REPUBLIC OF THE PHILIPPINES DEPARTMENT OF PUBLIC WORKS & HIGHWAYS

Feasibility Study on The Rural Road Network Development Project

FINAL REPORT (Volume IO)

PROJECT EVALUATION
IN
THE PROVINCE OF ANTIQUE

OCTOBER, 1990

JAPAN INTERNATIONAL COOPERATION AGENCY

JIMA LIBRARY

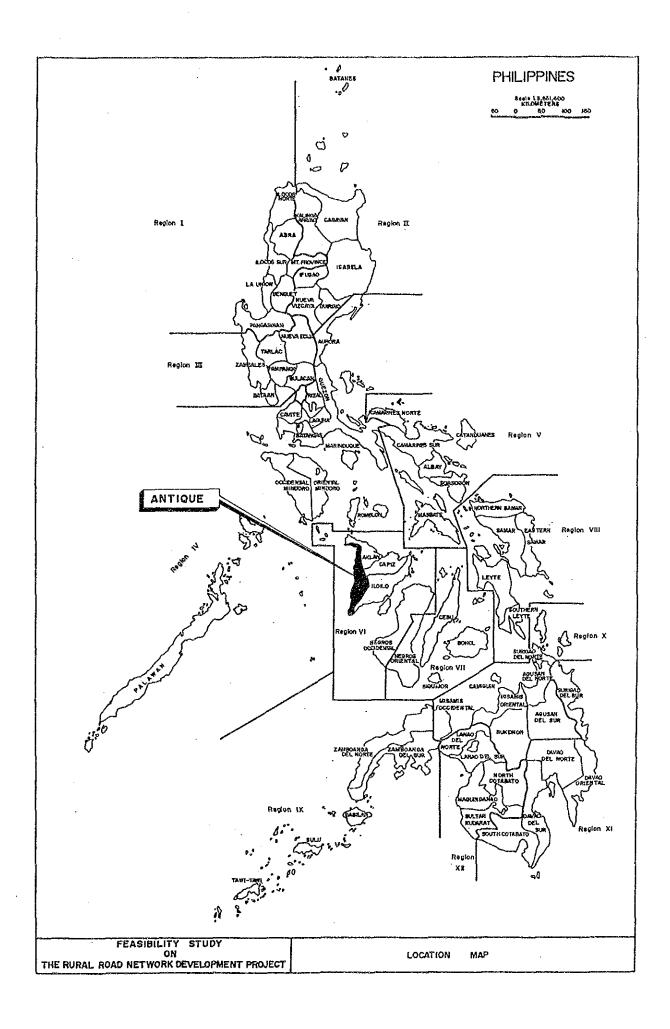
1086472[6]

21933

REPUBLIC OF THE PHILIPPINES DEPARTMENT OF PUBLIC WORKS & HIGHWAYS

Feasibility Study on The Rural Road Network Development Project

FINAL REPORT (Volume IO)


PROJECT EVALUATION
IN
THE PROVINCE OF ANTIQUE

OCTOBER, 1990

JAPAN INTERNATIONAL COOPERATION AGENCY

国際協力事業団

21933

VOLUME - 10 PROVINCE OF ANTIQUE

TABLE OF CONTENTS

ADLE	ŲГ	COMITINIS	

	•	PAGE
CHAPTER	1 SOCIO-ECONOMIC PROFILE OF THE PROVINCE	1 ~ 1
	1.1 GENERAL	
CHAPTER	2 ROAD NETWORK OF THE PROVINCE	2-1
	2.1 GENERAL	2-1
	terms of Road Extension	2-1
	Condition	2-5 2-5 2-6 2-6
CHAPTER	3 TRAFFIC	3-1
	3.1 TRAFFIC SURVEY RESULTS	3-4 3-4 3-9
	3.3 TRAFFIC ANALYSIS AND FORECAST: DEVELOPMENT PROJECT	
CHAPTER	4 PROJECT IDENTIFICATION AND SCREENING	4-1
	4.1 PROJECT IDENTIFICATION	4-1

	4.2 PROJECT SCREENING	4-4
	4.2.2 Prioritization and Selection Criteria	4-8
	4.2.3 Priority of Identified Road Projects	4-9
	4.2.4 Selection of Road Projects for Feasibility	4 10
	Studies	4-10
CHAPTER	5 PROJECT EVALUATION	5-1
	5.1 PRELIMINARY DESIGN AND COST ESTIMATE	5-1
	5.1.1 Preliminary Design	51
	5.1.2 Cost Estimate	5-7
	5.1.3 Summary of Preliminary Design	5-14
	5.2 ECONOMIC EVALUATION	5-16
	5.2.1 Basic Assumptions	5-16
	5.2.2 Economic Costs	5-16
	5.2.3 Benefits	
	5.2.4 Economic Evaluation	

CHAPTER 1 SOCIO-ECONOMIC PROFILE OF THE PROVINCE

1.1 GENERAL

The Province of Antique was selected as one of the Study Provinces which represents the province of the following characteristics:

- . Economically less developed
- . Average level in road development
- . Topographically seaside mountainous

1.2 GEOGRAPHY AND TOPOGRAPHY

The province is located in the western part of Panay Island. The Province is narrow but stretching long in the north-south direction, and bounded on the east by Provinces of Iloilo, Capiz and Aklan and on the west by Cuyo East Pass.

Due to mountain ranges situated along the eastern boundary of the Province, topography is predominantly mountainous with very narrow plain along the west coast. The province is one of the typical seaside mountainous provinces.

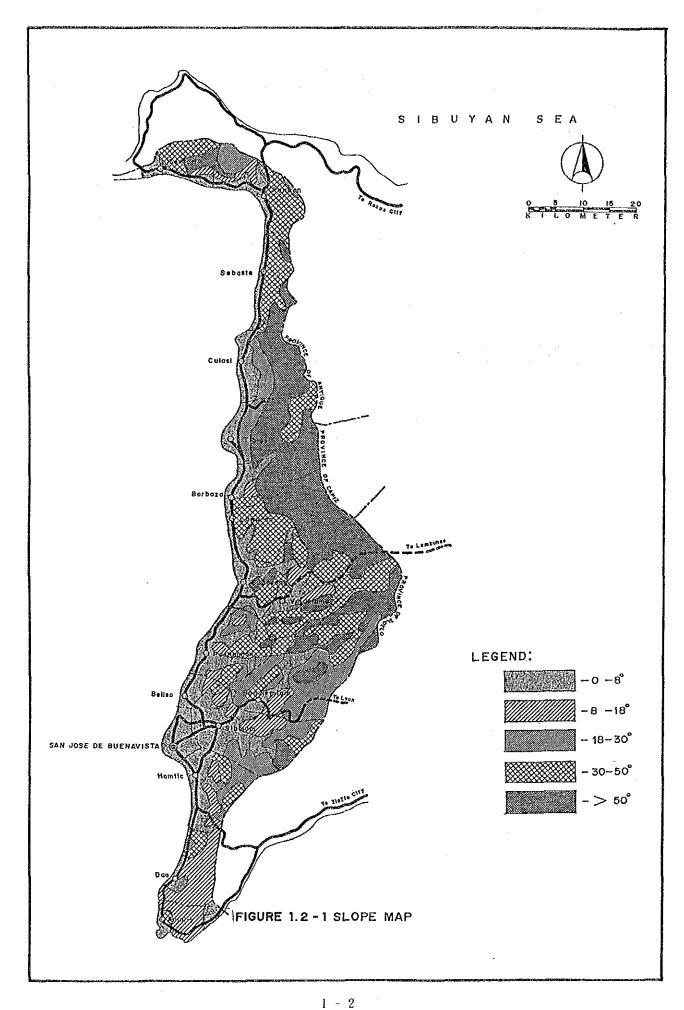
Slope map of the province is shown in Figure 1.2-1.

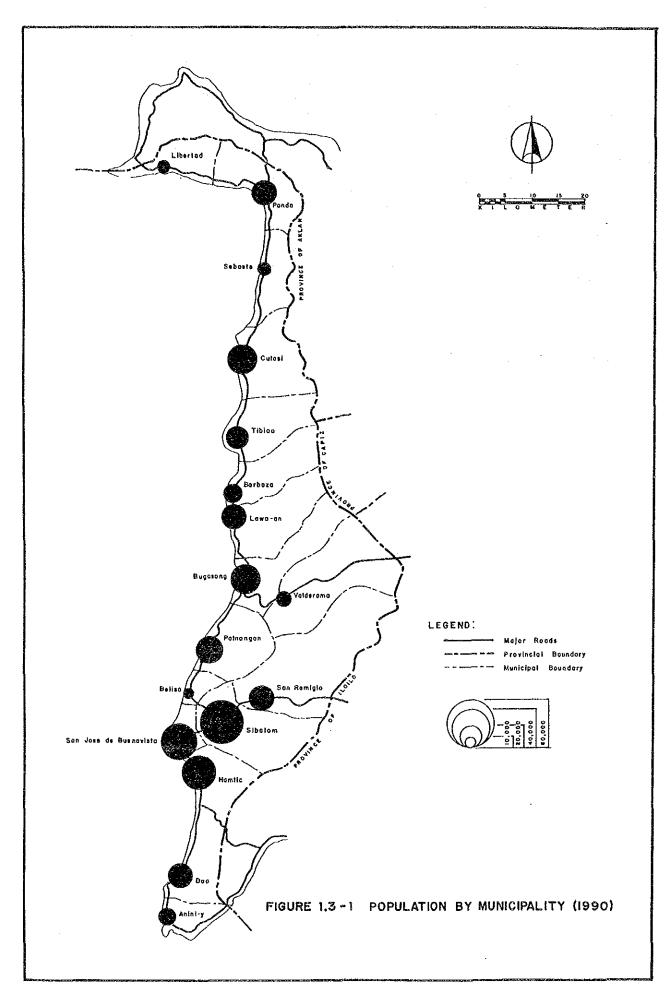
1.3 POPULATION

The province is composed of seventeen (17) municipalities and the provincial capital is located at San Jose de Buenavista. There is one (1) island municipality namely, Municipality of Caluya which was excluded from the Study.

Population in 1990 is estimated at 433,000. The average annual population growth rate for the period of 10 years from 1980 to 1990 was estimated 2.3% which is slighly lower than the national average of 2.4%. Population density of the province in 1990 is 171.7 persons per square kilometer which is lower than the national average of 205 persons per sq. km.

Population, the average annual population growth rate and population density by municipality are presented in Table 1.3-1. Distribution of municipal towns together with their population is shown in Figure 1.3-1. Most municipal towns are located in the coastal low land.




Table 1.3-1

POPULATION, LAND AREA AND DENSITY (1990)

Province of Antique

			=:		= :		=:	-========		=
	1		ŀ	Projected	1	Annual	1	+		1
	i c	ity/Municipality	į	Population	ļ	Growth	;]	Land Areal	Density	ŀ
	1		ŀ	(1990)	1]	Rate (%)	ł	(km^2) {	(p/km^2)	ţ
			 .		_		٠.	<u> </u>		_
	}		ŀ		i		ŀ	1		1
	11.	San Jose de Buenavista	ŧ	38,231	ł	2.4	į	25.6	1,493.4	1
	1 2.	Anini-y	ŧ	17,027	i	2.4	1	55.2	308.5	ŀ
	1 3.	Barbaza	1	17,931	¦	2.0	1	119.4	150.2	1
	4.	Belison	į	10,896	ļ	2.4	}	37.5	290.6	1
	15.	Bugasong	1	29,184		3.0	ŀ	129.8	224.8	ł
*	16.	Caluya	1	14,918	ŀ	1.0	!	116.8 ;	127.7	ŀ
	17.	Culasi	i	31,084	į	1.9	i	192.2	161.7	ŀ
	18.	Dao	1	27,186	1	1.9	ŀ	117.7	231.0	1
	19.	Hamtic	ł	36,779	ļ	2.6	1	139.6	263.5	ł
	110.	Lawa-an	ł	23,729	ł	2.4	1	207.8	114.2	1
	111.	Libertad	1	12,173		2.1	ł	76.0	160.2	1
	112.	Pandan	i	25,764	;	2.4	ŀ	137.0 1	188.1	1
	113.	Patnongon	1	28,331	1	1.6	}	126.1	224.7	1
		San Remegio	ł	24,263	i	2.4	t	264.9	91.6	1
	115.	Sebaste	ţ	13,098	ļ	2.4	1	96.9	135.2	ł
	116.	Sibalom	1	44,417	1	2.3	ł	246.7	180.0	ł
	–	Tibiao	ŀ	21,726	ţ	2.4	ļ	145.4	149.4	i
	118.	Valderama	ŀ	16,381	1	2.4	i	293.4	55.8	i
	i		į		ŀ		1	1		ł
					.					-
	E }	TOTAL	1	433,118	ţ	2.3	ţ	2,522.0	171.7	1
	=====		= :		= :	=======	= =		=======	=

Note: * - Island Municipality

1.4 SOCIO-ECONOMIC PROFILE

Table 1.4-1 shows major socio-economic data of the province in comparison with the national value.

Gross Regional Domestic Product which shows economic output of the province shares 0.5% of the total national output. In view of land area and population share of the province to the country, the province's economic output is in the lower level than the national average.

Per capita income of the province is much lower than the national average. Incidence of poverty is much higher than the national average. Unemployment and underemployment rates also show the higher level than the the national average. The province is one of the most depressed provinces in the country.

Agriculture is the predominant industry of the province and shares 68% in terms of number of workers.

Table 1.4-1
MAJOR SOCIO-ECONOMIC DATA OF PROVINCE OF ANTIQUE

}	Antique	Philippines	1
	(A)		(A)/(B)
1		1	
11. Total Land Area (sq.km.)	2,552	1300,000	0.009 1
12. Population in 1990		1	1
(1000 persons)	433	1 61,483	0.007
13. Population Density		1	1
(persons/sq.km.)	172	205	0.84
4. GRDP (Million P at		1	1
1000 prices)	3,216	623,051	0.005
15. Per Capita Income in 1985!		1	
(P/person)	3,255	5,593	0.58
16. Number of Workers		•	1
by Industrial Sector in		į	;
1980 (1000 persons)		i	}
i i	CC = (CO)	1 7 000 (510)	
* Agricultural	66.5 (68%)		
* Industry	9.8 (10%)	•	
* Service	20.8 (21%)	, ,/	
* Total <u>1/</u>	98.3 (100%)	14,197 (100%)	0.007
i in Ingidonae of Powerty i		\$ F	, i
17. Incidence of Poverty in 1985 (%)	80.1	59.3	: i
18. Unemployment Rate	00.1	i 1 92.9	i
in 1988 (%)	11.0	8.3	
19. Underemployment Rate	11.0	i 0,0	- 1 ! !
in 1988 (%)	13.2	11.6	_ !
111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10.2		. 1

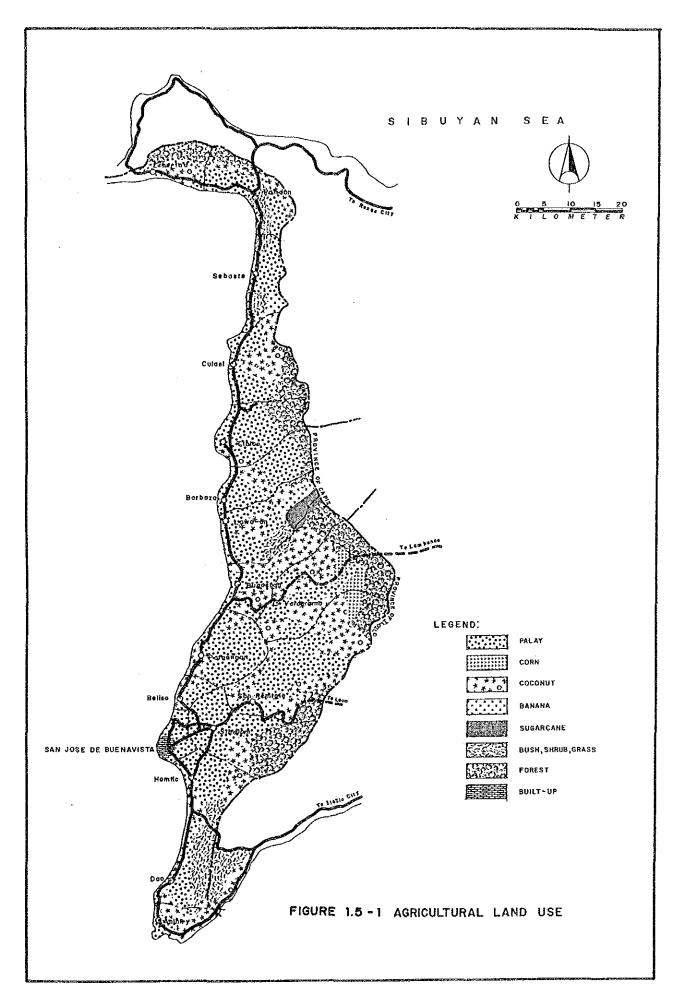
Note: 1/ Includes other workers who cannot be classified as any one of three (3) sectors.

1.5 AGRICULTURAL LAND USE AND MAJOR CROPS

Antique has a total land area of 2,552 square kilometers, representing 0.9% of the total land area of the Philippines. Table 1.5-1 shows general land use of the province. About 42% of the province are occupied by agricultural land and about 11% by forest land.

Figure 1.5-1 illustrates the agricultural land use of the province. Table 1.5-2 shows major crops produced in the province. Five (5) major crops of the province are palay, coconut, corn, mango and banana.

Table 1.5-1 LAND USE OF ANTIQUE


	Area in	
Land Use	sq.km.	%
Agricultural Land	1,079.4	42.8
Forest	267.3	10.6
Brush Land	300.1	11.9
Marsh/Swamp	5.1	0.2
Open Land	870.1	34.5
Total	2,522.0	100.0

Source: Socio-Economic Profile of Antique

Table 1.5-2 MAJOR CROPS OF PROVINCE OF ANTIQUE

Major Crops	Area Utilia	zed (ha.)	Production (M.T.)		
major crops	1985	1986	1985	1986	
Palay	36,290	35,410	93,225	98,065	
Coconut Corn	3,240	17,940 4,760	1,220	15,834	
Mango Banana	2,315 937	2,363 1,089	$\begin{array}{c} 807 \\ 9.192 \end{array}$	1,182 9,573	
		<u></u>			

Source: Bureau of Agricultural Statistics

CHAPTER 2 ROAD NETWORK OF THE PROVINCE

2.1 GENERAL

The province was classified as one of the provinces of which road network development represents the average level of the Philippines. In this Chapter, present level of road network development is assessed more in details, then general direction of the future road network development is established. Based on the said assessment and the functional road classification criteria, the major road network for the Province is proposed.

2.2 PRESENT LEVEL OF ROAD NETWORK DEVELOPMENT

Present level of the road network development level is assessed in terms of road extension (quantity of roads), surface type and conditions (quality of roads) and road network pattern.

2.2.1 Present Level of Road Development in terms of Road Extension

Antique has a total of 1,310.2 kms. of roads, comprising 362.8 kms. of National, 96.7 kms. of Provincial, 97.1 kms. of Municipal and 753.6 kms. of Barangay Roads in 1987.

Table 2.2-1 shows road density by class of road which is compared with national average. In comparison with the national average, road development level of the province in terms of road extension is summarized as follows:

National roadshigher by 1.80 times Provincial roads.....low at only 43% Barangay roads.....higher by 1.14 times All roads.....higher by 1.08 times

Although provincial roads are scarce, their function province is similar to feeder roads this due characteristics. Therefore, provincial topographical roads and barangay roads could be combined in order evaluate development level of road extension. Thus. i n terms of road extension, development level of this province is assessed to be in the standard level of the country.

2.2.2 Present level of Road development in terms of surface type and surface condition

The Study Team conducted an extensive field survey on the existing road conditions of which results are summarized in Table 2.2-2.

Present level of road development in terms of surface type and surface condition (quality of roads) could be summarized as follows:

National Roads

- . About 20% of national roads in the Province are paved with PCC or bituminous surfaces, which level is lower than the national average of 46 %.
- . About 70% of roads are maintained well and assessed in good/fair condition. most gravel roads are in poor condition.
- . In terms of quality of roads, national roads in the Province are still sub-standard.

Provincial Roads

- . Only 4% of provincial roads are paved with PCC or bituminous surfaces, which is far below the national average of 11%.
- . About 62% of provincial roads were assessed in good/fair condition
- . Provincial roads are also in low level.

TABLE 2.2-1
EXISTING ROAD LENGTH AND ROAD DENSITY
Province of Antique

			Road Density (· · · · · · · · · · · · · · · · · · ·
Road	Road Length		Philippines	Antique/Phils
National Rd. Prov'l. Rd.	96.7 (7.4) 459.5 (35.1)	0.0956	0.1994 0.2211 0.4205	1.80 0.43 1.08
City Rd. Municipal Rd Barangay Rd.	97.1 (7.4) 753.6 (57.5)	0.7450	0.0304 0.0981 0.6536	0.98 1.14
•	1,310.2(100.0)		1.2026	1.08

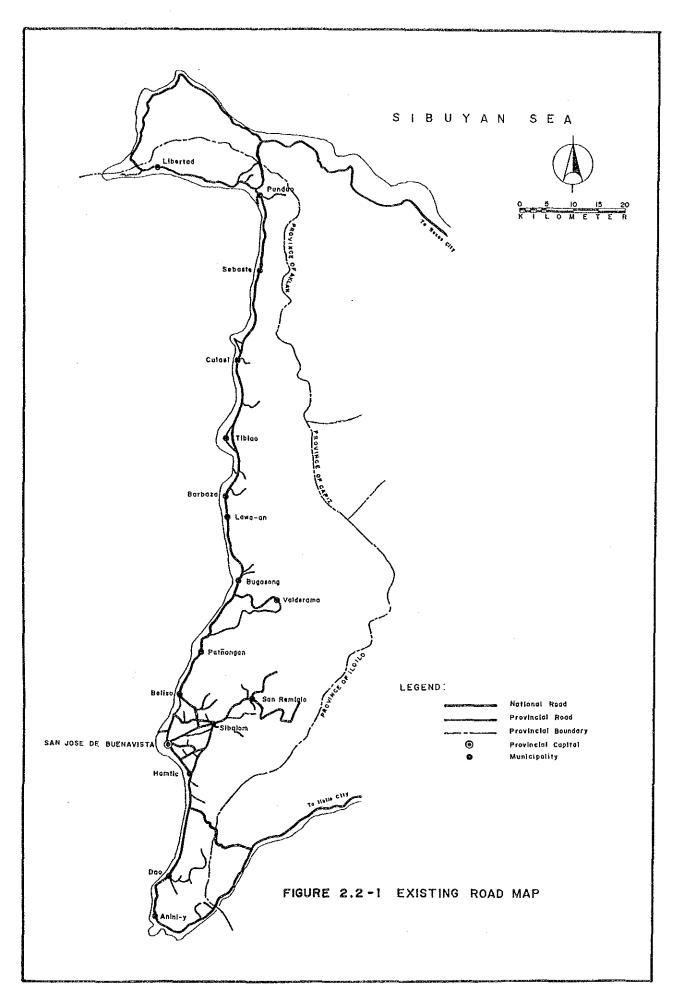

*SOURCE: DPWH Infrastructure Atlas, 1989

TABLE 2.2-2
EXISTING SURFACE CONDITION (SURVEYED ROADS ONLY)
Province of Antique

l Road	l Pavement		Surfa	ace Cond	ition]	Υ	;	% of Pavemen	t Type <u>2/</u>
			l/Fair	Bad/Ve	ry Bad	Tota	1 (%)	Antique	Phils.
	PCC							6.6	23.6
National	Bituminous	.94.6	(97.5)		(2.5)	97.0	(100.0)		22.3
1	Gravel	•	(54.0)		1	•	,	79.8	51.3
	Ear th	· -	- ;	_			(100.0)	-	2.8
•	•	•		•		•		100.0	100.0
	PCC					0.9	(100.0)	1.2	2.5
Provincial	Bituminous	4.0	(100.0)	-	-		(100.0)	3.0	8.9
	Gravel	42.9	(59.6)	29.1	(40.4)	72.0	(100.0)	•	70.6
•	Earth	-	-	-	-		(100.0)	-	18.0
}			(62.2)		(37.8)	76.9	•	100.0	100.0
National	PCC	22.5	(100.0)	-	-	22.5	(100.0)	5.5	12.5
	Bituminous	98.6	(97.6)	2.4	(2.4)	101.0	(100.0)		15.3
	Gravel							83.1	- 61.4
! ! !	Earth			-		-	(100.0)	- 1	10.8
, !	•	1		•	,	•		100.0	100.0

SOURCE: 1/ Survey by Study Team in 1989

2/ DPWH Infrastructure Atlas, 1989

2.2.3 Present Road Network Pattern

Present road network is presented in Figure 2.2-1, which shows all existing national and provincial roads. Present road network of the Province is assessed as follows:

- . Comb type road network pattern is formed and axis of the network is the national road running along the west coast line.
- . Accesses with adjacent provinces are provided only at the northern and southern tips of the Province.
- . All the municipal towns are accessed by a national road.

2.3 GENERAL DIRECTION OF ROAD NETWORK DEVELOPMENT

Results of assessment of present road network development level are summarized as follows:

- . In terms of road extension, development level of the province is in the standard level of the country.
- In terms of surface type and conditions, both national and provincial roads are still in low level, particularly type of pavement.
- . Basic road network is formed.

Based on the above assessment, general direction of road network development of the Province will be as follows:

- (1) First priority will be upgrading of pavement type of national roads.
- (2) Second priority will be improvement of provincial and barangay roads.
- (3) Due to topographical characteristics, roads are intersected by many rivers and most bridges over these rivers are still temporary bridges. Construction of permanent bridges along the national roads should be given priority.
- (4) Due to topographical constraints, new links connecting neighbouring province will be difficult to justify.

2.4 PROPOSED MAJOR ROAD NETWORK

2.4.1 Procedure

To identify major roads, all existing roads are firstly classified in accordance with the functional road classification criteria which is shown in Table 2.4-1. Functional classification groups roads according to importance and quality of services they are intended to provide. Individual road links of similar importance and quality of services are organized into systems so that a road network in accordance with the hierarchy of functions can be planned and formed. They can be efficiently managed with consistent policies, design and operation.

After identification of existing major roads, necessity of additional new links is assessed. For example, if a certain municipal town has no access, a new major road is added to the existing major road network. Thus, the initial major road network is proposed and subjected to evaluation whether the proposed one is well-balanced or not. Evaluation is made by two (2) indicators as follows:

a) Network Value

$$Nv = \frac{L}{\sqrt{PA}}$$

Where: Nv = Network Value

L = Road length delineating a block

P = Population in a block
A = Land Area in a block

Block= Area delineated by major roads

b) Accessibility

Accessibility AC =
$$\sum pl$$

Average Accessibility A ave =
$$\frac{\sum pl}{p}$$

Where

p = Population of a Barangay

= Distance from a barangay center

to respective major road

P = Total population in a block

If indicators of some blocks show imbalanced value, additions or deletions of major road links are made until indicators show almost balanced values. After these adjustment, the major road network is finally proposed.

Table 2.4-1 Proposed Functional Road Classification Criteria for Rural Road Network

tion	Barangay Road			•	•	
ve Classifica	Hunicipal Road					•
ministrati	City Road			•	•	•
Relationship with Administrative Classification	Provincial Road				·	
Relati	National Road	•				
	General Characteristics and Services Provided	Provides the highest level of service at the high speed for the long uninterrupted distance . Serves for long distance trips . Mobility is given the highest consideration	. Provides high level of service . Serves for medium distance trips . Mobility is given high consideration	Provides rather low level of mobility . Serves for short distance trips . Collects traffic from foeder roads and connects them with major roads . Mobility and land access	. Primarily provides access to abutting land with little or no through traffic . Serves for local traffic . Land access is given high	. Primarily provides access to abutting land in urban areas . Through traffic usage discouraged
	General Definition	. Major inter-provincial ronds Intra-provincial roads linking two (2) or more municipal towns to the Provincial Capital . Intra-provincial roads which form a skelton road network of a province	. Roads linking municipal towns each other Roads linking a municipal town to the Provincial Capital . Roads linking one (1) or more municipal towns to the primmry major road network	. Roads linking secondary major reads each other or a primary road with a secondary road . Roads linking two (2) or wore barangays to the municipal town or to the higher level network	. Roads linking one or more barangays centers to the higher level network . Roads linking farm areas to their respective barangay centers or to the higher level network	. Roads within built-up population centers (Poblacion) with essen- tially urban rather than rural
	Functional Classification	Primary Major Rond To To To To To To To To To To To To To	Secondary 10 Hajor Road 자	Collector Road ad ad	Feeder Road	S

Relationship between functional classification and administrative classification gives only general guideline, therefore, some national roads may be classified as minor roads, or some barangay roads may be classified as major roads. NOTE:

2.4.2 Proposed Major Road Network

The major road network for the Province of Antique was proposed as shown in Figure 2.4-1. For establishing the major road network, the following were taken into consideration:

- . Present network pattern of comb type was based to formulate the major road network.
- Due to topographical constraints, it is judged that it is still premature to construct another interprovincial links, however, two (2) links which connect with Lambunao and Leon in Iloilo Province were included in the major road network for future development.
- . One road which is currently barangay road located between Tibiao and Culasi was included in the major road network in order to formulate better balanced network.

Network value and accessibility of each block were computed to evaluate whether the proposed major road network is a balanced one. Based on these values, addition or deletion of road links was made and finally the major road network was proposed as shown in Figure 2.4-1.

Network value and accessibility of the proposed major road network are presented in Table 2.4-2.

Proposed major road network has a total length of 360.4 kms. and composed of the following roads:

National Road 354.4 kms. (98% of total national roads)
Provincial Road Barangay Road 6.0 kms.

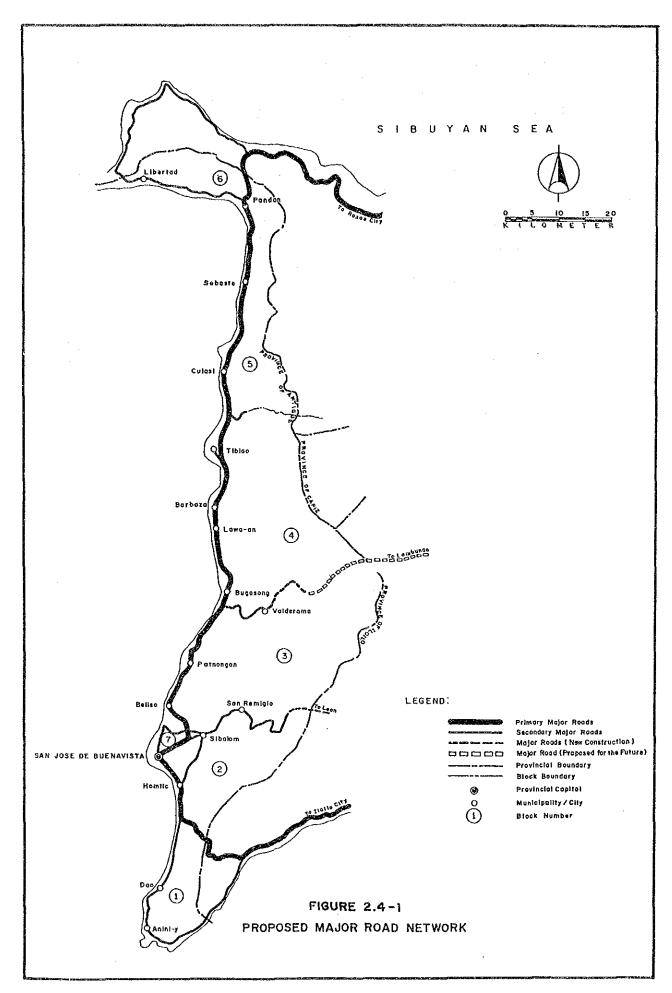


Table 2.4-2

NETWORK VALUE/ACCESSIBILITY

Province of Antique

=	=====	= :		==	=========	==	======	=	=======	========	= :		=
1		1		į		1	Road	ŧ		1	1.	Average	ļ
ł	Block	1 }	opulation	i	Land Area	ł	Length	1	Network	Access	1.	Access.	i
;	No.	1	(1990)	į	(km ²)	ł	(km)	1	Value	(p.km)	ł	(km.)	1
ł		-		- 1		-		٠ ¦			- -		ŧ
ł	1	1	47,712	i	192.85	ļ	54.1	1	0.564	1 64,379	ļ	1.349	ŀ
1	2	ŀ	72,235	. }	434.66	į	73.8	ł	0.416	1130,469	ł	1.806	1
ŀ	3	ł	78,139	i	737.53	ł	131.4	ł	0.547	1170,371	1	2.180	i
ŀ	4	ŀ	84,677	;	556.73	ł	61.2	;	0.282	1157,544	ł	1.861	ţ
i	5	ł	46,556	ì	353.63	1	58.9	ł	0.459	1 48,728	1	1.047	ŀ
ŧ	6	;	18,730	ł	161.23	¦	35.5	ļ	0.646	1 13,144	ļ	0.702	ŀ
i	7	1	29,232	ŀ	39.38	ł	16.1	ŀ	0.475	17,563	1	0.601	1
ł		} -		-		- }		· į			- -		ŀ
į	Ave.	ŀ	53,897	į	353.72	į	61.6	ł	0.446	1 86,028	1	1.596	ļ
=	=====	= =		==	========	=	======	==			=:	======	==

CHAPTER 3 TRAFFIC

3.1 TRAFFIC SURVEY RESULTS

Roadside traffic count survey was conducted on selected roads. Traffic counts were carried out on two (2) consecutive days for 12 hours from 6:00 AM to 6:00 PM each day. Traffic volume was counted by direction and by vehicle type every hour. The vehicle type was classified as follows:

- Car
- ~ Jeep
- Van
- Jeepney
- Bus (mini bus & large bus)
- Truck (including trailer)
- Motor-tricycle
- Motorcycle
- Animal drawn
- Pedestrian
- Others

Figure 3.1-1 shows the location of traffic count stations. Traffic survey results are summarized in Table 3.1-1.

Survey results were converted to Average Daily Traffic (ADT) by using the hourly factors based on the data from the Nationwide Traffic Counts Program (NTCP). Considering other factors such as market days, harvest season, rainy season, etc., AADT were estimated by vehicle type.

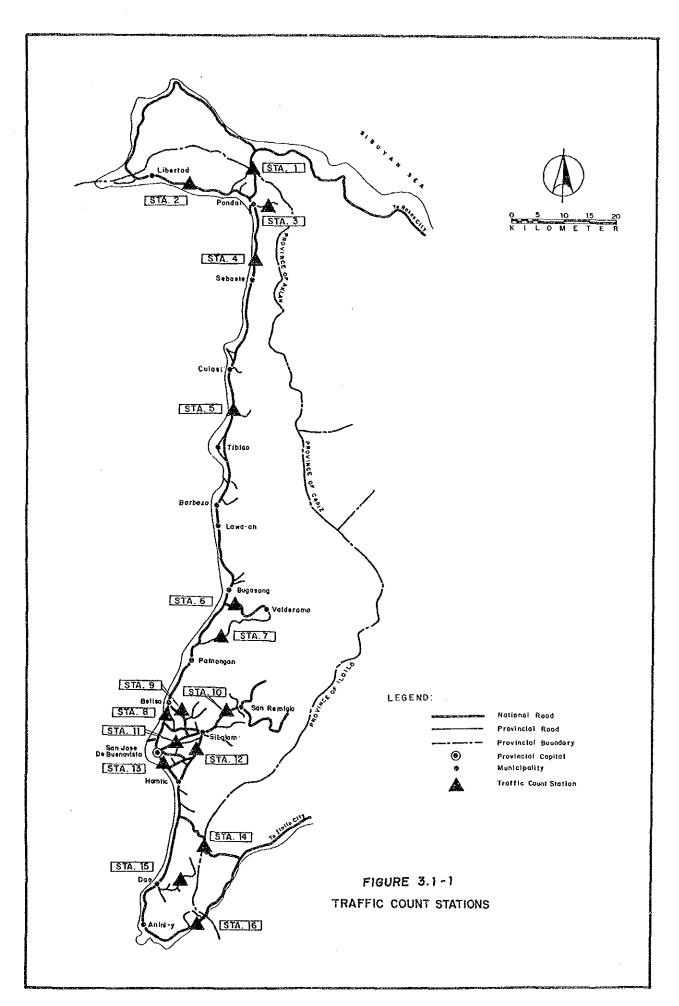


TABLE 3.1-1 SUMMARY OF TRAFFIC SURVEY RESULTS
- ANTIQUE -

(ADT as of May, 1990)

No.	Car	Jeep	Pickup /van	Jeepney	Bùs	Truck	Sub- Total	Tri- cycle	Motor- cycle	Animal Drawn	Total
; ; ; ; ; ;	! ! ! * !	1 4	 	66	1 8 1	1 4 1	132	76	69	0	277
2	ო	8	~	30	Ф	7	(C)	89	81	0	223
ന	0	œ	-	~ 4	0	က	4	102	99	0	182
4	က	18	14	21	11		77	69	51	0	197
r	9	18	36	នួ	18	13	148	48	76	0	273
9	0	10	9	20	2	9	74	29	46	2	151
٠ ٧	0	æ	2	46	2	Н	09	7	29	ş4	96
œ	36	44	24	132	Ħ	41	278	298	167	2	746
6	80	50	ខា	464	24	45	718	2.08	160	2	1088
10	2	28	-	230	-1	13	276	41	100	0	417
11	79	26	242	854	51	131	1455	526	418	0	2399
12	œ	20	20	31	0	46	125	176	62	0	363
13	104	118	198	230	99	86	802	1663	526	0	2991
14	48	39	84	57	65	68	361	-	11	-	374
15	Ċ	τú	۳. ۲.	တ	7	က	36	136	34	က	210
16	п	97	10	, -1	17	9	50	Ö.	19	0	107

Source: Traffic Survey by Study Team (May, 1990)

3.2 TRAFFIC ANALYSIS AND FORECAST: TRAFFIC PROJECTS.

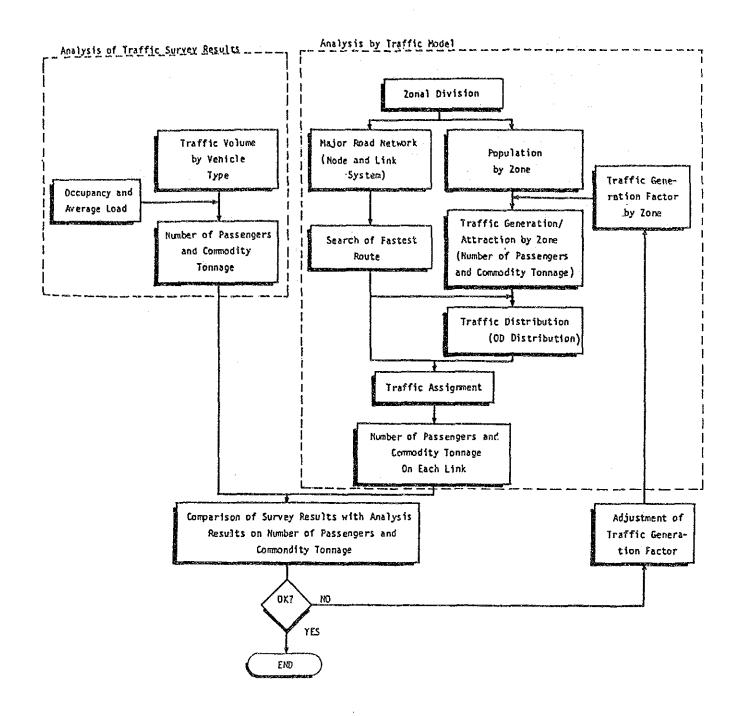
3.2.1 Analysis of Present Traffic

1) General Procedure

Present traffic on each major road network was analyzed according to the procedure shown in Figure 3.2-1.

The analysis is divided into three major steps:

Step I : Analysis of Traffic Survey Results


The number of passengers and commodity tonnage were obtained from the results of the traffic survey. These data are, however, available only on the surveyed road links and used for calibration purposes for the traffic model described below.

Step II : Analysis by Traffic Model

Traffic generation and attraction, in terms of passengers and commodity tons, were estimated based on population and per capita traffic generation factors; traffic distribution (OD distribution) was estimated by the gravity model; then, OD distribution was assigned to the major road network expressed by the node and link system. In the analysis, since only traffic generation factors were unknown, assumed values were used in the first step.

Step III: Comparison of Both Figures

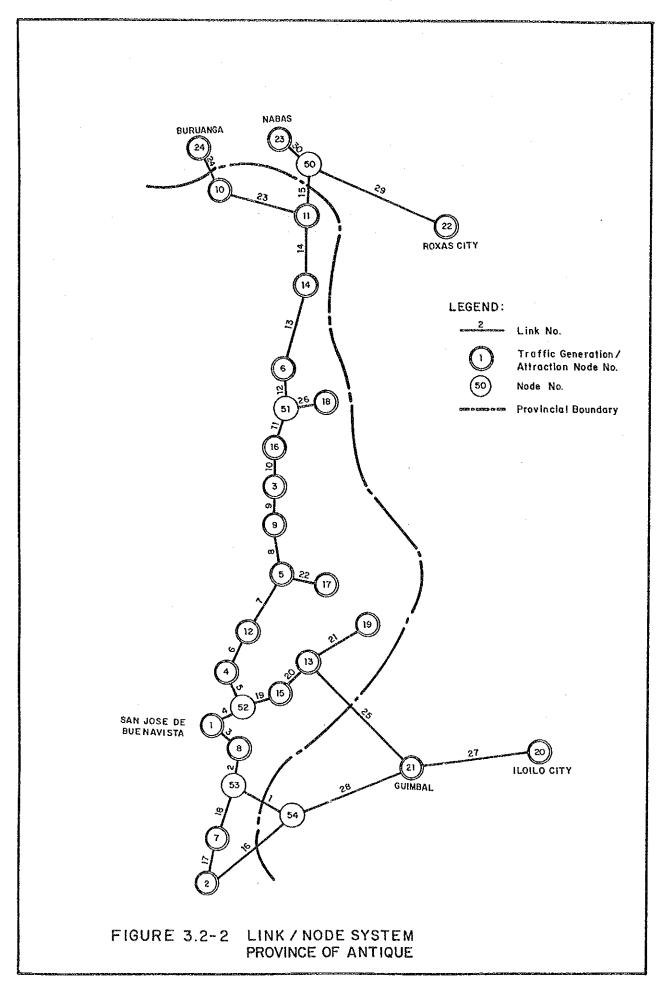
The number of passengers and commodity tonnage estimated by the traffic model were compared with those derived from the traffic survey. On the basis of the comparison, traffic generation factors were appropriately adjusted and the traffic model analysis was reiterated until the traffic model reflected the actual people and freight movements with a high accuracy.

PROCEDURE OF ANALYSIS OF PRESENT TRAFFIC ON MAJOR ROAD NETWORK

2) Analysis of Traffic Survey Results

Traffic volume by vehicle type counted in the traffic survey was converted to number of passengers and commodity tonnage using the occupancy and average load shown in Table 3.2-1.

Table 3.2-1 OCCUPANCY AND AVERAGE LOAD Province of Antique


	Average Number of Passenger per vehicle			
Car/Taxi	3.40	1.00		
Jeep	3,40	1.00		
Van/Pi ckup	. 3.40	1.00		
Jeepney	11.80	1.00		
Bus	25.30	1.00		
Truck	5.00	3.00		
Motor-tricycle	2.90	0.30		
Motorcycle	1.60	0.10		
Animal Drawn	3.00	0.15		

3) Analysis by Traffic Model

- i) Zonal Division: The province was divided into
 - The province was divided into traffic zones corresponding to municipal divisions in principle.
- ii) Major Road Network:
 The major road network was expressed by a node and link system. Each link was given length and average speed according to the actual road condition. A node and link system of the Province is presented in Figure 3.2-2.
- iii) Search for the Fastest Route:
 The fastest route for each zone pair was calculated by Moore's Method.
 - iv) Traffic Generation Factor:

 Per capita traffic generation factors (trip/
 person/day and ton/person/day) vary between zones

 even in the same province with many factors such
 as:
 - Economic Activity
 - Size of Population
 - Distance from Provincial Capital
 - Road Condition
 - Other Physical Conditions

The generation factors which best illustrate the observed people and freight movement were estimated by the iterative method. The traffic generation factors thus estimated are summarized in Table 3.2-2.

TABLE 3.2-2 PER CAPITA TRAFFIC GENERATION FACTORS (MAJOR ROAD, 1990 W/O)
Province of Antique

	Passenger Movement (trip/person/day)	Commodity (kg/person/day)
Range Mean Value	0.014 - 0.147 0.071	3.3 - 16.4 8.2

v) Traffic Generation and Attraction by Zone:

Traffic generation and attraction were obtained in terms of passengers and commodity tonnage as the product by generation factors.

vi) Traffic Distribution:

Traffic distribution (OD distribution) was estimated by the gravity model:

$$Xij = k \frac{Gi \cdot Aj}{2}$$

$$tiJ$$

Where, Xij = Traffic from zone i to zone j

k = Parameter

Gi = Traffic generation in zone i

Aj = Traffic attraction in zone j

tij = Travel time from zone i to zone j along the fastest route

OD distribution was adjusted so as to satisfy the following conditions by the Frator Method:

$$Gi = \sum_{j+1}^{n} X_{ij}$$

$$Aj = \sum_{i+1}^{n} X_{ij}$$

Where, n = Number of zones

vii) Traffic Assignment:

Each OD traffic was assigned to the major road network expressed by the node and link system on an all-or-nothing basis. Thus, the number of passengers and commodity tonnage for each link were calculated.

3.2.2 Traffic Forecast

Figure 3.2-3 illustrates the procedure of traffic forecast.

The traffic model prepared for the analysis of present traffic was basically used for forecasting future traffic on the major road network with the following additions/modifications:

1) Major Road Network and Fastest Route Search

The node and link system for the "with" case was prepared by changing the characteristics of the links included under this feasibility study as well as the links committed to be improved.

The fastest route search was carried out both in the "w/o" and "with" case networks.

2) Traffic Generation/Attraction and Distribution

The future population was based on the NCSO 1980 Census of Population and Housing.

Per capita traffic generation factors in the "with" case were estimated referring to the generated transport demand/transport cost reduction elasticity shown in "Highway Planning Manual, Volume 3, MPWH" and also based on the results of the analysis of present traffic. For instance, a zone showing a small generation factor at present due to poor road conditions is expected to increase the factor to some extent by road improvement, and the degree of increase can be estimated referring to other zones in similar situations but with better road conditions.

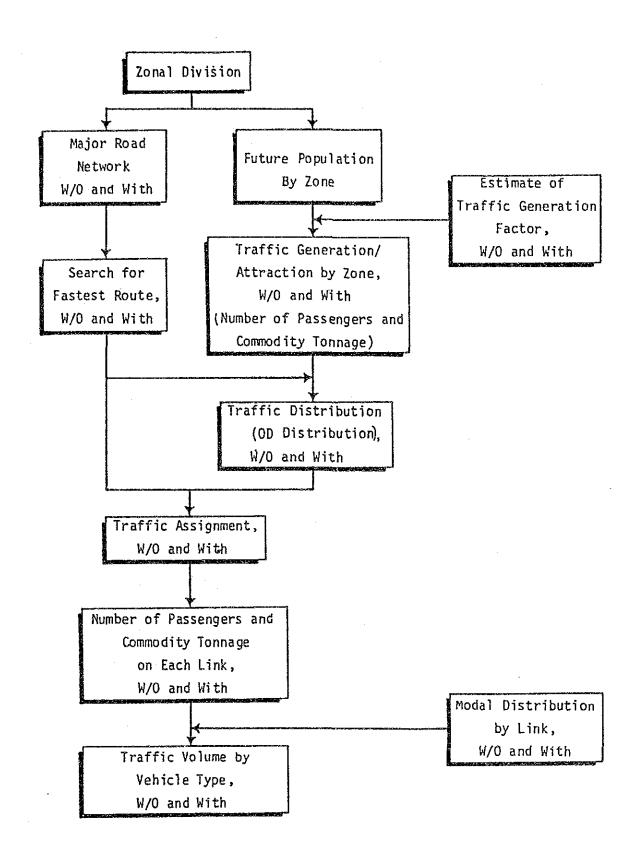


FIGURE 3.2-3
PROCEDURE OF FORECASTING TRAFFIC
ON MAJOR ROAD NETWORK

The traffic generation factors thus estimated are summarized in Table 3.2-3.

TABLE 3.2-3 PER CAPITA TRAFFIC GENERATION FACTORS (MAJOR ROAD, 1990 WITH)
Province of Antique

	Passenger Movement (trip/person/day)	Commodity (kg/person/day)
Range Mean Value	$ \begin{array}{r} 0.014 - 0.147 \\ 0.073 \end{array} $	3.3 - i6.4 8.4

The transition period, i.e., the period which will elapse after opening of the improved road before the full impact on generation will take place, was assumed to be three years.

Traffic distribution for the "with" case was estimated by the same method as used in the analysis of present traffic.

3) Traffic Assignment

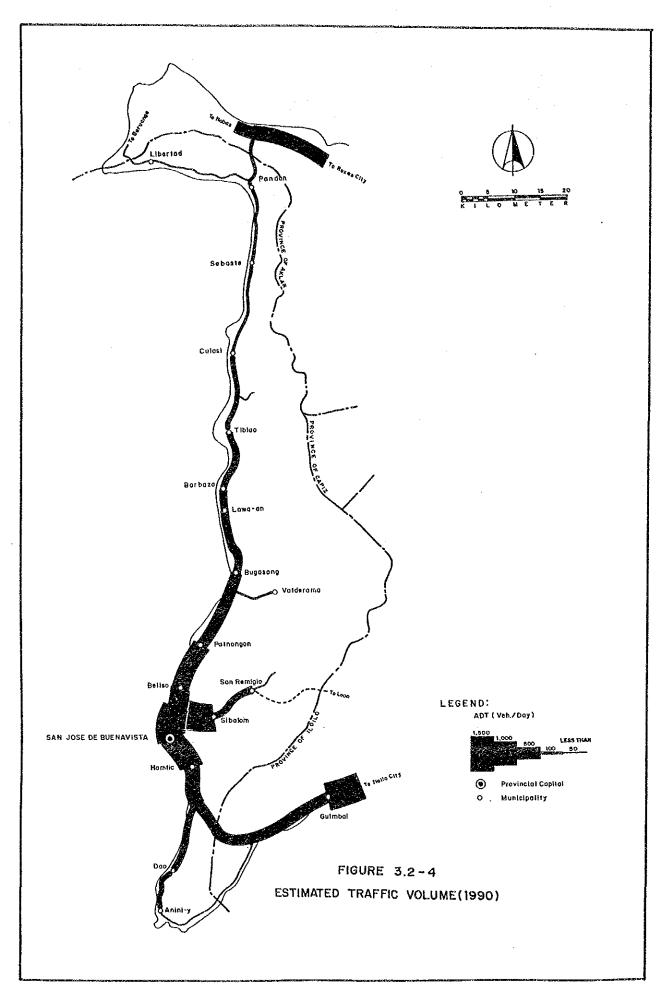
The number of passengers and commodity tonnage on each link in the "with" case was estimated by assigning OD traffic to the major road network in the "with" case. They were converted to the number of vehicles using the modal distribution in the "with" case. Changes in modal distribution with changes in road condition were estimated reffering to the present distribution in other road links in a similar situation but in the road condition. The transition period of a complete change in modal distribution was assumed to be three years.

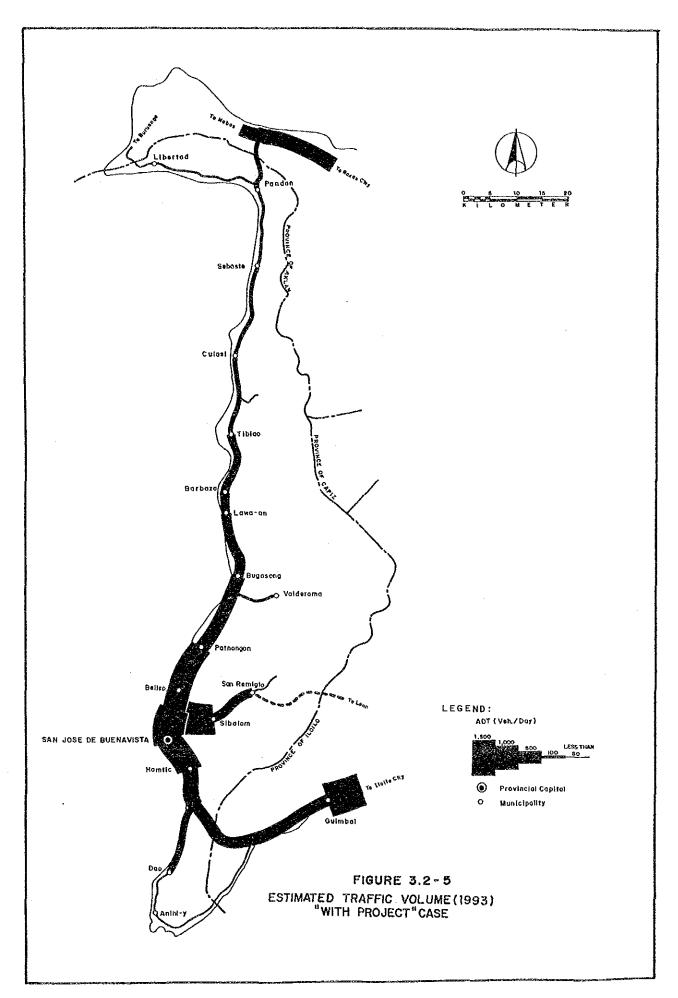
The traffic in the "with" case was broken down into following four categories for convenience of traffic benefit estimation:

Normal Traffic:

Flow of passengers and freight which will occur even without road improvement. However, changes in the number of vehicles is possible due to changes in modal distribution.

Diverted Traffic-1: Traffic which diverts to a certain road from other routes as a consequence of road improvement. This is usually called simply diverted traffic.


Diverted Traffic-2: Traffic which changes destination as consequence οf а improvement but for the same purpose as in the "w/o" This is possible in the case of improvement of the access road to the nearest town which is аt present barely accessible due to poor conditions. This traffic is called "Diverted Traffic-2" i n this Study, distinguished from Diverted Traffic-1.


Generated Traffic: Increased traffic brought about by road improvement.

3.2.3 Estimated Present and Future Traffic

Estimated present and future traffic on the major road is illustrated in Figure 3.2-4 and Figure 3.2-5, respectively.

Estimated present and future movements of passengers and commodity by link are presented in Table 3.2-4, and estimated traffic volumes are presented in Table 3.2-5.

ANTIQUE TRAFFIC PROJECTION TABLE 3.2 - 4 (1)

-	4		Number	of Pass	P3			Comm	odity T	n ag	
	1 1 1	Normai	Diver- ted-1	Diver- ted-2	1 G P 1 G P	Total	Normal	Diver- ted-1	Diver- ted-2	Gene-	Total
<u>-</u>	1 60 6	1 6 2	i in	1 4	 	3012	376.28	9 9	1 (C		
<u>-</u> -	9 69	9 10	-636	-74	1	83.0	08.5	"ຸເດ		,	45.0
	00	07	103	11	1	92	57.0	88.5	6.5	ı	61.9
! !	0.1	£ .	62		1	33	91.2	6	6.0	ı	53.3
	99	731	! ! !			73	83.2	! ! !	! !	i t	83.2
	66	20.0	2	S)	44.	0	49.9	49.6	က လ	9	0.66
 (V)	d. ۱	683	-63	-	4	627	53.6	59.1	4.5	5	99.0
	2007	11132	-1034 -1621	-115	334 :	10210		-88.52	-7.03 -10.53	13.08	891.9
<u></u> 	1 0	1 0	1		ie	100	-	l i	1	1 0 0
	0.00	96	ις. -	4		4 4	, c	49.6	4	۷	o o
 m	0	62	9	. 6	٠ 4	. 80		59.1	4	^	05.2
	00	423	103	0	Š	332	293.1	88	6.2	8	211.4
	0	99	-1621	-150	334	22	0	-127.97	-9.34	17.96	6
	1 0	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	[1 6	1 2 2		1		1 6
	90	1 0	5	*		2 4		49.6	C.	ď	
	9 9	105	93	· co	4	050	121.0	59.1	. 13	2	066.6
	00	817	103	6	N	726	677.3	88.5	6	3	595.0
	2017	887	-1621	-156	334	*	25.5	-127.97	-10.17	17.96	05.3
<u>.</u>	1 0	76) 1 1 1 1 1		† ! ! !	1 6	7 1 2 1 2	1	; ; ; ; ;		1 4 1 1
	0	8	,	Œ	41	. R	. 4		R.	Œ	20.00
	Ġ	8 6	i	'	۷, ۵	5 6	2 2 2	ι		`	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
·	00	9	ı	.2	S	127	027.0	1	5 6	3.0	030.5
	01	₹.		-195	334	20	6.2	1	-14.21	17.96	Q.
<u>-</u>	66	l Kr	! ! ! ! ! !		 	54	92.0	} ! ! !	 	 	92.0
-	99	29	1	S	4.1	28	56.6	ı	4.8	9	54.3
 9	66	48	1	9	マ	656	56.3	1	5.8	3	59.7
	2007	4	1	-115	226	10581	962.69	ı	-9.01	13.08	6.7
<mark>-</mark> 	0 (4.		eo ⊷4	(C)	655	72.2	1	5	7.9	76.7
 	99	8.7	 			iὸ	08.0	t . 	 	 	08.
	g G	3	1	ŧ٥.	び	36	52.7	1.	5.9	9	48.3
	99	21	I	-77	149 ;	28	N	i	Ė	Ç	24.6
~-	8	02	ı	2	r)	7	41.5	I	0.9	۰.	43.6
<u>-</u> -	5 1	0 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20	თ 1	43	39.2	I I I I I I I I I I I I I I I I I I I	16.1	7.9	41.0
	O)	2067				2067	20.7				0.7
	66	4	1	co ·	4.	44	52.6	1	ε, 4.	φ	51.8
 ∞	66	03	t	4	❖	<u>س</u>	02.5	1	4	9.2	07.6
	00	9,0	ı	9 ·	226	2	00 i	i	-6.02	13.08	65.5

TRAFFIC PROJECTION ANTIQUE

IABLE 3.2 - 4 (2)

Movement of Passengers and Commodity

 !	3	· !	Number	of Pass	engers	 1 1	1	Comm	Commodity Ton	Tonnage	
	100	Normal	Diver- ted-1	Diver- ted-2	Generrated	Total	Normal	Diver- ted-1	Diver- ted-2	Gene-	Total
σ,	1990 1993 1997 2007	1970 2309 2855 4691 7449	111	1 1-1 1 22 62 88 5 62 478	140 149 226 334	1970 2324 2971 4863 7698	210.53 239.69 285.00 425.13 613.48	1 1 1 1	-2.93 -3.47 -5.14	2.63 9.20 13.08 17.96	210.53 239.39 290.73 433.07 623.89
010	0000-	1593 1870 1870 188 188 6077	 	8 8 1 1 1 1 8 8 1 1 1 1 1 1 1 1 1 1 1 1	14 149 3326	100400		1111	-2.80 -3.31 -4.89	2.63 9.20 13.08 17.96	167.51 190.79 233.37 348.64 503.36
 	1990 1993 1997 2007 2017	1144- 11339 1653 1653 4278	1 1 1	1 1 1 1 1 1 1 1 2 2 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	41 14 149 149 334	140001	135.41 153.81 182.31 270.18	 	1	2.63 9.20 13.08 17.96	
175	1990 1993 1997 2007 2017	1113 1302 1607 2627 4155	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	14 140 140 334	1113 11335 1744 2836 4463		1 1 1 1	1 2 . 3 2 . 1 2	2.63 9.20 13.08	133.92 152.36 186.61 275.82 394.84
1	1990 1993 1997 2007	1040 1040 1285 1385 3343	f 1 1	22 4 4 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	22 6 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1106 1106 12383 3754	80.77 91.95 109.33 163.10	 	4.56 5.39 7.92 11.07	2.63 9.20 13.08 17.96	80.77 99.14 123.91 184.09
4	1990 1993 1997 2007 2017	1000000		200 200 200 200 200	34 1 1 2 4 1 1 1 9 0 1 1 1 9 0 1 1 1 9 0 1 1 1 1 1	1157 1151 1512 3898	80.93 92.24 109.83 164.33	1 1 1 1 1 1 1 1 1 1	5.93 8.78 12.37	2.63 9.20 13.08 17.96	80.93 99.87 124.95 186.19 267.97
1 2	1990 1993 1997 2007 2017	1 230031		10 12 320 32		1 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3	87.26 99.46 118.41 177.01		6.80 8.08 12.06		1004041
9	1990 1993 1997 2007 2017	400 472 588 979 1566		 		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	38.14 43.90 52.96 81.44 120.24	[। ଉଟ୍ଟାଲ୍ଡ ।

TRAFFIC PROJECTION ANTIQUE

TABLE 3.2 - 4 (3)

2			QunN.	of Pass	nger			0	dity	กล	
	ಪ ಲ	Normal	Diver- ted-1	Diver- ted-2	Gener	Total	Normal	Diver- ted-1	Diver- ted-2	Gener	Total
	1000000	1354 1354 1973 3269 5231	1	ស	105 389 1024	1354 1354 1358 2358 6268	157.67 179.80 214.19 320.68 463.59	1 4 1 1		12.23 43.51 64.56	157.67 192.27 257.99 385.66 557.02
	1990 1993 1997 1997	1 4 5 0 6 6	1 1 1 1	1 1 1 1 1 1 2 2 0 1 2 3 0	149 149 226	140001		1 1 1 1 1	1.98	2.63 9.20 13.08	
1 60 H	00000	6692 7850 9712 15985 25420	- 516 - 536 - 1034	103		100000		+49.64 -59.14 -88.52	က က က က တ	1 1111	40444
0 1	# 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1 2 2 2 4 9 1 2 4 1 9 8 9 9 1	2613 2613 1018	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1	1 6 4 8 8 8 8 1	1199.6 2228.3 2728.3 410.4	1 დ <i>და</i> 4დ1	-7.28 -8.70 -13.04		2240. 2840. 4837. 626.
	00000	ଅବନ୍ୟର ∣	1111	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 t 1	1 65 65 65 65	7000001		[]] {	1 1 1 1	700000
22	100000	482 567 704 1168 1868		l 4 1 1 1 1 1 1 1 1 1	1 1 1 1	482 704 1168 1868		1			53.90 61.57 73.53 110.67 160.69
8	6660H	Ƙന ാധ ⊳തി	1111	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	21 75 116 176	8 4 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 1 2 1	0 4 8 8 9 9	1 1 1 1	1 1 1 1 1 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3	2.63 9.20 13.08 17.96	747 0 70 1 70 1 70 1 74 4 74 4
2,4	000000	00400	{ ;] ;	111	8 0 4 7	9 2 3 3 3 9 4 4 9 9 9 9 9	21.7 24.6 29.0 42.5	1111		3.21	225.5 32.2 47.1 67.0

TRAFFIC PROJECTION ANTIQUE

TABLE 3.2 - 4 (4)

Movement of Passengers and Commodity

 3 5	>		Number	of Pass	ρ2 C:			Commod	ity Ton	กลรูะ	
1	, a	Normal	Diver- ted-1	iver- ed-2)	Total	Normal	Diver- ted-1	Diver- ted-2	Gener	Total
1	1993 1993 1997 2007	1 1 1 1 1 1 1 1 1 1 1 1	516 516 1034 1621	147 182 296 466	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.64 1.330 2.087		1 49 . 64 59 . 14 88 . 52 127 . 97	13.38 15.94 23.75 34.05		63.0 75.0 12.2 62.0
9	1990 1997 1997 2007	100 123 201 317	;			85 100 123 201 317	10.82 12.83 19.00 27.24	1 1 1 1	1 1 1 1		00000
27	1990 1993 1997 2007	7989 9368 11585 19040 30226	h 1 1 4	1111	1 1 1 1	7989 9368 11585 19040 30226	851.53 969.91 1153.73 1720:62 2478.68	1111	1.21	1 1 1 1	
88	1990 1997 1997 2007 2017	100-06	-516 -1034 -1621	. 66 - 127 - 194	7 1 L	1 13 4 4 50 12	114.4	1 49 64 1 59:14 1 27.97	-3.89 -4.65 -7.01	1 1 1 1 1	414.4 418.4 497.6 742.9
6 2	000001	2 4 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3 1 7 1	prot prof	i ;	1 00 4 TO C U	459.60 523.51 622.74 928.79 1338.07	3 1 1 3	2.2.4		1 10 10 10 10 10
000	666601	2 8 8 8 8 8 1 1 2 1 2 1 2 1 2 1 2 1 2 1	F F F 1	1 1 1 1 1 .	t 1 i	284 3554 584 73 73 73	221. 721. 27.	1111			421.88 421.88 571.33 852.04

TRAFFIC PROJECTION

TABLE 3.2 - 5 (1)

Traffic Volume

ANTIQUE

TABLE 3.2 - 5 (2)
Traffic Volume

1990 104 250 12 30 1993 104 250 12 30 1993 104 250 12 30 1993 12 30 1993 12 30 1993 12 30 1993 12 30 1993 10 24 20 1993 10 24 20 1993 10 24 20 1993 10 24 20 1993 10 24 20 1993 10 24 20 24 20 1993 10 24 20 24 20 24 20 20 2	t 5	>] ; ; ! !	t	1 1 1 1 1 1 1 1 1 1	1 1	0/4		1	! ! !	1) ! !		1 1 1	1 1 1	with	1	1	1	1 1 1
1995 194 20 21 21 21 21 22 24 25 25 20 25 25 25 25 25	¥ .	0 1	2 A	Jeep	, p	감상	100 100 100	1 2 2	1 +2 ()		نب ا	ा छ छ	9 9 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	l is	ru-1	10 to	4 r i	0 + 1	1 12 10	Total
1990 73 173 8 21 276 5 280 7 256 100 256 12 20 4001 100	6	00000	921	220247- 10084	110 120 130 130 130	22 32 44 4	3 4 4 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	11111			4001-0	0000	ယ ⊷တပာ		0 7 5 6	39 49 119			. 1 1 1 1	405 506 796 1214
1993 175 66 199		0.0000	100110	1 4 6 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 112 30 30	22 24 443 63	1 6 4 3 4 6 1	1111			1 00 00 00 00 1	1 20 00 00 1	1 00001		40843	32 32 63 97	1 1 4 1			326 411 648 991
1990 74 65 21 19 178 9 187 85 76 25 21 207 - 11 1993 84 75 24 21 205 - 13 - 250 1993 84 75 24 21 205 - 13 - 250 1993 84 75 24 21 205 - 23 20 20 20 20 20 20 20	11	99999	21087	22 9 4 6	7 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3	9889	00 00 00 00 00 1			1 1 1 1	0000-01	ထပ္ကဏ	FO 84		0.000	H 0 H 01	1 1 1 1	11225	1 1 4 1	222 281 437 660
1990 51 34 20 14 119 - 9 - 128 63 42 24 18 147 - 11 1993 59 40 23 16 138 - 10 - 148 65 32 22 190 - 15 2007 106 122 73 42 404 - 33 - 137 187 137 82 47 453 - 24 1993 60 42 24 16 142 - 11 - 132 - 14 - 186 82 57 33 22 196 - 15 1993 60 42 24 16 142 - 11 - 15 - 14 - 186 82 57 33 22 196 - 15 1993 73 51 30 19 173 - 14 - 186 82 57 33 22 196 - 15 1990 73 51 30 19 173 - 14 - 186 82 57 33 22 196 - 25 1990 38 82 24 15 158 - 10 - 167 - 14 1991 38 22 1 17 35 - 14 - 18 - 14 - 18 1993 43 95 28 17 183 - 11 - 194 - 187 - 14 1990 27 4 13 6 50 20 71 - 23 - 25 1990 27 4 13 6 50 20 71 - 24 - 25 1990 27 4 13 6 50 20 71 - 24 - 25 1991 38 82 24 13 6 14 - 23 - 24 1992 2017 2018 - 24 - 25 - 25 1993 31 5 15 7 1 1 1 1 1 - 14 - 18 1994 2017 2018 - 24 - 25 - 25 1995 2017 2018 - 24 - 25 1997 2017 2018 - 24 - 25 1997 2017 2018 - 24 - 25 1997 2017 2018 - 24 - 25 1997 2017 2018 - 25 1997 2017 2018 - 25 1997 2017 2018 - 25 1997 2017 2018 - 25 1997 2018 - 25 1997 2018 - 25 1997 2018 - 25 1997 2018 - 25 1997 2018 - 25 1997 2018 - 25 1997 2018 - 25 1997 2018 - 25 1997 2018 - 25 1997 2018 - 25 2018 - 25 2018 - 25 2018 - 25 2018		88888		07070	22027 2007	0.000	1-C400	1111		1 1 1 1 3	8-60-	∞ O o ∞	6000		211 251 391 561	0000	1111	H 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1	218 276 429 647
1990 52 36 21 14 153 64 44 25 18 152 - 12 1993 60 42 24 16 142 - 11 - 153 64 44 25 18 152 - 15 2007 114 82 45 19 173 - 14 - 186 82 57 33 22 195 - 15 2007 172 128 78 29 274 - 22 - 296 128 91 47 466 - 25 1990 38 82 24 15 158 - 10 - 167 45 97 306 - 25 13 1993 43 95 28 17 45 97 28 18 18 11 1993 43 45 20 223		66660 6666	1 10 10 10 10 11 11 11 11 11 11 11 11 11	 0446	20 23 28 24 23	14 19 19 42	. ⊸ n o o o o		22 H 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 	1 44 00 00 CD	1 000 000			1 1 1 2 2 5 4 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ι ፈውውለ	[1 1 1 1 1 1 1 1 1	158 205 322 491
5 1990 38 82 24 15 158 - 10 - 167 45 97 28 18 188 - 11 1993 43 95 28 17 183 - 14 - 237 55 119 35 21 230 - 14 2007 82 187 57 30 355 - 23 - 23 - 13 6 23 -<	14	1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1 2 2 7 ~ 7 1	 	128 140 140 180		ころみでて!	; !	11 14 22 35	1 1 1 1 1 1	വ നയായ നവ	00000			333	1 လေ့ တက္	! ! ! ! ! ! ! ! !		1 t t 1	163 210 331 505
1990 27		999999999999999999999999999999999999999	1 62 45 62 62 1	8 1 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	22 22 22 24 24 24 24 24 24 24 24 24 24 2		ព្រៃស្សស្នា			, , , , , , , , , , , , , , , , , , ,	10000001	4 to 80 2 1	। ତ~ଟ୍ରର ।		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	। ଉପରେଜ।			1	2443 2443 2943 2943
1111111	16	99999999999999999999999999999999999999	311 31 31 31 31 31 31 31 31 31 31 31 31				1 4 14 4 12 12		00046	1 1 1 1 1	100 mg	32	4-140			ကတတ္ ၊	1111	2641-		58 67 108 167

TRAFFIC PROJECTION ANTIQUE

TABLE 3.2 - 5 (3)
Traffic Volume

	Ani- Total	233	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1281 1473 2322 3545	I თთ⊶თ		113	1	1 446
	- Mot.	100		37 45 74 118	1 H 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1 !] 1	122	113 21 33 33	 - - - - - 4.60 ነ
th	Tri 11 cyc	. 9540	1 4400	7 7869			: 		1 10 4 10 4 10 4 10 4 10 4 10 4 10 4 10
***	- Sub-	41111111111111111111111111111111111111	322	1242 3424 3424	37 109 105	4 TO 80 CO	1 10 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	00000	 040
	us Tru ck	57 34 85 51 26 111			6 6 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	F 52 4 0		8 111 118 118 129 29 29	ကြက္ထား
	eep + .B	1 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2		978 051 664 552 1	23 2 3 2 1 2 2 3 2 4 3 3 2 3 3 2 3 4 3 4 3 4 3 4 3	36 39 63 97	58 62 100 157	1 2099	
	Car J /van n	121 147 228 340	I ~∞∞~	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	I .		21 21 26 40 59	1 0 0 0 0 0 0 0 0	
1	Total	1194 225 273 429 653	1 0 4 - 20 10	1217 1408 1711 2695 4111	1 20 20 20 21	1 4 4 6 0 0 4 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	1 80 80 80 80	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	46647
	Ani- mai	i	1 1 1 1 1 1		1	1 1 1 1 1 1	1 1 1 1 1 1 1 1 1	! ! ! ! ! ! ! ! ! ! !]
	- Mot. 1 cycl	~ ~ ~	3233	333 345 127 127		i i i i i i i i i i i i i i i i i i i i	122 7 6 1 1 9 2 1 9 3 1 9 3 1 9 1 9 1 9 1 9 1 9 1 9 1 9	802266	44000
	Tri		! ! !		! ! !	! ! !		 	
0/3	Sub-	1 4 2 2 4 6	000000	118	108 108 108	1 1 1 4 4 10 0 4	11 98 17 17 17 18 18 18 17 18 18 18 18 18 18 18 18 18 18 18 18 18	688 1 2 4 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	: ! ! ! ውሠፋውር
! ! !	s Tru-	1 W W W W M	9 39 0 44 8 52 8 76 6 107	1 12 00 00 10	 0.01040	1 . 1 1	22 22 22 22 22 22 23 23 25 25 25 25 25 25 25 25 25 25 25 25 25	66 7 7 8 8 7 1 10 8 8 3 2 1 1 4 4 8 3 8 3 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	[
1	ep- Bu	4.000	3 8 9 8 9 1 2 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	80000	· • · · · · · · · · · · · · · · · ·	0 0 6 20		1	119
	Car Je	40440	888 808 140 100 100 100 100 100 100 100 100 100	144 90 166 110 200 130 311 213 468 323	ବ୍ୟକ୍ଷ ପ୍ରପଷ୍ଟ	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	18 12 21 25 40 13 18		
	g :	1990 1993 1997 2007 2017	66660	1990 1993 1997 2007	99999	00000	1990 1993 1997 2007	1 0 0 0 0 0 1	
1	i	 		1 6 H	08		I 00 I	1	

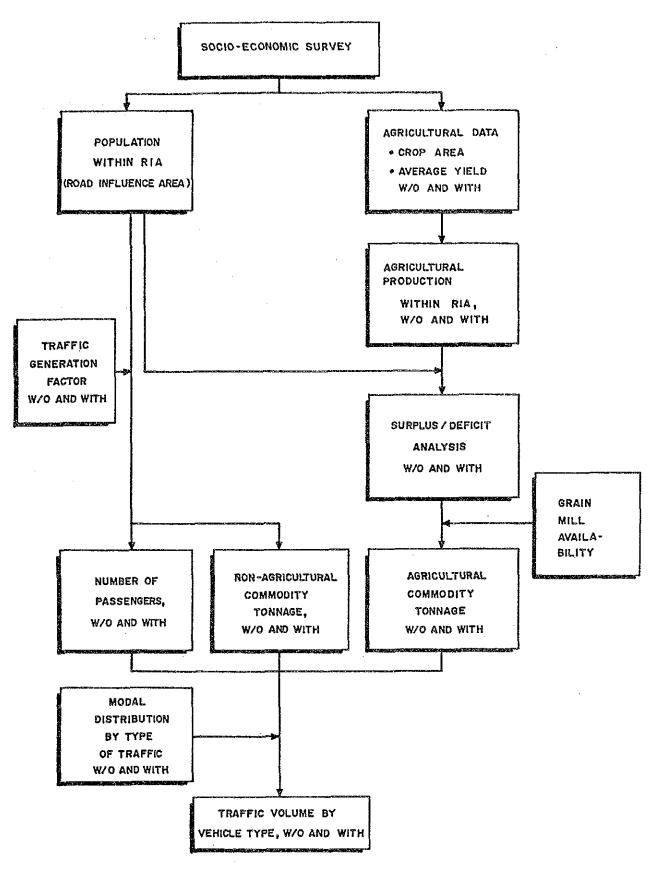
TRAFFIC PROJECTION
TABLE 3.2 - 5 (4)
Traffic Volume

	Ani- Total	! ! ! ! !	11	1 12	1 20	- 1 304	! ! ! 		2	- ; 32			1 144	176	1 277	- : 4240	i. I i I T === I	. 51	1 62	978	147	l	1 67	81	128	- 1 1948	1	9	1 680	1 106	
 	Mot: A	: ! ! !	က	4	<u>~</u>	10	! ! ! !	ιċ	ဖ.	1	73	1	1		ı	ı		1	i	i	ŀ			ì	ı	ı	! ! !	i	ı	1	
1 1	Tr4-	} } }	1	1	,	ı	i i i i	ı	1	ł	1	1 1 1 1 1	ı	ı	1	ŧ	 	•	ı	t	ı		•	1	-1	ì	 	ı	1	ı	
vi th	Sub- 1 Totall	ı	0	2	9	294				311	46	 	44	5	2777	2.4	 	~	3	975	· I	+ +- 	[∞	1948:		9	6801	9	
! ! !	Tru-12	 .1				231			2.1	က	4	1 1 1	9	O	287	413	 ! !			173	٠.				₽~	2481			105	ĸ,	+
 	Bus .	1	7	44	9	O	1 1 1 1	2	ιΩ	6		 	0	C)	205	S	[]] [[-	4	228	က ၊		81		156	φ	! ! !	38	47	77	
	Jee never	! ! !	œ	ø	14	225		P*4		2	හ	ł 1 1	7.4	91	146		ı	16	19	310	4.5		25	31	49		1	19	241	38	
! ! ! !	Car /Van	} ! !				36	! ! !	2	es 	4	9	; ! !	ß	ŝ	824			4	1	264	ا در ا		n	∞	4	665	! ! ! !	3	287	₹	
	Total	 	1	1	1	1	16	1.8	22	34	21	l ei	1449	5	! ~	C	502	579	! ~	1101	ו פ	582	672	816	1281	1948	486	561	680	1063	
	Ani- mal	1 1 1 1 1 1	,	ı	,	ı] 	1	•	ı	1 .	 	1	1	ı	•) 	Ļ	ı	i	 		1	F.	ı	1	! ! !) !	ı	1	ı	
 	Mot.	! ! ! !	t	1	1	ì	4.	<u>ښ</u>	9.	_		; ; ; ; ;	1	ı	1	1		ı	t	1		1	1	i	1	•	i . t 1 1	1	ı	j	
	Tri-	! ! ! ? !	1	I	1	!		1	1	1	1	1 1	1	ı	1	1		1	1	ľ	 		۱ 	۱ 	l 	1	! ! !	1	1	'	
0 / 3	Sub-	!		ï	,	ı	1.5	17	21	33	u,	2.5	44	76	77	マ	50	~	20	0.0	5 1	58	-	83	28	4	48	φ	8	9	
	Tru-T Sk	1	1	1	1	1	 	Ξ	-	2		142						Ä	1301	198	οi				۲-		781			ហ	
		; ; ; ; ; ;	•	ı	1	1	0.		•		2		0	S	0		110	S	S		> 1		∞		Ø	ø	32				
	Jeep	 	1	1	•	1	 		_	23		5.4	7.4	6	146	226	156	8	22		ا ا ا	2	2	37	49	7.7	17	13	24	38	
i i	Car /Van	 	·	· -	1	1	2	2		4	φ	ıα	വ	3	82	ෆ i	139	9	6	o t	∜	0	co.	∞	4	φ	0	ന	00	な	
1 . 6	ರ	99	66	99	00	2017	99	9	66	9	03	1990	9	66	00	0	99	99	99	86	5 1	9	99	6	00	0		99	99	8	
! !		; ; ;		25			 		26			 - - - -		27					28			•		29			 		30		

3.3 TRAFFIC ANALYSIS AND FORECAST: DEVELOPMENT PROJECT

Traffic on development project roads was forecasted separately for passenger traffic, non-agricultural traffic and agricultural traffic. The number of passengers and commodity tonnage were estimated first, and then they were converted to the number of vehicles assuming modal distribution and occupancy/average load. Figure 3.3.-1 shows the schematic diagram of traffic forecast for development project.

3.3.1 Passenger Traffic and Non-Agricultural Traffic


The population residing within the road influence area, which is defined as the area from which local existing or potential traffic using the road derives, was obtained mainly from distribution of barangays shown in 1:50,000 topographical maps and the NCSO 1980 Census of Population and Housing, and supplemented by information obtained from barangay interviews. The population forecasts were prepared using the NCSO report.

The number of passengers and non-agricultural commodity tonnage were obtained as the product of population by the per capita generation factor. Table 3.3-1 shows the generation factors commodity used in the analysis, which was derived mainly based on the traffic survey and referring to previous studies. In the case of particular roads where the common values were deemed inapplicate, specific values were used.

TABLE 3.3-1 PER CAPITA TRAFFIC GENERATION FACTORS (MINOR ROAD): Province of Antique

				•
Existing Road Condition	Passenger (trip/per			cultural nodity non/day)
	w/o	with	w/o	with
Paved/Gravel			~ ~-	
Good/Fair	0.06	0.06	2.0	2.0
Bad	0.05	0.055	1.6	1.8
Very Bad	0.04	0.055	0.6	1.0
Earth Road	0.015	0.03	0.5	1.0
Impassable to				
motoried vehicle	0.005	0.015	0.4	1.0

The modal distribution and the occupancy/average load used in the conversion to traffic volume by vehicle type were estimated individually for each road based on the road

PROCEDURE OF TRAFFIC FORECAST FOR DEVELOPMENT PROJECTS

inventory survey and the traffic survey.

3.3.2 Agricultural Traffic

Agricultural commodity tonnage was estimated based on the agricultural production within the road influence area, taking into consideration i) home consuption and surplus/deficit and ii) availability of grain mill(s) in the road influence area, as regards food grain.

- i) Home consumption of food grain was calculated as population times per capita grain consumption (assumed to be 130 kg in a milled form), and the surplus or deficit production was calculated based thereupon.
- ii) In case of no mill in the road influence area, all net production is assumed to move out in the form of palay/unmilled corn. Milled grain products for home comsumption are then transported back. An eventual deficit moves into the road influence area in the form of milled products.

Provided one or more mills exist in the road influence area, the transport flows are assumed as follows:

- Home consumption remains in the road influence area (no transport movement assumed).
- Surplus production would be transported out, traditionally in the form of unmilled food grains.
- Deficit production would be moved into the road influence area in milled form.

Agricultural commodity tonnage was enverted to number of vehicles using the modal distribution and average load, which were estimated individually for each road considering the transport circumstances.

3.3.3 Estimated Present and Future Traffic

Estimated present and future traffic is presented in Table 3.4-1 in the next Section.

3.4 SUMMARY OF TRAFFIC VOLUME ON STUDIED ROADS

Estimated present and future traffic volumes of the studied roads comprising of traffic and development projects are presented by each road project in Table 3.4-1.

TABLE 3.4 - 1 (1)
Traffic Volume by Vehicle Type

ANTIQUE

	i- Motor Ani- Walk le cycle mai -ing	# # # # 	0 0 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 37 0 11 0 11 0 0 11 0 0 7 0 6 0 6 0 6 0 10 0 10	19 7 17
with	Total Tri-	1-004190	24.21	12244 23244 23244 2324 2326 2327 2327 2327 2327	
	Bus TruckiT	7 8 2 4 1 0 c	222 325 118 118 118 118 118 118 118 118 118 11	8 4 0 7 1 8 4 4 1 8 6 8 4 0 7 1 8 4 4 1 8 6 8 6 1 8 4 1 8 6 8 1 8 6 8 1	1
	ar Jeep B	2048 4n	! အဖေဝင်း	55 978 47 298 21 14 21 14 21 58 21 58 19 42	∞
! ! ! ! !	Boat 1 Ca				1
	Ani- Walk mal -ing			111111111111	82 57
	- Motor A e cycle m	다 F (F (F ()) 1 1 1 1 1 1 1 1 1	00 111 8	0 39 0 11 1 11 2 67 6 7 6 6 8 5 9 8 5 6 1 0	1
0/M	Tri	20 24 20 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 0 0 0 0	669 118 118 169 94 177 11 772 10 10 10 10 10 10 10 10 10 10 10 10 10	1
	TruckiTotal	w	322 1 1 2 2 2 1 1 1 2 2 2 1 1 1 1 1 1 1	04428	
) 	Bus	F 0 0 0 0 6	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8	i
! ; !	Car Jeep -ney	10 100	110 26 85 7 43 9	166 180 120 120 132 132 103 11 101 110 110 110 110 110 110 110	ī
1	Number 1	NN N N N N N N N N N	4 CD ==1 1	NN	
Type		Reharm Table) 	Rehab/ Imp-1 Imp-2/ Widen	9 0 3 E
Class	or Road	Primary Major	E 1 1 1 1 1 1	r d	

TABLE 3.4 - 1 (2)
Traffic Volume by Vehicle Type

ANTIQUE

. 1	ديد	! .																		! .			! .	
1	Boa	¦	'	'	'	'	ı	'	Ł	•	'	•	'	•	•	•	•	•	•	1	•	•	! '	•
! ! !	¥ प्रधाप भूष	54.0	1	1	ı	١	15	ı	30	ı	.52	ì	33	ı	ຕ	ŀ	ı	ı	9.	1 	ı	1		!~
1	Ani- mal	20	ı	22	1	ı	2	1	4	4	ļ	ŀ	.1	ı	ł	17	2	ຜ	1	: ! ! !	10	ဖ	00	26
	Motor	13	17	23	11	24	ល	10	O	ഹ	16	വ	12	17	11	12	7	11	10		14		 ~4 	6
1	TriN	37	33	91	28	99	10	32	17	12	36	13	21	37	23	36	16	30	33		42		က 	.14
표		1						-												} 			! }	
with	ag ag	. E	29	46	26	38	7	30	ហ	∞	ស	13	20	33	22	20	10	17	14			21	p=0	တ
1	ruckiTo	 I		,	2		1	2	i	1	Ċ	1	_	2		1	1	 I	0		1	1		1
! !	Bus T	 		ı	-	ı	ı	, —	1	•	ı	ì	1	1	ı	ı	ı	ł	ı	 	ı	1] 	1
 	Jeep ney	1 (2) (4)	27	36	23	26	4	27	ស	တ	14	12	14	30	16	20	ဖ	12	ଫ	104	16	14		9
1	CarJ	! ! ! !	1	11	ŧ	(1	63	ł	ı	2	•	1	9	ı	വ	1	ന	Ŋ	ı	! ! ! ! !	9	۲-	<u>.</u>	ì
	: 	<u>!</u>		_																i 		 .	<u>.</u>	
 	Boat	} ; } ! ! ! ! !	ı	ı	ł	1	ı	ì	1	1	i	ı	i	ı		ı	1	1	1] - 1 	•	1	 	1
1	61 ~- ⊇≉ i.	1001	27	138	16	154	30	17	49	2.0	70	7	73	28	70	74	33	70	48	83	88	06		61
1	An1-	50	14	105	16	52	10	21	14	14	18	17	œ	17		44	7	23	17	9	38	26	19	61
1		 	17	3	10	1	1	10	ı	•	15	Ç)	1	17	ı	i	ı	1	10	52	ļ	1		ı
	Tri-		42	62	33	53	10	38	23	F-1	32	31	26	46	29	30	13	24	29		32		! } ! !	1
o i		 ! ! ! !	25	25	22	18		27	ლ ლ	4	о О	10	12	28	 S	77	4	 ဆ	10 1	1001	11	10		1
; ; ;	Η	i ! .						~- 	_												 1	<i>-</i>	i ! !	
1	Truc	, !		•			,		•	•		,	•					•		, ., , ,				
	Bus	1 1 1	1	1	1	1	1	•	i	1	1	•	ŧ	f	1	1	,	ì	ı	1 1 	1	1	; ! ! !	1
1	Jeep -ney	1 f	23	25	21	8	က	26	က	4	6	10	11	28	14	11	4	œ	10	96	#-4 #-4	0.	 	1
	Car	, } ! !	1	•	1	ı	t.	1	1	1	ı	í	ı	1	1	1	1	i	i	! ! !	ı	1		,
	 	 !								_													 !	
Hoad	Number	P10	N7-2	P23	N7-1	P.1.7	P9	N7-3	P16	P34	P13	P21	P11	ø Z	P20	P33	P22	P31	P14	E S	P4-1	P4-2	P36	P32
		<u>-</u>												~-	~-				<u>'</u>	-				i
Type		Rehab/	1 mp-1				~-						~=						 	1 mp-2/	Widen		N e K	Const
ις.	1	! ! !	_	7.1																				1
Class	Road	Minor	(Nat 1	Prov'1)													3	_	- 28	8				1 1 1 1

TABLE 3.4 - 1 (3)
Traffic Volume by Vehicle Type

ANTIQUE

Class	Туре	 1						0/1										with	ជ :				
Road	Impr't:	Road 'Impr't' Number 'Car Jeep Bus Truck'	Car Jeep	Jeep	Bus	Bus Truck	Car Jeep Bus Truck Total Tri- Motor Ani- Walk Boat Car -ney	G H	rit a) tor	Ani-	Kalk ing	Boatl	0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ri- Motor Ani- Walk Boatl Car Jeep cle cycle mal -ing -ney	Bus T	ruck	Total	Tri-	Jeep Bus TruckiTotal Tri- Motor Ani- Walk Boat ney	r Ani	Walk	Boat
Minor (Baran-	Rehab/ B09-1 Imp-1 B13-1	B13-1	1 1	. αό. !	1 1	; į	001	 - 	26 37	1 1 1	19	96 48 33	1 1	1 1	26 - 19 64 - 1 - 12 37 - 28 33 - 1 - 7	ı	01	13	7.7	- 0 13 24 11 5 18 - 17 16 5 12 7	25	18	1 1
gay)	New	New B17-1	 	1 1	1 1	!	1 1	<u> </u> 		1 1	138	75		 	138 75 - 14 - 14	 		1 4 1		14 32 12	1 2 2 1	101	1 1
	Const. !		;	1	1	1	·-		ı	1	113	46	1	1	6	١	,	, G		18 8	44.	ထ	i
		B04-1	ı 	ī	i	1			ı	ı	83	21	1	1	ស	,	1	ល	-			က	ı
		B09-3	1	ł	1	1	1		ı	ı	24	72	1	١	ល	ı	,	rt;				α	•

CHAPTER 4 PROJECT IDENTIFICATION AND SCREENING

4.1 PROJECT IDENTIFICATION

4.1.1 Field Surveys

Field survey was conducted by the Study Team to assess present condition of all major roads and some other typical minor roads (these are referred to as "Surveyed Roads").

Road projects (mostly minor roads) proposed by the local officials were also collected and road conditions of these roads were obtained by the interview survey (these are referred to as "Road Projects proposed by local officials").

Road projects surveyed by the Study Team and proposed by the local officials were combined and integrated, because some road projects were both surveyed by the Study Team and also proposed by the local officials, and a list of Studied Roads was prepared.

Summaries of "Surveyed Roads", "Road Projects proposed by Local officials "and" Studied Roads" are shown in Table 4.1-1.

TABLE 4.1-1 SUMMARY OF SURVEYED ROADS
Road Projects Proposed by Local Officials and Studied Roads
Province of Antique

	Road Class	National Roads	Prov'l/City Roads	Barangay Roads	Total
Surveyed . Road	Major Rd. Minor Rd. Total	291.2 40.4 331.6	82.0 82.0	-	291.2 122.4 413.6
Rd. Proj. Proposed by Local Officials	Major Rd. Minor Rd. Total	252.3 47.6 299.9	106.6	6.0 279.0 285.0	258.3 433.2 691.5
Studied Road	Major Rd. Minor Rd. Total	354.4 49.9 404.3	109.6 106.6	6.0 279.0 285.0	360.4 435.5 795.9

4.1.2 Project Identification

1) Project Identification Criteria

Project identification criteria are shown in Table 4.1-2.

TABLE 4.1-2 PROJECT IDENTIFICATION CRITERIA

		.
Then.	Condition of Ident	tification
Item	Major Roads	: Minor Roads
(1) Existing Links * Carriageway Width	: Less than 6.0 meter	: Less than 4.0 meters
* Pavement Type	Inferior to recommen- ded type in the engi- neering Standards	
* Surface Condition	Bad or very bad 1/	:Bad or very bad2/
(2) New Links	Impass Abando Non-ex	
(3) Bridges	Ford crossing Spillway Timber bridge Bailey bridge	: : Ford crossing : Spillway in : structurally un- : sound condition : Bailey bridge : for AADT more : than 300

- Notes: 1/ Gravel road which is proposed for improvement by local officials shall be identified, even though surface condition is "fair".
 - 2/ Gravel road of which surface condition is "fair" shall be identified, as the surface condition of gravel minor roads is easily deteriorated.

2) Identified Road Projects

All studied Roads, except those of the national primary roads and committed roads, were evaluated in accordance with the identification criteria. Road projects identified are summarized in Table 4.1-3.

TABLE 4.1-3 SUMMARY OF IDENTIFIED ROAD PROJECTS Province of Antique

		Road Class	National Road	Prov'l/City Road	Barangay Road	Total
Major Road		Length (kms.) (% to Studied	238.8	-	6.0	244.8
	:	Roads)	(67.7%)		(100%)	(68%)
Minor Road		Length (kms.) (% to Studied	27.9	101.1	269.0	398.0
		Roads)	(56%)	(95%)	(96%)	(91%)
Total		Length (kms.) (% to Studied	266.7	101.1	275.0	642.8
	:	Roads)	(66%)	(95%)	(96%)	(81%)

4.2 PROJECT SCREENING

4.2.1 Categorization

Road projects are categorized by the following factors in order to establish comprehensive prioritization criteria:

(1) Class of Roads

Major Roads

Minor Roads

* Primary major roads

*National/provincial/city

roads

* Secondary major roads

* Barangay roads

. (2) Urgency of work

Improvement criteria for roads and bridges are established as shown in Tables 4.2-1 and 4.2-2, respectively. Improvement works are classified into five (5) types as shown in Table 4.2-3. In view of the urgency of work to be implemented, the types of improvement are grouped into two (2) as follows:

Type A (Urgent Projects)

- * Rehabilitation: Improvement of deteriorated road surface, but standard or superior class pavement, to acceptable condition.
- * Improvement -1: Improvement of deteriorated road surface and substandard class pavement, to acceptable and standard pavement.
- * New Construction: Construction of new road including re-construction of abandoned road.

Type B (Less Urgent Projects)

- * Improvement -2: Upgrading of substandard pavement class to standard pavement class, though existing road surface condition is acceptable.
- * Widening of roads with substandard carriageway width, other conditions meet engineering standards.

Note: Road projects which include only improvement of bridges are classified as "Rehabilitation".

(3) Economic Viability

Major Roads

Simplified economic evaluation is conducted for major roads. Internal Rate of Return (IRR) is calculated based on roughly estimated construction cost and traffic cost savings. Categorization is made as follows:

Improvment Type A:

- * IRR of 7.5% or more
- * IRR of less than 7.5%

Improvement Type B:

- * IRR of 15% or more
- * IRR of less than 15.0%

Minor Roads

Minor road Pre-evaluation Indicator (MPI) is developed based on Phase-1 Study results. Categorization of minor roads is made based on calculated MPI as follows:

- * MPI of 7.5 or more
- * MPI of less than 7.5

TABLE 4.2-1 IMPROVEMENT CRITERIA FOR ROAD

Road	: Maj	or Road	: Minor R	oad
Class	: Standard/ : Superior	: Substandard	: Standard/ : S : Superior :	ubstandard
Good/Fair	: or	:(improvement-	:No improve-:No : ment :	
Bad/Very bad	<pre>:surface condi : tion : (Rehabilita- : tion)</pre>	-:pavement type :(improvement- : 1) :	:Improvement:Up; :surface con: p; :(Rehabilita: : tion) : (avement type Improve-
Abandoned/ Non-existi				THE PARK THE PARK STOR AND LOOK AND STOR STOR

Note: 1) In case of carriageway width less than 6.0 meters.

TABLE 4.2-2 IMPROVEMENT CRITERIA FOR BRIDGES

Existing	: Prop	oosed Improvement
Bridge Type	: Major Road	: Minor Road
Ford Crossing	: 2-lane : permanent : bridge :	: Carriageway width 4.0 m: : 1-lane spillway : Carriageway width 6.0 m: : 2-lane spillway
Spillway	: 2-lane : permanent : bridge	: No improvement :
Timber Bridge	: 2-lane : permanent : . bridge	: AADT less than 200 : 1-lane : permanent : bridge
	:	: AADT more than 200 : 2-lane : permanent bridge
Bailey Brridge	: 2-lane : permanent : bridge :	: AADT less than 300 : No impro- vement : AADT more than 300 : 2-lane permannet bridge

- Note: 1) Where the site condition is not favorable for a spillway, a permanent bridge should be planned in accordance with the criteria for a timber bridge.
 - 2) When the existing spillway is structurally sound and traffic disturbance is estimated less, the existing one can be utilized. Under other conditions, a permanent bridge should be planned in accordance with the criteria for a timber bridge.

TABLE 4.2-3 TYPES OF IMPROVEMENT

Type	: Existing :Pavement Type		: Proposed Improvement : Work
	: Standard or : superior	: Bad/ : very bad	
Improve- ment-1	: Substandard	: Bad/ : very bad	: Upgrading of surface : type
Improve- ment-2	: Substandard	: Good/Fair	: Upgrading of surface : type
Widening		: Good/Fair is narrowed than :	: Widening of existing : road :
New Cons	truction Impa	assable/abandoned non-existing	: Construction of new road
Note: In	mprovement-2 and	d widening are not	applied to minor roads.

4.2.2 Prioritization and Selection Criteria

Prioritization and selection criteria of road projects for feasibility studies are established as shown in Tables 4.2-4 and 4.2-5.

TABLE 4.2-4 PRIORITIZATION AND SELECTION OF ROAD PROJECTS
- Major Roads -

Category	Road Class	Type of Improvement	IRR	Priority Criteria	Selection Criteria
2 3 4 5 6 7	Primary Secondary Primary Secondary Primary Secondary Primary Secondary	A A B B A A B B	7.5 ≤ IRR 7.5 ≤ IRR 15.0 ≤ IRR 15.0 ≤ IRR 1RR < 7.5 IRR < 7.5 IRR < 15.0 IRR < 15.0	MA-1 MA-2 MA-3	To be selected for F/S

TABLE 4.2-5 PRIORITIZATION AND SELECTION OF ROAD PROJECTS
- Minor Roads -

Category	y Road Class	Type of Improvement	MPI	Priority Criteria	Selection Criteria
1	National/Pi	rovincial/			
2	City Barangay	A A	$7.5 \leq MPI$ $7.5 \leq MPI$	J MI-1	To be selected
3	National/P	rovincial/		_	for F/S
4	City Barangay	A A	$\begin{array}{l} \text{MPI} < 7.5 \\ \text{MPI} < 7.5 \end{array}$	MI-2	

Note: Improvement Type A: Rehabilitation, Improvement-1, New Construction

Improvement Type B: Improvement-2, Widening

4.2.3 Priority of Identified Road Projects

Identified projects were evaluated and prioritized in accordance with criteria discussed and summarized in Tables 4.2-6 and 4.2-7.

TABLE 4.2-6 PRIORITY OF IDENTIFIED MAJOR ROADS
Province of Antique

Category		Type of provement	I RR		ority roup	Road Length	No. of Road Links
1	Primary	Α	7.5 ≤	IRR	MA-1	37.8	3
2	Secondary	Α	7. 5 ≤	IRR	MA-1	29.9	3
3	Primary	\mathbf{B}	15.0 ≤	I RR	MA-2	-	
4	Secondary	В	15.0 ≤	I RR	MA-2		-
5	Primary	A	IRR<7.5		MA-2	77.8	6
6	Secondary	Α	IRR<7.5		MA-2	99.3	8
7	Primary	В	IRR<15.0)	MA-3	-	-
8	Secondary	В	IRR<15.0)	MA-3	-	_
	Total					244.8	20

Table 4.2-7 PRIORITY OF IDENTIFIED MINOR ROADS Province of Antique

Catego	•	Type mprov	of rement	MPI	Priority Group	Road Length	No. of Rd.Links
1	Nat'l/Provi/ City	Α	7.5 ≤	MPI	M I - 1	62.3	23
2	Barangay	A	7.5 ≤	MPI	M I - 1	76.7	6
3	Nat'l/Provi/	Α	MPI <	7.5	MI-2	66.7	19
4	Barangay	Α	MPI <	7.5	MI-2	192.3	23
	Total					398.0	71

4.2.4 Selection of Road Projects For Feasibility Studies

In accordance with selection criteria discussed above, road projects under priority groups MA-1 and MA-2 for major roads and priority groups MI-1 for minor roads were initially selected, and these were plotted on 1:100,000 map to evaluate the following:

- . Distribution of initially selected road projects (when these are concentrated in certain area, some minor roads were deleted, and where road projects are scarce, some minor roads were added.)
- . Linkage of road projects
 (There is a case that a selected lower class road is connected with a higher class road, however, the latter is not selected due to lower priority. Such a case, a higher class road is also selected to maintain similar condition of road after implementation.)

After adjustment mentioned above, road projects were finally selected and summarized as follows:

Major Road	246.1 kms. (20 projects)
Minor Road	153.9 kms. (29 projects)
Total	400.0 kms. (49 projects)

CHARTER 5 PROJECT EVALUATION

5.1 PRELIMINARY DESIGN AND COST ESTIMATE

5.1.1 Preliminary Design

- 1) Design Concept There are two options in design concept for rural road improvement, as follows:
 - * Designing rural roads with optimum standards aimed at improving all aspects including horizontal and vertical alignments, which sometimes require massive earth works and is costly.
 - * Designing rural roads by basically concentrating on improving surface conditions, thus improving horizontal and vertical alignments is limited to the required minimum.

Rural roads are extensive in the number of road links as well as in length, and their present conditions are still at a poor level. Thus, requirements for rural road improvement are quite huge, while financial resources are limited. Under these circumstances, the Study Team placed priority on improving surface conditions of more roads. The preliminary design was undertaken in line with the concept of the second option.

2) Preliminary Design
On the basis of the findings of the road inventory survey, the type of improvement was determined for each subsection of road in accordance with the engineering standards and the improvement criteria.

Typical road sections for each type of improvement/rehabilitation are summarized as shown in Table 5.1-1.

Special considerations were given to steep gradient sections and flood section.

"PCC pavement for steep gradient section" was applied to sections with steep gradients where otherwise gravel surfacing might be applied, as a countermeasure against excessive gravel losses during heavy rains and impossibility for vehicles to climb. "Grade raising in flood area", was applied to sections located in flood areas.

Table 5.1-2 shows the proposed improvement for each road project subjected to the feasibility study.

TABLE 5.1-1 EXISTING CONDITION VS PROPOSED IMPROVEMENT/REHABILITATION

	Road	Sec	Existing Pave	•	osed	Pavemen	t Structure (cm)
Type of Improvement	Type	Type	Condition	Pavement Type	Surface Course	Base	Subbase
Rehabilitation	11111	PCC PCC Bituminous Bituminous Bituminous Gravel	Bad/Very Bad Bad/Very Bad - do - - do - - do -		5 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	2001	10 10 - - 10
Improvement 1	22222222 1111111 84324321	Bituminous Gravel Gravel Gravel Earth Earth Earth	Bad/Very Bad - do - - do - - do - - do - - do - - do -	PCC PCC AC BMP/DBST PCC AC BMP/DBST Gravel	20 - 23 20 - 23 5 5/1.6 20 - 23 5 5/1.6	1 1 2 1 2 1 1 1 2 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1	10200200
Improvement - 2	იიიი 1 ლიიი	Bituminous Gravel Gravel Gravel	Good/fair - do - - do - - do -	PCC PCC AC BMP/DBST		20	0005
Widening	4444 ~ 0104	PCC Bituminous Bituminous Gravel	Good/fair - do - - do -	Widening w/PCC Widening w/BMP/DBST Widening w/Gravel	20 - 23 5 5.5/1.6 15	1 1 2 2 1	102.00
New Construction	00000 1111 4004	1 1 1 1)] ; ;	PCC AC BMP/DBST Gravel	20 - 23 5 5.5/1.6 15	20	20 20 15
Special Treatment	6 7	PCC pavement Grade raising	for steep grad	adient section			

TABLE 5.1 - 2 (1)

Summary of Proposed Improvement

ANTIQUE

 Θ E £ Θ £ £ 29.4 (T) 11.9 (T) 6.1 (T) 7.7 ۲-دو 6.3 ა ა 12.8 14.8 H 3 (Cost (Millian Peso) Bridge Total .00 37.54 37.54 .00 10.37 36.48 2-lane Br (n= 4,L=170m)! 42.09 13.29 55.38 2-cell BC (n= 1,L= 7m)! 49.54 5.84 35.75 .00 12.72 7.11 19.16 4.28 19.67 7.73 Widen(6.0-BMP); 1-lane Br (n= 2,L= 60m); 21.67 27.87 [mp-2(6.0-BMP); 2-lane Br (n= 2,L=391m); Hiden(6.5-BMP); 10.37 2-lane Br (n= 3,L= 96m)! 28.76 12.05 34m): 15.39 3,L= 53m)! 29.91 Road (n= 2,L= 36m); (n= 2,L= 46m); (n= 1,L= 5m); 1-lane Br (n= 2,L= 27m)| 2-lane Br (n= 5,L=533m)| 2-cell BC (n= 1,L= 6m)| 4m) 6m) (Number/Total Length) Proposed Bridge (n= 1,L= (n= 1,L= 6, L= <u>"</u> | 1-lane Br | Imp-2(6.0-BMP)| 2-lane Br | Widen(6.0-BMP)| 2-cell BC Widen(6.7-AC)! 2-cell BC Widen(6.5-BMP); 2-lane Br lmp-2(6.0-BMP); 1-cell BC Widen(6.0-BMP); 2-cell BC Widen(6.0-BMP) Widen(6.0-BMP); Imp-1(6.0-BMP)| Imp-2(6.0-BMP)| Imp-2(6.0-BMP) Rehab(6.0-BMP) | Imp-1(6.0-BMP) Imp-1(6.0-BMP)
Imp-2(6.0-BMP) Improvement Proposed Type Condition Good/Fair Good/Fair Bad/W. Bad Existing Condition G00d Good Good Good Good Fair Bad Good Good Good Good Good Good Good Good Good Bad Bad Bad GRV 1.3 5.0-6.0 BT 1.5 4.5 GRV 1.8 4.5-5.5 GRV BT GRV GRV BT GRV BT BT GRV GRV BT GRV BT BT GRV BT BT BT 4.0-4.5 5.0 4.0-5.5 4.5-6.0 5.5 5.5 4.5-6.0 5.0 5.0 4.0-5.5 Width 5.0 0 2 2 0 0 2 0 0 0 0.9 112.7 1.3 3.7 11.5 က ကေတက 15.8 113.3 6. 118.7 |Length: 1993 AADT w/o with 577 188 147 320 397 418 211 188 152 183 581 142 138 396 183 318 209 18.7 (KB) 4.6 20.6 6.4 13.3 17.7 5.7 13.3 15.4 Number N1-10 N1 - 17N1-13 'Imp-2/! NI-11 N1-16 Major N1-14 N1-12 Road Rehab/! NI-8 N1-9 Type ! Primary Impr't; ^S₩iden Imp-1 o £ 5

(T):Traffic Project (D):Development Project

Secondary Major

•	1 1 1 1 1 1	112	J. U.	ΑĐΩ		Existing	C ₀	tion	Proposed	Proposed Bridge	Cost (Million Peso	IRR
Impr't!		(KIII)	3	무		1 70 1 1 37 1 1 38 1	Туре	Condition	i iii ama o sdiii s	(Namber/lotal Length)	Road Bridge To	
Rehab/	162	0.0	1369	1 2	8.6	6.	BT	Bad/V.Bad	Imp-1(6.0-PCC)	ı	9.22 .00 9.22	49.2 (T)
 -	1 1 2 1 1 2	15.	9 6	324		5.0-5.0	BT GRV GRV	Bad Fair	Rehab(6.0-BMP) Imp-1(6.0-BMP) Imp-2(6.0-BMP)	5,L=162m	6.38 12.63 39.0	17.8 (T)
•- •- •	0 - 6N	2	89 E	79		6.25	1 LL CD LL	Good	den(6.0- p-1(6.0-	2-lane Br (n= 3,L= 50m)	20.59 4.57 25.16	10.9 (T)
		130	2 18		10.7		្ធ i	Bad Fair	Rehab(6.0-BMP) Imp-1(6.0-BMP) Imp-2(6.0-BMP)	2-lane Br (n= 3,L= 68m)	28.00 5.75 33.75	10.8
	ν 2 - 6 Ν	7.4	96	((0, (0)	7	0.4	1	Good	Widen(6.0-PCC) Rehab(6.0-GRV)	2-lane Br (n= 4,L=128m) 2-cell BC (n= 2,L= 16m)	7.38 11.14 18.52	10.1 (D)
	ž	14.2	94	16	• • .	3 - 6	S GRV BT	Bad	Rehab(6.0-GRV)	L=84 1=84	14.82 60.16 74.98	(I) 8.8
	N2-2	က 1	2.2	1 1 8 1 8 1	12.3		GRV GRV BT.	Fair Good/Bad	Widen(6.0-GRV) Rehab(6.0-GRV) Rehab(6.0-BMP)	2-lane Br (n=16, L=353m)	12.16 29.45 41.60	1.8 (0)
	N2 - 1	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	72	76	14.3	0.0	PCC	Bad	Rehab(6.0-GRV)	2-Jane Br (n=jl,L=277m)	14.96 22.47 37.43	
Imp-2/1 Widen	N12-1	22.7	79	182		1 7 7	GRV	Fair/Bad	Widen(6.0-GRV) Rehab(6.0-GRV)		16.47 .00 16.47	1.8 (f)
	N121	0.0	33	2 2 1	3.0	3.2-4.0	GRV	Fair	Widen(6.0-GRV); Rehab(6.0-GRV);		4.53 .00 4.53	(L) 0,
New Const.	9	0.9	0	. ∞ 	4.5	2.8	GRV	Bad	Rehab(6.0-GRV) New-C(6.0-GRV)	2-lane Br (n= 1,L=100m)	12.17 6.45 18.62	11.8 (D)

5 - 4

TABLE 5.1 - 2 (3)

Summary of Proposed improvement

ANTIQUE

Ninor (National/Provincial)

Type	Road	Length	1993	AADT	ш -	Existing	Condltion	Proposed	Proposed Bridge	Cost (M	(Million	Peso)	IRR	
Impr.t			3	s ith	ر	#14th	Type Condition	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Road	Bridge Total	Total	•	į
Rehab/1 Imp-1	P10	5.3	0		80 50	4.4 3.0	GRV Fulr CRV Bad	Widen(6.0-GRV) Rehab(6.0-GRV)		1.50	00	1.50	30.1	ê l
	N7-2		2.5	29	1.9	3.5	- 24	ab(6.0		1.32	00.	1.32	22.7	ĝ
		7.5	25	46	7.5	4.0-6.0	GRY Bad	Renab(6.0-GRV)	2-lane Br (n= 1, L= 24m)	6.97	1.87	8,85	22.3	ê
	N7-1		2.2	26	2.7	6.0		Rehab(6.0-GRV)		1.85	8.	1.85	21.0	(0)
		<u>'</u> 	18	38	0	4.0		Rehab(6.0-GRV)	111111111111111111111111111111111111111	1.79	80	1.79	20.7	ê
	6d 1		, m	7	1.0	3.6	GRV Bad	Rehab (6.0-GRV)	2-lane Sp (n= 1,L= 6m)	69.	11	. 80	20.5	lê
		4	27	30	8.	აი ა.	GRV Bad BT Bad	Rehab(6.0-GRV)		3.09	00	3.09	19.6	9
	P16		က	v,		4.6 0.6	BY V.Bad GRV Bad	Rehab(6,0-BMP) Rehab(6,0-GRV)		6.	8.	.91	12,6	ê
		2.	₹	ω ⁻	6,1	20		en (6.		50.2	80.	2.09	12.1	ê
	P13		6	72	r :	3,6	GRV V. Bad	Rehab(6.0-GRV)		2.07	00.	2.07	12.1	ê
	P2.1	20	0	2	6.1	4 to	GRV Bad BT V.Bad	Rehab(6.0-GRV)	1 2-lane Br (n= 1, L= 12m)	2.90	1.30	4.20	11.9	ê
	: !		12	°20	¥	3.2	, ,,,,	1 (G.		1.22	8.	1.22	11.4	ê
	82	7.6	2.8	20	7.6	4.0-5.0	GRV Bad	Rehab(6,0-GRV)	6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	6.32	00.	6.32	10.8	ê
		2.9	1.5	22	2.9	2.8-3.4	GRV Bad	Rehab(6.0-GRV)	2-lane Br (n= 1, L= 13m)	2.39	33	3.74	9.7	ê
	P33	8.1	=	20	6.7	2,4-3.2		Widen(6.0-GRV) Rehab(6.0-GRV)		10.56	00.	10.56	9.6	ê
		1.9		0.	1.9	67	Gity Bad/v.Bad	Rehab(6.0-GRV)	2-lane Sp (n= 2,L=170m)	4,66	3.09	7.75	0.	ê
	į	61	30 1	17	2	4.0-5.0	25	Rehab(6.0-GRV)		2.96	00.	2.96	7.9	ê
		2.4	70	14	2.4	5.5	GRV Bad	Rehab(6.0-GRV)		1.9	00.	1.98	7.4	â
Imp-2/1 Widen	2 !	6.11	100	114	2.03	000	GRV Good BT Falr GRV Bad	en(6,0-	1 1-cell BC (n= 1,L= 3m)	7.19	39	7.58	36.9	ê
	P4-1	0 1	=	23	1.2	4 4 .0	GRV Bad GRV Fair	Rehab(6.0-GRV)		1.17	00	1.17	31.2	<u> </u>
	P4-2	2.0	10	21		0.4 0.0	GRY Bad GRV Fair	Rehab(G.O-GRV)	2-lane Br (n= 1,L= 16m)	1.18	1.49	2.67	4	[@
New Const.		25.	٥	м	2.0	2.4-5.0	GRV Bad None	Rehab(6.0-GRV)	2-lane Sp (n= 1, L= 45m)	3.88	. 82	4.70	12.7	9
	1 P32	8	0	9	8 8 8	4	GRV Bad/Impas 1	Rehab(6.0-GRV)	; 2-lane Br (n= 1,L= 12m	10.85	1.30	12.15	8 .2	9
		!								Ü.	T):Tra	(T):Traffic Project	oject Projen	- ; ;

5 - 5

TABLE 5.1 - 2 (4)

ANTIQUE
Improvement
Proposed
y of
Summary

Length 1993 AADT Existing Condition Improvement Improvement	4 1	Minor(Barangay)	! ! ! !	 	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	! ! ! !					1	
8 13 5.6 3.6-4.0 GRV Bad/V.Bad Impa S. 6 3.6-4.0 GRV Bad/V.Bad Impa S. 6 3.6-4.0 GRV Bad/V.Bad Impa S. 6 3.6-4.5 GRV Bad Impa S. 6 3.7 2.9 GRV Bad Impa S. 6 3.7 2.0 GRV Bad Impa S. 6 3.7 8.7 8.4 GRV Bad S. 6 3.8 8.7 8.4 GRV Bad S. 6 3.8 8.7 8.4 GRV Bad S. 6 3.8 8.7 8.9 8.7 8.9 8.7 8.9 8.7 8.9 8.7 8.7 8.9 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7	Type Road L. of Number mpr't	<u> </u>	ength: (km)	1993 w/o	AADT with	1	xisting Width	Condition Type Condition	Proposed Improvement	Proposed Bridge (Number/Total Length)	Cost (Million Peso)	n Peso)	1RR (%)
0 7 7.5 2.4-4.5 GRV Bad/V.Bad 2.0 2.4 EAR Impas 2.0 2.4 EAR Impas 0 14 3.7 2.9 GRV Bad 18.0 None 0 9 2.0 1.6-3.6 GRV Bad 8.7 None 0 5 2.6 2.0 EAR Impas 9.0 None 1.3 3.3 BT Fair 4.4 None				00	13		3.6-4.(1 4)	Rehab(4.0-GRV) Imp-1(4.0-GRV) New-C(4.0-GRV)	1-lane Br (n* 2,L= 22m)	5.94 1.79	7.73	23.6 (D)
0 14 3.7 2.9 GRV Bad 18.0 None 8.7 None 8.7 None 0 5 2.0 1.6-3.6 GRV Bad None 2.6 2.0 EAR Impas 9.0 None 4.4 None	 	·	1 G ' + +	0		2.0	2.4-4.5	(1)	Rehab(4.0-GRV) Imp-1(4.0-GRV) New-C(4.0-GRV)	1-lane Br (n= 1,L= 36m)	7.19 2.63	9.82	17.9 (D)
0 9 2.0 1.6-3.6 GRV Bad Rehab(4.0-GRV) 8.7 None New-C(4.0-GRV) 2.6 2.0 EAR Impas Imp-1(4.0-GRV) 9.0 None New-C(4.0-GRV) 0 5 3 3.3 BT Fair Widen(6.0-BMP) 2.3 3.4 GRV V.Bad Rehab(4.0-GRV) 4.4 None New-C(4.0-GRV)	B17-1		21.7	0	!	3.7	1 1	i o	Rehab(4.0-GRV)	1-lane Sp (n= 7,L=190m) 2-cell BC (n= 1,L= 10m)	13.15 3.03	16.19 1 23.8 (23.8 (D)
0 5 .4 3.4 GRV Bad Rehab(4.0-GRV) 2.6 2.0 EAR Impas Imp-1(4.0-GRV) 9.0 None New-C(4.0-GRV) 0 5 .3 3.3 BT Fair Widen(6.0-BMP) 1 2.3 3.4 GRV V.Bad Rehab(4.0-GRV) 1 4.4 None	B08-3		10.7	0	្រ រ	2.0	1.6-3.6	, 0	Rehab(4.0-GRV)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7.27	.00 7.27	20.2 (D)
0 5; 3 3.3 BT Fair Widen(6.0-BMP) 2.3 3.4 GRV V.Bad Rehab(4.0-GRV) 4.4 None New-C(4.0-GRV)	B04-1		12.0	0	G.	4.90	3.0	GRV Bad EAR Impas None	Rehab (4.0-GRV) Imp-1 (4.0-GRV) New-C(4.0-GRV)	1-lane Sp (n= 2,L= 45m)	7.11	. 59 7.70	17.0 (D)
	B09-3		0.2	0	IG.	2.4	3.3	. 0	Widen(6.0-BMP) Rehab(4.0-GRV) New-C(4.0-GRV)	1-lane Sp (n= 1,L= 16m) 12.79		21 13.00	12.9 (D)

(T):Traffic Project (D):Development Project

5.1.2 Cost Estimate

1) Unit Cost

Unit prices for construction equipment, materials and labor were obtained from Associated Construction Equipment Lessors, Inc. (ACEL), the Price Monitoring Section of DPWH, market price survey by the Study Team and relevant studies. Based on the data collected, unit prices at April 1990 prices were developed. Exchange rates used were: P22.50 = US\$1.00 = Y155.

Unit costs for major construction items are presented in Table 5.1-3.

2) Construction Cost Estimate

Based on the results of the road inventory survey and proposed type of improvement, the quantity of each construction item was computed for each road project. Then the construction cost was estimated. Table 5.1-4 presents estimated quantities and construction cost of each road project.

TABLE 5.1-3 UNIT COST OF MAJOR CONSTRUCTION ITEMS

Unit: Pesus at April 1990 Prices Description Unit Unit Price sq.m. 100 Clearing nad Grubbing 52.00 cu.m. Stripping 102 106 cu.m. 58.00 Roadway and Drainage Excavation 110.00 225.00 107 cu.m. Borrow 108 cu.m. Aggregate Subbase 7.00 Preparation Of Previously sq.m. 118 - 1Constructed Road (Gravel) Preparation Of Previously 8.00 sq.m. 118-2 Constructed Road (Asphalt) sq.m. 22.50 Preparation of Existing 118-3 Pavement Surface (PCC) Preparation of Existing sq.m. 17.00 118-4 Pavement Surface (AC) Crushed Aggregate Base Course Crushed Aggregate Surface Course cu.m. 305.00 cu.m. 305.00 200 cu.m. 305.00 MT 11,100.00 MT 11,500.00 sq.m. 95.00 MT 1,350.00 300 Bituminous Prime Coat Bituminous Tact Coat 302 303 Bituminous Macadam Pavement 306 310 Bituminous Concrete Surface Course 45.00 320.00 Double Bituminous Surface Treatment sq.m. 314 316-1 sq.m. PCC Pavement (t = 23cm) 280.00 250.00 316-2 PCC Pavement (t = 20cm) sq.m. PCC Pavement (t = 18cm) 316-3 sq.m. sq.m. 1,550.00 RCPC (Ø 910mm) 413-1Headwal T for RCPC (Ø 910mm) 2,900.00 413 - 2set Grouted Riprap 625.00 500 sq.m. 360.00 517 Side Ditch (Grouted Riprap) m Bridge Cost m 43,500.00 2-lane Superstructure each 330,000.00 Abutment for 2-lane bridge Pier for 2-lane bridge each 285,000.00 1-lane Superstructure 32,000.00 m each 230,000.00 each 200,000.00 Abutment for 1-lane bridge Pier for 1-lane bridge Reinforced Concrete Box Culvert 1-Cell RCBC m 20,600.00 2-Cell RCBC m 36,000.00 Wing wall and Apron for 1-Cell RCBC set 132,000.00 Wing wall and Apron for 2-Cell RCBC set 155,000.00 Spillway 2-lane Spillway m 16,500.00 12,000.00 1-lane Spillway Slope Protection Cost

Cut Slope Protection m 23,000.00 Embankment Slope Protection m 25,000.00

23,000.00 25,000.00

Cut Slope Protection

TABLE 5.1 - 4 (1) Quantity and Construction Cost

	Unit!		N1-17		Iï	N1-11	NI-10	0 1 2		NI-16	N9-1	N2-4
tal pro opo	X X	18:7 0,	4.6 4.6 BMP	15.4 15.4 6.0-BMP	20.6 20.6 6.0-BMP	13.3 13.3 6.0-BMP 6.5-BMP	1	i .	1 2 2 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7.7	က္ကပ္ပ	15.5 15.5 6.0-BMP
tanti 00		1 1 1 1 1	! ! ! ! !	! ! ! ! ! !	} 	1 f 1 f 1 f 1 f 1) 	1 1 1 1 1 1	; ; ; ;	i i I i i	i,
Stripping 102 Roadway & Drainage Excavation	က က က (င က ရာ ရာ	1 1	17847	25868.	325	33789	22202	57856	1 60 0	29360	5676	18862
200 Aggregate Subbase	2 E E	1 1	(~ C	351	454 454	22825	800	17682	30880	10377	9896	282
Freparation of Prev. Road (Arvi)		1 1	9 0	44. Σο Γ	9.4 ∪ U	Q ! Q	۱ چ د	1 1	000	1 0	19800	11300
		1 1		1 - 1	1 1	1 [F E	1 1		1 1	1 1	
		1 1	4604	15165	20019	11535	5588	5520	16361	5729	F° I	15857
301 Bituminous Prime Coat	2.	i 1	32	107	141	81	39	27	115	40	1 1	112
	- X	1 1	27000	100000	117100	67100	32700	J 1	45500	33500	1 1	93000
	N. T.	•		,) [1		2487)) I	1)
٠.	t: B 22 83 21	1 1	1 I	t 1	1 1	1 1	1 1	1 1	ı 1	1 1	i 1	, 1
	- Z	1	ı	1	1	,	ı	,I	٠	ı	19800	t
	т Ти	ı	009	009	1		1200	ı		009	1	ı
500 RCFC (dia.910mm) Headwall for RCFC (dia.910mm)	E 6			451	609	370	173	216			105	465
504 Grouted Riprap		•	·	1	4		1			: 1		, ,
Side Ditch (Grouted Riprap)	E	1	4900	1500	5200	1300	4400	2500	1	4200	1	ł
Slope Protection (Cut Slope)	E #			1 1	1		1 :	ı	t	1 1	t	. :
2-lane Bridge, Superstructure		533	: 1	96	170	391		. ,	53 13	1 1	1 1	162
1-lane Bridge, Superstructure	E		ı	ι	•	9		ı		ı	i	•
2-lane Bridge, Abutment	Each:		1 ;	9	∞ ,	4. 4	4 4	1	9	1	l	10
2-lane Bridge, Pier	u u	101		ເ ເ	ı S	4 4	₹ F-1	l i	1 1	1 1	iı	1 4
1-lane Bridge, Pier	:Each	1	1	•		~ 1	-	1	•	ı	ı	•
-lane	 E	1	ı	ı	•	•	ı	ı	•	ı	F	•
I-rane opiliway		; ;	3 1	į i	d 1		1 1	i		1	1	ı
000	 E E	C)	ı	ŧ	13		12	82	- 	1	۱ ا	۱ ۱
Wingwall for 1-cell RCBC	Set	ı	ı	ι	1	ı	ı			ı	ı	1
2-cel1	Set	-i -	. '		⊷ ,			φ.	⊷ 4	ı	1	1
Miscellaneous		7	1 1 1 1 1 1		1 1 1		rd 	1	r~ ! ! ! ! !	. I	<u>, , , , , , , , , , , , , , , , , , , </u>	
Road Construction Cost	Д. Ж.	O I	€ C	€. F	0,0	9.	0.	<u>ښ</u> .	ο, ι	· (5,0	(C) (
Total Construction Cost	 		. r.		טוט אנט	- o	٠.,	7 50	» r	? 1.	٥,٠	0 C
ost/Impr't	O.	00	2.25		2.04	163	2.04	1.16	1.69	· 🐧	2.79	
lotal Construction Cost/lotal Km	- i Q I. E I	O 1	2 !	1 63	9	- 1	. I	4	0	1.5	٠.1	• 1

TABLE 5.1 - 4 (2)
Quantity and Construction Cost

		Unit	N9-2	N2-3	6-6N	1 -	N2-2	N2-1	N1.2-1	1 1	1 6	P10	i i i
Total Ro Improvem Proposed	Total Road Length Improvement Length Proposed Pavement Type	E E	і нойю і	13.0 13.0 6.0-BMP	G 7 7 7 1	14.2. 14.2 6.0-GRV 6.0-BMP	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	15.3 14.3 6.0-GRV	22.7 22.7 -GRV	6.5 6.5 0-GRV	6.0 6.0 GRV 6	2.3 2.3 .0-GRV 6	1.9 1.9-GRV
uant) 00	& Grubbing	E E	1 1	1 1 6	1 1		1 1 1	1 1 9	1 1 1 6	1 1 6	1 20 1	1 1 1	110
102 104 200 260	Roadway & Drainage Excavation Borrow Aggregate Subbase	8 E E E	16313 6741 21189 989	50989 23163	2484 2844 2846 2484 2484	69876 5636 7239	21299 5660 7975	30105 3589 9438	49977 7912 8256	13090 1732 2675 32190	00000	2157	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
፲፫፫፫፫	reparation of Prev. Moad (ASPh) reparation of Prev. Surf. (PCC) reparation of Pave. Surf. (AC)	2222	2 1 1 1 2	120	1 1 1 1	250 250 1	390	9 1 1 1 	0 1 1 1	9 9	>	> 1 1 1	#
300 301 301 301	rushed Aggregate Base Course rushed Aggr. Surface Course tuminous Prime Coat	E E E	10742	13094	6570	512 12276 4		12546	20160	2850	5400	2070	1710
	ituminous Macadam Pavement itum.Concrete Surface Course	M.T.	00089	76800	1 1	3000	4200	1 1	1 1	1 1	1 1	1 j	11
1 1	ouble Bitum.Surface Treatment CC Pavement (t=23 cm) CC Pavement (t=20 cm)	E E E	100	1 1 1	200	1 1 1	1 1 d		111	1 1 1)	1 1 1	, 1 1 1
	CC Pavement (t=18 cm) CPC (dia.910mm) eadwall for RCPC (dia.910mm)	Set	1 100 1	1200 390 26		360 420 28	1800 465 31	2160 435 29	1800 675 45	មិន ខេត្ត ខេត្ត ខេត្ត	0 0 142.4 0 0 0	7 7 1 . 8 1	10 1
r >	Side Ditch (Gruted Riprap) m Side Protection (Cut Slope) m Slope Protection (Embank't Sl) m 2-lane Bridge, Superstructure m	EEEEE	1500 10 50	7700	1450	2800	2550 353	6900	2250	00111	100		1 1 1 1
- 0 - 0 - 0 - 1 - 1 - 1 - 1 - 1 - 1 - 1	-lane Bridge, Superstructure -lane Bridge, Abutment -lane Bridge, Abutment -lane Bridge, Pier	Each Each Each	۱ ۱۱۱ د	, i i i	1 1 10 1	1 to 1 to 1	1 1 1 1 1	1 67 1	11111	1111	, N . M		
XXX 5		868899.						11111	11111	.t. t. t. t. t. J.	4 1 1 1 1 1		11111
Road Con Bridge C Total Co Road Con	Road Construction Cost Bridge Construction Cost Total Construction Cost/Impr't km Total Construction Cost/Impr't km	2222	20.59 25.16 1.94	33.75	138 138 138 138 138 138 138 138 138 138	14.82 60.16 74.98 1.04 5.28	12.16 29.45 41.60 2.72	22.47 37.43 37.43 2.45	16.47	4.53	12.17	000000	1.32

TABLE 5.1 - 4 (3)
quantity and Construction Cost

	lunit	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		7 P17	6 6 1 1 Eu 1		P16	1001	5 PM 1	P21	I 🗝 I	1 & i
ایر	E E	7.5 7.5 6.0-GRV	3.3 2.7 6.0-GRV	2.0 2.0 6.0-GRV	1.0 1.0 6.0-GRV	4.0 4.0 6.0-GRV 6.0-BMP	1.2 1.2 6.0-BMP 6.0-GRV	2.0 2.0 6.0-GRV	1.3 1.3 6.0-GRV	2.8 2.8 6.0-GRV 6 6.0-BMP	1.5 1.5 .0-GRV	7.6 7.5 6.0-GRV
nuantity 00 Clearing & Grubbing	2.5] 	1	1 1	F I	l I I	. 1		1 1) t 1	i	Į I
102 Roadway & Drainage Excavatio	C	8 55	222	no co	750.	4.6	990	O E	97	ဖြင	4061	1 2 2 1
Aggregate Subb Preparation of	1) 1 == 3	46690	1782	1320	989	3014	890 7260	960 960 8330	858 858 0858	2824	830 7540	5016 46670
Preparation of Prev. Moad (Asph) Preparation of Pave. Surf. (PCC) Preparation of Pave. Surf. (AC)			1 1 1		1 1 1	8 1 1	4 0 0 1 1		1 1 1		1 1	1 - 1 - 1
Crushed Agg		. 1 9	1 1 6	יי ל	1 1 6	409	102	-	111	921	1 U	1. 1 5
301 Bituminous Frime Coat	<u> </u>	5 1 1	7	7 1 1)))	4) = 1 h	3	2 1 1	-	001	*
305 Bituminous Macadam Pavement	H 13			1 1	1 1	2400	009		1 1	5400	ļì	1 1
	ie IM.T.	· ·	1 1	1 1	1 1	1 1	1 1		1 1	1 1	ł l	1 1
	m2		ì	1	ı	ı	1		1	•	ł	1
1 1	- B	10	1 1	360	1 1	1 (t t		· • •	1 1	t i	1 1
	£ 0	. 23	75	00	30	120	30	!	75	06	4. സ ເ	223
504 Grouted Riprap		∹ I	G 1	វ	٠,	١	1		770	ı	ີ ເ	Ç I
Side Ditch (Grouted Riprap)	£ :	. 18	1	300	ı	1	1	0,2	1	50	200	1150
rotection (Embank't	$\widehat{\Box}$		l 1	1 1	! 1	1 }			٠,	1 1	i I	1 1
Bridge, Superstructu			1	1	.1	1	1		ı	12	•	١
				1 1	, ,	i 1	1 1		ı i	1	ا ي	ıi
	Each	1	ŀ	١	1	1	1		t	1	. 1	1
-lane	Each		t	1	1	ı	ı		ì	. 1	t	1
2-lane Spillway	4 E			1 1	. 9	1 1	, ,		ı ı	l l	1 1	1 1
-lane	E	1	1	١	ı	1	ſ		ı	ì	ı	1
	<u>e</u>	ı 	ŧ	1	1	t	i		t	ı	ŀ	1
-cell mode	€ °	· ·	1	1	1	1	į.		ı	1	1	
Wingwall for 2-cell RCBC	Set	· ·	1 t	١ ١	i 1	1 1	1 1		ì 1	1 1	1	1 1
iscellaneous			1	; ⊣	F-4	ļ	1	i			1	
on Cost	æΣ	6.97	1.85	1.79	. 69	3.09	.91	2.	2.07	2.90	1.22	6.32
Construction Cost	Σ	, α,	coo	1.79	08.	0		2	0		• •	٠ e>
Road Construction Cost/Impr't km Total Construction Cost/Total km	r r	93	69 56	98. 98.	. 80 08.	<u>, , , , , , , , , , , , , , , , , , , </u>	.76		വവ			$\infty \infty$
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1	 	1	1	•	1 1 1 1 1 1	- 1

TABLE 5.1 - 4 (4)
Quantity and Construction Cost

	Uni t	. P20	P33	P22	P31	P14	82		P4-2	P36	. P32	1
otal Road L mprovement roposed Pav	* * * *	- E	· · 🗷	μ.	, et	2.4 2.4 6.0-GRV			2.0 2.0 .0-GRV	44>	6.8 6.0-GRV	9.5 9.5 4.0-GRV
Quantity 100 Clearing & Grubbing Stripping) 22 m E E	 		t 	1 1 1 1 1 1 1 1	1 1 1 1 1		[t ' - 	4004	700	i 00
Roadway		7.7	ထပ	210	0 4	0 0	77	F	0	33	75.0	9 60 6
200 Aggregate Subbase	2 6 6	1914	4786	1254	1848	1584	10 20 00 00 00 00 00 00 00 00 00 00 00 00	714	0 00 0 0 00 0 0 00 0 0 00 0	1584	4440	4370
Freparation of Frev. Road (Asph)		dr 1	ა 2 ნ I	0 1	# I	0 4 F	0 1	7 1	٦ (ا	. l	ומ) 1 1
Preparation of Pave Surf. (PCC)		1	1	i	ì	E	•	1		1	•	
	2 E E E E E E E E	1 f		! !	1 1	1 1	1 (1 1	1 1	E E	1 1	1 1
300 Crushed Aggr. Surface Course m	E .	2,5	6840	1710	2430	2160	8910	1710	1800	2160	6120	5556
	 2 2		1 1) i	1 1	i i	2 1		1 1		1 1	
	. a2		ı	1	1	1	2000	ı	ı	1	ı	ŀ
	. T		1	1	•	1	1	1	1.	ı	١.	1
	t- ==2	1 1	I 1	1 1		1 1	1 1	t 1	t 1	1 1	1 1	1 1
	- E		ŧ	t	1	ı	1	1	1	ı	1	1
	1 m2		3000	1			- 1		1	1.	1	
	E 0	06	240	120	Об	გ	332	09	9	ന ന	33.55	152
504 Grouted Riprap	- CE		4 . I	ဟ				* .!	۴ ۱		4 1	
	E		4600	2	1400			1	1	•	3400	1
Slope Protection (Cut Slope)	E :		ഗ	1	ı	1	1	1	1		20	10
Slope Protection (Embank t Sl)	E E		20		, ,	ł I	1 1	1 1	. t	. 1	τ. τ. υ.	92.
1-lane Bridge, Superstructure	S E	3 }	1	1	1	1	1	1	• • I	i	1 1	22
2-lane Bridge, Abutment	Each		1	•	•	1	1	ı	2	ŀ,	7	
1-lane Bridge, Abutment	Each			•		1	ı	1	ı	ı	1	4
2-lane Bridge, Fler	Each!		1 1	1 1	1 1	1 1	1 1	ı t	1 1	1. 1	1 1	1 1
-lane Spillway	, E		1	170	1	1	1	ı	1	45	ı	1
-lane	£	1	i	i	ı	t	1	•	ı	1	ı	i
-cell	Ē	1	1	1	ı	1.	11	t	ì	1	1	1
	E		ı	1	ı	ı	1	•	1	•	1	ı
Wingwall for 1-cell RCBC	Set	1	•	•	1		-		1	í	1.	ı
Wingwall for z-cell Miscellaneous	13.8.	-		, ,	1		.	. "		F.		।
Road Construction Cost	Z Z	2.39	10.56	4.66	2.96	1.98		1.17	1.18	3.88	10.85	100
Total Construction Cost	M.	7	S.		O	0	ы	_	9		2.1	^
Road Construction Cost/Impr't km Total Construction Cost/Total km	Z Z	∞ €		40		$\infty \infty$		99	ro co	60	1 6	
	. !		1	1	1		Ė		1			- i

TABLE 5.1 - 4 (5)
Quantity and Construction Cost

### 11.5 21.7 10.7 12.0 ### 11.5 21.7 10.7 12.0 #### 11.5 21.7 10.7 12.0 ###################################		1111	71070	7 7 7		·	1
11.5 11.5 11.5 11.5 12.0 12.0 12.0 11.5 12.0	Road L		, 14	21.7	10.7	12.0	
17 17 17 17 17 17 17 17	ent Length	KH	-	2			į
Clearing & Grubbing m2 30000 209300 112500 102000	Pavement Typ	· · · ·	ė.	ç.	•	ė.	ο 4
Stripping & Grubbing m2 30000 209300 112500 10200			# 	! ! ! !		 	1
Stripping Mail Ma	Clearing &	- BE	000	0830	12	0200	48800
### Active Subbase ### Ac	Stripping		900	60	I	070	4880
Preparation of Prev. Road (Grv1) m2 5290 16310 9302 9200 9520	Roadway & Dra Borrow	n e	101	40	J) C	202	22.20
Preparation of Prev. Road (Grv1) m2 29230 16510 9200 Preparation of Prev. Road (Asph) m2 29230 16510 9200 Preparation of Prev. Road (Asph) m2 29230 16510 9200 9200 Preparation of Prev. Surf. (PCC) m2		 2 (, (0 0	0000) C	74044
Preparation of Previous (Asph) m2 Preparation of Previous (Asph) m2 Crushed Aggregate Base Course m3 6450 13020 6420 720 Bituminous Prime Course m7 m7 m2 m2 m2 m2 m2 m2	Dreneration of		0 0 0 0	יי מית	22.00	υ n 2 c	0770
Preparation of Pave Surf.(PCC) m2 Preparation of Pave Surf.(AC) m2 Crushed Aggregate Base Course m3 6450 13020 6420 720 Bituminous Prime Coat m3 6450 13020 6420 720 Bituminous Prime Coat m7 m7 m2 m3 6450 13020 6420 720 Bituminous Macadam Pavement m7 m7 m2 m2 m3 m4 m2 m2 m3 m4 m4 m2 m4 m4 m4 m4 m4		 3 C	υ 6	7 1	0076	3 1	00001
Preparation of Pave. Surf. (AC) m2 Crushed Aggregate Base Course m3 6450 13020 6420 720 Bituminous Prime Coat M.T.	5 5	2 E		1	1 1	1)	1 1
Crushed Aggregate Base Course m3 6450 13020 6420 720 Bituminous Prince Course m7 m2 m2 m3 6450 13020 6420 720 Bituminous Prince Course m7 m2 m2 m3 m3 m3 m4 m2 m2 m3 m3 m4 m4 m4 m4 m4 m4	· C		1	1	ı	ı	ı
Crushed Aggr. Surface Course m3 6450 13020 6420 720 Bituminous Prime Coat M.T.	Crushed Aggres	- E	1	•	ı	i	140
Bituminous Prime Coat Bituminous Tack Coat Bituminous Ack Coat Bituminous Coat Bituminous Coat Coat Bituminous Coat Coat Bituminous Coat Bitu	Crushed Aggr.	E	4.5	13020	42	2	4020
Bituminous Tack Coat Bituminous Macadam Pavement M.T. Bituminous Macadam Pavement m2 1 1 1 Bituminous Macadam Pavement m2 1 1 Bituminous Macadam Pavement m3 1 1 Bituminous Macadam Pavement m3 1 1 Bituminous Macadam Pavement m3 1 Bituminous Macadam Pavement m3 1 1 Bituminous Macadam Pavement m3 1 1 Bituminous Macadam Pavement m4 1 1 Bituminous Macadam Pavement m4 1 1 Bituminous Macadam m5 1 1 Bituminous Macadam Pavement m5 1 1 Bituminous Macadam Pavement m5 1 Bituminous Mac	Bituminous Pr	T.		1			
Bituminous Macadam Pavement m2 1 1 1 1 1 1 1 1 1	Bi tuminous	M.T.	1	•	ı	ı	ı
District Surface Course N.T.	Bituminous Macadam Pav		1	1	1	1	810
PCC Pavement (1=23 cm)	Bitum.Concrete Surface Course		1	•	1	1	ı
PCC Pavement (t=23 cm)	Double Bitum. Surface Treatmen		1	ı	l	1	1
PCC Pavement (t=20 cm)	1 FCC Pavement (t=23	113 113	,	,	ı	1	i
PCC Pavement (t=18 cm)	2 FCC Pavement (t=20	, n2	ţ	1	1	ı	1
RCPC (dia.910mm)	3 FCC Pavement (t=18	1 a	00	•	1	ŀ	1
Headwall for RCPC (dia.910mm) Set 27 73 37 38	RCPC (dia.910mm)	= =	216	œ	296	312	240
Grouted Riprap, Side Ditch (Grouted Riprap) m Side Ditch (Grouted Riprap) m Slope Protection (Cut Slope) m Slope Protection (Embank't Sl) m 10 Slope Protection (Embank't Sl) m Slope Protection (Each Slope Bridge, Pier Each Slope Spillway m Slop	Headwall for RCPC (d	Set	27		37	33	30
Side Ditch (Grouted Riprap) m	04 Grouted Riprap	 22 	1	1	308	•	5495
Slope Protection (Cut Slope) m 10 2 2 3 3 3 3 3 3 3 3	litch (Grouted	E 	•	1	1	,	1
Slope Protection (Embank't S1) m 10 2 4 4 4 4 4 4 4 4 4	Protection (Co	E	1 1	1	t	ı	ı
2-lane Bridge, Superstructure m 36 2 36 36 36 36 36 36	Frotection (En	E .	10	t	1	1	t
Table Bridge, Superstructure	Bridge, Supers	£	1 (ŀ	1	1	ι
Table Dingge, Noutment Each 2 2 2 2 3 3 3 3 3 3	-lane Bridge, Superstructur	E C	J.	ı	Í	1	ı
Pach Prince Dirage, Nouthern Pach	- 1 ane	rach r	1	1	1	I	í
Lane Bridge, Fier Each	1 4116	Cach	7	ı	ı	1	ŀ
1-lane Spillway m 48 190 - 4 - -	- tane DildS	1000	. *		r :	1	ı
- ane Spillway	- lane Spiller	1	٠ ١	! !			i 1
1-cell RCBC	-lane Spill	: E	4.8	140	1		
Second RCBC Set	-cell RCBC	: E	· 1	9 1	ı) 1
Wingwall for 1-cell RCBC Set -	-ce]}		1	C		ı	ı t
Wingwall for 2-cell RCBC Set	Il for 1-cell RCB	Φ	1	· 1	ì	1	ì
Miscellaneous Construction Cost R.p. 7.19 13.15 7.27 7.1 To construction Cost R.p. 2.63 3.03 .00 .5 Construction Cost M.p. 9.82 16.19 7.27 7.7 Construction Cost Impr.t km M.p. 63 .61 .68 .5	1 for 2-cell RCB	ı q	ı	-	1	•	•
Construction Cost M.p. 7.19 13.15 7.27 7.1 Se Construction Cost M.p. 2.63 3.03 .00 .5 Construction Cost M.p. 9.82 16.19 7.27 7.7 Construction Cost / Impr't km M.p. 6.3 .61 .68 .5	aneous		1	1 1	-		-
se Construction Cost M.p. 2.63 3.03 .00 .5 Construction Cost M.p. 9.82 16.19 7.27 7.7 Construction Cost/Impr't km M.p. 63 .61 .68 .5	Construction Cos	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	} -	1 6	1 6	! -	07 61
Construction Cost/Impr't km M.p. 63 .61 .68 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50	Sections trained as	. Z	• •		, 1 C		
Construction Cost/Impr't km 1M.p.; 63 .61 .68 .5	Construction C		oα	٠,		100	4 7
	Construction Cost/labr't	3, £	9 6	٠.٤	'nĸ	- u	20.01
Construction Cost/Total Km : M.D. .85 .75 .68	Construction Cost/Total	Σ.	, , , ,	7 22	89		1.86

5.1.3 Summary of Preliminary Design

Results of preliminary design were summarized in Tables 5.1-5 and 5.1-6 for major and minor roads, respectively.

TABLE 5.1-5 SUMMARY OF PRELIMINARY DESIGN:
Province of Antique
- Major Roads -

		Type of Improv		
	Rehabilitation/ Improvement - 1	Improvement-2/	New	Total
rimary Major Roads				
1. No. of Links	4	. 2	_	9
2. Total Length (km)	59.3	56.4	-	115.7
3. Improvement Length (km)	40.6	55.9	-	96.5
4. Construction Cost (million P)			-	276.6
5. Const. Cost/Imp. Length (MP/km)	3.44	2.45	.	2.87
econdary Major Roads			•	
1. No. of Links	8	2	1	11
2. Total Length (km)	95.2	29.2	6.0	130.4
3. Improvement Length (km)	93.6	29.2	6.0	128.8
4. Construction Cost (million P)	279.7	21.0	18.6	319.3
5. Const. Cost/Imp. Length (MP/km)	2.99	0.72	3.10	2.48
Major Roads Total				
1. No. of Links	12	7	1	20
2. Total Length (km)	154.5	85.6	6.0	246.1
3. Improvement Length (km)	134.2	85.1	6.0	225.3
4. Construction Cost (million P)	419.5	157.8	18.6	595.9
5. Const. Cost/Imp. Length (MP/km)	3.13	1.85	3.10	2.64

TABLE 5.1-6 SUMMARY OF PRELIMINARY DESIGN Province of Antique - Minor Roads -

	Type of	Improvement	
Į.	Rehabilitation/ Improvement-1&2/ Widening	Construction	Total
Minor Roads (National/ Provincial/City)			
1. No. of Links 2. Total Length (km) 3. Improvement Length (km) 4. Construction Cost	21 72.3 71.7	2 9.2 9.2	80.9
<pre>(million P) 5. Const. Cost/Imp. Length (MP/km)</pre>	74.4 1.04	16.8	
Minor Roads (Barangay)			
 No. of Links Total Length (km) Improvement Length (km) Construction Cost (million P) Const. Cost/Imp. Length (MP/km) 	2 21.0 21.0 17.5 0.83	4 51.4 51.4 44.2 0.86	72.4
Minor Roads Total			
 No. of Links Total Length (km) Improvement Length (km) Construction Cost (million Const. Cost/Imp. Length (M 		6 60.6 60.6 61.0 1.01	153.9 153.3

5.2 ECONOMIC EVALUATION

5.2.1 Basic Assumptions

The commonly used cost-benefit analysis was applied under the following basic assumptions:

i) Analysis Period

1991 - Detailed design 1992 - Construction 1993 - Project life (25 years)

- ii) Discount Rate: 15% pa
- iii) Quantified Cost

Initial construction/improvement costs Periodic maintenance costs

iv) Quantified Benefit

Traffic benefit
Development benefit (only for development projects)
Maintenance cost savings

The periodic maintenance costs, or rehabilitation costs, such as overlay, reconstruction and regravelling which will be needed after completion of the project to prolong the pavement life, were treated as project costs in this study, while the difference between routine maintenance costs and total maintenance costs in the "w/o" case was taken into account as a project benefit. In the case where the routine maintenance costs are higher than the "w/o" maintenance costs, the difference is considered as a negative benefit.

5.2.2 Economic Costs

1) Initial Construction/Improvement Costs

The construction costs discussed in Section 5.2.1 are the financial costs and do not include the costs for detailed design and construction supervision. In the cost-benefit analysis, the following economic cost was used:

Construction Cost	100%
-Tax	-15%
+Detailed Design Cost	4%
+Construction Supervision (Cost 6%
Total Economic Cost	95%

In the cost-benefit stream, 4% for detailed design cost was assumed to be spent in 1991 and the remaining 91% in 1992.

2) Periodic Maintenance Costs

Periodic maintenance, or rehabilitation, will be necessary when the riding quality of a pavement decreases to a certain minimum level of acceptability. Table 5.2-1 shows the periodic maintenance assumed in this Study.

TABLE 5.2-1 PERIODIC MAINTENANCE COST ASSUMED IN THE ANALYSIS

Surface Type			l) Financial Cost (millionP/Km	Cost
Gravel	10cm Regravelling	When thickness of gravel is reduced by 10cm, assuming 1.5cm loss annually from	4.0 m Gravel:	85% of Cost
ВМР	5.5cm BMP Overlay	When pavement serviceability decreases to 2.0, assuming 85,000 ESAL or 350,000 vehicle repetitions (4-10 years)	₽ 0.830 M	85% of Cost
ΛC	5 cm AC Overlay	When pavement servic ability decreases to 2.0, assuming 800,00 ESAL or 2,300,000 ve repetitions (8-20 years)	₽ 1.170 M 0 hicle	Cost
PCC	5 cm AC Overlay	When pavement servic ability decreases to 2.0, assuming 2,000, ESAL or 5,700,000 vehicle repetitions (10-25 years)	e- P 1.200 M	85% of Cost

Note: 1) As of April 1990

5.2.3 Benefits

1) Traffic Benefits

a) Traffic Cost

Basic Traffic Costs

The basic traffic costs were provided by PMO-FS, as shown in Table 5.2-2.

TABLE 5.2-2 BASIC TRAFFIC COSTS EXCLUDING TAX
(AS OF DECEMBER 1989)

Running Cost (P/km)	Fixed Cost (P/hour)	Time Cost (P/hour)
1.75	6.30	17.70
1.12	23.76	26.40
2.81	35.64	95.04
3.48	38.88	0
0.36	8.76	4.98
0.31	0.72	8.34
	(P/km) 1.75 1.12 2.81 3.48 0.36	(P/km) (P/hour) 1.75 6.30 1.12 23.76 2.81 35.64 3.48 38.88 0.36 8.76

Actual Traffic Costs

The actual traffic costs were estimated according to the dl-system concerning running costs and the dt-system with regard to fixed and time costs. The dl-values and operating speed for different surface conditions are shown in Tables 5.2-3 and 5.2-4, respectively.

TABLE 5.2-3 DL-VALUES IN KM PER ACTUAL KM

Surface Typ- Surface Condition	PCC/AC	BMP/DBST	Gravel	Earth
Good	()	0.14	0.29	
Fair	0.17	0.38	0.60	
Bad	0.43	0.65	0.87	1.20
Very Bad	0.89	1.04	1.20	1.56
Impassable	1.73	1.73	1.73	1.73

TABLE 5.2-4 OPERATING SPEED IN KM/HOUR

Surface Ty	ре											
Surface		CC//	١C	BMI	2/DI	3ST	(Grav	ze l	I	3ar	th
Condition	٥V	TR	MC	O۷	TR	MC	ОЛ	TR	MC	O٧	TR	MC
2 gai pa ani on pr 25 c. on no me ne un se un se un un un un un			. ~				- -					
Good	65	40	60	63	38	55	60	35	50		-	
Fair	55	35	50	53	33	45	50	30	40		-	•
Bad	30	20	20	30	20	20	30	20	20	20	10	10
Very Bad	2.0	10	10	20	10	10	20	10	10	10	5	5
lmpassable	10	5	5	10	5	5	10	5	5	10	5	5

Note: OV = Car/Jeepney/Bus/Truck

TR = Motor-tricycle

MC = Motorcycle

Traffic Costs of Other Transport Modes

In addition to the land-based motorized vehicles, the traffic costs of other modes were estimated as shown in Table 5.2-5.

TABLE 5.2-5 TRAFFIC COST OF OTHER MODES (COMMON TO ALL SURFACE TYPES AND CONDITIONS)

Mode Traffi	c Cost in P/Km
Animal Drawn	4.0
Walking (head loading)	1.2
Banca Boat	2.25

b) Traffic Benefits in Traffic Projects

Traffic on the project roads wwas broken down into four categories: normal traffic, diverted traffic-1, diverted traffic-2 and generated traffic.

The traffic benefits were estimated as follows:

Normal Difference in traffic costs between "w/o" and "with" Traffic The change in traffic cases. results not only from costs improvement of surface lhe type and condition but also from consequent change modal distribution.

- ii) Diverted: Difference between traffic costs
 Traffic-1 along the "w/o" route and those
 along the "with" route. Where
 diverted traffic passes through
 two or more project roads, the
 benefits were allocated to each
 road in proportion to length.
- iii) Diverted Traffic-2 and Generated Traffic:

 Half of the difference in traffic
 costs between "w/o" and "with"
 cases. This is the commonly used
 approximation.

Traffic costs were calculated assuming the following surface conditions:

"W/O" Case: Present surface condition is maintained.
"With" Case: Gravel/BMP are maintained in a fair condition.

AC/PCC are maintained in a good condition

c) Traffic Benefits in Development Projects

No diverted traffic is expected in most development projects. The benefits from normal traffic generated traffic were estimated in the same way as used for the traffic projects paying attention to the following:

- The travel distance considered in the benefit calculation is the distrance from the average point of transport gravity (gravity o f population for passenger traffic and agricultural traffic and gravity agricultural production for agricultural traffic) to the connecting point with a higher road.
- ii) The benefit from generated agricultural traffic is not considered as a traffic benefit because it is included in the development benefit. Therefore, the generated traffic benefits are only from passenger traffic and non-agricultural traffic.

2) Development Benefits

Development benefits were assessed using the producer surplus approach, under the hypothesis that substantial road improvement which removes constraints on development will permit and encourage farmers to adopt modern agricultural techniques and inputs. The development benefit consists of the difference in the

net value of total production (farmgate value less production costs) between the "w/o" and "with" cases. Changes in the volume and value of agricultural production will be achieved by one or more of the following:

- i) Increase in cultivated area
- ii) Increase in yield
- iii) Increase in intensity of land use through increasing the number of harvest or intercropping
 iv) Changes in the type of crop

Using the data obtained from the socio-economic survey, development benefits were calculated from the following equation:

Benefit = PRODw(FGPw-CPw)-(FGPw-CPw/o)

CPw = Production cost in pesos per metric ton, with

CPw/o = Production cost in pesos per metric
 ton, w/o

The increase in farmgate price resulting from reduction in traffic cost is not included in the development benefits, because it is considered a part of the traffic benefits.

Table 5.2-6 presents the summary of demographic and agricultural data.

TABLE 5.2 - 6 (1) Summary of Demographic and Agricultural Data

IRR (%)		H 8 H	11.8	22.3	20.7 20.5 19.6 12.6	ひままりち	9.6	36.9	12.7	23.6	233
AADT 1	1	889 76 1	00	223		233 125	10011	233	 	1 -1 23	4000
1993 A	W/0 Wi	96 77 72	0	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 6 6 7 6 8 F	10 12 12 13 13	11 4 8 0 I	100	0.0	80	0000
							1 3 4 4 8 1 1			30(Banan)	
										230(Vege.)	U U 1
p Area (ha)	Major Crop	200(Banan) 220(Banan) 190(Banan)		70(Banan)	70(Banan)	20(Banan)	40(Banan) 50(Banan)	230(Banan) 150(Coco.)	130(Palay) 300(Banan)	120(Palay) 250(Corn)	280(Corn) 110(Banan) 180(Banan)
1990. Crop		450(Coco.) 520(Coco.) 370(Coco.)	1180(Palay)	140(Coco.)	140(Coco.) 80(Banan) 100(Coco.) 50(Coco.)	50(Coco.) 150(Banan) 120(Coco.) 130(Banan)	350(Coco.) 235(Coco.) 50(Coco.)	1760(Coco.) 180(Palay) 50(Palay)	145(Banan) 450(Palay)		0 (Co
		710(Palay) 690(Palay) 940(Palay)	1230(Coco.)	0(Palay) 0(Palay) 0(Palay) 0(Palay)	10(Pal 00(Coc 50(Pal 50(Pal	80(Pal 30(Pal 80(Pal 50(Pal 20(Pal	1300(Palay) 250(Palay) 230(Palay) 300(Palay)		350(Coco.) 500(Coco.)	20 CC0	0 (Coc 0 (Coc 0 (Cor
	Total	136 143 150	2410	2 430	1250 1250 780	3320 300 300 500 500 500	1690 485 330 300	5990 580 200	625	87 70	66 - 61
90	٠ <u> </u>	52000	414	10000	3378 1 721 1 443 1 632 1	3804 1 2109 1 632 1	0 H 0 0 1	வ மு 🗝 :		ထတ၊	01-441
199	0 (2)	8 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1 🚥	- 4747 1747 195	238337	2557 1257 3764 2803 2994	60122	I SO CU CU	4,00	900	448 748 100 100
Road	(Km)	£ 00 €	0.9		200000		\$ 10.00 10.00 10.00 10.00		6.8	1 1 1 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1	1000
Road		1 1 1 1 1 6 2 2 1 7 2 1	B16-3	P10 N7-2 P23 N7-1	P16 P16 P16 P34	P 2 2 3 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	P233		F 5	B09 B13	F 8 6 0 1
Type	=======================================	Rehab Imp-1	New	Rehab/	w		1	1 0 1	\$ E I	Rehab/	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Class	Road	econd '		Minor (Nat'l/ Prov'l)					!	Minor (Baran-	gay)

3) Maintenance Cost Savings

The difference in maintenance costs between the "w/o" and "with" cases is considered one of the benefits. Maintenance costs in the "w/o" case were estimated based on the current EMK system, while maintenance costs in the "with" case were estimated as shown in b) below. It is noted that periodic maintenance cost in the "with" case is not included in the calculation of maintenance cost savings, because it is treated as a part of project costs.

In the case where the routine maintenance costs in the "with" case are higher than the maintenance costs in the "w/o" case (especially in the case of new construction, the maintenance cost in the "w/o" case in zero), the difference is considered as a negative benefit).

a) Maintenance Cost in "w/o" Case

According to the current EMK system, the annual maintenance cost per km was estimated as basic maintenance cost of P17,143.00/km times the EMK factor as shown in Table 5.2-7.

TABLE 5.2-7
EMK FACTOR FOR DIFFERENT SURFACING AND AADT

AAl Surface Type	DT	25	50	75	100	150 20	0 300	400
Earth Gravel						0 2.20		.50 2.60
AA) Surface Type		400	600 1	000	1500	2000 300	0 5000	10000
Bituminous Gravel	11.10				0 2.60 5 0.90		1.00 1	.05 1.10

b) Routine Maintenance Costs in "with" Case

The costs deemed necessary to maintain the improved roads in a fair condition were estimated as shown in Table 5.2-8.

TABLE 5.2-8 ESTIMATED ROUTINE MAINTENANCE COSTS

Surface Type	Operation	Annual Cost (peso/km)
Gravel	Vegetation Control Ditch Cleaning Grading Pothole Repair	1,150 4.0 m Gravel: 2,650 + 40 AADT 6.0 m Gravel: 3,000 + 45 AADT
	Total	4.0 m Gravel: 3,800 + 45 AADT 6.0 m Gravel: 4,150 + 45 AADT
ВМР	Vegetation Control Ditch Cleaning Shoulder Repair Patching Regravelling Shoulder	1,150 1,100 2,150 8,000 + 7.5 AADT 8,600
	Total	21,000 + 7.5 AADT
AC	Vegetation Control Ditch Cleaning Shoulder Repair Crack and Joint Sealing Regravelling Shoulder	1,150 1,100 2,150 9,300 8,600
	Total	20,400
PCC	Vegetation Control Ditch Cleaning Shoulder Repair Crack and Joint Sealing Regravelling Shoulder	1,150 1,100 2,150 5,600 8,600
	Total	18,600

5.2.4 Economic Evaluation

Results of economic evaluation are summarized in Table 5.2-9 and illustrated in Figure 5.2-1. Results of economic evaluation of each project road is presented in Table 5.2-10.

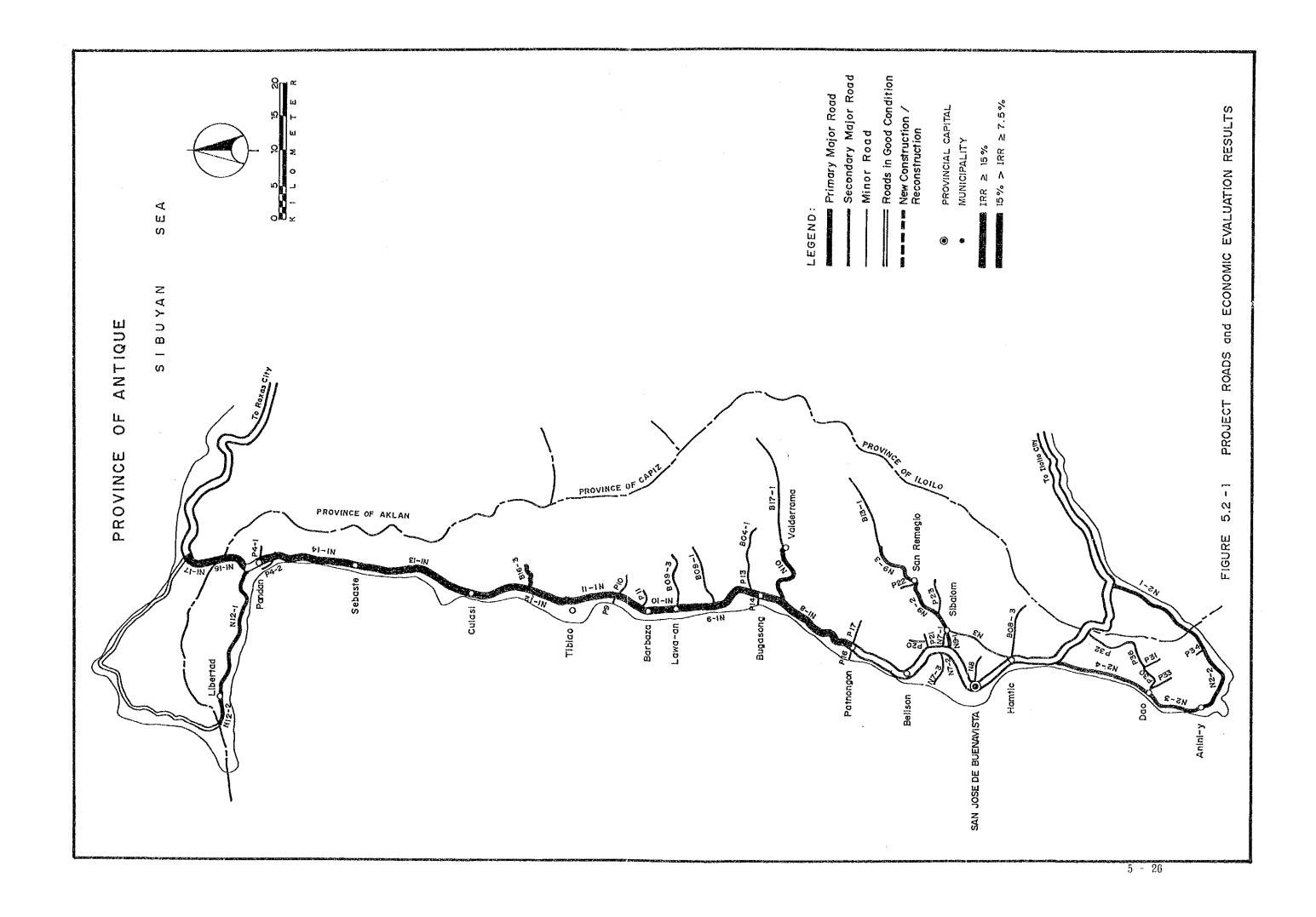


TABLE 5.2 - 9 (1)
Road Length and Construction Cost

Class	Range	1 1	Rehabi	litatio	itation/Impr	covemen			I du I	rovemen	t-2/Wic	dening		1		New Cons	struct	uoş	1
Road		2	otal ngth	engt	308 308	Cos	Total Cost	N I	Total ength	Improv Length	Road	Bridge Cost	Total	No.	Total	Improv Length	Road	Bridge Cost	Total
rimary	15< 10-15 7.5-10		9	40.6	8 1	37.5	12 2	1 8 4 4	. w + w	32.5	49.1 29.9 12.7				 	; ; ;	1 	1111	
 	Total	4	5.03	40.6	81.2	. S	139.8		56.4			45.1	136.8	 	; 	(; ; ; ;	i ; ; ! i i	;
r r	15< 10-15 7.5-10	[3	8 E & E	35 4	2.1	1 00 1 4	1110	29.5					 	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	φ 1 φ	1 2 1	ις ις ιν ιφ	9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	i i	80	. I	93.6	133.5	(A)	279.7	2	1 0	29.5		 	21.0	-	6.0	6.0	12.2	6.5	18.6
inor Nat'1/ Prov'1)	15< 10-15 7.5-10 <7.5		2002	21. 16. 15.	20.	064		10,114	1 8 1 8 1	j * 1 1 + .	8 1	4 5	i 1941 i 1941	 	4.8	4.60	3.9	888	12.2
	Total	18	6.	က က.	ເລ	7.7	က	က	•	15.8	S . 6	1.9	11.4	2	j -	9.2			
nor aran- ay)	15< 10-15 7.5-10	8111	1 - 1	21.0		4	17.5			i 1 1	; l l	 		 m == 1. 	4.4	44.4	27.5	9.1	31.2
	Total		21.0	21	13.1	4.4		; I	! ! ! !	1 } ! - 1 ! !	; i i i i i] 		1 4		51.4	40.3		
Total	15< 10-15 7.5-10 <7.5		8	}	65. 71. 20. 125.	0.844	1 24 10 00	 00 H 4	13.8 33.0 17.7 36.9	13.8 32.5 36.9	22 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	း ကြက္⊸၊ ။	44.4 15.4 4.8	4.31 4.35 4.84	27.5 28.8 10.9	13.6	31.2
 	20 I	32	2.	211.	83	216.8	o i	0	101.4	100.9	122.3	47.0	169.3		9.99	66.6	67.2	12.4	79.6

TABLE 5.2 - 9 (2)
Road Length and Construction Cost

	⊏ 4	•••		To	ند		
Rog	IRR	S	+ 20 • + 20 •	Improv Length	Road	Bridge	0 t
Primary	I •	 - H & H 4	333	32.	9 0 0 0	. ~ o co ←	
	छ	1 (5) 1	i ro	6 1	73,		76.
Second'y Major	15< 10-15 .5-10	 01 42 100	37	18. 37.	6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	12.6 27.9 112.1	96.
	Total	P™T	0	∞		LID:	9.3
Minor (Nat'1/ Prov'1)	50-15	0,000	1000014	10 00 01 44			27.9 21.5 37.1
	् ल	1 0	l et	80.9			1
Minor (Baran-	5< 0-15 5-10 5-10		1.00 12	1 10 1	001		1 80 80
	m	ŧ I	72.	72.4	53.4	8	
o tal		1 2 2 2 1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1		ကြေလာတ္က ျ	1 M 6 M 0	00 - 4	0,00,01.4
·- 	Total	49	400.0	378.6	472.6	276.2	48.

TABLE 5.2 - 10 (1)
Summary of Economic Analysis

-	Type	7000	1993	AADT		gth (km)	Economi	ic Cost			Ď i	enefit	(Mp/km	2	1	Econom	Indi	cator
Road	Impr'	Numbe	0/*	vi th	Total	Improveme	u o o	erio	o ta	Normal	Diver- ted	ισ	Deve-	Maint! sav g:	Totai	VPV (Mp)	B/C	1RB (%)
Primary		1 1 8 1 Z	ıα	577	i			1 1 1 1 1	: 2	: 2	} } 	.30	! ! ! ! !	: : : : :	ព្រះ		2.2	
Major	Imp-1	N1-17	8	188	4	(6.0-BM	8		2.1	0	ı	10.	ı		H	4	•	Ġ
		N1-14	142	152	15.4	15.4(6.0-BMP);	1.97	87.	2.15	.97	1 1	00.0	i I	. O.	90.1	1-16.5	w n	Oκ Chri
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) 1	 - - - - -	; ;		• 1		: i	1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	 	1 1 2 1 1 1	i i		1 1	•	; ! !	
	mp-2/				•	5(6.0-BM	.3.10	64.	31	3.40	t	90.	ı	90.	3.51	0.1	0.	1.4.8
			366	397	6.4		۲.		ω,		ı	.04	1,	. 07	ø		σ.	4
		1 N1-9	418	418	13.3	7-AC	1.23	.04	1.27	96.	i	10.	•	.03	1.00	-3.6	დ.	11.9
		1 N1-12	200	211	17.7	(6.5-BM	φ.		6.		1	.03	i	90.		ю	φ.	<u>.</u> `
		N1-16	183	188	5.7	16.8(6.0-BMF)	. 85		2.09	26.	!	.01	1	. 07	1.05	- 5.9	ı,	φ.
1 1 1			; i	1 (. !		. ;	۱ (1 1	1 1 1 1	1 1 1		•	• t		i
Second'y!Rehab/	"! Rehab/	-6N	36	3	•	6.	2.3		ς,	0	1	,	ı	.11.		: 22.4	3.8	49.2
Ch Major	I -dwI!		ന	324	•	.5(6.	2.0	. 45	2.54	2:81	ı	0.0	ı	.06	ي	٠		٠
_			L)	379	_;	9	6.1		ņ	.9	ì	1 .	ı	.07	Ċ,	•	œ	ö
29				•	(10.5(6.0-BMP)	,		•	•		,			•		ŧ	
ļ		200	877	27.0) t	ာ် ပ	2.16	 	24.6	19.	l I	. 15	() ()	· · ·	7 P	X 14 X 14		\$ -
		1	D D	0	* * -	(?				1					;		;
		1 N10	94	16	14.2	7 (6.	4.39	. 24	4.63	1.49	. 1	00.	1	01.	1:58	1-43.2	ლ.	ი
			:	•	,	.5(6.	(((•	4	1			((
		NZ 1 Z		22	 	14.6(6.0-GKV);	92.2	4.	06.2		ı	50.	87.	×	c).	1.02-1	·	0
		N2-1	7	26	15.	4	63	c)		. 31	ı		.26	. 07	Ġ	4	ω.	
	Imp-2/	N12-1	79		22.7	.7(6.	0.		82.		; ; ; ;	1 (0 1	! ! ! !	00.		7.6-1	1 6.	8
	Widen	N12-2	က က	ස ව	. s	6.5(6.0-GRV)	. 538			£ .	ł	.01	1	.02	-	9.8	. 2	0
	Ne i	B16-		1 1 60 1	ł: •	6.0(G.0-GRV)	2.58	.17	2.75	. 54	l' 	40.	1.43	02	2.09	0.4	8.	
	Const.																	

TABLE 5.2 - 10 (2)

Summary of Economic Analysis

icator	IRR (%)	30.	22.	22.	21.	20.	20.5	19.		12.6	1	12.	12.1	13.	÷	11.	, C	6.7	(7)	œ	7.	7.	36.9	ĊT.		1 1	7.71
n. Ind	B/C	١ ٠	•	•		•	7.5	•		œ	•	œ,	φ.	φ.		ωį	. 7	9.	9	in	υ.	ဖျှ	2.9	2		1	.
Econom	NPV (Mp)	2.3	•	2.5	6	∞.	4.	1.1		2		1.4	- 4	о 1		•	•	-1.3	•	•		• 1	17.0		9.1	1	× • • •
	Total	-	~	æ	٥.	ů,	1.22	٠٦		.68		. 82	1.17	1.09				. 79					2	1.64		1	-4 -4 -5 -5
·	Maint! sav'g!	i 🗝	.02	 Ö	.01	.00	10.	.01		. 01		.01	ò	.00.	-	00.	. 02	- 00.	00.	.01	00.	.01	.07		00.		20.1
(Mp/km	Deve-	4	1.08	ω,	88	83	1.10	.87		. 57			06.					.62					1.68		. 26		. 28 2. I
nefit	Generrated	.01	00.	. 02	00.	.01	00.	00.		. 00	,	00.	.03	00,		.01	00.	00.	.03	.18	00.	00,	00.	0	80.	1 1 1 1	5.5
9 I	Diver- ted	, 	ı	ı	i	ı	1	•				ı	,	1		ı	ı	i	ı	ı	ı	1	ı	i	,		
	Normal I	.25	.13	08.	.19	.48	.11	.21		£ .			. 23					.17					44		23		2.5
Mp/km)	Total	.72		1.17	N -	. 92	.84	.81		.81		•	1.50 (4.			ø	1.24	N	n,	٥,		l !-		1.28	1	
Cost							.17			.17	·	.17	.17	.17 1		. 37	80 ET .	.17	.17	.17	.17.1	,17			.17		.1.
Economic	onst- uct.	. i					99.			.63	!	.87	1.32	?				1.07		ر ن			.53	ហ	1.11	1	
	Improvement	.3(6.0-GRV);	9)6.	.5(6.	.7(6.	.006.	9	.6(6.	9	.1(6,	ψ,	90.	.3(6.	.9(6.	9	.5(6.	.666	.986.	.1(6.	.9(6.	.8(6.	ဗ္ဗါ	9.9(6.0~GRV);	200	0.66	1 1	2.4(6.0-GRV);
	B	. S	1.9	7.5	9.9	2.0	1.0	4.0		1.2	,	5.0	1.3	8.8		•	•	2.9	•	•	٠	2.4		•	2.0	1	7 0
AADT	t			46			-	30		ഥ	<u>-</u> - ,	ω	က က	 ee		20	ლ ლ	22	20 1	0.0	1.4	14	114	60	27		
1993	0/#	 () 					က			က		4	G	10		12	28	52	11	4	œ	10	0	-	10	1 1	> ·c
7 C C C	Number	F10 :	N7-2	P23	N7-1	P17	- 5d	N7-3		P16	,	P34	P13	P21		Pll	 8N.	P20	P33	P22	P31	P14	8 N	4	P4-2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.50
Type :		 Rehab/	Imp-I																				Imp-2/			!	Zox Zox
Class	Road	Minor	(Nat'1/	Prov'1)		_		-	2	-3	3 '	-		-	-~		30	•			•	- *				- •	- -

TABLE 5.2 - 10 (3)

Summary of Economic Analysis

ass	Class Type		1993 A	AADT	Ler		Economic Cost (Mp/km)	c Cost	(Mp/km)1		Ř	Benefit (Mp/km)	(Mp/km	•		Econom. Indicator	.Indi	ator
of Road	of Impr'tl	Number	0 / 3	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Total		Const- Pe	Period! Maint.	Const- Period Total Normal Diver Gene Deve Maint Total NPV Inuct. Maint. (Mp)	Normal	Diver-	Gener	Deve Ma	Gene- Deve- Maintl rated lop't sav'g;	Total	NPV (Mp)	B/C	1 HA (%)
Minor (Baran-	Rehab/I	Rehab/ B09-1 8 1 1 1 1 1 1 1 1	& O	13	11.5	Minor Rehab/ B09-1 8 13 9.5 9.5(4.0-GRV) Baran- Imp-1 313-1 0 7 11.5 11.5(4.0-GRV)	9 4 5	.71 .11	.11 .79	43) 	.02	87		87 .00 1.37 5.5 1.7 79 .00 1.02 2.2 1.2	5 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.7	23.6
gay)	N	Nex B17-1	00	14.	21.7	New 1 B17-1 0 14 121.7 21.7(4.0-GRV)	1 63 64 1 63 64 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	! ! ! ! ! ! !	1 000	. 64	i ! ! ! ! ! !	80.	4.0	1 00 0	1 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 0, 6 0, 6		23.8
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	B04-1	0	. ro	12.0	12.0(4.0-GRV)	. 53	 	 0 00 0 00 0 00	. 23	. 1	9 0		- 05	. 7.4.	? - 1	t r-4 • • • •-1	17.0
		B09-3	0	ເດ	7.0	.3(6.0-BMP)	1.54	.12	1.66	.21	ı	.05	1.12	. 10	1.38	-2.0	œ	12.9
**	***			_		6.7(4.0-GRV)												