The generated electric power at the Upper Kihansi Power Station is to be transmitted by the connecting transmission line from the switchyard to the 220 kV transmission line constructed from the switchyard of the Lower Kihansi Power Station to Iringa Substation.

(2) The Lower Kihansi Project

The dam site is located about 3 km downstream from the Upper Kihansi Power Station on the Kihansi River and the concrete gravity dam with height 35 m and dam volume $54,000 \text{ m}^3$ is constructed to provide gross regulating reservoir storage capacity of $1.4 \times 10^6 \text{ m}^3$ and the effective of $0.48 \times 10^6 \text{ m}^3$. The inflow into this regulating reservoir is to be daily regulated.

The maximum available discharge of 22.2 m^3 /sec is introduced to the intake constructed at the left bank just upstream of the dam and conducted to the powerhouse situated at the left bank through the headrace tunnel and the embedded penstock with total length of 4,181 m and the maximum output of 153 MW with the annual electric firm energy of 551.0 GWh is generated with the effective head of 813.0 m. Generated water is to be outlet to the Kihansi River through the tailrace tunnel with length of 615 m.

The generated electric power at this power station is to be transmitted from the switchyard to Iringa Substation by the newly constructed transmission line.

(3) Transmission Line

The transmission line with 220 kV and 2 circuits is to be newly constructed starting from the switchyard of the Lower Kihansi Power Station via that of the Upper Kihansi Power Station to Iringa Substation with total length of 113 km.

The layouts of the Upper and Lower Kihansi Projects are shown in Fig. 3 - Fig. 12.

- 25 -

Item	Unit	Description
Location		Kihansi River
Catchment Area	km ²	583
Annual Inflow	10^{6} m^{3}	494.48
Design Flood	m ³ /sec	400
Reservoir		
Normal High Water Level	m	1,360
Low Water Level	m	1,330
Available Drawdown	m	30
Sedimentation Level	m	1,300
Gross Storage Capacity	10^{6} m^{3}	94.90
Effective Storage Capacity	10^6 m^3	75.10
Reservoir Area	km ²	3.86
Sub-diversion Tunnel		
Design flood discharge	m ³ /sec	10
Туре		Semi-circle
Number		1
Dimension	m	Width 2.00
	m	Height 2.00
Length	m	300.00
си — ст.		

Summary of Upper Kihansi Hydroelectric Power Development Project

Item	Unit	Description
Main Diversion Tunnel		
Design flood discharge	m ³ /sec	90
Туре		Semi-circle
Number		1
Dimension	m	Width 3.00
	m	Height 3.00
Length	m	425.00
Dam		
Туре		Rockfill with center
		core
Crest elevation	m	1,365.00
Crest length	m	583.00
Crest width	m	10.00
Dam height	m	95.00
Dam volume	m ³	5,350,000
Spillway		
Design flood discharge	m ³ /sec	400
Spillway capacity	m ³ /sec	400
Туре		Free overflow type
Crest elevation	m	1,360.00
Crest length	m	100
L		<u>1</u>
	27 -	

Item	Unit	Description
Intake		
Туре		Inclined type made of
		reinforced concrete
Number		1
Maximum discharge	m ³ /sec	25.7
Inlet level	m	1,320.00
Dimension	m	Width 6.00
	m	Height 50.00
Headrace Tunnel		
Number		. 1
Maximum discharge	m³/sec	25.7
Diameter	m	3.30
Length	m	653.00
Penstock		
Number		1
Maximum discharge	m ³ /sec	25.7
Diameter	m	3.30 ~ 1.85
Length	m	510.24
	<u> </u>	<u>]</u>

- 28 -

	Unit	Description
Powerhouse		
Туре		Semi-underground of
		reinforced concrete
Dimension	m	Width 20.00
	m	Length 22.50
	m	Height 35.00
Turbine center level	m	1,135.00
Installed capacity	MW	47
Tailrace Tunnel		
Туре		Horseshoe
Maximum discharge	m ³ /sec	25.7
Diameter	m	4.00
Length	m	641.00
Tailrace Outlet		
Туре		Box culvert made of
		reinforced concrete
Maximum discharge	m ³ /sec	25.7
Dimension	m	Width 4.00
	m	Length 10.00
	m	Height 7.50
Outlet level	m	1,135.35

- 29 -

......

Item	Unit	Description
Turbine		a an
Туре		Vertical Shaft Franci
		Turbine
Number of unit		1
Rated effective head	m	214.50
Water discharge	m ³ /sec	25.7
Rated output	MW	48
Revolving speed	rpm	429
Generator		
Туре		3-phase, AC,
		synchronous generator
Number of unit		1
Capacity	MVA	53 (with 0.9 lagging
		power factor)
Revolving speed	rpm	429
Frequency	Hz	50
Voltage	kV	11.0
Main Transformer		
Туре		Outdoor, single-phase
		transformer
Number of units		4 (including 1 spare
	i.	transformer)
Capacity	MVA	53
Voltage	kV	11.0
	<u></u>	

Item	Unit	Description
Switchyard		
Bus type		Single bus
Bus		Aluminum cable
Number of lines		2 circuits
Voltage	kV	220
Conductor type		ACSR, 400 mm^2
Annual Energy Production		
Total Energy	GWh	275.1
Firm Energy	GWh	335.7
Construction Period	years	4.5
Project Cost	10 ³ US\$	261,000
Unit Construction Cost at	US\$/kWh	0.78
Sending End		
Financial Internal Rate of	8	6.49
Return (FIRR)		
Economic Internal Rate of	÷	11.26
Return (EIRR)		• •
		· · · ·
Net Present Value (B-C)	10 ³ US\$	9,221.46
Benefit Cost Ratio (B/C)		1.07

- 31 -

Item	Unit	Description
Location		Kihansi River
Catchment Area	km²	590
Annual Inflow	10 ⁶ m ³	500.48
Design Flood	m³/sec	400
Regulating Reservoir		
Normal High Water Level	m	1,140
Low Water Level	m	1,137
Available Drawdown	m	3
Sedimentation Level	m	1,125
Gross Storage Capacity	10 ⁶ m ³	1.39
Effective Storage Capacity	10 ⁶ m ³	0.48
Reservoir Area	km²	0.19
Diversion		
Design flood discharge	m³/sec	80
Туре		Box culvert inside the
		dam
Number	m	1 · · · · · · · · · · · · · · · · · · ·
Dimension	m	Width 3.00
	m	Height 4.00
Invert level		1,115.00

Summary of Lower Kihansi Hydroelectric Power Development Project

- 32 -

. . . .

Item	Unit	Description
Dam		
Туре		Concrete gravity
Crest elevation	m	1,143.00
Crest length	m	177.00
Crest width	m	5.00
Dam height	m	35.00
Dam volume	m ³	54,000
Spillway		
Design flood discharge	m ³ /sec	400
Spillway capacity	m³/sec	160
Туре		Free overflow type
Crest elevation	m	1,140.00
Crest length	m	13.00 x 4 spans
		= 52.00
Sand Flushing		
Capacity	m ³ /sec	240
Туре		Controlled type with
		gate inside the dam
Dimension	m	Width 4.00
	m	Height 4.00
Invert level	m	1,123.00

•

- 33 -

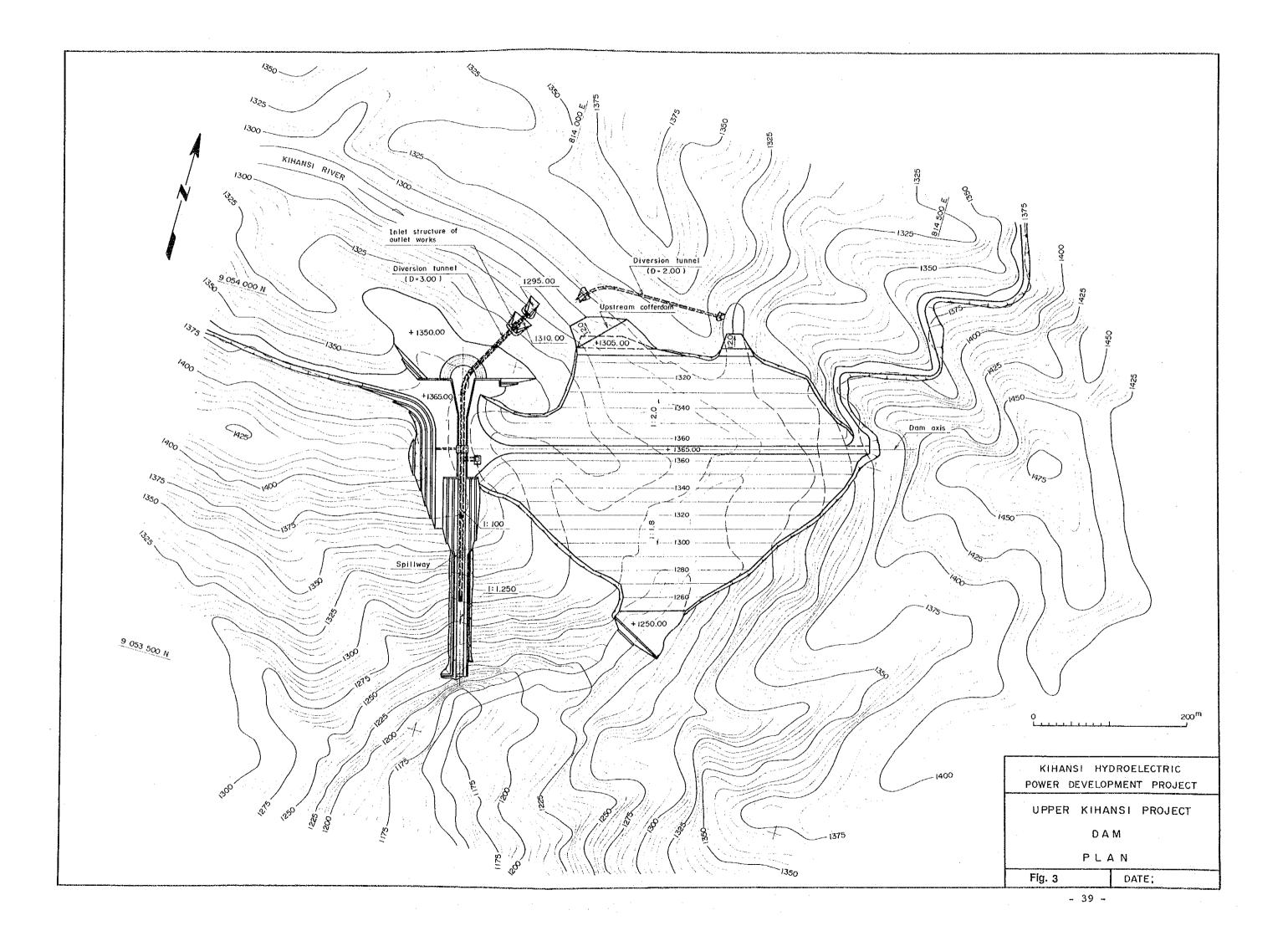
Item	Unit	Description
Intake		
Туре		Vertical type made of
		reinforced concrete
Number		1
Maximum discharge	m ³ /sec	22.2
Inlet level	m	1,125.00
Dimension	m	Width 6.00
		Height 25.50
	m	nergite 23.50
Headrace Tunnel		
Number		
Maximum discharge	m³/sec	22.2
Diameter	m	3.00
Length	m	1,258.69
Penstock		
Number		Main 1
		Branches 3
Maximum discharge	m ³ /sec	Main 22.2
	m ³ /sec	Branches 7.4
Diameter	m	Main 3.00 ~ 2.2
		Branches 1.80 ~ 0.9
Length	m	Main 2,858.3
Devden	m	
	m	Branches No.1 80.0
		No.2 82.0
		No.3 64.0

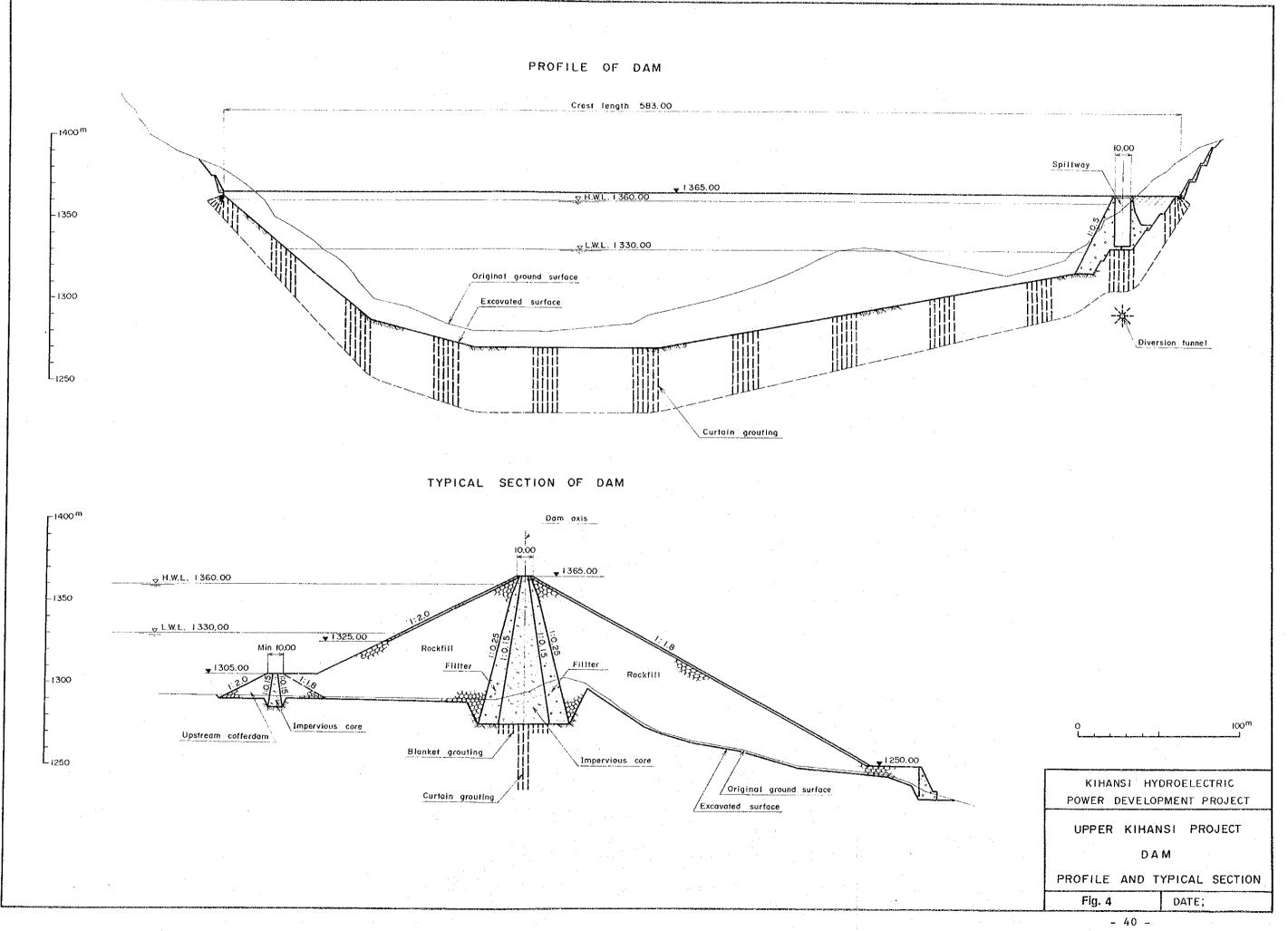
Item	Unit	Description
Powerhouse		
Туре		Semi-underground made of
		reinforced concrete
Dimension	m	Width 25.50
	m	Length 59.00
	m	Height 34.60
Turbine center level	m	296.50
Installed capacity	MW	153
Tailrace Tunnel		
Туре		Main Horseshoe
		Branches Semi-circle
Maximum discharge	m ³ /sec	Main 22.2
	m ³ /sec	Branches 7.4
Diameter	m	Main 3.50
	m	Branches 3.00
Length	m	Main 580.00
	m	Branches 35.00 x
		3 units = 105.00
Cailrace Outlet		
Туре		Open channel made of
		reinforced concrete
Maximum discharge	m ³ /sec	22.2
Dimension	m	Width 7.00 ~ 15.00
	m	Length 47.00
	m	Height 9.70
Outlet level	m	293.00
	181	293.00

- 35 -

Ļ

Item	Unit	Description
Turbine		
Туре		Vertical Shaft Pelton
		Turbine (6-nozzle)
Number of unit		3
Rated effective head	m	813.00
Water discharge	m ³ /sec	7.4
		(22.2 with 3 units)
Rated output	MW	52
Revolving speed	rpm	750
Generator		
Туре		3-phase, AC,
		synchronous generator
Number of units		3
Capacity	MVA	57 (with 0.9 lagging
		power factor)
Revolving speed	rpm	750
Frequency	Hz	50
Voltage	kV	11.0
Main Transformer		
Туре		Outdoor, single-phase
		transformer
Number of units		10 (including 1 spare
		transformer)
Capacity	MVA	19
Voltage	kV	11.0

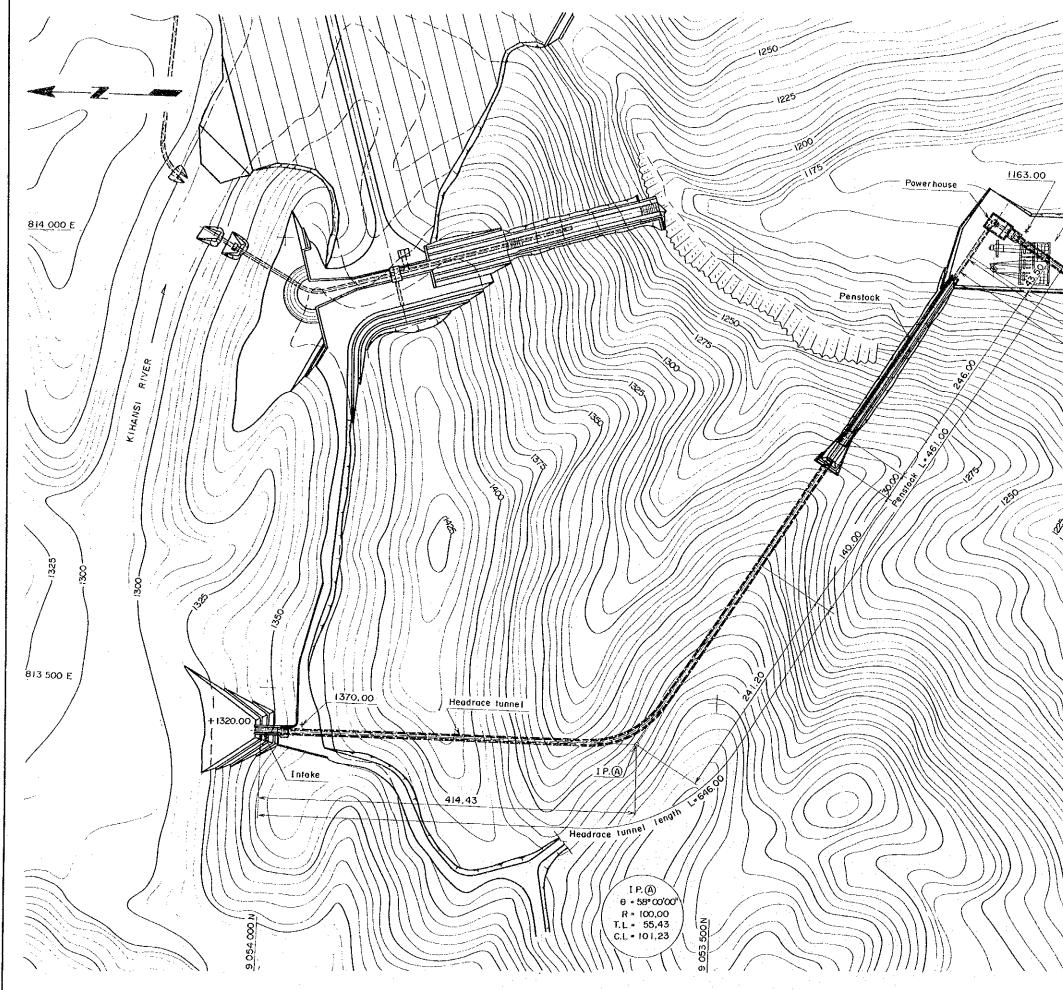

- 36 -

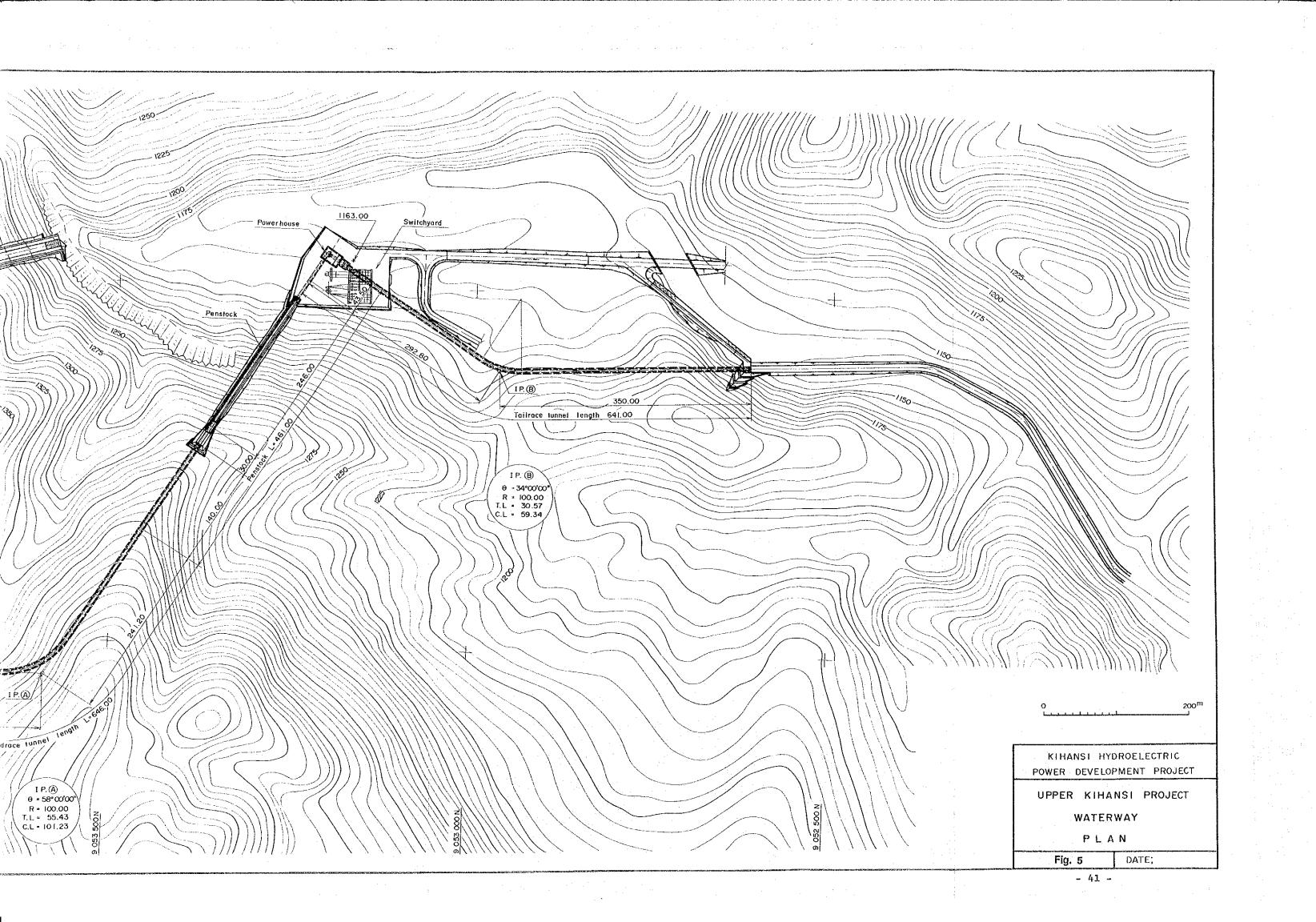

÷

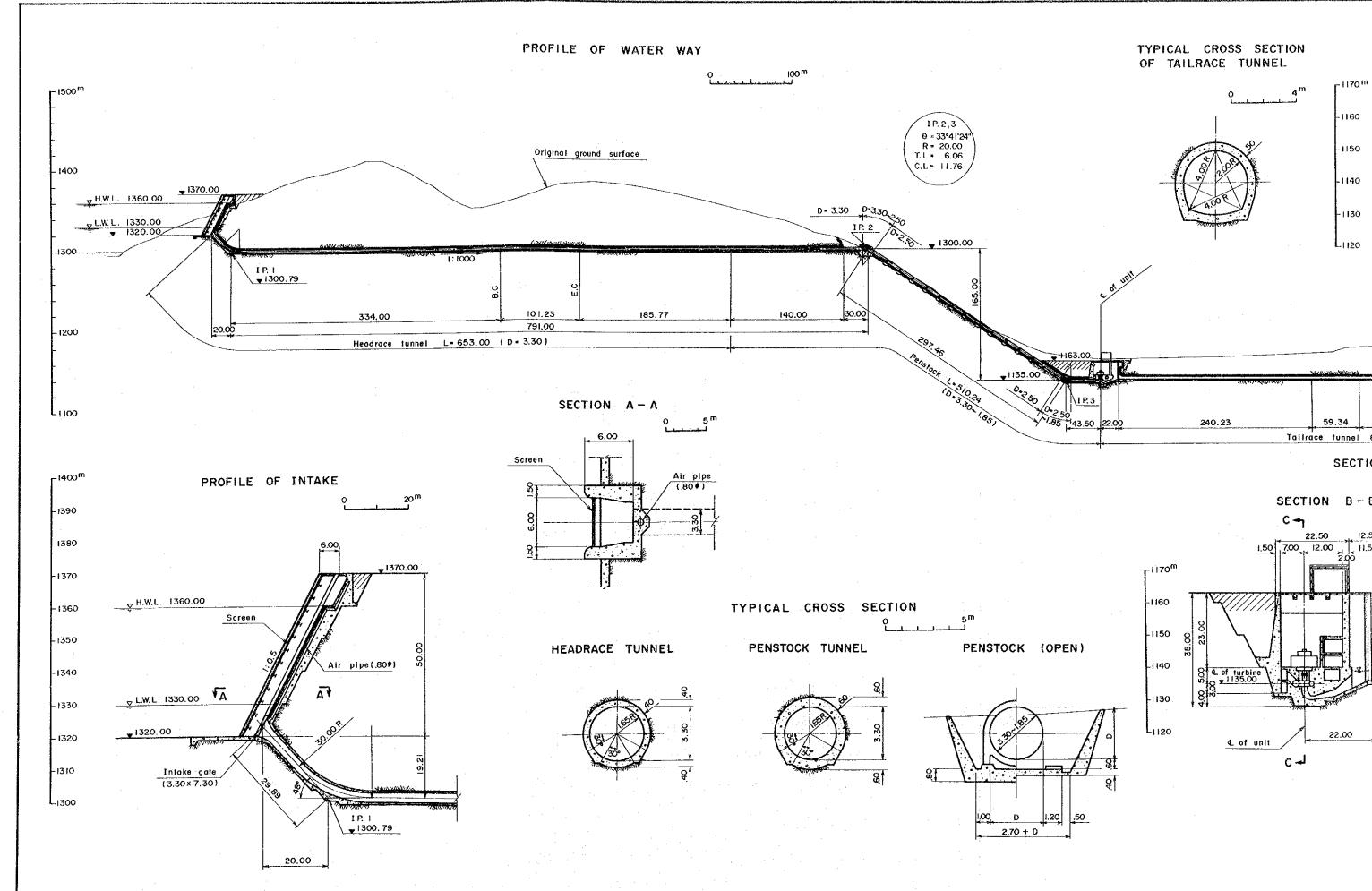
Item	Unit	Description
Switchyard		
Bus type		Double bus
Bus		Aluminum cable
Number of lines		2 circuits
Voltage	kV	220
Conductor type		AAC 400 mm ²
Transmisison Lines		
Number of circuits		2
Voltage	kV	220
Conductor type		ACSR 380 mm ²
Section		Lower switchyard to
		Iringa Substation
Length	km	113
Annual Energy Production		
Total Energy	GWh	868.9
Firm Energy	GWh	551.0
Construction Period	years	3.5
Project Cost	10 ³ US\$	206,000
Unit Construction Cost at	US\$/kWh	0.37
Sending End		

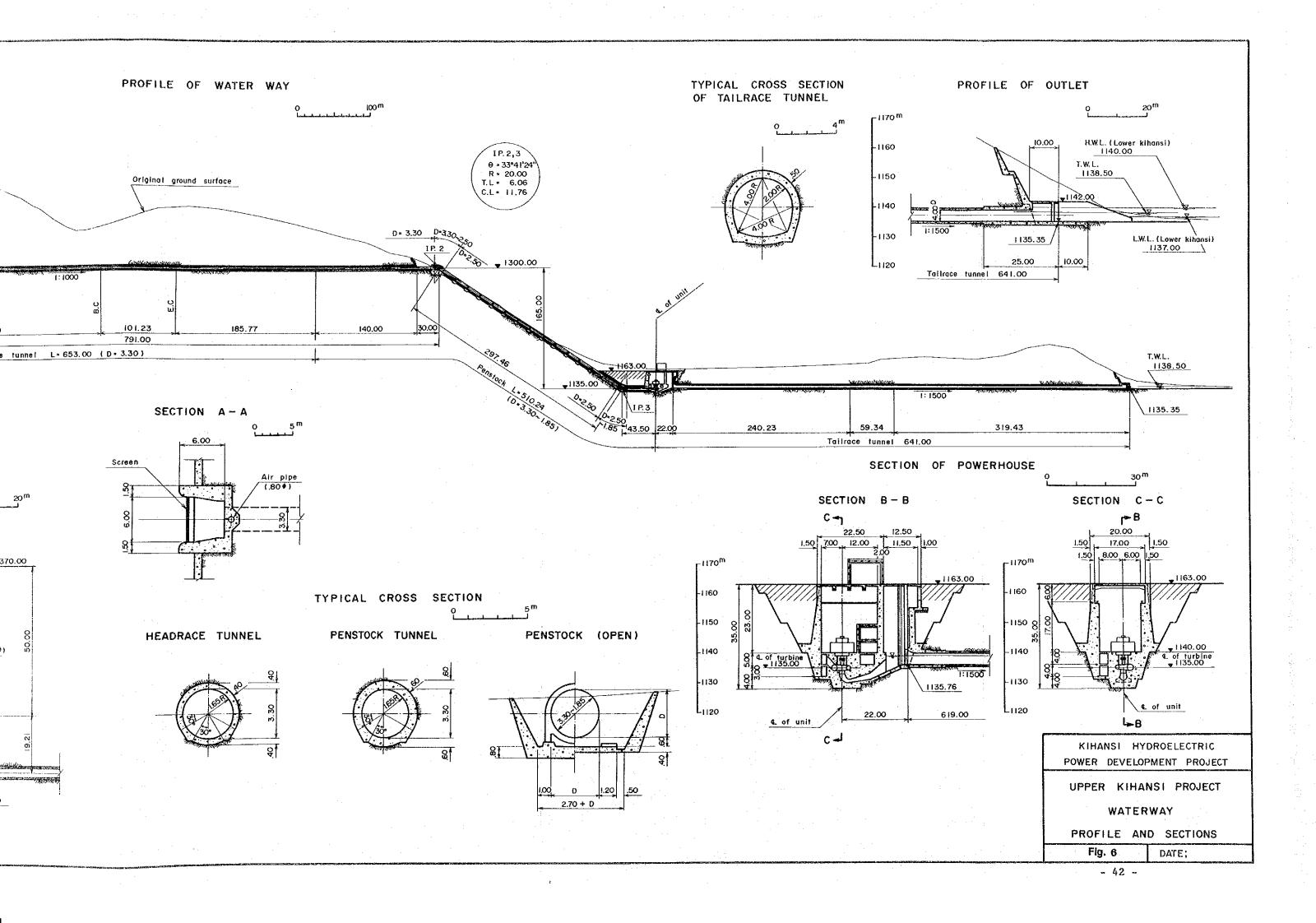
~ 37 -

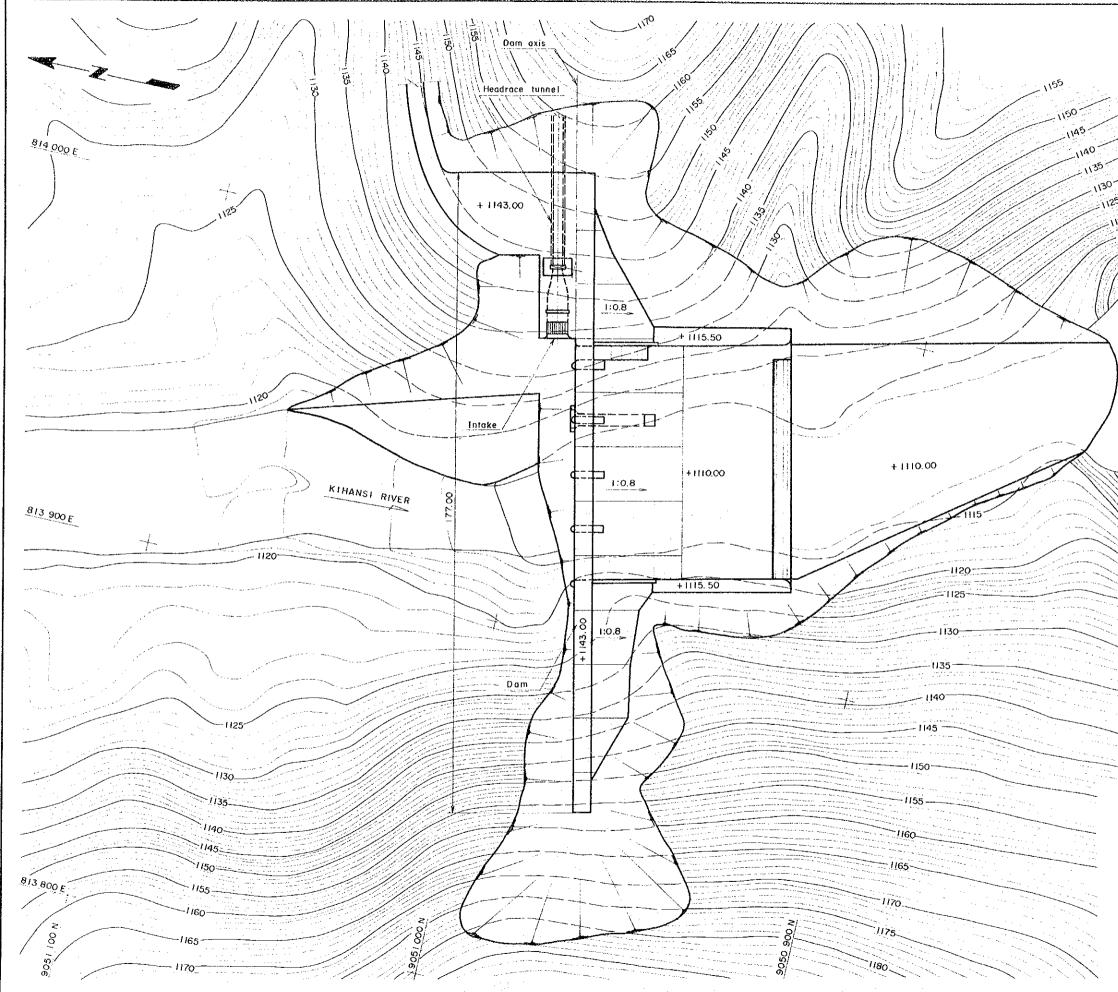
	Item	Unit	Description	-
	Economic Internal Rate of	q	45.94	
	Return (EIRR)	-	-	{
	Financial Internal Rate of	8	12.74	
	Return (FIRR)			
	Net Present Value (B-C)	10 ³ US\$	129,236.15	
I				
	Benefit Cost Ratio (B/C)		2.32	
· .		- -		
i				
		· · · · ·		
				ļ
		· .		
•		38 ~		



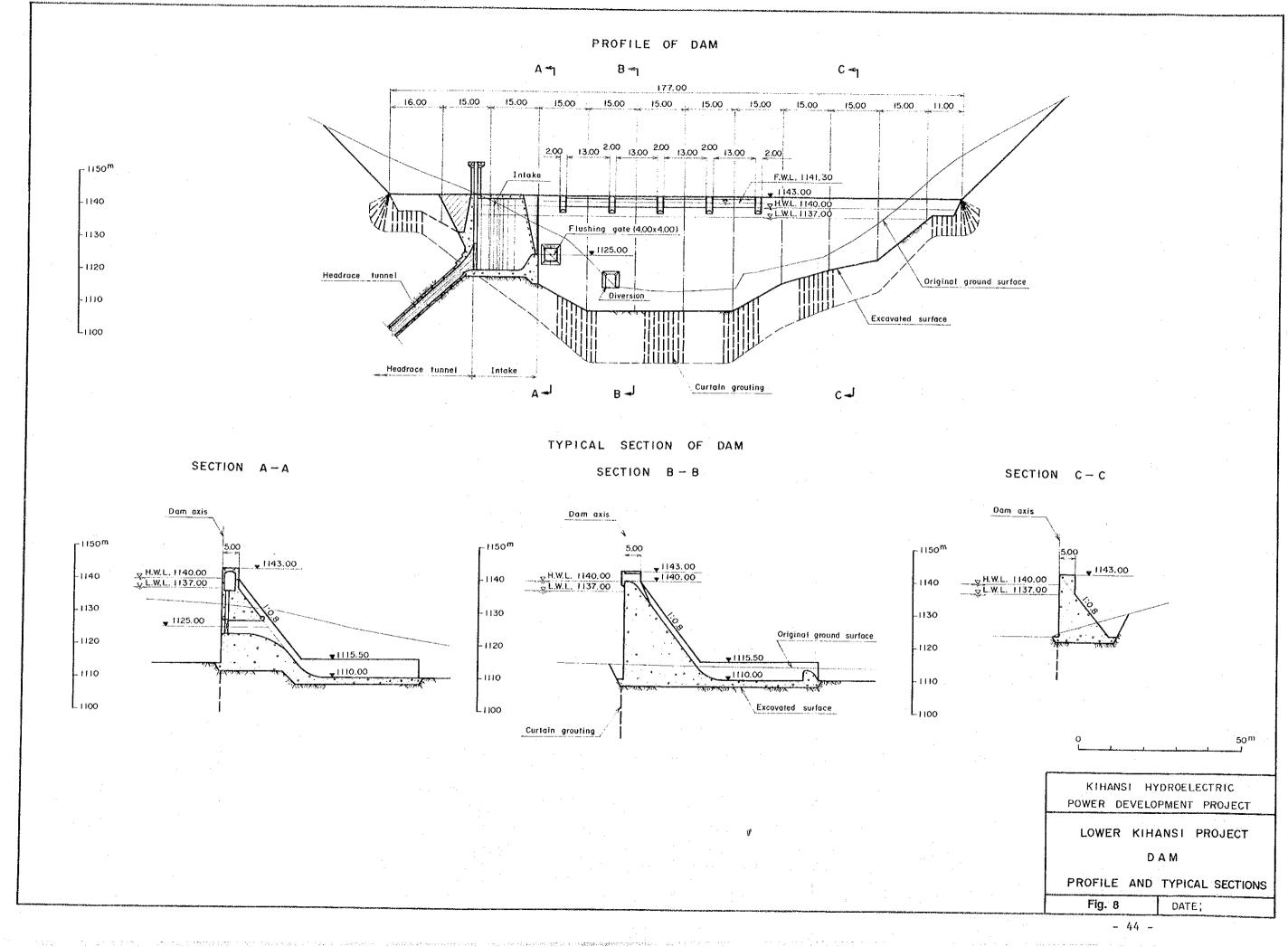

and a second second

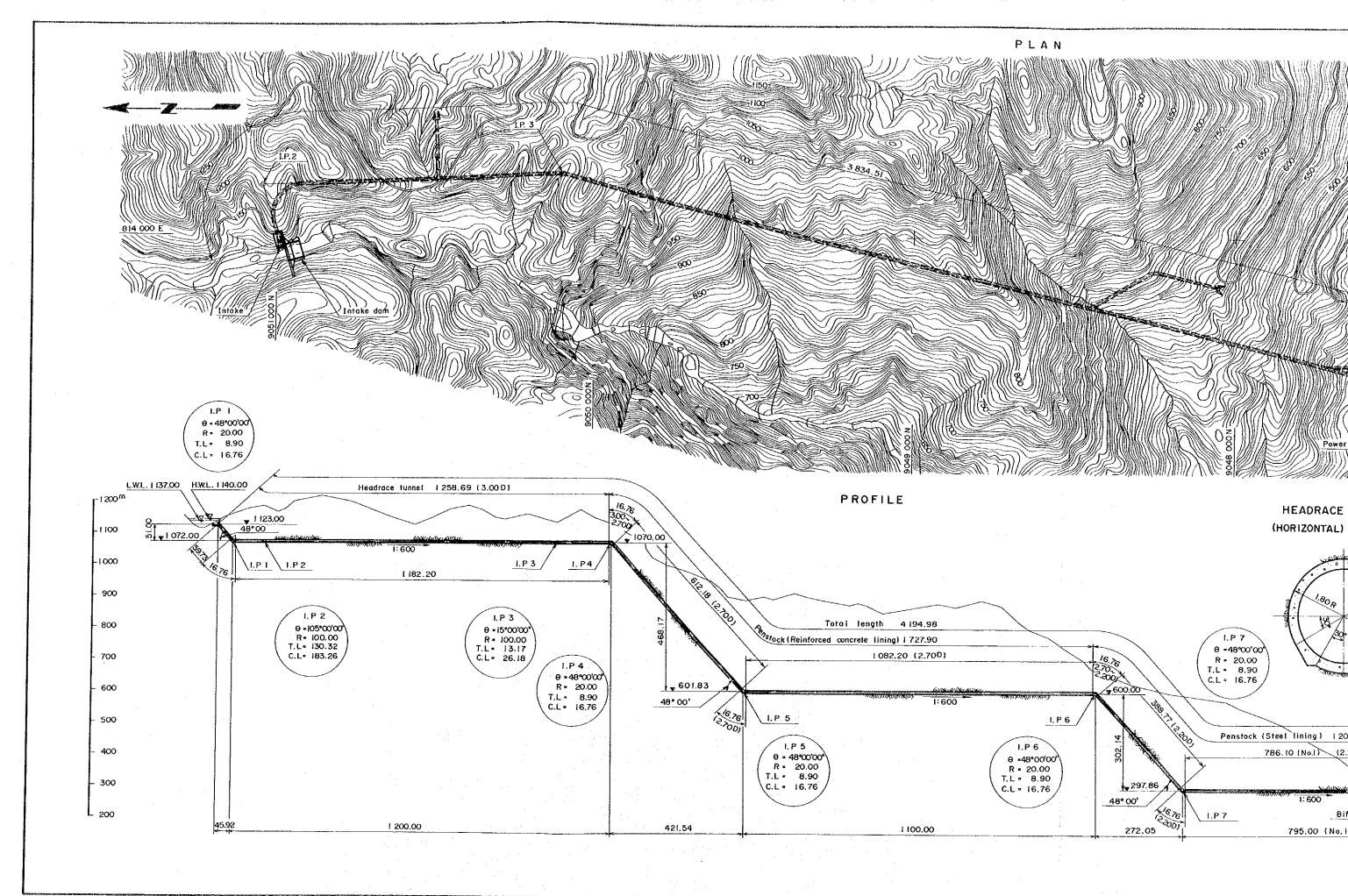

en en 1000 kaarde van Bekerke kaarde kaarde van de van de van de van de van de van de skale de skale de skale

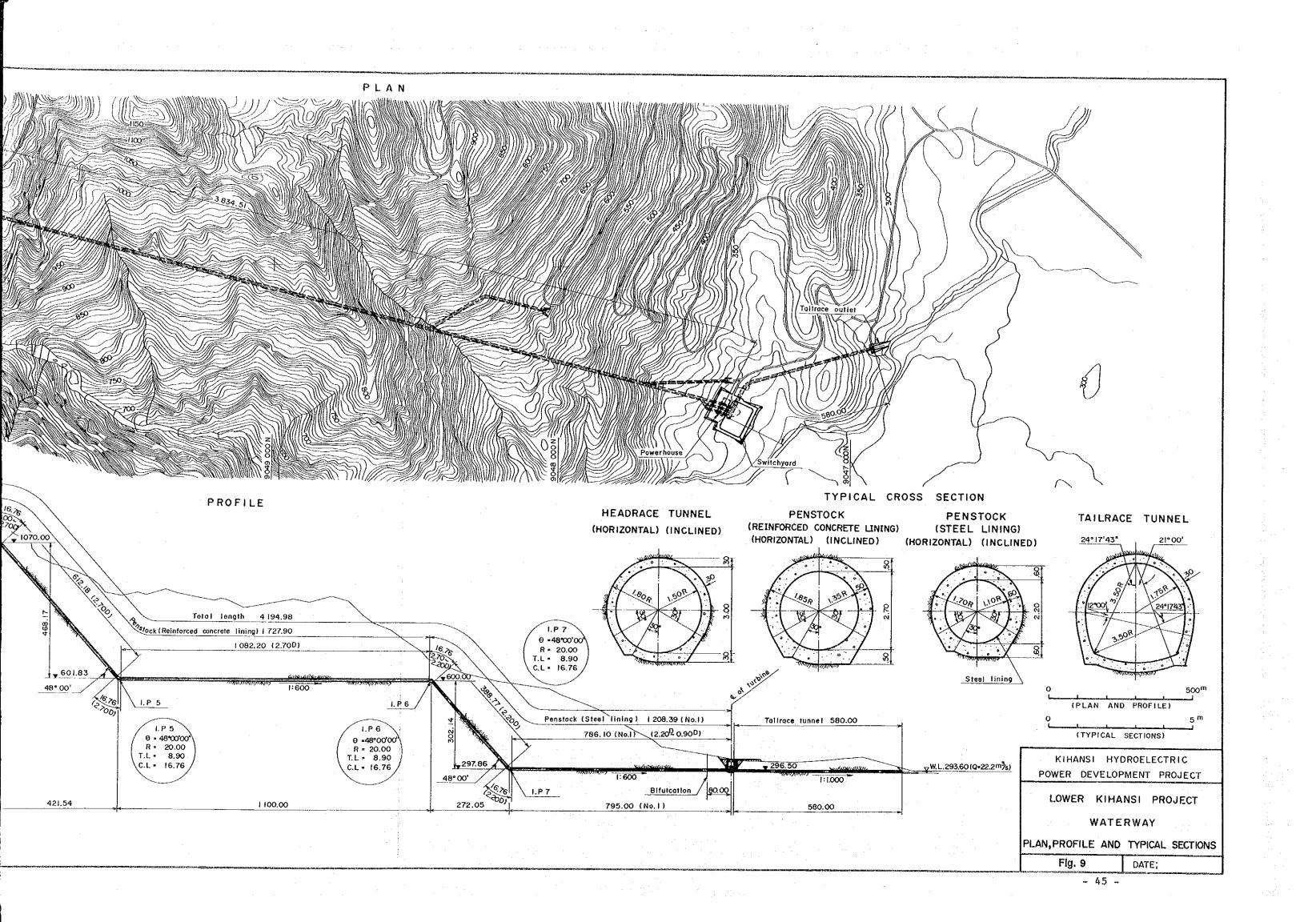


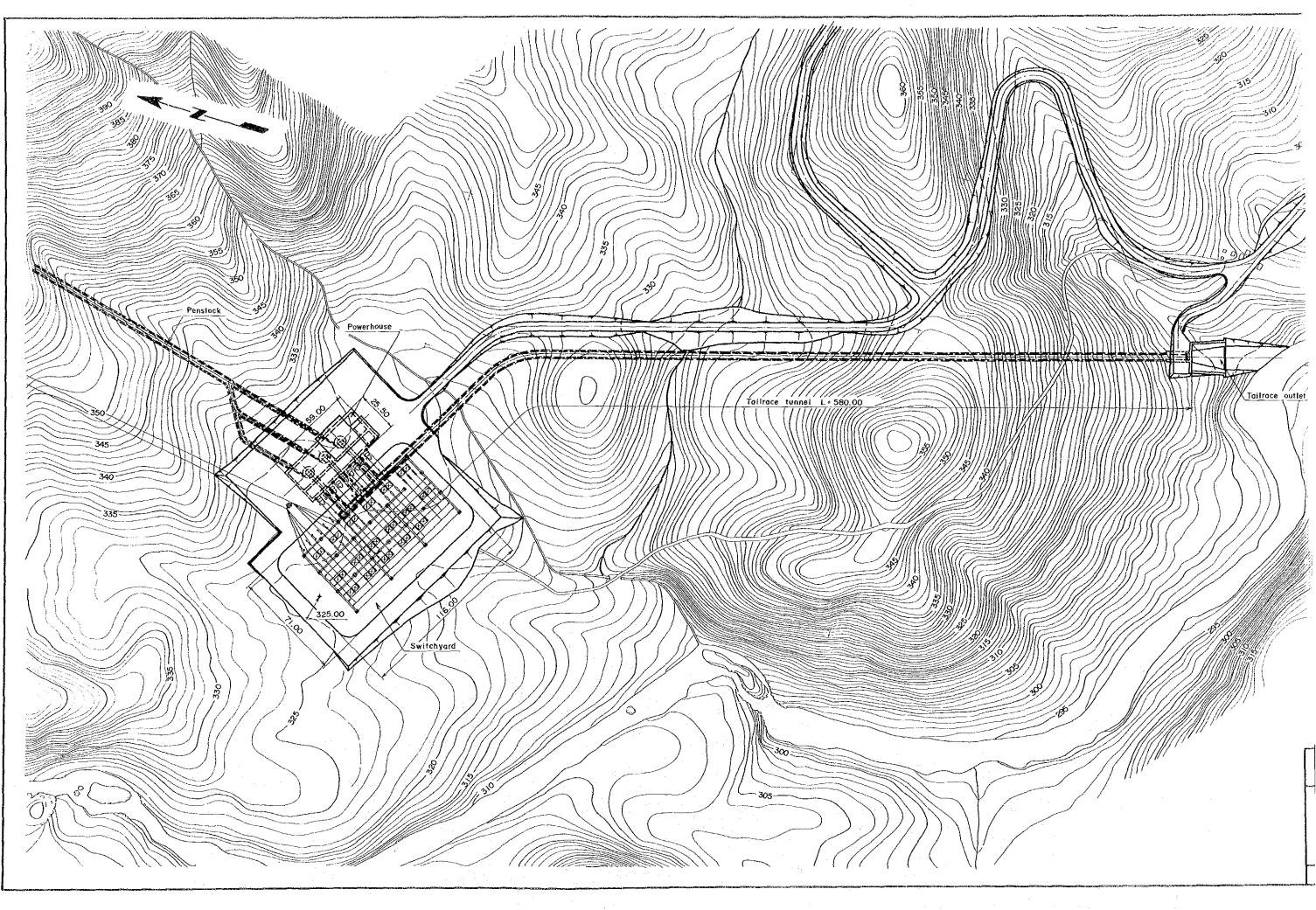


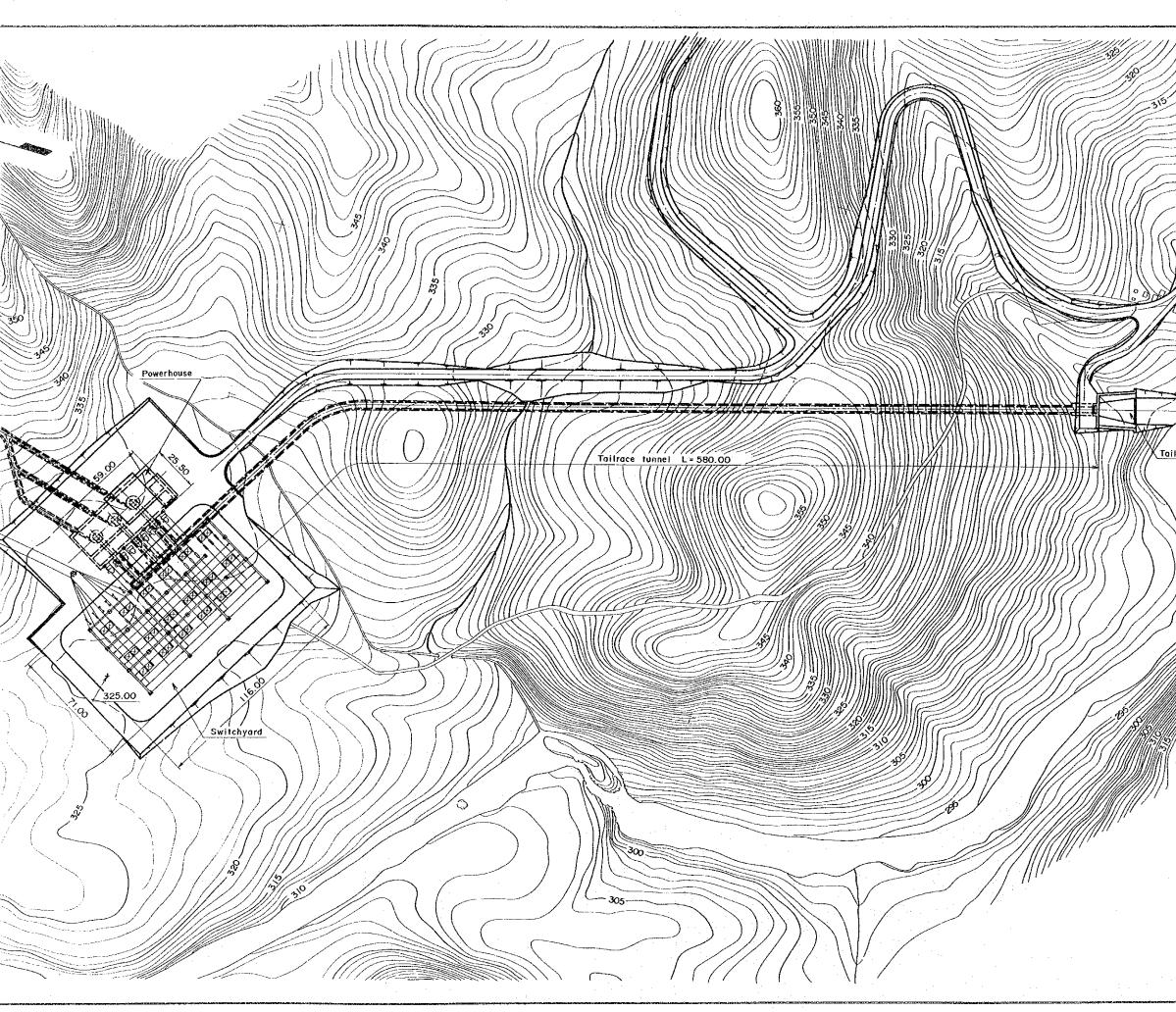
Switchyard L. 1...... IP.B Tailrace tunnel length 641,00 I P. 🛞 $\theta = 34^{\circ}00'00^{*}$ R = 100.00 T.L = 30.57 C.L = 59.34



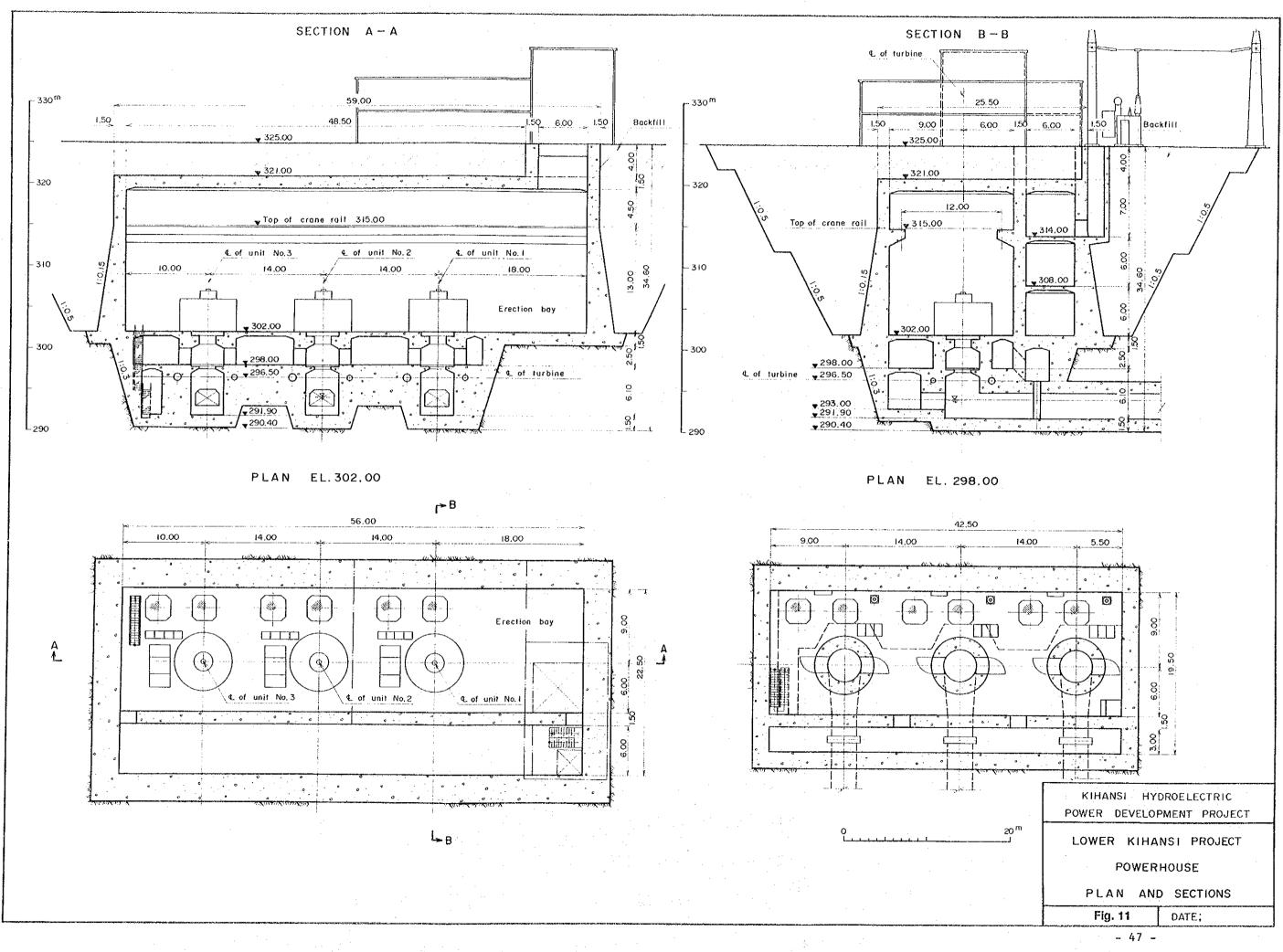


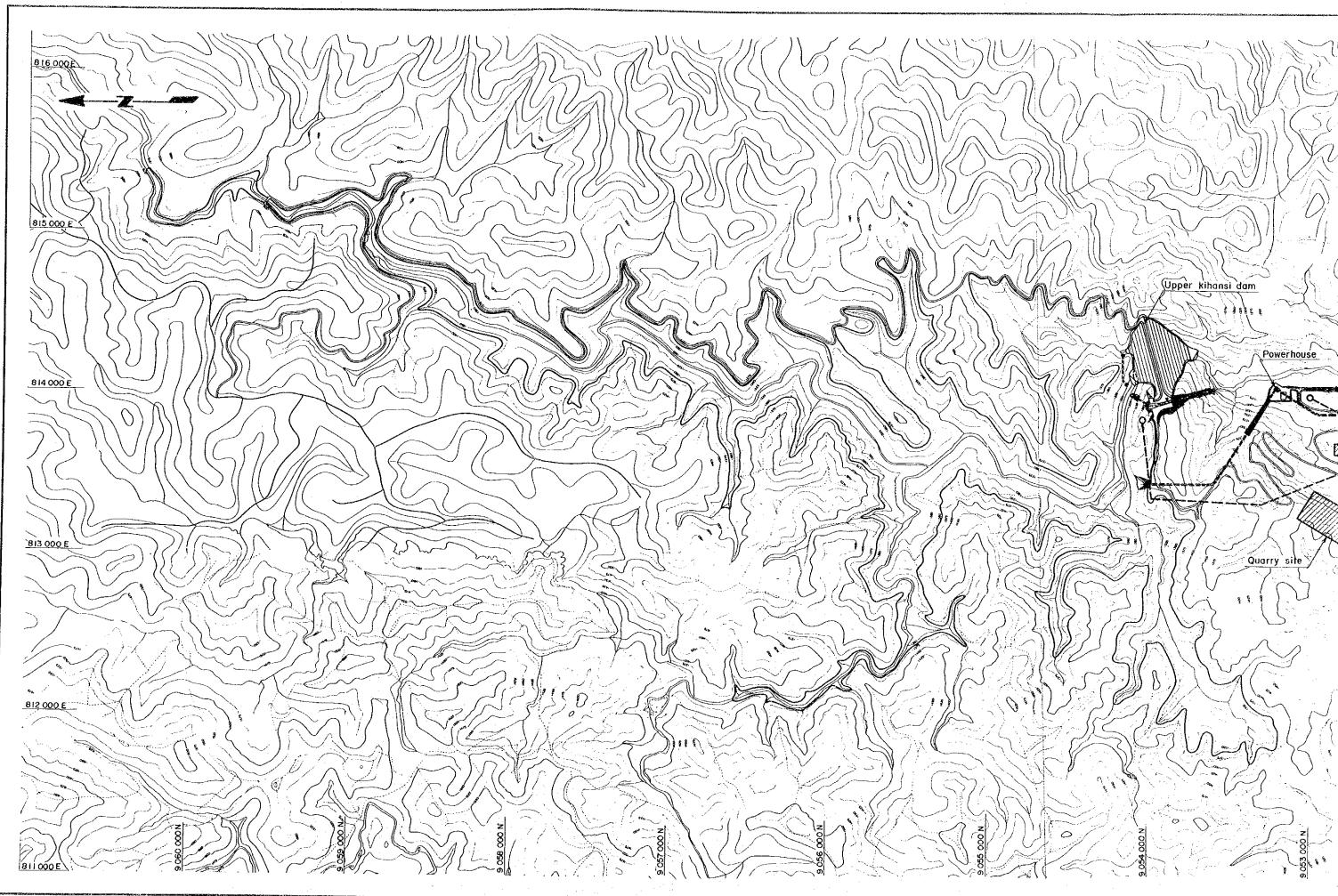



1125 1120 -1115 -1110-1105 1100 2 ള 50^m KIHANSI HYDROELECTRIC POWER DEVELOPMENT PROJECT LOWER KIHANSI PROJECT DAM PLAN Fig. 7 DATE; - 43 -

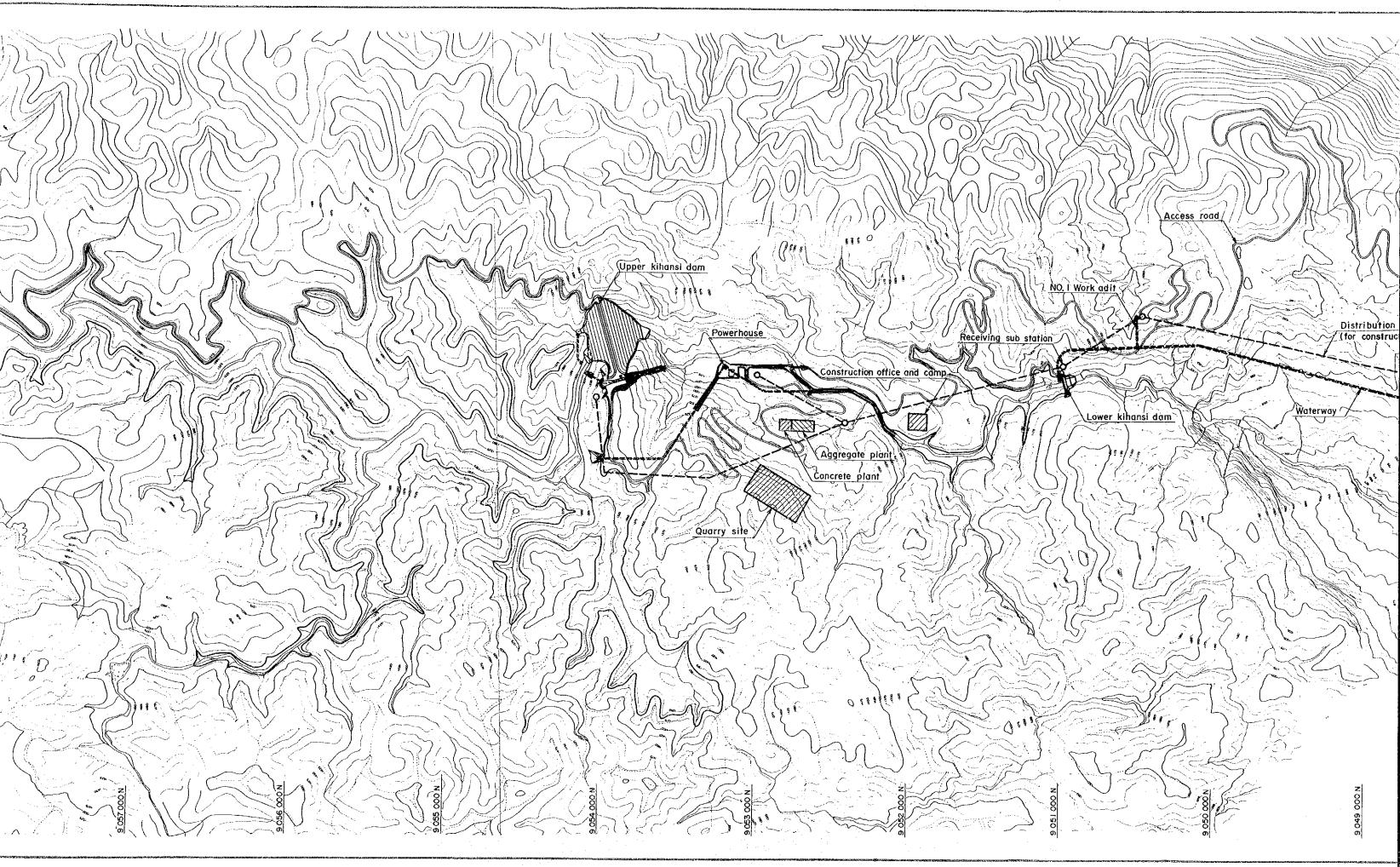


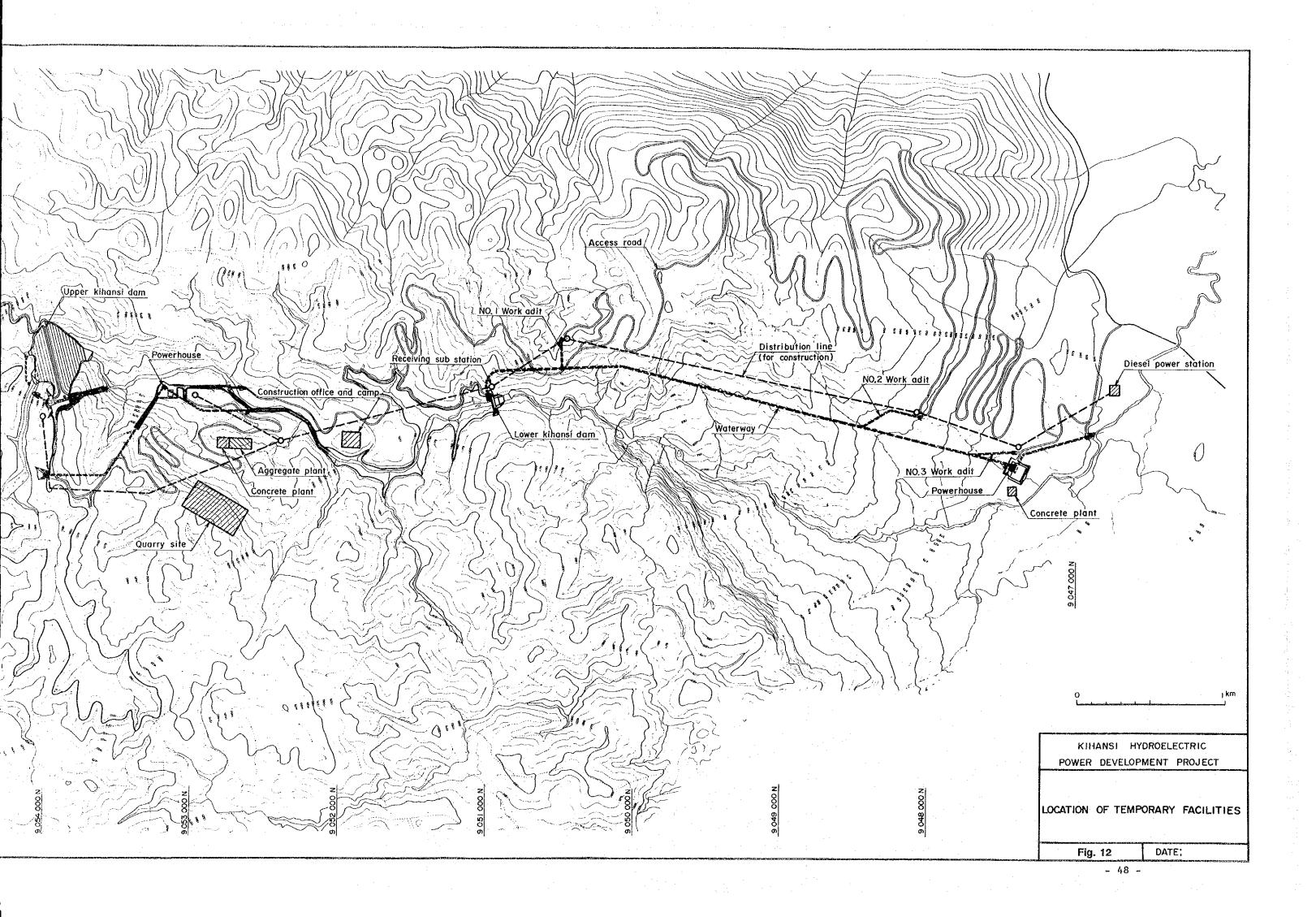
en en en esta en esta para esta en est





	<u></u>
///////////////////////////////////////	(/)
]]][[
310	
305	
JA/	300
$/\!\!/$	
	300
Ma	290
<u>///</u>	
ace outlet	
X (
	$)^{\prime}/^{\prime}$
Г	KIHANSI HYDROELECTRIC
L.	POWER DEVELOPMENT PROJECT
	LOWER KIHANSI PROJECT
	POWERHOUSE, SWITCHYARD AND TAILRACE TUNNEL
	PLAN Fig. 10 DATE;
L	Fig. 10 DATE;


and the second and the second seco



.

ning and a support of the support of the most management of the support of the

· .

Chapter 4 CONSTRUCTION SCHEDULE AND CONSTRUCTION COST

4.1 Construction Schedule

Considering the commissioning year of the Upper Kihansi Project in 1999, and the Lower Kihansi Project in 1996, preparations for construction should be made roughly according to the following time schedule.

1) Upper Kihansi Project

1989-2 -	1990-12	Prefeasibility Study	(1 year and 9 months)
1991-7 -	1992- 6	Feasibility Study	(1 year)
1992-7 -	1993-12	Definite Design	(1.5 years)
1994-1 -	1995- 6	Finance	(1.5 years)
1995-1 -	1995- 6	Preparation Works	(0.5 year)
1995-7 -	1999-12	Construction	(4.5 years)

2) Lower Kihansi Project

1989-2 - 1990-12	Feasibility Study	(1 year and 9 months)
1991-2 - 1992- 7	Definite Design	(1.5 years)
1991-1 - 1993- 6	Finance	(2.5 years)
1992-1 - 1993- 6	Preparation Works	(1.5 years)
1993-7 - 1996-12	Construction	(3.5 years)

The construction works of the Upper Kihansi Project and the Lower Kihansi Project require periods of approximately 4.5 years and 3.5 years respectively as a result of studying the meteorology and topography of the project area, the scale of construction, construction materials, layout of structures, preparatory works, etc. The work schedules of the projects are given in Figs. 11 and 12.

- 49 -

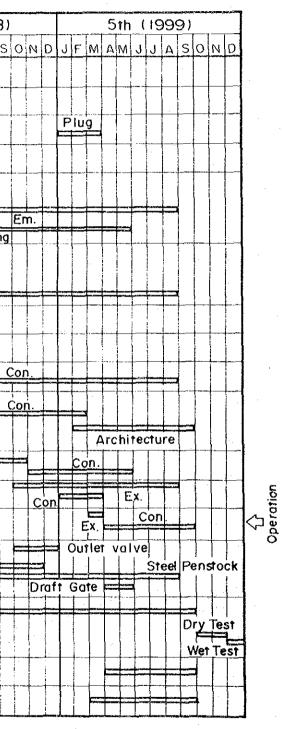
4.2 Construction Cost

The construction cost of this Project is estimated assuming that design, construction methods, and materials and products according to the technological levels being able to be expected at the present are applied, with the geological and regional conditions of the project sites, construction scales and so on taken into consideration.

The total construction cost of this project is estimated dividing the local and foreign currencies and the costs of access roads, camp facilities, environmental countermeasures, transmission line, substation facilities, engineering fee and administrative expenses and interest during construction are included in the project cost itself, but inflation is not taken into consideration.

The cost estimation time is set in June, 1989 (exchange rate: 140 Tsh/1 US\$).

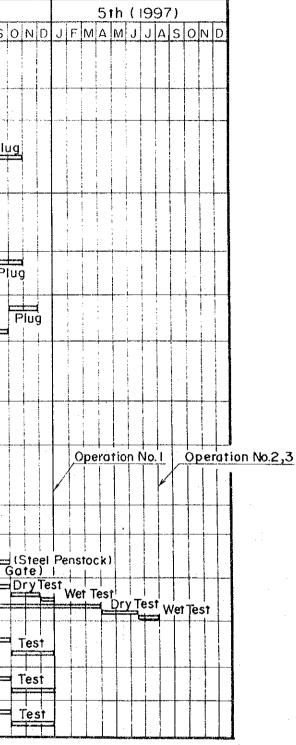
The list of items of construction cost on this project is shown in Table 3.


Table 3 Construction Cost

	n	Upper Kihansi			Lower Kihansi			Total	
	F.C	L.C	Total	F.C	۲.С	Total	F.C	L.C	Total
 Preparatory Works 1-1 Access Road 	i		0	15,280	3,820	19, 100	15,280	3,820	19,100
1-2 Camp Facility & Others	3,600	1,000	4,600	10,100	3,200	13,300	13,700	4,200	17,900
Sub-total	3,600	1,000	4,600	25,380	7,020	32,400	28,980	8,020	37,000
2. Compensation & Others	1,695	S	1,700	1,698	2	1, 700	3,393	7	3,400
3. Civil Works 3-1 Diversion & Coffer Dam	2,059	641	2,700	160	40	200	2,219	681	2,900
3-2. Dam & Spillway	107,801	33,599	141,400	7,631	2,169	9,800	115,432	35,768	151,200
3-3 Intake	3,621	1,079	4,700	1,087	313	1,400	4,708	1,392	6,100
3-4 Headrace Tunne1	1,733	567	2,300	2,253	747	3,000	3,986	1,314	5,300
3-5 Penstock	1,698	502	2,200	7,364	2,836	10,200	9,062	3,338	12,400
3-6 Powerhouse & Switchyard	4,436	1,264	5,700	9,880	2,720	12,600	14,316	3,984	18,300
3-7 Tailrace Tunnel	1,878	622	2,500	1,203	397	1,600	3,081	1,019	4,100
3-8 Tailrace Outlet	610	190	300	390	011	- 500	1,000	300	1,300
Sub-total	123,836	38,464	162,300	29,968	9,332	39,300	153,804	47,796	201,600
4. Hydraulic Equipment	2,000	500	2,500	5,760	1,440	7,200	7,760	1,940	9,700
5. Electro-mechanical Equipment	10*700	3,400	14,100	27,700	8,700	36,400	38,400	12,100	50,500
6. Transmission Line	80	40	120	12,700	6,200	18,900	12,780	6,240	19,020
7. Total Cost (1+2+3+4+5+6)	141,911	43,409	185,320	103,206	32,694	135,900	245,117	76,103	321,220
8. Engineering & Administration	11,134	2,783	13,917	8,114	2,029	10,143	19,248	4,812	24,060
9. Physical Contingency	20,648	6,314	26,962	13,173	4,087	17,260	33,821	10,401	44,222
10. Interest during Construction	24,476	10,325	34,801	29,858	12,839	42,697	54,334	23,164	77,498
11. Grand Total (7+8+9+10)	198,169	62,831	261,000	154,351	51,649	206,000	352,520	114,480	467,000

- 51 -

-lst (1994) 3rd (1997) 4th (1998) lst (1995) 2nd (1996) Quantity Item Preparatory Works IL.S Sub-Diversion Tunnel _ = 300m Ex. Con. -Main Diversion Tunnel $L = 425^{m}$ Ex. Contraction of the local sectors of the local secto Coffer Dam Em; 60000 m³ ____ i.. Ex=900,000⁴⁷ Em=5350000¹¹ -Ex. Çon. Dam Drilling & Em. Grouting Drilling 8 Grouting Ex. <u>Con.</u> Ex=530000^m ÷..... Spillway Con=100,000 Con ĒX. -+-+-Ex=110,000m³ Con=15,000^{m3} Con. Intake Ex. Headrace Tunnel L= 653m Con. Ex. L= 510m Ex. Penstock Ex=73000m³ Ex. Powerhouse Con=16,000m3 Tailrace Tunnel L= 640m Ex. Ex=50,000m3 Outlet Switchyard Intake Gate Hydraulic Equipment Electromechanical Equipment Transmission Line Telecommunication


Fig. 13 Construction Schedule (Upper Kihansi)

- 52 -

Fig. 14 Construction Schedule (Lower Kihansi)

	Quantity				992)					199.					1994				(19					th (19				
Item	Quantry	JFN		IJIJ	I A S	ON	DJF	MΑ	м.	J	SO	N D	JFMA	MJ	JAS	OND	JFN		JJ	ASC			= M A	M J	JA	s o r	ND.	JF
Preparatory Works & Camp Facility	IL.S											:			· · ·	· · · · ·												
Access Road	L = 50 km	<u> </u>	+	+		++-				+	╞╌╪					·			:									
Dam	Ex=122,000 ^{m3} Con=54,500 ^{m3} Dr:1ling & Grouting								Ca	E E Ire of	x. River		Con Dril		a Grout	Ex.	of River		Coi Drill	n. ing &	Grou				P F	'lug		
Intake	Ex=18,000 ^{m³} Con=3,900 ^{m³}			and a second		-				Éx		Con				Con		· · · · · · · · · · · · · · · · · · ·										
Headrace Tunnel	L = 1, 259m								4	Adit E			Ex.			Con				_ = =	-		Con.		F	Plug		
Penstock Tunnel	L=2,936m									<u>Adi</u>	EX.			<u>+</u>		Ex.							Con.				ug	
Powerhouse	Ex;=162,000 ^{m³} Con;=20,900 ^{m³}						a na dana akara na Ana Andra da Andra	 I constraine a second se	A and a man of a first part was a first				E	X.	 E			Con.					rchite	ecture				
Tailrace Tunnel	L = 580m															Landard	Ex.					Con						
Outlet	Ex=7,000m ³ Con=1100m ³					· · · · · · · · · · · · · · · · · · ·										Ex.							Co	n.				C
Switchyard	IL.S										•			;					Ē	== × ===	C	in.		3				
Hydroutic Equipment																¢							lushir ntake	ng Ga Gate)	te) Dutlet	LIS Got	teel F e) i	'ens
Electromechanical Equipment							·. ·							+	<u>!</u> <u>!</u>	· · · · · · · · · · · · · · · · · · ·		No. 1			No.	2,3	· · · · ·				y Test	We
Transmission Line															· · ·	· · · · · · · · · · · · · · · · · · ·											est	
Telecommunication															· · · · · · · · · · · · · · · · · · ·	. : 											est	
Substation (IRINGA)														1							++			+-+			est	
											, , , , , , , , , , , , , , , , , , , 					************					 				•	-		

Chapter 5 ECONOMIC EVALUATION AND FINANCIAL ANALYSIS

(1) Economic Evaluation

As the method of the economic evaluation of this project, an alternative plant approach is employed to measure and evaluate economic costs of the proposed project and the alternative project.

The cost and benefit flow of the combined project on the Upper and Lower Kihansi Projects is presented in Table 4 and the results of evaluation of EIRR, B-C and B/C of the Upper and Lower Kihansi Projects and the combined project are as follows:

	EIRR	B – C	B/C
Upper Kihansi Project	11.26%	9,221 x 10 ³ US\$	1.07
Lower Kihansi Project	45.94%	129,236 x 10 ³ US\$	2.32
Combined Project	39.31%	146,347 x 10 ³ US\$	1.76

As indicated by indices of B-C and B/C of the combined project, the costs of construction and operation of the project is much smaller than those of an alternative thermal power plant which can provide equivalent service, and it can be also concluded that the project can continue to maintain its superiority as long as the discount rate which reflects the capital opportunity cost does not exceed 39.31%.

(2) Financial Analysis

For the financial analysis of the project, "Financial Evaluation from Viewpoint of Total Investment-Calculation

- 54 -