REPUBLIC OF THE PHILIPPINES DEPARTMENT OF PUBLIC WORKS & HIGHWAYS

Feasibility Study on The Rural Road Network Development Project

FINAL REPORT (Volume 7)

PROJECT EVALUATION
IN
THE PROVINCE OF RIZAL

OCTOBER, 1990

JAPAN INTERNATIONAL COOPERATION AGENCY

s s F

90-112(7/30)

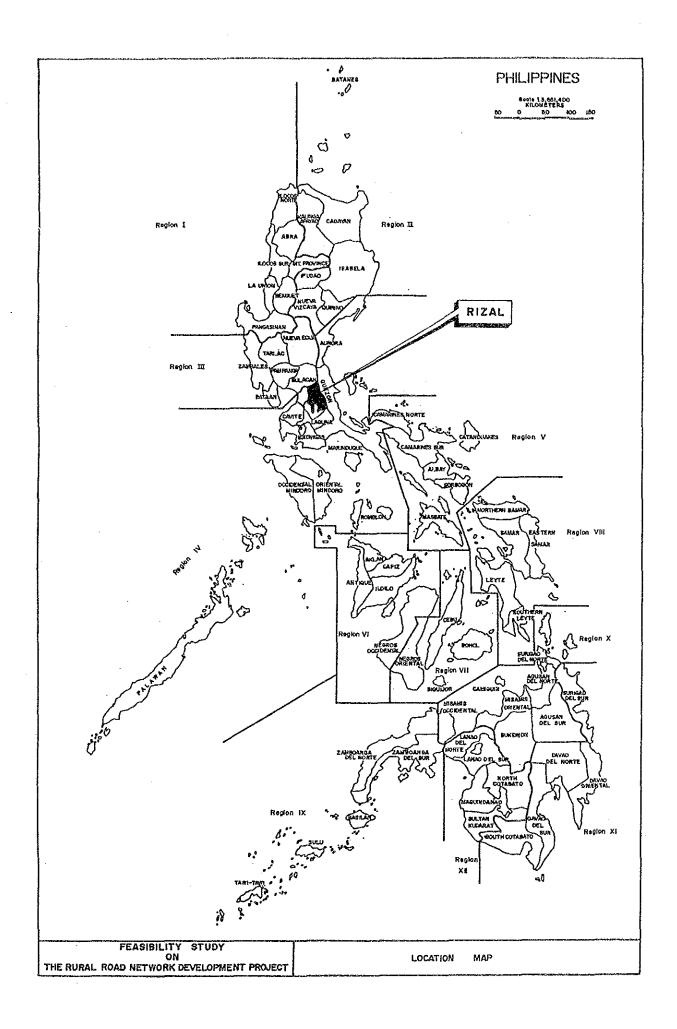
JICE LIBRARY 1086469[2]

21970

REPUBLIC OF THE PHILIPPINES DEPARTMENT OF PUBLIC WORKS & HIGHWAYS

Feasibility Study on The Rural Road Network Development Project

FINAL REPORT (Volume 7)


PROJECT EVALUATION
IN
THE PROVINCE OF RIZAL

OCTOBER, 1990

JAPAN INTERNATIONAL COOPERATION AGENCY

国際協力事業団

21930

VOLUME - 7 PROVINCE OF RIZAL

TABLE OF CONTENTS

		PAGE
CHAPTER	1 SOCIO-ECONOMIC PROFILE OF THE PROVINCE	1-1
	1.1 GENERAL	1-1 1-1 1-5
CHAPTER	2 ROAD NETWORK OF THE PROVINCE	2-1
	2.1 GENERAL	2-1
	2.2.2 Present Level of Road Development in terms of Surface Type and Surface	
	Condition	2-3 2-5 2-6 2-6
CHAPTER	3 TRAFFIC	3-1
	3.1 TRAFFIC SURVEY RESULTS	3-4 3-4 3-9
	3.3 TRAFFIC ANALYSIS AND FORECAST: DEVELOPMENT PROJECT	3-23 3-25 3-25
CHAPTER	4 PROJECT IDENTIFICATION AND SCREENING	4-1
	4.1 PROJECT IDENTIFICATION	4-1

	4.2 PROJECT SCREENING 4-4
	4.2.1 Categorization
	4.2.2 Prioritization and Selection Criteria 4-8
	4.2.3 Priority of Identified Road Projects 4-9
	4.2.4 Selection of Road Projects for Feasibility
	Studies 4-10
CHAPIER	5 PROJECT EVALUATION 5-1
	C 1 DODE INTERPOLON AND COOK DOWNARD C 1
	5.1 PRELIMINARY DESIGN AND COST ESTIMATE 5-1 5.1.1 Preliminary Design 5-1
	5.1.2 Cost Estimate 5-7
	5.1.3 Summary of Preliminary Design 5-12
	5.2 ECONOMIC EVALUATION 5-14
	5.2.1 Basic Assumptions 5-14
	E 9 9 Domofile
	5.2.1 Basic Assumptions

CHAPTER 1 SOCIO-ECONOMIC PROFILE OF THE PROVINCE

1.1 GENERAL

The Province of Rizal was selected as one of the Study Provinces which represents the province of the following characteristics:

- . Economically less developed
- High level in road development
- . Topographically flat and mountainous

1.2 GEOGRAPHY AND TOPOGRAPHY

The province is located in the central part of Luzon, bounded on the north by Bulacan Province, on the east by Quezon Province, on the south by Laguna Province and Laguna de Bay and on the west by Metro Manila.

Areas of more than one half of the Province in the north and east are mountainous where the Southern Sierra Madre Ranges are situated. The area facing Laguna de Bay is low and flat land. The western area adjacent to Metro Manila is also low and flat land.

Slope map of the province is shown in Figure 1.2-1.

1.3 POPULATION

The province is composed of fourteen (14) municipalities.

Population in 1990 is estimated at 792,000. The average annual population growth rate for the period of 10 years from 1980 to 1990 was estimated 3.4% which is higher than the national average of 2.4%. Population density of the province in 1990 is 605.1 persons per square kilometer which is higher by 2.9 times than the national average of 205 persons per sq. km.

Population, the average annual population growth rate and population density by municipality are presented in Table 1.3-1. Distribution of municipal towns together with their population is shown in Figure 1.3-1.

As the province is located adjacent to Metro Manila, about one fourth (1/4) of the Province in the western and southern areas are highly urbanized and residential and industrial areas were developed. Municipal towns are developed in the western area and along Laguna de Bay low land area.

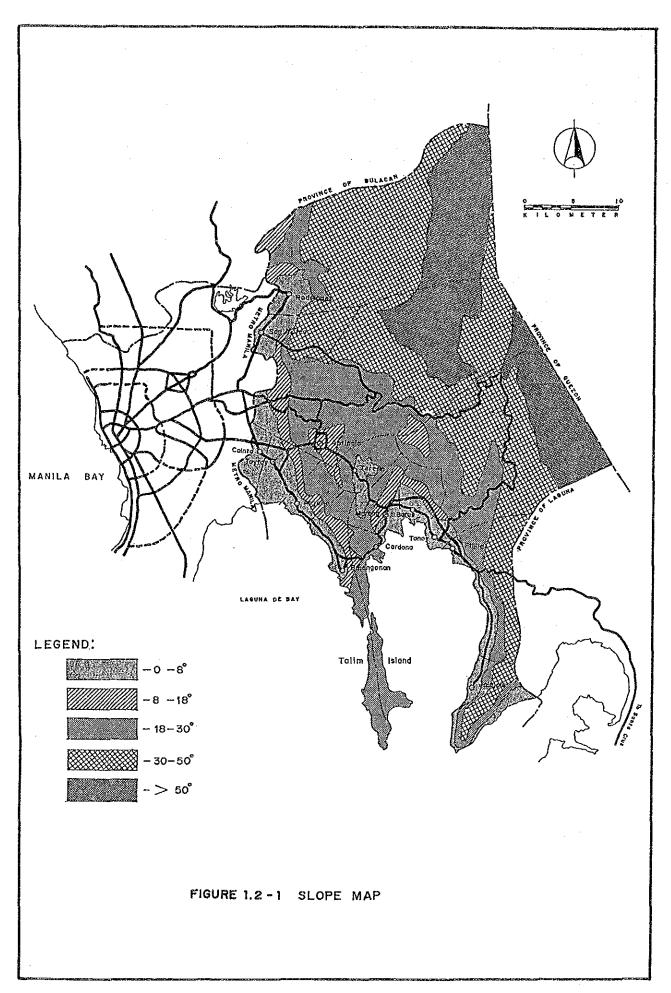
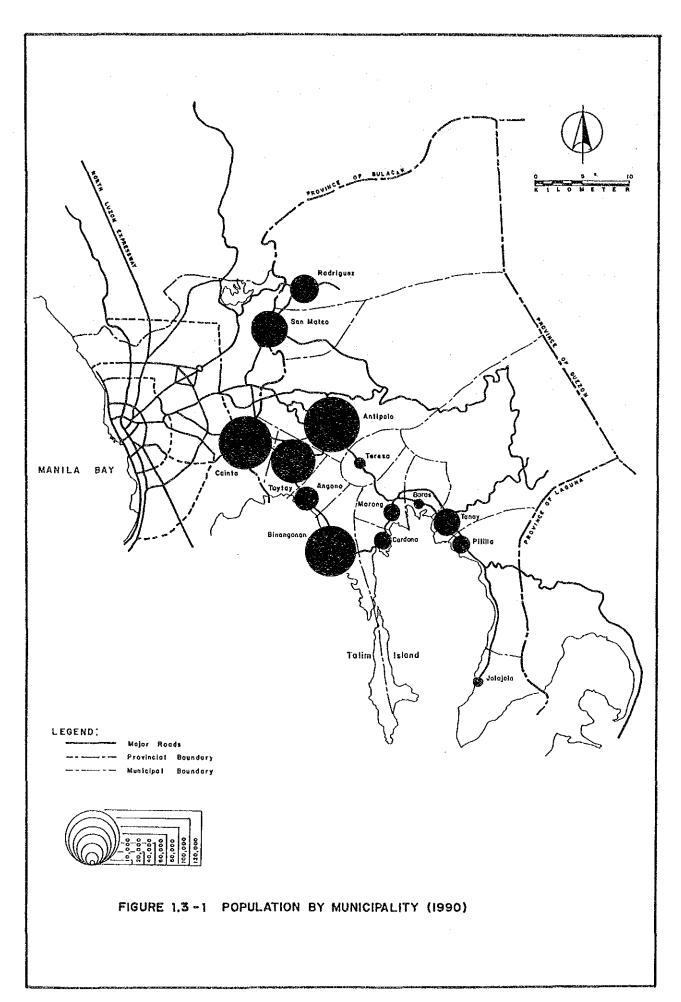



Table 1.3-1

POPULATION, LAND AREA AND DENSITY (1990)

Province of Rizal

1. Angono) 	(km^2)	Density (p/km^2)
2. Antipolo 3. Baras 4. Binangonan 5. Cainta 6. Cardona 7. Jala-Jala 8. Montalban 9. Morong 10. Pililla 11. San Mateo 12. Tanay 13. Taytay 14. Teresa	 41,514 120,827 15,325 105,382 110,817 29,580 15,164 57,407 27,132 30,159 70,206 55,356 96,304 16,876	5.6 3.0 2.5 6.3 1.7 2.2 3.0 0.7 2.4 2.9 3.0		26.0 306.1 23.4 72.7 10.2 31.2 49.3 312.8 37.6 74.0 64.9 243.4 38.8 18.6	394.7 654.9 1,449.5 10,864.4 948.1 307.6 183.5 721.6 407.6 1,081.8 227.4 12,482.1

1.4 SOCIO-ECONOMIC PROFILE

Table 1.4-1 shows major socio-economic data of the province in comparison with the national value.

Gross Regional Domestic Product which shows economic output of the province shares 1.7% of the total national output. In view of land area and population share of the province to the country, the province's economic output is slightly higher than the national average.

Per capita income of the province is higher by 1.24 times than the national average. Incidence of poverty shows lower level than the national average. Unemployment and underemployment rates are lower than the national average.

Influenced by socio-economic activities of Metro Manila, industry (secondary industry) shares the highest in terms of number of workers. Agricultural industry shares only 19%.

Table 1.4-1
MAJOR SOCIO-ECONOMIC DATA OF PROVINCE OF RIZAL

1	l Rizal	Philippines	! !
	(A)	(B)	!(A)/(B)!
	i	1	1
11. Total Land Area (sq.km.)	1,309	1300,000	1 0.004 1
12. Population in 1990	1	}	1
(1000 persons)	792	61,483	1 0.013 1
13. Population Density		! }	1
(persons/sq.km.)	605	205	1 2.95 1
14. GRDP (Million P at	1	1	1
	10,875	623,051	1 0.017
15. Per Capita Income in 1985		1	1
(P/person)	6,974	1 5,593	1 1.24
l6. Number of Workers		1	1
by Industrial Sector in	-	ŧ i	1
1980 (1000 persons)		1	
	00 5 4		
* Agricultural	33.3 (1	•	
* Industry	69.9 (4)	•	
* Service	65.6 (3)		
* Total <u>1/</u>	171.3 (10	00%) 14,197 (100%)	1 0.012 1
17 Indidende of Deverty		i	i i
<pre>{7. Incidence of Poverty in 1985 (%)</pre>	49.7	59.3	ì)
18. Unemployment Rate	1 49.7	1 59.5	i ~ 1
in 1988 (%)	7.3	8.3	! ! ! !
19. Underemployment Rate	,,,,	1	; !
in 1988 (%)	8.2	11.6	!

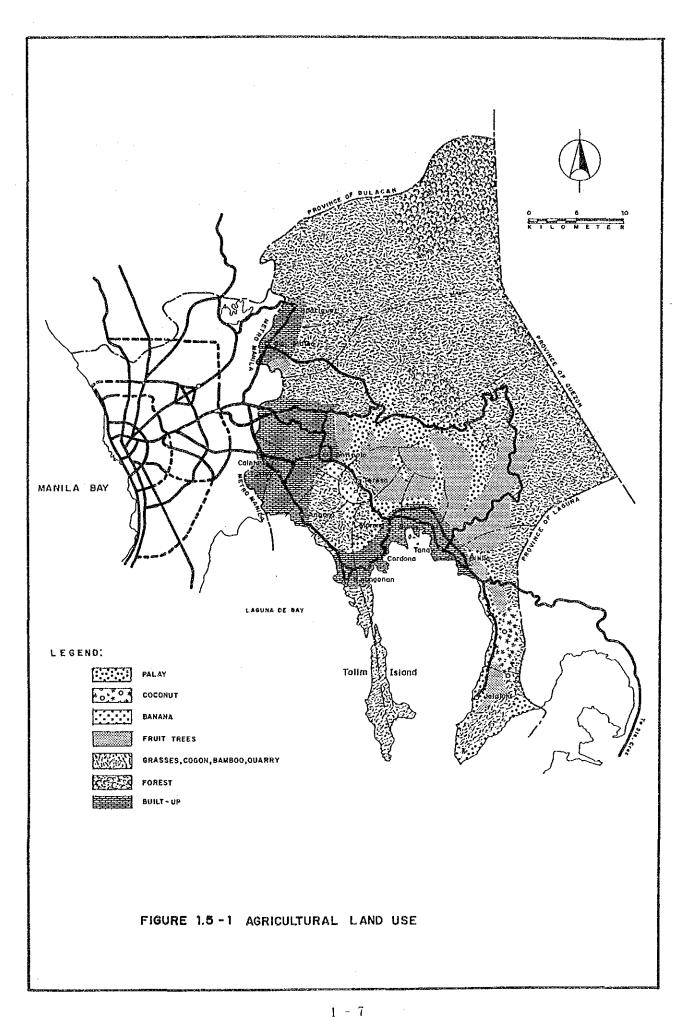
Note: 1/ Includes other workers who cannot be classified as any one of three (3) sectors.

1.5 AGRICULTURAL LAND USE AND MAJOR CROPS

Rizal has a total land area of 1,309 square kilometers, representing 0.4% of the total land area of the Philippines. Table 1.5-1 shows general land use of the province. Grass land shares about 54% and agricultural land areas only 14.3%. Shares of built-up area is quite high and shares about 13%.

Figure 1.5-1 illustrates the agricultural land use of the province. Table 1.5-2 shows major crops produced in the province. Five (5) major crops of the province are palay, corn, mango, camote and cassava. However, none of them contribute substantially to the region's crop production.

Table 1.5-1 LAND USE OF RIZAL


Land Use	Area in sq.km.	%
Agricultural Land	187.2	14.3
Grass Land	700.3	53.5
Shrub Land	77.2	5.9
Forest	168.9	12.9
Built-up Area	175.4	13.4
Total	1,309.0	100.0

Source: Bureau of Soil

Table 1.5-2
MAJOR CROPS OF PROVINCE OF RIZAL

Major Crops	Area Utilized	(ha.)	Production	(M.T.)
Major Crops	1985	1986	1985	1986
Palay	6,610	6,670	24,395	21,140
Corn	2,440	2,470	2,020	1,595
Mango	700	700	5,320	4,641
Camote	171	173	1,642	1,661
Cassava	115	116	943	928

Source: Bureau of Agricultural Statistics

CHAPTER 2 ROAD NETWORK OF THE PROVINCE

2.1 GENERAL

The province was classified as one of the provinces of which road network development represents the high level in the Philippines. In this Chapter, present level of road network development is assessed more in details, then general direction of the future road network development is established. Based on the said assessment and the functional road classification criteria, the major road network for the province is proposed.

2.2 PRESENT LEVEL OF ROAD NETWORK DEVELOPMENT

Present level of the road network development level is assessed in terms of road extension (quantity of roads), surface type and conditions (quality of roads) and road network pattern.

2.2.1 Present Level of Road Development in terms of Road Extension

Rizal has a total of 1,237.2 kms. of roads, comprising 224.2 kms. of National, 66.8 kms. of Provincial, 143.4 kms. of Municipal and 782.8 kms. of Barangay Roads in 1987.

Table 2.2-1 shows road density by class of road which is compared with national average. In comparison with the national average, road development level of the province in terms road extension is summarized as follows:

National roadshigher by 1.26 times
Provincial roads.....low at only 31% of the
national average
Barangay roads.....higher by 1.24 times
All roads......almost same as national
average

In terms of road extension, provincial class of roads are extremely scarce, however, other classes of roads are considered to be in the satisfactory level.

2.2.2 Present level of Road development in terms of surface type and surface condition

The Study Team conducted an extensive field survey on the existing road conditions of which results are summarized in Table 2.2-2.

TABLE 2.2-1

EXISTING ROAD LENGTH AND ROAD DENSITY
Province of Rizal

		Road Density (L/ PA)				
l Class	Road Length In 1987 (kms.)	Rizal	Philippines	Rizal/Phils		
iNational Rd. Prov'l. Rd. Sub-Total	244.2 (19.7 66.8 (5.4)	0.2518 0.0689 0.3207	0.1994 0.2211	1 1.26 1 0.31 1 0.76		
City Rd. Municipal Rd Barangay Rd.	143.4 (11.6)	0.1479 0.8073	0.0304 0.0981	1.51		
	1,237.2(100.0)	•	1.2026	1.06		

SOURCE: DPWH Infrastructure Atlas, 1989

TABLE 2.2-2

EXISTING SURFACE CONDITION (SURVEYED ROADS ONLY)

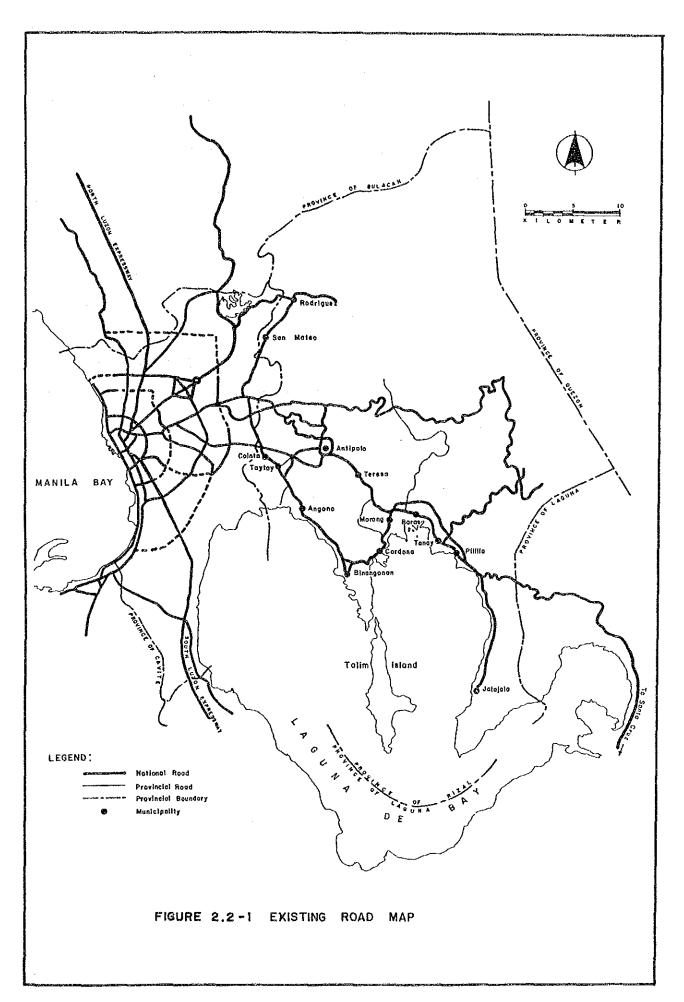
Province of Rizal

l Road	 Pavement							% of Pavement Type 2/	
Class	Type		l/Fair	Bad/Ve	ry Bad	Tota	ıl (%)	Rizal	Phils.
1	PCC	116.7		4.0			(100.0)		23.6
 National Road	Bi tumi nous	43.1		l		,			22.3
	Gravel	10.3	(37.6)	17.1	(62.4)	27.4	(100.0)	14.4	51.3
	Earth			-	-		(100.0)	-	2.8
•	•			•		•	(100.0)	100.0	100.0
† 	PCC	3.9	(88.6)	0.5	(11.4)	4.4	(100.0)	10.9	2.5
Provincial Road	Bi tumi nous	7.5		6.9	(47.9)	14.4	(100.0)	23.5	8.9
	Gravel		(72.0)	5.6	(28.0)	20.0	(100.0)	20.2	70.6
	Earth	-	- }	-		-	(100.0)	45.4	18.0
•	•	•	•			38.8	(100.0)	100.0	100.0
; ! ! National	PCC	120.6	(96.4)	4.5		125.1	(100.0)	37.5	12.5
	Bi tumi nous			'		95.5	(100.0)	37.1	15.3
	Gravel		-	22.7	(47.9)	47.4	(100.0)	15.7	61.4
, !	Earth	••	-	-			(100.0)	9.7	10.8
; !	Total:	195.9	(73.1)			268.0	(100.0)	100.0	100.0

SOURCE: 1/ Survey by Study Team in 1989 2/ DPWH Infrastructure Atlas, 1989 Present level of road development in terms of surface condition (quality of roads) could be summarized as follows:

National Roads

- . About 85% of national roads in the Province are paved with either PCC or bituminous surfaces which is higher than the national average of 46%.
- . Surface conditions of national roads are relatively well maintained. About 74% of national roads in the province were rated either good or fair.
- . In terms of road quality, national roads in the province are in high level.


Provincial Roads

- . About 34% of provincial roads in the province are paved with either PCC or bituminous surfaces, which level is higher than the national average of 11%.
- . Surface conditions of provincial roads in the province are relatively in good condition. About 66% of provincial roads are assessed either good or fair condition.
- . Compared with other provinces, provincial roads in the province is relatively high level.

2.2.3 Present Road Network Pattern

Present road network is presented in Figure 2.2-1, which shows all existing national and provincial roads. Present road network of the Province is assessed as follows:

- . In the southern and south-western area, a mesh type road network is formed. In the northern area, the road network is not developed due to rugged mountainous area of southern Sierra Madre Ranges.
- . The main axis is the national road running along Laguna de Bay.
- . All municipal towns are accessed by the national or provincial road.

2.3 GENERAL DIRECTION OF ROAD NETWORK DEVELOPMENT

Results of assessment of present road network development level are summarized as follows:

- . In terms of road extension, provincial class roads are extremely scarce.
- . Surface type and conditions of national and provincial roads are relatively high standard.
- . Basic road network is formed.

Based on the above assessment, general direction of road network development of the Province will be as follows:

- (1) As provincial roads are quite scarce, collector class roads should be strengthened.
- (2) Existing roads in the Northern area where roads are scarce should be improved to acceptable condition.
- (3) Proper coordination with private developers who are constructing access roads to their subdivisions should be maintained in order to establish systematic road network.

PROPOSED MAJOR ROAD NETWORK 2.4

2.4.1 Procedure

To identify major roads, all existing roads are firstly classified in accordance with the functional road classification criteria which is shown in Table Functional classification groups roads according to importance and quality of services they are intended to provide. Individual road links of similar importance and quality of services are organized into systems so that a road network in accordance with the hierarchy of functions can be planned and formed. They can be efficiently managed with consistent policies, design and operation.

After identification of existing major roads, necessity of additional new links is assessed. For example, if a certain municipal town has no access, a new major road is added to the existing major road network. Thus, the initial major road network is proposed and subjected to evaluation whether the proposed one is well-balanced or not. Evaluation is made by two (2) indicators as follows:

a) Network Value

$$Nv = L$$

Where: Nv = Network Value

= Road length delineating a block L

P = Population in a block
A = Land Area in a block
Block= Area delineated by major roads

b) Accessibility

 $AC = \sum pl$ Accessibility

Average Accessibility A ave =

Where

= Population of a Barangay

= Distance from a barangay center

to respective major road

= Total population in a block

If indicators of some blocks show imbalanced value, additions or deletions of major road links are made until indicators show almost balanced values. After these adjustment, the major road network is finally proposed.

Table 2,4-1 Proposed Functional Road Classification Criteria for Rural Road Network

lon	Barangay	an and from the first the second		•	0	
e Classificat	Municipal Road					
einistretiv	City Road			•	•	•
Relationship with Administrative Classification	Provincial Road		•	•		
Relatic	National Road		•			
	Services Provided	. Provides the highest level of service at the high speed for the long uninterrupted distance. Serves for long distance trips. Mobility is given the highest consideration	. Provides high level of service . Serves for medium distance trips . Mobility is given high consideration	. Provides rather low level of mobility . Serves for short distance trips . Collects traffic from feeder roads and connects them with major roads . Mobility and land access	Primarily provides access to abutting land with little or no through traffic . Serves for local traffic . Land access is given high	. Primarily provides access to abutting land in urban areas . Through traffic usage discouraged
	General Definition	. Major inter-provincial ronds Intra-provincial roads linking two (2) or more municipal towns to the Provincial Cupital . Intra-provincial roads which form s skelton road network of a province	. Boads linking municipal towns each other Roads linking a municipal town to the Provincial Capital . Roads linking one (1) or more municipal towns to the primary major road network	. Roads linking secondary major roads each other or a primary road with a secondary road . Roads linking two (2) or more barangays to the municipal town or to the higher level network	Roads linking one or more barangays centers to the higher level network. Roads linking farm areas to their respective barangay centers or to the higher level network	. Roads within built-up population centers (Poblacion) with essen- tially urban rather than rural rural functions
\$ 0.00 E	Classification	Primary Major Road G G G G G G G G G G G G G G G G G G G	ol Major Road	Collector Road	ToniM Feeder Road	υ υ υ

Relationship botween functional classification and administrative classification gives only general guideline, therefore, some national roads may be classified as major reads. NOIE:

2.4.2 Proposed Major Road Network

The major road network for the Province of Rizal was proposed as shown in Figure 2.4-1. For establishing the major road network, the following were taken into consideration:

- . Present network of mesh type was based to formulate major road network.
- . Existing national roads were mostly included in major road network.
- . Although road network in the northern area is scarce, no new link was considered necessary due to no substantial concentration of population.

Network value and accessibility of each block were computed to evaluate whether the proposed major road network is a balanced one. Based on these values, addition or deletion of road links was made and finally the major road network was proposed as shown in Figure 2.4-1.

Network value and accessibility of the proposed major road network are presented in Table 2.4-2.

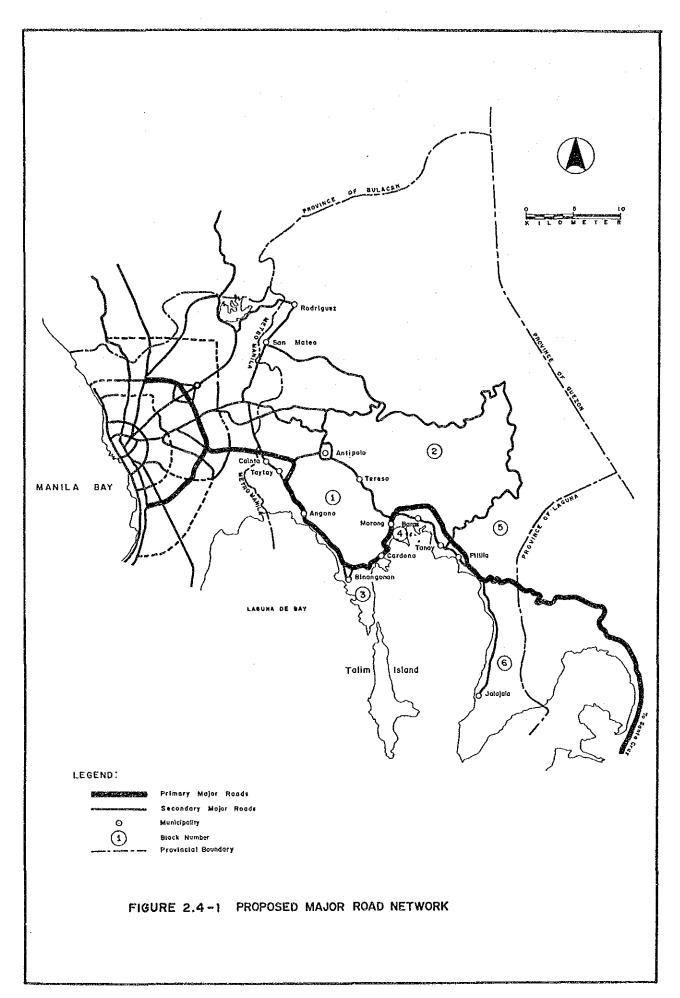

Proposed major road network has a total length of 208.3 Kilometers, all of which are national roads.

Table 2.4-2

NETWORK VALUE/ACCESSIBILITY

Province of Rizal

	======================================		=======================================
1 1	l Ros	ad	Average
Block Population		gth Network A	ccess Access.
No. (1990)	(km ²) (kr	m) Value	(p.km) (km.)
\\		-	
1 1 1 124,352	1 80.92 1 43	3.9 0.438	35,663 0.287
1 2 1 48,371	182.77 83	3.8 0.891	3,388 0.070
3 47,228	14.51 10	0.6 0.405	65,214 1.381
1 4 1 86,908	22.67 21	1.5 0.484	21,665 0.249
5 1 7,021	68.49 26	6.4 1.204	0 1 0 1
6 1 27,766	1 83.72 33	3.0 0.684	43,553 1.569
Ave. 56,941	1 75.55 36	5.5 0.556	28,247 0.496
=======================================			****

CHAPTER 3

3.1 TRAFFIC SURVEY RESULTS

Roadside traffic count survey was conducted on selected roads. Traffic counts were carried out on two (2) consecutive days for 12 hours from 6:00 AM to 6:00 PM each day. Traffic volume was counted by direction and by vehicle type every hour. The vehicle type was classified as follows:

- Car
- Jeep
- Van
- Jeepney
- Bus (mini bus & large bus)
- Truck (including trailer)
- Motor-tricycle
- Motorcycle
- Animal drawn
- Pedestrian
- Others

Figure 3.1-1 shows the location of traffic count stations. Traffic survey results are summarized in Table 3.1-1.

Survey results were converted to Average Daily Traffic (ADT) by using the hourly factors based on the data from the Nationwide Traffic Counts Program (NTCP). Considering other factors such as market days, harvest season, rainy season, etc., AADT were estimated by vehicle type.

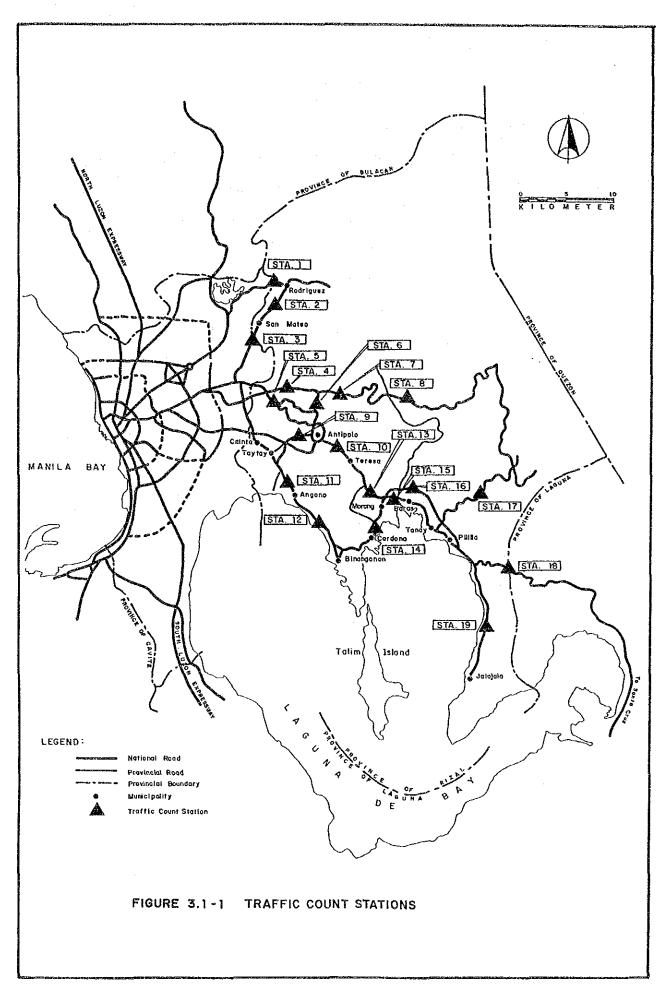


TABLE 3.1-1 SUMMARY OF TRAFFIC SURVEY RESULTS
- RIZAL -

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!								£		Tro66:0	
854	⊷ 4	53	74	750	64.	22	408	9 H	38	47	3.0
848	0	52	17	779	66	29	200	278	75	80	28
1033	0	75	152	808	109	-1	324	139	134	66	17
1720	0	135	155	1430	242	47	227	419	280	216	16
4126	ល	157	823	3141	140	306	1602	424	390	280	15
5421	es	160	1860	3398	319	182	1534	481	404	478	₹'
3091	0	142	315	2635	227	202	1157	416	325	308	13
8735	- I	319	576	7839	69 69	395	3721	1373	746	1011	12
15614	က	714	196	1,4102	1134	417	5658	2477	2046	2371	11
4467	0	166	442	3858	620	220	1270	729	516	503	10
10273	0	399	316	9558	828	348	3418	2031	664	2239	ආ
176	0	∞	12	156	ຄ	ത	44	κò	18	23	œ
810	0	42	113	ម ម ម	160	7	261	90	& 5	ಬ	7
1981	0	156	853	972	7.7	20	143	257	143	333	တ
4869	0	189	376	4304	515	69	534	1058	490	1638	ល
10130	0	285	227	9617	1885	ເກ ເກ	4954	1019	576	1148	4
11375	0	458	819	10098	1351	566	3415	1496	1528	1743	ຕ
7518	თ	246	450	6813	950	86	3189	903	941	744	23
4882	0	129	3767	985	187	œ	187	182	265	156	-
Total	Animal	Motor- cycle	Tr1- cycle	Sub- Total	Truck	Bus	Jeepney	Pickup /Van	Jeep	O I	Station No.
1990)	as of May,	a TAD)	1	} { { { { { { { { { { { { { { { { { { {	1 1 1 1 1	1	1 3 5 1 1 1	; ; ; ; ;	; ; ; ; ;	1	

3.2 TRAFFIC ANALYSIS AND FORECAST: TRAFFIC PROJECTS.

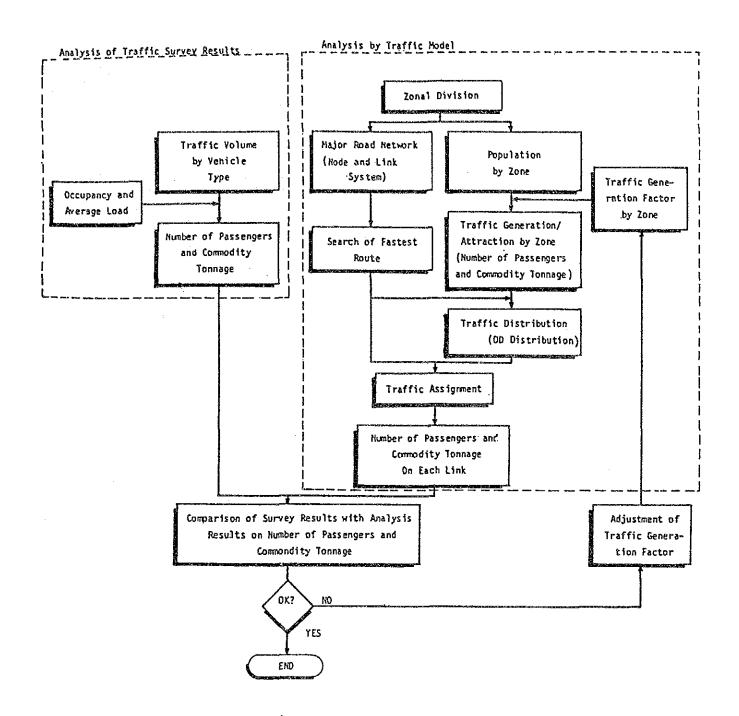
3.2.1 Analysis of Present Traffic

1) General Procedure

Present traffic on each major road network was analyzed according to the procedure shown in Figure 3.2-1.

The analysis is divided into three major steps:

Step I : Analysis of Traffic Survey Results


The number of passengers and commodity tonnage were obtained from the results of the traffic survey. These data are, however, available only on the surveyed road links and used for calibration purposes for the traffic model described below.

Step II : Analysis by Traffic Model

Traffic generation and altraction, in terms of passengers and commodity tons, were estimated based on population and per capita traffic generation factors; traffic distribution (OD distribution) was estimated by the gravity model; then, OD distribution was assigned to the major road network expressed by the node and link system. In the analysis, since only traffic generation factors were unknown, assumed values were used in the first step.

Step III: Comparison of Both Figures

The number of passengers and commodity tonnage estimated by the traffic model were compared with those derived from the traffic survey. On the basis of the comparison, traffic generation factors were appropriately adjusted and the traffic model analysis was reiterated until the traffic model reflected the actual people and freight movements with a high accuracy.

PROCEDURE OF ANALYSIS OF PRESENT TRAFFIC ON MAJOR ROAD NETWORK

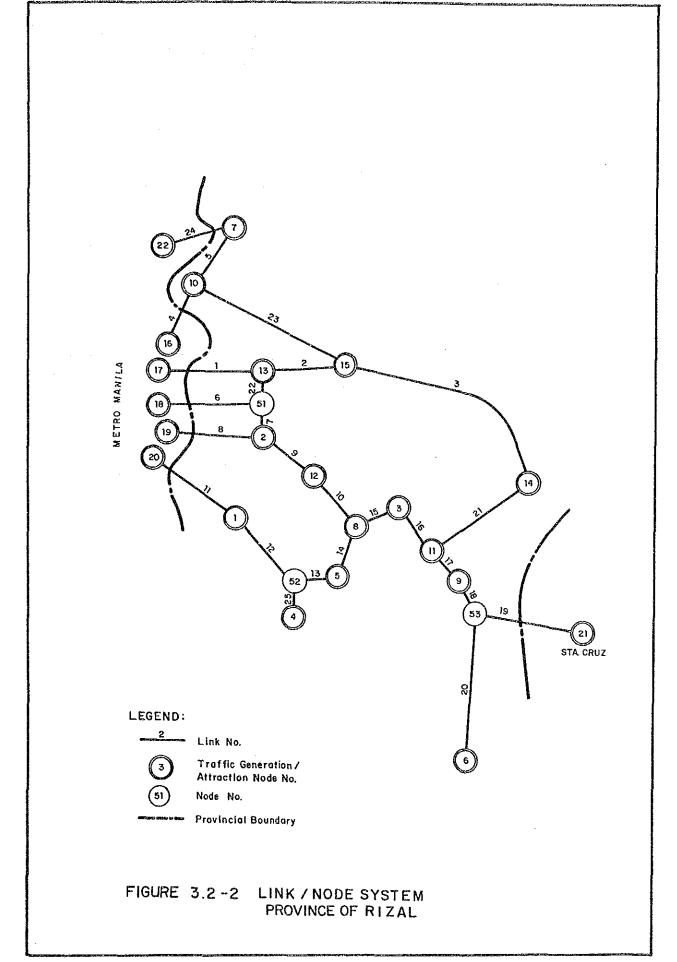
2) Analysis of Traffic Survey Results

Traffic volume by vehicle type counted in the traffic survey was converted to number of passengers and commodity tonnage using the occupancy and average load shown in Table 3.2-1.

Table 3.2-1 OCCUPANCY AND AVERAGE LOAD Province of Rizal

	Average Number of Passenger per vehicle	Average Load (ton per vehicle)
Car/Taxi	3.40	1.00
Jeep	3.40	1.00
Van/Pickup	3.40	1.00
Jeepney	11.80	1.00
Bus	30.90	1.00
Truck	4.00	4.00
Motor-tricycle	2.50	0.30
Motorcycle	1.60	0.10
Animal Drawn	1.50	0.15

3) Analysis by Traffic Model


- i) Zonal Division:
 - The province was divided into traffic zones corresponding to municipal divisions in principle.
- ii) Major Road Network:

The major road network was expressed by a node and link system. Each link was given length and average speed according to the actual road condition. A node and link system of the Province is presented in Figure 3.2-2.

- iii) Search for the Fastest Route:
 The fastest route for each zone pair was calculated by Moore's Method.
- iv) Traffic Generation Factor:

 Per capita traffic generation factors (trip/
 person/day and ton/person/day) vary between zones

 even in the same province with many factors such
 as:
 - Economic Activity
 - Size of Population
 - Distance from Provincial Capital
 - Road Condition
 - Other Physical Conditions

3 - 7

The generation factors which best illustrate the observed people and freight movement were estimated by the iterative method. The traffic generation factors thus estimated are summarized in Table 3.2-2.

TABLE 3.2-2 PER CAPITA TRAFFIC GENERATION FACTORS (MAJOR ROAD, 1990 W/O)
Province of Rizal

	Passenger Movement (trip/person/day)	Commodity (kg/person/day)
Range	0.117 - 0.780	15.3 - 101.9
Mean Value	0.364	47.6

v) Traffic Generation and Attraction by Zone:

Traffic generation and attraction were obtained in terms of passengers and commodity tonnage as the product by generation factors.

vi) Traffic Distribution:

Traffic distribution (OD distribution) was estimated by the gravity model:

$$Xij = k \frac{Gi \cdot Aj}{2}$$

$$tiJ$$

Where, Xij = Traffic from zone i to zone j

k = Parameter

Gi = Traffic generation in zone i

Aj = Traffic attraction in zone j

tij = Travel time from zone i to zone j along the fastest route

OD distribution was adjusted so as to satisfy the following conditions by the Frator Method:

$$Gi = \sum_{j+1}^{n} X_{ij}$$

$$A_i = \sum_{i+1}^n x_{ij}$$

Where, n = Number of zones

vii) Traffic Assignment:

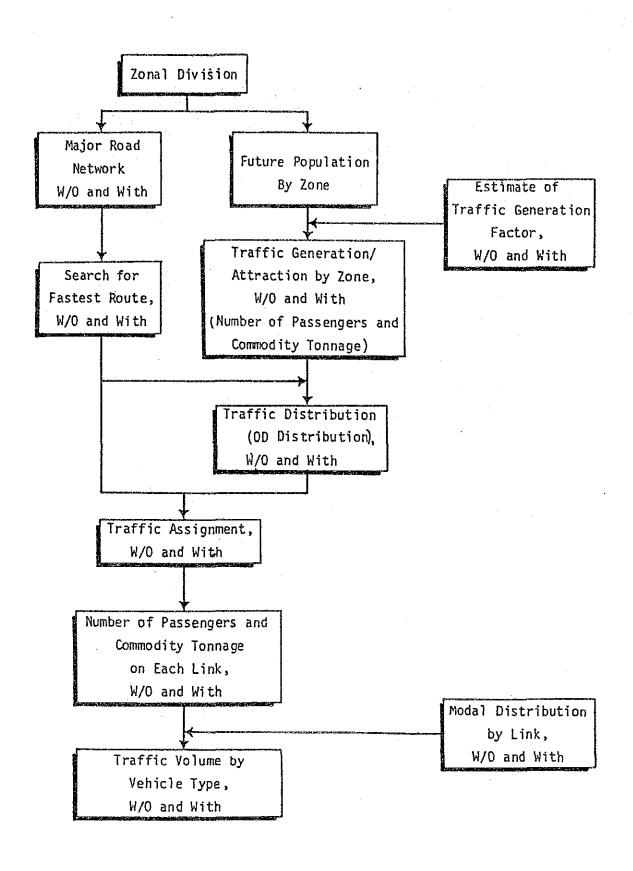
Each OD traffic was assigned to the major road network expressed by the node and link system on an all-or-nothing basis. Thus, the number of passengers and commodity tonnage for each link were calculated.

3.2.2 Traffic Forecast

Figure 3.2-3 illustrates the procedure of traffic forecast.

The traffic model prepared for the analysis of present traffic was basically used for forecasting future traffic on the major road network with the following additions/modifications:

1) Major Road Network and Fastest Route Search


The node and link system for the "with" case was prepared by changing the characteristics of the links included under this feasibility study as well as the links committed to be improved.

The fastest route search was carried out both in the "w/o" and "with" case networks.

2) Traffic Generation/Attraction and Distribution

The future population was based on the NCSO 1980 Census of Population and Housing.

Per capita traffic generation factors in the "with" case were estimated referring to the generated transport demand/transport cost reduction elasticity shown in "Highway Planning Manual, Volume 3, MPWH" and also based on the results of the analysis of present traffic. For instance, a zone showing a small generation factor at present due to poor road conditions is expected to increase the factor to some extent by road improvement, and the degree of increase can be estimated referring to other zones in similar situations but with better road conditions.

PROCEDURE OF FORECASTING TRAFFIC ON MAJOR ROAD NETWORK

The traffic generation factors thus estimated are summarized in Table 3.2-3.

TABLE 3.2-3 PER CAPITA TRAFFIC GENERATION FACTORS (MAJOR ROAD, 1990 WITH)
Province of Rizal

now have not now you are the now date that had been made from the first that had	Passenger Movement (trip/person/day)	Commodity (kg/person/day)
Range	0.117 - 0.780	15.3 - 101.9
Mean Value	0.364	47.6

The transition period, i.e., the period which will elapse after opening of the improved road before the full impact on generation will take place, was assumed to be three years.

Traffic distribution for the "with" case was estimated by the same method as used in the analysis of present traffic.

3) Traffic Assignment

The number of passengers and commodity tonnage on each link in the "with" case was estimated by assigning OD traffic to the major road network in the "with" case. They were converted to the number of vehicles using the modal distribution in the "with" case. Changes in modal distribution with changes in road condition were estimated reffering to the present distribution in other road links in a similar situation but in the road condition. The transition period of a complete change in modal distribution was assumed to be three years.

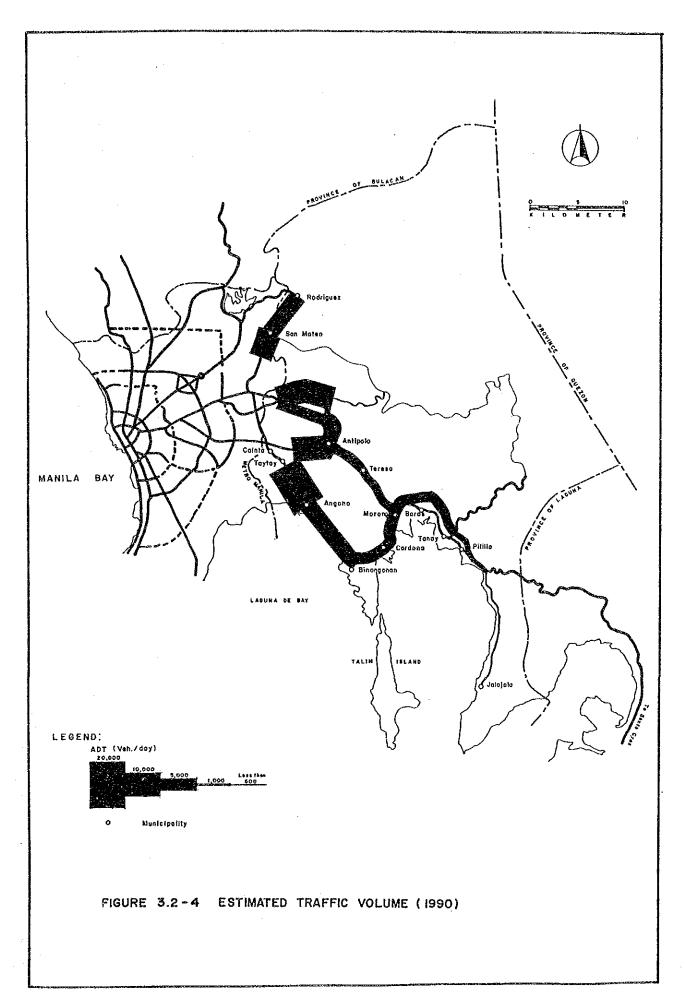
The traffic in the "with" case was broken down into following four categories for convenience of traffic benefit estimation:

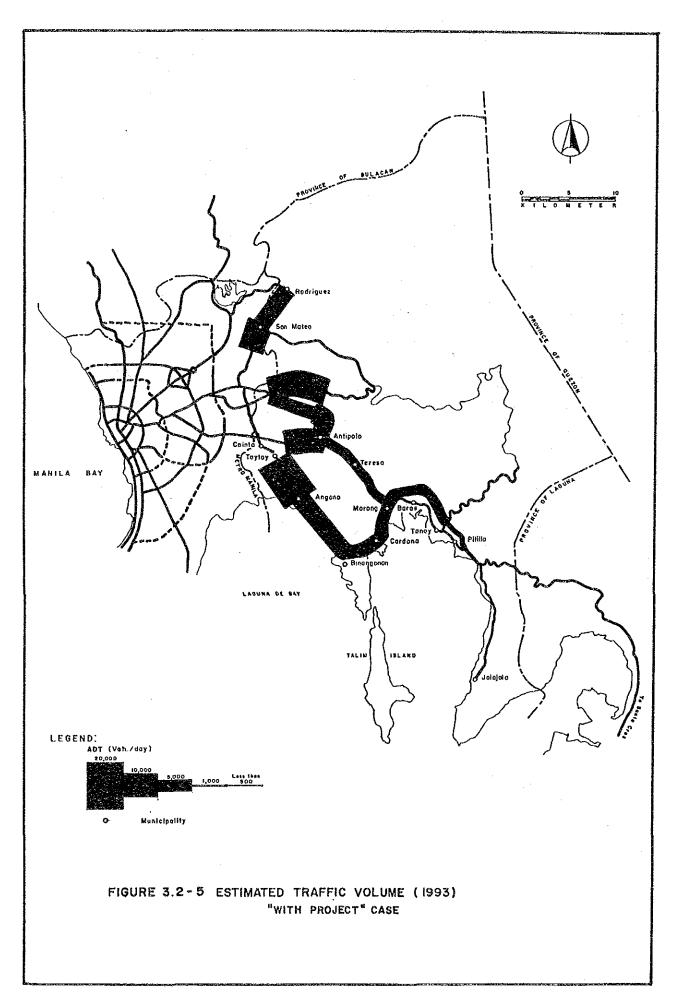
Normal Traffic:

Flow of passengers and freight which will occur even without road improvement. However, changes in the number of vehicles is possible due to changes in modal distribution.

Diverted Traffic-1: Traffic which diverts to a certain road from other routes as a consequence of road improvement.

This is usually called simply diverted traffic.


Diverted Traffic-2: Traffic which changes destination as a consequence of road improvement but for the same trip purpose as in the "w/o" case. This is possible in the case of improvement of the access road to the nearest town which is at present barely accessible due to poor conditions. This traffic is called "Diverted Traffic-2" in this Study, distinguished from Diverted Traffic-1.


Generated Traffic: Increased traffic brought about by road improvement.

3.2.3 Estimated Present and Future Traffic

Estimated present and future traffic on the major road is illustrated in Figure 3.2-4 and Figure 3.2-5, respectively.

Estimated present and future movements of passengers and commodity by link are presented in Table 3.2-4, and estimated traffic volumes are presented in Table 3.2-5.

TRAFFIC PROJECTION RIZAL

TABLE 3.2 - 4 (1)

Movement of Passengers and Commodity

ند د د	9		Number	of Pass	engers			Commod	ity Ton	nage	
)	Nor	Diver- ted-1	Diver- ted-2		Total	Normal	Diver- ted-1	Diver- ted-2	Generated	Total
,-t	1990 1993 1997 2007 2017	54758 61435 71491 98582 127281	4 1 <u>1</u> 1	103	1111	7 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	9348. 0216. 1495. 6960.	111	-1,71 -3.87 1.71 10.60	- 1 1 1 F	44000
8		295 345 426 661 926	50 78 174 308	2709 3381 5442 7889	1 1 1 1	295 621 772 1222 1746	376.8 428.0 509.4 727.2	16.78 12.76 11.61 15.49	243:85 309.33 531.31 765.25	1 	376.8 688.6 831.5 1270.1
က	00000	23 27 30 40 84 84	50 78 174 308	56 74 136 210	 	1 22 80 24 12	7.3	16.78 12.76 11.61 15.49	12.03 12.30 14.41 18.53	1 	35.10 32.42 33.66
4	1990 1993 1997 2007	61549 69071 80551 111747	1 1 1 1	22 31	1 1 1 1	47.004	592.6 276.0 283.9 688.1		. 23 . 34 . 90 . 2 . 07	1 1 1 1 1 1 1 1	1000004.
LO LO	00000	4645 4645 5276 6847 8337	1-1-1-1	167 215 357 509	1 1 1 1	2522 2522 3833 3833 3833	5447. 5447. 5945. 7723.	; ; ; ; ; ; ; ; ; ; ; ; ;	34.69 45.47 81.26 118.02	1 1 1 1 1 1 1 1 1	510 510 510 510 510 510 510 510 510 510
1	1990 1993 1997 2007 2017	5 4 5 5 4 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5			1 1	730 730 730 730 730 730 730 730	076.8 359.2 772.3 739.8 570.7	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	1 .56	1 1 1 1 1	076. 357. 769. 740.
	1990 1993 1997 2007 2017		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2270 2655 3887 5416		10000001	1 40 8 6 8 8	16.78 -12.76 -11.61	158.80 222.66 368.83 497.63	1 1 1 1 1 1 1	61.6 52.2 52.2 741.9
φ <u> </u>	0 0 0 0 0 0 I	22224 2225 0034 0034	4 1. 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	68 102 103 152	1 1 1 1	0 0 2 2 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	5779.7 6310.2 7085.8 8902.5		1 2 2 3 4 8 1 1 2 2 4 8 1 1 2 2 4 1 1 2 2 1		

TRAFFIC PROJECTION
TABLE 3.2 - 4 (2)
Movement of Passengers and Commodity

			Number	f Pass	engers			Сомпод	ity To	กกลge	
L I I I	13 13 10 10 10 10 10 10 10 10 10 10 10 10 10	Normal	أكتحا		Gen	Total	Normal	i Limi		Generated	1 4 1
0 0	00000	187 737 616 831	-50 -78 -174 -308	888 888 758 300	1 1 1 1	1 - 80 - 40	7 8 9 8 9	-16.78 -12.76 -11.61	-35.84 -163.70 -251.35	1111	2832.55 3432.01 4457.76 7123.54 9343.85
0	1990 1993 1997 2007 2017	20783 20783 34443 58866 85531	0 4 4 30	8866 673 305 305		1 ळ च छ च छ।	1 12 12 10 12	16.7 12.7 11.6	133. 161: 249.	1 1 1 1	2586.65 3161.89 4158.00 6787.26 8999.89
	1990 1993 1997 2007	240 246 781 385	f 	1288	t 	1 4 2 2 2 2 3 3 4 1 1 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3	7948.82 8661.69 9722.11 12285.25	1 1 1 2 1 1 1 1 1 1	3.113.9	t	948.8 665.7 725.2 271.2 436.6
27	00000	3449	1111	193 193 1202 53	1111	1 6 8 8 6 7 1	950 0 950 0 340 8 330 2	1111	l • • • • • •	1 1 1 1	9 5 5 7 3 4 6 3 3 0 7
(m	1999 1993 1997 2007	1 ထားကဝတ်က	1 1. 1	277 162 -151 108	1 	1 4 4 10 8 10	615 861 418 418	1 		1 1 1 1 1 1 1 1 1 1 1	74.9 74.0 74.0 74.4 78.8
	1990 1993 1997 2007	567 037 759 812 049	{	315	[]]	567 778 778 799	452.6 720.6 168.2 432.8 552.3	; ; t 1 ; t ; t ; ; ;	13.37 4.84 -53.67 -96.08	! ! ! ! ! ! ! !	244801
. LG !	00000 00000		- 50 - 174 - 308	တထည က		1 22 23 23 23 1	2762.53 3111.04 3637.95 4863.40 5912.32	-16.78 -12.76 -11.61 -15.49	. ⊷oo4.		762 052 575 792 832 4
9	1990 1993 1997 2007	17 1 1 2 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	-50 -78 -174 -308	1111 22064 8309 8448		21718 24018 27952 38869 51252	8883 448893 8893 8863	12.	∞ 4.ω.∞		834.9 433.1 412.8

TRAFFIC PROJECTION

RIZAL

TABLE 3.2 - 4 (3)

Movement of Passengers and Commodity

1900 12335 1525 1525 1525 1524 1525 1544 169 1644 164	, , ,	1 2		Number	¥0	Passengers			Comm	ommodity Ton	Tonnage	
1999 1200		# I	Normai	Diver- ted-1	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Gene- rated	0 1	Normal	d-1	3 c	1 0 0 1	10
1990 1775 1150.41 -2.63 1140. 1150.41 1150.41 1150.41 1150.41 1150.41 1166.5 1	-	0 0 0 0 0 0	351 351 351 351 351	1111	1 60 10 1		3 6 6 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	694.6 827.9 020.2 421.3	1 1 1 1	4004 	1 1 1 1	694.6 823.0 014.3 416.2
1993 3688 656.9	. 80	66600	777 777 855 972 269 567	1111			77 1 2 2 3 2 3 2 3 2 3 3 5 5 5 5 5 5 5 5 5 5	150 243 277 377 887	1111	1.9.6	1 1 1 1	150.4 240.5 374.1 664.6 886.0
1990 4169 4169 544.03 -2.8 570.91		00000	3688 4140 4828 6689 8668	1111			69238	656.9 716.7 804.6 011.8	111	. 64.64	; ; t t l t	656.9 716.4 804.2 012.0
1990 4597 598.29 598.29 599.4 599.5 599.4 599.5 599.4 599.5 599.4 599.5 599.	0	66666		1111	<i>ភ</i> ឧ	į: 1 1 1	94611	44.07.00.09.09.09.09.09.09.09.09.09.09.09.09.	1 ; ! !	9.65] ; 1 1	0.08 7.4
1990 8173 1561.53 -16.13 -1561.53 1997 11305 -50 2319 - 13574 1602.20 -16.78 166.13 - 1561.53 2007 38877 -174 3905 - 42608 3000.33 -11.61 372.61 - 3361.3 2007 38877 -174 3905 - 42608 3000.33 -11.61 372.61 - 3361.3 2017 65545 -308 - 70713 4786.89 -15.49 502.74 - 5274.1 1990 139 - 2832 - 2992 112.10 - 2072.2 1997 199 - 2832 - 8405 15.44 - 330.45 - 582.7 2007 289 - 8605 - 8405 - 790.43 - 827.7 1990 3724 - - - - - - 1081.5 41997 4343 - - - - - - - - 1990 - - - - - - - - - -	2	66666 66666	545 545 683 134 767	-50 -78 -174 -308	1 0 5 01 -1	1 1 1 1	533 533 104 714	6688. 831. 7773.	16.7	1 22 2 4 8 1 2 2 2 3 4 1 2 2 2 3 4 1] 	598.2 659.4 805.7 228.6 740.0
3 139 1990 139 1991 139 1992 159 1993 159 2007 289 2007 289 2017 289 2017 280 280 280 280 280 280 280 280 280 280 280 280 280 280 280 280 280 280 280	22	1 0 0 0 0 0 0 . 1 0 0 0 0 0	8817 741 741 554	1 10 1-10	47		817 357 002 260 071	561.5 602.2 792.5 000.3	5.7	66.1 30.5 72.6 02.7		561.5 751.5 010.3 361.3
1990 3318	1 2	66660 H	നഗനയ ഠ		1 0 5 0 3 1		40004	7	1 1 1	50.1 50.1 50.1 50.4		72.2 72.2 72.2 72.7 27.7
		66666	100001		1111	1 1 1 1	802421	2992.3 081.6 2213.3 527.5 795.4	1 1 1	0000	1 1 1 1	992 081 081 281 795

THAFFIC PROJECTION RIZAL

TABLE 3.2 - 4 (4)

	Total	1623.88	1713.37	1840.19	2083.50	2230.63
onnage	Gener	f 1 1 1	ı	1	1	1
Commodity Tonnage	Diver- Diver- ted-1 ted-2	; ; ; ; ; ; ;	88	82	1.93	2.58
1	Diver- ted-1	i } ! ! !	ı	ı	1	1
1	Total Normal	12420 1623.88	1714.24	1841.01	2081.67	2228.05
	Total	12420	13473	15064	18841	22219
ngers	Gene,	1 12420 1 1623.88	 I	 I	1	
Number of Passengers	Normal Diver- Diver- ted-1 ted-2	\ 	-22	g) I	20	9-
Number	Diver- ted-1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ı	.!	ı	1
1	l ⊱	12420	13496	15074	18821	22225
÷	1	1990 1	1993	1997 1	2007	2017
		! ! !		25		

TABLE 3.2 - 5 (1)
Traffic Volume

 		; ; ; ;	. !	!	! ! !	0/*	; ; ;	1	1	1 1 1 1 1	 	 		! !	with		1	!	! !
	نَ	Car /Van	Jeep- ney	Bus		רים מו	Tri- cycl	Mot.	Ani- mal	Total	Car /Van	Jeep-	Bus	Tru-1	Sub- Total	Tri- cycl	Mot. cycl	Ani- mal	Tota
	1999 1993 1997 2007		4954 5529 6393 8672	. 35 44 64 82 82	1872 2046 2302 2900 33961	960 960 967 226 636 043		274 307 357 493 636	1 1 1	9882 110978 112619 116853	3056 3520 4727 59411	5529 6395 8677	4 4 9 8 0 4 4 8	2045 2301 3398	10670 12263 16368 20445	1111	307 358 493 637		110977 112620 116861 121082
. 8		1170	233 272 335 715	1 1 1 1 1 1	8 01 14 19	55811 6811 10321 14131		39 45 56 87	1.		347 428 672 949	556 878 1247	17 27 38	1411 1701 2601 3511	11711 1837 2585	1111	82 101 160 229	1 1 1 1 1	104 127 199 281
, m	100000		00004	 	1		, 				3223		1111	→	1 20000	{	200		
T	1990 1993 1997 2007 2017	4762 4762 6103 8230 110382	3417 3812 4413 6014 1	566 635 740 1027 1330	യം ഗയയ്യ	100951 112151 129081 173521 21820	, , , , , , , , , , , , , , , , , , , ,	462 518 604 838 1085	; ; ; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		8 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	3812 4413 6015 7664	635 740 1027 1330	733	112161 129091 173531 218231	 	518 604 838 1086		11734 1135134 118191
ıs .	1 000000	000044	005-00	93 102 116 151 183	1 2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	707 770 770 864 864 287		2290 230 230 523 521	 	339991	2953 3315 4185 4968	3715 4193 5362 6443	103	97311255113921	777 86 109 129	1 1 1	331 331 524 524	1 1 1 1 1 1 1 1	
6	1990 1993 1997 2007 2017	3216 3582 4132 7062	540 602 697 947	69 78 91 126 163	34367	94755 9475 9475 9475 110 110	1111	1 1 9 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	11111	580 580 580 580 580	3578 4131 7060	602 696 948 1207	1 6000	1 00000	1 4070 8040	† . † !!!! !	216 252 349 462	1 1 1	1 00000
-	1990 1993 1997 2007 2017	7213 112223 118220	813 965 1236 2127 3192		769 827 932 1301 1742	1 ၁၁၀၀ ၁၀၂	430 522 686 1221 1862		1	1 6 9 0 6 1		1032 1316 2243 3352	92 120 211 320	1	804 1006 1670 2462	563 733 1290 1956			8986 111297 118867 127909
<u>∞</u>		25 25 25 25 25 25 25 25 25 25 25 25 25 2	4 4 10 10 14	352 395 460 637 825	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1 1 1 1 1	416 467 544 753 975	13111	10062 11193 112892 117341 121882	0 8 6 5 1 √ 5 5 5 5 1	3844 4450 6056 7712	394 460 637 825	E 8 = 4	071 234 660 090] 	466 544 753 975	1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

NoI	(3)		
PROJECTION	ιΩ	ıme	1
ROJ	2.	Volume	1
	œ.		i
TRAFFIC	TABLE	Traffic	1
TR	Ŧ	Ţ	

		··· .				0/*									with		,		
¥	Year	Car /van	Jeep	Bus	1 25 24.1	1 4 Q 1	Tri-	Mot.	Ani-	Total	Car /van	Jeep	Bus	Tru-1	Sub- Total	Tri- cycl	Mot.	Ani	Total
	0000-	000000	1189 1481 1953 3282 4665		517 629 822 1332	60 4 10 O C		164 205 271 459 662	11111	00000	2013 2621 4309 6030	.1517 1977 3271 4645	273 356 593 855	6261 8141 13001	4000	111	22 42 46 66 60 60		4642 6043 9932 13897
	100000	100000	1370 1705 2258 3825 5429	1 H O O O O	1307307	3324 4126 5464 12913	; 1 { ; ; ; ; ! ! ! 1 ;	1126 1256 1256 1256 1256 1264 1364 1364 1364 1364 1364 1364 1364 13	1 	8 2 2 2 3 8 1 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		1741 2279 3801 5389	276 361 606 880	1 6-4081	1 ~4~1~!		22 263 642 122	1 1 1 1	4393 5755 13410
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	1990 1993 1997 2007	6861 7623 8779 111833	5618 6268 7255 9902	413 464 541 751	1 20 20 70 20 1	312 51 51 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1111	721 809 943 1310 1696		၂ ကလောကလေ ၂	0 0 0 0 0 1	6275 7259 9893 12617	464 541 750 973		155971 179591 242021 305261	1111	810 944 1309 1697		25894
 	1990 1993 1997 2007	80446	3360 3709 4234 5661 7143	361 401 462 628 805	85 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	P 0 -7 -0 1	1111	280 311 358 488 625		F & & & V & B	ದಲ್ಲಾರಣ	372 424 564 713	403 463 627 806	546 600 732 848	77501 87871 115681	t 1 1 1	3312 359 6287 625		805 2014 505
		2088 2700 3755 4850	2478 2772 3225 4510 5873	288 324 379 533	. ထု လ ထု ဟ ထု	1040401	1111	240 270 315 443 583	11111	444498	2341 2708 3738 4833	00 m	326 380 532 701	423 481 643 791	58791 68041 94081	1 (1 1	271 316 584 584	f (f 1-	615 712 985 277
	00000	32462	2236 2522 2968 4233 5572		1 ୭ଟୋଡଡିଡ	1 4 6 6 6 4 1 1 8 4 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	 	141-400	1 	5068 5706 6706 9545	221 2218 3605 4719	255 297 297 556	316 371 528 704	24488 1 2488 1 7488		11-11	280 329 467 623	₹111	F-F-10-4
	1 0 0 0 0 0 1	1588 1781 2075 2833 3609	1653 1852 2155 3824	176 228 316 115	565 755 183	3846 3846 5023 5023 8766	;	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11111	00001111	0.000	1827 2128 2928 3773	194 225 312 410	655 744 905	1 2 6 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		197 229 317 416		40701
10	1990 1997 1997 2007	1502 1683 1960 2680 3426	1510 1692 1969 2714 3526	153 171 199 276 365	りょくりょ	"លេខៈ១១	1111	176 198 230 320 422	1111	2087-4	1658 1933 2645 3379	1669 1944 2680 3477	169 196 273 360	437 511 684 835	39331 45841 62821 80501	1111	195 227 316 416	1 3 1 1	4128 4811 6597 8467

TRAFFIC PROJECTION
TABLE 3.2 - 5 (3)
Traffic Volume

		\$! ! !	1 1 1		1 1 1 1		1 1 1 1 1	1 1 1 1	1 1 1	1 1 1 1 1 2	1	! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	1 1	1 1 1 1 1 1	1 1 1	1	1 1 1	1 1 1 1	1 1 1 1
		1		1		0/*	; ; ; ;	!			i :			1	with		;	ļ	
→ 1	ا ا	Car /van	Jeep- ney	Bus	Tru-F	Sub-	Tri-	Mot.	Ani-	Totall	Car /	Jeep~ ney	Bus T	ru-18	ub- ; otali	Tri- I	Mot.	Ani- 1 mal 1	Total
1.7	6666	93 102 114 142 166	1 ∞ n ∞ t- 4.	82 90 101 130		82222	1111	100 1100 124 160	1	2265 2467 2762 3459	1019 1140 1421 1666	962 1082 1373 1640	89 101 130 158	2801 3091 3711	82263	; ; ; ; ; ; ; ; ; ;	110 124 160 194	1 1 1 1	2460 2756 3455 4074
90 1 ml	1990 1993 1997 2007	631 688 772 972 1153		2 4 4 6 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1751 1901 2101 2541 2881	1 H T O O O	1 1 1 1 1 3	68 75 111 137	1	0 12 23 80 1	686 770 971 1:152	615 696 895 1084	5.4 6.1 8.0 9.8	1 1 8 9 1 2 2 5 4 1 1 8 9 1 1 8 9 1 1 1 1 1 1 1 1 1 1 1 1	1544 1736 22200 2622		75 85 111 1:37	1 1 1 1 1 1 -	1619 1821 2311 2759
6.	000000	40000	100000	0 00 00 00 00 00 00 00 00 00 00 00 00 0		000004	11111		1	1 B B B B F	502 576 764 949	222 224 354 451		12221	8681 9961 13257	1 1 1	1 25 6 9 1 1 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1 1 2	927 1065 1421 1773
20	1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	104000	358 384 422 506	18 20 22 32	0000		! ! ! ;	 000004 000040	1 	710 758 976 1096	241 262 305 338	384 421 506 577	32720	871 1031 1091	732 798 942 1056	! ! ; ! ! ! !	0.01 W 4 0.00 4 0	; ; ; ; ; ;	757 826 976 1096
7.	99999	400 470 583 941 1426	361 426 530 858 1333		21102	1011 1013 1013 1002 1002 1001	F	102 102 128 213 331	1	1116 1384 3393	457 568 917 1388	392 431 702 1072	വവാന യവന .	1131 1381 2971	971111884	! ! !	100 125 207 321	3 1 1 1 1 1 1	1071 1295 2091 3164
23	99999	22 22 23 23 23	ഠനങ്ങ			18201 22051 30171 61731 102551	1298 1714 2541 5525 9275	215 297 457 1021 1721	 	270133	1849 2509 4990 8166	471 667 1374 2266	1 1 1 1	2330 2641 6941		2032 2914 6066 10023	356 1118 1856	1 1 1 1 1 1 1 1	4939 6880 13991 23004
33	1990	1 ⊣1		11111	7.0000	 40000			1 1 1 1 1 1 1	139631	691 220 354 507	70 260 411 591	1111	53	814 554 889	1 1 1	300	 	824 588 1353
24	000001	010001	187 209 242 330	11111	187 204 229 338	10831	11111	129 144 168 302		0 0 1 1 1 0 0	670 771 1037 1305	242 3330 420		22291	10082 12842 16552 16554		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1	1227 1410 1888 2368
									:		: !	1	1			1	1	1 1 1 1	11111

TRAFFIC PROJECTION

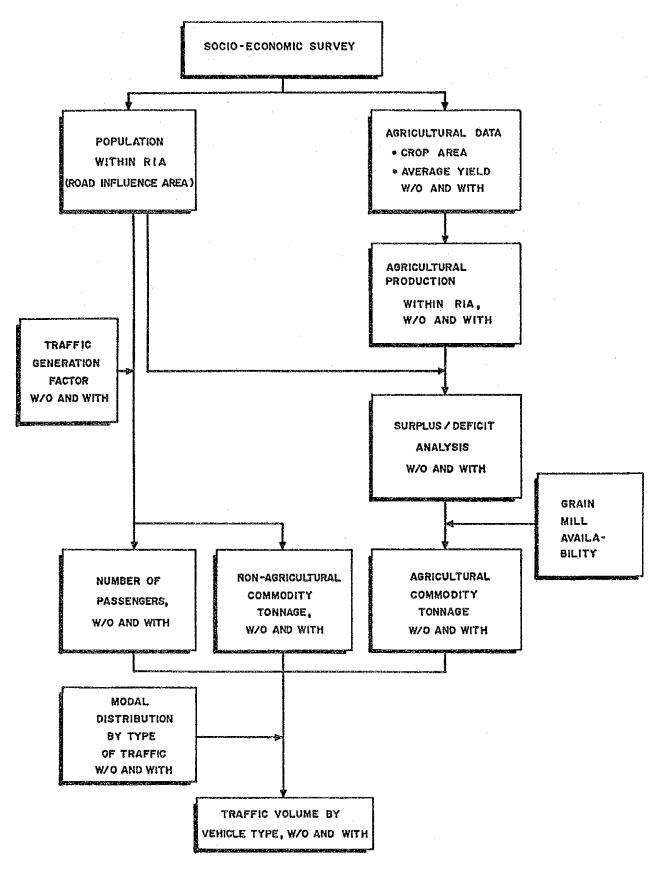
こうているでのだし	3
j	ល
3	ı
ĭ	3.2
د	G.2
Inarric	TABLE

;					0/#					~ .					with		٠.			
Nu Yee	Car /van	Car Jeep- Bus Tru-	Bus		Sub- Tri- Mot. Ani- Total Car Jeep- Bus Total Cycl mal / Van ney	Tri-	Mot. cycl	Ani- mai		Total	Car /Van	Jeep- ney	Bus	Tru-1 ck 1	Tru- Sub- Tri- Mot.	Tri- cyel	Mot, cyci	Ani- mal	Ani Total	l —
1990 1 1700	1700	432	!	- 2141	23461 1863	1863	326	: ! !	45	4534	 	} 4 1	! !	 	 	! ! !	! ! !) 	 	ı
1993	1828		•	2251	25211	2017		ŧ	. 48	4892	1826	466	,	2251		2014		i	1 4885	
1997	2014		1	242	2774	2242		i	- 54	11	2013	518	ı	242		2240		ι	5408	
2002	7 2432		1	274	33421 2767	2767	494	i	1 66	03	2434	637	ı	274	33451	2770	495	ī	1.6610	
2017	2784		1	2931	38171	3234		ı	1 76	7634	2784	740	1	2931		3233		,t	7634	

3.3 TRAFFIC ANALYSIS AND FORECAST: DEVELOPMENT PROJECT

Traffic on development project roads was forecasted separately for passenger traffic, non-agricultural traffic and agricultural traffic. The number of passengers and commodity tonnage were estimated first, and then they were converted to the number of vehicles assuming modal distribution and occupancy/average load. Figure 3.3.-1 shows the schematic diagram of traffic forecast for development project.

3.3.1 Passenger Traffic and Non-Agricultural Traffic


The population residing within the road influence area, which is defined as the area from which local existing or potential traffic using the road derives, was obtained mainly from distribution of barangays shown in 1:50,000 topographical maps and the NCSO 1980 Census of Population and Housing, and supplemented by information obtained from barangay interviews. The population forecasts were prepared using the NCSO report.

The number of passengers and non-agricultural commodity tonnage were obtained as the product of population by the per capita generation factor. Table 3.3-1 shows the generation factors commodity used in the analysis, which was derived mainly based on the traffic survey and referring to previous studies. In the case of particular roads where the common values were deemed inapplicale, specific values were used.

TABLE 3.3-1 PER CAPITA TRAFFIC GENERATION FACTORS
(MINOR ROAD): Province of Rizal

Existing Road Condition	Passenger (trip/per	Movement son/day)	Non-Agri Comm (kg/pers	odity
	w/o	with	w/o	with
Paved/Gravel				·
Good/Fair	0.30	0.30	6.0	6.0
Bad	0.25	0.28	4.8	5.4
Very Bad	0.20	0.28	1.8	3.0
Earth Road	0.15	0.28	1.5	3.0
Impassable to				3 7 0
motoried vehicle	0.03	0.10	1.2	3.0

The modal distribution and the occupancy/average load used in the conversion to traffic volume by vehicle type were estimated individually for each road based on the road

PROCEDURE OF TRAFFIC FORECAST FOR DEVELOPMENT PROJECTS

inventory survey and the traffic survey.

3.3.2 Agricultural Traffic

Agricultural commodity tonnage was estimated based on the agricultural production within the road influence area, taking into consideration i) home consuption and surplus/deficit and ii) availability of grain mill(s) in the road influence area, as regards food grain.

- i) Home consumption of food grain was calculated as population times per capita grain consumption (assumed to be 130 kg in a milled form), and the surplus or deficit production was calculated based thereupon.
- ii) In case of no mill in the road influence area, all net production is assumed to move out in the form of palay/unmilled corn. Milled grain products for home comsumption are then transported back. An eventual deficit moves into the road influence area in the form of milled products.

Provided one or more mills exist in the road influence area, the transport flows are assumed as follows:

- Home consumption remains in the road influence area (no transport movement assumed).
- Surplus production would be transported out, traditionally in the form of unmilled food grains.
- Deficit production would be moved into the road influence area in milled form.

Agricultural commodity tonnage was enverted to number of vehicles using the modal distribution and average load, which were estimated individually for each road considering the transport circumstances.

3.3.3 Estimated Present and Future Traffic

Estimated present and future traffic is presented in Table 3.4-1 in the next Section.

3.4 SUMMARY OF TRAFFIC VOLUME ON STUDIED ROADS

Estimated present and future traffic volumes of the studied roads comprising of traffic and development projects are presented by each road project in Table 3.4-1.

TABLE 3.4 - 1 (1)
Traffic Volume by Vehicle Type

Class	Type		. 1	, ; ; ;		i ! !	0/%	. !	1 1 1 1	! ! !	; ; ;	! !	! !	. !			w! th				·	
0 20	Impr	umber		Jeep	Bus	a S S S	40	Tri-	Motor cycle	Ani- mal	Walk B	oat:	Car	Jeep -ney	Bus T	Truckii	otal	Tri-	Motor cycle	Ani- mai	Walk -ing	Boat
	- ~-	N13-5		6268	464	1226 1	1558	} }	, 0	 	 	- - -	632	27	64 1	1 63	55	0	1		; ; ; ;	} {
Major	I mp-1	N13-7	3072	370	-	54		0 1	311	1 1	 		081	3720	8	9	775	0	312	ŧ	ì	1
econd,			(4)	1	78	99	482] 	i. i. i. i.		3578	602	7.00	566 3	i es			; ;	i :) :	t 1 1
Major	I-dmI	10	3582	09	~	ø	82	•	ᆏ	ı	•	1	578	60	7.8	O	c)	1	~	ı	ı	ì
		1 N12-3	1977	148	9	S	4352	0	0	ı	ı	 !	013	1517	273	626 1	4430	0	212	•	ı	Ļ
		2	1977	148	265	N	35	0	0	1		1	013	5	273	N	ന	0		ì	1	ı
		7	1682	170	Ç	~	N	0	Ç	ı	,	 1	705	74	~	r-	G	0	0	ı	ï	ı
	**	- 1	1595	39	1	~~	20	1714	6	ı	•	 !	849	47		(L)	T()	2032	IJ	1	ı	ı
		6	470	42	1	~	6	0	0	1		 !	457	392	g,	~~	~	0	0	ŧ	ı	ı
		8	242	ဗ	20		ŝ	0	2	ı	1	 1	241	384	20	00	3	0	2	ı	•	ı
		က	20		,	~	52	0		•		 !	691	70	١	53		0	თ	1	f	•
		4	2		ı		9	1	0	ı	i	1	13	10	ι	7	58	!	+-1	1	ı	i
Minor	Rehab/	P3-1	26	1 (C) 	 	1 **	1 89	33	12				30	41	1		76	35	1 60		i 	1 1
Nat.	I-dmI	ış.	9	4	ı	φ.	66	-	∞	3.	20	1	63	42	1	00	-4		20	1	.1	ı
S Prov'l)		-2	6		1	2	58	1	ţ			 I	14	13	١	2	က	16	9	1	1	•
		- 1	322	(2) (3)	ı	20	0	157		ı	ı	 I	330	Θ	١		616	161	87	1	ŧ	ı
2	***	 1	116	16	1	11	O	216		1	ı	 !		180	١	11		r-	S S	1	ı	ŧ
,		8-1	80	07	•	۲-	Ç	4		•	i	 !	79	3	,	~° ⊗	0	~~	37	ı	ŧ	1
		1	9	Ç	ı	9	102	6	5.	1	246	 1	99	10	,	9	2	2	53	1	92	ı
 		1 1	204	F-1	1	130	S)	1		1	1	1	170	96	13	113	391.	1	31	1	1	ı
nor	Rehab/		₩.	7	1	ı	11 11 11 11 11 11 11 11 11 11 11 11 11		; ; ; ; ;	1 1 1 10		<u>.</u>	9	8	1 1 1 1 1		16	7		† ! † !	i 	! ! ! !
(Baran-	Imp-1	B11-5 !	12	30	1	8	45	1	1	22	73	1	24	34	1	ю 	61	1 29		1	ı	i
gay)		B1-1	186	253	1	13	458	306	83	ı	•	1	208	312	,	13	540	265	96	1	1	ı
		1 B9-2 1	30	4	•	4	78	33		11	38	 (es A	49	1	 ਹਾ	α	4		1	1	1
		1 B7-2	65	62	•	\$ O	222		10			 '	83	65	١	98	246			t	1	ı
	P-1	1 30-1	31	43	ı	*** ***	7.8	55		ı	ı	- i	73	107	١	7	∞	3.		ı	ł	ı

CHAPTER 4 PROJECT IDENTIFICATION AND SCREENING

4.1 PROJECT IDENTIFICATION

4.1.1 Field Surveys

Field survey was conducted by the Study Team to assess present condition of all major roads and some other typical minor roads (these are referred to as "Surveyed Roads").

Road projects (mostly minor roads) proposed by the local officials were also collected and road conditions of these roads were obtained by the interview survey (these are referred to as "Road Projects proposed by local officials").

Road projects surveyed by the Study Team and proposed by the local officials were combined and integrated, because some road projects were both surveyed by the Study Team and also proposed by the local officials, and a list of Studied Roads was prepared.

Summaries of "Surveyed Roads", "Road Projects proposed by Local officials "and" Studied Roads" are shown in Table 4.1-1.

TABLE 4.1-1 SUMMARY OF SURVEYED ROADS
Road Projects Proposed by Local Officials and Studied Roads
Province of Rizal

	Road	National	Prov'l/City	Barangay	
	Class	Roads	Roads	Roads	Total
Surveyed	Major Rd.	194.3	_		194.3
Road	Minor Rd.	34.9	40.8	<u>-</u>	75.7
	Total	299.2	40.8	-	270.0
Rd. Proj.	Major Rd.	86.6	**	-	86.6
Proposed by Local	Minor Rd.	23.7	16.5	126.6	166.8
Officials	Total	110.3	16.5	126.6	253.4
Studied	Major Rd.	208.3		_	208.3
Road	Minor Rd.	34.9	40.8	126.6	202.3
	Total	243.2	40.8	126.6	410.6

4.1.2 Project Identification

1) Project Identification Criteria

Project identification criteria are shown in Table 4.1-2.

TABLE 4.1-2 PROJECT IDENTIFICATION CRITERIA

7.1.0	Condition of Ide	ntification
Item	Major Roads	: Minor Roads
(1) Existing Links * Carriageway Width	Less than 6.0 meter	: Less than 4.0 meters
* Pavement Type	Inferior to recomme ded type in the eng neering Standards	
* Surface Condition	Bad or very bad 1/	:Bad or very bad2/
(2) New Links	Aban	ssable doned existing
(3) Bridges	Ford crossing Spillway Timber bridge Bailey bridge	: : Ford crossing : Spillway in : structurally un- : sound condition : Bailey bridge : for AADT more : than 300

- Notes: 1/ Gravel road which is proposed for improvement by local officials shall be identified, even though surface condition is "fair".
 - 2/ Gravel road of which surface condition is "fair" shall be identified, as the surface condition of gravel minor roads is easily deteriorated.

2) Identified Road Projects

All studied Roads, except those of the national primary roads and committed roads, were evaluated in accordance with the identification criteria. Road projects identified are summarized in Table 4.1-3.

TABLE 4.1-3 SUMMARY OF IDENTIFIED ROAD PROJECTS Province of Rizal

	Road Class	National Road	Prov'l/City Road	Barangay Road	Total
Major Road	: Length (kms. : (% to Studie)		<u>.</u>	. Then then dead dated global three	119.5
	: Roads)	(57%)	u.		(57%)
	: Length (kms. : (% to Studie		36.8	126.6	185.6
	Roads)	(64%)	(90%)	(100%)	(92%)
Total	: Length (kms. : (% to Studie)		36.8	126.6	305.1
	: Roads)	(58%)	(90%)	(100%)	(74%)

4.2 PROJECT SCREENING

4.2.1 Categorization

Road projects are categorized by the following factors in order to establish comprehensive prioritization criteria:

(1) Class of Roads

Major Roads

Minor Roads

* Primary major roads

*National/provincial/city

roads

* Secondary major roads

* Barangay roads

(2) Urgency of work

Improvement criteria for roads and bridges are established as shown in Tables 4.2-1 and 4.2-2, respectively. Improvement works are classified into five (5) types as shown in Table 4.2-3. In view of the urgency of work to be implemented, the types of improvement are grouped into two (2) as follows:

Type A (Urgent Projects)

* Rehabilitation: Improvement of deteriorated road surface, but standard or superior class pavement, to acceptable condition.

* Improvement -1: Improvement of deteriorated road surface and substandard class pavement, to acceptable and standard pavement.

* New Construction: Construction of new road including re-construction of abandoned road.

Type B (Less Urgent Projects)

* Improvement -2: Upgrading of substandard pavement class to standard pavement class, though existing road surface condition is acceptable.

* Widening of roads with substandard carriageway width, other conditions meet engineering standards.

Note: Road projects which include only improvement of bridges are classified as "Rehabilitation".

(3) Economic Viability

Major Roads

Simplified economic evaluation is conducted for major roads. Internal Rate of Return (IRR) is calculated based on roughly estimated construction cost and traffic cost savings. Categorization is made as follows:

Improvment Type A:

- * IRR of 7.5% or more
- * IRR of less than 7.5%

Improvement Type B:

- * IRR of 15% or more
- * IRR of less than 15.0%

Minor Roads

Minor road Pre-evaluation Indicator (MPI) is developed based on Phase-1 Study results. Categorization of minor roads is made based on calculated MPI as follows:

- * MPI of 7.5 or more
- * MPI of less than 7.5

TABLE 4.2-1 IMPROVEMENT CRITERIA FOR ROAD

Road Class	: Maj	or Road	: Minor Road
	: Standard/ : Superior	: Substandard	: Standard/ : Substandar : Superior :
Good/Fair	or widening		:No improve-:No improve- : ment : ment
Bad/Very bad	:surface condi- : tion	-:pavement type :(improvement-	: Improvement: Upgrading (: surface con: pavement : (Rehabilita: type : tion) : (Improve- : ment-1
Abandoned/ Non-existi		Construction (

Note: 1) In case of carriageway width less than 6.0 meters.

TABLE 4.2-2 IMPROVEMENT CRITERIA FOR BRIDGES

Existing	: Propo	osed Improvement
Bridge Type	: Major Road	: Minor Road
Ford Crossing	: 2-lane : permanent : bridge :	: Carriageway width 4.0 m: : 1-lane spillway : Carriageway width 6.0 m: : 2-lane spillway
Spillway	: 2-lane : permanent : bridge	: No improvement
Timber Bridge	: 2-lane : permanent : bridge	: AADT less than 200 : 1-lane : permanent bridge
	: : :	: AADT more than 200 : 2-lane : permanent : bridge
Bailey Brridge	: 2-lane : permanent : bridge :	: AADT less than 300 : No impro- vement : AADT more than 300 : 2-lane permannet bridge

- Note: 1) Where the site condition is not favorable for a spillway, a permanent bridge should be planned in accordance with the criteria for a timber bridge.
 - 2) When the existing spillway is structurally sound and traffic disturbance is estimated less, the existing one can be utilized. Under other conditions, a permanent bridge should be planned in accordance with the criteria for a timber bridge.

TABLE 4.2-3 TYPES OF IMPROVEMENT

Type	Existing:Pavement Type		: Proposed Improvement : Work
•	: Standard or : superior	: Bad/ : very bad	: Improvement of : surface condition
Improve- ment-1	: Substandard	: Bad/ : very bad	: Upgrading of surface type
	: Substandard	: Good/Fair	: Upgrading of surface type
Widening	·	: Good/Fair is narrowed than :	: Widening of existing : road :
New Const	truction Impa	ssable/abandoned non-existing	: Construction of new : road

4.2.2 Prioritization and Selection Criteria

Prioritization and selection criteria of road projects for feasibility studies are established as shown in Tables 4.2-4 and 4.2-5.

TABLE 4.2-4 PRIORITIZATION AND SELECTION OF ROAD PROJECTS
- Major Roads -

Category	Road Class	Type of Improvement	IRR	Priority Criteria	Selection Criteria
2 S 3 F 4 S 5 F 6 S 7 I	Primary Secondary Primary Secondary Primary Secondary Primary Secondary	A A B B A A A B B	7.5 ≤ IRR 7.5 ≤ IRR 15.0 ≤ IRR 15.0 ≤ IRR 1RR < 7.5 IRR < 7.5 IRR < 15.0 IRR < 15.0	→ MA-1 → MA-2 → MA-3	To be selected for F/S

TABLE 4.2-5 PRIORITIZATION AND SELECTION OF ROAD PROJECTS
- Minor Roads -

Categor	y Road Class	Type of Improvement	MPI	Priority Criteria	Selection Criteria
1	National/P	rovincial/	7 5 ≤ MPI	MI-1	To be
2	Barangay	A	7.5 ≤ MPI 7.5 ≤ MPI	J "" 1	selected for F/S
3	National/P	rovincial/		_	
4	City Barangay	A A	$MPI < 7.5 \\ MPI < 7.5$	M1-2	

Note: Improvement Type A: Rehabilitation, Improvement-1, New Construction

Improvement Type B: Improvement-2, Widening

4.2.3 Priority of Identified Road Projects

Identified projects were evaluated and prioritized in accordance with criteria discussed and summarized in Tables 4.2-6 and 4.2-7.

TABLE 4.2-6 PRIORITY OF IDENTIFIED MAJOR ROADS Province of Rizal

Category		Type of provemen	I RR t		ority roup	Road Length	No. of Road Links
1	Primary	Α	7.5 ≤	IRR	MA-1	9.0	2
2	Secondary	Α	7.5 ≤	IRR	MA-1	73.6	10
3	Primary	В	15.0 ≤	IRR	MA-2	. =	 .
4	Secondary	В	15.0 ≤	IRR	MA-2	_	-
5	Primary	Α	IRR<7.5		MA-2		
6	Secondary	Α	IRR<7.5		MA-2	34.9	1
7	Primary	В	IRR<15.0)	MA-3	-	
8	Secondary	В	IRR<15.)	MA-3	2.0	1
	Total					119.5	14

Table 4.2-7 PRIORITY OF IDENTIFIED MINOR ROADS Province of Rizal

Catego	ry Road Class	Type Improv			MPI	Priority Group	Road Length	No. of Rd.Links
1	Nat'l/Provi/ City	Α	7.5	≤	MPI	M I – 1	30.7	8
2	Barangay	Α	7.5	≤	MPI	MI-1	29.1	- 6
3	Nat'l/Provi/	Α	MPI	<	7.5	MI-2	28.3	4
4	Barangay	A	MPI	<	7.5	MI-2	97.5	15
	Total						185.6	23

4.2.4 Selection of Road Projects For Feasibility Studies

In accordance with selection criteria discussed above, road projects under priority groups MA-1 and MA-2 for major roads and priority groups MI-1 for minor roads were initially selected, and these were plotted on 1:100,000 map to evaluate the following:

- . Distribution of initially selected road projects (when these are concentrated in certain area, some minor roads were deleted, and where road projects are scarce, some minor roads were added.)
- . Linkage of road projects
 (There is a case that a selected lower class road is connected with a higher class road, however, the latter is not selected due to lower priority. Such a case, a higher class road is also selected to maintain similar condition of road after implementation.)

After adjustment mentioned above, road projects were finally selected and summarized as follows:

Total 178.8 kms. (26 projects)	-			- "

CHARTER 5 PROJECT EVALUATION

5.1 PRELIMINARY DESIGN AND COST ESTIMATE

5.1.1 Preliminary Design

- 1) Design Concept There are two options in design concept for rural road improvement, as follows:
 - * Designing rural roads with optimum standards aimed at improving all aspects including horizontal and vertical alignments, which sometimes require massive earth works and is costly.
 - Designing rural roads by basically concentrating on improving surface conditions, thus improving horizontal and vertical alignments is limited to the required minimum.

Rural roads are extensive in the number of road links as well as in length, and their present conditions are still at a poor level. Thus, requirements for rural road improvement are quite huge, while financial resources are limited. Under these circumstances, the Study Team placed priority on improving surface conditions of more roads. The preliminary design was undertaken in line with the concept of the second option.

2) Preliminary Design
On the basis of the findings of the road inventory survey, the type of improvement was determined for each subsection of road in accordance with the engineering standards and the improvement criteria.

Typical road sections for each type of improvement/rehabilitation are summarized as shown in Table 5.1-1.

Special considerations were given to steep gradient sections and flood section.

"PCC pavement for steep gradient section" was applied to sections with steep gradients where otherwise gravel surfacing might be applied, as a countermeasure against excessive gravel losses during heavy rains and impossibility for vehicles to climb. "Grade raising in flood area", was applied to sections located in flood areas.

Table 5.1-2 shows the proposed improvement for each road project subjected to the feasibility study.

TABLE 5.1-1 EXISTING CONDITION VS PROPOSED IMPROVEMENT/REHABILITATION

	Road	i D	Existing Pavemen	ment		Pavement	Structure (cm)
Type of Improvement	Type	Type	Condition	Pavement Type	Surface Course	 Base	Subbase
Rehabilitation		PCC PCC Bituminous Bituminous Bituminous Gravel	Bad/Very Bad Bad/Very Bad - do do do -	PCC AC Overlay AC Overlay BMP/DBST Gravel	20 - 23 5 5 5 5.5/1.6	20 112	10 10 - 5
Improvement - 1	222222 11111111 12848978	Bituminous Gravel Gravel Gravel Earth Earth Earth Earth	Bad/Very Bad - do do do do do do do do do -	PCC PCC AC BMP/DBST PCC AC BMP/DBST Gravel	20 - 23 20 - 23 5.5/1.6 20 - 23 5.5/1.6	15001	10 20 20 15 10 10
Improvement - 2	იიიი ოით თ	Bituminous Gravel Gravel Gravel	Good/fair - do - - do -	PCC PCC AC BMP/DBST	20 - 23 20 - 23 5 5 5/1.6	1	00016
Widening	4 4 4 4 	PCC Bituminous Bituminous Gravel	Good/fair - do - - do -	Widening w/PCC Widening w/AC Widening w/BMP/DBST Widening w/Gravel	20 - 23 5 5.5/1.6 15	20.15	20 20 15 10
New Construction	იიიი იი2	1 1 1		PCC AC BMP/DBST Gravel	20 - 23 5 5.5/1.6 15	15001	20 20 15
Special Treatment	9	PCC pavement Grade raisin	for steep gradient g in flood area	ient section	1	! ! ! ! !	. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

TABLE 5.1 - 2 (1)

Improvement	
Proposed	
of	
Summary	

<u> </u>
O
•
Š
ary
- 5=
•~
<u>, , , , , , , , , , , , , , , , , , , </u>

Type of	Type Road of Number mpr't	Length (km)	Type Road Length 1993 AADT Existing Condion State Condion State Condion Condio	E	xisting Width	i tion Cond	Proposed Improvement	Proposed Proposed Bridge Cost (Million Peso) IRR Proposed Bridge Cost (Million Peso) IRR Proposed Bridge Total (%)	Cost (Million Peso)! IRR) IRR - (%) 11
Rehab/		8	ehab/ NI3-5 3.2 1558015597 .2 7.0 PCC mp-1 .5 7.0 BT .5 7.0 PCC	2 2 2 2	2.5 7.0	PCC BT PCC	Fair	[3.89 .00 3.89 100.0 (T)	1100.0 (T)
 !	N13-7 5.0	0.00	N13-7 5.0 7727 7750 3.1 6.0 PCC	3.1	6.0	PCC Good/Fair	Good/Fair	Good/Fair 2.58 .00 2.58 [100.0 (T	2.58 .00 2.58 100.0 (T)	1100.0 (T)

(T):Traffic Project (D):Development Project

TABLE 5.1 - 2 (2)

Secondary Major

RIZAL

Summary of Proposed Improvement

	All series	יויי אווייי			XISTIL	Cong	T C T C T C T C T C T C T C T C T C T C	-	Cost (M)	lion P	1 1 1 E
Impr't!			5	1	Width	Туре	Timpt oversent	(Number/10tal Length)	Road	Bridge Total	
Rehab/	10-2	2.7	4828 482	i 	90	CC Good T Bad	Rehab(6.0-0vl)				0
	10-3		4828 482	1.1.1	0.0	ט	Rehab(6.0-0vl)	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	22	.00 1.42	2 1100.0 (T)
~	N12-3		4352 4430		1	! ! ! [÷ [÷	ehab(6.0-0	1		9.1	;
	1 10	. 9	4352 443			່ ບໍ	।। छ छ		1.87	.00 1.87	100
~	Z 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	ι .	126 419	3.0	000	1 20 1			00 1 00 1 00 1 00 1 00 1 00 1 00 1 00 1		0
~	N2-2		2205 25	2.4.8	0.00	PCC Good BT Good GRV Bad	Imp-1(6.7-PCC)		2 3 8 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.00 2.38	8 1 95.9 (T)
*	N20-	 	1013 971	5.0	6.0		Rehab(6.0-Ovl)		26.11	.00 26.1	1 59.2 (T)
	N18-1	8.	733 732	4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	8.0 0.0 0.0	BT Fair BT V.Bad PCC Good	Rehab(6.0-AC)	, , , , , , , , , , , , , , , , , , ,		.00.	7 45.6 (T)
	N23-1	6 1	52 814		ဝမ်ကဝ	T RV AR CC	Imp-1(6.0-AC)		37.79	. 00 37.78	9 35.5 (1)
	N1-4	23.52	6 29		000000	BT Fair BT Bad BT V.Bad O.GRV Bad/V.Bad PCC Good/Bad	Rehab(6.0-0v1) Rehab(6.0-BMP) Rehab(6.0-GRV) Widen(6.0-PCC)		45 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	00.4	(T) (C)

Summary of Proposed Improvement TABLE 5.1 - 2 (3)

Minor(National/Provincial)

RIZAL

36.5 (D) 19.8 (D) 18.1 (D) 14.8 (D) 16.9 (Cost (Million Peso) 9.90 4.88 Bridge Total 4.31 4.79 7.15 2.11 .00 1.46 5.91 8.69 1.20 00. 00. 00 00. 1.01 1.38 3.78 1.46 4.88 7.15 4.31 2.114.73 Road 2-lane Br (n= 1,L= 10m)! New-C(6.0-GRV)| 2-lane Sp (n= 2,L= 65m)| Rehab(6.0-GRV)| 6m) Proposed Bridge (Number/Total Length) 2-lane Br (n= 1,L= : Imp-1(6.0-BMP); Rehab(5.0-0v1) Rehab(6.0-GRV) Rehab(6.0-0v1) Rehab(5.0-0v1) Rehab(6.0-0v]) Rehab(5.0-0v1) Imp~1(6.0-BMP) Rehab(6.0-GRV) Imp-1(6.0-PCC) Rehab(6.0-GRV) Rehab(6.0-0v1) Rehab(6.0-BMP) #iden(6.0-PCC) Improvement Proposed Type Condition! Bad Good/Fair Bad/V.Bad Existing Condition V.Bad PCC Fair GRV Bad/V Good Bad Bad Good Fair Bad Good Bad Bad Good Good None GRV Bad Bad Bad Bad 1.9 4.5-6.0 GRV Bad PCC PCC GRV BT. PCC PCC BT BT BT GRV BT BT PCC BT PCC Width 0000 4.5 9.00 6.0 0 v 6.0 000 6.0 8 0.4 5.0 2 . . . 1.8 2.4 8 3.7 . . . 4 4 22 T S 'n 391 Length! 1993 AADT 36 113 310 w/o with .128 616 206 36 102 290 196 89 601 452 - (Km) 7.0 6. 5. 9 4.0 5.0 1.2 5.2 Type | Road of | Number P18-1 N1-5 P3-2 N3-1 P5-1 N4~3 P2-1 Rehab/1 P3-1 Imp-1 !----Impr't|

9

4.9

3.2 (D)

ê o .

9

18R (%)

(T):Traffic Project (D):Development Project

5 - 5

TABLE 5.1 - 2 (4)

		Improvement
		Proposed
		4
111111	-	Summer's

Minor()	Minor(Barangay)	,							•				:
Type	Road	Lengthi 1993 AADT	1993 A	ADT		Existing Cond	Condition	Proposed	1	Cost (M)	Cost (Million Peso)	i !	I RR I
Impr'#1		0/M	w/o with	th		Width	Type Condition	Timprovement	Cual Lengin Cal Lengin Ca	Road B	Road Bridge Total		
Rehab/		2,5		19	2.5	8	EAR V. Bad	Imp-1(4.0-GRV)	Imp-1(4.0-GRV) 1-lane Sp (n= 2,L= 30m)	1.24	.40 1.63		36.4 (D)
	311-5	w w	1 1 1 1 1 1 1	6 1	2.5	5.0 4.5 0-4.5	BT Good GRV V.Bad EAR V.Bad	Rehab (4.0-GRV)	1-lane Sp (n= 3,L= 61m)	2.57	.81 3.37		36.3 (D)
	B1-1	0	2	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.6 1.9 1.9	3.2-4.5	BT Bad BT V.Bad PCC Good GRV Bad/V.Bad	Rehab(6.0-0v1) Rehab(6.0-AC) mp-1(6.0-AC) Widen(6.0-AC)		8 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	.00 8.15		17.0 (D)
:	B9-2	9.	78			.5 3.0 .2 3.0 3.9 2.4-3.2	BT Bad BT Fair GRV Bad/V.Bad	Rehab(6.0-BMP) Widen(6.0-BMP) Rehab(4.0-GRV)	1-lane Sp (n= 2,L= 16m)	3.24	.21 3.45	 	9.6 (D)
5 0	.B7-2	88	222	246	3.7	6 6.0 GB 7 4.5-6.0 GB	GRV Fair GRV Bad GRV Bad	Imp-2(6.0-PCC) Imp-1(6.0-PCC) Rehab(6.0-GRV)	2-lane Sp (n= 2,L= 60m) 18.77 1.09 19.86	18.77	1.09 19.	 	6.7 (D)
	B0-1	6.	7.8	88	1.0	1.0 6.0 4.7 3.2-6.0	PCC Bad GRV Bad PCC Good	Rehab(6.0-0vl)) Rehab(4.0-GRV)		3.49	.00 3.49	na while derive heres	(G) 0.

(T):Traffic Project (D):Development Project

5.1.2 Cost Estimate

1) Unit Cost

Unit prices for construction equipment, materials and labor were obtained from Associated Construction Equipment Lessors, Inc. (ACEL), the Price Monitoring Section of DPWH, market price survey by the Study Team and relevant studies. Based on the data collected, unit prices at April 1990 prices were developed. Exchange rates used were: P22.50 = US\$1.00 = Y155.

Unit costs for major construction items are presented in Table 5.1-3.

2) Construction Cost Estimate

Based on the results of the road inventory survey and proposed type of improvement, the quantity of each construction item was computed for each road project. Then the construction cost was estimated.

Table 5.1-4 presents estimated quantities and construction cost of each road project.

TABLE 5.1-3 UNIT COST OF MAJOR CONSTRUCTION ITEMS

Unit: Pesos at April 1990 Prices Unit Unit Price Description Item No. Clearing nad Grubbing sq.m. 100 cu.m. 52.00 Stripping 102 Roadway and Drainage Excavation cu.m. 58.00 106 110.00 225.00 cu.m. Borrow 107 Aggregate Subbase cu.m. 108 7.00 Preparation Of Previously sq.m. 118-1 Constructed Road (Gravel) Preparation Of Previously 8.00 sq.m. 118-2 Constructed Road (Asphalt) Preparation of Existing 22.50 sq.m. 118-3 Pavement Surface (PCC) Preparation of Existing 17.00 sq.m. 118-4 305.00 cu.m. 305.00 MT 11,100.00 MT 11,500.00 sq.m. MT Pavement Surface (AC) Crushed Aggregate Surface Course
Bituminous Prime Coat

Bituminous Prime Coat 200 300 302 Bituminous Tact Coat 303 Bituminous Macadam Pavement 306 Bituminous Concrete Surface Course 310 Double Bituminous Surface Treatment sq.m. 45.00 314 PCC Pavement (t = 23cm) sq.m. 320.00 316-1 PCC Pavement (t = 20cm)
PCC Pavement (t = 18cm) 280.00 316-2 sq.m. 250.00 316-3 sq.m. sq.m. 250.00 sq.m. 1,550.00 RCPC (Ø 910mm) 413-1 413-2 Headwal T for RCPC (Ø 910mm) set 2,900.00 625.00 500 Grouted Riprap sq.m. 517 Side Ditch (Grouted Riprap) 360.00 m ______ Bridge Cost m 43,500.00 each 330,000.00 each 285,000.00 in 43,500.00 2-lane Superstructure Abutment for 2-lane bridge Pier for 2-lane bridge 1-lane Superstructure 1-lane Superstructure m 32,000.00 Abutment for 1-lane bridge each 230,000.00 Pier for 1-lane bridge each 200,000.00 ______ Reinforced Concrete Box Culvert 20,600.00 36,000.00 1-Cell RCBC m m m 2-Cell RCBC Wing wall and Apron for 1-Cell RCBC set 132,000.00 Wing wall and Apron for 2-Cell RCBC set 155,000.00 Spillway 16,500.00 2-lane Spillway m 12,000.00 1-lane Spillway m ________ Slope Protection Cost Cut Slope Protection m 23,000.00 Embankment Slope Protection m 25,000.00 23,000.00 25,000.00

TABLE 5.1 - 4 (1)
Quantity and Construction Cost

	Unit	1 N13-5	N13-7	N10-2	N10-3	N12-3	N12-4	N12-5	N2-2	N20-2	N18-1	N23-1
Total Road Length Improvement Length Proposed Pavement Type	EE	3.2 2.5 7.0-0v1	5.0 1.9 6.0-0vi	2.7 1.1 6.0-0v1	4.7 1.1 6.0-0v1	1.8 1.5 6.0-0v1	1.4.1	6.0-0v1 6	2.4 .7-PCC	13.8 13.8 6.0-001 6.0-AC	13.8 4.6 6.0-AC	19.1 13.1 5.0-AC
uenti 00		i i			! ! ! !	t 1 1	i / ! ! ! ! ! !	 		' 		
Stripping 102 Roadway & Drainage Excavation			1 1	1 1	1 1	1 1	ιι	1 1	900	36945	5145	1 ~4
200 Aggregate Subbase		2000		165	165	225	រល់ (ស (450	2288	12182	2520 10836	30752
rieparation of Prev. Road (SFV1) Preparation of Prev. Road (ASPD) Proparation of Prev. Road (ASPD)		14000	` ;	00 I I	0000	4 0 0 1 1	0100	000	9. 9. 1.	35400	36800	כנ
		2007	7	0099.	0099	0006	3000	18000	1 ;	47400	1 1	1 1
202 Crushed Aggregate Base Course ; m 300 Crushed Aggr. Surface Course ; m	a e 	, ,			1 1	1 1	ı t	i J	1 1	7965	6210	17685
301 Bituminous Prime Coat	E.E.	21		00	eo :	11	10	22	ı	66	33	94
305 Bituminous Macadam Pavement	. m.) I	1	1			1 1	ł i		1 1
310 Bitum, Concrete Surface Cour	5e M.T.	1 1925	.~	726	726	066	924	1980	1	9108	3036	8646
304 Double Bitum.Surface Treatm 311-1 PCC Pavement (t=23 cm)	entl m2	. I) /	1 1	4 T	t 1	ŧ 1	, 1	1 T	, 1	
311-2 PCC Pavement (t=20 cm)	- m2	i 		1	i	t	1		5360	1	1	ı
	- m2	1 ·	1	1	1	1	1	1	1,	1 }	1	
		7.5	90	000 000	00 %	4. ໜ ພ	4. Ծ ն	066	۵ ۵	420	က တ က က	390
504 Grouted Hiprap	EE -		' 1	' '	٠,	,	,	1.		1	· 1	1 1
Side Ditch (Grouted Riprap)	E	1		1	ı	ï	1	ı	t	2900	700	7600
Slope Protection (Cut Slope Slope Protection (Ambank'+	E E	1 1	1 1	1 1	1 1				1 1) (
2-lane Bridge, Superstructure	E E				ı	•		i- I		t		i 1
1-lane Bridge, Superstructur	E	1	į	í	ŀ	t	ļ	ı	.1	1	t	1
2-lane Bridge, Abutment	හ භ	1	1	•	1	•	1		1	•	•	•,
imlane Bridge, Abutment 2-lane Bridge, Pier	TOBEL COST		1 1	1 1			. 1	1 1	1 1	, ,	1 1	1 1
1-lane Bridge, Pler	-E3	1	; ,	I	ı	,	ι	ì	1	1	1	•
2-lane Spiliway	E 	1	1	ı	•	1	1	1	1	i	١,	1
1-Lane Spillway	E	1	1	ı	F .	1		i	· Ł	ŧ	1	ı
1-cell RCBC	E E			, 1 1	.	1 1	E 1	ı	ı	1		1 , 1
	# CO		1 1	1 ;	•		ι Ι	ı	1	1	(1
Wingwall for 2-cell RCBC	2 4. 2 0 2 0 2 0 2 0	1 (1 1	1 1	1 1	1 1	1 E	1 1		1 1	1 1	. ,
	.8.		۳4	7	7	7	1	٦	1	H	H	-
Instruction Cost		3.89	2,58	1.42	1.42	1.95	1.87	3.89	2.38	26.11	11.17	37.79
Bridge Construction Cost	Σ:	०	9,1	00.	00.	00.	00.	00.	0.	٠,	00	00.
lotal construction cost Road Construction Cost/Imprit km	2, 2		20.0	1.99	1.42	1.00 0.00	1.87		2 2 2 2 2 2	25.13	11.17	37.79
al Construction Cost/To	×	. 63	. 13	 	30.	1.08	.33	, m	o.	9 00	? ≪ •	1.98
	1 1 1 1 1 1 1 1		1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1		1 1 1 1 1	1 1 1 1

TABLE 5.1 - 4 (2)
Quantity and Construction Cost

	 	Unit	N1-4	P3-1	N1 - 5	P3+2	N3-1	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	P18-1	P2-1		B11-6	B11-5
Road Length vement Length sed Pavement T	1 1	EE	32.2 30.1 6.0-0v1 6.0-BMP 6.0-GRV 6.0-PCC	6.0-GRV	5.9 4.2 6.0-PCC 6.0-GRV	4.0 4.0 6.0-GRV	5.0 6.0-0vl 5.0-0vl	4.5 2.8 5.0-0v1 5.0-0v1	7.0 4.7 6.0-0v1 6.0-BMP	1.2 1.2 6.0-GRV	6.0-BMP 4	2.5 2.5 0.0 0.8 0.0	5.5 5.5 4.0-GRV
	Grubbing	E	E	; ; ; ; ; ;	1 1 1 1 1 1 1 1	27000	 	;) ;)	!		 	 	! ! !
Stripping	2000	e i	0 1 0 7 7 1	1 +	1 6	2700	1 3	1 11		t c	יו ער ער ער	100	c
ಕ	idege Excavation	2 65	4319	~ ເລ	1008	ເທ		0677		7864	00007	825	1324
	ase	E E	က	ID.	46	2640	420	834		462	6109	1150	S)
Preparation of Preparation of	Preparation of Prev.Road(Grv1)	E £	115920	ري ا ک	22	13900	8400	0088	6300	4620	23568	9700	Ç)
Preparation of	Preparation of Pave.Surf. (PCC)	1 2 5	3				•	•	1	: 1	1	•	ŀ
Preparation of	Pave.Surf. (AC)	3E	12600	1		ı	22800	14000	7	ı	1 4	1	•
202 Crushed Aggregs 300 Crushed Aggr. 5	Crushed Aggregate Base Course Crushed Aggr. Surface Course	2 6	7161	1710	2880	3600	1 1	307		630	3785	1500	2940
301 Bituminous Prin	me Coat	Σ.Τ.	99	•) ',	2 1	27	1.9		2 1	23		,
302 Bituminous Taci	k Coat	ž.	•	,	, 1	1	ı	1		1	ì	ı	1
305 Bituminous Mac.	adam Pavement	Ë	42000	ı	ı	1	1	1800		•	22200	1	•
310 Bitum Concrete	Surface Course		1386	1 1	E :	1 :	2508	1540			1 1	1 !	1 (
311-1 PCC Payenent (1	CHILDRON TACKLERIC	1 E	1 1		1	1	. 1	ř 1		1 1	· •		1
PCC Pavement	t=20 cm)	2E	12000	1	3900	1		1		1	ŧ	ı	•
	t=18 cm)	35 E	,	ŀ	ı	,	1	1		t	•	1	1
	(e)	ຣຸ	844	60	106	150	120	96		43	105	4	80
FOA CHONTAGE BENTON	Teadwall for KCFC (dla.91088) ;	Set 1	09	4	æδ	01	∞	φ.		e 6	2	co.	10
	outed Riprap)	2 6	11400	450	1000	1300	1 1	300		901	3300	1 1	1
Slope Protection (Cut. Slope)	on (Cut. Slope)	E	120	•	1		•	,		ı	1	1	1
Slope Protection	on (Embank't Sl)	E	40	Ì	•	•	1	1		1	1	t	
2-lane Bridge,	Superstructure	E 1	ı	1	ı	!	ı	9	1	1	10	ı	•
2-lane Bridge.	e orighe, buperstructure : P Bridge, Abutment	7 E		. ,	i 3	1	1 1	, ~	t t		۱ ،		
1-lane Bridge,	Abutment	Each	•	•	1	ı	•	,	1	·	1	1	ı
2-lane Bridge,	Pier	Each	1	١	1	ı	•	1	4		•	ι	•
1-lane Bridge.	Pier	Each	1	•	ı	1	ı	1	ı	1	ŀ	•	1
Z TENG ONLINES	× :	E	•	ı	•	e o	ŀ	1-	•	ı	•		
1-16:00 00:11 1 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		= =		1 1	1 1	۱ ۱	1 1	וו	1 1	1 1	1 1	30	70
	-	: 6	,	•	1	•	1	1	ı t	. 1		1	•
L	-cell RCBC	Set	1	,	ı	ı	•	1	ı	,	ı	t	•
Wingwall for 2-	2-cell RCBC t	Set	•	1	1	i	ì	1	•	ı	ı	•	ŧ
Miscellaneous		1.8.1	1	F-1	- 1	I		F !	r={	1	F-1	1	FT
Road Construction Cost		۵. خ	45.92	1.46	4.31	4.73	4.88	3.78	7.15	2.11	ι φ	1.24	2.57
Total Construction Cost	1000	Σ. Δ. Δ.	o, c	0.4	o.	٠: ۲	۰.	Ö	•	0:	o, c	. 40	. 6
Road Construction Cost/Imprit km	st/impr't km		10.42	7.7	100	18 8	4. 00. 00.	~ ~	1 . 10	3 01	9.90	-1 -1	, s. s.
Total Construction Cost/Total km	ust/Total km	ı, ı,	4	77		7	· o	0		1.75	1.90	9 60	19.
1111111111111		!	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		111111	1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		111111	1 1 1 1 1 1 1 1 1		1 1 1 1

TABLE 5.1 - 4 (3) Quantity and Construction Cost

RIZAL

Total	۱.	1 1 1	111111			1 1 1 1 1
	Road Length	E		4	<u> </u>	
Impro	vement Length	چ د	`			,
040 L	sea ravenent	· :	6.0-AC 6.0-AC 6.0-PCC	6.0-BMP 4.0-GRV	6.0-FCC 6.0-GRV	o 4.
		1	; 1 1 1 1 1 1 1	: ! ! ! !	 	! ! ! !
100	Clearing & Grubbing	ě		i	ı	1
٠	Stripping	E	1	!	5	,
102	SAMEY & Drainage Excavation	E	7354	7	274	ť
104	row	 E	· • •	1489	11589	1258
200	gregate Subbase	e .	7, 85	- 4	474	2 2
) }	estation of Prev Boad (Grv1)	2 C	18400	10	100	3 (
	earstion of Prev. Road (Asph)	E		, rc) 1 }	3
	reparation of Pave Surf. (PCC)	1 E	i	}	٠,	6000
	ation of Pave. Surf. (AC)	2 (5	9		,))
02	ate Base Course	E	3240	\neg	1	1
00	Surface Course	6	1	2340	3960	2820
	ne Coat	1	29	,	1	7
20	K Coat	X.T.	•	í	1	ı
05	adam Pavement	m2	i	3600	1	• 1
10	Surface Course	Υ.	2640	1	ı	660
90	urface Treatment	Ę	,	1	ı	ì
11-1	PCC Pavement (1=23 cm)	, C	•	ì	,	
11-2	PCC Pavement (tm20 cm)	: E	200	,1	25800	,
E - E	PCC Pavement (t=18 cm)) I	ı	,	1
00	· · · · · · · · · · · · · · · · · · ·	Е		79	24.5	102
) .)	Headwall for RCPC (dia.910mm)	Set	000	9 67	23	701
504		23	1	٠,	85	
	outed Riprap)	E	1000	500	1700	ì
	on (Cut Slope)	E	1	1	1	1
	on (Embank't S1)	=	, t	t	1	1
	Superstructure		1	1	•	1
	Superstructure	<u>=</u>	.1	•	•	ı
	Abutment	Each!	ı	ı	1	•
	Abutment	Each!	•	1	•	•
	Pier	Each	J	1	•	1
	e L	Each!	J		•	ľ
	2-lane Spillway	 E	1	1	9	1
	1-] ane Spillway	<u></u>	ı	16	1	1
	1-cell RCBC	 e	1	1	•	,
		 E	1	1	•	1
	Wingwall for 1-cell RCBC	Set	i	ļ	,	1
	ngwall for 2-cell RCB	Set 5	1	ı	1	,
	scellan		r	~	-	₩
ad	Construction Co		8.15	3.24		3.49
Bridg	Construction	ρ.	Ç	2	C	Ċ
Cotal	Construction Cos	ρ.	8 15	6. 4.	19.86	3.49
Road	Construction Cost/Impr't	, F	1 99			4
[otal	Construction Cost/Tota				•	

5.1.3 Summary of Preliminary Design

Results of preliminary design were summarized in Tables 5.1-5 and 5.1-6 for major and minor roads, respectively.

TABLE 5.1-5 SUMMARY OF PRELIMINARY DESIGN:
Province of Rizal
- Major Roads -

		Type of Improv		
	Rehabilitation/ Improvement - 1	Widening	New Construction	
Primary Major Roads				<u>-</u> -
1. No. of Links	2	-	-	2
2. Total Length (km)	8.2	-	-	8.2
3. Improvement Length (km)	4.4	-	**	4.4
4. Construction Cost (million P)	6.5	-	-	6.5
5. Const. Cost/Imp. Length (MP/km)	1.48	-	•-	1.4
Secondary Major Roads				
1. No. of Links	10	-	-	10
2. Total Length (km)	103.3	-	-	103.3
3. Improvement Length (km)	70.5	-	Fe-	70.5
4. Construction Cost (million P)	133.9	_	-	133.9
5. Const. Cost/Imp. Length (MP/km)	1.90	<u> </u>	-	1.9
Major Roads Total				
1. No. of Links	12	_	_	12
2. Total Length (km)	111.5	-	-	111.5
3. Improvement Length (km)	74.9	•	_	74.9
4. Construction Cost (million P)	140.4	-	-	140.4
5. Const. Cost/Imp. Length (MP/km)	1.87		-	1.8

TABLE 5.1-6 SUMMARY OF PRELIMINARY DESIGN Province of Rizal - Minor Roads -

عبر حدد عدد حدد بعد عدد عدد عدد عدد عدد جدد حدد جدد حدد جدد عدد حدد حدد حدد حدد حدد حدد عدد حدد عدد حدد عدد حدد			
	Type of	Improvement	
	Rehabilitation/ Improvement-1&2/ Widening	Construction	
Minor Roads (National/ Provincial/City)			M. 41. Pag and take and and
 No. of Links Total Length (km) Improvement Length (km) Construction Cost (million P) Const. Cost/Imp. Length (MP/km) 	8 34.7 26.2 40.5		8 34.7 26.2 40.5
Minor Roads (Barangay)			
 No. of Links Total Length (km) Improvement Length (km) Construction Cost (million P) Const. Cost/Imp. Length (MP/km) 	6 32.6 30.5 40.0	- - - -	6 32.6 30.5 40.0
Minor Roads Total			
1. No. of Links 2. Total Length (km) 3. Improvement Length (km) 4. Construction Cost (million 5. Const. Cost/Imp. Length (A		- - - - -	14 67.3 56.7 80.5 1.42

5.2 ECONOMIC EVALUATION

5.2.1 Basic Assumptions

The commonly used cost-benefit analysis was applied under the following basic assumptions:

i) Analysis Period

1991 - Detailed design 1992 - Construction 1993 - Project life (25 years) 2017

- ii) Discount Rate: 15% pa
- iii) Quantified Cost

Initial construction/improvement costs Periodic maintenance costs

iv) Quantified Benefit

Traffic benefit
Development benefit (only for development projects)
Maintenance cost savings

The periodic maintenance costs, or rehabilitation costs, such as overlay, reconstruction and regravelling which will be needed after completion of the project to prolong the pavement life, were treated as project costs in this study, while the difference between routine maintenance costs and total maintenance costs in the "w/o" case was taken into account as a project benefit. In the case where the routine maintenance costs are higher than the "w/o" maintenance costs, the difference is considered as a negative benefit.

5.2.2 Economic Costs

1) Initial Construction/Improvement Costs

The construction costs discussed in Section 5.2.1 are the financial costs and do not include the costs for detailed design and construction supervision. In the cost-benefit analysis, the following economic cost was used:

Construction Cost	100%
-Tax	~15%
+Detailed Design Cost	4%
+Construction Supervision	<u> Cost 6%</u>
Total Economic Cost	95%

In the cost-benefit stream, 4% for detailed design cost was assumed to be spent in 1991 and the remaining 91% in 1992.

2) Periodic Maintenance Costs

Periodic maintenance, or rehabilitation, will be necessary when the riding quality of a pavement decreases to a certain minimum level of acceptability. Table 5.2-1 shows the periodic maintenance assumed in this Study.

TABLE 5.2-1 PERIODIC MAINTENANCE COST ASSUMED IN THE ANALYSIS

Surface Type	Periodic Maintenance Work		1) Financial Cost (millionF/Km	Cost
Gravel	10cm Regravelling	When thickness of gravel is reduced by 10cm, assuming 1.5cm	4.0 m Gravel: P 0.210 M 6.0 m	Cost
ВМР	5.5cm BMP Overlay		P 0.830 M	85% of Cost
AC	5 cm AC Overlay	When pavement servic ability decreases to 2.0, assuming 800,00 ESAL or 2,300,000 ve repetitions (8-20 years)	₽ 1.170 M 0 hicle	85% of Cost
PCC	5 cm AC Overlay	When pavement servic ability decreases to 2.0, assuming 2,000, ESAL or 5,700,000 vehicle repetitions (10-25 years)	P 1.200 M	Cost

Note: 1) As of April 1990

5.2.3 Benefits

1) Traffic Benefits

a) Traffic Cust

Basic Traffic Costs

The basic traffic costs were provided by PMO-FS, as shown in Table 5.2-2.

TABLE 5.2-2 BASIC TRAFFIC COSTS EXCLUDING TAX
(AS OF DECEMBER 1989)

	Running Cost (炉/km)	Fixed Cost (P/hour)	Time Cost (P/hour)
Car/Van	1.75	6.30	17.70
Jeepney	1.12	23.76	26.40
Bus	2.81	35.64	95.04
Truck	3.48	38.88	0
Motor-			
tricycle	0.36	8.76	4.98
Motorcycle	0.31	0.72	8.34

Actual Traffic Costs

The actual traffic costs were estimated according to the dl-system concerning running costs and the dt-system with regard to fixed and time costs. The dl-values and operating speed for different surface conditions are shown in Tables 5.2-3 and 5.2-4, respectively.

TABLE 5.2-3 DL-VALUES IN KM PER ACTUAL KM

Surface Ty Surface Condition	/pe PCC/AC	BMP/DBST	Gravel	Earth
Good	()	0.14	0.29	_
Fair	0.17	0.38	0.60	_
Bad	0.43	0.65	0.87	1.20
Very Bad	0.89	1.04	1.20	1.56
lmpassable	1.73	1.73	1.73	1.73

TABLE 5.2-4 OPERATING SPEED IN KM/HOUR

Surface Ty					. •							
Surface	PO	CC/A	١C	BMI	3/DI	BST	(Irav	ze l	1	£ar i	l h
Condition	O۷	TR	MC	OV	TR	MC	OV	TR	MC	ΟV	TR	MC
والمرابية المرابطة ال			- -									
Good	65	40	60	63	38	55	6.0	35	50		414	
Fair	55	35	50	53	33	45	50	30	40	-	-	Sim.
Bad	30	20	20	30	20	20	30	20	20	20	10	10
Very Bad	20	10	10	20	10	10	20	10	10	10	5	5
Impassable	10	5	5	10	5	5	10	5	5	10	5	- 5

Note: OV = Car/Jeepney/Bus/Truck

TR = Motor-tricycle MC = Motorcycle

Traffic Costs of Other Transport Modes

In addition to the land-based motorized vehicles, the traffic costs of other modes were estimated as shown in Table 5.2-5.

TABLE 5.2-5 TRAFFIC COST OF OTHER MODES (COMMON TO ALL SURFACE TYPES AND CONDITIONS)

	
Mode	Traffic Cost in P/Km
Animal Drawn	4.0
Walking (head loading)	1.2
Banca Boat	2.25
	

b) Traffic Benefits in Traffic Projects

Traffic on the project roads wwas broken down into four categories: normal traffic, diverted traffic-1, diverted traffic-2 and generated traffic.

The traffic benefits were estimated as follows:

Normal Difference in traffic Traffic between "w/o" and "with" cases. The change in traffic costs results not only from the improvement of surface lype and condition but also from consequent change modal distribution.

- Traffic-1 along the "w/o" route and those along the "with" route. Where diverted traffic passes through two or more project roads, the benefits were allocated to each road in proportion to length.
- iii) Diverted Traffic-2 and Generated Traffic:

 Half of the difference in traffic
 costs between "w/o" and "with"
 cases. This is the commonly used
 approximation.

Traffic costs were calculated assuming the following surface conditions:

"W/O" Case: Present surface condition is maintained.
"With" Case: Gravel/BMP are maintained in a fair condition.

AC/PCC are maintained in a good condition

c) Traffic Benefits in Development Projects

No diverted traffic is expected in most development projects. The benefits from normal traffic generated traffic were estimated in the same way as used for the traffic projects paying attention to the following:

- i) The travel distance considered in the benefit calculation is the distrance from the average gravity point of transport (gravity of population for passenger traffic and non-agricultural traffic and gravity of agricultural production for agricultural traffic) to the connecting point with a higher road.
- ii) The benefit from generated agricultural traffic is not considered as a traffic benefit because it is included in the development benefit. Therefore, the generated traffic benefits are only from passenger traffic and non-agricultural traffic.

2) Development Benefits

Development benefits were assessed using the producer surplus approach, under the hypothesis that substantial road improvement which removes constraints on development will permit and encourage farmers to adopt modern agricultural techniques and inputs. The development benefit consists of the difference in the

net value of total production (farmgate value less production costs) between the "w/o" and "with" cases. Changes in the volume and value of agricultural production will be achieved by one or more of the following:

- i) Increase in cultivated area
- ii) Increase in yield
- iii) Increase in intensity of land use through increasing the number of harvest or intercropping
- iv) Changes in the type of crop

Using the data obtained from the socio-economic survey, development benefits were calculated from the following equation:

Benefit = PRODw(FGPw-CPw)-(FGPw-CPw/o)

where, PRODw = Production in metric tons, with PRODw/o= Production in metric tons, w/o

FGPw = Farmgate price in pesos per metric ton, with

CPw = Production cost in pesos per metric

ton, with

CPw/o = Production cost in pesos per metric ton, w/o

The increase in farmgate price resulting from reduction in traffic cost is not included in the development benefits, because it is considered a part of the traffic benefits.

Table 5.2-6 presents the summary of demographic and agricultural data.

TABLE 5.2 - 6 (1) Summary of Demographic and Agricultural Data

IRR	?	35.5 19.8	8446 9896	88.00 1.00 1.00 1.00 1.00
- ₹	w/o with	ļ	601 616 1 290 310 1 196 206 1 102 128 452 391	11 16 11 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18
p Area (ha)	Major Crop	93(Palay)		
1990 Crop Area		101(Palay) 150(Coco.) 38(Palay)	300(Banan) 38(Vege.) 63(Banan)	62 (Banan) 125 (Banan) 95 (Palay) 125 (Palay) 187 (Banan)
	-	526 (Banan) 438 (Banan) 213 (Banan)	238(Banan) 38(Palay) 413(Palay) 182(Palay) 501(Palay)	75(Palay) 175(Palay) 143(Banan) 156(Banan) 288(Palay) 75(Palay)
	Total	627 1 681 1 251 1	238 7138 564	137 1 300 1 238 1 475 1
	/ km	1082 724 343	2788 2037 964 4159 3197	245 394 3717 593 430
1990	Total.		13938 9168 6745 16624	2168 118584 2729 3745
Road	(Km)	1.9	0 4 7 4 8 0 8 0 2 5	1 2 2 2 4 8 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Road		P3-1 N1-5 P3-2	N3-1 P5-1 P2-1 N4-3	B11-6 B11-6 B1-1 B1-1 B9-2 B7-2 B0-1
Type	Impr't	Rehab/		Rehab/I
Class	ਚ	Minor (Nat'1/ Prov'1)		Minor (Baran- gay)

3) Maintenance Cost Savings

The difference in maintenance costs between the "w/o" and "with" cases is considered one of the benefits. Maintenance costs in the "w/o" case were estimated based on the current EMK system, while maintenance costs in the "with" case were estimated as shown in b) below. It is noted that periodic maintenance cost in the "with" case is not included in the calculation of maintenance cost savings, because it is treated as a part of project costs.

In the case where the routine maintenance costs in the "with" case are higher than the maintenance costs in the "w/o" case (especially in the case of new construction, the maintenance cost in the "w/o" case in zero), the difference is considered as a negative benefit).

a) Maintenance Cost in "w/o" Case

According to the current EMK system, the annual maintenance cost per km was estimated as basic maintenance cost of P17,143.00/km times the EMK factor as shown in Table 5.2-7.

TABLE 5.2-7
EMK FACTOR FOR DIFFERENT SURFACING AND AADT

AAD'	Γ¦				-				
Surface Type	1	25	50	75	100	150	200	300	400
Earth	10.35	1 0.40	1 0.50	1	!	1	!	1	1 1
Gravel	10.40	1 0.60	1 0.90	1.40	1.90	0 2.2	0 2.4	0 2.5	0 2.601
AAD Surface		400	600 1	000	1500	2000	3000	5000	10000
Type	 								~~ ~~ ~~~~
Bituminous			1 2.10						
Gravel	10.50	1 0.60	. 0.80	+0.89	5 : N 90	nina	5. ! 1 O	0 ! 1 0	5 ! 1 10!

b) Routine Maintenance Costs in "with" Case

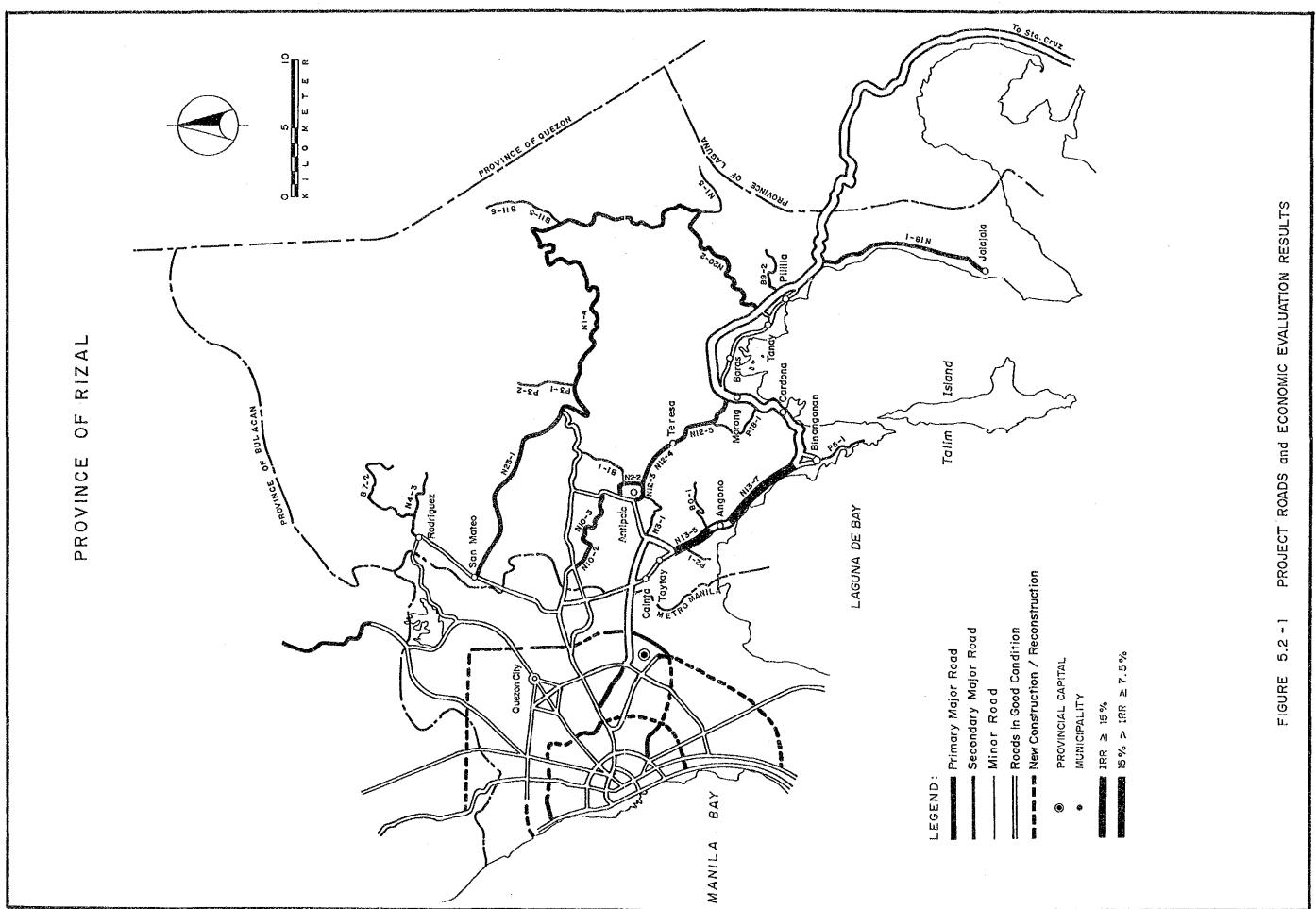

The costs deemed necessary to maintain the improved roads in a fair condition were estimated as shown in Table 5.2-8.

TABLE 5.2-8 ESTIMATED ROUTINE MAINTENANCE COSTS

Surface Type	Operation	Annual Cost (peso/km)
Gravel	Vegetation Control Ditch Cleaning Grading Pothole Repair	1,150 4.0 m Gravel: 2,650 + 40 AADT 6.0 m Gravel: 3,000 + 45 AADT
	Total	4.0 m Gravel: 3,800 + 45 AADT 6.0 m Gravel: 4,150 + 45 AADT
ВМР	Vegetation Control Ditch Cleaning Shoulder Repair Patching Regravelling Shoulder	1,150 1,100 2,150 8,000 + 7.5 AADT 8,600
	Total	21,000 + 7.5 AADT
AC	Vegetation Control Ditch Cleaning Shoulder Repair Crack and Joint Sealing Regravelling Shoulder	1,150 1,100 2,150 9,300 8,600
	Total	20,400
PCC	Vegetation Control Ditch Cleaning Shoulder Repair Crack and Joint Sealing Regravelling Shoulder	1,150 1,100 2,150 5,600 8,600
	Total	18,600

5.2.4 Economic Evaluation

Results of economic evaluation are summarized in Table 5.2-9 and illustrated in Figure 5.2-1. Results of economic evaluation of each project road is presented in Table 5.2-10.

FABLE 5.2 - 9 (1)
Road Length and Construction Cost

RIZAL

Class	Range		Rehabi	Rehabilitation/Impr	idwi/uc	rovement	t-1		Impr	mprovement-2	* *	dening		 	Z .	New Cons	Construction	ion	
Road	IRR		No. Total	. Total Improv Road Length Length Cost		Bridge Cost	Total	N N	Total	Improv Length	Road	Bridge Cost	Total	, , ,	Total Length	Improv Length	Road Cost	Bridge	Total
Primary Major	15< 10-15 7.5-10	N 	8	l 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 • 1 1 1 7 • 1 1 1 7	, , , , , , , , , , , , , , , , , , , ,			 	 			j] 		 	1111	l.
3 8 1 1 1	Total 154 10-15	10101	9.2	4.4	88.0		88.0	! ! ! ! ! ! ! ! ! ! ! !		; ; 1 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;]					1	1 1 1 1 1 1 1 1 1		
Second'y Major	I	1 0 7	32.2	8 7	45.9	1 1 1 1 1 1 1 1 1 1 1 1	45.9	1 1 1 1	1 1 3 1,	1 1 1 1	1 1 1 1	1 1 1 ; ; ; 1	1 1 1 1	t i t	1 1 1 1	1 1 1 1	 		1 1 1
Minor (Nat'1/ Prov'1)	15< 10-15 7.5-10 7.5-10	1 44160	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		15.4	3.1.2	16.6		;			1	t 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1	;	11111	
Minor (Baran- gay)	15< 10-15 7.5-10 	101-010	13.0	14.	23.2	2	13.2	· · · · · · · · · · · · · · · · · · ·	1				1 1 1 1 1 1 1		! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	1	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;		
Total	15< 10-15 7.5-10 77.5	26	1	109.1 4.6 60.6 50.6 131.6	121.8 3.23.8 86.1 86.1	40000	2.7.2 88.3.5 2.00.9				; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	-				1			1 1,1 1

	RIZA
	Construction Cost
9 (2	Snd
TABLE 5.2 -	Road Length

		Total Length		6		
on a b c c c c c c c c c c c c c c c c c c			gth	Cost	Briage Cost	Cost
ond 'y 7 : 5 : 10 15 10 10	1 2 1	• & 	 4	I • Ι Ιφ		1 LD 1 + 1 1 1 1 - 10 1
ond 'y 7.5-105 15.7		1 00	i ·		! ! ! ! !	9
ov 1) 7.5-1 10.1 10.1 10.1 10.1 11.1 10.1 10.1	ه ۱ ۱ تا ا	71.	0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(4) (8) (9) (1) (1) (1) (1)	1111	8 4 8 70
ov 1) 7.5-11 10-1 10-1 10-1 10-1 10-1 10-1 10-1	1 10	103.	5			to.
or 10-1	1 4 4 1 6 1	1 4 4 1 3 1 3 1 3 1 3 1	2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	38 39	2.1	16.
or 10-1	 	(C)	26.2	l w	3.4	0
y) (Y	i 	1 4 5 1 6 4 8	1 - 4 - 1 - 6 - 1 - 6 -	12.	1 1	7 m
O	,	32.	() ကု	37.	2	40
5< 0-1 5-1 <7	 	0440	မထက္မ	121.8 3.8 3.2 86.1		
Total	1 2		1		i •	i •

TABLE 5.2 - 10 (1)
Summary of Economic Analysis

Road Impr't Number w/o with Total Improve Frimary Rehab N13-5 1	AADT Length	(km)		(Mp/km)		Benefi	t (Mp/k	(E	- !	Econom	Indi	cator
Primary Rehab/ NN3-5 ****15597 3.2 2.5(7. Major Imp-1 NN3-7 7727 7750 5.0 1.9(6. Second'y Rehab/ NN0-2 4828 4824 2.7 1.1(6. Major Imp-1 NN2-3 4828 4824 2.7 1.1(6. NN2-2 10.13 4352 4430 6.1 1.4(6. NN2-2 10.13 971 13.8 7.9(6. NN2-2 10.13 971 13.8 7.9(6. NN2-3 10.13 971 13.8 7.9(6. NN2-1 NN2-1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10	with Tote	ovement	st-Per t. Mai	otal	rmal Div	ខ្មែ	- Deve-	Maint sav g	લા		B/C	IRR (%)
Second 'y Rehab/ Ni0-2 4828 4824 4.7 1.1(6) Major Ni2-3 4828 4824 4.7 1.1(6) Ni2-4 4352 4430 1.8 1.5(6) Ni2-5 4430 6.7 3.0(6) Ni2-5 1205 2551 2.4 8(6) Ni2-7 1013 971 13.8 7.9(6) Ni8-1 73 732 13.8 4.6(6) Ni9-1 88-1 52 814 19.1 13.1(6) Ninor 88-1 88-1 88-1 88.7 88.7 88.7 88.7 88.6 88.7 88.7 88.6 68.7 88.6 88.7 88.7	5597 3.2 2 7750 1 5.0 1	5(7.0-0v1) 9(6.0-0v1)	1.29 .33	1.62	88			0.02	62.72 31.81		ဖွ	100.0
Minor Rehab/ B11-6	4824 2.7	(6.0-0v)	. 07	1 4.2	3.87	0.	! ! !	1	100	1 4 4	7.1	100
N12-4 4352 4430 6.1 1.4(6.	430 1 1.8 1	1AO-0-9	70.	44	9.11				, c.	4	1.0	900
Minor Rehab/ PS-1 196 206 7,0 1.8(6. Prov'l) PS-1 196 206 31 2.4 5.6(6. Prov'l) PS-1 196 206 31 3.2 2 3.1 (6. Prov'l) PS-1 196 206 31 3.2 2 3.2 (6. Prov'l) PS-1 196 206 31 3.2 2 3.2 (6. Prov'l) PS-1 196 206 31 3.2 3.2 3.2 (6. Prov'l) PS-1 196 206 31 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2	430 6.1 1	(6.0-0v)	.111	4.4	5.37	-		O -	4.0	ကြစ		60
Minor Rehab/ P3-1 102 128 1.2 7.066. Minor Rehab/ P3-1 59 313 5.9 1.066. Prov'l) P5-1 68 76 4.0 4.066. Minor Rehab/ P5-1 290 310 4.5 1.566. Minor Rehab/ B11-6 11 16 2.5 2.564. Minor Rehab/ B11-6 11 16 2.0 2.564. Minor Rehab/ B11-6 11 16 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	551 2.4	(6.7-PCC	. 48	* [~	2.73	⊣ 🌣		11.	. 4	17.2	0.0	9 00
N18-1 733 732 13.8 4.6(6. N23-1 52 814 19.1 13.1(6. N1-4 6 29 32.2 2.1(6. N1-4 6 29 32.2 2.1(6. N2-1 N1-5 99 113 5.9 1.9(6. N3-1 N3-1 601 616 5.0 1.8(6. N3-1 N3-1 601 616 5.0 1.8(6. N3-1 N3-1 102 128 1.2 2.4(5. N3-1 N4-3 452 391 5.2 3.7(6. N3-1 N3-1 N3-1 106 5.0 1.6(6. N3-1	71 1 13.8 7	(6.0-0v (6.0-AC	.57 .2	۲.	99.		ì		۲.			o,
Minor Rehab/ B11-6 19 1 19 1 13 1 16 16 16 16 16 16 16 16 16 16 16 16 1	32 1 13.8	(6.0-AC	. 02	-1	35	0.		0.	40	о c		
Minor Rehab/ P3-1 68 76 1.9 1.9 1.0 66 1.9 1.9 1.0 66 1.9 1.9 1.0 66 1.9 1.9 1.0 66 1.9 1.0 66 1.0 1.0 66 1.0	14 19.1 13 29 32.2	(6.0-AC	1.27 .14	1.43	960	- 6.25 05 .04	l i	. 03	.10	1-39.3	8. r.	
Minor Rehab/ P3-1 68 76 1.9 1.9(6. Nat'1/ Imp-1 N1-5 99 113 5.9 1.0(6. Prov'1)		(6.0-B (6.0-G										
Nat 1/ Imp-1 N1-5 99 113 5.9 1.0(6. Prov'1)	76 1.9	(6.0-GF	.64 .25	. 89	. 44		2.39	1,20	2.92	6.8	8.8	36.5
P3-2	13 5.9	(6.0-PC	5.		o.	0.	-	0	4.	•	•	en en
N3-1 601 516 5.0 1.8(6. P5-1 290 310 4.5 1.5(6. P18-1 196 206 7.0 1.8(6. P2-1 102 128 1.2 7(6. N4-3 452 391 5.2 3.7(6. Rehab/ B11-6 11 16 2.5 2.5(4. B1-6 11 16 5.5 4.9(4. B1-1 458 540 5.0 1.6(6. B9-2 78 87 4.6 7(6. B7-2 222 246 8.7 4.3(6. 4.4(6.	6 1 4.0	(6.0-GF	1.23 .20	1.43	68.	10	.79	1 00.	1.78	1.4	1.2	18.1
P5-1 290 310 4.5 1.5(6. P18-1 196 206 7.0 1.8(6. P2-1 102 128 1.2 7(6. N4-3 452 391 5.2 3.7(6. Rehab/ B11-6 11 16 2.5 2.5(4.) Imp-1 B11-5 45 61 5.5 4.9(4. B9-2 78 87 4.6 7(6.	5.0	(6.0-07	97		ıc.	•			2	φ.	•	Ġ
P18-1 196 206 7.0 .3(6	10 1 4.5	(6.0-04	1.42 .07	1.50	1.42	05	00.	00.	1.47		1.0	14.8
P18-1 196 206 7.0 1.8(6. 1.2 1.3 1	 -	(5.0-0v						•• ••				
P2-1 102 128 1.2 7(6.5) 1.2 7(6.5) 1.2 7(6.5) 1.2 7(6.5) 1.2 7(6.5) 1.2 7(6.5) 1.2 7(6.5) 1.3 7(6.5) 1.3 7(6.5) 1.3 7(6.5) 1.3 7(6.5)	1 0.7 1 90	(6.0-04	1.26 .13	1.40	36	02	.28	03	. 6	-3.6	ιĠ	4.9
P2-1 102 128 1.2 .7(6. .	1	(5.0-04										
Rehab B11-6	28 1.2 91 5.2 3	(6.0-GF	2.50 .32	2.82	. 70		• •	00	88.	7 1	4.63	9.0
- Imp-1 B11-5 45 61 5.5 4.9(4. B1-1 458 540 5.0 1.6(6. B9-2 78 87 4.6 .7(6. B7-2 222 246 8.7 4.3(6. B7-2 222 246 8.7 4.3(6.	6 1 2.5 2	5.(4,0-GF	54 .1	1 10	74	.2	1.1	10	1		١ .	9
B9-2 78 87 4.6 .7(6.	61 - 5.5	9(4.0-GF		₹ 0	80 (, .		4		3.1	36.3
78 87 4.6 .7(6. 222 246 8.7 4.3(6.		4 (6.0-AC	· ·	0	D G	•	•		?	•	•	•
222 246 8.7 4.3(6.	7 1 4.6	1(6.0-FCC 7(6.0-BMP	.62 .16	. 78	0	.01	.36	: 00.		-1.2	.7	9.6
0.0)	2	(4.0-GRV	c		u	ć					U	t
· · · · · · · · · · · · · · · · · · ·		(6.0-GRV	•	•	>	•		2	•	•	•	
88 6.3 1.0(6.0	ю ~ 4	0(6.0-0v]	.51 .29	. 80	. 60.	05	00.	27 0, 1	.07	-4.2	•	٥.