DATA BOOK B

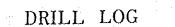
CONTENTS OF DATA BOOK B B-1 DRILL LOG

B-1 DRILL LOG

—	PI	ROJEC	r T	GROUNDWATER	MANAG	EMENT	PROJECT	IN KATHMA	NDU V	ALLEY	DEPTH	13.5 m	ELEVATION	0/1111. 10.10. 12
		SITE	·				COORDINATE	X :85"A'10"	Y:27º		INCLINATION	VERTICAL		BOYLES BRUS UK
A	RE	AGE COVE	CORE RY				DATE	FROM	TO		DRILLED	NISSAKU	LOGGED	
	[1	ROCK TYPE	COLUMN				BIT & DIAMETER	GROUNDWATER LEVEL	CORE		T: N-VAL RMEABILI	
DATE		DEPTH	ELEVATION	OR			DESCRIPT	NOT	/WE	LEVEL	RECOVERY	RQD(A)	U-VALUE	TY TEST:
	ļ	ã,	ELE	FORMATION	SECTION				E18 Div	GROU	Se en	50	K-VALUE	in 40
┢━					1					[
	E-4			Residual		Light t	brownish cla	vey soil k fragments						1
	Ē-,	÷		soil		WICH WO	achered roc	K IFAEments						
							بالجالب المتساسية		1 .]				
	3					2.4-3.0 -5 cs i) a; rounded in dia-	gravel of 2						
	Ē.,							····						
	E V E									1				
			•				. •						K =). * x	
	1.1	1		 Calcareous										
·	E 6			sandy		Light g sandsto	ecnish sand mes; inclin osity is abo	ly calcareous ation of		- 60 pr				
ŀ	E-7			schist		1							1 × 3	0 x x 4 2
	<u> </u>	•				cores a	lly short cy are only rec	overed. (CH)					243	
	<u> 8</u>	i.												
	Ë,	: '												9
ŀ.														
	10	·	· ·				1						2724	0 4 10
						10.5-11	.0 m; weath tal cores w	ered Aith clayey	 					
						materia	ils (CL)	•					<u>к</u> .	and and an and a second second
	1									1			- <i>L</i> y P	377 2
	L.,			·										
	Ē	13.5											12 . 3.	μ .
				BOTTOM										
		·.												
[:		ŀ			}									
ŀ		÷.												
	ulu Lu													
			· ·											
	lund.			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1										
l		ч. Т												
	1		· .				· .							
	ահանանանումունու													-
		•												
	التسل				1									
			Ì											_
ł	ا سا	÷.,	l											
	1													
	Ē		:				· .							
Ľ	Ē					ŀ								
ŀ					· · · ·									
ŀ	<u> </u>													
	E.					·								
1	E-	- -	1.			1			1					
ŀ	-								1					

HOLE NO. GB-1

SHEET NO. / OF /

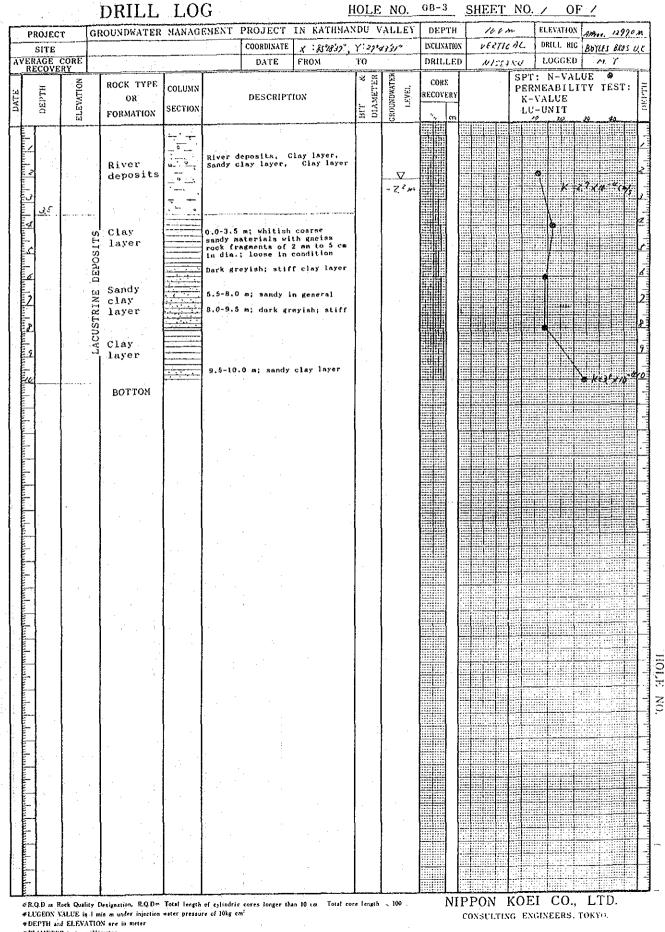

HOLE

NO

*RQD is Rock Quality Designation, RQD= Total length of cylindric cores longer than 10 cm. Total core length $\times 100^{\circ}$ *LUCEON VALUE is 1'min as under injection water pressure of 10kg cm² *DEPTH and ELEVATION are in meter *DIAMETER is in millimeter

LOC FORM-B

NIPPON KOEI CO., LTD. CONSULTING ENGINEERS, TOKYO.


HOLE NO. GB-2 SHEET NO. / OF /

Sectored to be the statement		DUILL	LO	A DECEMBER OF THE OWNER					SHEE'		r	 T		
PROJE				EMENT PROJECT	· · · · · · · · · · · · · · · · · · ·			DEPTH		 110.12	ELEVATION	APPTIL 1		
SITE ERAGE		H.J.X.HU U	9.201	DATE	X Straw,	<u>}/.</u> TO	£37°	DRILLE			LOCGED	BOYLES BRO		<u>د</u>
ERAGE RECOV			7	I DATE			 [1	D NISS.		: N-VAL	IF N.Y		F
E E	NOLLVANTE	ROCK TYPE	COLUMN			BIT & DIAMETER	GROUNDWATEK LEVEL	CORE RECOVERY		PER	MEABILI		C:	H.L.
нгчэа	EVA	OR	SECTION	DESCRIPT	105	T. AMI	LEVEL	RECOVERI	RQD(%)		VALUE -UNIT			1.5
	ធ	FORMATION		· · · · · · · · · · · · · · · · · · ·		20	ž	2., em	50 555 E		6 4	<u>-32 - 40</u>	-	ļ.,,
_			1.1.1.1.1											-
4							11 mil							ľ
2							וושום זי א אירדי							Z
				Siliceous limest			ΫŢ							-
3	· · ·		╽╌┎┸┰┹╼╴	marbles; inclina schistosities di	p_30 to 40		00							3
4				deg. above 5 m i	n depin.		to y							5
			│ │											ř
5					•		Arterian und of				1	110 2 00		2
-			44	Recovered cores a light greyish in	weathered		Nº 1							-
6		Sandy		joriiona generali 5.0-5.5 m; only r	~		\mathcal{N}^{+}							P
2		limestone		are recovered.			:							2
_			<mark>│ ┤┨ ┶┰┶┙</mark> │ <mark>┥ ┛ ┶┰┶</mark> ┱	Core are very hard fragmental because	d but						11 II. (M. 1			-
B				weathering. (CN)	101									8
9			╶┰┸┰┖╸		·									19
ŕ		t a training and a second												Ē
12			111	9.3-9.8 m; sandy w soil materials with	/eathered th rock						K. 2 .	,, <u>3</u> - >,		10
-			│ <u>─</u> ┤ <u></u> → <mark>╞</mark> ╼┤	fragments										ī
"							1 A.							
12	ĺ .			19										12
-			ᢖᡃᠴᡃᠴ	12.5-12.95 e: veal soil with brownish							K±3			17
B			771	12.95-13.6 m; only are recovedred.	y fragments						(^~~	1()	2	
10				13.6-11.8 s; wentl	hered sandy						40:3	18.	Ξ.	14
-	:		1111	soil with fragment	1s (CL)									
11				14.8 a to the both weathered calcared	ous	1							劃/	ß
1			┝╺ <mark>┱╼┍</mark> ┶┯┶ ┍╶╦╼┸╼┯┺┲┉	sandstones; inclin schistositics is 1	nation of									ı.
115				(CM)										
		BOTTOM												
-														_
							:							7
	1.													
-														1
_	1		·				1997 - E.							The second se
-														_
-														
			·	-										
-				· .			(x_{i},y_{i})							_
	1 .			11 · · ·										-
-														1
	· ·	ľ			: · · ·									
	1	1												-
-														1
		· ·				·								_
	4	1	r l											

#RQ.D is Rock Quality Designation. RQ.D⇒'Total length of cylindric cores longer jhan 10 cm / Total core length) x 100% #LUCBON VALUE is L'min munder injection water pressure of 10kg'cm' #DEPTH and ELEVATION are in interr #DHAMETER is in millimeter

LOC FORM-B

NIPPON KOEI CO., LTD. CONSULTING ENGINEERS, TOKYO.

#DIAMETER is in millimeter

LOG FORM-B

CONSULTING ENGINEERS, TOKYO,

HOLE NO. GB-4 SHEET NO. (OF /

GROUNDWATER MANAGEMENT PROJECT IN KATHMANDU VALLEY DEPTH ELEVATION PROJECT 10.0 m APARIX. 1293.0 m COORDINATE X : 81 825", Y : 27 43'30" INCLINATION DRILL RIG BOMES BRAS U.C. VERTCAL SITE AVERAGE CORE RECOVERY DATE FROM DRILLED NISSALU LOGGED то M.Y. BIT & SPT: N-VALUE ROUNDWATCH CORE ELEVATION ROCK TYPE COLUMN PERMEABILITY TEST: LEVEL DEPTH 111111 DATE RECOVERY OR DESCRIPTION K-VALUE SECTION FORMATION LU-UNIT ٩. 齜 <u>ب</u> و ∇ -0.5 m ____ 1 River Rivedr deposits, Coarse sand layer, Clay layer, Stiff clay layer deposits <u>.</u> • 3 30 Coarse 3.0-5.0 m; coarse sand with rounded granitic gravel 4 4 sand layer Greyish; coarse, loose Ēć <u>.</u> 6 2 Dark greysih; medium stiff Clay LACUSTRINE DEPOSITS 6.5-7.0 m; snndy layer layer 8 7.0-10.0 p; silly; poor core recovery zone 9 20 11 1 ÷E 12 Ż 13 3 14 Ū 10.0-20.0 m; dark greyish; silty; very stiff clayey layer; core recovery is good. Stiff ī, 15 clay layer 1 Ē/7 18 1 20 BOTTOM HOLE NO ÷ #R.Q.D is Rock Quality Designation, R.Q.D = Total length of cylindric cores longer than 10 cm (Total core length + 100%) NIPPON KOEI CO., LTD. #LUGEON VALUE is 1 min/m under injection water pressure of 10kg cm²

LOG FORM-B

*DEPTH and ELEVATION are in meter #DIAMETER is in millimeter

CONSULTING ENGINEERS, TOKYO.

	ROJEC	T I	GRO	UNDWATE	R MANAG	SMENT	-1	IN KATHY			DEPT		 10		ELEVATION DRILL RIC	Im	<u>11. 130</u>	<u>z</u> • <i>n</i>
	SITE AGE COVE	CORE					COORDINATE DATE	E X :85°20'52 FROM	TO TO	12'3'8''	DRILL	_ 		78.16 480	<u>+</u> · · · · ·		LES BADS	<u> </u>
	DEPTH HTTSD			OCK TYPE OR	SECTION		DESCRIP	<u></u>	BIT & DIAMETER	ROUNDWATER	CORE		 3	SP1 PEF K-	L NEABIL VALUE VALUE			<u> </u>
]		3	- F	ORMATION liver leposits	. g	River Layer, layer	Clay layer	Coarae sand r, Sandy cl.		Ē.		19			0 20	-18-		
2	<u>14</u>					Light	• • • • • • • • • • • • •	nd with rock		-1.2m						?		2
4			EPOSITS	Coarse sand Layer		1.4-6. greyis partly A lots	9 m; coarse h to dark (silty class of micace	e sand; greyish; yey layers ous contents								/ /***	1.10-y (*
\$			LACUSTRINE DEPOSITS	· ·		1 to 4	am in size	e							ł			
2			0	lay ayer		clmy 9.3-10).0 m: clay	greyish silt with sand;										
9 0			_	воттом		dark a recove	(reyish; ra	ther poor co								N +2	42.10	9 1
				: 														
-																		
-						÷.												
-				.*														
	- - -							·										
_																		
				: . •		•												
	:																	

LOC PORM B

-

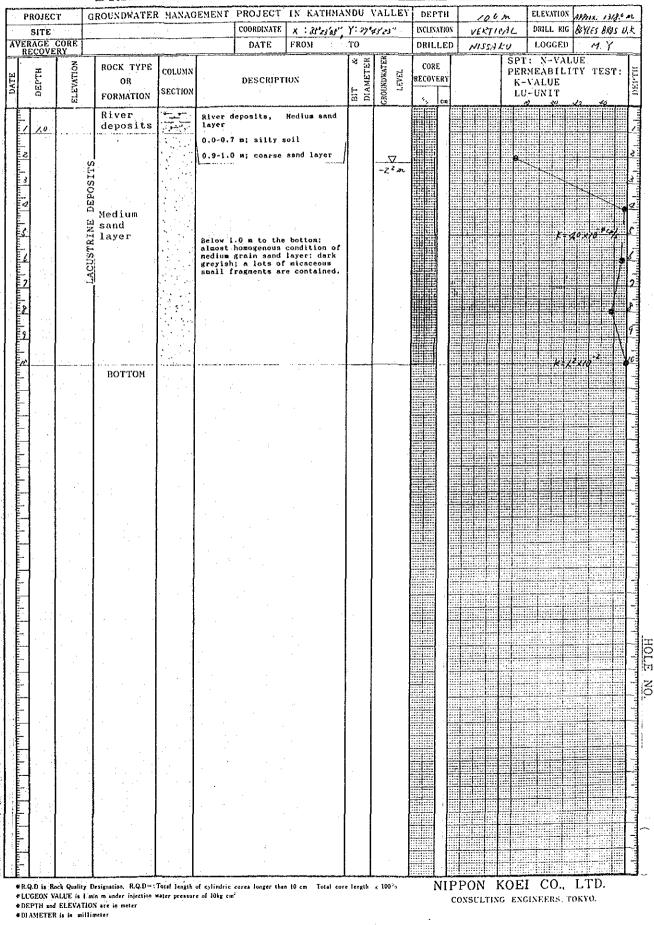
•

4	ROJEC	<u>r</u>	GROUNDWATE	R MANAG	EMENT	T	IN KATHM	ANDU	VALLEY	DEPTH	20	6 M	ELEVATIO	N Am	1. 13	02.1
	SITE					COORDINATE	X : 35°26'49		9892	INCLINATIO		TTCAL	DRILL R	IC BOYL	ES BRØS	s v,k
RI	AGE C	RY		· · · · · · · · · · · · · · · · · · ·		DATE	FROM	TO	~	DRILLE	2 115	~	LOCCE		MY	
	DEPTH	ELEVATION	ROCK TYPE OR FORMATION	COLUMN SECTION	· ·	DESCRIPT	TUN	BIT & DIAMETER	GROUNDWATER LEVEL	CORE RECOVERY		PER K-	: N-VA MEABIL VALUE -UNIT		TEST	•
مر استسلسا	2.0		River deposits		layer, sandy layer,	deposits, Clay lay layer, Lo Coarse sau 3 m; silty 1	nd layer		-0 ⁷ m							
اسادرسا					0.3-2.0 rounded whitis) M; Coarse] gravels of]	sand with f gneiss;							/		
		•	Medium sand layer		greyisi of mics	aand; greyis i; medium g sceous small luded.	sh to dark rain; a lots l fragments								1,32	2
			S Clay		Weak cl	ayey layer;							l l	/ /		
9	:		Li layer O Z Z Z		anall (Roteria	ragments of	a 1019 of Bicaceons		·				•	×= .	0-10	
N N			S MEDIUM TO FINE SAND LAYER		1ayer; 2.0-7.0) a; dark g; F micaceous	e section of regish; a									
		. *	Loose sand layer		14.0-15 sand	.0 m; whiti	sh; loose							<u>k</u>	/	
16		•	Coarse		grain s	the bottom and layer;	loose sandy									
1		-	sand layer		materia graniti conditi	c rocks; lo	ragments of bose in									
20			BOTTOM	· · · · ·	- <u></u>		- <u> </u>							*= 7 *	· <i>~10</i> -3	2
1					•											
1 5 1 1																
-		- - -														
-																

*R.Q.D is Rock Quality Designation. R.Q.D=: Total length of cylindric cores longer than 10 cm. Total core length x 100%
*LUCEON VALUE is 1 min m under injection water pressure of 10kg cm²
*DEPTH and ELEVATION are in meter
*DIAMETER is in millimeter

LOC FORM B

NIPPON KOEI CO., LTD. CONSULTING ENGINEERS, TOKYO.


. -

1.00

LOC FORM-B

HOLE NO. GB-7

SHEET NO. / OF /

I OG DDILL HOLE NO. GB-8 SHEET NO. / OF /

	ROJEC	T IC	DRILL		EMENT PROJECT				GB-8 DEPTH	201		/ OF		
	SITE	- <u>-</u> -			COORDINATE				INCLINATION		C PLANE LIVE AND DAD	DRILL RIG	BOYLES BA	us u.k
	AGE	CORE	· · · · · · · · · · · · · · · · · · ·		DATE	FROM	то		DRILLEE			LOGGED	M.)	
	DEPTH	ELEVATION	ROCK TYPE OR FORMATION	COLUMN	DESCRIPT	TION	BIT & DIAMETER	CROUNDWATER LEVEL	CORE RECOVERY		PER K-	: N-VAL MEABILI VALUE -UNIT		ST: HIAR
مى الارتىياتية المى المى الم			River deposits	· · · · · · · · · · · · · · · · · · ·	River deposits, P layer, Coarse se 0.2-0.4 m; ailty s some organic mater	and layer soil with		-0,8 m						/
այնունականականանությունը		D P D O S T WS	Medium sand layer		Coarse send with r fragments of gneis occasionally 3.0-11.0 m medium layer; dark greyts Almost the same ca continue to 11.0 m contents of micace fragments	grain sandy sh ondition a: some							741.0 ⁻¹⁴	
		LACUSTRINR DEF			11.6 m to the bott									
			Coarse sand layer		sandy layer with contents of granit contents of granit of 1-2 mm in size	occasional								
يلىماساسلىماسا			BOTTOM											
يتاسليم اسليما الم	· · · ·													
ահահունու		-												

*R.Q.D is Rock Quality Designation. R.Q.D=: Total length of cylindric cores tonger than 10 cm⁻¹. Total core length: x 100²/,
*LUCEON VALUE is 1/min/m under infection water pressure of 10kg cm⁴
*DEPTH and ELEVATION are in meter
*DIAMETER is in millimeter

LOC FORM-B

NIPPON KOEI CO., LTD. CONSULTING ENGINEERS, TOKYO

. .

HOLE NO. GB-9 SHEET NO. / OF /

	OJEC	T	GROUNDWATER	MANAG	EMENT PROJECT	· · · · · · · · · · · · · · · · · · ·				12.07		1111 Mar. 1 - 24.
	SITE	COPE			COORDINATE			40'44"	INCLINATION	VERTIC A		BOYLES BASS U
RE	COVE	CORE RY			DATE	FROM		1 @	DRILLED	XK221N		4 Y
	DEPTH	ELEVATION	ROCK TYPE OR	COLUMN	DESCRIP	FION	BIT & DIAMETER	UNDWATE	CORE RECOVERY	RQD(%)	SPT: N-VAL PERNEABILI LU-VALUE	UE TY TEST:
l F-r		급	FORMATION				D B	89	% en	<u></u>	K-VALUE	10 ye
	1.25		Residual soil		Claycy soil with	fragments	-					
2		· · ·		بسر بدر		· .						
					1.3-5.5 m; small (ragmental sample	s of 1-5 CM						
				÷	in size with clay cracks are weathe appear to be brow	red and					Kr.95	×4 4 1 1
				· · · ·							Z0 * 0	X ⁰
			Siliciuos								K+ 1'	70
		н 1947 - 1	sandy schist		Below 5.5 m. shor	t cylindric		-6.0m		5		
				(1)	cores are recover recovery is not g	ed but core		B. 110				×10 1
			e.	1.1	Schistosities inc deg.	line 35 to 50						<u>.</u> 7
				7								
				1								
E/6		1 .			2.3-2.5; 3.3-3.7; and 11.2-11.7 m; o recovered.	10.2-10.8 only slime is					K • ??	
/				~	teraterea.							70 2
12	.2.0			~~~	· · · · · · · · · · · · · · · · · · ·						и К - 24	and the second second
			BOTTOM									
	·											
	ł			· · ·				ľ				
							.					
					• •							
						·						
H								100				
				:								
		, ¹ ;		1.4								-
		al. Ourling	Designation ROD=1		of cylindric cores longer the	. 10			MID	PON K	DEI CO.,	I TTD


LOC FORM-B

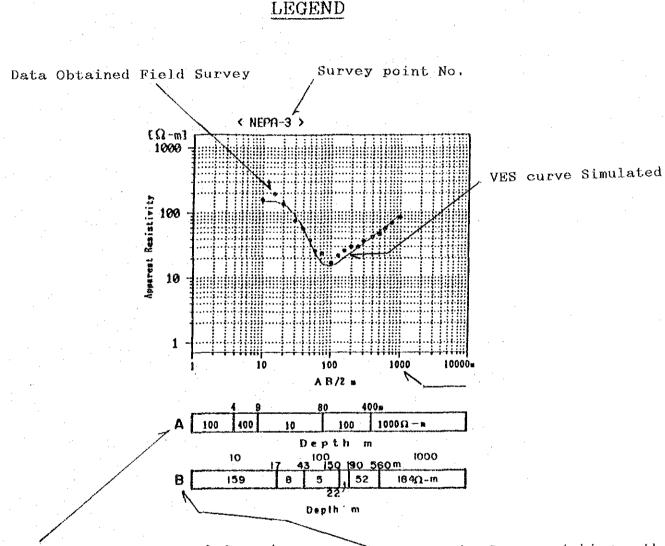
~ TOC TATT T

HOLE NO GB-10 SHEET NO / OF /

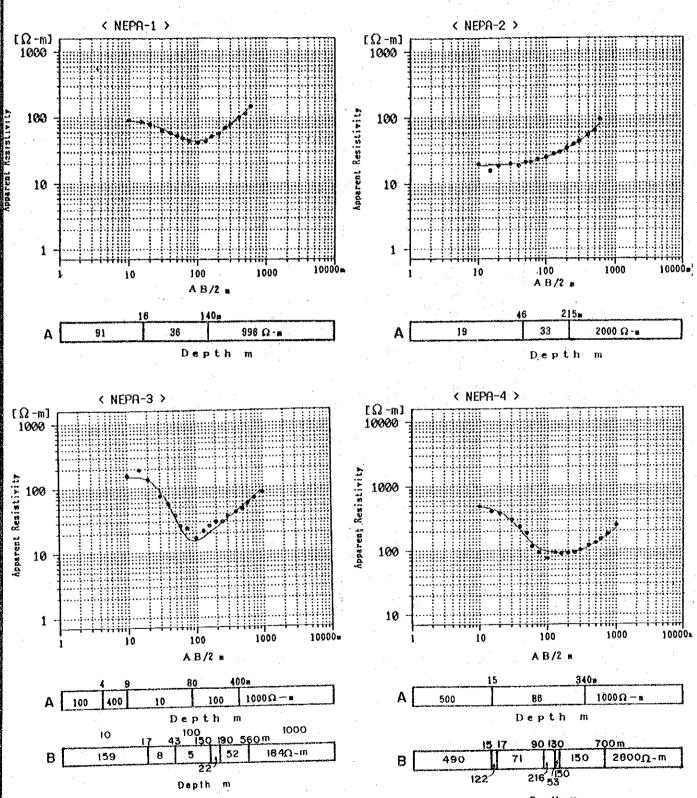
	SITE			COORDINATE		Y: 27 .	¢0'19'	INCLENATION				RILL RIG	 	<u>u</u> .
AVER	AGE CORE	<u> </u>	·	DATE	FROM	TO			NIS S.			.OGGED	<u>λ Υ</u>	- T
DATE	DEPTH	ROCK TYPE OR FORMATION	COLUMN SECTION	DESCRIP	TION	BIT & DIAMETER	GROUNDWATER LEVEL	CORE RECOVERY	RQD(%	. İ F	PERMI LU-Y	EABIL VALUE VALUE	EST:	
		BOTTOM	Belo core are fres sand of 1 fres sand of 1 fres shor mate CH} Cor with the the the the the the the the the t	-6 m. (CL) 15 m; only f t cores with rials are rec ation and sc. / are shorten with pressur is at about 1 calyey mater vered; small rved. (CL)	t cylindric al samples general; ery hard; short cores m the section ragmental and sandy overed. (CL- with pressure at about 13 m e of 0.8 kg/ 8 m. fragments inits are dots of a are		Artistian springs at about 13 m 101 (and 13 m with hundry arrast strand					K - 7 K		

♥R.Q.D is Hock Quality Designation, R.Q.D= 'Total length of cylindric cores longer than 10 cm...? Total core length' ×
♥LUCEDN VALUE is 1'min'm under injection water pressure of 10kg 'cm'
♥DEPTH and ELEVATION are in meter
♥DAMETER is in millimeter

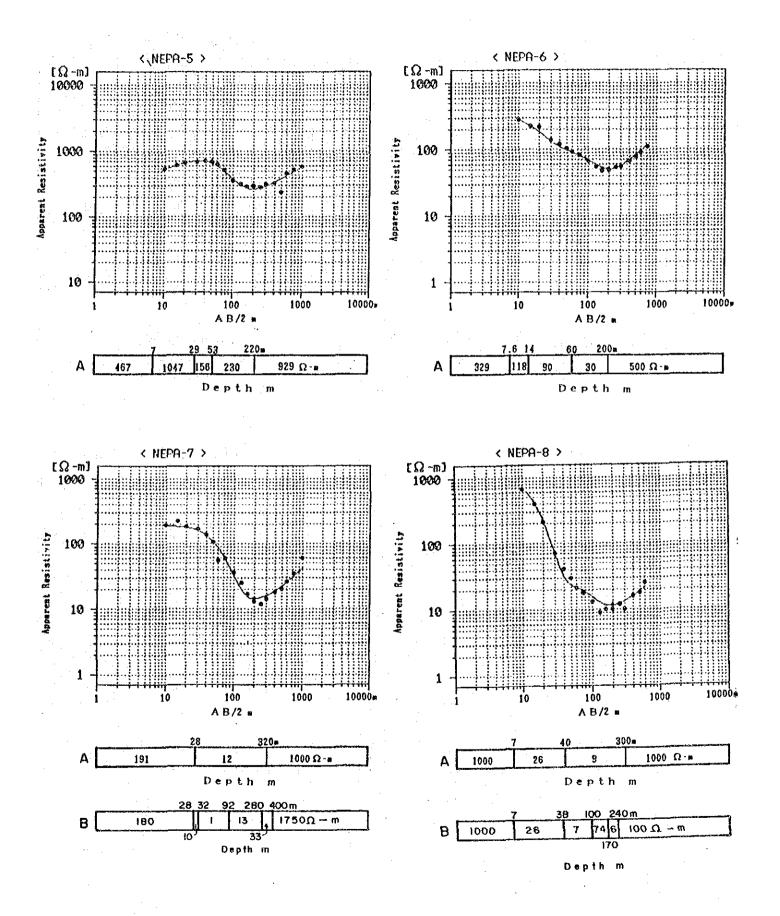
DATA BOUK C

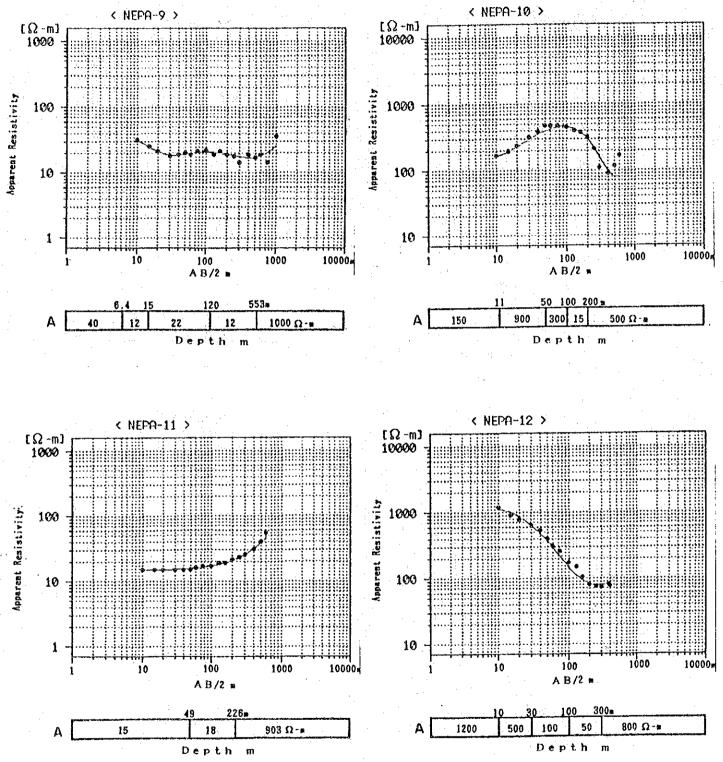

CONTENTS OF DATA BOOK C

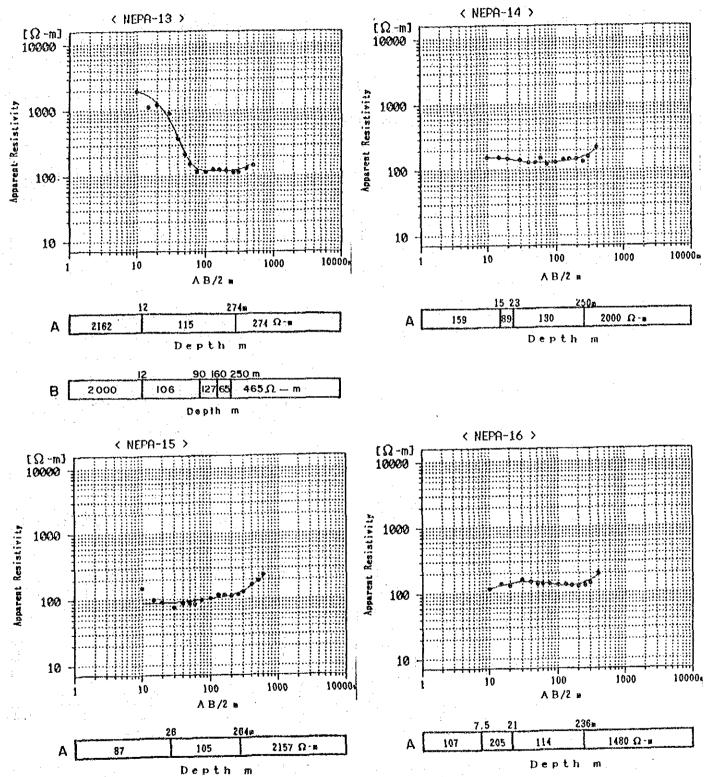
- C--1 VES CURVE
- C-2 C-3 INVENTORY OF WELLS
- WELL LOGS
- BOREHOLE LOGS C-4
- ESTIMATED GROUNDWATER ABSTRACTION FROM TUBE C--5 WELLS IN THE KATHMANDU VALLEY (1972-1989)

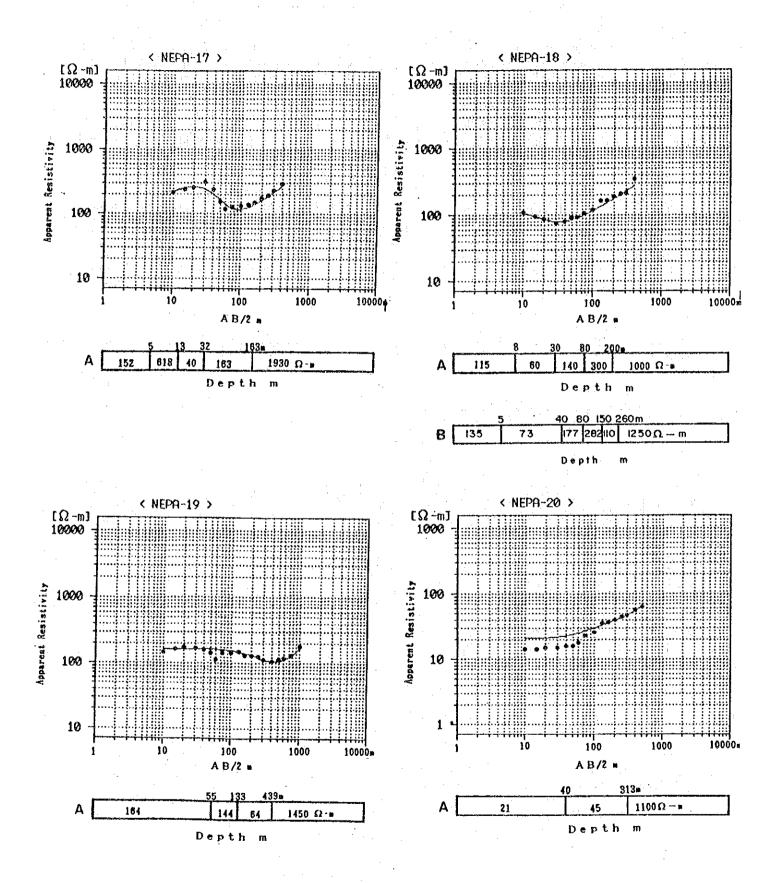

. .

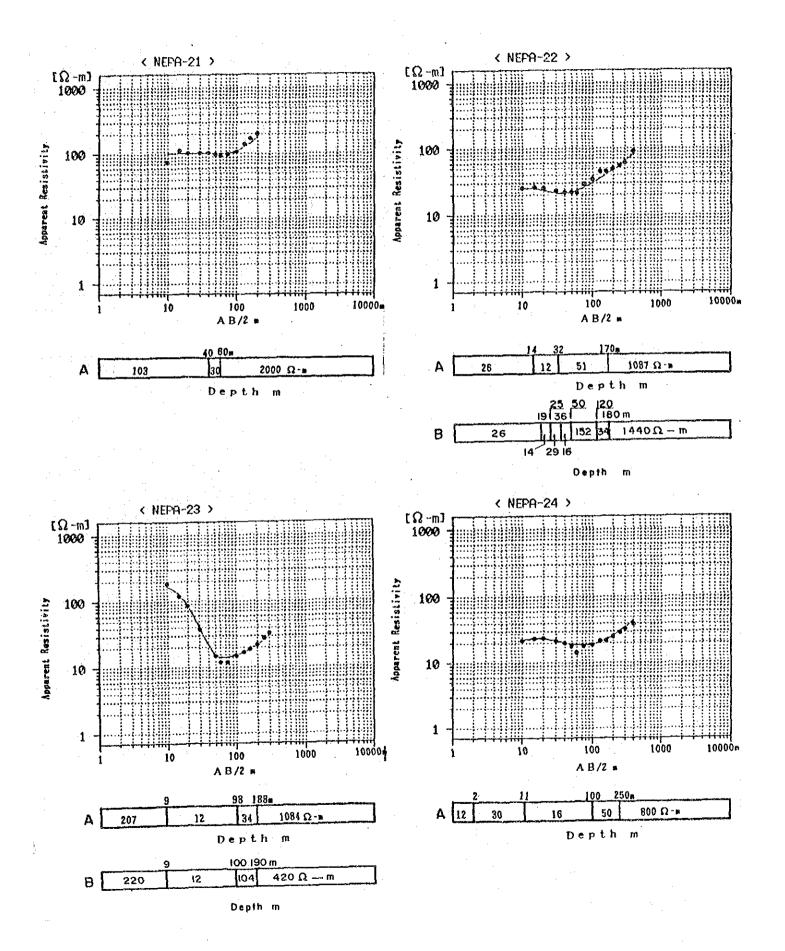
C-1 VES CURVE

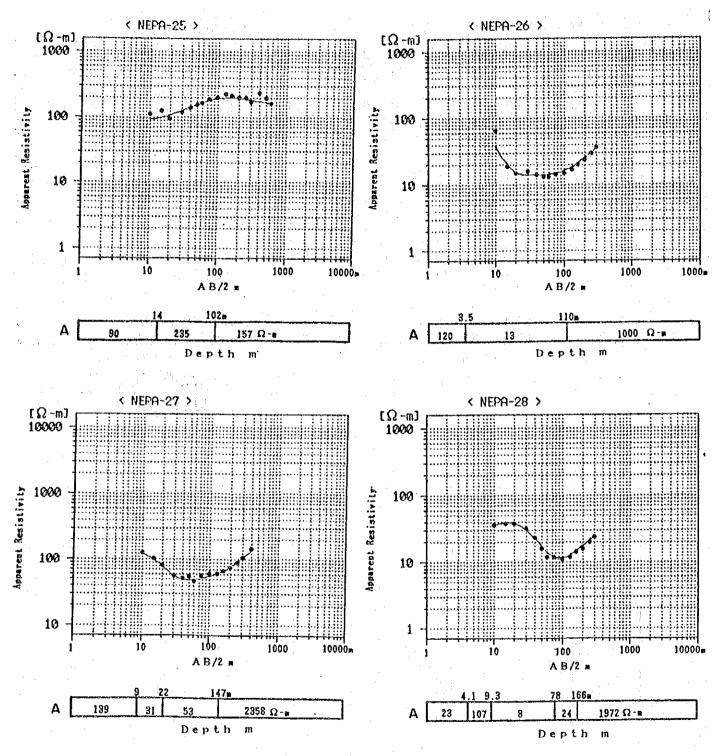

. .

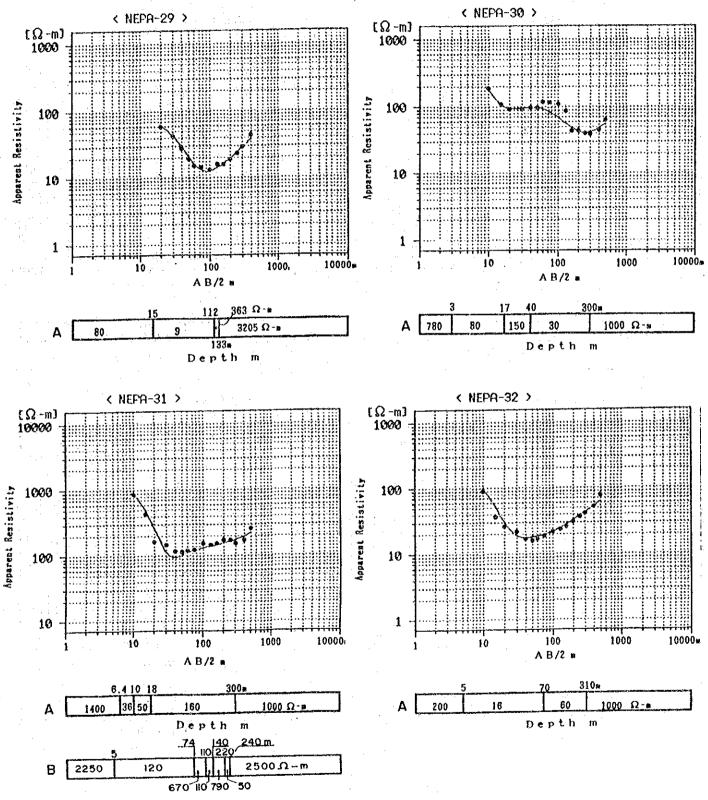


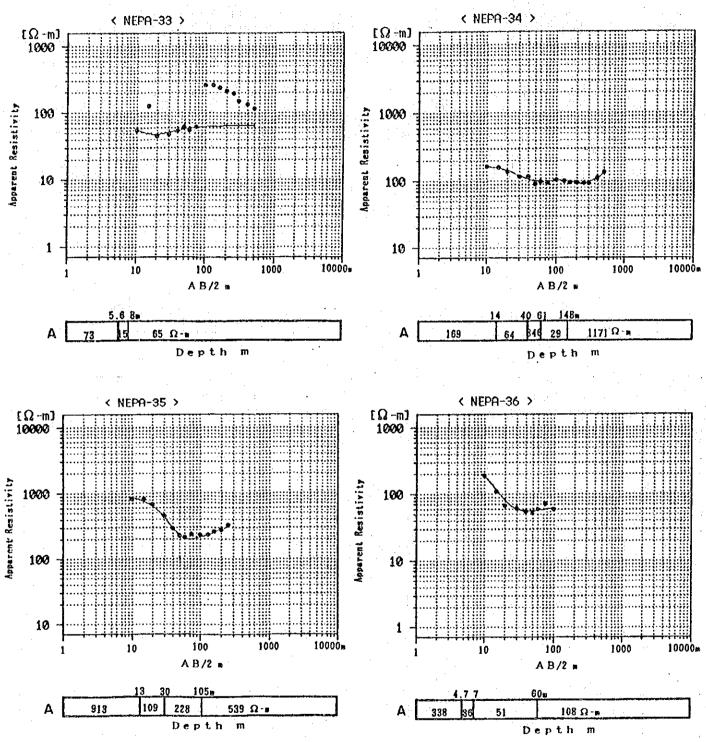


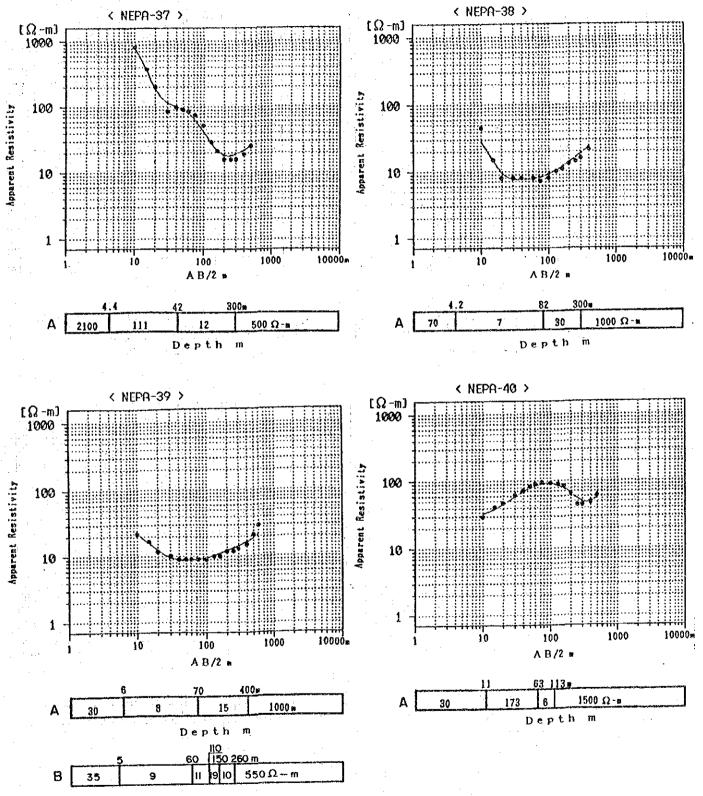


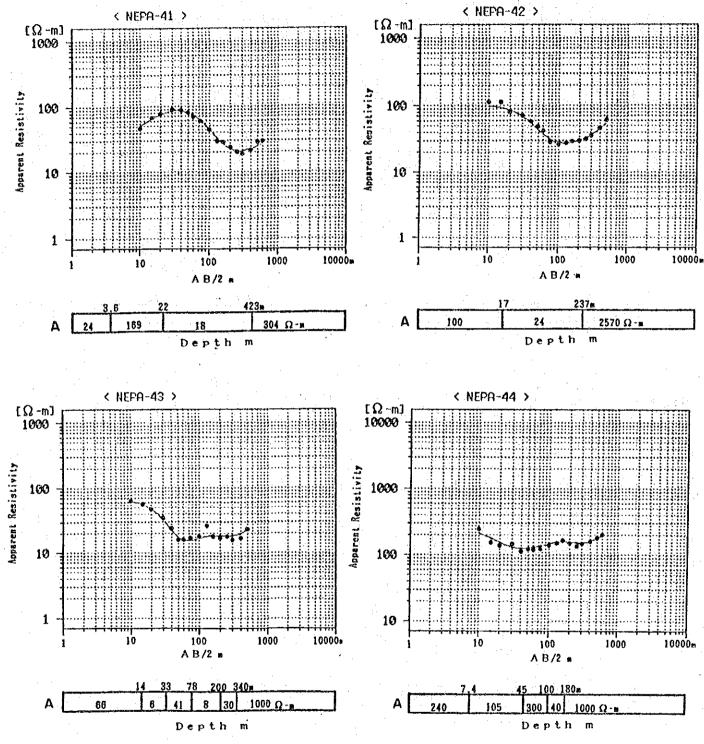

Dapth m

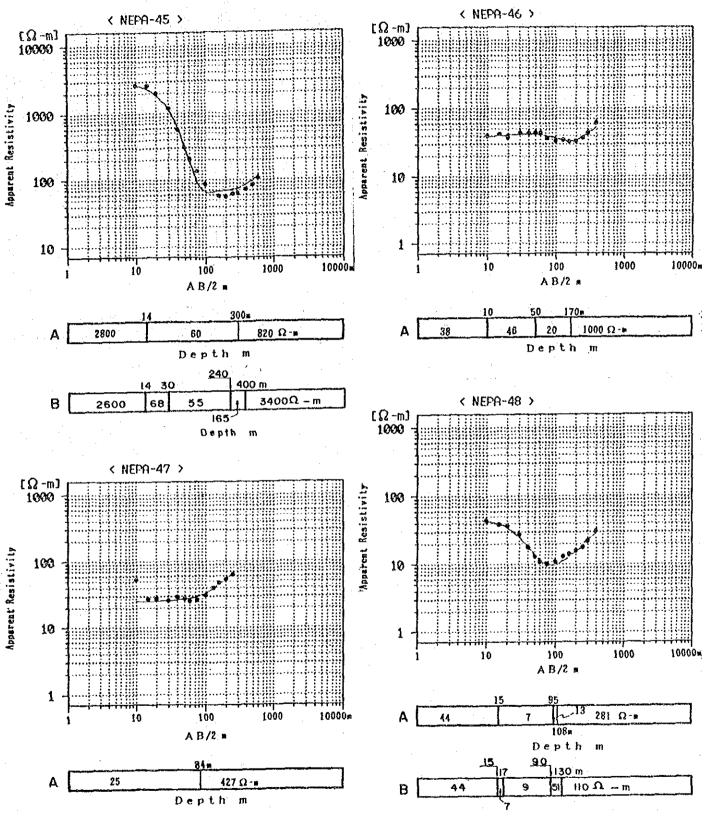




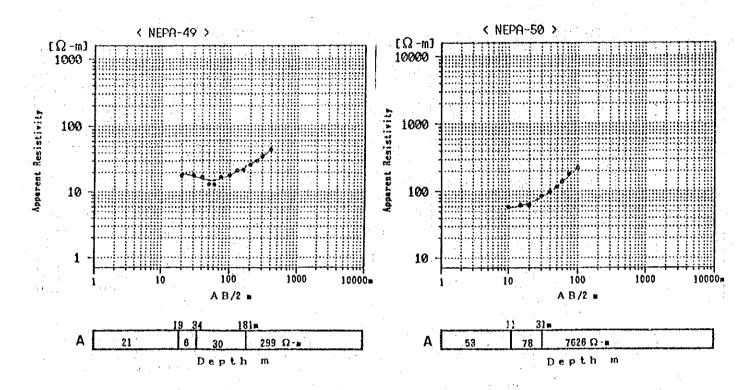








Depth m


.

. .

Depth m

C-2 INVENTORY OF WELLS

Well No.	BB1	BB2	BB3	BB4	
Owner/Location	NWSC	NWSC	NWSC	NWSC	,
Date drilled	Dec.22'83	Mar.11'84	Mar.30'84	Dec.26'84	
Use	Municipal	Municipal	Municipal	Municipal	
Drilling depth(m) 277.72	225.32	217.33	254.09	•
Well depth(m)	238.5	190.0	100.5	234.88	
Casing dia.(mm)		300 250	300	300 250	
Casing dep.(m)	238.5	91.41 190	100.5	62.13 234.88	
Screen dep.(m)	63-84.5 118-123 129-134	64-86 92-98 100-108	24-29.5 39-49.5 51-56.5	20-31 39-50 84-90	
	151-156	118-129 143-170	73.4-95	94-100 120-163	
	184-189 222-233	179-184		169.5-175 188-217 228-229	
Elevation(m) Casing height(m		1353.49	1315.49	1311.59	
SWL(m)* SWL(m)	48.08	31.95	1.36 18.05	0.58	
PWL(m)* PWL(m)	67.60	64.35	14.88 26.73	9.64	
Q(L/s)* Q(L/s)	34.25	20.46 20.00	43.24 40.00	44.11 36.70	
S.C(L/s/m)*	1.75	0.63	3.20 4.61	4.87	
S.C(L/s/m) Transmissibilit	y 182	44	320	340	
(m2/d)* Pump Installed Type	No	Submers.P	Submers.P	Submers.P	
Operation (hour/day) Daily					
production(ML/c	1)	·			

INVENTORY OF WELLS (1/22)

Note;*:Pumping test data at year drilled, SWL:Static Water Level, PWL:Pumping Water Level, Q:Discharge rtae,S.C:Specific Capacity, E.C:Electric Conductivity

120

20

E.C(MS/cm)

Temp.(C)

110

20

160

22.5

i	INVENT	ORY OF WELL	S (2/22)	· · · · · · · · · · · · · · · · · · ·
Well No.	BB5	BB6	BB7	BB8
Owner/Location	NWSC	NWSC	NWSC	NWSC
Date drilled Use Drilling depth(Well depth(m) Casing dia.(mm) Casing dep.(m)	250.2			
Screen dep.(m)		33-38 55-60 85-107 145-195.5	85-189 211-217 222.5-251	91-104 132-138.5 148-200
Elevation(m)	1309.89	1310.68	1305.78	1313.96
Casing height(m	-			
SWL(m) PWL(m)*	1.75 17.71 9.57	2.05 19.09	+2.20 6.12	6.08 12.58
Q(L/s) S.C(L/s/m)*	41.00 36.70 5.24	43.67 41.70 2.56	46.32 34.30 5.57	40.58 34.30 6.24
S.C(L/s/m) Transmissibilit (m2/d)*	у 737	109	561	369
Pump Installed Type Operation	Submers.P	Submers.P	Submers.P	Submers, P
(hour/day) Daily production(ML/d)			
E.C(MS/cm) Temp.(C)	177 19	160 20	180 21	290 21

	2117 2		(=/==/	
Well No.	DK-1	DK-2	DK-3	DK-4
Owner/Location	NWSC	NWSC	NWSC	NWSC
Date drilled Use Drilling depth(Well depth(m) Casing dia.(mm)	72.00	May.7'84 Municipal 63.56 38.07 300	Feb.13'84 Municipal 201.50 187.90 300 250	Apr.30'84 Municipal 50.91 49.00 300
Casing dep.(m)	72	38.07	45.55	49.00
Screen dep.(m)	37-42 48-64	11-32.5	187.90 22-38 125-141.5 164-182	11-38
		e Na Stationae Na Stationae		
Elevation(m) Casing height(m	1336.94 n)		1326.78	1331.72
SWL(m)*	29.38	+0.40	1.07	5.80
SWL(m) PWL(m)* PWL(m)	42.35 34.95	17.11	20.81	12.05
Q(L/s) * Q(L/s)	23.93	28.22	28.55 5.80	28.00 44.55 13.00
S.C(L/s/m)* S.C(L/s/m)	4.30	1.61	1.45	7.13
Transmissibilit	y 1963	313	515	465
(m2/d)* Pump Installed			Submers.P	Submers.P
Type Operation (hour/day) Daily production(ML/d	Abandoned	Abandoned		
E.C(MS/cm) Temp.(C)	95 17		175 21	175 20

INVENTORY OF WELLS (3/22)

	TWARIATOI	CI OF MELLIS	(4/22)	
Well No.	DK-5	DK-6	DK-7	DK-8
Owner/Location	NWSC	NWSC	NWSC	NWSC
Date drilled Use Drilling depth(m Well depth(m) Casing dia.(mm)	Dec.28'83 Municipal) 150 64.66 300	Jan.27'84 Municipal 110.68 35 300	Jan.7.'84 Municipal 120.73 54.5 300 250	Mar.1'84 Municipal 33.85 300
Casing dep.(m)	64.66	35	54.5	
Screen dep.(m)	43-59	13-24	35-46	9-19
Elevation(m) Casing height(m)	1337.72	1313.15		
SWL(m)*	29.58	1.95	30.09	3.20
SWL(m) PWL(m)* PWL(m)	32.58	9.64 16.00 11.49	30.42	12.45
Q(L/s)* Q(L/s)	27.89 18.00	39.76 8.30	9.73	28.89
S.C(L/s/m)* S.C(L/s/m)	9.30	2.83	1.84	3.12
Transmissibility (m2/d)*	1174	416	300	673
	Submers.P		·	
Operation (hour/day) Daily production(ML/d)			Abandoned	l Abandoned
E.C(MS/cm) Temp.(C)	173 17	210 18		

INVENTORY OF WELLS (4/22)

Note;*:Pumping test data at year drilled, SWL:Static Water Level, PWL:Pumping Water Level, Q:Discharge rtae,S.C:Specific Capacity, E.C:Electric Conductivity

........................

Well No.	DK-9	GK-1	GK-2	GK-3	
Owner/Location	NWSC	NWSC	NWSC	NWSC	
Date drilled	May.14'84	Dec.24'85	May:31'84	Jul.4'84	
	Municipal		Municipal	Municipal	
Drilling depth(m)		278.5	151.3	263.22	
Well depth(m)		268	149.3	251.10	
Casing dia.(mm)		300	300	300	. :
Lasing Gra. (mm)	500	250	250	250	
(m)	54.06	92.0	75.5	69.82	
Casing dep.(m)	54.00	268	149.3	251.1	
۲. 	•	200	147.3	201.1	
-					
(m)	12-17.5	50-61	31.5-37	37-43	
Screen dep.(m)	38-48.5	81-92	40.5-51.5		
	38-48.3		58-64		
				70-231	
		131-137	65.5-71		
	· · ·	148-153	76-138		
		170-186			
	e e e	214-219			
	• .	225-252			
		258-269	1000	1046 10	
Elevation(m)		1345.09	1339.90	1346.13	
Casing height(m)		н н. Н			
SWL(m)*	3.50	8.60	6.13	10.03	
SWL(m)	0.00	18.42	0020		
ምምሮ(መ) *	20.35	21.17	27,29	30.85	
PWL(m)	20:00	2.4.4.7	27125	50000	
	5.0	35.77	28.55	29.58	
2(L/s)*	J • U	32.00	28.00	23.00	
Q(L/s)	0.3	2.85	1.35	1.42	
S.C(L/s/m)*	0.3	2.00	1.00	1.72	
S.C(L/s/m)	20	201	83	143	
Fransmissibility	38	291	82	140	
(m2/d)*			O-b	Gubmond D	· · · ·
Pump Installed		Submers.P	Submers.P	Submers.P	·
туре					
Operation	Abandoned				
(hour/day)					
Daily					
production(ML/d)					
	· .	0.5	1 1 0	1 0 0	
E.C(MS/cm)		97	110	120	
Temp.(C)		20	20	21	

INVENTORY OF WELLS (5/22)

Well No.	GK-4	GK-5	MH2	MH3	5
Owner/Location	NWSC	NWSC	NWSC	NWSC	,
Date drilled	July 15'85	Jun.8'84	Oct.18'84	Nov.26'84	
Use	Municipal				
Drilling depth(m) 253.6	164.7	322.09	330.3	
Well depth(m)	249.12	105 5	307.8	222 1	
Casing dia.(mm)			300	300	
casing dra. (num)	250	000	250		
	200		230	250	
Casing dep.(m)	68.31	105.5	92.65	146	
5 - ()	249.12	:	307.8	323.1	
Screen dep.(m)	46-68	36-41.5	41-47	44.5-50	
	69-96.5	47-69		5 70-92	
	107-118	79.5-85	72 65-102	106-123	
	152-157.5	89_100	125-131	129.5-146	
	174-185	03-100	137.5-212	160 160	
			137.3-212	174-180	
	208-241				
		•	270-288.5		
·	· ·		296-302	246-252	
				263-314	
	and the second sec			317-323	
Elevation(m)	1347.69	1358.00	1339.53	1337.13	
Casing height(m)					
SWL(m)*	11.25	20.16	17.50	14.40	
SWL(m)	26.27	27.30	-,		Ċ.
	44.38	37.10	32.40	29.58	
	53.95	57.20	43.40	22:20	
	29.24	20.19	37.33	38.14	
Q(L/s)	16.78	1 10	40.00	36.10	
	0.88	1.19	2.47	2.51	
S.C(L/s/m)	0.61				
Fransmissibility	113	195	785	162	
(m2/d)* Pump Installed	Cubmerre D		Cubmana D	Calmana D	
	Submers.P		Submers.P	Submers.P	
Type Operation				н. А. А.	
			· · · · ·		
(hour/day)					
Daily					•
production(ML/d)					
B.C(MS/cm)	142		154	147	
	20		20		
Temp.(C)	20		20	21	

INVENTORY OF WELLS (6/22)

Well No.	MH4	MH5	MH6	MH7
Owner/Location	NWSC	NWSC	NWSC	NWSC
Date drilled	Nov.1'85	Apr.13'85	Mav.4'85	Nov.4'85
Use Drilling depth(m)	Municipal	Municipal	Municipal	Municipal
Drilling depth(m)	254.64	304.68	305.97	303.58
Well depth(m)	236.94	201.5	197.76	267.0
Casing dia.(mm)		300	300	
Subarry und ((uni)	250	250	250	250
	200	200		
Casing dep.(m)	40.62	124.5	59.44	80.5
5 1 (7)	236.94		197.96	
Screen dep.(m)	19.5-25	53-124.5 129-141	22-39	20-36.5
		129-141	60-78	42-80.5
	58-63			
	72-83	173.5-195.5		199-210
	94-146			219-222
· · ·	155-161			247-263
	169-174			
· · · ·	185-234			
Elevation(m)	1329.08	1321.21	1316.30)
Casing height(m)			· .	
SWL(m)*	5,15	1.25	+1.20	2.38
SWL(m)			7.86	27.19
PWL(m)*	17.64	10.27	6.07	12.04
PWL(m)				
Q(L/s)*	39.75	39.34	43.13	38.50
	35.00	40.00		25.00
5.C(L/s/m)*	3.18	4.36	7.10	4.0
5.C(L/s/m)				
Fransmissibility	861	570	465	614
(m2/d)*	· · ·	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		
Pump İnstalled Type	Submers.P	Submers.	Р	Submers.P
Operation				
(hour/day)				
Daily				
production(ML/d)				
E.C(MS/cm)		200		200
remp.(C)		21.3		24

INVENTORY OF WELLS (7/22)

Well No.	BH-1	ВН-3	BH-4	JP1	
Owner/Location	NWSC	NWSC	NWSC	NWSC	****
Date drilled Use		Feb.3'85 Municipal			ł
Drilling depth(m)	273.6	253.0	252.6	151.0	
Well depth(m)		150.76		440	
Casing dia.(mm)	300 250	300 250	300 250	300	
				· .	
Casing dep.(m)	91.09		90.41	44.0	: .
	174.17	150.76	160.86		
Screen dep.(m)	41-57.5 75-86 92-110 139-168	96-102 115-146	45-51 52-57 63-90 91-97	18-34.5	
	133-100		120 - 126 132 - 155		
Elevation(m)			102 100	· · · · · ·	
Casing height(m)	1341.85	1331.05	1318.67	1322.41	
SWL(m)*	20.73	10.16	+1.50	7.44	-
SWL(m)		23.01	12.97		
PWL(m)* PWL(m)	38.59	19.01	10.52	17.46	
Q(L/s)*	31.33	43.13	46.31	12.20	· ·
Q(L/s)	28.30	33.00	30.50		
S.C(L/s/m)* S.C(L/s/m)	1.75	4.87	3.85	1.22	
	316	364	646	180	•
Pump installed	Submers.p	Submers.P	Submers.	P	
Type Operation			A	bandoned	
(hour/day)					
Daily production (ML(d)					
production(ML/d)					
E.C(MS/cm)	203	260	184		
Temp.(C)	19	19	18		· · · ·

INVENTORY OF WELLS (8/22)

Well No.	BBold	BHold2	B12	WHO3A
Owner/Location	NWSC	NWSC	NWSC	NWSC
Date drilled Use Drilling depth(m) Well depth(m) Casing dia.(mm)	Municipal	Feb.14'76 Municipal 219.45 217.62 300 250	Monitoring	Feb.'72 Monitoring 94.5
Casing dep.(m)	87.0	12.19 217.62		
Screen dep.(m)	7-87	12-24 26-41 81-85 88-96 99-109 188-197 203-208		·
Elevation(m) : Casing height(m)	1332.79 1	345.65	1326.62	1332.79
SWL(m)* SWL(m) PWL(m)* PWL(m)	27.0 40.46 43.64			24.00
Q(L/s)* Q(L/s) S.C(L/s/m)* S.C(L/s/m) Transmissibility (m2/d)*	15.80 4.19	19.00		
Pump Installed Type Operation (hour/day) Daily production(ML/d)	Submers.p	Submers.p		
E.C(MS/cm) Temp.(C)	145 21	184 20	250 19	

INVENTORY OF WELLS (9/22)

Well No.	PH1	PH2 S	SK1	Balaju
Owner/Location	NWSC	NWSC	NWSC	NWSC
Date drilled Use Drilling depth(m) Well depth(m) Casing dia.(mm)	Oct,31'76 Municipal 212.24 175 300 250	Feb.12'77 Municipal 90.9 90 300 250		Aug.24'76 Municipal 201.22 300 250
Casing dep.(m)	33.83 175	25 90	. •	28
Screen dep.(m)	74-172	36-58 65-83		81-85 101-140
		· · ·		
Elevation(m) Casing height(m)		1250.98		1298.49
SWL(m)* SWL(m) PWL(m)* PWL(m)	Selfflowing	2.64	Selfflowi 1.01	ng Selffowine
Q(L/s)* Q(L/s) S.C(L/s/m)*	10.00	33.30		
S.C(L/s/m) Transmissibility (m2/d)*			· · ·	
Pump Installed	Submers.p	Submers.p		Submers
Type Operation (hour/day)			Abandone	ed
Daily production(ML/d)				
E.C(MS/cm) Temp.(C)	330 21	567 21		280 19

	INVENTOR	Y OF WELLS	(11/22)		
Well No.	WHO5A	WHO7	P1	P2	
Owner/Location	NWSC	NWSC	BID1	BID2	248 623 448 044 643
Date drilled Use Drilling depth(m) Well depth(m) Casing dia.(mm)	Monitoring 39.0	May.3'72 Monitoring 166.9 154.8 150	Industry 72.18	Industry	
Casing dep.(m)	39.0	154.8	21.58	32.5	
Screen dep.(m)	20-40	20.7-60.2 75.6-100 142.6-154.8	10.4-18.5		
Elevation(m) Casing height(m)	1332.4	1358.8			
SWL(m)* SWL(m) PWL(m)* PWL(m) Q(L/s)* Q(L/s) S C(L/s(m)*	21.17 23.61	14.80	3.0	5.65 6.64	
S.C(L/s/m)* S.C(L/s/m) Transmissibility (m2/d)* Pump Installed Type Operation (hour/day) Daily production(ML/d)			Centrif.P 24	Centrif.P	
E.C(MS/cm) Temp.(C)		84 21	260 18	260 20	

Well No.	P3	P4	₽5	P6
Owner/Location	Cocacola	Kathmandu hatchery		hospital
Date drilled Use	1984 Industry	Jul.10'85	Mar.27'88 Domestic	1985 Domestic
Drilling depth(m) Well depth(m) Casing dia.(mm)) 253.5 200 100	$140 \\ 140 \\ 250 \\ 150$	150 150 150 100	
Casing dep.(m)	60 253.5	41 140	44 150	
Screen dep.(m)	206-253	90-137	66-72 90-108 135-141 144-150	na teoria de la seconda de La seconda de la seconda de
Elevation(m) Casing height(m)	·			
SWL(m)* SWL(m)		+0.55 Selfflowin		46.26
PWL(m)* PWL(m) Q(L/s)*		31.13 20.33	25.49 7.69	5.56
Q(L/s) S.C(L/s/m)*	2.5	20133	0.04	J. J0
S.C(L/s/m) Transmissibility (m2/d)*			40	
Pump Installed Submers.P	Centrif.I	•	a de la calendaria.	
Type Operation (hour/day)	1-24	24		4
Daily production(ML/d)	0.01-0.2			0.08
E.C(MS/cm) Temp.(C)	1400 23	300 19.5		180 21

INVENTORY OF WELLS (12/22)

Well No.	P7	P8	P9	P10
Owner/Location	Kathmandu	British	Indian	Hotel
	hotel	embassy	pesion cam	
Date drilled	Jul.30'88	1972	Jan.11'87	
Jse	Domestic	Domestic	Domestic	Domestic
Drilling depth(m) 250		260	
Vell depth(m)	250	219	260	277
asing dia.(mm)	200	200	150	200
•	150	-	100	100
Lasing dep.(m)	60	· · ·	50	61
/ /	250		260	277
Screen dep.(m)	160-172	•	209-227	205-214
and and and and and and and and and and	178-196		233-257	220-226
				246-266
Elevation(m)				
Casing height(m)				
SWL(m)*	41.60	8.23	13.75	4.6
SWL(m)		0.20	:	- • •
PWL(m)*	44.08		21.06	
PWL(m) Q(L/s)*	4.42		11.11	
Q(L/S)			0.04	
S.C(L/s/m)* S.C(L/s/m)			0.04	
Fransmissibility	164		329	• •
(m2/d)*				
Pump Installed Type				
Operation	6-8	5		6
(hour/day)			•	
Daily		0.034		0.072
production(ML/d)	· .			680
E.C(MS/cm) Temp.(C)				000

INVENTORY OF WELLS (13/22)

Well No.	P11	P12	P13	P14
Owner/Location	Armitcampus (sience)	Hotel Bajra	Hotel Annapurna	Hotel Yaku&Yeti
Date drilled	1978	1981	1976	1975
Use	Domestic	Domestic	Domestic	Domestic
Drilling depth(m) 245		293	325
Well depth(m)	241	66.8	1 · · · ·	226
Casing dia.(mm)	200 100	200	250 150	150
Casing dep.(m)	.61		90	
	241		293	. · · ·
Screen dep.(m)	175-178	· · ·		
	207-222			
	225-235 238-241			
	230-241			·
		-		
Elevation(m) Casing height(m)	· · · · · · · · · · · ·		· · · · · · · · · · ·	
SWL(m)* SWL(m) PWL(m)*	6.1 18.7	21.30 3.5	Selfflowing	g Selfflowing
PWL(m)	2 2	1 00	7 50	
Q(L/s)* Q(L/s)	3.3	1.26	7.58	5.66
S.C(L/s/m)*				5.
S.C(L/s/m) Transmissibility				
(m2/d)*				
Pump Installed Type	Turbine.P	Jet.P	Turbine.P	Turbine.P
TANG	6	18	7-10	6
				i a The second
Operation (hour/day)	-			
Operation (hour/day) Daily	0.072	0.04	0.23	0.072
Operation (hour/day) Daily production(ML/d)	0.072		i	
Operation (hour/day)		0.04 520 22.5	0.23 580 24	0.072 440 24

Well No.	P15	P16	P17	P18
Owner/Location	Hotel Sherpa	Japanese Ambassador residence	Hotel Soltee Oberoi5	Hotel Soltee Oberoi4
Date drilled Use	1980 Domestic	Domestic	Apr.24'87 Domestic	Aug. 26'86 Domestic
Drilling depth(m) Well depth(m) Casing dia.(mm)	262 200 100	176 176		425 150
Casing dep.(m)	64 259			53 305
Screen dep.(m)	190-197 221-224 229-259	131-175	213-219 225-232 243-249 261-297	210-243 270-275 280-300
Elevation(m) Casing height(m)				
SWL(m)*	0.76		4.10	6.75
SWL(m) PWL(m)*			43.70	30.49
2011/s)*	10.6	2.0	4.64	34.90
2(L/s) 5.C(L/s/m)*			0.12	1.47
S.C(L/s/m) Fransmissibility (m2/d)* Pump Installed			32	186
Type Operation (hour/day)	5 0.19			
Daily production(ML/d) S.C(MS/cm) Temp.(C)	590 26.5		1000 24	

Note;*:Pumping test data at year drilled, SWL:Static Water Level, PWL:Pumping Water Level, Q:Discharge rtae,S.C:Specific Capacity, E.C:Electric Conductivity

.

	THABIT	OUT OF MEDDO	(10/22)	
Well No.	P19	P20	P21	P22
Owner/Location	HEM Trading	Nirvana vanaspati	Rabi Bhawar	Royal Drugs Ltd.
Date drilled Use	Oct.20'87 Domestic	Sep.24'88 Domestic	Oct.12'60 Domestic	1978 Domestic
Drilling depth(m)	250	280 280	272	183
Well depth(m) Casing dia.(mm)	100	280 250 200	200	150
Casing dep.(m)	250	60 280		
Screen dep.(m)	214-244	226-250 265-277		
		•		
Elevation(m) Casing height(m)				
SWL(m)*	9.00	0		
SWL(m) PWL(m)* PWL(m)	14.70	66.00		
Q(L/s)* Q(L/s)	11.11	0.8	1.0	6.25
S.C(L/s/m)*	1.95	0.01		
S.C(L/s/m) Transmissibility (m2/d)*	314	1		an de la composition anti- anti-anti-anti-anti-anti-anti-anti-anti-
Pump Installed Type				
Operation (hour/day)			6	2
Daily production(ML/d)			0.022	0.045
E.C(MS/cm) Temp.(C)				1200 25.5
			· · · ·	

INVENTORY OF WELLS (16/22)

Well No.	P23	P24	P25	P26
Owner/Location	Everst Hotel	Tribuwan Airport	Pepsicola No.1	Pepsicola No.2
Date drilled Use	Jan.24'78 Domestic	Jul.27'86 Domestic	Jun.2'86 Industry	Oct.2'86 Industry
Drilling depth(m) Well depth(m) Casing dia.(mm)	268.2 268.2 250	35 35 100	256 255 250 150	300 300 250 200 150
Casing dep.(m)	60 268.2	35	54 255	62 68 300
Screen dep.(m)	198-201 205-257 262-268	16-22 26-35	191-210 216-241 249-253	

INVENTORY OF WELLS (17/22)

Elevation(m)				. • •
Casing height(m)				0.4
SWL(m)*	Selfflowing	9.5	7.0	2.55
SWL(m)	15			9.96
PWL(m)*	24	14.36	16.31	14.25
PWL(m)				
Q(L/s)*	18.95	5.0	33.4	44.0
Q(L/s)				
S.C(L/s/m)*		1.03		
S.C(L/s/m)				
Transmissibility	· .		860	996
(m2/d)*			_	_
Pump Installed	Submers.P		Submers.P	Submers.P
Туре	25HP			
Operation	7-8		4-24	
(hour/day)	· · · · · · · · · · · · · · · · · · ·			
Daily	0.51	÷	0.1-0.6	
production(ML/d)				
E.C(MS/cm)	720		520	
Temp.(C)	25		25	
÷				

Note;*:Pumping test data at year drilled, SWL:Static Water Level, PWL:Pumping Water Level, Q:Discharge rtae,S.C:Specific Capacity, E.C:Electric Conductivity

	INVEN	TORY OF WELL	S(18/22)	
Well No.	P27	P28	P29	P30
Owner/Location	SOS	UCEP thimi		Hotel Narayani
Date drilled Use	1983 Domestic	Jul.1982 Domestic	1985 Mar,10'	1986 85 Domestic
Drilling depth(m) Well depth(m)	253 253	213	218	60
Casing dia.(mm)	250 150	250 150	218 250 150	100 .
Casing dep.(m)	60 253	60 213	58.5 218	
Screen dep.(m)	209-239 244-253	100-111 188-213	175-218	
			· ·	
Elevation(m) Casing height(m)			0.3	
SWL(m)* SWL(m)	14.1	3.0	5.111.4	
PWL(m) * PWL(m) Q(L/s) *				
Q(L/s) S.C(L/s/m)* S.C(L/s/m)	1.94	3.33	15	
Transmissibility (m2/d)*				
Pump Installed Type	Submers.P		Submers.P 13.5HP	Submers.P
Operation (hour/day)	5	5	10	4
Daily production(ML/d)	0.035	0.06	0.43	0.0048
E.C(MS/cm) Temp.(C)	320 21		980 25	a setta da Reservação da Carlos Reservação da Carlos
		· · ·	۰. ۲	

INVENTORY OF WELLS (18/22)

Note;*:Pumping test data at year drilled, SWL:Static Water Level, PWL:Pumping Water Level, Q:Discharge rtae,S.C:Specific Capacity, E.C:Electric Conductivity

- Allow

Well No.	P31	P32	P33	P34
Owner/Location	Horticulture Farm	Pashupati Tixtile		
Date drilled Use	Domestic	1989 Industr	1978 Y Industr	Dec.1979 y Domestic
Drilling depth(m) Well depth(m) Casing dia.(mm)	277.2 277 300 150	220 205.59 150	160 159 200 100	219 218 250 100
Casing dep.(m)	45 277	205.59	105 159	59 218
Screen dep.(m)	102-106 213-219 230-233 242-277	132-205	112-159	177-193 200-218
Elevation(m) Casing height(m)				
SWL(m)*		2.93	22.0	6.1
SWL(m) PWL(m)*	0	40.34		· .
PWL(m) Q(L/s)* Q(L/s)	12.15 0.4	1.24	1.0	
S.C(L/s/m)* S.C(L/s/m) Transmissibility				
(m2/d)* Pump Installed Type		Submers.I 3HP	9 Submers.1	2
Operation (hour/day) Daily			7	0.028
production(ML/d) E.C(MS/cm) Temp.(C)	660 23	1300 21	580 25	

INVENTORY OF WELLS (19/22)

Note;*:Pumping test data at year drilled, SWL:Static Water Level, PWL:Pumping Water Level, Q:Discharge rtae,S.C:Specific Capacity, E.C:Electric Conductivity

م حمد بين من جمع مدر بين غيرة فينة فين المار من من عن عن من عن من				an an an an an he ar ar ar ar ar ar
Well No.	P35	P36	P37	DMG1
Owner/Location	Himal cement No.1	Himal cemnet No.2	: Interknit	DMG gas project
Date drilled Use Drilling depth(m Well depth(m) Casing dia.(mm)			Jul.27'87 Industry 370 370 250 150	Jan.11'87 Gassupply 260 260 150 100
Casing dep.(m)	48 153	90	50 370	50 260
Screen dep.(m)	119148	62-90	173-187 270-282 312-342	209-227 233-257
			354-360	
Elevation(m) Casing height(m)				
SWL(m)* SWL(m)	Selfflowing	1.5	22.50	13.75
PWL(m) * PWL(m)	21.95	17.05	43.51	21.06
Q(L/s)* Q(L/s)	21.17	20.3	2.38	11.11
S.C(L/s/m)* S.C(L/s/m) Transmissibility	7 25	108	6	
(m2/d)* Pump Installed Type	· · · ·			
Operation (hour/day) Daily production(ML/d)				
E.C(MS/cm) Temp.(C)				

٠.

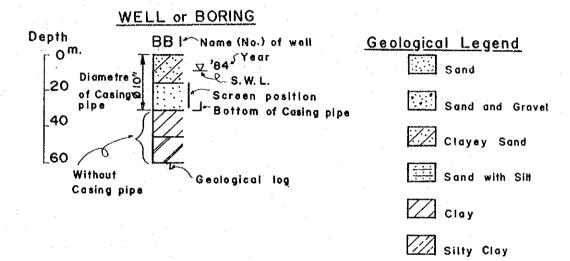
-

INVENTORY OF WELLS (20/22)

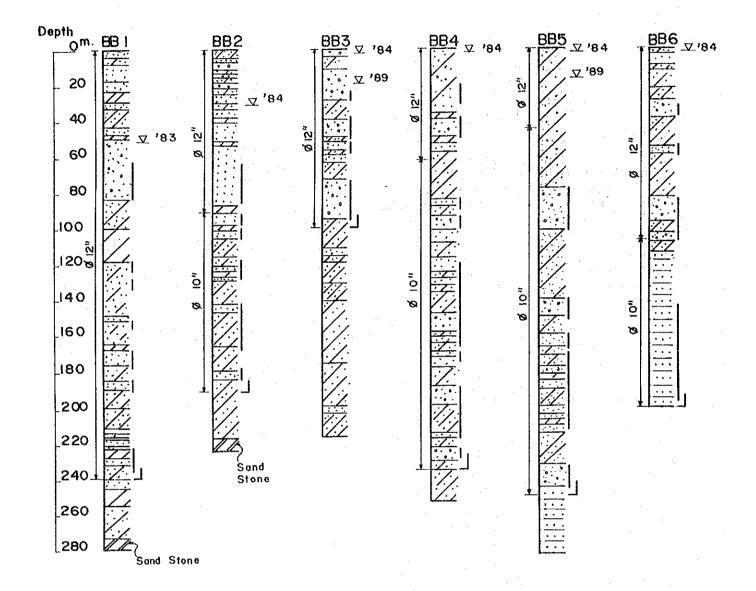
INVENTORY	\mathbf{OF}	WELLS	(21/	'22)	
-----------	---------------	-------	------	------	--

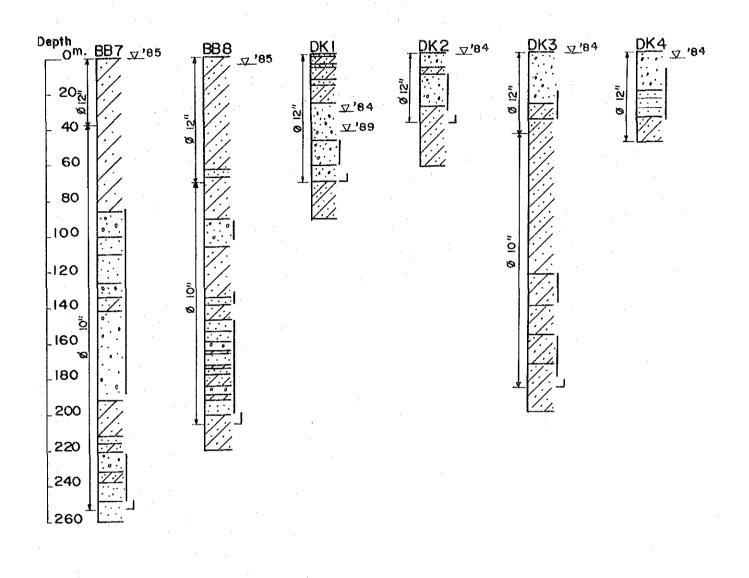
Well No.	DMG2	DMG3	DMG4	DM
Owner/Location	DMG gas project	DMG gas project	DMG gas project o	Di as pro
Date drilled Use Drilling depth(m) Well depth(m) Casing dia.(mm)	1984 Gassupply 302 298.7 150 100	1983 Gassuply 302 300.85 150	Jun.9'86 Gassuply 300 300 100	Jul. Gassu 4: 1: 1: 1:
Casing dep.(m)	66.22 298.77	300.85	300	1(
Screen dep.(m)	190-201 207-229 235-246 257-296	171-174 180-189 191-216 220-227 234-253 258-297	209-229 234-253	298-3 345-3 364-4 430-4
Elevation(m) Casing height(m)	:	1279	1285.18	
SWL(m)*			+0.50	+(
SWL(m) PWL(m)*			42.0	r
PWL(m) Q(L/s)*	5.6	11.11	4.42	
Q(L/s) S.C(L/s/m)* S.C(L/s/m) Transmissibility (m2/d)* Pump Installed				
Type Operation (hour/day)				
Daily production(ML/d) E.C(MS/cm)		1100	880	100
Temp.(C)		25	26	2

•

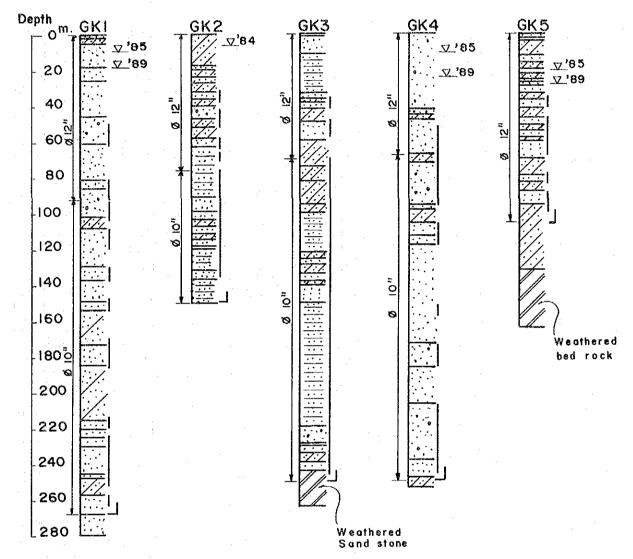

INVENTORY OF WELLS (22/22)

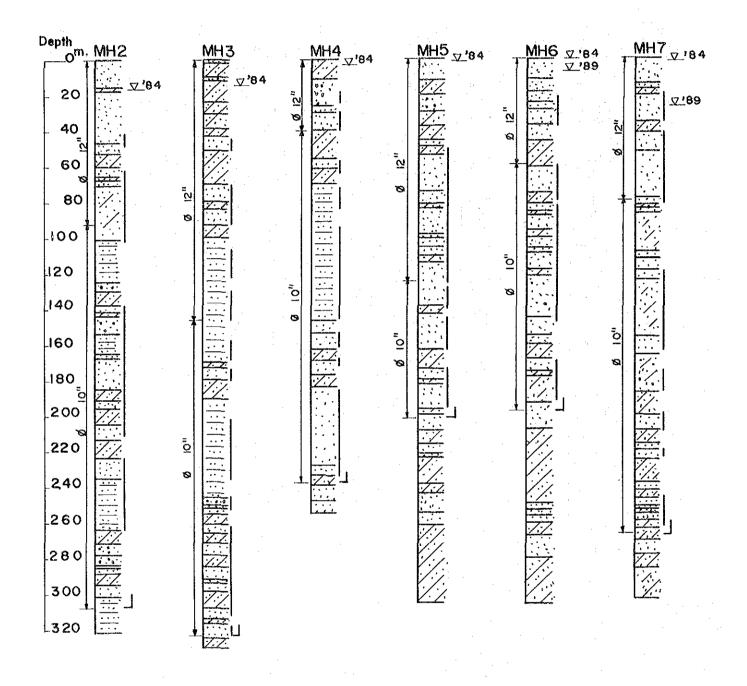
Well No.	DMG6	DMG7	DMG8	
Owner/Location	DMG	DMG	DMG	
	gas project	gas projec	t gas project	
Date drilled	1988	1988	1988	
Use	Gassupply	Gassuply	Gassuply	
Drilling depth(m)		358.80	455.31	
Well depth(m)	552	355	444	· . · · ·
Casing dia.(mm)	150 100	150	150	
Casing dep.(m)	100	100 105	444	
casing dep.(m)	570	355	344	
and the second second second second second second second second second second second second second second second	010	555		
Screen dep.(m)	176-179	186-214	183-230	
	202-238	216-228	244-360	
·	246-266	236-254	388-443	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
· · · · · · · · · · · · · · · · · · ·	277-279	260-280		
	294-339	297-339		
	360-370 380-400			
	440-470			
	482-490			
	520-550			
Elevation(m)	1293.5	1279		· .
Casing height(m)				
				· .
SWL(m)*	+6.0			
SWL(m)				
PWL(m)* PWL(m)				
Q(L/s)*				
Q(L/s)				the second second
S.C(L/s/m)*				
S.C(L/s/m)				
Transmissibility				
(m2/d)*				
Pump Installed				· · ·
Type Operation				
(hour/day)			• •	
Daily			· · · ·	
production(ML/d)				
E.C(MS/cm)		810		
Temp.(C)		26		
				and the second second

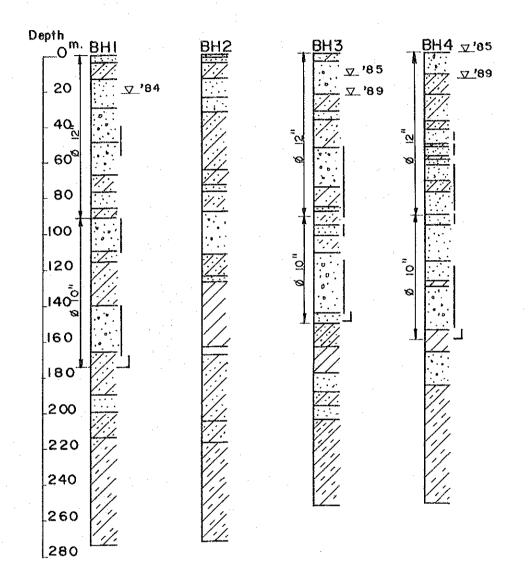

Note;*:Pumping test data at year drilled, SWL:Static Water Level, PWL:Pumping Water Level, Q:Discharge rtae,S.C:Specific Capacity, E.C:Electric Conductivity

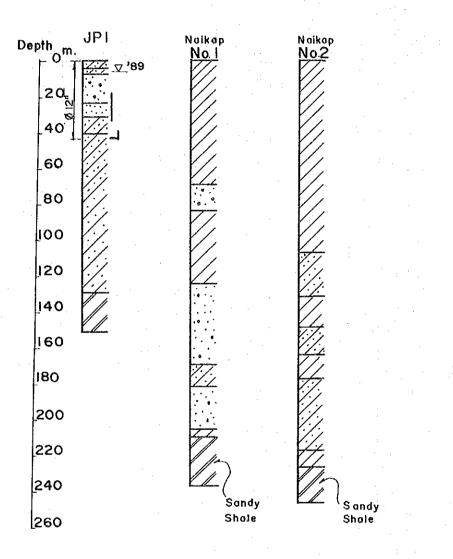

C-3 WELL LOGS

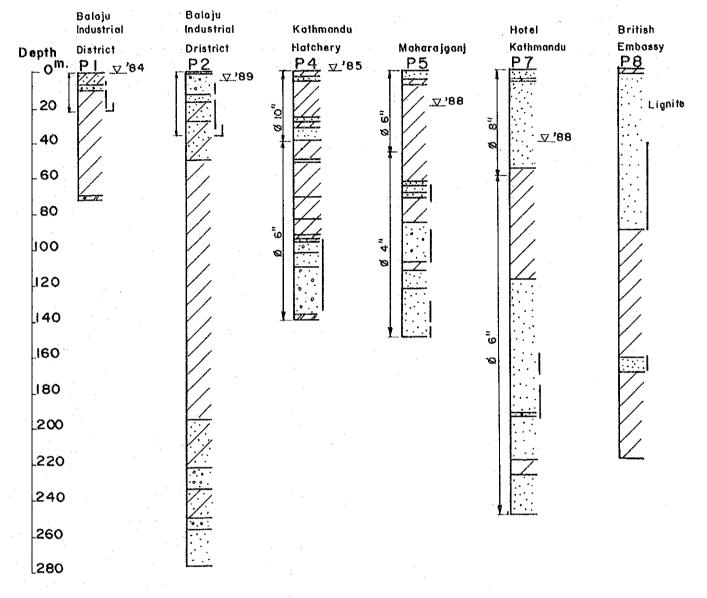

LEGEND



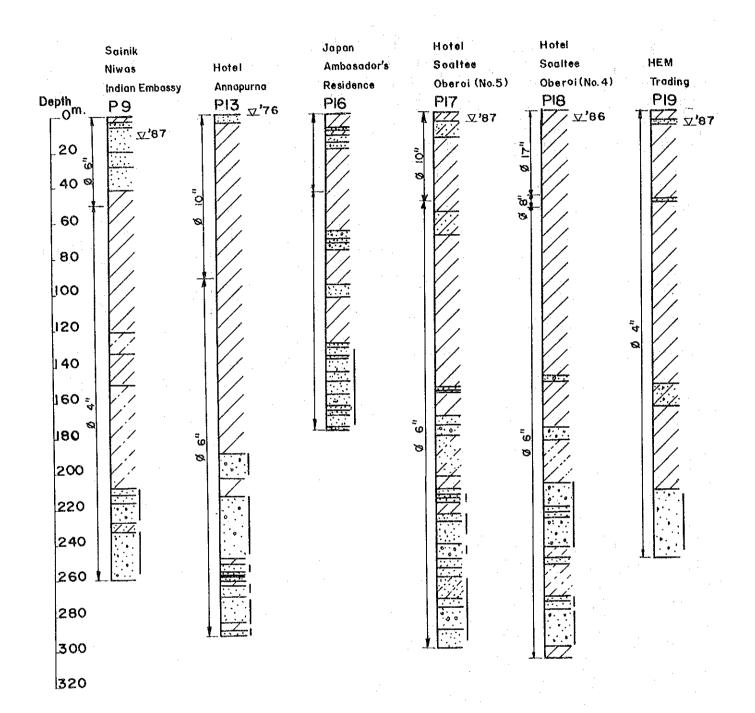

Basement Rock

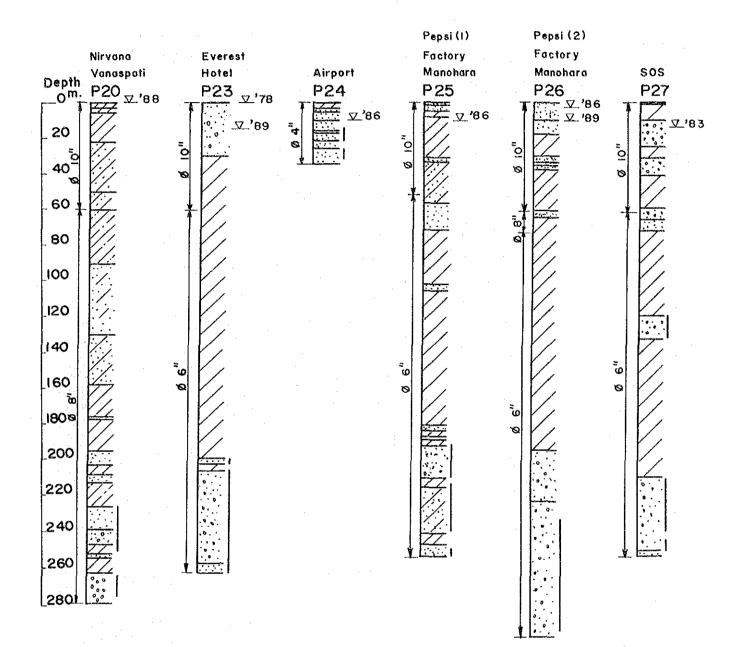


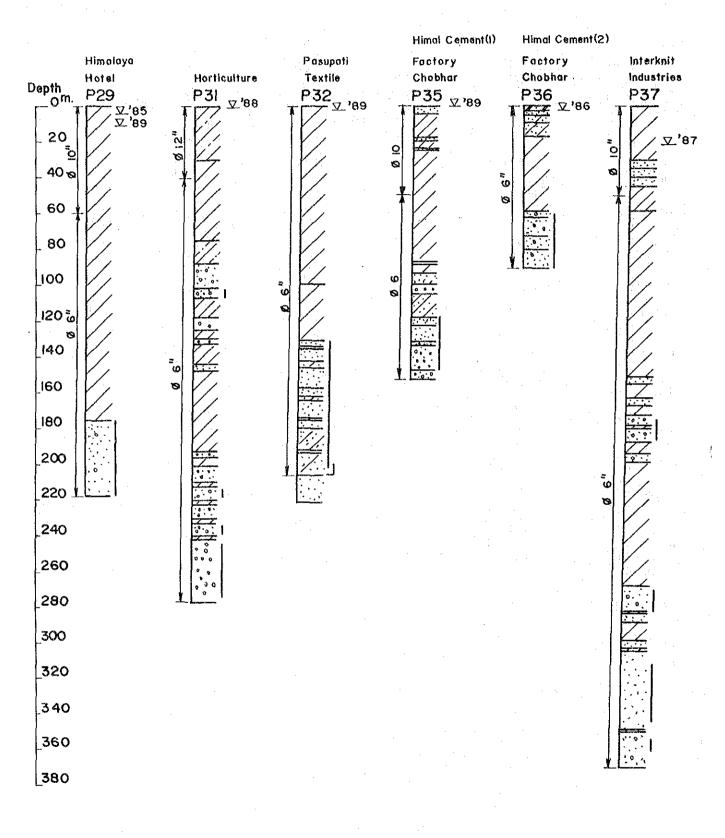


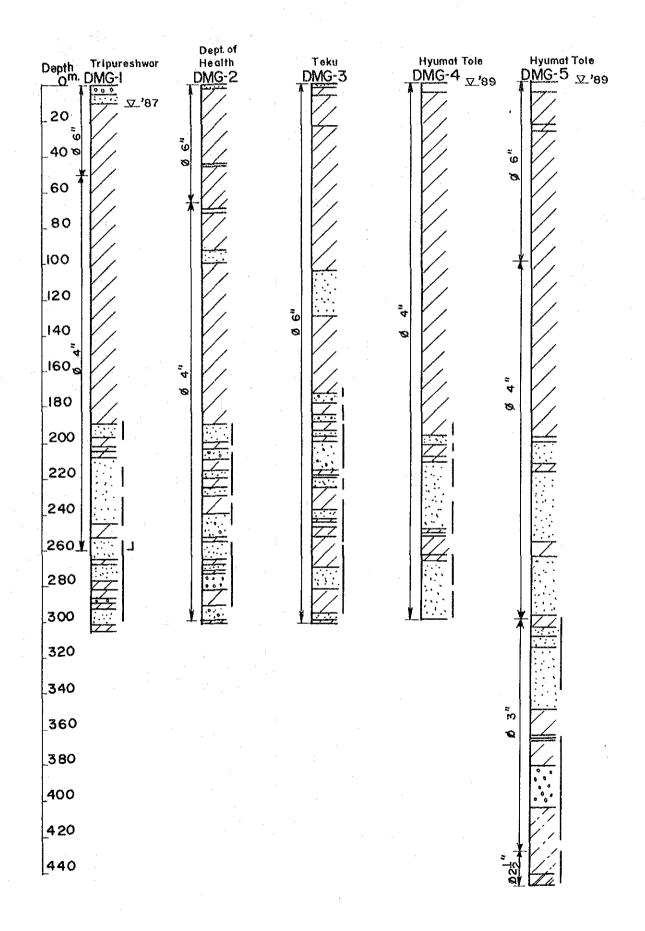


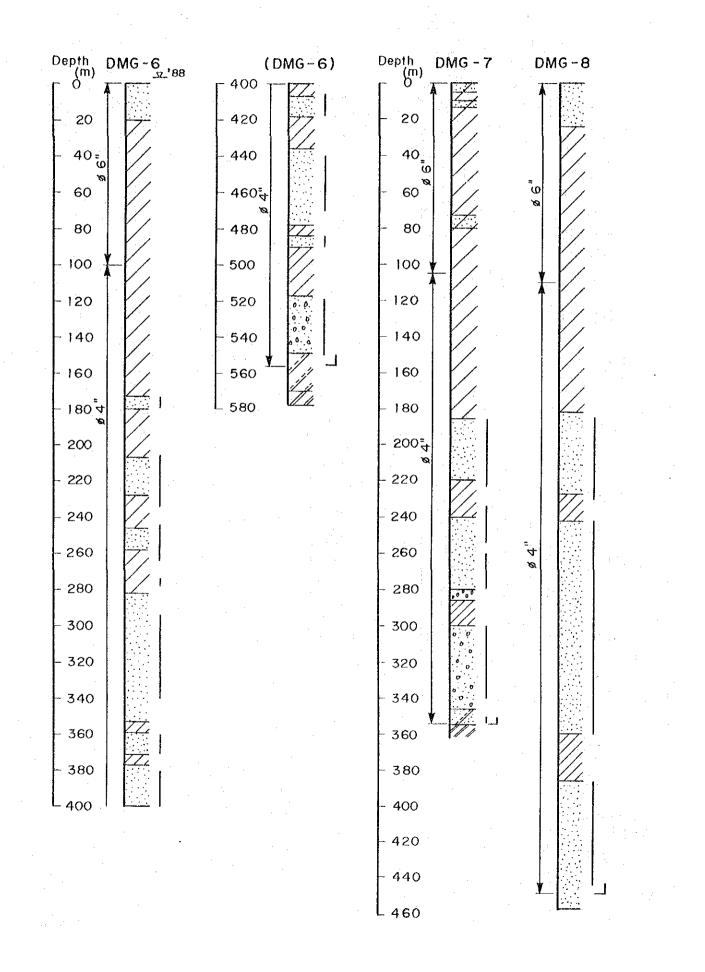
.....


• •

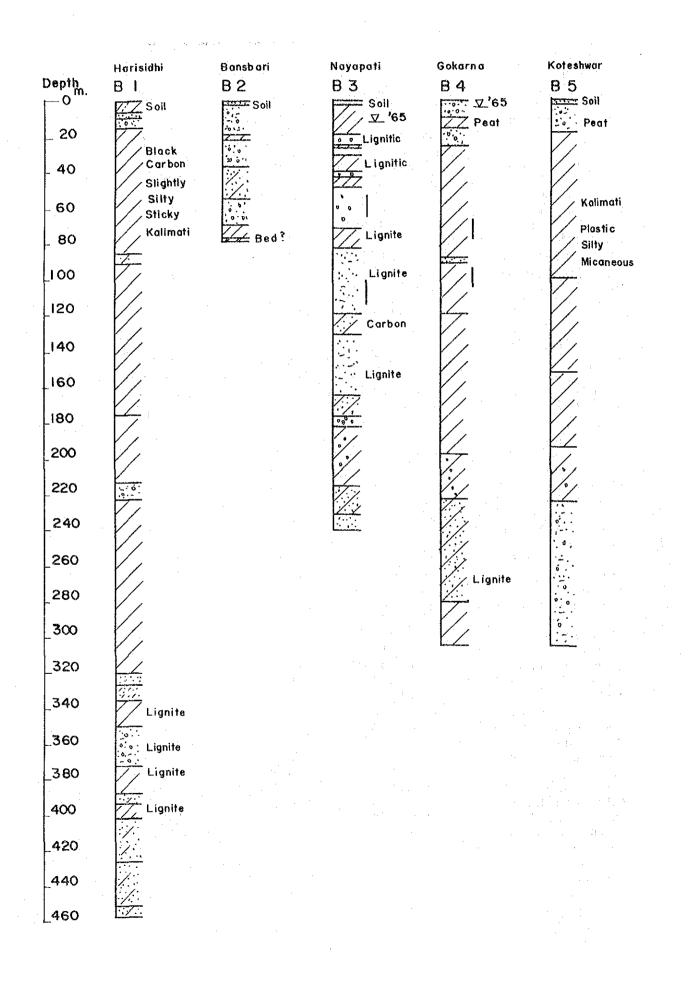


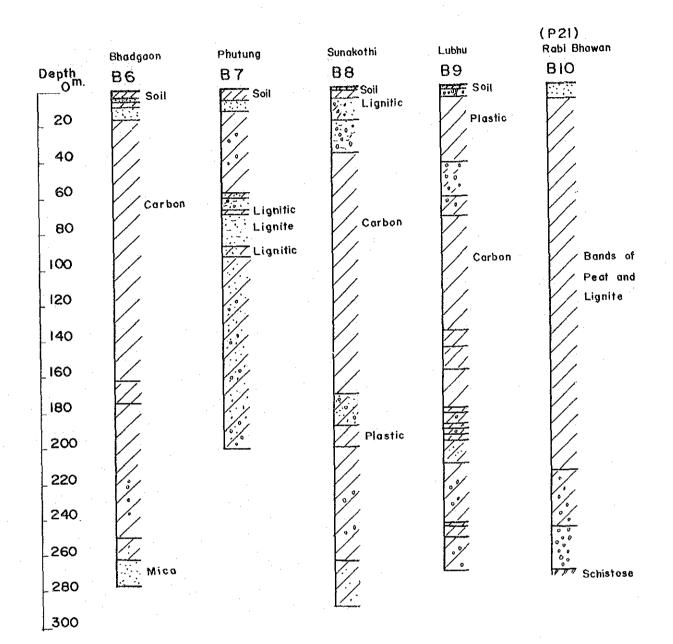


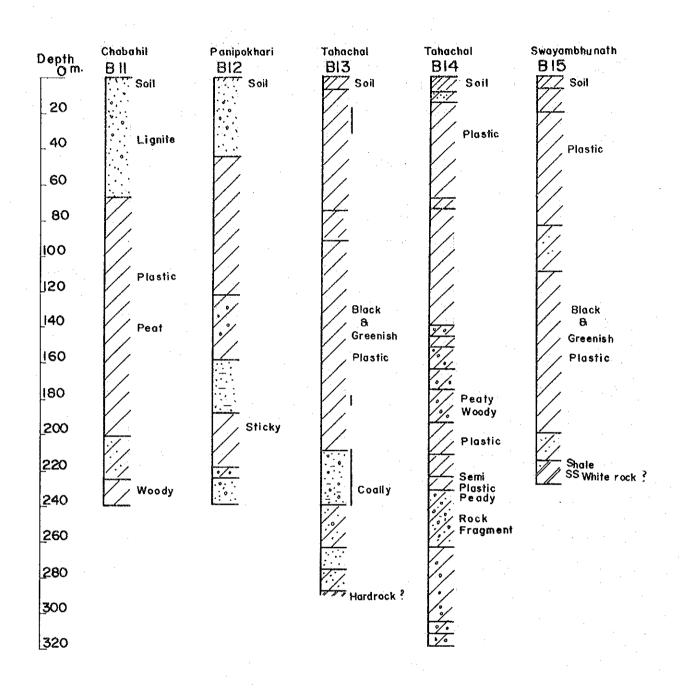

.

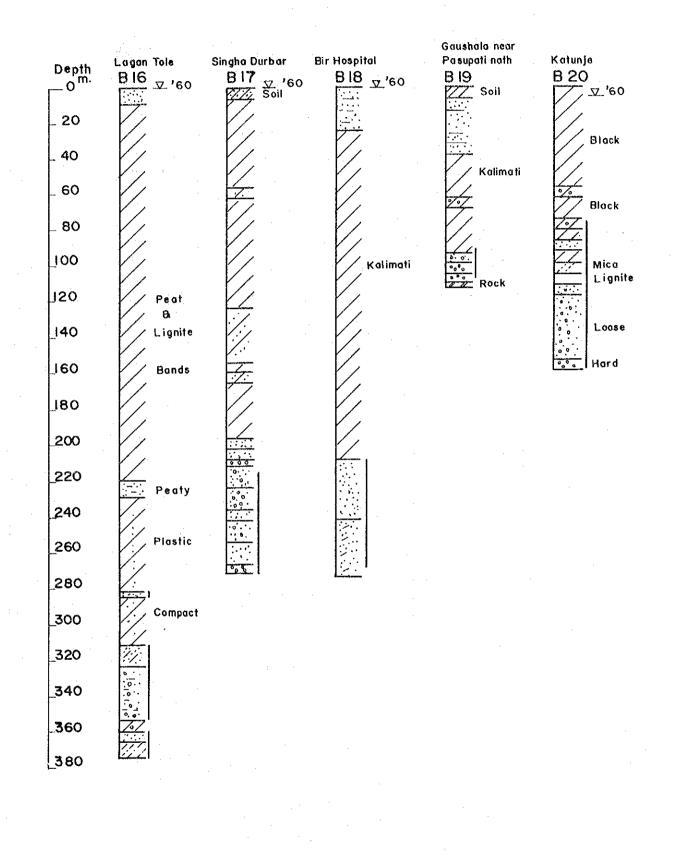


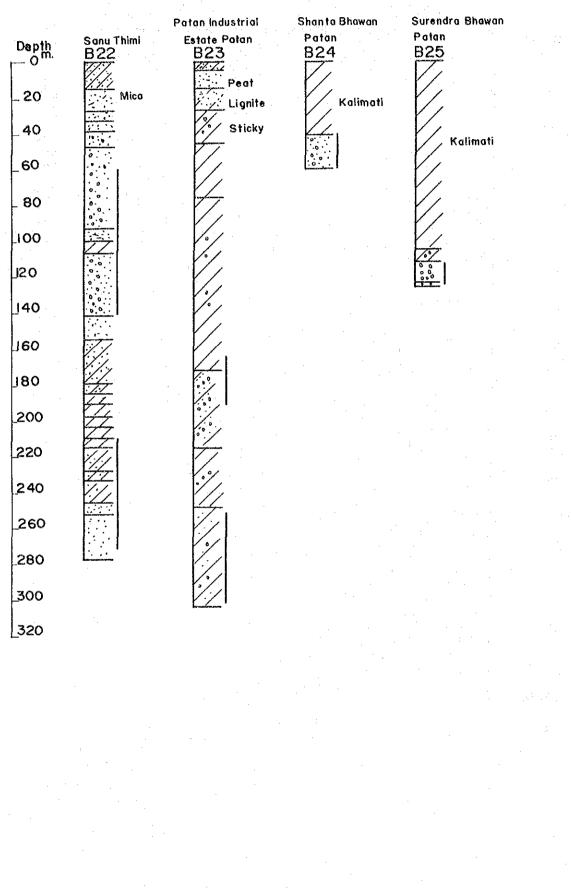
£,

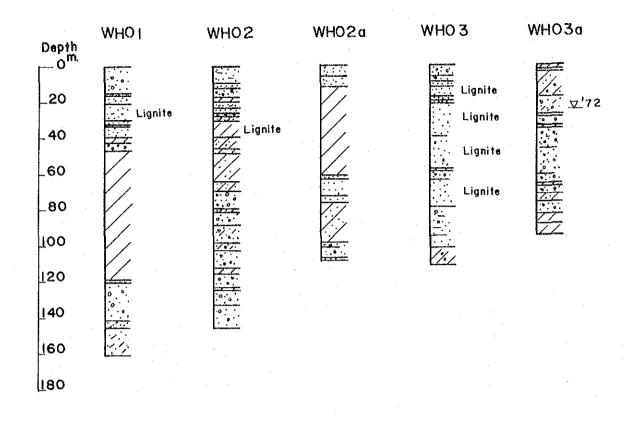


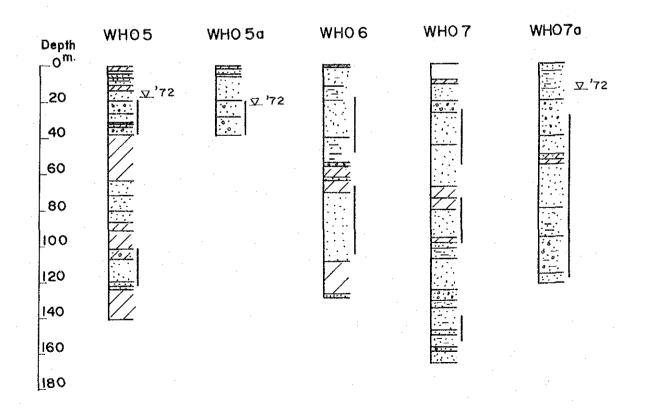


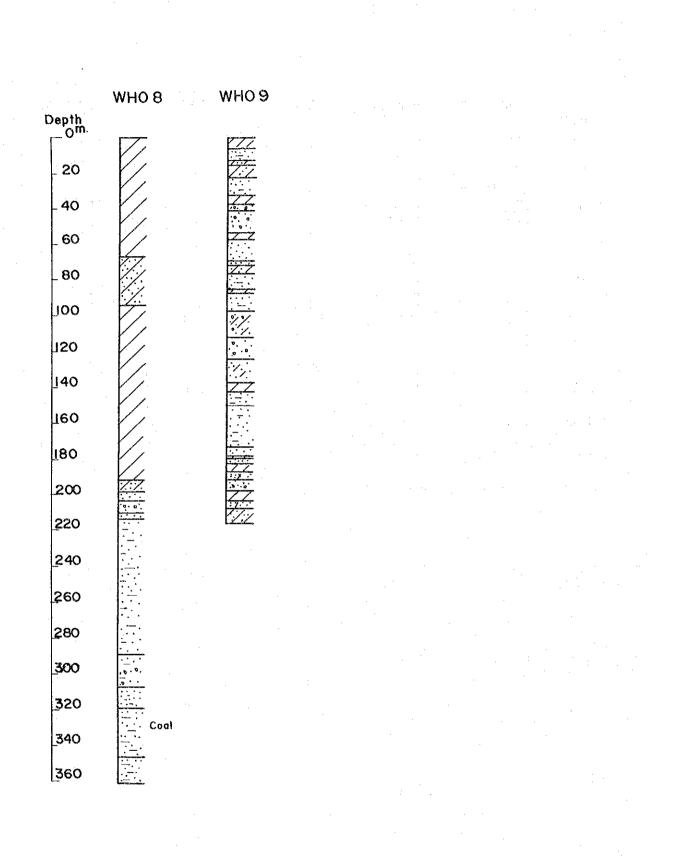

C-4 BOREHOLE LOGS

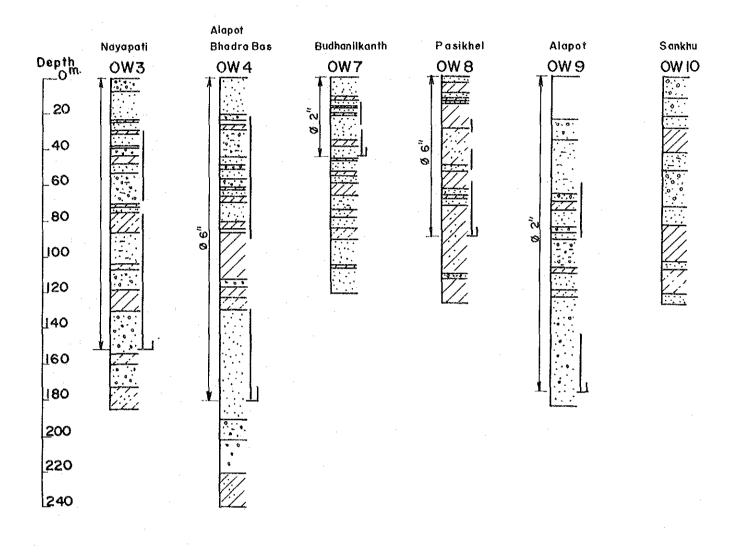

LIST	OF	BOREHOLE	


	an de la companya de la companya de la companya de la companya de la companya de la companya de la companya de La companya de la comp	<u>L1S'</u>	<u>OF BOREHOLE</u>		
No.	Location	Drilling	Drilling	Élevation	Drille
		Date	Depth (m)	(a.s.1.m)	by
B1	Harisidhi	Jan.5.65	457.20	1353.11	GS1
	Bansbari	Jan. 28'65	79.25	1340.0	H
	Nayapati	Feb.23'65	241.14	1346.2	11
	Gokarna	Mar.14'65	305.1	1317.7	17
	Koteshwar	Mar.28'65	305.1	1307.7	11
	Bhadgaon	nal 120 00	277.67	100111	11
	Phauting	July.16'65	201.61	· ·	**
	Sunakothi	Aug.3 ¹ 65	290.78		11
	Labhu	Sep.3'65	271.57		11
		Oct.12'60	272.0	Irrigati	on Don
	Rabi Bhawan			ILLIBUT	on peb.
		Jun. 20'60	240.0		**
	Pani Pokhari	Jun.24'60	239.0		. et
	Tahachal	Nov.3'60	300.0		
B14		Nov.21'60	319.0		
	Swyambunath	Oct.28'60	229.0		+1
	Logan Toll	Aug.26'60	376.0		
	Singha Durbar		273.31		R
	Bir Hospital		274.31		11
	Gaushala		113.38		
	near Pashupating	ath			
B20	Katunje		160.0		11
B22	Sanu Thimi		278.28		11
B23	Patan Industria	l			
	Estate	Nov.14'63	304.19		n
B24	Shanta Bhawan		60.04		t1
B25	Surendra Bhawan		123.0		11
WHO1	Golphutar	Nov.5'71	160.5	1326,10	WHO
WH02	Tigni	Dec.11'71	146.0		11
WH02a		Dec.14'71	109.8		"
	Bansbari	Feb.16'72	112.2		11
WH03a	18.5	Feb.14'72	94.5		11
	Thimi	Feb.28'72	141.9	1332.79	t1
WH05a		Mar.1'72	38.8	1332.49	11
	Gokarna	Apr.10'72	129.5	1336.32	11
	Sundarijal	May.3'72	166.9	1358.85	11
WH07a		May.2'72	123.3	14	н
	Bungmati	July.12'72	360.0	17	11
	Bramhakel	Jun.5'72	215.6	11	11
	Nayapati	VARIO 14	184.7		11
	Alapot Bhadaa		10111		
	_	Oct.'73	239.8		11
	Bas Budhanilkanth	Jun. 173	120.8	1389.58	17
	and the second second second second second second second second second second second second second second second	Aug. '73	126.8	T000+00	H.
	Pasikhel	Jan. 74		1389.58	H.
	Alapot		184.0		9 F
OWIO	Sankhu	July'73	126.8	1347.22	









.

.

. .

C-5 ESTIMATED GROUNDWATER ABSTRACTION FROM TUBE WELLS IN THE KATHMANDU VALLEY (1972-1989)

			BSTIK	ATED GROU	INDVATER A	BSTRACTIO	N (1/4)	(UNIT IN CUBIC H)					
	YBAR	1972	1973	1974	1975	1976	1977	1978	1979)	1980	1981		
	BB1													
	BB2													
	BB3 BB4													
	BB5													
	886													
	887 887													
	BB8 DK1													
	DK2													
	DK3	•									•			
	DR4 DR5	-												
	DKG										·			
	D&7													
	DK8 DK9													
	GK1.													
	GK2													
·	GK3 GK4													
	GK5													
	KH2			, ·	· .									
·	HH3													
	XH4 NH5													
	. NHS													
	NH?													
	BN1 BH3													
	BH4													
	JP1 about)	0	0	0	0	0	0	0	177,230	265,845		
	BBOLD BHOLD2		ų	U	U.	v	Ő	- 0	Õ	0	447,917	537,500		
	B12	1	9	0	0	0	0	0	0	0	0	0		
	WHO3A	I)	0	0	0	0 0	0 0	0	0 0	0	0		
	PH1 PH2						v	0	0	0	0	127,124		
	SKI	· .	•											
	BALAJU		`	0	0	٥	0	1) 0	0 0	0 D	14,759 0	177,112 0		
	WHO5A WHO7	() ·	0	U D	0 0	0	0	Û	Ď	ů 0	0		
							 0	 0	 D	0		1,107,581		
	SUBTOTAL			0	0	v 	v 	· · · · · · · · · · · · · · · · · · ·						
	i.													
												·		

									• • •	1.		
			BSTINATBI) GROUNDW/	ATER ABSTI	RACTION	(2/4)		(UNIT IN			•
YEAR		1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	·
P1												
P2 P3												
P4 P5											÷	
P6												
P7 P8		10,200	10,200	10,200	10,200	10,200	10,200	10,200	10,200	10,200	10,200	
P9				,			42,336	42,336	42,336	42,336		
P10 P11					42,336	42,336	461990	1,688	1,688	1,688	1,688	
P12 P13						80,500	80,500	80,500	80,500	80,500	2,625 80,500	
P14	-		•		25,200	25,200	25,200	25,200	25,200	25,200	25,200	
P15 P16										66,500	66,500	
P17			-			•						
P18 P19												
P20 P21		÷									· ·	
P22						•		94,608	94,608	94,608		
P23 P24								178,500	178,500	178,500	178,500	
P25										• • •		
P26 P27											. •	
P28 P29											. •	•
P30					· .							
P31 P32												
P33								33,091	33,091	33,091	33,091 0	
P34 P35									v	, v	v	
P36 P37						-						
DNG										• · ·		
DHG: DHG:											· · · · · · · · · · · · · · · · · · ·	
DKG DHG	I.									· ·		
DXG	i							·				
DKG1 DKG1								-	÷			
JWI							ъ.					
JW2 JW3 JW4	. •										4 	
SUB	OTAL	10,200	10,200	10,200	77,736	158,236	158,236	466,123	466,123	532,623	535,248	
Tota	1	10,200	10,200	10,200	77,736	158,236	158,236	466,123	466,123	1,172,529	1,642,828	
NWSC PRIV GAS		0 10,200 0	0 10,200 0	0 10,200 0	0 77,736 0	0 158,236 0	0 158,236 0	0 466,123 0	0 466,123 0	639,906 532,623 0	535,248	· .* ·

		ESTINATED (ROUNDWATER	ABSTRACTION	÷	(3/4)		(UNLT IN CO	UBLC N)
	YEAR	1982	1983	1984	1985	1986	1987	1988	1989
	BB1			0	0		0	0	0
	BB2			521,124	521,124	521,124	521,124	521,124	508,481
	BB3			0	88,683	1,064,199	1,064,199	1,064,199	967,138
	884			0	0	24,319	291,832	291,833	229,923
	BB5				0	0	0	0	587,194
	BBG		•	0	0	175,205	1,051,227	1,051,227	1,064,994
	BB7			· · ·	0	530,207	795,310	795,310	626,837
	BB8			Q	0	563,588	676,305	676,305	593,125
	DKI			91,080	91,080	91,080	91,080	83,490	0
	DK2			59,400	118,800	118,800	118,800	108,900	0
	DK3			24,000	144,000	144,000	144,000	144,000	149,224
	DK4	· ·		0	0	224,504	336,756	336,756	344,873
	DK5			465,020	465,020	465,020	465,020	465,020	460,637
	DK6			78,120	133,920	133,920	133,920	133,920	127,440
	DK 7			0	0	Ű	0	0	
	DK8			0	0	0	. 0		U
	DR9			. 0	0	U	0	U	100 10C
1	GK1				V	U	V AAA 444	010 000	372,195
	GK2			0	V	V	144,000	216,000	122,989
	GK3			0	U	U O	153,000	204,000	332,723
ъ.	GX4			• •	0	. 0	120,000	180,000	93,395 0
	GK5			U	V	· U	0 500	0.000	
	KH2			U	V	V	77,528	930,336	894,298
•	NA3			U	0	V	0	584,000	882,958
	KH4				V	V	0	0	502,620 543,234
	KH5				U O	U .	. v	0	393,639 (
	MH6				U	169 000	648,000	648,000	462,489
	XH?				V			584,763	
	BH1			Q	V	97,461 0	584,763 D	005 j 100 0	205,655
	BH3				0	U A	V N	U A	59,634
	BH4				U A	. V	0	υ. Α	99,094 Û
	JP1	80E 015	905 AF	0 360 330	265,845	265,845	265,845	265,845	264,939
	BBOLD	265,845.	265,845	265,845		200,840 537,500	200,840 537,500	537,500	468,697
	BHOLD2	537,500	537,500	537,500	537,500 0	991,9VV A	991 ¹ 900	001,000	1001031
	B12	. 0	0	0	. O	U . A	ម	v n	· · · ·
ан алан Алан	WHO3A	91 600	·	V Ú	. 0	U A	, O	0	21,600
	PH1	21,600	199 195	127,124	127,124	127,124	127,124	127,124	127,124
	PH2	127,124	127,124	· 167,169 0	161,169 0	,teitie∔ U	101,101	101,104	10,1101
	SKI Balaju	100 119	177,112	177,112	177,112	177,112	177,112	177,112	183,117
÷ .	BALAJU WHOSA	177,112	111,116	111,116	111,116	1.1 111 0	1.11110	0	1, 1.I.I
	WHO7	0	- U	0	0	0	D	0	0
		1.129.181	1.107.581	2.346.324	2.670.207	5,423.006	8,524,444	10,126,763	11,675,401

·								1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	
	ESTINATED C	ROUNDWATER	ABSTRACTION		(4/4)		(UNIT IN C	UBIC N)	
YEAR	1982	1983	1984	1985	1986	1987	1988	1989	
P1			32,400	32,400	32,400	32,400	32,400	32,400	
P2			32,400	32,400	32,400	32,400	32,400	32,400	
P3			32,400	32,400	32,400		32,400	32,400	
P4				157,680	157,680	157,680	157,680	157,680 30,240	
P5 P6				17,280	17,280	17,280	30,240 17,280	17,280	
P7				111000	111000	11,000	30,240	30,240	
P8	10,200	10,200	10,200	10,200	10,200	10,200	10,200	10,200	
P9					,	21,600	21,600	21,600	
P10	33,768	33,768	33,768	33,768	33,768	33,768	33,768	33,768	
P11	1,688	1,688	338	338	338	338	338	338	
P12	2,625	2,625	2,625	2,625	2,625	2,625	2,625	2,625	
P13	80,500	80,500	80,500	80,500	80,500	80,500	80,500	80,500	
P14	25,200	25,200	25,200	25,200	25,200	25,200	25,200	25,200	
P15	66,500	68,500	66,500	66,500	66,500	66,500	66,500	66,500	
P16 P17						0	0	0	
P17 P18					75,600	75,800	75,600	75,600	
P19					10,000	16,200	16,200	16,200	
P20		·				,	Q	0	
P21								0	
P22	94,608	94,608	94,508	94,608	94,608	94,608	94,608	94,608	
P23	178,500	178,500	178,500	178,500	178,500	178,500	178,500	178,500	
P24				:	0	0	. 0	0	
P25					72,000 0	72,000 0	72,000 0	72,000	
P26 P27		10,500	10,500	10,500	10,500	10,500	10,500	10,500	
P28	12,000	12,000	12,000	12,000	12,000	12,000	12,000	12,000	
P29	10)000	11,000		129,000	129,000	129,000	129,000	129,000	
P30					0	0	. 0	0	
P31						1,728	1,728	1,728	
P32								0	
P33	33,091	33,091	33,091	33,091	33,091	33,091	33,091	33,091	
1234 1235	0	0	0	0). סלק ול) 21 526	0 ·	0 21 52	
P36					31,536	31,536 0	31,536 0	31,536 0	
P37						0	0	0	
DKG1						217,598	217,598	217,598	
DHG2			176,602	176,602	176,602	176,602	176,602	176,602	
DKG3		178,139	178,139	178,139	178,139	178,139	178,139	178,139	
DNG4					39,420		39,420	39,420	
DXG5					12,930	12,930		12,930	
DNG6 DVC2							267,110 79,155	267,110 20 155	
DKG7 DKG8							107,538	79,155 107,538	
JWI							1411440	101,000	
JW2								Û	
JW3								0	
JW4								0	
	538,680	727,319	999.770	1.303.730	1.535.216	1,792,342	2.306.625	2.306.626	
 Total			3,346,094						1. J.
NWSC PRIVATB	1,129,181 538,680	1,107,581 549,180	2,346,324 645,030						
GAS	0101000	178,139	354,741		407,090	624.689	1,078,492	1,078.492	
9110	v	riotros	******			2013004	*********	* ? * ! * ! * * *	