REPUBLIC OF THE PHILIPPINES DEPARTMENT OF PUBLIC WORKS & HIGHWAYS

Feasibility Study on The Rural Road Network Development Project

FINAL REPORT (Volume 8)

PROJECT EVALUATION
IN
THE PROVINCE OF OCCIDENTAL MINDORO

OCTOBER, 1990

JAPAN INTERNATIONAL COOPERATION AGENCY

SSF

PART (3)

O 115(8/30)

JER LIBRARY 1086470[0]

21931

REPUBLIC OF THE PHILIPPINES DEPARTMENT OF PUBLIC WORKS & HIGHWAYS

Feasibility Study on The Rural Road Network Development Project

FINAL REPORT (Volume 8)

PROJECT EVALUATION
IN
THE PROVINCE OF OCCIDENTAL MINDORO

OCTOBER, 1990

JAPAN INTERNATIONAL COOPERATION AGENCY

国際協力事業団

21931

VOLUME - 8 PROVINCE OF OCCIDENTAL MINDORO

TABLE OF CONTENTS

		PAGE
CHAPTER	1 SOCIO-ECONOMIC PROFILE OF THE PROVINCE	1-1
	1.1 GENERAL 1.2 GEOGRAPHY AND TOPOGRAPHY	1-1 1-1 1-5
CHAPTER	2 ROAD NETWORK OF THE PROVINCE	2-1
	2.1 GENERAL	2-1
	2.2.2 Present Level of Road Development in terms of Surface Type and Surface Condition	2-3 2-5 2-6 2-6
CHAPTER	3 TRAFFIC	3-1
	3.1 TRAFFIC SURVEY RESULTS	3-4 3-4 3-9
	3.3 TRAFFIC ANALYSIS AND FORECAST: DEVELOPMENT PROJECT	3-21 3-23 3-23
CHAPTER	4 PROJECT IDENTIFICATION AND SCREENING	4-1
	4.1 PROJECT IDENTIFICATION	4-1

. *	4.2 PROJECT SCREENING	4-4 4-8 4-9
CHAPTER	5 PROJECT EVALUATION	5-1
	5.1 PRELIMINARY DESIGN AND COST ESTIMATE 5.1.1 Preliminary Design 5.1.2 Cost Estimate 5.1.3 Summary of Preliminary Design 5.2 ECONOMIC EVALUATION 5.2.1 Basic Assumptions 5.2.2 Economic Costs 5.2.3 Benefits 5.2.4 Economic Evaluation	5-1 5-9 5-17 5-19 5-19 5-19 5-21

CHAPTER 1 SOCIO-ECONOMIC PROFILE OF THE PROVINCE

1.1 GENERAL

The Province of Occidental Mindoro was selected as one of the Study Provinces which represents the province of the following characteristics:

- . Economically less developed
- . Poor level in road development
- Topographically mountainous

1.2 GEOGRAPHY AND TOPOGRAPHY

The province is located in the western part of Mindoro Island which is composed of Occidental Mindoro and Oriental Mindoro. These two (2) province is separated by mountain ranges located in the center of the island that runs from north to south.

The province of Occidental Mindoro is predominantly mountainous with narrow flat area along the western coastal line. Due to these topographical characteristics, the province is one of the typical sea-side mountainous provinces.

Slope map of the province is shown in Figure 1.2-1.

1.3 POPULATION

The province is composed of eleven (11) municipalities, two (2) of which are island municipalities. The provincial capital is located at Mamburao.

Population in 1990 is estimated at 289,900. The average annual population growth rate for the period of 10 years from 1980 to 1990 was estimated 1.0% which is much lower than the national average of 2.4%. Population density of the province in 1990 is 49.3 persons per square kilometer which is only about a quarter of the national average of 205 persons per sq. km.

Population, the average annual population growth rate and population density by municipality are presented in Table 1.3-1. Distribution of municipal towns together with their population is shown in Figure 1.3-1. All municipal towns are located in the low land along the western coastal line.

Table 1.3-1

POPULATION, LAND AREA AND DENSITY (1990)

Province of Occidental Mindoro

	1	Projected	}	Annual	1			
City/Municipality	ţ	Population						
•	}	(1990)	1]	Rate (%)	(km ²)	(p/km^2)	_
ه جمع من		., 42 44 45 45 45 46 46 46 46	1					_
1. Mamburao	I	20,688	1	2.9	1	339.5	60.9	
2. Abra de Ilog	f	17,204	ł	2.9	1	533.7	32.2	
3. Calintaan	ł	20,906	į	3.6	ţ	382.5	54.7	
4. Looc	1	7,502	ţ	0.9	1	90.4	83.0	
5. Lubang	1	14,989	ł	1.0	- {	113.1	132.5	
6. Magsaysay	i	23,388	ł	2.9	H	296.7	78.8	
7. Paluan	ł	9,907	}	2.9	;	564.5	17.6	
8. Rizal	1	25,708	;	3.3	}	242.5	106.0	
9. Sablayan	1	48,207	1	2.7	. [2,188.8	22.0	
10. San Jose	}	88,254	ŀ	2.9	1	446.8	197.5	
11. Sta. Cruz	1	13,115	ŀ	1.8	ì	681.4	19.3	
	ł		ł		 		 	_
TOTAL		289,868	1	1.0		5,879.9	49.3	

Note: * Island Municipality

1.4 SOCIO-ECONOMIC PROFILE

Table 1.4-1 shows major socio-economic data of the province in comparison with the national value.

Gross Regional Domestic Product which shows economic output of the province shares 0.4% of the total national output. In view of land area and population share of the province to the country, the province's economic output is in slightly lower level than the national average.

Per capita income of the province is higher by 1.24 times than the national average. Incidence of poverty shows the lower level than the national average. Unemployment and underemployment rates are much lower than the national average.

Agriculture is the predominant industry of the province and shares 73% in terms of number of workers.

Table 1.4-1
MAJOR SOCIO-ECONOMIC DATA OF PROVINCE OF OCCIDENTAL MINDORO

	Occ. Mindoro (A)	l Philippines l (B)	
1	1	1	! 1
1. Total Land Area (sq.km.)	5,880	; 1300,000	0.020
12. Population in 1990	0,000	1300,000	1 0.020 1
(1000 persons)	290	61,483	0.005
13. Population Density	290	1 01,405	1 0.003 1
(persons/sq.km.)	49	205	0.24
4. GRDP (Million P at	1 4.5	! 203	1 0.24 1
1 1000 prices)	2,394	623,051	0.004
15. Per Capita Income in 1985		!	
(P/person)	6,935	5,593	1.24
6. Number of Workers		1	
by Industrial Sector in	`	1	i
1980 (1000 persons)		1	
	·	}	
* Agricultural	44.0 (73%)	7,303 (51%)	0.006
* Industry	3.6 (6%)	-	0.002
* Service	12.5 (21%)		
+ * Total <u>1/</u>	60.3 (100%)	14,197 (100%)	0.004
- 1		i	1
17. Incidence of Poverty		!	1
in 1985 (%)	51.6	59.3	-
18. Unemployment Rate		!	1
in 1988 (%)	0.0	8.3	- ;
19. Underemployment Rate	_		1
in 1988 (%)	1.8	11.6	- :

Note: 1/ Includes other workers who cannot be classified as any one of three (3) sectors.

1.5 AGRICULTURAL LAND USE AND MAJOR CROPS

Occidental Mindoro has a total land area of 5,880 square kilometers, representing 2.0% of the total land area of the Philippines. Table 1.5-1 shows general land use of the province. About 58% of the province are occupied by forest and 15% by grass land. Agricultural land shares only 12%.

Figure 1.5-1 illustrates the agricultural land use of the province. Table 1.5-2 shows major crops produced in the province. Five (5) major crops of the province are palay, coconut, corn, peanut, and mango. The province produces approximately one-fourth of Region IV's palay output.

Table 1.5-1
LAND USE OF OCCIDENTAL MINDORO

	Area in	
Land Use	sq.km.	%
Agricultural Land	723.2	12.3
Forest	3,428.0	58.3
Grass Land	864.3	14.7
Fishpond	47.0	0.8
Idle Area	746.8	12.7
Built-up Area	70.6	1.2
Total	5,879.9	100.0

Source: Socio-Economic Profile of Occidental Mindoro

Table 1.5-2
MAJOR CROPS OF PROVINCE OF OCCIDENTAL MINDORO

Major Crops	Area Utiliz	ed (ha.)	Productio	n (M.T.)
Major Crops	1985	1986	1985	1986
Palay	62,240	69,440	219,850	228,955
Coconut	-	5,993	<u>-</u> .	6,153
Corn	4,570	4,630	5,905	6,265
Peanut	950	950	708	831
Mango	630	800	420	600

Source: Bureau of Agricultural Statistics

1 - 7

CHAPTER 2 ROAD NETWORK OF THE PROVINCE

2.1 GENERAL

The province was classified as one of the provinces of which road network development represents the poor level in the Philippines. In this Chapter, present level of road network development is assessed more in details, then general direction of the future road network development is established. Based on the said assessment and the functional road classification criteria, the major road network for the Province is proposed.

2.2 PRESENT LEVEL OF ROAD NETWORK DEVELOPMENT

Present level of the road network development level is assessed in terms of road extension (quantity of roads), surface type and conditions (quality of roads) and road network pattern.

2.2.1 Present Level of Road Development in terms of Road Extension

Occidental Mindoro has a total of 1,606.5 kms. of roads, comprising 358.9 kms. of National, 321.8 kms. of Provincial, 131.6 kms. of Municipal and 794.2 kms. of Barangay Roads in 1987.

Table 2.2-1 shows road density by class of road which is compared with national average. In comparison with the national average, road development level of the province in terms of road extension is summarized as follows:

National roads	higher by 1.43 times
Provincial roads	higher by 1.16 times
Barangay roads	almost same as the
	national average
All roads	almost same as the
	national average

In terms of road extension, road development level of the Province is considered to be standard.

2.2.2 Present level of Road development in terms of surface type and surface condition

The Study Team conducted an extensive field survey on the existing road conditions of which results are summarized in Table 2.2-2.

TABLE 2.2-1 EXISTING ROAD LENGTH AND ROAD DENSITY Province of Occidental Mindoro

		1	Road Density (L	
	Road Length In 1987 (kms.) Occ. Mindord	Philippines Occ.	Mindoro/Phils
National Rd. Prov'l. Rd. Sub-Total	358.9 (22. 321.8 (20.	4) 0.2854 0) 0.2559	0.1994 0.2211 0.4205	1.43 1.16 1.29
City Rd. Municipal Rd Barangay Rd.		4) 0.6316	0.0304 0.0981 0.6536	1.07
•	1,606.5(100.	•	1 1.2026	1.06

SOURCE: DPWH Infrastructure Atlas, 1989

TABLE 2.2-2 EXISTING SURFACE CONDITION (SURVEYED ROADS ONLY) Province of Occidental Mindoro

l Road	l Pavement		face Cor	ndition	1/			1 % of Paveme	ent Type <u>2/</u>
l Class			l/Fair	Bad/Ve	ery Bad	Tota	al (%)	Occ Mindoro	Phils.
	PCC	19.9	(100.0)	~		19.9	(100.0)	4.1	23.6
	Bituminous				(25.8)	3.1		2.8	22.3
Road	Gravel	•				•		84.9	51.3
•	Earth	 	-	5.3	(100.0)	5.3	(100.0)	8.2	2.8
•	Total:	170.5	(71.1)	69.3	(28.9)	239.8	(100.0)	100.0	100.0
•	PCC		(100.0)			9.8	(100.0)	•	2.5
 Provincial	Bituminous			_	_	;	_	0.2	8.9
Road					(32.2)	215.3	(100.0)	87.0	70.6
i 	•	L		ll .	(95.1)	8.2	(100.0)	12.1	18.0
1	Total:	156.1	(66.9)	77.2	(33.1)	233.3	(100.0)	100.0	100.0
•	PCC		(100.0)			29.7	(100.0)	2.4	12.5
and	Bituminous	2.3	(74.2)			3.1	(100.0)	1.6	15.3
	Gravel		-	132.6	(31.1)	426.8	(100.0)	85.9	61.4
1 1 1	Earth	0.4	(3.0)	13.1	(97.0)	13.5	(100.0)	10.1	10.8
1	Total:	326.6	(69.0)	146.5	(31.0)	473.1	(100.0)	100.0	100.0

SOURCE: 1/ Survey by Study Team in 1989 2/ DPWH Infrastructure Atlas, 1989

Present level of road development in terms of surface type and surface condition (quality of roads) could be summarized as follows:

National Roads

- . Only 7% of national roads are paved with PCC or bituminous surfaces in the Province, which is far below the national average of 46%.
- . Although most national roads are still gravel roads, surface conditions are relatively well maintained and about 71% of national roads were assessed good or fair condition.
- . In terms of road quality, national roads in the Province are still in very low level.

Provincial Roads

- . Only 1% of provincial roads are paved with PCC or bituminous surfaces, which is far below the national average of 11%.
- . Road surfaces are relatively well maintained and about 67% were rated good or fair conditions.
- . Provincial roads in the Province are still in very low level in terms of quality of roads.

2.2.3 Present Road Network Pattern

Present road network is presented in Figure 2.2-1, which shows all existing national and provincial roads. Present road network of the province is assessed as follows:

- . Existing road network pattern is a comb type.
- Due to mountainous terrain, roads connecting Oriental Mindoro are not yet completed, thus, there is no linkage by land transportation between the two (2) provinces.
- . As the lowland area between Sta. Cruz and Sablayan is easily flooded during rainy season, there is no road along the coast, instead the existing road runs inland area.
- . Most of the sections along the coast are provincial roads. National roads are mostly located inland area and become oftenly impassable.

2 - 4

2.3 GENERAL DIRECTION OF ROAD NETWORK DEVELOPMENT

Results of assessment of present road network development level are summarized as follows:

- . Although road extension is in the average level of the Philippines, quality of roads is still in a very poor level.
- . The basic road network within the province is formed, however, major links become impassable during rainy season. Linkage with Oriental Mindoro is not yet achieved.

Based on the above assessment, general direction of road network development of the province will be as follows:

- . Upgrading of pavement type of existing roads should be given priority.
- . Improvement of major links which currently become impassable during the rainy season should be given priority in order to establish more stable and reliable road network.
- . Completion of the roads in the northern and southern tips of the province which connects Oriental Mindoro should be seriously considered.

2.4 PROPOSED MAJOR ROAD NETWORK

2.4.1 Procedure

To identify major roads, all existing roads are firstly classified in accordance with the functional road classification criteria which is shown in Table 2.4-1. Functional classification groups roads according to importance and quality of services they are intended to provide. Individual road links of similar importance and quality of services are organized into systems so that a road network in accordance with the hierarchy of functions can be planned and formed. They can be efficiently managed with consistent policies, design and operation.

After identification of existing major roads, necessity of additional new links is assessed. For example, if a certain municipal town has no access, a new major road is added to the existing major road network. Thus, the initial major road network is proposed and subjected to evaluation whether the proposed one is well-balanced or not. Evaluation is made by two (2) indicators as follows:

a) Network Value

b) Accessibility

If indicators of some blocks show imbalanced value, additions or deletions of major road links are made until indicators show almost balanced values. After these adjustment, the major road network is finally proposed.

Table 2.4-1 Proposed Functional Road Classification Criteria for Rural Road Network

			Rolatto	Relationshin with Administrative Cheesification	niniatrati	an filmentation	5
	General Definition	Goneral Characteristics and Services Provided	National Road	Provincial Road	City Road	Municipal Road	Barangay Road
# H H C H B	. Major inter-provincial roads Intra-provincial roads linking two (2) or more municipal towns to the Provincial Capital . Intra-provincial roads which form a skelton road network of a province	Provides the highest level of service at the high speed for the long uninterrupted distance. Serves for long distance trips. Hobility is given the highest consideration	©	о одника и потом у струкција у од обобочност обос с и потом достуга од			And a second
# # # # # # # # # # # # # # # # # # #	Roads linking municipal towns each other. Roads linking a municipal town to the Provincial Capital Roads linking one (1) or more municipal towns to the primary major road network	. Provides high level of service . Serves for medium distance trips . Mobility is given high consideration	•				oper og grenne grenn
	Roads linking secondary major roads each other or a primary road with a secondary road. Roads linking two (2) or wore barangays to the municipal town or to the higher level network	. Provides rather low level of mobility . Serves for short distance trips . Collects traffic from feeder roads and connects them with major roads . Hobility and land access		•	•		
	Roads linking one or more barangays centers to the higher level network. Roads linking farm areas to their respective barangay centers or to the higher level network	. Primarily provides access to abutting land with little or no through traffic . Serves for local traffic . Land access is given high					
	Roads within built-up population centers (Poblacion) with essen- tially urban rather than rural rural functions	. Primarily provides access to abutting land in urban areas . Through traffic usage discouraged			•		- Communication of the second

Relationship between functional classification and administrative classification gives only general guideline, therefore, some national roads may be classified as minor roads, or some barangay roads may be classified as major roads. NOTE:

2.4.2 Proposed Major Road Network

The major road network for the Province of Occidental Mindoro was proposed as shown in Figure 2.4-1. For establishing the major road network, the following were taken into consideration:

- . Existing network pattern of comb type was based to formulate a major road network.
- . Existing provincial roads along the coast were proposed to be developed as primary major roads.
- . In order to complete the major road network, roads in the northern and southern tips were proposed to be completed in the future, if not immediately, no new links were considered necessary.

Network value and accessibility of each block were computed to evaluate whether the proposed major road network is a balanced one. Based on these values, addition or deletion of road links was made and finally the major road network was proposed as shown in Figure 2.4-1.

Network value and accessibility of the proposed major road network are presented in Table 2.4-2. Proposed major road network has a total length of 390.4 kms. and composed of the following roads.

National Road	274.6 kms. (76 %	of all national
		roads)
Provincial Road	115.8 kms. (36 %	-
		roads)
Total	390.4 kms.	

Table 2.4-2

NETWORK VALUE/ACCESSIBILITY

Province of Occidental Mindoro

			:===== =		=========
1	i	‡ Ro	ad !	1	Average
Block Popul	ation Land	Area Ler	ngth Netw	ork Access	Access.
No. (19	990) ¦ (k	m^2) (}	(m) Val	ue (p.km) (km.)
1 1 1 1	2,296 1 7	64.36 6	55.7 0.	678 28,44	9 2.314
1 2 1 2	23,404 2	06.50 6	60.7 1 0.	873 41,81	4 1.787
3 1	1,913 1	01.50 4	13.0 1.	237 3,57	0 0.300
1 4 1 4	14,207 3	40.25 9	94.2 0.	768 58,31	9 1.319
5 3	88,140 2	39.64 5	57.3 0.	599 67,47	8 1.769
1 6 1 4	18,312 3,5	17.27 22	8.0 0.8	553 32,19	7 0.666
l Ave. 2	9,712 8	61.59 9	01.5 0.	572 38,63	8 1.300
	===========				222222222

2 - 9

CHAPTER 3 TRAFFIC

3.1 TRAFFIC SURVEY RESULTS

Roadside traffic count survey was conducted on selected roads. Traffic counts were carried out on two (2) consecutive days for 12 hours from 6:00 AM to 6:00 PM each day. Traffic volume was counted by direction and by vehicle type every hour. The vehicle type was classified as follows:

- Car
- Jeep
- Van
- Jeepney
- Bus (mini bus & large bus)
- Truck (including trailer)
- Motor-tricycle
- Motorcycle
- Animal drawn
- Pedestrian
- Others

Figure 3.1-1 shows the location of traffic count stations. Traffic survey results are summarized in Table 3.1-1.

Survey results were converted to Average Daily Traffic (ADT) by using the hourly factors based on the data from the Nationwide Traffic Counts Program (NTCP). Considering other factors such as market days, harvest season, rainy season, etc., AADT were estimated by vehicle type.

TABLE 3.1-1 SUMMARY OF TRAFFIC SURVEY RESULTS
- OCCIDENTAL MINDRO -

					?			٠	(ADT a	(ADT as of Feb. 1990)	(0661
ιω	Can Can	Jeep p	Pickup /van	Jeepney	sna	Truck	Sub- Total	Tri-	Motor- cycle	Animal Drawn	Total
 	0	16	18	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0	26	. 143	197	97	i 0 ω	444
	0	47	26	107	0	6	198	114	109		423
ന	0	12	2	66		ব	61	50	40	8	152
ঘ †	0	48	27	162	0	72	309	279	147	0	735
ıo	0	48	34	141	0	77	237	265	143	0	645
ထ		68	30	235	ဆ	70	411	72	115	0	598
۲-		~		. 22	0	₩	31	17	81	0	129
ω	0	25	7	. 86	φ	33	156	22	52	2	266
თ	0	σ	10	46	4	13	83	4	24	÷	113
10	0	10	1	. 13	0	10	35	14	23	. 28	100
11	0	တ	29	65	6	99	168	402	360	4	933
12	0	₹*	4	22	4	7	41	8	ដ	რ	62
13	က	38	30	86	(2)	33	204	309	113	ເກ	630
14	0	∞		20	0	.	36	65	14	0	115
12	0	ω	6	46	0	. 25	7.9	` ω	12	0	96
. 16	0	17	₹'	65	0	6		243	. 28	Ø	371
	11100111	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		! ! !

- 3.2 TRAFFIC ANALYSIS AND FORECAST: TRAFFIC PROJECTS.
- 3.2.1 Analysis of Present Traffic
 - 1) General Procedure

Present traffic on each major road network was analyzed according to the procedure shown in Figure 3.2-1.

The analysis is divided into three major steps:

Step I : Analysis of Traffic Survey Results

The number of passengers and commodity tonnage were obtained from the results of the traffic survey. These data are, however, available only on the surveyed road links and used for calibration purposes for the traffic model described below.

Step II : Analysis by Traffic Model

Traffic generation and attraction, in terms of passengers and commodity tons, were estimated based on population and per capita traffic generation factors; traffic distribution (OD distribution) was estimated by the gravity model; then, OD distribution was assigned to the major road network expressed by the node and link system. In the analysis, since only traffic generation factors were unknown, assumed values were used in the first step.

Step III: Comparison of Both Figures

The number of passengers and commodity tonnage estimated by the traffic model were compared with those derived from the traffic survey. On the basis of the comparison, traffic generation factors were appropriately adjusted and the traffic model analysis was reiterated until the traffic model reflected the actual people and freight movements with a high accuracy.

FIGURE 3.2-1
PROCEDURE OF ANALYSIS OF PRESENT TRAFFIC
ON MAJOR ROAD NETWORK

2) Analysis of Traffic Survey Results

Traffic volume by vehicle type counted in the traffic survey was converted to number of passengers and commodity tonnage using the occupancy and average load shown in Table 3.2-1.

Table 3.2-1 OCCUPANCY AND AVERAGE LOAD Province of Occidental Mindoro

Average Number of Passenger per vehicle	
3,40	1.00
3.40	1.00
3.40	1.00
11.80	1.00
25.30	1.00
5.00	3.00
2,90	0.30
1.60	0.10
3.00	0.15
	3.40 3.40 3.40 11.80 25.30 5.00 2.90 1.60

3) Analysis by Traffic Model

- i) Zonal Division: The province was divided into traffic zones corresponding to municipal divisions in principle.
- ii) Major Road Network:
 The major road network was expressed by a node and link system. Each link was given length and average speed according to the actual road condition. A node and link system of the Province is presented in Figure 3.2-2.
- iii) Search for the Fastest Route:
 The fastest route for each zone pair was calculated by Moore's Method.
 - iv) Traffic Generation Factor:

 Per capita traffic generation factors (trip/
 person/day and ton/person/day) vary between zones
 even in the same province with many factors such
 as:
 - Economic Activity
 - Size of Population
 - Distance from Provincial Capital
 - Road Condition
 - Other Physical Conditions

FIGURE 3.2-2 LINK / NODE SYSTEM PROVINCE OF OCCIDENTAL MINDORO

The generation factors which best illustrate the observed people and freight movement were estimated by the iterative method. The traffic generation factors thus estimated are summarized in Table 3.2-2.

PER CAPITA TRAFFIC GENERATION FACTORS TABLE 3.2-2 (MAJOR ROAD, 1990 W/O) Province of Occidental Mindoro

Passenger Movement (trip/person/day) (kg/person/day) 0.014 - 0.0452.0 - 6.6Range Mean Value .0.030

Traffic Generation and Attraction by Zone:

Traffic generation and attraction were obtained in terms of passengers and commodity tonnage as the product by generation factors.

vi) Traffic Distribution:

> Traffic distribution (OD distribution) estimated by the gravity model:

$$Xij = k \frac{Gi \cdot Aj}{2}$$

$$tiJ$$

Where, Xij = Traffic from zone i to zone j

k = Parameter

Gi = Traffic generation in zone i

Aj = Traffic attraction in zone j

tij = Travel time from zone i to zone j

along the fastest route

OD distribution was adjusted so as to satisfy the following conditions by the Frator Method:

$$Gi = \sum_{j+1}^{n} x_{ij}$$

$$Aj = \sum_{i+1}^{n} X_{ij}$$

Where, n = Number of zones

vii) Traffic Assignment:

Each OD traffic was assigned to the major road network expressed by the node and link system on an all-or-nothing basis. Thus, the number of passengers and commodity tonnage for each link were calculated.

3.2.2 Traffic Forecast

Figure 3.2-3 illustrates the procedure of traffic forecast.

The traffic model prepared for the analysis of present traffic was basically used for forecasting future traffic on the major road network with the following additions/modifications:

1) Major Road Network and Fastest Route Search

The node and link system for the "with" case was prepared by changing the characteristics of the links included under this feasibility study as well as the links committed to be improved.

The fastest route search was carried out both in the "w/o" and "with" case networks.

2) Traffic Generation/Attraction and Distribution

The future population was based on the NCSO 1980 Census of Population and Housing.

Per capita traffic generation factors in the "with" case were estimated referring to the generated transport demand/transport cost reduction elasticity shown in "Highway Planning Manual, Volume 3, MPWH" and also based on the results of the analysis of present traffic. For instance, a zone showing a small generation factor at present due to poor road conditions is expected to increase the factor to some extent by road improvement, and the degree of increase can be estimated referring to other zones in similar situations but with better road conditions.

PROCEDURE OF FORECASTING TRAFFIC ON MAJOR ROAD NETWORK

The traffic generation factors thus estimated are summarized in Table 3.2-3.

TABLE 3.2-3 PER CAPITA TRAFFIC GENERATION FACTORS (MAJOR ROAD, 1990 WITH)
Province of Occidental Mindoro

	Passenger Movement (trip/person/day)	Commodity (kg/person/day)
Range	0.036 - 0.045	5.3 - 6.6
Mean Value	0.040	5.8

The transition period, i.e., the period which will elapse after opening of the improved road before the full impact on generation will take place, was assumed to be three years.

Traffic distribution for the "with" case was estimated by the same method as used in the analysis of present traffic.

3) Traffic Assignment

The number of passengers and commodity tonnage on each link in the "with" case was estimated by assigning OD traffic to the major road network in the "with" case. They were converted to the number of vehicles using the modal distribution in the "with" case. Changes in modal distribution with changes in road condition were estimated reffering to the present distribution in other road links in a similar situation but in the road condition. The transition period of a complete change in modal distribution was assumed to be three years.

The traffic in the "with" case was broken down into following four categories for convenience of traffic benefit estimation:

Normal Traffic:

Flow of passengers and freight which will occur even without road improvement. However, changes in the number of vehicles is possible due to changes in modal distribution.

Diverted Traffic-1: Traffic which diverts to a certain road from other routes as a consequence of road improvement.

This is usually called simply diverted traffic.

Diverted Traffic-2: Traffic which changes destination as a consequence of road improvement but for the same trip purpose as in the "w/o" case. This is possible in the case of improvement of the access road to the nearest town which is аt present barely accessible due to poor conditions. This traffic called "Diverted Traffic-2" is i n this Study, distinguished from Diverted Traffic-1.

Generated Traffic: Increased traffic brought about by road improvement.

3.2.3 Estimated Present and Future Traffic

Estimated present and future traffic on the major road is illustrated in Figure 3.2-4 and Figure 3.2-5, respectively.

Estimated present and future movements of passengers and commodity by link are presented in Table 3.2-4, and estimated traffic volumes are presented in Table 3.2-5.

OCCIDENTAL MINDORO TRAFFIC PROJECTION

Movement of Passengers and Commodity

TABLE 3.2 - 4 (1)

1 1	 		Number	i va	engers			Сош	mmodity To:	nnage	
4	100	Normal	Diver-	. 1 .	Gen	Total	Normal	Diver- ted-1	Diver- ted-2	Gene-	Tota1
 H	1999 1993 2007 2017	712 712 844 1059 1790 2887			473 1779 :: 3015 :: 4891 ::	712 1321 2844 4815	111.21 128.11 154.69 237.56 348.01	1 1 1 1	41	66.88 1 242.76 1 373.28 1	111.21 195.13 397.62 611.06
2	100000				1779 3015 4891	117716	1		i 	66.88 242.76 373.28 548.22	00 1- 03 03
1 1 0	19990	1030 1211 1502 2472 3902	 		1 4 3 4 3 4 7 4 7 5 4 7 5 4 7 5 4 7 5 4 7 5 4 7 5 4 7 5 4 7 5 4 7 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1030 1614 3092 5173	146.17 166.80 198.88 295.69	1 1 1 1 1 1 1 1	41.1 1.15.0 1.05.0 1.05.0 1.05.0	61.10 221.87 341.41 501.70	146.17 223.58 415.68 630.33
Y	100000	127004	;		1626 1626 2757 4476	2 2 4 4 6 5	113.03 129.18 154.33 229.80	 	1.26 1.43 2.70 3.56	61.10 221.87 341.41	5 2 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		-442 -547 -547 -899		1 8 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	92256	1 80400	-57.17 -68.15 -100.67	21	33.16 118.63 177.28	39.
ι φ (10000 20007 2007	1246 1466 1821 3009 4764	1 4004		0.00.00	1246 1162 1795 3007 4814	69.7 94.0 31.9 945.8	57.1 68.1 00.6	5.6.00		169,75 156,49 234,37 355,57 517,76
	19993 19997 2007	1299 1528 1898 3133	1111	447-6		1299 1820 3006 5077 8193	175.96 201.08 240.20 357.54 513.35		2. 39 2. 80 80 80 80	40.81 150.29 239.28 361.47	175.96 242.28 390.94 598.62
00	1990 1990 1997 2007	ା ଉଚ୍ଚର ପ୍ରତ	1111	£ 4 7 7		00000	75.9 01:0 40.2 57.5	1.007	2	39.08 144.22 230.66	0460

TRAFFIC PROJECTION

Movement of Passengers and Commodity TABLE 3.2 - 4 (2)

1			Number	of Passe	engers			Commo	odity To	กกลge	
Z	다. 명 한 .	Normal	Diver- ted-1		Gener	Total	Normal	Diver- ted-1	Diver-	Generrated	Total
1	100000	1 10 00 00 00 11	1 		238 916 1621 2719	20020 20030	5.00 40 50 50 50 50 50 50 50 50 50 50 50 50 50		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	33.74 124.66 200.23 304.84	10000
0	1000000	2140 2140 2538 3187 5395 8714		 	133 133 1579 1579	44.000	5 2 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1.07	1 0000	18.78 69.85 114.29 176.99	960. 600. 82. 04.
====================================	1999 1993 1997 2007	586621				11117 1117 1456 2175 3736	162.23 186.85 225.60 346.73	1.007	1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	18.78 69.85 114.29	24267
27.	1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0	1066 1066 11587 12684 1332	 		134 134 139 1398	1066 1397 2104 3619	154.80. 178.30 215.28 330.86		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
) 	1 1 1	[E 	t 1 1 1	18 .94 70.48 115.52 179.13	88.0 9.5 9.5 1.0
! " !		1066 1264 1264 2684 2322	[]	1	1 1 1	၊ယတ္ထတ္က	154.80 178.30 215.28 330.86 484.52	† † † † † † † † † † † † † † † † † † †	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1111	1 4 5 4 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1
1 10 1	1990 1993 1997 2007	1 2 2 9 2 1 1 2 3 4 6 1 1 1 3 5 6 1 1 1 3 5 6 1 1 1 3 5 6 1 1 1 3 5 6 1 1 1 3 5 6 1 1 1 3 5 6 1 1 1 3 5 6 1 1 1 3 5 6 1 1 1 3 5 6 1 1 1 3 5 6 1 1 1 3 5 6 1 1 1 3 5 6 1 1 1 3 5 6 1 1 1 3 5 6 1 1 1 1 3 5 6 1 1 1 1 3 5 6 1 1 1 1 1 3 5 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				292 346 434 735	42.44 48.89 59.03 90.78		001	1	1 4400061
9	$\phi \phi \phi \phi \phi \phi$	11111	547 547 899 1416	112 24 34 34	197 754 1322 2205	651 1316 2245 3659		57.17 68.15 100.67 144.01	1.12 3.40 4.70 4.70	27.94 103.25 164.13 247.28	io ⇔ o o

TRAFFIC PROJECTION OCCIDENTAL MINDORO

TABLE 3.2 - 4 (3)

,			ZI	f Pass			1	Comm	odity To	E 1	
		Ž	ver d-1	d - 2	Gen	Total	Normal	Se	iver- ed-2		Total
] 	1 00 1	I ON	j (1	1	1.0	3.6		1 1	f 1	13.6
·	9	, , (ro v		ကျ	18	ය (ව	9 1	φ.	32.9	05.7
· ·	ת ה (つ (4 0		Š.	~ t	ο ο ο ο) (٠.	T - F Z	08.0
	2017.	371	1397	2 F C	1544 . 2561	4354	41.55	141.51	3.24	287.15	321.39
	10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 		 	f'	1 1 1 1	! ! ! ! ! ! !	1 1 1 1 1 1 1		
	66		•	1		. 26	•		¢	Ö	Ö
	99	1	1		6	1 96	ı		.03	13.02	. (2)
	8		⊢ 4	1	Ö	ဖ	1		0	9.8	0.0
	0	1	r-4	1	258	260	•	.22	0	6	۳.
 	6	51	1) 	 	l LC	1 4		(1	1 2
	99	61	t	1	60	É	2 ،	С	C	-	9
6		. 76	ı	ı		0	0	0	02		4.4
	8	\sim	г (1		— დც	ŝ	9.3		Ö	'n	2.3
	<u>ان</u>	0	ï	1	87 1	294	3.4	22	٥.		2.8
 	6	225				225		t	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 	32.7
	66	S	ı	1	ເດ	\sim	7.7		ı	ņ	5.3
20	0	so .	1	1	- 202 1	က	50		-	7.4	72.9
	8	9	ı		বা ।	\circ	o. 6	1	٥.	2.0	12.0
 	• •	r-1 1	1	- 1 	551	9	2.5	1	02	61.79	4
	99	00			 	ıοo	1 E	! ! ! !	1 i	1 	85.5
	99	O	ļ	ı	₩	4	9.4	1	0	9.7	19.2
21	1997	O	1	1.		N	21.5	ı	.04	72.40	4.0
	8	ഥ		1	35	8	92.0	t	0	4.2	06.1
 ! !	5	ψ. i	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	! ! !	1525	60	7.4	1		70.9	58.3
	9	∞		٠	-	- 20	2.9	! : :			2
	Q,	σ	ř	1	ı	86	4.	1	1	1	4
22	φ.	$^{\circ}$	1	1	1	S	٦.	r	, 1	1	- -(
	00	~ 4	1	1	1		۲.	ı	,	1	4
 !	mt I	4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- ;	 	.	ω	_1	ı	1	ശ
	99	174		 		174	42.36			1	1 0
	99	0	i	1	i	0	ø	i	0	1	Ġ,
 (2)	99	വ '	1		 !	တ	9.1	,	.02	 I	9.2
	3 6	σ,	ı	ľ	I.	マ・	9	ı	0	1	91.5
-	-	•				٠			١		

TRAFFIC PROJECTION

TABLE 3.2 - 5 (1)
Traffic Volume

t ! ! !	Total	1 0 2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	351 575 930 1443	305 527 853 1327	1 42 4 0 0 8 8 8 0	250 250 330 833		
 	Ani - i	1	402	1 1 1 1				 	t t t t t t
t 1 (t	Mot. cycl	41 89 150 244	1 2 2 2 2 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2	58 155	38 53 143		31.000	1540	1 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
 - - -	Tri-	1 8 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4	 	4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4046	01 H 04 4	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	. & w w w 4 4 6 4
¥i th	Sub- ;	0454	1 20074	1 10 00 1 0	0 4 40	23.30	1. 2.24 2.44 6.91 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.8	7.01 01 00 1	284 458 744
	Tru :	391 1061 1631 239	661	104 158 229	1 0 p 4 0	22 51 76			4044
	Bus	3 E E E	127	29 449 79	142 145 133	1 H 2 B	8 F 2 6		23 47 77 77
 	Jeep- ney	118 208 347 552	12 137 229 366	132 220 358 559	115 201 328 514		. 94 126 206 322	147 211 348 548	146 208 343 541
	Car /van	84. 123 203 319	00 4.01	1 000-00	60 121 198 309	32 65 105	76 124 193	76 127 209 329	76 126 206 324
	Total	208 208 257 419 653	1 1 1 1 1		1 0 0 7 7 0 0	2222 2222 2722 1123 651	1000040	299 347 424 671	1040101
	Ani- 1	11111					1 1 1 1 1 1		
	Mot.	0 0 0 0 0 0 0 0 0	i . i	32 38 47 77	330 330 388 388 388	200 000 000 000 000 000 000	39 39 39 39 39 49	25 25 25 25 25 25 25 25 25 25 25 25 25 2	4 4 7 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	Tri- cycl	12 15 18 31 50	1 1 1	1 4 4 2 1 1 3 8 1 1 3 8 1 1 1 3 8 1 1 1 1 1 1 1	33 38 46 73	33 38 46 73	50 58 70 110 165	52 60 73 114 171	52 60 73 114
0/3	ા હા	1431 2061 3321 5131		1168 1168 1236 1370	1 1 1 1 1 2 4 1 1 2 2 4 1 1 2 2 2 4 1 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100046	2006 2006 2009 2009 6099	2061 2391 4591 6961
		122 192 190 190 190 190 190 190 190 190 190 190		31 31 36 78	642841 642841	1 4 2 2 4 6 1 1 4 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 6 6 4 6 9	1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	96477
	Bus	11111	 	2359	127 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 6 H H Z	8 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6	80 H 60
	Jeep- ney	83 103 169 265	1 1 F 1 E 1	105 105 129 206 316	. Ç1 CO CO CO CO .	1 1 2 2 2 2 3 1	108 126 154 248 382	112 131 161 161 257	112 131 161 257 397
	Car /van	63 124 189	11 1 1 1 1 4	1 40004	この44~1:	1 10 4 4 1/	1 25 65 7- 40	54 63 76 118	27 7 6 2 1 7 4 6 5 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1
; ; ; ; ;	ט נ	00000	100000	1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1 0 0 0 O H 1	10000	100000	9990 9997 1710	09999999999
1 1	=	, 	 	 	4		! !	 	σ,

1993 1994 1995		1 (1 1 1 1 1 1 1 1	 	 	 	. 0 / M	! { ! !	1 † † †	1 1 1	; ; !	 	i ! ! !	í !	 	wi th	! ! ! ! !	 	1	
1990 77 150		ו ע	0 to	6 e	n n	ru-ru-ck	1 tb	ri -	ot.	i ⊏ Ø :	9 1	. लल।	6 y e	L Co	ru- ck	1 1 1 1 1 1 1 1 1	45	40		
1990 191 188 13	60	6660 O	1070740	ព្រះល្យស្ន		0.024.00	8 23 23 23 23	O F ⊗ 4 →	400-00	11111	0 0 0 0 0 0	တကကတ	0404	852 852 853	4000	33 50 128 128		ျပာလပတ	1111	595 1545 1545
1990 49 94	0 1	000001	10000	1044701		1007-17	1 40000	1 80 80 80 80 1	10000	1	. നയെ എയ എ		၊ မက္လက ျ		1 1001	4 0 0 4 1 7 7 4 7 1	ကြောက္ကတ္ ျ	1 1 2 2 3 3	1 1 1 1	122
1990		66660 66660	1 4 to 12 to 1	। ଦ∺ ଅଧୟା ଜା	1 1 1 1 1		1 L- 0 4 0 0	∟യെയെയി	0/100/1		7 7 3 3 3 7 1	က ဝ ဝ က	1 0000		ကြောက္တြဲက ။	വെയാഗ (ା ରଚ୍ଚ	~ ⊌⇔	1111	4471
1990	8	99999	40000	നെ നെ ന n	i	ကြောက္လက္က (၁)	1 2 3 5 F F -	1 67 44 60 60 60 i	40040		l in ∺ ∺ ⇔ o		0 m m o		. დიტი ე	- MOB4	- ~ co o	t~ co ∺ co	ttt:	ムなでる
1990 54 90 - 23 167 107 100 - 374 60 109 - 29 198 108 105 - 4 1997 122 214 - 50 32 240 154 149 - 542 66 144 - 39 250 91 99 - 4 4 1997 122 214 - 50 386 249 252 - 887 106 237 - 61 403 148 168 - 17 1990 8 18 - 73 593 386 406 - 119 89 621 230 271 - 11 1990 8 18 - 7 33 58 27 - 119 89 621 230 271 - 11 1993 80 10 21 80 10 21 80 10 21 80 10 21 80 10 21 80 10 2017 80 10 2017 80	en .	00000	1111	1111			1 1 1 1 1		 	1 1 1 1 1			4 5-1	0.049	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	വവശ			114	2000
1990 8 18 - 7 33 58 27 - 119 - 8 42 62 29 - 1 1993 10 21 - 8 32 - 140 11 22 - 8 42 62 29 - 1 2007 18 43 - 15 77 137 69 - 282 29 50 - 17 95 96 46 - 2 2017 27 69 - 222 17 95 96 46 - 2 1990 - - 22 117 211 111 - 44 79 - 24 147 148 74 - 1990 - - - - - - - - - - - - - 1997 -	4	1 6 6 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 50 57 - 52 50 1	1 0000-001		18883	1004001	100040	104450	1	1 1- 64 4 8 8	၂ ထွယ်လိုယ်	1 0480	1 1 1 1		1 6505	1 0046	1 0000	1 1 1	439 718 1122
1990		000001	2 H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		; 1 ; 1 ; 1 ; 1 ; 1 ; 1 ; 1 ; 1 ; 1		333	BOOOCH			1 44 1- 80 4 1		332					22 46 74 46		1 6466
		66 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	11111					, , , , ,	: : :				೧೦೧೩	3272		0000			1 1 1	1 2400

TRAFFIC PROJECTION TABLE 3.2 - 5 (3) Traffic Volume

Car Jeep- Bus Tru- Sub- Tri- Mot. Ani- Total Car Jeep- Bus Tru- Sub- Tri- Mot. Ani- Total Car Jeep- Bus Tru- Sub- Tri- Mot. Ani- Total Car Jeep- Bus Tru- Sub- Tri- Mot. Ani- Total Car Jeep- Bus Tru- Sub- Tri- Mot. Ani- Total Car Jeep- Bus Tru- Sub- Tri- Mot. Ani- Total Car Jeep- Bus Tru- Sub- Tri- Mot. Ani- Total Car Jeep- Bus Tru- Sub- Tri- Mot. Ani- Total Car Jeep- Bus Tru- Sub- Tri- Mot. Ani- Total Car Jeep- Bus Tru- Sub- Tri- Car Jeep- Bus Tru- Tri- Tr	<u>د</u> ۶			- , - ,			0/M			,	:	1			1	with				
1990 5 7 1 1 1 1 1 1 1 1 1	9. II :	พ ย 	1 C) >	e e p	i 😇	r i i i i	ub- ota	1 11 2	401	. C 6	0 :	: लब	1 6 6 1	າ ເຮ	ru-ru-	1 D O	I O	Mot.	Ani- mal	Total
1990 1		00000	I ====	10017	 		 44000			1		1 40-7-	ା ଦେ⇔ ବଦା		8022	2400		71 30 50 82	t 1 i i	235 24 29 3 75 4 3
1990 2 5 - 1 8 3 5 - 1 6 19 3 6 1 10 10 10 10 10 10		100000		; ; ; ;	: :	t . t 1 1 1 1 1 1 1	! ! ! ! ! ! ! ! !		1 1 1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 •	1 404	; 1 1 1 	യവനന	2 2 1 1	
1990 10 20 6 36 13 21 70 15 29 15 53 1 1 23 7 42 15 25 15 25 15 29 15 29 15 15 15 10 10 20 7 22 29 19 12 19 31 10 2 2 2 2 15 15 15 10 2 2 2 2 2 2 2 2 2		00000	nnnno	171738	, , , , , , , , , , , , , , , , , , , ,	1 - 0 0 0 4		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	217 6 20 20 20 20 20 20 20 20 20 20 20 20 20		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1 1 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	i 1 1 1	2847	11 19 32 50 50 50 50 50 50 50 50 50 50 50 50 50	() () () () () () () () () ()	. നെയൻ		8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1990		00000	011428	222 222 223 233 234 245 255	11111				8 2 3 1 2 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1		00004				3325	് വരവ	12	23 17 28 46	1 T T T	2 H H 8
1990 - - - - - - - - 1 12 - - 1 12 - - 1 12 - - 1 12 - - 1 12 - - 1 12 - - 1 10 - 1 12 - - 1 10 - 1 12 - - 1 10 - 1 1 10 - 1 1 10 - 1 1 10 - 1	21 .	1 0 0 0 0 0 1 1 1 0 0 0 0 0 0	17 20 24 38 38	1 0 b 0 0 0 0 1	;		100000-	1 00 00 00 01	1 ~ 50 00 00 00		1 6 6 6 6 6 6 7				320	1 6400	1 . O -1 8 6	2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		
1990 - 15 - 14 29 29 1993 - 17 - 16 34 1993 - 22 - 20 42 2007 - 37 - 31 68 61 - 45 106 - 61 - 61 - 45 106 - 61 - 61 - 61 - 45 106 - 61 - 61 - 61 - 61 - 61 - 61 - 61 -		55 55 50 10 11 11 11 11 11 11 11 11 11 11 11 11		1	11111			11151	-				20 80 8			120			1 1 1 1	ା କ୍ଷର
		60000	11111	93278		14 16 31 45				1111	234 42 68 106		17 22 37	1111				1111	1111	34 42 42 106

3.3 TRAFFIC ANALYSIS AND FORECAST: DEVELOPMENT PROJECT

Traffic on development project roads was forecasted separately for passenger traffic, non-agricultural traffic and agricultural traffic. The number of passengers and commodity tonnage were estimated first, and then they were converted to the number of vehicles assuming modal distribution and occupancy/average load. Figure 3.3.-1 shows the schematic diagram of traffic forecast for development project.

3.3.1 Passenger Traffic and Non-Agricultural Traffic

The population residing within the road influence area, which is defined as the area from which local existing or potential traffic using the road derives, was obtained mainly from distribution of barangays shown in 1:50,000 topographical maps and the NCSO 1980 Census of Population and Housing, and supplemented by information obtained from barangay interviews. The population forecasts were prepared using the NCSO report.

The number of passengers and non-agricultural commodity tonnage were obtained as the product of population by the per capita generation factor. Table 3.3-1 shows the generation factors commodity used in the analysis, which was derived mainly based on the traffic survey and referring to previous studies. In the case of particular roads where the common values were deemed inapplicale, specific values were used.

TABLE 3.3-1 PER CAPITA TRAFFIC GENERATION FACTORS
(MINOR ROAD):Province of Occidental Mindoro

Existing Road Condition	Passenger (trip/per			cultural odity on/day)
	w/o	with	w/o	with
Paved/Gravel				**
Good/Fair	0.06	0.06	2.0	2.0
Bad	0.05	0.055	1.6	1.8
Very Bad	0.04	0.055	0.6	1.0
Earth Road	0.015	0.03	0.5	1.0
Impassable to				
motoried vehicle	0.005	0.015	0.4	1.0

The modal distribution and the occupancy/average load used in the conversion to traffic volume by vehicle type were estimated individually for each road based on the road

PROCEDURE OF TRAFFIC FORECAST FOR DEVELOPMENT PROJECTS

inventory survey and the traffic survey,

3.3.2 Agricultural Traffic

Agricultural commodity tonnage was estimated based on the agricultural production within the road influence area, taking into consideration i) home consuption and surplus/deficit and ii) availability of grain mill(s) in the road influence area, as regards food grain.

- i) Home consumption of food grain was calculated as population times per capita grain consumption (assumed to be 130 kg in a milled form), and the surplus or deficit production was calculated based thereupon.
- ii) In case of no mill in the road influence area, all net production is assumed to move out in the form of palay/unmilled corn. Milled grain products for home comsumption are then transported back. An eventual deficit moves into the road influence area in the form of milled products.

Provided one or more mills exist in the road influence area, the transport flows are assumed as follows:

- Home consumption remains in the road influence area (no transport movement assumed).
- Surplus production would be transported out, traditionally in the form of unmilled food grains.
- Deficit production would be moved into the road influence area in milled form.

Agricultural commodity tonnage was coverted to number of vehicles using the modal distribution and average load, which were estimated individually for each road considering the transport circumstances.

3.3.3 Estimated Present and Future Traffic

Estimated present and future traffic is presented in Table 3.4-1 in the next Section.

3.4 SUMMARY OF TRAFFIC VOLUME ON STUDIED ROADS

Estimated present and future traffic volumes of the studied roads comprising of traffic and development projects are presented by each road project in Table 3.4-1.

TABLE 3.4 - 1 (1)
Traffic Volume by Vehicle Type

1	Motor Ani - Walk cycle mal -ing		41	1	105				71	12 0 22
	Tri-	23	8	42	108	62	101	77	42	0
with	Truck Total Tri-	243	243	122	198	42	130	53 53	122	102
 	Truck	666	1 1 0 1 0 1 1	22 .	59	∞	∞	<u></u> .	22	22
1	Bus	2		2	1	ı	L	t		i G
	Car Jeep	118	1 8 1 1 8 1	57	109	22	66	58	24	37
	Car	1 % 1 %	8 1 4 1 4	41	09	~ 4	24	ც.	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	36 1
	Boat	 	1 1 1 1	 ! ! !	ι	ι.	1	 u		
	¥a1k -ing	 	1 1 1 1 1	i i } I !	1	.1.	ŧ	i	1 ! ! ! !	; 1 1 1 1 1
 	Ani-	 	 	1 	i	ı	1	1	 	
1	Motor Ani- cycle mal	26	26	14	119	32	132	22	14	
	Tri- cycle	2	12	8	125	68	90	15	. ∞	
0/%	es	21 167	21 167	18 (195	33	101	42	1 9 1	t
	rucki	27	 		27 :	 ∞	7	 ~		- -
 	Bus T	1 .	 . .	; ! ! !	1	ı	1	1] 	! ! !
1	Jeep ney	. es	, co	. «	105	21	7.5	23	\$	1 1
; ;	!	63	63	9	63	10	02 	F	٥	
. (Vumber :	Imp-2/ N1-1 Widen	N23	N7-2	P53-1	P52-1	P39	P3	P26-2	N25 N26-1
Type	Road Imprit	Imp-2/	New Const.	Rehab/	I mp-1 :			 	Imp-2/ P26-2 Widen	New N25 Const. N26-1
. Class	Road		1	Second'y!Rehab/! N7-2	Major					3 - 2

TABLE 3.4 - 1 (2) Traffic Volume by Vehicle Type

ov'1) Impr't ov'1) Imp-1 ov'1) Imp-1 Imp-2/	Class	Type	77			i 		0/14		1	1 1 1	i i i i	i 1 1	 	 	,	; ; ; ;	with	 	1 1 1) 	
	doad.	Impr.t	Number 1	Car		Bus	Truck	0	Tri-	္	а 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1 —	alk B ing	0 0	es :	eep ney	Į-4	uck:T	[8]	Tri- cycle	O :	ا کمت اسود	~	Boat
	inor	Rehab/	P24-1 :	1 1 1 1 1	' 	i i i i	 	 	63	iυ	55	9				! ! ! !	 	84.	2	12	(! ! !
P29	Vat'1/	I mp-1	P41		19	•	1	19	105	ιο 1-	က	$^{\circ}$	 1		34	,		.46	64	77	1		1
NS	rov'l.	-	P29 1	4	₹*		'	4	17	15	m	to	 I	2	4			9	17	10	1		1,
P34 5 5 7 7 7 7 7 7 7 7			6N.	∞	1.5	1	 i	23	62	51	į	123		ဖ	22	1		31	48	89	1		1
P31			P34	w	cu	ı	1	10	14	16	1	39	 1	4	∞	ı	 1	12		20	1	1	1
P42 - 11 - 11 69 17 63 42 - 13 13 24 P40 6 12 - 4 4 4 4 4 106 - 106 - 22 - 7 13 24 - 7 14 12 28 - 7 14 12 28 - 7 14 12 28 - 7 14 12 28 - 7 14 12 12 12 12 12 14 14 14 14 14 14 14 14 14			P31	r	1	1	1	1	1	1	~	တ		1	-	,	1	,1	ر دا	4	υÞ	10	ŀ
P40 6 12 46 44 -106 -2 4 -106 -2 4 -106 -2 4 -106 -2 4 -106 -2 4 -106 -2 4 -106 -2 4 -106 -2 4 -106 -2 4 -106 -2 4 -106 -2 4 -106 -2 4 -106 -2 4 -106 -2 4 -2			P42	1	11	•	1	11	9	17		42			16	ı	 · i	3,1	13	24		1	t
P28 - 4 19 17 13 42 - - 7 18 17 18 17 18 17 18 17 19 19 17 13 4 - - 7 18 17 19			P40	ဟ	12	•	1	17:	46	44		. 901	L_ 		22.	•	 i	.31		9	ŧ	1	•
P47			F28	1	**	1.	 I	4	13	17		42	·	~	4	ı		۲-	18	, ,	•		,
P25			P47	m	4	1	 !	7	14	13		28		'n	4		,	1~	14	12	•		ı
NY-1		·	P25	1	2	•	1	2	13	ស	12	12	 I	ı	2		 1	.2	O)	ιń	13		1
P46 2 5 1 2 2 2 2 2 2 2 2 2			N7-1	ı	^ <u>-</u>	r	1	 	10	دی	O 1	∞	 I	,t	63	1		4	ო	'n	1		•
P55 1 3 - 4 12 11 - - 2 5 19 - - 24 37 53 -			P46	63	ເລ	•	 !	7	2.1	20		48	- -	4	10	,		13	15	27	1	t	1
N8-2 18 18 23 35 50 2 2 19 2 24 37 53 2 19 10 10 10 10 10 10 10			P55	~1	က	1	1	4	12	11	1	2.2	 !	63	ល	1	 I	<u>.</u>	∞	14	ŀ		1
P44			N8-2	. 4	18		⁻	23	(C)	20		ı	 I	ശ	0	1	 1	24	37	53 53	ı	1	1
N3			P44	1	က	1	1	ຕ	33	31		49	 I	<u>ග</u>	7	ŀ		14	1.7	2]	. 1		1
N7-3			N3	က	9	1	1	6	22	21	ı	20	 1	က	Ţ	1	 !	14	2.2	28	t	1	I.
P12			. N7-3		1	ı	1	1	-~i	7-	Q	2.2	 I		2	ı	 0	ຕ	က	ဖ	1	ŀ	1
N2			P12 :	1	1.	1	 1	1	9	က	マゲ	1.4	1			t	 1	2		N	1	ŧ	ı
27 P19 6 7 - 13 19 12 - 28 - 6 5 - 2 13 8 15 - 2			N2	4	O)	1	1	13		32	•	84		4	G	•			36	က က	ŀ		ı
27 P19 6 7 - 13 19 12 - 28 - 6 5 - 2 18 8 15 n P1 - - - - 10 21 4 - - 18 3 6 P11 - - - - - - 7 11 16 P24-2 - - - - - - 6 5 1 t. P61 - - - - - - - 6 5 1			P20	⊷1	7	i	1	∞ .		50	1	ı	 1	H .	7	ļ	 - 1	00	14	22	1	ı	1
P1	•	1 I mp-2/1	P19	9	7	i 1 1 1		1 8 1		12) 		i 	9	 LG	: 	2		i 00 1		 		! ! ! !
P11 2 6 - 7 11 16 - 17 10 30 - 2 6 - 7 11 16 -		Widen	<u>.</u>	1	1	ı	. 1	1	•	1		0		77	₹"	ı	 1	∞	m	മ	1	•	•
P24-2 6 5 1 0 0 0 0 0 0 0 0			Pll	1	(r)	1	1	ත .	14	13			 1	2	9	ı	1	۲.	11	9.	1	ı	I
t.: P61		 	1 4	, E. I. I. I.	, 1 1 1 1 1	1 1	; ; ; ; ; ;	1 1 1 1 1	1 3 1 1 1	 			; ; ; ; ;	 (c) 	 	; ; ; ;	i 1 1 1 1	9	1 10	 +-4 	1 1 1	1 1	1 1 l 1
		Const.;	P61	ì	1	ľ	 '	ï	1	ı			 I	0	0	ı	0	0	0	0	1	ı	t

TABLE 3.4 - 1 (3)
Traffic Volume by Vehicle Type

	- Walk Boat -ing		1	1	1	1	0	1	1	1	1 .		ب د	1	t ∞				0		2	-		() () () () () ())	-	C
	otor Ani		က	. I	۱ ۔	7	0 19	11 -	۱ ۳		0 13			2					0				•	 		[- 	0	
1 1 1 1 1 1	Tri- Mo cycle cy	 ed 65		~	ო	∞	7	9	(3)	10	വ	4	C 3	4	·w	ιc	61	2	က	H	Ø	7		! ! ! !		; 1 1 1 1	63	-
with	Total	241	ເລ		 es	9	<i>c</i> 1	7	2	. 12	2	ped.	**	ব	1	67	0		prof.	,	,	61	0			! ! ~~ !	0	c
r 	s Truck		1	1	1	1	1	-	1	;- -		1 . 1	1	1	1	1	1	1	1	1	1		1	1 1			1	1
[1 1 1 1	ecp Bus	17	က	က	ابيه	ហេ	61	₹*	****	9	63	,,,	-	2	-	2	.0	prof	ę, d	ı	1	63	—	. 2			0	
 	Car	0 0	2	4	-4	4	ì	7	⊷	9		1	p4	.21	ı	0	1	ı	ı	1	1	1	H	2 1 2	•	0	1	1
! ~~ - ! !	k Boatt	1 1	1		i	1	1	1	 1	1	1	1	1	1	i	1	1	1	1	1	i	1	1		•	1		l
]] ! !	Api- Walk mai -ing			· 0		œ	6	14 19	ເນ	×	6.0	2		2	4	ස		-	63		to	7		14 .3		1 1 1	7 11	
1 	Motor A	27	61	- 4	Ŋ	. 2	0	80	, - -1	- 4	1	ı	1	Ä	1	ល		ı	0	t	ı	4	. 2	2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		. / 	ì	ı
1	Tri-	41		14	φ	1 12	1 10	16	9	2.7	·	!		10		9	***	1	80		1		9	7		 	1	
0/8	TruckiTotal	1 6		en	1	eo 	1.	.ෆ 	1	:: ::	1	1			1	o 	1	· 	1	1	1		1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1		1
1 1 1 1 1 1	Bus Truck	1 1 	1	1	1	1	1	1		1	1	1		1	,	1	1	1	1	1	1	ı	1			1 1 1 1 1 1 1 1 1		1
!	1 0 >	1 1 1 1 G:										,		. 2				. 1	,	,		·		2		, I ! ! ! ! (1	!
; ! ! !	Car Jee	1 1 . 1. 1 1	ı	ì	,	ł	, i	ı	ı	1	ı	ı	ı	1		ı	ı	ı	1	1	1	ı	ı	 		; ; ; ! !	ı	1
1	<i>-</i>	B8-1	B19-6 1	B9-25	39-6	B7-1 .:	B10-3	B2-6	B9-7	B7-7	B10-8	B3-8	.B1-5	B10-7	B6-7	B8-5	B7-8	B1-6	B9-22	B5-5	B2-4	B0-2	B0-8	B0-9		B1-2	B8-9	86-2
Type	Impr't:	Rehab/	I-dmI:	 -						·														Imp-2/1	Widen	Z = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 =	Const.	
Class		1	(Baran-	gay)												3		;	27									

CHAPTER 4 PROJECT IDENTIFICATION AND SCREENING

4.1 PROJECT IDENTIFICATION

4.1.1 Field Surveys

Field survey was conducted by the Study Team to assess present condition of all major roads and some other typical minor roads (these are referred to as "Surveyed Roads").

Road projects (mostly minor roads) proposed by the local officials were also collected and road conditions of these roads were obtained by the interview survey (these are referred to as "Road Projects proposed by local officials").

Road projects surveyed by the Study Team and proposed by the local officials were combined and integrated, because some road projects were both surveyed by the Study Team and also proposed by the local officials, and a list of Studied Roads was prepared.

Summaries of "Surveyed Roads", "Road Projects proposed by Local officials "and" Studied Roads" are shown in Table 4.1-1.

TABLE 4.1-1 SUMMARY OF SURVEYED ROADS
Road Projects Proposed by Local Officials and Studied Roads
Province of Occidental Mindoro

	Road Class	National Roads	Prov'l/City Roads	Barangay Roads	Total
Surveyed	Major Rd.	217.1	115.8		332.9
Road	Minor Rd.	49.2	120.0	ņ==	169.2
	Total	266.3	235.8	-	502.1
Rd. Proj.	Major Rd.	90.7	51.4		142.1
Proposed by Local	Minor Rd.	23.0	74.1	233.3	330.4
Officials	Total	113.7	125.5	233,3	472.5
Studied	Major Rd.	274.6	115.8		390.4
Road	Minor Rd.	49.2	169.5	233.3	452.0
	Total	323.8	285.3	233.3	842.4

4.1.2 Project Identification

1) Project Identification Criteria

Project identification criteria are shown in Table 4.1-2.

TABLE 4.1-2 PROJECT IDENTIFICATION CRITERIA

Item	Condition of Identification
, tem	Major Roads : Minor Roads
(1) Existing Links * Carriageway Width	: Less than 6.0 meter : Less than 4.0 meters
* Pavement Type	Inferior to recommen -: Inferior to ded type in the engi -: gravel neering Standards
* Surface Condition :	Bad or very bad 1/ :Bad or very bad2/
(2) New Links	Impassable Abandoned Non-existing
(3) Bridges	Ford crossing : Ford crossing Spillway : Spillway in Timber bridge : structurally unsound condition Bailey bridge : for AADT more : than 300

- Notes: 1/ Gravel road which is proposed for improvement by local officials shall be identified, even though surface condition is "fair".
 - 2/ Gravel road of which surface condition is "fair" shall be identified, as the surface condition of gravel minor roads is easily deteriorated.

2) Identified Road Projects

All studied Roads, except those of the national primary roads and committed roads, were evaluated in accordance with the identification criteria. Road projects identified are summarized in Table 4.1-3.

TABLE 4.1-3 SUMMARY OF IDENTIFIED ROAD PROJECTS
Province of Occidental Mindoro

	Road Class	National Road	Prov'l/City Road	Barangay Road	Total
Major Road	: Length (kms.) : (% to Studied	92.1	55.6	nan'i teo pop ami ami her teo ani ami yan t	147.7
	: Roads)	(34%)	••• ·		(38%)
Minor Road	: Length (kms.) : (% to Studied	38.3	157.4	233.3	429.0
	Roads)	(78%)	(93%)	(100%)	(95%)
Total	: Length (kms.) : (% to Studied	130.4	213.0	233.3	576.7
	: Roads)	(40%)	(75%)	(100%)	(68%)

4.2 PROJECT SCREENING

4.2.1 Categorization

Road projects are categorized by the following factors in order to establish comprehensive prioritization criteria:

(1) Class of Roads

Major Roads

Minor Roads

* Primary major roads

*National/provincial/city

roads

* Secondary major roads

* Barangay roads

(2) Urgency of work

Improvement criteria for roads and bridges are established as shown in Tables 4.2-1 and 4.2-2, respectively. Improvement works are classified into five (5) types as shown in Table 4.2-3. In view of the urgency of work to be implemented, the types of improvement are grouped into two (2) as follows:

Type A (Urgent Projects)

* Rehabilitation: Improvement of deteriorated road surface, but standard or superior class pavement, to acceptable condition.

* Improvement -1: Improvement of deteriorated road surface and substandard class pavement, to acceptable and standard pavement.

* New Construction: Construction of new road including re-construction of abandoned road.

Type B (Less Urgent Projects)

* Improvement -2: Upgrading of substandard pavement class to standard pavement class, though existing road surface condition is acceptable.

* Widening : Widening of roads with substandard carriageway width, other conditions meet engineering standards.

Note: Road projects which include only improvement of bridges are classified as "Rehabilitation".

(3) Economic Viability

Major Roads

Simplified economic evaluation is conducted for major roads. Internal Rate of Return (IRR) is calculated based on roughly estimated construction cost and traffic cost savings. Categorization is made as follows:

Improvment Type A:

- * IRR of 7.5% or more
- * IRR of less than 7.5%

Improvement Type B:

- * IRR of 15% or more
- * IRR of less than 15.0%

Minor Roads

Minor road Pre-evaluation Indicator (MPI) is developed based on Phase-1 Study results. Categorization of minor roads is made based on calculated MPI as follows:

- * MPI of 7.5 or more
- * MPI of less than 7.5

TABLE 4.2-1 IMPROVEMENT CRITERIA FOR ROAD

Road	: Majo	or Road	: Minor Road
Class	: Standard/ : Superior	: Substandard	: Standard/ : Substandard : Superior :
Good/Fair	: or	:(improvement-	: : :No improve-:No improve- : ment : ment : :
Bad/Very bad	:surface condi- : tion	-:pavement type	:Improvement:Upgrading of surface con: pavement :(Rehabilita: type : tion) : (Improve- : ment-1)
Abandoned/ Non-existi		Construction (New Const	

Note: 1) In case of carriageway width less than 6.0 meters.

TABLE 4.2-2 IMPROVEMENT CRITERIA FOR BRIDGES

Existing	: Prop	osed Improvement
Bridge Type	: Major Road	: Minor Road
Ford Crossing	: 2-lane : permanent : bridge :	Carriageway width 4.0 m:1-lane spillwayCarriageway width 6.0 m:2-lane spillway
Spillway	: 2-lane : permanent : bridge	: No improvement
Timber Bridge	: 2-lane : permanent : bridge	: AADT less than 200 : 1-lane : permanent : bridge
	; :	: AADT more than 200 : 2-lane : permanent : bridge
Bailey Brridge	: 2-lane : permanent : bridge :	: AADT less than 300 : No improvement : AADT more than 300 : 2-lane : permannet : bridge

- Note: 1) Where the site condition is not favorable for a spillway, a permanent bridge should be planned in accordance with the criteria for a timber bridge.
 - 2) When the existing spillway is structurally sound and traffic disturbance is estimated less, the existing one can be utilized. Under other conditions, a permanent bridge should be planned in accordance with the criteria for a timber bridge.

TABLE 4.2-3 TYPES OF IMPROVEMENT

Type	-	: Condition	: Proposed Improvemen : Work
litation	: Standard or : superior	: Bad/	: Improvement of surface condition
	: Substandard	: Bad/ : very bad	: Upgrading of surfac : type
Improve- ment-2		: Good/Fair	: Upgrading of surfac : type
Widening		: Good/Fair is narrowed than	: Widening of existing: road:
New Cons	truction Impa	assable/abandoned non-existing	: Construction of new road

4.2.2 Prioritization and Selection Criteria

Prioritization and selection criteria of road projects for feasibility studies are established as shown in Tables 4.2-4 and 4.2-5.

TABLE 4.2-4 PRIORITIZATION AND SELECTION OF ROAD PROJECTS
- Major Roads -

Category	Road Class	Type of Improvement	IRR	Priority Criteria	Selection Criteria
2 3 4 5 6 7	Primary Secondary Primary Secondary Primary Secondary Primary Secondary	A A B B A A B B	$7.5 \le IRR$ $7.5 \le IRR$ $15.0 \le IRR$ $15.0 \le IRR$ $IRR < 7.5$ $IRR < 7.5$ $IRR < 15.0$ $IRR < 15.0$	MA-1 MA-2 MA-3	To be selected for F/S

TABLE 4.2-5 PRIORITIZATION AND SELECTION OF ROAD PROJECTS
- Minor Roads -

	Road Class	Type of Improvement	MPI	Priority Criteria	Selection Criteria
1 Nat	ional/Pr	covincial/	· · · · · · · · · · · · · · · · · · ·		<u></u> ↑
Cit	У	Α	7,5 ≤ MPI	}— MI-1	To be
2 Bar	angay	Α	7.5 ≤ MPI 7.5 ≤ MPI	ا	selected for F/S
3 Nat	ional/Pr	covincial/		~	
Cit	у	Α	MPI < 7.5	MI-2	
4 Bar	angay	Α	$MPI < 7.5 \\ MPI < 7.5$	J	

Note: Improvement Type A: Rehabilitation, Improvement-1, New

Construction

Improvement Type B: Improvement-2, Widening

4.2.3 Priority of Identified Road Projects

Identified projects were evaluated and prioritized in accordance with criteria discussed and summarized in Tables 4.2-6 and 4.2-7.

TABLE 4.2-6 PRIORITY OF IDENTIFIED MAJOR ROADS Province of Occidental Mindoro

Category		Type of provemen	I RR t		ority roup	Road Length	No. of Road Links
1	Primary	Α	7.5 ≤	IRR	MA-1	-	
2	Secondary	Α	7.5 ≤	IRR	MA-1	11.5	2
3	Primary	\mathbf{B}	15.0 ≤	IRR	MA-2	·	
4	Secondary	В	15.0 ≤	IRR	MA-2	-	_
5	Primary	Α	IRR<7.5		MA-2	56.7	2
6	Secondary	Α	IRR<7.5		MA-2	77.5	. 7
7	Primary	В	IRR<15.0)	MA-3	wis	-
8	Secondary	В	IRR<15.0)	MA-3	2.0	1
	Total					147.7	12

Table 4.2-7 PRIORITY OF IDENTIFIED MINOR ROADS Province of Occidental Mindoro

Catego	ory Road Class	Type Improv	of vement	MPI	Priority Group	Road Length	No. of Rd.Links
1	Nat'l/Provi/ City	A	7.5 ≤	MPI	M I – 1	61.0	13
2	Barangay	Α	7.5 ≤	MPI	MI-1	56.2	15
3	Nat'l/Provi/	Α	MPI <	7.5	MI-2	134.7	21
4	Barangay	Α	MPI <	7.5	MI-2	177.1	52
	Total					429.0	101

4.2.4 Selection of Road Projects For Feasibility Studies

In accordance with selection criteria discussed above, road projects under priority groups MA-1 and MA-2 for major roads and priority groups MI-1 for minor roads were initially selected, and these were plotted on 1:100,000 map to evaluate the following:

- . Distribution of initially selected road projects (when these are concentrated in certain area, some minor roads were deleted, and where road projects are scarce, some minor roads were added.)
- . Linkage of road projects
 (There is a case that a selected lower class road is connected with a higher class road, however, the latter is not selected due to lower priority. Such a case, a higher class road is also selected to maintain similar condition of road after implementation.)

After adjustment mentioned above, road projects were finally selected and summarized as follows:

Total	en en en en en del bre de en en en en en en en en en be be de de de de en en			projects)

CHARTER 5 PROJECT EVALUATION

5.1 PRELIMINARY DESIGN AND COST ESTIMATE

5.1.1 Preliminary Design

- 1) Design Concept There are two options in design concept for rural road improvement, as follows:
 - * Designing rural roads with optimum standards aimed at improving all aspects including horizontal and vertical alignments, which sometimes require massive earth works and is costly.
 - Designing rural roads by basically concentrating on improving surface conditions, thus improving horizontal and vertical alignments is limited to the required minimum.

Rural roads are extensive in the number of road links as well as in length, and their present conditions are still at a poor level. Thus, requirements for rural road improvement are quite huge, while financial resources are limited. Under these circumstances, the Study Team placed priority on improving surface conditions of more roads. The preliminary design was undertaken in line with the concept of the second option.

2) Preliminary Design

On the basis of the findings of the road inventory survey, the type of improvement was determined for each subsection of road in accordance with the engineering standards and the improvement criteria.

Typical road sections for each type of improvement/rehabilitation are summarized as shown in Table 5.1-1.

Special considerations were given to steep gradient sections and flood section.

"PCC pavement for steep gradient section" was applied to sections with steep gradients where otherwise gravel surfacing might be applied, as a countermeasure against excessive gravel losses during heavy rains and impossibility for vehicles to climb. "Grade raising in flood area", was applied to sections located in flood areas.

Table 5.1-2 shows the proposed improvement for each road project subjected to the feasibility study.

TABLE 5.1-1 EXISTING CONDITION VS PROPOSED IMPROVEMENT/REHABILITATION

E	Road	ad Section	Existing Pave	Pavement Prop	Proposed	Pavemen	Structure (cm)
of Impr	Type	Type	Condition	Pavement Type	Surface Course	Base	Subbase
Rehabilitation	111111		Bad/Very Bad Bad/Very Bad - do do do -	PCC AC Overlay AC AC Overlay BMP/DBST Gravel	127 127 127	1 1 0 1 25 1	10 10 5
Improvement - 1	00000000 111111111 100450F0	1. O	Bad/Very Bad - do do - Any Condition - do do -	PCC PCC AC BMP/DBST PCC AC BMP/DBST Gravel	20 - 23 20 - 23 5.5/1.6 20 - 23 5.5/1.6	1 2 1 1 2 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2	10200200
Improvement - 2	იიიი 1 1 1 1 თიაქ	Bituminous Gravel Gravel Gravel	Good/fair - do - - do -	PCC PCC AC BMP/DBST	20 - 23 20 - 23 5 5.5/1.6	1 1 20 5 1	0000
Widening	1111 1004	PCC Bituminous Bituminous Gravel	Good/fair - do - - do -	Widening w/PCC Widening w/AC Widening w/BMP/DBST Widening w/Gravel	5 5 .5/1.	15	20 20 15 10
New Construction	0000 1111 4004	;	: 1 1 1	PCC AC BMP/DBST Gravel	20 - 23 5 5.5/1.6 15	150	20 20 15
Special Treatment	9	PCC pavement Grade raisin	for steep gradi	ient section			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

TABLE 5.1 - 2 (1)

Summary of Proposed Improvement

OCCIDENTAL MINDORO

9 -	Type : Road of Number Impr't!	90	(km) Exis (km) (km)		Existin Width	(km)	Proposed. Improvement	E	Proposed Bridge (Cost (Million Peso))	188 (%)
Imp-2/ N1-1	N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	mp-2/ M1-1 34.2 167 243 5.0 6.1 [146n 1724.0 6 124.0	24.0 124.0 13.1 1.0	6.00	34.2 167 243 5.0 6.1-6.8 PCC Good 1.8 BT BAD BAD 1.24.0 6.0 GRV Falr 1.0 6.0 GRV BAD 1.0 6.0 G	Rehab(6.0-BMP) Imp-2(6.0-BMP) Imp-1(6.0-BMP) Rehab(6.0-PCC)	ane Br (n=13	83.92 23.52107.43	7.9 (T
New 1 N23	N23	26.0	ew N23 26.0 167 243 26.0 onst.	3 126.0	1	None	New-C(6.0-BMP) 2-1	New-C(6.0-BMP) 2-lane Br (n= 7,L= 95m) 79.24 9.94 89.18 1 26.2 (T)	79.24 9.94 89.18 26.	26.2 (T

(T):Traffic Project (D):Development Project

TABLE 5.1 - 2 (2)

Summary of Proposed Improvement

OCCIDENTAL MINDORO

Type	Type Road Length; 1993	Length: 1993 AADT	1993	AADT	EX	isting	Existing Condition	Proposed	Proposed Bridge	Cost (M	Cost (Million Peso)	(20)	IRR
Impr't!	N C BOEL	(Kall)	0/*	w/o with		LWidth	Type Condition	Improvement	(Number/lotal Length)	Road	Road Bridge Total	tal:	<u>(</u>
Rehab/1 N7-2 Imp-1 1	N7-2	2.7		18 122	4.0	0 to 10 to 1	GRV Bad PCC Good	Rehab(6.0-GRV)		i. i.p. i.ee	.00 1.85		82.2 (T)
~ *** ***	P53-1	5,4	ī	195 198		5.2	GRV Fair	Rehab(6.0-GRV)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3.24	.00 3.24	•	21.1 (T)
	P52-1	7.0		24	3.0 5.0-	5.0.8	GRV Fair	Rehab(6.0-GRV);	1	2.07	.00 2.07		12.6 (T)
- <u>-</u>	989	6.1) {	101 130	4. u. s.	4.5	GRV Fair	Rehab(6.0-GRV);	1	80,6	80.6 00.	80	4.7 (T)
:	() () () ()		4 2 1 2 1	i i	53 130.6 5.0-	90	GRV Fair PCC Fair		2-cell BC (n= 4,L= 27m) 2-lane Br (n= 2,L= 26m) 1-lane Br (n= 2,L= 40m)	! ! ·	.00 7.33 7.33	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.8 (T)
Imp-2/1 Widen	Imp-2/1 P26-2 Widen 1	63	1 80 1 T	122	2.2	4.5	GRV Fair	Widen(6.0-GRV);	1	1.24	.00 1.24		100.0 (T)
New I N25	N25	6.0	0	102	0,9] -	None	New-C(6.0-GRV)	2-lane Br (n= 2,L= 35m)	10.16	3.13 13.28		23.7 (T)
2	N26-1	23,0	0	6	8.7 3.2	ים ער זיים ולי	GRV Fair/Bad	Rehab (6.0-GRV)	2-1ane Sp (n= 7,L=520m)	29.51	9.44 38.95	 16 16	6.4 (T)

.(T):Traffic Project (D):Development Project

TABLE 5.1 - 2 (3)

Summary of Proposed Improvement

OCCIDENTAL MINDORO

Type	Road	Length	1993	AADT	EJ	sting (Condition	Proposed (Proposed Bridge	Cost A	(Milion Peso	. C 0 6	IRR
Impr.t	Jacilla V		0/3	ε i th		Width	Type Condition		Avampe) (10 tal Peng tu	Road	L L	B]	,
Rehab/1	P24-1	7.7	0	1 & C	3.0 4.0	6.0	GRV Bad/V.Bad EAR V.Bad/Impa	Rehab(6.0-GRV)	2-lane Sp (n= 2,L=540m)	8.88	9.80 18.66	2	3.7 (D)
	1	17.6	6	46	4.2 4.0	0-5.2	V 13.8 V 17.8 n e 17.8	hab(6,0- den(6,0- w-C(6,0-		16.79	.00 16.7		6.7 (D)
	P29	6.		1 · · · · · · · · · · · · · · · · · · ·		5.0	PCC Good GRV Bad	Rehab(6.0-GRV)		1.25	.00 1.2	1	14.9 (D)
	62	0	63	9 1	3.0 6.8	0. e.	PCC Good BT V.Bad	្រុ		1.62	9.1 00.	62	13.8 (D)
	703 4 103 4	တ	0	12	22.2.4	4.0 F	PCC Bad GRV Bad GRV Fair EAR Bad			2.30	. 000	08	13.1 (D)
•	P31	1.7	0	-	1.7 2.4	4-3.2	EAR Bad/Impas	mp-1(4.0-	1-lane Sp (n= 1,L=250m)	. 83	3.30 4.1	1	1.5 (D)
	P42	0.8		318	0.10		GRV V.Bad	Rehab(6.0-GRV)		16.38	.00 16.3		7.9 (D)
	P40	11.4	17	(n)	7.2.4.0	0.0.0	> >	Rehab(6.0-GRV)		₹	00 4.	96	. •
	D., 1	8 1	4	F 1	e :	4.0	Chy Bad	Rehab(4.0-GRV)		.91	6. 00.	91 1	6.4 (D)
	P47	1.9	t- 1		1.1	5.0	GRV Fair GRV Bad	Rehab(4.0-GRV);	1-lane Br (n= 2,L= 32m)	.41	2	35	
	P25	1.9	7	2	. 1.9	9 !	GRV V. Bad	Rehab(4.0-GRV)		1.44	.00	. 44	6.3 (D)
	N7-1	8.7		77	5.0 3.2	2.5	GRV Bad/V.Bad I	ab(4.0	1-lane Sp. (n= 1,L= 30m)		.40 4.63	8	(C) 6.9
	P46	H		13	6.5	00	GRV Bad PCC Fair	ehab(6.0-G		.62	9. 00.	25	4.9 (D)
•	P55	8 1	4		3.8	100	GRV Bad	Rehab(4.0-Ghv)	1	1.80	.00 1.8	. 08.	4.2 (D)
	Z-8-12	80	. 23	2.	1.8 6	ត្ ក្រុះ ភូ	PCC Good GRV Bad	- 4		2.76	.00 2.76	φ.	4.1 (D)
	P44	4.3	က	74	4.3	0.0	GRV Bad	Rehab(6.0-GRV)		2.98	.00 2.9		3.8 (D)
- 	N3		en	14	တက္	6.0 6.1	GRV Bad PCC Good	chab(6.0-G		.67	.00.		2.7 (D)
	N7-3	Φ	0	m	6.6.4.5	-5.2	GRV Bad/Impas	Rehab(4.0-GRV)	1-lane Sp (n= 5.L=845m) 1-lane Br (n= 3,L= 55m)	3.30	14.61 17.91	1 I I	1.6 (D)

(T):Traffic Project

TABLE 5.1 - 2 (4)

Summary of Proposed Improvement

OCCIDENTAL MINDORO

Minor (National/Provincial) (Continued)

Type	Type Road Length 1993 AADT	Length	1993 A	ADT !	ធ	Existing	ting Condition	Proposed		Cost (M	Cost (Million Peso)		IRR	
Imprit	D C		W/O Wi	i th	٦,	Width	w/o with I Width Type Condition	THE TO VEHICLE	(Mumper/Idial Length)	Road	Road Bridge Total		•	
Rehab/ P12 Imp-1	hab/1 P12 5.7 0 2 5.4	5.7	0	2	4.0	3.6-4.0	5.7 0 2 5.4 3.6-4.0 GRV Bad/Impas 3 4.0 PCC Fair	Rehab(4.0-GRV)1	1-lane Br (n= 4,L= 68m)	! !	2.62 4.88 7.50	! ! !	(O) 0.	
-	N2		5.5 13 13 1.2	es ===	4 2	8.0	GRV Bad GRV Fair	Rehab(4.0-GRV)	Rehab(4.0-GRV) 1-lane Br (n= 1,L= 42m)	i .	3.42 2.20 5.63	 	(Q) 0.	
	P20	20.0	ω	φ	8		GRV V.Bad	Rehab(6.0-GRV)		10.17	.00 10.17	! ! !	(A) 0.	
Imp-2/1 P19 Widen	P19	P19 3.6 13	3.6 13 13 2.8 4.5	13	27 82.80	4.5-5.5	-5.5 GRV Fair .5 GRV Bad	Widen(6.0-GRV) Rehab(6.0-GRV)		2.63	00 2.63 10.4 (D)	0 1 1	.4 (D)	
	۲ <u>۹</u>	13.0	1 :	∞.	8 .0 .0	4.4 .00 tc	GRV Fair EAR Impas	Widen(6.0-GRV); Imp-1(6.0-GRV);	2-lane Sp (n= 5,L=300m)	 	7.96 5.45 13.40		3.6 (D)	
1	P11	6	က 	7	ο,	٠. د.	GRV Fair	Widen(6.0-GRV)		1.28	1.28 .00 1.28	:	3.3 (D)	,
S S S S S S S S S S S S S S S S S S S	P24-2	2.	0	9	4.5		None	New-C(4.0-GRV)	New-C(4.0-GRV); 1-lane Sp (n= 1.L=100m); 2.90 1.32 4.22; 13.4 (D)	2.90	1.32 4.2	2 1 13	.4 (D)	
	P61		15.0 0 0 115.0	0	15.0		None	New-C(4.0-GRV);		10.69	.00 10.69 h 4.6 (D)	1 4	(D) 9.	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	; - - - - - -	, 1 1 1 1 1	1						1 1 1 1 1 1 1	111111111			

(T):Traffic Project (D):Development Project

Type	Road	Length	1993	ADT	舀	Existing	Condition	 	Proposed Bridge	os t	1111	Pe	IRE	<u>!</u>
-			0/3	1	1 11	width	Type Condition	Improvement	(Number/Total Length)	1 10	Bridge	Tot	<u>3</u> 2	
Rehab/	B8-1	7.8	5	2 4 1	2.8		GRV Bad	b(4.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3.91	00.	3.91	24.1	lê.
 	B10-6	2.2	2			4.0	GRV Fair/Bad	hab (1.00	00.	1.00	21.8	ê
	រ រ		(n)		တပ	4 5 6 0	GRV Bad/V.Bad EAR V.Bad	ab(4.		4.27	00	4.27	ស	ê
~	B9-6		0		2.7	A. 55	GRV Bad/V.Bad			1.34	00.	1.34	13.6	16
~	B7-1	-	 m) 61	702	2 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	GRV Bad GRV Fair: PCC Good	Rehab(4.0-GRV)		23 1 23 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	00.	2 21	10.4	ê
÷	i i i ea	io	 		1.2	3.6	RV B	Rehab(4.0-GRV)		1.78	00	1 •	0	ê
	B2-6	1 10 1 10 1 10 1 10	1 (7)			3,2-3.6	EAR Impast PCC Good		1-lane Sp (n= 1,L= 30m)	8.27	40	8,67	10.0	lê
	B9-7	9.0		2 1	1.5	4.0	របម	Rehab(4.0-GRV)	1-]ane Sp (n= 3,L=110m)	2.96	1.45	4.41	7.7	ê
• •	B7-7	. 160 	 L/S 			3.2-3.6	GRV Fair GRV Bad/V.Bad	1 Widen(4.0-GRV); Rehab(4.0-GRV);	1-lanc Br (n= 1,L= 10m)	6.32	8 9	7.18	0,0	lê
	B10-8	2		2	3.6	3.2	EAR Bad/V.Bad GRV V.Bad	p-1(4.0-		0	00.	6.34	io C	l ê
* ==	B9-8	9 1	٥		, so si	4.0-5.5	GRV Bad None	Rehab(4.0-GRV)	1-lane Sp (n= 1,L=300m)	 	9 6	69.6	4.7	6
	B1 - 5	2.0				0.5	GRV Bad	Rehab(4.0-GRV)		1.12	00.	1.12	0,4	9
	B10-7	6.4	6)	4		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	GRV Fair EAR V.Bad GRV Bad	n (4.0-G	1-lane Sp (n= 1, L=150m)	5 . 42		7.40		<u> </u>
	6-7	g .	0	-	1.2	4.4 6.5 6.5	PCC Good GRV Bad EAR Impas	Rehab(4.0-GRV)	1-lane Br (n= 1,L= 60m) 2-cell BC (n= 1,L= 6m)	1.80	3.58	200	დ დ	ê
	B8-5	2.4	0	73	2.4	3,6	γ. γ.	ehab(4.0-		. 7	00	1.20	3.5	ê
	φ.		0	0		3.2	GRV Bad EAR Bad	Rehab(4.0-GRV)		2.25	00	2.25	က က .	9
	9	61	0	H	1.0	3.5	GRV Bad None	(4.0-	ane Sp (n= 1,L= 8	1.17	1.91	60.	8.0	6
	B9-22	3.1	٥		ທ	4.0	GRV Bad	1 Rehab(4.0-GRV);	; ~	. 55	E. 10.	2.07	3.5	ê

Summary of Proposed Improvement [ABLE 5.1 - 2 (6)

OCCIDENTAL MINDORO

(Continued)

1-lane Sp (n= 1,L=100m)! 2-cell BC (n= 3,L= 19m); - | 1-lane Br (n= 3,L= 35m)+ Rehab(4,0-GRV)| 2-cell BC (n= 1,L= 6m)| Rchab(4.0-PCC) | 1-lane Sp (n= 1,L= 80m); Proposed Bridge (Number/Total Length) Imp-1(4.0-GRV); Rehab(4.0-GRV); Imp-1(4.0-GRV); Widen(4.0-GRV)| Rehab(4.0-GRV)| Rehab(4.0-GRV) Widen(4.0-GRV) Rehab(4.0-GRV) Rehab(4.0-GRV) Imp-1(4.0-GRV) New-C(4.0-GRV) Imp-1(4.0-GRV) New-C(4.0-GRV) Improvement Proposed 1 1 1 Type Condition! GRV V. Bad EAR V. Bad GRV Bad EAR Impas None GRV Fair EAR Impas Existing Condition GRV Fair GRV Bad PCC Fair GRV Bad Fair Fair Bad Fair Good GRV Fair GRV Bad EAR Bad None GRV GRV PCC 4.0-4.5 Width. 2, ts 0.0 44 4 K 1.5 5.00 s 3.4 1.0 2.03 4.0 <u>۔</u> Length! 1993 AADT w/o with (Km) |-----0 O ~ w Ö Ø 0 0 0 N 0 0 8. 4.0 7.0 0 4.6 2.7 3.7 Minor(Barangay) Road B1-2 B0-2 B5~5 B2-4 B0-8 B8-9 [mp-2/1 B0-9 Type 1 Impr't! Rehab/ Const. Widen Ne⊼

2.5 (D)

2.57

1.25 1.32

2.4 (D)

4.30

2.78 1.52

2.8 (D)

.40

00.

40

E (S

(Cost (Million Peso)

Bridge Total

Road

9

7

5.33

3.28

2.06

19.5 (D)

1.40

00.

1.40

3.2 (D)

5.07

1.06

4.02

1.7 (D)

2.04

8

2.04

(T):Traffic Project (D):Development Project

9

o,

.00 .2.14

2.14

(0) 0.

3.88

.53

3,35

Rehab(4.0-GRV)! 2-cell BC (n= 1,L= 6m)! Imp-1(4.0-GRV);

New-C(4.0-GRV)

GRV Bad EAR Impas

2.0 3.2-3.6

0

œ.

B8-8

Imp-1(4.0-GRV)

New-C(4:0-GRV)

Rehab(4.0-GRV)

GRV V.Bad EAR Impas

3.2-4.0

4.0

0.6.

0

9 9

B6-2

2.0

5.1.2 Cost Estimate

1) Unit Cost

Unit prices for construction equipment, materials and labor were obtained from Associated Construction Equipment Lessors, Inc. (ACEL), the Price Monitoring Section of DPWH, market price survey by the Study Team and relevant studies. Based on the data collected, unit prices at April 1990 prices were developed. Exchange rates used were: P22.50 = US\$1.00 = Y155.

Unit costs for major construction items are presented in Table 5.1-3.

2) Construction Cost Estimate

Based on the results of the road inventory survey and proposed type of improvement, the quantity of each construction item was computed for each road project. Then the construction cost was estimated. Table 5.1-4 presents estimated quantities and construction cost of each road project.

TABLE 5.1-3 UNIT COST OF MAJOR CONSTRUCTION ITEMS

Unit: Pesos at April 1990 Prices Unit Unit Price Description Clearing nad Grubbing sq.m. 52.00 58.00 Stripping cu.m. 102 Roadway and Drainage Excavation 106 cu.m. 110.00 107 Borrow cu.m. cu.m. 225.00 108 Aggregate Subbase Preparation Of Previously 7,00 118-1 sq.m. Constructed Road (Gravel) Preparation Of Previously sq.m. 8.00 118-2Constructed Road (Asphalt) Preparation of Existing 22.50 118 - 3sq.m. Pavement Surface (PCC) Preparation of Existing sq.m. 17.00 118-4 Pavement Surface (AC) Crushed Aggregate Surface Course Bituminous Prime Coat Crushed Aggregate Base Course 305.00 200 cu.m. 305.00

 cu.m.
 305.00

 MT
 11,100.00

 MT
 11,500.00

 sq.m.
 95.00

 cu.m. 300 302 Bituminous Tact Coat 303 95.00 1,350.00 Bituminous Macadam Pavement 306 Bituminous Concrete Surface Course MT 310 45.00 Double Bituminous Surface Treatment sq.m. 314PCC Pavement (t = 23cm) 320.00 316-1 sq.m. PCC Pavement (t = 20cm) 280.00 sq.m. 316-2 250.00 PCC Pavement (t = 18cm) 316-3 sq.m. sq.m. 1,550.00 set 2,900.00 RCPC (Ø 910mm) 413-1 Headwal T for RCPC (Ø 910mm) Grouted Riprap 413-2 625.00 500 sq.m. m 517 Side Ditch (Grouted Riprap) 360.00 Bridge Cost m each 2-lane Superstructure 43,500.00 330,000.00 Abutment for 2-lane bridge Pier for 2-lane bridge each 285,000.00 m 32,000.00 each 230,000.00 each 200,000.00 1-lane Superstructure Abutment for 1-lane bridge Pier for 1-lane bridge ______ Reinforced Concrete Box Culvert 20,600.00 36,000.00 1-Cell RCBC m 2-Cell RCBC m Wing wall and Apron for 1-Cell RCBC set 132,000.00
Wing wall and Apron for 2-Cell RCBC set 155,000.00 Spillway 2-lane Spillway 16,500.00 1-lane Spillway 12,000.00 Slope Protection Cost Cut Slope Protection m 23,000.00 m m Embankment Slope Protection

TABLE 5.1 - 4 (1)
Quantity and Construction Cost OCCIDENTAL MINDORO

f 	3	Uniti	7-12	. ~		P53-1	P52-1			P26-2	N26	N26-1	. P24-1	
Total Improv Propos	Total Road Length Improvement Length Proposed Pavement Type	EE	34.2 26.1 6.0-BMP 5.0-PCC	26.0 26.0 6.0-BMP	· • ≈ 0 :	i 1≝ i	7.0 3.0 6.0-GRV	6.1 6.3 6.0-GRV	1 _ 1	400	6.0 6.0 6.0-GRV		4.7 4.7 6.0-GRV	
Quantit 100 C	ity Clearing & Grubbing	25 E		100		i i i	1			ì	760	090	1	
102	Stripping Roadway & Drainage Excavation	2 E	3754	286000	57	(2)	25	322	. .	2838	28800	96849	292	
104 200	Borrow Aggregate Subbase		168500	900	1356	50 50	1695	21511	, ,	759 462	994 395	526 287	3 2 4	
	Preparation of Prev. Road (Grv1)	E -	15542) (8	0	80	00	•	0066	' '	048	7.4	
	Preparation of Prev. Hoad (Asph) Preparation of Pave, Surf. (PCC)	2 E	671	. ,	1, 1	l J	1 1	1 1	1 T	1 1	t I	F. 4	. 1	
	Preparation of Pave Surf. (AC)	2	,	Ĺ	1		.1	1		1	1	1	1	
300	Crushed Aggregate base Course Crushed Aggr. Surface Course	2 E	7 C C C C	ו מ	2160	4860	2700	3870	Lį	1980	5400	21240	4230	
301	Bituminous Prime Coat	. T.	186	187					ı					
308	Bituminous fack Cost Bituminous Macadam Pavement		1548	156000		1 1	1 1	1 1	E 1	1 1	1 1	1 1	ı ı	
310	Bitum. Concrete Surface Course	₹.	: \		ı	3	ı	ı	1	,	t			
304	Double Bitum. Surface Treatment	1 m2		ť	1	I	ı ·	:	t .	1	1	ı	ι .	
311-2	PCC Pavement (t=20 cm)	2 2	. 60		150	, 1			1 1	1 1	ı t	1 1	, 1	
311-3	PCC Pavement (t=18 cm)	. m2		•	١.	•		1	ı		1 .	١.	1	
005.	RCPC (die.910mm) Headwall for RCPC (die.910mm)	E 6	1365	1560	75	165	0 s	390 360	ιı	90	0.0 0.0	1095	315	
504	Grouted Riprap,	 E	2111	2 1	,	4 → 1	1		•	•	3 3 t	335	3747	
	Side Ditch (Grouted Riprap)	 E	860	20800	1	1100	1	,	•	•	3540.	9010	1	
	Slope Protection (Cut Slope)	E 1		r .			1		1 :	1 1	t I	1		
	2-12pe Florection (Embana t 21)	 = E	N	1 G	۱ ۱		ı ;	i F	26	1 1		1 1	. 1	
	1-lane Bridge, Superstructure		1-		•	J	1	1	40	1	1	,	•	
	2-lane Bridge, Abutment	Each		14		•		1.	4	ı	ぜ	•	,	
	1-lane Bridge, Abutment	Each		, *	•	ı	1		4	1			1	
	7-jane Bridge, Fier 1-jane Bridge, Pier	Each:	*	٠,	: 1	. ,	, ,	: ;		t i			1 1	
	2-lane Spillway	 E	1	1		1	1	ı	t	t	٠,١	520	540	
	1-lane Spillway	E	ı	1	1	i		,	1	1	1	1	1	
	1-cell RCBC	E	١.	1	ı	ı		ı		ŧ	1	1	1	
	Z-cell RCBC	: - E (1	ı	1	1	1	1	68	ι .	ı		١.	
	Wingwall for Alcell ACEC.	000	1	. ,	1 1	1 ,	. 1	- 1 (. ~			, I 1	i 1	
	Miscellaneous [1.s.]	2.1	7	۶ -4 .	, .		y-4,			;-4	,	H	H	
Road C	Road Construction Cost	Ω.	1 60 1 1 60 6	1 62 6	1.85	100	2.07	80.6	0.	1 20	ļ	l ευ.		
Eriage Total	2		. A	ۍ –	00.00	3.24	00.	90	നസ	00	٦,	4.0	ω «	
Road C	mpr't km	a.	. ¢≎ t	3.05	0.00			2.11	80		1.69	1.25	1.8	
10181	1	- 1	∵ }	4 1	80.	20.	08.	4 1	7 1	96.	. 1	o i	9	

	Cost
4 (2)	Construction
1	and
6	, , ,
TABLE	Quantit

4.0 - PCC 4.0 - GRV 6.0 - GRV 4.0 - GRV 1.8		. משוני	P41	P29	62	P34	P31	P42	P40	P28	P25	P47	N7-1
Charles & Grubbing Charles & Series Charles &	Type	E E	17. .0-GR	1 1	4-0	6.5 4.0.PCC 4.0.GRV	1.7 1.0-GRV (8.0 8.0		1 1	1.9 1.9 2.9 3.4	1.9 8 .0-GRV	8.7 8.7
String & Grubbing Borrow Desirange Excavation m2 9200 Stringly Desirange Excavation m2 19200 Borrow Desirange Excavation m3 19200 Borrow Desirange Desirange Excavation m3 19200 Frequention of Frave. Noad (Graph) m2 7530 11860 Frequention of Frave. Noad (Graph) m2 7530 11860 Frequention of Frave. Surf. (AC) m2 7530 11840 Frequention of Fra	1		1 1 1 1 1 1 1	! ! ! ! !	1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1		1	1 1 1 1 1 1 1		1 1 1 1 1
Secretarization Mail 1982 1957 1857 1857 1858 1857 1858 185	41120 0 60:100[]	 - 1	0 7 0	ļ	ļ	ı	,	1	į	•	,	,	ı
Properties Pro	String a diabonit	 	7 0	1 (1			į i	. •	. .		1
Preparation of Prev. Rad. (CTV) m2 7330 11890 144 174 675 5280 4752 820 4752 8280 4752	Boadcav & Drainage Hyperelion		ο c	C.	1152	ď	1976	ů	2400	Œ	,	009	. 2177
Additional process of the process of	Borrow	 0 (*) 0 (*)	100	9 0	, , ,		2 4 4	7 -	2 6	σ (00	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3403
Preparation of Prev Noad(Graph) m2 75330 11880 - 17940 7520 5200 47520 8550 355	Aggregate Subbase		9 60		1444	1 00	782	523	7.5	2	> oo	368	4002
Preparation of Pave, Surf. (PCD) m2 Preparation of Pave, Surf. (PCD) m3 Preparation	Preparation of Prev. Boad (Gret)	25	9 65	2		4	7820	200	5.00	· v	8550	3680	35210
Preparation of Pave Surf (PCC) m2 Crushed Adgregate Base Course m3 Bluminous Prime Coat m3 Bluminous Prime Coat m3 Bluminous Prime Coat m4 Bluminous Prime Prime Coat m4 Bluminous Prime Coat	Preparation of Prev. Road (Agnb)	i è) I	3 1	6500	. 0) })) !) [1	; ; ;)))	,
Crushed Aggregate Base Course m3 15840 1620 1020 7200 6480 1140 4881 1140	COOL Street to contact the		1	١	2 1	2	,	t	•	i	1	ł	ı
Curshed Aggregate Base Course m3 15840 1620 7200 6480 1040 481 1040	Preparation of Pane Surf (40)		1	.,	1		1	ı	•	ī	ı	ì	١
Struction Cost March Mar	Crished Aggregate Base Course		1	. 1	1000	1		ı	1	,	•	1	1
######################################	Cracked Ages Surface Course	 - E	2 2 2 2	0631	3 1	0740	1020	0000	0.480	1080	1140	ORV.	1220
Bituminous Tack Coat William Double Bituminous Macadam Revenent William Wil	Citables noois, cuitate control	 2 F 2 Z	7	0 7 0 T) 1 1	9 1	201	0 1	0 1	7 1) -	3 1
Bitum conserved an Favement m2	Attained to the Control of the Contr	· ·	•	· ·	`	. 1		! 1			: 1		1
Bitum.Concrete Surface Course Mr.	Witnessons Assessed Daylors		1	•	0000		-		ı	ı	,	,	
POC Pavement (1420 cm) m2 m2 m3 m3 m4 m4 m4 m4 m4 m4	Districted recogning to construct the construction of the construc	 3 E		1				ı				. 1	!
PCC Parement (t=20 cm) m2	Ditam. Concrete Surface Course		ì	1	Ų	1	ı	ı	•	•	!	1	•
PCC Parement (1220 cm) m2	Double blum, buriace Treatment	 2E	l	ı	1	1	1	ı	t		•	1	
NCC Cavement (1=18 0 cm) m2	FCC Favenent (1823 CB)	Z	1	1	1	i	:	1	ı	1		1	1
PCCP (dia-310mm) m2 660 60 64 24 660 210 32 650 65	FCC Favenent (t=20 cm)	2 E	:	•		400	1	1		١.	•	1	١.
Name	PCC Pavement (t=18 cm)	25	, ;	. :	3 (1	1.	1) ;		, ;	1	1 5
Gravelown) Set	RCPC (dia.910mm)	E	099	60	30	64	24	999	210	32	32	36	136
Cut Slope) m 3150 Cut Slope) m 3150 Cut Slope) m m Cut Slope) m Cut S	Headwall for HCFC (Gla.910mm)	200	44	*	73	æ	m	7.00	14	4	Q.		. 7
Gringrap) m 3150 c c c c c c c c c	04 Grouted Ribrab		1 1	1		ı	ı	8233	:	t	t	,	
Extracture m	Side Ditch (Grouted Riprap)	E .	3150	•		1	r	1	¥	,	•	1	1
Embank (S1) m Fisture Fisture m Fis	Slope Protection (Cut Slope)	e	ı	t	1	1	ì	1		ı	1	١	.*
Figure Large	Slope Protection (Embank't SI)	E .	ı	;	ı	,	1	١.	1	ı	•	1	ŀ
NCBC Set	2-lane Bridge, Superstructure	E .		1	ì	ž	1	ı	1	4	ı	1	•
ment Each	ture	6	,	1	ı		ı	ı		1	ı	32	1
RCBC Set		1 to 2	1	ı		ı		١,	I	,	1.	1	ì
Bach		: Kach		ı	•		ı	,		1	1	₫.	•
RCBC Set		おおなり	,		1 :	,	ı	t	1	t	1	1	ı
NCBC Set		- 12 a Co	t i	i :	1 1		ı	I	ı	ı	,	ì	t
NCBC Set		 = 1	•		•	1	i i		,	1	1	1	
RCBC Set	THEORE ODITIONS	E .	1	1	ŀ	1	250	J		1	ı	ı	30
RCBC Set		E .	1	ı	ı	ı		1	1	ŧ	ı	ì	1
RCBC Set	CBC	ε	1	ı	ı	ı	ı	ı	ı	1	,	1	i
KCBC		Ø	•	1 .	ı	1	ı	•	ı		1	•	
1.5. 1		Φ	ı		ı	,	ŀ	ı	ı		1	,	1
M.P. 16.79 1.25 1.62 2.30 83 16.38 4.96 .91 1.44 .4 .4 .4 .4 .4 .4	Miscellaneous	•	.	~				-4	—		p-4		1
M.P. .00 .00 .00 .00 3.30 .00 .00 .00 .00 .0	! !			1.25	1.62	(63				. 93	1.44	. 43	4.23
#M.p. 16.79 1.25 1.62 2.30 4.13 16.38 4.96 .91 1.44 2.5 mpr't km M.p. .95 .70 1.62 .57 .49 2.05 .69 .51 .76 .5 Total km M.p. .95 .66 .41 .35 ,2.43 2.05 .43 .51 .76 1.3	Bridge Construction Cost			00.	00,	0	C.			00.	00	-	. 40
M.p. .95 .70 1.62 .57 .49 2.05 .69 .51 .76 .5 M.p. .95 .66 .41 .35 .2.43 2.05 .43 .51 .76 1.3	Total Construction Cost	•	•	1.25		ლ.	_			16.	1 44	r.	4.63
IM. p.: .95 .66 .41 .35 , 2.43 2.05 ,43 .51 .76 1.3	Road Construction Cost/Impr't km .	•	.95	.70		Ġ	49	•		53	. 76	u	4.9
	Total Construction Cost/Total km	•	.95	99.	.41	. 35	2.43	•		.51	.76	1.34	. 53

TABLE 5.1 - 4 (3)
Quantity and Construction Cost

	9	11001	P46	P55	N8-2	1	8 Z		P20	N2	P12	P19	Д.
Total Impro- Propo		X X	1.1 .9 .6.0-GRV	3.8 3.8 4.0-GRV	5.8 4.0 6.0-GRV	4.3 4.3 6.0-GRV	1.4 .9 6.0-GRV	6.6 6.6 4.0-GRV	5.6 5.6 6.0-GRV	5.5 1.2 4.0-GRV	5.7 5.4 4.0-GRV 6	3.6 3.6 5.0-GRV	13.0 13.0 5.0-GRV
Quantity 100 Cl	Quantity 100 Clearing & Grubbing	25	; 					i ! !					f l
102	Stripping Roadway & Drainage Excavation	2 m	1 1	2032	3000	3225		4950	3600	900	4050	4638	13476
104	Borrow	E 1	779	1702	2260	2430	1184			11691	2351	608	4302
007	Aggregate Suppase Preparation of Prev. Road(GrvI)		5940	17480	26400	28380	5940		n	5520	24840	17540	71310
	Preparation of Prev. Road (Asph)	**	1	1	1	1	ı			,	ı	ι	•
	Preparation of Pave. Surf. (PCC)			1	1	ì	•			1	ı	1	ı
202	Preparation of Pave. Surf. (AC) Crushed Aggregate Base Course		ı !		1)	į 1	1, 1					1 (1 1
300	Crushed Aggr. Surface Course		810	2280	3600	3870	810			720	3240	3240	11700
301	Bituminous Prime Coat	F.E	1	•	ŀ	•	1.			ı	1	,	,
305	Bituminous Tack Coat	× ('	ı	1	1	1 -	ı		ı	1	1	1
0 0 0 0 0	Mituminous macadam ravement Mitum Concrete Restance Course				1 1	ן נ	٠ ،	1 1			1 1	١ ١	1 1
304	Double Bitum, Surface Treatment			1	t	, ,		1			ı	t	•
311-1		-	1	r	1		١	١		ı	ı	t	1
311-2		1 m2	, ~	1	1	ŀ	•	•		,	1	r	1
311-3		- E	1	ì	1	1		l i		. :	. ;	1 4	1
200	RCPC (dia.910mm)	E (ဝင် ၁	64	120	135	oe ao	104		20	σ, Θ,	101	390
	Headwall for MCPC (dia.910mm)	Set		6 0-	&	6	2	E		7	11	7	26
400	Grouted Albrap			! !) (1)		ł į		7602	i i	1 450	
	Slope Protection (Cut Slope)	. E	1	1	•	1	1	, r		ı	1) i	,
	Slope Protection (Embank't S1)	E	ا.	1	1	ı	ı	1		1	1	ı	j
	2-lane Bridge, Superstructure	E	i	1	1	1		١.		3	1	1	ŀ
		E		Ì	ı	ı ,	1	. 22		42	68	•	ł
	- Jane	Each		I .	ï	1	•	. '		. '	, '	,	1.
	1-lane Bridge, Abutment	Bach			1	F :		co	1 .		20.	1 1	1
	1-lane Bridge, Fier	Each		•				• .					
	2-lane Spillway	E	1	1	ı		1	1	-	1	1		300
	1-lane Spillway	 E	i	1	ı	ı	•	845		1	8	1	1
	1-cell RCBC	£	1	ı	1	1	1			A	1	t	1
		e .		1	1	•	.1	1	i	•	1	i	ı
	Wingwall for 1-cell RCBC	Set	•		t	t	ľ	1		•	C.	t	١,
	Wingwall for 2-cell RCBC	Set		, '	. '	1	, ,	, '	1 .	1			ı
f 1 1	Miscellaneous	1.8.		-	لاً ! ا	- I	i	I	~ 1 - 1	~ I	r-4 	1 1 1 1	I
Road (Road Construction Cost	Σ. Ω.	.62	1.80	2,76	2.98	.67	3.30	10.17	3.42	2.62	2.63	7.96
Brick	Bridge Construction Cost	ά. Σ:	00.	00.	001	٠	00.	14.61.	00	2.20	4.88	00.	5.45
Total	Total Construction Cost		.62	1.80	2.76	2.08	.67	17.91	10.17	ທ. ຜູ້ເ	7.50	2.63	13.40
Total	Road Construction Cost/Impr.t Km Total Construction Cost/Total Km		86.	7.5	. 6	ກ ຫ ວ ຫ	48	2.71	1.82	2.85	1.32	7.3	19.1
		1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1		1 1 1	1	1 1 1 1 1 1 1				1	

TABLE 5.1 - 4 (4)
Quantity and Construction Cost

; ; ; ;		Uniti	P11	P24-2		D8-1	B10-6	B9-25				B2-6	1 1
Total	otal Boad Jensin	1 8	0	i a	ر ما ا	i	1 '	i T				10	
moro	Improvement Length				12.0	0.00	. 61	່ເນ	2.7	7 (7)	. ~.	1 in	. n
Propo	lype		6.0-GRV	ec.	S S	- ←	p:	~	~	C.	D.	4.0-GRV 6.0-PCC	pc:
Quantity		1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1	1	1 t t 1	! ! ! !		! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	
100	Clearing & Grubbing	1 m2	•	00	500	•	ı		1	ı	1	•	1
	Stripping	EE	•	4500	22500		1		1	1	1		1
102	Roadway & Drainage Excavation	 E	16	35	750	85	91	12	02	32	75	42	4425
104	Воггож	m3 :-	2969	9	622	4407	1067	7929	1526	3729	3983	17263	3334
200	Aggregate Subbase	E	8	0	8	358	64	253	24	142	55	286	271
	Preparation of Prev. Road (Grv1)	ε.	Ø	1	į	88	4	8	42	25	4920	38	27140
	Preparation of Prev. Road (Asph)	Æ			ı		1		ı.	1	ı	120	1
	Preparation of Pave. Surf. (PCC)	Ε.	•	,	1	i		ı	•		,	1	ı
	Preparation of Pave, Surf. (AC)	E	ı	1		ı	. '	1	•	ı	1	1	٠ ١
202	Crushed Aggregate Base Course	E	1	•	1	ı	ı	1	•	4	1	•	•
	Crushed Aggr. Surface Course	E	810	2700	9000	4680	1320	3300	1620	1860	720	3180	3540
	Bituminous Prime Coat	(- E	•	1	1	ı	1	•	1		ι	1	•
302	Bituminous Tack Coat : 1M.	×	;	. 1	٠	1	1	,	•	1	ł	•	ı
	Bituminous Macadam Pavement	1 H2	•	•	1	ı	1	1	1	ı	t	1	•
	Bitum, Concrete Surface Course	M.T.W		•	1		1	1	ı	ı	r		•
304	Double Bitum. Surface Treatment	E	1	,	١	1	ı		i	ı	1	ı	•
	PCC Payement (t=23 cm)	E .	1	1	ı	•		ļ	,	1	1	1	:
311-2	PCC Pavement (#120 cm)	É	•		ŧ	•	ı		٠,	1	٠,	1200	,
311	PCC Pavenent (1=18 cm)	6	1	٠	1	١			,	.!	١	2 1	1
	BODO CALO GIORN	 2 2 6	9	-	007		c		•	o	•	000	ć
200	Monday, for BODO (A: o 010mm)	= -	00	717	480	977	2 .	7.50	ф О	96	A. O. r.	0 t c	9.5
	Grouped Disson	 5 1 6 1	L	ਦ ਕ :	0		7	٠,	O.	1 5	-	7 7 7	71
7	Gran Migrap	 E :	0000	•	,	1	ı	1021	1	* * * * * * * * * * * * * * * * * * *	3.501	1255	1
	Side Diten (Grouted Ribrap)	e .	t		1		i		!	1	ı		•
	Slope Protection (Cut Slope)	8	1	ı	t	1	ı	1	ι		1	1.	i
	Slope Protection (Embank't Sl)	e			1	ŧ,			,	1	١.		•
	2-lane Bridge, Superstructure	E	ı	•	•	ı	1		1	1	ı	ı	١.
	1-lane Bridge, Superstructure	 E	1	•	ı	ı	1	•	1	1	1	,	•
	2-lane Bridge, Abutment	Each	1	ı	1	ı		1		ı	1	1	
	1-lane Bridge, Abutment	Bach	ı	ı	ı	1	:	ŀ	ı	1	ı	1	1
	2-lane Bridge, Fier	Each	1	•		1	1	t	•	,1		1	1,
	1-lane Bridge, Pier	Each		•		ı	.1	•	1		1	.'	ı
	2-lane Spiliway	E	1	1	1	i	١	1	•	1	1	ι	ı
	1-lane Spillway	e E	ı	100	•	1	ì	1	!		1	30	110
	1-cell RCBC	E	•	ı	1	. 1	1	ı	•	1	1	1	•
	2-cell RCBC	E	1	ı	1	1	1	ı	,	٠,	•	1	•
	Wingwall for 1-cell RCBC	Set	•	1	•		ł	1	,	1	-	•	ı
	Wingwall for 2-cell RCBC	Set	ı	1	١	,	ı	٠,	ı	i	i	ı	1
	Miscellancous	1.8.	٦		7	7	F 1	~~	н ч	~	ч	7	 4
Road	Road Construction Cost		1.28	16:	10.69			1 0	1.34		1 6	8.27	[6
Bridg.	Bridge Construction Cost	ο,	00.	ಬ	0	Ō	Ö	0	0	0	0	7	1,45
Total	Construction Cost	Z D	1.28	6	10.69		1.00	4.27	1.34		t-	φ,	4
Road (Road Construction Cost/Impr't km	D.	1.42	.64	r-	03.	. 45	7.8			1.49	1.50	05.
Total	Construction Cost/Total km	Σ.υ	1.42	.94	.71		. 45	.78	.50		4	ιż	. 75
! ! !		1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1		1 1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1	1 1 1 1 1 1 1		171111
					•								

TABLE 5.1 - 4 (5)
Quantity and Construction Cost

; ; ; ; ;		I Unit:	B7-7	B10-8	B9-8	B1 - 5	B10-7	B6-7	38-5	B7-8	B1-6	B9-22	1 1. 1 1 1. 1 1 1. 1
Total Improv Propos	Road Length ement Length ed Pavement Type	. E E	5.8 4.0-GRV	4.2 4.0-GRV	6.0 6.0 4.0-GRV	2.0 2.0 4.0-GRV	6.4 4.0-GRV	3.6 3.6 4.0-GRV	2.4 2.0-6RV	4.5 4.0-GRV	2.0 2.0 4.0-GRV	3.1 3.1 4.0-08V	4.0.1
Quantity 100 Cl	earing a Grubbing					, ,	1- 1	, ,	. 1	1 1	10000	1 1	1 l
102	Stripping Roadway & Drainage Excavation Borrow		527	3469	3375	3750	1231 26063	70	1356	5.2	2175	w r-	42,
200	Aggregate Subbase Preparation of Prev.Road(Grv!)	E E	1912	1932	10 C	920	23290	1656	1104	2070	920 2800	1426 14260	368
	Preparation of Prev. Road (Asph) Preparation of Pave. Surf. (PCC) Preparation of Pave Surf. (AC)	£ E £	j t r	1 1 1	!	1 F I	i 1.,1		ı t 1	1 F T	1 1 1		
300	Crushed Aggregate Base Course Crushed Aggregate Course Crushed Aggregate Course Elimeter Course	: E E	3480	2520	3600	1140	3840	2160	1440	2700	1200,	1860	1 8 1
	Bituminous Tack Coat		1	•	· t		•	t	1	i ·	1	•	•
305	Bituminous Macadam Pavement Bitum.Concrete Surface Course		ı ı	1	1 1	1 1	iι	1 1	ιí	1 t	1 I -	1 1	1.7
	Double Bitum. Surface Treatment		1 1	1 1	1 1	F 1	1 1	t 1	1 1	1 1	1 1	(I	• •
311-2	PCC Pavement	2	•	ı	,	1		1		1	ŀ	1	1
311-3 500		 2 E	152	176	184	400	104	9 I	40	72	40	. 20	1
504	Headwall for RCFC (dia.910mm) Grouted Riprap	. Se t	19 2619	3900	23 2131	. 1	ლ I		ı ı	ם י	in I	۰ م ا	`` 1
	Side Ditch (Grouted Riprap)	E E		1 1	F 1	1 1	1 1	1 (1 1	i 1	at I	1 . 1	' '
		 E E	ŕ	•	•	ı	ŀ	•	•	1	1_	1	•
	2-lane Bridge, Superstructure	e e	1 -	1 1		rr		19	1 1	i, i	C	1 1	
•		Each	· 1	1	•	ı			1	•	· 1	1	1
	1-fane Bridge, Abutment	Each .		1 1		1 - 1	1 1	2	1 1	1 1	۱ ۲	1 1	1 1
	1-lane Bridge, Pier	Each)	. '		. 1	1	. 1	23			1	t	
	2-lane Spillway	E :	t	•	1 6	t	1 1	1	•		1 0	1	1
	1-1ane opiliway 1-reil BCBC	= E	ı 1		000	1	201	1 f			8 1	: ,	i ,
	2-cell RCBC	 :	ı	•	† -	ı	4	6	•	ı		თ	. 1
	Wingwall for 1-cell RCBC	Set	•	•	í	ř	1	•	•	•	1	1	1
	Wingwall for 2-cell RCBC Miscellaneous	. s	i en .	ı H	ı —		,		ı ¬	۱ <mark>- ا</mark>	, 44	rd red	
Road C	Road Construction Cost	Z.				1.12	4	0	1.20		1 14 6	1.55	4.9
Dinage Total	Dingge Construction Cost Total Construction Cost	E E) (C)	ם מ	1.12		300	1.20		3.09	2.07	
Road C	Construction Cost/Impr't km 1 Construction Cost/Total km		1.09	1.51	1.61	. 55 68.		1.38	0 0 0 0 0	50		50	വവ
1 1 1 1 1 1 1 1		1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]	1 1 1 1 1 1	1		 	1 1 1 1 1		1 1 1 1 1		1 1 1

TABLE 5.1 - 4 (6) Quantity and Construction Cost

9 1 4 1 1 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Uniti	B2-4	30-2	8-08	B0-0	B1-2	B8-9	B6-2	38-8
Total Road Length Improvement Length Proposed Pavement Type	1 E E	4.0-GRY	7.0 5.2 4.0-GRV	5.0 3.9 4.0-GRV	2.7 2.7 1.0-GRV	4.6 4.0-PCC 4.0-GRV	3.7 3.7 4.0-GRV	3.9 3.9 4.0-GRV	4.0-5.8
		1875 1875 1413 1150	5682 3990 2328 18050	2488 2022 11794 1799	238 9 4 2 5 3 8 9 4 4 0 5 6 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	4 0000 11544 28621 8840 8000	24000 2400 3275 1856 7820	24000 24000 24000 37773 1759 1794	30000 30000 2700 6277 2668
	M. H.	1800	3120	2280	1620	2640	2220	2340	
305 Bituminous Macadam Pavement 310 Bitum.Concrete Surface Course 304 Double Bitum.Surface Treatment 311-1 PGC Pavement (t=23 cm) 311-2 PGC Pavement (t=23 cm)	X X X X X X X X X X X X X X X X X X X		1 1 1 1 1	11111		1	1111		
PCC Pavement (1=1) RCPC (dia.910mm) Headwall for RCPC Grouted Riprap Side Ditch (Grout	SEE SEE	14 111 Or	18411	000 048	14	128 146 146 146 146	∞ ⊶ 1 t 1	9 R I I I B B	121 120 120 120 120
Slope Protection (Gut Slope) Slope Protection (Embank't Sl) 2-lane Bridge, Superstructure 1-lane Bridge, Abutment 2-lane Bridge, Abutment 2-lane Bridge, Pier 1-lane Bridge, Pier 2-lane Spillway 1-cell RCBC Wingwall for 1-cell RCBC Wingwall for 2-cell RCBC Wingwall for 2-cell RCBC Wingwall for 2-cell RCBC	TONON TREE BEST TO THE TONON TO THE TO THE TONON TO THE THE TONON TO T								
Road Construction Cost Bridge Construction Cost Total Construction Cost Road Construction Cost/Impr't km Total Construction Cost/Total km	ZEZZZ	21.25	2.78 1.52 4.30 5.3	5.06 5.28 5.33 1.553	1.40	4.02 1.06 5.07 87 1.10	2.04	2.12	

5.1.3 Summary of Preliminary Design

Results of preliminary design were summarized in Tables 5.1-5 and 5.1-6 for major and minor roads, respectively.

TABLE 5.1-5 SUMMARY OF PRELIMINARY DESIGN:
Province of Occidental Mindoro
- Major Roads -

		Type of Improv		
	Rehabilitation/ Improvement - 1	Improvement-2/	New	
Primary Major Roads				
1. No. of Links	_	1	1 .	2
2. Total Length (km)	-	34.2	26.0	60.2
3. Improvement Length (km)	_	26.1	26.0	52.1
4. Construction Cost (million P)	••	107.4	89.2	196.6
5. Const. Cost/Imp. Length (MP/km)	-	4.11	3.43	3.77
Secondary Major Roads				
1. No. of Links	5	1	2	8 -
2. Total Length (km)	52.3	2.2	29.6	84.1
3. Improvement Length (km)	15.4	2.2	29.6	47.2
4. Construction Cost (million P)	23.6	1.2	52.2	77.0
5. Const. Cost/Imp. Length (MP/km)	1.53	1.83	1.76	1.63
Major Roads Total				
1. No. of Links	5	2	3 .	10
2. Total Length (km)	52.3	36.4		144.3
3. Improvement Length (km)	15.4	28.3	55.6	99.3
4. Construction Cost (million P)	23.6	108.6	141.4	273.6
5. Const. Cost/Imp. Length (MP/km)	1.53	3.84	2.54	2.76

TABLE 5.1-6 SUMMARY OF PRELIMINARY DESIGN Province of Occidental Mindoro - Minor Roads -

حد من نقد من حدد شد حد حد شد شد شد من حدد من حدد من حدد حدد حدد حدد حدد حدد من حدد حدد حدد سند شد مدد	Type of	Improvement	
	Rehabilitation/ Improvement-1&2/ Widening	New Construction	Total
Minor Roads (National/ Provincial/City)		· · · · · · · · · · · · · · · · · ·	
 No. of Links Total Length (km) Improvement Length (km) Construction Cost (million P) Const. Cost/Imp. Length (MP/km) 	24 127.4 109.4 142.9	2 19.5 19.5 14.9	128.9 157.8
Minor Roads (Barangay)			
 No. of Links Total Length (km) Improvement Length (km) Construction Cost (million P) Const. Cost/Imp. Length (MP/km) 	23 94.9 89.0 87.6 0.98	4 18.0 18.0 13.1 0.73	107.0
Minor Roads Total			
 No. of Links Total Length (km) Improvement Length (km) Construction Cost (million Const. Cost/Imp. Length (line) 	n P) 230.5	6 37.5 37.5 28.0 0.75	53 259.8 235.9 258.5 1.10

5.2 ECONOMIC EVALUATION

5.2.1 Basic Assumptions

The commonly used cost-benefit analysis was applied under the following basic assumptions:

i) Analysis Period

1991 - Detailed design 1992 - Construction 1993 - Project life (25 years)

- ii) Discount Rate: 15% pa
- iii) Quantified Cost

Initial construction/improvement costs Periodic maintenance costs

iv) Quantified Benefit

Traffic benefit
Development benefit (only for development projects)
Maintenance cost savings

The periodic maintenance costs, or rehabilitation costs, such as overlay, reconstruction and regravelling which will be needed after completion of the project to prolong the pavement life, were treated as project costs in this study, while the difference between routine maintenance costs and total maintenance costs in the "w/o" case was taken into account as a project benefit. In the case where the routine maintenance costs are higher than the "w/o" maintenance costs, the difference is considered as a negative benefit.

5.2.2 Economic Costs

1) Initial Construction/Improvement Costs

The construction costs discussed in Section 5.2.1 are the financial costs and do not include the costs for detailed design and construction supervision. In the cost-benefit analysis, the following economic cost was used:

Construction Cost	100%
-Tax	-15%
+Detailed Design Cost	4%
+Construction Supervision	<u>Cost 6%</u>
Total Economic Cost	95%

In the cost-benefit stream, 4% for detailed design cost was assumed to be spent in 1991 and the remaining 91% in 1992.

2) Periodic Maintenance Costs

Periodic maintenance, or rehabilitation, will be necessary when the riding quality of a pavement decreases to a certain minimum level of acceptability. Table 5.2-1 shows the periodic maintenance assumed in this Study.

TABLE 5.2-1 PERIODIC MAINTENANCE COST ASSUMED IN THE ANALYSIS

Surface Type	Periodic Maintenance Work			
Gravel	10cm Regravelling	When thickness of gravel is reduced by 10cm, assuming 1.5cm loss annually from rainfall and 1.5cm loss every 100,000 vehicles (2-6 years)		M 85% of Cost
ВМР	5.5cm BMP Overlay	When pavement serviceability decreases to 2.0, assuming 85,000 ESAL or 350,000 vehicle repetitions (4-10 years)	₽ 0.830	M 85% of Cost
AC	5 cm AC Overlay	When pavement service ability decreases to 2.0, assuming 800,000 ESAL or 2,300,000 vel repetitions (8-20 years)	P 1.170	M 85% of Cost
PCC	5 cm AC Overlay	When pavement service ability decreases to 2.0, assuming 2,000, ESAL or 5,700,000 vehicle repetitions (10-25 years)	₽ 1.200	M 85% of . Cost

Note: 1) As of April 1990

5.2.3 Benefits

1) Traffic Benefits

a) Traffic Cost

Basic Traffic Costs

The basic traffic costs were provided by PMO-FS, as shown in Table 5.2-2.

TABLE 5.2-2 BASIC TRAFFIC COSTS EXCLUDING TAX (AS OF DECEMBER 1989)

	Running Cost (P/km)	Fixed Cost (P/hour)	Time Cost (P/hour)
Car/Van	1.75	6.30	17.70
Jeepney	1.12	23.76	26.40
Bus	2.81	35.64	95.04
Truck	3.48	38.88	0
Motor-	•		•
tricycle	0.36	8.76	4.98
Motorcycle	0.31	0.72	8.34
		_ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ .	

Actual Traffic Costs

The actual traffic costs were estimated according to the dl-system concerning running costs and the dt-system with regard to fixed and time costs. The dl-values and operating speed for different surface conditions are shown in Tables 5.2-3 and 5.2-4, respectively.

TABLE 5.2-3 DL-VALUES IN KM PER ACTUAL KM

Surface Type Surface Condition	PCC/AC	BMP/DBST	Gravel	Earth
Good	0	0.14	0.29	
Fair	0.17	0.38	0.60	-
Bad	0.43	0.65	0.87	1.20
Very Bad	0.89	1.04	1.20	1.56
Impassable	1.73	1.73	1.73	1.73

TABLE 5.2-4 OPERATING SPEED IN KM/HOUR

Surface Surface		CC/7	۸C	BMI	ال /د	3ST	(irav	ze l	I	Eart	t h
Condition	٥٧	TR	MC	٥٧	TR	MC	٥٧	TR	MC	٥٧	TR	MC
Good	65	40	60	63	38	55	60	35	50	_	_	_
Fair	55	35	50	53	33	45	50	30	40	-		_
Bad	30	20	2,0	30	20	20	30	20	20	20	10	10
Very Bad	20	10	10	20	10	10	20	10	10	10	5	5
Impassable	10	5	5	10	5	5	10	5	5	10	5	5

Note: OV = Car/Jeepney/Bus/Truck

TR = Motor-tricycle MC = Motorcycle

Traffic Costs of Other Transport Modes

In addition to the land-based motorized vehicles, the traffic costs of other modes were estimated as shown in Table 5.2-5.

TABLE 5.2-5 TRAFFIC COST OF OTHER MODES (COMMON TO ALL SURFACE TYPES AND CONDITIONS)

Mode	Traffic Cost in P/Km
Animal Drawn	4.0
Walking (head loading)	1.2
Banca Boat	2.25

b) Traffic Benefits in Traffic Projects

Traffic on the project roads wwas broken down into four categories: normal traffic, diverted traffic-1, diverted traffic-2 and generated traffic.

The traffic benefits were estimated as follows:

i) Normal Difference i n traffic "w/o" Traffic "with" between and The change in cases. traffic costs results not only from the improvement of surface type and condition but also from consequent change modal distribution.

- ii) Diverted: Difference between traffic costs
 Traffic-1 along the "w/o" route and those
 along the "with" route. Where
 diverted traffic passes through
 two or more project roads, the
 benefits were allocated to each
 road in proportion to length.
- iii) Diverted Traffic-2 and Generated Traffic:

 Half of the difference in traffic
 costs between "w/o" and "with"
 cases. This is the commonly used
 approximation.

Traffic costs were calculated assuming the following surface conditions:

"W/O" Case: Present surface condition is maintained.
"With" Case: Gravel/BMP are maintained in a fair condition.

AC/PCC are maintained in a good condition

c) Traffic Benefits in Development Projects

No diverted traffic is expected in most development projects. The benefits from normal traffic generated traffic were estimated in the same way as used for the traffic projects paying attention to the following:

- The travel distance considered in the benefit calculation is the distrance from the average point of transport (gravity o f gravity population for passenger traffic and nonagricultural traffic and gravity production for agricultural agricultural traffic) to the connecting point with a higher road.
- ii) The benefit from generated agricultural traffic is not considered as a traffic benefit because it is included in the development benefit. Therefore, the generated traffic benefits are only from passenger traffic and non-agricultural traffic.

2) Development Benefits

Development benefits were assessed using the producer surplus approach, under the hypothesis that substantial road improvement which removes constraints on development will permit and encourage farmers to adopt modern agricultural techniques and inputs. The development benefit consists of the difference in the

net value of total production (farmgate value less production costs) between the "w/o" and "with" cases. Changes in the volume and value of agricultural production will be achieved by one or more of the following:

- i) Increase in cultivated area
- ii) Increase in yield
- iii) Increase in intensity of land use through increasing the number of harvest or intercropping

iv) Changes in the type of crop

Using the data obtained from the socio-economic survey, development benefits were calculated from the following equation:

Benefit = PRODw(FGPw-CPw)-(FGPw-CPw/o)

where, PRODw = Production in metric tons, with PRODw/o= Production in metric tons, w/o

FGPw = Farmgate price in pesos per metric ton,

CPw = Production cost in pesos per metric ton, with

CPw/o = Production cost in pesos per metric ton, w/o

The increase in farmgate price resulting from reduction in traffic cost is not included in the development benefits, because it is considered a part of the traffic benefits.

Table 5.2-6 presents the summary of demographic and agricultural data.

TABLE 5.2 - 6 (1) Summary of Demographic and Agricultural Data

2001	Type	Read	Hoad	-	> -				13:11 III III III III	- 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		: 5
Road	Impr'ti	2 2 2	Lengto (km)	Tota	3 L 3	Total	; 1 1 1 1 1 1 1 1	t	a Jor Cr			0	ا تبة إ	5
Minor Rebab/ (Nat'l/ Imp-1 Prov'l)	Rebab/1	724 - 1 724 - 1 729 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	17.6	2367	504 1101 1731	2310 1770 252	1540(Palay) 1540(Palay) 1250(Palay) 10(Coco.)	800(Corn) 150(Vege.) 2(Corn)	ကြောပ			0 6 4 8 5	118 46 6 31 13	10.0
i		P31		2175	374	1270	50(Corn) 70(Palay)	40(Palay)			-	2045		= -
		7 6 6 2 8 6 2 8 6		2377	1321	0 H C	90 (Palay) 80 (Coco.)	100(Corn 70(Palay)	1(Coru)	0(Banen)				<u>စ်</u> ဖိ
		P25 N7-1		750	2.00 2.00 2.00 2.00 2.00	320	5 2 2	130(Corn) 2(Corn)	30(Vege.) 1			- ~	- 67 4	ດ່ເທ
** ~		746 755		1559	2505 1	170	20 (Pa) ay) 50 (Pa) ay)	50(Coco.)				·· ·-		4.4
		N8-2		24.0	935	201	66	1 (Vege.)	1(Root)			86	24	चंद
- 		N N N N N N N N N N N N N N N N N N N		2849	2035	130	3 2 2	50(Coco.)	30(Corn) 50(Banan)		,		4 to	
		P12 N2 P20	9.5.7	300 1 4004 1 2839	53 728	250	323	80(Palay) 60(Coco.) 100(Coco.)	60(Root)	50(Palay)		0 E B	<u>ოლ</u> დ	`, '
	1 E	P19	13.0	1390	386 1	800 1190	680(Palay) 420(Palay) 100(Palay)	120(Gorn) 420(Root) 90(Goco.)	1 4 6 6			100	n ∞ r-	ည်က်က
	New I	P24-2	1 15.0	1340	298	1100	S10(Palay)	510(Corn) 2(Vegc.)	80(Banan)			00		6.4
Ļ	Rehab/	B8-1		3719	477 1	1450	30(Pal	420(Corn) 40(Corn)	30(Root)	-		62	24	22
gay)		139-25 139-6 13-1		175		0000		100(Root)					r- ro c	
*		B10-3	• •	222	777	380	9 00 6	30(Corn)				, o r		200
		D9-7 B9-7 B7-7		n •	700	220		50(Corn)	1 1001001	-			- 7 6	, k- 6
		B10-8		135	225	310	:=:	40(Root)						М
		131-5		- 4	73.5	000	200	30(Corn)		-			 	4 4
. ·		B10-7 B6-7		184	29 1	300	230(Palay)	50(Corn > 140(Root)	20(Banan)			~ 0	∀ ⊷	က်က
		B8-5		9	235	70	Ξ.	30 (Vege.)		-		0	2	က်
·•		B1-6	2.0	3 62	5 6	1200	250(Palay) 90(Palay)	. 30(Corn)				o o	 O	n n
		89-22 ne e	•	00 ×	50	350	(Pal	100(Root)		•		00		က်ဖ
		82-4		ŢΩ	114 :	110	-							10
		B0-2 B0-8	5.0	295	7.9	293	260(Palay) 150(Coco.)	30(Root) 140(Falay)	3(Ve&e.)			~ o	~ ~ ~	
1 2 	mp-2/:	- on	2.7	150	98	790	480(Palay)	210(Corn)	100(Root)		t 1 1 1 1 1 1 5 1			61
. 2	1 1 1 1 1 1	1 1 1 1	1	1	1 1 1 1	1						1		1

TABLE 5.2 - 6 (2) Summary of Demographic and Agricultural Data

IRH (%)	1.00
11993 AADT :	0 0 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1990 Crop Area (ha) Major Crop) 80(Palay)) 30(Palay)) 90(Palay)
\$ \$ 1 \$ 1	Root) 130 (Banan Root) 60 (Coco. Coco.) 140 (Banan
Total	360 190 490
ion 1/km 1	30
Road 1990 Length Populatio (km) Total /k	New 188-9 3.7 189 51 360 1500 1000 1000 1000 1000 1000 1000 10
Type Road of Number	Minor New 188-9 (Baran-1Const. 186-2) gay) B8-8
Type of Impr.t	New Const.
Class of Road	Minor (Baran-gay)

3) Maintenance Cost Savings

The difference in maintenance costs between the "w/o" and "with" cases is considered one of the benefits. Maintenance costs in the "w/o" case were estimated based on the current EMK system, while maintenance costs in the "with" case were estimated as shown in b) below. It is noted that periodic maintenance cost in the "with" case is not included in the calculation of maintenance cost savings, because it is treated as a part of project costs.

In the case where the routine maintenance costs in the "with" case are higher than the maintenance costs in the "w/o" case (especially in the case of new construction, the maintenance cost in the "w/o" case in zero), the difference is considered as a negative benefit).

a) Maintenance Cost in "w/o" Case

According to the current EMK system, the annual maintenance cost per km was estimated as basic maintenance cost of P17,143.00/km times the EMK factor as shown in Table 5.2-7.

TABLE 5.2-7
EMK FACTOR FOR DIFFERENT SURFACING AND AADT

AAD Surface Type	 25	50	75	100	150 2	200 300	400
Earth Gravel						1 2.40 1 2.5	
AAD Surface Type	 400	600 1	000	1500	2000 30	5000	10000
Bituminous Gravel					0 0 0.95)

b) Routine Maintenance Costs in "with" Case

The costs deemed necessary to maintain the improved roads in a fair condition were estimated as shown in Table 5.2-8.

TABLE 5.2-8 ESTIMATED ROUTINE MAINTENANCE COSTS

Surface Type	Operation	Annual Cost (peso/km)
Gravel	Vegetation Control Ditch Cleaning Grading Pothole Repair	1,150 4.0 m Gravel: 2,650 + 40 AADT 6.0 m Gravel: 3,000 + 45 AADT
	Total	4.0 m Gravel: 3,800 + 45 AADT 6.0 m Gravel: 4,150 + 45 AADT
ВМР	Vegetation Control Ditch Cleaning Shoulder Repair Patching Regravelling Shoulder	1,150 1,100 2,150 8,000 + 7.5 AADT 8,600
	Total	21,000 + 7.5 AADT
AC	Vegetation Control Ditch Cleaning Shoulder Repair Crack and Joint Sealing Regravelling Shoulder	1,150 1,100 2,150 9,300 8,600
	Total	20,400
PCC	Vegetation Control Ditch Cleaning Shoulder Repair Crack and Joint Sealing Regravelling Shoulder	1,150 1,100 2,150 5,600 8,600
	Total	18,600

5.2.4 Economic Evaluation

Results of economic evaluation are summarized in Table 5.2-9 and illustrated in Figure 5.2-1. Results of economic evaluation of each project road is presented in Table 5.2-10.

TABLE 5.2 - 9 (1)

Road Length and Construction Cost

Class	Range	1 1 1	Rehabi			очете	4-1	 	rde I	rovement	t-2/Wid	dening	1	1 1 1	ž	ew Cons	struct	ion	! : ! : !
Road	H RR 1	2	No. Total Length	Impro	Road	Bridge	Total		Total Length	Improv Length	Road E	Bridge Cost	Total Cost	No.	otal ngth:	Improv Length	Road Cost	Bridge Cost	Total Cost
Primary Major	15< 10-1 7.5-1			1 ; 1 ;	1 	; ; ;		1141	60 44 17 1 41	26.1	88.	23 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	07.4	 	26.0	0 I .	79.2	 6 + 1 6 , 	89.2
	Total					 	1 1 1	-	34.2	26.1	83.9	23.5 1	07.4	1	26.0	26.0	79.2	6.6	89.2
d ' y	15< 10-15 7.5-10		37 78	∞ છે 4.	1 44 4	2	2.1	 	8		2		2	 	6.0	23.6	10.2	3.1	13.3
	Total		.52.	1 12	16.2	7.3	23.6	-	2:2	2.2	1.2		1.2	2	29.6	29.6	39.7	12.6	52.2
Minor (Nat'1/ Prov'1)	5 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5		22; 14; 8;	22. 88.	25.6 6.0 16.4	2 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	36.35 16.4 16.4	1 1 1 1 2		3	2.6			1 	4.5	4.5	2.9	(C)	4.2
! !	Total	1 67	109	91.9	iαρ	37.3	125.6	(n)	17.5	17.5	11.9	5 . 4	17.3	1 2	19.5	19.5	13.6	1.3	14.9
nor aran- ay)	15 10-1 7.5-1 7.5-1 	H	15.2	15.	3.5 3.0 3.0 3.0 4.0		1000 1000 1000 1000 1000 1000 1000 100) FR 1 1.	20	20.00	4] 	1 4 1 + 1	1 1 1 4		18.0		1 1 1 1 .	13.1
	Total	2	92.2	86.	LC)			 	2.7	2.7	1.4	 		 	1 80	i ω	j	1.6	
Total	15< 10-15 7.5-10	(200.00 150.00 150.00	45.9 18.5 109.8	39.9 13.7 27.6 88.7	20 - 30 - 30 - 30 - 30 - 30 - 30 - 30 -	49.7 17.0 29.5	2 4 4 6	1	1 1 2 3 4 1 1 1 2 3 3 4 1 1 1 1 2 3 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	20 00 00 10 10 10 10 10 10 10 10 10 10 10	2.6	1 1 1 N H 1 W		32.0	89.4 2.9	13.1	102.5
! 	Total	4 1	254.	സി	169.9	65.4	235.4	(O)	56.6	48.5	98.4	29.0 1	27.4	0	93.1	93.1	144.0	25.4	169.5

	Cost
(2)	Construction
o o	and
TABLE 5.2 -	Road Length

Road alor a ajor	4		: :	[. 1
cond 'y	IRR		i c	Improv	1 22 5	Bridge Cost	HO HO C
ec	15< 10-1 5-1 7-7	1 1 1· 1	3.4	26.0	33.	1 0 6	88
A I I I I I I I I I I I I I I I I I I I	Total	Į.	60.	1 63	163	33.5	
	15< 10-1 .5-1	4410	16. 7. 60.	16.	3 2 3	9 9	5 29 I
	Total	!	84.	47	7.		77.
	15< 10-15 10-15 .5-10	i ⊷1	222 222 9 8		255. 111. 16.	0.4.0	8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
1	Tota		1 6	128.9	. i	44.1	7 1
	15< 10-15 .5-10	1 4 6 6 8	1 H H	18. 7. 11.		1 1 1 0	10.6 5.6 13.1 71.4
 	Total	27	2 .	7.0	78.	2 1	
otal 7	154	1 T T T S S S S S S S S S S S S S S S S	32.	8 2 4 8	132		23.3 36.9 16.7
! ! 	Total	63		1 13	412.4	119.8	32.

TABLE 5.2 - 10 (1)

	Analysis
	υ
•	Ē
	Ę
•	Economic
	÷,
	r Y
	Summar
	2

1993 AADT Length (Km) EConomic Cost (Mp/km) Benefit (Mp/km) Econom. Indication Indi	mmary	of Econ	Summary of Economic Analysis	8 1 8 4		11000	occidental mindoro		-				SOD.	ynag/z	RTILITE	1107-16	Cost/Benefit:1991-2017 Discounted Total	nted	otal
Imp-2/ Number w/o with Total Improvement Const-Period Total Normal Diver Gene- Deve Maint Total NPV B/C	Class	Type	•	11993	AADT	;	angth (km)	Economi	Cost	(Mp/km)	1 1 1 1 1	ě	enefit	(Mp/ks	(e	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Econom	Indi	1 2 1 2 1
167 243 34.2 25.8(6.0-BMP) 3.42 .49 3.91 1.27 - .94 - .05 2.26 -43.1 .6 167 243 26.0 26.00(6.0-BMP) 2.85 .49 3.34 3.58 - 2.66 - .14 6.11 71.8 1.8 18 12 2.7 2.4(6.0-GRV) .57 .32 .89 .09 3.81 .27 - .05 4.12 8.7 4.6 195 198 5.4 5.4(6.0-GRV) .50 .37 .87 .97 - - .00 - .05 .03 .66 - .3 .9 101 130 6.1 4.2 .74 - .00 - .08 1.01 4.8 .5 .4 .8 .9 <th>្ត ១ ១ ១ ១ ១ ១ ១ ១ ១ ១ ១ ១ ១ ១ ១ ១ ១ ១ ១</th> <th>Impr't</th> <th>Number</th> <th>0 / 3</th> <th>wi th</th> <th>Total</th> <th>Improvement</th> <th></th> <th>Period!</th> <th></th> <th>Normal</th> <th>Diver</th> <th></th> <th>Deve- lop't</th> <th>Maint!</th> <th>Total</th> <th>NPV (Mp)</th> <th>B/C</th> <th>IRE (%)</th>	្ត ១ ១ ១ ១ ១ ១ ១ ១ ១ ១ ១ ១ ១ ១ ១ ១ ១ ១ ១	Impr't	Number	0 / 3	wi th	Total	Improvement		Period!		Normal	Diver		Deve- lop't	Maint!	Total	NPV (Mp)	B/C	IRE (%)
167 243 26.0 26.0(6.0-BMP) 2.85 49 3.34 3.58 - 2.6614 6.11 71.8 1.8 1.8 18 122 2.7 2.4(6.0-GRV) 57 32 89 .09 3.81 .2705 4.12 8.7 4.6 195 198 5.4 5.4(6.0-GRV) 57 .970003 1.02 -4.8 .5 101 130 6.1 4.3(6.0-GRV) 1.75 .37 2.12 .742008 1.02 -4.8 .5 42 53 31.1 - 6.10 1.123105 5.20 9.6 6.3 1 18 122 2.2 2.2(6.0-GRV) 1.84 32 2.16 - 2.52 1.0208 3.46 7.8 1.6 0 102 6.0 6.0(GRV) 1.84 32 2.1600 7601 75 -18.7 5	Primary	Imp-2/	N1-1	167	243	34.2	25.8(6.0-BMP) .3(6.0-PCC)	3.42	4.49	3.91	1.27	; ; ; ; ; ;	94	 - 	-	2.26	-43.1	9	7.9
18 122 2.7 2.4(6.0-GRV) .57 .32 .89 .09 3.81 .27 05 4.12 8.7 4.6 195 198 5.4 5.4(6.0-GRV) .50 .37 .87 .97 - - .10 1.08 1.1 1.2 3.9 39 42 7.0 3.0(6.0-GRV) .57 .19 .76 .64 - .00 - .03 .66 - .3 .9 101 130 6.1 4.2 6.10 1.12 - - 1.43 - -4.8 .5 42 5.3 31.1 - 6.10 - 6.10 - .6 .0 - .05 5.20 9.6 6.3 - .05 5.20 9.6 6.3 1 18 122 2.2 2.2(6.0-GRV) 1.84 .32 2.16 - - - 0.0 - .05 5.20 9.6 6.3 1 0 102 6.0 6.0 6.0 6.0		New Const.		167	243	! " -	26.0(6.0-BMP)	2 .85	1 6		1 (C) (1 (C)	; 	2.66	i 1 	1 1 1 ** 1 ** 1 **	6.11	71.8	8 1 H	26.2
P53-1 195 198 5.4 5.4 (6.0-GRV) .50 .37 .87 .97 00 .03 .66 3 .9 .9 .9 .9 .9 .9 .9	cond'y	Rehab/	N7-2	1 1 8	122	2.7	i .	† [- 	32	5. 6.	60.	3.81	.27	i i i ! !	.00.1	1 7 T	8.7	4.5	82.2
39 42 7.0 3.0(6.0-GRV) .57 .19 .76 .64 00 03 .66 3 .9 .101 130 6.1 4.3(6.0-GRV) 1.75 .37 2.12 .74 20 08 1.02 -4.8 .5 .5 .5 .5 .5 .5 .5	. *		; P53-1	1 195					.37	.87	.97	, a	ι	ı	10	1.08	- T-	1.2	21.
101 130 6.1 4.3(6.0-GRV) 1.75 .37 2.12 .74 20 08 1.02 -4.8 .5 .4.8 .5 .4.7 .2 .4.8 .3 .4.7 .2 .4.8 .3 .4.7 .2 .4.8 .3 .4.7 .3 .3 .3 .3 .3 .3 .3			P52-1	39	42				.19	. 76	.64	ļ	00.	1	.03	99.	es 1	6	12.
18 122 2.2 2.2(6.0-GRV) .47 .36 .83 .10 4.86 .3005 5.20 9.6 6.3 1	•		P39	101		-		1.75	.37	2.12	.74	i	.20	1	.08	1.02	-4.8	'n	4
18 122 2.2 2.2(6.0-GRV) .47 .36 .83 .10 4.86 .3005 5.20 9.6 6.3 1	٠	 	P3	42	ຄ	37.7	i	6.10	 I	.6.10	1.12		e.	ı	,	1.43	-4.7	.2	<u>.</u>
0 102 6.0 6.0(6.0-GRV) 1.84 .32 2.16 - 2.52 1.0208 3.46 7.8 1.6 0 2 23.6 (6.0-GRV) 1.37 .17 1.55 - 00 .7601 75 -18.7 .5		Imp-2/	P26-2	8	122	2 2		. 47	36	1 00 1 00 1 00	. 10	4.86	08 1 08	 	0.05	5.20	1 1 9 1 0		100.0
		New Const.	N25 N26-1		102	6.0	6.0(6.0-GRV) 23.6(6.0-GRV)	1.84	.32	2.16	[2.52	1.02	i ' i i I I I	03	3.46	7.8		23.7

TABLE 5.2 - 10 (2) Summary of Economic Analysis

Class 1	Type !	600	11993	AAD		Length (km)	Есопош	ite Cost			, <u>14</u>	Benefit	(Mp/km)	ĈE:		Econom:	n.Indi	cator
0 ad	Impr'ti	Number	0 / 3	1 43 i k	Total	Improvement	Const-	Period Maint.	Total	Normal	Diver-	Gene- rated	Deve-	Maint sav'g	Total	NPV (Mp)	B/C	HHI (%)
!	Rehab/1	l N						1,		1 4.72		.17		. 00	l ro			ຕ
7	Imp-1	P41	19	46	•	<u>.</u>	۲.	1	6	φ	ı	0.2	.39	0	r-4		1	ô,
$\overline{}$	*-	N		တ		8		۳.		-	1	00.		0	.74		٠	4
	~-	6 2	23	က	4.0	-0.9)	1,35	.16	1.50	1.30	1	. 11	. i	03	1.39	-		13.8
		P34	10	12	*	•				4	1	00.	.30	10.	.5		0)	m
· ·	- ∸	P31.	0		1.7		٥.	۳,	2.14	1.02	1	51	.07	.01	9	6-	۲.	
		P42	#** ***	31	c	.0(6.	1.70	. 1	•	1.60	J'	.05	33	00.	1.04		Ģ	
		P40	17	33	•	.2(6.	'n		1 .75	.20	i	.02	.18	00.	4.	•	į	•
		P28		! ~	•	.8(4.0-	1 .42	۲.		16	ı	.01	.12	.01	30	4	9	
		P47		ţ~	٠	÷	တ	. 1	1 2.76	123	1	00.	96.	.01	1.20	. •	4.	
	- -	P25		2	٠	1.9(4.0-GRV)	.63	.1	.74	10.07	1	.03	. 25	.01	34	•	'n	
	-	N7-1			•	.7 < 4.	. 44	. 1	. 56	80.	1	.01	.17	.01	.27	•	υŅ	
~		P46	-3	 -(٠	-0.9)ė.	1 .57	۳. •	1.74	.21	•	. 02	.18	00.	. 42		ဖ	•
		PSS	 -	٠	•	.8(4.0-	1 .39		. 53	01.	ŧ	00.	. 12	.01	.24	•	in	•
		N8-2	23	2	•	9	1. 57		. 75	1 .04	ı	00.	.26	.01	.32	-1.7	4.	•
		P44	ლ 	-	•	9.	.58	7	75	15.15	٠,	00.	. 27	.01	. 42		ç.	
		N3	6		1.4	-0.9)6.	1. 61	.17	٠	.24	1	. 02	60.	00.	.36	4	ιċ	53
		N7-3	°		•	,6(4,	Ġ	۲.	•	1 22	1	. 02	က	.01	.56	•	?	٠.
		P12	0		•	.4(4.0-	۲.		٠	10.07	1	0.10	.10	.01	.19	•	ί,	٥.
	-	N2	133	1	•	1.2(4.0-GRV)	3.90		4.01	1 .14	1	. 00	.40	.01	. 55	٠	*-1	0,
		P20	∞	į	•	.6(6.	ιċ	(•	. 13	' I '	.02	50	.01	.24		+	0.
	1 mp-2/1	P19	133	13		.6(6.	19.				1	00.	.41	. 01		80	7.	
=	Widen !	ľď	0	co	1 13.0	13.0(6.0-GRV)	1.86	•	0	1 .25	1	.02		TO.	. 44		4.	•
		P11	ლ -	7	6.	-0.9	1 1.18		ຕ	.31	1	00.	. 24	. 10.	. 56	7	₹.	3.3
. 04	New	P24-2	0	9	4.5	4.5(4.0-GRV)	.78	111	. 89	. 63	1 1 1 1	.01	. 44	02	. 79	w		13.4
-	- +000	200	-	<				•				1		•				

Summary of Economic Analysis TABLE 5.2 - 10 (3)

TABLE 5. Summary	.2 - 10 (3) of Economic	(3) mic Analysi	នៈខេ		00013	OCCIDENTAL MINDORO		-				Cos	t/Bene	fit:199	1-2017	Discoun	nted T	o ta,
Class	Type		1 6	AADT		ngth (km)	onomi	Cos	Mp/km		i m	 nefit	ıæ		 	1 5	1 7	1- عز د ۱
0 1 0 8 d	I mpr	Koad Numb	0/*	¥1,th	Total	Improvement	Const- F	i – E	Total	Normal	Diver-	Generated	Deve-	Maint! sav:81	Total		B/C	IRR (%)
Minor	Re	B8-1	, 33 	2 1		.8(4.0	.42	11.			 	.01		ıo	. 82	2.3		1 27
(Baran-	! Imp-1	B10-6				.2(4.0			4		•	00.		0	.80		٠. ص	r-4
gay).		B9-25				.5(4.0	9.	-1	5		1	00.		0	64.	.2	4	in Cu
-		B9-6	• · ·	en 0	2.7	2.7(4.0-GRV)			10 CO	.07	•	00.	ლ ლ ლ	.01	4.		00 1	11.6
		87.41 810-3			•	2.4.6					1 1	3.5		> C		•		; c
		B2-6				3 (4.0			3 4		ı	80.		50.	800	-2.9	. 0	; ;
						.2(6.												
		B9-7	<u></u>		•	.9(4.0	9.		.74	16	ı	.01	.23	.01	.41	•	დ	•
		B7-7				.8(4.0	1.0		∹:	.21	١.	00.	.29	. 01	.57	•	4.	
•		B10-8	<u>.</u>		•	.2(4.	1.2		က	60.	. 1	00.	38	.01	.48	٠	(1)	٠
		8-69	<u></u>		•	.0(4.(1.3		4.	.25	t	00.	.29	- 00.	.54	٠	4,	•
		B1-5			•	.0(4.0	<i>p</i> .		S	.05	ı	00.	***	0	.22	•	7.	
5		B10-7				.4(4.	6.		1.07	.13	,	0 0	2	.01	.36	٠		٠
-		B6-7		~ .	က က က	6(4.0		= :	က	.22	•	.02	. 23	10.	47	-3.2	ښ .	က (၁
35		1 8 C			•	.4(4.	4.			90.	1	٠. و	pol 1	50.	.22	٠.	₹.	٠
•		. b7-8			•	.5(4.	T		υ,	0.0	1	00.	. 1	·	. 20	∴,	4.0	•
		12 - 0 10 - 10 10 - 10	· ·			0.4	1.2		4,	11.	ı.	00.	06.	00.	.40	N	ų.	٠
		199-22	_ ·) (4. (9	.04	ı	00.	.22	 O	.27	٠	4	٠
	· ·	35-5				8.4 4.0	4.		S	.01	ı	00.	13	` O	.21	٠	4,	٠
		B2-4	•		•	5.4	•••		О	. 22	1	.01			ა. 4	•	4	
		2-09-			⊃ < ~ i	4.	٠.		φ.	00.	j	00.	.22	 Ö.	.24	ν, (•
	1	10010 1111111) ! ! !		. 1	9 (4.1	T . T . T		N	01.	1	٠ ا ا	.20	10.	. 31	•	7.	7.
	7	ı	. 63			-GRV	•		in Si			00	.62	.010.	. 7.4		1.4	19.5
	i winden	! ! ! ! !	1 1 1	1 1 1 1	1		; ; ; ;	· i	- I		1	 		 	1	 		!
	New	T.	0		4.6	.2(4.0-PC	. 92	.11		90.		.01	.24	02 !	. 29	-3.4.	.3	3.2
	Const.					.4(4.0-GF												
		50 C 20 C 20 C 20 C				.0-69	97.				ı	00.	.17		o ·	r-1 :	٠,	1.7
		1 1	. · ·			45-0.40s	•		n c	.02	,	00				7.0	7.	္
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- - - - - - - - - -	- 1	- 1	} !	. 1	5010・ボンの・				70.	1 1 1	> .		ا <u>د</u>			7.	?

LiB

ベモアンせい