ATTACHMENT

1. Objective

The objective of the Project is to construct water supply systems for IKKs in Sulawesi Island in order to provide sufficient and safe water and improve the standard of living of the inhabitants.

2. Executing Agency

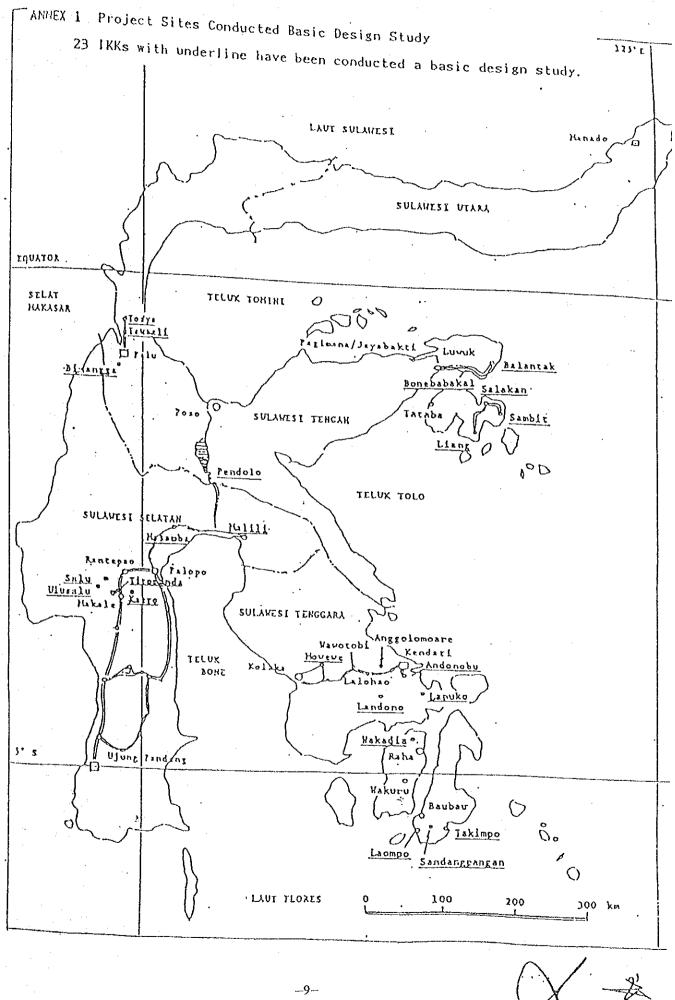
The Directorate General of Human Settlements of the Ministry of Public Works of the Government of Indonesia is responsible for the administration and implementation of the Project.

3. Project Sites

Both parties have confirmed to conduct a basic design study on 23 IKKs located in the Provinces of Central Sulawesi, Southeast Sulawesi and South Sulawesi as shown in ANNEX 1, with the schedule as shown in ANNEX 2.

However, the sites of the Project originaly requested by the Government of Indonesia were 61 IKKs. Therefore, Indonesian side has strongly requested succeeding Grant Aid Project on the rural/IKKs water supply in Sulawesi Island, and the team has promissed to convey the request to the Government of Japan.

4. Design Criteria of the Water Supply System


The design criteria of the water supply system are as shown in ANNEX 3.

5. Grant Aid Programme

- 1) The Indonesian side has understood the system of Japan's Grant Aid Programme and the principle for the use of Japanese consulting firm and contractor for the implementation of the Project.
- 2) The team has confirmed the necessity of the Project and the desire of the Government of Indonesia to realize the Project as soon as possible. Therefore, the team promised to the Indonesian side to convey the above desire to the Government of Japan.

3) The Government of Indonesia will take necessary measures as shown in ANNEX 4 on condition that the Grant Aid by the Government of Japan would be extended to the Project.

-8-

Mafor Thema				7	1990		•	
	May	June	July	August	September	October.	November	December
. Field Survey				•				
Discussion upon Inception	, ∇	l Inception Rep	Report	•	•			
Exchange of Minutes of Meeting	₹							
Field Survey & Data Collection								
Basic Design								
Plan and Design of Facilities								
Cost Estimates								
Preparation of Draft Final Report								
Submission of Draft Final Report Explanation and Discussion on the Result of Study				7	₽			
Field Survey								
Preparation of Final Report								
Submission of Final Reprot	-						<u>.</u>	⊲

ANNEX 2. OVERALL SCHEDULE FOR THE BASIC DESIGN STUDY

-10-

ANNEX 3 Design criteria of the water supply system of the Project

- 1. Population served is 50% 100% of the total population in each Project site.(*)
- 2. Supply level of public taps is 30 lcd.
- 3. Supply level of house connections is 90 lcd.
- 4. Ratio of population served by public taps is 20% 50%. (*)
- 5. Ratio of population served by house connections is 80% 50%.(*)
- 6. Water allocation for non-domestic demand is 5%.

7. Water allocation for leakage in the system and losses is 15%.

8. Factor for maximum day is 1.1.

9. Factor for peak hour is 1.5.

10.Population served by one public tap is 100.

11.Population served by one house connection is max 10.

12. Target year is 10 years future.

(*) : The ratio should be defined based on the socio-economic and technical condition on each Project site.

ANNEX 4 Necessary measures to be taken by the Government of Indonesia

- 1. To aquire possession of land and structures which are needed for the implementation of the Project
- 2 To secure water rights
- 3. To clear the sites of the Project when needed
- 4. To provide facilities for distribution of electricity leading up to the sites, if necessary
- 5. To ensure prompt unloading tax exemption and customs clearance of the Project goods at the port of disembarkation
- 6. To accord Japanese nationals whose services may be required in connection with the supply of the products and the services under the verified contracts such facilities as may be necessary for their entry into the Republic of Indonesia and stay therein for the performance of their work
- 7. To exempt Japanese nationals from customs duties, internal taxes and other fiscal levies which may be imposed in the Republic of Indonesia with respect to the supply of the products and services under the verified contracts
- 8. To maintain and use properly and effectively the facilities constructed under the Grant Aid
- 9. To bear all the expenses, other than those to be borne by the Grant Aid, necessary for the execution of the Project

-12-

MINUTES OF DISCUSSIONS ON THE PROJECT

FOR THE RURAL/IKKS WATER SUPPLY IN SULAWESI ISLAND

IN THE REPUBLIC OF INDONESIA

In response to the request of the Government of the Republic of Indonesia, the Government of Japan decided to conduct a basic design study on the Project for the Rural/IKKs Water Supply in Sulawesi Island (hereinafter referred to as "the Project") and entrusted the study to the Japan International Cooperation Agency (hereinafter referred to as "JICA"). JICA sent to the Republic of Indonesia the study team headed by Mr. Tsunao Usami, Director, Planning Division, Planning Department, Kanagawa Water Supply Authority, from 7th May to 20th June, 1990.

As a result of the study, JICA prepared a draft final report and dispatched a team headed by Mr. Tsunao Usami to explain and discuss it from 23rd September to 12th October, 1990.

Both parties had a series of discussions on the report and agreed to recommend to their respective governments that the major points of understanding reached between them, attached herewith, should be examined towards the realization of the Project.

Jakarta, 27th September, 1990

Mr. Tsunao Usami Team Leader Draft Final Report Explanation Team, JICA

Haccon.

Ir. Soenarjono Danoedjo Director General Directorate General of Human Settlements (Cipta Karya) Ministry of Public Works

-13-

Attachment

- 1. The Indonesian side principally agreed to the basic design proposed in the Draft Final Report.
- 2. Both parties confirmed that the basic design of the 22 project sites was made in the report. The Team explained that there is a possibility that the Government of Japan may not allocate the sufficient budget to implement the whole of 22 project sites due to the financial situation.
- 3. The Indonesian side requested that Pendolo in Central Sulawesi is to be reserved as a project site.
- 4. The Indonesian side has understood Japan's Grant Aid System and confirmed that the necessary measures will be taken by the Indonesian side as mentioned in the ANNEX on condition that the Grant Aid by the Government of Japan be extended to the project.
- 5. The Indonesian side will ensure the provision of the necessary budget for the project cost to be borne by the Government of Indonesia.
- 6. The Final Report (10 copies in English) will be submitted to the Indonesian side by the end of November, 1990.
- 7. This minutes of meeting is one as a whole not separable from the report.

(

ANNEX Undertakings of the Government of Indonesia

- 1. To acquire possession of land and structures which are needed for the implementation of the Project
- 2. To secure water rights
- 3. To clear the sites of the Project
- 4. To provide facilities for distribution of existing electricity leading up to the sites
- 5. To maintain the access road for construction of water supply facilities and for transportation of construction materials
- 6. To restore the pavement of the road where the pipes have been laid.
- 7. To ensure prompt unloading tax exemption and customs clearance of the Project goods at the port of disembarkation
- 8. To accord Japanese nationals whose services may be required in connection with the supply of the products and the services under the verified contracts such facilities as may be necessary for their entry into the Republic of Indonesia and stay therein for the performance of their works
- 9. To exempt Japanese nationals from customs duties, internal taxes and other fiscal levies which may be imposed in the Republic of Indonesia with respect to the supply of the products and services under the verified contracts
- 10. To prepare all site offices for the consultant and the contractor during the project implementation
- 11. To bear all the expenses, other than those to be borne by the Grant Aid, necessary for the execution of the Project

APPENDIX 5: Country Data and Design Data

5-1: Examination for Design Hourly Water Demand

5-2: Water Quality Data

5-3: Hydrogeology of Well Sites

5-4: Monthly average Rainfall

5-5: REsults of Hydraulic Calculation

5-6: Geological Maps

APPENDIX 5-1

Examination for Design Hourly Water Demand

Present Population (Regional data)

Item		Population in
Desa/Kel	Population	Service area
1. South Sulawesi		~
1-1 ULUSALU	(1990)	
Raite	806	658
Rea	654	334
Tangaratte	614	626
Pattan	589	481
Rabung	462	100
Sub total	3.125	2.199
1-2 SALU	(1989)	
Kalindunga	860	430
Sarre	871	436
Sp. Bungin	997	499
Nonongan	400	400
Sub total	3.128	1,765
1-3 KAERO	(1990)	
Turunan	683	546
Suwaya	714	572
Tuwamete	664	531
Bau	386	309
Pasang	392	314
Sub total	2.839	2.272
1-4 TIROMANDA	(1990)	
Awa	534	534
Lalikan Tarondon	774	619
Solo	524	419
Sub total	1,832	1.572

-16-

ltem	Population	Population in Service area
Desa/Kel		
1-5 MALILI	(1990)	
Raskap	1.748	1.748
Malili	3.002	3.002
Baruga	2.284	300
Sub total	7.034	5.050
1–6 MASAMBA	(1990)	
Bone	3,367	3,367
Kapuna	2.008	1,603
Bolebo	1.685	800
Kasimbong	2,611	2.611
Sub total	9.671	8.381
2. Central Sulawesi		
2-1 TOAYA	(1990)	
Тоауа	3.710	2.217
2-2 BINANGGA	(1989)	
Binangga	1.575	1,260
Padende	643	514
Sibedi	882	706
Baliase	628	502
Boya Boliase	332	266
Porame	1.015	812
Balane	784	627
Sub total	5,859	4,687
2-3 TAVAELI	(1989)	
Panau	2,732	1,309
Baiya	2.635	2,108
Lambara	2.046	1.072
Pantoloan	3.786	3.028
Sub total	11,199	7.517

-17-

ltem Desa/Kel	Population	Population i Service area
2-4 PENDOLO	(1989)	
Pendolo	2,168	2,168
2-5 BONE BOBAKAL	(1990)	
Bone Bobakal	466	466
Lomba	664	502
Sub total	1,130	968
2-6 SANBIUT	(1990)	•••••••••••••••••••••••••••••••••••••••
Sambiut	769	769
Abason	888	888
Tone	394	394
Sakay	433	433
Bolonan	365	365
Sobonan	256	256
Sub total	3,105	3.105
2-7 BLANTAK	(1990)	
Balantak	2,269	2,269
Mamping	459	459
Padang	132	132
Sub total	2,860	2.860
2-8 SALAKAN	(1990)	
Salakan	654	654
Baka	628	628
Bongganan	876	876
Sub total	2,158	2.158

--18--

		· · · · ·
	Population	Population in Service area
Desa/Ke1		
2-9 LIANG	(1990)	
Liang	863	863
Seleati	553	553
Bajo	601	601
Sub total	2.017	2.017
3. Southeast Sulawesi	· · · · · · · · · · · · · · · · · · ·	
3-1 LANDONO	(1990)	
Landono I	1.205	1,205
Tridana Mulia	1,789	1.789
Amotowo	641	0
Sub total	3.635	2.994
3-2 ANDUONOIIU	(1990)	
Anduonohu	3,845	3.460
3-3 NOWEWE	(1990)	
Nowewe I	1,469	1,469
Mowewe II	1,749	1,749
Sub total	3.218	3,218
3-4 WAKADIA	(1990)	
Wakadia	1,956	1.956
3-5 LAOMPO	(1990)	
Laompo	2,076	2.076
Busoa	1,115	937
Sub total	3.191	3,013
3-6 LAPUKO	(1990)	
Lapuko	2,367	2,300

-19-

· .

ltem Desa/Kel	Population	Population in Service area
3-7 SANDANGPANGAN	(1990)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	2.408	2,408
3-8 TAKIMPO	(1990)	••• ••• ••• ••• ••• ••• ••• ••• ••• ••
Bana Bungi	3,308	3.000
Lapanda	2,341	500
Takimpo	1,733	1,733
Sub total	7.382	5,233
Total	91,837	75.518

L

· . . .

				· .
<u>,</u>	desing popula-	dalry average	dairy maximum	hourly maximu
Project area	tion served in	water demand	water demand	water demand
	2000	(m'/day)	(m ² /day)	(m ³ /hr)
1. South Sulawesi				
1-1 ULUSALU				- ·
Ralte	692	52	57	7.1
Rea	350	26	29	3.6
Tangaratte	659	49	54	6.7
Pattan	505	38	41	5.1
Rabung	105	. 8	9	1.1
Sub total	2,311	173	190	23.5
1-2 SALU				
Kallndunga	455	34	37	4.7
Sarre	461	34	38	4.9
Sp. Bungin	527	39	43	5.5
Nonongan	422	31	34	4.3
Sub total	1.865	138	152	19.7
1-3 KAERO				
Turunan	574	43	47	4.7
Suwaya	601	45	49	4.9
Tuwamete	558	41	45	4.5
Bau	325	24	27	2.7
Pasang	330	24	27	2.7
Sub total	2,388	177	195	19.4
1-4 TIROMANDA			······	
Awa	561	42	45	5.8
Lalikan Tarondon	651	48	53	6.8
Solo	440	32	36	4.6
Sub total	1.652	122	134	17 3

Design hourly water demend

-21-

Project area	desing popula- tion served in 2000	dairy average water demand (m²/day)	dairy maximum water demand (m ³ /day)	hourly maximum water demand (m'/hr)
1-5 MALILI				
Raskap	2.205	162	178	17.2
Malili	3,787	279	307	29.7
Baruga	378	28	31	3.0
Sub total	6.370	469	516	50.0
1–6 NASAMBA	••••			
Bone	4.248	351	386	37.3
Kapuna	2.022	167	183	17.7
Bolebo	1,009	83	92	8.9
Kasimbong	3,293	272	299	28.9
Sub total	10.572	873	960	92.8
2. Central Sulawesi				
2-1 ТОАУА	3.026	228	251	25.5
2-2 BINANGGA				
Binangga	1.775	131	144	12.7
Padende	724	53	59	5.2
Sibedi	994	73	80	7.0
Baliase	707	52	57	5.0
Boya Bollase	374	27	30	2.6
Porama	1,144	84	93	8.2
Balane	882	65	71	6.2
Sub total	6.600	485	534	46.9
2-3 TAWAELI				
Panau	1.843	136	149	16.1
Balya	2.968	218	240	26.0
Lambara	1,511	111	122	13.2
Pantoloan	4,262	314	346	37.5
Sub total	10.584	779	857	92.8

--22--

Project area	desing popula- tion served in 2000	dairy average water demand (m²/day)	dalry maximum water demand (m ³ /day)	hourly maximu water demand (m ³ /hr)
2-4 PENDOLO			- · · · ·	
2-5 BONE BOBAKAL				
Bone Bobakal	561	48	47	5.9
Lomba	607	46	51	6.3
Sub total	1,168	89.	98	12.2
2-6 SAMBIUT				
Sambiut	928	70	77	8.0
Abason	1.072	82	88	9.2
Tone	476	36	40	4.2
Sakay	523	40	44	4.6
Bolonan	440	33	37	3.9
Sobonan	309	23	26	2.7
Sub total	3.748	284	312	32.6
2–7 BALANTAK				· · · · · · · · · · · · · · · · · · ·
Balantak	2.739	202	223	24.3
Mamping	554	41	45	4.9
Padang	159	12	13	1.4
Sub total	3.452	265	281	30.6
2-8 SALAKAN				
Salakan	789	60	66	6.5
Baka	758	58	63	6.2
Bongganan	1.058	80	89	8.7
Sub total	2,605	198	218	21.4
2-9 LIANG				
Liang	1,042	79	87	10.4
Seleati	668	51	56	6.7
Bajo	725	55	61	7.3
Sub total	2,435	185	204	24.5

Project area	desing popula- tion served in 2000	dairy average water demand (m³/day)	dairy maximum water demand (m³/day)	hourly maximu water demand (m ^v /hr)
3. Southeast Sulawesi				
3-1 LANDONO				
Landono I	1.693	126	138	15.2
Tridana Mulia	2.514	186	205	22.5
Sub total	4,207	312	343	37.7
3-2 ANDUONOHU	4,862	360	396	39.8
3-3 MOWEWE				
Mowewe I	2,476	183	201	18.2
Novewe II	2.948	217	239	21.6
Sub total	5,424	400	440	39.8
3-4 WAKADIA				
Wakadla	2,467	184	201	19.7
Industrial Park	2.000	148	163	16.0
Sub total	4,467	331	364	35.7
3-5 LAOMPO				
Laompo	2.652	197	217	23.2
Busoa	1,197	89	98	10.5
Sub total	3.849	286	315	33.7
3-6 LAPUKO	3.323	240	264	27.5
3-7 SANDANGPANGAN	3.076	230	253	31.6
3-8 TAKIMPO				
Bana Bungi	3.382	281	309	36.2
Lapanda	639	47	52	6.L
Takimpo	2,215	163	179	20.9
Sub total	6,686	491	540	63.2

-24--

APPENDIX 5-2

Water Quality Data

(Ragional data)

		•		•
Project	area	ULUSALU	SALU	KAERO
Water s	ource	Kondongan	Lemo	Salambu
Samplin	g data	14th May, 1990	16th May, 1990	12th May, 199
Weather		flne	fine	fine
temp of	sample (°C)	23	23.5	23
I	> Н	7.5	7.5	7.5
Turbidity	as kaoline	l.5	Nil	Ni I
Colon	acitive	0	0	0
bacillus	inactive			
н.,	no detection			
	ardness 2 、CaCO3)	_		
Alkalini	ty (mg/Q)	-974	-	- ⁻
Fe	(")	Ni I	N1 I	NII
Cr	(″)	"	0	0
Zn	(″)	-		-
Са	(″)	8	8	50.4
Мg	(″)	14.58	4.86	23.81
Мп	(″)	0	0	0
F	(″)	0.4	0.4	0.6
S 0 4	(")	0	0	0
Cℓ	(")	14.2	16.33	18.46
NH4	- N	NII	NII	NII
N O 3	- N	Nil	Nil	NI 1
N O 2	- N	NI 1	Nil	NTT
Re	mark			

Project	area	TIROMANDA	NALILI	MASAMBA
Water s	ource	Parino	Karebbe	
Samplin	g data	15th May, 1990	14th May. 1990	
Weather	.,	rain	rain	
temp of	sample (℃)	19	23	
I	> H	7.5	7.5	
Turbidity	as kaoline	0	0	
Colon	acitive	0	0	
	inactive			
	no detectio		0	
Total H (mg/)	ardness) 、CaCO3)	-	76.79	
Alkalini	ty (mg/⊈)	-	-	
Fe	(″)	Nil	NI 1	
Сr	(″)	0	0	
Zn	(″)			
Ca	(″)	20.8		1. A.
Мg	(″)	13.12	-	
M n	(″)	0	0	
F	(″)	0.4	0.4	
S O 4	(″)	0	0	
C≬	(″)	12.78	21.3	
NH4		1.0	Nil	
NO ₃	- N	NII	Nil	
N O 2		NII	Nil	
Ret	nark			

-26-

Project	z area	ΥΟΑΥΛ	BINANGGA	TAWAELI
Water s	ource	Kayadongo	Kurondo	Rubo
Samplin	ng data	26th May, 1990	29th May, 1990	28th May, 199(
Weather	.	rain	fine	fine
temp of	'sample (℃)	27	24	28
РН		7.2	7.5	7.2
Turbidity	as kaoline	0	0	0
Colon	acitive	0		0
bacillus	inactive		0	
	no detectio			
	ardness ? 、CaCO3)	110	170	110
Alkalini	ty (mg/Q)	144.19	177.67	92.26
Fe	(″)	0.2	Nil	0.1
C r	(")	0	0	0
Zn	.(//)	0.09	0.07	0.05
Са	(″)	_	—	<u> </u>
Mg	(″)		-	_
Mn	(")	0.05	0	0
F	(")	0.22	0.22	0.3
S O 4	(″)	0.023	0.023	0.047
C Q	(″)	1.5	0.5	4.0
N H ₄	- N	Nil	Nil	0.4
N O 3	- N	Nil	Nil	Nit
NO ₂	- N	Nil	Ni 1	Ni I
Ren	ark			······

-27--

Project area	PENDOLO	BONE BOBAKAL	SUNIUT
Water source	Lake Poso	Lomba	Moang
Sampling data	15th May, 1990	31th May, 1990	4th June, 1990
Weather	fine	fine	fine
temp of sample ((°C) 32	24	27
ΡH	8	7.2	7.5
Furbidity as kaoli	ine O	0	0
Colon acitive	9		
bacillus inactiv	ve O		
no detect	io	0	0
Total Hardness (mg/Q 、 CaCO₃	.) –	200	45
Alkalinity (mg/Q) –	141.63	144.52
Fe (″) Nil	NII	Nil
Cr (″)	0	• 0
Zn (") –	0.05	0.05
Ca (″) 8.8	-	_
Mg (″) 9.23		
M.n. (") 0	0	. 0
F (″) 0.4	0.37	0.28
S04 (″) 0	• 0.015	0.03
CQ (″) 17.4	1.0	2:5
N H 4 – N	Nil	NI1	Ni I
N O 3 – N	Nil	Nil	NII
N O 2 – N	NII	NII	MET
Remark			·····

-28-

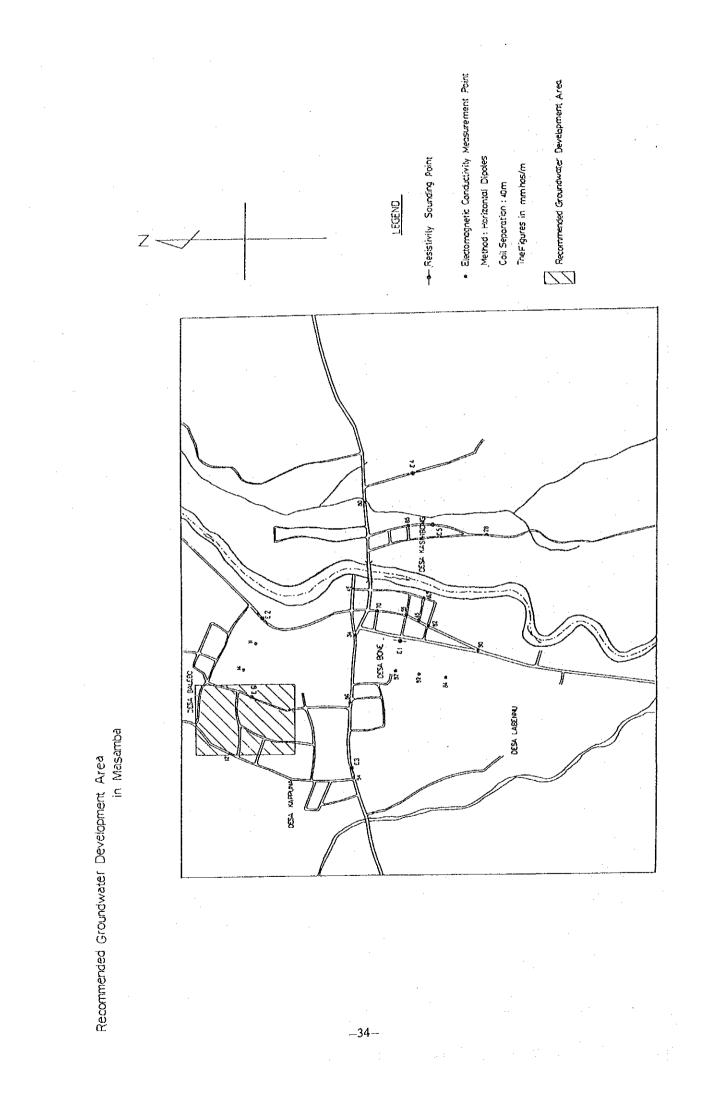
Project area	BALA	NTAK SAL	AKAN	LIANG
Water source	Di Ma	tana		Koilo
Sampling data	lst Jun	c, 1990	5th	June, 1990
Weather	ra	in		fine
temp of sample	(°C) 2	5		26
РН		7.0		7.5
Turbidity as kao	line	0		L
Colon aciti	ve			······
bacillus inact	ive			0
no dete	ctio C)		
Total Hardness (mg/Q 、 CaC		5		125
Alkalinity (mg/	Q) 21	7.60		98.78
Fe (") N	i 1		Nil
Cr (″)	0		0
Zn (")	0.05		0.06
Ca (") -			-
Mg (") –	-		
Mn (")	0		0
F (")	0.33		0.13
SO4 (")	0.013		0.013
CQ (")	2.50		2.50
N H 4 – N	N	11		Nil
N O 3 – N	N	11		NEI
N O 2 – N	N	i 1		Mil
Remark				

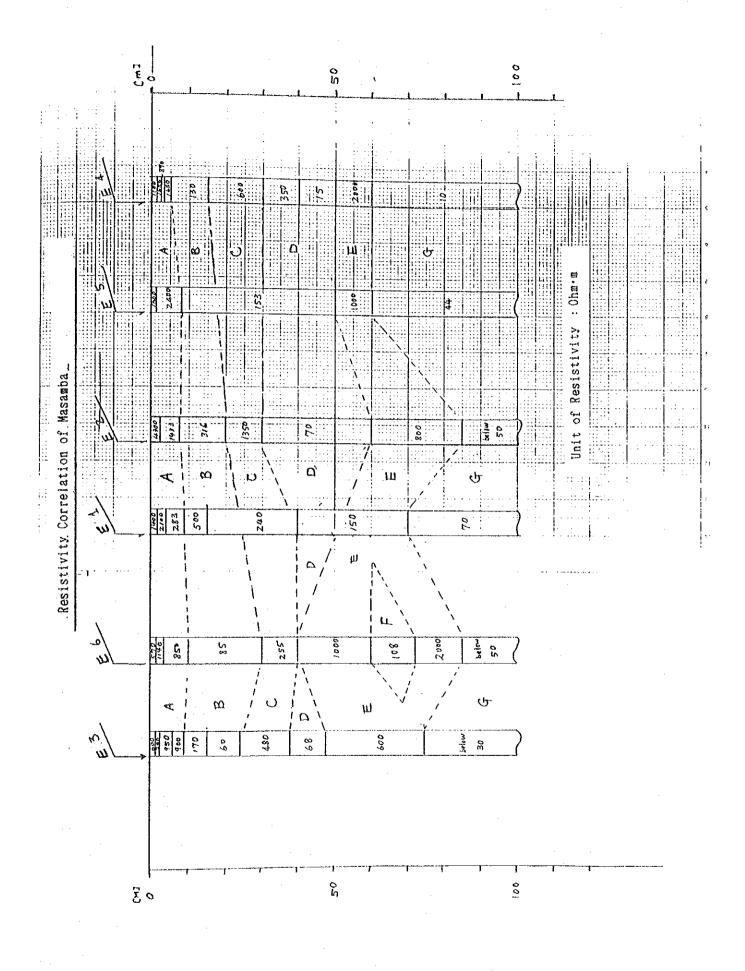
Project	area	LANDONO	ANDUONOHU	MOWEWE
Water s	ource	······	Natanggonawa	Molloka
Samplin	g data		25th June, 1990	28th June, 1990
Weather			fine	fine
temp of	sample (°C)		27	25
I	> H		7.5	6.3
Turbidity	as kaoline		1	1
Colon	acitive		0	О
	inactive			
	no detectio			
Total H (mg/(ardness } 、 CaCO₃)		299	252
Alkalini	ty (mg/Q)			-
Fe	(")		Ni I	0.3
Сr	(″)		-	_
Zn	(″)		. 0	0
Са	(″)		-	_
Мg	(″)		_	-
Мп	(″)		0	_ ·
F	(″)		0	0
S O 4	(//)		0	0
C⊉	(″)		16	0
NH₄	- N		NII	NII
NO3	- N		NII	: Ni I
NO ₂	- N		Ní I	MI I
Rei	mark		TDS: 360	TDS: 240

-30-

Project	area	AVKADIV	LAOMPO	LAPUKO
Water s	source	Rava	Kalangona	Lunggayropa
Samplin	ng data	1st June, 1990	6th June, 1990	26th May. 1990
Weather	•	rain	fine	rain
temp of	'sample (℃)	26.5	25	25
	P H	7.2	7.5	7
Turbidity	as kaoline	0	1.5	0
Colon	acitive			0
bacillus	inactive	0	0	
	no detectio			••••••
	ardness ? 、CaCO3)	299	286	288
Alkalini	ty (mg/Q)		· _	<u> </u>
Fе	(″)	Nil	Nil	0.2
Сr	(// .)	-	0	0
Zn	(″)	0	0	0
Са	(_//)	-	era.	-
Мg	(″)	-	-	
M n	(″)	-	-	-
F	(″)	0	0	. 0
S O 4	(″)	0	6	33
Cl	(″)	21	12	46
NH4	- N	0.3	Nil	Nil
N O 3	- N	N11	Nil	NII
NO 2	- N	NII	Nil	MIL
Ren	ark .	TDS : 320	TDS : 380	TDS : 500

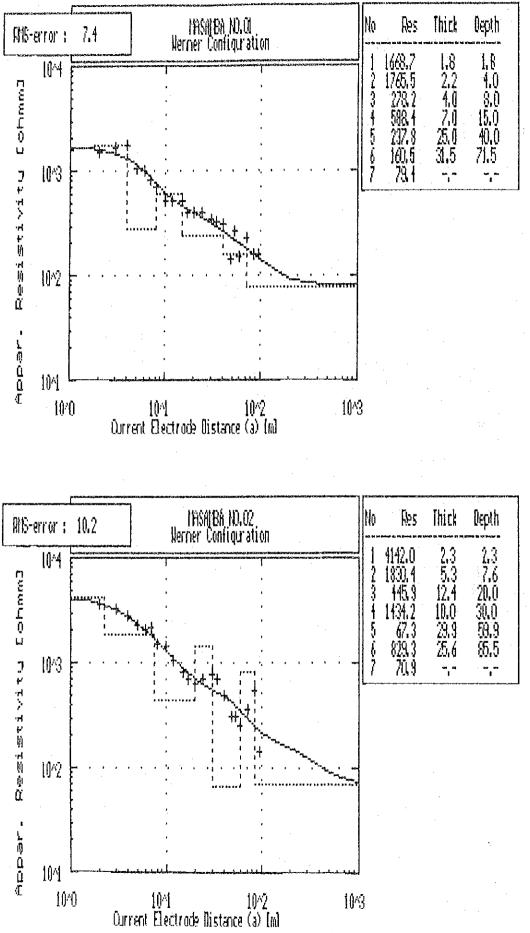
Project	t area	SANDANGPANGAN	TAKIMPO	
Water s	source	Rano	Labeonpangule	
Samplin	ng data	4th June, 1990	5th June, 1990	
Weather	1	rain	fine	
temp of	°sample (℃)	26	25	
]	РН	7	8.5	
Turbidity	⁄as kaoline	0	0	
Colon	acitive			
bacillus	inactive	0	0	
	no detectio		:	
	lardness Ø 、CaCO₃)	287	291	
Alkalini	ty (mg/ℚ)	-		
Fe	(″)	Nit	NII	
C r	(")		· — .	
Zn	(″)	0	0	
Са	(″)	— .	—	
Mg	(")			
Mn	(″)	—	—	
F	(″)	0	0	
S O 4	(")	3	11	
C Ø	(″)	16	25	
NH4	. – N	Nil	0.5	
NO 3	- N	Ni 1	0.1	
NO 2	. – N	Ni 1	Nil	· · · · · · · · · · · · · · · · · · ·
Re	mark	TDS : 360	TDS : 240	

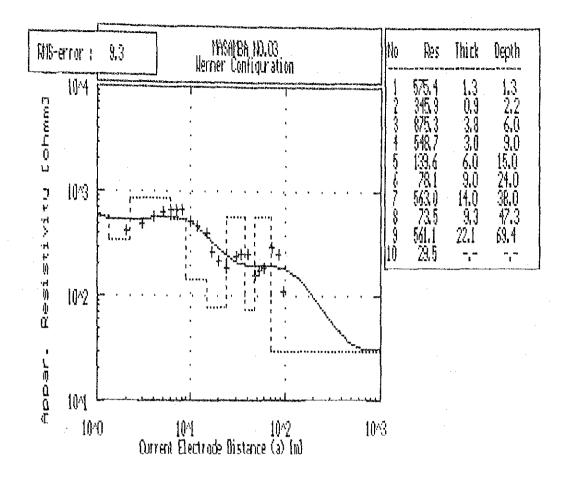

APPENDIX 5-3

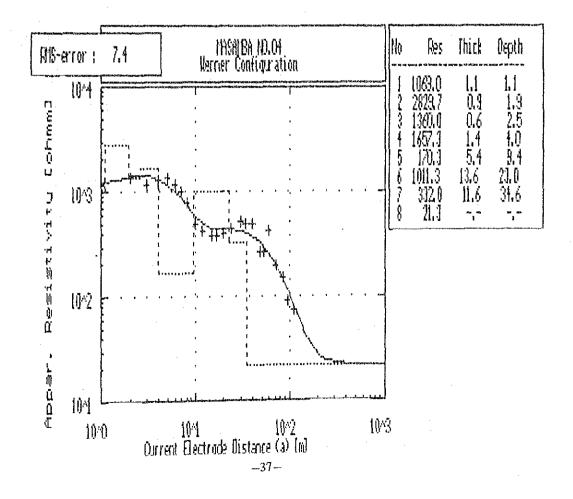

Hydrogeology of Well Sites

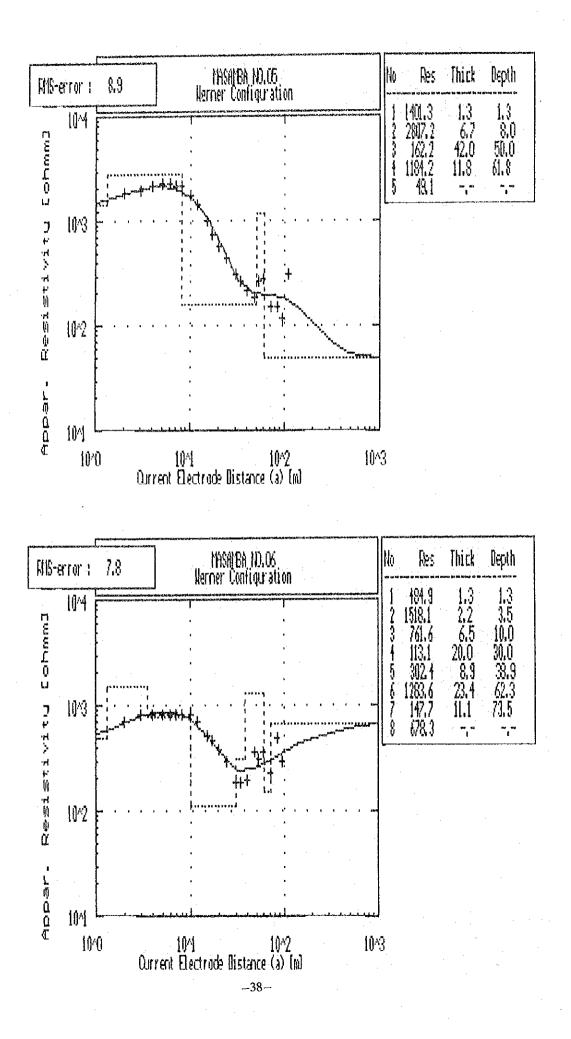
Interpretation Results of the Resistivity Sounding

Masamba

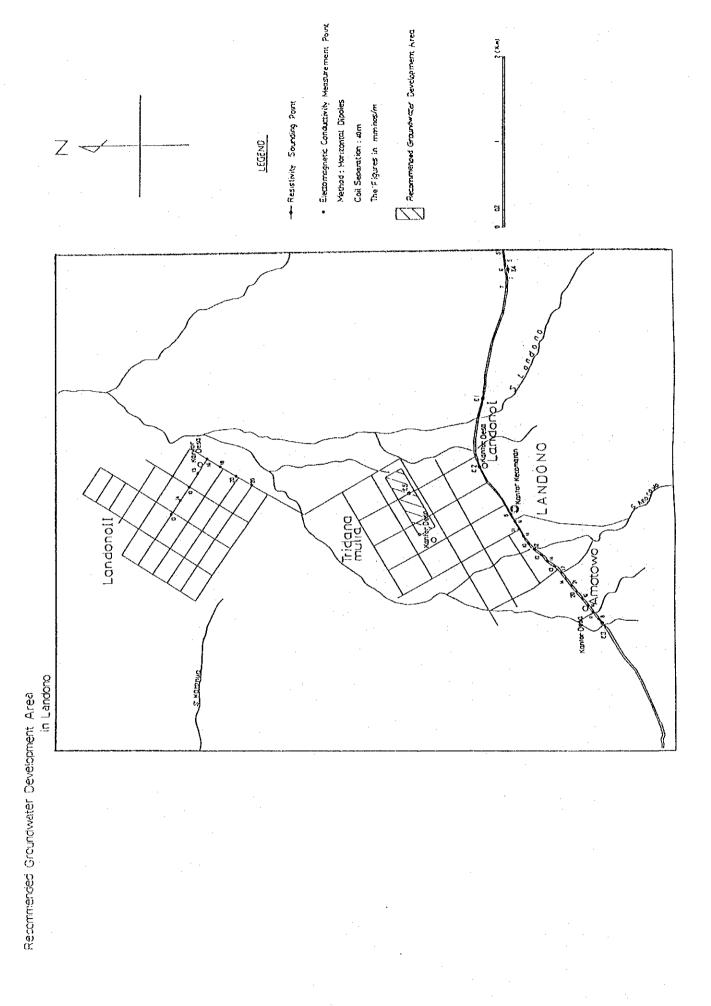

Unit	Specific Resistivity [Ω-m]	Depth [m]	Lithology
A	300 - 2000 (approximation)	5 - 10	• To be composed of fluvial sand and gravel in wet condition.
В	60 - 300	10 - 30	• To be composed of pebble to sandy silt in saturated.
С	240 - 1350	15 - 40	 To be composed of gravel in saturated.
D	15 - 153	30 - 60	• To be composed of clayey material.
E	600 - 2000	40 - 85	 To be composed of boulder or volcanic rocks of the Masamba Volcanic Sequence
F	108	60 - 70	 To be composed of intercalary sand to silt, or intercalary tuff breccia of the Masamba Volcanic Sequence
G	10 - 7	below 60 - 85	 To be composed of clay to silt, or tuff breccia of the Masamba Volcanic Sequence.



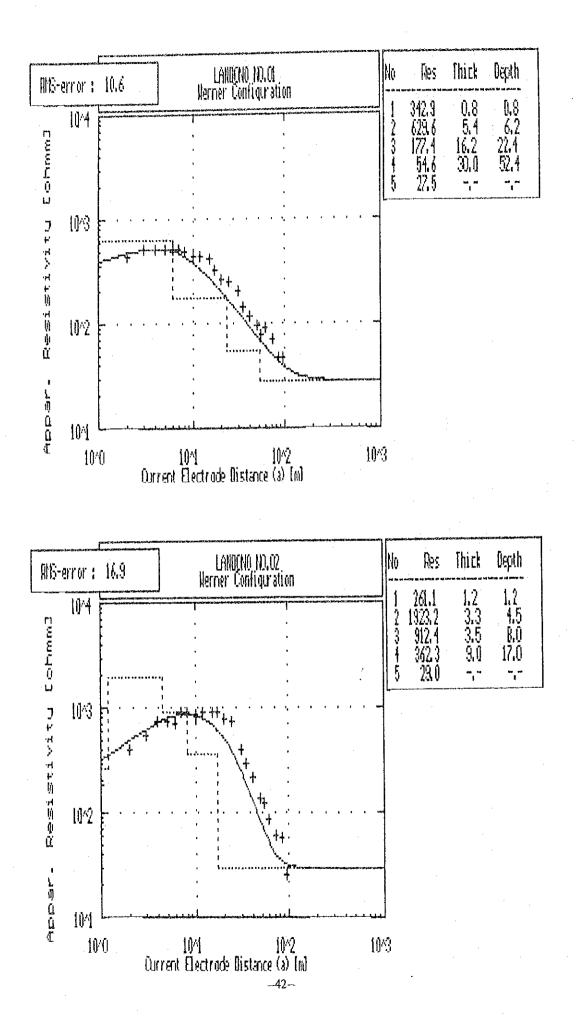

-35-

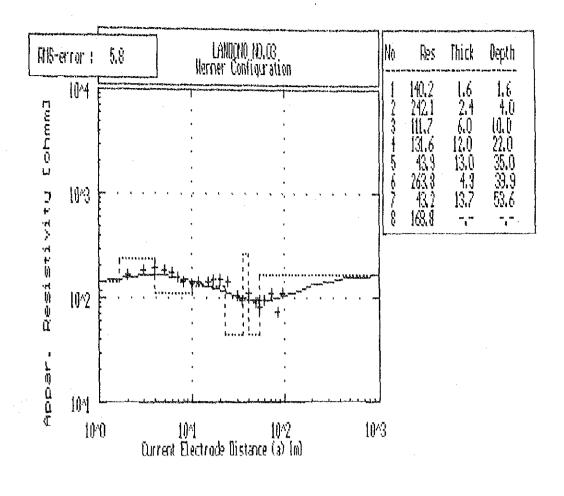

55-

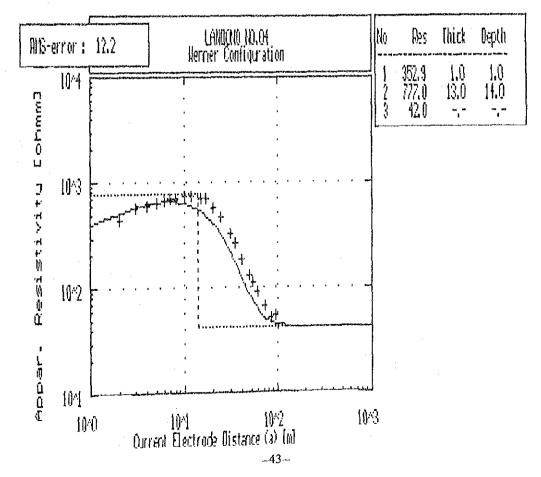
-36-

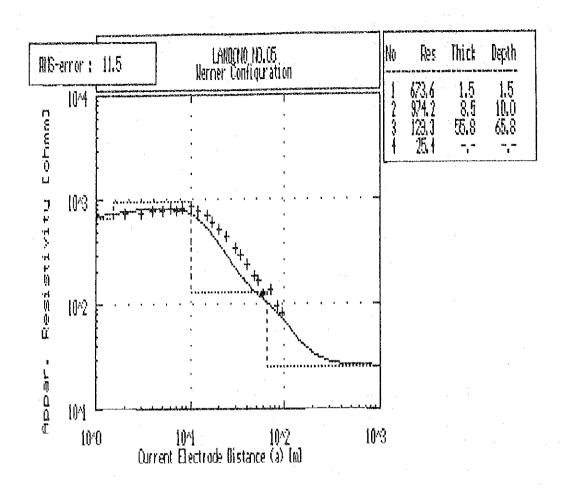


Interpretation Results of the Resistivity Sounding

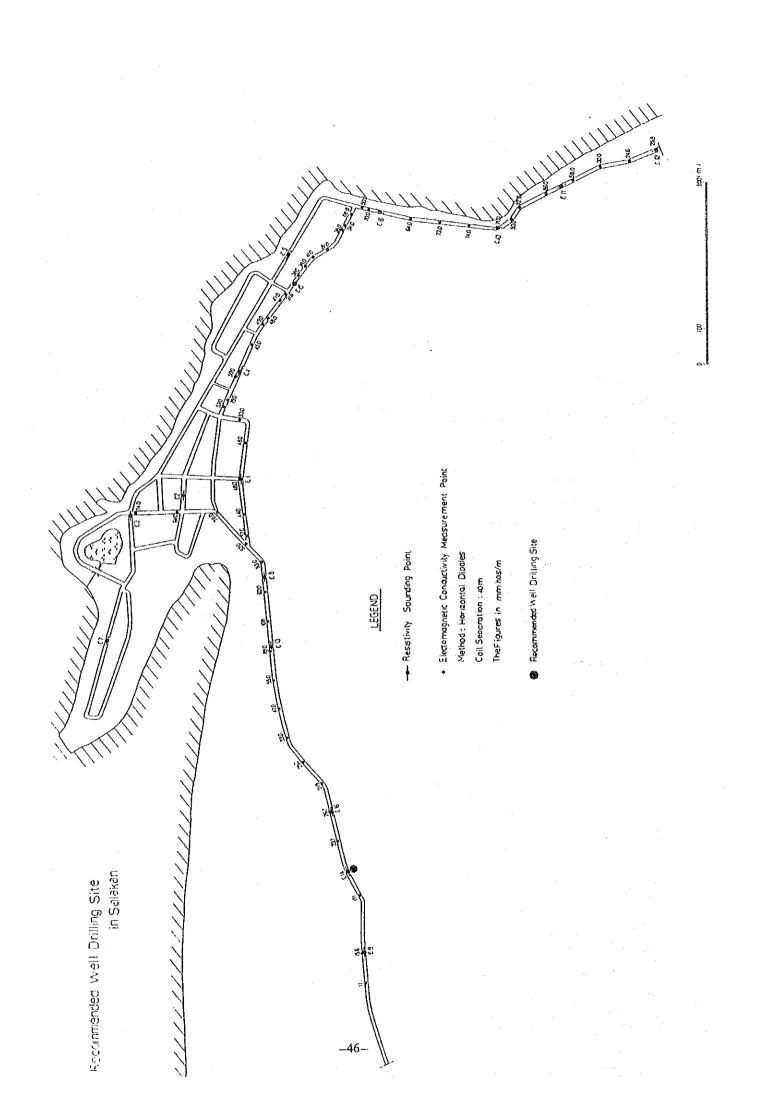

Landono

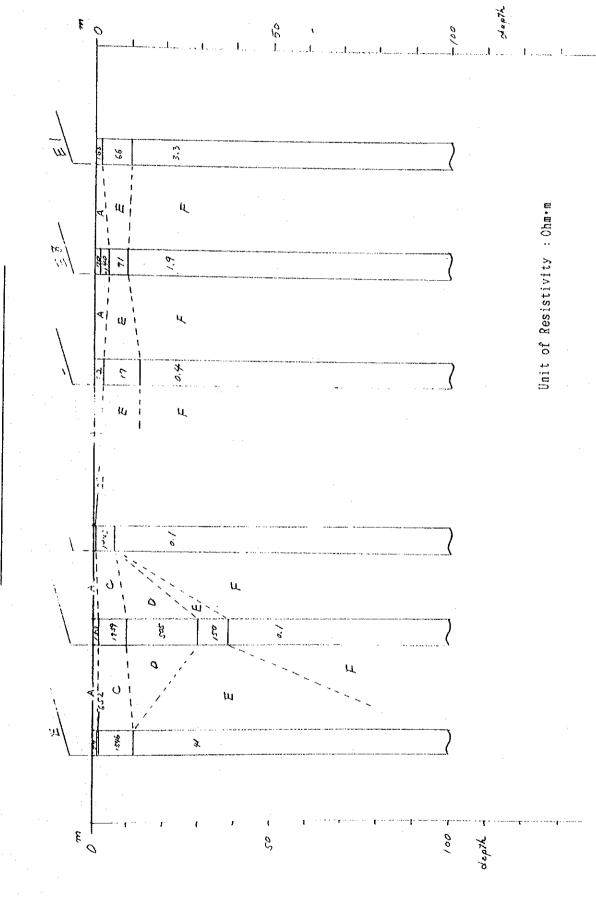

Unit	Specific Resistivity [Ω-m]	Depth [m]	Lithology
A	300 - 900 (approximation)	10 - 17	• To be composed mainly of fluvial gravel and sand in wet to saturated condition.
В	98 - 110	10 - 70	 To be maid up of pebble to sand in saturated condition. developing thick northward.
С	26 - 50	below 10 - 20	 To be composed of silt and silty sand with intercalary sand and pebble beds.
D	160	below 44	 To be composed of gravel with intercalary silt and sand. developing in the western part.




_ 40--

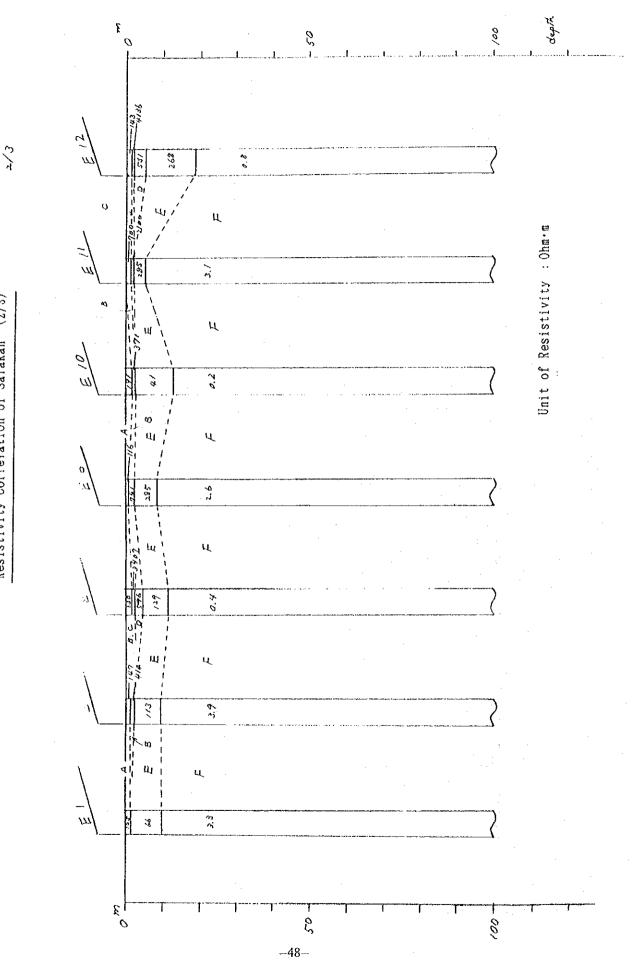
			к Ф	0)	-20			-20				-100						
	KI A							50).						
			- A	i I I: .: I [\]										п•вно:				
			362	347	80 / 28			33						Resistivity				
		L		**** * / / /				3						of Resis		-	· · .	
ou			R S		20	* -				1 1 1 1 1 1 1				Unit"	4			
f Lando	(u) (u)		548 .			· · ·	0				26					[:	
Correlation of Landono		-	<		B				0					• •			· : •	
ii i	in.		300	880				belser 45				{						
Resistivity																	1	
							C				•			· · ·			:	
										۵								
	111 10./	· · · ·	105 105	01.	<u> </u> 5	:	4 2			00/		$\left\langle \right\rangle$						
						: . (-					-			• • •	- - -
			•	ļ														
		E O				-	-1	20	1			 	1			1		-

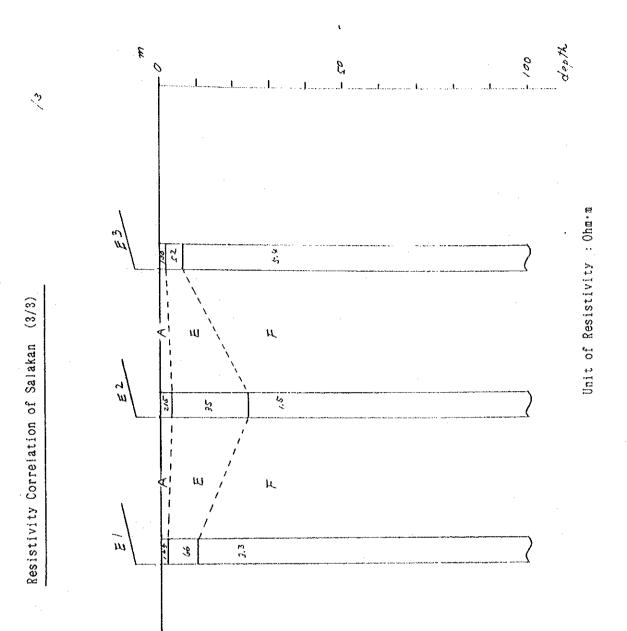


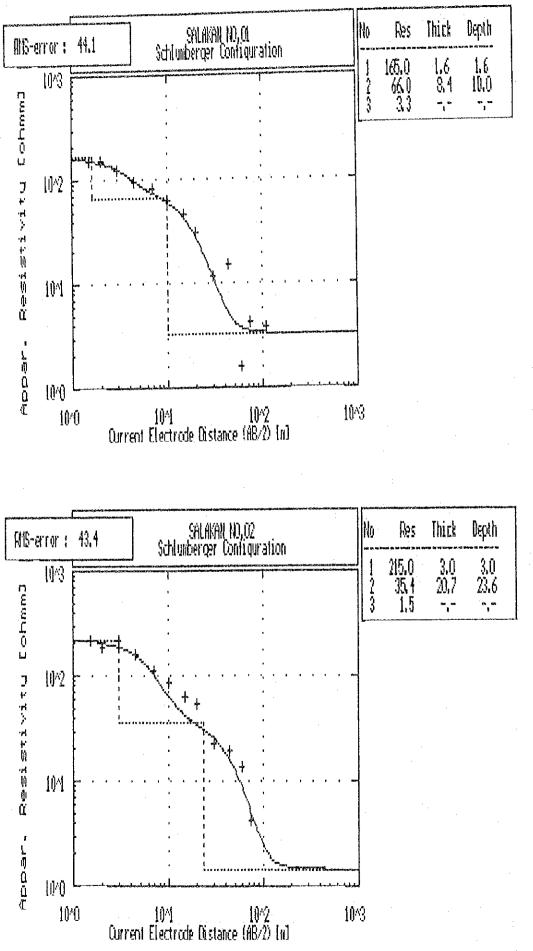

_44--

Interpretation Results of the Resistivity Sounding

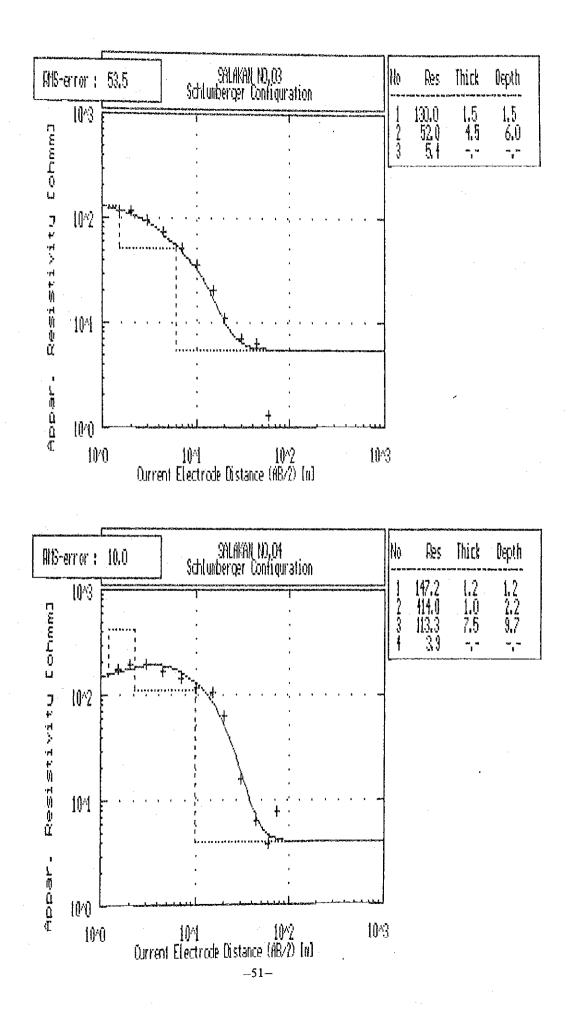
Salakan

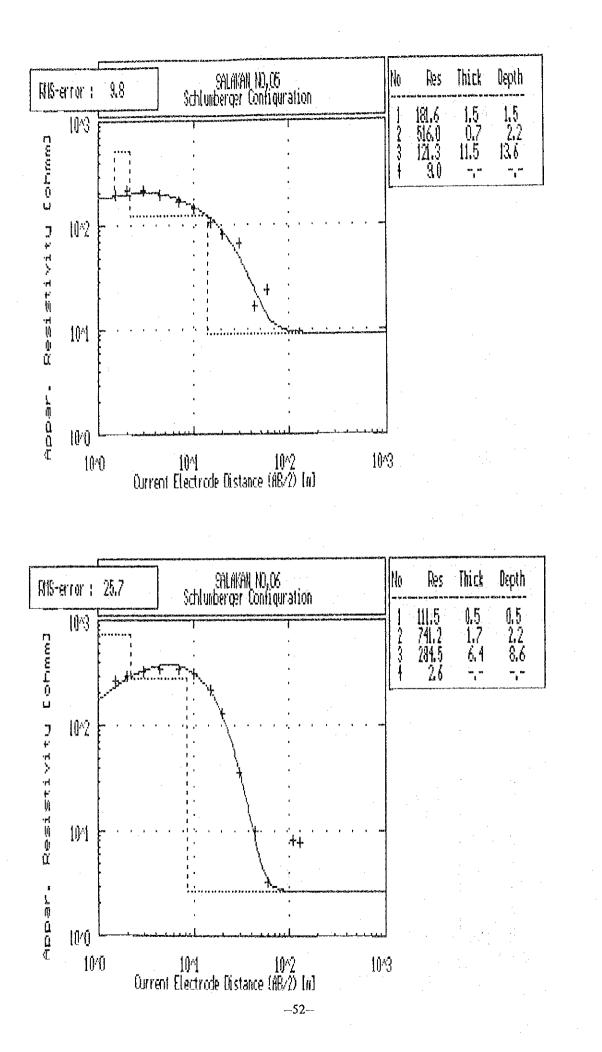

Unit	Specific Resistivity [Ω-m]	Thickness [m]	Lithology
A	20 - 300	0 - 2	top soil or alluvial deposits
B	300 - 700	0 - 3	weathered limestone (chalk)
С	1500 - 3500	0 - 10	limestone (chalk) in wet condition
D	500 - 600	0 - 20	limestone (chalk) in fresh water
E	10 - 300	0 - 20	limestone (chalk) in brackish water
F	0 - 6	60	limestone (chalk) in salt water

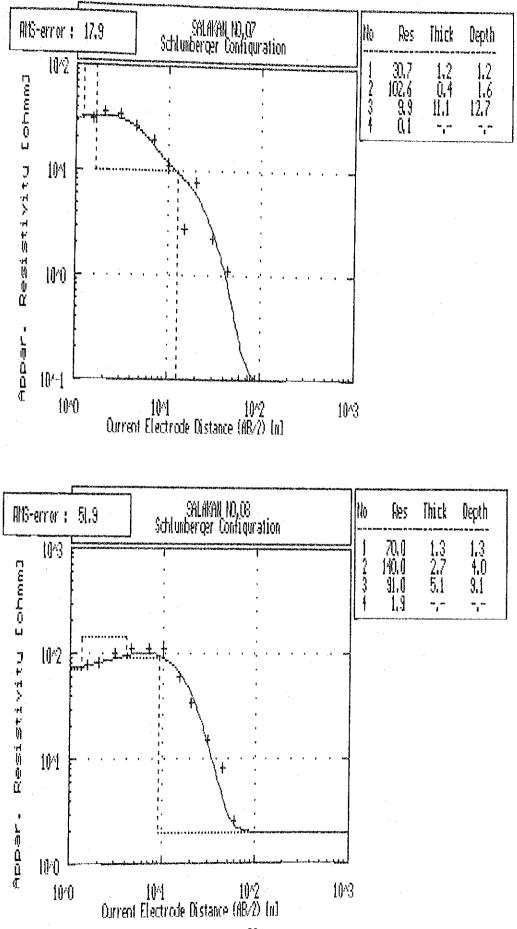


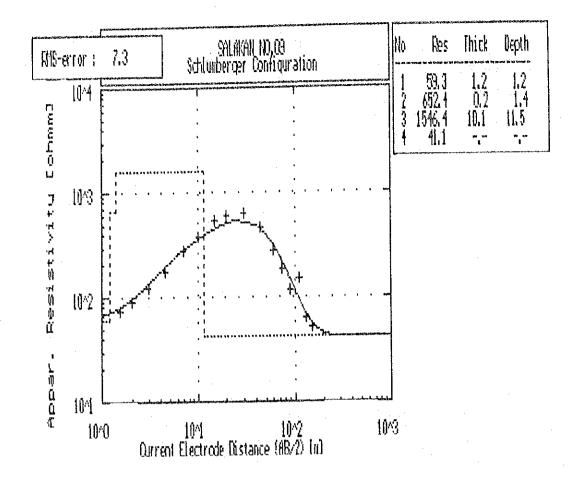

Resistivity Correlation of Salakan (1/3)

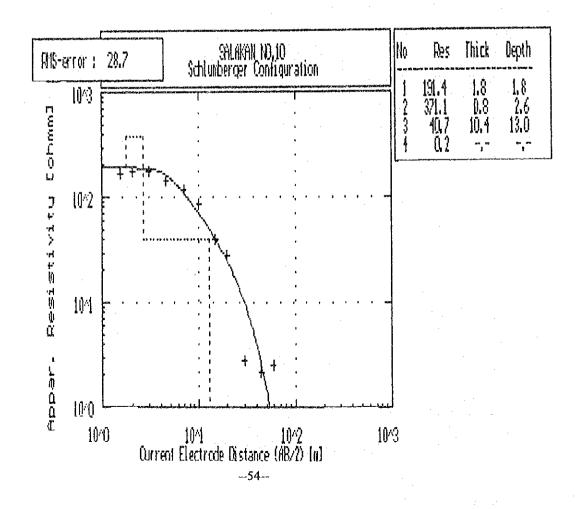
--47–

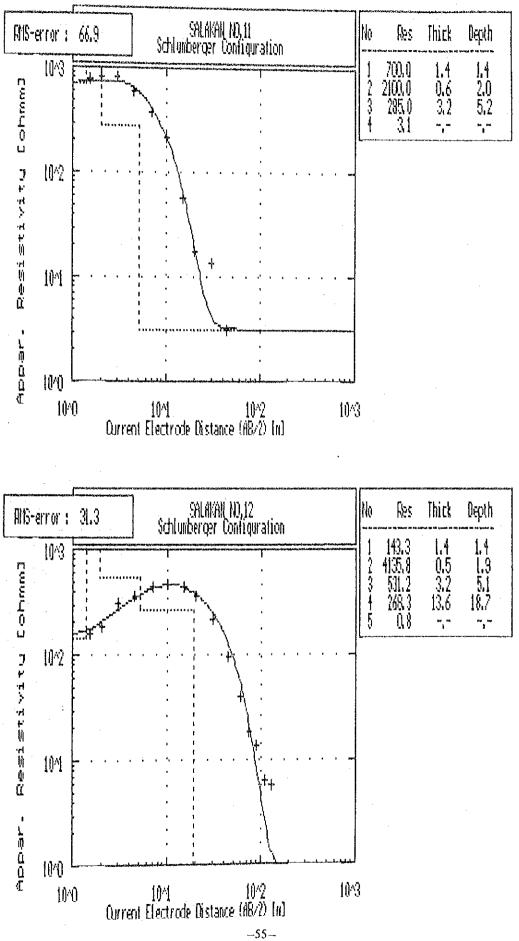


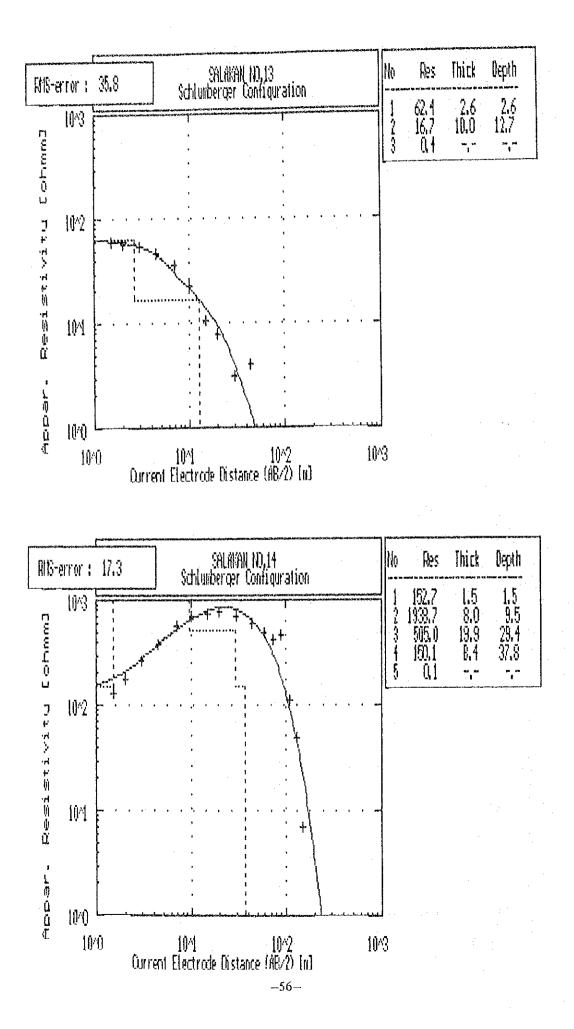

Resistivity Correlation of Salakan (2/3)

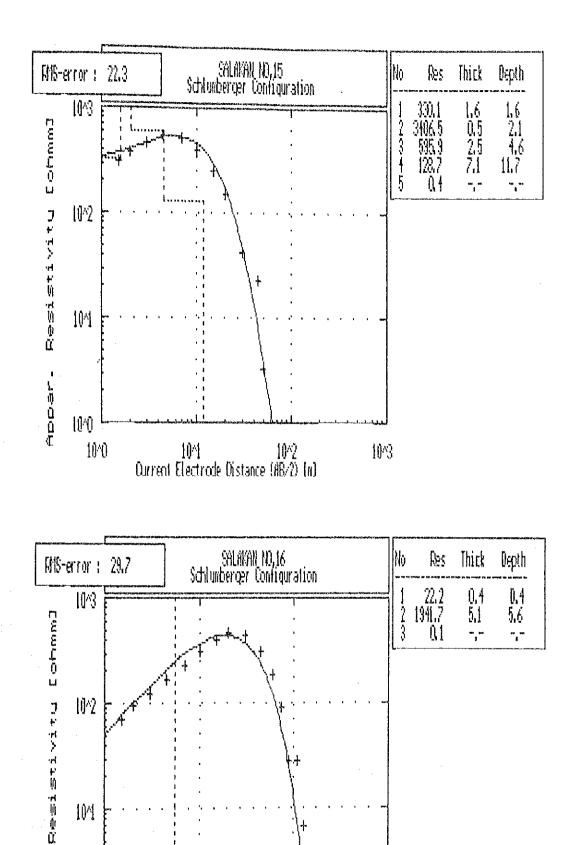



-50-



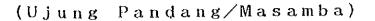


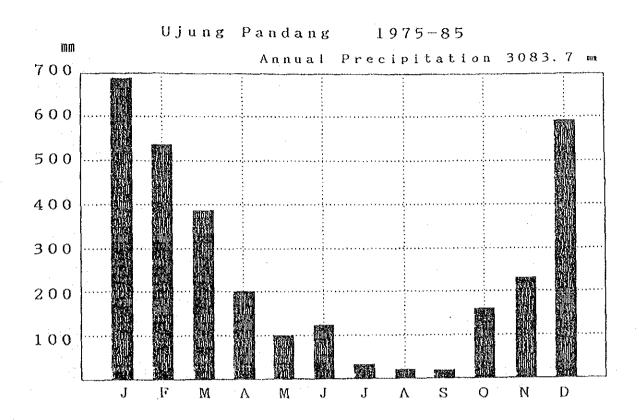


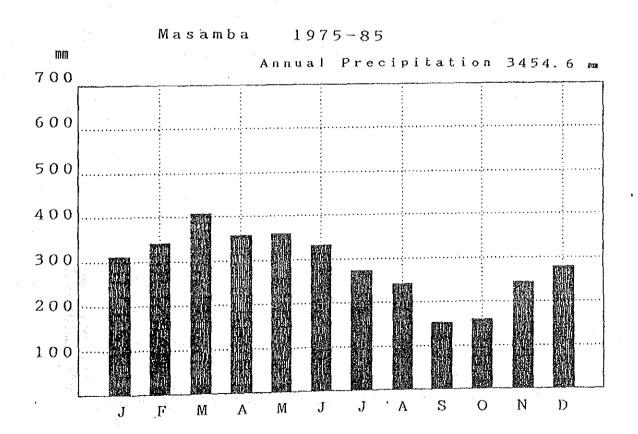

-53--

, 1000ľ

1040

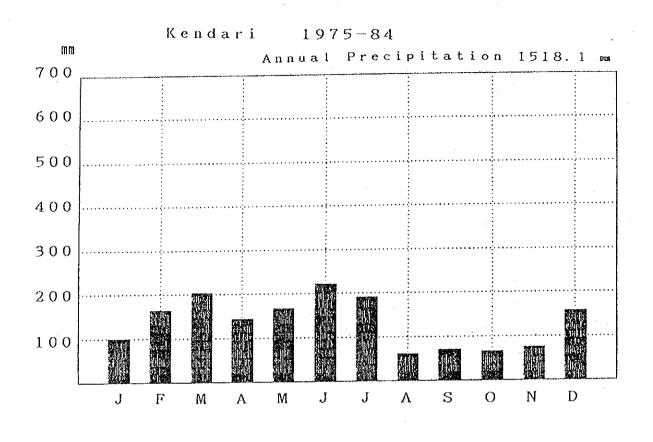

10-0

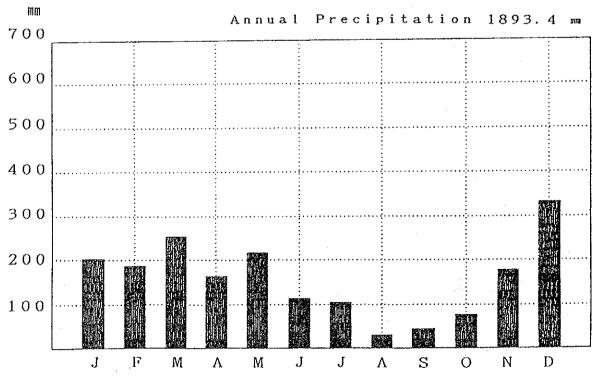

10/1 10/2 Ourrent Electrode Distance (AB/2) (n) —57—

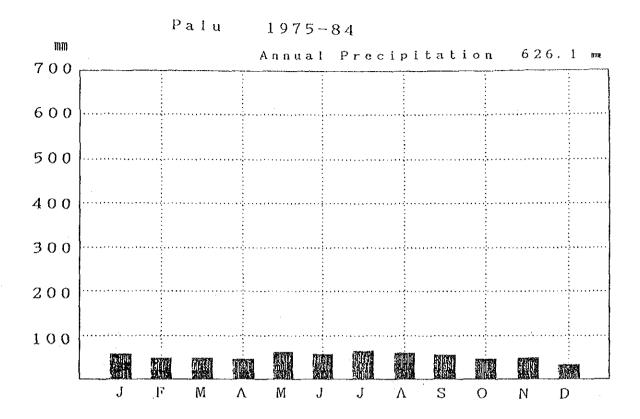

阏

APPENDIX 5-4

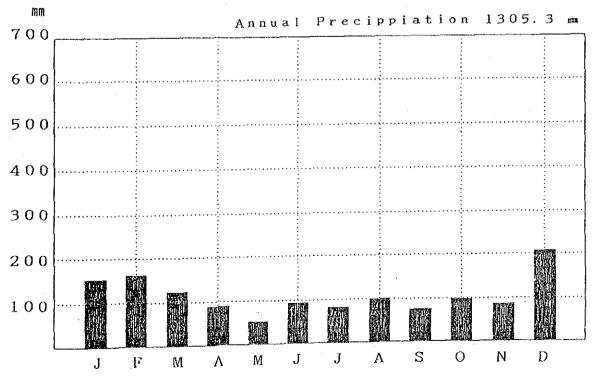
Monthly Average Rainfall

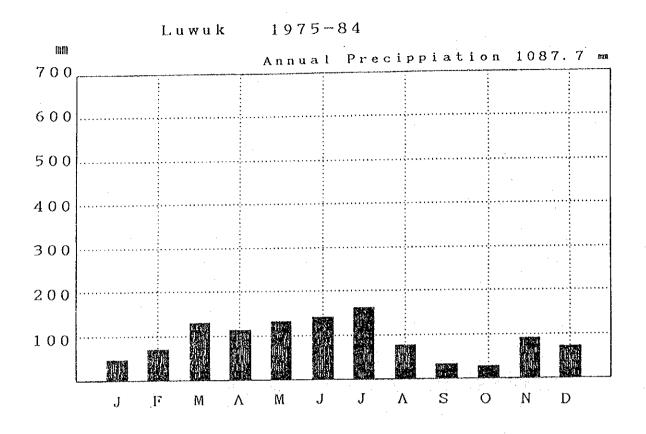



-58-


(Kendari/Buton)

Buton (Baubau)


1975-84



(Palu/Tawaeli)

Tawaeli 1975-80

(Luwuk)

-61-

APPENDIX 5-5

Results of Hydraulic Calculation

ភ្ ក
þ
ĝ
<u>с</u>
AU
Ő
f

	8	0	Q	m.	L	U	I		5	×		er aŭ
(NLUSALU)	BRANCH	GL	LENGTH	Kind of	Kind of Diamet-	Quanti-	Veloci-	Gradi-	Friction	Hydraulic Water	r Hvdraulic	Static
LOCATION	ġ	(m)	(m)	Pipe		ty(1/s)	ty(m/s)	ent(%)	Loss(m)	1.5	+	Head(m)
	0	500.0						:		500.0	 	
RESERVOIR	26(IN)	355.5	1344.8	GSP	51	2.2	1.09	27.2	36.6		107.9	144.5
	26(OUT)	353.5										
										353.5		
	29	348.4	122.3	GSP	102	6.5	0.8	6.9	0.8	352.7	4.3	5.1
PRESSURE	45 (IN)	298.3	731.3	с С С	76	6.5	1.45	29	21.2	331.5	(m	55.2
BREAKING	45 (OUT)	298.3			-					298.3		
	65	246.5	1182.4	GSP	102	6.2	0.76	6.3	7.4	290.9	44.4	51.8
	72	242.4	771.2	PVC	81.4	4.8	0.93	11.8	9.1	281.8		55.9
	73	241.2	134.1	PVC	57	4.8	1.9	67.1	σ	272.8		57.1
	74	238.7	175.9	PVC	57		1.9	67.1	11.8	261.0	22	59.6
	75	238.1	38.0	PVC	57	4.8	1.9	67.1	2.5	258.5	20	60.2
[4+700	236.1	200.0	PVC	57	2.9	1.15	26.4	5.3	253.2	17.1	62.2
	77	230.6	249.1	PVC	57	2.0	0.79	13.3	3.3	249.9	19.3	67.7
											-	
											-	
		-										
			-									

-62-

ON-5
CONDITI
AULIC (
HYDF

ปอี	BRANCH GI	LENGTH Kind of Diamet-Quanti		Veloci-	Gradi-	Friction	Hvdraulic Water	r Hvdrautic	Static
		e er(mm)	1/s) ty		ent(%)	Loss(m)	1 ന		Head(m)
500.0	500.0						500.0	0	
382.2 771.1	382.2 771.1	GSP 38 1.8	8.	1.6	78.8	60.8	439.2	2 57.0	117.8
380.2	380.2								
							380.2	2	
335.7 446.8 G	446.8	GSP 76 5	5.4	1.2	20.6	9.2	371.0	0 35.3	44.5
333.2 513.0 F	513.0	PVC 57 1	1.3	0.52	9	3.1	367.9	9 34.7	47.0
357.2 809.1 F	.2 809.1	PVC 57 1	ب 1.	0.44	44	3.6	364.3	3 7.1	23.0
		76					371.0	0	
321.6 1356.5 F	1356.5	PVC 81.4 4	4.1	0.79	8.8	11.9	359.1	1 37.5	11.6
315.1 1231.8 P	1231.8	PVC 57 2	2.7	1.07	23.2	28.6	330.5	5 15.4	65.1
315.8 725.6 P	725.6	PVC 57 1	1.2	0.48	5.2	3.8	326.7	7 10.9	64.4
							· · · · · · · · · · · · · · · · · · ·		
						•••	-		

O BFANCH GL LENGTH Kind of Diamet Quanti Veloci- Gradi- Friction ION No. (m) (A	B	С С	0	ш	LL	U	H		~ >	×	ألغز	1
LOCATION No. (m) (m) Pipe ler(mm) ty(l/s) ler(%) loss(m) Leo INTAKE 0 500.0 500.0 590.0 23 0.51 4.2 7.8 RESERVOIR 30(10) 460.8 7 5 0.51 4.2 7.8 30(0UT) 460.8 730.8 PVC 99.4 4.6 0.6 4.1 3 30(0UT) 460.8 730.8 PVC 99.4 4.6 0.6 4.1 3 10 43 1134.7 CSP 165 4.4 0.3 2 4 10 48 78.8 PVC 99.4 4.6 0.6 4.1 3 3 10 78.8 PVC 91.4 2.4 2.8 2.4 10 1134.7 CSP 115.7 0.4 4.2 2.8 10 12 420.5 1182.9 PVC 35.2 0.3 2.4 <	57		BRANCH	GL	LENGTH	Kind of	Diamet-	Quanti-	Veloci-	Gradi-	Friction	Hydraulic Water Hydraulic	r Hydraulic	Static
INTAKE 0 500.0 452.8 1863.0 CSP 7.6 2.3 0.51 4.2 7.8 RESERVOIR 30(UT) 460.8 1863.0 CSP 7.6 2.3 0.51 4.2 7.8 30(OUT) 460.8 1134.7 CSP 157 5.4 0.28 0.6 0.7 40 430.1 1134.7 CSP 157 5.4 0.28 0.6 0.7 58 416.2 1134.7 CSP 3.8 0.49 2.9 2.4 68 416.2 1195.7 PVC 89.4 4.6 0.6 4.1 3 7<76 89.9 420.5 PVC 89.4 0.31 2.4 2.8 7<7 89 416.2 700 3.5 0.31 2.4 2.8 89 416.2 78 90 0.31 2.4 2.8 2.4 89 416.7 1132.0 PVC 35.2 0.31 <th>58</th> <th>LOCATION</th> <th>No.</th> <th>(m)</th> <th>(m)</th> <th>Pipe</th> <th></th> <th>ty(I/s)</th> <th></th> <th>ent(%)]</th> <th>Loss(m)</th> <th>Level(m)</th> <th>) Head(m)</th> <th>Head(m)</th>	58	LOCATION	No.	(m)	(m)	Pipe		ty(I/s)		ent(%)]	Loss(m)	Level(m)) Head(m)	Head(m)
RESERVOIR 30(1N) 462.8 1863.0 GSP 76 2.3 0.51 4.2 7.8 30(OUT) 460.8 1134.7 GSP 157 5.4 0.28 0.6 0.7 30(OUT) 460.8 730.8 PVC 99.4 3.8 0.65 3.1 30(OUT) 460.8 730.8 PVC 99.4 3.8 0.6 0.7 58 429.0 730.8 PVC 99.4 3.8 0.47 3.3 3.6 76 429.2 7182.9 PVC 57 0.31 2.4 3.2 89 420.5 1182.9 PVC 55.7 0.31 2.4 2.8 89 420.5 1182.9 PVC 35.2 0.31 4.2 2.8 89 439.2 FVC 35.2 0.31 4.2 2.4 81 92 418.7 7.8 0.31 4.2 2.1 93 93.6 1	ດ ທີ	INTAKE	0	500.0								500.0	0	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.9	RESERVOIR	30(IN)	462.8	1863.0	g	76		0.51	4.2	7.8	492.2	2 29.4	37.2
30(OUT) 460.8 1134.7 GSP 157 5.4 0.28 0.6 0.7 40 430.1 1134.7 GSP 157 5.4 0.6 4.1 3 58 429.0 700.8 PVC 99.4 4.6 0.6 4.1 3 76 416.2 1134.7 GSP 89.4 3.6 0.49 2.9 2.4 76 429.2 700.8 PVC 99.4 3.3 0.47 3.3 2.4 76 429.2 720.3 PVC 57 0.8 0.31 4.2 2.8 92 420.5 1182.9 PVC 35.2 0.3 3.2 2.4 2.8 89 420.5 1182.9 PVC 35.2 0.3 3.2 2.4 2.8 89 419.7 1382.9 PVC 35.2 0.3 1.42 2.1	61													
40 430.1 1134.7 GSP 157 5.4 0.28 0.6 0.7 58 429.0 730.8 PVC 99.4 4.6 0.6 4.1 3 58 429.0 730.8 PVC 99.4 3.8 0.49 2.9 2.4 58 416.2 1095.7 PVC 81.4 2.4 0.47 3.3 3.6 76 416.2 1095.7 PVC 81.4 2.4 0.47 3.3 3.6 76 429.2 720.3 PVC 57 0.4 2.4 3.2 76 429.5 1182.9 PVC 35.2 0.31 2.4 2.3 89 420.5 1182.9 PVC 35.2 0.31 4.2 2.4 89 420.5 1182.9 PVC 35.2 0.31 4.2 2.4 89 430.5 0.66 3.7 0.31 4.2	62		30(OUT)	460.8				·						
40 430.1 1134.7 GSP 157 5.4 0.28 0.6 0.7 58 429.0 730.8 PVC 99.4 4.6 0.6 4.1 3 58 429.2 816.4 PVC 99.4 3.8 0.49 2.9 2.4 68 416.2 1095.7 PVC 81.4 2.4 0.3 3.6 76 429.2 720.3 PVC 81.4 2.4 0.4 3.2 89 420.5 1182.9 PVC 35.2 0.31 4.2 2.1 81 91 91 91 91 4.2 2.1 2.1 81 <td>63</td> <td></td> <td>460.8</td> <td>8</td> <td></td>	63											460.8	8	
5 48 429.0 730.8 PVC 99.4 4.6 0.6 4.1 3 7 58 429.2 816.4 PVC 99.4 3.8 0.49 2.9 2.4 8 416.2 1095.7 PVC 99.4 3.8 0.49 2.9 2.4 9 76 429.2 720.3 PVC 57 0.1 0.41 4.4 3.2 9 99 420.5 1182.9 PVC 57 0.1 0.41 2.4 3.2 1 92 405.0 488.2 PVC 35.2 0.3 0.31 4.2 2.8 1 92 405.0 488.2 PVC 35.2 0.3 0.31 4.2 2.1 2 92 419.2 35.0 PVC 35.2 0.3 0.31 4.2 0.4 3 93 419.2 35.0 PVC 35.2 0.3 0.31 4.2 0.	64		40	430.1	1134.7	GSP	157		0.28	0.6	0.7	460.1	30.0	30.7
58 429.2 816.4 PVC 99.4 3.8 0.49 2.9 2.4 76 416.2 1095.7 PVC 81.4 2.4 0.47 3.3 3.6 76 429.2 720.3 PVC 57 1.1 0.44 4.4 3.2 89 420.5 1182.9 PVC 57 0.3 2.4 3.2 89 420.5 1182.9 PVC 57 0.3 2.4 3.2 92 405.0 488.2 PVC 35.2 0.3 4.4 2.8 92 405.0 488.2 PVC 35.2 0.3 4.2 2.1 92 419.7 1182.0 PVC 35.2 0.5 0.64 4.2 2.8 93 419.7 135.0 PVC 35.2 0.5 0.7 0.4 1.2 93 9419.7	65		48	429.0	730.8	·	99.4		0.6	4.1	n	457.1	28.1	31.8
68 416.2 1095.7 PVC 81.4 2.4 0.47 3.3 3.6 76 429.2 720.3 PVC 57 1.1 0.44 4.4 3.2 89 420.5 1182.9 PVC 57 0.3 2.4 3.2 92 405.0 488.2 PVC 57 0.3 2.4 2.8 92 405.0 488.2 PVC 35.2 0.3 4.2 2.8 92 405.0 488.2 PVC 35.2 0.3 4.2 2.1 93 419.2 35.0 PVC 35.2 0.3 4.2 0.6 93 419.7 135.0 PVC 35.2 0.3 4.2 0.6 93 419.7 135.0 PVC 35.2 0.3 4.2 0.6 93 93 91.7 9.2 0.3 4.2 0.6 93 93<	66		58	429.2	816.4		99.4		0.49	2.9		454.7	7 25.5	31.6
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	67	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	68	416.2	1095.7		81.4	2	0.47	3.3	3.6	451.1		44.6
89 420.5 1182.9 PVC 57 0.8 0.31 2.4 2.8 92 405.0 488.2 PVC 35.2 0.3 0.31 4.2 2.1 92 405.0 488.2 PVC 35.2 0.3 0.31 4.2 2.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td>68</td> <td></td> <td>76</td> <td>429.2</td> <td>720.3</td> <td></td> <td>57</td> <td>-</td> <td>0.44</td> <td>4.4</td> <td>3.2</td> <td>447.9</td> <td></td> <td>31.6</td>	68		76	429.2	720.3		57	-	0.44	4.4	3.2	447.9		31.6
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	69 0		89	420.5	1182.9		57		0.31	2.4	2.8	445.1	24.6	40.3
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	70		92	405.0	488.2		35.2	0	0.31		2.1	443.0	38.0	55.8
89 57 57 0.52 10.7 0.4 93 419.2 35.0 PVC 35.2 0.52 10.7 0.4 94 418.7 135.0 PVC 35.2 0.31 4.2 0.6 93 418.7 135.0 PVC 35.2 0.31 4.2 0.6 93 93 417.0 253.1 PVC 35.2 0.31 4.2 1.1 99 417.0 253.1 PVC 35.2 0.31 4.2 1.1 91 91 91 91 91 91 91 91	7													
89 57 57 0.5 0.52 10.7 0.4 93 419.2 35.0 PVC 35.2 0.5 0.52 10.7 0.4 94 418.7 135.0 PVC 35.2 0.31 4.2 0.6 93 93 417.0 253.1 PVC 35.2 0.3 14.2 0.6 99 417.0 253.1 PVC 35.2 0.3 0.31 4.2 1.1 99 417.0 253.1 PVC 35.2 0.3 0.31 4.2 1.1	72											-		
89 57 57 10.7 0.4 89 419.2 35.0 PVC 35.2 0.52 10.7 0.4 93 418.7 135.0 PVC 35.2 0.31 4.2 0.6 94 418.7 135.0 PVC 35.2 0.31 4.2 0.6 93 93 93 93 135.0 PVC 35.2 0.31 4.2 0.6 93	73													
89 57 57 0.5 0.52 10.7 0.4 93 419.2 35.0 PVC 35.2 0.5 0.52 10.7 0.4 94 418.7 135.0 PVC 35.2 0.31 4.2 0.6 93 93 417.0 253.1 PVC 35.2 0.31 4.2 0.6 99 417.0 253.1 PVC 35.2 0.31 4.2 1.1 99 417.0 253.1 PVC 35.2 0.31 4.2 1.1 99 417.0 253.1 PVC 35.2 0.31 4.2 1.1	74													
93 419.2 35.0 PVC 35.2 0.5 0.52 10.7 0.4 94 418.7 135.0 PVC 35.2 0.31 4.2 0.6 93 93 116.7 35.2 0.31 4.2 0.6 99 417.0 253.1 PVC 35.2 0.31 4.2 1.1 99 417.0 253.1 PVC 35.2 0.31 4.2 1.1 91 91 91 91 91 91 91 91 91	43 ~		89				57					445.1		
94 418.7 135.0 PVC 35.2 0.3 4.2 0.6 93 93 17.0 253.1 PVC 35.2 0.3 4.2 11 99 417.0 253.1 PVC 35.2 0.3 0.31 4.2 1.1 99 417.0 253.1 PVC 35.2 0.3 0.31 4.2 1.1 99 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 92 93 <	76		63	<u></u> .	35.0		35.2	0	0.52	10.7	0.4	444.7	25.5	41.6
93 35.2 35.2 1.1 99 417.0 253.1 PVC 35.2 0.31 4.2 1.1 99 417.0 253.1 PVC 35.2 0.31 4.2 1.1 99 417.0 253.1 PVC 35.2 0.31 4.2 1.1	77		94		135.0		35.2	0	0.31	4.2	0.6	444.1	25.4	42.1
93 35.2 35.2 1.1 99 417.0 253.1 PVC 35.2 0.3 4.2 1.1	78													
99 417.0 253.1 PVC 35.2 0.3 4.2 1.1 100 100 100 100 100 100 100	79		63				35.2					444.7		
8 2 8 3 8 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	80		66	417.0	253.1		35.2		0.31		1.1	443.6	26.6	43.8
82	81					, i								
84	82													
84	83													
	8						-							

-64-

10
<u></u>
0
<u> </u>
\cap
<u> </u>
~
\cap
\mathcal{L}
\mathbf{O}
65
\simeq
5
~
<
ш
õ
<u> </u>
~
T

8 8 5 5 8				1						2		1	2
86	MASAMBA	BRANCH	G.L	LENGTH	Kind of	Diamet-Quanti-	Quanti-	Veloci-	Gradi-	Friction	Hydraulic Wate	Water Hydraulic	Static
	LOCATION	No.	(m)	(m)	Pipe	er(mm)	ty(I/s) ty(m/s	ty(m/s)	ent(%)	Loss(m)	Level(m)) Head(m)	Head(m)
87													
88	ELEVATED												
<u> </u>	TANK(500.0)	0(OUT)	515.8								515.4	8	
<u> </u>		7	487.1	1702.1	PVC	180.8	25.8	1.02	5.5	9.4		4 19.3	28.7
10		8	487.1	139.7	PVC	144.6		1.29	+ +	1.5	504.9	9 17.8	28.7
20		σ	485.2	149.4		99.4		1.25	16.1	2.4	502.5	17	30.6
03 0		10	485.5	87.5		99.4	9.6	1.25	16.1	1.4	501.1	1 15.6	30.3
40			487.9	92.0		99.4		1.25	16.1	1.5		11	27.9
0		75	487.9	80.0		102	8.0	66.0	10.2	8.0	498.8	8 10.9	27.9
90		13		82.2		99.4	8.0	1.04	11.5	0.9	497.	9 10.0	27.9
20		44	487.9	94.8	PVC	99.4		1.04	11.	1.1	496.	8 8.9	27.9
80		5	488.4	282.4		99.4	5.6	0.73	9	1.7	495	9	27.4
0													-
100													
101		8				144.6					504.	6	
102		22	484.8	776.4	PVC	99.4	10.0	1.3	17.4	13.5	491.	4 6.6	31.0
103													
104													
1.05		2				180.8					506.4	4	
106		16	485.4	252.7		81.4	7.1	1.38	24.4	6.2		44	
107		25	487.9	255.7	PVC	81.4	4.4	0.85	10.1	2.6	497.6	.6 9.7	27.9
108									-				
109													
110													
1 1		14				99.4		-			496.	8	
112		33	488.6	408.9	PVC	35.2	0.4	0.42	7.1	2.9	493.	.9	27.2
113													
114		15	:			99.4					495	-	
115		34	487.4	285.9	PVC	57	1.7	0.67	8.6	2.8	492	.3	28.4
116													

-65-

ιņ
-
4
0
$\overline{\mathbf{O}}$
₹
<u></u>
0
\mathbf{O}
\circ
- "
=
~
<u> </u>
ι.
\square
5
4

.

TOAVA BRANCH GL LENGTH Kind of Diamet Quanti Veloci Friction Hydraulic Water NUTAKE 9(N) 500.0 500.0 10 11.1 Level(m) NUTAKE 9(N) 492.1 718.0 GSP 102 2.9 0.36 1.6 1.1 Level(m) NUTAKE 9(N) 490.1 718.0 GSP 102 2.9 0.36 1.6 1.1 490.1 RESERVICIR 9(OUT) 490.1 718.0 GSP 157 7.1 0.37 1 2.4 487.7 22 461.5 245.0 KSP 165.0 FVC 35.2 0.5 10.7 3.5 461.3 22 450.8 322.7 FVC 35.2 0.5 10.7 3.5 461.3 23 451.0 500.0 FVC 35.2 0.5 10.7 3.5 487.7 23 456.1 600.5 0.5 0.5		A	8	0	۵	w	4.	G	I		, ,	¥		1000	Ř.K
B Location Ne. (m) (m) (m) (m) (m) (m) Level(m) 9 INTAKE 0 500.0 500.0 500.0 500.0 500.0 1 RESERVCIR 9(N1) 492.1 718.0 GSP 102 2.9 0.36 1.6 1.1 496.1 2 461.5 2435.0 GSP 157 7.1 0.37 1.6 1.1 496.1 2 457.9 165.0 PVC 57.1 2.81 138.5 22.9 461.3 2 450.8 322.7 PVC 35.2 0.5 0.52 10.7 3.5 461.3 2 456.4 456.0 PVC 35.2 0.5 0.52 10.7 3.5 467.7 2 451.0 500.0 PVC 35.2 0.5 10.7 3.5 467.7 2 2 45.4 5.4 476.8 476.8 476.8 476.8	4-	TOAYA	BRANCH	GL	LENGTH		Diamet-	Quanti-		Gradi-	Friction	¥		Hvdraulic	Static
0 500.0 500.0 500.0 500.0 1 RESERVOIR 9(OUT) 490.1 713.0 GSP 102 2.9 0.36 1.6 1.1 498.9 1 RESERVOIR 9(OUT) 490.1 713.0 GSP 157 7.1 0.37 1 2.4 450.1 2 457.9 165.0 PVC 57 7.1 0.37 1 2.4 461.3 3 457.9 165.0 PVC 57 7.1 0.37 1 2.4 461.3 4 2 2 450.8 322.7 PVC 35.2 10.7 3.5 461.3 5 456.1 500.0 PVC 31.4 6.6 1.28 21.3 5.5 461.3 5 451.0 500.0 PVC 31.4 6.6 1.28 21.3 45.7 5 451.1 2.3 1.1 2.4 476.8 476.8 6	00 	LOCATION	ġ	(m)	(u)	Pipe	er(mm)		ty(m/s)	ent(%)	Loss(m)	1 5.	+	Head(m)	Head(m)
0 9(1N) 492.1 718.0 GSP 102 2.9 0.36 1.6 1.1 2 9(OUT) 490.1 490.1 490.1 490.1 22 461.5 2435.0 GSP 157 7.1 0.37 1.6 1.1 3 22 461.5 2435.0 GSP 157 7.1 0.37 1 2.4 4 22 451.0 GSP 157 7.1 0.37 1 2.4 5 450.0 PVC 35.2 0.5 0.52 10.7 3.5 6 22 458.4 257.6 PVC 35.2 0.5 0.52 10.7 3.5 7 22 456.4 400.5 PVC 31.4 6.6 1.27 3.5 2.4 1 33 456.1 100.0 PVC 35.2 1.1 2.4 2.4 1 33 456.1 100.0 PVC 31.4 6.6	Ym	INTAKE	0	500.0								5(<u> </u>		
I RESERVOIR 9(OUT) 490.1 1	120		9(IN)	492.1	718.0		102	2.9				4	6 86	6.8	7.9
9(OUT) 490.1 490.1 50.1	1- N T	RESERVOIR													
22 461.5 2435.0 GSP 157 7.1 0.37 1 2.4 23 457.9 165.0 VC 57 7.1 2.81 138.5 22.9 25 450.8 322.7 VC 35.2 0.52 10.7 3.5 22 456.4 322.7 VC 35.2 0.52 10.7 3.5 26 458.4 257.6 VVC 35.2 0.52 10.7 3.5 26 456.4 200.0 PVC 35.2 0.52 10.7 5.5 30 451.0 500.0 PVC 35.2 0.5 10.7 5.5 32 456.4 406.5 PVC 35.2 1.27 31.7 12.9 33 456.1 1000.0 PVC 57 31.7 12.9 25 33 456.1 1000.0 PVC 57 31.7 12.9 25 33 456.3 711.8 PVC	~7 ~7 ∽7		9(OUT)	490.1											
22 461.5 2435.0 GSP 157 7.1 0.37 1 2.4 23 457.9 165.0 PVC 57 7.1 2.81 138.5 22.9 25 450.8 322.7 PVC 35.2 0.5 0.52 10.7 3.5 22 450.8 322.7 PVC 35.2 0.5 0.52 10.7 3.5 22 458.4 257.6 PVC 81.4 6.6 1.28 21.3 5.5 30 451.0 500.0 PVC 35.2 0.5 10.7 5.4 22 456.4 406.5 PVC 35.2 0.5 1.7 25.4 23 456.1 100.0 PVC 35.7 2.8 1.11 2.9 2.6 33 456.1 100.0 PVC 57 2.8 1.11 2.9 2.5 33 456.1 100.0 PVC 57 2.8 1.11	123											45	90.1		
23 457.0 165.0 VVC 57 7.1 2.81 138.5 22.9 25 450.8 322.7 VVC 35.2 0.5 0.52 10.7 3.5 22 450.8 322.7 VVC 35.2 0.5 0.52 10.7 3.5 22 451.0 500.0 VVC 35.2 0.5 0.52 10.7 3.5 22 451.0 500.0 VVC 35.2 0.5 0.52 10.7 5.4 30 451.0 500.0 VVC 35.2 0.5 0.52 10.7 5.4 32 456.4 406.5 VVC 35.2 1.27 31.7 12.9 32 456.4 406.5 VVC 57 2.1 12.7 12.9 33 456.1 100.0 VVC 57 2.8 1.11 24.8 2.5 34 455.7 1141.5 PVC 57 10.4 4.4 3	124		22	461.5	2435.0		157	7.1	0.37		2.4		37.7	26.2	28.6
25 450.8 322.7 PVC 35.2 05 16.7 3.5 461 22 458.4 257.6 PVC 81.4 6.6 1.28 21.3 5.5 487 26 458.4 257.6 PVC 81.4 6.6 1.28 21.3 5.5 487 30 451.0 500.0 PVC 81.4 6.6 10.7 5.4 476 30 451.0 500.0 PVC 35.2 0.5 10.7 5.4 476 30 456.1 100.0 PVC 57 2.8 1.11 2.9 474 33 456.1 100.0 PVC 57 2.8 1.17 465 33 456.1 100.0 $PV C$ 57 2.6 474 33 456.1 100.0 $PV C$ 57 2.6 1.71 2.6 472	125		23	457.9	165.0		57	7.1	2.81	38 80	22.9		54.8	6.9	32.2
22 458.4 257.6 PVC 81.4 6.6 1.28 21.3 5.5 487 26 451.0 500.0 PVC 81.4 6.6 1.28 21.3 5.5 487 30 451.0 500.0 PVC 35.2 0.5 10.7 5.4 476 32 456.1 100.0 PVC 57 3.2 1.27 31.7 12.9 474 33 456.1 100.0 PVC 57 2.8 1.11 24.8 2.5 474 26 7 141.5 PVC 57 2.8 1.11 24.8 2.5 465 33 455.7 141.5 PVC 57 1.4 4.4 3.1 465 37 438.3 711.8 PVC 57 1.4 4.4 3.1 465 38 455.8 266.2 PVC 55.7 0.6 0.62 4 464 33 455.8 266.2 PVC 57 0.5 0.5 464 33 </td <td>126</td> <td></td> <td>25</td> <td>450.8</td> <td>322.7</td> <td></td> <td></td> <td>0.5</td> <td>0.52</td> <td>10</td> <td>3.5</td> <td>46</td> <td>51.3</td> <td>10.5</td> <td>39.3</td>	126		25	450.8	322.7			0.5	0.52	10	3.5	46	51.3	10.5	39.3
22 157 157 157 157 157 157 157 155 26 451.0 500.0 PVC 81.4 6.6 1.28 21.3 5.5 30 451.0 500.0 PVC 81.4 6.6 1.28 21.3 5.5 22 456.4 406.5 PVC 57 2.8 1.11 24.8 2.5 33 456.1 100.0 PVC 57 2.8 1.11 24.8 2.5 33 456.7 141.5 PVC 57 2.8 1.11 24.8 2.5 34 455.7 141.5 PVC 57 2.8 1.11 24.8 2.5 37 438.3 711.8 PVC 57 1.1 0.4 4.4 3.1 38 455.8 20.6 0.62 15 4 6 33 461.1 255.0 PVC 35.2 0.5 10.7 2.7 2.7	127				-										O
26 458.4 257.6 PVC 81.4 6.6 1.28 21.3 5.5 30 451.0 500.0 PVC 35.2 0.5 10.7 5.4 22 456.4 406.5 PVC 35.2 0.5 10.7 5.4 32 456.4 406.5 PVC 57 3.2 1.27 31.7 12.9 33 456.1 100.0 PVC 57 2.8 1.11 24.8 2.5 34 455.7 141.5 PVC 57 2.8 1.71 2.6 37 438.3 711.8 PVC 57 1.4 3.1 17.1 37 438.3 711.8 PVC 57 1.4 3.1 17.1 37 438.3 711.8 PVC 57 1.4 4.4 3.1 38 455.8 266.2 PVC	~N[22				u)					48	37.7		
30 451.0 500.0 VC 35.2 0.52 10.7 5.4 22 456.4 406.5 PVC 57 3.2 1.27 31.7 12.9 32 456.4 406.5 PVC 57 3.2 1.27 31.7 12.9 33 456.1 100.0 PVC 57 2.8 1.11 24.8 2.5 34 455.7 141.5 PVC 57 2.8 1.71 24.8 2.5 34 455.7 141.5 PVC 57 1.1 0.44 4.4 3.1 37 438.3 711.8 PVC 57 1.1 0.44 4.4 3.1 23 455.8 266.2 PVC 57 1.1 0.4 4.4 3.1 37 455.8 2.66 2.61 1.7 0.67 4.4 3.1 <td< td=""><td>129</td><td></td><td>26</td><td>458.4</td><td>257.6</td><td></td><td>81.4</td><td>6.6</td><td></td><td></td><td></td><td>48</td><td>2.2</td><td>23.8</td><td>31.7</td></td<>	129		26	458.4	257.6		81.4	6.6				48	2.2	23.8	31.7
22 456.4 406.5 PVC 57 3.2 1.27 31.7 12.9 32 456.1 100.0 PVC 57 3.2 1.11 24.8 2.5 33 456.1 100.0 PVC 57 2.8 1.11 24.8 2.5 26 34 455.7 141.5 PVC 57 6.6 2.61 17.1 37 438.3 711.8 PVC 57 1.1 0.44 4.4 3.1 28 455.8 711.8 PVC 57 1.1 0.62 15 4 37 438.3 711.8 PVC 57 1.1 0.44 4.4 3.1 23 455.8 266.2 PVC 35.2 0.6 0.62 15 4 37 38 455.8 266.2 PVC 35.2 0.6 0.62 16 7 39 461.1 255.0 PVC 35.2 0.5 0.5 16.7 7	000		30	451.0	500.0			0.5	0.52	0	•	47	6.8	25.8	39.1
22 81.4 81.4 81.4 1.27 31.7 12.9 32 456.4 406.5 PVC 57 3.2 1.27 31.7 12.9 33 456.1 100.0 PVC 57 2.8 1.11 24.8 2.5 26 2.6 $1.41.5$ PVC 57 6.6 2.61 17.1 34 455.7 141.5 PVC 57 6.6 2.61 17.1 37 438.3 711.8 PVC 57 6.6 2.61 17.1 23 455.8 266.2 PVC 57 0.6 0.62 15 4 32 455.8 266.2 PVC 35.2 0.6 0.62 15 4 32 461.1 255.0 PVC 35.2 0.5 0.5 10.7 2.7	20 77 77														
32 456.4 406.5 PVC 57 3.2 1.27 31.7 12.9 33 456.1 100.0 PVC 57 2.8 1.11 24.8 2.5 26 1 1 81.4 1 81.4 1 17.1 26 1 1 81.4 1 81.4 1 17.1 37 455.7 141.5 PVC 57 6.6 2.61 17.1 37 438.3 711.8 PVC 57 1.1 0.44 4.4 3.1 23 455.8 711.8 PVC 57 1.1 0.44 4.4 3.1 23 455.8 266.2 PVC 57 0.6 0.62 16 17.1 33 461.1 255.0 PVC 35.2 0.6 0.65 16.7 2.7	132		22				81.4					48	7.7		
33 456.1 100.0 PVC 57 2.8 1.11 24.8 2.5 26 2 81.4 2 81.4 2 81.4 2 34 455.7 141.5 PVC 57 6.6 2.61 121 17.1 37 438.3 711.8 PVC 57 6.6 2.61 127 17.1 23 438.3 711.8 PVC 57 1.1 0.44 4.4 3.1 23 455.8 266.2 PVC 357 0.6 0.62 15 4 33 455.8 266.2 PVC 357 0.6 0.62 16 17 33 461.1 255.0 PVC 352 0.52 10.7 2.7	8 8 7 9 9		32	456.4	406.5		57		2		12.9	47	4 8	18.4	33.7
26 81.4 81.4 121 17.1 34 455.7 141.5 PVC 57 6.6 2.61 121 17.1 37 438.3 711.8 PVC 57 1.1 0.44 4.4 3.1 23 23 711.8 PVC 57 1.1 0.44 4.4 3.1 38 455.8 266.2 PVC 35.2 0.6 0.62 15 4 33 461.1 255.0 PVC 35.2 0.52 10.7 2.7	434		ဗဗ	456.1	100.0			2.8	۳-	24.8		47,	2.3	16.2	34.0
26 81.4 81.4 17.1 34 455.7 141.5 PVC 57 6.6 2.61 121 17.1 37 438.3 711.8 PVC 57 1.1 0.44 4.4 3.1 23 23 711.8 PVC 57 1.1 0.44 4.4 3.1 23 23 266.2 PVC 35.2 0.6 0.62 15 4 38 455.8 266.2 PVC 35.2 0.6 0.62 15 4 33 461.1 255.0 PVC 35.2 0.5 0.5 10.7 7	135														
34 455.7 141.5 PVC 57 6.6 2.61 121 17.1 37 438.3 711.8 PVC 57 1.1 0.44 4.4 3.1 23 23 57 0.6 0.62 15 4 38 455.8 266.2 PVC 35.2 0.6 0.62 15 4 39 461.1 255.0 PVC 35.2 0.5 0.57 10.7 27	9 6 7											48,			
37 438.3 711.8 PVC 57 1.1 0.44 4.4 3.1 23 23 57 0.6 0.62 15 4 38 455.8 266.2 PVC 35.2 0.6 0.62 15 4 39 461.1 255.0 PVC 35.2 0.5 0.57 10.7 27	137		34	455.7	141.5		57	6.6	2.61	121	17.1	46	5.1	9.4	34.4
23 57 57 464 23 455.8 266.2 PVC 35.2 0.6 0.62 15 4 38 455.8 266.2 PVC 35.2 0.6 0.62 15 4 32 461.1 255.0 PVC 35.2 0.5 0.52 10.7 2.7 472	138		37	438.3	711.8				0.44	4.4	3.1	46.	2.0	23.7	51.8
23 57 57 45 38 455.8 266.2 PVC 35.2 0.6 15 4 38 455.8 266.2 PVC 35.2 0.6 15 4 460 32 461.1 255.0 PVC 35.2 0.5 0.52 10.7 2.7 472	00 7 3 0														
38 455.8 266.2 PVC 35.2 0.6 0.62 15 4 460 32 32 461.1 255.0 PVC 35.2 0.5 0.52 10.7 27 472	4 0 0											46	4.8		
32 461.1 255.0 PVC 35.2 0.5 0.52 10.7 2.7 472	1 2 1		38	455.8	266.2		- vo	0.6	0.62		4	46(0.8	5.0	34.3
32 461.1 255.0 PVC 35.2 0.5 0.52 10.7 2.7 472	4 7														
39 461.1 255.0 PVC 35.2 0.5 0.52 10.7 2.7 472	4 700		32									47.			
	4 4 ~~		39	461.1	255.0	PVC	35.2	0.5	0.52	10.7	2.7	47:	2.1	11.0	29.0

-66-

ņ
÷
ñ
$\underline{\nabla}$
h
ō
7
ົດ
\times
\circ
\circ
- T
=
2
2
щ
\Box
≻
r

1	n	- 5	a	1		IJ	r		5			M
	BRANCH	GL	LENGTH	Kind of	Diamet-Quanti-	Quanti-	Veloci-	Gradi-	Friction	Hydraulic Water	r Hydraulic	Static
	Ŷo.	(m)	(m)	Pipe	er(mm) ty(l/s) ty(m/s)	ty(!/s)	ty(m/s)	ent(%)	Loss(m)	Level(m)) Head(m)	Head(m)
	 1	515.0								515.0		
RESERVOIR	0(IN)	503.0	50.0	d S S	76	6.0	1.34	25	1.3	513.7	7 10.7	12.0
	0(OUT)	501.0			-							
										501.3	S	
	50	482.8	7923.2	PVC	226.2	13.9	0.35	0.6	4.8	496.5	5 13.7	18.2
• •	56	481.7	1415.3	PVC	144.6	13.5	0.83	4.9	6.9	489.6	6 7.9	19.3
	63	480.0	1132.1	PVC	144.6		0.57	2.4	2.7	486.9	9.9	21.0
	64	481.8	36.8	PVC	144.6	9.1	0.57	2.4	0.1	486.8	8 5.0	19.2
<u> </u>	65	481.6	49.8	PVC	144.6		0.57	2.4	0.1	486.	7 5.1	19.4
[66	481.3	110.0	PVC	144.6	9.1	0.57	2.4	0.3	486.4	5.1	19.7
1	67	481.6	142.3	PVC	144.6	9.1	0.57	2.4	0.3	486.1	4.5	19.4
	69	481.6	208.5	PVC	144.6	9.1	0.57	2.4	0.5	485.6	6 4.0	19.4
<u> </u>												
		,										

ယု
÷
-
0
-
F
$\overline{\mathbf{O}}$
6
O
Ō
\sim
\circ
\square
-
2
ι.
\cap
\sim
\boldsymbol{c}
T

	A	B	c	Q	ឃ	H.	ອ	H	5	5	¥	- 740-14-1		W
173	BALANTAK	BRANCH	G.L	LENGTH	Kind of	Diamet-	Quanti-	Veloci-	Gradi-	Friction	Hydraulic Wa	Water H	Hydraulic	Static
174	LOCATION	Ŷ	(ш)	(m)	Pipe	er(mm)	ty(I/s) ty(m/s)	ty(m/s)	ent(%)	Loss(m)	Level(m)		Head(m)	Head(m)
175	INTAKE	0	500.0								50	500.0		
40	RESERVOIR	10(IN)	402.9	504.3	g	51	3.3	1.63	57.7	29.1	47	470.9	68.0	97.1
177														
178		10(OUT)	400.9								40	400.9		
179		18	387.6	353.3	с С С С С	102	8.5	1.05	11.4	4	6°	396.9	9.3	13.3
180		23	382.4	544.9	PVC	144.6	8.1	0.5	1.9	~	бе С	395.9	13.5	18.5
181		26	381.4	603.7	PVC	99.4	7.9	1.03	11.2	6.8	38	389.1	7.7	19.5
182		28	374.9	427.6	PVC	99.4	6.8	0.88	8.5	3.6		385.5	10.6	26.0
183		40	355.7	2210.2	PVC	99.4		0.8	7	15.5		370.0	14.3	45.2
184		44	356.7	636.7	PVC	81.4	0.9	0.17	0.5	0.3	369.	9.7	13.0	44.2
1 3 2														
98 7		∞ 				102					68	396.9		
		45	392.2	128.1	PVC	57	0.2	0.08	0.2	0	30	396.9	4.7	8.7
138														
189														
190	0									-				
191														
192	2													
193	3													
194	**													
6) 7	2													
196	10									-				
197	~													
67	8													
199	6													
200	-0													

ON-5
CONDITI
HYDRAULIC

	*	Ø	ပ ပ	۵	ш	μ.	J	I		ſ	K	3	W
201	LAPUKO	BRANCH	G.L	LENGTH	Kind of	Diamet-Quanti	Quanti-	Veloci-	Gradi-	Friction	Hydraulic Water	r Hydraulic	Static
202	LOCATION	No.	(m)	(m)	Pipe	er(mm)		ty(m/s)	ent(%)	Loss(m)	Level(m)) Head(m)	Head(m)
203	INTAKE	0	500.0								500.0	0	
204	m	26(IN)	493.3	1427.7	GSP	157	3.1	0.16	0.2	0.3	499.7	7 6.4	6.7
205	TANK(473.3)								+				
206		26(OUT)	491.3								491.3	E	
207		27	469.8	88.5	GSP	102	7.6	0.94	9.2	0	490.5	5 20.7	21.5
208		35	474.4	1133.8	PVC	144.6	7.1	0.44	1.5	1.7	488.8	8 14.4	16.9
209		36	472.4	144.1	PVC	81.4	7.1	1.38	3 24.4	3.5	485.3	3 12.9	18.9
210		40	471.5	347.9	PVC	81.4	2.6	0.5	3.8	1.3	484	.0 12.5	19.8
211													
212		27				102					490	5	491.3
213		42	469.5	268.7	PVC	35.2	0.4	0.42	2 7.1	1.9	488.6	6 19.1	21.8
214													
215		35				144.6					488.8	8	
216		48	480.6	1000.0	PVC	57	0.6	0.23	3.1.4	1.4	487.4	4 6.8	10.7
217													
218		36				81.4				-	485.3	σ	
219		51	470.4	106.1	PVC	35.2	0.5	0.52	2 10.7		1 484.2	2 13.8	20.9
220													
221													
222		-											
223													
224									. 				
225													
226													
227												-	
228													

Ņ
~
\cap
\simeq
1
~
<u></u>
Z
5
\mathcal{Q}
\odot
C)
_
\supset
_
\sim
Ш.
\cap
-
\leq
T

.

.

of Diamet- Quanti. Veloci: Gradi: Friction Hydrautic St e er(mm) ty(l/s) ty(m/s) ent(%) Level(m) Head(m) Head(m) 0 180.8 9.9 0.38 0.9 0.6 499.4 4.7 0 2266.2 25.8 0.64 1.8 1.3 491.4 10.6 0 2266.2 25.1 0.62 1.7 2.7 481.4 10.6 0 180.8 17.7 0.69 2.7 31.2 31.2 0 180.8 17.7 0.69 2.7 31.2 31.2 144.6 13.4 0.59 2.6 2.8 4.7 5.7 0 144.6 13.4 0.6 2.8 6.1 1.1 476.1 5.7 144.6 13.4 0.6 2.8 2.8 6.1 5.3 5.3 144.6 13.4 0.5 2.8 4.76.1 5.7 2.9		A	8	 ი	۵	u	Ľ.	თ	I		5	¥			8
LUCATION No. (m) (m) Plae ler/mm lit/(I/s) ly(I/s) ly(I/s) <thl>(I/s) <thl>(I/s) <thl>(I/s</thl></thl></thl>	229	TAWAELI	BRANCH	GL		~		Quanti-	Veloci-	Gradi-	Friction	Hydraulic	Water		Static
MIAKE 0 500.0 500	230	LOCATION	°N N	(E)	(E)	Pipe	er(mm)	ty(l/s)	ty(m/s)	ent(%)	Loss(m)	Le Le	vel(m)		Head(m)
RESERVOR 8(iN) 44.7 648.0 FVC 180.1 0.38 0.9 0.6 439.4 1.7 10 492.7 737.0 FVC 226.2 25.8 0.64 1.8 1.3 492.7 11.6 1 11 492.7 737.0 FVC 226.2 25.8 0.64 1.7 1.2 487.5 31.2 3 12 453.0 1394.8 FVC 180.8 23.1 0.69 4.7 1.2 487.5 31.2 3 3 3 451.3 31.2 444.6 13.4 0.95 4.7 1.2 481.5 31.2 31.2 31.2 444.6 13.4 0.95 4.6 1.3 0.35 31.2 31.2 31.2 31.2 31.2 31.2 31.2 444.6 13.4 0.3 31.2 444.6 13.4 0.6 31.2 31.2 31.2 32.5 31.2 32.5 31.2 32.5 31.2 32.5 <td< th=""><th>231</th><th>INTAKE</th><th>0</th><th>500.0</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>500.0</th><th></th><th></th></td<>	231	INTAKE	0	500.0									500.0		
8(0UT) 492.7 492.7 492.7 13 492.7 PVC 226.2 256.1 0.62 1.8 1.3 492.7 10.6 1 22 457.4 157.38 PVC 226.2 255.1 0.52 1.2 487.4 10.6 1 1 23 456.3 246.4 PVC 100.8 1.7 2.7 487.4 31.3 31.3 31.3 31.3 31.3 31.3 31.3 31.3 31.3 31.3 31.4 9.7 10.6 1.7 31.3 475.1 31.3 475.1 31.3 475.1 31.3 475.1 31.3 31.3 31.3 31.4 10.7 31.3 31.0 9.7 31.4 475.1 31.0 27.3 31.0 27.4 41.6 1.2 31.0 27.4 41.6 1.2 31.0 31.0 27.5 31.0 27.5 31.0 27.5 29.7 23.5 31.0 27.5 29.7 27.5 29.7 <th>232</th> <th>RESERVOIR</th> <th>8(IN)</th> <th>494.7</th> <th>648.0</th> <th>PVC</th> <th>80</th> <th>9.9</th> <th>0.38</th> <th>0.9</th> <th>0.6</th> <th></th> <th>499.4</th> <th>4.7</th> <th>5.3</th>	232	RESERVOIR	8(IN)	494.7	648.0	PVC	80	9.9	0.38	0.9	0.6		499.4	4.7	5.3
13 480.8 737.0 PVC 222 25.8 0.64 1.8 1.3 491.4 10.6 22 457.3 257.3 257.3 0.62 1.7 2.7 488.7 31.3 23 455.3 254.8 PVC 180.8 17.7 0.62 27 31.3 23 453.2 254.8 PVC 180.8 17.7 0.69 2.7 484.7 31.3 28 453.2 354.8 PVC 144.6 15.4 0.94 6.2 25.7 484.0 31.3 31 455.1 273.8 PVC 144.6 12.3 0.75 4.1 1.1 476.9 28.6 31 455.1 273.8 PVC 144.6 12.3 0.75 2.8 476.1 5.7 33 470.4 1072.3 744.5 0.53 4.5 0.5 4.5 2.6 4.5 2.9 41 472.3 779.2 29	233		8(OUT)	492.7									492.7		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	234		13	480.8	737.0	PVC	226.2	25	0.64				491.4		
23 456.3 246.4 PVC 180.8 17.7 0.094 4.7 1.2 487.5 31.2 28 453.20 1234.8 PVC 180.8 17.7 0.0.91 2.7 3.5 484.0 31.0 31 455.1 234.8 PVC 144.6 13.4 0.0.82 4.8 1.8 284.0 31 455.1 233.8 PVC 144.6 12.4 0.0.82 4.8 1.6 25.7 481.0 25.7 33 459.7 188.0 PVC 144.6 9.6 0.55 1.6 0.3 0.5.7 5.3 39 469.7 188.0 PVC 144.6 9.6 0.57 2.6 0.5.9 2.5.6 5.3 46 457.2 754.2 PVC 144.6 0.5 0.6 4.75.2 2.9 3.6 47 456.1 5.7 0.5 4.5 0.6 4.75.2 2.9 3.6 22 </th <th>235</th> <th></th> <th>22</th> <th>457.4</th> <th>1573.8</th> <th>PVC</th> <th>226.2</th> <th></th> <th>0.62</th> <th></th> <th>2.7</th> <th></th> <th></th> <th></th> <th>35.3</th>	235		22	457.4	1573.8	PVC	226.2		0.62		2.7				35.3
4+500 453.0 1294.8 PVC 180.8 177 0.69 2.7 3.5 484.0 31.0 28 453.2 354.8 PVC 144.6 15.4 0.04 6.2 2.2 481.8 28.6 31 455.1 273.8 PVC 144.6 12.3 05 4.1 1.1 476.0 25.7 33 470.4 1079.3 PVC 144.6 12.3 05 2.8 481.0 25.7 39 470.4 1079.3 PVC 144.6 12.3 05 2.6 2.8 45.1 5.7 41 472.3 794.2 PVC 144.6 0.2 0.6 0.0 0 0 475.8 5.3 41 472.3 794.2 PVC 144.6 0.2 0.6 5.2 483.7 5.7 42 456.8 PVC 144.6 0.2 0.6 0.6 0 0 0 475.8	236		23	456.3	246.4	i	180.8		0.94		1.2		487.5	31.2	36.4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	237		4+500	453.0	1294.8		180.8		0.69	2.7	3.5		484.0	31.0	39.7
30 454.3 331.6 PVC 144.6 13.4 0.82 4.8 1.8 480.0 25.7 31 455.1 273.8 PVC 144.6 5.3 0.75 4.1 1.3 475.6 5.7 38 469.7 188.0 PVC 144.6 5.3 0.75 4.1 475.6 5.3 40 469.7 188.0 PVC 99.4 4.5 0.25 $4.75.2$ 5.3 41 472.3 794.2 PVC 99.4 5.2 6.1 5.2 22 45.2 794.2 70.2 9.2 6.7 475.2 5.3 22 458.2 863.6 PVC 57 1.3 0.52 6.8 7.52 2.9 22 458.7 7.3 0.52 6.52 483.7 $2.55.3$ 23 456.4 491.6 7.3 0.52 6.52 483.5 25	238		28	453.2	354.8	I	144.6	15	0.94	6.2	2.2		481.8	28.6	39.5
31 455.1 273.8 PVC 144.6 5.3 0.75 4.1 1.1 478.9 23.8 38 470.4 1079.3 PVC 144.6 9.6 0.59 2.6 2.8 476.1 5.7 39 470.4 1079.3 PVC 144.6 9.6 0.59 2.6 2.8 476.1 5.7 40 400 400 0 0 0 0 475.2 5.9 22 794.2 PVC 99.4 0.2 0.52 6 5.2 476.1 5.7 45 458.2 794.2 PVC 99.4 0.2 0.6 $6.14.5$ 5.9 22 458.2 76.3 71.3 0.52 6.1 75.2 29.3 21 458.7 7.3 0.52 6.5 5.2 488.7 25.3 22 458.6 7.8 0.52 7.8 476.0 25.3 <th>239</th> <th></th> <th>30</th> <th>454.3</th> <th>381.6</th> <th>PVC</th> <th>144.6</th> <th></th> <th>0.82</th> <th>4.8</th> <th>1.8</th> <th></th> <th>480.0</th> <th></th> <th>38.4</th>	239		30	454.3	381.6	PVC	144.6		0.82	4.8	1.8		480.0		38.4
38 470.4 1079.3 VC 144.6 6.6 0.56 2.8 476.1 5.7 39 469.7 188.0 VC 144.6 6.9 0.42 1.4 0.3 475.3 5.1 41 426.3 757.0 VC 99.4 4.5 0.55 475.2 5.3 22 794.2 794.6 0.5 0.6 0.6 475.2 5.3 22 863.6 VC 57 $1.44.6$ 0.5 488.7 2.5 46 458.2 863.6 VC 57 438.7 2.5 22 863.6 VC 57 1.3 0.52 6 2.52 $2.63.3$ 46 458.2 863.6 VC 57 438.7 2.53 238 458.6 144.6 1.46 $1.44.6$ $1.44.6$ $1.44.6$ $1.44.6$ $1.48.7$ $2.63.3$	240		31	455.1	273.8	PVC	144.6		0.75	4.1	1.1		478.9		37.6
39 469.7 188.0 PVC 144.6 6.9 0.42 1.4 0.3 475.8 6.1 40 469.9 157.0 PVC 99.4 4.5 0.59 4 0.6 475.2 5.3 2 2 99.4 0.5 0.2 0.6 475.2 2.9 22 2 99.4 0.2 0.59 4 0.6 475.2 2.9 22 66.1 144.6 144.6 5.2 488.7 25.3 46 456.2 863.6 PVC 57 1.3 0.52 6 5.2 483.7 25.3 1 1 1.3 0.52 6 5.2 483.5 25.3 25.3 1 1 1.3 0.52 5.2 483.5 25.3 25.3 1 1 $1.44.6$ $1.44.6$ $1.44.6$ $1.44.6$ 1.5 <td< th=""><th>241</th><th></th><th>38</th><th>470.4</th><th>1079.3</th><th>PVC</th><th>144.6</th><th>9.6</th><th>0.59</th><th>2.6</th><th></th><th></th><th>476.1</th><th></th><th>22.3</th></td<>	241		38	470.4	1079.3	PVC	144.6	9.6	0.59	2.6			476.1		22.3
40 469.9 157.0 PVC 99.4 4.5 0.59 4 0.6 475.2 5.3 22 22 734.2 PVC 99.4 0.2 0 0 415.2 5.3 46 475.3 734.2 PVC 99.4 0.2 0 415.2 5.3 46 458.2 863.6 PVC 57 1.3 0.52 6 5.2 483.7 25.3 46 14 1 0.52 6 5.2 483.5 25.3 25.3 9 1 1 0.52 6 5.2 483.5 25.3 9 1	242	7 ,000 - 101 - 101 - 10	39	469.7	188.0	РУС	144.6	6.9	0.42	4.1			475.8	6.1	23.0
41 472.3 794.2 PVC 99.4 0.2 0 0 475.2 2.9 22 46 458.2 863.6 PVC 57 1.3 0.52 6 5.2 488.7 2.9 22 458.2 863.6 PVC 57 1.3 0.52 6 5.2 488.7 2.9 22 458.2 863.6 PVC 57 $1.44.6$ 9 9 9 9 28 458.4 491.0 PVC 57 1.5 0.59 7.8 3.8 478.0 21.6 28 456.4 491.0 PVC 57 1.5 0.59 7.8 3.8 478.0 21.6 21.6 28 456.4 491.0 PVC 57 0.59 7.8 3.8 478.0 21.6 21.6 29 456.4 1.5 0.59 7.8	243	a	40	469.9	157.0	PVC	99.4	4.5	0.59	4			475.2	5.3	22.8
22 22 144.6 144.6 144.6 144.6 144.6 148.7 488.7 883.7 25.3 34 46 458.2 863.6 PVC 57 1.3 0.52 6 5.2 483.5 25.3 34 1 </th <th>244</th> <th></th> <th>41</th> <th>472.3</th> <th>794.2</th> <th>PVC</th> <th>99.4</th> <th>0.2</th> <th>0</th> <th>0</th> <th>0</th> <th></th> <th>475.2</th> <th>2.9</th> <th>20.4</th>	244		41	472.3	794.2	PVC	99.4	0.2	0	0	0		475.2	2.9	20.4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	245														
46 458.2 863.6 PVC 57 1.3 0.52 6 5.2 483.5 25.3 34 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 3 3 1 <th>246</th> <th></th> <th>22</th> <th></th> <th></th> <th></th> <th>44.</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	246		22				44.								
28 28 491.0 144.6 144.6 481.8 50 456.4 491.0 PVC 57 1.5 0.59 7.8 3.8 6 6 7 8 3.8 478.0 21.6 36 7 7 7 7 1.5 0.59 7.8 3.8 478.0 21.6 36 7 7 7 7 7 1.5 0.59 7.8 3.8 478.0 21.6 36 7 7 7 7 7 7 7 7 7 36 8 <t< th=""><th>247</th><th></th><th>46</th><th>458.2</th><th>863.6</th><th>PVC</th><th></th><th></th><th>0.52</th><th>9</th><th></th><th></th><th>483.5</th><th></th><th>1</th></t<>	247		46	458.2	863.6	PVC			0.52	9			483.5		1
28 456.4 491.0 PVC 57 1.5 0.59 7.8 481.8 36 50 456.4 491.0 PVC 57 1.5 0.59 7.8 3.8 478.0 21.6 36 1 </th <th>248</th> <th></th>	248														
28 456.4 491.0 PVC 57 1.5 0.59 7.8 481.8 21.6 36 50 456.4 491.0 PVC 57 1.5 0.59 7.8 3.8 478.0 21.6 36 1	249												 		
28 28 144.6 144.6 481.8 481.8 50 456.4 491.0 PVC 57 1.5 0.59 7.8 3.8 476.0 21.6 36 1	250														
28 28 144.6 144.6 481.8 481.8 50 456.4 491.0 PVC 57 1.5 0.59 7.8 3.8 478.0 21.6 36 1 1 1 1 1 1 1 1 1 1 1	251														
28 144.6 144.6 481.8 50 456.4 491.0 PVC 57 1.5 0.59 7.8 3.8 478.0 21.6 36 1 1 1 1 1 1 1 1 1 1 1 1	252														
50 456.4 491.0 PVC 57 1.5 0.59 7.8 3.8 478.0 21.6 36 1 1 1 1 1 1 1 1 1 1 36 1 1 1 1 1 1 1 1 1 1 36 1	253		28				44.						481.8		
	254		50	56.	491.0	PVC	29	1.5	0.59		3.8		478.0		10
256 1	255														
257 258 259 260	256														
258 259 260	257														
259	258			•											
260	259														
	260														

--70---

٠

	4	æ	ပ ပ	۵	ឃ	<u>بد</u>	G	I		3	K		-	848 8
01 BO	261BONEBOBAKAL	LE L	G.L	H	Kind of	Dia	Quanti-	Veloci-	Gradi-	Friction	Hydraulic	ater H	Water Hydraulic	Static
262 1	LOCATION	No.	(m)	(m)	Pipe	er(mm)	ty(1/s)	ty(I/s) ty(m/s)	ent(%)	Loss(m)	Level(m)		Head(m)	Head(m)
264 R	RESERVOIR						-							
265														
266		14(OUT)	532.3								53	532.3		
267		28	486.7	1242.8	PVC	88.4	3.4	0.56	4.2	5.2		527.1	40.4	45.6
268		32	487.3	522.0	PVC	57	1.6	0.63	8.8	4.6		522.5	35.2	45.0
269		33	488.1	263.6	PVC	57	1.6	0.63	8.8	2.3		520.2	32.1	44.2
270		37	487.2	365.5		57	1.6	0.63	8 8	3.2		517.0	29.8	45.1
271		40	487.4	339.1		35.2	0.2	0.21	N	0.7		516.3	28.9	44.9
272														
273														
274														
275														
276		33				57								
277		50	500.5	183.8	PVC	57	1.6	0.63	8.8	-	.6	518.6	18.1	31-8
278		52	500.1	394.8	PVC	35.2	0.2	0.21	1	0.8		517.8	17.7	32.2
279						- - -								
280							-							
281														
282	-													
283														
284														
285														
286				-										
287							. 							

Ŀ →
ģ
EQ.
ĝ
õ
INAU
ĥ
f

-	A	8		0	ш	4	U	I		~	×		जन्म अर्थ
289	SAMBIUT	BRANCH	GL	H	Kind of D	iamet-	Quanti-	Quanti-Veloci-	Gradi-	Friction	Hydraulic Water	Hvdraulic	Static
290	LOCATION	No.	(m)	(ш)		er(mm)	ty(I/s) ty(m/s)	ty(m/s)	ent(%)	Loss(m)	in		Head(m)
291	INTAKE	0	500.0								500.0		
292	RESERVOIR	13(IN)	489.3	625.9	с С С С С	102	3.6	0.44	2.3	1.4		9.3	10.7
293													
294		13(OUT)	487.3								487.3		
295		21	429.6	558.4	d S C	76	9.1	2.02	54	30.2	457.1	27.5	57.7
296		30	426.3	1042.5	PVC	99.4	5.4	0.71	~~/	5.8			61.0
297		34	427.3	877.2	PVC	81.4	3.2	0.62	5.6	4.9			60.0
298		39	425.5	912.5	PVC	81.4	1.9	0.37	2.1	1,9			61.8
299		4	426.8	1054.6	PVC	57	0.8	0.31	2.4	2.5			60.5
300							-						
301		21									457.1		
302		42	427.0	59.4	GSP	76	3.8	0.84	10.7	0.6		29.5	60.3
303		45	427.3	561.4	PVC	81.4	3.8	0.74	7.7	4.3	452.2	24.9	60.0
304		52	430.0	1101.3	PVC	81.4	2.6	0.5	3.8	4.2	448.0	18.0	57.3
305													
306													
307													
308	-												
309													
310													
314													cromba inte
2													
313													
314													
315													
-												-	

---72-

<u>ح</u> -5
Ō
E
z
8
\tilde{O}
Ы
A
õ
4

SALAKAN BRANCH G.L LexGTH Kind of Diamet- Quanti- Veloci- Friction Hydraulic LOCATION No. (m) (m) Pipe er(mm) IV(1/s) IV(1/s) Erection Hydraulic RESERVOIR 10UT) 503.8 1413.8 PVC 81.4 5.9 1.14 17.3 8.3 3.3 13 467.4 189.1 PVC 81.4 5.9 1.14 17.3 4.1 15 466.5 238.8 PVC 81.4 5.9 1.14 17.3 3.3 3.3 19 466.6 238.8 PVC 81.4 5.9 1.14 17.3 3.3 3.3 12 466.0 200.0 PVC 81.4 5.9 1.14 17.3 3.3 3.6 23 466.0 363.9 PVC 81.4 5.9 1.14 17.3 3.6 23 466.0 363.9 PVC 81.4 5.9 1.14		¥	m	0	a	ш	4	G	н	-	ר	K		E.	w
LOCATION No. (m) (m	17	SALAKAN	BRANCH	GL	1	Kind of	Diamet-	Quanti-	Veloci-	Gradi-	Friction	Hydraulic	ater Hy	Water Hydraulic	Static
FESEPVORIN 1(OUT) 503.8 1419.8 PVC 99.4 5.9 0.77 6.6 9.4 12 468.7 1819.1 PVC 99.4 5.9 1.14 17.3 3.3 13 346.7 189.1 PVC 81.4 5.9 1.14 17.3 3.1 15 466.7 896.6 PVC 81.4 5.9 1.14 17.3 3.3 19 466.7 696.6 PVC 81.4 5.9 1.14 17.3 3.3 22 465.0 230.0 PVC 81.4 5.9 1.14 17.3 3.3 22 465.0 200.0 PVC 81.4 5.9 1.14 17.3 3.5 23 466.0 30.0 PVC 81.4 5.9 1.14 17.3 3.5 23 466.0 383.5 PVC 81.4 5.9 1.14 17.3 3.5 23 466.0 383.5 PVC 81.4 5.9 1.14 17.3 3.5 24 25.1 <td>1 8</td> <td>LOCATION</td> <td>So.</td> <td>(E)</td> <td>(m)</td> <td>Pipe</td> <td></td> <td>ty(I/s)</td> <td>ty(m/s)</td> <td>ent(%)</td> <td>Loss(m)</td> <td>Level</td> <td></td> <td>Head(m)</td> <td>Head(m)</td>	1 8	LOCATION	So.	(E)	(m)	Pipe		ty(I/s)	ty(m/s)	ent(%)	Loss(m)	Level		Head(m)	Head(m)
RESERVORING 1(OUT) 503.8 PVC 99.4 5.9 0.77 6.6 9.4 12 468.2 1419.8 PVC 99.4 5.9 1.14 17.3 3.3 13 465.7 1893.1 PVC 81.4 5.9 1.14 17.3 3.3 15 465.7 599.6 PVC 81.4 5.9 1.14 17.3 3.3 12 465.7 599.6 PVC 57 1.8 0.71 10.9 7.6 12 465.1 500.0 PVC 81.4 5.9 1.14 17.3 3.3 22 465.1 150.0 PVC 81.4 5.9 1.14 17.3 2.6 23 465.0 200.0 PVC 81.4 5.9 1.14 17.3 3.5 23 465.0 200.0 PVC 81.4 5.9 1.14 17.3 3.5 23 465.0 363.9 PVC 35.5 1.14 17.3 3.5 24 465.1 16.0 PVC <td>610</td> <td></td> <td>47</td> <td>6.0</td> <td></td> <td></td>	610											47	6.0		
FESERVCIR 1(OUT) 503.8 1419.8 PVC 99.4 5.9 0.77 6.6 9.4 12 468.2 1419.8 PVC 99.4 5.9 1.14 17.3 3.3 13 467.4 189.1 PVC 89.4 5.9 1.14 17.3 4.1 15 466.5 238.8 PVC 81.4 5.9 1.14 17.3 3.3 12 466.0 200.0 PVC 81.4 5.9 1.14 17.3 3.1 12 466.0 200.0 PVC 81.4 5.9 1.14 17.3 3.5 23 466.0 200.0 PVC 81.4 5.9 1.14 17.3 3.5 23 466.0 200.0 PVC 81.4 5.9 1.14 17.3 3.5 23 466.0 760 PVC 81.4 5.9 1.14 17.3 3.5 24 160 PVC 36.2 1.0 1.14 17.3 3.5 24 466.0 363.9	320														
RESERVOIR 1(OUT) 503.8 143.1 PVC 93.4 5.9 0.77 6.6 9.4 13 467.4 189.1 PVC 81.4 5.9 1.14 17.3 3.3 15 466.5 238.8 PVC 81.4 5.9 1.14 17.3 3.3 19 466.7 696.6 PVC 81.4 5.9 1.14 17.3 3.3 23 466.0 200.0 PVC 81.4 5.9 1.14 17.3 3.5 23 466.0 200.0 PVC 81.4 5.9 1.14 17.3 3.5 23 466.0 200.0 PVC 81.4 5.9 1.14 17.3 3.5 26 465.1 200.0 PVC 81.4 5.9 1.14 17.3 3.5 26 465.1 200.0 PVC 81.4 2.4 0.67 3.6 0.7 21 465.0 36.3 PVC	321														
12 468.2 149.8 PVC 99.4 5.9 0.77 6.6 9.4 15 467.4 189.1 PVC 81.4 5.9 1.14 17.3 3.3 15 466.5 238.8 PVC 81.4 5.9 1.14 17.3 3.3 19 466.7 696.6 PVC 81.4 5.9 1.14 17.3 3.3 12 466.7 696.6 PVC 81.4 5.9 1.14 17.3 3.5 22 467.1 150.0 PVC 81.4 5.9 1.14 17.3 3.5 23 466.0 200.0 PVC 81.4 5.9 1.14 17.3 3.5 2466.0 200.0 PVC 81.4 5.9 1.14 17.3 3.5 26 465.0 16.0 91.4 2.6 9.3 9.7 27 266 1.14 17.3 3.7 9.14 17.3 3.6 <t< td=""><td>322</td><td>RESERVOIR</td><td>1(OUT)</td><td>503.8</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>20</td><td>3.8</td><td></td><td></td></t<>	322	RESERVOIR	1(OUT)	503.8						-		20	3.8		
13 467.4 189.1 PVC 81.4 5.9 1.14 17.3 3.3 15 466.5 238.8 PVC 81.4 5.9 1.14 17.3 4.1 19 466.7 696.6 PVC 81.4 5.9 1.14 17.3 4.1 12 466.7 696.6 PVC 81.4 5.9 1.14 17.3 2.6 22 465.0 200.0 PVC 81.4 5.9 1.14 17.3 2.6 23 466.0 200.0 PVC 81.4 5.9 1.14 17.3 2.6 23 466.0 200.0 PVC 81.4 5.9 1.14 17.3 3.5 246 0.57 16.6 PVC 81.4 5.9 1.14 17.3 3.5 246 $0.363.9$ PVC 81.4 5.9 1.14 17.3 3.5 246 $0.46.0$ 363.9 PVC 81.4 5.9 <	23		12	468.2	1419.8	PVC	99.4	• •					4.4	26.2	35.6
15 466.5 238.8 PVC 81.4 5.9 1.14 17.3 4.1 19 466.7 696.6 PVC 57 1.8 0.71 10.9 7.6 12 22 467.2 150.0 PVC 81.4 5.9 1.14 17.3 2.6 23 466.0 200.0 PVC 81.4 5.9 1.14 17.3 3.5 26 465.1 200.0 PVC 81.4 5.9 1.14 17.3 3.5 27 465.0 363.9 PVC 81.4 5.9 1.14 17.3 3.5 27 465.0 363.9 PVC 5.7 2.4 0.3 0.7 29 466.0 363.9 PVC 35.5 1.04 38.5 1.4 29 466.0 363.9 PVC 35.7 1.04 38.5 1.4 29 1 1.04 38.5	324		13	467.4	189.1			5.9	1.14			-	1.1	23.7	36.4
19 466.7 696.6 PVC 57 1.8 0.71 10.9 7.6 12 12 59.4 59.4 1.14 17.3 2.6 22 465.1 200.0 PVC 81.4 5.9 1.14 17.3 2.6 23 466.0 200.0 PVC 81.4 5.9 1.14 17.3 3.5 26 465.1 200.0 PVC 81.4 5.9 1.14 17.3 3.5 27 465.0 16.0 PVC 81.4 2.4 0.97 3.5 29 466.0 363.9 PVC 35.2 1.0 1.04 38.5 1.4 29 466.0 363.9 PVC 35.2 1.0 1.04 38.5 1.4 1 1 1 1 2.4 0.97 38.5 1.4 1 1 1 1 1.04 38.5 1.4 1.4 1 1 1 1 1.04 38.5	325		15	466.5	238.8			5.9	Υ.				37.0	20.5	37.3
12 99.4 1.4 17.3 2.6 22 467.2 150.0 PVC 81.4 5.9 1.14 17.3 2.6 23 466.0 200.0 PVC 81.4 5.9 1.14 17.3 3.5 26 465.1 200.0 PVC 81.4 2.4 0.47 3.3 0.7 27 465.0 16.0 PVC 81.4 2.4 0.47 3.3 0.7 27 465.0 16.0 PVC 81.4 2.4 0.47 3.3 0.7 27 465.0 363.9 PVC 35.2 1.0 1.04 38.5 1.4 29 466.0 363.9 PVC 35.2 1.0 1.04 38.5 1.4 1 1 1 1 1 1 1 1 1 1 1 29 466.0 363.9 PVC 35.2 1.0 1.04 38.5 1.4 1 1 1 1 1 1 1 1	326			466.7	696.6		57		0.71	2	~		9.4	12.7	37.1
12 99.4 99.4 99.4 11.1 17.3 2.6 23 465.0 200.0 PVC 81.4 5.9 1.14 17.3 2.6 26 465.1 200.0 PVC 81.4 5.9 1.14 17.3 3.5 26 465.1 200.0 PVC 81.4 2.4 0.47 3.3 0.7 27 465.0 16.0 PVC 81.4 2.4 0.47 3.3 0.7 29 465.0 363.9 PVC 35.2 1.0 1.04 38.5 14 29 466.0 363.9 PVC 35.2 1.0 1.04 38.5 14 29 466.0 363.9 PVC 35.2 1.0 1.04 38.5 14 20 1 1 1 1 1 1 1 1 1 29 466.0 363.9 PVC 35.2 1.0 1.04 38.5 1.4 1 1 1 1 1 1 1 <td>327</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td>	327										-				
22 467.2 150.0 PVC 81.4 5.9 1.14 17.3 2.6 23 466.0 200.0 PVC 81.4 5.9 1.14 17.3 3.5 26 465.1 200.0 PVC 81.4 2.4 0.47 3.3 0.7 27 465.0 360.0 PVC 81.4 2.4 0.47 3.3 0.7 29 466.0 363.9 PVC 35.2 1.0 1.04 38.5 1.4 29 466.0 363.9 PVC 35.2 1.0 1.04 38.5 1.4 29 466.0 363.9 PVC 35.2 1.0 1.04 38.5 1.4 20 1 1 1 1 1 1 1 1 29 466.0 38.5 1.04 38.5 1.14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	328			-			99.4					49	34.4		
23 466.0 200.0 PVC 81.4 5.9 1.14 17.3 3.5 26 465.1 200.0 PVC 81.4 2.4 0.47 3.3 0.7 27 465.0 16.0 PVC 81.4 2.4 0.95 18.6 0.3 27 465.0 363.9 PVC 57 2.4 0.95 18.6 0.3 29 466.0 363.9 PVC 35.2 1.0 1.04 38.5 14 1 1 1 1 1 38.5 1.4 1 1 1 1 1 1 1 1 1 1 1 1 1	239		22	467.2	150.0	Į	81.4	5.9	1.14				91.8	24.6	36.6
26 465.1 200.0 PVC 81.4 2.4 0.47 3.3 0.7 27 465.0 16.0 PVC 57 2.4 0.95 18.6 0.3 29 466.0 363.9 PVC 35.2 1.0 1.04 38.5 14 29 466.0 363.9 PVC 35.2 1.0 1.04 38.5 14 29 466.0 363.9 PVC 35.2 1.0 1.04 38.5 14 20 1 1 1 1 1 1 1 1 29 466.0 363.9 PVC 35.2 1.0 1.04 38.5 14 20 1 1 1 1 1 1 1 1 1 1 21 1	000		23	466.0	200.0			5.9	-	17			488.3	22.3	37.8
27 465.0 16.0 PVC 57 2.4 0.95 18.6 0.3 29 466.0 363.9 PVC 35.2 1.0 1.04 38.5 14 29 466.0 363.9 PVC 35.2 1.0 1.04 38.5 14 29 466.0 363.9 PVC 35.2 1.0 1.04 38.5 14 20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	31		26	465.1	200.0		81.4	2.4					487.6	22.5	38.7
29 466.0 363.9 PVC 35.2 1.0 1.04 38.5 14 473 1 <td< td=""><td>332</td><td></td><td>27</td><td>465.0</td><td>16.0</td><td></td><td>57</td><td>2.4</td><td></td><td></td><td></td><td></td><td>487.3</td><td>22.3</td><td>38.8</td></td<>	332		27	465.0	16.0		57	2.4					487.3	22.3	38.8
	333		29	466.0	363.9		35.2	-		38	-		73.3	7.3	37.8
	334														
	335				-										
	336														
	337			t.											
	33.8														
340 341 342 342 343	0000														
341	340														
342	341														
343	342														
	343	-											_		
	344														

--73- -

ယု
~
~
U,
_
Ω
<u> </u>
O.
~
\odot
\odot
\supset
<
~~
ш
~
\leq
Т.

BRANCH G.L. LENGTH
(m)
R(OUT) 523.8
512.8 50.0 PVC
506.7 232.6 PVC
+-
15 513.8 50.0 PVC
17 516.2 395.0 PVC
508.4
8
20 509.6 368.1 PVC
507.1 373.3 PVC

74

	«	m	с U	۵	ш	L	U	Ŧ		5	¥			
377	WAKADIA	BRANCH	GL	LENGTH	Kind of	Kind of Diamet-	Quanti- Veloci-	Veloci-	Gradi-	Friction	Hydraulic Wate			<u>.</u>
378	LOCATION	No.	(m)	(îiii)	Pipe	er(mm)	er(mm) ty(1/s) ty(m/s)	ty(m/s)	ent(%)	Loss(m)	Level(m)	n) Head(m)	Head(m)	E
379														
380	ELEVATED				_									
	TANK(543.3)													
		16(OUT)	564.3								564.	.3		
383		18	533.9	1166.4	PVC	144.6	9.9	0.61	2.8	3.3	561.0	.0 27.1	1	30.4
384		29	537.5	1138.7	PVC	99.4	6.9	0.9	8.8	10	551	-0 13	5	26.8
385		33	536.6	500.0	PVC	81.4	2.1	0.41	2.6	1.3	549.7	.7 13.1	mep	27.7
386														
387		29				99.4					551.0	0.		
388 38		37	519.4	1000.0	PVC	81.4	4.4	0.85	10.1	10.1	540.9	0.9 21.5	-01	44.9
389		2+800	516.8	1800.0	PVC	81.4	4.4	0.85	10.1	18.2	522.7	2.7 5.9	о	47.5
390														
391														
392														
393														
394														
395														
396														
397														
398														
399														
400				1										
104														
402														
403														
404														

1	
	c)
	÷
	4
	<u>ר</u>
	\simeq
	-
	<u> </u>
	\Box
	2
	<u>~</u>
	C)
	ō.
	\sim
	ς ۲.
	\simeq
	5
	٩,
	œ
	0
	Ľ.
	~
	T.
	-

					·	I	HYDRAULIC CONDITION-5		110N-5					
436 Lance Develor E C Develor Hart Hart 436 LCATTON Mo. (m) <														5
ADS Larvaire Kind of luganer-Autanti-Veloci- Gradit Friction Martenti ryotautic 405 LOCATION Ne. (m) (m) (m) (m) (m) (m) 406 LOCATION Ne. (m) (m) Pipe erf(mm) y(l/s) y(m/s) ent/s01 level(m) Head(m) 401 LOCATION Ne. (m) (m) Pipe erf(mm) y(l/s) y(m/s) ent/s01 level(m) Head(m) 403 LEVATED No. (m) File state			8	0		- 1	-	5						M
406 LocATION No. (m) (m) (m) Pipe er(mn) V(US) V(mS) Corel(m) Fead(m) Fead(m) <th< th=""><th>405</th><th></th><th>BRANCH</th><th>GL</th><th></th><th>O.</th><th>Diamet-</th><th>Quanti-</th><th></th><th>Gradi-</th><th><u>Friction</u></th><th></th><th></th><th>Static</th></th<>	405		BRANCH	GL		O.	Diamet-	Quanti-		Gradi-	<u>Friction</u>			Static
407 408 EEWNED 1	40 40 7		° V	(m)	(E)	Pipe	er(mm)	-		ent(%)	Loss(m)	revei(m		Head(m)
400 ELEVATED 400 ELEVATED 511.0 511.7 <	407								-					
TANK(500.0) 0(OUT) 511.0 511.7	408													
410 0(0UT) 511.0 511.0 511.0 411 12 46.9 2992.4 PVC 144.6 0.65 3.1 9.3 501.7 412 13 472.0 404.7 PVC 81.4 9.4 1.82 485.1 413 15 474.6 665.9 PVC 81.4 3.4 16.5 485.1 415 12 474.6 665.9 PVC 81.4 9.4 1.82 41 16.6 415 12 146 665.4 PVC 81.4 9.4 1.82 41 66.6 416 1 6 459.8 783.9 PVC 81.4 9.4 1.82 432.9 417 1 1 6 459.8 783.9 PVC 81.4 9.4 1.82 418.9 66.6 418 1 1 1.82 7.8 7.8 485.9 7.85.9 485.9 418 1 <t< td=""><td>409</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	409													
411 12 466.9 2992.4 VC 14.6 0.5 3.1 9.3 501.7 412 13 472.0 404.7 VC 81.4 9.4 1.82 41 16.6 485.1 413 12 474.6 665.9 VC 81.4 9.4 1.82 41 16.6 485.1 416 16 459.8 783.9 VC 81.4 9.4 1.82 41 2.22 485.1 417 16 459.8 783.9 VC 81.4 9.4 1.82 41 2.7 485.1 417 16 453.1 17 144.6 17 12 149.6 485.1 418 17 17 12 17 12 12 469.6 418 17 18 1.82 1.82 1.82 483.4 418 17 <td< td=""><td>410</td><td></td><td></td><td>511.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>511.0</td><td>0</td><td></td></td<>	410			511.0								511.0	0	
412 13 472.0 404.7 FVC 81.4 9.4 1.82 41 16.6 485.1 13 413 15 474.6 665.9 FVC 81.4 2.4 0.47 33 2.2 482.9 8 414 12 12 450.8 783.9 FVC 81.4 9.4 1.82 41 50.7 50.7 416 12 16 450.8 783.9 FVC 81.4 9.4 1.82 41 50.7	417		12	466.9	2992.4		144.6		0.65		9.3			44.1
13 15 474.6 665.9 PVC 81.4 2.4 0.47 3.3 2.2 482.9 8 414 12 12 12 14.6 12 14.6 12 142.9 8 415 16 459.8 783.9 PVC 81.4 9.4 1.82 41.2 50.17 50.17 416 16 459.8 783.9 PVC 81.4 9.4 1.82 41.9 50.17 <td>4</td> <td></td> <td>13</td> <td>472.0</td> <td>404.7</td> <td></td> <td>81.4</td> <td></td> <td>1.82</td> <td></td> <td>16.6</td> <td></td> <td></td> <td>39.0</td>	4		13	472.0	404.7		81.4		1.82		16.6			39.0
414 12 12 12 14.6 144.6 144.6 501.7 415 16 459.8 783.9 VC 81.4 9.4 1.82 41 32.1 469.6 417 16 459.8 783.9 VC 81.4 9.4 1.82 41 32.1 469.6 418 17 0.9 81.4 9.4 1.82 41 32.1 469.6 418 17 $0.81.6$ VC 81.4 9.4 1.82 419.6 469.6 420 18 463.1 665.4 VC 57 3.5 438.9 421 18 463.1 665.4 VC 57 3.5 438.9 422 18 463.1 112 0.48 5.2 $3.83.4$ 424 18 465.4 112 0.48 5.2 $3.83.4$ 424	ে ** *†	~	15	474.6	665.9		81.4		0.47	3.3	2.2		8	36.4
115 12 12 14.6 144.6 144.6 150.7 501.7 416 16 459.8 783.9 702 81.4 9.4 1.82 41 32.1 469.6 417 17 17 17 17 18 463.1 665.4 PVC 57 1.2 0.48 5.2 3.56 493.4 422 18 463.1 665.4 PVC 57 1.2 0.48 5.2 3.56 493.4 422 18 463.1 665.4 PVC 57 1.2 0.48 5.2 $3.69.6$ 422 18 463.1 665.4 PVC 57 1.82 493.4 423 18 463.1 166.6 1.72 0.48 5.2 $3.66.9$ 423 18 1.22 0.48 5.2 3.56 493.4 424 1.6 <td>4</td> <td>et.</td> <td></td>	4	et.												
416 16 459.8 783.9 VC 81.4 9.4 1.82 41 32.1 469.6 417 1 <td< td=""><td>41</td><td>2</td><td></td><td></td><td></td><td></td><td>144.6</td><td></td><td></td><td></td><td></td><td>501.7</td><td>~</td><td></td></td<>	41	2					144.6					501.7	~	
	416	0	16	459.8	783.9	1	81.4		1.82	4	32.1	469.6		51.2
	41	7												
419 17 18 463.1 665.4 PVC 57 1.2 0.48 5.2 3.5 486.3 421 18 463.1 665.4 PVC 57 1.2 0.48 5.2 3.5 483.4 421 18 463.1 665.4 PVC 57 1.2 0.48 5.2 3.5 483.4 423 1		8												
18 463.1 665.4 PVC 57 1.2 0.48 5.2 3.5 483.4 11 1		0						-				486.5		
421 422 423 424 425 425 426 427 428 429 429 431 432	42(0	18	463.1	665.4	1	57		0.48	5.2	3.5	483.4		47.9
422 423 424 425 425 425 426 427 428 429 429 430 431	42	4 ~												
423 424 425 425 425 425 425 425 427 428 429 421 421 421 421 421 421 421 421 421 421 421 421 421 421 421 422 423	42	2												
424 4255 426 427 427 4231 4231 432 432 432	42	3												
425 426 426 427 428 429 430 431 432 432	2 2 2	4												
4 4 4 5 6 4 4 5 6 7 6 4 3 0 6 7 7 7 5 4 3 0 7 7 7 7 7 3 0 0 1	42	5												
4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 4 3 4	42	9												
4 4 4 5 8 4 3 3 6 8 8 4 3 3 6 8 8 8 5 4 3 0 6 8 8 8 4 3 0 6 8	42	7												
430 430 431 431 432	42	8												
430	42	0												
431	4	0												
432	43	4 -1												
	43	2												

--76---

	A	8	U U	٥	ш	u.	9	н		5	×			X
433	ANDONOHU	BRANCH	G.L	LENGTH	Kind of	Diamet-	Quanti-	Veloci-	Gradi-	Friction	Hydraulic Wa	Water Hyc	Hydraulic	Static
434	LOCATION	No.	(m)	(m)	Pipe	er(mm)	ty(1/s)	ty(I/s) ty(m/s)	ent(%)	Loss(m)	Level(m)		Head(m)	Head(m)
435	INTAKE		500.0								50	500.0		-
436	PUMP ST.		487.7	1250.0	ß	157	4.6	0.23	0.4	0.5	499.	9.5	11.8	12.3
437	ELEVATED													
438	TANK(505.0)	1(OUT)	526.0								52	526.0		
439		26.	505.4	50.0	ß	102	11.1	1.37	18.6	0.9		525.1	19.7	20.6
440		21	478.2	1415.9	PVC	144.6	7.4	0.45	1.6	2.3		522.8	44.6	47.8
441		17	477.5	1113.2	PVC	99.4	43	0.56	3.7	4 1	518.	8.7	41.2	48.5
442		16	474.4	254.5	PVC	81.4	3.3	0.64	5.9	1.5	51		42.8	51.6
443		7	487.4	1723.0	PVC	81.4	2.4	0.47	3.3	5.7	21	ب ت	24.1	38.6
244		Ω.	493.6	411.5	l	81.4	1.9	0.37	2.1	6.0		510.6	17.0	32.4
445		0	505.3	1107.8	PVC	81.4	0.6	0.13	0.3	0.3		510.3	5.0	20.7
446		26	505.4	37.4		81.4	. 0.6	0.13	0.3	0	510.	0.3	4.9	20.6
447		-												
4 8 8														
449														
450														
451	-	26				144.6					52	525.1		
452		30	492.6	720.2	PVC	35.2	0.6	0.62	15	10.8	-	514.3	21.7	33.4
453														
454														
455														
456														
457														
458														
459														
460														

,

- Ŵ
÷
~
\circ
-
$\overline{\mathbf{O}}$
<u></u>
O
\mathbf{O}
0
5
~
Œ
\cap
7
4
_ ال_

	A	8	с С	۵	ш	u .,	σ	H		-	×		M
461	LIANG	BRANCH	GL	LENGTH	Kind of	Diamet-	0 0	Veloci-	Gradi-	Friction	Hydraulic Water	Hvd	Static
462	LOCATION	ġ	E)	(m)	Pipe	er(mm)	ty(i/s)	ty(m/s)	ent(%)	Loss(m)	5		Head(m)
463	INTAKE	0	500.0								500.0		
464	RESERVOIR	16(IN)	\$72.3	450.1	с С	76	2.4	0.54	4.6	2.1	497	9 25.6	27.7
465													
466		16(OUT)	470.3								470.3	3	
467		26	427.6	299.9	с С С С С	75	6.8	1.51	31.5	9.4	460.9	.9 33.3	42.7
468		28	425.8	106.6	PVC	81.4	6.4	1.24	20.2	2.2	458.	2	44.5
469		31	426.4	396.2	PVC	81.4	6.4	1.24	20.2	8	450.7		43.9
470		33	428.5	68.2	PVC	81.4	3.9	0.76	8.1	0.6	450.1		41.8
471		37	426.0	312.7	PVC	57		0.95	18.6	5.8	444.3	3 18.3	44.3
472		40	442.1	392.5	PVC	57	0.5	0.2		0.4	443.	9 1.8	28.2
473													
474		37				57					444.	3	
475		49	424.9	255.4	ട്ട	51	2.0	0.99	22.8	5.8	438.	5 13.6	45.4
476													
477		28				81.4					458.	7	
478		47	426.1	120.7	PVC	35.2	0.2	0.21	2	0.2	458.	5 32.4	44.2
479													
430													
481	-												
482													
483													
484				-									
485													
486													
487													
488													

- 78--

١Q
Z
\cap
\simeq
}
-
L
7
5
Q
0
~
\circ
_
=
~
<
£
-
Ę
\geq
1

Level(m) Head(m) Head(m)					526.8		526.8 521.8 21.3 515.6 7.3	526.8 521.8 515.6 7.3 514.5 6.3	526.8 521.8 21.3 515.6 7.3 514.5 6.3 514.3 6.0	526.8 521.8 521.8 515.6 7.3 514.5 6.3 514.3 6.0 513.4 5.1	526.8 521.8 21.3 515.6 7.3 514.5 6.3 514.3 6.0 513.4 5.1 512.7 5.1	526.8 521.8 521.8 515.6 7.3 514.5 6.3 514.3 6.3 514.3 6.0 513.4 513.4 5.1 513.4 5.1 511.2 7.8	526.8 521.8 21.3 515.6 7.3 514.5 6.3 514.3 6.0 513.4 5.1 512.7 5.1 511.2 7.8	526.8 521.8 21.3 515.6 7.3 514.5 6.3 514.3 6.0 513.4 5.1 512.7 5.1 511.2 7.8	526.8 521.8 21.3 515.6 7.3 514.5 6.3 514.3 6.0 513.4 5.1 512.7 5.1 511.2 7.8	526.8 521.8 21.3 515.6 7.3 514.5 6.3 514.3 6.0 513.4 5.1 512.7 5.1 511.2 7.8	526.8 521.8 21.3 515.6 7.3 514.5 6.3 514.3 6.0 513.4 5.1 511.2 7.8 511.2 7.8	526.8 521.8 521.8 515.6 514.5 514.5 514.3 514.3 6.0 513.4 513.4 511.2 7.8 511.2 7.8	526.8 521.8 21.3 515.6 7.3 514.5 6.3 514.3 6.0 513.4 5.1 511.2 7.8 511.2 7.8	526.8 521.8 521.8 515.6 514.5 514.5 514.3 514.3 513.4 513.4 511.2 511.2 511.2 511.2 511.2 511.2 511.2 511.2 511.2 511.2 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3	526.8 521.8 21.3 515.6 7.3 514.5 6.3 514.3 6.0 513.4 5.1 511.2 7.8 511.2 7.8	526.8 521.8 21.3 521.8 21.3 515.6 7.3 515.6 7.3 6.0 514.3 6.0 513.4 5.1 513.4 5.1 511.2 7.8 511.2 7.8	526.8 521.8 21.3 521.8 21.3 514.5 514.5 6.3 514.3 6.0 513.4 5.1 511.2 7.8 511.2 7.8	526.8 521.8 21.3 521.8 21.3 513.6 515.6 7.3 514.5 514.3 6.0 513.4 5.1 513.4 5.1 511.2 7.8 511.2 7.8	526.8 521.8 21.3 521.8 21.3 514.5 514.5 6.3 513.4 5.1 512.7 5.1 511.2 7.8 511.2 7.8	526.8 521.8 21.3 521.8 21.3 515.6 7.3 514.5 6.0 514.3 6.0 513.4 5.1 5.1 512.7 5.1 5.1 512.7 5.1 5.1 512.7 5.1 5.1
) Loss(m)			~~			2	<u>ن</u>	φ τ	0 - 0																	
;) ent(%)			~			8		-	ω ω	0 U	<u>ی</u>	۵ o	ω σ	a a -	ω φ γ	a a	φ ω τ	a a			ω	a a a a a a a a a a a a a a a a a a a				
er(mm) ty(i/s) ty(m/s)						.6																				
n) ty(i/s		•				6 17	17																			
						144	144		144 144 99	81 99 81	81 81 81	8 8 8 9 9 9 9 9 9 7 1 4 4 4 7 1 4 4 7 1 1 4 7 1 1 1 1	144 144 144 144 18 8 11 14	1444 1444 1444 1444 1444 1444	144 144 144 144 144 1 144 1 1	441 444 444 444 1444 1444 1444 1444 14	8 31 44 4 144 4	4411 4444 4444 4444 4444 4444 4444 444	1 1 1 1 4 4 1 1 4 4 4 1 1 1 1 1 4 4 4 1 1 1 1 1 4 4 4 1 1 1 1 1 4 4 4 1	4411 4441 4441 4441 444 444 444 444 444	1 1	447 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	44 1 44 1	447 1 1 4 4 4 4 7 4 6 6 6 7 4 4 4 4 4 4 4 4 4 4	1 1	447 1 4 4 6 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Pipe			_			0.9 PVC																				
(m)						630.9	630.9 780.2																			
(ш)					526.8	526.8 500.5	526.8 500.5 508.3	526.8 500.5 508.3 508.2	526.8 500.5 508.3 508.2 508.3	526.8 500.5 508.3 508.3 508.3 508.3	526.8 526.8 508.3 508.3 508.3 508.3 508.3	526.8 500.5 508.3 508.3 508.3 508.3 508.3 508.3 508.3	500.5 500.5 500.5 508.3 508.3 508.3 508.3 508.3 508.3	526.8 500.5 508.3 508.3 508.3 508.3 508.3 508.3 503.4	508.3 508.3 508.3 508.3 508.3 508.3 508.3 508.3	508.3 508.3 508.3 508.3 508.3 508.3 508.3 503.4	526.8 500.5 508.3 508.3 508.3 508.3 508.3 503.4	526.8 500.5 508.3 508.3 508.3 508.3 508.3 508.3 503.4	526.8 500.5 508.3 508.3 508.3 508.3 508.3 503.4	508.3 508.3 508.3 508.3 508.3 508.3 508.3 508.3 503.4	526.8 500.5 508.3 508.3 508.3 508.3 508.3 508.3	526.8 508.3 508.3 508.3 508.3 508.3 508.3 508.3 503.4	500.5 500.5 508.3 508.3 508.3 508.3 508.3	508.3 508.3 508.3 508.3 508.3 508.3 508.3 503.4	526.8 500.5 508.3 508.3 508.3 508.3 508.3	508.3 508.3 508.3 508.3 508.3 508.3 508.3 508.3 508.3
So.					19(OUT)	19(OUT) 1+100	19(OUT) 1+100 31	19(OUT) 1+100 31 36	19(OUT) 1+100 31 36 37	19(OUT) 1+100 31 36 37 39 39	19(OUT) 1+100 31 36 37 39 40	19(OUT) 1+100 31 36 37 39 39 40 42	1+100 1+100 31 35 37 39 40 42	19(OUT) 1+100 31 36 36 36 39 42 42	19(OUT) 1+100 31 36 36 33 39 40 42 42	19(OUT) 1+100 31 36 37 39 39 39 39 39 39 39 31	19(OUT) 1+100 31 36 36 33 39 39 39 39 39	19(OUT) 1+100 31 36 36 36 36 39 42 42	19(OUT) 1+100 1+100 31 36 37 39 31 32 33 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 <	19(OUT) 1+100 31 36 36 36 36 36 36 36 37 39 42 42	19(OUT) 1+100 1+100 31 36 37 36 37 39 31 32 33 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 <	19(OUT) 19(OUT) 1+100 31 36 37 39 39 39 39 39 31 33 39 31 32 39 31 32 33 39 31 32 33 34 42 42	19(OUT) 1+100 31 36 36 33 39 36 36 37 37 36 37 37 36 40 42 42	19(OUT) 19(OUT) 1+100 31 33 36 37 39 39 39 39 37 39 37 39 39 39 39 39 39 39 39 39 39 39 31 32 33 39 31 32 33 33 33 34 35 36 37 38 39 39 39 39 39 39 39 39 39 39 39 39 39	19(OUT) 1+100 31 33 33 33 42 42 42 42	19(OUT) 1+100 31 36 36 36 36 36 36 36 36 36 37 37 39 42 42
LOCATION			ELEVATED																							
490	Y C V		492	· · · · · ·																						

· ·	IYDRAULIC CONDITION-5	
	НУДРА	

.

A B C D E F G H I J J Kat L M LUCXTION No. (m) (m) (m) (m) (m) Kat L Level(m) Head(m)						I) ; ; ;					
A B C D E F C A Lat List H Lat Lat H Lat H Lat H Lat Lat H Lat Lat H Lat Lat<														
SWDANCEPANG GL IENGTH Kind of Diamei-Quanti-Veloci: Gradi- Friction Hydraulic Name Water Hydraulic Stati LOCATION No. (m) (m) Pipe er(m) IV(I/IS) IV(I/IS)		A	8	o v	۵	u		σ	r		5	¥	ن ه	M
Level (m) (m) (m) (m) Pipe er(m) $ V(1/5) $ Level (m) head(m)	517	SANDANGPANG	BRANCH	GL		Kind of	Diamet-	Quanti-	eloci	Gradi-	Friction	1 1	ter Hydraulik	
RESERVOIR FISTONIR 775.5 775.5 775.5 10 775.5 12 1 7 745.7 276.1 PVC 81.4 8.8 1.71 36.3 10 775.5 19.8 1 7 745.7 276.1 PVC 81.4 6.7 1.3 21.9 5.2 760.3 14.3 1 9 746.0 229.1 PVC 81.4 6.7 1.3 21.9 5.2 760.3 14.3 1 7 730.8 2239.9 PVC 81.4 4.2 0.65 6.6 14.7 736.3 16.2 1 7 730.8 2229.9 PVC 81.4 4.2 0.7 0.73 19.9 25 760.3 12.8 1 7 730.6 81.4 4.2 0.7 0.73 19.9 19.9 12.8 12.8 1 7 750.6 91.4 0.7 0.73 19.9 19.9 765.5 13.0 1 7 750.6 91	518	LOCATION	No.	(m)	(m)	Pipe	er(mm)		ty(m/s)	ent(%)	Loss(m)	Level		Head(m)
RESERVOIR I	ອງ ເມ									·				
15(0UT) 775.5 776.1 PVC 81.4 6.7 1.3 216.3 776.5 19.8 17 745.7 276.1 PVC 81.4 6.7 1.3 216.3 19.3 19 746.0 23311 PVC 81.4 6.7 1.3 219.5 760.5 19.3 23 742.1 215.6 PVC 81.4 4.2 0.81 9.2 765.3 14.3 17 330.8 2229.9 PVC 81.4 3.5 0.66 14.7 73.6 12.8 17 17 81.4 3.5 0.63 19.2 2 765.5 12.8 17 17 18 14 2 0.7 0.73 19.9 2.5 73.6 12.8 18 745.0 12.6 PVC 35.2 0.7 0.73 19.9 765.5 13.0 17 19 745.8 47.6 35.2 0.7 0.73 19.9 1.9 765.5 13.0 18 19 9 74.6 <t< td=""><td>520</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	520													
i5(0UT) 775.5 775.5 775.5 17 745.7 276.1 PVC 81.4 6.8 1.7 765.5 19.8 19 745.0 233.1 PVC 81.4 6.7 17.3 21.9 765.5 19.8 19 742.1 215.8 PVC 81.4 4.2 0.81 6.7 765.5 14.3 17 700.8 2229.9 PVC 81.4 4.2 0.88 6.6 14.7 743.6 12.3 17 700.8 2229.9 PVC 81.4 4.2 0.73 19.9 2.7 12.3 17 700.8 2252 0.7 0.73 19.9 2.5 763.6 12.6 17 745.6 97.4 PVC 35.2 0.7 0.73 19.9 1.6 765.5 13.0 19 19.9 1.9 0.7 0.73 19.9	521													
	522		15(OUT)	775.5								775	5.5	
	523		17	745.7	276.1	PVC			1.71	36.3				29.8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	524		6 -	746.0	239.1	PVC			1.3		LO LO		44	29.5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	525		23	742.1	215.8				0.81				16	33.4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	526		47	730.8	2229.9		81.4		0.68		14.7			44.7
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	527													
48 745.0 126.1 PVC 35.2 0.7 0.73 19.9 2.5 763.0 18.0 17 17 2 250.6 97.4 PVC 35.2 0.7 0.73 19.9 763.5 13.0 17 19 750.6 97.4 PVC 35.2 0.7 0.73 19.9 1.9 765.5 13.0 19 750.6 97.4 PVC 35.2 0.7 0.73 19.9 1.9 763.6 13.0 19 760.3 18.4 2 0.7 0.73 19.9 0.9 759.4 12.6 50 746.8 PVC 35.2 0.7 0.73 19.9 0.9 759.4 12.6 9 10 1 <td>528</td> <td></td> <td>17</td> <td></td> <td></td> <td></td> <td>81.4</td> <td></td> <td></td> <td></td> <td></td> <td>765</td> <td>.5</td> <td></td>	528		17				81.4					765	.5	
17 81.4 81.4 750.6 97.4 PVC 35.2 0.7 0.73 19.9 1.9 765.5 49 750.6 97.4 PVC 35.2 0.7 0.73 19.9 1.9 765.5 19 19 81.4 19.9 1.9 760.3 13.0 19 746.8 47.6 PVC 35.2 0.7 0.73 19.9 0.9 759.4 12.6 50 746.8 47.6 PVC 35.2 0.7 0.73 19.9 0.9 759.4 12.6 10 1 19.9 0.9 759.4 12.6 759.4 12.6 10 1 1 1 1 1 1 1 1 11 1	529		48	745.0	126.1		35.2		0.73		2			30.5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	530													
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	534		17				81.4					765	5	
19 760.3 50 746.8 47.6 PVC 35.2 0.7 0.9 759.4 12.6 13 14 15 16 17 18 19 19 19.9	532		49	750.6	97.4		35.2		0.73	19			Q	24.9
19 81.4 81.4 760.3 760.3 50 746.8 47.6 PVC 35.2 0.7 0.9 759.4 12.6 10 10 10 10 10 10 12.6 12.6 11 11 11 11 11 11 11 11 11 11	533													
50 746.8 47.6 PVC 35.2 0.7 0.73 19.9 0.9 759.4 12.6 12.6 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1	534						81.4							
	53	1	- 50	746.8	47.6	1	35.2	0	0.73	19	6.0			28.7
	53(6												
	53.	~												
	53	~												
	53	~												
542 542 543 543	54	<u> </u>												
542	54	5												
543	54;	2												
544	54	8												
	54.	***												

-80-

	Hydraulic Water Hydraulic Static						22.4	22.4 9.4	22.4 9.4 1 13.9 10.6 1	22.4 16.7 13.9 10.6 7.8 6.3	22.4 16.7 13.9 10.6 6.3 6.3	22.4 22.4 16.7 9.4 13.9 10.6 07.8 6.3	22.4 16.7 13.9 10.6 6.3 6.3	22.4 16.7 13.9 10.6 6.3 6.3	22.4 16.7 13.9 10.6 6.3 6.3	22.4 16.7 13.9 10.6 07.8 6.3	22.4 16.7 13.9 10.6 6.3 6.3	22.4 16.7 13.9 10.6 6.3 6.3	22.4 16.7 13.9 10.6 6.3 6.3	22.4 16.7 13.9 10.6 6.3 6.3	22.4 16.7 13.9 10.6 07.8 6.3 6.3	22.4 13.9 10.6 6.3 6.3 6.3	22.4 16.7 13.9 10.6 07.8 6.3 6.3 10.6	22.4 16.7 13.9 10.6 6.3 6.3	22.4 16.7 13.9 10.6 6.3 6.3	22.4 16.7 13.9 10.6 6.3 6.3 6.3	22.4 13.9 10.6 07.8 6.3 6.3	22.4 16.7 13.9 10.6 6.3 6.3
	1	LEVENIN)					522.4																					
1				-			522	5.7 516																				
Loss(m)																												
ent(%)	10/1112							58 2.5																				
er(mm) ty(l/s) ty(m/s)	Term to ler							9.4 0.58																				
er(mm) ty(l/s)					-			144.6 9.4																				
Pipe er(mn	+		-			-																						
(m) Pit	-						2274.9 PVC		2298.2 PV																			
(a) (a)	(111)					522.4	507.3	C C C Z	000.00	501.5	501.5	501.5	501.5	501.5	501.5	501.5	501.5	501.5	501.5	501.5	501.5 2.01.5	501.5	501.5	200.0	200.0	200.0	201.5	201.5
No.	0 <u>×</u>					15(OUT)	31	41	1	47	47	47	47	47	47	47	47	47	47	47	47	47	4 4	44	47	44	44	44
LAOMPO		LUCATION		ELEVATED	TANK(511.7)																							
	545	546	547	548	549 1	550	1 5 1 1	552	•	553	553 554	553 554 555	553 555 555 555 555 555 555 555 555 555	୍ୟ ହ ହ ହ ହ ହ ହ ହ ସ ହ ତ	5555 5555 5555 5555 5555 5555 5555 5555 5555	5553 5555 5555 5555 5553 5553 5553 555	5553 5555 5555 5555 5559 5559 5559	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	555 555 555 555 555 555 555 555 555 55	5553 5555 5555 5555 5555 5555 5555 555	5553 5553 5555 5555 5553 5553 5553 555	55 55 55 55 55 55 55 55 55 55 55 55 55	5553 5553 5555 5555 5555 5555 5555 555	5554 5553 5554 55555 5555 5555 5555 555	5 2 2 2 2 2 2 2 2 2 2 2 2 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1	ひ ひ ひ ひ ひ ひ ひ ひ ひ ひ ひ ひ ひ ひ

Constraints of the

	·												
	R	m	0	0	h	L	U	H		5	×		W
573	TROMANDA-1	BRANCH	GL	LENGTH	Kind of	Diamet-	Quanti-	Veloci-	Gradi-	Friction	Hydraulic Water	Water Hydraulic	Static
574	LOCATION	No.	(m)	(m)	Pipe	er(mm)	ty(I/s)	ty(m/s)	ent(%)	Loss(m)	Level(m)	Head(m)	Head(m)
575	INTAKE	0	1000.0								1000.0		
576		72(IN)	919.3	2800.1	ട്ട	76	1.6	0.36	3.4	9.5	990.5	71.2	80.7
577	RESERVIOR												
578		72(OUT)	917.2										
579											917.2		
580	PRESSURE	85	883.7	559.5	GSP	76	4.8	1.07	25.8	14.4	902.8	19.1	33.5
581	BREAKING							-					
582										-	883.7		
583	PRESSURE	93	829.2	406.5	ട്ട	76	4.8	1.07	25.8	10.5	873.2	44.0	54.5
584	BREAKING												
585							-				829.2		
586	PRESSURE	96	754.1	218.3	dSD	51	4.8	2.37	180.2	39.3	789.9	35.8	75.1
587	BREAKING												
588											754.1		
589		6 6	717.1	215.8	GSP	76	4.6	1.02	23.9	5.2	748.9	31.8	37.0
590		104	687.1	364.6	gg	51	3.9	1.93	122.8	44.8	704.1	17.0	67.0
591													
592	PRESSURE	127	499.1	988.8	ß	51	3.5	1.73	100.5	99.4	604.7	105.6	255.0
593	BREAKING												
594											499.1		
595		133	452.3	207.7	ЪЗ	51	2.5	1.24	53.9	11.2	487.9	35.6	46.8
596													
597	PRESSURE	149	404.7	427.8	в В	38	1.6	1.43	6 6	42.4	445.5	40.8	94.4
598	BREAKING												
599											404.7		
600		162	361.2	554.1	ଷ୍ପ	51	1.4	0.69	18.4	10.2	394.5	33.3	43.5

HYDRAULIC CONDITION-5

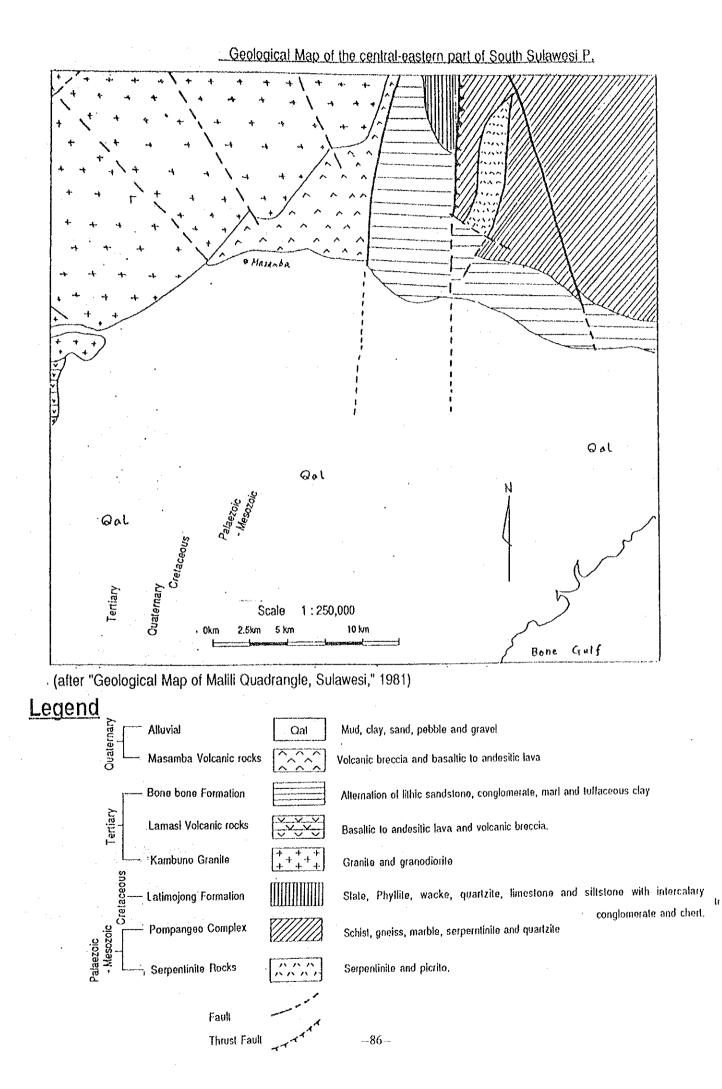
--82--

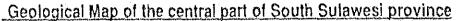
ŝ
4
0
_
F
Ω
7
-
O
\circ
\mathbf{O}
-
2
~
LL_
$\boldsymbol{\Box}$
5
~

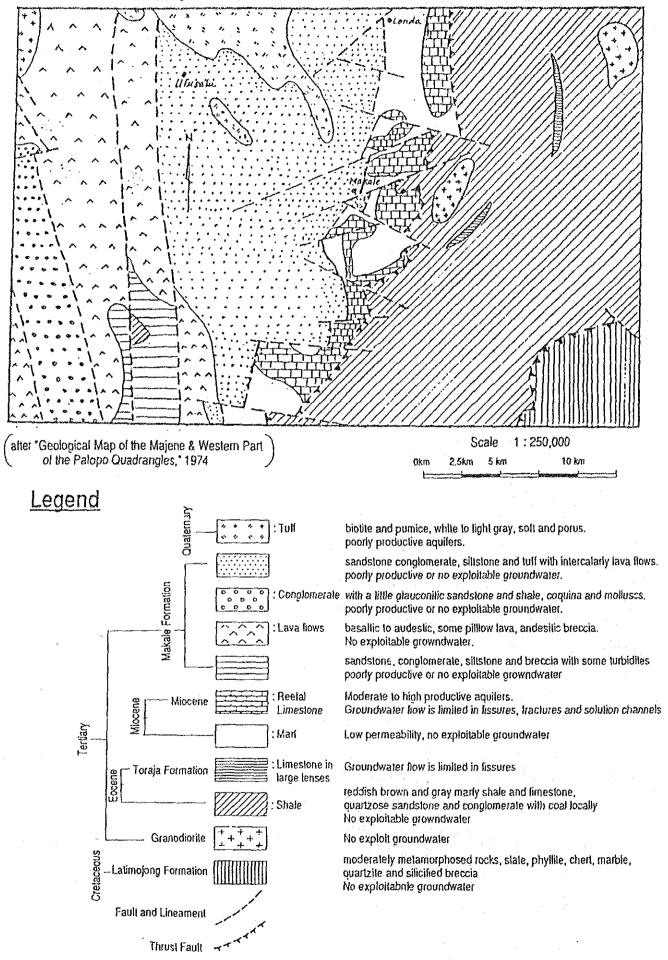
TEOMANDA_2 BRANCH G.L LENCTH Kind of Diamet- Quanti. Veloci. Cradi. Friction Hydreulic Hydreulic LOCATION No. (m) (m) (m) Pile er(mm) Hydreulic Hadfm) 1155 356.7 161.6 PVC 35.2 0.5 16.7 2.7 331.8 351.1 177 364.3 536.8 PVC 57 0.6 0.24 2.2 1.2 333.3 230.0 177 364.3 536.8 PVC 57 0.6 0.24 2.2 1.2 333.3 230.0 177 364.3 536.8 PVC 57 0.6 0.24 2.2 1.2 333.3 230.0 177 364.3 536.8 PVC 57 0.6 0.24 2.2 1.2 333.3 230.0 177 364.3 536.8 PVC 57 0.6 0.24 2.2 1.2 333.3 230.0 <t< th=""><th>A</th><th>ന</th><th>с v</th><th>۵</th><th>ш</th><th>L</th><th>U</th><th>2</th><th>6.94</th><th>.</th><th>X</th><th></th><th>W</th></t<>	A	ന	с v	۵	ш	L	U	2	6.94	.	X		W
LOCATTON No. (m) (m) (m) (m) Level(m) Head(m) 165 356.7 161.6 PVC 35.2 0.5 0.52 16.7 2.7 391.8 35.1 177 364.3 536.5 PVC 57 0.6 0.24 2.2 139.3 28.0 177 364.3 536.8 PVC 57 0.6 0.24 2.2 139.3 28.0 177 364.3 536.8 PVC 57 0.6 0.24 2.2 139.3 28.0 177 364.3 536.8 PVC 57 0.6 0.24 2.2 12 393.3 28.0 177 364.3 536.6 PVC 57 0.6 0.24 22 12 393.3 28.0 177 964.3 PVC PVC </th <th>TROMANDA-</th> <th>2 BRANCH</th> <th>G.L</th> <th></th> <th>Kind of</th> <th>Diamet-(</th> <th>Quanti-</th> <th>Veloci-</th> <th>Gradi-</th> <th>Friction</th> <th>Hydraulic Water</th> <th>Hydraulic</th> <th>Static</th>	TROMANDA-	2 BRANCH	G.L		Kind of	Diamet-(Quanti-	Veloci-	Gradi-	Friction	Hydraulic Water	Hydraulic	Static
165 356.7 161.6 PVC 35.2 0.5 0.52 16.7 2.7 391.8 177 364.3 PVC 57 0.6 0.24 2.2 1.2 393.3 177 364.3 FVC 57 0.6 0.24 2.2 1.2 393.3 177 364.3 FVC 57 0.6 0.24 2.2 1.2 393.3 177 364.3 FVC 57 0.6 0.24 2.2 1.2 393.3 177 364.3 FVC 57 0.6 0.24 2.2 1.2 393.3 18 F<	LOCATION	°2	(m	(m)	Pipe	er(mm)	ty(I/s)		ent(%)	Loss(m)	Level(m)	Head(m)	Head(m)
177 364.3 536.8 PVC 57 0.6 0.24 2.2 1.2 393.3 17 364.3 536.8 PVC 57 0.6 0.24 2.2 1.2 393.3 17 364.3 536.8 PVC 57 0.6 0.24 2.2 1.2 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 193.3 17 17 17 17 17 17 17 17 17 17 1		165	356.7	161.6		35.2	0.5		16.7	2.7			48.0
177 364.3 536.8 PVC 57 0.6 0.24 2.2 1.2 393.3 17 364.3 536.8 PVC 57 0.6 0.24 2.2 1.2 393.3 17 364.3 536.8 PVC 57 0.6 0.24 2.2 1.2 393.3 17 364.3 1													
		177	364.3	536.8		57	0.6	0.24	2.2	1.2	393.3		40.4
								·					
		-											

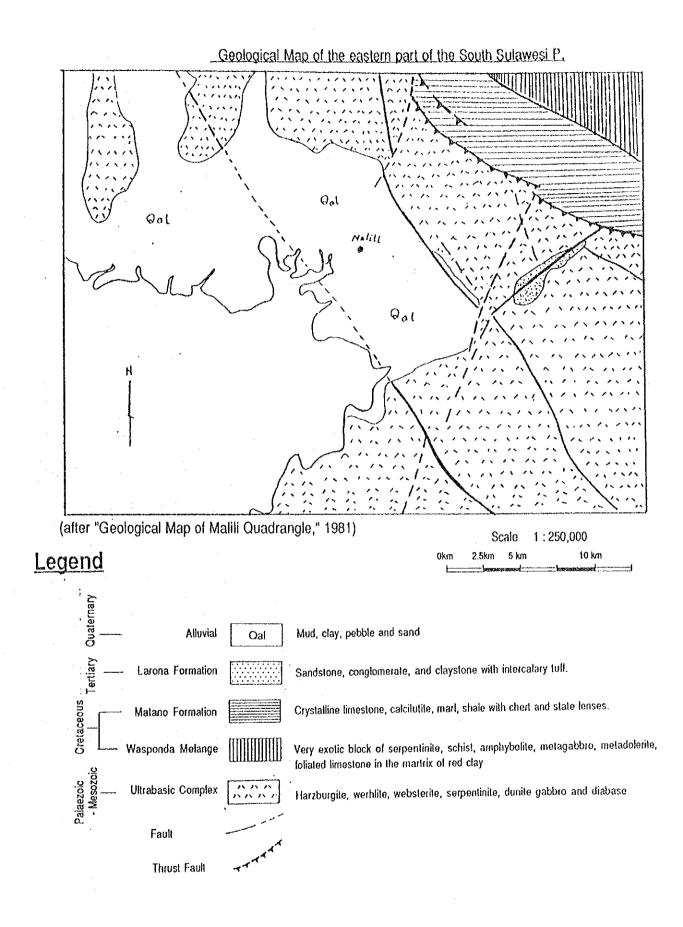
	A	B	ပ ပ	۵	ш	F	B	H	1	ŗ	×		M
628	BINNANGA-1	BRANCH	GL	LENGTH	Kind of	Diamet-Quanti-	Quanti-	Veloci-	Gradi-	Friction	Hydraulic Water	r Hydraulic	Static
629		ÖZ	(E)		Pipe	er(mm)	er(mm) ty(1/s) ty(m/s)	ty(m/s)	ent(%)	Loss(m)	Level(m)) Head(m)	Head(m)
630		0	500.0								500.0		
631	<u>a</u>	14(IN)	472.9	1351.5	ട്ട	102	6.2	0.76	6.3	8.5	491.5	5 18.6	27.1
632													
633	RESERVOIR	14(OUT)	470.9								470.9		
634	ł	17	440.6	579.5		144.6	13.0	0.8	4.6	2.7		27	30.3
635		20	431.8	211.0	PVC	81.4	11.3	2.19	57.7	12.2		24	39.1
636		23	382.4	798.8		81.4	11.3	2.19	57.7	46.1			88.5
637	PRESSURE	27(IN)	352.8	605.9		81.4	11.3	2.19	57.7	35	374.9	22.1	87.8
638		27(OUT)	352.8					-			352.8		
639		28	326.5	450.6	PVC	99.4	9.0	1.17	14.3	6.4		19.9	26.3
640		29	307.2	316.0		81.4	8.3	1.61	32.6	10.3	336.1	28.9	45.6
641		30	310.2	81.8		81.4	6.7	1.3	21.9	1.8		24.1	42.6
642		31 T	309.6	133.2	PVC	81.4	4.9	0.95	12.3	1.6	332.7		43.2
-8	1	33	310.0	823.1	[81.4		0.77	8.4	6.9		15.8	42.8
644		4+200	304.6	200.0	PVC			0.64	5.9	1.2	324.6	20.	
645		4+400	302.6	200.0	1	57		0.99	20.1	4	320.6	18.0	50.2
646		36	272.6	1577.8	PVC	57	1.9	0.75	12.1	19.1	301.5	28.9	80.2
647	•												
648		29				81.4					336.1		
645	~	ත ෆ	312.3	1248.1	PVC	57	1.9	0.75	12.1	15.1	321.		n l
650	0	4	308.4	559.0	PVC	57	1.7	0.67	9.8	5.5	315.5	7.1	162.5
65-	40		 										
02	2	29				81.4					336.		
65	6	67	293.0	362.0	PVC	35.2	0.3	0.31	4.2	1.5	334.6	41.6	111.9
65	4												
0.5	10	17				144.6					468.		
020	0	54	430.4	943.4	PVC	57	2.1	0.83	14.5	13.7	454.	24.1	40.5
657	7	56	440.6	111.9	PVC	57	-	0.44	4.4	0.5	454.0	13.4	30.3
658	6												
65	6											ar-16	

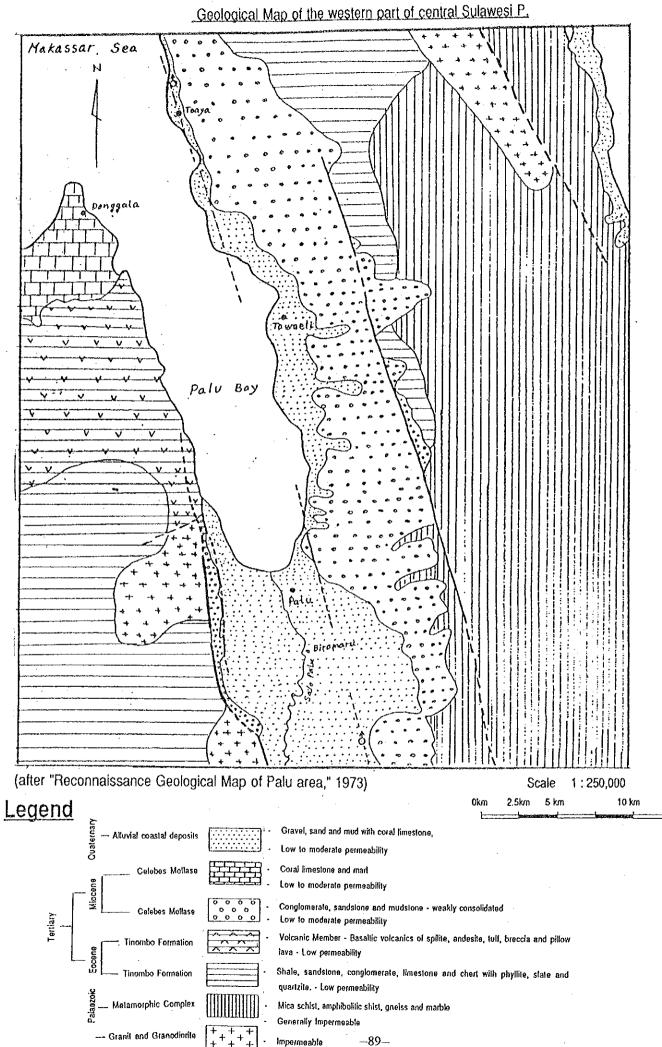
ų.
Z
0
Ē
5
$\underline{\Omega}$
z
0
\circ
\circ
~
=
7
\sim
눍
Ľ
F
- رقمو

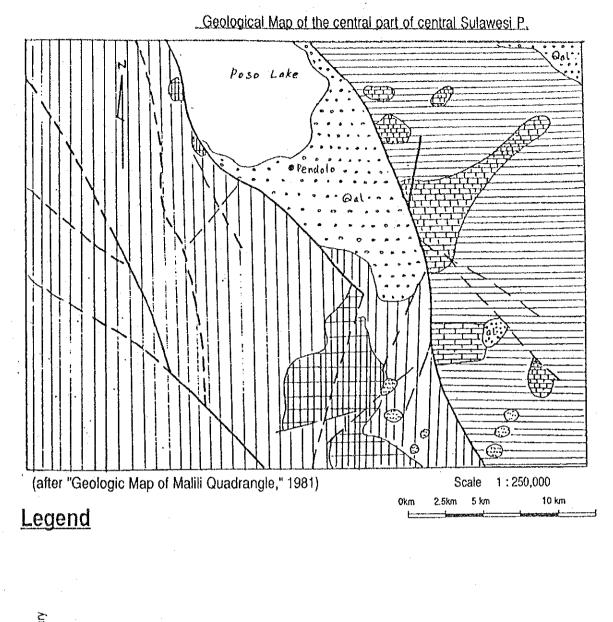

		0		2	u		5		•	>	*		1	
660 BINNANGA-2	4	BRANCH	G.L	E	Kind of	Diamet-	Quanti-	Veloci-	Gradi-	Friction	Hydraulic	Water	Hydraulic	Static
	+	No.	(m)	(m)	Pipe	er(mm)	ty(/s)	ty(m/s)	ent(%)	Loss(m)		Level(m)	Head(m)	Head(m)
		54				57						454.5		
663	,	58	419.5	177.6	PVC	35.2	0.3	0.31	4.2	0.7	2	453.8	34.3	51.4
664														
665		56				57						454.0		
666		61	438.5	264.1	PVC	35.2	0.3	0.31	4.2	~		452.9	14.4	32.4
667														
668		20				81.4								
669		62	433.3	200.0	PVC	35.2	0.7	0.73	19.9		4	452.0	18.7	37.6
670														
671														
672														
673														
674		30				81.4	1					334.3		
675		64	318.2	127.0	PVC	35.2	2 0.3	0.31	4.2	0.5	2	333.8	15.6	152.7
676														
677		30				81.4						334.3		- 1
678		63	300.4	143.5	PVC	35.2	2 0.3	0.31	4.2	0	.6	333.7	33.3	170.5
679														
680		31										332.1		
681		66	301.9	111.8	P V C	35.2	0.3	0.31	4.2	0.5	5	332.2	30.3	0.601
682						+								
683		31				81.4	 t					0000	7	
Vas		u u	000 E	170 1	С б	с С С		~ ~		0./		332.0	0	1.00.

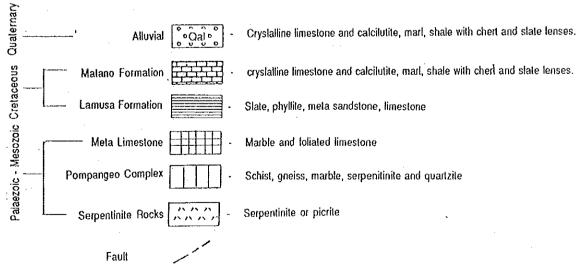

-85-

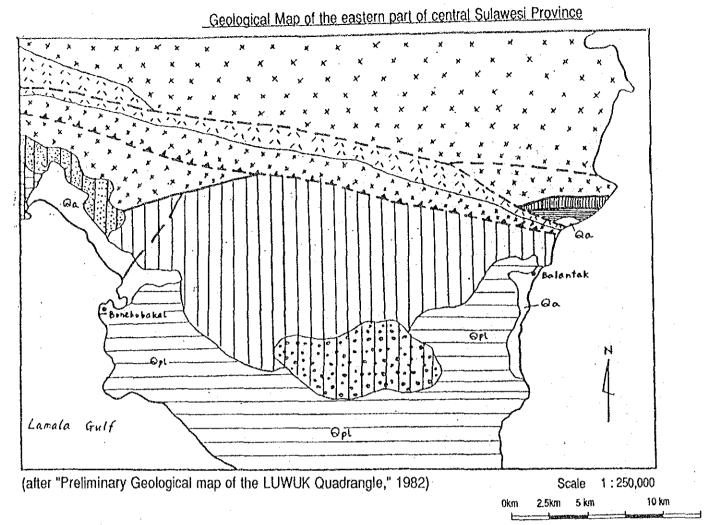

APPENDIX 5-6

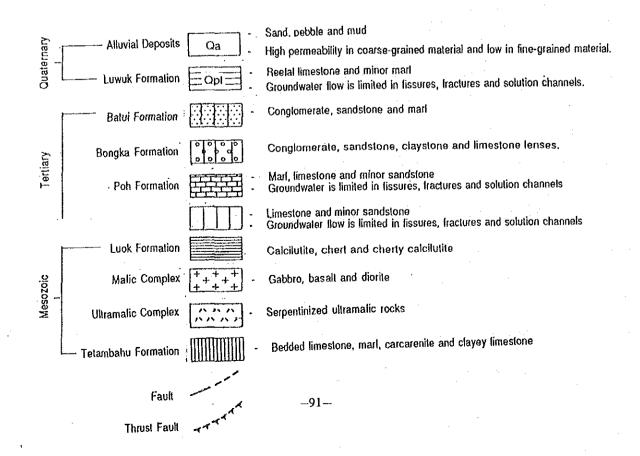

Geological Maps

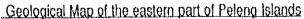

. .



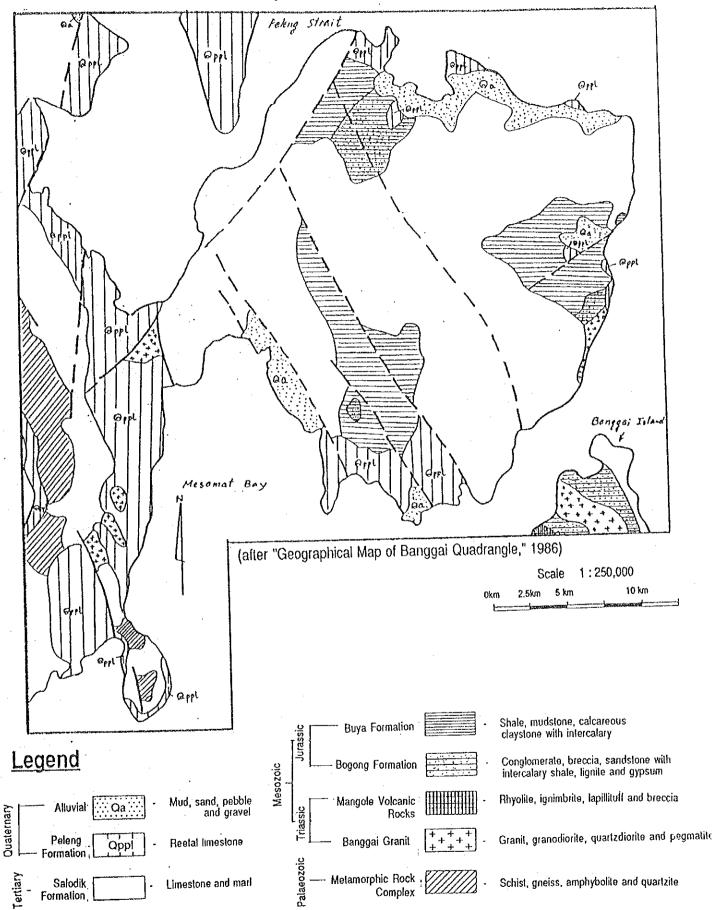




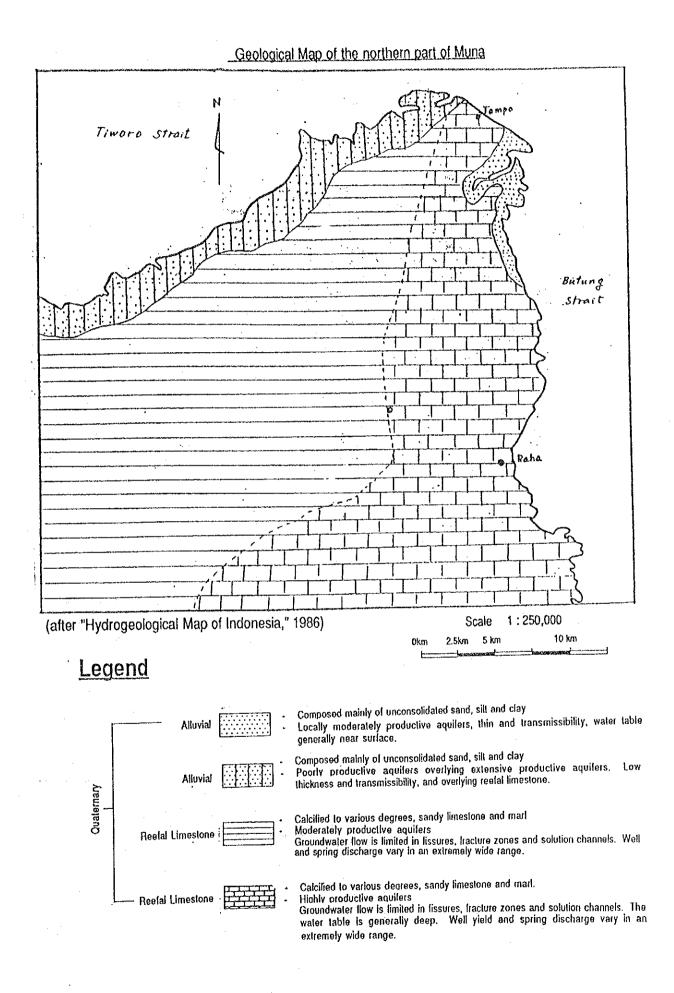


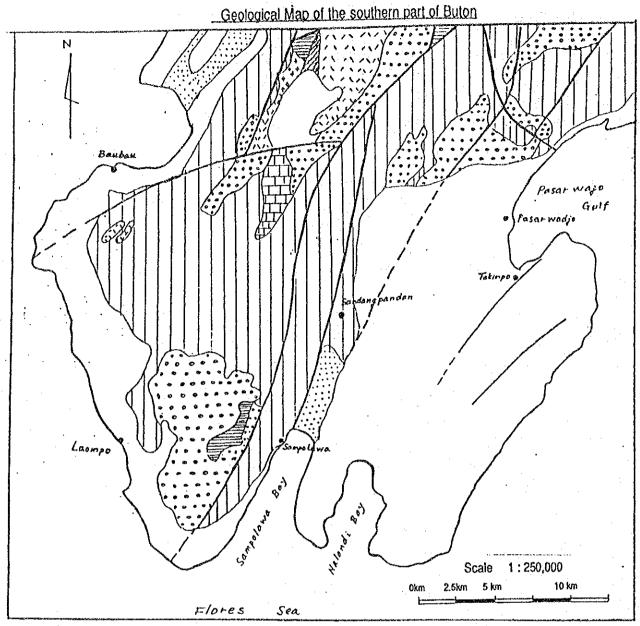


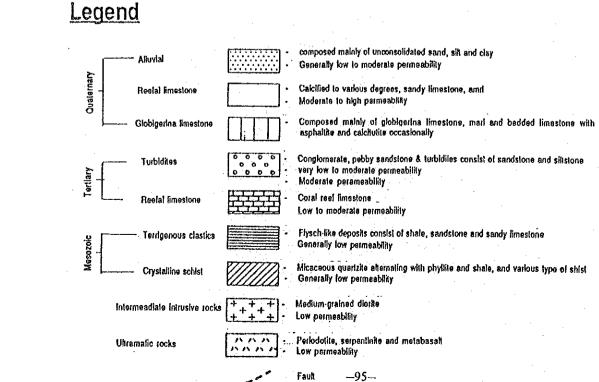
-90--

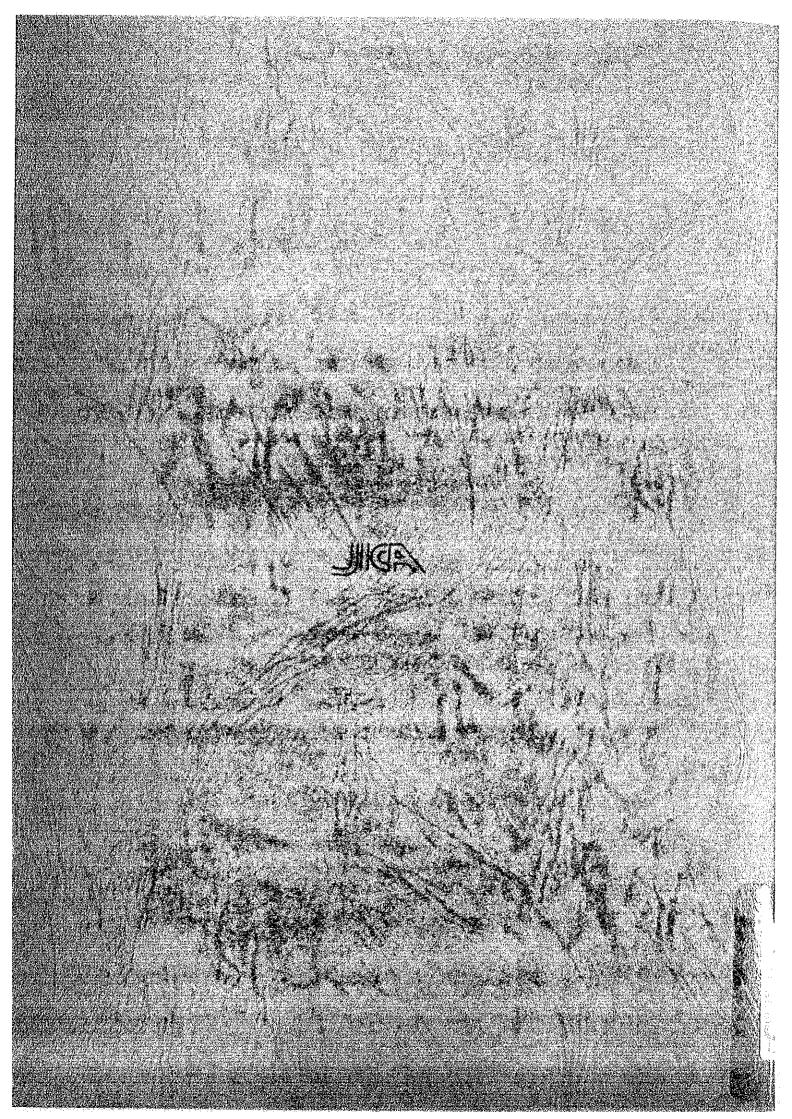


Legend




нц Ма


Geological Map of the western part of Southeast Sulawesi P.



(after "Hydrogeological Map of Indonesia," 1986)

