資料-18 江村処分場地質, 土質調査

・7. 2 地質・土質調査

1. 江村処分場の位置と現況

江村最終処分予定地は、西安市中心部から東方約18kmにあり、いわゆる渭河によって形成された関中平原のほぼ中央に位置している。この処分場位置の詳細は、図~1の案内図に示すように、名河と塩川に挟まれた半島状の台地のほぼ先端部に位置する。名河と為河は台地の突端から北北西約10kmで合流し、さらに10km流下して西安市の北北東約21km地点で、黄河の第1支川である渭河に合流する。

江村処分場は、この台地の先端部に刻まれた沢地で、沢幅200~500m、深さ60~100m、延長約4kmの規模で北西方向に細長くほぼ第河に平行している。

この処分場近傍 (沢の南側一帯) には江村を始め、潘村・金星の各村が点在している。

また、この沢地形の崖肩周辺には、沢上流端の沟泉、右岸側中流部に高家沟、肖家寨、砂岩中流部の沢内に何家沟(現在、2戸居住するのみ)、さらに沢終端には 唐家寨の各集落が点在している。

さらに、台地突端の緩斜面部は紡績、セメントなどの拡大な工場地帯およびこれ の居住区 (紡績城) が形成されている。

台地上は、全域が小麦ととうもろこし類の二毛作による畑地として利用されているほか、数ケ所のレンガ工場、陵墓などの遺跡が存在している。

また、台地上の道路状況は、幹線道路(国道 号~舗装)を除き、ほとんどが黄土地盤上の踏固め道路で、しかも路面の凹凸がはげしく、乾期の現在(11~12月)でも車輌走行が困難な状態にあるため雨期の走行はほとんど期待できない。

2. 地形概要

霸と沪河の浸食によって形成された当該箇所の黄土台地は、幅6~9km、奥行約25kmの規模で南側の秦岭山脈の山裾にとりついている。(図~2)

この台地面は、両河川の沖積面標高400~410mに対し約700mの平坦面を有しているが、江村処分場の位置する先端部は段丘地形の緩やかな傾斜を示している。

この台地は、沪川に流入する大きな浸食谷によって二分されるとともに江村処分 場を含む中小規模の浸食谷が数多く発達している。

また、これらの浸食谷の出口の沖積面には浸食運搬された土砂によって小規模な

扇状地形が形成されている。

台地先端部の段丘地形は渭河の浸食によるもので、段丘面の発達は大きく3段に分けられ、それぞれ高差40~80mの段丘斜面で境されている。(図~2)

段丘斜面はそれぞれ4~7条の直立崖(高さ5~15m)で階段状を呈しているが、その平均勾配は20~30°と比較的緩い。また、この段丘面には、ガリー状のものから小規模な沢地形まで無数の侵食が見られ、台地の浸食発達の一つの過程を示している。

台地先端部のやや霸河側に位置する江村処分場は、これら浸食沢の一つで、沢幅 200~400m、深さ60~100m、延長約4kmの規模を有している。

また、沢内には小規模を農業用貯水池が4箇所存在するとともに、沢開口部の沖 積面に簕河側に開く扇状地形の発達が見られる。

3. 地質・土質概要

関中平原全域の地質は、前寒武系から第4系までの各時代の地層で構成されている。

この内、江村処分場近傍の地質は第4系洪積層の風積層(黄土層)を主体とする 台地部と沪河および霸河の両河川による第4系沖積層の低地部に分けられる。

両河川に挟まれる台地の地表部は上更新統の風積層(e 01Q。~マーラン黄土)に広く覆われ、その回には中更新統の風積層(e 01Q。~リーシ黄土とマーラン黄土の複合層)が続き、さらにその下位に下更新統の風積層(e 01Q」~ウーチャン黄土)が堆積している。(図~3)

この内、後者の二層は台地内の浸食谷あるいは台地外縁の崖に露出するが、視察ではこれら各層の判別は困難とされている。これら黄土層の下位は、第3系上新統および中新統の礫岩、泥岩、砂岩などからなるが、霸河沿いの台地崖面に一部露出しているとのことである。

一方、沪河および霸河の河道に沿う低地は、沖積世の砂礫、砂、砂質粘土などが 広く分布するとともに台地部の浸食により流出した黄土の二次堆積層が随所に見られる。

これら第4系全体の厚さは、渭河に向うほど厚さが大きく、最大 700mにも及ぶが、江村処分場の台地先端部付近では100~300mの範囲と判断される。(図~4)

また、自然地下水位は、台地面では50~80mの深さに予想されているが、台地中の浸食谷近傍ではこれよりも深く80~100mと言われている。

一方、沖積面の自然地下水位は、それぞれの河川水位に近い深さかあるいはこれ よりもやや浅い位置と判断される。

しかし、これらの地下水位は季節的には若干の変動が考えられる。この地下水の 流向は、基本的には関中平原の中心部(北西方向~渭河に向う)に対してであるが、 台地内の浸食谷および台地外縁においては、それぞれの最も近い河道の方向となる。

一方、関中平原全域に被圧地下水が存在するが、本地域一帯での頂板(キャップロック)深さは、台地面で150~200m、沖積面では30~50面と言われている。

以上の地層構成の中で江村処分場に最も関連の大きい土質は台地部の黄土である。 黄土はもともとは第4紀更新世の寒冷な時期を中心に主としてシルト粒径(5~74 μm)の土粒子が風で運ばれて堆積した淡黄色の風積土で、世界的に Loessの名称 でその分布で知られている。

しかし、世界各地のレス土の分類特性には、さほどの差異はなく、素材的にはかなり似かよって、ほとんどがML(シルト)、CL(粘土)に分類される。

この一次堆積黄土の最大の特徴は、自然状態ではかなり大きい強度を示めすが、 いったん地下水の浸入を受けたり大きい荷電が載ったりすると、極端な強度の減少 による崩壊型沈下 (コラップスと呼ばれる) を生ずることと言われている。

一方、土工材料としての黄土は、適度な含水比のもとで締固められた場合、分類 特性から想像されるよりもはるかにすぐれた工学的特性を示すことが知られている。

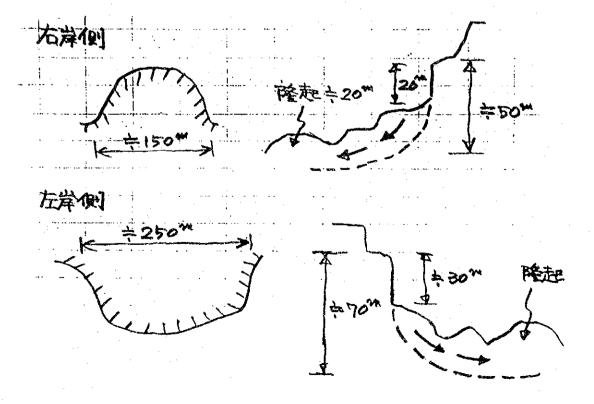
しかし、締固めエネルギーや含水比の選択を少しでも誤まるとこの黄土の土工材料としての特性はまったく消滅してしまう。江村処分場の黄土層は、その厚さは100m以上にも及ぶが、土質的にはシルト分を主体とする均質一様な土質で、ほぼレス土の一般的範ちゅう中にある。

すなわち、比高10~20m以上にも及ぶ黄土層の崖部の自立性にも見られるように 強度、支持力が大きいことがうかがわれる反面、ガリーの発生や崖面随所に見られ る大きい滑落地形など水の侵食に対してもろい性質を有していることが判る。

4. 現地調査

江村処分場に対する現地調査は踏査を主体に実施し、この結果を図~5、6にま

とめた。


調査結果の要旨を以下に示す。

- ・ 沢底部地盤面の標高は、最下流部で約450m、最上端部(台地面)で約700mと その高差は約300mにも及ぶ。
- ・ 沢底部の平均勾配は、ほぼ段丘面の平均勾配に等しく、第1段丘面付近では約 1.3°とほとんど平坦であるが、これから上流に向うほど勾配が大となり、第2 段丘面付近で約3°、さらに第3段丘面の沢上流端では最急の約8°を示めす。
- ・ 沢斜面の平均勾配は、大崩壊地形(後述)を除き、左岸側30~40°、右岸側25~35°とやや左岸側斜面のほうが急である。

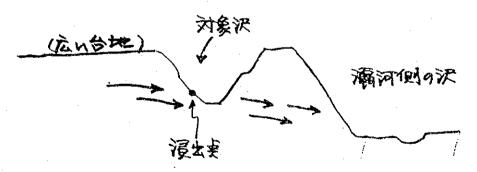
しかし、右岸側は直立崖による階段状を呈している箇所が多く、視察による限り右岸側のほうが急峻な感じを与える。なお、この右岸側斜面は南西に面しているため、階段状の平坦部は耕地として利用されているが、左岸側はほぼ自然状態で耕地も少ない。

- ・ 沢斜面の崩壊箇所 (とくに、スベリ状の崩壊) は随所に見られるが、下流部 (第1貯水池〜第3貯水池間) は比較的少ない。
- ・ 沢中流部(第2 貯水池~第3 貯水池間)では左右岸ともに大崩壊が発生し、これの影響で沢幅も 500mと最も大きい。

崩壊規模は下図に示すように左岸側が大きい。

また、左右岸の崩壊に伴って沢底部は15~25mもの隆起が発生し、沢底全体は 自然ダム状に地上げされている。

なお、隆起面には幅2~3m、深さ3~5m以上にも及ぶクラックが多数発生 し、しかも生々しい状態にあることから、このスペリによる変形は現在も継続し ている可能性が大きい。


- 平面的に左右台地面の段丘列がつながること、大崩壊の下流直立崖の露頭で左右の土層順位と色調が一致することなど、かつての黄土台地が浸食されてこの沢が形成されたことが認識される。
- 沢底は、下流部から中流部(第3貯水池付近)までは耕地として利用されているが、これより上流側は自然状態に起伏がはげしい。

また、沢底は一部の高みを除き全体的に湿地状態を呈しているが、とくに中流 部から上流一帯はほとんど冠水状態にある。

上流側一帯 (第3 貯水池より上流)の沢底部には随所に湧水箇所 (湧水量は最大で200 ℓ / min程度) が認められる。

これらの湧水点は沢底からの高さ10~20mを上限として左岸側斜面にのみ集中 し、右岸側斜面にはほとんど認められない。これらの湧水は、台地中の地下水が 伏流して浸出するもので、湧水点の高さは、崎の地質概要で説明した地下水深度 にほぼ一致する。

また、湧水点が左岸側に集中するのは、この付近での地下水流向が霸河方向で あることを意味する (下図)。

なお、これらの一帯には湧水による新しい小規模スベリ(滑落面全体に水が滲 出)が散見されるが、これが大きな崩壊の前兆の一つと考えられる。

・ 沢底部には、これらの湧水を集める小川(幅0.5~1.5m、深さ0.2~0.4m)が 流下しているが、その水量は中流部で 、下流部で2200~2500 t/dayとほぼ 一定している。

しかし、雨期の水量は、これと大幅に異なることが要素される。

第 4 貯水池の下流約 200付近の急峻な沢床に局所的にレキ岩が大塊(ϕ 1 \sim 1.5 m)として散点するとともに層状(厚さ 1 \sim 1.5 m)にも露出している。

また、この地点の700~800m下流付近の右岸側斜面(河床からの高差約5m)にも固結度が低く層厚も小さいが同様のレキ岩層が認められるが、その下位は黄土圏となっている。

これらのレキ岩が第3紀以前(基底層)のものかどうかは明らかではないが、 先の地質概要で述べたように本地点付近に局所的に露頭する可能性は大きい。

・ 下流部の平坦な沢底部 (とくに、第1 貯水池~第2 貯水池間) には浸食運搬された黄土 (二次堆積黄土) が厚く堆積しているが、その概要は次のようである。

平坦面の沢底幅

4.5~50m

地下水位

 $0.5 \sim 0.7 \,\mathrm{m}$

堆積層厚

10~20(推定)

※ 地下水位が浅くかつ軟弱粘性土のためオーガボーリングは深さ 1.5~2 m程度で掘進困難となる。

相対強さ

やわらかい (N≒1~3)

含水比

25~30%

透水係数 (回復法)

 6.4×10^{-4} cm/sec

台地を構成する一次堆積黄土は、その層厚が大きい割には土質的にそれほどの 差異は認められないが、土かぶり圧の関係で下部に向うほど締った状態にある。

	(上部黄土層)	(下部黄土層)
含水比	22%	18%
単位体積重量	1.67 t/m³	1.78 t / m³
<i>"</i>	1. 37 "	1.49 "
間ゲキ比	0.98	0.81
相対強さ	ややゆるい	締っている
	$(N = 5 \sim 10)$	(N = 20)
透水係数		5 ×10⁻⁵cm∕sec

※ 単位体積重量、間ゲキ比は乱さない試料(ブロックサンプリング)に対

する値。

透水係数は乱した試料を自然含水比で密詰め (ρ t = 1.83 t / m) した 状態に対する値。

5. 考 察

江村処分場の沢全体における地質・土質面からの実施上の問題点は、貯水池を 基準に以下のように判断される。

第1 貯水池~第2 貯水池間

沢底地盤がほぼ平坦で施工が易い反面、沢幅が狭く、処分できる量が限られる。

また、斜面勾配が急なため埋立地へのアプローチが難しい。沢底地盤が二次 堆積黄土による軟弱地盤であるため、今後、実施に際しては地盤の支持力と沈 下に関して注意が必要である。

第2貯水池~第3貯水池間

沢底は崩壊による隆起で起伏がはげしく、しかも、崩壊自体現在も進行している可能性が大きい。

したがって、地盤造成において隆起面を大幅にカットすることは沢全体の安 定の上からも避けなければならない (不陸繋正程度に止める)。

逆に供用後は、ごみ荷重の押え効果が発揮されるため長期的には安定方向となる。

本区間は、沢幅が最も大きく今後の処分量は大幅に期待できる。

第3貯水池~第4貯水池間

沢全体の地形が急峻・複雑なことに加え、斜面下部に湧水点が多くみられ、 また、この湧水に伴う崩壊地形も随所にみられる。

沢底は全体的に湿地状態にあるが、二次堆積層の規模は小さい。

したがって、今後の地盤造成においては、地山の安定性と湧水処理に対して 配慮しなければならない。

第 4 貯水池~上流端間

沢幅が狭く、しかも沢底の勾配も急であることから施工性が湧く、処分量も あまり多く期待できない。 以上の地形と地盤条件、さらに造成の容易さ、アクセスの世さなど、総合的に 判断すると、当面の処理対象とすべき適地は、下流部 (第1 貯水池~第2 貯水池) で、これより上流区間は予来の予定地とすることが提案される。

しかし、この適地区間も沢底全体に軟弱地盤が予想されるため、実施に際して は施工方法に関連した土質工学的な対応が必要となる。

すなわち、重機械による急速施工では支持力不足による地盤破壊や長期間に及ぶ圧密沈下が予想されるため、これに対処した地盤処理工(軟弱土層の良質土による置換、プレロードによる地盤強化、圧密促進のためのドレーンなど)も場合によっては必要となる。

一方、緩速工法に関しては、これまでの経験と実績(簡易機械と人力による施工および水締工法など)で十分対応可能なことが第1および第2貯水池ダムで証明されている。

しかし、これらの既設盛土にしても、今後の貯留堤の設計値を満足するかどうかのチェックは必要となる。

貯留堤材料は、台地部の道路施工に伴う切土材 (一次堆積黄土) が当面の対象 となる。

一般に黄土は施工性が良好と言われているが、計画的にきちんと設計・施工する場合、施工含水比には注意を要する。

すなわち、黄土は最適含水比を境にあまり乾燥側にあっても締固状態は良くなく、逆に過度に湿潤側ではオーバーコンパクション状に締固め不能となりやすく、この最適な締固め(強度が最も大きく、透水係数が最も小さい状態)を得る含水 比の幅が狭いことが特徴の一つと言われている。

したがって、この特徴を生かすことによって埋立地盤のしゃ水工を設計、施工 することが可能となる。

※ 黄土の透水係数は地山状態では一般に10-4のオーダーであるが、これを最適 含水比よりもやや湿潤側(約2%程度)で締固めることによって10-6以上にす ることが可能である。

台地面から埋立地への進入道路は、片切片盛(斜面勾配が急で高さも大きいため腹付け盛土は実際上不可能)を避けて、堀割り構造とするか、または、十分な余裕を持った片切り構造とすることが望ましいが、いずれの場合も縦断方向に排

水工が整備されなければならない。

また、切土面を路床とする限り支持力的な問題点はほとんど認められないが、 湧水点 (または面) をきる場合には水処理を十分に行なわなければならない。

今後の実施設計における土質常数の一般的な標準値は以下のように提案される が、詳細には今後の調査・試験によって決定される必要がある。

流用土 (最適含水比付近の値)

含水比(w)

15~20%

単位体積重量 (ρt)

1. $8 \sim 1.9 \text{ t} / \text{m}^3$

粘着力 (Cd)

 $0.1 \sim 0.2 \, \text{kg/cm}$

内部摩擦角(φd)

30~35°

透水係数(k)

 $1.0 \times 10^{-5} \text{cm/sec}$

沢地地盤(自然崩壊)

含水比(w)

25~30%

単位体積重量 (pt)

1, $5 \sim 1$, 6 t $/ m^3$

粘着力(Cu)

 $0.1 \sim 0.2 \, \text{kg/cm}$

内部摩擦角(φu)

≒ ()

透水係数(k)

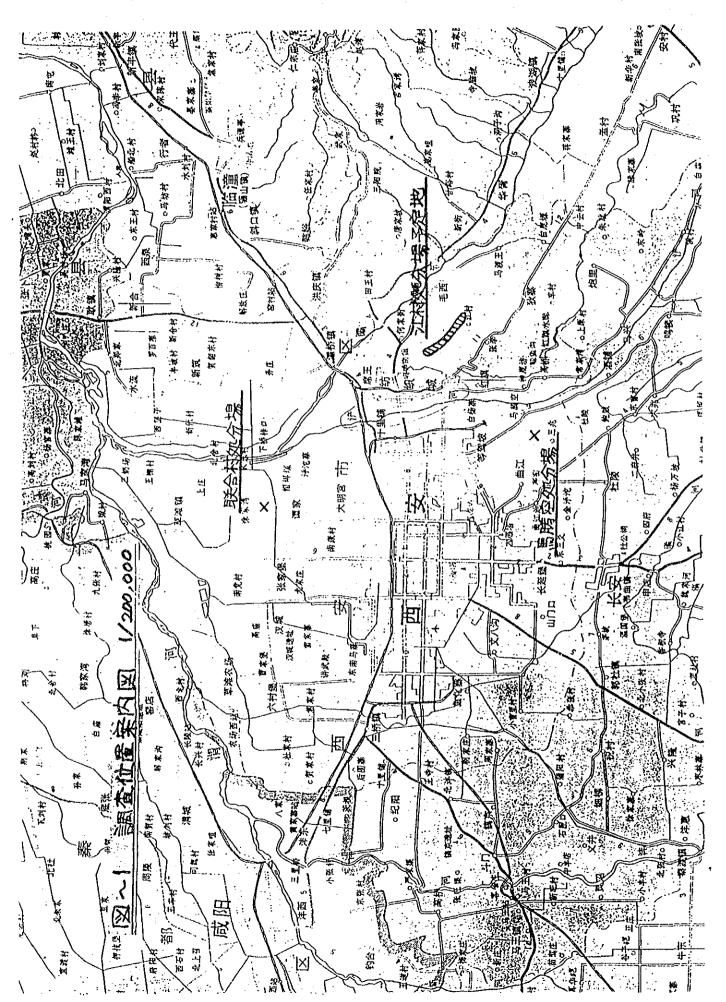
1.0×10⁻⁴cm∕sec

圧縮係数 (Mu)

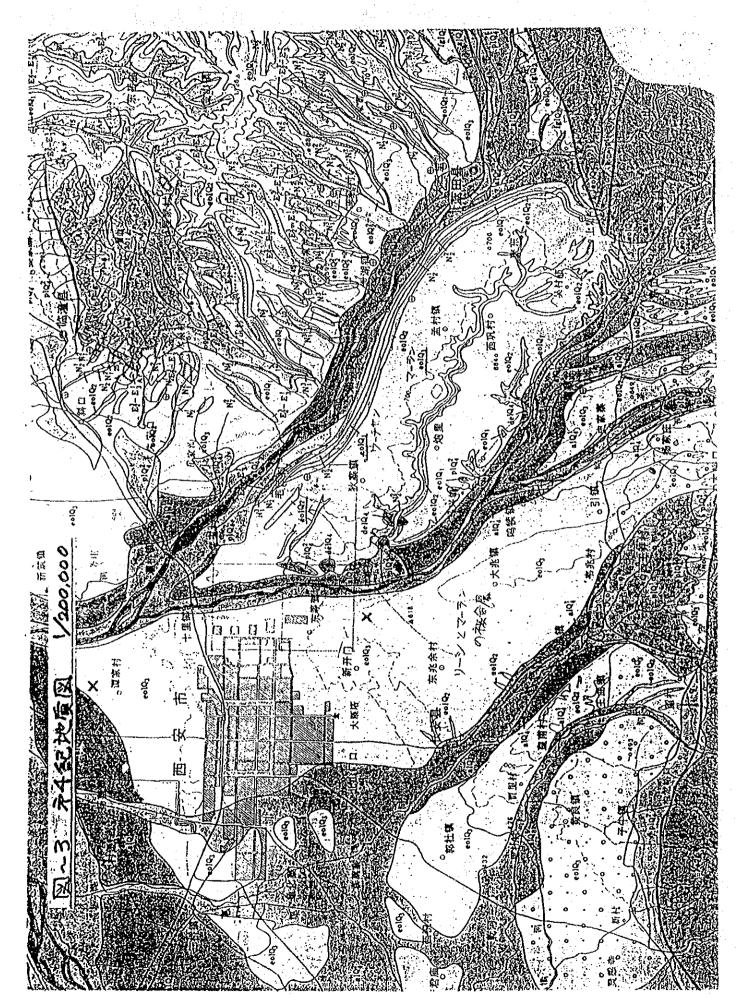
なお、今後、実施に向かって最小限以下の項目に関する調査、試験が欠かせられない。

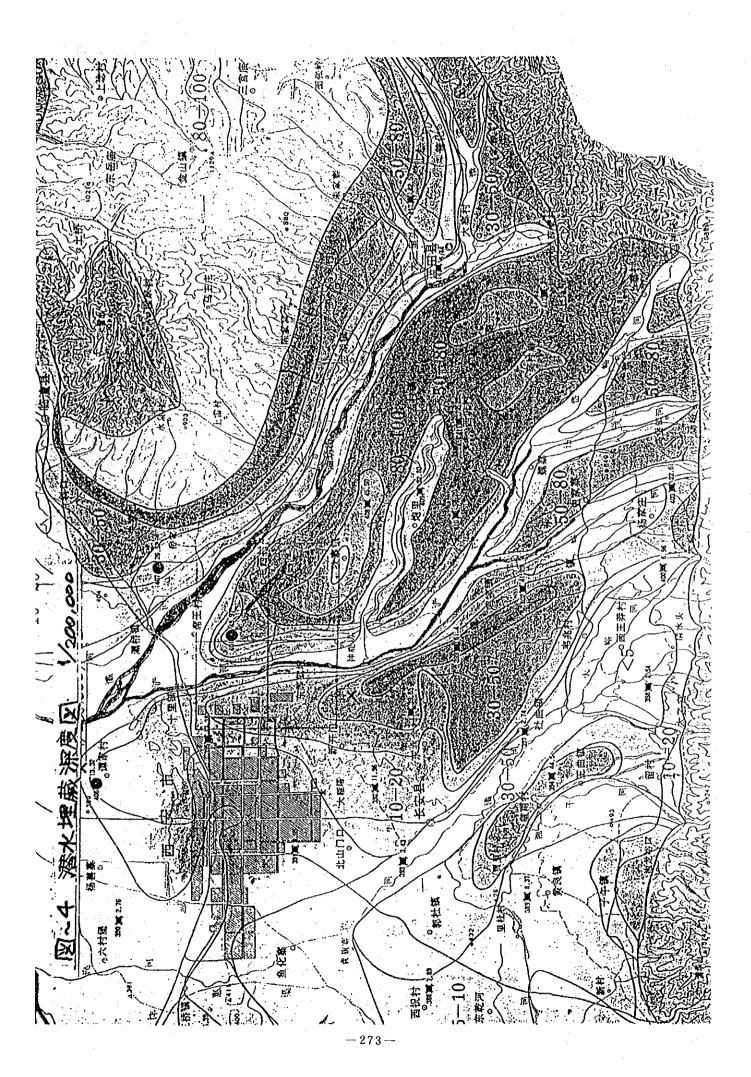
流用土 (台地黄土層の上~下部について)

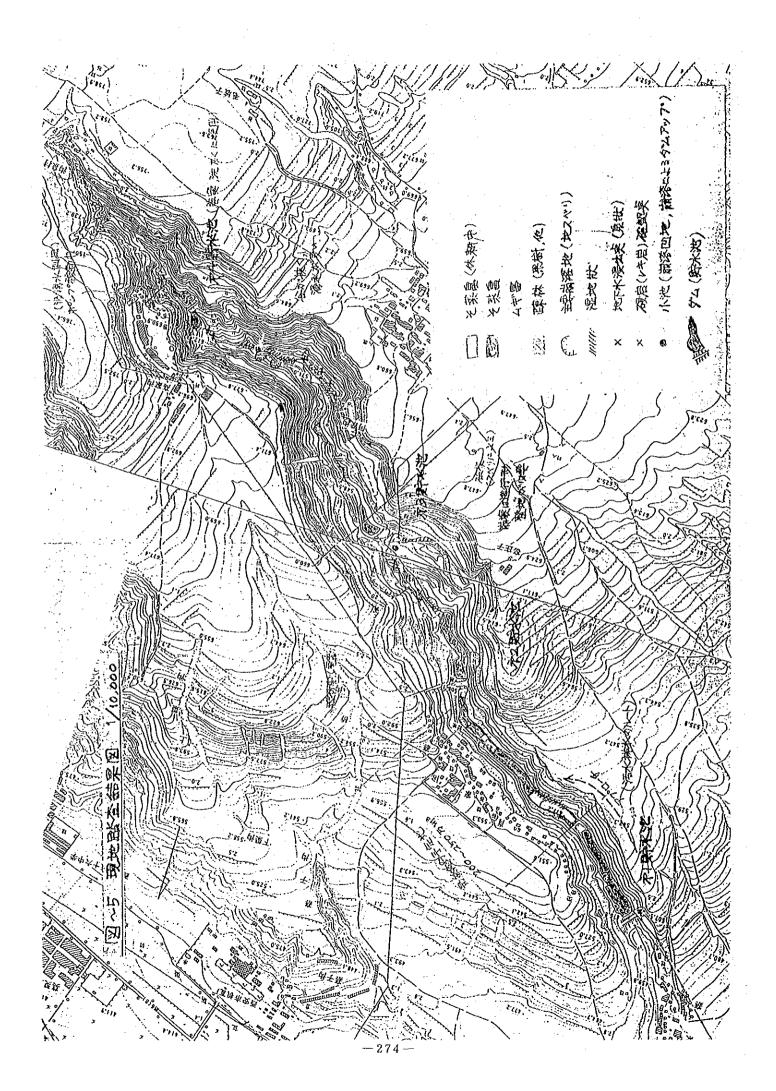
黄土の基本的物性値の把握

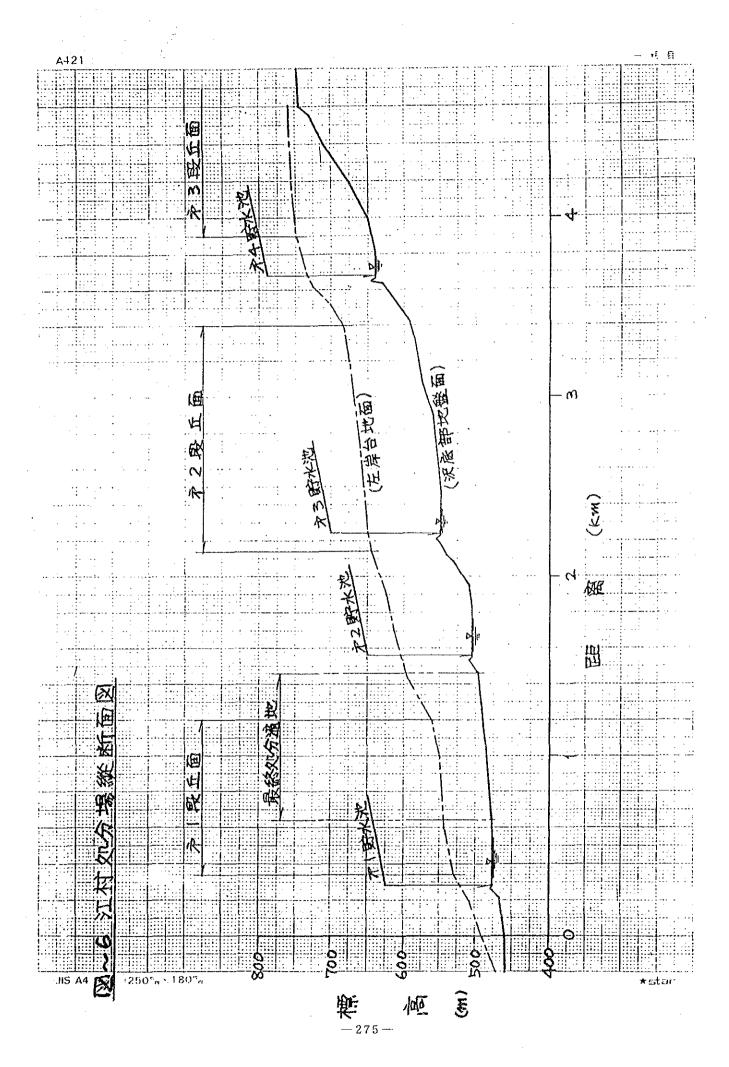

締固め特性と強度・透水性の関係の把握

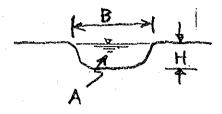

沢底地盤 (代表地盤数箇所について)


二次堆積黄土層の規模(厚さ、分布など)の把握


基本的物性値の把握

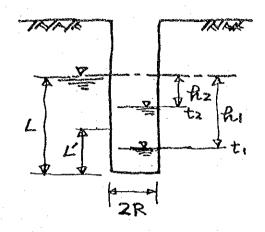

地盤の強度分布、圧密常数、透水性の把握





沢底流量測定

L;測定長 (m) T;測定時向


.. $Q_T = A \cdot L / T$

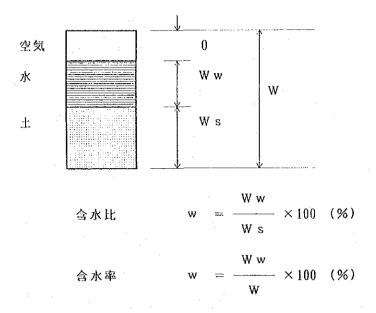
	水	路断	面				単	位 流	量
地点	В	Н	Α	L	Т	Q	Q,	Q 2	Q 3
: 	(m)	(m)	(m²)	(m)	(sec)	(m³)	(m³/sec)	(m³/sec)	(m³/sec)
第1ダム下流	0. 32	0. 153	0.049	5. 00	9, 30	0. 245	0. 026	1, 56	2246
第1ダム上流 (Na 1地点)	0.50	0. 240	0. 120	5. 00	19. 38	0. 600	0. 031	1. 86	2678
第2グム下流 (No 2地点)	0. 45	0. 085	0. 038	5, 00	6. 09	0. 190	0. 031	1.86	2678
第2ダム上流									
第3グム上流									

※ 簡易測定のため、断面補正および流速補正は行なわない。

資料~2

現位置透水試験 (オーガー裸孔による仮定計算)

$$L \cdot = \frac{h_1 - h_2}{2}$$

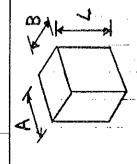

$$k = \frac{R^{2}}{2 L (t_{2} - t_{1})} \ell n (L/R) \ell n (h_{1}/h_{2})$$

地点 No.	地下水位 W L (cm)	裸孔長 L (cm)	孔半径 R (cm)	測定時間 t (min)	測定水深 h (cm)	透水係数 k (cm/sec)	平均透水係数 k (cm/sec)
No. 1	62, 5	87.5	5. 0	0	72. 0		
*.	"	"	"	10	66. 0	6. 8×10 ⁻⁴	
	"	"	<i>II</i>	15	64.5	7. 6×10^{-4} 9. 4×10^{-4}	
	"	"	"	20	63. 5	5.4~10	6.4×10^{-4}
No. 2	56. 5	73.5	5. 0	0	64. 0	F 0 × 10 - 4	
	"		, ,,	10	60.0	5. 8×10^{-4} 2. 6×10^{-4}	
	"	,,	"	20	59. 0	2. 0 > 10	•
No. 3	(83.0)	(37. 0)	5. 0	0	85. 0	1. 6×10 ⁻³	→ Neg.
	"	"	"	5	84. 0	1,0710	nog,
,	n	<i>"</i>	, //	10	84. 0		

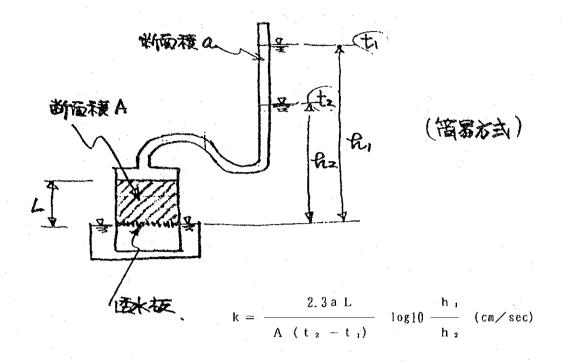
() は推定値

資料~3

含水量の測定


(蒸発皿、ハカリ、乾燥器)

			<u>(1)</u>	2	3	4)	(5)	6	
San	No.	Pan No.	Р	P+Sw	P + S .	W w	z W	w (%)	平均
						Ø	3 - 1	4/5×100	
No. 1	0. 5	1	49. 36	178. 44	148, 81	29. 63	99. 45	29. 79	
"	1, 4	2	48. 95	186. 43	157. 13	29, 30	108. 18	27.08	• •
No. 2	0.5	3	51. 39	186. 02	160. 43	25. 59	109.04	23, 47	28, 1
"	1. 2	4	51. 57	114. 94	99. 16	15. 78	47. 59	33. 15	
No. 3	0. 5	5	50.71	187. 95	158. 96	28. 99	108. 25	26. 78	
下部	0	6	50.33	170. 59	151. 34	19. 25	101.01	19.06	10 0
//	2	7	53, 89	165. 29	147. 82	17. 47	93, 93	18.60	18.8
上部	①	8	53. 82	181. 18	157. 81	23. 37	103. 99	22. 47	99.0
"	2	9	46. 99	165.89	143, 95	21.94	99. 96	21. 95	22. 2


一次堆積黄土の土質状態 (ブロックサンプリング)

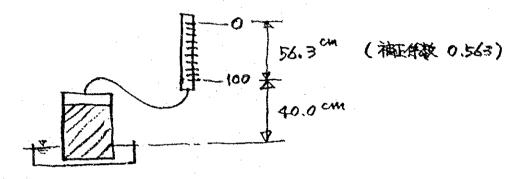
本 商 重 量 合水比 中心 4位 単単 (Coff) (gr) (gr) (96) 1.665 1.671 1254 2102 2.8.2 1.676 1.675 2049 3611 18.8 1.762 1.775							1 1	The state of the s				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			器	存極		金水比	単位体		Ē	※	i i	
(cm) (cf) (gr) (%) 13.23 × 8.60 × 11.95 1359 2263 22.2 1.665 1.671 1.367 2.70 13.48 × 11.08 × 8.4 1254 2102 22.2 1.676 1.676 1.367 2.70 15.13 × 10.87 × 10.67 1753 3135 18.8 1.762 1.775 1.494 2.70 16.18 × 10.60 × 11.95 2049 3611 18.8 1.762 1.775 1.494 2.70			$(L \times A \times B)$	Λ	M	W				出 (高イキ	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			(cm)	(cm²)	(gr)	(%)						
$13.48 \times 11.08 \times 8.4 \qquad 1254 \qquad 2102 \qquad 2.2.2 \qquad 1.676 \qquad 1.011 \qquad 1.306 \qquad 2.10$ $15.13 \times 10.87 \times 10.67 \qquad 1753 \qquad 3135 \qquad 18.8 \qquad 1.775 \qquad 1.494 \qquad 2.70$ $16.18 \times 10.60 \times 11.95 \qquad 2049 \qquad 3611 \qquad 18.8 \qquad 1.762 \qquad 1.494 \qquad 2.70$	1 0	Θ	23 ×	1359	2263	C	1,665	1001	7.00	0	c	
15.13 × 10.87 × 10.67 1753 3135 1.788 1.775 1.494 2.70 16.18 × 10.60 × 11.95 2049 3611 1.762 1.775 1.494 2.70		<u>a</u>	11. 08×8 .	1254	2102	7.77	1.676	T	1. 50 (٥. زا	× × × × × × × × × × × × × × × × × × ×	
2049 3611 16.6 1.762 1.454 2.70		Θ.	$10.87 \times 10.$	1753	3135		1.788			C	. 0	
		<u></u>	16.18 × 10.60 × 11.95	2049	3611	۶. 8 ۲	1.762	1. (13	1, 494	7. (0	7 × 7	
											·	
									·			

※ GSは一般値(補炉)

透水試験 (室内) ~要領

- ・ 事前に試料の含水比、単位体積重量を測定する。
- ・ 小ヘッドであらかじめ試料を飽和させる。
- ヘッドをかえて3回測定する。
- ・ 事後の含水比、単位体積重量を測定する。

・第1回試験 (室内透水)


試験状態

容器+試料=3700gr

試料 (W) = 1785gr

$$\therefore \tau t = W/V = 1785/977.1 = 1,827 \text{gr/cd}$$

$$w = 18.8\% \longrightarrow \boxed{\tau d = 1,537 \text{gr/cd}}$$

t (min)	Q (cc)	h (cm)	k (cm/sec)	k (cm/sec)
		h (cm)	K (CIII/ SCC)	(611/300)
0	0	96, 3	0.00	
15	1. 2	95, 6	2. 37×10 ⁻⁶	
- 10	1. 2	30, 0	2.38×10 ⁻⁶	
30	2. 5	94. 9	2. 58×10 ⁻⁶	2. 45×10 ⁻⁶
60	5. 1	93. 4	2.36 \ 10	
			2. 47 × 10 ⁻⁶	
120	10. 2	90. 6		

% h = 0.563 (100 - Q) + 40

・第2回試験 (室内透水)

容器+試料=3,350gr

t (min)	Q (cc)	h (cm)	k (cm/sec)	k (cm/sec)
0	0	96.3	0 10 10 5	
2	5.8	93. 0	8. 48×10 ⁻⁵	
5	13. 0	89.0	7. 13×10 ⁻⁵	
10	25, 0	82. 2	7. 73×10 ⁻⁵	7. 10×10 ⁻⁵
15	35. 0	76.6	6.86×10 ⁻⁵	
25	49. 0	68. 7	5. 29×10 ⁻⁵	
· · · · · · · · · · · · · · · · · · ·	···		·	

% h = 0,563 (100 - Q) + 40

·第3回試験(室內透水)

容器+試料=3,564gr

試料 (W) = 1,649gr

 $\therefore \gamma t = 1649/977.1 = 1.688 \text{gr/cm}$

 $w = 18.8\% \longrightarrow \int \gamma d = 1,421gr/cm^2$

t (min)	Q (cc)	h (cm)	k (cm/sec)	k (cm/sec)	
0	0	96. 3	4.50 .0.5		
2	1.0	95. 7	1. 52×10 ⁻⁵		
5	2. 1	95. 1	1. 02×10 ⁻⁵		
10	4.1	94.0	1. 13×10 ⁻⁵	1. 2×10 ⁻⁵	
20	8. 1	91. 7	1. 20×10 ⁻⁵		
			1. 14×10 ⁻⁵		
50	15. 6	87. 5	1. 14×10 ⁻⁵		
60	22. 8	83. 5			

% h = 0.563 (100 - Q) + 40

資料-19 江村処分場埋立量の検討

7.3 最終処分場調査

1. 調査の目的

西安市(城3区、郊3区の一部(62㎞の区域)を計画対象とした生活廃棄物を跡 地利用(現在は耕作地として活用)を考慮し、かつ、安全で最大埋立容になるよう な形状を検討するものである。

2. 調査の方法

最終処分計画地域を現地踏査及び縮尺 1 / 10,000の地形図を基に現況を把握し、 「廃棄物最終処分場指針」、「道路土工施工指針」等を参考にして埋立形状を立案 し、その結果に基づき横断図を作製して概算埋立容量を算定するものである。

なお、埋立形状(全体計画)を立案するにあたって次の条件を加味した。

- ① 3ヶ所の灌がい用貯水池は埋没する。
 - ② 2ヶ所の耕作地は埋没する。
 - ③ 埋立計画の最大高さは斜面法肩までとする。
 - ④ 跡地利用は耕作地として平坦部を多くする。
 - ⑤ 埋立法面高は安全を考慮して35m以下とする。
 - ⑥ 法面勾配は下部で1:2.5上部2段を1:2.0とする。

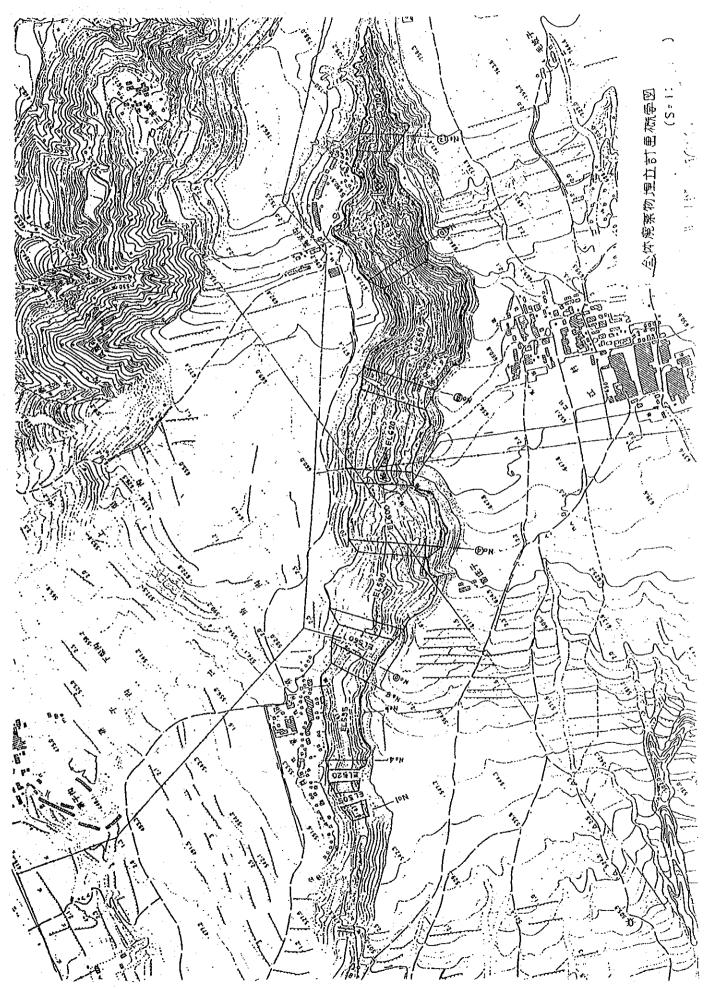
3. 調査結果

計画地域内には、端がい用貯水池4ヶ所、現在耕作地として2ヶ所点在しているが、下流部貯水池を残し全て埋没できるものとして全体埋立容量を試算すると、約25,000,000㎡が埋立てられることが算定された。(P7- P7- 参照)また、計画埋立容量に対し発生する計画廃棄物は、平均2,000ton/day でありこの計画最終処分地に埋立てられる期間は約34年間と算定される。

- · 1日当り計画排出量 2,000ton
- · 廃棄物体積換算係数 1.0ton/m³
- 1年間当り計画排出量=
 2.000(ton/day)×356(day) = 730,000(ton/yer)
- · 計画埋立容量 25,000,000m²
- · 計画埋立期間=

25,000,000 (m²) /730,000 (ton / yer) \times (1,0ton/m²) = 34 (yer)

なお、第1期の埋立て容量を試算すると約 2,000,000mと算定され、この第1期の埋立てられる期間は約 2.5年と算定される。

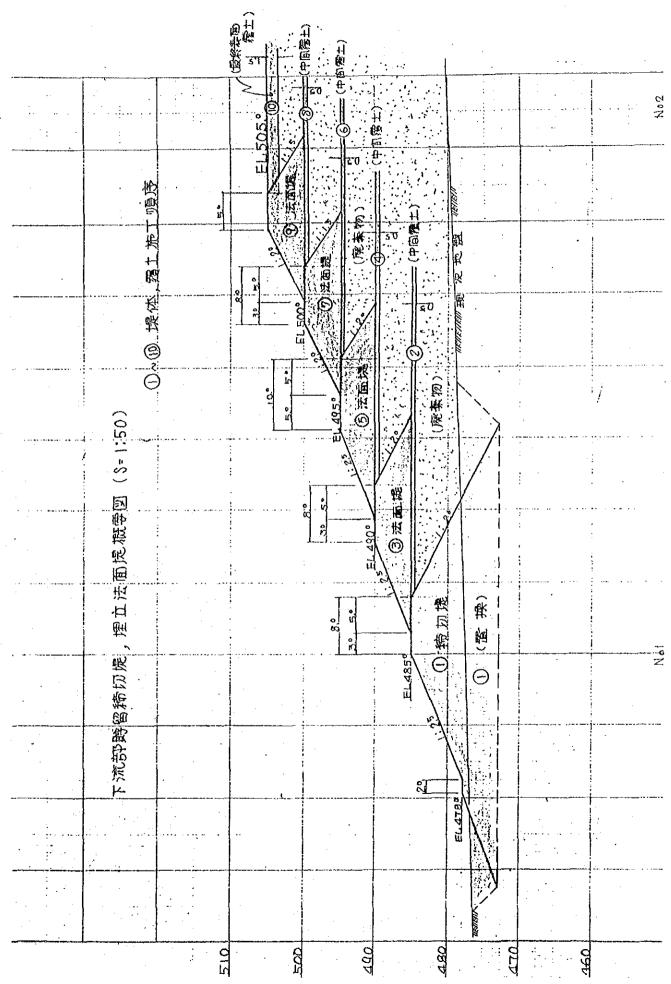

4. 考 察

計画地域の地形把握は、中国側の都合で実測は行われなかったので地形図(S = 10,000)と現地踏査において地形概念を把握して行ったので、実際とはかなりの差が生ずると思われる。

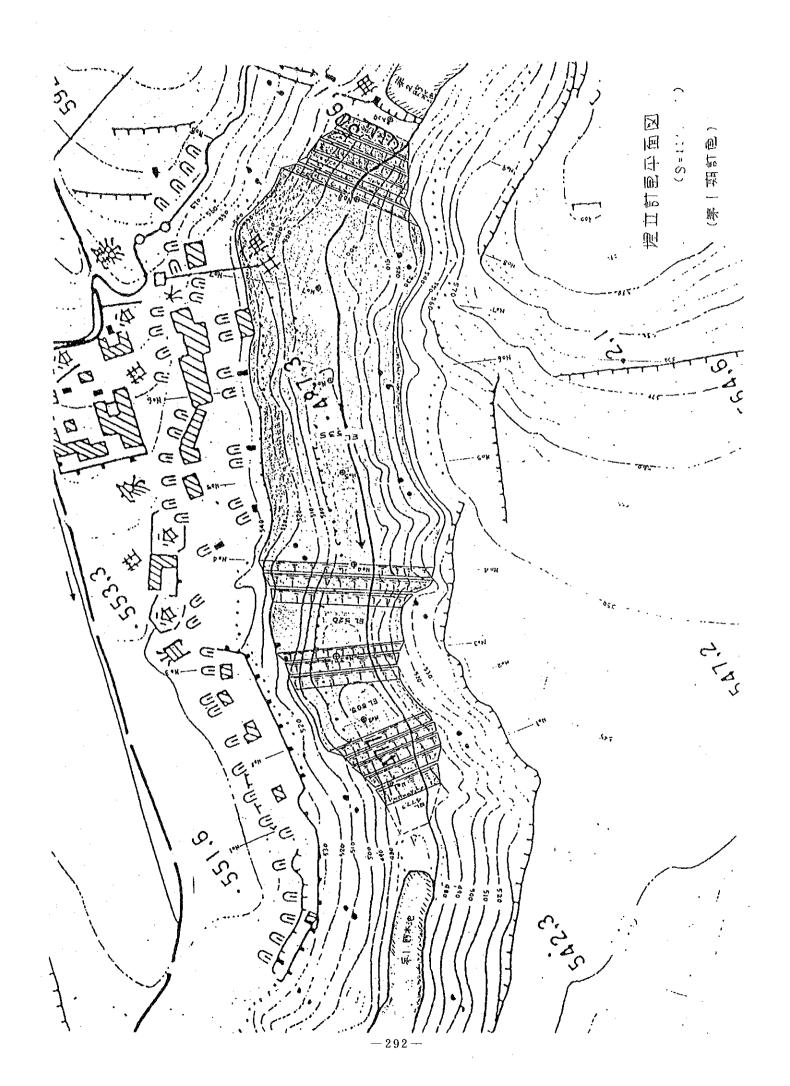
計画地域には、現在活用している貯水池、耕作地等があり、これらの問題の処理 を早急に行うとともに併せて法的にも問題がないかを検討し、次の段階である計画 設計に支障がないようにしなければならないと考えられる。

また、現在使用した地形図と現況では、かなりの差(特に傾斜面)があると思われるので、計画設計に対しては実測図に基づいて行わなければならないと思われる。

なお、最終処分場としての貯留締切構造物、雨水排水施設、地下水集排水施設、 汚水集排水施設、汚水処理施設規模、管理棟施設規模、搬入道路施設等の主要施設 の予備設計は、各種の現地調査資料に基づいて第差次国内解析作業で行うものとす る。


廃棄物の埋立容量の検討(全体計画)

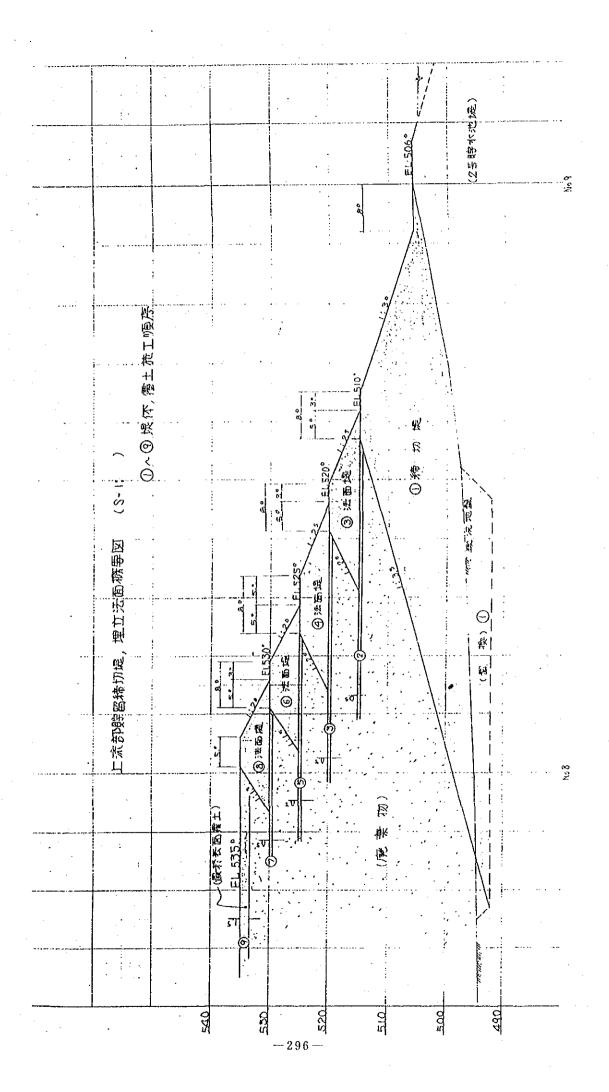
No.	区間距離	断面積	平均断面積	体 積	累計容量	備考
1		0				
	55		1,010	55, 550	55, 550	
2		2, 020		e Kanana jering		
,	60		1, 841	110, 460	166, 010	
3	}	1, 661				-
•	20		2, 489	49, 780	215, 790	<u>}</u>
3 .		3, 317		·		
	45	:	2, 989	134, 505	350, 295	
4		2, 661				
	20		3, 913	78, 260	428, 555	
4		5, 165				
	100		4, 572	457, 200	885, 755	
5		3, 978				
-	100		4, 159	415. 900	1, 301, 655	
6		4, 340		1107 0 0 0	1,00,,000	
	100	1, 010	4, 490	449. 000	1, 750, 655	
7	100	4, 640	1, 100	110, 000	1, 100, 000	
	100	4,040	4, 072	407, 200	2, 157, 855	
8	100	3, 503	1,012	401, 200	2, 101, 000	第1期計画
U	30	8, 300	5, 385	161, 550	2, 319, 405	39 I 30 B1 E
0		7. 267	9,000	101, 000	2, 313, 403	
	100	1,201	7 207	799 700	9 059 105	
₩.	100	7 907	7, 327	732, 700	3, 052, 105	
①	0.5	7. 387	10.010	000 050	0 440 055	
6	3 5	40.000	10, 310	360, 850	3, 412, 955	
2	4.50	13, 233		0.00: 0.		
6 :	150	, , , , , ,	14.883	2, 224, 950	5, 637, 905	est s
② '		16, 533				
	150		13, 526	2, 028, 900	7, 666, 805	

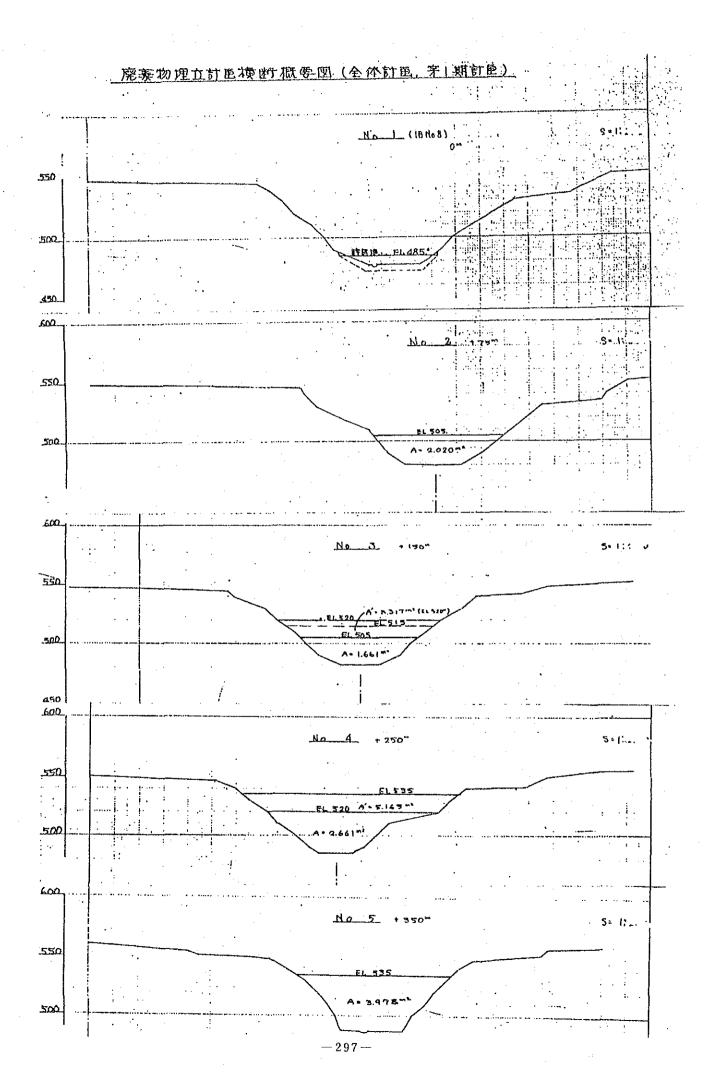

	3		10,518				
		35		14, 610	511, 350	8, 178, 155	
+ 1	4		18.702				
		230		13, 681	3, 146, 630	11, 324, 785	
	5		8, 660				
÷		35:		10, 420	364,700	11, 689, 485	
	6		12, 180				
		150		11, 570	1, 735, 500	13, 424, 985	
	6 ′		10, 959				
		150		10, 208	1, 531, 200	14, 956, 185	
	Ø	4	9, 457				
		40		13, 452	538, 080	15, 494, 265	
·	. 8		17, 447				
		300		15, 064	4, 519, 200	20, 013, 465	
	8		12, 680				
		200	Like Africanis and Africanis a	10, 347	2, 069, 400	22, 082, 865	
	9		8,014				
•		30		11, 414	342, 420	22, 425, 285	
	(D)		14, 813				
		150		14, 373	2. 155. 950	24, 581, 235	
	· · (10) ′		13, 933		٠		
:		250		9, 407	2, 351, 750	26, 932, 985	
**	® ′	:	4, 880				
		100		3. 489	348,900	27, 281, 885	
	0		2, 097				
		30		3, 575	107, 250	27, 389, 135	·
:	12		5. 053			:	
		400		2. 527	1, 010, 800	28, 399, 935	
	EL. 700		0	7		m³	
	· :					25, 000, 000	廃棄物のみ

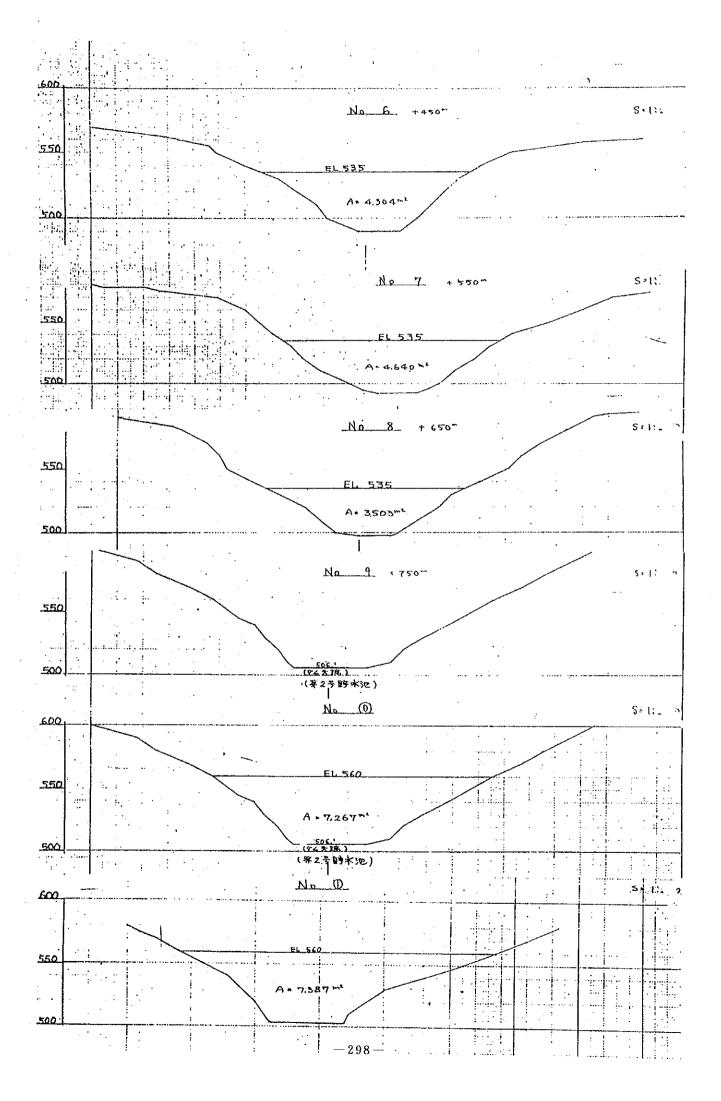
(第1期計画) 廃棄物の埋立容量の算定

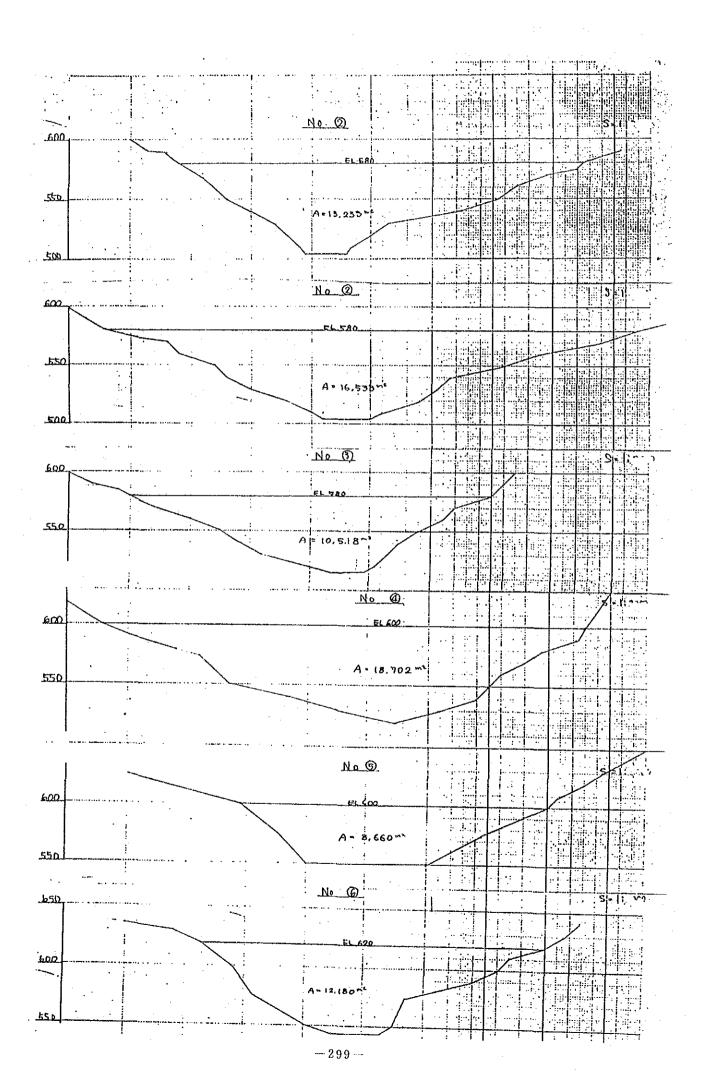
No.	単距離	断面積	平均断面積	容 積	累計容積	備考
1		0				·
	55		1,010	55. 550	55 . 550	
2		2, 020				
	60		1,841	110, 460	166.010	
3		1, 661				
	20		2, 489	49, 780	215, 790	
3		3, 317				
	45		2.989	134, 505	350, 295	
4		2,661	<u> </u>	. :		,
	20		3, 913	78, 260	428, 555	
4		5. 165				
	100		4.572	457. 200	885, 755	
5		3. 978			:	
	100		4, 159	415, 900	1, 301, 655	
6		4, 340				
	100		4, 490	449,000	1, 750, 655	
7		4, 640				
	100		4,072	407, 200	2, 157, 855	
8		3. 503				
	30		1, 752	52, 560	2. 210. 415	. :
8		0				
		L	·		m³	
				. *	5 2,000,000	廃棄物のみ

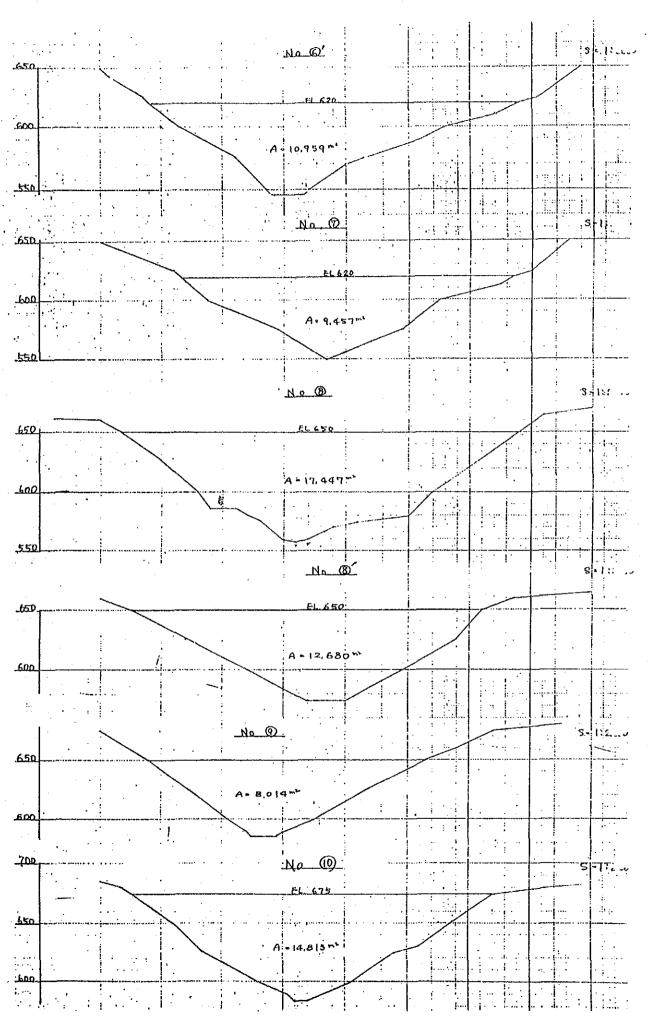
法面提 概要図 (S-1)) == (中间锡土) を (用れ表面所土) 高さ151の場合 高 = 20^mの場合 高さ257の場合 高1300の場合

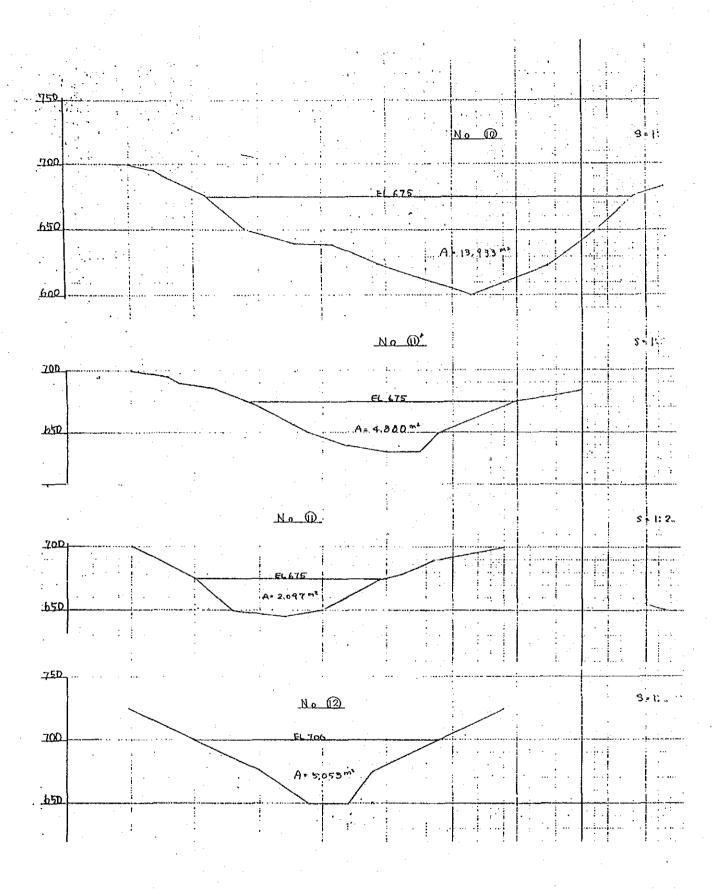



(第1期計配) 廃棄物 埋立容量の算足


۳				-	_		_
	No.	華距離	断面覆	平的的面積	容 模	界計多模	備考
	_1						
		55		ــــــــــــــــــــــــــــــــــــــ	55.550	55.550	-
	2		2,020				
	·	6.0		1.841	_110.460	166 010	
	3	13.7	1.6.6.1_				
		20_		2,489	40 780	215.790	
-	3′		3,317.				
"		45		2089	134.505	350295	
	4		2.66l		-		
		20		_ 3, 9 13	78.260	428555	
	4		5,165				
	•	100.		4.572	457.200	_ 885.755_	
	5		3,978.				
		100		4.159.	115 900	_1.301.655	
	6	100	4.340	4.131.	417. 100	(,, >0.(, 0.)\$.	
	0 .		4. 240	4.490	449 000	LEEO Alere	
		100		4.410	444,000	1.750.655	
	7		4.640				
	_	100		4.072	407.200	2.157.855	
	8		3.503 /				
		30		1.752	5 2 560	.2.210.415	
+	8'			.:			
	÷				物	2,000,000 ^{m²}	廃棄物924


de _{en e} en erenerivre		,	Sec. 1	•			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
			3	gan a ganganan t			-10-200 po
				A .		(04.	Vally V4
				;	•		a. v. ne
_ 						059001-	·─ ◆◆≘₽₽~⊌°
	<u>a</u>						
	(条) 翅 計 色)			:	•		-
	b						
	<u> </u>				.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	OS-&001-	-o÷3₽¤-fo
	,						
	1-83			:			•
		<u>:</u>					
	超		tr			05p 001	-000p91
<i>:</i>	禁					·	
	i tio			÷			
	Ħ	:					
	型	<u> </u>		:		052001-	02-48J 20
	1		-				•
			:	•	•		
		1			+		
				. /		100 520-	00 <u>:</u> 28p-p0
			Y	<i>f</i>			
·							
*			3				
						05 1 SL	··•2569€%
		!			•		
•							
			27.13		•	- S1 SL-	08D 2º
				F			•
· /*****		[-0.0	05'11D [9]
		<u> </u>	50 E148	- g	9	٠	1 200
	i i	9	8 ;)	4. Q	Þ	<u> </u>	نو


** :			(成業 中国) () () () () () () () () ()					
			505°00°	#) # # # # # # # # # # # # # # # # # #				N ₀ 2
	松 甸 -	li l		7/ 8	1	1181/1811		
	张 十			① 法面提《人	30 0	N N M		
	\$ 9	(*************************************			0	THE THE TRANSPORT OF TH		
	1:50)		50, 52	5.495° ⑤法面块	(原株包)		:	
	=8)			200	明 福		· · · · · · · · · · · · · · · · · · ·	: :
	埋立法面烧概等回			EL 490 °				:
				30	# # #	(4)		
	下流部跨留締切處				E1 485	Θ		
	下沁部				<u>a</u>			
						E1.478		-
						nearen		
,	•	<u>[</u>	doz	295—	. 8	07.8	94	



資料-20 江村処分場地環境調査

第8章 環境調查

8.1 調査の目的

(1) 概 要

埋立処分場を立地することにより、自然環境ならびに生活環境に与える影響を科 学的に調査し、将来の環境変化を予測する根拠とすると共に、社会的・技術的・経 済的な環境保全対策の検討の材料とする。

(2) 調査に当り考慮する点

1) 廃棄物による環境影響

廃棄物の発生、存在そのものが環境阻害要因となると考えられる。すなわち、 廃棄物が臭気源となることはもちろん、公衆衛生面、景観の阻害要因にもなり自 然環境のみならず生活環境へも影響を及ぼす。これらを廃棄物による1次的な環 境影響と考えた場合、貯蔵、保管、収集、運搬、処理、処分の過程で生ずる環境 影響、更には自然還元に至る過程で生ずる長期間の環境影響は2次的なものと考 えられる。その中で処理処分過程で生ずる環境影響因子は、ほとんどが典型7公 害の原因となり、埋立処分に伴う悪臭・騒音発生・水質汚濁はその典型である。

このように、廃棄物に係る環境影響要因としては、その発生から、減量化、無害化に至る流れの中で、①公害の発生及び自然環境の破壊の直接原因となる側面、②それ以外の環境質を阻害する側面、の2つを有しており、これらが相互に関連しあう事も少なくない。

また、環境影響の程度は選定する処理処分プロセスによって大きく左右される ことになる。

2) 処理・処分方法による環境影響

廃棄物の処理プロセスには、①収集・運搬プロセス、②中間処理プロセス、③ 最終処分プロセス、の3つが考えられる。(中間処理を含まない場合には大別して2つとなる)

しかし、①の前には発生者が処理プロセスに引渡す前の排泄プロセスがある。 埋立処分に伴って、どのような環境影響があるかを考えると、

*大 気 : 多少考慮が必要

*水 質 :環境への影響が大きく、対策が必要

*土 壤 :同上

*悪 臭 :環境への配慮が必要

*騒音・振動:直接的には少ないが、運搬車による騒音は増加

*地盤沈下 : 多少考慮が必要(埋立地選定時に十分考慮する)

*総合公害 :運搬車の集中による自動車公害、道路公害が予想される

公衆衛生 :環境への配慮が必要

自然環境 : 同上

*印は典型7公害を示す。

ここにいう自然環境は、動植物相、生態系、地形景観などである。

以上であると思われる。これは廃棄物の埋立の際に、通常考えられる環境影響を チェックする目安とする。

3) 埋立処分場の事業環境

人口の集中した都市における住民の生活環境を快適に維持する上で、ごみ処理、 し尿処理、下水処理等の静脈系の公共サービスが必須であることは何人も否定し 得ない事実である。

廃棄物処分場は、これらの静脈系の処理系を最終的に締めくくる重要な部位であるが、長い歴史的過程の中で形成されてきた"眼の届かぬ所に捨てる"的発想が施政者側でも仲々抜けぬためか、その重要性に対する認識は決して高いとは云えない。他の施設が公園・緑地その他の都市施設との関連の中で長期的展望の下に計画されるのに対し、むしろ、用地入手の容易さがすべてに先行することが圧倒的に多かったと思われる。

4) 環境アセスメントの意義

環境アセスメントの本来の目的は、事業の実施による周辺環境の影響をあらか じめ総合的系統的に検討し、事業実施に伴なうマイナス面を計画することによっ て、計画面で追求されるプラス面と併せ、事業主体の意志決定者にプロジェクト のGO又はNO・GOを判断するための基礎資料を提供することにあると考えら れる。

一方、環境アセスメントの実質的な機能は、計画の熟成に対応して環境保全対策とか計画の代替案の立案を行なうことにあると考えられる。これを果すためには、環境アセスメント作業は計画作業との間にフィード・フィードバックの関係

を持ち、計画側の具体化に対応してより詳細な検討へと進められて行くべきものである。すなわち、計画の実現に対し技術的・経済的検討が行なわれるものと全く同様に、マイナスの面においても社会的・技術的に可能な環境保全対策の検討を行なうことが必要であることからである。

従って、当初のフィージビリティ・スタディ段階においても環境アセスメント の持つ意義は大きい。

(3) 埋立処分場が周辺環境に及ぼす影響概要

自然現象的には、通常2次的影響の範囲までが問題にされる。

埋立処分場が有する環境への影響要因は、一般土木工事としての土地造成事業的側面と、ごみ埋立処分自体の有する側面に属するものに、大きく2分されると考えられる。

これを周辺環境に影響を与えるものとして分類すると

- ① 最終処分場の存在そのもの
- ② 現況土地地質の変更
- ③ 施設建設·場内整備
- ④ ごみの搬入
- ⑤ ごみ埋立処分
- ⑥ 跡地利用

以上の項目に集約できる。

また、事業の進行面から時期を分けると

- ① 施設建設・場内整備期
- ② ごみの埋立処分作業期
- ③ 造成地安定化のための放置期
- ④ 跡地利用期

以上の4期に分けられる。

1) 最終処分場の存在そのもの

この事象は既成のイメージに基づく心理的要素が大きく、また、周辺地域に対する社会的影響の大きさからは、ごみ搬入に伴う交通問題と併せ迷惑代償などが問題となる。しかし、環境調査を主体とする通常のアセスメント手法では扱い得ない事象である。

2) 現況土地形質の変更

ごみ埋立処分行為はその有する体積の故に必然的に土地造成行為を伴う。すなわち現在の土地形質が消滅し新たな土地形質が形成されることになる。現在のめとち形質の消滅により、現存植生が失なわれると共にその喪失は場外植生にも影響する。又、そこを棲息圏としている動物にも多大な影響を与える。

新たな土地形質の形成は、地形変化を中心として周辺環境に影響する。地形が変化することにより降雨の生ずる水文現象が変化し、かつ一般的には自然災害の起り易い状態になる。

3) 施設建設·場內整備

埋立処分場として必要な施設建設・場内工事は、それぞれの工事の性格に応じて一時的ではあるが周辺環境に影響を及ぼす。

4)ごみの搬入

埋立処分場へのごみの搬入は、その日量と搬入系路によっては周辺地域にかなり広く影響する。ごみの悪汁滴下、ごみの落下飛散あるいは悪臭等運搬物がごみであることに起因する問題が考えられるが、これは車両の整備によりある程度は解消出来ると考えられる。しかし、交通量の増大に伴なう一般的な交通問題は十分考慮する必要がある。

5) ごみ埋立処分

埋立処分されるごみの性状、採用される埋立構造ならびに埋立工法によって大幅に異なる。一般的には、ごみの飛散、悪臭の伝播、はえ・ねずみ・蚊の発生、鳥・野犬の群集、火災の発生、悪汁の発生、不潔感等が挙げられる。この現象の多くは、ごみの性状ならびに埋立地の特徴に対応して埋立構造ならびに埋立工法を適切に計画しかつ作業管理が適正に行なわれれば、ほとんど防ぎ得る。

ごみ埋立処分で最も重要なのは、埋立処分されたごみが安定蚊して行く過程で発生する浸出水による地下水を含む公共水域の水質汚濁の可能性である。この問題は埋立処分場が環境に与える諸影響の検討の中で最も重要視されるべきものの一つである。

(4) 調查目的

埋立処分場により何らかの影響を受けると考えられる環境質は、多種多様にわたっている。しかしその主たるものは、水質汚濁・騒音・悪臭などである。したがっ

て環境アセスメントの調査手順としては、

- ① ごみの発生量、要処理量、ごみ性状などの予測を行ない、新設の時期や規模の選定をする。(第3、4章及び中間報告書を参照)
- ② 基礎調査を行う。資料を広範囲かつ詳細に収集し、候補地を決定するための調査 であり、調査対象地域の土地利用状況・自然・社会環境の現状を把握するためのも のである。(中間報告書などで行ったもの)
- ③ 住民意向調査、住民の本意を汁とともに、住民の意向を計画に反映させるための ものである。(第5章参照)
- ① 自然環境調査、③と平行して現地の自然環境調査を行ない、計画のバックグラウンドとなるべき現況の環境質の詳細データとする。(環境調査の一部である)
- ⑤ プラントの計画、前段調査を踏まえ、環境調査の詳細を十分に考慮し行う。
- ⑥ 環境予測、ごみ埋立処分場に伴う環境質に対する変化の予測を行う。

具体的には、①~⑤の調査結果を基に環境質の将来の現況に対する変化を導き出す。

以上のような経過で計画調査し、適切な評価をするとともに、環境保全施策の策 定を容易にすることができるようにする必要がある。

(5) 環境調査の目的

以上の内容を十分考慮し、ごみ埋立最終処分場を計画する上で、適切な環境質評価並びに将来の環境質予測が行なえるための調査を目的とする。したがって以下の項目の調査を行う。

1) 最終処分場予定地調查

環境質のバックグラウンドとなるべき資料の収集のために行う。

① 土地利用状况調査

土地利用状況・集落(文化財、学校、病院などあれば含む)の位置や、主な植生分布、保護対象となる動植物、用途地域指定などを調査する。(第7章と重複するため、調査は割愛し、評価のみとする)

② 自然環境調査

水質・騒音・臭気の実測資料を収集する。また、気象、地質、地形、地下水位、水文などの資料をもとに総合評価する。

③ 社会環境調査

人口構造、交通、産業、衛生、行政などを中心として、意向調査などの資料 をもとに評価する。(調査は他の章と重複するため、評価のみ行なう。)

2) 環境汚染の原単位調査

環境質汚染の予測根拠となる、水質・騒音・悪臭などの原単位を調査する。

① 水質調査

埋立処分場における浸出水の水質を調査する。また、ごみ質・量などの比較 検討により、将来の汚濁源の予測の根拠とする。

② 騒音調査

ごみ収集運搬車の運行騒音を測定し、別に行う交通量調査 (第6章参照)及び、収集車の時間帯別走行台数の予測をもとに騒音増加量の根拠とする。

③ 悪臭調査

既設処分場の周辺住民の意識調査(1989年3月に実施)をもとに、気候・風向・ゴミ質の季節変動等を考慮し、評価対象根拠とする。

※ 臭気の6成分濃度分析は機材不備のため、今回調査では割愛する。

以上調査を総合し、環境質の変化予測ならびに評価を行い、必要により環境保 全対策を施策する根拠とする。

8.2 調査の方法

今回の環境調査は、現地自然環境調査を中心に水質・騒音・悪臭について調査する ものとし、環境質への影響を総合的に評価するものとする。

(1) 水質調査

最終埋立処分場予定地(江村)を現場踏査し、利用現況調査をした上で、1)予定地(第1次埋立予定箇所)の現状の水質を分析する。2)埋立ごみによる浸出水の水質を分析する。この結果と、他に集めた資料(ごみ量、気象、水文、地形・地質等)を総合し、埋立開始後のごみ浸出水による水質汚染の程度を評価する。

1)予定地の現状の水質を分析する。

現場踏査の結果、別図に示す箇所。

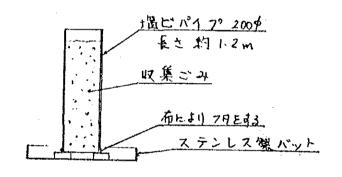
サンプルNo.1:予定地上流部に当るダム湖水

サンプルNa 2:予定地内を流れる河川水 (※注1)

サンプルNo.3:予定地下流部に当るダム湖水(養魚地)

サンプルNo.4: No.3から流れ出た河川水 (※注2)

※注1:予定地は現在畑作地として利用されているため、その影響を考慮して 畑作地の下流部とした。


※注2:河川水は現在畑作用水、及び生活用水(洗たくなど)に利用されているため、その影響ならびに埋立後の影響を検討するため採取した。

以上4ヶ所とする。

2) 埋立ごみによる浸出水の水質を分析する。

埋立ごみによる浸出水の水質は本来既設処分場より採取するのが望ましいが、 西安における既設処分場(联合村処分場・馬騰空処分場)はいずれも水源もなく、 埋出水を採取することが出来ないことと、今回の予定地においては河川が有り、 他の処分場とは条件が異なることにより、次の要領により浸出水を作成し、浸出 廃液の予測をするものとする。

浸出水作成は下図に示す装置にて行う。この装置に以下に示す成分の収集ごみ

を約10kg前後詰め、通水・採水を3回 くり廻し行ない、その各々の水質につ いて分析し、埋立初期段階における浸 出水水質を想定するものとする。

① 浸出水作成の各ごみ質成分

埋立ごみ質成分は10kg程度の量では正確な調整は不可能なため、ごみ量・ご み質調査に合わせ、成分分析のために収集したものを利用し行うものとする。 各使用量並びに各段階における通水・採水量については別紙の表8-1~8-6の通りとする。

サンプル№1:街路ごみ+商業ごみ

サンプル№2:商業ごみ

サンプルNo.3:街路ごみ

サンプルNo.4: 商業ごみ

サンプル№5:住宅ごみ(炉査を含む場合)※1

サンプルNo.6:住宅ごみ (分別にした場合) ※2

※1:収集を現状のまま行った場合を想定して調整した。非ガス化地域とガス 化地域の割合は将来を考慮し6:4とした。炉渣とその他のごみの各々 の調整は収集サンプルの重量比により決定した。

※2:分別回収を実施した場合を想定して調整した。非ガス化地域とガス化地域の割合は炉渣を含む場合と同様に、将来を考慮し6:4にて調整した。

1989. 12. 12

ゴミ試料N	0.	1	ゴミの種類	街路ゴ	ミ+商業ゴミ	(合併)
ゴミ重量	1	15. 2k	sg — 4.5kg	= 10.7kg		10.7kg
浸透回数	採	集時間	水注入量	水収集量	ロス	吸水量
1回目		1 時間	6, 500ml	1,000ml	5,500ml	
2回目		3 時間	2.000ml	2, 840ml	840ml	
3回目		2時間	2. 300ml	2. 000ml	300ml	
	2	4時間	:	420ml		4, 540me
合 計		. —	10,800ml	6.260ml	4,960ml	4.540ml

1989, 12, 6

ゴミ試料No. 2		ゴミの種類	商業ゴミ	(合併)	,
ゴミ頭量 16.5㎏		5kg — 5.3kg	= 11.2kg		11.2kg
浸透回数	採集時間	水注入量	水収集量	ロス	吸水量
1回目	1時間	4, 660ml	2, 455mℓ	2. 205	ne
2 回目	3時間	2, 300ml	2, 275ml	55 <i>t</i>	ne
3回目	2時間	2, 390ml	2, 210ml	180	ne
and an artistic of an artistic of the second	24時間		310ml		2.130ml
合 計	<u>-</u>	9, 380ml	7, 250mℓ	2, 440	nl 2,130ml

1989, 12, 12

ゴミ試料♪	lo.	3	ゴミの種類	街路ゴミ	(1	合併)	
ゴミ重!	Ē.	16. 95	ikg — 7.7kg	= 9.25kg			9. 25kg
浸透回数	採集	表時間	水注入量	水収集量	D	ス	吸水量
1回目	1	時間	6, 500ml	1, 43 0ml	5,	070ml	
2回目	3	時間	2, 000ml	2, 690ml	· <u>-</u>	690ml	·
3 回目	2	時間	2, 300ml	2.150ml	:	150ml	
	24	時間	_	450ml			4,080ml
合 計			10,800mℓ	6,720ml	4,	530ml	4,080ml

1989. 12. 8

コミ試料N	0.	4	ゴミの種類	商業ゴミ	€ (4	会併)	
ゴミ重員	E.	16.5k	g — 8.2kg	= 8.3kg			8.3kg
浸透回数	採	集時間	水注入量	水収集量	IJ	ス	吸水量
1回目]	時間	4.600ml	2, 275ml	2.	325ml	 .
2回目		} 時間	2, 300ml	2, 240ml		60ml	
3回目	4	2時間	2, 380mℓ	1, 980ml		400ml	
·	2	4時間	. —	350ml	_	_	2, 435ml
合 計			9,280mℓ	6, 495ml	2,	785ml	2, 435ml

1989, 12, 13

		·		7 7 7		
コミ試料M	o 5	ゴミの種類	生活ゴミ	(炉査+・	その他)	
ゴミ重量	量 炉 査	ブス化 ガス化地域 4.3kg - 2.1kg = 10kg 10kg 1.7kg 1.9kg				
浸透回数	採集時間	水注入量	水収集量	ロス	吸水量	
1回目	1時間	8,000ml	2. 420ml	5.580ml		
2回目	3時間	2. 000mℓ	2, 260ml	— 260ml	. 	
3 回目	2 時間	2,000ml	1.860ml	140ml		
	24時間		460ml	·	5, 000ml	
合 計	· 	12.000ml	7.000ml	5, 460me	5. 000ml	

1989. 12. 13

ゴミ試料N	α 6	ゴミの種類	生活ゴミ	(分別ゴ	€)		
ゴミ重賞	非力量 6	ブス化 ガス们 kg — 4	kg = 10kg	ß	10kg		
浸透回数	採集時間	水注入量	水収集量	ロス	吸水量		
1回目	1時間	5,000ml	3, 130ml	1,870ml			
2回目	3時間	2.000ml	1,740ml	260ml			
3 回日	2 時間	2, 150ml	1,910mℓ	240ml	<u> </u>		
	24時間		280ml	. 	2, 090ml		
合 計		9, 150ml	7.060ml	2,370ml	2, 090ml		

② 浸出水水質の考え方

ごみ量調査の結果を考慮し、その成分比に①の結果を合わせて出すものとし、 分別収集を行わない場合と行う場合に分けて水質を想定するものとする。

3) 分析項目

水質分析内容は以下の内容で行うものとする。

① 予定地の水質分析項目

外観(色・臭等)・水温・PH・電気伝導度・SS(浮遊物質)・DO(溶存酸素)・BOD₅(生物化学的酸素要求量)・COD_{Mn}(化学的酸素要求量)・COD_{Mn}(化学的酸素要求量)・Cl⁻(塩素イオン)・TOC(全有機炭素量)・T-N(全窒素量)金属分析として

 Cd (カドミウム) ・Pb (鉛) ・Zn (亜鉛) ・Fe (鉄) ・Hg (水銀)

 As (ヒ素) ・Cr (VI) (六価クロム)

 以上を行なうものとする。

② 浸出水作成による水質分析項目

各サンプル (Na 1 ~ Na 6) について各々3件体ずつ行うものとして、外観・水温・PH・電気伝導度・SS・DO・BODs・CODmn・Cl・TOC・T-N

以上を行い、参考としてサンプルNo.1~5までの均等量合計水と、サンプルNo.6について金属分析

Cd·Pb·Zn·Fe·Hg·As·Cr(V1)を行う。

(2) 騒音測定

埋立処分場を建設・使用する場合の騒音被害については以下の内容のものがある。 建設時の騒音:処分場の造成等建設工事・道路建設工事、等の騒音 収集運搬等の交通騒音:収集運搬による交通量増加に伴なう騒音 埋立処分場の騒音:埋立用重機等の騒音

① 建設時の騒音

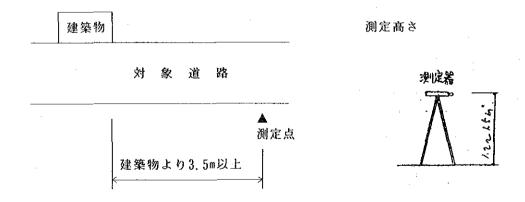
運搬用重機等の運搬などの騒音が対象となるが、他に比較して短期間であり、 また、他の建設工事 (ビル建築・土木工事等) との区別がつけにくいなどもあり 測定対象としない。

② 収集運搬等の交通騒音

埋立処分場の共用を開始すれば、あきらかに交通量増加につながり、騒音は増加する。ただし、通常の環線道路については、日常の交通量も多く、収集運搬車の増加に伴なう騒音増加を判断しにくい点もあるため除外し、環線道路から外れた搬入道路に接する区域において測定を実施する。

③ 埋立処分場の騒音

埋立用重機等の騒音は、それ自体確かに大きいが、埋立処分地の地域特性(近接して民家が無い等)や、既設処分場(朕合村処分場・馬騰空処分場等)に見る 重機の使用時間が日中に集中し、短時間で処理をする、という点を考慮し、騒音 の被害が考えにくいため測定対象としない。


以上により騒音測定対象を収集運搬等の交通騒音にしばり行うものとする。

1) 測定内容

予定地周辺(環線道路から外れた搬入道路に接する区域)の暗騒音の測定、 及び主要なごみ搬入車両の道路通過騒音の測定とする。

2) 予定地周辺の暗騒音の測定

暗騒音は埋立処分場共用開始による交通量増加が無い状態の交通騒音とする。 測定は対象道路に接し、建築物等の影響を受けない地点で行うものとする。

暗騒音測定時の交通量を明確にするため、交通量調査と平行して実施した。 測定は時間帯における騒音レベルとし、1時間を10分毎に測定して、その平 均をその時間帯の騒音とする。時間帯については、運搬車の速行時間に合わせ 4 ブロック (9:00~10:00、11:00~12:00、14:00~15:00、17:00~18 :00) とした。※夜間については、現状では車両通行がほとんどなく、騒音は 40dB以下ということとする)

3) 搬入車両の道路通過騒音の測定

既設処分場周辺において、暗騒音と同様の測定をしただけでは、他の車両の 交通量及び共用開始後の収集運搬車の交通量も違い、比較できないので、騒音 予測ベースとして収集車の車種別通過騒音を測定する。これを基に、時間帯ご との車両通過量により騒音レベルを検討する。測定器の設置方法は暗騒音の測 定と同じとする。

(3) 惠臭調査

既設処分場(朕合村処分場)の周辺住民の意識調査(1989年3月に実施)を参考に、季節によるごみ質の変化等を考慮し、臭気の程度・主な成分を想定し、予定地 周辺周辺住民に与える影響を、地形・周辺環境・気象データより考察する。

8.3 調査結果

- (1) 水質分析結果
 - 1)予定地の現状の水質分析結果

サンプルNo.1:予定地上流部ダム湖水

サンプルNa 2:予定地内を流れる河川水

サンプル№3:予定地下流部ダム湖水(養魚地)

サンプルNa 4:Na 3から流れ出た河川水

2) ごみ質の違いによる浸出水水質分析結果

サンプルNo.1:街路ごみ+商業ごみ

サンプルNo.2: 商業ごみ

サンプルNo.3:街路ごみ

サンプルMo.4: 商業ごみ

サンプル№5:住宅ごみ(炉査を含む場合)

サンプルNo.6:住宅ごみ(分別にした場合)

- (2) 騒音測定結果
 - 1)予定地周辺の暗騒音の測定結果
 - 2) 搬入車両の道路通過騒音の測定結果(参考として他の車両も含む)
 - 3) 参考として測定した収集車両の騒音分布測定結果
- (3) 悪臭調査結果
- (4) 水質分析データ集

水質分析結果 (予定地における水質)

サンプルNa	1 サンプリング日時	1989年 11月 29日 AM PM 5:00
分析項目	分 析 結 果	備考
外観	やや白濁・無色透明・無臭	
水温	4.5 °C	
РН	8.58	
電気伝導度	311 μs/cm	
S S	11 mg/l	
D O	12.91 mg/l	
BOD	1.35 mg ∕ ℓ	:
COD (Mn)	1.4 mg/l	
C 1 -	7.98 mg/l	
T - N	4 mg/l	
тос	1.0 mg/l	
Рb	0.0001 mg/ &	
C d	0.001 mg/ℓ	
Z. n	0.04 mg/l	
Fe	1.6 mg/ℓ	
Н g	0 mg/l	
As	0 mg/l	
Cr (VI)	0 mg/l	
大腸菌群数	0 個/대	

水質分析結果 (予定地における水質)

サンプルNa	2 サンプリング日時	1989年 11月 29日	AM PM 4:45
分析項目	分 析 結 果	備	考
外観	無色透明・無臭		
水温	6.0 °C		
РН	8. 58		
電気伝導度	344 µs/cm		
S. S	1 mg/l		
D O	11.65 mg∕ℓ		
BOD	1.38 mg ∕ ℓ		
COD (Mn)	1.56 mg∕ℓ		
C 1 -	7.58 mg/l		
T - N	6.4 mg/l		
тос	2.0 mg/l		
Рb	0.0007 mg/l		
Cd	0.001 mg/l		
Z n	0.05 mg/ <i>l</i>		
Fe	0.2 mg/l		
Н g	< 0.001 mg/l		
A s	0 mg/l		
Ст (V1)	0 mg/l		
大腸菌群数	0 個/crì		

水質分析結果 (予定地における水質)

サンプルNo.	3 サンプリング日時	1989年 11月 29日	АИ РИ 4:35
分析項目	分 析 結 果	備	考
外観	やや白濁・無色透明・無臭		
水温	6.6 ℃		
Р Н	8.80		
電気伝導度	333 μs/cm		
S S	7 mg/l		* 3 * * * * * * * * * * * * * * * * * *
D O	14.81 mg/l		
BOD	1.54 mg/ℓ		
COD (Mn)	3.41 mg/l		
C 1 -	6.78 mg∕ℓ		
T - N	2.4 mg/ℓ		
тос	2.5 mg ∕ ℓ		
Рb	0.0001 mg∕ℓ		
C d	0.001 mg/l		
Zn	0.03 mg/l		
Fe	0.5 mg/l		
Н g	< 0.001 mg/ℓ		
A s	0 mg/l		
Cr (VI)	0 mg/ <i>l</i>		
大腸菌群数	0 個/c㎡		

水質分析結果(予定地における水質)

サンプルNa	4 サンプリング日時	1989年 11月 29日	AM PM 4:00
分析項目	分 析 結 果	備	考
外観	無色透明・無臭		
水温	7.1 ℃		
РН	8.71		
電気伝導度	345 μs/cm		
S S	15 mg/l		
D O	12.98 mg/l		
BOD	1.66 mg/l		
COD (Mn)	4.17 mg/l		
C 1 -	7.98 mg/l		
T - N	4 mg/l		
тос	3.3 mg/l	·	
The second secon			
Рb	0.0003 mg/l		
C d	0.001 mg/l		·
Z n	0.05 mg/ <i>l</i>		
Fe	1.9 mg∕ℓ		
Н g	< 0.001 mg/l		
A s	0 mg/l	:	
Cr (Vl)	0 mg/l		
大腸菌群数	0 個/c㎡		

浸出水水質分析結果

サンプルNo.	1 浸	出水作品	は日	198	9年 12月 12	?日
分析項目		通力	κ .		数	備考
77 म अध	1 回 目	2	? 回	目	3 回 目	加州
外観	褐色・シケキリ	是	同左		同左	フミン系着色
水温	7. 0	°C.	7. 0	Ĉ	7.6 ℃	
РН	7. 30		7. 13		7. 15	
電気伝導度	10, 290 µ s/	'cm 7,	850 µ	s/cm	5,970 µ s/cm	1
s s	850 mg/	'e	460 m	g/l	400 mg/ <i>l</i>	
D O	— mg/	' e	— w	g/l	— mg/ℓ	
BOD	mg,	' e	ព	g/ l	mg∕ℓ	
COD	4,800 mg/	∕ ℓ 3,	800 m	g/ l	3.700 mg/ <i>l</i>	
C 1 -	2,940 mg/	/ l 2.	250 m	g/ l	1,310 mg/ℓ	
T - N	mg,	' l	m	g/ l	mg∕ℓ	
ТОС	4, 105 mg/	'l 3,	245 m	g/l	2.740 mg/ <i>l</i>	

分析番号

- 7. 1回目
- 8 2回目
- 9 3回目

浸出水水質分析結果

サンプルNa	2 浸出2	k作成日 198	9年 12月 6日	-]
八抵博日	通 水 回 数			備考
分析項目	1 回 目	2 回 目	3 回 目	- IMI
外観	褐色・シタチキ臭	同左	同左	フミン系着色
水温	9.0 °C	9.3 °C	9.3 °C	
РН	6, 35	6.30	6. 40	
電気伝導度	7,640 µ s/cm	5,600 µ s/cm	3,590μs/cm	
s s	306 mg/ℓ	692 mg/ <i>l</i>	320 mg/ <i>l</i>	
D O	— mg/ℓ	— mg/l	mg/l	
BOD	3.870 mg/ℓ	3,750 mg/ <i>l</i>	3,000 mg/ <i>l</i>	
COD	3,670 mg/ <i>l</i>	3,670 mg/l 2,970 mg/l 2,540 mg/l		
C 1 -	1,800 mg/ <i>l</i>	1,100 mg/ <i>l</i>	630 mg/l	
T - N	316 mg/ <i>l</i>	272 mg/ <i>l</i>	32 mg/ <i>l</i>	
тос	3,275 mg/ℓ	2,705 mg/l	2,080 mg/ <i>l</i>	

分析番号

- 1 1回目
- 2 2回目
- 3 3 回目

浸出水水質分析結果

サンプルNo.	3 浸出2	k作成日 198	19年 12月 121	
分析項目	通	水 回	数	備考
刀机須貝	1 回 目	2 回 目	3 回 目) NH) -5
外観	褐色・シケキ臭	"	"	フミン系着色
水温	7.1 ℃	7.0 ℃	7.5 ℃	
РН	7. 13	7. 29	7. 48	
電気伝導度	9,190μs/cm	6,800 µ s/cm	5,360 μ s/cm	
S S	1,350 mg/ℓ	360 mg/ <i>l</i>	300 mg/ℓ	
D O	mg/l	mg/l	— mg/ℓ	
BOD	mg∕ℓ	mg∕ℓ	mg∕ℓ	
COD	3,980 mg/ <i>l</i>	3,050 mg/l	2,530 mg/l	
C 1 *	2,810 mg/ <i>l</i>	1,750 mg/ℓ	1,110 mg/ <i>l</i>	
T-N	332 mg/ <i>l</i>	176 mg/l	184 mg/ <i>l</i>	
тос	3,425 mg/ <i>l</i>	2,495 mg/ <i>l</i>	2,080 mg/ <i>l</i>	

分析番号 10 1 回目

11 2回目

12 3回目

浸出水水質分析結果

サンプルNo.	4 浸出水作成日		198	89年 12月 8日		8 1			
分析項目		通	水		数			備	考
万州为日	1 🗓		2 回	目	3		Ħ		45
外観	褐色・シタ	片臭	同力	Ľ.	ī	左		フミン系着色	
水温	7. 0	ొ	7. 0	°C	7. (0	r		
РИ	5. 40		8. 36		5. (62			
電気伝導度	4, 660 μ	s/cm	4, 400 4	us/cm	3.84	θμ:	s/cm		
S S	482 1	ng/l	355	mg/l	941	O m;	g/l		
D O	1	ng/l	MARIA A	mg/l	_	— m į	g/l		
BOD	ń	ng/l		mg/l	-	ខារួ	g/l	ange uma given e commercial per spring region e i regional distribution de compression de la compression della compression de la compression della compressi	
COD	3,600 n	ng/l	5. 070	mg/l	5, 040) m g	g/l		
C 1 -	1.320	ng/l	1. 310	mg/l	1, 060) mg	g/l		
T-N	172 a	ng/l	320	mg/l.	336	g m g	g/l		
TOC	2,565 m	ng/l	3, 635	mg/l	3, 970) m g	g/l		

分析番号

- 4 1回目
- 5 2回目
- 6 3回目

浸出水水質分析結果

サンプルNo	5 浸出2	k作成日 198	9年 12月 13日	-1	
八杉道白	通	水 回	数	備	-1-7
分析項目	1 🔟 🗎	2 回 目	3 回 目) pris	考
外観	うすい茶色	"	i in		
水温	8.3 °C	8.3 °C	8.4 °C		
РН	7. 57	7. 85	7. 87		
電気伝導度	4,220 µ s/cm	3,890 µ s/cm	3,380 µ s/cm		
S S	230 mg/ℓ	80 mg/ <i>l</i>	430 mg/ <i>l</i>	·	
D O	— mg/ℓ	— mg/ℓ	— mg/ℓ		
BOD	mg∕ℓ	mg∕ℓ	mg∕ℓ		
COD	1,400 mg/ <i>l</i>	1,400 mg/ <i>l</i>	1,400 mg/ <i>l</i>		
C 1 -	630 mg/ <i>l</i>	570 mg/ <i>l</i>	480 mg/ <i>l</i>		
T - N	204 mg/ <i>l</i>	212 mg/ <i>l</i>	188 mg/ℓ		
тос	1,015 mg/ <i>l</i>	1,025 mg/ℓ	975 mg/ <i>l</i>		

分析番号 13 1回目

14 2回目

15 3回目

浸出水水質分析結果

サンプルNa	6 浸出力	k作成日 198	9年 12月 13日	
八七百日	通	水 回	数	備考
分析項目	108	2回目	3 回 目	棚 季
外観	褐色・シタナタ臭	同左	同左	フミン系着色
水温	8.3 °C	8.3 °C	8.4 ℃	
РН	6, 60	6, 75	6. 71	
電気伝導度	5,870μs/cm	6,640 µ s/cm	5,430 μ s/cm	
S S	790 mg/ <i>l</i>	550 mg/ <i>l</i>	720 mg/ <i>l</i>	
D O	mg/ <i>l</i>	mg/ <i>l</i>	— mg/l	
BOD	mg/ <i>l</i>	mg/l	mg/l	
COD	5,250 mg/ <i>l</i>	8.890 mg/ <i>l</i>	7,580 mg/ <i>l</i>	
C1-	1.850 mg/ <i>l</i>	1.820 mg/l	1,330 mg/ℓ	
T - N	480 mg/l	520 mg/l	400 mg/l	
тос	3,875 mg/ <i>l</i>	6,225 mg/ℓ	6,155 mg/ℓ	

分析番号 16 1回目

17 2回目

18 3回目

浸出水中の金属分析結果

分析項目	No.1~No.5混合水	Na 6 の混合水	備考
Рb	0.17 mg/l	0.06 mg∕ℓ	
Z n	1.0 mg∕ℓ	3.3 mg/ <i>l</i>	
Fe	10.7 mg/ℓ	6.4 mg/l	
Cd	0.002 mg/l	0.003 mg∕ℓ	
Н g	mg/l	mg∕ℓ	
A s	mg/l	mg/l	
Cr (VI)	0 mg∕ℓ	0 mg/ <i>l</i>	

計画地における暗騒音の測定

測定1989年12月11日

時間帯時刻	9:00~10:00	11:00~12:00	14:20~15:20	17:00~18:00
0分	65	46	53	56
10分	55	59	51	65
205}	50	65	54	45
30分	48	58	47	56
40分	53	60	57	53
50分	55	65	67	42
60分	44	46	63	49
平均	53	57	56	52
最大	65	65	67	65
最小	44	46	47	42

気象条件

(天気晴 風向 北 風速 0 ~ 1.0 温度 10 ℃相対湿度 - 気圧 -)

測	定	地	江 村
測	定	者	石虹・高輝・会沢
測	定器型	也式	RION NA20

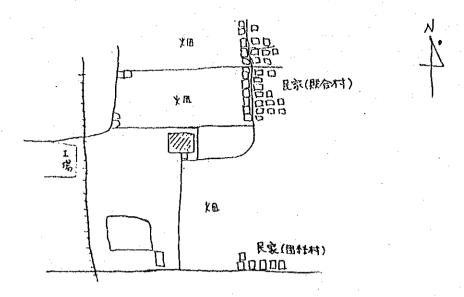
ごみ収集車車種別による騒音

测定1989年12月7日

	往路	復 路
車種名		
密封車	82 ~ 85	80 ~ 83
多功能車	80 ~ 83	78 ~ 80
番羽斗車	78 ~ 82	78 ~ 82
その他の車両		
トラクター(小施粒机)	81 ~ 90	79 ~ 85
乗用車 (JEEP含)	68 ~ 75	68 ~ 75
バ ス (小型バス含)	69 ~ 80	65 ~ 70
トラック	77 ~ 85	75 ~ 82
レッカー車(大鈩車)	95	:

測定時間 AM9:30~11:00

天気 晴 温度 11℃


測定	地	朕合村
測示	" 者	石虹・高輝
	. 1 <u>9</u>	会沢・薫
測定器	大型式	RION NA20

ごみ収集運搬車による騒音測定

騒音影響域調査

測定1989年12月7日

						ř		路				· <u> </u>
								*				
		, X	×	X	×	×	0	×	×	×	X	×
		×	×	×	×	, X		×	×	×	×	× -
		×	×	×	×	×	0	×	×	×	×	×
		×	×	×	×	×	0	\times	×	×	×	×
		×	×	×	×	×	0	×	×	×	×	× -
		×	×	×	×	×	0	×	× .	×	×	× \
		10 r	n 10 n	n 10r	n 10 n	n 101	m 10 r	n 10r	n 10r	n 10r	n 10 r	n
	測定地	Д	关合	村	測定者		石虹、7 会沢	高輝	O ×	計測地測定,		
•		5	4	3	2	1	0	1 '	2 '	3 '	4	5 ′
,	0	55	56	62	66	72	80	72	66	60	56	55
	1	51	53	56	58	62	66	66	60	58	54	51
	2	52	54	64	63	61	62	60	59	59	58	53
	3	55	57	54	- 55	61	56	61	68	69	52	51
	4	54	52	59	54	55	59	64	62	55	54	51
	5	54	55	54	57	54	55	54	56	57	54	53

処分場周囲は南北に畑が広がり、北東~南東にかけて民家が点在する。西側方向には工場がある。

悪臭意識は朕合村の住民が高く、特に夏季節(6~9月)には毎日臭い、正午前後が特に高いという答が多い。春秋には、週に2~3日とのことである。臭いについては、西瓜皮・糞便・666・動物の死臭などである。この内、糞便・666は埋立処分場の臭いとは違い、畑にまかれる肥料・薬品であることから、100%埋立処分場の悪臭であるとは断定出来ない。風向・風速などのデータにより検討する必要がある。

資料-21 埋立ごみ簡易透水試験

第2章、埋立ごみ簡易透水試験

2-1. 目的、処分場からの浸出水の浸出状況の推定

2-2、概要、 西安の気候は 内陸性であり、降雨量も少ない (下記参照)。また、最終処分場へ遅ばれてくる 埋立ごみの水分が少ない。このような 状況下において、浸出水の発生は少ないことが予想される。現に 既存処分場での 浸出水は オーオ2 次調査において 確認されなかった。そこで、既存処分場の 最近の埋立ごみを用いて 浸出水の 浸出状況 の 推定をした。

※ 理立ごみの多くを炉渣が占めている。

2-3、参照資料

気 候

西安は、北緯33~34°東経107~109°の中国の西やや南の内陸部に位置している。 温暖で湿気がやや多い亜温帯で、年平均気温は13.2℃、最高気温は32.1℃(過去最高41 ℃)、最低気温は-4.9℃(過去最低-19℃)、年平均降雨量は594 mm(最高900 mm)、年間の風向は主に北東風で西南風もあり、春に風が多い。(西安市気候資源表参照)

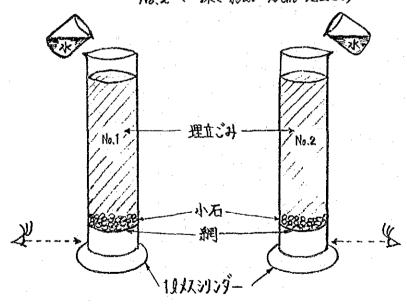
	1 月	2 月	3 月	4 月	5 月	6 月	7 月	8 月	9 月	10 月	11 月	12 月
平均気温(で)	-0. 3	3. 1	10. 6	17. 0	23. 1	28. 1	29. 7	28. 6	22. 5	16. 4	8. 3	2. 2
降雨量 (22)	8	8	18	46	48	46	99	99	58	41	13	8

		洲	
	٠	福港	
	学	75%	1.007
Z Z	父的李级期牙降水量		662.9 \$65.8 491.5
	一个级	20% 15%	\$45.8
"好多多次"	×	002	662.9
	差9.74	必然值	0,23
がお売	焰	计算者	0,200
的母母小母時於随城行		華華	2.42
Str.	rs	13.	1977
弘泰兴	棕	がないる言	346.2 1977
这处方	15	7	1956
分	校	大學水多	840,6
	47.68	头齿点	571.5
	4名3	※ 差	511.5
ļ	成乳剂	成松石	56-80 56-80
	1/4	爱 溪	56280

	-			·			
	7. A.	1 2 3 4 5 6 7 8 9 10 11 12 (%)	5.95	7 1/2	7.2	29.8	36.8
		.7	6.0	0,	0,5	0	0.0
		. 3	5.3	3.2	% ∞	s S	6.7
ž	2/2	0/	11.5	60	2.6	6,0	5.5
ķ)	0	17.0	79.67	15.5	0.00	16.8
御	風	00	8//	1.5.	ý.	0.	2.7
となるを 多人名 とだ			16.2	451	256	26.8	ν. ν.
<u>~</u>	内 % 赋 (%)	0	à	0.//	0/	4	14.8
ベネナン	S.	10	4:11	14.6	7.7	₩ ₩	23.2
見る		E	96	9.6	9	0.	4. 60
内で	4	~	7.4	ó	00	ί, κ	4.6
ュー み ブ		~	.5	7.7	9.	4.	9.5
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		. ~	1.3	0	0	2.2	ار. ان
から		子竹	571.5	6.693	664.6	491.1	1'986
外	本	华龙		0261	0961	6161	6561
这数 中就 立在 海水海中河 只有 成然 成	123	凝	平均	(20%) 1970 663,3 0 2.2 2.0 9.6 14.6 11.0 144 15.1 19.4 8.3 3.2 0.2 57.2	(%05)	(% 56)	(%5%)
	なながれ	N	TH.	₩ 关	×	我示	关
	44-	¥	1581	癌	134	Æ.	菜
	数学	中教	· · · · ·		۲, ح	·	
	多多	节节	740.	07/	^	1,880	

< 妙光海本>

		[1 1		1	
√H	113-	37	27	74	54	
	10 11 12	Ò	,	0	,	
$\widetilde{\chi}$	//	7	9	`	7	·
	10	لع	01	رد در	5	
×	6	~	15/	ئى	9 10 5	
117	00	3	11 01	n	٥	٠
东川饰水田牧(天)	5 6 7 8 9	٨	0/	ź	3	
¥	B	'n	9	N	4	
好	٨	3	1 8	7	7	2 (8)
<u> </u>	3	4	7	7	3	かずる
	<i>™</i>	7	٨	,	S	140
*15	7	0	7	0	,	4
		0	n	0	0	#. ##.
Œ	\$.	134	凝悉	H E	被逐	岸河
田存不為	四格次编四		<i>\lambda</i>		0	马波主城位于巡河中游先的与华骨之
đ			, , , , , , , , , , , , , , , , , , ,	<i>y</i>		
茶	节代、极	8561		\sim $\frac{1}{2}$	1,500	郑
	i	I		·		

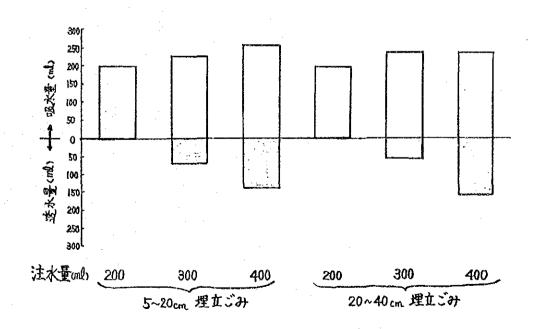

~4 試料 採取

既存の最終処分場(联合村処分場)にて 比較的新らしい 埋立ごみを 深さ約5~20cm と、約20~40cmの2箇所より採取した。

2-5、試験方法

- 1、1lのメスシリンダを用い、網、小石、埋立ごみの順に話めた。埋立ごみは加圧し、30cmの厚きにした。
- 2、 降雨量 60mm 相對 (水 200ml), 降雨量 90mm 相對量 (水 300ml)、降雨量 120mm 相對量 (水 400ml) を注水して透水量を 測定した。 測定期間は 1週間とした。

No.1: 深之約5~20 cm 埋立づみ No.2: 深之約20~40 cm 埋立づみ



簡易透水試験方法图

2-6、埋立ごみ簡易透水試験測定結果

)

試	料	5~20(m 埋立	ごみ	20~40 cm 埋立ごみ			
注水量	走 (ml)	200	300	400	200	300	400	
測定開始日		2/21	2/28	3/7	3/21	3/28	3/7	
	1	<10	70	140	<10	60	160	
経	2	<10	70	140	<10	60	160	
過	3	<10	70	140	<10	60	160	
	4	<10	70	140	<10	60	160	
E)	5	<10	70	140	<10	60	160	
	数 6		70	140	<10	60	160	
	7	<10	70	140	<10	60	160	

2-7. 考察

測定結果より 埋立ごみ 1 l につき 約 200 mlの 吸水性があることがらかった。従って 30 cmの圧さの埋立ごみに 60 mm 以下の 降水量であれば 浸出水の出ることはないと 推定できた。

2-8、備考

使用した試料(朕合村処分場の5~20cm と20~40cm の埋立ごみ)の見掛比重は以下の通りであった。

No.1 (深計約5~20cm 理立づ升) 0.742 t/m³ No.2 (深計約20~40cm 理立づ升) 0.748 t/m³