CHAN PANADA POLITICA CHEMINA CONTRACTOR AND ANALYSIS OF THE CONTRACTOR ANALYSIS OF THE CONTRACTOR AND ANALYSIS OF THE CONTRACTOR ANALYSI

CHILLY CHILL CHILL 21

ALIKE ZOGORIZOWY ANKIN ZODO OPIEMIE EKONECTE IY ANKIN ZODO COMPETE KOM SUMVOY ANKIN ZOGORIZOM KAKALIMA PEKKENGIY

DECEMBERS 990

THE REPUBLIC OF TURKEY ELEKTRIK İŞLERİ ETÜD İDARESİ GENEL MÜDÜRLÜĞÜ

FEASIBILITY STUDY ON ERMENEK HYDROELECTRIC POWER DEVELOPMENT PROJECT

VOLUME 4 SUPPORTING REPORT 2

ANNEX-C Hydrology

ANNEX-D Optimization Study

ANNEX-E Compensation Survey

ANNEX-F Environmental Impact Study

21832

DECEMBER 1990

JAPAN INTERNATIONAL COOPERATION AGENCY
TOKYO, JAPAN

LIST OF VOLUMES

Volume 1 Summary

Volume 2 Main Report

Volume 3 Supporting Report 1

ANNEX-A Geology

ANNEX-B Construction Materials

Volume 4 Supporting Report 2

ANNEX-C Hydrology

ANNEX-D Optimization Study

ANNEX-E Compensation Survey

ANNEX-F Environmental Impact Study

Volume 5 Drawings

マイクロ フィルム作成

ANNEX-C HYDROLOGY

ANNEX-C HYDROLOGY

TABLE OF CONTENTS

CHAPTER	1. INTRODUCTION	Page C-1
1.1 1.2	Scope of Work	C-1 C-1
1.3	Previous Studies	C-2
1.4	Hydrometeorological Stations and Available Data	C-2
CHAPTER		C-4
2.1	General Climate	C-4
2.2	Temperature, Relative Humidity	C-5
2.3	Wind Speed	C-6
2.4	Evaporation	C-6
CHAPTER	3. RAINFALL STUDY	C-7
3.1	Available Rainfall Data	C-7
3.2	Mean Annual Rainfall	C-7
3.3	Mean Monthly Rainfall Pattern	C-7
3.4	Depth-Area Analysis	C-8
3.5	Depth-Duration Analysis	C-8
CHAPTER	4. RUNOFF STUDY	C-10
4.1	Available Runoff Data	C-10
4.2	Reliability of the Runoff Records	C-11
4.3	Mean Annual Runoff	C-14
4.4	Mean Monthly Runoff Pattern	C-15
4.5	Runoff Coefficients	C-15
4.6	Extension of the Mean Monthly Runoff	
4 7	Series Theless Coming of	C-15
4.7	Estimation of Monthly Inflow Series of the Ermenek Reservoir	C-16
4.8	Estimation of Monthly Inflow Series	Ç 10
4 1 414	of Nadire, II-A, II-B	
	and Gezende Reservoirs	C-18
4.9	Estimation of Monthly Inflow Series	
1 1	of the Erik Creek	C-19
CHAPTER	5. FLOOD STUDY	C-21
5.1	Available Flood Data	C-21
5.2		C-21
	Frequency Analyses	· .
	and Americal Restriction Wilder Maliana	C-22
	on Annual Maximum Flood Volume	U-22
5.4	on Annual Maximum Flood Volume	

CHAPTER	DERIVATION OF PROBABLE MAXIMUM FLOOD	C-24
6.7 6.8 6.9 6.10	Persisting 12-Hr Storm Dew Points Storm Dew Point on 31st January 1975 Maximum Dew Point Moisture Maximization Factor Probable Maximum Precipitation Seasonal Variation of PMP Unitgraph Rainfall Loss Snow-Melt Base Flow Probable Maximum Flood of the Proposed Ermenek Dam	C-24 C-25 C-26 C-27 C-28 C-29 C-30 C-32 C-33 C-33
CHAPTER :	sediment and water Quality Study	C-35
7.2	Available Sediment Data	C-35 C-35 C-36 C-37

	LIST OF TABLES	·· ·
		PAGE
Table C1	STREAM GAUGING STATIONS OF EIE AND DSI IN THE GÖKSU RIVER BASIN	C-39
Table C2	MEAN MONTHLY PRECIPITATION RECORDS IN AND AROUND THE ERMENEK BASIN	C-40
Table C3	MONTHLY MEAN, MAXIMUM AND MINIMUM TEMPERATURE VALUES FOR ERMENEK METEOROLOGICAL STATION, °C	C-42
Table C4	MONTHLY MEAN RELATIVE HUMIDITY VALUES FOR ERMENEK METEOROLOGICAL STATION, %	C-43
Table C5	MONTHLY MAXIMUM WIND VELOCITY AND ITS DIRECTION AT MUT METEOROLOGICAL STATION, M/SEC	C-45
Table C6	SEASONAL DISTRIBUTION OF THE MEAN ANNUAL PRECIPITATION IN THE ERMENEK RIVER BASIN .	C-46
Table C7	MONTHLY RUNOFF OF ERMENEK RIVER AT 17-14 .	C-47
Table C8	MONTHLY RUNOFF OF GÖKSU RIVER AT 1702	C-48
Table C9	MONTHLY RUNOFF OF GÖKSU RIVER AT 1712	C-49
Table C10	MONTHLY RUNOFF OF GÖKSU RIVER AT 1714	C-50
Table C11	MONTHLY RUNOFF OF ERMENEK RIVER AT 1715	C-51
Table C12	MONTHLY RUNOFF OF ERMENEK RIVER AT 1719	C-52
Table C13	MONTHLY RUNOFF OF GÖKSU RIVER AT 1720	C-53
Table C14	MONTHLY RUNOFF OF GÖKSU RIVER AT 1722	C-54
Table C15	MONTHLY RUNOFF OF ERMENEK RIVER AT 1723	C-55
Table C16	MEAN ANNUAL RUNOFF AND BASIN PRECIPITATION IN THE GÖKSU RIVER BASIN (1965-1987)	C-56
Table C17	MEAN ANNUAL RUNOFF COEFFICIENTS AND PRECIPITATION LOSSES IN THE GÖKSU RIVER BASIN (1965-1987)	C-57
	COMPUTED LONG-TERM MONTHLY RUNOFF SERIES AT 17-14	C-58
Table C19	ESTIMATED MEAN ANNUAL RUNOFF BY SUB-BASIN FOR THE PERIOD OF 1965-1987	C-59

Table	C20	ESTIMATED MEAN ANNUAL RUNOFF BY SUB-BASIN FOR THE PERIOD OF 1946-1987	C-60
Table	C21	ANNUAL PEAK FLOW OBSERVED AT STATION 17-14	C-61
Table	C22	PROBABLE FLOOD AT STATION 17-14	C-62
Table	C23	MAXIMUM FLOOD VOLUME RECORDED AT STATION 17-14	C-63
Table	C24	PROBABLE FLOOD VOLUME AT STATION 17-14	C-64
Table	C25	DEPTH-DURATION OF PROBABLE MAXIMUM PRECIPITATION	C-65
Table	C26	ESTIMATION OF FLOOD LAG TIME BY JAN. 1971 FLOOD	C-69
Table	C27	ESTIMATION OF FLOOD LAG TIME BY FEB. 1975 FLOOD	C-70
Table	C28	UNITGRAPH FOR ERMENEK DAM ESTIMATED BY JAN. 1971 FLOOD	C-71
Table	C29	UNITGRAPH FOR ERMENEK DAM ESTIMATED BY FEB. 1975 FLOOD	C-74
Table	C3 _. 0	BASIN LAG TIME IN ERMENEK RIVER BASIN	C-77
Table	C31	CALCULATION OF PROBABLE MAXIMUM SNOW MELT HYDROGRAPH AT GÖRMEL BRIDGE	C-78
Table	C32	SUSPENDED SEDIMENT VALUES FOR 1723 STATION	C-79
Table	C33	RESULTED OF CHEMICAL ANALYSIS OF THE WATER SAMPLES COLLECTED AT 1723 ÇAVUSKÖYÜ GAUGING STATION	C-81
	٠,		
		and the first of the second of the second of the second of the second of the second of the second of the second The second of the	
	San Jan		
		c - iv	rayeri (ili e. L

	LIST OF FIGURES	
	antina di kalandari di katandari di kalandari di kalandari di kalandari di kalandari di kalandari di kalandari Barandari di kalandari AGE	
Fig. C1	The Göksu Basin and Isohyet of Annual Precipitation	C-83
Fig. C2	Maximum, Mean and Minimum Temperature at Ermenek	C-82
Fig. C3	Monthly Mean Relative Humidity in Ermenek	C-85
Fig. C4	Monthly Maximum Wind Velocity	C-86
Fig. C5	Estimated Mean Evaporation from Reservoir at Ermenek	C-87
Fig. C6	Monthly Precipitation and Runoff Patterns of the Ermenek Basin	C-88
Fig. C7	24-hr Isohyet During the Storm in 1975	C-89
Fig. C8	Depth-Area Curve of the Storm in 1975	C-90
Fig. C9	Rainfall Depth-Area-Duration Curves for Göksu River Basin by DMI	C-91
Fig. ClO	Depth-Duration Curve of the Storm in 1975	C-92
Fig. C11	Location Map of Steam Gauging Stations around the Dam Site	C-93
Fig. C12	Double Mass Curve of Runoffs at Stations 1723 and 17-14	C-94
Fig. C13	Flow Rating Curves of Stations 1723 and 17-14	C-95
Fig. C14	Relationship of Gauge Heights between Stations 17-14 and 1723	C-97
Fig. C15	Comparison of Rating Curves between Stations 17-14 and 1723	C-98
Fig. C16	Water Level Changes at Station 1723 between 8:00 AM and 4:00 PM	C-99
	Water Level Changes near Station 17-14 between 7:00 AM and 5:00 PM	C-101
	Historical Changes of Estimated Monthly Runoff at 17-14	C-102

				. "
٠	Fig.	C19	Duration Curve of Estimated Monthly Runoff at 17-14	C-103
	Fig.	C20	Historical Changes of Estimated Annual Inflow Series	C-104
	Fig.	C21	Comparison of Dimensionless Mass Curve Between Stations 17-14 and 1720	C-105
	Fig.	C22	Creager Envelop Curves for Estimation of 100-year Flood at Eric Intake	C-106
	Fig.	C23	Flood Hydrograph of Göksu River at 1714 in Dec. 1967	C-107
	Fig.	C24	Flood Hydrograph of Göksu River at 1714 in Jan. 1971	C-108
	Fig.	C25	Flood Hydrograph of Göksu River at 1714 in Dec. 1971	C-109
	Fig.	C26	Flood Hydrograph of Göksu River at 1714 in Dec. 1973	C-110
	Fig.	C27	Flood Hydrograph of Göksu River at 1714 in Feb. 1975	C-111
	Fig.	C28	Dimensionless Graph for Göksu River at 1714 in Dec. 1967	C-112
	Fig.	C29	Dimensionless Graph for Göksu River at 1714 in Jan. 1971	C-113
	Fig.	C30	Dimensionless Graph for Göksu River at 1714 in Dec. 1971	C-114
	Fig.	C31	Dimensionless Graph for Göksu River at 1714 in Dec. 1973	C-115
	Fig.	C32	Dimensionless Graph for Göksu River at 1714 in Feb. 1975	C-116
	Fig.	C33	Seasonal Patterns of Maximum Vapor Pressure	C-117
	Fig.	C34	Depths of Precipitable Water in a Column of Air	C-119
	Fig.	C35		C-120
	Fig.	C36		
			c - vi	

Fig. C37	Estimated Unitgraphs of the Ermenek River by Jan. 1971 Flood	C-122
Fig. C38	Estimated Unitgraphs of the Ermenek River by Feb. 1975 Flood	C-123
Fig. C39	Estimated Lag Times of the Ermenek Basin	C-124
Fig. C40	Probable Maximum Flood for January	C-125
Fig. C41	Probable Maximum Flood for April	C-126
Fig. C42	Rating Curve of Suspended Sediment Load	C-127

TEXT

CHAPTER 1. INTRODUCTION

1.1 Scope of Work

The hydrometeorological study for the Ermenek Hydroelectric Power Development Project consists of the 2 stages; i.e. the preliminary investigation stage and the additional detailed investigation stage. The scope of work for the preliminary investigation stage is as follows.

(1) Site reconnaissance

Siting of hydrological observation stations in and around the Project Area such as water stage gauging stations and discharge observation stations.

(2) Preliminary field survey

Field survey on the general characteristics of the Ermenek River system.

Based on the study results at the preliminary investigation stage, the following work was carried out at the additional detailed field investigation stage.

(1) Discharge observations

Actual flow measurements at the discharge observation stations and the tributaries.

1.2 The Project Area

The Ermenek River rises from the Toros Mountains at about 2,500 m in elevation and takes the streams and creeks such as Gökdere, Kücüksu, Zeyve and Erik. It flows firstly

adias vivije (koji dali ve vrodiša), postave a koji činacije i mete činacije.

towards the south and then towards the east and finally joins with the Göksu River near Mut town at about 100 m in elevation.

The catchment area of Ermenek River is about 3,621 km² and the catchment area of Gezende Dam, which is under construction is 3,159 km². The highest elevation of the catchment area is 2,877 m. Thalweg elevation at the proposed dam site is about 500 m and the average basin elevation is 1,600 m.

About 50% of the catchment area of Ermenek River is covered mainly by juniper type of trees. There are no significant diversions of water withdrawn from the river in all the area of Ermenek River Basin. Therefore, the observed flows at stream gauging stations on the Ermenek River can be assumed as natural flows.

1.3 Previous Studies

Preceding the present feasibility study, the following hydrometeorological study was made by EIE, Department of Hydrological Survey, Division of Project Hydrology in 1985.

(1) Engineering Hydrology Report for Görmel Dam on Ermenek River in Göksu River system (in Turkish)

1.4 Hydrometeorological Stations and Available Data

(1) Rainfall Gauging Stations

Within or around the Ermenek River Basin, there are totally 26 rainfall stations of DMI (State Meteorological Organization) including stations which had been deactivated.

Only 3 stations are located within the Ermenek River basin as follows.

- (A) Göktepe
- (B) Kazançi
- (C) Ermenek

The locations of these stations are shown in Fig. C1.

(2) Stream Gauging Stations

The ETE and DSI gauging stations in the Göksu River Basin, operative or discontinued, are listed in Table C1. The locations of these gauging stations are shown in Fig. C1.

(3) Other Data

The following data are also observed at Meteorological Stations of DMI in the Göksu basin.

- (a) Temperature at Ermenek
- (b) Relative humidity at Ermenek
- (c) Maximum wind velocity and its direction at Mut
- (d) Vapour pressure at Ermenek, Hadim, Alanya and Anamur

CHAPTER 2. METEOROLOGICAL STUDY

2.1 General Climate

General climate in and around the Göksu River Basin are characterized as follows;

- (1) A remarkable difference in climate can be seen between the coastal area along the Mediterranean Sea and the highland area in the central inland. The seasonal pat tern of precipitation in the coastal area along the Mediterranean Sea is generally influenced by the Mediterranean climate, therefore, precipitation, either rainfall or snowfall, mainly occurs in winter and spring when the depression is activated, and the climate in summer is very dry. The climate in highland in the central part of Turkey is a continental climate, which causes a cold wind and a snowstorm in winter, and hot and dry climate in summer.
- (2) The main cause of rainfall and snow in and around the Göksu River Basin is mainly due to the Western Depression, which is moving to the Middle East or Turkey from the west such as Mediterranean Sea or North Africa. There are two types of depression. One runs very fast through the southern part of mountainous area in Turkey, the other runs very slowly and is sometimes stagnant near the Cyprus Island. The former depression occurs mostly in winter, the latter occurs mostly in spring.
- (3) In the Ermenek River Basin, the Mediterranean climate is dominant in lower elevations. The elevation rises rapidly towards the upstream basin and the climate is most likely to be influenced by the altitude. The mean

ground elevation (1,600 m) of the basin indicates that the basin climate falls into a transitional zone from the Mediterranean climate to the continental climate in inland area such as Karaman and Konya.

(4) heavy rainfall occurs along the coastal areas, where it records from 1,000 to 1,600 mm a year. The Ermenek River Basin is sheltered from the south- and north-west winds by the coastal mountain range. Table C2 shows that the average annual rainfalls at the meteorological stations in the Ermenek River Basin are observed between 500 and 900 mm. Precipitation increases towards the west along the river. This area variation observed in precipitation is in agreement with the prevailing wind directions from the south and north-west during storm and with the general topographical features of the area. The areal distribution of the mean annual rainfall is shown in Fig. C1.

2.2 Temperature and Relative Humidity

Temperature is observed at Ermenek Meteorological Station in the Ermenek basin. Monthly mean, maximum and minimum temperature values are shown in Table C3. Monthly patterns of mean, maximum and minimum temperatures are depicted in Fig. C2. As shown in the Fig. C2, mean temperature is 11.8°C varying in a wide range from 3.3°C in January to 22.3°C in July and August. The annual maximum and minimum temperature one 39°C in July and -15°C in January, respectively.

Mean monthly relative humidity at Ermenek Meteorological station is presented in Table C4. Monthly pattern of mean relative humidity is shown in Fig. C3. Relative humidity is high in Winter with the value of more than 60 per cent, and low in Summer less than 40 per cent.

2.3 Wind Speed

Wind speed is observed at Mut Meteorological Station. Monthly maximum wind velocity and its direction are summarized in Table C5, and monthly pattern is depicted in Fig. C4. Maximum wind velocity is generally constant throughout the year except in November with the recorded maximum value (23.2 m/s) during the past 20 years. The direction of the dominant wind is north-west.

2.4 Evaporation

There is no meteorological station which observes evaporation in the Ermenek basin. Evaporation observations are made at Silifke and Karaman Meteorological Stations.

Monthly pattern of evaporation can be generally seen in Fig. C5 which was given by the mean evaporation from reservoir at Ermenek, estimated by EIE.

CHAPTER 3. RAINFALL STUDY

3.1 Available Rainfall Data

Within or around the Ermenek River Basin, there are totally 26 rainfall stations of DMI (State Meteorological Organization), including stations which had been deactivated.

There are 3 rainfall stations being presently operated within the basin as listed below.

- (1) Göktepe
- (2) Kazançi
- (3) Ermenek

The locations of these stations are shown in Fig. C1. Mean monthly and annual precipitation values at the selected stations are summarized in Table C2.

3.2 Mean Annual Rainfall

Mean annual rainfall of the Ermenek River Basin at the Ermenek Dam site is 946 mm (1965-1987), based on the isohyetal map shown in Fig. C1. Table C6 shows the seasonal distribution of the mean annual rainfall in the Ermenek River Basin. It is indicated that approximately 80% of the total precipitation occurs during the winter and spring season (December-May).

3.3 Mean Monthly Rainfall Pattern

Mean monthly rainfall of the Ermenek basin is calculated as an arithmetic mean of the 3 stations (Göktepe, Kazançi and Ermenek) and its pattern is shown in Fig. C6.

3.4 Depth-Area Analysis

Depth-area relation of rainfall for the recorded maximum storm on 31st January in 1975 with a duration of 24 hours was studied. Actual storm started to rain on 30th January and continued to 1st February in and around the Ermenek basin. Duration of the storm is estimated to be 48 hours with a peak on 31st January. Since hourly rainfall data for the storm were not available, 48-hr depth-area analysis was not carried out for the Study.

By constructing the isohyets of the storm on 31st January in 1975, 24-hour depth-area curve for the Ermenek River Basin was given. 24-hr Isohyetal map during the storm in 1975 is shown in Fig. C7. The depth-area curve is shown in Fig. C8. The maximum daily rainfall depth of the 1975 storm for the Ermenek Dam site ($Ca = 2,156 \text{ km}^2$) is estimated at 102 mm.

3.5 Depth-Duration Analysis

A depth-duration curve for Ermenek Dam site was estimated by using depth-area duration analysis performed by DMI for the Göksu River Basin, which is shown in Fig. C9. Depth-duration less than 24 hours was estimated by the depth-duration curve within 24 hours at Antalya, which was adopted for Oymapinar Hydroelectric Power Project by DSI.

The maximum rainfall depth of the 1975 storm for a duration greater than 24 hours was calculated with reference to the DMI's DAD curve, and was adjusted as follows, and the results are shown in Fig. C10.

Duration	Pmax = Max Depth by D			= Pmax	102	-	
(hr)	$2,156 \text{ km}^2$)				88		
12	65				-		
24	88				102	:	
36	121	.*			142	*	
48	138				162	*	
60	144	r in the second		. Di	168	*	
72	160	V		5	187	*	
84	189		the street and the	100	221	*	
96 : 199	216				253	*	:

Note: * means adjusted values.

The maximum rainfall depth with a duration less than 24 hours was estimated below:

Duration (hr)	Depth * (%)	Depth (mm)
Datation (III)		
24	100	102
18	97	99
12	88	90
6	67	68
grie i skrive 2 kgriede kan i j	36	1 - 1 - 1 - 1 - 1 - 37 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
i di kacamatan di r anggaran kacamatan	22	

Note: *) The value is shown as a percentage of the maximum rainfall depth for 24 hr.

The maximum rainfall depth-duration curve of the 1975 storm for the Ermenek Dam site is also shown in Fig. C10.

CHAPTER 4. RUNOFF STUDY

4.1 Available Runoff Data

The EIE and DSI gauging stations in the Göksu River Basin, operative or discontinued, are listed in Table C1. Runoff records at those stations are presented in Tables C7 to C15. Among the EIE stations, some stations had been deactivated due to riverbed changes, and new gauging stations were installed near the respective previous sites. The difference between the catchment areas of the ex- and new stations is small. These stations replaced are as follows;

	Ex-	-station	New Station
(a)	1703	(Even)	1719 (Kirkyalan)
(b)	1705	(Eksiler)	1714 (Karahacili)
(c)	1704	(Selamli)	1720 (Haman)

Also, EfE installed in 1985 a gauging station, No. 1723 (Çavusköyü), on the Ermenek River near the DSI's Station 17-14, which is located 1.75 km upstream from the Görmel Bridge. Location map of stream gauging stations (17-14 and 1723) is shown in Fig. C11. Both Stations measured the flow at the same site downstream from the Çavusköyü village. Staff gauge of 1723 (EIE) is installed at Çavusköyü, and staff gauge of 17-14 (DSI) is located at the Görmel Bridge. Therefore the flows measured by both stations exclude the flows from the Zeyve Creek which is between Çavusköyü village and Görmel Bridge.

4.2 Reliability of the Runoff Records

The daily discharge records at the Çavusköyü village by EIE and DSI are summarized as follows:

Station	Available Period of Records	No. of water level observation per day		
17-14 (DSI)	1965 - 1968 1972 - 1988	1 (8 a.m.)		
1723 (EİE)	1985 - 1988	2 (8 a.m., 4 p.m.)		

The runoff coefficient at Station 17-14 was preliminarily estimated at 0.81 based on the runoff records and estimated basin rainfall (Clause 3.1.1 of the Progress Report 1). The high value of runoff coefficient at 17-14 implied that there is a possibility of overestimating the runoff at 17-14 station. To clarify this matter, a double mass curve of monthly mean discharges at 1723 and 17-14 (1985 - 1988) was constructed as is shown in Fig. C12.

Also a review of the discharge rating curves and runoff and water measurement methods was carried out for 17-14 and 1723 stations. Some observations concerning this matter are summarized below:

(1) Both rating curves for 17-14 and 1723 were constructed originally by DSI and EIE by plotting the runoff measurement records on log-log paper. It was observed that flood flows had been overestimated by both rating curves. But the rating curve of 1723 is more likely to have a higher reliability for the high flow range since it has more samples with high flow measurements than those at 17-14 station. Flow rating curves of both stations 1723 and 17-14 are shown in Fig. C13.

The reliability of rating curves for the low to medium flow range at Stations 1723 and 17-14 was studied using the daily gauge height records available for the 3.5 years' period from April 1985 to September 1988. The gauge heights of Station 17-14 have been read at the Görmel Bridge once a day, while those of Station 1723 at the upstream station twice a day.

The gauge heights read at 8 a.m. at the above 2 different places were plotted in Fig. C14 to see the correlation between the 2 stations. A regression curve was drawn by eye. Although the distribution range is rather wide for the medium to high flows, it is expected that the regression curve represents the correlation on the average basis.

In order to compare the rating curves of the 2 stations using the above relationship of gauge heights, the flow rating curve of Station 1723 was converted into a curve (herein referred to as the reduced H-Q of 1723) with the ordinate of gauge heights at Station 17-14 (Görmel Bridge).

Fig. C15 shows that the reduced H-Q of 1723 is almost fitting the DSI's rating curve for the Station 17-14. This implies that both the rating curves, even though the gauge heights have been observed at the different places and the flow measurements have been made by the different organizations (17-14 by DSI, 1723 by EIE), will give almost the same flow, on the basis of average, against the gauge heights read at 8 a.m.

It is judged that the rating curves of Stations 17-14 and 1723 have a high reliability for the low to medium flow range, as far as these are applied to the gauge heights read at 8 a.m., or probably read at the same time.

- (2) Being located at the mouth of gorge, water level at Station 17-14 may be more influenced by the flow from the Zeyve Creek in the rainy seasons when compared with water level at Station 1723.
- (3) Even though the diurnal variability of flows cannot be checked since hourly discharge records are not available, it was observed that during rainy season the water levels measured at 8 a.m. are relatively greater than the water levels at 4 p.m. for 1723 station. Water level changes at station 1723 between 8 a.m. and 4 p.m. are shown in Fig. C16. It suggests that there may be a periodical change of the water level with a period of one day, especially in the spring months.

Since the reason of this phenomenon is not known, it was proposed by the Study Team that EIE carry out hourly observations of gauge height for 2 or 3 consecutive days. These observations may be made several times in the spring months, depending on the river flow and weather conditions. Results of the EIE's water level observations from 26th May to 31st May, 1990 indicated clearly that the diurnal change of the flows are observed and the water levels measured in the morning (7 a.m.) and greater than the water levels in the afternoon (5 p.m.). The diurnal change of the water levels are shown in Fig. C17.

The past flow records of Station 17-14 had been obtained by converting a gauge height read at 8 a.m. into a flow, which had been treated as the mean flow of the day. This can cause a larger daily mean flow, on those days in the spring months, than that of Station 1723, which was obtained using an average gauge height of 8 a.m. and 4 p.m. It is, therefore, judged that the gauge height reading once a day at 8 a.m. be a reason of the overestimation of the long-term average flow at

Station 17-14.

It is judged that the runoff records of Station 1723 are more reliable than those of Station 17-14.

Mean monthly runoff records of Station 17-14 for the period of 1965-1968 and 1972-1984 were reduced by the following way, to get rid of the above-mentioned overestimate:

Q' 17-14 = Q 17-14 x
$$\frac{Q 1723 (85-88)}{(up to 84) (up to 84) Q 17-14 (85-88)}$$

= 0.843 Q 17-14 (up to 84)

where

Q' 17-14 = Revised mean monthly runoff at 17-14 (up to 84) up to 1984

Q 17-14 = Observed mean monthly runoff at 17-14 (up to 84) up to 1984

Q 1723 = Sum of mean monthly runoff at 1723 (85 - 88) from 1985 to 1988

Q 17-14 = Sum of mean monthly runoff at 17-14 (85 - 88) from 1985 to 1988

4.3 Mean Annual Runoff

Mean annual runoff (1965-1987) at the 5 stream gauging stations in the Göksu River Basin are presented in Table C16 and summarized below:

Mean Annual Runoff of Göksu River

Station	Station		Drainage	Mean Annual		Runoff
No.	Name	River	Area (km²)	(m^3/s)	(mm)	(MCM)
1719	Kirkyalan	Ermenek	3,499.6	62.4	562	1967
17-14	Görmel B.	Ermenek	2,000.0	44.6	703	1406
1712	Bucakkisla	Göksu	2,689.2	32.0	375	1008
1720	Haman	Göksu	4,304	51.1	375	1612
1714	Karahacili	Göksu	10,065.2	129	404	4067

4.4 Mean Monthly Runoff Pattern

Mean monthly runoff pattern at 17-14 (1965-1987) is shown with rainfall pattern in Fig. C6.

It clearly indicated the runoffs in March, April and May are mostly by snow-melt.

4.5 Runoff Coefficients

Mean annual runoff coefficients were calculated for the Göksu River Basin at 5 stream gauging stations so as to assess the reliability of runoff data and to clarify the basin's runoff characteristics. The results of calculations are summarized in Table C16.

As is shown in Table C17, the runoff coefficient at .17-14 station is 0.73 after the adjustment. This value of 0.73 is considered to be reasonable when compared with data of the other sub-basins.

4.6 Extension of the Mean Monthly Runoff Series

The 20 years' mean monthly runoff series derived above (1965-1987) was supplemented for the 3 missing years from 1969 to 1971, and was extended for the period from 1946 to 1964 on the basis of the runoff records at 1719 and 1703

(Kirkyalan) stations. These stations are located on the downstream reaches of the Ermenek River near the confluence of the Ermenek and Göksu Rivers. The catchment area is 3,499.6 km² at the 1719 station, and 3,584.4 km² at the 1703 station.

The monthly runoff data at the stations 17-14 (adjusted for the periods of 1965 - 1968 and 1972 - 1984) and 1723 (observed for the period of 1985 - 1988) were plotted on a full logarithmic paper against the records at 1719 and 1703 stations for the periods of 1965 - 1968 and 1972 - 1988. These records present a fair correlation of the two series of discharge data. The monthly runoff data of 17-14 (or 1723) station was then supplemented and extended using the correlation given below:

Regression equation:

 $Log_{10} Q_{17-14} = 1.142 Log_{10} Q_{1719} - 0.478674$ Correlation coefficient : r = 0.9855

The mean annual runoffs are calculated as follows:

$$Q17-14$$
, $1965-87 = 44.6$ (m³/s)

$$\overline{Q}$$
17-14, 1946-87 = 40.4 (m³/s)

The estimated long-term monthly runoff of 17-14 and its flow duration curve are shown in Figs. C18 and C19, respectively. Also, Table C18 shows the computed long-term monthly runoff series at 17-14.

4.7 Estimation of Monthly Inflow Series of the Ermenek Reservoir

The monthly inflow series of the Ermenek Reservoir were estimated for the period of 42 years (1946 - 1987), based on

the monthly runoff data of 17-14 (1723) station, which is located at the Çavusköyü upstream from the Zeyve Creek. Therefore, it is necessary to estimate the runoff from the Zeyve Creek, and to finally estimate the inflow at the proposed dam site. The monthly runoff from the Zeyve Creek was calculated below:

Q Zeyve = Q 17-14 x
$$\frac{\text{Ca, Zeyve}}{\text{Ca, 17-14}}$$
 x $\frac{\text{R, Zeyve}}{\text{R, 17-14}}$

where

Q Zeyve = Estimated monthly runoff in Zeyve sub-basin

Q $_{17-14}$ = Adjusted monthly runoff at 17-14 (1723)

Cazevve = Catchment area of Zeyve sub-basin

 $Ca_{17-14} = Catchment area at 17-14 (1723)$

 R_{Zevve} = Annual mean rainfall in Zeyve sub-basin

 R_{17-14} = Annual mean rainfall at 17-14

Therefore,

$$Q_{\text{Zeyve}} = Q_{17-14} \times \frac{156}{2000} \times \frac{825}{960} = 0.065 Q_{17-14}$$

 $Q_{Ermenek} = Q_{17-14} + Q_{Zeyve} = 1.065 Q_{17-14}$

QErmenek, $1965-87 = 47.5 \text{ m}^3/\text{s}$

QErmenek, $1946-87 = 43.0 \text{ m}^3/\text{s}$

The above estimate of $43.0 \text{ m}^3/\text{s}$ for the long period of 1946 - 1987 is about 91 per cent of the estimate of $47.5 \text{ m}^3/\text{s}$ for the period of 1965 - 1987. The historical changes of estimated annual inflows are shown in Fig. C20.

Reliability of the estimated long-term average inflow was checked by the comparison of dimensionless residual mass curves of mean annual runoffs at Stations 17-14 and 1720. The Station 1720 is located near Mut on the Göksu branch

stream, and has the runoff records for the 42 years from 1946 to 1987.

As is indicated in Fig. C21, both mass curves have the similar tendency in general such as the long and the most critical dry years from 1946 to 1964, and the recent recovery periods of flows. The other indices show the similarity between the 2 curves as shown below:

Index	17-14	1720
(1) The height from the top in 1946 to bottom in 1965 1/	246 %	242 %
(2) The mean annual runoff of the period 1946-1965 2/	91 %	88 %

Therefore it is judged that the long-term average flow estimated at 43.0 m³/s for the 42 years from 1946 to 1987 should be used in the assessment of the energy outputs of the Project, instead of the average value of 47.5 m3/s for the recorded 23 years' period from 1965 to 1987.

4.8 Estimation of Monthly Inflow Series of Nadire, II-A, II-B and Gezende Reservoirs

For the purpose of assessing the hydropower potentials of alternative schemes such as Nadire, II-A and II-B dam sites as well as reviewing the power output of the Gezende Project, the mean inflow was estimated for each dam.

The inflows of the Nadire, II-A, II-B, and Gezende Dam sites were estimated based on the inflow of the Ermenek Reservoir with adjustments by the catchment area and basin rainfall. The results of the calculation are shown in Tables C19 and C20.

[%] to the mean annual flow of 1946-1987
% to the mean annual flow of 1965-1987

4.9 Estimation of Monthly Inflow Series of the Erik Creek

For purpose of assessing the hydropower potentials of the Erik Diversion Scheme, the mean monthly inflow was estimated based on the relationship of available monthly mean runoffs at 17-14 and 1715 (Erik-Ilisu) for the 3 years of 1966, 70 and 71.

The procedure of estimation is described below:

$$Q_{Erik}$$
, annual = Q_{17-14} , annual \overline{Q}_{1715} , annual \overline{Q}_{17-14} , annual

 Q_{Erik} , monthly = $\alpha i Q_{Erik}$, annual

where

QErik, annual = Annual runoff series at Erik creek

 Q_{17-14} , annual = Annual runoff at 17-14

 \overline{Q}_{1715} , annual = Mean annual runoff at 1715 in the years of 1966, 70 and 71

Q₁₇₁₄, annual = Mean annual runoff at 17-14 in the years of 1966, 70 and 71

Q_{Erik}, monthly = Monthly runoff series at Erik creek

αi = The percentage of annual runoff in a i-th month in 1970 at 1715

The monthly distribution of annual runoff in 1970 was adopted for the disaggregation into the monthly flows since the dry season in 1970 was the most critical among the three years. The resultant monthly runoff series for the Erik Creek is to yield the conservative inflows for the Erik Diversion Scheme.

Results of the estimation of $Q_{\mbox{Erik}}$ and αi are as follows:

$$\overline{Q}_{1715}$$
, annual = 3.8 (m³/s)
 \overline{Q}_{17-14} , annual = 44.6 (m³/s)

therefore,
$$Q_{Erik, annual} = \frac{3.8}{44.6} * Q_{17-14, annual}$$

= 0.0852 Q₁₇₋₁₄, annual

Values of αi (%)

J	F	M	A	M	J	-
11.8	9.9	10.3	8.4	7.2	6.9	:
					·.	
J	A	s	0	N	$\mathbf{D}^{(i)}$	Year
7 2	<i>5</i> 0	6 5	6 7	6 3	12 0	100

CHAPTER 5. FLOOD STUDY

In order to provide basic data for determination of design flood of the proposed Ermenek Dam, a flood study was conducted. The flood study consisted of frequency analyses on flood peak flow and flood volume, study on the development of dimensionless graph, unit graph, probable maximum precipitation and probable maximum flood. Unitgraph, probable maximum precipitation and probable maximum flood are separately described in Chapter 6.

5.1 Available Flood Data

There is no information concerning floods of the Ermenek River Basin except for the annual maximum discharge records at 17-14 and 1723 stations near the proposed dam site.

After presenting Interim Report, EIE prepared the past records of hourly water level measurements at 1714 station near the proposed Kayraktepe dam site and related hourly rainfall during flood. Those records were used to correlate rainfall and river discharge during flood in dimensionless graph study.

5.2 Frequency Analyses on Annual Maximum Flood

Frequency analyses were made on the annual maximum floods recorded for the past 18 years at Station 17-14. The flood records are listed in Table C21. The analyses were made by the Log-Pearson Type III method and the Gumbel method. Results of the frequency analyses on the annual maximum floods are presented in Table C22.

100-year probable flood in Erik creek was estimated approximately 400 $\rm m^3/s$ by Creager Envelop curves shown in Fig. C22. Therefore 1/100-year probable flood at the Erik Intake Weir site is estimated at 400 $\rm m^3/s$.

5.3 Frequency Analyses on Annual Maximum Flood Volume

Frequency analyses were also made on the annual maximum flood volume for the past 17 years to know flood inflow volume of the proposed Ermenek Dam. The frequency analyses were made for 6 flood durations; 1-day, 2-day, 3-day, 5-day, 7-day and 10-day. These flood volume records are listed in Table C23. Probable flood volume for each flood duration was computed in accordance with the Gumbel method. Results are presented in Table C24.

The recorded maximum flood volume and 100-year probable flood volume are shown below for comparison.

Flood Volume of Ermenek River at 17-14

(Unit: 10⁶ m³)

Duration	Recorded Maximum Flood	100-year Probable Flood
1 day	81	121
2 days	110	167
3 days	137	207
5 days	165	253
7 days	192	306
10 days	235	398

The recorded maximum flood volume corresponds to a return period of about 5-10 years. The 100-year probable flood volume is about 1.5-1.7 times the recorded maximum value.

5.4 Typical Flood Hydrographs

Typical hourly flood hydrographs which were recorded at 1714 station near the proposed Kayraktepe dam site are as shown in Figs. C23 to C27.

5.5 Dimensionless Graphs

Since hourly flood hydrographs of the Ermenek River Basin were not available, dimensionless graphs were derived based on flood hydrographs observed at 1714 station in order to establish unitgraph of the Ermenek River. The dimensionless graph was derived in accordance with the procedure recommended by USBR, in which Tcv is the time from the beginning of a unitgraph to the center of its volume.

The dimensionless graphs are shown in Figs. C28 to C32 in which q denotes discharge in m³/s; D duration hours of unit rainfall; and Lg log time between the center of unit rainfall and the time of occurrence of one-half volume of direct runoff.

Results of dimensionless graph study are summarized as follows:

Flood for Hydrograph Analysis

Date	Peak Flow (m ³ /s)	Tcv (hr)
Dec 1967	814	27.70
Jan 1971	727	45.96
Dec 1971	941	41.67
Dec 1973	523	29.65
Feb 1975	1,030	44.35

CHAPTER 6. DERIVATION OF PROBABLE MAXIMUM FLOOD

A depth-duration curve of the 1975 storm for the Ermenek River Basin at the proposed dam site is discussed in 3.5. For maximizing the 1975 storm to obtain PMP (Probable Maximum Precipitation), moisture maximization factor was firstly determined. Then seasonal variation of PMP is studied in order to estimate the PMF with and without snowmelt conditions. Unitgraph is derived based on the dimensionless graph to convert PMP to PMF. After determining snow-melt runoff, base flow and rainfall loss, PMP over the Ermenek Dam site is finally converted into the PMF for the proposed Ermenek Dam.

6.1 Persisting 12-Hr Storm Dew Points

The vapour pressure records observed at the following meteorological stations were studied to estimate the representative persisting 12-hour storm dew points for the Ermenek River Basin. The locations of these 4 stations are shown in Fig. C1.

Station	Measurement Period
Ermenek	1965 - 1987
Hadim	1965 - 1987
Alanya	1960 - 1987
Anamur	1960 - 1987

The maximum persisting 12-hour dew point was estimated from the maximum persisting 12-hour vapour pressure as it was readily available on the daily observation sheets. The observations have been made 3 times a day at 7 a.m., 2 p.m. and 9 p.m. Only those persisting 12-hour vapour pressures which were recorded when a rainfall of more than 10 mm was

observed during the same period were selected. An enveloping curve of the maximum vapour pressures was drawn for each of the above 4 stations and is shown in Fig. C33. In establishing those enveloping curves of the vapour pressure, the recorded 2nd and 3rd order maximum monthly values were also plotted to achieve the better representation.

As is indicated in "Manual for estimation of probable maximum precipitation" by WMO, dew-point records shorter than about 50 years are unlikely to yield maximum values representative of maximum atmospheric moisture. Therefore, a frequency analysis of the monthly maximum persisting 12-hour vapour pressure was made. January and February were selected for this analysis in order to maximize the maximum storm on 31st January 1975. Value for the 100-year return period was adopted for this study, but values of 50-year return period were shown for comparison. Results of this analysis are shown below;

Station	Month	Recorded Maximum	Probable V. 100-year	Pressure (mb) 50-year
Ermenek	Jan.	7.3	7.9	7.5
	Feb.	6.8	8.7	8.1
Hadim	Jan.	6.2	8.1	7.6
	Feb.	6.1	8.4	7.9
Alanya	Jan.	14.6	17.5	16.5
	Feb.	13.4	16.2	15.4
Anamur	Jan.	15.9	18.9	17.7
	Feb.	15.1	16.7	15.7

6.2 Storm Dew Point on 31st January 1975

Storm dew point is estimated for the observed maximum rainstorm on 31st January 1975 as follows;

Station	Station elev. (m)	Vapour pressure (mb)	Dew point at Station (°C)	Dew point at sea level (°C)
Ermenek	1,250	5.6	-1.2	5.5
Hadim	1,500	5.7	-1.0	7.3
Alanya	7	11.3	8.8	8.8
Anamur	5	14.1	12.1	12.1

Ermenek and Hadim stations are located leeward from the heavy rainfall area, which is mainly the southern slope of the Toros Mountain facing the Mediterranean Sea. Sea level dew points at Ermenek and Hadim stations are relatively lower than those of alanya and Anamur stations. This is because the moist air mass inflow from the sea had lost considerable amount of its moisture as the rainfall over the heavy rainfall area when it arrived at these stations. Therefore dew points at Ermenek and Hadim do not represent the dew point of the moist air mass inflow, which is the source of the typical storm over the Ermenek River Basin.

Dew point at station level was firstly reduced to sea level (1,000 mb). The representative storm dew point was calculated to be 10.5 °C as an average of 2 stations, Alanya and Anamur, both of which are located windward to the prevailing wind direction during storm.

6.3 Maximum Dew Point

Maximum dew point probable around the day of 31st January was estimated below with the same procedure as (2).

	Station elev.	Vapou: pressi	and the second s	Dew po at Sta		Dew po	int level
Station	(m)	(ml	b)	(°C)	(°C	:)
		100	50	100	50	100	- 50
		yr	yr	yr	yr	yr	yr
Ermenek	1,250	8.7	8.1	5.0	4.0	11.2	10.7
Hadim	1,500	8.4	7.9	4.5	3.6	12.5	11.7
Alanya	7	17.5	16.5	15.4	14.5	15.4	14.5
Anamur	5	18.9	17.7	16.6	15.6	16.6	15.6
Average of	Alanya						÷
and Anamur						16.0	15.1

6.4 Moisture Maximization Factor

Based on the storm dew point and the maximum dew point probable around 31st January, MMF was determined using the following formula.

$$MMF = h^{W_{t2}} / h^{W_{t1}}$$

where.

hWt2 = precipitable water in a saturated pseudoadiabatic atmosphere from the ground base of moisture
column (h) to the height of 300 mb, corresponding to the maximum persisting 12-hour 1,000 mb
dew point (wet-bulb potential temperature, t2).

 $_{
m hW_{t1}}$ = precipitable water in a saturated pseudoadiabatic atmosphere from the ground (h) to the height of 300 mb, corresponding to the storm 1,000 mb dew point (t1).

Base elevation of the moisture column is determined at 1,700 m as the mean elevation of the mountains barrier between the moisture source in the Mediterranean sea and the Ermenek River Basin.

The moisture maximization factor is then obtained below;

- Storm dew point : t1 = 10.5 °C
- Maximum dew point : t2 = 16.0 °C

- MMF =
$$(37.6 - 18.1)$$
 / $(23.5 - 12.4)$
= 19.5 / 11.1
= $1.76 = 1.8$

Fig. C34 shows the depths of precipitable water in a column of air (U.S. National Weather Service).

6.5 Probable Maximum Precipitation

The PMP for the Ermenek Dam site is then derived in accordance with the procedure as summarized below.

- (1) Maximum rainfall depth-duration curve for the Ermenek Basin at the proposed dam site, which was obtained in Chapter 3.5 was used for PMP estimation (see Fig. C10).
- (2) Maximum rainfall depths were multiplied by the previously obtained moisture maximization factor of 1.8.

The PMP over the Ermenek Basin thus obtained is presented in Table C25 and summarized below.

PMP over Ermenek Basin

Duration (hr)	DD over 2,156 km ² (mm)	PMP DD x 1.8 (mm)	
1	22	40	
6	68	122	
12	90	162	11 Les
24	102	 184	$\mathcal{A}_{i}^{n} = \{ i, i \in \mathcal{I} \}$
48	162	292	1 (1)
96	253	455	No. of

6.6 Seasonal Variation of PMP

In the Göksu River Basin, where the maximum flood is likely to result from a combination of snow-melt and rainfall, it is necessary to estimate the seasonal variation of PMP so that a combination of snow-melt and rainfall can be evaluated to derive a PMF for spring months.

For the purpose of constructing PMP for the entire snow-melt season, seasonal enveloping curve of PMP was drawn, based on the following procedure, as is indicated in "Manual for estimation of probable maximum precipitation" by WMO.

- (1) Maximum daily basin mean rainfall in each month from January to April in each year, averaging the values of Ermenek, Göktepe and Kazançi stations in the Ermenek River Basin, was picked up. the maximum values were plotted against date of occurrence, and a smooth seasonal developing curve was then drawn. The seasonal pattern of maximum daily precipitation in the Ermenek River Basin is shown in Fig. C35.
- (2) The rainfall scale was converted into terms of percentage.

6.7 Unitgraph

Three Unitgraphs were derived for unit rain of 1 mm over the three sub-basins which were divided by the with-Ermenek-dam condition for unit duration of 1 hour based on the dimensionless graph and lag time Tcv. Fig. C36 shows the 3 sub-basins in the Ermenek River Basin. Time Tcv is defined as a time from the beginning of rise of net hydrograph to center of its volume. Tcv is substituted for lag time (Lg + D/2) when the available rainfall data are limited.

Time Tcv of the Göksu River is checked for the 5 floods recorded at 1714 station as summarized below.

Time	Tev	of.	Göksu	River	at	1714

Date	Tcv (hr)	Q peak (m³/s)
Dec 1967	27.70	814
Jan 1971	45.96	727
Dec 1971	41.67	941
Dec 1973	29.65	523
Feb 1975	44.35	1,030

For each sub-basin A, B and C, two cases of lag time (Lg +D/2) were estimated based on the Snyder's coefficients Ct, tp and tp', and Q peak over the Göksu River Basin. Results of calculation of Ct, tp and tp' for 5 floods are shown as follows.

Values of Ct, tp, tp! and O peak

Date of Flood	tr' (hr)	tp' (hr)	tp (hr)	Ct	tp! (tr!=1hr)	Qpeak (m ³ /S)
Dec 1967	14	25	22.52	1.0572	21.75	814
Jan 1971	12	20	17.81	0.8361	17.25	727
Dec 1971	10	26	24.61	1.1558	23.75	941
Dec 1973	9	23.5	22.61	1.0450	21.50	523
Feb 1975	24	28	23.05	1.0821	22.25	1,030

To construct the unitgraph for the Ermenek Dam site, the following two cases were contemplated:

(1) Flood with the shortest tp

Flood: Jan 1971

tp : 17.81 (hr)

(2) Flood with the largest Opeak

Flood: Feb 1975

Qpeak: $1,030 \, (m^3/s)$

Results of the calculation of lag time (Lg + D/2) and Peak discharge qp ($m^3/s/mm$) for each sub-basin A, B and C based on the Snyder's coefficients Ct, tp and tp' of 2 floods selected above are shown in Tables C26 and C27. The three unitgraphs for sub-basins A, B, C and total unitgraph for the Ermenek dam site are presented in Tables C28 and C29, and depicted in Figs. C37 and C38.

Base length of the unitgraph for the Ermenek dam site by 2 cases are as follows:

Base length

Flood	Base	Length	(hr)
Jan 1971		67	
Feb 1975		58	

The basin lag tp and ($LL/s^{0.5}$) relation for each subbasin was checked by the equation by Linsley. Results are shown in Fig. C39 and Table C30 and summarized below.

		Basin Lag t'p (hr)				
Sub-basin	LL/S ^{0.5}	St. 1714 Feb. 1975	St. 1714 Jan. 1971	Seyhan D. Mar. 1980		
<u></u>						
A	129	10.5	8.5	5.5		
В	53	6.5	5.5	3.5		
c	14	5.5	4.5	2.5		

The figure C39 suggested that even the lags given by the Seyhan flood is not very short. However, the lag time given by the January 1971 flood at Station 17-14 was adopted in this study to derive PMF, giving weight to the flood recorded in the basin and adopting the shorter lags between the two to be conservative in terms of flood magnitude.

6.8 Rainfall Loss

Initial rainfall loss is neglected assuming that whole the Ermenek Basin is saturated by antecedent rainfall in such an extreme storm like PMP. While the retention loss rate after the saturation is assumed to be constant at 2.0 mm/hr, which value has been commonly adopted for most of the projects such as Mut, Gezende and Kayraktepe hydropower

projects around the Ermenek River Basin.

The above constant loss of 2.0 mm/hr was adopted because of the limited availability of data. This needs a future review through analysis based on the actual records of hourly rainfall and runoff to be observed in the basin.

6.9 Snow-Melt

Snow-melt runoff and its maximum rate were previously computed by EIE for the Ermenek River Basin using the degree-day method. Results are shown in Table C31. Results of this estimation were applied to this PMF analyses.

6.10 Base Flow

The mean daily discharge hydrographs of 17-14 station was analyzed. The maxim base flow discharge is assumed to be $100 \text{ m}^3/\text{s}$.

6.11 Probable Maximum Flood of the Proposed Ermenek Dam

The PMP for 96-hour duration is rearranged to hourly rainfalls with its peak at one fourth from the end of the duration maintaining the depth-duration relation. The results are presented in Table C25.

This hourly hydrograph of the PMP for the Ermenek Dam is converted to PMF using the unitgraph. As was explained in Chapter 6.6, two PMP were constructed. One is PMP for January without-snow-melt condition, the other is for April with-snow-melt condition. PMP for April was obtained by reducing the PMP for January based on the seasonal maximum daily precipitation curve shown in Fig. C35. PMP for April is approximately 75% of the PMP for January. Both PMP and resultant PMF for January and April are shown in Figs. C40 and C41.

Results of PMF for January and April are summarized below;

			(Unit: m^3/s)
Month	Ву РМР	Snow-melt plus base flow	Total
January	5,800	100	5,900
April	4,100	1,300	5,400

CHAPTER 7. SEDIMENT AND WATER QUALITY STUDY

7.1 Available Sediment Data

EİE has carried out suspended sediment sampling at 1723 (Çavusköyü) since 1985. Suspended sediment sampling data are shown in Table C32.

7.2 Sediment Rating Curve

Sediment rating curve is generally approximated by a straight line on a full-log-paper as shown in Fig. C42. The line can be expressed by the following equation.

$$Qs = a \times Q^b$$

where.

Qs = suspended sediment transport in ton/day

 $Q = runoff in m^3/s$

a, b = parameter depending on the basin characteristics

The above equation can be transformed as follows,

$$log(Q_s) = log(a) + b \times log(Q)$$

The parameters a and b of the sediment rating curve are obtained as shown below.

$$log (Q_S) = log (0.405) + 1.65 log (Q)$$

7.3 Sediment Inflow into the Ermenek Reservoir

Suspended sediment transport for the Ermenek River Basin is computed based on the daily runoff records at Station 1723 from 1985 to 1988 using the sediment rating curve shown in Fig. C42.

Mean daily suspended sediment transport of the Ermenek River is then obtained to be 288 ton/day.

The sediment inflow into the proposed Ermenek Reservoir is estimated as described below.

- (1) Mean suspended sediment transport obtained at 1723: 288 ton/day
- (2) Adjusted for runoff fluctuation within a day (assumed to be 1.2 times of the value by daily mean basis): 346 ton/day
- (3) Adjusted for such probable larger floods expected during the 100 years operation than the ever occurred in the 4 years runoff records used (assumed to be 2 times of (b)): 692 ton/day
- (4) Specific weight of sediments after deposited in the reservoir: 1.2 ton/m^3
- (5) Specific annual suspended sediment volume:
 - (3) x 365 days / (4) / 2,000 km²: $105 \text{ m}^3/\text{km}^2/\text{year}$
- (6) Mean specific bed load (assumed to be 20% of (5)): $21 \text{ m}^3/\text{km}^2/\text{year}$
- (7) Mean specific sediment inflow ((5) + (6)): $130 \text{ m}^3/\text{km}^2/\text{year}$

Thus the mean sediment inflow volume is estimated to be $130 \text{ m}^3/\text{km}^2/\text{year}$. It corresponds to an annual denuded depth of the land of 0.13 mm.

Assuming that a trap efficiency of sediment inflow by the Ermenek Reservoir (Ca = 2,156 km²) is 100%, the mean annual reservoir sedimentation is calculated to be 0.28 x $10^6 \ \text{m}^3$. After the 100 years operation of the Ermenek Reservoir, the total sediment deposit volume would be around 28 x $10^6 \ \text{m}^3$.

7.4 Water Quality

Water sampling for chemical analyses has been carried out by EIE at Station 1723 since 1985. The results of the chemical analyses are summarized in Table C33.

Among those chemical values, a value of pH indicates that the analyzed water is either acid or alkaline. The study on the relation between the value of pH and corrosion of metal works at hydroelectric power stations in Japan indicated that the water with the pH value below 4.5 mostly causes the corrosion on the metal works at power station. the water on the Ermenek River Basin is alkaline, with the average value of 8.0.

TABLES

Table C1 STREAM GAUGING STATIONS OF ETE AND DST IN THE GÖKSU RIVER BASIN

Station	田田	Catchment Area Km ²	Starting Date	Deactivates in	Available Period of Records	Remarks
1703-Ermenek-Evren	126	126 3584.4	28.10.1945	1.10.1965	1946-1965	at the most down~
						stream Ermenek
1719-Ermenek-Kirkyalan	82	3499.6	1.10.1965	· .	1966-1988	close to 1703
1715-Erik-Ilisu	850	241.6	10. 9.1964	15.1.1972	12,07,5391	at Erik weir site
17-14 Görmel Bridge(DSI) 509	509	2000.0	1.10.1964	•	1965-1968	at Gormel Bridge
					1972-1988	(Flow measuring site
						is at Cavuskoyu.)
1723-Ermenek-Çavusköyü		2000.0	1,10,1985	•	1985-1988	at Cavuskoyu
1705-Göksu-Fksiler	2,5	9 2226	8, 8, 1952	1961	1953-1960	village near Kavraktene
	}					dam site
1714-Göksu-Karahacili	5	24 10065.2	1961	•	1961-1988	close to 1705
1704-Göksu-Selamli	57	125 4372.0	1945	1965	1946-1965	near Kayraktepe
	÷,					dam site
1720-Göksu-Haman	127	4304.0	1965	•	1966-1988	close to 1704
1712-Göksu-Bucakkisla	397	2689.2	1954	• :	1962-1988	middle Goksu
1702-Göksu-Yerkopru	82	1412.0	1940	1959	1941-1954	upper Goksu
1722-Göksu-Aladag	725	725 1476.4	1974	1979	1975-1979	upper Goksu

Table C2 MEAN MONTHLY PRECIPITATION RECORDS IN AND AROUND THE ERMENEK RIVER BASIN (1/2)

	Elevation	Observation	:		Ž	Months									1
פרפרוכז אמזוע	Œ	Period	Jan.	reb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Jul. Aug. Sep. Oct.)	¥ov.	Dec.	
Meteorological Stations Within the Catchment Area				,											
Göktepe	1,506	1965-1976 1979-1987	192.8	192.8 114.6 95.5	95.5	61.7	38.2	38.2 13.0	κ,	2.5	8.4	56.1	167.3	2.5 4.8 56.1 107.3 179.6	869.9
Ermenek	1,250	1953-1976 1979-1980 1982-1987	101.4	72.9	64.6	38.7	35.9	7.	7.0	5.7	ru Fu	30.3	57.3	57.3 106.1	544.7
Kazançi Meteorological Stations	1,200	1965 1967-1976 1980-1981	177.3	177.3 128.7 83.2	83.2	57.9	57.9 42.2	11.1 5.1		3.7	3.7 3.7 42.9	45.9	6.08	90.9 166.1	812.8
Around the Catchment Area Madim	1,500	1940 1956-1987	127.8	8.5	7.17	51.7	39.9		25.0 6.6 4.6	4.6	7.2 50.7		62.5	129.8	0.479
Taskent Aladag Bucakkisla Gülnar	1,500	1965-1981 1965-1987 1958-1987 1957-1976	131.0 87.0 106.3 220.0	86.8 50.3 59.3 126.8	78.8 49.3 44.1 78.3	50.1 57.9 29.6 39.8	40.2 34.8 30.4 29.9	23.3	5.2 4.7 3.4	4.9 2.3 1.3	2 6 3 4	57.7 40.1 26.5 61.8 1	69.6 48.6 39.9	148.2 88.8 89.4 216.0	476.6 476.6 451.6 893.3
		1978-1986	: .		- V - V :								-		

Table C2 MEAN MONTHLY PRECIPITATION RECORDS IN AND AROUND THE ERMENEK RIVER BASIN (2/2)

	Elevation	Observation			€ .	Months									
Starton name	Œ	Period	len Len	Feb.	Har.	Apr.	May	, un		Jul. Aug.	Sep	Sep. Oct.	NO.	Dec.	Annual
Aydincik(Gilindire)	10	1957-1987	181.9	1.10.1	5.7	34.0	12.3	•	6	1.0	-4	58.3	g. 4	1	752.4
Anamur	in'	1944-1987	227.0	163.7	06.2	41.4	22.7	5.7	4.0	7.0	·ν	3	79.5 122.9		
Gazipasa	20	1956-1987	172.7	131.5	8	79.97	28.8		5,	0.8	12.3	3 63.5 10	105.6		
Demirtas	50	1964-1987	210.1	137.1	7. 76	67.1	67.1 24.8		1.7	1.8 14.2	14.2	4.69	150.1	183.5	962.6
Alanya	~	1938-1987	5,69.9	165.5	93.6	51.8	32.4	5.8	3.4	6.0	18.6	78.4	151.4	230.1	
Koprulu	800	1965-1985	6.007	250.2	170.3	7.76	41.8	•	5.	8.9	16.0	109.4	198.1	385.0	
Gundogmus	930	1957-1987	306.7	193.4	149.8	87.6	59.1		7.7	7 2	24.5	٥. ۲	146.4	293.0	
Mut	275	1954-1985	7.78	56.1	7 07	23.8	21.5	13.0	4.7	. .∞	4.6	30.0	44.9	88.6	

Table C3 MONTHLY MEAN, MAXIMUM, AND MINIMUM TEMPERATURE VALUES FOR ERMENER METEOROLOGICAL STATION, °C

Ctation	Observation				₹				Months	15			in de la companya de	-		
	3	<u>.</u>		J.	ts.,	F M A M J J A S O N	4	œ	٦	٦	×	S	0	=	<u>م</u>	Autoria de la compansión de la compansió
			₩ ₩ X.	Max. 17.5 18.5 20.0 26.8 33.0 34.5 39.0 37.8 37.0 32.0 23.6 19.8 39.0	18.5	20.0	26.8	33.0	34.5	39.0	37.8	37.0	32.0	23.6	19.8	39.0
Ermenek	1965 1987	1,250	Mean	1,250 Mean 3.3 3.5 5.4 9.7 13.4 19.3 22.3 22.3 18.2 13.1 7.7 3.8 11.8	3.5	4.0	9.7	13.4	19.3	22.3	22.3	18.2	13.1	7.7	3.8	11.8
			Mn.	-15.0 -13.5 -13.1 -2.0 1.2 5.0 5.5 6.5 4.5 0.3 -8.5 -9.2 -15.0	-13.5	-13.1	-2.0	1.2	5.0	5.5	6.5	4.5	0.3	ကိ	-9.2	-15.0

MONTHLY MEAN RELATIVE HUMIDITY VALUES FOR ERMENER METEOROLOGCAL STATION, % (1/2) Table C4

						Mon	Months						Annual
rear	Jan.	Feb. N	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Mean
1965	99	73	70	56	51	37	35	26	44	64	75	7.0	56
1966	71	99	26	53	51	42	32	37	61	53	67	67	55
1967	69	72	72	52	41		62	1	72	69	& &	82	
1968	84	78	5 6	48	. 63	47	9	57	56	89	72	87	65
1969	92	81	92	72	. 63	48	40	42	43	9	67	83	64
1970	ထိ	79	80	28	70	42	30	38	23	9	65	82	61
1971	26	76	50	58	42	40	24	33	33	40	43	71	47
1972	78	20	54	36	40	48	40	გ წ	42	54	59	63	52
1973	57	بر 4	51	39	. 33	38	56	31	34	45	56	56	43
1974	69	55	60	വ	47	48	42	6. 4.	45	8	61	78	52
1975	73	80	41	46	53	42	32	31	31	40	51		**************************************
1976	62	62	20 00	89	44. 00	54	41	38		50	61	70	• • • • • • • • • • • • • • • • • • •
1977	202	09	1		ī	38	28	27	1		1,	1	ι
1978	1	57	52	47		30	23	34	45	42	21	09	•
1979	56	57	55	. 1	20	49	32	47	26	54	5.9	64	l

MONTHLY MEAN RELATIVE HUMIDITY VALUES FOR ERMENEK METEOROLOGICAL STATION, % (2/2) Table C4

۲ 0 0				:		Mon	Months			·			Annual
100	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	oct.	Nov.	Dec.	Mean
1980	99	65	65	52	46	35	26	34	46	4.7	62	09	50
1981	76	65	09	20	49	48	47	1	43	43	54	65	I
1982	24	57	28	20	47	41	36	33	37	46	51	53	47
1983	ည	09	55	46	46	42	39	35	35	46	99	57	49
1984	65	23	26	54	32	29	30	44	32	33	99	22	46
1985	61	28	48	40	43	33	30	36	33	4 8	ស	56	45
1986	61	59	4.7	43	51	32	32	30	40	41	49	56	45
1987	59	5.4	09	49	37	31	29	30	32	42	20	61	44
Ave.	89	65	28	51	48	14	35	36	43	₽	09	99	

MONTHLY MAXIMUM WIND VELOCITY AND ITS DIRECTION AT MUT METEOROLOGICAL STATION, M/SEC. Table C5

		-			•.	Months							
	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.	Nov.	Dec.	Annua
Max. Velocity	17.0	17.0 16.5	15.3	15.8	15.3	16.1	16.4	16.7	14.7	16.6	23.2	15.3 15.8 15.3 16.1 16.4 16.7 14.7 16.6 23.2 17.0	23.2
Direction	MS	MW	MM	S	NW	MNN	NNW	NNW	NNW	N	NW	SE	WM

Max velocity is measured as an instantaneous value. Direction of dominant wind is NW. (1). (2). (3). Note:

Available period of the records is from 1966 to 1986.

BEASONAL DISTRIBUTION OF THE MEAN ANNUAL PRECIPITATION IN THE ERMENER RIVER BASIN Table C6

	Mean	Spring		Summer	į.	Autum	£	Winter	.
Station	Annual Precipitation	March - May	₩ ₩	June	June - August	September - November	November	December - February	February
	ATT		34	WE STATE	3 4	and a	.34	TMTI	*
Göktepe	869.9	195.4	53	19.3	N	168.2	42	0°287	\$2
Ermenek	2* 775	139.2	92	32.2	v o	92.9	17	280.4	ξ.
Kazançi	812.8	183.3	ĸ	19.9	2	137.5	17	472.1	88

Table C7 MONTHLY RUNOFF OF ERMENEK RIVER AT 17-14 (Unit: MCM)

	·		1 1									(0111	
Year	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Annual
1964									. 2	22.7	31.4	124	
1965	. •	238	352	466	273	98.4	35.2	22.0	19.1	25.0	46.5	145	1,720
1966	412	173	318	415	218	88.9	38.8	25.4	23,0	16.0	51.4	441	2,221
1967	252	79.7	201	500	335	114	51.1	31.5	29.4	33.9	112	171	1,911
1968	331	168	405	605	357	99.2	47.1	32.3	29.9	· · · · .			1.
1969	•						. S			+ 1			_
1970											1.		-
1971					.*					50.4	41.5	100	•
1972	50.7	74.8	192	340	157	53.2	36.1	29.8	26.9	66.5	51.7	38.5	1,117
1973	33.2	84.0	161	205	104	33.6	24.3	20.8	19.2	25.7	35.0	121	867
1974	38.7	63.3	266	115	61.6	32.2	23.9	21.8	22.6	28.4	43.9	212	929
1975	179	133	314	559	286	92.1	43.6	31.4	26.6	40.1	85.2	82.1	1,872
1976	152	101	197	524	238	80.2	47.0	35.3	31.8	85.4	70.8	258	1,821
1977	103	183	222	340	201	66.4	40.2	30.2	29.2	34.0	33.6	56.6	1,339
1978	200	248	261	364	244	78.5	40.1	29.6	28.1	129	57.8	168	1,848
1979	343	201	203	187	121	76.4	44.0	35.6	33.7	37.6	109	172	1,563
1980	218	113	311	518	282	91.6	41.8	33.9	30.5	17.0	29.6	107	1,793
1981	169	131	361	459	274	114	55,7	20.2	16.4	23.0	161	485	2,269
1982	268	81.1	117	343	202	113	38.1	27.6	23.0	41.5	31.9	70.6	1,357
1983	61.3	76.2	191	426	222	52.4	18.8	12.7	10.9	36.8	236	248	1,592
1984	164	194	265	388	248	56.2	34.6	32.2	27.8	28.6	85.5	57.8	1,582
1985	171	129	220	301	115	45.4	29.2	23.8	23.1	81.2	-	72.9	-
1986	233	137	223	243	92.9	51.6	32.1	26.2	24.4	25.4	36.0	89.5	1,214
1987	236	143	152	421	531	207	53.3	35.4	30.1	28.1	60.9	69.4	1,967
1988	52.0	99.0	226	474	292	73.9	41.5	31.9	27.2				· · ·

Table C8 MONTHLY RUNOFF OF GOKSU RIVER AT 1702

(Unit: MCM)

Year	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Annua 1
1940											29.8	193.	· · · · · · · · · · · · · · · · · · ·
1941	112.	139.	153.	135.	59.9	47.9	44.5	42.6	38.7	40.3	35.5	45.4	894
1942	58.9	74.5	268.	342.	178.	54.5	30.1	26.9	26.7	33.4	71.9	81.8	1,247
1943	80.1	61.2	101.	270.	172.	42.3	30.5	27.2	26.1	34.5	30.7	32.1	908
1944	47.8	145.	241.	221.	149.	55.3	30.9	27.8	26.0	28.7	30.0	42.1	1.045
1945	51.9	56.3	90.6	325.	268.	88.0	33.3	28.3	26.4	27.6	31.9	94.4	1,122
1946	59.9	61.1	127.	294.	128.	55.1	32.7	29.1	27.1	31.1	29.1	70.1	944
1947	71.3	98.6	165.	119.	61.0	40.5	30.1	26.9	26.0	27.2	63.5	128.	857
1948	127.	102.	93.3	230.	163.	63.3	43.8	35.6	27.2	28.1	27.6	30.1	971
1949	30.5	33.7	111.	108.	201.	42.7	31.5	27.7	27.6	25.4	28.1	28.2	795
1950	39.6	35.9	120.	154.	74.9	34.2	26.9	25.2	24.0	25.6	24.4	26.1	611
1951	33.6	41.6	119.	97.7	61.2	36.8	26.0	24.8	23.4	.33.1	28.0	42.7	568
1952	47.4	114.	147.	205.	95.3	39.7	28.5	25.2	23.6	24.1	37.7	59.9	847
1953	89.3	184.	104.	345.	184.	58.5	30.8	24.8	28.2	97.8	155	167.	1,468
1954	91.4	106.	205.	239.	103.	37.3	35.7	31.7	23.2				

Table C9 MONTHLY RUNOFF OF GOKUSU RIVER AT 1712

(Unit: MCM)

1 1	* •											(00)	
Year	Jan.	Feb.	Mar.	Apr.	May	Jun.	Ju].	Aug.	Sep.	Oct.	Nov.	Dec.	Annua l
961		*								21.5	22.7	57.3	
1962	45.9	85.7	191.	131.	85.8	35.3	22.2	20.5	19.7	27.8	25.4	166.	856
963	148.	171.	169.	200.	129.	59.7	32.9	25.4	23.5	25.0	25.6	42.1	1,051
1964	26.5	40.1	100.	73.2	50.5	42.4	23.5	22.9	20.5	21.8	23.5	75.5	520
1965	86.5	184.	231.	238.	128.	50.3	29.3	23.8	23.0	25.3	26.3	71.9	1,117
1966	213.	130.	185.	216.	102.	44.6	27.1	23.2	22.4	23.3	28.3	127.	1,142
1967	103.	57.0	191	342.	212,	60.6	36.2	26.9	24.7	26.6	43.4	72.7	1,196
1968	146.	154.	317	293.	158.	50.8	30.1	25.4	25.3	28.6	78.9	195.	1,502
1969	174.	187.	307.	194.	153.	51.0	32.2	26.0	29.5	32.6	31.8	107.	1,325
1970	107.	107.	217.	173.	81.5	37.5	27.4	22.9	21.4	27.6	37.7	56.8	917
1971	89.0	55.1	168.	235.	117.	40.1	27.0	24.6	21.7	27.0	27.7	108.	940
1972	40.0	63.7	198.	244.	92.1	43.0	28.7	23.6	22.5	30.8	29.3	25.9	842
1973	24.7	36.4	96.9	102.	47.3	25.9	21.6	20.4	19.8	21.2	21.6	41.3	479
1974	25.6	43.2	173.	67.2	35.6	22.7	20.5	19.9	19.1	23.5	23.7	97.4	571
1975	101.	111.	274.	352.	174.	62.7	33.4	27.3	24.2	34.8	41.8	44.8	1,281
1976	73.5	74.7	187.	309.	134.	47.9	30.3	24.0	22.7	47.8	38.5	162.	1,151
1977	74.4	172.	186.	266.	156.	49.9	31.6	25.9	24.3	27.2	26.2	34.4	1,074
978	115.	160.	194	249.	126.	44.5	26.3	22.8	22.4	₫35.5	36.5	57.0	1,089
1979	144.	118.	108.	91.4	58.8	65.1	29.8	23.8	22.5	25.3	42.1	89.3	818
1980	114.	77.1	232.	305.	164.	52.7	27.6	25.4	21.0	24.1	25.6	50.8	1,119
1981	115.	150.	293.	235.	142.	71.6	34.3	20.1	19.5	21.2	37.1	198	1,337
1982	112.	62.7	111.	206.	79.9	44.1	27.2	24.1	22.8	26.4	25.7	31.2	773
1983	36.6	48.0	186.	281.	119.	43.5	23.8	20.7	19.2	21.3	41.9	113.	954
984	75.5	119.	186.	206.	127.	39.3	25.9	23.2	21.0	22.2	31.4	34.4	911
1985	60.9	68.2	127.	194.	65.2	32.3	21.4	20.3	18.9	38.4	110.	40.5	797
986	111.	90.5	120.	105.	73.3	41.2	24.4	20.0	18.8	20.9	30.0	46.8	702
1987	140.	114.	142.	260.	217.	72.4	30.5	22.5	20.7	23.4	46.0	57.0	1,146
988	48.2	84.1	188.	250.	113.	39.1	25.6	21.7	20.1				

Table C10 MONTHLY RUNOFF OF GOKSU RIVER AT 1714 (Unit: MCM)

· ·		. : 4										(0111	
Year	Jan.	Feb.	Mar.	Apr.	May	Jun,	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Annua I
1952										78.4	207.	428.	
1953	625.	1023.	482.	1683.	918.	346.	178.	141.	128.	131.	133.	136.	5,924
1954	266.	332.	687.	939.	550.	202.	130.	112	105.	118.	163.	725.	4,329
1955	495.	400.	390.	413.	283.	143.	114.	106.	101.	107.	231.	269.	3,052
1956	205.	440.	421.	682.	357.	157.	110.	100.	96.5	105.	106.	128.	2,908
1957	127.	151.	382.	295.	185.	117.	95.6	84.0	83.7	115.	114.	343.	2,092
958	638.	330.	415.	375.	195.	120.	79.0	70.7	69.9	75.7	75.7	144.	2,588
1959	576.	235.	331.	464.	239.	101.	80.2	71.5	69.8	118.	138.	183.	2,607
960	316.	205.	392.	513.	232.	127.	106	103.	96.3	98.6	103.	293.	2,585
1961	246.	509.	385.	654.	250.	127.	111.	99.3	99.	114.	117.	331.	3,042
1962	215.	373.	684.	463.	368.	138.	111.	101.	104.	143.	121.	893.	3,714
1963	660.	793.	624.	904.	516.	266.	173.	122.	114.	123.	124.	166.	4,585
1964	123.	184.	381.	281.	219.	148.	101.	91.0	87.9	94.9	117.	290.	2,118
1965	326.	575.	830.	842	517.	243.	141.	115.	106.	123.	148.	353.	4,319
1966	864.	459.	622.	724.	393.	199.	123.	107.	104.	110.	169.	555.	4,429
1967	495.	245.	595.	1051	671.	244.	158;	127.	115.	122.	233.	306.	4.362
1968	623.	456.	1020.	1047.	623.	254.	161.	128.	136.	152.	277.	695.	5,572
1969	986.	629.	1022.	675.	574.	272.	192.	166.	161.	187.	202.	547.	5,613
1970	506.	511.	713.	649	379.	220.	165.	144.	124.	151.	183.	235.	3,980
1971	357.	258.	558.	687.	429.	192.	128.	119	109.	134.	143.	340.	3,454
1972	166.	236.	559.	754.	417.	200.	139.	121.	106.	183.	150.	132.	3,163
1973	123.	179.	333.	366.	213.	105.	86.6	79.2	87.0	102.	105.	231.	2,011
1974	130.	168.	563.	277.	169.	96.4	73.6	71.7	71.4	102.	103.	449	2,274
1975	395.	437.	827.	1173.	639.	289.	161.	120.	103.	134.	216.	213.	4,707
1976	376.	315.	528.	1109.	548.	231.	153.	129.	111.	214.	193.	598.	4,505
1977	328.	514.	553.	749.	516.	205.	128.	101.	99.0	120.	118.	175.	3,606
1978	501.	686.	710.	884.	539.	224.	138.	112.	108.	262.	201.	374.	4,739
1979	748.	536.	452.	395.	284.	220.	124.	101.	97.8	120.	242.	419.	3,739
1980	524.	341.	797.	1167.	658.	272.	147.	117.	115.	129.	145.	274.	4,686
1981	583.	569.	1054.	995.	608.	307.	159.	105.	93.5	130.	304.	945.	5,853
1982	658.	281.	464.	801.	415.	239.	152.	125.	114.	149.	136.	190.	3,724
1983	228.	228.	563.	974.	505.	209.	131.	113.	107.	12).	291.	606.	4,076
1984	400.	452.	555.	705.	472.	188.	128.	112.	98.1	114.	225.	186.	3,635
1985	360.	337.	476.	645.	299.	155.	108.	98.0	91.9	195.	471.	271.	3,507
1986	527.	404.	493.	444.	252.	179.	107.	93.1	89.5	98.0	134.	219.	3,040
1987	580.	406.	504.	877.	863.	391.	158.	110.	98.3	116.	214.	227.	4,544
1988	193.	322.	696.	914.	580.	216.	126.	114.	98.6	-			

Table C11 MONTHLY RUNOFF OF ERMENEK RIVER AT 1715

4			
(Un	it	:	MCM)

Year	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Annua I
1965					,x			:		5.96	5.55	7.37	
1966	13.0	10.7	9.77	9.18	9.07	8.14	8.07	7.72	7.31			1 1	
1967						•			- :	÷ .			
1968			1 ,										
1969		3,000								9.29	8.48	16.8	
1970	16.6	12.5	14.5	11.4	10.1	9.39	10.2	9.57	8.92	9.24	10.2	9.76	
1971	10.2	8.59	12.9	11.3	11.3	10.1	9.49	9.49	7.54	. : 1		:	
			1.4							1			1.

Table C12 MONTHLY RUNOFF OF ERMENEK RIVER AT 1719
(Unit: MCH)

'ear	Jan.	Feb.	Mar.	Apr	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Annua 1
945											50.1	160.	
946	94.5	103.	200.	476.	220.	63.3	33.9	29.0	27.2	41.3	31.3	121.	1,441
947	165	161.	315.	245.	107.	55.8	33.5	27.4	25.7	27.7	140.	263.	1,566
948	228.	207.	158.	359.	228.	62.4	28.9	24.1	22.5	23.8	23.1	26.6	1,391
949	45.9	65.2	162.	362.	411.	62.0	27.6	22.6	22.3	22.3	33.6	30.9	1,267
950	90.1	53.9	195.	339.	122.	32.8	25.6	22.9	21.6	23.3	22.7	25.3	974
951	74.5	82.6	237.	210.	91.4		26.5	23.9	23.7	53.2	37.0	88.8	985
952	76.3	181.	176.	390.	199.	49.7	27.9	23.6	21.6	23.1	111.	175.	1,454
953	252.	383.	207.	682.	536.	213.	81.8	55.8	48.8	61.7	62.5	63.7	2,647
954	154	194.	377.	536.	374.	125	65.2	52.8	49,1	43.8		351.	2,417
955	253.	236.	228.	255.	168.	64.3	42.6	39.1	37.2	39.1	121.	180.	1,663
956	157.	266.	262.	502.	285.	117.	97.0	59.1	53.2	35.6	37.7	57.0	1,929
957	51.6			174.	97.4	48.5	35.7	30.8	29.7	37.6	52.3		1,047
958 .	243.	147.	289.	282.	151	71.7	38.5	30.7	27.7	30.1		110	1,455
959	256.	104.	169.	333.	180.	71.4	50.7	43.0	39.4	53.0	75.1	120.	1,495
960	155.	102.	226.	376.	163.	60.1	42.9	37.5	34.8	38.7		153.	1,431
961	104.	298.	214.	381.	148.	58.8	40.2	33.5	31.2	37.1	36.3	142.	1,524
962	90.2	167.	351,	255.	209.	63.3	42.7	34.9	36.7	60.6	44.4	441	1,796
302 963	333.	398.	340.	623.	325.	138	69.9	48.2	45.2		45.3	78.4	2,489
964 964	46.8	92.9	232.	134.	93.7	47.9	37.3	31.8	32.0	30.7	36.7	124.	940
		261	443.	467.	294.	113.	55.4	41.9	37.8	44.8	74.2		2,213
965 nee	144.	205.	345.	463.	264.	112.	59.7	45.8	43.2	44.5	78.8	350.	2,529
966	518.			569.	395.	135.	74.7	53.0	46.5	53.6	116.	209.	2,291
967 068	271.	109.	259.	601.	385.	143.	67.7	52.4	47.8	62.6	170.	495	3,015
968	330.	185.	475.		322.	117.	72.1	57.5	51.1	61.9	66.6	262.	2,528
969	381.	259.	506.	372.	4.4	102.	61.2	46.5	44.3	57.3	73.8	109.	1,964
970	228.	268.	380.	385.	209.			46.6	41.9	55.0		135.	1,558
971	150.	111.	288.	338.	210.	77.6 82.6	49.9 56.0	48.7	44.9	91.2	71.8	54.8	1,453
972	70.5	105.	240.	380.	207				30.3	35.8	44.1	121.	1,013
973	49.1	95.9	184.	221.	118.	46.5	35.2	31.6 31.4		42.7	47.3	251.	1,013
974	51.0	78.9	281.	134.	80.4	38.1	32.5		29.7	53.7	96.8	93.2	2.119
975	174.	145.	326.	636.	335.	120.	61.1	41.4	37.2			309.	2,119
976	185.	131.	246.	604.	295.	93.1	56.3	44.6	40.8	89.7			
977	129.	225.	270.	402.	237.	80.0	48.6	44.1	38.1	43.0	46.3	67.8	1,631
978	221.	316.	334.	449.	309.	100.	55.7	47.1	44.3		73.2	189.	2,281
979	383.	261.	244.	215.	137.	89.7	50.7	47.5	39.3	48.9	115.	218.	1,849
980	256.	144.	398.	591.	330.	114.	52.0	45.6	42.5	43.8	54.6	136.	2,208
981	223.	196.	458.	541.	339.	143.	73.3	48.7	40.8		159.	508.	2,776
182	295.	127.	196.	398.	224.	118.	63.3	43.6	36.5	53.1	49.7	71.3	1.676
983	93.3	94.4		454.	263.	87.1	46.6	38.6	35.0		189.	298.	1,862
984	182.	159.	277.	388.	269.	86.5	47.3	40.1	36.3	38.1		70.5	1,693
985	186	156.	245.	340.	140.	61.8	40.7	36.3	33.7		255.	118.	1,704
986	265.	171.	245.	247.	116.	58.0	44.8	38.9	36.2	39.3	47.9	94.0	1.413
987	266.	170.	192.	455.	506.	213.	71.3	46.6	40.5	44.3	87.5	88.7	2,181
988	70.8	126.	273.	489.	282.	90.0	50.0	40.6	35.3				

Table C13 MONTHLY RUNOFF OF GOKSU RIVER AT 1720 (Unit: MCM)

						· · · · · ·							
Year	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Annua 1
1945				Maria de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de							143.	316.	
1946	220.	262.	335.	419.	191.	58.9	44.1	42.8	41.4	43.8	41.9		1,765
1947	121.	184.	237.	135.	61.4	49.7	43.4	41.5	40.4		81.8		1,228
1948	195.	214.	166.	294.	203.	74.4	49.7	45.9	44.1	45.5	44.1	45.8	1,422
1949	47.3	46.8	167.	328.	265.	91.9	69.5	61.3	58.8	60.1	60.6	67.6	1.324
L950	94.0	79.0	157.	188.	140.	67.6	56.2	52.6	49.3	52.1	50.4	52.2	1.038
951	69.3	69.9	151.	120.	78.4	52.8	48.0	45.9	44.3	51.8	48.4	68.1	848
952	79.2	159.	172.	252.	135.	69.9	56.1	53.2	49.4	50.9	67.9	132.	1,277
953	232.	311.	214.	444.	266.	115.	69.9	59.0	55.7	56.9	55.7	60.0	1,939
954	123.	174.	277.	299.	176.	81.1	57.3	52.6	50.1	52.3	55.6	177.	1,575
955	159.	127.	132.	142.	93.2	47.9	45.2	44.4	42.8	44.5	74.1	94.9	1,047
956	85.2	183.	158.	228.	110.	50.6	45.1	44.1	42.5	44.2	43.3	45.9	1,080
957	46.1	56.5	159.	117.	67.2	51.3	48.6	44.0	42.6	48.8	46.2	120.	847
958	204.	170.	212.	180.	120.	90.0	58.9	54.9	53.3	55.6	54.0	94.7	1,347
959	251.	165.	236.	235.	92.6	44.2	42.2	41.2	39.7	59.2	60.8	77.7	1.345
960	126.	90.6	183.	198.	81.4	56.6	51.6	51.0	48.9	51.0	49.7	107.	1,095
961	110	212.	178.	274.	111.	62.1	53.8	47.8	46.5	48.3	48.2	120.	1,312
962	92.2	148.	343.	179.	129.	57.6	52.4	47.6	48.3	60.4	53.2	324.	1,535
963	213.	333.	271.	311.	202.	103.	69.2	57.2	52.9	56.1	55.4	68.1	1,792
964	53.6	67.0		101.	77.8	71.1	50.0	45.0	44.9	45.5	45.5	107.	852
965	133.	240.	327.	292.	184.	82.2	60.6	49.2	47.2	52.5	53.1	108.	1,629
966	305.	195.	242.	256.	137.	74.9	56.5	52.5	50.4	52.7	69.8	181.	1,673
967	166.	98.6			268.	102.	67.2	59.9	55.8	58.2	79.6	109.	1.806
968	229	225.	386.	318.	194.	101.	66.2	59.9	56.9	61.4	122.	334.	2,153
969	379.	337.	537.	295.	248.	109.	86.4	79.4	75.7	83.3	79.8	208.	2,518
970	187	186.	285.	227.	130.	79.9	69.8	56.8	54.6	65.4		104.	1,529
971	169	101.	242.	340.	168.	77.5	60.7	57.3	53.4	61.3	61.9	160.	1.552
972	76.6	115.	293.	329.	160.	93.9	68.9	57.8	54.7	69,7	65.1	60.0	1,444
973	57.0	68.4	127.	125.		52.2	52.7	46.1	44.6	47.9	48.2	70.0	815
974	56.6	76.6	211.	98.6	60.1	44.5		40.8	40.5	50.1	45.8	147.	912
975	166.	175.	388.	466.		117.	74.8	60.6	52.1	63.3	72.9		1.985
976	122.	127.	248.	407.	191.	95.5	65.4	49.2	48.8	81.1	77.5	205.	1,718
977	106.	258.	255.	337.	210.	80.6	59.5	54.0	50.3	54.1		74.5	1,596
978	195.	261.	297.	360.	172.	83.7	60.2	52.7	51.7	77.1	100	103.	1 785
979	249.	198.	163.	141.	98.3	104	61.3	48.3	47.7	57.3	82.9	161.	1,412
980	192.	130.	371.	426.	249.	94.1		57.5	52.3	54.2		105.	1,855
981	235.	281.	476.	346.	238.	130	67.5	44.7	37.8	59.4	82.0	332.	2,329
982	204	80.5	165.	272.	138.	88.4	59.9	53.5	44.2	48.7	51.4	55.8	1,261
983	73.3	72.1	273.	407.	183.	89.3	56.5	49.7	46.1	48.7	83.7	213.	1,595
984	133.	158.	247.	282.	174.	76.2	56.1	45.2	44.5		72.0	67.2	1,406
	122	122.	184.	243.	101.	60.6		47.2	45.1	65.3			1,400
985 nes					4 4 4	79.9	53.9	45.8	42.6	46.8	62.1		1,279
986	167.	137.	173.	140.	111. 273.		56.3	49.0					
987	206.	165.	219.	342.		108.		. "	44.6	46.4	72.8	96.5	1,679
1988	92.2	138.	304.	368.	193.	79.1	60.2	50.4	43.3				

Table C14 MONTHLY RUNOFF OF GOKSU RIVER AT 1722 (Unit: MCM)

Year	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Annua l
1974										4.44	6.90	66.2	
1975	46.7	54.3	177.	255.	105.	29.4	8.83	4.62	2.76	11.6	21.0	19.0	735
1976 .	34.2	38.1	119.	240.	85.0	18.6	6.45	2.58	1.92	27.0	14.9	110.	698
1977	34.4	100.	136.	215.	111.	19.3	7.42	3.22	3.21	5.10	4.03	11.3	650
1978	67.8	102.	137.	205.	99.0	17.7	4.38	2.90	3.39	15.4	18.0	47.6	720
1979	95.2	90.1	85.2	74.8	43.5	52.0	9.80	3.64	3.03				

Table C15 MONTHLY RUNOFF OF ERMENEK RIVER AT 1723 (Unit: MCH)

Year	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Annua 1
1985				275.	114.	28.4	19.1	16.7	15.6	49.5	179.	66.9	
1986	173.	119.	185.	201.	88.8	47.3	22.1	18.0	17.4	18.9	21.6	61.4	974
1987	199.	127.	148.	349.	407.	178.	52.9	26.6	23.8	29.0	59.9	65.6	1,666
1988				•		63.9							

Table C16 MEAN ANNUAL RUNOFF AND BASIN PRECIPITATION IN THE GÖKSU RIVER BASIN (1965-1987)

Station No.	Station	River	Altitude (m)	Altitude Drainage Operating Mean Annual (m) Area (km²) Agency (m³/s) (MCM)	Operating <u>Kean Amnual Runoff</u> Agency (m ³ /s) (MCM) (mm)	Mean (π ³ /s)	Annual (MCM)	Runoff (mm)	Mean Annual Rumoff Rainfall (mm) Ratio	Runoff Ratio	Loss (mm)
1719	Kirkyalan	Ermenek	129	3499.6	Ħ	62.4	1967	562	835	29.0	273
17-14	Görmel B.	Ermenek	209	2000.0	psi	44.6	1406	703	096	0.73	257
1712	Bucakkisla	Gäksu	397	2689.2	Н	32.0	1008	375	920	09"0	245
1720	Naman	Göksu	127	4304	H H	51.1	1612	375	636	0.59	261
1714	Karahacili	Göksu (downstream)	5,5	10065.2	E E	129.0	2907	707	708	0.57	304

* Mean annual runoff and rainfall at stream gauging stations were estimated by runoff and rainfall records between 1965-1987 (23 years).

MEAN ANNUAL RUNOFF COEFFICIENTS AND PRECIPITATION LOSSES Table C17

		Drainage	Mean	Annual	Runoff	Mean	Dithoff	U U V
Sub-basin	River	(km^2)	(m ³ /s)	(MCM)	(mm)	Rainfall (mm)	Ratio	(mm)
>17-141/	Ermenek	2000.0	44.6	1406	703	096	0.73	257
$17-14 - 1719 \frac{2}{2}$	Ermenek	1499.6	17.8	561	374	93 9	0.59	261
>1712	Göksu	2689.2	32.0	1008	375	620	0.62	245
1712 - 1720 Göksu	Göksu	1614.8	19.1	604	374	675	0.55	301
1720 - 1714 1719	- 1714 Göksu downstream	2261.6	15.5	488	216	647	0.33	431

./: the sub-basin upstream from the station 17-14

2/: the sub-basin between the stations 17-14 and 1719

Table C18 COMPUTED LONG-TERM MONTHLY RUNOFF SERIES AT 17-14

(Unit: MCM)

Year	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Annua 1
1945											29.0*	109.3*	•
1946	59.9*	66.1*	141.0*	379.0*	157.0*	37.9*	18.6*	15.5*	14.5*	23.3*	17.0*	79.4*	1,009
1947	113.0*	110.0*	237.0*	178.0*	69.0*	32.8*	18.3*	14.6*	13.5*	14.8*	93.8*	193.0*	1,088
1948	164.0*	147.0*	108.0*	275.0*	164.0*	37.3*	15.5*	12.6*	11.6*	12.4*	12.0*	14.1*	974
949	26.3*	39.2*	111.0*	278.0*	321.0*	37.0*	14.7*	11.7*	11.5*	11.5*	18.4*	16.7*	897
950	56.7*	31.5*	137.0*	258.0*	80.2*	17.9*	13.5*	11.9*	11.1*	12.1*	11.8*	13.3*	655
951	45.7*	51.4*	171.0*	149.0*	57.7*	19.8*	14.0*	12.5*	12.3*	31.1*	20.5*	55.8*	641
952	46.9*	126.0*	122.0*	302.0*	140.0*	28.8*	14.9*	12.3*	11.1*	12.0*	72.0*	121.0*	1.009
953						151.0*	50.8*	32.8*	28.2*	36.8*	37.4*	38.2*	2,008
954						82.4*				24.9*	60.5*	268.0*	1,788
955	-		164.0*	4.0	- '		24.1*.	21.9*	20.7*	21.9*	79.4*	125.0*	1,152
956			192.0*		-			35.0*	31.1*	19.6*	21.0*	33.6*	1,386
957	30.0*		151.0*				19.7*	16.7*	16.0*	20.9*	30.5*	151.0*	684
958	176.0*		215.0*				21.5*		14.8*	16.2*	19.0*	71.2*	1,004
959	187.0*		116.0*				29.4*			30.9*	46.1*	78.7*	1.022
960			162.0*				24.3*	20.9*	19.1*	21.6*		104.0*	983
961			152.0*			34.8*	22.6*		16.9*	20.6*	and the second	95.3*	1,063
962			268.0*	1 1	4.4.4		24.2*	19.2*	20.3*	100	1.0	348.0*	1.285
963			258.0*					27.8*	25.8*	25.8*		48.4*	1 868
964 964			167.0*					17.3*	17.4*	19.1		104.0	634
965			297.0	393.0		82.9	29.7		16.1	21.1		122.0	1,547
966 966		146.0	268.0	350.0	184.0	74.9	32.7	21.4	19.4	13.5		372.0	1,872
		67.2	169.0		282.0	96.1	43.1	26.5	24.8	28.6		144.0	1,609
967	212.0	142.0	341.0			83.6	39.7	27.2	25.2	7		397.0*	2,300
968			407.0*			75.4*	44.0*		29.7*	36.9*	40.0	192.0*	• •
969						65.3*	36.5*	26.7*	25.2*	33.8*	4	70.5*	
970			293.0*				28.9*	26.7*	23.7*	42.5	35.0	84.3	1.083
971	102.0*		214.0*			47.8*		25.1	22.7	56.0	43.6	32.4	942
972	42.7		162.0		132.0	44.8	30.4		16.2	21.7		102.0	731
973	28.0		136.0		87.6	28.3	20.5	17.5		23.9		179.0	783
974	32.6	53.3	224.0	96.9	51.9	27.1	20.1	18.4	19.0			1	1,578
975	151.0	112.0	265.0	471.0	241.0	77.6	36.7	26.5	22.4	33.8	100	69.2	
976	128.0	85.1	166.0	442.0	201.0	67.6	39.6	29.7	26.8	72.0		217.0	1,535
977	86.8	154.0		287.0	169.0	56.0	33.9	25.4	24.6	28.7		47.7	1,128
978	169.0	209.0	220.0	307.0	206.0	66.2	33.8	24.9	23.7	109.0		142.0	1,559
979	289.0	169.0	171.0	158.0	102.0	64.4	37.1	30.0	28.4	31.7		145.0	1,318
980	184.0	95.2	262.0	437.0		77.2	35.2	28.6	25.7	14.3	24.9	90.2	1.512
981	142.0		304.0			96.1	46.9	17.0	13.8	and the second second	136.0	409.0	1,912
982	226.0	68.3		4.4		95.2	32.1	23.3	19.4	35.0	26.9	59.5	1,143
983	51.7	64.2		359.0		44.2	15.8	10.7	9.20	4.62	* : .		and the second of
984	138.0			327.0		47.4	29.2	27.1	23.4	24.1	72.1	48.7	1 .332
985	144.0		185.0			<u>28.5</u>	19.0	<u>16.6</u>	<u>15.6</u>	<u> 49.6</u>		<u>67.0</u>	1,203
986			185.0			47.2	22.0	<u>17.9</u>	<u>17.4</u>	<u>19.0</u>	21.5	<u>61.3</u>	973
987	199.0	127.0	148.0	349.0	407.0	178.0	52.8	<u>26.5</u>	23.8	28.9	59.9	<u>65.6</u>	1,666
988	49.6	95.2	216.0	421.0	226.0	63.8	31.3	27.1	20.2			: .	

Note: (1) The values with * were extended by the corelation with 1719.

⁽²⁾ The value with ** was estimated by the corelation with 1719.

⁽³⁾ The values with underlines are original monthly values at 1723 station.

Table C19 ESTIMATED MEAN ANNUAL RUNOFF BY SUB-BASIN FOR THE PERIOD OF 1965-1987

	Drainage	Mean	Annual	Runoff	Mean	Directe	1001
Sub-basin	(km ²)	(m ³ /s)	(MCM)	(mm)	Rainfall (mm)	Ratio	ESSA (mm)
>Nadire	1318.8	33.4	1053	799	1090	0.73	291
Nadire - 17-14	681.2	11.2/44.6	353	519	721	0.72	202
17-14 - Görmel B. (Zeyve Creek)	156.0	2.9	91.4	586	825	0.71	239
17-14 - II-B	428.4	4.0	126	294	520	0.57	226
II-B - II-A (Erik R.)	238.8	ю	120	502	830	0.61	328
II-A - Gezende	326.8	3.3/58.6	104	318	009	0.53	282
Gezende - 1719	341.1	3.8/62.4	120	351	650	0.54	299

Table C20 ESTIMATED MEAN ANNUAL RUNOFF BY SUB-BASIN FOR THE PERIOD OF 1946-1987

	Drainage Area	Mean	Annual	Runoff	Mean	Dungff	ار م
Sub-basin	(km ²)	(m ³ /s)	(MCM)	(mm)	Rainfall (mm)	Ratio	(mm)
>Nadire	1318.8	30.3	956	725	1 (1)	* 1 *	•
Nadire - 17-14	681.2	10.1/40.4	319	468	***		t ·
17-14 - Görmel B.	156.0	2.6/43.0	83	526	•	1	1
Görmel B II-B	428.4	3.7	117	272		1	
II-B - II-A (Erik)	238.8	w O	110	462	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•	
II-A - Gezende	326.8	3.0/53.2	95	289	ŧ	1	t ·
Gezende - 1719	341.1	3.5/56.7	110	324	1	•	t

Table C21 ANNUAL PEAK FLOW OBSERVED AT STATION 17-14

1965 21 JAN 480 1966 25 JAN 730 * 1967 12 JAN 540 1968 13 MAR 680 1969 1970 1971 1972 10 APR 240 1973 26 FEB 160 1974 15 MAR 870 1975 20 DEC 560 1976 12 APR 880 1977 3 DEC 820 1978 20 JAN 700 * 1979 3 JAN 880 1980 14 DEC 1,200 1981 6 JAN 630 1982 16 NOV 855 * 1983 27 DEC 410 1984 1 DEC 750	Year		ate	F		Dischar	ge
1966 25 JAN 730 * 1967 12 JAN 540 1968 13 MAR 680 1969 — — — 1970 — — — 1971 — — — 1971 — — — 1972 10 APR 240 1973 26 FEB 160 1974 15 MAR 870 1975 20 DEC 560 1976 12 APR 880 1977 3 DEC 820 1978 20 JAN 700 * 1979 3 JAN 880 1980 14 DEC 1,200 1981 6 JAN 630 1982 16 NOV 855 * 1983 27 DEC 410 1984 1 DEC 750	rear	day,	month		<u> </u>	n³/s	
1966 25 JAN 730 * 1967 12 JAN 540 1968 13 MAR 680 1969 - - - 1970 - - - 1971 - - - 1971 - - - 1972 10 APR 240 1973 26 FEB 160 1974 15 MAR 870 1975 20 DEC 560 1976 12 APR 880 1977 3 DEC 820 1978 20 JAN 700 * 1979 3 JAN 880 1980 14 DEC 1,200 1981 6 JAN 630 1982 16 NOV 855 * 1983 27 DEC 410 1984 1 DEC 750	e e e e e e e e e e e e e e e e e e e						
1967 12 JAN 540 1968 13 MAR 680 1969 - - - 1970 - - - 1971 - - - 1971 - - - 1972 10 APR 240 1973 26 FEB 160 1974 15 MAR 870 1975 20 DEC 560 1976 12 APR 880 1977 3 DEC 820 1978 20 JAN 700 * 1979 3 JAN 880 1980 14 DEC 1,200 1981 6 JAN 630 1982 16 NOV 855 * 1983 27 DEC 410 1984 1 DEC 750	1965	21	JAN		4	180	
1968 13 MAR 680 1969 - - 1970 - - 1971 - - 1972 10 APR 240 1973 26 FEB 160 1974 15 MAR 870 1975 20 DEC 560 1976 12 APR 880 1977 3 DEC 820 1978 20 JAN 700 * 1979 3 JAN 880 1980 14 DEC 1,200 1981 6 JAN 630 1982 16 NOV 855 * 1983 27 DEC 410 1984 1 DEC 750	1966	25	JAN		•	730 *	
1969 - - 1970 - - 1971 - - 1972 10 APR 240 1973 26 FEB 160 1974 15 MAR 870 1975 20 DEC 560 1976 12 APR 880 1977 3 DEC 820 1978 20 JAN 700 * 1979 3 JAN 880 1980 14 DEC 1,200 1981 6 JAN 630 1982 16 NOV 855 * 1983 27 DEC 410 1984 1 DEC 750	1967	12	JAN		i i	540	
1970	1968	13	MAR		(580	
1971 1972 10 APR 240 1973 26 FEB 160 1974 15 MAR 870 1975 20 DEC 560 1976 12 APR 880 1977 3 DEC 820 1978 20 JAN 700 * 1979 3 JAN 880 1980 14 DEC 1,200 1981 6 JAN 630 1982 16 NOV 855 * 1983 27 DEC 410 1984	1969		-			-	
1972 10 APR 240 1973 26 FEB 160 1974 15 MAR 870 1975 20 DEC 560 1976 12 APR 880 1977 3 DEC 820 1978 20 JAN 700 * 1979 3 JAN 880 1980 14 DEC 1,200 1981 6 JAN 630 1982 16 NOV 855 * 1983 27 DEC 410 1984 1 DEC 750	1970		pare :			·	
1973 26 FEB 160 1974 15 MAR 870 1975 20 DEC 560 1976 12 APR 880 1977 3 DEC 820 1978 20 JAN 700 * 1979 3 JAN 880 1980 14 DEC 1,200 1981 6 JAN 630 1982 16 NOV 855 * 1983 27 DEC 410 1984 1 DEC 750	1971					<u> 4</u>	
1974 15 MAR 870 1975 20 DEC 560 1976 12 APR 880 1977 3 DEC 820 1978 20 JAN 700 * 1979 3 JAN 880 1980 14 DEC 1,200 1981 6 JAN 630 1982 16 NOV 855 * 1983 27 DEC 410 1984 1 DEC 750	1972	10	APR		2	240	
1975 20 DEC 560 1976 12 APR 880 1977 3 DEC 820 1978 20 JAN 700 * 1979 3 JAN 880 1980 14 DEC 1,200 1981 6 JAN 630 1982 16 NOV 855 * 1983 27 DEC 410 1984 1 DEC 750	1973	26	FEB		1	160	
1976 12 APR 880 1977 3 DEC 820 1978 20 JAN 700 * 1979 3 JAN 880 1980 14 DEC 1,200 1981 6 JAN 630 1982 16 NOV 855 * 1983 27 DEC 410 1984 1 DEC 750	1974	15	MAR			370	
1977 3 DEC 820 1978 20 JAN 700 * 1979 3 JAN 880 1980 14 DEC 1,200 1981 6 JAN 630 1982 16 NOV 855 * 1983 27 DEC 410 1984 1 DEC 750	1975	20	DEC		Ę	560	
1978 20 JAN 700 * 1979 3 JAN 880 1980 14 DEC 1,200 1981 6 JAN 630 1982 16 NOV 855 * 1983 27 DEC 410 1984 1 DEC 750	1976	12	APR		8	380	
1979 3 JAN 880 1980 14 DEC 1,200 1981 6 JAN 630 1982 16 NOV 855 * 1983 27 DEC 410 1984 1 DEC 750	1977	. « 3 -	DEC			320	
1980 14 DEC 1,200 1981 6 JAN 630 1982 16 NOV 855 * 1983 27 DEC 410 1984 1 DEC 750	1978	20	JAN		-	700 *	
1981 6 JAN 630 1982 16 NOV 855 * 1983 27 DEC 410 1984 1 DEC 750	1979	3	JAN			380	
1982 16 NOV 855 * 1983 27 DEC 410 1984 1 DEC 750	1980	14	DEC		1,2	200	
1983 27 DEC 410 1984 1 DEC 750	1981	6	JAN			530	
1984 1 DEC 750	1982	16	NOV			355 *	
	1983	27	DEC			110	
	1984	1	DEC			750	
1985 1 APR 280	1985	1	APR			280	

Note: * indicates that the value was revised after rechecking daily water level and discharge data and rating curves at 17-14 (DSI)

Table C22 PROBABLE FLOOD AT STATION 17-14

(Unit : m³/s)

		Probable	Flood
Return Period (Yr)		Third Type of Log-Pearson	Gumbel .
	·		
1.01		173	143
1.5		465	497
2		582	610
5		904	889
10		1137	1074
25		1452	1308
50		1701	1481
100		1960	1653
200		2233	1824
			en en en en en en en en en en en en en e

Table C23 MAXIMUM FLOOD VOLUME RECORDED AT STATION 17-14

(Unit	:	10 ⁶	m)

14			Durat	ion (day)		
Year	1	2	3	5	7	10
1966	56	77	96	122	149	184
1967	39	67	102	143	181	136
1968	52	77	94	137	187	259
1969	•	•	<u>.</u> .	. •	- 1,77	• .
1970	- 1 1	· <u>-</u> :	-	-	-	.
1971		.	-	-		
1972	- .	-	-			•
1973	13	26	35	55	65	71
1974	47	65	82	108	131	155
1975	37	50	72	116	162	225
1976	52	78	98	135	181	234
1977	27	50	69	92	113	145
1978	43	65	76	92	111	156
1979	70	105	119	146	169	189
1980	65	92	119	153	194	272
1981	29	55	81	126	162	216
1982	81	110	137	165	192	235
1983	20	36	54	87	118	159
1984	64	105	146	184	205	226
1985	19	36	52	79	107	142

Table C24 PROBABLE FLOOD VOLUME AT STATION 17-14

(Unit: 10⁶ m)

Period (yr) 1 2 3 5 7 1.01 6 19 30 55 75 1.50 33 54 72 102 129 2 42 65 85 117 146 5 63 92 118 153 189 10 77 110 140 178 217 25 95 133 167 208 253 50 108 150 187 231 279 100 121 167 207 253 306		•	n (day)	Duratio			Return
1.50 33 54 72 102 129 2 42 65 85 117 146 5 63 92 118 153 189 10 77 110 140 178 217 25 95 133 167 208 253 50 108 150 187 231 279	10	7	5	3	2	1	
2 42 65 85 117 146 5 63 92 118 153 189 10 77 110 140 178 217 25 95 133 167 208 253 50 108 150 187 231 279	92	75	55	30	19	6	1.01
5 63 92 118 153 189 10 77 110 140 178 217 25 95 133 167 208 253 50 108 150 187 231 279	164	129	102	72	54	33	1.50
10 77 110 140 178 217 25 95 133 167 208 253 50 108 150 187 231 279	187	146	117	85	65	42	2
25 95 133 167 208 253 50 108 150 187 231 279	243	189	153	118	92	63	5
50 108 150 187 231 279	281	217	178	140	110	77	10
	328	253	208	167	133	95	25
100 121 167 207 253 306	363	279	231	187	150	108	50
	398	306	253	207	167	121	100
200 134 184 228 276 332	433	332	276	228	184	134	200

Table C25 DEPTH-DURATION OF PROBABLE MAXIMUM PRECIPITATION (1/4)

	Area	Max.		PMI	
lime (hr)	Depth-Duration	Depth-Duration	р	Cm	
	(mm)	(mn)	(mm)	JAN.	APR
0	0	0	0	0 2	0
1	22.4	40.3	40.3	4.9	3.7
2	36.7	66.1	25.8	4.9	3.7
3	44.6	80.3	14.2	4.6	3.5
4	52.5	94.5	14.2	4.9	3.7
5	60.4	108.7	14.2	4.9	3.7
6	68.3	122.9	14.2	4.6	3.5
7	71.9	129.4	6.5	4.9	3.7
8	75.5	135.9	6.5	4.9	3.7
9	79.1	142.4	6.5	4.9	3.7
10	82.6	148.7	6.3	4.9	3.7
11	86.2	155.2	6.5	5.0	3.8
12	89.8	161.6	6.4	5.3	4.0
13	91.3	164.3	2.7	5.0	3.8
14	92.8	167.0	2.7	5.0	3.8
15	94.4	169.9	2.9	5.3	4.0
16	95 .9	172.6	2.7	5.0	3.8
17	97.4	175.3	2.7	5.0	3.8
18	98.9	178.0	2.7	5.3	4.0
19	99.4	178.9	0.9	5.0	3.8
20	99.9	179.8	0.9	2.9	2.2
21	100.5	180.9	1.1	2.9	2.2
22	101.0	181.8	0.9	2.9	2.2
23	101.5	182.7	0.9	2.9	2.2
24	102.0	183.6	0.9	2.9	2.2

Table C25 DEPTH-DURATION OF PROBABLE MAXIMUM PRECIPITATION (2/4)

	Area	Max.	_ d.i.	PHI	
lime (hr)	Depth-Duration	Depth-Duration	P (mm)	JAN.	APR
	(mm)	(mm)	Comy	UAN.	ACK,
25	105.3	189.5	5.9	2.7	2.0
26	108.7	195.7	6.2	2.9	2.2
27	112.0	201.6	5.9	2.9	2.2
28	115.3	207.5	5.9	2.9	2.2
29	118.7	213.7	6.2	0.9	0.7
30	122.0	219.6	5.9	0.9	0.7
31	125.3	225.5	5.9	0.9	0.7
32	128.7	213.7	6.2	0.9	0.7
33	132.0	237.6	5.9	0.9	0.7
34	135.3	243.5	5.9	0.9	0.7
35	138.7	249.7	6.2	0.9	0.7
36	142.0	255.6	5.9	0.9	0.7
37	143.7	258.7	3.1	0.9	0.7
38	145.3	261.5	2.8	3.1	2.3
39	147.0	264.6	3.1	2.8	2.1
40	148.7	267.7	3.1	3.1	2.3
41	150.3	270.5	2.8	3.1	2.3
42	152.0	273.6	3.1	2.8	2.1
43	153.7	276.7	3.1	3.1	2.3
44	155.3	279.5	2.8	3.1	2.3
45	157.0	282.6	3.1	2.8	2.1
46	158.7	285.7	3.1	3.1	2.3
47	160.3	288.5	2.8	5.9	4.4
48	162.0	291.6	3.1	6.2	4.7

Table C25 DEPTH-DURATION
OF PROBABLE MAXIMUM PRECIPITATION (3/4)

	/L=> '	Area	Max.		PM:	
1me	(hr)	Depth-Duration (mm)	Depth-Duration (mm)	P (mm)	(m JAN.	n) APR
	· · · · · · · · · · · · · · · · · · ·	XIIII	3022	VH=05		
49		162.5	292.5	0.9	5.9	4.4
50		163.0	293.4	0.9	5.9	4.4
51		163.5	294.3	0.9	6.2	4.7
52		164.0	295.2	0.9	5.9	4.4
53		164-5	296.1	0.9	5.9	4.4
54		165.0	297.0	0.9	6.2	4.7
55		165.5	297.9	0.9	5.9	4.4
56	•	166.0	298.8	0.9	0.9	0.7
57		166.5	299.7	0.9	2.7	2.0
58		167.0	300.6	0.9	2.7	2.0
59	:	167.5	301.5	0.9	2.7	2.0
60		168.0	302.4	0,.9	2.9	2.2
61.		169.6	305.3	2.9	2.7	2.0
62		171.2	308.2	2.9	2.7	2.0
63		172.8	311.0	2.8	6.5	4.9
64		174.3	313.7	2.7	6.5	4.5
65		175.9	316.6	2.9	6.3	4.7
66		177.5	319.5	2.9	6.5	4.9
67		179.1	322.4	2.9	6.5	4.9
68		180.7	325.3	2.9	6.5	4.9
69		182.3	328.1	2.8	14.2	10.7
70	5.1	183.8	330.8	2.7	14.2	. 10.7
71	# 'n	185.4	333.7	2.9	14.2	10.
72		187.0	336.6	2.9	25.8	19.4

Table C25 DEPTH-DURATION
OF PROBABLE MAXIMUM PRECIPITATION (4/4)

					
		Area	Max.	4 45	PMP
lime (hr)	4175	Depth-Duration	Depth-Duration	P	<u>(mn)</u>
		(mm)	(mm)	(mm)	JAN. APR
			to gardina		
73		189.8	341.6	5.0	40.3 30.3
74		192.7	346.9	5.3	14.2 10.7
75		195.5	351.9	5.0	0.9 0.7
76		198.3	356.9	5.0	1.1 0.8
77	1	201.2	362.2	5.3	0.9 0.7
78		204.0	367.2	5.0	0.9 0.7
79		206.8	372.2	5.0	0.9 0.7
80		209.7	377.5	5.3	5.9 4.4
81		212.5	382.5	5.0	6.2 4.7
82		215.3	387.5	5.0	5.9 4.4
83		218.2	392.8	5.3	3.1 2.3
84		221.0	397.8	5.0	2.8 2.1
85		223.7	402.7	4.9	3.1 2.3
86		226.3	407.3	4.6	0.9 0.7
87	٠.	229.0	412.2	4.9	0.9 0.7
88		231.7	417.1	4.9	0.9 0.7
89		234.3	421.7	4.6	2.7 2.0
90		237.0	426.6	4.9	2.9 2.2
91		239.7	431.5	4.9	2.9 2.2
92		242.3	436.1	4.6	5.0 3.8
93		245.0	441.0	4.9	5.3 4.0
94		247.7	445.9	4.9	5.0 3.8
95		250.3	450.5	4.6	4.6 3.5
96		253.0	455.4	4.9	4.9 3.7
					4.

ESTIMATION OF FLOOD LAG TIME BY JAN. 1971 FLOOD (Lg+D/2) t'p+D/2 $q_p(m^3/s/mm)$ 29.77 19.06 11.51 9 hr 6 hr 5 hr 45.96 9.85 8.21 1,319 14.77 Ca (km²) 10,065 563 283 t'p (t'r*1hr) 5,43 17.81 0.8361 17.25 8.21 4.16 5.43 0.8361 4.10 0.8361 8.34 0.8361 ೭ tt t'p (t'r=12hr) Ħ 20 Table C26 1 — (<u>æ</u> 116 16 10 23 -1 (g 231 32 79 8 Basin C Basin B Basin A Göksu (1714) Basin River Ermenek

46.56

8 hr

2,156

Total Basin

							٠.	:		·
River Basin	(km)	(لا ال	L	ŧ	ಕ	t'p (t'r=1hr)]	(Lg+D/2)	t'p+D/2	Ca (Lg+D/2) t'p+D/2 $q_p(m^3/s/mn)$ (km²)
Göksu	.		ra -						 	
(1714) Ermenek	15	116	82	23.05	1.0821	22.25	10,065	44,35	•	ı
Basin A	7.9	-22	ı		1.0821	10.55	1,319	13.94	11 hr	44.47
Basin B	32	16	1		1.0821	96*9	563	8.87	7 hr	29.84
Basin C	50	10	1		1.0821	5.31	283	7,60	6 hr	17.52
Total Basin	•	•	ā		1	í	2,156	ŧ	11 hr	55.93

Table C28 UNITGRAPH FOR ERMENEK DAM ESTIMATED BY JAN. 1971 FLOOD (1/3)

Time(hr)	$q_{A}(m^{3}/s)$	$q_B(m^3/s)$	$q_{C}(m^3/s)$	Total(m ³ /S)
0	0	0	0	0
1	0.25	0.26	0.22	0.73
2	0.70	1.09	1.12	2.91
3	1.70	3.57	4.00	9.27
4	3.83	9.27	9.19	22.29
5	8.27	16.55	11.51	36.33
6	14.47	19.06	9.59	43.12
7	22.74	16.55	7.19	46.48
8	27.91	12.58	6.07	46.56
9	29.77	10.99	5.11	45.87
10	27.91	9.53	4.31	41.75
11	23.47	8.27	3.60	35.34
12	19.85	7.08	3.04	29.97
13	17.99	6.16	2.56	26.71
14	16.33	5.30	2.16	23.79
15	14.89	4.63	1.84	21.36
16	13.44	3.97	1.52	18.93
17	12.41	3.44	1.28	17.13
18	11.06	2.98	1.08	15.12
19	10.13	2.58	0.90	13.61
20	9.20	2.25	0.76	12.21
21	8.27	1.95	0.64	10.86
22	7.55	1.67	0.54	9.78
23	6.93	1.47	0.45	8.85

Table C28 UNITGRAPH FOR ERMENEK DAM ESTIMATED BY JAN. 1971 FLOOD (2/3)

Time(hr)	q _A (m ³ /s)	$q_B(m^3/s)$	q _C (m ³ /S)	Total(m ³ /S)
24	6.20	1.26	0.38	7.84
25	5.69	1.07	0.32	7.08
26	5.17	0.94	0.27	6.38
27	4.65	0.81	0.22	5.68
28	4.24	0.70	0.19	5.13
29	3.88	0.61	0.16	4.65
30	3.52	0.53	0.13	4.18
31	3.20	0.46	0.11	3.77
32	2.89	0.40	0.10	3.39
33	2.71	0.34	0.08	3.13
34	2.38	0.30	0.07	2.75
35	2.17	0.25	0.06	2.48
36	1.96	0.22	0.05	2.23
37	1.78	0.19	0.04	2.01
38	1.61	0.17		1.78
39	1.47	0.14		1.61
40	1.34	0.13		1.47
41	1.20	0.11		1.31
42	1.08	0.09		1.17
43	0.99	0.08		1.07
44	0.91	0.07		0.98
45	0.82	0.06		0.88
46	0.74			0.74

Table C28 UNITGRAPH FOR ERMENEK DAM ESTIMATED BY JAN. 1971 FLOOD (3/3)

Time(hr)	$q_{\mathbf{A}}(\mathbf{m}^3/\mathbf{S})$	q _B (m ³ /s)	q _C (m ³ /s)	Total(m ³ /S)
47	0.68			0.68
48	0.62			0.62
49	0.56			0.56
50	0.51			0.51
51	0.45			0.45
52	0.41			0.41
53	0.38			0.38
54	0.35			0.35
55	0.31			0.31
56	0.28			0.28
57	0.26		er Talling	0.26
58	0.24			0.24
59	0.21	and the second of the second o		0.21
60	0.20			0.20
61	0.18			0.18
62	0.16			0.16
63	0.14			0.14
64	0.13			0.13
65	0.12			0.12
66	0.11			0.11
67	0.10			0.10

Table C29 UNITGRAPH FOR ERMENEK DAM ESTIMATED BY FEB. 1975 FLOOD (1/3)

		•		
Time(hr)	q _A (m ³ /S)	$q_B(m^3/s)$	q _C (m ³ /s)	Total(m ³ /S)
0	0	0	0	0
1	1.04	1.32	0.95	3.31
2	2.68	2.87	1.99	7.54
3.	4.05	4.56	3.37	11.98
4	5.59	7.13	5.48	18.20
5	7.45	10.58	8.63	26.66
6 · · · · ·	9.86	15.66	17.52	43.04
7	12.60	29.84	11.44	53.88
8	16.21	21.54	6.26	44.01
9	18.62	12.06	5.18	35.86
10	29.58	9.19	4.14	42.91
11	44.47	8.09	3.37	55.93
12	37.24	6.69	2.72	46.65
13	27.39	5.59	2.20	35.18
14	19.17	4.63	1.77	25.57
15	14.79	3.82	1.42	20.03
16	13.47	3.20	1.15	17.82
17	12.27	2.68	0.92	15.87
18	10.95	2.21	0.74	13.90
19	9.75	1.84	0.60	12.19
20	8.76	1.54	0.49	10.79
21	8.11	1.26	0.39	9.76
22	6.90	1.06	0.32	8.28

Table C29 UNITGRAPH FOR ERMENEK DAM
ESTIMATED BY FEB. 1975 FLOOD (2/3)

Time(hr)	$q_{A}(m^{3}/s)$	$q_B(m^3/s)$	q _C (m ³ /s)	Total(m3/S)
23	6.13	0.88	0.26	7.27
24	5.48	0.74	0.21	6.43
25	4.93	0.61	0.17	5.71
26	4.33	0.51	0.13	4.97
27	3.86	0.43	0.11	4.40
28	3.40	0.35	0.09	3.84
29	3.07	0.29	0.07	3.43
30	2.74	0.24	0.06	3.04
31	2.41	0.20	0.04	2.65
32	2.14	0.17	0.04	2.35
33	1.88	0.14		2.02
34	1.69	0.12		1.81
35	1.48	0.10		1.58
36	1.34	0.08	·	1.42
37	1.17	0.07		1.24
38	1.06			1.06
39	0.94			0.94
40	0.83			0.83
41	0.74			0.74
42	0.66			0.66
43	0.59			0.59
44	0.53		· · · · · · · · · · · · · · · · · · ·	0.53
45	0.47			0.47
46	0.42			0.42

Table C29 UNITGRAPH FOR ERMENEK DAM
ESTIMATED BY FEB. 1975 FLOOD (3/3)

Time(hr)	q _A (m ³ /S)	q _B (m³/s)	q _C (m ³ /s)	Total(m ³ /S)
47	0.37			0.37
48	0.33			0.33
49	0.30			0.30
50	0.26			0.26
51	0.23			0.23
52	0.21			0.21
53	0.19			0.19
54	0.16			0.16
55	0.14			0.14
56	0.13			0.13
57	0.11			0.11
58	0.11			0.11

Table C30 BASIN LAG TIME IN ERMENEK RIVER BASIN

River		Bas	in la	g t'p
Besin	LĪ./√s	Feb. 1975		Jan. 1971
Basin A	129	10.5 hr		8.5 hr
Basin B	53	6.5		5.5
Basin C	14	 5.5		4.5

Table C31 CALCULATION OF PROBABLE MAXIMUM SNOW MELT HYDROGRAPH AT GÖRMEL BRIDGE

Бау	Maximum Cumulative Temperature	Maximum Temperature Difference °C	Temperature Design Pattern °C	Temperature at average elevation of snow-melt area	of temperature by maximum snow-melt rate 0.388	Daily Snow-melt <1700 km ²) 10 ⁶ m ³	Daily snow-melt discharge m ³ /sec
	,						
	38.4	18.7	16.6	5.2 8.5	5.122	91.018	1053.
	56.8	18.4	18.3	14.9	5.781	98.277	1137.
	۲.£	18.3	18.7	15.3	5.936	100,912	1168.
	92.3	17.2	19.7	16.3	6.324	107.508	1244.
	109.1	16.8	19.6	16.2	6.286	106.862	1237.
	128.7	19.6	18.4	15.0	5.820	076"86	1145.
	146.4	17.7	17.71	14.3	5.548	94.316	1092.
	163.0	16.6	16.8	13.4	5.199	88.383	1023.
10	179.5	16.5	16.5	13.1	5.083	86.411	1000

= 0.388 cm/°C-day	= 1250 m	≈ 1250 м	1740 m	1700 km ²	= 0.7 °C/100 m.
11	***	Ħ	11	11	TH.
Maximum Snow-melt Rate	Ermenek Elevation	Snow-meit Starting Elevation	Avg. elevation of the area above 1250 m = 1740 m	Area above 1250 m	Temperature Decrease Rate

Table C32 SUSPENDED SEDIMENT VALUES FOR 1723 STATION (1/2)

Date	Runoff (m ³ /s)	Concentration (ppm)	Sediment (ton/day)
14/12/1985	20.140	7.8	14.
14/03/1986	95.962	74.0	614.
17/04/1986	109.600	148.8	1,409.
23/05/1986	44.027	87.2	332.
05/06/1986	22.779	38.5	76.
10/07/1986	8.384	26.3	19.
08/08/1986	8.567	37.2	28.
11/09/1986	6.373	5.6	3.
23/10/1986	8.411	5.8	4.
21/11/1986	8.645	13.0	10.
17/12/1986	8.810	15.1	12.
09/01/1987	254.291	300.3	6,598.
18/02/1987	86.968	95.8	720.
20/03/1987	38.430	82.7	275.
15/05/1987	167.956	138.7	2,013.
13/06/1987	101.955	71.0	625.
23/07/1987	14.854	3.3	4
25/08/1987	8.488	7.9	6.
11/09/1987	9.376	11.2	9.
25/10/1987	10.794	28.4	27.
27/11/1987	21.749	17.2	32.
25/12/1987	26.853	57.1	133.
13/01/1988	18.514	19.1	31.
26/02/1988	29.246	36.4	92.
28/03/1988	99.481	107.1	921.
22/04/1988	108.659	87.4	821.
26/05/1988	54.028	25.6	120.
23/06/1988	19.339	34.5	58.

Table C32 SUSPENDED SEDIMENT VALUES FOR 1723 STATION (2/2)

Date	Runoff (m³/s)	Concentration (ppm)	Sediment (ton/day)
19/07/1988	10.367	20.6	19.
10/08/1988	10.283	163.7	146.
18/09/1988	7.470	80.3	52.
24/10/1988	8.614	283.5	211.

RESULTS OF CHEMICAL ANALYSES OF THE WATER SAMPLES COLLECTED AT 1723 ÇAVUSKÖYÜ GAUGING STATION Table C33

Date of	ິນ	Æ		Cations (mg/Liter)	-		Anions (mg/Liter)	ons ter)	
Sampling	(× 10°)		œ	.	Ca + Mg	, co	#503	ಕ	80%
14 Dec 1985	219	7.8	0.15	0.02	2.10	0.00	1.80	0.15	0.32
14 Mar 1986	212	8.1	0.09	0.02	2.10	0.20	1.70	0.22	0.09
17 Apr 1986	218	8,1	20.0	0.02	2.00	0.30	1.50	0.18	0.11
23 May 1986	181	8.0	60.0	0.03	1.80	0.10	1.45	0,18	0.19
5 Jun 1986	197	7.8	0.09	0.02	2,00	00.00	1.60	0.15	0.36
10 Jul 1986	307	8.2	0.15	0.03	3.40	0.30	2.65	0.19	77.0
8 Aug 1986	23	7.8	0.13	0.02	2,60	00.0	2.25	0.14	0.36
21 Nov 1986	280	8.1	0.13	0.02	2.90	0.20	2.35	0.17	0.33
17 Dec 1986	340	8.2	0.18	0.04	3.60	07.0	2.65	0.23	0.54
					: . '				

FIGURES

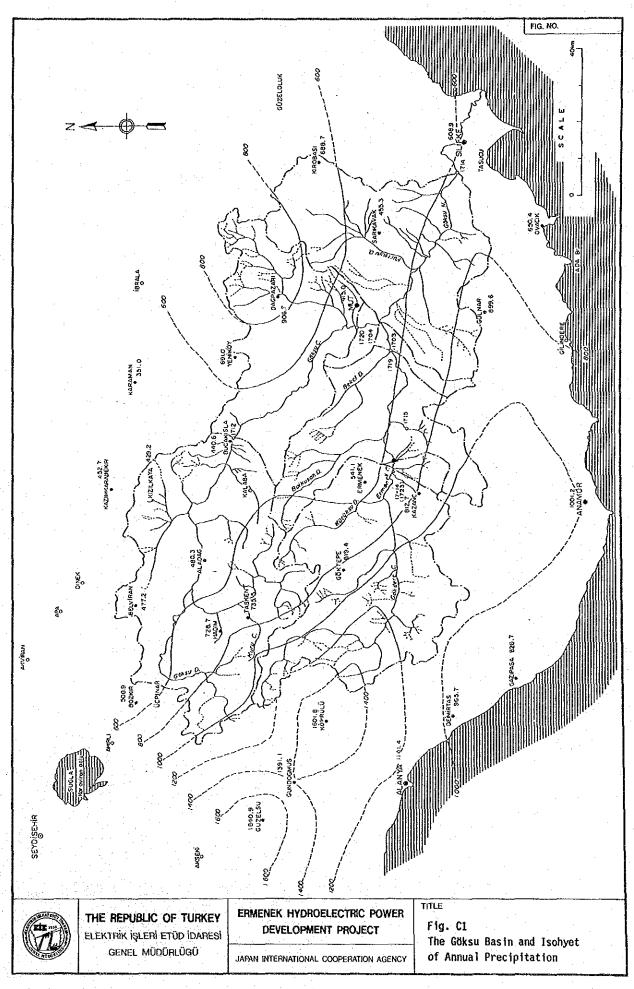
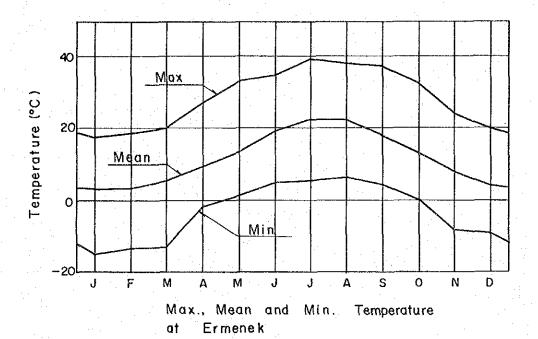
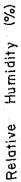
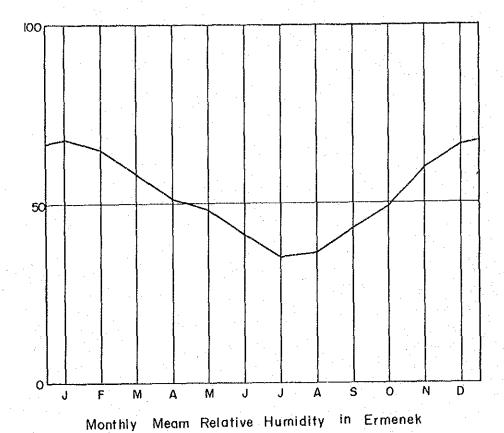



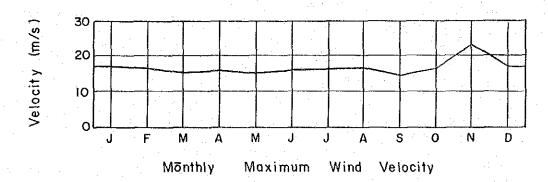
FIG. NO.


THE REPUBLIC OF TURKEY ELEKTRIK İŞLERİ ETÜD İDARESİ GENEL MÜDÜRLÜĞÜ ERMENEK HYDROELECTRIC POWER DEVELOPMENT PROJECT


JAPAN INTERNATIONAL COOPERATION AGENCY

TITLE

Fig. C2 Maximum, Mean and Minimum Temperature at Ermenek


THE REPUBLIC OF TURKEY ELEKTRIK İŞLERİ ETÜD İDARESİ GENEL MÜDÜRLÜĞÜ ERMENEK HYDROELECTRIC POWER DEVELOPMENT PROJECT

JAPAN INTERNATIONAL COOPERATION AGENCY

TITLE

Fig. C3 Monthly Mean Relative Humidity in Ermenek

FIG. NO.

THE REPUBLIC OF TURKEY ELEKTRIK İŞLERİ ETÜD İDARESI GENEL MÜDÜRLÜĞÜ ERMENEK HYDROELECTRIC POWER DEVELOPMENT PROJECT

JAPAN INTERNATIONAL COOPERATION AGENCY

TITLE

Fig. C4 Monthly Maximum Wind Velocity