et.al.)	es (K.Kikuchi	Et.al.)		
a l-III B a I-III B 8 80,000 50,000 40 55 to 65 3 or more or m	Hard Ro Limesto Hard.	ck: ne, etc Weath.	Joint.	16 2 2 1	Hard R one, nerate, Weath.	ock: etc. Joint.	1000	k: litstone etc. Veath.	Joint		Static Modulus of Elasticity (kg/cm2)	Modulus of Oeformation (kg/cm2)	cm2)	Internal Friction Angle (degree)	
b-c B	∢	Ø							•	∢					V *
b-c III-IV B-C a-c III-IV c IV-V C b-c IV-V C-D a-b I-IV d V D d V D c-d IV-V CL 15,000 5,000 10 15 to 38 11 e VI E e VI E e VI E b VI D	A-B	م	=	æ	us	=				α .	80,000 or more	20	40 or more	55 to 65	3.7 or more
c IV-V C b-c IV-V C-D a-b I-IV CM 40,000 20,000 20 to 10 30 to 45 3.0 d V D d V D c-d IV-V CL 15,000 5,000 10 15 to 38 1 e VI E e VI E e VI D D	æ	٥- ₀	71-11	ပ္	၀- ဧ		:			ક	80,000 to 40,000		40 to 20	40 to 55	3.7 to 3.0
d V D d V D c-d IV-V CL 15,000 5,000 10 15 to 38 1 or less or less or less or less	0	0	٧-٧١	٥	0-0	1V-V	0-0	a-b	N-1V	8	40,000 to 15,000	7	20 to 10	30 to 45	3.0 to 1.5
e VI E e VI	۵	70	>	Ω	ם	>	Q	p-0	۸-۷۱	ರ	15,000 or less	љ,	10 or Jess		1.5 or less
	ш	. o	5	កា	0	5	ш	0	5	۵		in the second se		:	

Joint : Joint frecuency.

Notes. Hard.: Hardness.

Table 5.6 SUMMARY OF GROUND ACCELERATION AT PROJECT SITE ON MAXIMUM CREDIBLE EARTHQUAKES

Reference	Maximum Magnitude M	Epicneral Distance d (km)	Deth of Hypocenter R (km)	Ground Acceleration
1.Project Earthquake	6.0	0	25	0.0361-0.2932
2.Linear No.1	5.4	97	100	0.0006-0.0141
3.Linear No.2	5.5	154	156	0.0007-0.0080
4.E.A.F No.3	6.8	252	253	0.0018-0.0093
5.Earth- quake A	5.2	106	109	0.0009-0.0109
6.Earth- quake B	5.0	112	115	0.0005-0.0089
7.Earth- quake C	5.6	118	121	0.0017-0.0123

WORK QUANTITY OF TEST PIT INVESTIGATION AND SAMPLING Table 5.7

PIT NO. DEPTH (m) (nos) Aa	BORROW AREA	PRE F/S	STAGE		F/S STA	3E	
A-3		PIT NO.	DEPTH		PIT NO.		
A-3	 An	A_1	5.0	3		n	
Ab	AG .						* * * * * * * * * * * * * * * * * * *
B B-1 2.5 1 C C-1 5.0 1 C-2 3.0 1 C-3 5.0 1 C-4 2.0 1 D D-1 5.0 1 D-2 5.0 1 D-3 5.0 1 E E-1 3.5 1 EC E-2 4.5 2 E-3 3.2 2 E-4 3.5 2 E-5 4.0 2 EB F-1 5.0 1 F-2 5.0 1 F-3 5.0 1 F-3 5.0 1 F-4 3.5 2 E-6 1.6 2 F-5 5.0 2 Ga G-1 2.0 1 G-2 2.1 1 G-6 0.8 1 G-2 2.1 1 G-6 0.8 1 G-2 G-7 2.0 1 G-12 2.9 2 Gd G-3 0.8 1 G-10 2.4 2 G-4 1.7 1 G-11 1.8 2 G-7 G-8 3.6 1 G-13 2.0 2 G-9 4.5 0 H H-1 3.0 1 H-2 1.0 0 H-3 1.0 0 H-5 1.0 0 H-5 1.0 0 H-5 1.0 0 H-5 1.0 0 H-5 1.0 0 H-6 1.0 0 H-6 1.0 0	Ab					•	
B	Λυ						
G	. 10						
C-2 3.0 1 C-3 5.0 1 C-4 2.0 1 D D-1 5.0 1 D-2 5.0 1 D-2 5.0 1 D-3 5.0 1 D-4 5.0 1 E E-1 3.5 1 Ec	6		• .				•
C-3 5.0 1 C-4 2.0 1 D D-1 5.0 1 D-2 5.0 1 D-3 5.0 1 D-4 5.0 1 E E-1 3.5 1 EC	· ·						
D D-1 5.0 1 D-2 5.0 1 D-3 5.0 1 D-3 5.0 1 D-4 5.0 1 E E E-1 3.5 1 Ec							
D D-1 5.0 1 D-2 5.0 1 D-3 5.0 1 D-3 5.0 1 D-4 5.0 1 E E E-1 3.5 1 Ec				the second secon			: .
D-2 5.0 1 D-3 5.0 1 D-4 5.0 1 E E E-1 3.5 1 EC							
D-3 5.0 1 D-4 5.0 1 E E-1 3.5 1 Ec	Ŋ						
E E-1 3.5 1 EC							
E EC							
Ec	-						
Ea E-3 3.2 2 E-4 3.5 2 E-5 4.0 2 E-6 1.6 2 F-7 5.0 1 F-2 5.0 1 F-3 5.0 1 F-3 5.0 1 F-4 3.5 2 F-5 5.0 2 Ga G-1 2.0 1 G-2 2.1 1 G-6 0.8 1 GC G-7 2.0 1 G-12 2.9 2 Gd G-3 0.8 1 G-10 2.4 2 G-4 1.7 1 G-11 1.8 2 G-9 4.5 0 H H-1 3.0 1 I I-1 3.0 1		F-1	3.3	4	מים	, E	•
Ea	EC	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -					
Eb F-1 5.0 1 F-2 5.0 1 F-3 5.0 1 F-3 5.0 1 F-4 3.5 2 F-5 5.0 2 Ga G-7 2.0 1 G-12 2.9 2 Gd G-4 1.7 1 G-11 1.8 2 Ge G-8 3.6 1 G-13 2.0 2 G-9 4.5 0 H H-1 3.0 1 H-2 1.0 0 H-5 1.0 0 H-6 1.0 0 I							
Eb F-1 5.0 1 F-2 5.0 1 F-2 5.0 1 F-3 5.0 1 F-3 5.0 1 F-4 3.5 2 F-5 5.0 2 Ga G-2 2.1 1 G-6 0.8 1 GC G-7 2.0 1 G-12 2.9 2 Gd G-3 0.8 1 G-10 2.4 2 G-4 1.7 1 G-11 1.8 2 Ge G-8 3.6 1 G-13 2.0 2 G-9 4.5 0 H H-1 3.0 1 H-2 1.0 0 H-3 1.0 0 H-4 1.0 0 H-5 1.0 0 H-5 1.0 0 I I I-1 3.0 1	Ea	•					
Fb F-1 5.0 1 F-2 5.0 1 F-3 5.0 1 Fa F-4 3.5 2 F-5 5.0 2 Ga G-1 2.0 1 G-2 2.1 1 G-6 0.8 1 GC G-7 2.0 1 G-12 2.9 2 Gd G-3 0.8 1 G-10 2.4 2 G-4 1.7 1 G-11 1.8 2 Ge G-8 3.6 1 G-13 2.0 2 G-9 4.5 0 H H-1 3.0 1 H-2 1.0 0 H-3 1.0 0 H-4 1.0 0 H-5 1.0 0 H-6 1.0 0 I I-1 3.0 1							
F-2 5.0 1 F-3 5.0 1 Fa				_	E-6	1.6	2
Fa	Fb						
Fa							
Ga G-1 2.0 1 G-2 2.1 1 G-6 0.8 1 G-5 0.8 1 Gc G-7 2.0 1 G-12 2.9 2 Gd G-3 0.8 1 G-10 2.4 2 G-4 1.7 1 G-11 1.8 2 Ge G-8 3.6 1 G-13 2.0 2 G-9 4.5 0 H H-1 3.0 1 H-2 1.0 0 H-3 1.0 0 H-4 1.0 0 H-5 1.0 0 H-6 1.0 0 I I-1 3.0 1		F-3	5.0	1			
Ga G-1 2.0 1 G-2 2.1 1 G-6 0.8 1 Gb G-5 0.8 1 Gc G-7 2.0 1 G-12 2.9 2 Gd G-3 0.8 1 G-10 2.4 2 G-4 1.7 1 G-11 1.8 2 Ge G-8 3.6 1 G-13 2.0 2 G-9 4.5 0 H H-1 3.0 1 H-2 1.0 0 H-3 1.0 0 H-4 1.0 0 H-5 1.0 0 H-5 1.0 0 I I-1 3.0 1	Fa						
G-2 2.1 1 G-6 0.8 1 G-6 0.8 1 GC G-5 0.8 1 GC G-7 2.0 1 G-12 2.9 2 Gd G-3 0.8 1 G-10 2.4 2 G-4 1.7 1 G-11 1.8 2 Ge G-8 3.6 1 G-13 2.0 2 G-9 4.5 0 H H-1 3.0 1 H-2 1.0 0 H-3 1.0 0 H-4 1.0 0 H-5 1.0 0 H-6 1.0 0 I I-1 3.0 1					F~5	5.0	2
G-6 0.8 1 Gb G-5 0.8 1 Gc G-7 2.0 1 G-12 2.9 2 Gd G-3 0.8 1 G-10 2.4 2 G-4 1.7 1 G-11 1.8 2 Ge G-8 3.6 1 G-13 2.0 2 G-9 4.5 0 H H-1 3.0 1 H-2 1.0 0 H-3 1.0 0 H-4 1.0 0 H-5 1.0 0 H-6 1.0 0	Ga						
Gb G-5 0.8 1 Gc G-7 2.0 1 G-12 2.9 2 Gd G-3 0.8 1 G-10 2.4 2 G-4 1.7 1 G-11 1.8 2 Ge G-8 3.6 1 G-13 2.0 2 G-9 4.5 0 H H-1 3.0 1 H-2 1.0 0 H-3 1.0 0 H-4 1.0 0 H-5 1.0 0 I I-1 3.0 1		·					
GC G-7 2.0 1 G-12 2.9 2 Gd G-3 0.8 1 G-10 2.4 2 G-4 1.7 1 G-11 1.8 2 Ge G-8 3.6 1 G-13 2.0 2 G-9 4.5 0 H H-1 3.0 1 H-2 1.0 0 H-3 1.0 0 H-4 1.0 0 H-5 1.0 0 H-6 1.0 0 I I-1 3.0 1		i i					•
Gd G-3 0.8 1 G-10 2.4 2 G-4 1.7 1 G-11 1.8 2 Ge G-8 3.6 1 G-13 2.0 2 G-9 4.5 0 H H-1 3.0 1 H-2 1.0 0 H-3 1.0 0 H-4 1.0 0 H-5 1.0 0 H-6 1.0 0 I I-1 3.0 1							
Ge G-8 3.6 1 G-11 1.8 2 Ge G-8 3.6 1 G-13 2.0 2 G-9 4.5 0 H H-1 3.0 1 H-2 1.0 0 H-3 1.0 0 H-4 1.0 0 H-5 1.0 0 H-6 1.0 0 I I-1 3.0 1				_			
Ge G-8 3.6 1 G-13 2.0 2 G-9 4.5 0 H H-1 3.0 1 H-2 1.0 0 H-3 1.0 0 H-4 1.0 0 H-5 1.0 0 H-6 1.0 0 I I-1 3.0 1	Gđ						
H H-1 3.0 1 H-2 1.0 0 H-3 1.0 0 H-4 1.0 0 H-5 1.0 0 H-6 1.0 0							
H H-1 3.0 1 H-2 1.0 0 H-3 1.0 0 H-4 1.0 0 H-5 1.0 0 H-6 1.0 0 I I-1 3.0 1	Ge		3.6	1	G-13	2.0	. 2
H-2 1.0 0 H-3 1.0 0 H-4 1.0 0 H-5 1.0 0 H-6 1.0 0		G-9	4.5	0			
H-3 1.0 0 H-4 1.0 0 H-5 1.0 0 H-6 1.0 0	H	H-1	3.0	1			
H-3 1.0 0 H-4 1.0 0 H-5 1.0 0 H-6 1.0 0 I I-1 3.0 1					H-2	1.0	0
H-6 1.0 0 I I-1 3.0 1					H-3	1.0	0
H-6 1.0 0 I I-1 3.0 1					H-4		
H-6 1.0 0 I I-1 3.0 1							0
I I-1 3.0 1				-			
	I	I-1	3.0	1			
	TOTAL	28	97.3	27	16	39.4	22

⁽¹⁾ Borrow areas A, B, C, D, E, F, H & I; for impervious materials.
(2) Borrow area Ga to Ge; for filter and concrete aggregate materials.

⁽³⁾ Test pit H-1; downstream of I-B damsite.

Table 5.8 WORK QUANTITY OF LABORATORY TESTS

(1) Core Materials

Test item		t quantity -F/S stage		ge
Grain size analysis	u _ u u u v - u v « u	19	14	samples
Natural moisture content	:	19	14	samples
Liquid & plastic limits		19	14	samples
Specific gravity		19	14	samples
Compaction test		19	14	cases
Permeability test		19	14	cases
Triaxial UU test		0	14	cases
Triaxial CU test	**	0	14	cases
Shear test		10	. 0	cases

(2) Filter Materials for Fill Dam and Concrete Aggregates

Test item	Test quantity Pre-F/S stage	F/S stage
Grain size analysis	8	8 samples
Specific gravity & water absorption	i 8	12 samples
Soft rock ratio	0	4 samples
Soundness	8	12 samples
Abrasion	8	12 samples
Alkali aggregate reaction	0	12 samples

(3) Rock Materials for Fill Dam

Test item	Test quantity Pre-F/S stage	F/S stage	
Specific gravity & water absorpti	on 0	17	samples
Unconfined compression test	0	17	samples
Super sonic wave test	0	17	samples

(4) Foundation Rock for Damsite I-C

Test item	Test quantity Pre-F/S stage	F/S stage
Specific gravity & water absorpti	on 0	18 samples
Unconfined compression test	0	18 samples
Super sonic wave test	0	18 samples

SUMMARY OF LABORATORY TEST RESULTS: IMPERVIOUS CORE MATERIALS (1/4) Table 5.9

Borrow Area Aa

	ility !	`.		cm/s)	1700	2200	7.1950	2200	1,1700	
,	Permeability		×	(x10-5		_		0	·:	:
			٥	(ded.)						
			·o	(ka/cm2					ē	
	N		٥	(090)						
	Shear Test	:_	٥	(ko/cm2)						
		ion(UU)	ਡੋ	(dea.)						
	Triaxiai	Compression(UU)	3	(ka/cm2)						
			6	(dea.)	-					
			0	a/cm2)						
		S S	3	(k						
	Triaxial	Compression(CU)	3	(%) (1/m3) (ko/cm2) (dea.) (ko/cm2) (dea.) (ko/cm2) (dea.) (ko/cm2) (dea.) (x10-5 cm/s)						
			max	/m33/	172	1.68	5	1.72	1.68	
	Compactic		OMC rd max	(%)	7.9 17.5	18.0	17.8	18.0	17.5	
	Natural Moist Compaction	Confent		8		21.4	19,7	4,12	:	
	83				₹ ŏ	OL-MI				
			8		19.9	20.0	20.0	20.0	9.0	
			ã	٠.	8.7	7.6	8.2 20.0	8.7	7.6	
			ស	8	25.0	22.8	23.9	25.0	22.8	
	Merberg	imits			33.7					
		~	8	8	99	82	7.4	80	99	
			S	8	31	17	24	რ	17	
	Size	ion	Ø	8	e	•	8	හ	•••	
	Test pit Particle Size	Distribution	Š		9.52			-		
	Test pit	2			A-1	A-3	Average	Max	ŭ.	

		Τ	ŝ	g	8	င္ဟ	.4500	2000
	Permeability	_	(%) (1/m3) (kg/cm2) (deg.) (kg/cm2) (deg.) (kg/cm2) (deg.) (kg/cm2) (deg.) (kg/cm2) (deg.) (x10-5 cm/s)	1.2000	1,4500	1.3250	1.45	1.20
		0	(-)	-				
		ō	(d/cm2) (
		ŀ	9g.) (k					
	Shear Test	o	(d/cm2)		. :			
	<u> </u>		eg.) (;	-		-		
	Triaxial Compression/IIU	3	I/cm2) (di				-	
	<u> </u>	-	a.) (kg	_		-		
		°	2) (dec		i			
		ပ	(kg/cm					
	(CC)	ਰ	(ded:)		.			
	Triaxiat Compression(CU)	OMC nd max Ou ous c'	kg/cm2)					
	두으	ğ	(Em)	1.84	1.8.1	1.83	1,84	8
	ompactic	ONC E	(%)	13.7 13.0 1.84	13.2	13.1 1.83	13.2	13.0
	loist C	Γ	(%)	13.7	9.7	11.7	13.7	9.7
	Natural Moist Compaction Triaxial							
	8			යි	င္ပ			
		<u> </u>		-		-		
		<u>_</u>						
			(%)					
	Atterberg Amits	==	(%)	!				
	<u> </u>	8	8	49	37	43	49	37
•		တ	ê	φ.	63	57	63	51
	ize Su	U	જ	0	٥	0	0	0
Ab	Particle S Distributik	SS/W	(mm)	0.59	0.59	0.59	0.59	0.59
Borrow Area Ab	Test pit Particle Size			A-2	A-4	Average	Max	X.

Borrow Area Fa	ва Fа															-	* .						
Test pit	Test pit Particle Size	m		Att	tterberg			<u>8</u>	Natural Moist Compaction	sticon	paction	Triaxial	-			Triaxial	<u>s</u>	Shear Test	ا ا		ď	Permeability	2
Q.	Distribution			Lin	imits				Content	-		Сопрге	Compression(CU			Compressio	u(OO)		-	i			
		, ,	8		ਨ -1	ā	ಹ	_		o O	CMC rd max	8	8	3	٥	₫	ठ	O	0	0	-	~	
		(%)	(%)	(%	(%)	8			2	· %	(%) (1/m3)	3) (kg/cm2)	2) (deg.)	(kg/cm2)	(deg.)	(deg.) (kg/cm2) (deg.) (kg/cm2) (deg.)	leq.)	(kg/cm2) (deg.)	(deg.) (k	(kg/cm2) (deq.)	Jeg.)	(x10-5 cm/s)	(S/U
F-4A	38.10	~		72			3.	ರ		1	15.0 1.8	1.1	14 39	1.12	39	0.82	0				-	9	170
F-48	38.10	ø	38		•		z.	ರ			16.0 1.8	33	19 25	1.10	26	1.84	F					20.0	210
F-5A	19.10	:	מי	06	36.8 24	24.3 12	12.5	ರ	_	17.0	12.0 1.8	.68 0.6	0.62 39	0.66	38	1.73	24					0.0120	120
F-58	19.10	2	8		ı	ì	9	ರ			14.0 1.9	.91 0.5	53 33	0.38	34	1.46	24					0.0	130
Average	28.60	60					0	_	41	١.	*	.87 0.87	87 34		34	1.46	91					0.01	158
Mac	38.10	60	35	06			S.		17.		16.0 1.91		1,19 39	1.12	50	1.84	4					0.0	210
Min.	19.10	-	œ		Ü		ı,		17.		-	.83 O.E	53. 25	0.38	39	0.82	o,					0.0	120

SUMMARY OF LABORATORY TEST RESULTS: IMPERVIOUS CORE MATERIALS (2/4) Table 5.9

lifty	T	cm/s)	0.0320	0.0260	0.0198	0.0320					ility		(s/us	0.0320	0.0280	0.3100	0.0550	0.3100	0.020.0	:			-	iity	T	cm/s)	0.0610	0.0025	0.0410	0.0180	0.0306	0.0610
Permeability	١	(x10-5	0 (0	0	o c	,	. •			Permeability		(x10-5		0	0	입	00	0					Permeability			°	0	Φ.		0	90
	1	dea.)	25.5	2 K	24.4	25.6	9				******		0							.*			-		G	(deg.)	28.7	29.8	29.7	24.8	27.5	2, 2, 25, 40 36, 40
		(ka/cm2)	0.89	0.50	0.70	0,89	5			:			c (ka/cm2)		-											kg/cm2)	0.20	0.57	0.55	0.21	86.4	2.5
			_	၁ဝ	l vi	00	?							1								•				_	0	αģ	Ŋ.		٠. ا	25.8 18.7
est	ľ	2) (dea.)	1	0.45 20.0	1	0.81 22.0			:		lest		2) (dec.)											lest	ľ	Ō	1	0.51 25.8	52 25.2	- 1		0.17 18.7
Shear Test	1	(ka/cm2)	0	<i>.</i>	0.61	o c	.				Shear Test		(ka/cm2)											Shear Test	٥	(kg/cm2)	o	Ó	o ,	히	ö (
-7		deg.)						-				3	3 8				1						•		8	(deg.)				1		
Triaxial	Compression(UU	ିପ୍ର									Triaxial	Compression (UC	Qu (ka/cm2)											Triaxia!	Ī	(kg/cm2)						
<u> </u>	1				_		_				=	3	-		<u>.</u>		_						-	Ē	┰		-			1		
		(ded.)								:				3											C	Ç						
	-	(ka/cm2)									٠		c (ka/cm2)		-							٠.			٥	(kg/cm2)						
	Compression(CU)	(ge 5										5	no (240)											10,00	8	٤						
Triaxial	iseaci Contraction	2						1.			Triaxia	Compression(CU	ν. (κα/επο)		-									Triaxial	ā	(kg/cm2)						
Ë	_			\$ 6 6	29:	6.2	<u>*</u>					<u></u> 8		_	99	56	92	. 6.	: 22				-	Ξ (- (_	27.	.67	2	99.	69.	2 99
action	1	(1/33)			-	***	-		٠.		action		2 2	1	*-		-		_					action	rd max			-	•	٦	•- •	
Comp	Į		18.5	16.5	18.4	20.3	<u>.</u>			,	Comp		<u>Q</u>	[]			- [20.2						S S	8	_	٣	φ -	17.5	<u></u>	18.6	12.5
Vatural Moist Compaction	Content	8						٠.	::		latural Moist Compaction	Content	(%)	20.5	15.0	20.3	17.7	18.4	15.0					Natural Moist Compaction		8						
Natura	3	 									4	ઉ			·								_			<u> </u>	L					
8			ರ ೧	ರ ರ		٠.					8			3	ರ	24,3 OHMH	이							<u>8</u>			IO.	ರ	Ö.	ᅵ	_	
	a	<u>.</u>	5 5	2 0	₹ =	2, 2	5						ద	20.7	12.8	24,3	₹ 6	24.3 6.45	12,8				-		Z		0	60	0.0	0.5	0.0	တ တ တ
	ā	E	12.0	0.4 0.0	14.2	16.0	ý						ā.	33.9	4.4	22.7	5	33.9 0.0	10.5						ã		12.0	16.4	2.5	5.3	4.1	4.0
	ō	€ د	22.0	20.0	22.3	8,60	2				Turka		۳, _§	999	19.3	33.4	21.8	25.3 33.4	9.3	•					a	3	22.5	24.0	23.6	23.4	23.4	24.0 22.5
Atterberg		. <u>8</u>	- 22	36.0	Ι.,	39.4					Atterberg		<u> </u>	_			-	45.2						Atterberg	-	8	1			: 1		40.4 34.5
Atte	LIMITS	3 } }	77		L	4 F					Atte	Limits	⊐ —	L	. :		╛	2 2 8 4 8	27				-	Atterb	╁~	_	Ŀ					81 4
	8	∵⊋		n w	Ì	23					4.5		() (e		21		_	23 7			:				8	Ģ				9		0 40 0 40
a	ľ		,	- 0		v- C	,				0				(V		2	4 V	N.					D	0	໌ ເຈ	l _o	N	•	۰	-	N 0
ie Size	읣	-	4.76	7.07	6.35	9.52	3			}	le Siz	Distribution			9,52	Ö	9.10	34 10	9.52			· .		Particle Size	Olstranguston	· •	ļ_	ő	9.52	4.76	2	19.10 4.76
Particle		Ē	4.	n 4	9	o <	i 		် ရ	<u>}</u>	Particle Size		SS E	0	o	19.10	္	19.30	<u>ெ</u>			a D		Partic			19.10	19.10	ெ	4	13.12	<u>&</u> 4
ä	2		- C	r II.	Average	Max.			Воггом Агеа		ō,	.		**	20	e?	4	Average Max.	Min.	,		Borrow Area		ĕ	2		-	ď	D-3	1-4	Average	Max.
				L II.	A A	∑ 2			Borro		Les	2		0	O	O		Ave	≥ .			Borro		88			P	Ω	۵	Ω,	AVB	≥ 2

SUMMARY OF LABORATORY TEST RESULTS: IMPERVIOUS CORE MATERIALS (3/4) Table 5.9

Borrow Area B and I

			-						T		- T-		5 6		517	3 6	· -	-				_	<u>-</u> -		ন	<u></u>	ठा	o o	ত্ত
ility		cm/s)	0,0410	0,0220			. :	iffity		į	S/m/S/	2000	0.0660	20.0		0,000	0450	2				villety		:	S/WO	0.0350	0.0290	0.0320	0.0350J 0.0290J
Permeability	1	x (x10-5	0	0				Permeability	ŀ	× ,	c-olx	, () () C	٦, ا	3 C	, c	,			:	Permeability		¥	×10-5		٦		
Per	1		 				٠	Per	1	<u> </u>	٦.				1			_				ā			_]		_		
		c' o (kg/cm2) (deg.)		29.2			,			0	0.00	,	٠.										24	٥	(kg/cm2) (deg.) (kg/cm2) (deg.)				
		c (cm2)		09.0						υ ((KG/CMZ)									٠.	٠. '			·o	/cm2				
	1					**						· ·													3	.*	Ì		
		c o (kg/cm2) (deg.)		0.50 27.1			•	**		0	Kg/cm2) (deg.)											7	:	0	9		-		
Shear Test	1	cm2		0.50				Shear Test		o i	2E.								•			Shear Tee	•	J	Cm2				
		(kg					:			_					1	~~		-			÷	9	ຼິ		-		8	5	
	Compression(UU	deg.)					•	. 3	Compression(U)	₹.	8	- 7	-	•	1	0 4	* *	ग					Compression(UU)	ъ	(kg/cm2) (deg.)			•	-
ia	ressi							cial	oressi	₹.	Cm2	- c	200	2 2		0.93	- C	9		*		Triavial	press	3	cm2)	0.98	1.84	1.4	1.84
Triaxia	Š	(ка/ст2)						Triaxial	S S		λ X							-				Tris	S			•	<u> </u>		<u> </u>
: •		(deg.)								•	(969)	- (:	N C	20 0	28	9 0	2 0	Ž.						0	(kg/cm2) (deg.) (kg/cm2) (deg.)	!	32	1	0 0 0 0
:												- 6	, N	20.0	0.26	9 0		- -			٠.			U	cm2)	0.23	0.03	0.13	0.23
		c' (kg/cm2)								ა .	, Kg/												=	Ĭ	(ka/				
	힣	o⊔ (deg.)							Compression(CU	8	g 6	N C	יו ער	27	28	80 6	א מ	ù			-		Compression(CU)	8	(deg.)	28	27	28	28
ū	essio	(S)					-	<u>6</u>	ressic		(SE)	3	7 0	0.30	0.29	0.25	2 6	5		٠.			ressio	3	3m2	0.19	0.16	0.18	0.19 0.16
Friaxi	Compression(CU)	(ka/cm2)						Triaxia	S E S S	3	(kg/cm2)											Triocial	Ö		(kg/c				
Natural Moist Compaction Triaxial		rd max (1/m3)	5.7	1.61						ra max	(t/m3)	20 1	2.1	1.76	1.75	1.73	9 6	20				į	5	rd max	(1/m3)	1.67	1.62	1.65	1.67
pactic		,	18.4	22.0				pactic	. }	: .		6,0	α i	17.6	17.5	œ (00 U	ų.					Tac.	1.	(%)	20,8	19.5	0,2	20.8 19.5
Com		Ö		% ——				Com	_	đ	- [٠					_				Manual Maint Commonstant	5	ğ		'	Ė.,		
Moist	eui	(%)	16.1					Moist	eui	. :	8	20.0	20.0	23.0	2.0	210	23.0	20.0				i	tent		8	17.0	16.	16,5	17,0
turat	Content							itural	Conten			:	٠.										Content		:				
Na O	-		 					USC Natural Moist Compaction	1		+		_		-			-		٠	* ,	4		 	<u>.</u>	- پر	ರ	-	
8	_	-	S S					3				5 (_	ರ 	٥			_					3 —-	-		-	_	L	·
		ద	17.5	17.3						ಹ		•		-									٠.	ත්					
		ā	1.8	- 8 8.9						õ	1	2	4	9.9	- 0	2.2	4 (0.7			· . ·			ā	. :	1.5	10.8	11.2	17.5
:		(9	21.4	30.4					•		<u>و</u>	51.6	-	20.5	20.3	21.0	21.6	20.3						전	Ę	20.5	25.5	23.0	26.5
979		عر ق	Į.					erg.	.	ο.	ı				[·.		1	ت ا	Ì	1]			
Atterberg	Limits	ત્ર જુ	29.5	49.3				Atterberg	imits	Ⅎ	£.	35.3	35.6	31.3	30.4	33.2	35.6	4.00				1	Atterberg Limits	Ħ	(%)	32.0	36.3	34.2	36.3
_		છે કુ	83	76					뤽	8	<u>ē</u> ;	9	6	0	90	4	Ø 1	9				. -		8	8	64	75	10	6.4
		ა <u>წ</u>	-	2			:		. }	A.	8	4	2	÷ :	9	9	7	2			ď			S	₹ 8	36	25	31	3 e 5 2
				ന			1			Ŧ,	1		0	0	٥	0	O (0					9		%	0	o	0	00
Size	rion	დ & ~	1					Size	ution	Ξ.		ی	g.	ري. ا	ن ښ	G	(a. (φ		٠.	d	Š	Particle Size	١	J		ō	8	.76
Tricle	Distribution	MGS EE	4.76	19.10			Ea	article	Distribution	Ş	EE.	4.76	4.76	4.76	4.76	4.76	4.76	4.76			E	1	rarrici Vistrib	8	(mm)	4.76	4.76	4.76	4.76
Test pit Particle Size	흰		-				Area	Test pit Particle Size	٥		\dagger		<u> </u>		-	Φ.					Borrow Area			+				9	
150 150	2	-	B-1	Ξ	*1	٠.	Borrow Area	D S	ź	•		E-4A	E-48	E-5A	E-5B	Average	Xax.	Ę			Wor		5. S		- 1	E-6A	89-3	Average	Max.
"		; ·					ã	يتر	١	ż		•				∢				• •	8	٠	-						<i>.</i>

SUMMARY OF LABORATORY TEST RESULTS: IMPERVIOUS CORE MATERIALS (4/4)

Test pit Particle	Particle S	Size		AII	Atterberg				83	Natural Moist Compaction	oist Co	mpacti		inaxial				Triaxial	=	She	Shear Test			<u>u,</u>	Permeability
No	Distributi	tion			mits		.	·		Conten			0	Compression(CU	ion(CU)			Compre	Compression(L	J.					
2.28	ST.	ر ن	S	3	-	۲,	ā	쩞	-		0	NC S	OMC rd max	ਟੋ	3	o	0	3	8	_	0	0	۰,	0	se
	(mm)	8	(%)	(%)	(%)	(%)				ļ	(%)	(%)	/m3)	t/m3) (kg/cm2) (deg.)	(ded.)	(kg/cm2) (deg.)	(deg.)	(kg/cm2)	(2) (deg.)	=	(g/cm2) (deg.)	_	(kg/cm2) (deg.)	(ced)	(x10-5 cm/s)
E-2A	38.10	15	36	649	100		11.3		SC-CL		l	16.0	1.86	0.92	ဗ	06.0	30	0	:	19					0.28(
E-28	90.00	45	56	į.	38.0	25.0	13.0		ರ್ಭ		0.61	16.0	1.88	0.77	5	0,68	32	-	85	o					0.1300
E-3A	38.10	6		51			10.7		ರ			14.0	1.92	1.88	24	1,92		-	.68	4					0.020
E-3B	38.10	17	42	41			10.6		ક્ષ			14.0	1.94	0.46	36	0.35	37		.38	5					0.015
Average	51.08	24	34	43			11.4				18.0	15.0	1.90	1.0.1	30	96.0	3.1		.46	20			1	-	0.11
Max.	90.00	45	42				13.0					16.0	1.94	1.88		1.92	37	•	.85	4					0.280
Ľ.	38.10	5	92	29			10.6			•	. 0.91	14.0	98	0.46	24	0.3	23	Š	. 92	3					0.01

	ability	ير	(x10-5 cm/s)	1,4000	0.0021
	Permeability		(x10-		
		٥	(deg.)	0.19 40.3	0.24 36.7
·		O	kg/cm2) (deg.)	0.15	0.24
	-	٥	(ded.)	0.21 35.3	0.25 31.9
	Shear Test	O	(kg/cm2) (0.21	0.25
	(f) (l)	8	(ded.)		
	Triaxial	3	(kg/cm2)		
		0	(deg.)		
		.0	(kg/cm2)		
:	Confolia	3	(deg.)		
	Triaxial	3	(%) (1/m3) (kg/cm2) (deg.) (kg/cm2) (deg.)		
		rd max	t/m3)	1.85	1.74
:	Compact	O.	(%)	14.3	13.1 1.7
	Vatural Moist Compaction		(%)		
	<u>z</u> 8		,	g S	ਹ
		쩧			13.0
٠.		ā	!	٠	12.0
		占	(%)		21.0
	terberi mits	H	%		33.0 21.0 12.0 13.0 CL.
	<u> </u>	8	(%)	33	23
		s	%	54	27
S	Size	U	(%)	19:10 13 54	38.10 20 27 53
Result	Particle Distribu	SEN.	(mm)	19.10	38.10
Other Test Results	Test pit Particle Size			m 	Ī
	- 1			٠.	

Table 5.10 SUMMARY OF LABORATORY TEST RESULTS: SAND AND GRAVEL MATERIALS (1/2)

BORROW AREA Ga	EA Ga											-					-
	Unit		Particle Size	Size			Passing		Clay lumps		Specific		Water	- 13-	Soundness	¢-min	Los Angels
	Weight		Distribution	co		<u>~</u>	No.200 sieve	9/6		:	Gravity		Absorption				Abrasion
Test Pit No.	Sand	Gravel	SS SS SS	Ø	ຫ	8	Sand	Gravel	Sand	Gravel	Sand	Gravel	Sand	Gravel Sand		Gravel	(500cycles)
	(t/m3)	(t/m3)	(mm)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%) (d/cm3) (d/cm3)	(a/cm3)	(%)	(%) (%)	(%)	(%)	(%)
<u>ن</u> 1-	1.46	1.76	50.80	33	40	27	40.00	3.90	57.20	2.56	2.52	2.69	9.6	0.8	11.5	8.3	22.6
G-2	1.74	1.62	50.80	61	36	က	8.00	0.10		0.20	2.60	2.67	3.3	0.7	10.8	6.6	23.9
9-5	171	1.79	76.20	58	39	6	8.20	0.20	1.61	0.33	2.63	2.66	3.7	7.2	11.0	0.	23.9
Average	1.64	1.72		51	38	-	18.73	1.40	20.85	1.03	2.58	2.67	3.6	0.	11.1	8.6	23.5
Max.	1.74	1.79	76.20	61	40	27	40.00	3.90	57.20	2.56	2.53	2.69	3.9	1.2	11.5	11.0	23.9
Min	1.46	1.62	50.80	ල ල	36	8	8.00	0.10	•	0.20	2.52	2,66	3,3	0.8	10.8	9 9	22.6
BORROW AREA Gb	EA Gb											٠					
	Unit		Particle Size	Size			Passing		Clay lumps	-	Specific	<u></u>	Water		Soundness		Los Angels
	Weight		Distribution	o.	•		No.200 sieve				Gravity		Absorption			•	Abrasion
Test Pit No.	Sand	Gravel	SS .	U	ທ	8	Sand	Gravel		Gravel	Sand	Gravel	Sand	iravel	Sand	Gravel	(500cycles)
)	(t/m3)	(t/m3)	(mm)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%) (g/cm3) (g/cm3)	(g/cm3)	(%)	(%)	(%)	8	(%)
- G-5	1.67		76.20	18	78	4	4.90	09.0	8.37	1.40	2.58	2.58	3.9	3.1	8.8	6.2	
BORROW AREA Ge	EA Ge																
	C _{nit}		Particle Size	Size		_	Passing		Clay lumps		Specific		Water		Soundness	***************************************	Los Angels
	Weight		Distribution	ion			No.200 sieve		· .		Gravity		Absorption		: ,		Abrasion
Test Pit No.	Sand	Gravel	83	_o	တ	8	Sand	Gravel	Sand	Grave	Sand	Gravel	Sand	Gravel	Sand	Gravel	(500cycles)
	(t/m3)	(t/m3)	(mm)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%) (d/cm3) (d/cm3)	(g/cm3)	(%)	(%) (%)	(%)	(%)	(%)
G-7	1.5G	1.69	76.20	56	ဗ္ဗ	1-1	24.00	0,60	16.00	0.94	2.60	2.66	3.3	1.1	12.3	0.9	24.4
G-12A	EV.	-	76.20	60	ဗ္ဗ	7					2.68	٠.	1.8	1.2	13.7	6 6	25.6
G-12B			76.20	99	29	5					2.61	2.65	2.9	1.2	13.3	8.2	26.6
Average			76.20	6.1	32	8					2.63	2.65	2.7	1.2	13.1	8.0	25.5
Max.		. 0		88	33	-					2.68	2.66	8. 8.	1.2	13.7	6 6	26.6
Min.				5	80	က					2.60	2.65	.8	۲	12.3	6.0	24.4

es: SC (silt - clay) of samples G-10A to G-13B; % of No.100 sieve passing. G-1 to G-8; tested in 1987, G-10 to -13; tested in 1990.

MSC: Maximum gravel size. G: Gravel S: Sand

Table 5.10 SUMMARY OF LABORATORY TEST RESULTS: SAND AND GRAVEL MATERIALS (2/2)

BORROW AREA GO	YEA GO		15			:			- 1								
	Grit		Particle Size	Size		=	Passing		Clay lumps		Specific		Water		Soundness		Los Angels
	Weight		Distribution	ion			No.200 sieve	еле			Gravity		Absorption				Abrasion
Test Pit No.	Sand	Gravei	& X	ග	S	8	Sand	Gravei	Sand	Grave	Sand	Gravel	Sand	Gravel Sand		Gravel	Gravel (500cycles)
	(t/m3)	(t/m3)	(mm)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(g/cm3)	(g/cm3)	(%)	(%)	(%)	(%)	(%)
6-9	1.79	1.69	76.20	43	53	4	7.30	0.50	1.62	0.13	2.63	2.65	2.5	1.1	2,8	8.8	25.0
6-4	1.82	1.69	76.20	46	48	9	10.50	0.20	2.21	0.48	2.65	2.67	2.5	0.0	8,3	10.6	25.0
G-10A			102.00	92	23	T-					2.71	2.65	9.0	+	12.1	7.1	23.9
G-10B			102.00	70	29	3				-	2.70	2.70	1.2	0.5	10.1	13.5	28.6
G-11A	-		102.00	89	<u>რ</u>	7-	. ;			-	2.68	2.69	8.7	0.0	11.7	5.7	24.7
G-11B	i		102.00	59	40	-					2.70	2.66	1.6	1.0	12.7	6.2	24.6
Average	1.81	1.69		09	37	2	8.90	0.35	1.92	0.31	2.68	2.67	1.7	6.0	10.5	8.7	25.3
Max	· .	-	102.00	26	53	9		: .			2.71	2.70	2.5	-	12.7	13.5	28.6
Min.	·	-	76.20	43	23		÷				2.63	2.65	0.8	0.5	7.8	5.7	23.9
-				٠		. •							;	٠			
BORROW AREA Ge	REA GO					· . ·				•		•		•			
1	Chit		Particle Size	Size			Passing		Clay jumps		Specific		Water		Soundness	·	Los Angels
_	Weight		Distribution	ion		, -	No.200 sieve	9.0			Gravity		Absorption				Abrasion
Test Pit No.	Sand	Gravel	88	ڻ ق	ဟ	8	Sand	Gravel	Sand	Grave	Sand	Grave	Sand	Gravel Sand	Sand	Gravel	(500cycles)
	(t/m3)	(t/m3)	(mm)	(%)	(%)	8	(%)	(%)	(%)	(%)	(a/cm3)	(g/cm3)	(%)	(%)	(%)	(%)	(%)
6-8	1.55		50.80	14	75	-	12.30	1.50	36.40	2.36	2.66	2.65	2.0	1,2	11.9	7.6	
G-13A			76.20	70	52	ß		:			2.66	2.67	2.0	1.0	15,3	9.4	23.1
G-13B			76.20	56	34	10					2.65	2.66	2.5	- 4	14.7	6.5	24.7
Average				47	45	6					2.66	2.66	2.2	4	14.0	7.8	23.9
Max			76.2	2.0	75	-					2.66	2.67	2.5	2	15,3	9.4	
Min.			50.8	14	25	2					2.65	2.65	2.0	1.0	11.9	6.5	
	•																

SC (silt - clay) of samples G-10A to G-13B; % of No.100 sieve passing. G-1 to G-8; tested in 1987, G-10 to -13; tested in 1990. MSC: Maximum gravel size. G: Gravel S: Sand Notes:

Table 5.11 SUMMARY OF LABORATORY TEST RESULTS: QUARRY SITE (SK-311 AND SK-312)

			~	-[13.	:1		ı		1	1000	317.0
			Strength	water	bulk specific	Density	Longt. velocity	ransv. r	ratio	Poisson's Dynum, shear ratio modulus	Dynum, elast, modulus	modulus
	Depth	(w)	(kg/cm2)	1	(g/cm3)	(g/cm3)		Vs(m/sn)	<u>}</u>	G(kg/cm2)	E(kg/cm2)	k(kg/cm2)
SK-311	12.20	12.50		2.50	1.68		1					
	00.0	0.0	4 200		87.73 77.73	0		0 4 4 7	6	20.7 80.0	A02 707	240 546
	22,95 -	23.20		1 29	2.12	2 69.0	6,429	٠.	0.35	289.248	780.968	867,744
	32.65	32.87	170		2 23	2 72	5.586		0.33	220,551	586.664	575,162
	35.05 -	35,35	409		1.92	2.83	6,164	3,030	0.34	270,068	723,783	753,946
	44.70 -	44.90	617		2.16	2.89	6,436		0.35	282,386	762,440	847,157
	51.25 -	51.55		1.30	2.25							
	54.45 -	54.60	366		2.23	2.86	6,292	3,094	0.34	304,982	762,695	794,479
	55.05 -	55.30	1,509	3.37	1.82	2.88	6,409		0.34	296,478	794,560	827,670
	58.75 -	59.00	972	1.48	2.23	2.87	6,325	•	0.34	293,388	786,280	819,043
	Average		826	1.58	2.09	2.85	6,264	3,065	0.34	281,826	749,339	574,159
		•		•				Ŋ,				
215-70	24.60	24.70	40.	0.35	20.73	000	3	-	66.0	205 400	24.0 26.4	706 497
	27.00	27.45	מיני מיני מיני		6: · · · · ·	0000	0,000 A A A 4	2,00	9.0	306,073	820.277	100,4001 05A A5B
	31.25	31.55	44		2.03	289	6.468		0.33	320,043	851,317	834,624
	35.50 -	35.65	•		2.17	2.89	6,470		0,35	291 114	786,005	873,342
	37.00 -	37.30			2.29	2.89	6,435	3,159	0.34	299,782	803,411	836,888
	40.70 -	41.10	,		2.05	2.92	6,589	٠.	0.35	311,773	841,793	935,330
	43.90 -	44.10	1,301		2.16	2.87	6,351		0.34	295,448	791,797	824,784
	44.85 -	45.00	798	0.73	2.25	2.88	6,376	٠.	0.35	278,113	750,907	834,339
	45.00 -	45.35	1,244		2.29	2.88	6,389	3,194	0.33	305,400	812,364	796,437
	45.00 -	45.35			2.33	1						
. :	Average		943	0.94	2.23	2.89	6,434	3,168	0.34	301,461	807,804	842,960
	Average o	of all	888	1.24	2.17	2.87	6,354	3,120	0.34	292,221	780,291	817,787
÷,			: .						:			
0300	AGGREGATE TEST DESINTS	7ES111 TS	,									
				Water	Bulk specific		Soundhese		los Angeles			
				absorption	gravity				Abrasion			
Sample No	o.			(%)	(g/cm3)		(%)	,	(500cycles,	(%)		
SK-311A	i i	,		0.10			0.2		23,2			
SK-3118				0.10	2.69		2.8		21,1			
SK-312A				0.20	2.68		3.9		25,5			
SK-312B				0.10			1.1		23.6			
Average				0.13	2.69		2.0		23,4	-		

Table 5.12 RESULTS OF ALKALI AGGREGATE REACTIVITY TEST

(1) Sand and Gravel Materials

Sample No.	Decrease in Alkali (m_ mol/l)	Dissolved Silica (m mol/l)
G-10A	190	67
G-10B	150	64
G-11A	170	40
G-11B	130	19
G-12A	160	32
G-12B	190	56
G-13A	190	71
G-13B	180	71
Average	170	53

(2) Core Samples (Boreholes SK-311 and SK-312)

Sample No.	Decrease in Alkali (m. mol/l)	Dissolved Silica (m mol/l)	Content Ratio of CaCO3 (%)
SK-311A	50	2	94.3
SK-311B	50	3	94.8
SK-312A	50	1	95.3
SK-312B	50	2	94.3
Average	50	2	94.7

Table 5.13 RESULTS OF SOFT ROCK RATIO TEST

Sample No.	Soft Rock Ratio (%)
G-10	2.3
G-11	0.9
G-12	1.9
G-13	9.0
Average	3.5

Table 5.14 MEAN RUNOFF COEFFICIENTS CALCULATED FROM RUNOFF RECORDS (1965-1987)

		Drainage	Mean	Annual	Runoff	Mean		
		Area			1	Annual	Runoff	Loss
Sub-basin	River	(Jem ²)	(m ³ /s)	(MCM)	(mm)	Rainfall (mm)	Coeffi- cient	(mm)
>17-141/	Ermenek	2000.0	44.6	1406	703	096	0.73	257
17-14 - 17192/	Ermenek	1499.6	17.8	561	374	635	0.59	261
>1712	Göksu	2689.2	32.0	1008	375	620	0.62	245
1712 - 1720	Göksu	1614.8	19.1	604	374	675	0.55	301
1720 - 1714 1719	1714 Göksu downstream	2261.6	15.5	488	216	647	0.33	431

./: the sub-basin upstream from the station 17-14

^{2/:} the sub-basin between the stations 17-14 and 1719

MEAN RUNOFF COEFFICIENTS CALCULATED FOR ESTIMATED RUNOFF OF STATION 17-14 (1965-1987) Table 5.15

	Drainage	Mean	Annual	Runoff	Mean	Dunger	ti C
Sub-basin	(Km ²)	(m ³ /s)	(MCM)	(mm)	Rainfall (mm)	Coeffi- cient	(mm)
>Nadire	1318.8	33.4	1053	799	1090	0.73	291
Nadire - 17-14	681.2	11.2/44.6	353	519	721	0.72	202
17-14 - Görmel B. (Zeyve Creek)	156.0	2.9	91.4	586	825	0.71	239
17-14 - II-B	428.4	4.0	126	294	520	0.57	226
II-B - II-A (Erik R.)	238.8	ຜ ຕ	120	502	830	0.61	328
II-A - Gezende	326.8	3.3/58.6	104	318	009	0.53	282
Gezende - 1719	341.1	3.8/62.4	120	351	650	0.54	299

Table 5.16 ESTIMATED RUNOFF BY SUB-BASIN (1946-1987)

	Drainage	Mean	Annual	Runoff	Mean	Dynoff	0007
Sub-basin	(km ²)	(m ³ /s)	(MCM)	(mm)	Rainfall (mm)	Coeffi-	(mm)
>Nadire	1318.8	30.3	956	725	### ### ##############################	 	
Nadire - 17-14	681.2	10.1/40.4	319	468	ŧ	1	I,
17-14 - Görmel B.	156.0	2.6/43.0	82	526	ł	I,	. i
Görmel B II-B	428.4	3.7	117	272	1	1	1
II-B - II-A (Erik)	238.8	ស ស	110	462			1 × 1
II-A - Gezende	326.8	3.0/53.2	95	289	I	\$	i
Gezende - 1719	341.1	3,5/56.7	110	324	1		

Table 5.17 ANNUAL FLOOD PEAK FLOW OBSERVED AT STATION 17-14

Year	Dai day, 1		Peak	Discharge m ³ /s
1965	21	JAN		480
1966	25	JAN		730 *
1967	12	JAN		540
1968	13	MAR		680
1969	· -			
1970	E			_
1971	·			· · · · · · · · · · · · · · · · · · ·
1972	10	APR		240
1973	26	FEB		160
1974	15	MAR		870
1975	20	DEC		560
1976	12	APR		880
1977	3	DEC		820
1978	20	JAN		700 *
1979	3	JAN	:	880
1980	14	DEC	1.	,200
1981	6	JAN		630
1982	16	NOV	•	855 *
1983	27	DEC		410
1984	1	DEC		750
1985	. 1	APR		280

Note: * indicates that the value was revised after rechecking daily water level and discharge data and rating curves at 17-14 (DSI)

Table 5.18 PROBABLE FLOOD AT STATION 17-14

				(Unit	: m ³ /s)
Return Period (yr)			Third Type of Log-Pearson	Probabl Gu	e Flood mbel
1.01			173		143
1.5			465		497
2			582		610
5			904		889
10	. 1. 4		1137	1	074
25			1452	1	308
50		-	1701	. 1	481
100			1960	1	653
200	a 1.		2233	1	824

Table 5.19 PROBABLE FLOOD VOLUME AT STATION 17-14

(Unit : 10⁶ m)

Return			Durati	on (day)		
Period (yr)	1	2	3	5	7	10
1.01	6	19	30	55	75	92
1.50	33	54	72	102	129	164
2	42	65	85	117	146	187
5	63	92	118	153	189	243
10	77	110	140	178	217	281
25	95	133	167	208	253	328
50	108	150	187	231	279	363
100	121	167	207	253	306	398
200	134	184	228	276	332	433

Table 5.20 BRIDGES ON SILIFKE-GÜLNAR-ERMENEK ROAD

		Brid	ge	<u> </u>
Distance (km)	Gross Length (m)	Net Width (m)	Nos. Span	of Remarks
0	≠ e s	-	- -	Silifke junction Asphalt paved road
6		· <u></u> .	_	Branch from Route 35
65				Gülnar town, El. 1,000 m
111		6	1	RC
111	50	6	2	Olukpinar Bridge, RC, El. 1,100 m Gravel stabilized road from hear to Görmel Bridge
	-	_	~ ~ :	Hairpins and steep slope to climb up to the plateau
		-	-	Highest point at El. 1,550 m
136	55	4.5	2	Görmel Bridge, Stone, El. 1,550 m, Asphalt paved road
146			-	Junction with the Mut- Ermenek road
150		••	1,11 -	Ermenek town

Table 5.21 BRIDGES ON SILIFKE-MUT-ERMENEK ROAD (1/2)

		Brid		
Distance (km)	Gross Length (m)	Net Width (m)	Nos. o Span	of Remarks
0	ing.	_		Silifke junction Asphalt paved Route 35
15	90	5.5	3	Göksu Bridge on the main stream of Göksu, RC, Upstream from Kayraktepe dam site
36	34	5.5	1	Kargicak Bridge, RC
52	85	6	4	RC, on a branch stream with river water
67	27	7	1	
80			1	Mut town
83	Q ALCO	ers se 🚾 💎 e est	4 7	Branch from Route 35 towards Ermenek
86	8	6	1	RC + Stone arch
88	60	3.5	÷ .	Kadi Bridge, stone bridge on Branch Göksu
90	11	3.5	1	RC
92	16	3.5	1	RC, stone abutment
104	-		_	Branch to Gezende P.S.
107	30	3.5	1	After Evren Village
115	-	· -	-	Hairpin curve
120	-	.	-	Partly narrow section
122		_	•	Partly narrow section
125	Chee .	-	-	Narrow section for about 2 km, with rock cliff on the right side

Table 5.21 BRIDGES ON SILIFKE-MUT-ERMENEK ROAD (2/2)

		Brid	ge	
Distance (km)	Gross Length (m)	Net Width (m)	Nos. Span	
136	-	-	*	Branch to Gezende dam site
151	30	5.5	1	Yerköprü Bridge, steel truss, load capacity 36 t
171	6 4	sirila	-	Ermenek town

Table 6.1 LAND USE IN ERMENEK DISTRICT, 1988

Land use	Area (ha)	4		Share (%)
Cultivated land	32,075			13.8
Cereals	12,360			5.4
Follow	10,556		•	4.5
Pulses	1,150	+		0.5
Industrial crops	654			0.3
Fodder crops	73			0.0
Vegetables	677			0.3
Vineyards	4,925			2.1
Fruits	1,680			0.7
Pasture / meadow	31,300			13.5
Forests	161,000			69.4
Settlements	700			0.3
Ponds and marshland	500			0.2
Land unsuited to production activities	6,350			2.8
TOTAL	231,925			100.0

Source : Ermenek District Agricultural Office

Table 6.2 PATIENTS HOSPITALIZED IN ERMENEK HOSPITAL

Disease	Nos. of Patient	s
Infectious hepatitis	23	
Rabies	37	
Tuberculosis	2	
Diarrhoea	277	
Death of new borne by diarrhoea	2	

Remarks: January to October 1989

Table 6.3 WATER QUALITY OF THE ERMENEK RIVER

Sampling Water

point and Tempe- pH Na K Ca/Mg CO3 HCO3 Ci \$04 Total BOD

date rature

Salt

°C

ppm mg/1

Görmet

18.2.1987 10 8.0 0.11 0.03 3.20 0.10 2.90 0.18 0.16 195 1.60

25.8.1987 16 8.2 0.10 0.03 3.30 0.40 2.20 0.20 0.63 187 0.00

Çavusköyü

10.8.1988 18 8.2 0.08 0.00 3.10 0.40 1.90 0.22 0.68 183 0.70

7.2.1989 8 8.1 0.15 0.00 3.70 0.30 2.90 0.20 0.48 227 0.90

Note: No or trace ammonia/nitrate/nitrite has been detected.

Source : DSi

Table 6.4 BIRD SPECIES CONFIRMED

Accipitridae Vulture (Akbaba in Turkish), Sparrow-

hawk (Atmaca)

Eagle (Kartal)

Falconidae Peregrine (Sahin)

<u>Ciconidae</u> Stork (Leylek)

Fringillidae Goldfinch (Saka)

Source: Combination by the JICA Study Team in consultation with scholars.

0.45

Table 6.5 TREE SPECIES IN THE ERMENEK RIVER BASIN

Botanical name	Common name
Shrubs	Waller only
Quercus coccifera/illex	Holly oak
Arbutus andrachne	Strawberry tree Laurel
Laurus nobilis	Wild olive
Olea europea var.	
Pistacea trebinthus/lentiscus	Terebinth
Cistus villosus/salviifolius	Rockroses
Forest trees	
Acacia cyanophylla	Cypress acacia
Pinus brutia	Turkish red pine
Cedrus Libani	Cedar
Juniperus feoditissima/excelsa/	and the second of the second o
axyeedrus/phoenicea	Junipers
Pinus nigra	Black pine
Others	
Staphyles pinnata	Bead tree
Crataegrus manegya	Fig
Euphorbis tinctoris	Euphorbia
Creminea	
Durphacca	Elecampane
Verbaseum olympicum	t .
Mentha	Pepper
Astragalus	Gum-tragacanth
Thymus serpylum	Thyme
Acer	
Platanus orientalis	Plane tree
Salix alba	Willow
Ostrya Carpinifolia	
Corylus	Hazelnut
Polypodium yulgave	
Rosa canina	
Selvia	
Rubus ideus	Blackberry
Phas coriaia	Sumac

Remarks: Existence confirmed by the Ermenek Regional Office of General Directorate of Forestry.

Table 6.6 FISH SPECIES IN THE GÖKSU RIVER SYSTEM

Scientific name	English name	Turkish name
Anguilla anguilla	Eel fish	Yìlan balìgì
Salmotrutta macrostigma	Trout	Dere alasì
Cyprinus carpio	Carp	Sazan baligi
Vimba vimba tenella	A STATE OF THE STA	Tahta balìgì,
		Karagöz
Acanthorutilus anatolicus		Yag balìgì
Pararhodeus kervilleri		$g^{-\frac{1}{2}}(x)$
Chondrostoma nasus		Kababurun
Leuciscus cephalus	Chub	Tatlisu kefali
L.borysthenicus		Tatlisu kefali
L.lepidus		Akbalik
Barbus capito pectoralis	Barbel fish	Bìyìkli balìk
B.plebejus escherichi	Barbel fish	Bìyìkli balìk
Capoeta capoeta angorae		Karabalik
Cobitis taenia	Spined loach	Tasyiyen
and the second of the second o		baligi
Nemacheilus angorae	Ankara stone	Cöpcü baligi
	loach	
Silurus glanis	Wels	Yayin baligi
Aphanius chantrei fontinali	.s	Dislisazapcik
		baliklari
A. sophiae mentoides		18
Mugil cephalus	Mullet	Deniz kefali
M. ramade	Mullet	Deniz kefali
Stizastedion lucioperca		Aklevrek
er alle er er er er er er er er er er er er er		(Sudak)
Blennius fluviatilis		Horos bina
	:	balìgì

Source: Combination by the JICA Study Team in consultation with scholars.

Table 6.7 REGIONAL & NATIONAL URBAN CENTERS (Populations 20,000+)

		-	Populat	ion	Ann	ual Growt	h (%)
Urban	-				1975	1980	1975
Settlement	Province	1975	1980	1985	1980	1985	1985
Regional Co	nters						
Manaygat	ANTALYA	10804	14255	21520	5.70	8.59	7, 13
Ilgin	KONYA	11830	16762	22539	7.22	6.10	6,66
Cumra	KONYA	19225	20919	24175	1,70	2.94	2,32
Erdemli	IÇEL	19936	21234	26074	1.27	4.19	2.77
Silifke	IÇEL	19257	22041	28111	2.74	4.99	3.86
Anamur	IÇEL	21475	23025	28726	1.40	4.52	2.95
Atanya	ANTALYA	18520	22190	28733	3.68	5.30	4.49
Seydisehir	KONYA	25651	30065	37226	3.23	4.37	3.79
Aksehir	KONYA	35544	40312	45320	2.55	2.37	2.46
Karaman	KARAMAN	43759	51208	64735	3.19	4.80	3.99
Eregli	KONYA	50354	56931	68749	2.49	3.84	3.16
Tarsus	IÇEL	102186	121074	146502	3.45	3.89	3.67
Antalya	ANTALYA	130774	173501	261114	5.82	8.52	7.16
Mersin	IÇEL	152236	216308	314350	7.28	7.76	7.52
Konya	KONYA	300882	374290	478635	4.46	5.04	4.75
				·			
National Ce	nters		4 4				
Bursa		346103	445113	612510	5.16	6.59	5.87
Adana		475384	574515	777554	3.86	6.24	5.04
lzmir		1701004	1877755	2235035	2.00	3.54	2.77
Ankera		2547364	2772708	5475982	1.71	14.58	7.95
Istanbul		5706689	6427945	10590853	2.41	10.50	6,38
		·		· · · · · · · · · · · · · · · · · · ·		<u> </u>	· · · · · · · · · · · · · · · · · · ·
Total Popul					1		
of Turkey	•	40347719	44736957	50664458	2.09	2.52	2.3

Source: Statistical Yearbook of Turkey, 1987, SIS.

Table 6.8 RISK RESULTANT MATRIX FOR PEIA OF THE PROJECT

			ible Im	pact	
	Aspect of Environment	Precon- struc- tion		Opera- tion	Note
1.	Socio-economy	Y.			
(1)	Demography	0	±	+	- Relocation of people
(2)	Agriculture	0	0	~	+ Employment opportunitie - Inundation of agri- cultural land
(3)	Fishery	0	0	+	+ Aquaculture in the long
(4)	Industry	0	0	±	run + Konya and Karaman Provinces
					 Negative effect on coal mines
(5) (6)	Trade Tourism	0	0	++	+ Use of reservoir + Better access, increase opportunities
(7)	Land tenure		0	0	- Problem associated with resettlement
(8)	Health	0	0	×	reacttement
2.	Natural/Phys:	ical Asp	<u>ects</u>	. · ·	
(1)	Topography	0	_	<u>±</u>	 Submergence of canyon, minor disruption Better landscape by reservoir
(2)	Geology	0	0	X ·	27 103011011
(3)		· · · · . • • · · · ·	. .	0	- Tree cutting, Erosion
(4)	Meteoro- hydrology	0	0	X	
(5) :	Water quality	γ 0	-		- Discharge of sediment, wastes etc.
3.	Fauna and Flo	ora			
(1)	Terrestrial fauna	0	0	x	
(2)		0	0	x	
(3)	Aquatic fauna	a 0	- .	** ±	- Effect by lower water quality
(4)	Aquatic flora	a 0	4100	<u>+</u>	+ Increased productivity - Effect by lower water quality
		•			+ Diversification

Table 9.1 LABOR WAGE RATES

	Description	Unit	L.C(TL)	F.C(US\$)
1.	Foreman	-		
	a) Chief of Common labor		46,340	
	b) Chief of skilled labor	m.d	29,580	12.9
2.	Operator			
	a) Heavy equipment	m.d	53,020	23.1
	b) Light equipment	m.d	36,280	15.8
3.	Driver			
J.	a) Driver	m.d	29,580	12.9
	b) Trailer driver	m.d	32,920	14.3
4.	Mechanic	m.d	29,580	12.9
5.	Welder	m.đ	29,580	12.9
٠,	Metdet	111 • CA	25,500	12.5
6.	Concrete worker	m.d	27,910	12.1
			00.500	250
7.	Carpenter	m.d	39,630	17.2
8.	Steel worker	m.d	39,630	17.2
9.	Common laber	m.d	21,200	9.2
10-	Skilled labor	m.d	22,960	10.0
^		211 • 02	22,500	20.0
11.	Driller	m.d	23,550	10.2

Source: Surveyed by the JICA Study Team

Table 9.2 MARKET PRICES OF CONSTRUCTION MATERIALS

	Description	Unit	L.C(TL)	F.C(US\$)
1.	Cement			
	a) Cement (in bag)	ton	138,470	60.2
	b) Cement (in bulk)	bag	147,000	
2.	Aggregate			4
	a) gravel	m3	25,000	10.9
	b) sand	m3	25,000	10.9
3.	Fuel & lubricant			
•	a) Gasoline	1	1,040	0.5
	b) Diesel	ĩ	963	
	c) Heavy oil	1	591	0.3
4.	Gas	. 4		
.,	a) Propan gas	1	985	0.4
5.	Steel materials			
	a) Reinforcement bar	ton	1,045,000	454.3
6.	Wooden Materials			
	a) plywood	m3	420,000	182.6
, i	b) Pine, plank	М3	910,000	
7.	Dynamite	kg	5,500	2.4

Source: Surveyed by the JICA Study Team

Table 9.3 PRICES OF CONSTRUCTION EQUIPMENT

	Description	Capa	acity	L.C(1000TL)	F.C(US\$)
1.	Bulldozer	D9N	43t	780,045	339,150
2.	- do -	D8N	32t	610,995	265,650
3.	- do -	D8L	32t	678,615	295,050
4	- do -	D7H	24t	490,245	213,150
5.	- do -	D7G	24t	425,040	184,800
6.	Wheel loader	980C	3.2m3	584,430	254,100
7.	- do -	966E	2.8m3	364,665	158,550
8.	- do - (side dump)	950E	2.1m3	312,869	136,030
9.	Back hoe	235C	1.5m3	615,825	267,750
10.	- do -		0.6m3	185,587	80,690
11.	- do -	-	0.4m3	120,865	52,550
12.	Dump truck	D35C	32t	647,220	281,400
13.	- do -	D30C	27t	594,090	258,300
14.	- do -	D25C	23t	497,490	216,300
15.	Crawler jumbo	2 b	ooms	1,030,055	447,850
16.	Crawler drill	1 b	oom	106,168	46,160
17.	Rocker shovel	(0.4 m3	191,107	83,090
18.	Battery Locomotive		12 t	467,176	203,120
19.	Raise Climber	S.	rh 5E	416,300	181,000
20.	Truck crane		20 t	329,820	143,400
21.	Truck mixer	4	1.5 m3	122,038	53,060
22.	Concrete pump		65 m3	363,837	158,190
23.	Batcher plant		45 m3	717,002	311,740
24.	- do -		85 m3	1,005,169	437,030

Source: Surveyed by the JICA Study Team

Table 9.4 SUMMARY OF INVESTMENT COSTS

	Foreign (Ml.\$)	Local (Ml.\$)	Total (%l.\$)
1.Land Acquisition	0.23	13.65	13.88
2.Preparatory Works	2.52	9.63	12.14
<u> </u>			
3. Civil Works			
2.1 River Diversion Works	1.07	2.43	3.50
2.2 Dam and Spillway	39.73	86.90	126,63
2.3 Power WaterWay	22.22	43.93	66.15
2.4 Power House	6.03	15.90	21.93
2.5 Tailrace tunnel	3.15	6.47	9.62
2.6 Outdoor Switchyard	0.15	0.16	0.31
2.7 Erik Diversion Scheme	2.31 74.66	4.68 160.46	6.99 235.12
(Sub-Total)	74.00	100.40	233.12
4.Hydraulic Works	11.09	4.80	15.89
5.Mechanical and Electric	44.46	11.12	55.58
Equipment			
6.Engineering and Administration	15.45	21.39	36.84
Free		•	
7.Transmission Line	21.58	14.38	35.98
8.Tax (VAT 10%)	17.00	23.54	40.54
9.Interest During Construction	28.90	77.20	106.10
Grand Total	215.88	336.18	552.06

Note: Local currency is expressed in US\$ equivalents at an exchange rate of US\$1.00 = TL2,300.

Table 9.5 BILL OF QUANTITIES (1/10)

			Foreig	Foreign Currency	-	Local Currency	ncy	Total in US\$	n US\$
<u>0</u>	Work Item	Unit Q'ty	Unit Price US\$	e Amount US\$1,000	Unit Pri	Unit Price Unit Price US\$ 1,000TL	Amount Tt. million	Unit Price US\$	Amount US\$1,000
_	(and Acquisition								
_	Land acquisition & compensation	n L.S.			9,730	ŧ	22,379.00		9,730.00
1.2	Relocation road	m 13,800	15.00	207,00	130	299,00	4,126.20	145.00	2,001.00
	Sub-total			207.00		٠	26,505,20		11,731.00
٠	Physical contingency			20.70			4,888.42		2,146.10
	(20% of 1.1 & 10% of 1.2)								
	Total of land acquisition			227.70			31,393.62		13,877.10
			٠						
۸i	Preparatory Works								
2.1	Access road								
	- Access roads	т 42,000	15.00	630.00	130	299,00	12,558,00	145.00	6,090.00
	- Bridges near switchyard	nos.	10,000,00	10.00	000,06	207,000.00	207.00	100,000.00	100,00
2,5	Improvement of existing road	m 10,000	15,00	150.00	130	299.00	2,990.00	145.00	1,450.00
2	Camp facilities for owner &	L.S.		1,500.00			4,370.00		3,400.00
	engineers incl. power, water e	etc.			-				
	Sub-total			2,290.00		:	20,125.00		11,040.00
	Physical contingency (10 %)			229.00			2,012.50	13.	1,104.00
	Total of Preparatory Works			2,519.00	+ ±		22,137,50		12,144.00
m	River Diversion Works	.* * 			-				
3.1	Access tunnel to diversion tun	tunnel (D7)						٠.	
	- excavation, tunnel	c.m. 1,400	14.49	20.29	22	25.65	92.69	36.00	50.40
	- slab concrete, tunnel	c.m. 64	41.10	2.63	\$	158,47	10.14	110.00	7.04
	- reinforcing bar (20 kg/m3)	ton	22.60	0.03	269	1,604.02	2.05	720.00	0.92
	- access road (W≃6 m)	m 700	15,00	10.50	130	289,00	209,30	145.00	101.50

Table 9.5 BILL OF QUANTITIES (2/10)

				Foreign Currency	Currency		Local Currency	nc)	Total in US\$	in US\$
	Work Item	Unit	0.ty	unit Price us\$	Amount US\$1,000	Unit Pr USS	Unit Price Unit Price US\$ 1,000TL	Amount TL million	Unit Price US\$	Amount US\$1,000
1										
7	Diversion tunnel (D7.0)			:	- 					
	- excavation, W. rock	n E	1,000		1.00		2,30	2.30	2.00	2.00
•	- excavation, rock	c.B		2.00	2.00	~	4,60	09.4	4.90	7.00
	- excavation, tunnel	E U	N	14, 00	302.40	22	20.60	1,092.96	36.00	777.60
	- shotcrete	C.B.	72	92.00	6.62	273	627.90	45.21	365,00	26.28
	- concrete, open	G.D	500	28.00	14.00	27	108,10	54.05	22.00	37.50
٠.	. lining concrete, tunnel	S	6.771	41.00	277.61	69	158,70	1,074.56	110.00	744.81
	- reinforcing bar (40 kg/m3)	ton	291	23.00	69.9	697	1,603.10	466.25	720,00	209.40
	- consolidation grout	E	1,825	2.00	3.65	28	64.40	117.53	30.00	54.75
	- plugging works	lot ot	-	113,000.00	113.00	387,000	890,100.00	890.10	500,000.00	500.00
M.	Coffer dam		٠							
	- excavation, w. rock	e U	2,000	1.00	2.00	-	2.30	7.60	2.00	00-7
	- embankment	E O	7,700	2.00	15.40	~	4.60	35.42	4.00	30.80
	- concrete, open	ů,		28,00	108.08	14	108.10	417.27	75.00	289.50
	- reinforcing bar (20 kg/m3)	ton	77	23.00	1.78	269	1,603.10	123.76	720,00	55.58
	Sub-tota(887.68			4,619.35		2,896.09
	Others (5%)				44.38			230.97		144.80
	Sub-total of item5.				932.06			4,850.32		3,040.89

Table 9.5 BILL OF QUANTITIES (3/10)

			Foreign Currency	urrency	-	Local Currency	ncy	Total in US\$	in US\$
2	Work Item	Unit a'ty	Unit Price US\$	Amount US\$1,000	Unit Pri	Unit Price Unit Price US\$ 1,000TL	Amount TL million	Unit Price US\$	Amount US\$1,000
4	Dam and Spillway		-1. -1.						
4.1	Access tunnel to dam site (D7 a	(D7 at crest and riverbed)	verbed)					4.	
	- excavation, tunnel	c.m. 76,900	14.00	1,076.60	23	50.60	3,891.14	36.00	2,768.40
	- shotcrete	c.m. 512	92.00	47.10	273	627.90	321,48	365.00	186.88
	- slab concrete, tunnel	c.m. 2,730	41.00	111.93	%	158.70	433.25	110.00	300.30
	- reinforcing bar (20 kg/m3)	ton 109	23.00	2.51	269	1,603.10	174.74	720.00	78.48
	- access road at crest (W=6 m)	т 2,000	15,00	30.00	130	299.00	598.00	145.00	290.00
		ш ш 2,000	15.00	30.00	130	299.00	598.00	145.00	290.00
7.7	Main dam								-
	- excavation, w. rock	c.m.399,060	4.00	1,596.24	•	13.80	5,507.03	10.00	3,990.60
	- excavation, rock	c.m.405,860	4.00	1,623.44	9	13.80	5,600.87	10.00	4,058.60
	- concrete, open (10 %)	c.m. 27,000	28.00	756.00	2.4	108.10	2,918.70	3.8	2,025.00
	- dam concrete	c.m.270,000	50.00	13,500.00	8	184.00	49,680.00	130.00	35,100.00
	- reinforcing bar (5 kg/m3)	ton 1,485	23.00	34.16	269	1,603.10	2,380.60	720.00	1,069.20
<u>.</u>	- consolidation grout	m 7,038	8.00	56.30	23	50.60	356.12	30.00	211.14
7 3	Access tunnel to grout gallery	(B2.6 x K2.5)							
	- excavation, tunnel	c.m. 56,600	14.00	792.40	43	98.90	5,597.74	57.00	3,226.20
	- shotcrete	с.т. 549	92,00	50.51	273	627.90	344.72	365.00	200.39
÷	- access road (N=6 m)	m 4,000	15,00	60.00	130	299.00	1,196.00	145.00	580.00
: 	- temporary bridge	nos. 1	00.000,4	4.00	31,000	71,300.00	71.30	35,000.00	35,00
4.4	Vertical shafts to grout gallery	>							
	- excavation, shaft	c.m. 23,400	62.00	1,450.80	33	87.40	2,045.16	100.00	2,340.00
	- shotcrete	c.m. 1,360	92.00	125.12	273	627.90	853.94	365.00	496.40
	- rockbolts	m 18,900	9.00	113.40	2	32.20	608.58	20.00	378.00
	- lining concrete, shaft	c.m. 8,670	52.00	450.84	123	282.90	2,452.74	175.00	1,517.25
		1	00 20	6		(FC)	2	000	4

Table 9.5 BILL OF QUANTITIES (4/10)

			Foreign Currency	Surrency	-	Local Currency	ncy	Total	Total in US\$
<u>%</u>	Work Item	Unit Q'ty	Unit Price US\$	Amount US\$1,000	Unit Pric US\$	Unit Price Unit Price US\$ 1,000TL	Amount TL million	Unit Price US\$	Amount US\$1,000
	WANTED TO THE PARTY OF THE PART								
4.5	Grout tunnels and curtain grout	쓮							
	- excavation, tunnel (D3.5)	c.m.200,700	14.00	2,809,80	15	98.90	19,849.23	57.00	11,439.90
	- lining concrete, turnel	c.m. 76,100	41.00	3,120,10	69	158.70	12,077.07	110.00	8,371.00
	- reinforcing bar (40 kg/m3)	ton 3,044	23.00	70.01	269	1,603.10	4,879.84	720.00	2,191.68
	- grout hole drilling	m 385,891	1.80	09.469	12.1	27.83	10,739.35	13.90	5,363.88
. :.	- grouting (100 kg/m)	ton 38,589	00-69	2,662.65	318	731.40	28,224.07	387.00	14,933.98
	- replacement concrete	_	45.00	00,066	9	138.00	3,036.00	105.00	2,310.00
4.6	Spiliway tunnel (D9.0)								
	- excavation, w. rock	c.m. 300	1.00	0.30	- -	2,30	0.69	2.00	09.0
	- excavation, rock	c.m. 2,700	2.00	5,40	2	7 60	12.42	00"7	10.80
	- excavation, tunnel	c.m. 29,300	16.00	468.80	**	55.20	1,617.36	00.04	1,172.00
	- excavation, shaft	c.m. 11,100	62.00	688,20	38	87.40	970.14	100.00	1,110.00
	- shotcrete	c.m. 480	92.00	91 77	573	627.90	301.39	365.00	175.20
	- rockbolts	m 3,480	6.00	20.88	14	32.20	112.06	20.00	69.69
	- concrete, open	c.m. 2,000	28.00	56.00	47	108,10	216.20	75.00	150.00
	- lining concrete, turnel	c.m. 10,190	41.00	417.79	69	158.70	1,617.15	110.00	1,120.90
٠.٠.	- Lining concrete, shaft	c.m. 3,430	52.00	178,36	123	282.90	970.35	175.00	600.25
	- reinforcing bar (40 kg/m3)	ton 625	23.00	14.37	269	1,603.10	1,001.62	720.00	98.677
	- consolidation grout	т 5,390	8.00	43.12	22	50.60	272.73	30.00	161.70
	Sub-total			34,203.87			172,083.73		109,022.88
	Others (1%)			342.04			1,720.84	,	1,090.23
	Sub-total of item 4.			34,545.91			173,804.57		110,113.11

Table 9.5 BILL OF QUANTITIES (5/10)

				Foreign Currency	Surrency		Local Currency	ncy	Total in US\$	เก บร\$
o R	Work Item	Unit	Q¹ty	Unit Price US\$	Amount US\$1,000	Unit Pri US\$	Unit Price Unit Price US\$ 1,000TL	Amount TL million	Unit Price US\$	Amount US\$1,000
5.	Power Waterway									
5.1	Work adit (D7.0)	:						•		: .
•	- excavation, w. rock	. B	7.00	1.00	07.0	,	2.30	0.92	2.00	0.80
	- excavation, rock		2,000	2.00	00.4	~	7.60	9.20	4 .8	8.00
	 excavation, tunnel 	c.m.102,900	2,900	14.00	1,440.60	స	48.30	4,970.07	35.00	3,601.50
	 steel support 	ton	330	287.70	76 76	787	1,109.29	366.07	770.00	254.10
	- shotcrete	E. ∪	1,510	92.00	138.92	273	627.90	948.13	365.00	551.15
	- rockbolts	7. E	14,600	9.00	87.60	4	32.20	470.12	20.00	292.00
	- concrete, open	e. 0	800	28.00	22,40	25	108.10	86.48	75.00	90.09
	 lining concrete, tunnel 		8,980	41.00	368.18	69	158.70	1,425.13	110.00	987.80
	- slab concrete, tunnel	e. o	2,550	41.00	104.55	\$	158.70	69-707	110.00	280.50
	- reinforcing bar (20 kg/m3)	Ę	29	23.00	1.54	269	1,603.10	197-41	720.00	48.54
	. plugging works	nos.	'n	45,000.00	225.00	155,000	356,500.00	1,782.50	200,000,00	1,000.00
2.	Intake			. ,						
	- excavation, w. rock	c.#.	000,1	1.00	1,00	•	2.30	2.30	2,00	2.00
	- excavation, rock		2,000	2.00	4.00	~	4.60	9.20	00.4	8.00
	- excavation, shaft	E.O	9,700	27.00	261.90	16	36.80	356.96	43.00	417.10
	- shotcrete	ë.	339	92.00	31.19	273	627.90	212.86	365.00	123.74
:	- reckbolts	E	3,700	6.00	22.20	71	52.20	119.14	20.00	24.00
	- concrete, open	٠ ٣	200	28.00	14.00	2.7	108.10	54.05	3. S	37.50
	- lining concrete, shaft	E	3,580	52.00	186.16	52	282.90	1,012.78	175.00	626.50
	- reinforcing bar (40 kg/m3)	ton	163	23.00	3.73	269	1,603.10	261.63	720.00	117.50
	- consolidation grout	ε	3,600	2.00	7.20	88	07.79	231.84	30.00	108.00
5.3	Headrace turnel (06.1)						\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
	- excavation, tunnel	c.m.397,700	7,700	16.00	6,363.20	*	55.20	21,953.04	40.00	15,908.00
	- shotcrete	c.m. 12,660	2,660	92.00	1,164.72	273	627.90	7,949.21	365.00	4,620.90
	- rockbolts	E	79, 100	90.9	09.727	71	32.20	2,547.02	20.00	1,582.00

Table 9.5 BILL OF QUANTITIES (6/10)

No. Work Item Unit 91ty - concrete, lining c.m.133,500 - reinforcing bar (40 kg/m3) ton 5,340 - consolidation grout m 36,230 - replacement concrete c.m. 2,400 - excavation, shaft c.m. 15,100 - excavation, tunnel c.m. 18,400 - lining concrete, tunnel c.m. 2,500 - lining concrete, tunnel c.m. 2,500 - lining concrete, tunnel c.m. 2,500 - slab concrete, tunnel c.m. 17,160 - excavation, shaft c.m. 8,300 - excavation, tunnel c.m. 675 - consolidation grout m 5,530 - backfill concrete - backfill concrete - backfill concrete - slab concrete, tunnel c.m. 7,630 - backfill concrete - slab concrete, tunnel c.m. 7,630 - reinforcing bar (40 kg/m3) ton 325 - reinforcing bar (40 kg/m3) ton 325		Foreign Currency	Jurrency			700	Total	Total in US\$
unit concrete, lining reinforcing bar (40 kg/m3) ton consolidation grout excavation, shaft excavation, tunnel shotcrete lining concrete, tunnel lining concrete, tunnel slab concrete, tunnel excavation, shaft c.m. lining concrete, tunnel c.m. excavation, shaft c.m. reinforcing bar (40 kg/m3) ton consolidation grout Pressure shaft & access tunnel excavation, tunnel excavation, tunnel c.m. shotcrete rockbolts concrete, open concrete, tunnel c.m. reinforcing bar (40 kg/m3) ton reinforcing bar (40 kg/m3) ton		•			Local currency	£2	2	
- concrete, lining c.m.13 - reinforcing bar (40 kg/m3) ton consolidation grout m.3 - replacement concrete c.m. lexcavation, shaft c.m. lexcavation, tunnel c.m. loning concrete, tunnel c.m. lining concrete, tunnel c.m. lining concrete, tunnel c.m. reinforcing bar (40 kg/m3) ton consolidation grout m. Pressure shaft & access tunnel c.m. excavation, tunnel c.m. shotcrete concrete, open concrete, open c.m. reinforcing bar (40 kg/m3) ton concrete, open c.m. shotcrete concrete, open c.m. reinforcing bar (40 kg/m3) ton reinforcing bar (40 kg/m3) ton reinforcing bar (40 kg/m3) ton		Unit Price	Amount	Unit Pric	Unit Price Unit Price	Amount	Unit Price	Amount
- concrete, lining c.m.13 - reinforcing bar (40 kg/m3) ton consolidation grout m.3 - replacement concrete c.m. leavestion, tunnel c.m.1 - excavation, tunnel c.m.1 - shotcrete tunnel c.m. lining concrete, tunnel c.m. lining concrete, tunnel c.m. lining concrete, tunnel c.m. reinforcing bar (40 kg/m3) ton consolidation grout m.5 - excavation, tunnel c.m. shotcrete c.m. leavesure shaft & access tunnel c.m. shotcrete concrete, open concrete, open concrete, open concrete, tunnel c.m. leackfill concrete c.m. slab concrete, tunnel c.m. slab concrete, tunnel c.m. reinforcing bar (40 kg/m3) ton concretions and c.m.		ns s	000, ræsu	s sn	1,000TL	TL million	SS)	000,1380
- reinforcing bar (40 kg/m3) ton - consolidation grout m3 - replacement concrete c.m. Surge tank & ventilation tunnel c.m. excavation, tunnel c.m. shotcrete tunnel c.m. lining concrete, tunnel c.m. lining concrete, tunnel c.m. reinforcing bar (40 kg/m3) ton consolidation grout c.m. excavation, tunnel c.m. excavation, tunnel c.m. shotcrete open c.m. rockbolts m concrete, open c.m. backfill concrete c.m shotcrete concrete, tunnel c.m shotcrete c.m shotcrete concrete, open c.m shotcrete concrete, tunnel c.m backfill concrete c.m slab concrete, tunnel c.m reinforcing bar (40 kg/m3) ton concrete, tunnel c.m reinforcing bar (40 kg/m3) ton concrete concrete c.m.	1,133,500	41.00	5,473.50	69	158.70	21, 186.45	110.00	14,685.00
- consolidation grout m 3 - replacement concrete c.m. Surge tank & ventilation tunnel c.m. 1 - excavation, shaft c.m. 1 - shotcrete concrete, shaft c.m. 1 - lining concrete, tunnel c.m. 1 - lining concrete, tunnel c.m. 1 - reinforcing bar (40 kg/m3) ton consolidation grout m Pressure shaft & access tunnel c.m. 1 - excavation, tunnel c.m. 1 - excavation, tunnel c.m. 1 - shotcrete c.m. 1 - concrete, open c.m. 1 - backfill concrete c.m. 1 - backfill concrete c.m. 1 - backfill concrete c.m. 1 - slab concrete, tunnel c.m. 1 - slab concrete, tunnel c.m. 1 - reinforcing bar (40 kg/m3) ton 1 - reinforcing bar (40 kg/m3) ton 1 - reinforcing bar (40 kg/m3) ton 1	5,340	23.00	122.82	269	1,603.10	8,560.55	720.00	3,844.80
Surge tank & ventilation tunnel - excavation, shaft - excavation, tunnel - shotcrete - rockbolts - lining concrete, tunnel - lining concrete, tunnel - slab concrete, tunnel - reinforcing bar (40 kg/m3) ton - consolidation grout - excavation, tunnel - excavation, tunnel - shotcrete - rockbolts		2.00	72.46	82	07.79	2,333.21	30.00	1,086.90
Surge tank & ventilation tunnel - excavation, shaft - excavation, tunnel - shotcrefe - ining concrete, shaft - lining concrete, tunnel - lining concrete, tunnel - slab concrete, tunnel - excavation, shaft - excavation, shaft - excavation, tunnel - shotcrete - concrete, open - concrete, open - concrete, open - shotcrete - concrete, open - shotcrete - concrete, tunnel - slab concrete, tunnel - slab concrete, tunnel - slab concrete, tunnel - reinforcing bar (40 kg/m3) ton - reinforcing bar (40 kg/m3) ton	1, 2,400	45.00	108.00	99	138.00	331.20	105.00	252.00
excavation, shaft c.m. 1 excavation, tunnel c.m. 1 shotcrete ton ton con- rockbolts m lining concrete, tunnel c.m. lining concrete, tunnel c.m. reinforcing bar (40 kg/m3) ton consolidation grout m Pressure shaft & access tunnel excavation, shaft c.m. shotcrete c.m. rockbolts concrete, open c.m. backfill concrete c.m. backfill concrete c.m. reinforcing bar (40 kg/m3) ton concrete, open c.m.			•					
excavation, tunnel c.m. shotcrete ton cockbolts lining concrete, shaft c.m. lining concrete, tunnel c.m. consolidation grout mare excavation, shaft c.m. excavation, shaft c.m. excavation, tunnel c.m. shotcrete open c.m. backfill concrete tunnel c.m. backfill concrete c.m. shotcrete, open c.m. shab concrete, tunnel c.m. reinforcing bar (40 kg/m3) ton concrete, tunnel c.m.	15,100	18.00	271.80	ĸ	57.50	868.25	43.00	649.30
- shotcrete ton concrete, shaft c.m. lining concrete, tunnel c.m. slab concrete, tunnel c.m. reinforcing bar (40 kg/m3) ton consolidation grout merescaration, shaft c.m. excavation, tunnel c.m. shotcrete c.m. rockbolts concrete, open c.m backfill concrete c.m. slab concrete, tunnel c.m. reinforcing bar (40 kg/m3) ton concrete tunnel c.m.	18,400	16.00	294.40	57	55,20	1,015.68	00.04	736.00
- rockbolts - lining concrete, shaft - lining concrete, tunnel - slab concrete, tunnel - consolidation grout - excavation, shaft - excavation, shaft - excavation, tunnel - excavation, tunnel - concrete, open - backfill concrete - slab concrete, tunnel - slab concrete, tunnel - reinforcing bar (40 kg/m3) ton	451	92.00	41.49	273	627.90	283.18	365.00	164.62
lining concrete, shaft c.m. lining concrete, tunnel c.m. slab concrete, tunnel c.m. reinforcing bar (40 kg/m3) ton consolidation grout m Pressure shaft & access tunnel excavation, shaft c.m. shotcrete rockbolts rockbolts concrete, open c.m. backfill concrete slab concrete, tunnel c.m. reinforcing bar (40 kg/m3) ton	1 6,300	6.00	37.80	4	32,20	202.86	20.00	126.00
lining concrete, tunnel c.m. slab concrete, tunnel c.m. consolidation grout Pressure shaft & access tunnel excavation, tunnel c.m. shotcrete concrete, open c.m. backfill concrete slab concrete, tunnel c.m. slab concrete, tunnel c.m. reinforcing bar (40 kg/m3) ton		52.00	199.68	123	282,90	1,086.34	175.00	672.00
- slab concrete, tunnel c.m reinforcing bar (40 kg/m3) ton - consolidation grout - excavation, shaft - excavation, tunnel c.m shotcrete - rockbolts - concrete, open - backfill concrete - slab concrete, tunnel c.m slab concrete, tunnel c.m reinforcing bar (40 kg/m3) ton	2,500	41.00	102.50	69	158,70	396.75	110.00	275.00
- reinforcing bar (40 kg/m3) ton - consolidation grout Pressure shaft & access tunnel - excavation, shaft - shotcrete - rockbolts - concrete, open - backfill concrete - slab concrete, tunnel - slab concrete, tunnel - reinforcing bar (40 kg/m3) ton	1. 100	41.00	4.10	\$	158.70	15.87	110.00	11.00
- consolidation grout Pressure shaft & access tunnel - excavation, shaft - excavation, tunnel - shotcrete - rockbolts - concrete, open - backfill concrete - slab concrete, tunnel - reinforcing bar (40 kg/m3) ton	258	23.00	5.92	269	1,603,10	412.96	720.00	185.47
Pressure shaft & access tunnel - excavation, shaft - excavation, tunnel - shotcrete - rockbolts - concrete, open - backfill concrete - slab concrete, tunnel - reinforcing bar (40 kg/m3) ton	1 2,650	2.00	5.30	28	64.40	170.66	30.00	79.50
C.m. C.m. C.m. C.m. C.m. C.m. C.m. C.m. C.m.		. •						
C.m. C.m. C.m. C.m. C.m. Rg/m3) ton	17,160	62.00	1,063.92	88	87.40	1,499.78	100.00	1,716.00
c.m. c.m. c.m. c.m. kg/m3) ton	a. 8,300	16.00	132.80	54	55,20	458.16	40.00	332.00
m C.m. c.m. el c.m. kg/m3) ton	675	92.00	62.10	273	627.90	423.83	365.00	246.38
c.m. 7, c.m. 7, el c.m. kg/m3) ton 2	1 5,530	6.00	33.18	*	32,20	178.07	20.00	110.60
c.m. 7, el c.m. kg/m3) ton	1. 200	28.00	5.60	24	108,10	21.62	73.00	15.00
el c.m. kg/m3) ton	1. 7,630	9.00	45.78	8	204.70	1,561.86	95.00	724.85
kg/m3) ton	300	41.00	12.30	8	158,70	47.61	110.00	33.00
E	325	23.00	2.48	269	1,603.10	521.33	720.00	234.14
2	2,000	2.00	7.00	82	07.75	128.80	30.00	00-09
Sub-total	-		19, 128, 99			86,985.76		56,948.89
Others (1%)			191.29			869.86		67-695
Sub-total of item 5.	:		19,320.28			87,855.62		57,518.37

Table 9.5 BILL OF QUANTITIES (7/10)

İ						.	į			
				Foreign Currency	urrency		Local Currency	,cy	Total in US\$	\$ \$0 u
0	Work Item	unit	a'ty	Unit Price US\$	Amount US\$1,000	Unit Pric	Unit Price Unit Price US\$ 1,0001L	Amount TL million	Unit Price US\$	Amount US\$1,000
6	Power House									
6.1	Access and ventilation tunnel								:	÷
	- excavation, common	C.3	2,000	0.50	1 00	0.5	1.15	2.30	1.00	2.00
	- excavation, w.rock	e.	1,000	1.00	1.00	-	2,30	2.30	2.00	2.00
	- excavation, rock		200	2.00	1.00	2	7.60	2.30	4.00	2.00
	- excavation, tunnel	e.o	67,300	14.00	942.20	23	50.60	3,405.38	36.00	2,422.80
	- steel support	ţo	ĸ	288.00	9.50	787	1,108.60	36.58	270.00	25.41
	- shotcrete	G.S	820	92.00	73.44	273	627.90	514.88	365.00	299.30
-	- rockbolts	£	7,700	90.00	46.20	4	32.20	247.94	20.00	154,00
	- concrete, open	Ë	700	28.00	11.20	27	108.10	72.54	8	30.00
	- lining concrete, turnel	ton	006	41.00	36.90	69	158.70	142.83	110.00	8.00
-	- slab concrete, tunnel	Ë,	2,300	41.00	94.30	69	158,70	365.01	110.00	253.00
	- reinforcing bar (20 kg/m3)	Ş	22	23.00	1.68	269	1,603,10	115.42	720.00	51.84
6.2		ing.								
	tailrace surge tank	-								
	- excavation, underground	C.m.1	c.m.132,500	12.00	1,590.00	ည	41.40	5,485.50	30.00	3,975.00
	- shotcrete	ů.	3,920	92.00	360.64	273	627.90	2,461.37	365.00	1,430.80
	- rockbolts	6	000,44	9.00	264.00	71	32.20	1,416.80	20.00	880.00
	- concrete, underground	C.B.	17,800	38.00	676.40	87	200,10	3,561.78	125.00	2,225.00
	- reinforcing bar (60 kg/m3)	to	1,068	23.00	24.56	269	1,603.10	1,712.11	720.00	768.96
	- PC enchor	E	33,000	9-00	198.00	ድ	181.70	5,996.10	85.00	2,805.00
•	- minor items (12 %)				373,63			2,476.04		1,450.17
	- architectural works (14 %)				488.21	-		3,235.36		1,894.89
	- aboveground control room	Ę	200		0.00	220	506.00	253.00	220.00	110.00
	Sub-total				5, 195.85		٠	31,476.24		18,881.17
	Others(1%)				51.96			314.76		188.81
	Sub-total of item 6.				5,247.81			31,791.00		19,069.98

Table 9.5 BILL OF QUANTITIES (8/10)

No. Work Item Unit 0+ty Unit Price Mnount Unit Price Unit Price Mnount Unit Price Unit Price Mnount Unit Price Unit Price Mnount Unit Price Un							İ				
Table Mork Item Unit Q+TY Unit Price Mnount Unit Price Mnount Unit Price Mnount Unit Price Mnount Uss 1,000TL TL million Uss Uss 1,000TL TL million Uss Uss 1,000TL TL million Uss Uss Uss 1,000TL Uss 1,000TL Uss 1,000TL Uss 1,000TL Uss 1,000TL Uss 1,000TL Uss 1,000TL Uss 1,000TL Uss					Foreign C	Surrency		Local Curre	ncy	Total	in US\$
TailTeace turnel (06.1) - excavation, common - excavation, common - excavation, common - excavation, common - excavation, rock - carearation, turnel - carearation, turnel - carearation, rock - carearation, turnel - carearation, turnel - carearation, turnel - carearation, turnel - carearation, turnel - carearation, turnel - carearation, turnel - carearation, turnel - carearation, turnel - carearation, turnel - carearation, turnel - carearation, turnel - carearation, turnel - carearation, turnel - carearation, turnel - carearation, common - care	8	104 104 104 105 105 105 105 105 105 105 105 105 105	Unit		Unit Price US\$	Amount US\$1,000	Unit Pric US\$	e Unit Price 1,000TL	Amount TL million	Unit Price US\$	Amount US\$1,000
- excavation, common c.m. 1,000 0.50 0.50 1.15 1.15 1.10 1.00 - excavation, w. rock ton 2,000 1.00 2.00 1 2.30 4.60 2.00 2.00 1.00 2.00 1.00 2.30 4.60 2.00 2.00 1.00 1.00 1.00 1.00 1.00 1.0	1.	Tailrace tunnel (06.1)									
- excavation, W. rock ton 2,000 1.00 2.00 1 2.30 4.60 2.00		- excavation, common	S.	-	0.50	0,50	0.5	1.15	1.15	1.00	1.00
- excavation, rock		- excavation, w. rock	ton		1.00	2.00	-	2,30	7 80	2.00	7.00
- excavation, turnel c.m. 77,600 16.00 1,241.60 24 55.20 4,283.52 40.00 3.5 estel support ton 50 288.00 14.40 482 1,108.60 55.43 770.00 70.00 28.00 227.24 273 627.90 1,550.91 365.00 1.00 1.000 28.00 47 108.10 108		- excavation, rock	C. iii.	200	2.00	1.00	2	7.60	2.30	4.00	2.00
- steel support ton 50 288.00 14.40 482 1,108.60 55.43 770.00 - shotcrete c.m. 2,470 92.00 227.24 273 627.90 1,550.91 365.00 - concrete, open c.m. 1,000 28.00 47 108.10 1,081.00 2,000 - thing concrete, open c.m. 2,000 41.00 1,068.00 69 158.70 4,126.20 110.00 2,000 - consolidation grout m 7,070 2.00 14.14 28 64.40 4,55.31 30.00 - consolidation grout m 7,070 2.00 14.14 28 64.40 4,55.31 30.00 - consolidation grout m 7,070 2.00 14.14 28 64.40 4,55.31 30.00 - consolidation grout m 7,070 2.00 14.14 28 64.40 4,55.31 30.00 - consolidation grout m 7,070 2.00 14.14 28 64.40 4,55.31 30.00 - excavation, common c.m. 1,000 0.50 0.50 0.5 1.15 1.15 1.00 - excavation, nock c.m. 500 1.00 0.50 0.50 1.15 2.00 - excavation, rock c.m. 1,000 2.00 0.50 0.5 1.15 1.15 1.00 - embankment c.m. 30,000 3.00 0.50 0.50 1.08.10 128.25 720.00 - concrete, open c.m. 1,000 28.00 28.00 1.84 697 1,603.10 128.25 720.00 - concrete, open c.m. 1,000 28.00 1.84 697 1,603.10 128.25 720.00 - concrete, open c.m. 1,000 28.00 1.84 697 1,603.10 128.25 720.00 - concrete, open c.m. 1,000 28.00 1.84 697 1,603.10 128.25 720.00 - concrete, open c.m. 1,000 28.00 1.84 697 1,603.10 128.25 720.00 - concrete, open c.m. 1,000 28.00 1.84 697 1,603.10 128.25 720.00 - concrete, open c.m. 1,000 28.00 1.84 697 1,603.10 128.25 720.00 - concrete, open c.m. 1,000 28.00 1.84 697 1,603.10 128.25 720.00 - concrete, open c.m. 1,000 28.00 1.84 697 1,603.10 128.25 720.00 - concrete, open c.m. 1,000 28.00 1.84 697 1,603.10 128.25 720.00 - concrete, open c.m. 1,000 28.00 1.84 697 1,603.10 128.25 720.00 - concrete, open c.m. 1,000 28.00 1.84 697 1,603.10 128.25 720.00 - concrete, open c.m. 1,000 28.00 1.84 697 1,603.10 128.25 720.00 - concrete, open c.m. 1,000 28.00 1.84 697 1,603.10 128.25 720.00 - concrete open c.m. 1,000 28.00 1.84 697 1,603.10 128.25 720.00 - concrete open c.m. 1,000 28.00 1.84 697 1,603.10 128.25 720.00		- excavation, tunnel	ë.	77,600	16.00	1,241.60	*	55.20	4,283.52	40.00	3,104.00
- shotcrete		- steel support	ton	22	288.00	14.40	785	1,108.60	55.43	770.00	38.50
- rockbolts		- shotcrete	E.	2,470	92.00	227.24	273	627.90	1,550.91	365.00	901.55
- concrete, open		· rockbolts	E	15,400	9.00	92.40	14	32.20	68.38	20.00	308.00
- Lining concrete, turnel c.m. 26,000 41.00 1,066.00 69 158.70 4,126.20 110.00 2, seed of the concrete, turnel c.m. 26,000 41.00 1,080 23.00 24.84 697 1,603.10 1,731.35 720.00 24.84 697 1,603.10 1,731.35 720.00 2.00 14.14 28 64.40 455.31 30.00 8, 27.12 12 2 12.814.75 30.00 8, 27.12 12 12.814.75 128.15 30.00 8, 27.12 12 12.814.75 128.15 30.00 8, 27.12 12 12.814.75 128.15 30.00 8, 27.12 12 12.814.75 128.15 30.00 8, 27.12 12 12.814.75 128.15 128.15 30.00 8, 27.12 12 12.814.75 12.815 12.815 128.15 128.15 12.815		- concrete, open	C.A.	1,000	28.00	28.00	25	108.10	108,10	3.8	3.8
- reinforcing bar (40 kg/m3) ton 1,080 23.00 24.84 697 1,603.10 1,731.35 720.00 - consolidation grout		- lining concrete, tunnel	ņ.	26,000	41.00	1,066.00	69	158.70	4,126.20	110.00	2,860.00
- consolidation grout m 7,070 2.00 14.14 28 64.40 455.31 30.00 8, 2,712.12 27.12 12,814.75 8, 21.12.12 12.814.75 8, 27.12.12 128.15 12.00 0.50 0.50 0.50 0.50 0.50 1.15 12.942.90 8, 2.00 0.50 0.50 1.00 0.50 0.50 1.15 1.15 1		- reinforcing bar (40 kg/m3)	ton	1,080	23.00	24.84	269	1,603.10	1,731.35	720.00	777.60
Sub-total Sub-total Others (1%) Sub-total of item 7. Sub-total of item 7. Outdoor Switchyard (100 x 60 m) - excavation, common - excavation, common - excavation, common - excavation, common - excavation, common - excavation, common - excavation, common - excavation, common - excavation, common - excavation, varock - excavation, rock - excavation,		- consolidation grout	ε	7,070	2.00	14.14	82	07.79	455.31	30.00	212.10
0thers (1%) 27.12 128.15 8, Sub-total of item 7. 2,739.24 12,942.90 8, Outdoor Switchyard (100 x 60 m) 0.50 0.50 0.5 1.15 1.15 1.00 - excavation, common commo		Sub-total				2,712.12	٠	-	12,814.75		8,283.75
Sub-total of item 7. Sub-total of item 7. Outdoor Switchyard (100 x 60 m) - excavation, common c.m. 1,000 0.50 0.50 1.15 1.15 1.00 - excavation, w.rock c.m. 100 2.00 1.00 0.50 1 2.30 1.15 2.00 - excavation, w.rock c.m. 100 2.00 0.50 1 2.30 1.15 2.00 - excavation, w.rock c.m. 100 2.00 0.50 1 2.30 1.15 2.00 - embankment c.m. 30,000 3.00 90.00 1 2.30 69.00 4.00 - concrete, open c.m. 1,000 28.00 28.00 47 108.10 108.10 75.00 - reinforcing bar (80 kg/m3) ton 80 23.00 1.84 697 1,603.10 128.25 720.00 121.04 15.41 Sub-total of item 8. 15.41 127.09 3.23.51		Others (1%)				27.12			128.15	:	82.84
Outdoor Switchyard (100 x 60 m) - excavation, common c.m. 1,000 0.50 0.50 1.15 1.15 1.00 - excavation, wrock c.m. 500 1.00 0.50 1 2.30 1.15 2.00 - excavation, rock c.m. 100 2.00 0.20 2 4.60 0.46 4.00 - embankment c.m. 30,000 3.00 90.00 1 2.30 69.00 4.00 - concrete, open c.m. 1,000 28.00 28.00 47 108.10 75.00 - reinforcing bar (80 kg/m3) ton 80 23.00 128.25 720.00 Sub-total Others (5%) Sub-total of item 8. 127.09 3.23.51		Sub-total of item 7.				2,739.24			12,942.90	.*	8,366.59
- excavation, common c.m. 1,000 0.50 0.50 1.15 1.15 1.00 - excavation, rock c.m. 1,000 2.00 0.50 1 2.30 1.15 2.00 - excavation, rock c.m. 100 2.00 0.20 2 4.60 0.46 4.00 - embankment c.m. 30,000 3.00 90.00 1 2.30 69.00 4.00 - concrete, open c.m. 1,000 28.00 28.00 47 108.10 128.25 720.00 - reinforcing bar (80 kg/m3) ton 80 23.00 121.04 697 1,603.10 128.25 720.00 Others (5%) 15.41 15.41 Sub-total of item 8. 127.09 3.23.51	. a		_			٠					
n, w.rock c.m. 500 1.00 0.50 1 2.30 1.15 2.00 n. rock c.m. 100 2.00 0.20 2 4.60 0.46 4.00 c.m. 30,000 3.00 90.00 1 2.30 69.00 4.00 topen c.m. 1,000 28.00 28.00 47 108.10 75.00 ng bar (80 kg/m3) ton 80 23.00 121.04 128.25 720.00 121.04 15.41 fitem 8.	;			1.000	0.50	0.50	0.5	1.15	1.15	1.00	1.00
r, rock c.m. 100 2.00 6.20 2 4.60 0.46 4.00 t c.m. 30,000 3.00 90.00 1 2.30 69.00 4.00 open c.m. 1,000 28.00 28.00 47 108.10 75.00 ng bar (80 kg/m3) ton 80 23.00 121.04 697 1,603.10 128.25 720.00 121.04 15.41 fitem 8.		- excavation, w.rock	8	200	1.00	0.50	-	2.30	1.15	2.00	1.00
t. c.m. 30,000 3.00 90.00 1 2.30 69.00 4.00 open c.m. 1,000 28.00 28.00 47 108.10 75.00 ng bar (80 kg/m3) ton 80 23.00 1.84 697 1,603.10 128.25 720.00 121.04 308.11 6.05 15.41 fitem 8.		- excavation, rock	ë.∵	100	2.00	0.20	N	7.60	0.46	4.00	0.40
open c.m. 1,000 28.00 28.00 47 108.10 108.10 75.00 ng bar (80 kg/m3) ton 80 23.00 1.84 697 1,603.10 128.25 720.00 121.04 308.11 6.05 15.41 fitem 8.		- embankment	G.B.	30,000	3.00	90.00	-	2,30	00.69	00.4	120.00
ng bar (80 kg/m3) ton 80 23.00 1.84 697 1,603.10 128.25 720.00 121.04 308.11 5.61 121.04 15.41 15.41 127.09 323.51	•	- concrete, open	C.B.	1,000	28.00	28.00	27	108.10	108.10	3.8	73.00
121.04 308.11 6.05 15.41 127.09 323.51		- reinforcing bar (80 kg/m3)	ton	80	23.00	1.84	269	1,603.10	128.25	720.00	57.60
6.05 15.41 127.09 323.51		Sub-total				121.04		٠.	308.11		255.00
f item 8. 323.51	٠.	Others (5%)				6.05	-	.*	15.41		12.75
		Sub-total of item 8.				127.09			323.51		267.75

Table 9.5 BILL OF QUANTITIES (9/10)

										-
				Foreign Currency	urrency	. 1	Local Currency	ncy	Total in US\$	in USS
Š	Work Item	Unit	e ty	Unit Price US\$	Amount US\$1,000	Unit Prio	Unit Price Unit Price US\$ 1,000TL	Amount TL million	Unit Price US\$	Amount US\$1,000
0	Erik Diversion Scheme									
	- excavation, common	ë.	1,500	0.50	57.0	0.5	1.15	1.73	1.00	1.50
	- excavation, w. rock	ë.	9,200	1.00	9.20	•	2.30	21.16	2.30	18.40
	- excavation, rock		40,700	2.00	81.40	2	4.60	187.22	4.00	162.80
	- excavation, tunnel	ē	31,000	22.94	711.22	፠	78.33	2,428.30	57.00	1,767.00
	- excavation, shaft	C,B	5,200	10.00	52.00	33	75.90	394.68	73.00	223.60
	- concrete, open	ë.	9,850	28.00	275.80	25	108.10	1,064.79	75.00	738.75
	· lining concrete, tunnel	E	11,260	41.00	461.66	69	158.70	1,786.96	110.00	1,238.60
•	- lining concrete, shaft	E	2,300	52.00	119.60	123	282.90	650.67	175.00	402.50
	- reinforcing bar (40 kg/m3)	흕	936	23.00	21.54	269	1,603.10	1,501.14	720.00	674.21
	- consolidation grout	E	750	2.00	1.50	82	07.79	48.30	30.00	22.50
	- minor items (5 %)				86.73			404.25		262.49
	- architectural works (5 %)				91,07			424.46		275.62
	Sub-total	-			1,912.47			8,913.65		5,787.97
	Others (5%)				95.62			89.577		289.40
	Sub-total of item 9.				2,008.09			9,359.33		6,077.37
	Total of main civil works				64,920.48			320,927.26		204,454.07
,	(items 3. to 9.)	*.								
	Physical contingency (15 %)				9, 738, 07	:		48, 139, 09		30,668.11
	Grand total of civil works	-	-		74,658.55		-	369,066.35		235,122.18
										• .
10.	Metal Works									
10.1		育	2,280	2,275.00	5, 187, 00	1,225	2,817.50	6,423.90	3,500.00	7,980,00
10.2	Steel liner	tor	146	2,275.00	332.15	1,225	2,817.50	411.36	3,500.00	511.00
10.3	Low head gate and trashracks	ţ	549	2,800.00	1,537.20	1,200	2,760.00	1,515.24	4,000.00	2,196.00
70.4	High head gate and trashracks	ton	510	6,400.00	3,264.00	1,600	3,680.00	1,876.80	8,000.00	4,080.00

Table 9.5 BILL OF QUANTITIES (10/10)

44 -				Foreign Currency	urrency		Local Currency	λcy	Total in US\$	ssn u
2	Work Item	unit G	Q. L.y	Unit Price US\$	Amount US\$1,000	Unit Pr US\$	Unit Price Unit Price US\$ 1,000TE	Amount TL million	Unit Price US\$	Amount US\$1,000
10.5	Metal for Erik scheme	to	505	2,275.00	238.88	1,225	2,817.50	295.84	3,500.00	367.50
		 			10,559.23	: :	•	10,523.13		15,134.50
3.42	Physical contingency (5 %)				527.96			526.16		756.73
	Total of Metal Works				11,087.19			11,049.29		15,891.23
11.	. Generating Equipment		es .						9	٠
11.1	Ermenek plant	KW 320,000	000,	126.40	40,448.00	32	72.68	23,257.60	158.00	50,560.00
11.2	Erik plant	3	6,700	283.20	1,897.44	7	162.84	1,091.03	354.00	2,371.80
٠.	Sub-total		٠.		42,345.44			24,348.63		52,931.80
11	Physical contingency (5 %)	٠.			2,117.27			1,217.43		2,646.59
	Total of Generating Equipment				44,462.71			25,566.06		55,578.39
12.	Transmission Line									
12.1		Ž	99	160 114,000.00	18,240.00	76,000	174,800.00	27,968.00	190,000.00	30,400.00
12.2					420.00	580		644.00		700.00
12.3					810.00	240		1,242.00		1,350.00
12.4	34.5 kV line	E,	16	9,000.00	144.00	9,000	13,800.00	220.80	15,000.00	240.00
11	Sub-total				19,614.00			30,074.80		32,690.00
•	Physical contingency (10%)				1,961.40			3,007.48		3,269.00
	Total of Transmission Line				21,575.40		-	33,082.28		35,959.00
	Total of direct cost				139,936.14			432,504.02		327,981.37
	Total of physical contingency			54	14,594.41			59,791.08		40,590.53
	Total	٠			154,530.55			492,295.09		368,571.89
13.	Administration and engineering (10%)	(10%)			15,453.05			49,229.51		36,857.19
		,		-	160 983 60		-	541.524.60		80 667 507

Table 10.1 ECONOMIC COST AND BENEFIT STREAMS

	:					29%	1.00	7 ***	and the first
	Const-	Disbur-	OMR	Total	Power		Present		4 -
Year	ruction	sement	and	Cost .	Benefit	Worth	and the second second	Worth of	
	Cost	(%)	PFG			Factor	Cost	Benefit	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	
1	1.73			1.73		0.9556	1.66		1.6
2	6.58			6.58		0.8727		0.00	
3	20.09	5.8		20.09	'-	0.7970			-16.0
4	10.74	3.1	٠.	10.74		0.7279	7.82	0.00	-7.8
5	27.02	7.8		27.02		0.6647			
6	38,10	11.0		38.10		0.6070		0.00	-23.1
. 7	41.57	12.0		41.57		0.5544	23.04	and the second	-23.0
8	71.70			71.70	-	0.5063	36.30		
9	89.37	25.8		89.37	-8.79	0.4624	41.32		-45.3
10	39.49	11.4	0.18	39.67	10.77	0.4222	16.75	4.55	-12.2
11			1.34	1.34	79.93	0.3856	0.52	and the second second	30.3
12			1.34	1,34	79.93	0.3522	0.47		**************************************
13			1.34	1.34	79.93	0.3216	0.43	25.71	25.2
14			1.34	1.34	79.93	0.2937			23.0
15			1.34	1.34	79.93	0.2682	0.36	21.44	21.0
16		•	1.34	1.34	79.93	0.2450		19.58	19.2
17			1.34	1.34	79.93	0.2237	0.30	17.88	17.5
18			1.34	1.34	79.93	0.2043	0.27		16.0
. 19			1.34	1.34	79,93	0.1866	0.25		14.6
20			1.34	1.34	79.93	0.1704	0.23		13.3
21			1.34	1.34	79.93	0,1556	0.21	12.44	12.7
22			1.34	1.34	79.93	0.1421	0.19	11.36	11.1
23			1.34	1.34	79.93	0.1298	0.17	10.37	10.7
24	•		1.34	1.34	79.93	0.1185	0.16	9.47	9.3
25			1.34	1.34	79.93	0.1082	0.15	8.65	8.5
26			1.34	1.34	79.93	0.0988	0.13		7.7
.27			1.34	1.34	79.93	0.0903	0.12	7.21	7.0
28			1.34	1.34	79.93	0.0824	0.11	6.59	6.4
29			1.34	1.34	79.93	0.0753	0.10	6.02	5.9
30			1.34	1.34	79.93	0.0688	0.09	5.50	5.4
31			1.34	1.34	79.93	0.0628	0.08	5.02	4.9
32			1.34	1.34	79.93	0.0573	0.08	4.58	4.5
33			1.34	1.34	79.93	0.0524	0.07	4.19	4.
34			1.34	1.34	79.93	0.0478	0.06	3.82	3.7
35			1.34	1.34	79.93	0.0437	0.06	3.49	3.4
36			1.34	1.34	79.93	0.0399	0.05	3.19	3.1
37			1.34	1,34	79.93	0.0364	0.05	2.91	2.8
38			1.34	1.34	79.93	0.0333	0.04	2.66	2.6
39			1.34	1.34	79.93	0.0304	0.04	2.43	2.3
40			108.74	108.74	79.93	0.0277	3.02	2.22	-0.8
41			1.34	1.34		0.0253	0.03	2.03	1.9
59	+ 1		1.34	1.34	79.93	0.0049	0.01	0.40	0.3
60			1.34	1.34	79.93	0.0045	0.01	0.36	0.3
Total	346.40	100.00	174.58	520.98	3996.28	10.97	198.61	350.83	152.2

⁽²⁾ OMR means operation, maintenance & replacement; PFG mean production foregone

Table 10.2 PRICE MOVEMENTS

(1) Actual records

YEAR	WPI	TL/US\$	INFLATION */YEAR
(m. cm m. m. m.			
1980		89	
1981	100	132	
1982	127	185	27.00
1983	166	280	30.47
1984	249	442	50.33
1985	357	574	43.24
1986	462	756	29.57
1987	610	1018	32.04
1988	1027	1682	68.30
1989	1787	2300	73.97

Note: Source of figures for 1980-1989: SIS and SPO.

(2) PHASE 1: 1990-1994

(DECREASING INFLATION BY 20%/YEAR)

	1990	2845	3661	59.18
1	1991	4192	5394	47.34
2	1992	5779	7437	37.87
3	1993	7530	9691	30.30
4	1994	9355	12039	24.24

(3) PHASE 2: 1995-1999

(DECREASING INFLATION BY 10%/YEAR)

5	1995	11396	14666	21.81
6	1996	13633	17545	19.63
7	1997	16042	20645	17.67
8	1998	18594	23929	15.90
9	1999	21255	27354	14.31

(4) PHASE 3: 2000 +

(STEADY INFLATION OF 10%/YEAR)

10	2000	23380	30089	10.00
11	2001	25718	33098	10.00
12	2002	28290	36408	10.00
13	2003	31119	40048	10.00
14	2004	34231	44053	10.00
15	2005	37654	48458	10.00
16	2006	41420	53304	10.00
17	2007	45562	58635	10.00
18	2008	50118	64498	10.00
19	2009	55130	70948	10.00
20	2010	60643	78043	10.00

Table 10.3 FINANCIAL CASH FLOW

	Accumulated Net Income (Mil.\$)	3 -		روز -	1125.8	1		Ó	<u>.</u>	e ctiu		iń	ä	m	Ġ		-17.5		•	0.0	
1,054 GWh	Present Worth of net Income	· 4. L	-21.0	* 00	00		œ		ភ	ט נ		ភេ	8		ė		-2.5	•	0.4	0.4	0.0
tion :	Present Worth Factor	. 959 880	0.8117	686	.637	534	492	452	416		324	.298	.274	.252	32	0.0402		.03	.007	0.0070	11.9
energy generation loss rate	nue Net Income (Mil.\$)	4.4	25.0		ω -		8	•	•	•	. • •		٠		•	50.6		50.6	•	50.6	•
Annual ene Energy los	Operating Revenue Gy Gross Ne Revenue In (Mil.\$) (M							თ	N I		מ מ מ מ	N	0	N	8	1, 14	52.0		•	52.9	
(3)	Energy Sold (GWh)	9	. •					4	2	(1)	0 V V	~	$^{\circ}$	2	2	~	928	(3	\sim	928	46724
0570/KWh	Total (Mil.\$)	- 4 a	25.9	က်ဖ	•	10	00		S.	•		•	•	•	•		120.3	8	•	2.3	٠
8.7 % US\$0.05	ture OMR Cost (Mil.\$)	Ē			÷			٠	•	٠	, c.		♦	٠, •	. •	2,3	120.3	6		2.3	1:4
Ete:	Expenditure cion Cost OM (%) (Mi	, , ,	. w .	• •	•	i in	7	•	დ ი												100.0
interest rato Power tariff	Construct (Mil.\$)		ຳ ເລີ ເ	26. 26.3		69.1	78.1	37.0	37.0												446.0
(1) ir (2) Po	Year	, H C	V (*)	- 4 10	26	٠	6				1.5 1.4			17	18	or r	40	41		09	Total

Table 10.4 LOAN REPAYMENT SCHEDULE

- Loan Disburse - Acc Capital IDC Lo (Mil.\$) (Mil.\$) (M (2) (3) 3.3 (0.1 6.0 0.3 19.4 0.8 44.8 2.2 19.7 2.8 36.5 3.9 38.5 5.2 51.8 6.8 58.5 8.7 27.8 9.8 27.8 10.9	Interest (Mil.\$) 7 7 7 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Capital (Mil.\$) (Mil.\$)	Total (Mil.\$)	<u></u>		Accumu. Tr	oterest	Repayment Capital (Mil.\$)	Total (Mil.\$)	Costs	Expenditu Revenue (Mil.s)	Revenue	Surplus	
Capital IDC Log (M11.\$) (Mil.\$) (Mi (2) (3) (2) (3) (4.8 0.3 19.4 0.8 44.8 2.2 19.7 2.8 36.5 3.9 36.5 3.9 58.5 8.7 27.8 9.8 27.8 9.8 27.8 10.9	Interest (Mil.\$) (Mil.\$) (Mil.\$) 7 7 7 6 9 9 11.2 4 9.2 10.3	N 0 4 00		Capital (Mil.\$) ((2)		· G		Capital (Mil.\$)	Total (Mil.\$)		(Mil.\$)	į		
(A) (A) (A) (A) (A) (A) (B) (B) (B) (B) (B) (B) (B) (B) (B) (B	4 6 0 0 10 0 0 0 0 0 4 10 0 4 10 11 11 11 11 11 11 11 11 11 11 11 11	in A or m	•		Mil.\$)	(Mil.S)	(Bills)	(Mil.\$)	(M11.5)		(M) (.S)	•		
(2) 3.3 6.0 6.0 19.4 19.4 19.7 19.7 26.5 36.5 36.5 3.9 38.8 5.2 51.8 6.8 57.8 27.8 10.9	2, 90, 0, 90, 80, 80, 80, 80, 80, 80, 80, 80, 80, 8	4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4		8	ල		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			(#:1-\$)		(8:1:8)	(M) (2)	(Mil.s)
3.3 6.0 6.0 44.8 44.8 19.7 36.5 36.5 36.5 3.9 38.8 5.2 57.8 6.8 27.8 27.8 10.9		4. 4. 7. 7. 7. 9. 4. 7.				(4)	٠							
6.0 44.8 44.8 19.7 19.7 26.5 36.5 38.8 51.8 6.8 27.8 27.8 10.9		4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4		7.	0.1	1.2			•		0.0		0.0	0.0
19.4 44.8 19.7 2.8 36.5 3.9 38.8 5.2 51.8 6.8 27.8 9.8 27.8 10.9		4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4		2.0	0.3	3.5		-			0.0		0.0	0.0
7.2 19.7 19.7 19.7 19.8 19.8 19.8 10.9 10.9		7. 4. 7. 7. 4. 7. 8. 7.		6.5	8.0	10.7					0.0		0.0	0.0
19.7 2.8 36.5 3.9 38.8 5.2 51.8 6.8 58.5 8.7 27.8 10.9		4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4		14.9	2.1	27.7					0.0		0.0	0.0
36.5 38.8 51.8 58.5 58.5 27.8 10.9		4.5 4.5 4.5 8.5 8.5	٠	6.6	2.7	37.0				-	0.0		0.0	0.0
38.8 51.8 58.5 27.8 27.8 10.9		4. 4. 5. 4. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.		12.2	9.0	53.1					0.0		0.0	0.0
51.8 6.8 58.5 8.7 27.8 9.8 27.8 10.9		4. 4. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.		12.9	ν.	7.7.					0.0		0.0	0.0
58.5 8.7 27.8 9.8 27.8 10.9	** ** **	4. 4. 2. 2. 2. 4. 2. 2. 8. 2. 4. 8.		17.3	7.1	85.7					0.0		0.0	0.0
27.8 9.8 27.8 10.9		4. 4. 8. 7.		19.5	9.5	124.5					0.0	٠	0.0	0.0
27.8 10.9	~ * *	4.5 4.5 4.8 5.8		9.3	10.7	144.4				0.8	0.8	19.8	19.0	19.0
	** **	14.9	25.7	6,9	12.3	154.5	13.3	11.5	24.7	2.3	52.7	52.9	0.2	19.
	•	15.4 15.8	25.7			142.1	12.4	12.4	24.7	2.3	52.7	52.9	0.2	19.3
		15.8	7:52			128.8	11.4	13,4	24.7	2,3	52.7	52.9	0.2	19.
			25.7			114.3	10.3	14.4	24. 7	2.3	52.7	52.9	0.2	19.
		16.3	25.7			98.8	9.1	15,6	24.7	2.3	52.7	52.9	0.2	19.
	292.4 9.0	16.7	25.7	-		81.9	7.9	16.8	24.7	2,3	52.7	52.9	9.2	8
17 275	275.2 8.5	17.2	25.7			63.7	9.9	18.2	24.7	2.3	52.7	52.9	0.2	20.
18 257	257.4 8.0	17.7	25.7			44.1	5.1	19.6	24.7	2.3	52.7	52.9	0.2	20.
19 239	239.2 7.5	18.2	25.7			52.9	3.5	21,2	24.7	2.3	52.7	52.9	0.2	20.
20 220	220.4 6.9	18.8	25.7			0.0	÷.	22.9	24.7	2.3	52.7	52.9	0.2	8
27 72	72.9 2.8	52.9	25.7					:		2.3	28.0	52.9	24.9	195
		23.6	25.7						٠	2.3	28.0	52.9	6.42	
		24.3	25.7					:		2.3	28.0	52.9	54.9	
	0.0	25.0	25.7							2.3	28.0	52.9	24.9	
Total 334.5 51.6 5475.9	5.9 128.1	386.1	514.2	111.5	54.5	1420.4	81.4	166.0	247.3	45.8	307.4	1077.2	269.8	
Joan-1: Interest rate	2.9 %	Loan-2: Interest rate	terest rat	O	. % 0.8	Power	Power tariff: US£5.7/kWh	S£5.7/kWh						
Repayment period, ne	st 20.0 yr		Repayment	Repayment period, net 10.0 yr	t 10.0.)	į.								

FIGURES

Fig. 1.1 Flow Chart of the Study

FEASIBILITY STUDY ON ERMENER HYDROELECTRIC POWER DEVELOPMENT PROJECT

GENERAL WORK SCHEDULE

		51	1989			· .					1990		٠		
Work Stage	Jan. Feb. Mar. Apr. May	. May Jun. Jul		Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.	Nov. E	ec. J	an. Feb.	. Mar.	Apr. M	ay J	un. Jul	. Aug.	. Sep.	Oct.	Nov. Dec
oro Srenie: loro	Inc	V Inception Report		Progress Report 1					·				•	rji	
Investigation			 - •												-
						,									
					^P r¢	gresi	Progress Report 2	64 .							
Additional Detailed		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 1				1 1								
Investigation						,									
								٠	Interim				Draft	Draft Final	₽>
							٠	>	∇ Report				Report	ىۋ	
Feasibility					1 1	#	· · · · · · · · · · · · · · · · · · ·	n a a a a a	有罪计为证证书				,		D
Grade Design		-													Final
						_									מממי

Fig. 1.2 General Work Schedule of the Study

			1989			1990		_
Speciality of Experts	Name	ъ 4	5 6 7 8	9 10 11 12	1 2 3 4	5 6 7 8	9 10 1	-1
Team Leader	Ichi ro Kuno	1(27)27	(15)	14 (13) 26	18(12)29	 	1(12)12	γ
Chief Design Eng.	Tsutomu Itoh	1 (27) 27	(75)	14(13)26	18(12)29	[]	1(12)12	
Design Eng.	Ismail Hakki Baydur /Orhan Kumral	(22) 24		23 (33) 24		(09)		Γ
Hydropower Planner	Aklo Katayama	1 (27) 27	18(18)30	15 (43) 26	(30)	(120)	1(42)12	T
llydrologist	Masayuki Shiraishi	3 (25) 27						T
Engineering Geologist	Susumu Sato	(27)27	18(30)16	15(43) 26	21(24)13	:		T
Geophysicist	Tadashi Nakayu		18 (14) 31	\$1(<u>\$1)</u>				Γ
Electrical Eng.	Sumio Tsukahara	[(21)2]	(30)	15(28) 9 15(28) 9 (15)	18(12)29		1(42)12	
Power System Analyst	Tomoyasu Fukuchi			09				<u> </u>
Project Economist	Tamer Kirac			22 (28) 18			1(12)12	T
Environmentalist	Tsuyoshi Hashimoto		18([5)1	22(29)19		(30)		Ţ
								T
① Preliminary investigation	igation	Transce .						ļ ———
© Construction of access	Cess							
© Additional detalled investigation	d investigation			General	^ 0			
Geasibility dosign								
Reports	:	1/R	P/R(1)	P/R(2)	Z/ D		9/F	- K
CEGEND : mess Turkey	ril Japan							}

Fig. 1.3 Assignment Schedule of the JICA Study Team