					• •	. •		
WELL NO,	WELL DEPTH	POSITION OF TOP	TEST DATE	Q	SWL	PWL	T	s/c
	(m)	OF SCREEN (m)		(L/s)	(m)	(m) (i	m2/day)	(L/s/m)
вв 3	100.5	24.44	Feb12'89	40.00	18.05	26.73	436*1	4.61
				•			843*2	
DK 6	49.00	10.92	Feb15'89	9.83	9.64	11.49	1295*1	5.31
							1036*2	•
GK 4	249.12	46.31	Feb19'89	16.78	26.27	53.95	106*1	0.61
							86*2	
мн 7	267.00	20.00	Feb20'89	27.83	27.19	*	3 303*2	-

Table D-5.1 RESULTS OF PUMPING TESTS ON EXISTING WELL BY JICA STUDY TEAM

Note; Q; Discharge rate, SWL:Static Water Level, PWL:Pumping Water Level, T: Transmissivility, *1: Calculated from time drawdown test, *2: Calculated from recovery test, S/C: Specific Capacity, *3: No final drawdown measured due to dip tube blocked.

Table	D-6.1	STATIC	WATER	LEVLE	TRENDS	IN	THE STUDY	AREA
TONTO	0.017	011113.0	71233 DIV		2410100		X110 01001	111/10/1

	<u>.</u>									
				WELL	NUM	BER				
Year								····		
/ Month	B12	WHO3A	WHO5A	WHO7	BB5	DK1	JP1	GK5	мнб	BH4
1972	;						<u> </u>			
Feb.	.17.10	22.80								
Sep.			9.40		•					
1974			• • • •							
Feb.				14.10						
1984						:				
Jan.					1.75	29.38				· .
Mav							7.44			
1985									÷.,	
Feb.										+1.50
May									+1.2	
1988										
Feb.	31.10	36.30	23.18	15.00			7.00	25.20		:
Mar.	,							23.92		
1989		4							1.	
Jan.							•	27.00	7.15	12.00
Feb.	33.82			14.80	17.77	42.24	7.59		,	
Mar.	33,92	41.39	23.61	14.80	17.71	42.35	7.18	27.30	7.86	12.97
Aug.	38.92	46.27		14.35		42.18	7.30	31.33	10.09	15.00
Sep.	38.90					42.26		31.28	12.82	
Dec.									14.12	

Note; Unit in meter below ground surface

WELL NO.	GROUND SURFAVE ELEVATION (a.s.l.m)	PIPE HEIGHT (GL.+m)	GROUND DEPTH (GL.~m March	WATER) August		GROUNDWA LEVEL EL) (a.s.l.m March	FER SVATION) August
B12	1326.62	1.15	33.92	38.92		1291.55	1286.55
Balaju SK1	1298.49 1297.00 *1	0.00 0.20	0.00 *3	23.63 5.35	*4	1298.49 1295.79	1274.86
BB3	1315.49	0.67	28.48 *4	23.50	*5	1286.34	1291.32 1281.23
BB8	1313.96	0.58	26.29 *5	34.50	5	1287.09	1278.88
WHO3A DK1	1333.00 *1 1336.94	0.95	41.39 42.35	46.27 42.18		1290.66	1285.78
DK4	1331.72	0.30	28.00 *4	20.00	*5 *4	1303.42	1311.42 1296.59
JP	1322.41	0.75	7.18	7.30		1314.48	1314.36
GK1 GK4	1345.09 1347.69	0.26	18.42 55.64 *4	36.50 30.50	*4	1326.41 1291.32	1308.33
GK5	1358.00	0.30	27.30	31.33		1330.40	1326.37
WHO7 MH2	1358.80 *2	0.55	43.40 *4	45.93	*4	1295.58	1293.05
MH6 BH4	1316.30	0.37 0.59	7.86	$10.09 \\ 15.00$		1308.07 1305.11	1305.84
PH1	1260.00	0.00	0.00 *3	0.00	*3	1260.00	1260.00
PH2 Pepsi	1250.98 1320.00 *1	1.07	2.64 *6 9.96	10.66		1309.61	1308.91

RESULTS OF SIMULTANEOUS GROUNDWATER LEVEL OBSERVATION (1989) Table D-6.2

*1: After 1:10,000 scale map
*2:After WHO Report (1973) NOTE;

*3:Self flowing

*4: Pumping
*5:Within 2 hours after pump stopped
*6:Measured at end of February

TABLE D-8.1

RESULTS OF WATER QUALITY ANALYSIS (1/6) (EXISTING WELLS)

Well No.	BB2	BB3	BB7	DK3	DK4	DK5
Sample No.	1	2	3	4	5	6
		<u> </u>				· · · · · · · · · · · · · · · · · · ·
рн	7.18	6.95	6.62	6.68	6.8	6.44
EC(mS/cm)	130	120	160	140	180	160
O.R.P. (mV)*	+550	+550	+540	+560	+530	+540
KMnO4.Con.(mg/1)	4	3.9	8.4	8.6	6.9	5.9
Fe(mg/l)	2.4	0.9	1.1	2.7	2	3
Mn(mg/1)	0.2	<0.1	<0.1	0.1	0.2	0.1
Ca(mg/l)	11	8.4	9.9	11	14	10
Mg(mg/l)	2.6	2.2	. 3	2.9	3.6	3.2
Na(mg/1)	16	16	22	17	13	11
K(mg/l)	1.2	1.1	1.3	1.3	1.6	1.5
Cl(mg/1)	0.6	1	0.7	1.7	9.4	6.7
$Po\dot{4}(mq/1)$	0.5	1.2	1	1.6	0.7	2.4
So4(mq/1)	<5	<5	<5	< 5	21	11
H2Co3(mg/1)	17	16	56	22	17	-59
HCo3(mq/1)	71	67	- 75	91	71	79
Co3(mq/1)	0.03	0.03	0.01	0.04	0.03	0.01
NH4(mq/1)	<0.05	<0.05	2.5	<0.05	5,1	6.5
Kjeldahl N(mg/l)**	0.1	0.2	2	0.1	3.7	4.7

NOTE; * Oxidation reduction potentials ** Total Kjeldahl nitrogen

TABLE D-8.1

RESULTS OF WATER QUALITY ANALYSIS (EXISTING WELLS)

SIS (2/6)

Well No.	GK3	MH2	BH1	BID1	YAK&ETI	DMG5
Sample No.	7	8	9	10	11	12
рН	6.68	6.61	6.47	6.54	6.75	6.76
EC(mS/cm)	140	170	210	240	390	1050
O.R.P. (mV)*	+560	+540	+520	+520	+510	+540
KMnO4.Con.(mg/l)	9.2	16	9.6	3	27	46
Fe(mg/l)	1	3.7	1.9	1	0.3	1.4
Mn(mg/l)	<0.1	0.3	0.4	0.2	0.4	0.5
Ca(mg/l)	9.9	8.3	12	33	20	. 75
Mg(mg/1)	2.6	2.5	3.7	5.4	5.6	14
Na(mq/1)	20	23	23	10	28	66
K(mg/l)	1.2	1.5	1.9	1.3	2.5	5.1
Cl(mg/1)	1.6	1.3	2.4	4.4	1.4	2.9
Po4(mg/1)	1.4	3.4	3.6	<0.1	8.8	23
So4(mg/1)	<5	<5	<5	< 5	<5	50
H2Co3(mg/l)	22	46	78	80	63	150
HCo3(mg/l)	94	62	100	110	270	660
Co3(mg/1)	0.04	0.01	0.02	0.02	0.13	0.31
NH4 (mg/1)	<0.05	1.8	6.4	2.3	33	78
Kjeldahl ['] N(mg/l)**	0.1	2.3	4.8	<0.1	23	58

NOTE; * Oxidation reduction potentials ** Total Kjeldahl nitrogen TABLE D-8.1

RESULTS OF WATER QUALITY ANALYSIS (3/6) (EXISTING WELLS AND SPOUT)

Well No. Sample No.	H.HIMALA 13	PEPSICOLA 14	HIM.CEME 15	РН1 16	РН2 17	SPO/KTM 18
рН	6.95	6.86	7.11	7.37	7.53	6.41
EC(mS/cm)	990	460	640	330	540	540
O.R.P. (mV)*	+500	+550	+460	+540	+510	+500
KMnO4.Con.(mg/l)	51	22	15	1.3	1.1	5.1
Fe(mg/l)	0.3	0.9	0.9	0.2	0.9	0.1
Mn(mg/l)	0.4	0.8	<0.1	0.1	0.1	<0.1
Ca(mg/1)	56	28	38	57	38	20
Mg(mg/l)	12	7.3	7.3	6.9	5.5	8.5
Na(mg/l)	45	57	48	10	75	48
K(mg/1)	5.1	3.9	2.2	1.5	1.6	57
C1(mg/1)	2.6	2.3	1.3	1.3	8.1	58
Po4(mg/l)	30	5.9	7.7	<0.1	<0.1	24
So4(mg/l)	. <5	<5	58	15	140	13
H2Co3(mg/l)	140	72	71	16	13	100
HCo3(mg/l)	580	310	300	220	180	140
Co3(mg/l)	0.28	0.15	0.14	0.31	0.26	0.02
NH4(mg/l)	100	15	46	0.08	0.36	<0.05
Kjeldahl N(mg/l)**	62	10	33	<0.1	0.2	<0.1

NOTE; * Oxidation reduction potentials ** Total Kjeldahl nitrogen

TABLE D-8.1RESULTS OF WATER QUALITY ANALYSIS (4/6)
(SPOUTS, SPRINGS AND RIVERS)

Well No.	SPO/LAL	SPO/DHOB	SPR/DOOD	SPR/PHAR	SPR/GODA	BISUNUMA.
Sample No.	19	20	21	22	23	24
					7 10	<u></u>
ph	0.38	0.7	/.45	/.4	7.15	0.19
EC (mS/cm)	540	380	. 220	230	260	100
O.R.P.(mV)*	+490	+510	+520	+560	+530	+480
KMnO4.Con.(mg/l)	1.6	2.2	0.4	1.4	0.7	7.8
Fe(mg/l)	<0.1	<0.1	<0.1	0.3	<0.1	1
Mn(mg/1)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ca(mg/1)	37	: 31	40	37	55	10
Mg(mg/1)	14	. 8.7	5.3	8,5	2.7	1.9
Na(mg/l)	40	28	1.1	1	1.2	7.5
K(mg/l)	31	16	0.8	0.8	0.6	1.7
Cl(mg/l)	52	40	0.6	1.1	0.6	4.1
Po4(mg/1)	4.3	1.4	<0.1	<0.1	<0.1	<0.1
So4(mg/1)	31	16	<5	<5	<5	<5
H2Co3(mg/l)	97	23	9.7	9.9	37	9.2
HCo3(mg/l)	130	99	130	130	160	39
Co3(mg/l)	0.02	0.05	0.19	0.19	0.07	0.02
NH4(mg/l)	<0.05	<0.01	0.17	<0.05	0.22	0.11
Kjeldahl N(mg/l)**	<0.1	<0.1	<0.1	<0.1	<0.1	0.5

NOTE; * Oxidation reduction potentials ** Total Kjeldahl nitrogen

		1 A A A A A A A A A A A A A A A A A A A	and the second	· .		-
Well No.	SUND.JARU	BAGMATI	MANOHARA	GODAWARI	KODHU KH	.NAKUH KH.
Sample No.	25	26	27	28	29	30
рН	7.03	7.45	7.47	7.63	7.53	7.53
EC(mS/cm)	31	51	60	260	210	180
O.R.P. (mV)*	+460	+490	+480	+470	+470	+470
KMnO4.Con.(mg/1)	4.5	6.6	8.4	3.3	0.8	3.7
Fe(mq/l)	0.1	1.1	1.6	0.9	0.1	0.6.
Mn(mq/1)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ca(mq/1)	1.6	2.7	2.3	50	42	32
Mg(mg/l)	0.4	0.8	1	3.5	3	3.1
Na(mq/1)	4.2	6	6.6	. 3.3	0.9	3.9
K(mq/1)	0.7	1.2	1.8	1	0.8	0.9
Cl(mq/1)	1.1	2.4	2.9	1.8	1.1	1.9
$Po\dot{4}(mg/1)$	0.1	0.1	0.2	<0.1	<0.1	0.1
So4(mg/l)	<5	<5	<5	<5	<5	<5
H2Co3(mg/1)	3.5	2	2	12	10	8.2
HCo3(mq/1)	15	26	26	170	130	110
Co3(mq/1)	<0.01	0.04	0.04	0.24	0.2	0.16
NH4(mq/1)	0.08	0.08	<0.05	<0.05	0.08	0.06
Kjeldahl N(mg/l)**	* <0.1	0.3	0.4	. 0.1	<0.1	<0.1

RESULTS OF WATER QUALITY ANALYSIS (5/6) TABLE D-8.1 (RIVERS)

NOTE; * Oxidation reduction potentials ** Total Kjeldahl nitrogen

TABLE D-8.1

RESULTS OF WATER QUALITY ANALYSIS (RIVER, JICA WELLS) (6/6)

Well No.	BHALK KH.	JW1	JW2	JW3	JW4	<u> </u>
Sample No.	31					
Hq	7.74	6.94	7.2	7	6.9	<u></u>
EC(mS/cm)	230	210	140	470	690	
0.R.P.(mV)*	+470	+450	+490	+500	+470	
KMnO4.Con.(mg/l)	7.7	16	5	28	130	1
Fe(mg/l)	0.9	1.5	1.8	2.1	7.4	
Mn(mq/1)	<0.1	0.3	0.2	<0.1	1.6	
Ca(mq/l)	38	1.6	8.3	11	27	
Mg(mg/l)	5	2.7	3.8	3.2	9.8	
Na (mg/l)	7.2	24	14	75	59	
K(mq/1)	1.6	1.8	1.2	3.3	5.5	
Cl(mq/1)	6.4	1	2	0.8	14	
$Po\dot{4}(mq/1)$	0.5	2.2	0.8	24	4.6	
So4(mg/1)	<5	<5	<5	5.4	<5	
H2Co3(mg/1)	9.5	40	10	67	47	
HCo3(mg/1)	130	130	44	280	200	
Co3(mg/1)	0.19	0.06	0.02	0.14	0.1	
NH4(mq/1)	<0.05	3.3	0.07	16	2.5	
Kjeldahl N(mg/l)*	* 0.1	2.9	0.1	13	22	

NOTE; * Oxidation reduction potentials ** Total Kjeldahl nitrogen

FIGURES

5

2000

APPENDIX E GROUNDWATER SIMULATION

APPENDIX E GROUNDWATER SIMULATION

Pag	e
1. OBJECTIVES OF THE STUDYE-	1
2. GROUNDWATER BASIN OF THE KATHMANDU VALLEY	1
2.1 GeneralE-	1
2.2 Seasonal Fluctuation of Piezometric Head of the Main Aquifer .E-	2
2.3 Aquiclude LeakageE-	3
2.4 Present Pumping and DrawdownE-	4
2.5 Groundwater Flow in the Northern District	5
3.NUMERICAL MODEL AND CALIBRATION	5
3.1 Aquifer ModelingE- !	5
3.2 Dominant EquationE- (б
3.2.1 Dominant equation	б
3.2.2 Vertical movementE- (6
3.3 Difference Approximation by Finite Element MethodE-	7
3.3.1 Modeling by Galerkin's methodE-	7
3.3.2 Matrix differential equationE-	7
3.3.3 Meshwork of the BasinE- &	8
3.4 Geophysical ParametersE- 8	8
3.5 Boundary conditionsE- 9	9
3.6 Calibration under Steady ConditionE- 9	9
3.7 Recharge AreaE-10	0
3.8 Calibration under Non-Steady Condition	L
4. OPTIMUM PUMP OPERATION OF EXISTING WELLS	2
4.1 Method	2
4.2 Optimum Pumping OperationE-13	3

LIST OF TABLES

Page

Table E-2.1	ESTIMATED ANNUAL FLUCTUATION OF WATER LEVEL
	(WELL WHO 7A)
Table E-2.2	ESTIMATED ANNUAL FLUCTUATION OF WATER LEVEL (WELL B12) E-16
Table E-2.3	GROUNDWATER FLOW IN THE NORTH DISTRICT E-17
Table E-3.1	GROUNDWATER LEVEL IN 1972 E-18
Table E-3.2	GROUNDWATER LEVEL IN 1983 E-19
Table E-3.3	DECISION OF STORAGE COEFFICIENT E-20
Table E-3.4	NON-STEADY CONDITION (1/3) - (3/3) E-21
Table E-4.1	CONDITIONS FOR OPTIMIZATION E-24
Table E-4.2	OPTIMUM PUMP OPERATION OF EXISTING WELLS (1/5)-(5/5) E-25
Table E-4.3	GROUNDWATER LEVEL IN OPTIMUM CONDITION
	(ABSTRACTION:OPTIMUM CASE) E-30

LIST OF FIGURES

Page

Fig.	E-2.1	GROUNDWATER BASIN OF THE KATHMANDU VALLEY	E~31
Fig.	E-2.2	PERMEABLE AREA IN THE KATHMANDU VALLEY	E-32
Fig.	E-2.3	WELL HYDROGRAPH SIMULATION (TANK MODEL)	E-33
Fig.	E-2.4	WELL HYDROGRAPH AND GROUNDWATER RECHARGE	E-34
Fig.	E-2.5	CONFINED AQUIFER WITH AQUITARD DEPOSIT	E-35
Fig.	E-2.6	GROUNDWATER COUNTER LINES IN THE NORTHERN DISTRICT	E-36
Fig.	E-2.7	GROUNDWATER FLOW IN THE NORTHERN DISTRICT	E-37
Fig.	E-3.1	MESHWORK OF THE GROUNDWATER BASIN	E-38
Fig.	E-3.2	CLASSIFICATION OF PERMEABILITY	E-39
Fig.	E-3.3	GROUNDWATER IN 1972 (STEADY CONDITION)	E-40
Fig.	E-3.4	GROUNDWATER IN 1983 (STEADY CONDITION)	E-41
Fig.	E-3.5	POSSIBLE ARTIFICIAL RECHARGE AREA	E-42
Fig.	E-3.6	GROUNDWATER IN 1985 (NON-STEADY CONDITION)	E-43
Fig.	E-3.7	GROUNDWATER IN 1987 (NON-STEADY CONDITION)	E-44
Fig.	E-3.8	GROUNDWATER IN 1989 (NON-STEADY CONDITION)	E-45
Fig.	E-3.9	GROUNDWATER IN 2001 (ABSTRACTION: YEAR 1988)	E-46
Fig.	E-3.10	DRAWDOWN OF GROUNDWATER LEVEL IN 1983	E-47
Fig.	E-3.11	DRAWDOWN OF GROUNDWATER LEVEL IN 1985	E-48
Fig.	E-3.12	DRAWDOWN OF GROUNDWATER LEVEL IN 1987	E-49
Fig.	E-3.13	DRAWDOWN OF GROUNDWATER LEVEL IN 1989	E-50
Fig.	E-3.14	DRAWDOWN OF GROUNDWATER LEVEL IN 2001	-
		(ABSTRACTION : YEAR 1988)	E-51
Fig.	E-4.1	GROUNDWATER IN 2001 (ABSTRACTION: OPTIMUM CASE 1)	E-52
Fig.	E-4.2	DRAWDOWN OF GROUNDWATER LEVEL IN 2001 (CASE 1)	E-53
Fig.	E-4.3	GROUNDWATER IN 2001 (ABSTRACTION: OPTIMUM CASE 2)	E-54
Fig.	E-4.4	DRAWDOWN OF GROUNDWATER LEVEL IN 2001 (CASE 2)	E~55

1. OBJECTIVES OF THE STUDY

The groundwater basin in the Kathmandu Valley (hereinafter called "the groundwater basin") is isolated and independent of other groundwater systems outside the valley. The main aquifer ranges from EL. 900 m to El. 1350 m and is confined by lacustrine deposits some 50 to 200 m in depth, or alluvial fans less developed in some places along the margin of gentle hills in the northern and south-eastern part of the valley. The total area of the groundwater basin is 326 km^2 , divided into three sub-basins from the standpoint of geography, geology and exploitablility as mentioned in section APPENDIX D. Those are Northern, Central and Southern district, whose areas are 156 km^2 , 114 km^2 and 56 km^2 respectively. Fig.E-2.1 shows the basin and boundaries of the three districts.

NWSC has constructed 38 production wells mainly in the Northern district, of them 25 tube wells have been continually operated in 1989 for drinking water. This groundwater abstraction has recently caused a rapid drawdown of groundwater level, which may have serious consequences on water supply to the valley in the near feature. Notwithstanding this phenomenon, no appropriate assessment on basin-wide exploitability has been conducted up to the present because of lack of information on geology and hydrogeology of the valley.

This study aims at the following three items by means of mathematical model simulation (FEM) based on the field investigation and hydrogeological analysis ;

- To simulate the original groundwater level,or condition before abstraction by NWSC (year 1972),
- 2)

To simulate the present groundwater level which as the results from abstraction in the last two decades (year 1989),

3)

To establish the optimum management plan for groundwater use including the pump operation program for existing tube wells

2. GROUNDWATER BASIN OF KATHMANDU VALLEY

2.1 General

The deposits within the valley are predominantly lacustrine. Furthermore, the ground surface of the relatively lower and flat area is covered with silty clay. Therefore even infiltration of rainfall into the shallow aquifer is quite limited. Permeability of rainfall for each district are:

Central district

The Central district is confined by clay of 200 m in thickness and its surface is covered with nearly impervious deposit. Therefore rainfall can hardly permeate into the ground. The south-eastern part of the district near Godawari is covered with sand or gravel deposit and this is the only possible area where infiltration takes place in the district:

Northern district

Northern area of the Northern district is partially covered with arenaceous deposits which is relatively pervious. Pervious area of rainfall into unconfined aquifer is estimated to be 59 km², or 38 percent of total area of the Northern district(156 km²);

Southern district

Eastern area of the Southern district is also covered with sand or gravel deposits. Area of this portion, or estimated recharge area for unconfined aquifer is 21 km², or 37 percent of total area of the Southern district (56 km²).

The total infiltration area for the unconfined shallow aquifer in the Kathmandu valley mentioned above is 86 km^2 , or 26 percent of the total area of the whole groundwater basin. Fig.E-2.2 shows the geological conditions in the valley and estimated permeable area.

The main aquifer for exploitation is confined and isolated both laterally and vertically. Therefore the recharge sources of the main aquifer are squeezed water from the confining strata or leakage water of unconfined aquifer through confining strata, both of which lie above the main aquifer. This water movement is caused by the difference between the total heads of the concerned strata. The amount of this groundwater flow is quite small if groundwater is not abstracted artificially from the main aquifer, or under natural conditions. But drawdown of the piezometric head of the main aquifer by artificial abstraction as conducted now will allow increased supplementary recharge from above. The hydrogeological structure of the groundwater basin is described in detain in APPENDIX-D.

2.2 Seasonal Fluctuation of Piezometric Head of the Main Aquifer

Continuous observation on groundwater levels at several tube wells has been carried out by JICA team since March 1989. From October 1989, automatic water level recorders have also been installed at four observation wells which were constructed during the study by JICA team. These data, however, do not cover one hydrological cycle so far. Therefore, previous well hydrograph data are used to assess the seasonal fluctuation of groundwater level and recharge

into main aquifer. Those are;

Well	District	period			
B12	North	Dec.1971 - Nov.1972			
WHO 7A	North	Jun.1972 - Nov.1973			

To assess the annual fluctuation of groundwater level in the long term, tank model simulation is carried out which develops the relationship between rainfall and groundwater level. The model is first calibrated with the observed well hydrograph and corresponding rainfall data. Long term data on groundwater levels are then synthesized by the model and observed rainfall data. Fig.E-2.3, Table E-2.1 and Table E-2.2 show the final results of tank model simulation and observed and estimated groundwater level. Annual fluctuation (Maximum groundwater level - Minimum groundwater level) of long term average at these two sites are deduced. That is,

Well	Area	Assessed	Period	Estimated	Mean	Annua1
				Fluctua	ition	
WHO 7A	Sundarijal	Jan.1940-	Dec.1986	1.	500 m	n
B12	Maharajganj	Jan.1947-	Dec.1975	; d	457 m	n

WHO 7A is located at the northern rim of the Northern district as seen in Fig.E-2.2, whose ground elevation is 1359 m. A screen was installed in deep layers in the well, therefore fluctuation of the groundwater level represent that of the main aquifer. The groundwater level has an annual cycle. Maximum water level occurs in September, and minimum in the end of June or beginning of July. Average annual fluctuation of water level is 1500 mm.

B12 ,whose elevation is about 1320 m, is located at the western part of the Northern district called Maharajganj. Adjacent to B12, constructed JICA team's observation well (JW1) which has screen only in deep aquifer,or,the main aquifer. During pump test of JW1, piezometric heads of B12 and JW1 coincided with each other, which indicates that B12 also has screen only in deep confined aquifer. Therefore fluctuation of the groundwater head of B12 is thought to represent recharged water of the main aquifer as well as WHO 7A. The water level has annual cycle and maximum water level occurs in October, and minimum in the end of June or beginning of July. Average annual fluctuation of the water level of the well during recent 29 years is estimated to be 457 mm.

2.3 Aquiclude Leakage

A confined aquifer lying between impermeable layers cannot be recharged, even if the piezometric head of the aquifer is lower than that of adjacent layers. The layer above the main aquifer in the valley is, however, thought to be an aquiclude, though not impermeable. Therefore, the difference in piezometric head between the main aquifer and the upper aquifer may cause basin-wide movement of groundwater called aquiclude leakage as illustrated in Fig.E-2.4. The possible causes of differences of head are thought to be
1) physiographic effectiveness , and 2) artificial abstraction from the main aquifer.

80 percent of the annual rainfall in the valley is concentrated from June to September (the Monsoon season), and the ground surface in the valley is mostly in saturated condition during the period. On the other hand, ground water level decline gradually after the Monsoon season. This annual fluctuation of water level in the shallow aquifer causes fluctuation in the piezometric head of the main aquifer in deep strata in the valley. The Leakage factor, or permeability of the aquitard layer on the main aquifer, is calculated by the following equation based on the abovementioned phenomenon;

$$S \underline{h1} = k' \underline{(h2-h1)} \cong k' \underline{(h-hm)}$$

$$T L L$$

$$k' \cong \underline{LS} \underline{h1}$$

$$(h - hm) T$$

where, k': permeability of aquitard layer S : storage coefficient hl: piezometric head of the main aquifer hm: annual average of hl h2: groundwater level of shallow aquifer h : ground level L : thickness of aquitard

Based on this equation, the permeabilities of the aquitard in the groundwater basin at well WHO 7A and B12 was estimated to be 0.00032 m/day $(3.7 \times 10^{-7} \text{cm/sec})$ and 0.00034 m/day $(3.9 \times 10^{-7} \text{cm/sec})$ respectively. Fig.E-2.5 indicates the observed well hydrograph and illustrates the basic concept to estimate leakage factor.

2.4 Present Pumping and Drawdown

Artificial abstraction in the basin started in 1972 at Kathmandu in the Central district. Succeeding exploitation has been mainly in the Northern district. Total volume of artificial abstraction up to the present reaches $53.7 \times 10^6 \text{ m}^3$. Total drawdown during corresponding period at B12 observation well is 21.92 m. Therefore, basin-wide storage coefficient including leakage factor is calculated roughly as follows;

A x S x D = Q, or S = Q/(A x D)= 0.00752

where,

S : Storage coefficient
 Q : Total abstraction (m³)
 A : Area of the main aquifer (= 325.9 km²)

D : Total draw down (m)

2.5 Groundwater Flow in the Northern District

Groundwater in the Northern district has been developed mainly in a recent decade and groundwater table and its flow pattern may change and become locally disturbed by abstraction from some 30 tube wells. Therefore, piezometric groundwater level data in 1972-1984 are used to develop groundwater level contour map as shown in Fig E-2.6. In the early stage of 1980's few deep tube wells were operated and these data are thought to be represent original and steady condition groundwater flow in the area. Groundwater flow is calculated based on Darcy's equation;

$F = T \times L \times H / D$

where,	F :	groundwater flow through a contour line (m ³ /day)
•	т:	transmissivity from pump test (m ² /day)
	L :	width of flow channel parallel to groundwater
		level contour lines (m)
	D:	distance of adjacent contour lines (m)
· ·	Н:	decrease of piezometric head between two contour
		lines (m)

Groundwater flow through ground elevation contour line 1,320 - 1,310 is estimated by means of the equation. Dimensions of each factor and the result are shown in Fig.E-2.7 and Table E-2.3, which gives the total amount of 25,000 m^3/day in the northern part of the Northern district. Average velocity of the groundwater is some 10 m/year

3. NUMERICAL MODEL AND CALIBRATION

3.1 Aquifer Modeling

The main aquifer in the valley is considered to be one confined body according to the hydrogeological survey and chronological analysis of groundwater abstracted from the aquifer as mentioned APPENDIX-D. Therefore one confined aquifer model with a leakage factor is applied in this study as illustrated in Fig.E-2.5.

3.2 Dominant Equation

3.2.1 Dominant equation

Partial differentiation equation for groundwater flow is derived two fundamental equations, or, equation of continuity and Darcy's equation as bellow;

 $\frac{\partial \mathbf{V}\mathbf{x}}{\partial \mathbf{x}} + \frac{\partial \mathbf{V}\mathbf{y}}{\partial \mathbf{y}} + \frac{\mathrm{dn}}{\mathrm{dt}} + q = 0 \tag{1}$

$$Vx = -Kx \frac{h}{\partial x}$$
, $Vy = -Ky \frac{h}{\partial y}$

where, Vx, Vy : flow velocity in the x,y direction n : unit water content h : piezometric head Kx,Ky : permeability in the x,y direction q : recharge depth

These two equations are simplified as follows,

$$\frac{\partial}{\partial x} \left(\begin{array}{c} Kx \\ \hline \partial h \end{array} \right) + \begin{array}{c} \frac{\partial}{\partial y} \left(\begin{array}{c} Ky \\ \hline \partial y \end{array} \right) = S \\ \frac{\partial}{\partial t} + q \end{array}$$
(3)

where, S ; storage coefficient defined by dn/dh

This equation can be numerically solved if boundary condition and initial condition are properly given. If aquifer is not single, equations which represent the aquifers are to be solved in consideration of reciprocal relation of piezometric heads of adjacent aquifers.

3.2.2 Vertical movement (quasi-three-dimensional factor)

Leakage from unconfined aquifer into the main confined aquifer through aquitard is the main vertical movement of the main aquifer of the groundwater basin. The aquitard is assumed to be more or less incompressible so that water released from storage therein is negligible. The rate of vertical leakage is proportionate to the difference in head between the water table of the unconfined aquifer table and piezometric surface of the aquifer,or,

$$q = \frac{k'}{h'} (H - h)$$

where,

q : leakage in depth
h : piezometric head of confined aquifer
H : Elevation of unconfined aquifer
k': permeability of the aquitard

b': thickness of the aquitard

(4)

(2)

Substituting in equation (3) the above, gives the following dominant equation,

$$\frac{\partial}{\partial \mathbf{x}} \left(\begin{array}{ccc} \mathbf{K}\mathbf{x} & \frac{\partial \mathbf{h}}{\partial \mathbf{x}} \end{array} \right) + \frac{\partial}{\partial \mathbf{y}} \left(\begin{array}{ccc} \mathbf{K}\mathbf{y} & \frac{\partial \mathbf{h}}{\partial \mathbf{y}} \end{array} \right) = \mathbf{S} \frac{\partial \mathbf{h}}{\partial \mathbf{t}} + \frac{\mathbf{k'}}{\mathbf{b'}} (\mathbf{H} - \mathbf{h}) \quad (5)$$

3.3 Difference Approximation by Finite Element Method (FEM)

3.3.1 Modeling by Galerkin's method

For difference approximation, Galerkin's method is applied to Laplace's equation. The first step is to define an approximate or trial function, h(x,y,t) of the form

 $h(x,y,t) = [N(x,y)]{f(t)}$ (1)

where; {f(t)} : head vector with a form of column matrix
 [N(x,y)]: basis function with a form of row matrix

This form of the trial solution shows the separation between the space and time variables. At any instant time, the basis functions interpolate the nodal heads over the problem domain. Galerkin's method requires that, when the trial solution is substituted into the differential equation, the residual, when weighted by each of the basis functions, be zero.

$$\iint_{v} [N(x,y)]^{t} (\frac{\partial h}{\partial x} (Tx \frac{\partial h}{\partial x}) + \frac{\partial h}{\partial y} (Ty \frac{\partial h}{\partial y}) - S \frac{\partial h}{\partial t} - W) dV = 0$$

where the suffix ^t signifies the invert matrix and the $_{v}$ specifies that the integration is done over the entire problem domain.

3.3.2 Matrix differential equation

Through the integration by elements, above equation can be finally written in the following matrix form;

$$[T]{f} + [S]{\underline{f}} - {Q} = {0}$$

t

where,

$$[T] = \iint_{V} T \left(\frac{\partial [N]^{t}}{\partial x} \frac{\partial [N]^{t}}{\partial x} + \frac{\partial [N]^{t}}{\partial y} \frac{\partial [N]}{\partial y} + k' [N]^{t} [N] \right) dV$$

$$[S] = \iint_{V} S [N]^{t} [N] dV$$

$$\{Q\} = \iint_{V} \frac{k'}{b'} H[N]^{t} dV$$

The [T] matrix is the conductance coefficient matrix. The {f} matrix is a column matrix of nodal heads at time t. The [S] matrix is a square matrix which accounts for the storage term in the transient flow equation. The { f/ t} matrix is a column matrix of the time derivatives. The {Q} matrix is a column matrix composed of the inflow/outflow within the entire problem domain and the boundary conditions. The boundary conditions are evaluated from the boundary integral; i.e. a weight average of the flux normal to the boundary.

In the implementation of the said modeling, the isoparametric quadrilateral elements will be applied because a meshes element in this study are geometrically irregular.

Adopting the Crank-Nicolson approximation for the time derivative of equation above, the solution is given by;

$$([T] + 2 [S]/Dt) \{f_{k+1}\} = (2[S]/Dt - [T]) \{f_k\} + \{Q_k\} + \{Q_{k+1}\}$$

where suffixes k and k+1 specify time levels of t_k and t_k +Dt

3.3.3 Meshwork of the basin

The boundary of the whole groundwater basin is identifiable from the geology as shown in Fig.E-2.1. The outer rim of the whole groundwater basin coincides with ground level contour of El. 1,400 m in the Northern and Central districts. In the Southern district, the ground level of the outer rim ranges from El.1,400 to 1,500 m.

The area inside the boundary is divided into 1212 rectangular or triangular elements, each of which is formed by three or four nodes. These nodes represent the boundary of the whole groundwater basin/sub-basin, existing production well sites and observation well sites. The FEM Meshwork developed is shown in Fig.E-3.1.

3.4 Geophysical Parameters

Each element has average transmissivity which represents the transmissivity of the area of the element. The average transmissibilities are classified into 7 categories. those are;

<u>Category</u>	Average Transmissivity
1	10 m ² /day
2	25 m ² /day
3	$75 \text{ m}^2/\text{day}$
4	$150 \text{ m}^2/\text{day}$
5	$300 \text{ m}^2/\text{day}$
б	500 m ² /day
7	700 m ² /day

Classification of transmissivity by the category is conducted based on the spatial distribution of transmissivity in the basin developed through hydrogeological study mentioned in APPENDIX D. Classified zones in the mesh

map is shown in Fig.E-3.2.

Top elevation, bottom elevation and the thickness of the main aquifer are also given at each node point, which is used to calculate leakage. If a thickness of the aquifer at a node is less than 40 m, the value is modified by 40 m for stability of calculation.

3.5 Boundary Conditions

The groundwater basin is isolated from other groundwater bodies outside the valley, therefore recharge outside the valley is thought to be negligible. On the other hand, vertical leakage through aquitard may play an important role in the recharge of the main aquifer. This leakage is caused by the difference of head between water table of unconfined aquifer and the main aquifer. The head of the main aquifer is an unknown variable and the elevation of unconfined aquifer should be given as a quasi-three dimensional boundary condition. The unconfined aquifer changes with the annual cycle , but this fluctuation is relatively small for the thickness of the aquitard. In the rainy season the elevation rises nearly to ground surface. Thus the water level of the unconfined aquifer is temporally set to be the ground elevation at the corresponding node. This elevation has to be finally fixed by calibration of the model. The boundary conditions are summarized below;

- the basin boundary --discharge zero at all the nodes on the basin boundary,
- elevation of unconfined aquifer ---- ground level at all the nodes within the basin as initial values.

3.6 Calibration under Steady Condition

The ground water level may have been in nearly steady condition in the early stages of the 1980's, say 1983 because no pump was operated in the Northern district except for a tube well named BBOLD. Therefore, ground water level data at 19 pump wells mainly in the Northern district which were constructed as production wells before 1984 are selected for calibration of the calculated groundwater level under steady state condition of 1983.

Calibration under steady condition can be carried out by changing a leakage factor of the aquitard layer lying above the main aquifer, and the ground water level above the main aquifer. Changing of transmissivity category is also used for fine adjustment.

In this study, the leakage factor is fixed at 0.00033 m/day, or the average value of leakage factor at well WHO 7a and B12 (see section 2.3). Groundwater level above the main aquifer is assumed to be a function of the ground elevation. This function is selected by try-and-error method in order to make the calculated groundwater level of the main aquifer coincide with the observed one. Finally the function is selected as follow;

 $\begin{array}{l} H = 1280.0 + (h - 1280.0) * 0.7 & (h < 1300.0 m) \\ H = 1294.0 + (h - 1300.0) * 0.2 & (1300.0 m \le h \le 1330.0 m) \\ H = 1300.0 + (h - 1330.0) * 0.6 & (1330.0 m \le h) \end{array}$

where H : groundwater level of aquitard layer (m)
h : ground elevation (m)

The calibration result is shown in Table E-3.1 and Table E-3.2. Based on the model and selected parameters mentioned above, groundwater level in following three steady state conditions are calculated:

- 1: Pump operation of tube wells as at the end of 1972
- 2: Pump operation of tube wells as at the end od 1983
- 3: Pump operation of tube wells according to optimum operation (see section 4.1)

The first case represents the original groundwater level of the main aquifer. The second one is the condition before exploitation of the Third Project Wells. The third one is the condition under optimum operation of existing wells which is described in section 4.1

Water level began to decline even in 1983 even when abstraction volume was only 13 percent of that in 1989. Centers of drawdown of groundwater are Bansbari, Balaju, Baneswar and Bhaktapur and the drawdown area is quite limited. Maximum drawdowns of the areas are 2 m, 3 m, 1.5 m and 3 m ,respectively. Groundwater contour map in 1972 and 1983 are shown in Fig.E-3.3 and E-3.4. Drawdown counter is also shown in Fig.E-3.10.

3.7 Recharge Area

As mentioned in section 2.3, the recharge of the main aquifer depends on difference in the piezometric head between the main aquifer and the aquifer above,or

DH = H_{upper}-H_{main}

where

ere DH : difference of piezometric head H_{upper}: piezometric head of aquitard H_{main} : piezometric head of the main aquifer

The value of DH is positive in mountainous area, which is recharge area. On the other hand, this value is negative in the central ,or relatively low area in the valley where no recharge may occur nor artificial recharge do. For effective artificial recharge the recharge site should be located in the recharge area in the mountainous area. Fig.E-3.5 shows counter line of DH value and the possible artificial recharge area which is identified by the area where DH value is more than 10 m. Identified potential recharge area is 170 km² including mountainous area in the valley.

3.8 Calibration under Non-Steady Condition

Abstraction of groundwater by pumping has increased in recent years, especially since 1984. The non-steady state model is therefore calibrated by the actual drawdown from 1983 to 1989 on the assumption that groundwater level was in a steady condition in 1983.

The parameter for non-steady state simulation is storage coefficient which indicates the sensitivity between piezometric head and abstracted water volume. Table E-3.3 shows the coefficient deduced from pumping test in a few wells, and comparison of observed and calculated drawdown.

The minimum values among the results of actual pump tests 2.3×10^{-4} also match well. Therefore this value was finally selected as typical for the whole valley.

Based on the selected value of storage coefficient, drawdown levels from 1983 to 2001 were calculated. The change in groundwater levels at production wells from 1985 to 1989 are shown in Table E-3.4.

Serious drawdown occurs at Bansbari in 1987 and the drawdown area spreads mainly in northern to north-western directions around Bansbari. The area where drawdown is more than 10 m appears only in this area. On the other hand, drawdown of more than 10 m extends to the whole the Northern district in 1989. In 2001, the drawdown area of more than 10 m does not extend so much compared with drawdown in 1989. But the drawdown become worse in the area where huge drawdown occurred in 1989.

Groundwater contour maps for 1985, 1987, 1989 and 2001 are shown in Fig.E-3.6 to and E-3.9. Drawdown contour in corresponding years are shown in Fig.E-3.11 to Fig.E-3.14.

4. OPTIMIZATION OF EXISTING PUMP OPERATION

4.1 Method

Referring to simplified equation in section 3.2 for steady state, the matrix differential equation for the steady-state flow is represented as follows;

$$[T]{h} = {Q} - {B} \text{ or,}$$

The head matrix of {h} can be divided into two column matrices as follows;

ſ T11	$T12\gamma h_{d}$	(q_d)	$-(b_d)$
LT21	$T22 \int h_c$	(q_e)	^{-∧} b _e /

where,	T _{ij} h _d h _c	:	partitioned conductance matrices, vector of heads where pumping operations are to be managed, vector of heads where no change or additional development
	b _d	:	is considered, vector of constant where pumping operations are to be managed.
	b _c	:	vector of constant where no change or additional development is considered.

Consequently above equation is simplified through the relation between \mathbf{h}_d and \mathbf{q}_d :

$$[T']{h_d} = {q_d} - {c}$$

or,
$${h_d} = [A]{q_d} - {a}$$

where, $[T'] = [T_{11}] - [T_{12}][T_{22}]^{-1}[T_{21}]$ $\{c\} = \{b_d\} + [T_{12}][T_{22}]^{-1}\{b_c\}$ $[A] = [T']^{-1}$ $\{a\} = [A]\{c\}$

Defining that $\{h_{sus}\}, \{h_{loss}\}$ matrices are column matrices consisting of the sustained heads and well losses at points for optimization, the following inequality of constraints on water level can be deduced;

 ${h_{actual}} = {h_d} - {h_{loss}} > {h_{sus}}$

In addition, assuming that well loss is proportional to total drawdown;

 ${h_{lose}} = \beta ({h_{org}} - {h_{actual}})$

where, β (0< β (1) : a rate of well loss to total drawdown { h_{org} } : original groundwater level

Substituting (4-4) and (4-8) into (4-7) ,the inequality is finally summarized as follows;

 $[A]{q_d} \ge \{a'\}$ where, $\{a'\}: \{a\}+ (1-\beta)\{h_{sus}\} + \beta \{h_{org}\}$

The above inequality of constraints should be satisfied in any set of pumping operation ,or $\{q_d\}$, so that total draw down of each well concerned is within the limit. Furthermore $\{q_d\}$ has also limitation determined by installed pump capacity. Optimization is realized through maximization of total pumping volume under conditions and constraints mentioned above. This problem discussed here is equivalent to the following LP (Linear Programming) problem which can be solved by means of the Simplex Method.

Objective Function	;	$G = q_1 + q_2 + \ldots + q_n$
Variables	:	$\{q\} = \{q_1, q_2, \dots, q_n\}^t$
Constraint	:	$[A]{q} \ge {a'}$
		$\{0\} \leq \{q\} \leq \{q_{max}\}$

Sustained heads is decided by higher elevation of the upper rim of the main aquifer or location of strainer. Conditions for optimization is summarized in Table E-4.1. Well loss factor is changeable by wells and it depends on design and construction. The well loss factor of tube wells in the Northern district is ranged from 40 percent to 60 percent. Thus optimization by several well loss factors are estimated in order to check sensitivity of the factor. The optimum pumping volume of 40%,50% and 60% are 18,900 m³/day, 15,600 m³/day and 11,900 m³/day, respectively. Finally the case of 50 % of well loss is applied to develop optimum pump operation as relatively safety side.

Table E.4-2 shows contribution of each well under several optimum operation.

4.2 Optimum Pumping Operation

Optimum operation of existing wells with assumptions mentioned above is for perennial operation. Actually required groundwater volume depends on water demand and supply from surface water sources. Surface water is abound in the Monsoon season, thus pumping operation will be executed mainly in dry season, say , January to April to meet the demand. In order to consider an effect of concentrated pumping operation in few months of a year, groundwater levels and drawdowns of the following two cases in the year 2001 are simulated ;

Case 1 : Perennial pumping operation (ideal condition)

Abstraction volume from each w	well fie	eld
Bansbari well field	6,936	m ³ /day
Balaju well field	1,000	m ³ /day
Gokarna/Manohara well field	6,093	m ³ /day
Pharping well field	1,600	m ³ /day
Total	15,629	m ³ /day

Case 2 : Seasonal pumping operation (January to April) (actually recommended pumping operation)

Abstraction volume from each	well field
Bansbari well field	13,053 m ³ /day
Balaju well field	648 m ³ /day
Gokarna/Manohara well field	13,746 m ³ /day
Pharping well field	3,132 m ³ /day
Total	30,579 m ³ /day
(Annual average	$10,193 \text{ m}^3/\text{day}$)

Abstracted volume in Case 2 exceed the optimum abstraction volume during a season in operation, but the annual average keeps the limitation from the standpoint of total volume. Fig.E-4.2 and Fig.E-4.4 show drawdown at the end of year 2001 in these two cases. Actually recommended operation (Case 2) does not give severer results than that in Case 1.

Present abstraction volume of groundwater reaches $39,000 \text{ m}^3/\text{day}$, which is twice as much as optimum pumping (Case 1). Recharge source of the main aquifer is leakage water or squeezed water from the aquitard layer which consists of lacustrine deposit such as clay or silt. Therefore extreme or concentrated abstraction results in rapid drawdown of piezometric head of the main aquifer which may cause land subsidence. Therefore, leveling survey in order to monitor subsidence is required in case of necessity.

Estimated maximum drawdowns of piezometric head from the original condition of the main aquifer in the year 2001 are;

Perennial Operation (Case 1)	Seasonal Ope (Case 2)	Present Operation	
End of 2001	End of Apr., 2001	End of 2001	End of 2001
19.0 m	20.0 m	5.0 m	25.0 m

TABLES

Table E-2.1 ESTIMATED ANNUAL FLUCTUATION OF WATER LEVEL (WELL WHO 7a)

	· · · · · · · · · · · · · · · · · · ·	Groundwa	ter level	Fluctuation
Year	Rainfall	Max	Min	(mm)
	(mm)	(El. m)	(El. m)	
1040	0011 7	1246 20	1744 71	1672 0
1940	2011.7	1240.00	1344.71	1505 7
1040	2020+1 2000 0	1246.20	1244.03	1706 7
1042		1246 20	1244.39	1750-7
1943	3010.0 3/35 1	1346.10	1344.04	1520.3
10/5	2422.1	1346 38	1344.03	1750 7
1945	22502.5	1346 43	1344.02	1706 7
1940	2632 8	1346 20	1344.73	1461 7
1948	3125 6	1346 49	1344 70	1788 7
1949	2478 2	1346.26	1344.70	1548 3
1950	1439 4	1345.60	1344 61	990.7
1951	1692 3	1345 81	1344 51	1301 3
1952	2302 4	1346 15	1344 52	1627 7
1953	2224 9	1346.06	1344.59	1474 7
1954	2553.4	1346.25	1344.59	1660.0
1955	2597.4	1346.33	1344,59	1744.3
1956	2309.0	1346.08	1344.63	1450.3
1957	1516.8	1345.78	1344.57	1215.0
1958	1527.5	1345.49	1344.51	980.3
1959	1994.5	1346.02	1344.51	1511.7
1960	1691.7	1345.69	1344.56	1131.0
1961	1947,4	1345.97	1344.53	1437.0
1962	2366.7	1346.19	1344.54	1644.0
1963	3246.8	1346.40	1344.57	1829.7
1964	1904.1	1345.99	1344.61	1382.0
1965	1649.3	1345.77	1344.55	1219.0
1966	1728.8	1345.96	1344.53	1421.0
1967	2061.7	1346.12	1344.54	1575.7
1968	2445.1	1346.30	1344.59	1713.7
1969	1929.0	1345.94	1344.57	1368.3
1970	2267.8	1346.04	1344.58	1456.3
1971	2382.5	1346.24	1344.59	1653.0
1972	1779.2	1345.66	1344.58	1079.3
1973	2736.6	1346.29	1344.55	1736.3
1974	2007.1	1345.90	1344.64	1265.3
1975	2540.8	1346.26	1344.56	1696.7
1976	2333.0	1346.17	1344.66	1506.0
1977	1900.0	1345.78	1344.60	1186.3
1978	3390.1	1346.49	1344.57	1914.7
1979	2186.6	1345.08	1344.68	1404.7
1980	25/5.4	1346.31	1344.5/	1/39.3
1981	1184.0	1345,30	1344.50	735.0
1982	2391.0 2075 1	1340.19	1344.49	1720 7
1001 1001	7360 V	1340.3V 1346 37	1344.3/	1574 0
1005	2500.4 2510 6	1346 20	1244.70	1611 2
1985	2078 2	1345 86	1344.53	1241 0
1900	2010.2	T343,00	1011.02	1271.0
Average				·
1940-86	2303.4	1346.10	1344.60	1500.5
1971-86	2336.1	1346.08	1344.60	1485.9

TABLE E-2.2 ESTIMATED ANNUAL FLUCTUATION OF WATER LEVEL (WELL B12)

	: .			
		Groundwat	er level	Fluctuation
Year	Rainfall	Max	Min	(mm)
	(_mm_)	(El. m)	(El. m)	
:		· · · · · · · · · · · · · · · · · · ·		
1947	1599.2	1310.86	1310.44	420.0
1948	1793.4	1311.02	1310.39	622.7
1949	1368.9	1310,87	1310.43	441.3
1950	1536.1	1310.91	1310.33	582.0
1951	1224.4	1310.75	1310.36	392.7
1952	1280.4	1310.70	1310.33	371.3
1953	1363.6	1310.71	1310.32	391.3
1954	1593.7	1310.88	1310.33	556.7
1955	1130.6	1310.68	1310.37	307.3
1956	1776.4	1310.96	1310.34	624.0
1957	1003.2	1310.79	1310.40	383.3
1958	1131.8	1310.64	1310.28	356.0
1959	1195.3	1310.64	1310.31	332.0
1960	1201.5	1310.67	1310.34	330.7
1961	1704.7	1310.90	1310.33	569.3
1962	1261.5	1310.76	1310.44	320.0
1963	1313.5	1310.71	1310.30	411.3
1964	1384.8	1310.88	1310.34	533.3
1965	1333.5	1310.73	1310.37	350.7
1966	1223.8	1310.74	1310.32	417.3
1967	1348.6	1310.81	1310.33	482.7
1968	1539.2	1310.92	1310.36	564.7
1969	1131.2	1310.71	1310.37	339.3
1970	1439.9	1310.75	1310.31	442.0
1971	1681.5	1310.85	1310.37	484.0
1972	1509.5	1310.74	1310.35	383.3
1973	1969.2	1311.11	1310.35	766.7
1974	1140.5	1310.98	1310.46	520.7
1975	1526.7	1310.88	1310.33	552.0
Average	·····			
1947-75	1403.7	1310.8	1310.4	456.9
1971-75	1565.5	1310.9	1310.4	541.3
		· .		

Table E-2.3 GROUNDWATER FLOW IN THE NORTHERN DISTRICT

(m³/d) 3025 24842 Flow 777 4140 6883 5809 4208 Transmissivity Command length Gradient 5 /1000 5 / 750 5 /1200 5 / 700 5 /1000 5 / 750 ī (1 1 1 2000 2200 2500 2000 2500 2500 515.0 (414.0) 645.9 (413.1) 340.4 (330.0) 313.0 Aver.= 180.3 Aver.= 319.7 Aver.= (m²/d) 43.5 464.7 315.6 t Name Well **B**B2 DK3 JPL BH4 MH6 BH1 BB3**B**B4 DK2 ŕ Area Total ΤΛ 건 н HH III ⊳

Leakage Permeability = 0.00033 m/day Abstraction Condition : Year 1972

NO.	NODE	NAME	H(CAL)	DATE	H(OBS.)	ERR	H(PRES	.) ERR
			(m)	(m)	(m) (OBS-CAL)	(m)	(PRESCAL)
1	278	BB3	1313.86	3 30 84	1314.13	0.27	1297.40	-16.46
2	280	BB4	1312.25	12 26 84	1311.01	-1.24	-	. ~
3	336	BB6	1311.60	4 13 84	1308.63	-2.97	- ,	-
4	284	WHOJA	1311.98	2 72	1308.79	-3.19	·	· _
5	335	BB5	1310.37	1 18 85	1308.14	-2.23	1292.10	-18.27
ĕ	288	BBB	1309.06	9 7 84	1307.88	-1.18	_ .	-
7	284	RRALD	1311 98	2 12 72	1305.79	6.19	1292.30	-19.68
· ·	437	887	1307 85	3 10 85	1303.58	-4.27	-	
0	4J/ 905	107	1311 12	8 23 80	-		1287.10	-24.02
9	200	UNZ 1019	1204 43	0 23 03	1310 60	6 17	1288 60	_15 83
.10	484		1304.43	92409	1310.00	7 70	1200.00	-13.05
11	293	DK2*-	1311.01	5 / 64	1319.00	14 65	-	-
12	294	UK3	1311.00	2 13 84	1323.71	14.00	. 7 -	-
13	295	DK4	1310.27	4 30 84	1325.92	15.05	1000 50	- 0A
14	347	DK6	1309.44	1 29 84	1311.20	1./6	1303.50	-5.94
15	399	DK5	1308.23	12 28 83	1308.14	-0.09		
16	446	DK1	1307.66	1 17 84	1307.56	-0.10	1294.50	-13.16
17	345	DK8 *	1309.64	3 1 84	1303.60	-6.04	-	-
18	352	JK1	1311.40	5 22 84	1314.97	3.57	-	· •
19	19	WH07	1338.04	5 3 72	1344.00	5.96	· '-	-
20	62	GK1	1334.69	12 24 85	1336.49	1.80	1326.60	-8.09
21	83	GK2	1334.37	5 31 84	1333.77	-0.60	· · .	-
22	60	GK 3	1334 57	7 4 84		-		· _
22	61	CVA	1334.90	7 15 85	1337 66	2.86	1321.40	-13.40
2.3	· A1	CVE	1335.90	6 8 84	1337 84	2 04	1330 70	-5 10
24	41	UND UND	1333.00	10 19 94	1392 03	1 32	1000770	-0.10
20	190	FB1Z	1320.71	10 10 04	1322103	1.04	1207 20	23 78
20	200		1321.56	11 4 03	1322.02	1.04	1297.00	-23.70
27	250	MH3	1318.01	11 26 84	1322.73	4.72	-	
28	305	MH4	1315.73	11 1 85	1323.93	0.20		-
29	306	MH5	1315.50	4 13 85	1319.96	4.40	*.	-
30	359	MH6	1313.87	5 4 85	1317.50	3.63	1308.40	-5.47
31	461	881	1312.59	12 8 84	1321.12	8.53	~ ~ ~	
-32	363	BH3	1315.75	2 3 85	1320.89	5.14	1308.00	-7.75
33	362	BH4	1315.75	2 26 85	1320.17	4.42	1305.70	-10.05
34	459	WH05A	1310.70	3 8 72	1311.23	0.53	1308.70	-2.00
35	1080	PH2	1318.29	2 12 77	- ·	· '-	1248.30	-69.99
-36	585	P2*-	1300.76	8 17 84	1288.70	-12.06	1287.70	-13.06
37	389	P5 *	1308.31	3 27 88	1295.90	-12.41	· -	-
38	390	P6 *	1306.69	85	1285.74	-20.95		-
39	439	P7 *	1305.75	7 30 88	1290.40	-15.35	-	-
40	553	P8 *	1301.05	72	1305.77	4.72	· _	-
41	589	р ү *	1299.85	1 11 87	1286.25	-13.60	-	
12	502	P10 *	1300 01	75	1298 40	-1.61		_
43	187	D11 *	1302 08	78	1305.90	2.92	1293.30	-9.68
43	504	615 *	1200 53	80	1299 24	_0.20	1200100	-
44 15	7/0	017 *	1206 66	A 2A 87	1200 00	5 65	_ ·	
45	740	. F17 - 010	1206 66	8 26 96	1288 26	-9.00		-
40	676	P10 *	1290-00	10 20 00	1200.23	11 7/		
4/	070 600	F19 "	1200 66	10 20 07	1200.00	-11.74	1295 00	14 66
40	005	P23 *	1299.00	1 24 70	1310.00	0.J4 C AE	1203.00	-14.00
49	500	P24 *	1304.05	/ 2/ 80	1310.50	0.40	-	-
50	568	P25 *	1305.14	6 2 86	1293.00	-12.14	-	
51	568	P26 *	1305.14	10 2 86	1297.45	-7.69	1290.00	-15.14
52	571	P27 *	1306.19	83	1310.90	4.71	••	· - ·
53	572	P28 *	1307.30	82	1317.00	9.70		
54	750	P29 *	1297.59	85	1294.90	-2.69	1288.60	-8.99
55	816	P32 *	1293.93	89	1277.07	-16.86	-	-
56	818	P33 *	1295.00	78	1278.00	-17.00	-	-
57	821	P34 *	1295.92	12 79	1313.90	17.98	-	-
58	961	P36 *	1300.45	5 10 87	1278.50	-21.95	-	<u>-</u>
59	827	P37 *	1302.77	7 27 87	1297.50	-5.27		-
60	714	DMG1 *	1297 13	1 11 87	1276.25	-20.88	-	-
61	712	DMG4	1297 16	6 9 86	1285.68	-11.48	-	-
62	712	DMG6 *	1207 16	7 7 86	1290.65	-6.51	_	-
62	635	OMC6	1208 21	, , 00 ΩΩ	1200 60	1 20	-	-
60 64	0JJ Q1/	101	1200.21	11.0.90	1281 10	-11 83	-	-
04 CC	640	ULL I	1301 03	7 95 00	1201.10	-10.20	_	-
05	040	0114	1201-32	1 20 09	1721.00	-10.70	-	-

Remark *: observed data is uncertain

Leakage Permeability = 0.00033 m/day Abstraction Condition : Year 1983

	NO.	NODE	NA	ME	H(CAL)	DATE	H(OBS.)	ERR	H(PRES	S.) ERR	
					(m)	(m)	(m)	(OBS-CAL) (m)	(PRES	CAL)
•											
	1	278	BB3	w w	1312.27	3 30 84	1314,13	1.86	1297.40	-14.87	
	2	280	BB4		1310.56	12 26 84	1311.01	0.45	-	. .	
	3	336	BB6		1309.83	4 13 84	1308.63	-1.20	-		
	4	284	WHO3/	Ą	1308,62	2 72	1308,79	0.17	-	-	
	5	335	885		1308.61	1 18 85	1308.14	-0.47	1292.10	-16.51	
	6	388	B88		1307.26	9 7 84	1307.88	0.62	-	-	
	7	284	BBOL	D	1308.62	2 12 72	1305.79	-2.83	1292.30	-16.32	
	8	437	6B7		1306.07	3 19 85	1303.58	-2.49	_		
	9	285	J₩2		1308.94	8 23 89	·		1287.10	-21.84	
	10	484	.1917	812	1302.92	9 24 89	1310.60	7 68	1288 60	_14 32	
	11	.293	DK2-	*_	1310.81	5 7 84	1310.60	, 7.00 R 70	1200.00	-14.52	
	12	294	DK3		1310.05	2 13 84	1325 71	15 66	-		
	13	205	DVA		1300 23	1 30 04	1325 02	16 60	-	-	
	10	233	DV6		1303.23	1 20 04	1211 20	10.09	1202 60	- A OE	
	14	300	חאב		1207 11	10 00 00	1209 14	1 03	1303.30	-4.00	
	10	733	DKD		1307.11	12 20 03	1300.14	1.03	1004 50	10.00	
	10	440			1200.52	1 17 64	1307.50	1.04	1294.50	-12.02	
	17	345	UKO	-	1308.51	5 1 84	1303.60	-4.91	-	-	
	10	352	JKI		1010.00	5 22 84	1314.97	4.04	-	-	
	-19	19	WKU/-		1337.80	5 3 72	1344.00	6.20			
	20	6Z	GKI		1334.36	12 24 85	1336.49	2.13	1326.60	-7.76	
	21	83	GK2		1334.04	5 31 84	1333.77	-0.27	-	-	
	22	60	GK3		1334.25	7 4 84	-		·	· -	
	23	61	GK4		1334.47	7 15 85	1337.66	3.19	1321.40	-13.07	
	24	41	GK5		1335.51	6 8 84	1337.84	2.33	1330.70	-4.81	
	25	198	MH2		1319.37	10 18 84	1322.03	2.66	-	-	
	26	200	MH7	*	1320,27	11 4 85	1322.62	2.35	1297.80	-22.47	
	27	250	MH3		1316.48	11 26 84	1322.73	6.25	· -	-	
	28	305	MH4		1314.00	11 1 85	1323.93	9.93	-	-	
	29	306	MH5		1313.63	4 13 85	1319.96	6.33	-	. - '	
	30	359	MH6		1311.92	5 4 85	1317.50	5.58	1308.40	-3.52	
	31	461	BH1		1309.76	12 8 84	1321.12	11.36	-	-	
	32	363	BH3		1313.60	2 3 85	1320.89	7.29	1308.00	-5.60	
	33	362	8H4		1313.63	2 26 85	1320.17	6.54	1305.70	-7.93	
	34	459	WHO5A	1	1308.45	3 8 72	1311.23	2.78	1308.70	0.25	
	35	1080	PH2		1318.29	2 12 77		-	1248.30	-69.99	
	36	585	P2	*_	1299.19	8 17 84	1288.70	-10,49	1287.70	-11.49	
	37	389	P5	*	1306.54	3 27 88	1295.90	-10.64	_		
	76	390	P6	×	1305.06	85	1285.74	-19.32	_	~	
	39	439	 97	*	1304.21	7 30 88	1290.40	-13.81		-	
	40	553	P8	*	1299.53	72	1305.77	6.24	-		
	41	589	pq ·	*	1298.30	1 11 87	1286 25	_12 05	_	_	
	42	502	p10	*	1208 31	. 75	1208.40	0 00		-	
	12	187	D11	*	1301 66	78	1205.40	1 25	1203 30	8 35	
	73	50/	016	*	1207 81	80	1200 24	1 43	1233130	-0.33	
	45	740	D17	*	1205 73	1 21 97	1200 00	1.45	_	-	
	46	740	P18	*	1205 73	8 26 86	1288 26	-7.48	_		
	47	676	010	*	1206 /1	10 20 00	1200.20	10 /1	-	-	
	47 ΛΩ	696	F17 D93	*	1207 25	1 24 79	1200.00	~10.41 9.75	1205 00	12 26	
	40	566	FZJ 024	*	1202 60	7 27 70	1210 50	2.70	1200.00	-12,20	
	49	. 300	P24		1302.00	6 2 00	1310.50	10.07	-		
	50	500	P20	Ĵ	1303.07	0 2 00	1293.00	-10.07	1000 00	10.07	
	51	508	P20	÷	1303.07	10 2 80	1297.45	-0.22	1290.00	-13.0/	
	52	5/1	PZ/		1304.00	2 00	1310.90	0.30	-	-	
	53	.5/2	P28	- -	1305.58	/ 82	1317.00	11.42	-	-	
	54	/50	P29		1295.11	. 85	1294.90	-1.21	1288.60	-7.51	
	55	816	P32	* .	1292.97	89	12//.0/	-15.90	-	•	
	56	818	P33	*	1293.50	-78	1278.00	-15.50	· •	-	
	57	821	P34	*	1295.06	12 79	1313.90	18.84	••	-	
	58	961	P36	*	1300.42	5 10 87	1278.50	-21.92		- 1	
	59	827	P37	*	1302.64	7 27 87	1297.50	-5.14	-	-	
	60	714	DMG1	*	1295.90	1 11 87	1276.25	-19.65		-	
	61	712	DMG4		1295.98	6 9 86	1285.68	-10.30	-	-	
	62	712	DMG5	*	1295.98	7 7 86	1290.65	-5.33	-	-	
	63	635	DMG6		1296.81	88	1299.50	2.69		-	
	64	814	JW3		1292.19	11 9 89	1281.10	-11.09	-		
	65	648	JW4		1300.65	7 25 89	1291.65	-9,00	-	-	

Remark * : Observed groundwater level is uncertain.

TABLE E-3.3 DECISION OF STORAGE COEFFICIENT

(1: Simulation Result)

Name	Period				Drawdow	n (m)			
		Observed	S=0.0001	S=0.0005	S=0.001	S=0.002	S=0.005	S=0.0075	S=0.01
BBS	Jan.,1985 - Mar.,1989	16.04	17.06	17.024	16.962	16.79	15.556	14.344	13.252
JW1/B12	Aug.,1972 - Sep.,1989	22.00	13.326	13.24	13.072	12.609	12.986	9.835	8.839
GK5	Jun.,1984 - Feb.,1989	7.14	6.71	6.6	6.33	5.54	3.695	2.88	2.37
9HH	May, 1985 - Feb.,1989	9.10	8.51	8.462	8.29	7.61	5.634	4.548	3.804
BH3	Feb.,1985 - Mar.,1989	12.89	9.878	9.854	169.6	166.8	6.788	5.544	4.684
BH4	Feb.,1985 - Mar.,1989	14.47	10.009	9.97	9.807	9.107	6.915	5.678	4.802
(2: P	ump Test Result)								
	Storage	Conduc	ted by I	Date					

	Storage		Conducted by	Date
WELL NAME	Coefficient	Method	-	
WHO 3	6100.0	JACOB	ይዬቦ	5/20 Feb.'72
	0.00243	WALTON	-do-	
WHO 5	0.00086	JACOB	- do-	7/17 Mar.'72
	0.00412			
	0.0037	THEIS	-do-	
VHO 7	0.000232	JACOB	- qo-	1/6 Jun. '72
JW1/B12	0.00065	JACOB	JICA	·
	0.00185	HANTUSH/J/	ACOB	-
MAXIMU	M 0.00412	MINIMUM ;	0.000232	

Storage Coefficient S= 0.0002 $\,$ Leakage Permeability = 0.00033 m/day Steady Condition (year 1985)

NO.	NODE	NAME	H(1983)	H(CAL)	DRAWDOWN	DATE	H(OBS.)	ERR	H(PRES) ERR
			(m)	(m)	<u>(m)</u>		(m)	(OBS-CAL	.) (m)	(PRESCAL)
1	278	BB3	1313.45	1310.30		3 30 84	1314.13	3.83	1297.44	-12.80
2 २	200	884 886	1308.61	1300.75	· ~2.44	4 13 84	1308.63	0.79		
4	284	WHOJA	1308,89	1306.13	-2.76	2 72	1308.79	2.66		
5	335	885	1309.72	1306.92	-2.80	1 18 85	1308.14	1.22	1292.18	-14.74
6	388	BB8	1308.73	1305.57	-3.17	9 7 84	1307.88	2,31		
7	284	BBOLD	1308.89	1306.13	-2.76	2 12 72	1305.79	-0.34	1292.33	-13.80
- 8	437	8B7	1305.79	1303.97	-1.82	3 19 85	1303.58	-0.39	1007 10	10.07
- 9	285	JWZ 1141 /012	1308.02	1300.09	-2.54	8 23 89	1210 60	0.94	1287.12	-18,9/
10	404. 203	0//1/012	1304.09	1306.81	-3.33	9 24 09 5 7 84	1310.00	12 70	1200,00	-12.00
12	294	DK3	1310.81	1306.15	-4.66	2 13 84	1325.71	19.56		
13	295	DK4	1310.05	1305.86	-4.19	4 30 84	1325.92	20.06		
14	347	DK6	1307.36	1304.32	-3.04	1 29 84	1311.20	6.88	1303.51	-0.81
15	399	DK5	1307.15	1302.42	-4.73	12 28 83	1308.14	5.72		
16	446	DK1	1305.02	1302.37	-2.65	1 17 84	1307.56	5.19	1294.59	-7.78
17	345	DK8 *	1307.06	1304.79	-2.27	3 1 84	1303.60	~1.19		
18	352	JK1	1309.66	1307.75	-1.90	5 22 84	1314.97	7.22		
19	19	WHU/	1339.18	1338.31	-0.8/	5 5 /Z	1344.00	5.09	1296 67	7 60
20	83	GK2	1333 08	1334.30	-0.12	5 31 84	1333 77	-0.21	1320.07	~7.09
22	60	GK3	1334.64	1334.25	-0.39	7 4 84	1333.77			
23	61	GK4	1334.25	1334.42	0,18	7 15 85	1337.66	3.24	1321.42	-13.00
24	41	GK5	1334.92	1335.51	0.59	6 8 84	1337.84	2.33	1330.70	-4.81
25	198	MH2	1321.77	1318.89	-2.88	10 18 84	1322.03	3.14		
26	200	MH7 *	1318.67	1319.45	0.78	11 4 85	1322.62	3.17	1297.81	-21.64
27	250	MH3	1317.38	1316.07	-1.31	. 11 26 84	1322.73	6.66		
28	305	MH4 MHE	1315.17	1313.4/	-1./0	11 1 85	1323.93	10,40		
30	300 350	FIAD M96	1313.99	1313.10	-0.09	5 4 15 05	1317 50	6.17	1308.44	-2.89
31	461	BH1	1309.08	1309.21	0.12	12 8 84	1321.12	11.91	1300.14	LIUU
32	363	BH3	1313.63	1313.12	-0.52	2 3.85	1320.89	7.77	1308.04	-5.08
33	362	BH4	1313.17	1313.06	-0.12	2 26 85	1320.17	7.11	1305.70	-7.36
34	459	WHO5A	1308.18	1307.81	-0.38	3 8 72	1311.23	3.42	1308.79	0.98
35	1080	PH2	1315.83	1308.67	-7.16	2 12 77			1248.34	-60.33
36	585	P2*-	1302.99	1293.42	-9.57	8 17 84	1288.70	-4.72	1287.71	-5.71
37 30	302	* CY	1307.20	1304.00	-2.00	-0 <i>21</i> 60 85	1295.90	~0.70		
- 30 70	130 130	P0 *	1300.35	1301.95	-2.20	7 30 88	1203.74	-11.55		
40	553	P8 *	1299.79	1297.16	-2.62	72	1305.77	8,61		
41	589	pg *	1298.05	1295.78	-2.27	1 11 87	1286.25	-9.53		
42	592	P10 *	1299.05	1295.92	-3.13	- 75	1298.40	2.48		
43	487	P11 *	1302.53	1299.34	-3.19	78	1305.90	6.56	1293.30	-6.04
44	594	P15 *	1298.42	1295.10	-3.32	80	1299.24	4.14		
45	740	P17 *	1296.45	1293.90	-2.55	4 24 87	1290.90	-3.00		
40	/40 676	P18 *	1295.45	1203.90	-2,55	8 20 80	1288.25	-5.05		
47 79	070 685	P19 *	1297.00	1295.50	-1.60	1 20 07	1300.00	4 20	1285 00	-10 76
49	566	P24 *	1301.54	1301.62	0.08	7 27 86	1310.50	8.88	1203.00	-10110
50	568	P25 *	1302.55	1302.77	0.22	6 2 86	1293.00	-9.77		
51	568	P26 *	1302.55	1302.77	0.22	10 2 86	1297.45	-5.32	1290.04	-12.73
52	571	P27 *	1304.23	1303.78	-0.45	83	1310.90	7.12		
53	572	P28 *	1304.60	1304.76	0.16	7 82	1317.00	12.24		
54	7.50	P29 *	1295.81	1293.60	-2.21	85	1294.90	1.30	1288.60	-5.00
- 55 EE	816 910	172 ×	1292.04	1291.43	-0.01 -0.01	; ຽຽ າຊ	1277.07	~14,30 _1/ 97		
30 57 ·	010 821	P34 *	1293.13	1294 44	0.02	12 79	1313.90	19.46		
58	961	P36 *	1298.87	1299.58	0.71	5 10 87	1278.50	-21.08		
59	827	P37 *	1299.64	1302.65	3.02	7 27 87	1297.50	-5.15		
60	714	DMG1 *	1296.32	1291.91	-4.41	1 11 87	1276.25	-15.66		
61	712	DMG4	1296.30	1292.52	-3.78	6986	1285.68	-6.84	: 	
62	712	DMG5 *	1296.30	1292.52	-3,78	7786	1290.65	-1.87		
63	635	DMG6	1297.32	1294.30	-3.02	88	1299.50	5.20		
64	814	JW3	1291.67	1290.87	-0.80	11 9 89	1281.10	-9.77		
65	048	JW4	1300.38	1200.00	-0.31	/ 25 89	1531.02	-0.41		

Remark * : Observed groundwater level is uncertain

Storage Coefficient S= 0.0002 Leakage Permeability = 0.00033 m/day Steady Condition (year 1987)

NO.	NODE	NAME	H(1983) H(CAL)	DRAWDOWN	DATE	H(085.)	FRR H/PRFS	FRR
			(m) (m)	(m)		(m)	(OBS-CAL) (m) (PRESCAL)
1	278	BB3	1313.45 1294.83	-18,62	3 30 84	1314.13	19.30 1297.44	2.61
2	280	BB4	1311.23 1293.55	-17.68	12 26 84	1311.01	17.46	
3	336	BB6	1308.61 1291.12	-17,49	4 13 84	1308.63	17.51	
4	284	WHO3A	1308.89 1296.26	-12.63	2 72	1308.79	12.53	
5	335	8B5	1309.72 1292.10	-17.62	1 18 85	1308.14	16.04 1292.18	0.08
6	388	8B8	1308.73 1289.77	-18.96	9 7 84	1307.88	18.11	
7	284	BBOLD	1308.89 1296.26	-12.63	2 12 72	1305.79	9.53 1292.33	-3.93
8	437	BB7	1305.79 1288.19	-17.60	3 19 85	1303.58	15.39	
9	285	J₩2	1308.62 1298.15	-10.48	8 23 89		1287.12	-11.03
10	484	JW1/B12	1304.09 1292.71	-11.38	9 24 89	1310.60	17.89 1288.68	-4.03
11	293	DK2*-	1309.57 1302.17	-7.41	5784	1319.60	17.43	
12	294	DK3	1310.81 1301.40	-9.41	2 13 84	1325.71	24.31	
13	295	DK4	1310.05 1300.49	-9:56	4 30 84	1325.92	25.43	100 A
14	347	DK6	1307.36 1299.65	-7.72	1 29 84	1311.20	11.55 1303.51	3.86
15	399	DK5	1307.15 1298.06	-9.09	12 28 83	1308.14	10.08	
16	446	DK1	1305.02 1298.08	-6.94	1 17 84	1307.56	9.48 1294.59	-3.49
17	345	DK8 *	1307.06 1300.05	-7.02	3 1 84	1303.60	3.55	
18	352	JK1	1309.66 1303.88	-5.78	5 22 84	1314.97	11.09	
. 19	19	WH07	1339.18 1335.56	-3.62	5 3 72	1344.00	8.44	e a casa di si
20	62	GK1	1334.47 1330.01	-4.46	12 24 85	1336.49	6.48 1326.67	-3.34
21	. 83	GK2	1333.98 1328.32	-5.66	5 31 84	1333.77	5.45	· · · · · ·
22	60	GK3	1334.64 1328.59	-6.05	7484	14 A.		1.1
23	61	GK4	1334.25 1329.36	-4.88	7 15 85	1337.66	8.30 1321.42	-7.94
24	41	GK5	1334.92 1331.58	-3.34	6884	1337.84	, 6.26 1330.70	-0.88
25	198	мн2	1321.77 1312.92	-8.86	10 18 84	1322.03	9.11	÷
26	200	MH7 *	1318.67 1312.59	~6.08	11 4 85	1322.62	10.03 1297.81	-14.78
27	250	MH3	1317.38 1311.15	-6.23	11 26 84	1322.73	11.58	
28	305	MH4	1315.17 1308.90	-6.27	11 1 85	1323.93	15.03	
29	306	MH5	1313.99 1308.50	-5,49	4 13 85	1319.96	11.46	
30	359	мн6	1312.46 1306.94	-5.52	5485	1317.50	10.56 1308.44	1.50
31	461	811	1309.08 1302.61	-6.47	12 8 84	1321.12	18.51	
32	363	BH3	1313.63 1308.58	-5.05	2 3 85	1320.89	12.31 1308.04	-0.54
33	362	BH4	1313.17 1308.48	-4.70	2 26 85	1320.17	11.69 1305.70	-2.78
34	459	WH05A	1308.18 1303.52	-4.66	3 8 72	1311.23	7.71 1308.79	5.27
35	1080	PH2	1315.83 1308.67	-7.16	2 12 77		1248.34	-60.33
36	585	PZ*-	1302.99 1288.43	-14.56	8 17 84	1288.70	0.27 1287.71	-0.72
3/	389	P5 ×	1307.26 1290.31	~16.95	3 27 88	1295,90	5.59	1
38	390	20 ×	1305.55 1292.5/	-13.97	85	1285.74	-6.83	
39	439	P/ *	1304.15 1293.21	-10.94	7 30 88	1290.40	-2.81	
40	500 600	PO *	1299.79 1291.97	-7.82	· · · · /2	1305.77	13.80	
41	209	P9 *	1290.05 1291.20	-0./9	1 11 8/	1286.25	-5.01	
42	09Z	P10 *	1299.05 1291.30	-/./0	/5	1298.40	/.04	
4.) Л.А	407 504	P11 *	1302.33 1294.56	-7.95	. 78	1305.90	11.32 1293.30	-1.28
44	094 740	PIO ~ D17 *	1290.42 1290.94 1906 AE 1990 91	-/.40	00	1299.24	8.30	
ч. ЛА	740 780	ייי דיין דייי	1200.40 1209.31	-/.14	4 24 0/ 0 0c 0c	1290.90	1.59	
40 Λ7	740 676	D10 *	1207 00 1209.31	7 20	0 20 80	1200.25	-1.UD	
47 48	685	D23 *	1207 36 1203.09	-1.39	1 24 20	1200.00	-3.09	0.00
40	566	P24 *	1301 54 1202 62	-4.2/	1 24 /0	1310 00	0.91 1285.00	-8.09
50	568	P25 *	1302 55 1200 50	-5.21	6 2 04	1010.00	11.0/	
51	568	P26 *	1302.00 1299.00	-2.30	10 2 00	1293.00	-0.00 9 15 1900 04	0
52	571	120 127 *	1302.33 1233.00	2 56	10 2 00	1297.40	-2.13 1290.04	-9,00
53	572	P28 *	1304.23 1300.07	-3.30	00 00 7	1312 00	10.23	
50 50	750	p20 *	1205.21 1201.09	-3.01	/ ÖZ	1204 00	3 00 1000 00	2 10
55	816	P32 *	1202.04 1200.02	-4.70	00	1000,00	J.02 1200.00	~2.40
56	818	P33 *	1203,16 1200.03	-2.01	. 09	1277.07	-12.30	
57	821	P34 *	1204 42 1202 26	-2.30	70 12 70	1212 00	-14.77	
58	961	P36 *	1298 87 1208 97	0 00	16 /Υ Γς 1Λ-07	1070 20	20.04	
59	827	P37 *	1299 64 1302 /5	2 21	5 IV 0/ 7 57:07	12/0.00	-20.37	
60	714	DMG1 *	1296.32 1287 27	_9 05	1 11 97	1276 25	-4.55	
61	712	DMG4	1296,30 1288 22	-3-03	6 0 96	12/0.23	-11.02	
62	712	DMG5 *	1296.30 1288.22	_8.08	7 7 96	1200.00	2 12	
63	635	DMG6	1297.32 1200.21	-6.61	2 7 00 RR	1200 50	8 70	
64	814	J₩3	1291.67 1289.66	2 01	11 0 80	1281 10	_8 56	
65	648	JW4	1300.38 1297.63	-2.75	7 25 89	1291.65	-5.98	

Remark * : Observed groundwater level is uncertain

Storage Coefficient S= 0.0002 Leakage Permeability = 0.00033 m/day Steady Condition (year 1989)

NO.	NOD	E NAME	H(1983) H((CAL)	DRAWDOWN	DAT	E H(OBS.)	ERR	H(PRES.)	ERR
			<u>(m)</u> (R	n)	(m)			(m) (OBS-4	CAL)	(m) (Pl	RESCAL)
1	278	883	1313.45 12	293.01	-20.44	3 :	30 84	1314	.13	21.12	1297.44	4.43
2	280	884	1311.23 12	291.42	-19.82	12	26 84	1311	.01	19.59		
3	336	886	1308.61 12	288.59	-20.03	4	13 84	1308	.63	20.04		
4	284	WH03A	1308.89 12	294.36	-14.53	2	72	1308	.79	14.43		
5	335	BB5	1309.72 12	88.56	-21.17	1	18 85	1308	.14	19.58	1292 18	3 62
6	388	888	1308.73 12	87.50	-21.23	9	7 84	1307	88	20 38	1202410	5102
7	284	8801 D	1308.89 12	94 36	-14.53	2	2 72	1305	70	11 43	1202 33	2 03
א	437	887	1305.70 12	86 84	-18 95	2	10 95	1303	58	16 74	1232133	~2.0J
a	285	.142	1308 62 12	06 30	_12 32	8	23 80	1000	. 50	10.74	1007 10	0.10
10	494	. IWI /012	1304 00 12	00.07	12,52	0.0	01 00	1210	60	10 62	1207.12	~9.10
11	202	0/17/012	1309.03 12	101 67	0 00	9 / E	7 03	1010	-00 - 60	10.03	1200.00	-2.29
10	203	0/2	1303.37 13	00.07	11 00		1 04	1305	-00	10.93		
12	294	DVA	1210.01 12	39.39	11.22	2	0 04	1323	./1	20.12		
10	290	DK4 DK6	1007 00 12	90.41	-11.04	4	00 04	1325	.92	27.51		
14	347	UKO	1307.30 12	97.04	-9.52	1 4	29 84	1311	•20.	13.30	1303.51	5.6/
15	399	UKO	1307.15.12	90.15	-11.02	12.2	8 83	1308	.14	12.01		
10	440	UKI	1305.02 12	90.32	-8.70	1 1	/ 84	1307	•56 ÷	11.24	1294.59	-1.73
17	345	UK8 *	1307.05 12	98.28	-8.78	3	1 84	1303	.60	5.32		-
18	352	JKI	1309.66 13	00.87	-8.79	5 2	2 84	1314	.97	14.10		
19	19	WH07	1339.18 13	31.17	-8.01	5	3 72	1344	.00	12.83		
20	62	GK1	1334.47 13	21.93	-12.54	12 2	4 85	. 1336	.49	14.56	1326.67	4.74
21	83	GK2	1333.98 13	22.27	-11.71	53	1 84	1333	.77	11.50		
22	60	GK3	1334.64 13	21.43	-13.21	7	4 84					
23	61	GK4	1334.25 13	22.33	-11.92	7 1	5 85	1337	. 66	15.33	1321.42	-0.91
24	41	GK5	1334.92 13	25.44	-9.49	6	8 84	1337	.84	12.40	1330.70	5.26
25	198	MH2	1321.77 12	99.97	-21.81	10 1	8 84	1322.	.03	22.06		
26	200	MH7 *	1318.67 13	02.51	-16.16	11	4 85	1322	. 62	20.11	1297.81	-4.70
27	250	MH3	1317.38 12	93.89	-23.49	11 2	6 84	1322	.73	28.84		
28	305	MH4	1315.17 12	96.52	-18.65	. 11	1 85	1323.	.93	27.41		
29	306	MH5	1313,99 12	97.65	-16.34	41	385	1319.	.96	22.31		
30	359	MH6	1312.46 12	98.25	-14.21	5	4 85	1317.	.50	19.25	1308.44	10.19
31	461	BH1	1309.08 12	96.22	-12.86	12	8 84	1321.	12	24.90		
32	363	BH3	1313.63 12	99.40	-14,24	2	3 85	1320.	89	21,49	1308.04	8.64
33	362	BH4	1313.17 12	99.32	-13.85	22	6 85	1320.	17	20.85	1305.70	6.38
34	459	WH05A	1308.18 12	98.10	-10.08	3	8 72	1311.	23	13.13	1308.79	10.69
35	1080	PH2	1315.83 13	08.66	-7.16	21	2 77				1248.34	-60.32
36	585	P2*-	1302.99 120	87.21	-15.78	81	7 84	1288.	70	1.49	1287.71	0.50
37	389	P5 *	1307.26 128	88.35	-18.91	3 2	7 88	1295.	90	7.55	1201111	0.00
38	390	P6 *	1306.55 129	90.70	-15.84		85	1285.	74	_4 96		
39	439	P7 *	1304.15 129	91.33	-12.82	73	0.88	1290	40	-0.93		
40	553	P8 *	1299 79 129	90 23	_9 56		72	1305	77	15 54		
41	580	pq *	1298 05 12		-8.56	1 1	1 87	1286	25	.3.24		
42	592	P10 *	1299.05 128	39.55	-9.50		75	1208	10	8.85		
43	487	D11 *	1302 53 120	22 76	_0 77		78	1200.	00	13 14	1203 30	0.54
4.5	504	D15 *	1208 42 129	20.02	-9.77		20	1200	24	10.20	1530.00	0.34
45	740	D17 *	1206 46 120	17 83 ·	-9.40	1 2	1 87	1299.	24 00	3 07		
46	740	D18 *	1206 45 129	17 83	-8.62	8 2	- 0/ 6 86	1290.	25	0 42		
40	676	010 *	1207 08 129	7 27	-0.02	10 2	000	1200.	20	1 97		
77 AQ	695	DJ3 *	1207 36 120	0 74	-5.01	10 20	007 87Ω	1200.	00	-1.27	1205 00	E 74
40	566	F2.3 D2A *	1207.00 120	15 Å2	-6.12	7 2	1 70	1310	50 50	15 00	1203.00	-3.74
50	568	D25 *	1302 55 120	6 03	-6 53	6 .	2 86	1203	00	3 03		
50	568	026 ×	1302.55 120	0.03	6 53	10 1	2 96	1207	16 16	1 49	1200 04	£ 00
52	571	027 *	1304 23 120	0.03	7 36	10 4	200	1237.	40 00	14 02	1290.04	-3.90
52	571	Γ <i>L</i> / D29 *	1304 60 120	17 60	6.00	7	00	1217	90 00	14.00		
JJ EA	750	020 *	1205 81 129	20.00	6 91	'	02	1204	00	19.40	1300 66	0.00
54 EE	750	FZ9 *	1293.01 120	0.99	2 0.01		00	1077	90 07	2.91	1200.00	-0.39
00 66	010 010	175 *	1202 10 120	10 6A	-3.0Z		09 70	12//.	07 · 00	-11.04		
00 57	010	634 ¥	1204 42 100	17.04	-3.32	10	70	12/0.	00 -	-11.04		
3/ EO	021	rJ4 " D26 +	1294.42 129	1C.JL	-6.11	12	79	1020	50 90	21.59		
30	901	r30 °	1200 64 129	0.04	~0.03	5 1(10/	12/8.	ro ∪c	-20.34		
59	6Z/	r3/ *	1299.04 130	12.24	2.01	1 21	07	1297.	50	-4./4		
00	/14	UMbi *	1290.32 128	94.90	-11,30	1 1	18/ 100	12/6.	25	-8.71		
01	/12	UMG4	1290.30 128	0.03	-10.28	b 9	1 80	1285.	68	-0.35		
bΖ	/12	DMG5 *	1296.30 128	0.03	-10.28	77	86	1290.	65	4,62		
03	035	DMP0	1297.32 128	1.45 n n	-9.8/	11.	88	1299.	50	12.05		
04. 66	814 670	JWJ	1291.0/ 128	0.01	-2.80	11 5	· 69	1281.	10	-/./1		
υD	040	JW4	1200-20 158	-+-20	-0.40	1 25	09	15211	บว	-3.30		

Remark * : Observed groundwater level is uncertain

CONDITIONS FOR OPTIMIZATION

·····					<u> </u>
No.	Node	Name	Limits on	Elevation (m)	Pump Capacity
			Pump	Upper limit	(m ³ /day)
			Elevation	of Aquifer	
1	231	BB2	1294.0	1302.2	1728.0
2	278	BB3	1291.0	1279.7	3456.0
3	280	BB4	1292.0	1277.8	3168.0
4	336	BB6	1283.0	1266.0	3602.0
5	335	BB5	1275.0	1269.6	3168.0
6	388	BB8	1276.0	1244.8	2952.0
7.	284	BBLD	1285.0	1273.7	1368.0
8	437	BB7	1275.0	1199.1	2952.0
9	480	BALAJU	1265.0	1195.5	1000.0
32	293	DK2	1305.0	1317.9	- "
33	446	DK1	1305.0	1277.3	-
1.0	294	DK3	1305.0	1317.5	504.0
11	295	DK4	1317.0	1318.3	1128.0
12	347	DK6	1300.0	1299.4	720.0
13	399	DK5	1295.0	1290.7	1560.0
14	62	GK1	1300.0	1315.9	2760.0
15	83	GK2	1314.0	1318.0	2424.0
16	60	GK3	1314.0	1316.7	1992.0
17	61	GK4	1307.0	1315.9	1440.0
18	41	GK5	1327.0	1319.9	1440.0
19	198	MH2	1299.0	1280.1	3456.0
20	200	MH7	1302.0	1280.2	2160.0
21	250	MH 3	1293.0	1280.1	3120.0
22	305	MH4	1310.0	1278.7	3024.0
23	306	MH 5	1278.0	1271.8	3456.0
24	359	MH6	1294.0	1273.8	2400.0
28	1080	PH2	1225.0	1163.1	2900.0
29	1064	PH1	1245.0	1167.3	864.0
65	414	BHOLD	1306.0	1263.8	1600.0
25	461	BH1	1306.0	1264.2	1283.0
26	363	BH3	1288.0	1265.3	1473.0
27	362	BH4	1284.0	1266.6	1300.0

OPTIMUM PUMP OPERATION OF EXISTING WELLS (1/5)

TABLE E-4.2

OPTIMUM PUMP ABSTRACTION= 21845.0 m³/day WELL LOSS : 30 % OF TOTAL DRAWDOWN

NAME	PUMP CAPACITY (m ³ /day)	OPTIMUM CASE (m ³ /day)	TOTAL HEAD (m)	CRITICAL EL. (m)	ALLOWANCE (m)	DRAWDOWN (m)	(m) (m)
BB2	1728.000	289.344	1302.160	1302.160	0.000	10.320	3.093
BB 3	3456.000	1318.633	1291.000	1291.000	0.000	25.003	8.059
BB4	3168.000	206.666	1287.000	1287.000	0.000	25.710	7.848
BB6	3602.000	1888.556	1283.000	1283.000	0.000	25.945	7.423
BBS	3168.000	3168.000	1278.893	1275.000	3.893	31.500	9.309
338	2952.000	2952.000	1279.242	1276.000	3.242	29.869	9.147
BALAJU	1000.000	1000.000	1274.687	1265.000	9.687	32.500	9.003
GKI	2760.000	49.123	I324.286	1315.910	8.375	13.937	4.820
GK2	2424.000	430.414	1318.000	1318.000	0000	19.621	5.805
GK3	1992.000	1310.305	1316.690	1316.690	000-0	21.364	6.325
GK4	1440.000	0.000	1324.772	1315.910	8.862	13.096	4.886
GK5	1440.000	0.000	1327.000	1327.000	0 000	11.560	4.167
MH3	3120.000	2519.153	1293.000	1293.000	0.000	33.197	11.834
MHS	3456.000	3456.000	1297.686	1278.000	19.686	22.456	8.636
VH7	2160.000	1656.888	1302.000	1302.000	0.000	24.547	8.069
PH2	1600.000	1600.000	1276.792	1225.000	51.792	29.564	8.866

OPTIMUM PUMP OPERATION OF EXISTING WELLS (2/5)

TABLE E-4.2

OPTIMUM PUMP ABSTRACTION= 18857.1 m3/day

WELL LOSS : 40 % OF TOTAL DRAWDOWN

WN WELL LOSS	(H)	0 4.124	3 10.745	0 10.464	7 9.623	9 13.092	3 13.085	7 13.175	6.449	1 7.740	2 8 409	0 6.504	0 5.556	7 15.779	9 12.324	7 10.759	0 13.792
DRAWDO	(E)	10.32	25.00	25.71	25.25	33.19	32:09	35.42	13.99	19.62	21.30	13.07	11.56	33.19	24.47	24.54	34.49
ALLOWANCE	(H)	0.000	0.000	0.000	0.688	2.194	1.018	6.760	8.320	000 0	0.062	8.888	0.000	0.000	17.663	0000	46.866
CRITICAL EL.	(H)	1302.160	1291.000	1287.000	1283.000	1275.000	1276.000	1265.000	1315.910	1318.000	1316.690	1315.910	1327.000	1293.000	1278.000	1302.000	1225,000
TOTAL HEAD	(m)	1302.160	1291.000	1287.000	1283.688	1277.194	1277.018	1271.760	1324.230	1318.000	1316.752	1324.798	1327.000	1293.000	1295.663	1302.000	1271.866
OPTIMUM CASE	(m ³ /day)	309.790	861.475	0.000	1208.714	3168.000	2952.000	1000.000	0.000	359.854	1072.479	0.000	0.000	1766.730	3456.000	1102.065	1600.000
PUMP CAPACITY	(m ³ /day)	1728.000	3456.000	3168.000	3602.000	3168.000	2952.000	1000.000	2760.000	2424.000	1992.000	1440.000	1440.000	3120.000	3456.000	2160.000	1600.000
NAME	• • •	BB2	BB3	BB4	BB6	BB5	BB8	BALAJU	GKJ	GK2	GK3	GK4	GK5	MH3	MHS	VH7	PH2

OPTIMUM PUMP OPERATION OF EXISTING WELLS (3/5)

1000

TABLE E-4.2

OPTIMUM PUMP ABSTRACTION= 15631.5 m³/day WELL LOSS : 50 % OF TOTAL DRAWDOWN

NAME	PUMP_CAPACITY (m ³ /day)	OPTIMUM CASE (m ³ /day)	TOTAL HEAD (m)	CRITICAL EL. (m)	ALLOWANCE (m)	DRAWDOWN (m)	WELL LOSS (II)
BB2	1728.000	346.072	1302.160	1302.160	0.000	10.320	5.155
BB3	3456.000	468.474	1291.000	1291.000	0.000	25.003	13.431
BB4	3168.000	000-0	1287.000	1287.000	0 000	25.710	13-080
BB6	3602.000	510.471	1285.171	1283.000	2.171	23.774	11.287
BBS	3168.000	3168.000	1275.881	1275.000	188.0	34.512	17.021
BBS	2952.000	2444.399	1276.000	1276.000	0.000	33.111	16.865
BALAJU	1000.000	1000.000	1268.539	1265.000	3,539	38.648	18.079
GK1	2760.000	0.000	1324.038	1315.910	8.128	14.184	8.157
GK2	2424.000	326.010	1318.000	1318.000	0.000	19.621	9.675
GK3	1992.000	745.197	1317.224	1316.690	0.534	20.830	10.275
GK4	1440.000	0.000	1324.872	1315.910	8.962	12.996	8.093
GK5	1440.000	0.000	1327.000	1327.000	0.000	11:560	6.945
MH3	3120.000	1016.882	1293.000	1293.000	0.000	33.197	19.723
MH5	3456.000	3456.000	1292.850	1278.000	14.850	27.292	16.811
MH7	2160.000	550.023	1302.000	1302.000	0.000	24.547	13.448
PH2	1600.000	1600.000	1264.970	1225.000	39.970	41.386	20.688

OPTIMUM PUMP OPERATION OF EXISTING WELLS (4/5)

TABLE E-4.2

OPTIMUM PUMP ABSTRACTION= 11865.9 m3/day

WELL LOSS : 60 % OF TOTAL DRAWDOWN

NAME	PUMP CAPACITY	OPTIMUM CASE	TOTAL HEAD	CRITICAL EL.	ALLOWANCE	DRAWDOWN	MELL LOSS
	(m ³ /day)	(m ³ /day)	(H)	(m)	(H)	(m)	(Ħ)
BB2	1728.000	391.614	1302.160	1302.160	0.000	10.320	6.289
BB3	3456.000	58.162	1291.000	1291.000	000 0	25.003	16.386
B B4	3168.000	0.000	1287.000	1287.000	0.000	25.710	15.958
BB6	3602.000	179.948	1287.025	1283.000	4.025	21.920	12.639
BBS	3168.000	2853.266	1275.000	1275.000	000 0	35.393	21.303
338	2952.000	1653.033	1276.000	1276.000	0.000	33.111	20.576
BALAJU	1000.000	915.188	1265.000	1265.000	0.000	42.187	24.215
CK1	2760.000	0.000	1323.715	1315.910	7.805	14.507	10.149
GK2	2424.000	287.566	1318.000	1318.000	0.000	19.621	11.804
GK3	1992.000	390.335	1317.997	1316.690	1.307	20.057	12.064
GK4	1440.000	0.000	1324.995	1315.910	9.085	12.873	9.799
GK5	1440.000	0.000	1327.000	1327.000	0.000	11.560	8.473
MH3	3120.000	80.869	1293.972	1293.000	0.972	32-225	23.470
MHS	3456.000	3456.000	1288.328	1278.000	10.328	31.814	23.268
VH7	2160.000	0.000	1302.000	1302.000	0.000	24.547	16.407
PH2	1600.000	1600.000	1253.300	1225.000	28.300	53.056	32.358

OPTIMUM PUMP OPERATION OF EXISTING WELLS (5/5)

TABLE E-4.2

OPTIMUM PUMP ABSTRACTION= 7555.3 m³/day

WELL LOSS : 70 % OF TOTAL DRAWDOWN

NAME	PUMP CAPACITY (m ³ /dav)	OPTIMUM CASE (m ³ /day)	TOTAL HEAD (m)	CRITICAL EL.	ALLOWANCE (m)	DRAWDOWN (m)	WELL LOSS
BB2	1728.000	466.894	1302.160	1302.160	0.000	10.320	7.217
BB3	3456.000	0.000	1291.000	1291.000	0.000	25.003	18.804
BB4	3168.000	0.000	1288.859	1287.000	1.859	23.851	17.010
BB6	3602.000	0.000	1291.979	1283.000	8.979	16.966	11.036
BBS	3168.000	1241.428	1279.222	1275.000	4.222	31.171	21.490
BB8	2952.000	1877.334	1276.000	1276.000	0.000	33.111	23.612
BALAJU	1000.000	631.161	1265.000	1265.000	0.000	42.187	27.788
GKI	2760.000	000-0	1323.289	1315.910	7.379	14.933	11.944
GK2	2424.000	249.017	1318.000	1318.000	0.000	19.621	13.546
GK3	1992.000	126.784	1318.867	1316.690	2.177	19.187	13.235
GK4	1440.000	0.000	I325.135	1315.910	9.225	12.733	11.146
GKS	1440°000	0.000	1327.000	1327.000	0.000	11.560	9.723
NH3	3120.000	0.000	1292.991	1293.000	600°0-	33.206	27.619
MHS	3456.000	1362.782	1293.386	1278.000	15.386	26.756	23.160
VH7	2160.000	0.000	1302.000	1302.000 [°]	0.000	24.547	18.828
PH2	1600.000	1600.000	1237.387	1225.000	12.387	68.969	48.27I

29 Е-

Leakage Permeability = 0.00033 m/day Abstraction Condition : OPTIMUM CASE

NO.	NODE	NAME	H(CAL)	DATE	H(OBS.)	ERR	H(PRES.) ERR
			(m)		(m) ໌	(OBSCAI	.) (m)	(PRES, -CAL)
				1. A. A.	• •			· · · · · · · · · · · · · · · · · · ·
1	278	BB3	1304.19	3 30 84	1314.13	9,94	1297.40	-6.79
2	280	884	1301.12	12 26 84	1311.01	9,89		
3	336	886	1299.00	4 13 84	1308.63	9.63		
4	284	WH03A	1303.62	272	1308.79	5.17		1 - E
5	335	BB5	1294.27	1 18 85	1308.14	13.87	1292.10	-2.17
- δ	388	BB8	1292.82	9784	1307.88	15.06		
7	284	BBOLD	1303.62	2 12 72	1305.79	2.17	1292.30	-11.32
8	437	887	1295.52	3 19 85	1303.58	8.06		
9	285	JW2	1304.10	8 23 89			1287.10	-17.00
10	484	JW1/B12	1296.92	9 24 89	1310.60	13.68	1288.60	-8.32
11	293	DK2*-	1308.89	5784	1319.60	10.71		
12	294	DK3	1308.31	2 13 84	1325.71	17.40		
13	295	DK4	1307.44	4 30 84	1325.92	18.48	1.1	,
14	347	DK6	1305.81	1 29 84	1311.20	5.39	1303.50	-2.31
15	399	DK5	1304,68	12 28 83	1308.14	3.46		
16	446	DK1	1303.86	1 17 84	1307.56	3.70	1294.50	-9.36
17	345	DK8 *	1305.72	3 1 84	1303.60	-2.12		
18	352	JK1	1308.27	5 22 84	1314.97	6.70		
19	19	WH07	1336.17	5 3 72	1344.00	7.83		
20	62	GK1	1331.38	12 24 85	1336.49	5.11	1326.60	-4.78
21	83	GK2	1328.92	5 31 84	1333.77	4.85		
22	60	GK3	1328.71	7 4 84				
23	61	GK4	1331.08	7 15 85	1337.66	6.58	1321.40	-9.68
24	41	GK5	1332.79	6884	1337.84	5.05	1330.70	-2.09
25	198	MH2	1314.58	10 18 84	1322.03	7.45		·
26	200	袖7 *	1315.43	11 4 85	1322.62	7.19	1297.80	-17.63
27	250	MH3	1308.74	11 26 84	1322.73	13.99		
28	305	MH4	1308.10	11 1 85	1323.93	15.83		
29	306	MH5	1305.28	4 13 85	1319.96	14.68		
30	359	MH6	1306.98	5 4 85	1317.50	10.52	1308.40	1.42
31	461	BH1	1307.52	12 8 84	1321.12	13.60		·
32	363	BH3	1309.61	2 3 85	1320.89	11.28	1308.00	-1.61
33	362	BH4	1309.10	2 26 85	1320.17	11.07	1305.70	-3.40
34	459	WH05A	1306.16	3 8 72	1311.23	5.07	1308.70	2.54
35	1080	PH2	1282.50	2 12 77			1248.30	-34.20
36	585	P2 -~-*-	1290.42	8 17 84	1288.70	-1./2	128/./0	-2.72
37	389	P5 *	1295.71	3 27 88	1295.90	0.19		
38	390	P6 *	1297.57	85	1285.74	-11.83		
39	439	P7 *	1297.64	7 30 88	1290.40	-/,24		
40	553	P8 *	1294.75	/2	1305.//	11.02		
41	589	pg *	1293.68	1 11 8/	1286.25	-/.43		
42	592	P10 *	1293.82	/5	1298.40	4.58	1000 00	4 55
43	487	P11 *	1297.85	78	1305.90	8.05	1293.30	-4.55
44	594	P15 *	1293.52	80	1299,24	5.72		
45	740	P1/ *	1290.72	4 24 87	1200.90	0.18		
40	/40	PIO *	1290.72	0 20 00	1208,25	-2,4/		
4/	676	P19 *	1291.57	10 20 87	1285.00	-5.5/	100r 00	0.17
48	085	P23 *	1294.17	1 24 78	1300.00	2.03	1203.00	-9.17
49	500	1724 °	1299.99	1 21 80	1310,50	7.04		
50	500	PZ3 ^	1200.04	10 2 00	1293.00	-7.94	1200 00	10.04
21	500	P20 *	1202.14	10 2 00	1257.40	-3.49	1290.00	-10.94
52	571	1727 ° 1590 ¥	1202.10	7 03	1317 00	0./4		
50 · 50 ·	372 760	Γ∠Ο " D20 ¥	1202.00	/ 02 02	1204 00	2017) 20173	1222 60	_3 /8
54 EC	7 30 91 6	דבש " 1020 א	1292.00	00	1234.90	۲۰۰۲ ۲۰۵۵ L	1200-00	-3.40
CC A3	010 Ω1Ω	FJZ ~ D33 *	1201 16	09 70	1277.07	-13.00		
30 57	010 821	p3/ *	1203 91	12 70	1212 00	20.00		
57 58	061	P36 *	1200 11	፲ር 73 5 10 ዓ7	1278 50	20.09		
00 01	501 827	037 ×	1302 70	7 27 87	1207 50	-20.01	•	
60 60	71 /	DMG1 *	1200 34	1 11 97	1276 26	-3.29		
61	719	DMGA	1200.04	5 0 26	1285 69			
62	712	DMC5 *	1200.04	7 7 96	1200.65	-0.20		
20 62	717	DMC6	1201 12	, , 00 88	1200 60	-0.29 לח פ		
64	Q1/1	.1W2	1200 2/	11 0 R0	1281 10	_Q 1/		
65	648	JW4	1298.47	7 25 89	1291.65	-6.82		
~~~	0.0	···· •						

FIGURES





![](_page_69_Figure_0.jpeg)

![](_page_70_Figure_0.jpeg)

![](_page_71_Figure_0.jpeg)


E- 36

