PART B STUDY ON LOW-CLASS PAVEMENTS

CHAPTER 7

LOW-CLASS PAVEMENT IN THE PHILIPPINES

7.1 TYPE OF LOW-CLASS PAVEMENT

Low-class pavement, as defined in this Study, refers to pavements which serve for low to medium traffic roads (less than 1,000 vehicles per day). Asphalt Concrete Pavement (AC) and Portland Cement Concrete Pavement (PCC) are generally not considered as low-class pavements. However, AC pavement of 5 cm or less and PCC pavement of 20 cm or less are classified as low-class pavements in this study.

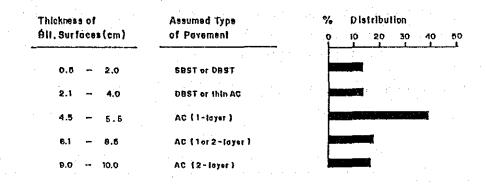
7.1.1 Pavement Types in the Philippines

e de parte de la terre de

(1) Existing Pavement Types

Of a total of 158,000 kms. of public roads in the Philippines, 86% are gravel/earth roads and only 6% are paved with PCC and 8% with bituminous surfaces as shown in Table 7.1-1. About 24% of national roads are paved with PCC, 22% with bituminous surfaces while the rest are still gravel/earth surfaces. About 89% of provincial roads are still gravel/earth surfaces and only 2.5% are paved with PCC and 8.9% with bituminous surfaces. Most of barangay roads (99%) are gravel/earth roads. In general, the majority of rural roads are still gravel/earth roads.

	an a	Тур	e of Paveme	nt	
	PCC	Bituminous	Gravel	Earth	Total
National	6,179.7	5,829.3	13,400.3	734.4	26,143.7
Road	(23.6%)	(22.3%)	(51.3%)	(2.8%)	(100%)
Provincial	714.1	2,584.4	20,477.9	5,215.0	28,991.4
Road	(2.5%)	(8.9%)	(70.6%)	(18.0%)	(100%)
City Road	649.4	2,006.0	1,164.5	164.7	3,984.6
	(16.3%)	(50.3%)	(29.3%)	(4.1%)	(100%)
Municipal	1,676.4	1,574.5	6,383.0	3,224.8	12,858.7
Road	(13.0%)	(12.3%)	(49.6%)	(25.1%)	(100%)
Barangay	229.1	557.7	84,828.9	_	85,685.7
Road	(0.3%)	(0.7%)	(99.0%)	(-)	(100%)
Total	9,518.7	12,551.9	126,254.6	9,338.9	157,664.1
	(6.0%)	(8.0%)	(80.1%)	(5.9%)	(100%)


TABLE 7.1-1 ROAD LENGTH IN 1987 BY TYPE OF PAVEMENT IN THE PHILIPPINES

Source: 1988 DPWH Infrastructure Atlas

There is no statistical data on what types of bituminous surfaces were used. However, the DPWH road inventory of national roads suggests the types of bituminous surfaces as follows (see Table 7.1-2 and Figure 7.1-1):

Thick Surfa Inven	ce	from		Percentage (%)	Assumed Type of Bituminous Surface
0,5		2.0		13.6	SBST or DBST
2.1		4.0	tan an a	13.4	DBST or thin AC
4.5		5.5			AC (one layer)
6.1	-	8.5	an a	17.7	AC (one or two layers)
9.0	-	10.0		16.5	AC (two layers)

It could be said that asphalt concrete surface of about 5 cm is most commonly used among bituminous surfaces, followed by asphalt concrete surface of 6-10 cm thickness and single or double bituminous surface treatment has still low share.

FIGURE 7.1-1 BITUMINOUS PAVEMENT THICKNESS DISTRIBUTION

(2) Pavement Types Suggested by DPWH/DLG Design Guidelines

DPWH Design Guidelines (1984) and DLG Interim Design Guidelines (1981) suggests pavement types for the respective ranges of traffic volume as shown in Table 7.1-3.

TABLE 7.1-2 THICKNESS OF BITUMINOUS SURFACING ON NATIONAL ROARS

As of January 1980-June 1989

والمحديد المحالي المحال										
THICKNESS					LEN	N.G.T.H. (km)				
REGION (Cm)	0. 5-1. 0	1. 2-2. 0	2. 1-2. 54	2.7-4.0	4. 5-5. 0	5. 1-6. 0	6. 1-7. 5	8. 0-8. 5	9. 0-10. 0	(0. 5-10. 0 TOTAL)
1					126.876	54.422	130.677		205.473	517.448
CAR			2. 640	1. 332	170. 642				81. 737	256. 351
R - 11			0.300		11. 712		15.681	9. 378	32.101	69. 172
8 - 111	196	12.415		123.847	143. 216	3. 710	6.914	1.1	89.093	380. 156
NCR		0. 550	-		209.363	9, 994	33.938	5.400	26. 398	285. 643
R - IV A	16 995		12. 548	14 754	512. 983	74. 757	29, 672	9.240	85. 363	756. 312
R - IV B		121.124			188.348	. • .	0.300	1.140	5. 794	316. 706
R – Y		96. 207	92.252		73. 771	10.027	2. 933		40.704	315.894
8 - YI		0. 244	56. 886	128.927	199. 816	81.923	92. 127	88. 584	125.460	113. 961
R - VII	1. 505	238.713		0.752	68.884	134.067	10.472		40.180	494. 573
R - VIII					18.719	3. 890			4. 116	26. 725
R - 1X		135.511	112.826		25.467	0. 477	6. 774			281. 055
R - X	0.982	39. 109	53.943	34. 449	101.734	38. 636		3. 584	34.413	306.850
R - X1				18.577	34.061				22. 29	74. 932
R - X11					1. 800	0.809		4.	8, 87	11. 476
TOTAL	20.443	643.873	331. 395	322. 638	1 887 394	412.712	329.488	117.326	801.99	4. 867. 262
%	0.4	13. 2	6.8	6. 6	38.8	8.5	. 6.8	24	16.5	100.0
Cumulative %	0.4	13. 6	. 20.4	27.0	65.8	74. 3	81.1	83.5	100.0	
					-					

·. . .

SOURCE : 1989 DPWH ROAD INVENTORY

7--3

		Range of Tr	affic Volume (AADT in Opening Ye	ar)	
Guidelines	Under 50	50 - 400	400 - 1,000	1,000 - 2,000	More than 2,000
DPWH Design Guidelines	.Bit. Pre .SBST .DBST	natural or crushed) servative Treat. adam Pavement	Bit. Nacadam Pavement Dense or Open Graded Plant Mix Surface Course Bit. Concrete Surface Course	.Bit. Concrete Surface Course .PCC Pavement	.Bit. Concrete Surface Course .PCC Pavement
DLG Interim Design Guidelines	.Natural Gravel	.Crushed Gravel	.Surface Trealment		

TABLE 7.1-3 PAVEMENT TYPES AND TRAFFIC VOLUME

(3) Pavement Types in DPWH Standard Specifications

Pavement types, whose specifications are described in the 1988 and 1972 DPWH Standard Specifications, are listed in Table 7.1-4.

TABLE 7.1-4 PAVEMENT TYPES IN DPWH STANDARD SPECIFICATIONS

	· · · · · · · · · · · · · · · · · · ·
1988 Standard Specifications	1972 Standard Specifications
 Aggregate Surface Course Bituminous Surface Treatment Bituminous Penetration Macadam Pavement Bituminous Road-Mix Surface Course Bituminous Plant-Mix Surface Course, Cold- Laid Bituminous Concrete Surface Course, Hot- Laid Portland Cement Concrete Pavement 	.Aggregate Surface Course Bituminous Surface Treatment Bituminous Macadam Pavement (Hot As- phalt Type and Emulsified Asphalt) Dense Graded Plant-Mix Surface Course Open-graded Plant- Mix Surface Course Bituminous Con- crete Surface Course Bituminous Preser- vative Treatment Portland Cement Concrete Pavement
	.Rock Asphalt Bound Surface Course

(4) Pavement Types in the Philippines and Low-class Pavements

Based on the discussion in (1), (2) and (3) above, pavement types which are commonly adopted or suggested by the Design Guidelines, can be summarized to be the following six (6) types:

- a) Gravel Surface
- b) Single Bituminous Surface Treatment (SBST)
- c) Double Bituminous Surface Treatment (DBST)
- d) Bituminous Macadam Pavement (BMP)
- e) Asphalt (or Bituminous) Concrete Pavement (AC)
- f) Portland Cement Concrete Pavement (PCC)

As suggested by the DPWH Design Guidelines, pavement types a) through d) are generally applied to low traffic roads of which AADT in the opening year is less than 400 vehicles per day, and thus considered low-class pavement. AC pavement is suggested for roads with AADT of more than 400 vehicles per day. Thin AC pavements of about 5 cm are most commonly used among bituminous surfaces. Therefore, AC pavements of 5 cm or less in thickness are considered as low-class pavement in this Study. Although PCC pavement is suggested for roads with AADT of more than 2,000 vehicles per day, this type of pavement is commonly used for much lesser traffic roads in the country due mainly to availability of materials, equipment requirement, durability of the pavement and lesser maintenance requirement. PCC pavements of no more than 20 cm in thickness are considered low-class pavements in this Study.

7.1.2 General Description of Low-Class Pavement

General descriptions of low-class pavements are given in Table 7.1-5.

(1) Gravel Surfacing (GR)

Used for low-volume traffic roads

On a prepared sub-base, a course of selected quality of sandy gravel or crushed rock/gravel is laid and compacted. The finished thickness is usually 12 to 20 cm depending on the subgrade bearing capacity and traffic condition.

(2) Single Bituminous Surface Treatment (SBST)

Used for low-volume traffic roads

A single layer of liquid asphalt is sprayed, which is immediately followed by spreading and rolling uniform-size stone chippings. The finished thickness is usually 6 to 10 mm. Not durable under wet climatic conditions. TABLE 7.1-5 GENERAL DESCRIPTION OF LOW-CLASS PAVEMENTS

<u></u>			an a			
Remarks	A good gravel surfaced road is only attained by continous maintenance operation	Praduction/preparation of uniform chippings, Well equiped asphalf distributof	or asphait sprayer, Unitorm spraying of asphattic binder,		Stationary asphalt mixing plant is necessary.	
Moterials / Equipment	-Material Well graded sondy grovel and/or crushed gravei/rock with light silt Equipment Rood grader, Rollers	-Mcterial Cut-book/Emuisified asphalt Cut-book Chipping 5-10/10-15 mm - Equipment Asphalt distributor or Asphalt sprayer, Chip spreader, Broomer, Rolters	Material Cut bock/Emulsified asphatt Stene chipping 5-10/10-15/20mm • Equipment Asphatt distributor of Asphatil sprayer, Chip spreader, Broomer, Rollars	-Material Straight/Cut-back/Emulsified asphalt Crushed stone 5-10/10-20/20-30mm -Equipment Asphalt distributor or Asphalt sprayer (Chip spreoder), Broomer, Rotters	.Material Crushed stone 5-10/10-20mm, sand, Mineral tiller Equipment Straight asphalt, asphalt paver, Roliers	-Material Portiand cement Gravel 5-25/25-40mm, Sand, Water Equipment Concrete mixer, Vibrator, Forms
Descriptions	 On a prepared sub-base, a course of selected sondy grovel or crushed rock/ grovel is loid and compacted Finished thickness: usually 12-20cm 	 A single loyer af liquid asphalt is sprayed and immediately uniform size stane chippings are spread and rolted Not so durable under wet climatic condition Finished thickness: usually 6-10mm. 	 Two course surface freatments are placed. The size of second freatment chippings is about the ane-half of the first one. Finished thickness: 12-16mm about the nominal size of the first course Durable under certain climatic condition. 	 First, bose stone course is ploced. Then liquid ospholt is sproyed and penetrates into base stone course and key stones ore spread and rolled. Aspholt sprayed and cover stones spread. rolled. Seal coat is followed. Finished thickness: usually 30-60mm depend on the first base stone course thickness. Ourable under certain climatic condition. 	 Smooth and durable surface is attained for all seasons. Surface thickness; 40mm or 50mm 	• Stable povement is attained. • Surface thickness: 15 - 20 cm
Traffic Volume	Low	Low	Low to Medium	Low to Medium	Medium to Heavy	Medium to Heavy
Povement Structure (Exomples)	CGR Surface/ 12-20cm Sub-base (10cm) Subgrade	Surface Surface Base 10-15cm Subgrade	Surface DBST Surface D-15cm Subgrade	Surface BMP Surface 40 mm Base 10-15cm Sub-base (15 cm) Subgrade	Surface Surface 50 mm Base 10-15cm Sub-base (15cm) Subgrade	Surface / PCC Sub-base [15cm] Sub-base [15cm]
Surface Course { lustration	Grovet Surfacing	Single Bituminous Surface Treatmant 5	Double Bituminous Surface Treatment Enternation	Bituminous Penetration Mocodom	Asphalt Concrete	Portfond Cement Concrate

(3) Double Bituminous Surface Treatment (DBST)

Used for low to medium traffic roads

Two courses of surface treatments are placed. The size of chips used for the second treatment is about one-half of the first one.

그는 그들을 하는 것 같은 것 같은 것 같은 것 같은 것 같이 있는 것 같이 있다.

The finished thickness is 12 to 16 mm which is about the nominal size of the first onc. Provided with a seal coat, this treatment is durable under proper climatic conditions. This type of pavement has been mainly applied to ADB/ IBRD funded provincial road improvement projects. Since this pavement construction requires a well equipped asphalt distributor, chip spreader, and trained skill to achieve a uniform rate of asphaltic binder spraying and chip spreading, DBST has seldom been used for locally funded projects.

(4) Bituminous Penetration Macadam Pavement (BMP)

Used for medium traffic roads

After the first base stone layer is placed, liquid asphalt is sprayed so that it penetrates into the base stone layer, and key stones are then spread and rolled. This is followed by the spraying, spreading and rolling of asphalt and cover stones. Finally a seal coat is laid.

The finished thickness is usually 30 to 60 mm depending on size and thickness of the first base layer stones. This type is durable under proper climatic conditions and traffic volume.

This pavement had been widely used, however, it is seldom used for new construction in recent years because it requires complicated construction process such as spreading and rolling of cover stones with different size in three to four layers and spraying of asphalt in each layer as well as trained skills for these works.

BMP is sometimes used for repairs or minor rehabilitations of existing bituminous pavements.

(5) Asphalt Concrete Pavement (AC)

Used for medium to heavy traffic roads

The hot mix consists of asphalt, crushed stones, sand and mineral filler is placed over the base course and rolled. The finished thickness is usually 4 to 5 cm. The structure is composed of a single AC layer with a granular base. A smooth and durable surface is maintained for all seasons. A stationary asphalt mixing plant is necessary for the production of the asphalt concrete mixture.

(6) Portland Cement Concrete Pavement (PCC) and a conservation and and and and a server as

Used for medium to heavy traffic roads that the expectation of sector devices

Portland cement concrete is placed and cured for 2 weeks, before the opening of road to traffic. The thickness of PCC slabs for low to medium traffic roads is usually 15 to 20 cm. The standard pavement structure consists of a PCC slab with a sandy gravel subbase. A stable pavement is maintained for all seasons. Where plenty of good quality gravels and sands are available, PCC pavement proves generally to be

economical and is used widely. Again the providence of a setting provide distribution of the providence of the the setting of the set and the setting of the set of the setting of the set of the setting of the set of the set setting of the setting of the setting of the setting of the set of the setting of the setting of the setting of the set setting of the setting setting of the setting setting of the set of the set

(a) A set of a set of a set of the set

(a) A set of the se

a por en a de la companya de la comp A de la companya de la

and the second second

7.2 PAVEMENT SURFACE CONDITION SURVEY AND EVALUATION

- 7.2.1 Approach
 - (1) Basic Concept

The pavement surface condition survey was conducted to establish the procedures/ criteria for evaluating the functional performance of pavements (mainly for low-class pavement in rural roads) and identify road sections requiring rehabilitation or reconstruction.

The functional performance of a pavement concerns how well the pavement serves the user. To quantify it, the "serviceability-performance" concept developed by AASHTO was adopted in this study. The serviceability-performance concept is based on five (5) fundamental assumptions, which are summarized below:

- Highways are for the comfort and convenience of the travelling public (User).
- Comfort, or riding quality, is a matter of subjective response of the opinion of the User.

Serviceability can be expressed by the mean of the ratings given by all highway Users and is termed the serviceability rating.

- There are physical characteristics of a pavement which can be measured objectively and which can be related to subjective evaluations. This procedure produces an objective serviceability index.
- Performance can be represented by the serviceability history of a pavement.

The evaluation method developed here will be used for evaluation and analysis of performance of the experimental pavement.

(2) Study Flow

The study flow on the pavement surface condition survey is shown in Figure 7.2-1.

The study is divided into the following four (4) steps:

Step 1 :		Pavement Surface Condition Survey	
		- Present serviceability rating	
		- Rehabilitation requirement rating	
	:	- Roughness measurement	
• •	. :	- Pavement deterioration survey	

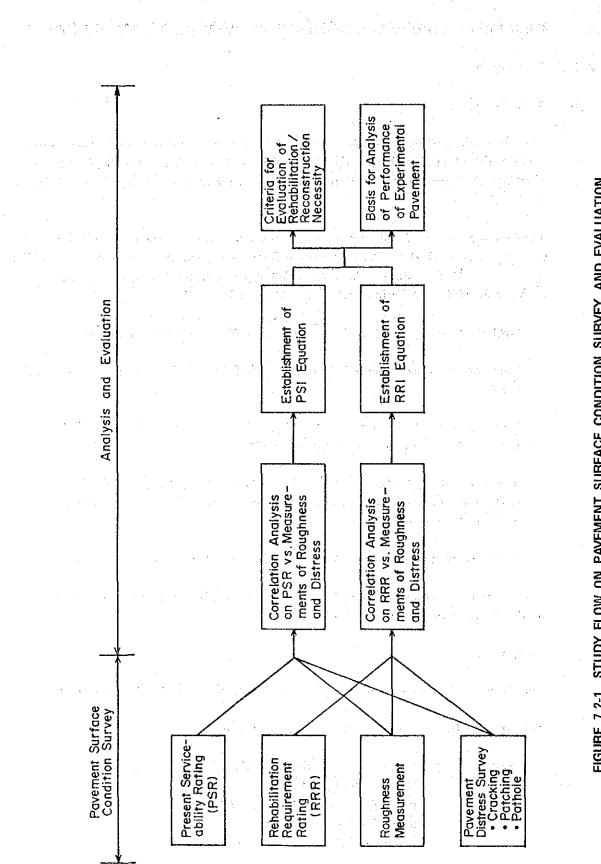


FIGURE 7.2-1 STUDY FLOW ON PAVEMENT SURFACE CONDITION SURVEY AND EVALUATION

Step 2 : Correlation Analysis on:

- Present Serviceability Rating (PSR) vs.

Roughness

Cracking

Patching

Pothole

Rehabilitation Requirement Rating (RRR) vs.

Roughness

Cracking

Patching

Pothole

Step 3 : Establishment of Evaluation Equation

- Present Serviceability Index (PSI)

Rehabilitation Requirement Index (RRI)

Step 4 :

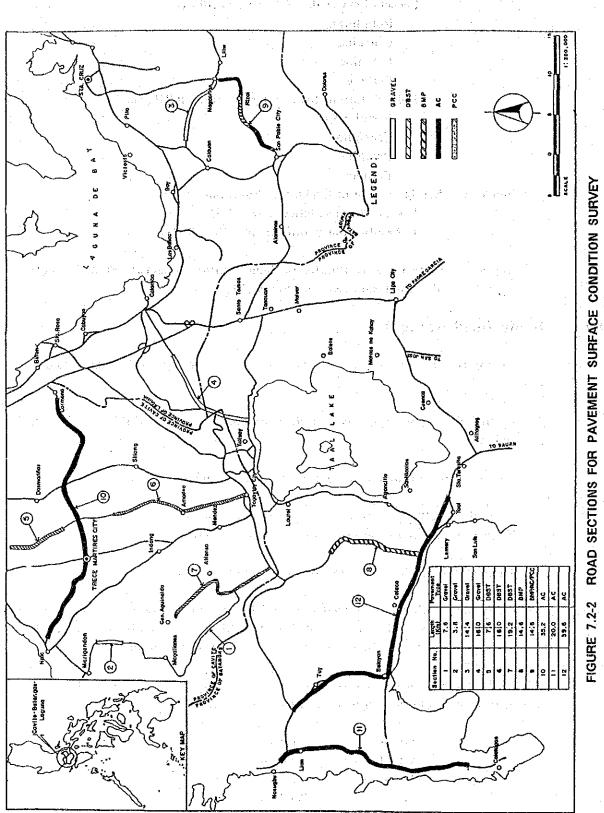
: Criteria for Evaluation of Rehabilitation/Reconstruction Necessity Terminal Serviceability Index (Pt)

7.2.2 Study Road Sections

In selecting the study road sections, the following factors were taken into consideration:

To include various types of low-class pavements; Gravel, SBST, DBST, BMP and AC.

To cover a wide range of surface conditions for each type of pavement.


• To omit peculiarly localized conditions such as extremely strong subgrades, frequent inundations, peculiar traffic conditions, etc.

To be preferably located in the vicinity of Metro Manila.

The study road sections were selected in accordance with the above criteria. However, gravel road in good condition and SBST road could not be found because gravel road is easily aggravated and SBST has seldom been used in the Philippines.

Figure 7.2-2 shows the selected road sections, and Table 7.2-1 presents survey of their characteristics. Total length by type of pavement is as follows:

Grave	41.8 km
DBST	42.8 km
BMP	17.8 km
AC	105.2 km
PCC	1.0 km
Total	208.6 km

s of the providence by the explored of the second second second second second second second second second secon Second second

TABLE 7.2-1 ROAD SECTIONS FOR PAVEMENT SURFACE CONDITION SURVEY

Section No.	Location	Province	Class of Road	Bection Lenght (km)	Type of Road Pavement Widht (m)	Burface Condition
1004 80280010 212	Jct. Alfonso-Magallanes Magallanes-Maragondon Nagcarlan-Calauan Tagaytay-Laguna via Calamba Amadeo-Gen. Trias Amadeo-Gen. Trias Amadeo-Gen. Trias Jct. Alfonso-Gen Aguinaldo Tagaytay JctLemery San Pablo-Rizal Trece Martirez-G.M. Alvares Calatagan-Nasugbu Calaca-Balayan	Cavite Cavite Laguna Batangas/ Laguna Cavite Cavite Batangas Batangas Batangas Batangas	Provincial Provincial National Provincial Provincial National National National National	90054400 90054400 90054400 900564	Gravel 6.2 Gravel 6.2 Gravel 6.2 Gravel 6.2 DBST 6.2 DBST 6.2 BMP/AC/PCC 6.0 AC AC 7.0 AC 6.0	bad bad fair-bad bad-very bad fair-bad fair-bad good-fair good-very bad very good-fair very good-fair
				208		

7.2.3 Pavement Surface Condition Survey

(1) Survey Items and their Application

Table 7.2-2 shows the survey items and their application to each type of pavement.

G	ravel	DBST	BMP	AC	
Present Serviceability Rating (PRS)	0	0	0	0	
Rehabilitation Requirement Rating (RRR) X	0	0	0	:
Roughness	0	Ö	0	0	
Cracking, class 2	Х	Х	Х	0	÷
Cracking, class 3	X	Х	X	0	:
Patching	X	0	0	0	:
Pothole	X	0	0	0	

TABLE 7.2-2 SURVEY ITEMS AND THEIR APPLICATIONS

Note : X not applicable

It is to be noted that :

- Since, in the Philippines, rutting is rarely found in pavements it was not included in the survey.
- Neither does the survey include cracking in DBST and BMP for the reason that cracks quickly develop into potholes and are therefore hard to identify.
- (2) Present Serviceability Rating (PSR)

Present Serviceability is defined as the ability of a specific section of pavement to serve high-speed, high volume, mixed (truck and automobile) traffic in its existing condition.

It is understood that the basis of judgment may be swayed by the tolerableness of the road users, national characters as well as economic conditions of the country since comfort or riding quality is a matter of subjective response or the opinion of the users. Each country, therefore, may have their own rating.

In order to ascertain the basis in the Philippines, the assessment of the present serviceal ility was conducted in November, 1989.

- i) Rating Panel
 - 7 Filipino road users (including 2-drivers) and
 - 1 Japanese Highway Engineer

ii) Rating Method

Each member of the rating panel was asked to rate the serviceability/comfort using their own judgment on every 200 m of the road and record it in the form as shown in Figure 7.2-3, while the survey vehicles were travelling at 60 kph.

The ratings range from 0 to 5, as shown below:

- 5-4 Very Good
- 4-3 Good
- 3-2 Fair
- 2-1 Poor
- 1-2 Very Bad

iii) Present Serviceability Rating (PSR)

PSR, defined as the mean of the individual ratings, was calculated for every 200 m of the study road sections.

iv) Acceptability

Each member of the rating panel was further asked to indicate whether or not the pavement being rated is acceptable.

(3) Rehabilitation Requirement Rating (RRR)

Since the present serviceability rating is a subjective assessment by the road users using their own guideline and judgment, the rating does not necessarily identify the sections where the rehabilitation works are needed, when judged from the engineering point of view.

To assess the rehabilitation needs, a rating panel composed of only experienced engineers was set up to conduct the survey based on the ocular survey on the pavement conditions with emphasis placed on pavement deterioration such as cracking and potholes. The survey was carried out in December 1989.

Rator	· · · · · · · · · · · · · · · · · · ·				Da	te :				
Road S	Section :	1 ().		 *_?*	Ve	hicle	•	.). 		
	i stra a	• •		1		in a c			11 3	
en en la constant de la constant de La constant de la cons			· · ·			<u> </u>	r*			1 1
	Km	Surf	face (Condit	lon R	ating	Acc			
	1/11	\$		3	2		YES	NÓ	Un — decidea	
								··· 7		
							· -		1 e `	на с. 1970 — 1971 — 1974 — 1974 — 1974 — 1974 — 1974 — 1974 — 1974 — 1974 — 1974 — 1974 — 1974 — 1974 — 1974 — 1974 —
	-									
	-			•	5 T		n sat	-		
e Alexandre de Ber						-1 ³ -14				an Alexandre
	_				 		2.5.5	1	1997 - 1	s Brages
										e diga di
						1.1	11. E .			
		Ratir	פר			Cot	nditio	<u>n</u>	· · · ·	Shi tera safa
		5-4 4-3			/ery Go iood				Comfoi rtable	rtable

Fair

Poor

TABLE 7.2-3 INDIVIDUAL PRESENT SERVICEABILITY RATING FROM

i) Rating Panel

4 - Filipino highway engineers in charge of design, construction and maintenance, and
1 - Japanese highway engineer

--- Acceptable --- Uncomfortable

Very Poor ---- Very Uncomfortable

3-2

2-1

1-0

÷

ii) Rating Method

While riding on a survey vehicle running at 20 kph, each engineer was asked to rate his engineering judgement on every 200 m of the road, the resulting ratings being then recorded on a form similar to that used for PSR.

The criteria for rating are as follows: A second data second

- **5-4 ... No deficiencies**
- 4-3 : Little deficiencies
- 3-2 : **Considerable deficiencies**
- 2-1 : Severe deficiencies needing immediate treatment
- 1-0 : Immediate reconstruction required
- and the second secon
- Rehabilitation Requirement Rating (RRR) iii)

RRR, defined as the mean of the individual ratings, was calculated for every 200 m of the study road sections.

da an Anglan

(4) **Roughness Measurement**

> The roughness of the road surface of each direction along the study road sections was measured by the Bump Integrator loaded on a Toyota Land Cruiser of the Department of Public Works and Highways in December 1989.

> The bump integrator is a device which produces an electric impulse for a particular amount of movement of an axle relative to the frame of the test vehicle. The pulses are counted and expressed as a total amount of movement per length of road.

i) Survey Method

and the second second

A survey engineer of DPWH with a long experience in roughness survey conducted this survey. The test vehicle was driven at the speed of 30 kph most suited to measurement. The intensity of the integrator was recorded at every 200 m. The survey was conducted three (3) times for each direction.

Roughness Value ii)

Roughness value (R) cm/km was calculated as follows

Reading for 200m(inches) \times 2.54(cm/inch) R(cm/km) = -0.2 (km)

 $= 12.7 \times \text{Reading}$

and a state of the second state

Real Constant of Adding Beer provide an end of the Hard (1) Second Herrich and Herrich Complete Strategy and the second strategy of the second s

Measurements of the physical deterioration of pavement were conducted in order to provide the factors for predicting the subjective ratings (PSR/RRR).

i) Survey Panel

Experienced highway engineers (same member as in Rehabilitation Requirement Rating)

ii) Pavement Deterioration Surveyed

Among various types of pavement deterioration, the following items were selected:

i e

- Class 2 cracking to the second state of the se
- : Class 3 cracking at a second second second state of the product of the product
- : Patching for an end of the end
- : Pothole

Rutting in the wheelpaths was not found in the study road sections.

The definitions of pavement deterioration surveyed are as follows:

:	Class 2 cracking	:	Cracking which has progressed to the stage where crack shave connected together to form a grid-type pattern.
	Class 3 cracking	:	Cracking in which the bituminous surfacing segments have become loose.
	Patching	•	Repair of pavement surface by skin patching or deep patching.
	Pothole	:	Bowl-shaped hole of various sizes in pavement.

iii) Survey Method

The area of each deterioration was roughly estimated for every 200 m of the road and recorded in percent of total pavement surface.

(6) Results of Survey

Major survey results including present serviceability rating (PSR), rehabilitation requirement rating (RRR), roughness, patching and pothole are plotted in Figure 7.2-3, together with PSI/RRI values which will be described in Section 7.2.5.

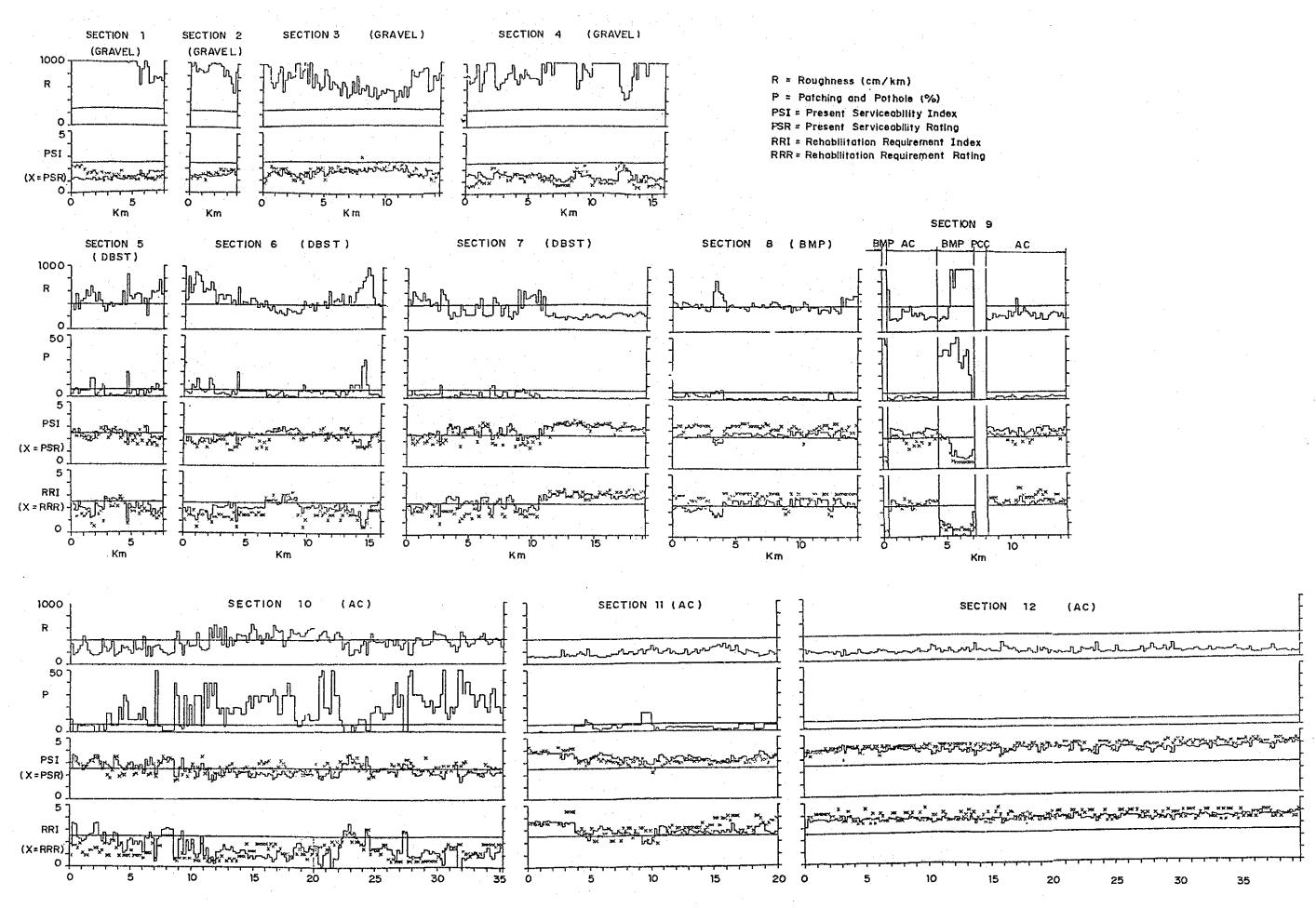


FIGURE 7.2-3 PAVEMENT SURFACE CONDITION OF STUDY ROAD SECTIONS

7 — 19

7.2.4 Correlation Analysis on Ratings and Physical Measurements

As the first step in the formulation of the present serviceability index (PSI) and rehabilitation requirement index (RRI) that would predict the subjective ratings, the correlations between PSR/RRR and physical measurements should be analyzed. Such analysis makes it possible to determine which measurements might be the most predictable and which might be negligible.

Figures 7.2-4 through 7.2-7 show the relation between the physical measurements and PSR/RRR.

The correlation coefficient of each two variables is shown in Table 7.2-4.

The following characteristics were observed from the above figures and tables:

Abbreviation : PSR = Present serviceability rating

RRR = Rehabilitation requirement rating

- R = Roughness
- P = Patching plus pothole
- C = Class 2 and class 3 cracking
- Gravel . A correlation is found between R and PSR, but is not so high.

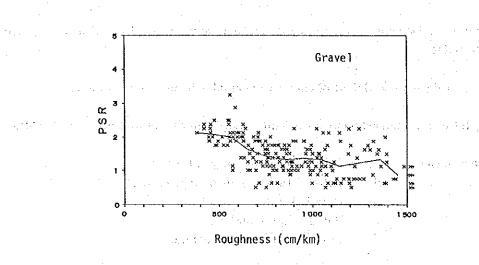
DBST . R is more closely correlated with PSR than with P.

. R and P show the same degree of correlation with RRR.

- BMP

Both R and P are closely correlated with PSR.

. As regards the correlation with RRR, P is higher than R.


AC

. R, P and C show, in this order, higher correlation with PSR.
. R, P and C are correlated with RRR in almost the same degree.

- Common characteristics:

Among physical measurements, R has the closest correlation with PSR.
 R and P are correlated with RRR in almost the same degree.
 Mutual correlation between physical measurements is not high.

· 新闻· 建成 医脑骨轮结核 计正确的现在分词

المراجع المراجع

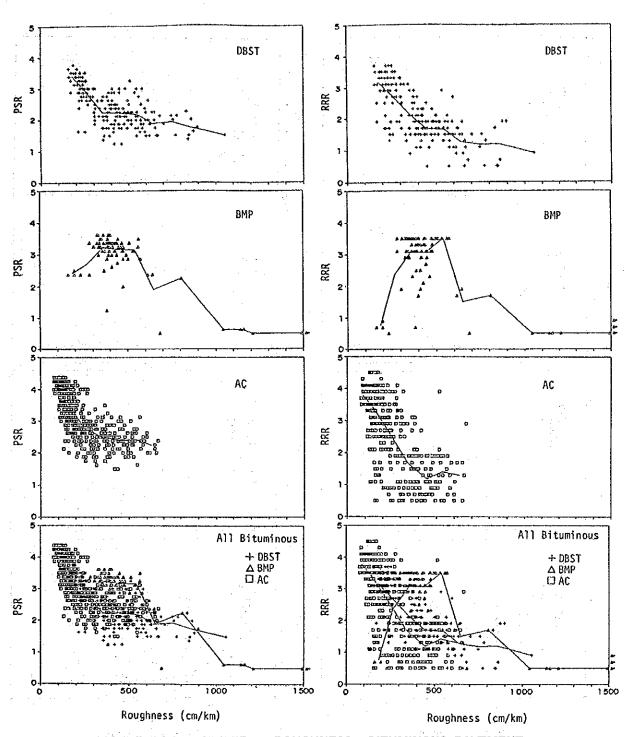


FIGURE 7.2-5 PSR/RRR vs ROUGHNESS : BITUMINOUS PAVEMENT

医鼻骨结肠 网络电电电路 化合物合成 网络外球球 医小子 网络外外交流 不开了

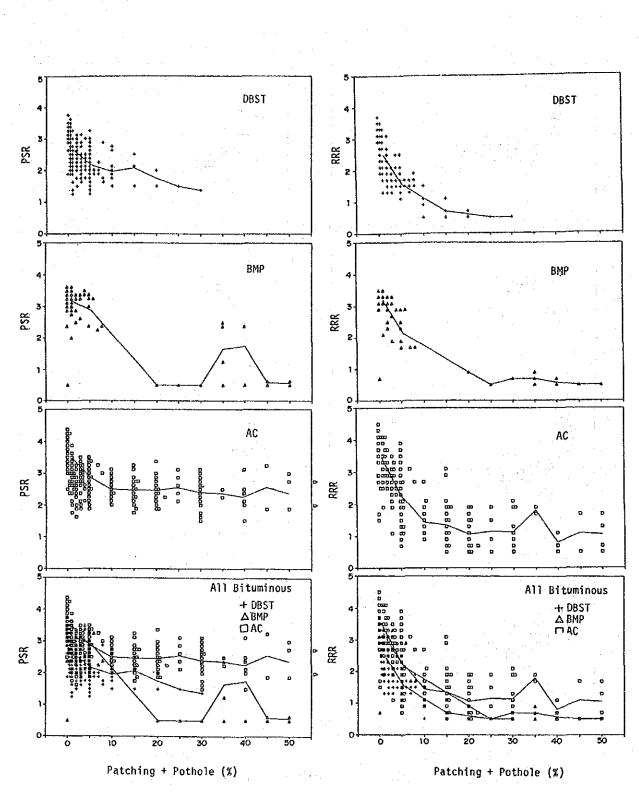
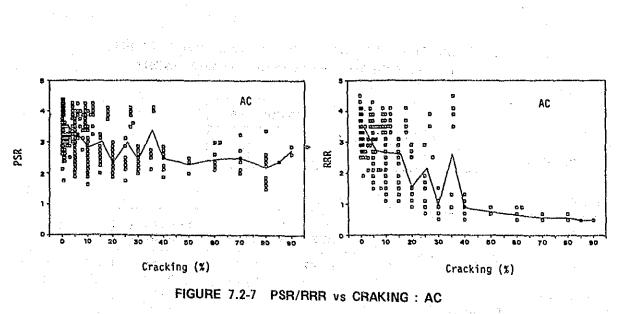



FIGURE 7.2-6 PSR/RRR vs PATCHING + POTHOLE : BITUMINOUS PAVEMENT

TABLE 7.2-4 CORRELATION COEFFICIENT BETWEEN TWO VARIABLES AMONG RATINGS AND PHYSICAL MEASUREMENTS

Gravel

	PSR	Roughness
PSR	1.00	- 0.51
Roughness		1.00

DBST

	PSR	RRR	Patching Roughness + Pothole
PSR	1.00	0.67 1.00	-0.67 -0.49 -0.70 -0.71
Roughness Patching + Pothole			Mex1.00 (etc. 4 6 0.65 1.00

BMP

15

	PSR	RRR	Roughness	Patching + Pothole
PSR	1.00	0.85	-0.83	-0.80
RRR		1.00	-0.62	-0.88
Roughness			1.00	0.49
Patching + Pothole				1.00

AC

	PSR	RRR	Roughness	Patching + Pothole	Cracking
PSR RRR Roughness Patching + Pothole Cracking	1.00	0.75 1.00	-0.72 -0.71 1.00	-0.58 -0.72 0.66 1.00	-0.43 -0.69 0.45 0.53 1.00

All Bitumious (DBST, BMP, AC)

	PSR	RRR	Roughness	Patching + Pothole	Cracking
PSR RRR Roughness Patching + Pothole Cracking	1.00	0.76 1.00	-0.72 -0.59 1.00	-0.49 -0.66 0.42 1.00	-0.15 -0.45 0.01 0.46 1.00

7.2.5 Establishment of Equations for Condition Evaluation

(1) Establishment of PSI/RRI Equations

a) Present Serviceability Index (PSI) and Rehabilitation Requirement Index (RRI)

PSI and RRI are defined as mathematical combinations of values obtained from certain physical measurements so formulated as to predict the present serviceability rating (PSR) and rehabilitation requirement rating (RRR), respectively.

Those indices could be used to evaluate both the performance history of the experimental pavement in particular and to assess the serviceability of other pavements in general, instead of conducting individual ratings.

b) Selection of Predictors

计语言语言 医前角子 医白色

С

The following physical measurements were selected as predictors:

R = Roughness (cm/km)

P = Patching plus pothole (%)

= Class 2 and 3 cracking (%)

c) Transformation of Physical Measurements

As shown in Figures 7.2-4 through 7.2-7, physical measurements are correlated with PSR/RRR curvilinear. To formulate a suitable model for PSI/RRR, it is necessary to transform the physical measurements so as to obtain a straight line relationship with PSR/RRR as much as possible. Based on a preliminary analysis, the following linearizing transformations were selected:

$$\log R$$

 \sqrt{P}
 \sqrt{C}

The general form of PSI/RRI equations was assumed to be:

 $PSI/RRI = A_o + A_1 \log (R + A_2) + A_3 \sqrt{P + A_4} + A_5 \sqrt{C + A_6}, \text{ or}$ $PSI/RRI = A_o + A_1 \log (R + A_2) + A_3 \sqrt{P + A_4}C + A_5$

where, A_0 to A_6 coefficients are to be determined by the least squares regression analysis.

d) Proposed PSI/RRI Equations

Various alternative PSI/RRI equations were derived by the least squares regression analysis as shown in Table 7.2-5.

			· · · · · · · · · · · · · · · · · · ·		and the second		•			
			7.49-2.06 4.73-1.21						r = 0.542 r = 0.552	
					R-0.11√P (R-135)-0.11√P				r = 0.739 r = 0.752	
					R-0.25√P (R-608)-0.44√P+60				r = 0.917 r = 0.940	
P81	. •	PSI = PSI =	7.28-1.65	log log	$ \begin{array}{c} R-0.14\sqrt{P} \\ R-0.06\sqrt{P+C} \\ R-0.13\sqrt{P-0.02\sqrt{C}} \\ (R-64)-0.13 P-0.01\sqrt{C} \end{array} $	d d	= =	0.366, 0.348,	r = 0.817 r = 0.799 r = 0.818 r = 0.826	
	Common to DBST BMP/AC	-	7.83-1.92 6.84-1.57		•	d d d	11 11 11 11	0.529, 0.350, 0.369, 0.350,	r = 0.739 r = 0.911 r = 0.817 r = 0.821 r = 0.742 r = 0.910	(BMP) (AC) (All) (DBST)
						d	=	0.344,	r = 0.823 r = 0.822	(AC)
					R-0.51√P (R-125)-0.51√P				r = 0.874 r = 0.877	
			5.80-0.89 3.74-0.29		R-0.42√P (R-571)-0.42√P+1				r = 0.917 r = 0.932	
RRI	·	RRI = RRI =	5.51-0.76	log log	$\begin{array}{c} R-0.39\sqrt{P} \\ R-0.26\sqrt{P+C} \\ R-0.31\sqrt{P-0.17\sqrt{C}} \\ (R-14)-0.30 \ P-0.19\sqrt{C+1} \end{array}$	d d	=	0.446, 0.382,	r = 0.859 r = 0.872 r = 0.094 r = 0.904	
	Common to DBST BMP/AC	3 9 9 9 9 9 8	6.61-1.40	-		d d d	н н 1	0.570, 0.457, 0.460,	r = 0.872 r = 0.912 r = 0.858 r = 0.851	(BMP) (AC) (All)
	·	RRI = 	4.47-1.35	log	(R-9)-0.38√ P	d d	= =	0.569, 0.457,	r = 0.873 r = 0.912 r = 0.858 r = 0.851	(BHP) (AC)

TABLE 7.2-5 VARIOUS PSI/RRI FORMULAS

Mote : PSI = Present Serviceability Index

RRI = Rehabilitation Requirement Index

R = Roughness (cm/km)

- P = Patching + Pothole (%)
- C = Cracking, class 2 and class 3 (%)
- d = Average difference bwteen PSR/RRR and PSI/RRI (calculated value)

· ' .

r = correlation coefficient

From among them, the following equations were selected, which are of a simple form while being in relatively higher accuracy than others:

PSI	;	Gravel	. :	PSI=7.49-2.06 log R (r=0.542)
		DBST	:	PSI=7.76-1.99 log R-0.11 \sqrt{P} (r=0.739)
		BMP	:	$PSI=9.80-2.46 \log R-0.25 \sqrt{P} (r=0.917)$
		AC	:	PSI=7.32-1.68 log R-0.14 \sqrt{P} (r=0.817)
RRI	:	DBST	:	RRI=6.22-1.29 log R-0.51 \sqrt{P} (r=0.874)
		BMP	:	RRI=5.80-0.89 log R-0.42 \sqrt{P} (r=0.917)
		AC	:	RRI=6.04-1.12 log R-0.39 \sqrt{P} (r=0.859)
where	,	PSI		Present Serviceability Index
		RRI	=	Rehabilitation Requirement Index
		R	=	Roughness (cm/km)
•		Р	=	Patching plus pothole (%)
		r	=	Correlation coefficient
			· •	

PSR/RRR vs PSI/RRI calculated by the above formula are plotted in Figure 7.2-8 and 7.2-9.

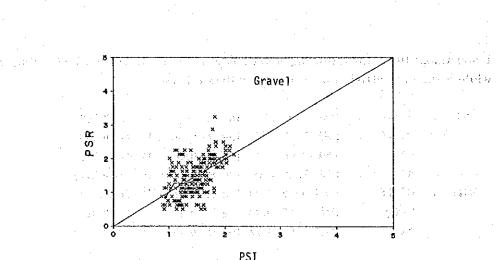
(2) PSI/RRI Equations in Other Studies

a) PSI/RRI Equations for Rigid Pavement in the Philippines

In the Feasibility Study of the Road Improvement Project on the Pan-Philippines Highway, 1987, a similar study was undertaken on the Pan-Philippine Highway in Sta. Rita-Aritao Section and Calamba-Calauag Section. The Study Road is paved with portland cement concrete (PCC).

The PSI/RRI equation for PPC was established as shown below:

PSI	=	5.75-2.0 log R-0.06 √C+P
RRI	=	7.53-1.5 log R-0.11 $\sqrt{C+P}$

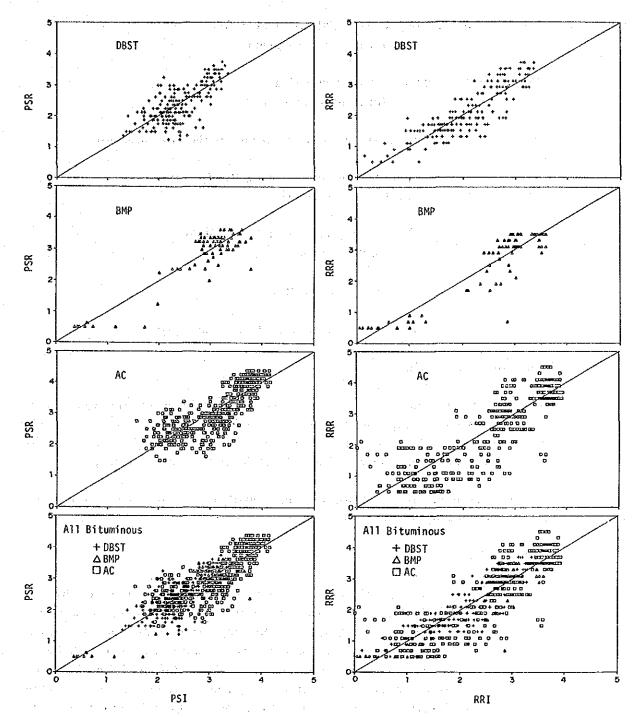

where,

R

: Roughness (cm/km)

C : Class 3 and Class 4 cracking (m/1,000 m²)

P : Patching $(m^2/1,000 m^2)$



PSI FIGURE 7.2-8 PSR vs PSI : GRAVEL

(a) Subscripting and the second state of the se

(a) A set of the se

and a start of the second start Second start of the second start Second start of the second start

[3] Here A. B. M. Lander, Phys. Rev. Lett. 66, 101 (1996).

FIGURE 7.2-9 PSR/RRR vs. PSI/RRI : BITUMINOUS PAVEMENT

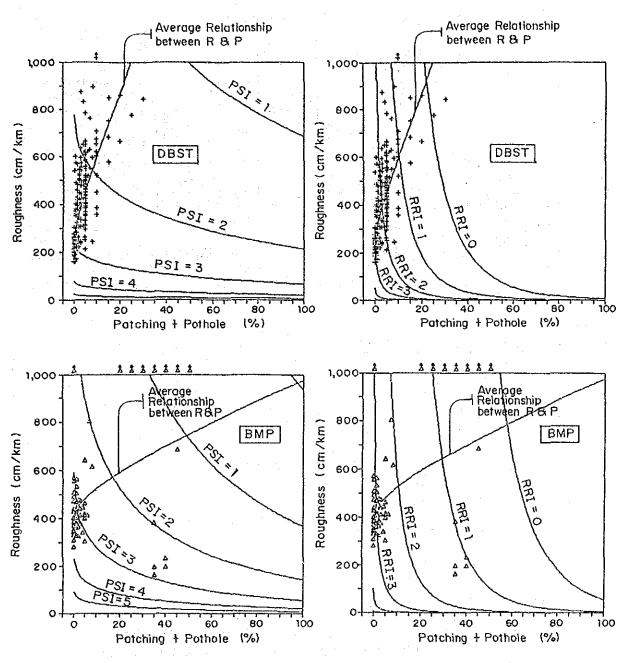
(a) A substrate of the second s second se Second se Second sec

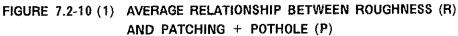
b) ASSHO's PSI Equation

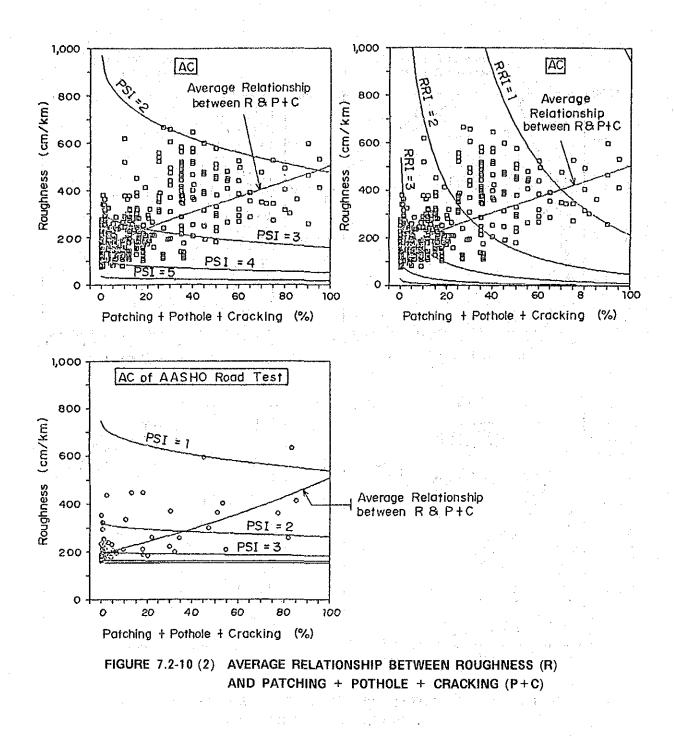
The following equation was established by the AASHO Road Test staff in 1957.

PSI = $5.03-1.91 \log (1+\overline{SV})-0.01 \sqrt{C+P}-1.38 \text{ RD}^2$ (for flexible pavement)

 $PSI = 5.41-1.80 \log (1+\overline{SV})-0.09 \sqrt{C+P}$ (for rigid pavement)


- where, \overline{SV} : the mean of the slope variance in the two wheelpaths
 - C : class 2 and class 3 cracking (ft²/1,000 ft²) (for flexible pavement)
 - C : class 3 and class 4 cracks (ft²/1,000 ft²) (for rigid pavement)
 - P : Patching $(ft^2/1,000 ft^2)$


RD : a measure of rutting in the wheelpaths (in)


(3) Characteristics of PSI/RRI

To examine the relationship between roughness and pavement deterioration, corresponding roughness values and total values of patching, pothole and cracking are plotted in Figures 7.2-10 (1) and (2) for each type of pavement including the AASHTO Road Test pavement for reference. These figures include the lines showing:

- i) Average relationship between roughness and pavement deterioration obtained by the least squares regression analysis.
- ii) PSI/RRI contours
 - <u>Note</u>: In the AASHTO Road Test, roughness was measured by the longitudinal profilometer, while in this Study, the bump integrator was used. Although no authentic relationship between the two different types of measurements of the two studies have been established as yet, the AASHTO longitudinal profilometer measurements were converted into those of roughness obtained by the bump integrator based only upon every loose relation between multi-wheeled profilometer and bump integrator measurements shown in the "Design and Performance of Road Pavements, TRRL, 1977". This conversion was made to plot them on the same scale for sake of comparison.

The following characteristics of PSI/RRI are found from these figures:

na set e tra as es

i) The dominant factor in determining PSI is roughness, except for BMP where roughness and pavement deterioration are almost equally related to PSI.

And the state of the second state of the

- ii) The dominant factor in determining RRI is pavement deterioration, except for AC where roughness and pavement deterioration are almost equally related to RRI.
- iii) RRI is lower than PSI. It might be interpreted as follows:
 - The lowest acceptable levels as a rural road for road users might not be so high.
 - Earlier rehabilitation might be necessary even when the surface condition is still acceptable to road users.
- iv) The AASHTO's PSI is lower than the PSI in this Study. It might be due to difference in class of road as well as in national characteristics.

7.2.6 Criteria for Evaluation of Rehabilitation/Reconstruction Necessity

(1) Criteria of AASHTO Guide 1986

The terminal serviceability index (Pt) is the lowest acceptable level before resurfacing or reconstruction becomes necessary. The AASHTO Guide for Design of Pavement Structures, 1986 recommends the following values:

-	Major highways	: 2.5 or 3.0
-	Highways with a lower	·
	classification	: 2.0
Ŧ	Minor highways when economic	· · · ·
	considerations dictate that	
	expenditures be kept low	: 1.5

Acceptability opinions in the AASHTO Road Test were as follows:

Present Serviceability Rating	Percent of People Stating Acceptable
3.0	88
2.5	45
2.0	15

(2) Criteria recommended in the Feasibility Study of the Road Improvement Project on the Pan-Philippine Highway

In the captioned study, the criteria for evaluation of rehabilitation necessity are recommended as follows:

Major highway	: RRI = 2.5		
Highway with a lower classification	: RRI = 2.0	·.	
Minor highway	: RRI = 1.5	-	-

(3) Survey in this Study

Each member of the rating panel was asked to indicate whether the pavement being rated is acceptable or not. The relationship between acceptability opinions and PSI is graphically shown in Figure 7.2-11.

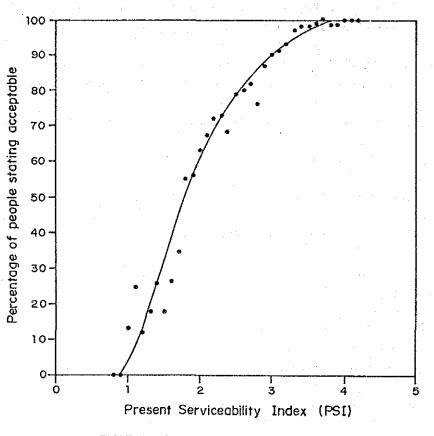


FIGURE 7.2-11 ACCEPTABILITY vs PSI

The results are summarized in Table 7.2-6

	PSI	Percent of People Starting Acceptable
· · · · ·	3.0	90
	2.5	80
1997 - A.	2.0	60
· :	1.8	50
	1.5	30

TABLE 7.2-6 ACCEPTABILITY OPINIONS

Acceptable percentage for every level of PSI is higher than that of the AASHTO Road Test. It might be due to difference in class of road surveyed as well as in national characteristics.

(4) Proposed Criteria for Evaluation of Rehabilitation/Reconstruction Necessity

Based on the results of the acceptability survey, the following terminal serviceability (Pt : lowest acceptable serviceability) are proposed for the Rural Road Network Development Project:

Pt = 2.0 for major roads, and Pt = 1.5 for minor roads,

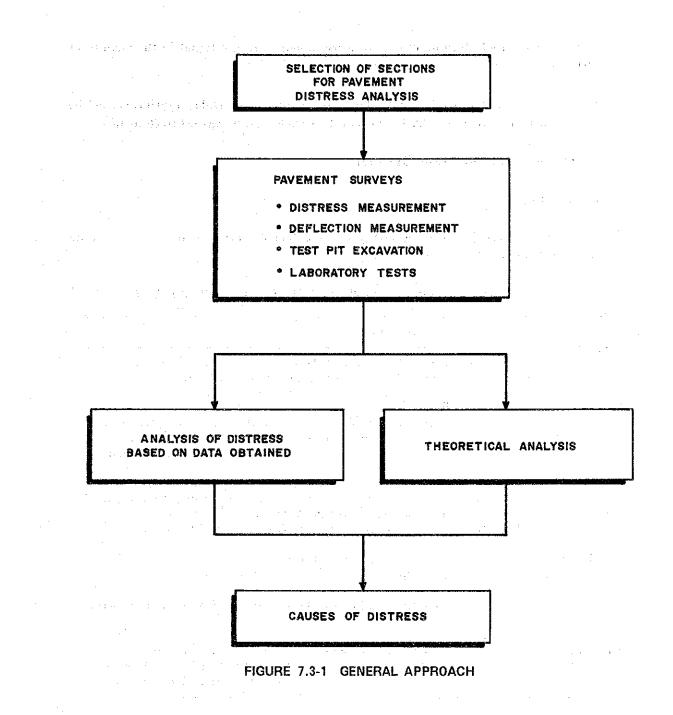
according to the road class as defined in the Project.

7.3 ANALYSIS OF LOW-CLASS PAVEMENT DETERIORATION

i jed efterge drift.

7.3.1 Approach

The general approach is shown in Figure 7.3-1. Typical sections for pavement deterioration analysis were selected. Various pavement surveys were conducted on the selected sections to investigate causes of pavement deteriorations. Based on the data obtained, pavement deteriorations were analyzed. On the other hand, theoretical analysis was conducted to obtain the most influencing factors for pavement serviceability performance. Based on the above, causes of pavement deteriorations were identified.


7.3.2 Selection of Sections for Deterioration Analysis

Criteria for selection of sections for deterioration analysis were established so as:

- To include various types of low-class pavements
- To cover a wide range of surface conditions for each type of pavement.
 - a standard a st
- To cover various service periods after the opening of road to traffie
- To be free from peculiarly localized conditions such as extremely strong subgrade, frequent inundation, peculiar traffic condition, etc.
- To be preferably located in the vicinity of Metro Manila.

The following fifteen (15) sections were selected, which consist of four (4) types of pavement and two (2) to three (3) surface conditions for each type of pavement.

Pavement Type	Number of Location	Pavement Surface Condition							
Gravel Surface	3	Good (1), Fair (1), Bad (1)							
Double Bituminous Surface Treatment	6	Good (2), Fair (2), Bad (2)							
Bituminous Penetration Macadam	3	Fair to Bad (2), Bad (1)							
Asphalt Concrete	3	Very Good (1), Fair to Bad (2)							

Sections with single bituminous surface treatment were not found in the vicinity of Metro Manila.

Locations of selected sections are shown in Figure 7.3-2 while descriptions of the sections are given in Table 7.3-1. The length of each section was set to 50 meters.

7.3.3 Pavement Deterioration Surveys

(1) Survey Items

For each of selected section, a survey was conducted based on the items and data listed in Table 7.3-2.

TADIC	7 7 7	01103/0237	CTT340			DETERIORATION	A 31 A 1 3 /030
LADLC	1.3-2	SURVET	TERMS	FUR	PAVEMENT		AMALYSIS
		~~~		* • • •	I I I I I I I I I I I I I I I I I I I		MINMEIOIO

Items	Remarks
Construction record	Construction data: Maintenance and repair record
Road inventory Traffic	Road cross section Daily traffic, vehicle type composition Commercial vehicle: percentage/axle load distribution
Pavement structure	Thickness and materials: surface/ base/sub-base
Shoulder Drainage condition	Thickness and materials Road side ditch/gutter, water table
Deterioration Surface condition	Type and severity Roughness, Crack %, Patching %
Structural Adequacy	Surface (Benkelman beam: Deflection mm)
Test Pit Excavation	Pavement Composition observation Sampling/test: Subgrade soil, pavement layer materials

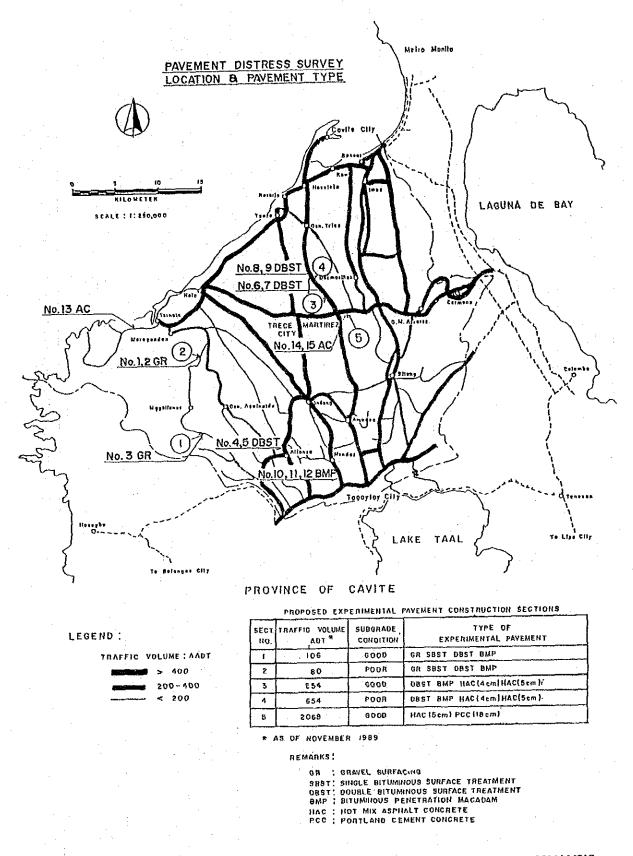



FIGURE 7.3-2 LOCATION OF SECTIONS FOR PAVEMENT DETERIORATION ANALYSIS

										•
SIS	Pavement Const. Year	Unknown	Unknown	Oct. 1983	Aug. 1983	Aug. 1983	1981	1981	1978	
DESCRIPTION OF SECTIONS SELECTED FOR PAVEMENT DETERIORATION SURVEY AND ANALYSIS	Survey Section Environment	Rising slightly from flat to hill area. Vegetated, some portion being rice field.	Ridge of high land, Plantation area for coconut, pineapple, coffee and banana.	Highland, residential and coffee plantation.	Flat and alvium area surrounded with wide rice field, some portion along the road is residential area.	Flat and alvium area surrounded with wide rice field, some portion along the road is residential area.	Highland, grassy and pasture land.	Highland, grassy and and residential.	Hill and grass land alvium area.	construction section
OR PAVEMENT DET	Traffic Volume (ADT)	LOW (114)	Low (106)	LOW (268)	Medium (654)	Medium 1 (654)	Medium (669)	High (1338) 4	High (2068) -	pavement
JF SECTIONS SELECTED FO	Road and Survey Section	Provincial Rd. Magallanes to Maragondon On EPC Sec. No. 2	Provincial Rd. JCT. Alfonso to Magallanes on EPC Sec. No. 1	Provincial Rd. Alfonso to Gen. Aguinaldo	Provincial Rd. Gen. Trias to Amadeo on EPC Sec. No. 3	Provincial Rd. Gen. Trias to Amadeo on EPC Sec. No. 4	National Rd. Tagaytay to Mendez	National Rd. Ternate to Puerto Azul, Jct. to Puerto Azul	National Rd. Trece Martirez to G.M. Alvarez on EPC Sec. No. 5	EPC Sec.: Experimental
DESCRIPTION C	Pavement Condition	Good Fair	Bađ	Good Good	Fair Fair	Bad Bad	Fair to Bad Fair to Bad Bad	Very Good	Fair to Bad Fair to Bad	ey location =
TABLE 7.3-1	Pavement Type	55	ß	DBST DBST	DBST DBST	DBST DBST	BMP BMP BMP	AC	AC	of each survey
	Section No.	91	m	4' U	96	ω σι	10 11 12	13	14 15	Length (

ORATION SUB

7-42

## (2) - Classification of Deterioration and a final enderse product and a second second

Deteriorations were classified as shown in Table 7.3-3.

Type of Pavement		Types of I	Dot	orioration
(1) 構成 サーキーにも 1000000000000000000000000000000000000		Surface Deterioration		Structural Deterioration
	<b>)</b>			Alligator Cracks Depressions
4	<b>&gt;)</b>			Alligator Cracks Depressions

TABLE	7.3-3	CLASSIFI	CATION OF	DETER	IORATION
		$\{\mu_{1},\dots,\mu_{n}\}_{n\in\mathbb{N}}$	And the second	a e e	

Definitions of the above deteriorations are presented in Appendix 7-1.

(3) Pavement Deterioration Measurements

Measurements of deterioration were carried out by the following methods:

a) Crack Area

For the cracked area, the surface was divided into  $0.5 \text{ m} \times 0.5 \text{ m}$  grids marked with white chalk on the surface of the pavement, measured and recorded. The Cracking Ratio was computed by using the following formula.

Cracking Ratio =  $(Cr/A) \times 100$  (%)

where: Cr = Sum of grid surface area having cracks (sq. m.). The surface area is to be 0.15 sq.m. per grid, if one crack exist in the grid, and 0.25 sq.m. per grid, if more than one crack exist.

A = Total surveyed area

b) Area for Patching, Pothole, Abrasion (Ravelling), Deformation and Depression

The actual area for each patching, pothole, abrasion, deformation was measured and divided by total surveyed area to obtain the ratio.

c) Longitudinal Roughness

Measurements were taken along the inner wheel path line on each lane using a 3.0 m straight edge. The straight edge was placed on the surface at every 1.5 m interval and the maximum gap between the surface and straight edge (maximum wave height) was measured and recorded.

The standard deviation of the measured value was computed as the value of the longitudinal roughness.

(4) Pavement Surface Deflection by Benkelman Beam

The magnitude of pavement deflection under wheel load is an indicator of the ability of the pavement to withstand traffic loading. In order to evaluate the adequacy of the bearing capacity of the existing pavement, Benkelman Beam deflection measurements were taken in accordance with the following procedure.

a) Loading:

Dump truck having a 8.16 ton rear axle load, and inflated tire pressure of 80 psi.

## b) Measured location:

At 10 m. intervals both on inner and outer wheel path on each lane.

c) Measured Value:

$$V = (\sigma/\overline{X}) \times 100$$

where:

 $\overline{\mathbf{X}}$  = Mean value of individual rebound deflection (0.01mm).

 $\sigma$  = Standard deviation

V = Variation coefficient (%)

Beside each 50 m. survey location, the deflection measurements, (50 m. interval), were conducted at the following locations.

Pavement Type	Condition	Measured Length	Re	emark	S	
GR	Good to Fair	800 m	EPC	Sec.	No.	2
DBST	Good	400 m				
DBST	Good to Fair	800 m	EPC	Sec.	No.	3
DBST	Bad	800 m	EPC	Sec.	No.	4
BMP	Bad	400 m	÷		4	
AC	Fair to Bad	400 m	EPC	Sec.	No.	5

EPC Sec: Experimental Pavement Construction Section

#### (5) Test Pit Excavation

For each survey location, one test pit (60 cm.  $\times$  60 cm., depth up to subgrade) was excavated at a point showing a representative deterioration condition. The thickness and material quality of pavement component layers were measured, observed and recorded. Samples of the base course and subgrade soil were taken to analyze pavement deterioration.

Sample materials were tested at the Bureau of Research and Standards.

### (6) Sample Tests

The following laboratory tests of materials sampled from test pits were conducted at the laboratory of the Bureau of Research and Standards:

- Water content
- Sieve analysis
- Liquid and plastic limits
- CBR

#### (7) Summary of Survey Results

All survey results were recorded in the Survey Report Sheet (see Table 7.3-4).

Table 7.3-5 summarizes the surface conditions and Benkelman Beam deflection measurements. Laboratory test results of materials sampled from test pits are shown in Table 7.3-6.

The results of Benkelman Beam deflection measurements and those of deterioration measurements as well as the survey report sheets for all sections are presented in Appendices 7-2, 7-3, and 7-4, respectively.

TABLE 7.3-4 LOW-CLASS PAVEMENT CONDITION AND DETERIORATION SURVEY REPORT SHEET:

				. t:	e et e e	¥ 			i i El ter					· · ·	<u></u>		: ·.	· · .			
Earisonnental condiction flat area Bach sides. of road are rice		Orainaje condition Serface drainage : grassy	Underground water tault . Wut observed	Maintemaatte operation Potkolas patching F		Photo Showing representative condition									1. Bad : Anther neverely statied, some staked nortions are already become gotheled.	Beaby stid, st	fur bigh underground table, and aubgrach condition that is close to rice field	seçtian, mora thiçter savennı, design upodid bi raquired.	Mat weit trained skills for apphalt binder spraying and cover aggregate spraading	Partial coplacement of parament, then AC Sverlay	
istica as of Rov. 1989.	• ;	- -	18	2 1 i o 1	tructural failure due to	a for sighelt blader e spreedict	•	-) *	4 67 64 7 64 67 6 48 67 6 56 67 6 6	·····································		23	х ,	1	1. Bad : Rather sevel	and wera patched. Bumpy riding	2. For bigb undergrut	saction, mora this	4. Not well trained	5. Partial replacemen	
Trafic Data and Charactaristics	Beta Directios	: 204	Tsucks :	Buset : Probable Cause of Deterioration	Alligator cracks : Mestly structural failure due to	watt suggreet and watt 200043 Abrasion : laadequata skilla for aughalt biader sgraying and cover aggragate spreading			Sursace Hourbass Condition X: me	Patching 96 Patching 96 Aberasion 96 Dependen 96		Beam Aange : 208-152 Deflection x : 179.8 (mm) s : 16.8	5		Evaluation	1. Serviceshility					2. Ascessely Results
Location	Province : Carite Provincial Read	Gen. Triss to Amedeo (5PG Section Mo, 4)	ļ	Station : 0+ 350+ 0+ 440	Type of deterioration, Serecity	Alligatar Creeta : Mortly not aegraggatad, 2009 are become potholad and patched Abrasion : Losgitudinal streak raveiling of seal	85T layars	ZPC NO. 4	1.2 a 2151 food 2.2 a Promote 1.443. Subsidier	April 1 April 1 April 1 April 1 April 2 April	Pavement Saterial Properties	Serface : la sone portion, under sizo and contaminated appreses	Des Para		W(a) X Max size mm 2.0 mm pass X	0.276 mm pass 96. Pl. C88		Sabbase : fins graded, lack of	121 92124142 		
Parament Construction Year	August, 1983					Alligatar C become potb Abrazion :			2.8 e		1:08	0857 with Seal coat	Crushed stown. stad and silt	Silty liar sadds	11440-13 14 11445				• • • •	• •• -	
Parenaa Type	Canver			) ] [	Pavement Existing Condition Rating	Very 8004 6004 Fair 534	E See, Rating, Sheat	Road Cross Section		lice Tield Dece bitch bega - 0, h	Parement Cross Section		15cm Base	100m Jesotase Sebéase		Subgrads Soil Proparties					

SUMMARY OF SURFACE CONDITION AND BENKELMAN BEAM DEFLECTION MEASUREMENTS **TABLE 7.3-5** 

22.8 ел С 25. 2 27. 5 5.0 33. 8 36, 3 5 -~ 20. > Ж cni c, ÷ Ξ. er. **Deflection Value** 0. 01 mm 8 5 £ 5 1ь 23 58 50 -Pini 9 ŝ -----# 2 0. 01 mm 112 () () () ŝ 52 124 132 83 13 162 33 233 -5 . 3 × Roughness 8 0 ನ ಬೆ 1.9 ... ... ي ق 07 00 00 7.7 ~---6 _ ما ഗ് ъ ~ ~: 2 Depression 13, 8 9 15.9 40.3 0 6 5.0 ເກ ເກີ 0 00 <u>م</u> X Deformation 33, 6 ĥ Ж Abrasion Pavement Deterioration 22, 6 12.5 6. 5 20. 3 16.5 Ж ഹ് Patching с С ~ 5.4 en mi _ 23, 4 Х ŧ Potholes 0.2 ... _ ж Cracks 10. 5 25. 5 10. 0 10. 3 22.7 <u>~</u> сл сл 2:9 Х Survey | Pavement | Condition Rating يد ۱ وي 00 -5 Š ۱ ا 1. £ . I 15 c Type D857 1880 0857 **D8ST** 1280 1280 89 6R 89 BMP BMP BMP ŝ Ŷ Ŷ Ň, 2 * £ =

Some Potholed and Depressed area were patched and roller compacted several days before

-

7-47

TABLE 7.3-6 (1) TEST RESULTS OF SAMPLES FROM CONDITION SURVEYED PAVEMENTS

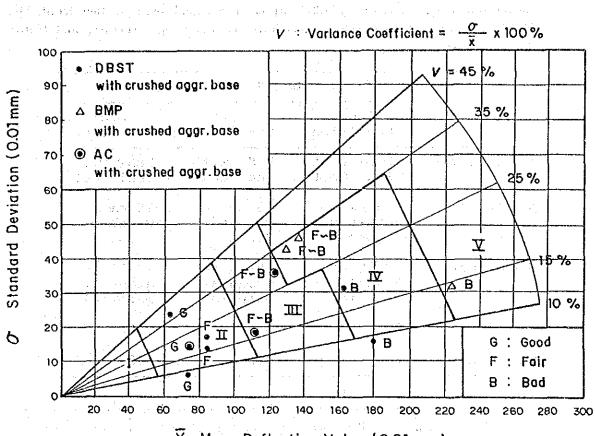
re ondition	~			-				•
	ood to Fair	Good to Fair	, GK   Bad	Good	, DBST : Good	idest Peir	Pair Fair	Bad Bad
	2	2 RPC Section No. 2	EPC Section No.	1: Alfonse to Gen. Aguinalde	1. Aguinaldo	RPC Section No.	3 EPC Section No.	3 KPC Section No.
Base Course [G]	Gravel	[Grave]	Gravel	Crushed stone,	Crushed stone,	Crushed stone,	Crushed stone,	Crushed stone,
	Surfacing	Surfacing	Surfacing	igand and silt	Sand and silt	Sand and silt	Sand and silt	Sand and silt
7.5 mm	16	93	33	100		100	100	100
161	68	- 11	81	19		63	92	12
4.75	49	69	69	52	Not tested	07	41	4
2.00	<b>4</b> 2	61	25	9		27	32	31
0.425	20	37	9	20			17	19
0.075	6	17	22	=			~~~	10
11	AN.	AN .	dN	NP		KP	dx	di
Id.	NP	HP HP	W	di 		dN i	AP 1	dN
CBR &	29	18	14	1 106		1 82	1 75	1 67
Subbase Course				Crushed stone,	Crushed stone,	Sand and silt	Sand and silt	Silty sand
Material Type	No Subbase	' No Subbase	1 No Subbase	Sand and silt	Sand and silt	with pea gravel	with pea gravel	
Grading 37.5 mm,				100		100	66	100
19				89	; Not tested	11	16	36
4.75				69		1 S6	51	80
2.00				22		1 42	58	63
0.425		** **		23		21	32	32
0.075				11		12	19	11
- TI				dy.		AR I	AR .	di
Id		_~	-	da l	*** ==	an l	dal	- CH
CBR 3			** *	1 29		11	16	11
Soil	Silty fine sands	Silty fine sands	Clayey and silty	Silty sands	Silty sands	Sands and silty	Sands and silty	Silty or clayer
Soil Type			itine sands	with pea gravel	with pea gravel	fine sands	fine sands	
Grading 19 nm ;	100	83	-	1 95	93	66	92	1
4.75	96	12	35	<b>1</b> 8	62	1 85	81	
2.00	83	63	89	1 67	62	1 75	11	191
0.425	60	37	15	35	32	- - 	51	1
0.075	45	; 23	54	15	1 13	31	23	24
LL L	41	1 29	20	N	AN I	dn -	- NP	- MP
14	13	~ `	13	e i	AP.	AP	KP NP	di
H(U) H	21.5	- <del>9</del> .1	<b>1</b> 5.1	13.9		19.2	17.9	31.8
	<del>4</del>	0	<b>F</b>	- 71	17	<b>7</b> 0		

7-48

Survey No.	6	10	11	1 12	13	14	51 
Type	D851		BMP		AC	NC	WC.
Ħ	tion (Bad	Pair to Bad	Fair to Bad	Bad	Very Good	Pair to Bad	Fair to Bad
Road Section	IEPC Section No.		Tagartar to Mender		Puerto Azul	EPC Section No.	SIEPC Section No. 5
Base Course	Crushed stone,	Macadam stone	Macadam stone	Macadam stone	Crushed stone,	Crushed stone,	Rock fragments,
3	Sand a	lbase	lbase.	base	ISand, silt-clar	isand, silt-clay	[Band-silt-clay
Grading 37.5 mm	1; I00	18		80	- B	100	93
19	1 79	- 4e	51	4	14	80	83
4.75	<b>1</b> 9	1 25	20	1 21	55	21	56
2.00	38	18	1 18	1 15	11	<b>4</b> 3	45 45
0.425	23	10		: 9	30	27	26
0.075	6	5		2	16	14	16
11	dN F	da i	AN 1	AP !	KP.	AP I	KP
Id	dN	- NP	- NP	MP	dy.	dy	dy.
CBR 4	78			•	19 1	45	37
	Silty sand				Silty sand	Crushed rock,	Silty sands
1 170	with pea gravel	Sand and silt	i No Subbase	1 No Subbase	with gravel	Sand and silt	with pea gravel
Grading 37.5 mm		100			92	95	95
61	1 97	65			78	87	85
4.75	82	45			57	73	69
2.00	80	35		.44 8	{}	1 67	1 51
0.425	39	1 16	<b>C1 C</b> 1		21	<b>6</b>	30
0.075	18	п 			11	1 16	11
11	du .	AP 1			- H	KP KP	di
	dN -	AN C		:	¥ 3	Wb	
Subgrade Soil	Silty or clayer	Silty fine sands	Silty or clavev	Silty fine sand Silty	Silty fing sands	Silty fine sande	e Isilty or claver
Soil Type	fine sands		fine				fine sand
Grading 19 ma	100	85	1 96	95	93	66	100
4.75	94	14	93	18	17	16	36
2.00	86	54	88	102	68	85	92
0.425	54	44	1 76	57	- <b>1</b> 8	10	83
0.075		30	66	48	31	53	12
3	dy i	dy i	dir i	Å.	I NP	×P	- -
La la	dN i	an a	di i	ХЬ	WP I	WP	1 12
* (u) *	23.6	20.0	44.0	20.1	æ.	32.1	31.6
CBK 3		01		<b>5</b>	8	9	ະກ

TABLE 7.3-6 (2) TEST RESULTS OF SAMPLES FROM CONDITION SURVEYED PAVEMENTS

# 7.3.4 Analysis of Pavement Deterioration


(1) Relationship Between Pavement Deterioration and Deflection

Deflection measurement was carried out on good, fair and bad sections of DBST, BMP and AC pavements to evaluate the structural performance of the existing pavement. The mean value, standard deviation and variance coefficient were computed based on the measured deflection value, while relationship between the surface condition rating and deflection was obtained as shown in Figure 7.3-3.

The pavement having less deterioration and good surface condition shows low deflection, while pavement having severely deteriorated surface and bad surface condition shows greater deflection. On pavements under longer period of traffic repetition, greater deflection value are mostly occurred.

The table shown below summarises the relationship between deflection and structural performance.

Surface Condition	Deflection Value (0.01 mm	Structural Performance n)
Good to Fair	< 100	Adequate
Fair to Bad	100 - 140	Requires maintenance work according to deterioration condition, by sealing, seal coat, AC patching, or partial replacement.
Fair to Bad	140 - 200	Requires partial replace- ment of deteriorated portions, then followed by an AC overlay.
Bad	> 200	Requires total reconstruc- tion.



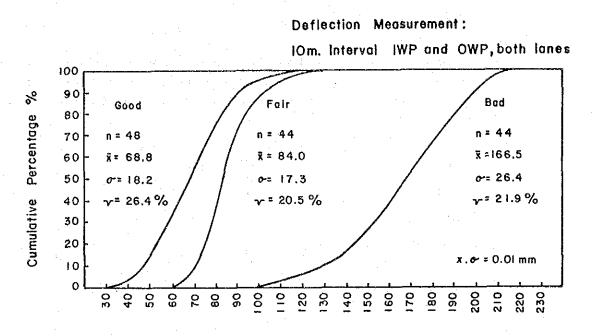
X Mean Deflection Value (0.01mm)

Evaluation on the Surveyed Pavements

Zone	Structural Performance Evaluation
1	Maybe no existence or over design
I	Shows adequate structural performance
Ш	Requires sealing, seal coat, AC patching partial replacement according to distres level.
IV	Requires partial replacement of structural distressed portion , then AC overlay
X	Requires total reconstruction

FIGURE 7.3-3 EVALUATION OF PAVEMENT STRUCTURAL PERFORMANCE BY BENKELMAN BEAM DEFLECTION VALUE

	DB	ST Pavements	in
	Good	Fair	Bad
	Condition	Condition	Condition
Surface Course	DBST with	DBST with	DBST with
	Seal Coat	Seal Coat	Seal Coat
Base Course	15 cm	15 cm	15 cm
	Crushed	Crushed	Crushed
	Stone	Stone	Stone
Subbase Course	10-15 cm	10-15 cm	10-15 cm
	granular	granular	granular
	material	material	material
CBR	8 %	5-8 %	3-5 %
Traffic (ADT)	268	948	948


The deflection characteristics of DBST pavements are analyzed in further detail. The DBST pavements of surveyed sections have the following structural and traffic characteristics:

The cumulative percentage curves obtained by Benkelman Beam deflection for good, fair and bad surface condition are shown in Figure 7.3-4. From this figure, the relationship between the surface condition and deflection value can be summarized as follows:

				· · · ·
Surfac Condit		x	σ	x + s
Good	Adequate, Repair not required.	68.8	18.2	87.0
Fair	Needs sealing, seal coat, AC patching	84.0	17.3	101.3
Bad	Needs overlay with AC, replacement for structurally deteriorated portion.	166.5	26.4	192.9

 $\overline{\mathbf{X}}$ : mean value in 0.01 mm

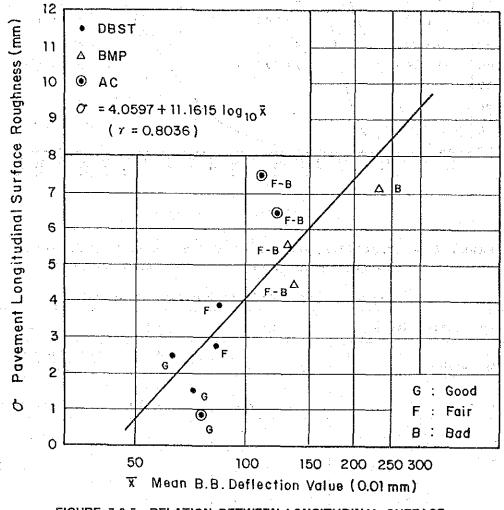
 $\sigma$  : standard deviation in 0.01 mm



Deflection 0.01 mm.

FIGURE 7.3-4	CUMULATIVE PERCENTAGE CURVES OF BENKELMAN BEAM
	DEFLECTION FOR DBST GOOD, FAIR, BAD PAVEMENTS

Surface Conditi	on Rating	Goud	Fair	Bad
		Alfonso to Gen.	Gen. Trias to	Amadeo Road
Survey Location	1	Aguinaido Road	EPC Sec. No 3	EPC Sec. No. 4
Survey Length		2 @ 50 m	2. @ 50 m	2 @ 50 m
Surface	Cracks	- %	15.3 %	10.1 %
Distress	Potholes	- %	0.2 %	1.4 % <del>X</del>
· .	Patching	- %	- %	4.0 %
a second second	Abrasion	7.1 %	13.4 %	19.6 %
	Depression	- %	%	9.7 % <del>X</del>
Longitudinal	Right Lane	2.9, 1.9 mm	4.5, 2.8 mm	3.3, 2.2 mm ¥
Roughness o-	Left Lone	1.4, 1.7 mm	3.3, 2.8 mm	2.2 4.0 mm <del>X</del>
ADT as of June	1988	268	94	4 B
DBST Pavement Construction Comp		Oct. 1983	Aug.	1983


Surveyed DBST Pavement Surface Conditions

* Some potholes and depressions were patched and roller compacted several days before.

ć

## (2) Relationship Between Roughness and Deflection

The relationship between the degree of roughness and the magnitude of deflection is shown in Figure 7.3-5. Here greater deflection demonstrates greater roughness in bad condition surfaces while less roughness is revealed by smaller deflection values in good pavement surface.





(3) Pavement Serviceability Performance

Factors influencing the decrease of serviceability of a pavement are traffic, subgrade soil condition, age and climate. In this section, some examples of decrease in pavement serviceability due to traffic repetition and the soil supporting values of subgrades are analyzed by using the AASHTO Basic Design Equation for Flexible Pavements. The following typical pavement models were theoretically analyzed to identify the pavement performance characteristics:

Traffic	Pave	ment	Struc	ture		Total	SN
TTUTTO	Surface	Bas	se	Subl	base	Thicknes	
Low	DBST 1.5cm	CS	10cm	AG	10cm	21.5cm	1.0
Low	DBST 1.5	CS	15	AG	10	26.5	1.5
Medium	AC 5	SC 🗉	15	AG	10	31	2.0
Heavy	AC 10	SC	15	AG	10	35	3.0
Heavy Extra	AC 10	ATB	15	AG	10	40	4.0
Heavy	AC 10	ATB	15	CTSB	15	46	5.0

PAVEMENT STRUCTURE AND STRUCTURAL NUMBER SN

AG : Aggregate subbase CTSB: Cement treated subbase

Figure 7.3-6 shows PSI decrease curves and Table 7.3-7 the relationship between structural number (SN) and number of ESAL for the respective terminal serviceabilities of 2.5 and 1.5.

SN		Number of	ESAL (W)	
011	(1)	(2)	(3)	(3) / (1) *100
	W Pt=2.5	W Pt=1, 5	W Pt=1, 5-W Pt=2, 5	
1. 0	5. 18×10 ³	5. 26×10 ³	0. 08×10 ³	1. 5
1. 5	4.05×104	4. $25 \times 10^{4}$	0. 20×104	4. 9
2. 0	2. 09×105	2. 34×10⁵	0. 25×10 ⁵	12.0
2.5	7.09×10 ⁵	9. 91×10 ⁵	2. 01×10 ⁵	25.4
3. 0	2. 37×10°	3. 46×10 ⁶	1. 09×10 ⁶	46.0
4. 0	1. 38×107	2. 79×10 ⁷	1, 41×10 ⁷	102.1
5. 0	6. 10×107	1. 54×10 ⁷	9, 30×10 ⁷	152.5

TABLE 7.3-7 STRUCTURAL NUMBER AND ESAL

7-55

化化合物转换 化合金

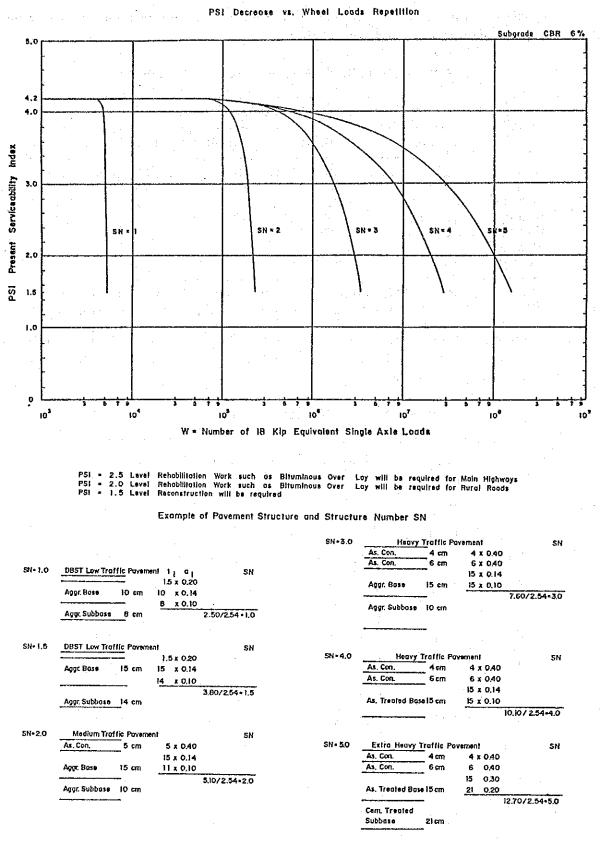



FIGURE 7.3-6 FLEXIBLE PAVEMENT SERVICEABILITY DECREASE CURVE BASED ON AASHTO BASIC DESIGN EQUATION The above analysis reveals a tendency of the serviceability of low-SN pavements, dropping quite rapidly which indicates the necessity of earlier and more timely strengthening of pavement in order to maintain and prolong a proper serviceability level. The remaining life of low-SN pavement is shorter than that of higher SN pavements.

Figure 7.3-7 shows the influence of the soil supporting value of the subgrade on pavement serviceability decrease. The pavement structure of SN=1.5, for example, will be greatly influenced by the supporting value of such subgrades as shown below:

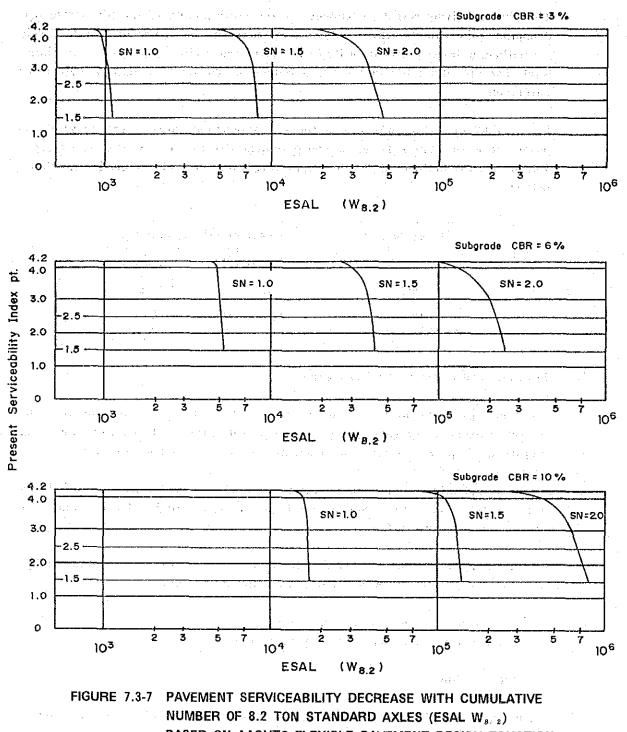
CBR of Subgrade	Nember of ESAL a	L P1=1, 8
3%	8. 51×10 ³	(1. 00)
6%	42. 5 ×10 ³	(4. 99)
10%	139 ×10 ³	(16.3)

#### (4) Structural Failure of Flexible Pavements

The functions of the surface course are to provide resistance to wear and stress due to traffic loads, to provide an even and non-skid surface with comfortable riding quality and to prevent water from penetrating into the pavement structure.

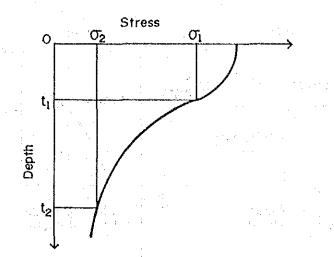
The base and subbase course play an important role in distributing the traffic loads, and reducing the loading intensity until the subgrade will be able to support the distributed load without failure.

Based on the above functions needed for a pavement structure, deterioration in a pavement may be classified into the two (2) following categories:


- Deterioration due to structural failure
- Deterioration due to failure of surface course

#### a) Structural Failure

in the second


Structural failure is defined as a collapse of the structure, or breakdown of one or more of the structural components, that is due to traffic loads and that make the structure incapable of sustaining the loads imposed on its surface.

The general relationship between stress and depth within a flexible pavement structure is shown in Figure 7.3-8.





Pt=2.5 Rehabilitation will be required for main highways Pt=2.5 Rehabilitation will be required for rural roads Pt=2.5 Rehabilitation will be required



# FIGURE 7.3-8 DISTRIBUTION OF STRESS WITH DEPTH OF FLEXIBLE PAVEMENT

Stresses caused by vehicle loads are largest near the surface and decrease with the depth. At depth  $t_1$ , the stress caused by the vehicle is  $\sigma_1$ , and at a depth  $t_2$  the stress is  $\sigma_2$ . If the pavement is to be constructed on a very strong subgrade soil with a strength greater than or equal to  $\sigma_1$ , then the total thickness of pavement required would be  $t_1$ . If a weak subgrade soil with a strength equal to  $\sigma_2$  is encountered, a thickness of at least  $t_2$  would be required to prevent shear failure in the subgrade.

Since stress decreases with depth, the highest quality materials should be placed in the upper portion of the pavement near the surface. Lower quality materials can be used in the lower portions of the pavement near the subgrade.

From a basic structural viewpoint, a pavement structure should be designed so that layers with increased strength or higher quality are placed from the subgrade toward the pavement surface. This is conceptually illustrated in Figure 7.3-9 (a). The high quality layer becomes the base course for pavements with a bituminous surface.

Use of high quality materials over the total pavement thickness would be uneconomical as shown in Figure 7.3-9 (b). Figures 7.3-9 (c) and 7.3-9 (d) illustrate subgrade failure and base failure conditions, respectively.

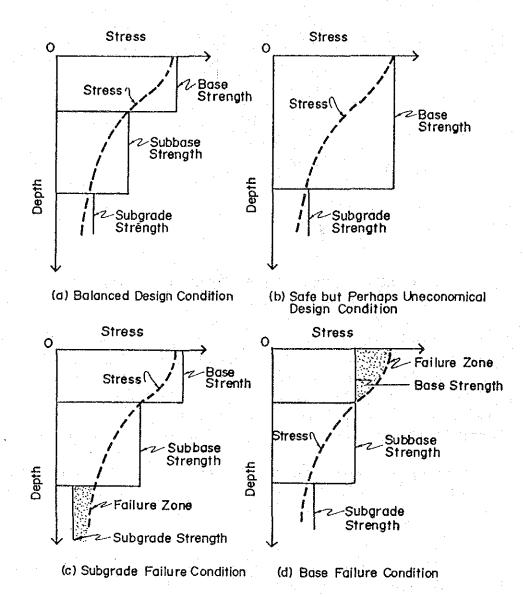



FIGURE 7.3-9 FLEXIBLE PAVEMENT STRESS-STRENGTH CONSIDERATION

b) Failure of Surface Course

The fundamental characteristics needed for the surface course are: stability or shear resistance to vehicle load actions directly imposed on the surface, a waterproof layer on the surface to minimize surface water infiltration into the base/subbase course and subgrade soil, and durability to maintain the required material characteristics of the surface course under the climatic conditions without deterioration.

### (5) Causes of Pavement Deterioration

Pavement failure and deterioration and their causes are discussed individually for the surveyed pavements in the following section.

### a) Gravel Surfaced Road

### i) Pavement Structure

For the surveyed three (3) locations, the thickness of the gravel layer range from 7cm to 15cm. The CBR value varies from 3% to 6%. Quite irregular and bumpy surface conditions were observed at survey location No. 3.

ii) Properties of gravel layer aggregates

The test results for survey location No. 3 are as follows:

Item	Gravel Surface No. 3	DPWH Spec. 300 Grading
Max. size	50 mm	25 mm
Gravel <4.75 mm	31 %	35 - 65 %
Sand 4.75 - 0.07	mm 31 %	
Silt/Clay 0.075 mm	22 %	4 - 15  %
LL	NP	< 35
PI	NP	4 - 9
CBR	14 %	

### TEST RESULTS FOR GRAVEL SURFACE MATERIALS

The following two important characteristics are of high importance for materials for use in gravel surfaced roads.

Grading of particles, that is the mix proportion of gravel, sand and silt/clay.

- Plasticity properties of the fines passing through a 0.425 mm sieve screen.

Well-graded aggregates with a proper amount of fine particles having considerable plasticity demonstrate an adequate shear strength, frictional strength and cohesion to withstand vehicle loads and tire action directly imposed on the surface of the aggregate layer.

# iii) Cause of Deterioration

- Surface Cracks (less than 2 mm):

Shrinkage cracks due to an excessive amount of fines, under the spell of dry days.

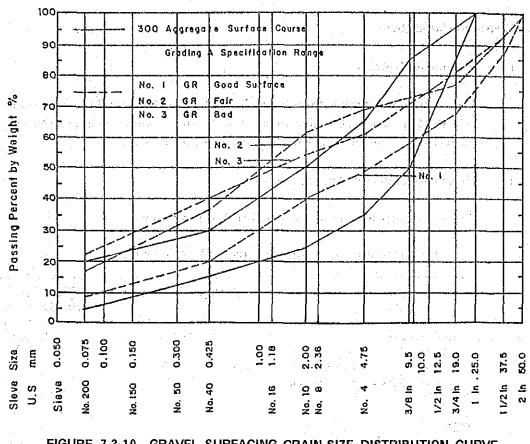



FIGURE 7.3-10 GRAVEL SURFACING GRAIN SIZE DISTRIBUTION CURVE (passing % by weight)

Surface Con	dition Rating	Good in the	Fair	Bad					
Survey No	• .	No. 1	No. 3						
Location		Magallanes to t	Jct. Alfonso ta Magallaness Rd.						
A	DT	8	0	106					
	Cracks	- %	- %	8.9 %					
Distress	Potholes	~ %	%	- %					
	Abrasion	- %	· · · · %	- %					
	Deformation	- %	- %	33.6 %					
	Depression	8.6 %	9.0 %	40.3 %					
Roughness	Right Lane	5,9.mm	9.7 mm	9.7 mm					
σ	Left Lone	4,⊴4 mm	9.0 mm	14.1 mm					
Benkelman	Beam X	86	112	132					
Deflection	(0.01 mm) 0	2 · · · · 22 · · · · ·	26	36					
Sub asada		Silty or clayey	Silt and clay						
Sundiana :	Soll Condition	CBR = 4	CBR = 3~4 %						
Time from regrading	1	About one	Not known						

TABLE 7.3-8 SURVEYED GR ROAD SURFACE CONDITION

Rutting, Longitudinal uneveness, Corrugation

Rutting, Longitudinal unevenness, corrugation:

Due to the progressive separation of aggregate particles from the sandy gravel layer having weak shear strength and frictional strength, caused by poor gradation and lack of the required binding ability of fines contained.

Alligator Cracks and Depression:

Due to subgrade failure. Because the gravel layer is directly placed over the subgrade, this deterioration was observed in the areas where the CBR value is likely to be 3%.

b) Double Bituminous Surface Treatment

Survey results and causes of deterioration by section are presented in Table 7.3-9.

### Pavement Structure

i)

The Double Bituminous Surface Treatment (DBST) pavement on surveyed at six (6) locations consist of the following structural layers.

Surface Course

DBST with seal coat

Base Course	15 cm thick								
	Blended aggregate of crushed stone and sand								
Subbase Course	10 cm thickness								
	Blended aggregate of sand and crushed stone								
Subgrade	The CBR value obtained at six (6)								
	locations vary from 4% to 17%								

These DBST pavements have service period of about six (6) years since their completion of construction.

ii) Aggregate Properties of Base Course and Subbase Course

Base course aggregates are mostly well graded. Plasticity Index are mostly non-plastic and CBR value varies from 67% to 82%.

### iii) DBST Materials

Binder

Cationic emulsified asphalt for DBST and Cut-Back Asphalt for Seal Coat TABLE 7.3-9 SUMMARY OF SURVEY RESULTS AND CAUSES OF DETERIORATION : DBST

						. :		•		-		·*	
Canditios	5 ° X	5 <del>5</del> 4	6 years	9	2	-		22. 6		1		162	Some potholes and depressed area were patched and roller compacted several days before this survey. adystate failur caused by partially weak gubgrade soil were found where the undergrade soil were found where the underground water table is high in areas close to rice fields. Angh in BBST work skill is insufficient. B.B. deflection value shows that the present pavement structure of DBST with 15 cm base course and 10 cm subbase course has poor structural adequary. Therefore, reconstruction is required. In this case, the performance period up to reconstruction is 6 years.
D8ST in 8od	N o B	654	ê 74475	+		10, 3	4.0	15, 5	5. 3		2.8 +	119	Some polholes and depressed area vere batched and roller compacted several days before this survey. Alligator cracks and depressions due to subtrade failure comused by partially subtrade failure coursed by partially subtrade failure claused by partially subtrade soil were tuble is high in areas close to rice fields. B.B. DBST work skill is inaufficient. B.B. deflection value shows that the present pavement structure of DBST with 15 cm base course and 10 cm subbase course has poor structural adequacy. Therefore, reconstruction is required. In this case, the performance period up to reconstruction is 6 years.
Candition	N o . 7	654	6 years	ġ		,		8, 7	•	20. 3	8 2	83	<pre>good surfaces and deteriorated aces exist. The causes of surface rioration are: (1), partial weak ase materials, and (11) insuffi- it binder and cover aggregate leation. pavement structure is DBST with a m base course and 10 cm subbase set. The number of years in service 5 years. B.B. deflection values it hal his pavement structure has structural adeguacy. Ver, due to the above deterio- on; an asphalt concrete overlay 1s ired to prevent further progress of ace deterioration. Therefore, it be said that the performance priod to overlay rehabilitation for this structure under under medium-volume fic and fair subgrade condition is k 6 years.</pre>
DBST in Fair	N o . 6	654	5 years	8			•	21.9	-	ġ. Į	3. 9	85	Both good surfaces and deteriorated surfaces exist. The causes of surface deterioration are: (1), partial wak subbase materials, and (11) Insuffi- cient binder and cover accreate application. and subbase is course and 10 cm subbase course. The number of years in service is 6 years. B.B. deflection values show that this pavement structure has good structural adequacy. However, due to the above deterio- ration, an asphalt concrete overlay is suffice detrioration. Therefore, it can be said that the performance period bovered to prevent further progress of surface detrioration. Therefore, it can be said that the performance period burder and the performance period structure under medium-volume traffic and fair subgrade condition is about 6 years.
Good Condition	N o . 5	268	6 years	1				12.5	<b>\$</b>	1	<b>13</b> <b>11</b>	11	is dense, smooth e a well finished face. binder of the DBST pplled, and by test layer was found to ibility. d cover aggregate is adequate. ction value is very that a well pavement has a f more than 6 years traffic and good
DBST in	N ¢. 4	268	6 years	11			-	5. 6	T	1	2.4	13	The surface texture is dense, smooth and water-proof like a well finiahed asphalt concrete surface. The aggregates and binder of the DBST layer are properly applied, and by test layer are properly applied. and by test have sufficient flexibility. Skill for binder and cover aggregate application work is adequate. Benkelman Beam deflection value is very low. It was confirmed that a well constructed DBST pavement has a performance period of more than 6 years under low-volume traffic and good subgrade conditions.
1 1 0 0	Section No.	ADT (Vehicle/day)	Priod in Sarvice	Subgrade C8R (%)	Beterioration	Craets (X)	Patching (%)	Abrasien (X)	Depression (X)	Other Distress (X)	Reuthniss (c) (am)	B. B. Deffection (D. 01 mm)	0 3.5 C and C C C and C C C and C C C and C C C C and C C C C C C C C C C C C C C C C C C C

7-64

Cover Aggregate Crushed Aggregate

3/4 in. (20 mm) for DBST 1st application 3/8 in. (10 mm) for DBST 2nd application 1/4 in. (6 mm) for Seal Coat

Application Rate:

Layer		I	3in	ler	•	Cover Aggrega	te
	application application			1.8	l/m ² l/m ² l/m ²	18 kg/m² 11 kg/m² 6 kg/m²	

The above data were obtained from the DBST pavement construction report.

Table 7.3-10 shows the application rate of materials for double bituminous surface treatment specified in DPWH Standard Specifications.

iv) Double Bituminous Surface Treatment

Surface treatment, which is applied to all kinds of roads, is a broad term embracing several types of bituminous materials ranging from emulsified asphalt to liquid asphalt and asphalt-aggregate. It is usually applied to a thickness of less than 25 mm.

A single application of bituminous materials to a prepared base or road surface followed immediately by the placing of a single layer of aggregates is known as single bituminous surface treatment.

Two single surface treatment layers placed on top of the other is called double surface treatment. The aggregate maximum size of successive treatment is usually one-half of the first one and a total thickness is about the same as the nominal maximum size aggregate particle of the first layer.

A double surface treatment is a denser wearing and waterproofing layer than a single surface layer, and provides additional strength. The expected service life of a double surface treatment varies considerably, raging generally from 5 to 10 years during which period, service free of major maintenance is ensured. The successful performance of double surface treatment depends heavily on climate and construction control as well as proper selection of materials.

# TABLE 7.3-10 APPLICATION RATE OF DBST MATERIALS (DPWH Standard Specifications)

n an guillean an 1944. Is su a tha is na

Sequence of Operations	Bituminous Materials lit/m²	Aggregate kg∕m²					
	· · · · · · · · · · · · · · · · · · ·						
First Layer : Bituminous Materials	1.58						
Application							
Aggregates Spreading		27.20					
Grading B(10-5mm)	· · ·						
Second Layer :	ante a proclama de la composición de la Composición de la composición de la comp	alis nito en llito. L					
Bituminous Materiais	2.04						
Aggregates Spreading		10.88					
Grading B (5-2 mm)	e de la companya de l Companya de la companya de la company						
Totals :	n de la companya de l						
Bituminous Materials Cover Aggregate	3.62	38.08					
		30,00					
Aggregate Specific Gravity:	2.65	en e					

# TABLE 7.3-11 TYPES OF BITUMINOUS MATERIAL FOR SURFACE TREATMENT

an a	Cem	sphait ments Liquid Asphaits																								
Types of Construction		8.		Raj Cur (R	pid Ing	:	~	Me Cu	diy Irin	m			Slo Cur (S	) W		E	mu (Ar	131	fle	đ.		Em (Co		sifle		
an an an an an an Araba an Araba. An anna 1960 an Araba an Araba	120/150	200/30	2	250	BCO	000E	30	70	250	800	3000	20	250	800	3000	RS - 1	RS-2	MS-2	SS - 1	R-1h	CRS-1	CRS-2	CMS-23	CMS-2	css-1	4-550
Surface Treatments With Cover Aggregates	X	x	x	x	x	x			x	x	x	<b>r</b> —		X	X	x	x		* :		х	x				Γ
Seal Coats	х	X	х	x	x	x		х	x	X	x					x	x		x¹	x	х	X			x	>
Slurry Seal																			x	х					X	5
Fog Seal				:		• •								-				_		x²						5
Tack Coat			x							-			-			X²		-	x²	X2	×				X	X
Prime			x	x	 		x	х	X		-	X	X				·									F
Dust Laying		1					х	X	-			x				_			X²						χ²	F

 1  SS grades can be used when sand is used for cover . 2

Water dliuted .

.

ι.

• • •

The important consideration for successful treatment are:

A uniform application rate of the bituminous binder must be maintained to ensure build-up of a uniform binding layer between the prepared base and spread cover aggregate. Usually, the application rate of the bituminous binder is from 0.6 to 1.8 1/m² (0.6 to 1.8 mm film thickness) for each layer application.

Uniform spreading of the cover aggregates must follow the spraying of binder before the formed film loses its binding viscosity, to ensure a firm bond between the film and cover aggregates immediately.

and a second second second

Cover aggregates of a uniform size must be used to ensure a uniform blotting of the sprayed binder film by the cover aggregate layer.

The cover aggregate must be clean to establish a strong bond between the aggregate and bituminous binder.

Bituminous materials that can be ;used for surface treatment are shown in Table 7.3-11. the adequate grade of bituminous materials will be one that meets the following requirements.

- When applied, be flux enough to have fluidity to enable proper spraying and uniform covering of surface.

After application, retain proper consistency so as to wet the spread aggregates.

- To cure and develop the required adhesion quickly.

#### v) Causes of Deterioration

Mostly frequently observed type of deteriorations are:

- Fine cracks:

Due to lowering of bearing capacity of pavement structure caused by weak subbase materials.

 $(a_1,a_2) \in \mathbb{R}^{n-1} \to \mathbb{R}^{n-1}$ 

Alligator cracks and depression:

Due to subgrade failure caused by weak subgrade soil where the underground watertable is high close to rice fields.

ta a departa de la companya de la co

Abrasion:

Progressive wear of seal coat and separation of DBST cover aggregate from DBST layer.

Insufficient amount of binder spraying, spray streaking, (insufficient skill in binder chip application).

c) Bituminous Penetration Macadam Pavement

(4) A set of the se

Survey results and causes of deterioration by section are presented in Table 7.3-12.

i) Pavement Structure

A start of the second start of th

Bituminous Penetration Macadam (BMP) pavements surveyed three (3) locations are of the following structures.

al tur anti anti tu	taga wata na kaominina katao ini ta	
Surface Course	BMP and a second second second	3 cm to 4 cm thickness
<b>Base Course</b>	Waterbond Macadam	5 cm to 10 cm thickness
Subbase Course	No. 10 location :	14 cm thickness
	Crushed rock fragments ar	ıd silt
	No. 11 and 12 locations:	

No Subbase

The number of years these pavements have been in service since construction is about 8 years.

ii) Aggregate Properties of Base Course and Subbase Course

Waterbond Macadam base aggregates are crushed rock fragments whose maximum size is about 50mm.

iii) Surface Course Materials

Bituminous Materials Straight Asphalt 80/120 Aggregates

Base layer aggregates	30 – 10 mm
Key aggregates	20 - 10  mm
Cover aggregates	5 – 3 mm

iv) Bituminous Penetration Macadam

Base layer stones, whose single size and maximum size are of 50 mm to 30 mm, are spread over a prepared base and compacted. This is followed by the spraying of bituminous materials for penetration into the base stone layer. Then, size 20 mm to 10 m key stones are spread and rolled, which is then followed by the spraying of bituminous materials for penetration into the key stone layer. After one more this treatment, cover aggregates, 5 mm to 3 mm, are spread and rolled. This is an example of BMP surface construction practice.

÷., .

TABLE 7.3-12 SUMMARY OF SURVEY RESULTS AND CAUSES OF DETERIORATION : BMP

.

842 Pavement in Bad Condition	6	668	5 L 2 2	147		10.5	23. 4	1 1 1	9 4 1	1 2	233	The surface in this location is severely deteriorated and riding quality is very bumpy. B.B. deflection is great. Reconstruction is required, for the reason that: (1) The absence of a subbase course has caused structural failure. (1) BMF surface course abrasion because of aging and oxidization of the asphalt in the layer due to less amount of asphalt application.
r to Bad Condition		668	8 years	<b>1</b> .			4, 1	£, 5	1. 6	5. 1	131	of many patched areas and depressions, the riding quality is lowever, most part of the surface shows a dense and waterproof texture. The "good" BNP layer has adequate flexibility and if in the layer that was observed by test pit excavation has . The cause of depression due to partial weak subgrade soil observed. observed. eman Beam deflection value is high, calling for an overlay all concrete. For constructed, it is anticipated that BNP surface course we an adequate performance period of about 8 years under riume traffic.
SEP Pavesent in Fair		663	17 L N B P J	01		5. 9	7.3	•	2. 6	¥. 3	5.5	Because of many patched areas and depressions, the riding quality bumpy. However, most part of the surface shows a dense and watery surface texture. The "good" BMP layer has adequate flexibility the asphalt in the layer that was observed by test pit excavation not aged. The cause of depression due to partial weak subgrade was also observed. The Benkelman Beam deflection value is high, calling for an ov with asphalt concrete. If properly constructed, it is anticipated that BMP surface of would have an adequate performance period of about 8 years medium-volume traffic.
		ADT (Vehicle/day)	Priod in Service	Subgrade C8R (%)	Deterioration	Graeks (X)	Patching (X)	Abrasion (X)	Depression (X)	Roughness (or) (am)	8.8. Oetlection (0.01mm)	Description of Condition Causes of deterion deterion ficon and

7-69

The standard application rate for aggregates and bituminous materials used for this BMP method varies from country to country.

Table 7.3-13 shows the standard application rates obtained from the DPWH Standard Specifications.

The following bituminous materials are mostly used.

· · · ·

-	Straight Asphalt	Penetration Grade 100-120,
		120-150 and 150-200
-	Cut-Back Asphalt	MC-800 and MC-3000
		RC-800 and RC-3000

Emulsified Asphalt Cationic Emulsified Asphalt

Usually high viscosity bituminous materials are used for warmer region and under heavy traffic conditions.

	Bituminous	Agi	gregate kg/1	n
• • • • •	Material	Coarse	Key	Cover
5,	lit/m	(50—13mm)	(13— 5mm)	(10- 3mm)
First Spreading	4. 0	90		
First Applicatoin		· · · ·		
Second Spreading	1. 8		13	
Second Application		-		
Third Spreading	1. 4		11	
Third Application				
Fourth Spreading		· · · · · · · · · · · · · · · · · · ·	:	8
Total	7. 2		122	

TABLE 7.3-13 APPLICATION RATE OF MATERIALS FOR BMP (Using Asphalt Cement or Rapid Curing Ashhalt)

#### v) Causes of Deterioration

BMP pavement had been used for pavement construction up to about 8 years ago and since then this pavement has been seldom applied because of the widespread use of hot-mix asphalt concrete paving method.

#### Causes of deterioration are as follows:

Surface Cracks:

Caused by the failure of the BMP surface layer due to lack of stability or shearing resistance where the asphalt in the layer has lost its bonding and adhesive ability.

Aging and oxidization of asphalt due to insufficient amount of asphalt application.

Deformation of surface layer:

Caused by lack of stability or shear resistance due to improper aggregatesasphalt application rate. Lack of interlock of aggregates due to improper application rate for base stone and key stone.

Lack of interlock of aggregates due to excessive asphalt application rate.

Alligator cracks and depression:

Due to subgrade failure caused by weak subgrade.

d) Asphalt Concrete Pavement

Survey results and causes of deterioration by section are presented in Table 7.3-14.

i) Pavement Structure

Asphalt concrete (AC) pavement on surveyed three (3) locations, consist of the following structures.

Surface Course	Dense asphalt concrete 6 cm to 8 cm
Base Course	Crushed stone base 7 cm to 8 cm
Subbase	Crushed rock fragments 7 to 14 cm
Subgrade CBR	CBR Value for three (3) locations varies 5% to 8%

ii) Aggregate properties of Base and Subbase Course

Base course aggregates are mostly well-graded. The plasticity index is nonplastic and CBR value for three (3) locations varies from 31% to 61%.

Subbase course aggregates are rather finely graded. Plasticity index are nonplastic and CBR varies from 11% to 21%. TABLE 7.3-14 SUMMARY OF SURVEY RESULTS AND CAUSES OF DETERIORATION : AC

Sad Condition	26. tu	2, 064	\$ J891 5	5		25. 5	<b>**</b>	13. 8		124	The deterioration type, amount of deter- ioration and cause of the deterioration are mostly same as AC pavement on iocation No. 14. For a long lasting asphalt concrete pavement, the consideration for a design and construction of stable and durble be given.
AC in Fair to	Ma. 14	2, 86&	f1 years	6		22. 7	9.5		1	113	Because of the long years of service, the surface has deteriorated consider- ably and is bumpy. The bearing capacity of the pavement is considered to be fair. The asphalt concrete mixture Is brittle and thus lacks adhesive and bonding and thus lacks adhesive and bonding and thus lacks adhesive and due oxidization of binder. Surface cracks are due to fatigue of the saphalt concrete surface layer and due to the base course and/or aubbase course failure alligator cracks and depression is due to subgrade failure. Partial replacement and thick asphalt concrete overlay or total reconstruction is necessary for the projected growing heavy traffic volume.
AC in Very Good Condition	X0, 13	1, 338	3 4095	.00		E Contraction of the second seco			0.9	75	NG deterioration in this section.
<b>E</b> • •	Section No.	ADT (Vehicle/day)	Pried in Service	Subgrade C8R (%)	Deterioration	Cracks (X)	Patching (%)	Depression (X)	Rouzhiness (σ) (m.m.)	B.B. Daflection (D.Blana)	Bascription of Condition and Causes of deterioration.

7-72

#### iii) Surface Course Materials

The maximum size of asphalt concrete is 19mm. The standard gradation range for dense asphalt concrete mixture is shown in Table 7.3-15.

The asphalt binder used is Asphalt Cement penetration grade 60/70.

# TABLE 7.3-15 GRADATION RANGE FOR DENSE GRADED HOT PLANT MIX BITUMINOUS MIXTURE

Sieve Designation	Percent Passing Sleve by Weight				
fitm	Туре D	Type F			
19 (3/4 Inch)	100	100			
12.5 (1/2 Inch)	95-100				
9.5 (3/8 inch)	74-92	~~			
4.75 (No.4)	48-70	45~65			
2.36 ( No. 8)	3353	33-53			
1.18 (No.16)	22-40				
0.600 ( No.30 )	15-30				
0.300 ( No.50)	10-20	10-20			
0.075 (No. 200)	4-9	3-8			

⁽DPWH Standard Specifications)

#### iv) Causes of Deterioration

Mostly observed deteriorations and their causes are as follows:

- Surface cracks:

Failure or fatigue of surface course asphalt concrete mixture caused by repetition of traffic.

Low stability mixture at the time of construction.

Aging of the asphalt for a longer service period of more than several years.

Uneven bearing of the base course and subbase course.

· Alligator cracks and depression: A standard the state of such devi-

 $\{ j_{i}, j_{i}\}$ 

Due to subgrade failure caused by presence of the weak subgrade soil.

Rutting and deformation due to plastic flow of mixture by repetition of heavy traffic were not observed. Usually richer asphalt content mixture shows these deteriorations.

the provide the second second

Deterioration portions have been patched frequently throughout the year.

## CHAPTER 8

## EXPERIMENTAL PAVEMENT

# 8.1 PLANNING AND DESIGN

## 8.1.1 Selection of Sections for Experimental Pavement Construction

a trouble and the factor

#### (1) Selection Criteria

The major purpose of experimental pavement construction is to analyze the functional performance of various types of pavement models with time and traffic loading repetition by conducting a follow-up survey for five (5) years and to provide the basic data for appropriate structural design of pavement including proper selection of pavement type according to traffic and subgrade conditions.

In order to achieve the purpose within the limited time, the criteria for selecting road sections for experimental pavement construction were proposed as follows:

- a) Selection of Area
  - The area should be selected among the Pilot Provinces in the Phase I Study or the Study Provinces in this Study because of availability of road and traffic data.
  - The area should be located close to Metro Manila so as to provide convenience in conducting an effective follow-up survey by DPWH.
  - All sections should be located in close by, preferably within one province for the same reason given above.
  - Out of four (4) types of climate in the Philippines, the coverage of this Study will be limited to one type only, as an initial step of this kind of experimental works.
- b) Characteristics of Sections to be Selected
  - i) Traffic Level
    - The economical pavement type depends on the traffic volume. Generally, GR and SBST are applicable to low volume roads, DBST and BMP to low to medium volume roads and AC and PCC to medium to high volume roads. To cover various types of pavements, sections should be selected so as to include three (3) different levels of traffic volume, low, medium and high.

U

ii) Subgrade Condition

Subgrade strength is one of the important factors that affect the structural performance of pavements. Sections should be selected so as to include two (2) different subgrade conditions, good and poor, for each traffic level.

#### c) Selection of Sections

The criteria for section selection are as follows:

To satisfy as much as possible the requirements on traffic level and subgrade condition as mentioned in b) above.

- To be either unpaved or in a bad condition in existing pavement.

To be accessible for construction equipment.

- To be homogeneous over required length, not including undulation, localized condition, etc.

To be neither steep in gradient nor sharp in horizontal curvature.

• To be free of factors that may cause a drastic change in traffic volume in the near future, such as construction of an interchange in the vicinity.

(2) Selection of Road Sections for Experimental Pavement Construction

a) Selection of Area

The Province of Cavite, including its vicinity, was selected for the following reasons:

- Cavite is one of the Pilot Provinces in the Phase I Study, where road and traffic data are available.
- Cavite is located near Metro Manila.
- b) Selection of Sections

After evaluating many candidate sections through field reconnaissance, five (5) sections were selected as shown in Figure 8.1-1;

Section (1) : Low traffic, good subgrade

Section (2) : Low traffic, weak subgrade

Section (3) : Medium to high traffic, good subgrade

Section (4) : Medium to high traffic, weak subgrade

Section (5) : High traffic, good subgrade

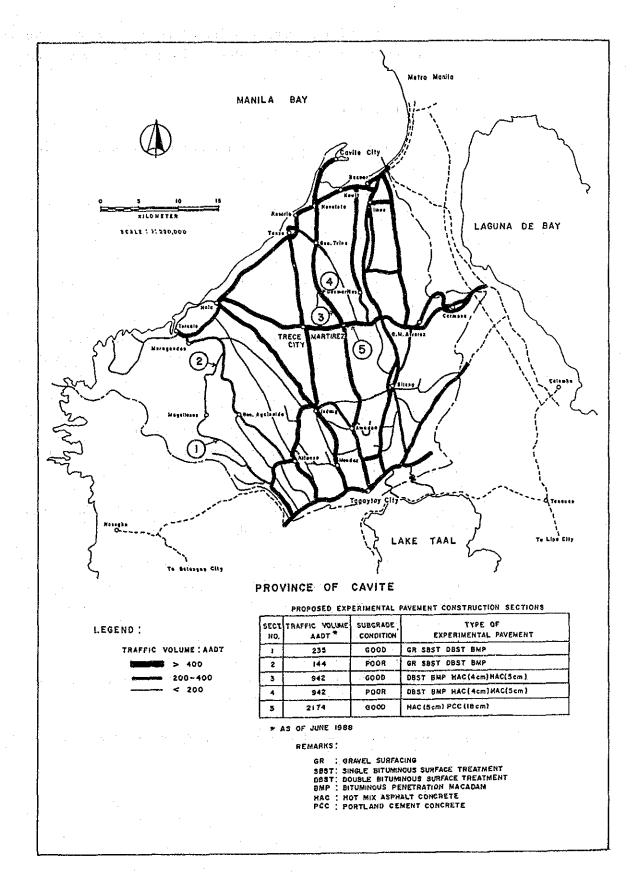



FIGURE 8.1-1 EXPERIMENTAL PAVEMENT CONSTRUCTION ROAD SECTIONS

The section with high traffic and weak subgrade was not selected, because of the absence of an appropriate section under such category that satisfied the selection criteria.

(3) Characteristics of Selected Road Sections

The characteristics of selected road sections for experimental pavement construction are summarized in Table 8.1-1.

- 8.1.2 Type of Experimental Pavement Models
  - (1) Selection Criteria

In selecting the experimental pavement models, the following factors were taken into consideration:

- i) Various types of low-class pavement should be tested for their serviceability performance to obtain basic data for determining an appropriate serviceable life for each type of pavement.
- ii) In the DPWH/DLG Design Standards, a typical pavement type for the respective levels of traffic is proposed as shown in Table 8.1-2. Model tests should be planned in due consideration of these standards, particularly for pavement type versus traffic volume.
- iii) As the follow-up survey period will be five (5) years, the serviceable life should be preferably examined for within that period.
- iv) As mentioned in Section 7.1 of this report, SBST and BMP are not commonly used in this country. However, the possibility of using these types of pavement more effectively should be examined through experimental construction and the follow-up survey.
- v) For PCC pavements, the most commonly used thickness is 20 cm or above. In this Study, 15cm-thick PCC pavements which is considered to be of the minimum thickness should be tested its performance;

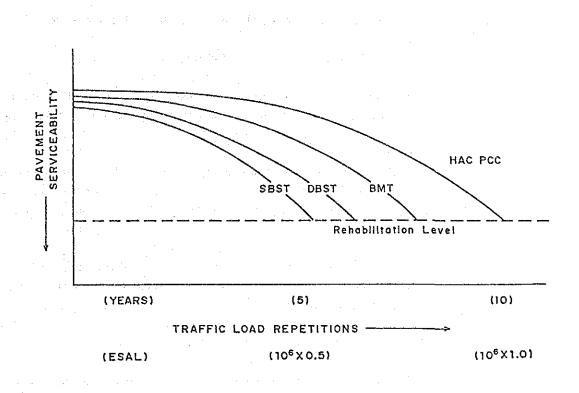
Figure 8.1-2 conceptually illustrates the change in the serviceability of low-class pavements with time.

TABLE 8.1-1 CHARACTERISTICS OF SELECTED ROAD SECTIONS

i a ser a 19 - starta (s	subgrade peared dersare ace	es on portion th side	h some les.	with some	ered potholes rface cracks on ent
Remarks	Gravel Surface: In some portion, subgrade materials are appeared and outcrop bouldersare seen on the surface	Gravel Surface: Scattered potholes on surface in some portion No shoulder on both side	DBST Surface: Deteriorated with some cracks and potholes.	DBST Surface: Deteriorated wit cracks.	<ul> <li>with scattered potholes on road surface</li> <li>alligator cracks on DBST pavement</li> </ul>
Land Use	Coconut and Pineapple Plantation	Ricefield	Ricefield Residential	Ricefield	Sugarcane Plantation on both sides
Subgrade Condition	Good	Poor	Good	Poor	Good
Fresent Condition of Favement	TP-Gravel	TP-Gravel SC-Bad	TP-DBST SC-BBA Deteriorated	TP-DBST SC-Bad Deteriorated	TP-HAC SC-Bad
Traffic Volume (AADT)	174	123	784	784	2,404
Typical Cross- Section (m)	CW-6.0 ROW-12.0	CW-6.0 ROW-12.0	CW-6.0 Sh-2x1.25 ROW-12.0	CW-6.0 Sh-2x1.25 ROW-12.0	CW-6.0 ROW-12.0
Location	Jct. Alfonso Magallanes Road	Magallanes- Maragondon	Gen. Trias- Jet. Carmona Trece Martirez Road	Gen. Trias- Jet. Carmona Trece Martirez Road	Trece Martirez- G.M.Alvarez
Road Classifi- cation	Provincial Road	Províncial Road	Provincial Road	<b>Frovincial</b> Road	National Road
Experimental Pavement Construction Road Section No.	No. 1	No. 2	No. 3	No. 4	No. 5

CW - Carriageway with (m) Sh - Shoulder (m) Row - Road right of Way (m)

TP - type of Pavement SC - Surface Condition


. . .

8 - 5

		· .				•
		· · · ·				a a la composición de
TAR	5 8 1.2	STANDARD PA	VEMENT TV	DES DEN	DOGED BY THE	PHOT
180	LE 0.1°Z	JIANUARD FA		FLO FNUI		
i AD	LE Q,1~Z	STUDY OF RUI	:	1		

		AADT	in Opening	Year	
Class of - Roads	Under 100	100-200	200-400	400-2000	Over 2000
Primary Major Road	GR	DBST/ BMP	DBST/ BMP	HAC	PCC
Secondary Major Road	GR	GR	DBST/ BMP	HAC	HAC
0)		AADT	in Opening	Year	
Class of <del>-</del> Roads	Ur	der 200	200	-400	Over 400
Collector Road		GR	DE BM	BST/ IP	HAC
Feeder Road		GR	DE BM	ST/ IP	HAC

8--6



ESAL: Cumulative Equivalent 8.2-ton Single Axle Loads

Serviceability of GR surfacing may be recovered by routine maintenance operation (once a year or so).

FIGURE 8.1-2 CONCEPTUAL ILLUSTRATION OF CHANGE IN SERVICEABILITY OF LOW-CLASS PAVEMENTS WITH TIME The length of a single model was set to 200 meters for the following reasons:

- i) When the model length is shorter than 200 meters;
  - As the assessment of performance may be governed by localized damages/ failures, the general performance of the pavement may not be properly assessed.
  - Joint areas between models should not be assessed, because these areas may be affected by deterioration of adjacent weak pavement. Therefore, a model length of 200 meters means that a net length of 150 meters will be assessed.
- ii) When the model length is longer than 200 meters, it is difficult to find a homogeneous section of a length of more than 1,000 meters in terms of traffic, subgrade and drainage conditions.
- (2) Selection of Types of Experimental Pavement Models

The following five (5) sections were selected as the experimental pavement construction sites.

Section (1): Representative section of low traffic and good subgrade condition.

Section (2): Representative section of low traffic and poor subgrade condition.

Section (3) : Representative section of medium traffic and good subgrade condition.

Section (4): Representative section of medium traffic and poor subgrade condition.

Section (5): Representative section of high traffic and good subgrade condition.

For each section, the following models were recommended for construction. The detailed structural thickness will be determined at Stage 2 after obtaining traffic data and subgrade bearing capacity. Experimental pavement models are summarized in Table 8.1-3.

### Section No. 1 AADT = 170, Heavy Vehicle=14/day Subgrade condition = good

		4 x 200 ^m	# 800 m.			
Models	GR	SBST	DBST	BMP		÷ .
Design Performanc Period (X)		5 years	X = 4 - 8	years		
Expected Output of Follow-up Survey	Perfor Perio		with	ional Perfo in 5 years st of Perfo	after co	



Models : Same as Section No. 1

Section No. 3 AADT = 780, Heavy Vehicle=50/day Subgrade condition = good

Models	DBST	ВМР	AC-1 (4 cm)	AC-2 (5 cm)
Design Performanc	e	X = 4 - 8 ye	ears X	= 7 - 10 years
Period (X)				
Expected		Performance	\$	Functional Performance
Output of		Period		within 5 years after construct

Forecast of Performance Period

Section No. 4 AADT = 780, Heavy Vehicle=50/day Subgrade condition = poor

Models : Same as Section No. 3

Section No. 5 AADT = 2,400, Heavy Vehicle=390/day Subgrade condition = good

	14 2 x 200 ^m	2 400 m
Models	AC-2 (5 cm)	PCC (18 cm)
Design Performance Period (X)	X = 3 years	X = 8 years
Expected Output of Follow-up Survey	Performance Period	Functional Performance Within 5 years after construction

Forecast of Performance Period

Road Section	Traffic Condition	Subgrade Condition	Pavement Surface No. Type	of Le Models	ength (m)
No. 1	Low	Good	GR,SBST,DBST,BMP	4	800
No. 2	Low	Poor	GR,SBST,DBST,BMP	4	800
No. 3	Medium	Good	DBST, BMP, HAC (4 cm), HAC (5 cm)	4	800
No. 4	Medium	Poor	DBST, BMP, HAC (4 cm), HAC (5 cm)	4	800
No. 5	High	Good	HAC (5 cm), PCC (15 cm)	2	400
TOTAL :	5 Road	Sections	₩ <u>₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩</u> ₩₩₩₩₩	18	3600

#### TABLE 8.1-3 SUMMARY OF EXPERIMENTAL PAVEMENT MODELS

### 8.1.3 Traffic Survey

The two (2) kinds of traffic survey described below were conducted along the sections selected for experimental pavement construction.

(1) Traffic Count Survey

The 12-hour traffic count survey by vehicle type and by direction was conducted at four (4) locations for three (3) days. The locations of survey stations are as follows:

Survey Station 1 : Jct. Alfonso – Magallanes (Experimental Pavement Section 1)

Survey Station 2 : Magallanes – Maragondon (Experimental Pavement Section 2)

Survey Station 3 : Mangahan Jct. – Gen. Trias (Experimental Pavement Section 3 and 4)

Survey Station 4 : Mangahan Jct. – Carmona (Experimental Pavement Section 5)

The findings of the traffic count survey are summarized in Table 8.1-4.

Survey Station	EPC Section	Car/Jeep	Van	Jeepney	Bus	Truck	Total
1	1	26	64	70	0	14	174
2	2	28	14	69	0 1	12	123
3	3&4	171	242	319	4	48	784
4	5	784	606	622	118	274	2,404

# TABLE 8.1-4SUMMARY OF TRAFFIC SURVEY RESULTS(AADT as of November 7 to 9, 1989)

Note : EPC Section = Experimental Pavement Construction Section

(2) Loadometer Survey

Loadometer surveys were conducted for two (2) days at the same survey stations as the traffic count survey.

Loadometer survey was not conducted for Survey Station NO. 2 because of similar track traffic characteristics with Survey Station No. 1.

Number of vehicles weighed is summarized in Table 8.1-5.

								mber of Vehicl	es Weighed
Survey Station	5			C ion	 	D1:	rection —	Trucks	Buses
1		1	<u>&amp;</u>	2	1:	To	Magallanes	5	••••
							Jct. Alfonso	5	_
3		3	&	4	1:	To	Jct. Mangahar	n 75	2
							Gen. Trias	86	2
4			5		1:	То	Jct. Mangahar	n 151	24
•							Carmona	122	25

TABLE 8.1-5 NUMBER OF VEHICLES WEIGHED

The vehicle load factor for converting the number of 18-kip (or 8.2-ton) Equivalent Single Axle Load (ESAL) for trucks and buses was computed from the following equation based on the surveyed axle load distribution and Traffic Equivalence Factor for Flexible and Rigid Pavements of AASHTO Road Test.

$$\mathbf{VLF} = \frac{1}{\mathbf{N}} \sum_{i=1}^{n} (\mathbf{n}_{i} \times \mathbf{e}_{i})$$

where:

VLF = vehicle load factor

 $n_i$  = number of axles for axle load group i

e_i = traffic equivalence factor for axle load group i

n = total number of axles

N = total number of vehicles

The computed vehicle load factors are shown in Tables 8.1-6 and 8.1-7 for Asphalt pavements and PCC pavements respectively.

أتحاد جريج مدعا متعا تتعا حادا المراجع المرأوان والأراري

· · · · · · ·		<u>an an a</u>	Truck	Ş	Bus	
Survey Station		Direc- tion	Number of Vehicles		Number of Vehicles	* .
1	1 & 2	1 - 11 - 11 - 11 - 11 - 11 - 11 - 11 -	5 5 Average	0.456 0.551 0.503		
3	3 & 4	1 2	75 86 Average	0.533 1.375 0.992	2 2 Average	0.038 0.038 0.038
4	5	1 2	151 122 Average	2.003 0.281 1.233	25	0.431 0.787 0.613

TABLE 8.1-6 VEHICLE LOAD FACTOR FOR ASPHALT PAVEMENTS

Note: Based on the (AASHTO road Test) axle equivalency factors for flexible pavements, pt = 2.0 and SN = 2.0.

TABLE 8.1-7	VEHICLE LO	AD FACTOR	FOR PCC	PAVEMENTS

			Truck	S	Bus	n de la composition de la comp
Survey Station	EPC Section	Direc- tion			Number of Vehicles	
4	5	1 2		0.225 0.339 1.362	24 25 Average	0.407 0.706 0.559

Note: Based on the (AASHTO road Test) axle equivalency factors for rigid pavements, pt = 2.0 and D = 7 in.

## 8.1.4 Engineering Survey

(1) Topographic Survey

· . . .

Topographic, profile and cross-section surveys were carried out for each experimental pavement construction section and the following drawings were prepared:

· 4

Topographic drawings	: Scale 1 : 1,000
Profile	: Scale 1:1,000 (horizontal)
х. · ·	1: 100 (vertical)
Cross-sections at	: Scale 1 : 50
20-m intervals	(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
	and the second

8-12

#### (2) Soil Investigation

Soil investigation and laboratory tests were carried out for the experimental pavement construction sections to obtain necessary data for the structural design of experimental pavements.

The survey items examined for each section are shown in Table 8.1-8. Samples from selected sites were obtained and tested by the Bureau of Research and Standard. The test results are summarized in Table 8.1-9.

Road condition survey records, soil boring log records and triangular gradations are attached in Appendices 8-1, 8-2, and 8-3, respectively.

TABLE	8.1-8	SOIL	SURVE	YAND	LABORA	TORY TEST	ITEMS	
	· ·					1		 
·····/moat			· · ·	1.1		Ttems		

Survey/T	est	TLEMS
Field	Road Condition	100 m internals: Cross section Condition of carriage way Shoulder, drainage
Survey	Auger boring and Sampling	100 m intervals, 1.0 m depth: observation of soil properties water table
Laborato	ry Tests	. Natural water content . Sieve analysis . Consistency: LL, PL, PI . Soaked CBR

TABLE 8.1-9 (1) SUBGRADE SOIL PROPERTY OF LOW-CLASS PAVEMENT EXPERIMENTAL CONSTRUCTION SECTION

Environmental Condition         37.5         !S.0         I2.5         Sievention           Section No. 1         Na. 1         No. 1         100         94         91         85           Le 800 m.         Na. 2         Na. 2         Na. 3         100         94         91         85           J.t. Alfonso to         Na. 3         100         98         92         90           Wagalianes road         Na. 4         Na. 4         100         99         93           The project road of Ihls         Na. 5         1000         98         92         90           Point run through flat lerraln         Na. 5         1000         91         87         83           possing accrease the level of point run through flat lerraln         Na. 5         1000         91         87         83           possing accrease the level of Na. 6         Na. 7         1000         98         96         100           pointurition and some frees         Na. 7         1000         98         96         96           second.         Na. 8         Na. 7         1000         98         96         96	Size (mm 4.75 84 84 89 89 89 89 89 89 89	) 2.00 0.425 74 56 97 89 71 46 97 93 58 41	0.075 36 77 26	d Z	Index C	Content						
No.         I         IOO         94         91           No.         Z         IOO         98         92           No.         G         10O         91         87           No.         B         10O         93         87           No.         B         10O         93         87           No.         B         10O         93         93           No.         I         10O         93         93			36 77 26	효		*	*	*			Ē	~~~~
No.         Z         100         93           No.         3         100         98         92           No.         5         100         93         92           No.         6         100         91         87           No.         6         100         93         93           No.         7         100         93         93           No.         8         100         93         93           No.         100         93         93         93           No.         100         93         93         93		an a	77 26		£	36.43	ß	0	W s7	56	36	ĸ
No. 3         IOC         92           No. 4         No. 5         100         93           No. 6         No. 6         100         93           No. 1         100         93         100           No. 1         100         93         100			26	44	=	36,20	ŝ	410	ML	r)	20	1
Na. 4 100 Na. 5 100 91 87 Na. 6 100 91 87 Na. 7 100 98 Na. 8 100 98 Na. 1 93 98				đ	NP	29.17	ଜ	ø	WS	52	5	26
No. 5 100 91 87 No. 6 100 98 No. 7 100 98 No. 8 100 98 No. 1 93 98			98	4	22	65.93	n	0.065	НМ	ħ	22	86
No. 6 No. 7 100 38 No. 8 100 98 No. 1 93 91			30	Å	Å	48,62	<b>0</b>	0	SM	4	28	ጽ
Na. 7 100 38 No. 8 100 98 No. 1 93 91		16 56	32	73	ŝ	56.50		2.42	MH	<u></u>	<b>F</b>	32
No. 8 100 98 No. 1 93 91		32 32	8	73	ñ	47.13	u	2.05	НМ	<b>87</b>	4	6
No. 1 93 91	96 97	96 94	26	26	24	60,56	10 10	<b>1</b> .0	МН	4	4	92
	30 86	82 73	64	25	80	24.26	4	0.28	НИ	18	61	64
Magalianes to No. 2 100 98 96	96 32	81 53	54	đ	đ	29,88	22	0	SM	51	57	24
No. 3 100 99 99	86 66	94 86	75	58	26	51,55	N	0	МН	9	6I	2
The rood generally run on No. 4 100 99 98	98 96	92 06	<b>29</b>	47	2	33.22	2	0.39	ML	2	រុ	53
the ridge intervent prosey. young corn, monga, burnand Na. 5 100 99	86 65	96 85	۲	4	Ŧ	28,62		0.39	ΠM		Ŋ	7
vertical alignment is rolling No. 6 100 99	99 95	11 60	67	42	ផ	22.98	M.	5.45	НМ	=	52	67
above the surrounding kand and the surface is gravel. No. 7 100 97 96	96 93	87 74	23	26	20	50.14	2	0.24	HM	n	, W	ß
No. 8 100 98 97	96 26	82 16	99	NP	٩N	45.54	N	0	ML	o	53	9

LEGEND:

Silty sands, silty gravelly sands Clayey sands, clayey gravelly sands Silts, Very fine sands, silty or clayey fine sands Micaceous silts, diatomaceous silts, volcanic ash Low plasticity clays, Sandy or silty clays High plasticity clays, sandy clave 운양폭폭입요

GT blows per each 3 layer Natural Water Content

NOTE : ¥ 4 days soaking

8-14

TABLE 8.1-9 (2) SUBGRAGE SOIL PROPERTY OF LOW-CLASS PAVEMENT EXPERIMENTAL CONSTRUCTION SECTION

Experiment Section No. Boring Length No. 37 Environmental Candition No. 1 No. 1 No. 1 L Section No. 3 No. 1 No. 2 P Gen. Trica to No. 2 P Amadeo No. 3 No. 4	37.5 100 100	iš.	Sieve Anatrais (Passing % by wr.)	7313 (Pc	Issing %	by w ² .	~			Plasti-	Natural #Soaked	#Sodked	Swell S	Sal	22.00	200 -	<0,075
mental Candition No. 3 No. 1 Om. No. 2 Price to No. 2 o the argument standard the alignment standard											Land and and				1		l
mental Condition 2 No. 3 No. 1 No. 2 Im. No. 2 Ina to No. 3 Ihis area of flat No. 4 he attantant standard	1		Sleve		Size (mm)				Ē	index	Content	102		Cius sulleand			
No. 3 No. 1 No. 2 Ica to No. 2 INa orea of flat No. 3 Ina attendard	<u>00</u> 00	0.61	5.5	ຖ		2.00	0.425	0.075			*	*	*				
ica to No. 2 No. 2 Ma crea of flat No. 4 he attorrent standard	001	8	88	98	80	74	23	21	v	R	4510	n	D	НМ	26	5	53
Na. 3 1hls area of flat he attantari standard		36	53	06	84	2	50	4 10	d.N	Ą	24.32	8	0	SM	62	28	43
dard Na. 4	001	46	16	88	82	72	ñ	ß	đ	ЧN	29.05	4	0	SM	28	42	R
errain the againsent standard	00	56	16	87	62	68	4	44	52	21	36.44	4	0	sc	32	24	44
are quite good. The profile No. 5		00	5	-26	53	84	20	82	4	\$	28.57	<u>0</u>	0.54	ΊM	ð	52	8
Na. G	001	5 <del>2</del> 6	53	26	98	7	2	54	đż	ę	26,18	۴	0	SM	53	47	24
denticit and vegetored No. 7	00	06	82	73	7	60	4	22	dN	đN	17.32	68	Ø	SM	40	38	ដ
	8	98	80	11	67	25	42	53	ů	Å	30,15	1	D	SM	43	28	5
Section No. 4 No. 1 1	<u>8</u>	8	87	58	4	64	4	28	đN	đ	19.86	12	•	SM	36	Å	28
Gen. Tries in No. 2 Amadee		001	66	38	36	88	67	5	đN	Å	22.34	11	0	SM	ы	<b>\$</b>	N) V
No. 3	8	06	68	69	18	71	57	44	40	Ð	32.54	¢	5.0	ບິ	62	27	44
No. 4		001	97	16	40	88	11	60	27 -	র	39.91	'n	0.22	НМ	ы	28	20
rice field on both sides No. 5 with generally mond vertical		DO	- <b>5</b> 5	52	Ê. 6	84	13	36	d N	đ	56.65	ю	0	SM	ñ	48	36
Na, 6	100	BC	78	76	73	. 99	47	-92	dN	đ	24,76	4	0	3 W	34	64	26
No. 7		DQ Q	56	66	93	8	76	65	42	ñ	39.49	ะก	0.13	ML	=	õ	đi S
No. 8	001	16	96	10	88	78	63	5	4	13	37.96	n	0,13	ML	22	27	ŝ

UNIFIED SOIL CLASSIFICATION

LEGEND:

word m to to

Silty sands, silty gravelly sands Clayey sands, clayey gravelly sands Silts, Very fine sands, silty or clayey fine sands Micaceous silts, diatomaceous silts, volcanic ash Low plasticity clays, sandy or silty clays Migh plasticity clays, sandy clays

G7 blows per each 3 layer Natural Water Content

NOTE : 赤 4 days socking

TABLE 8.1-9 (3) SUBGRADE SOIL PROPERTY OF LOW-CLASS PAVEMENT EXPERIMENTAL CONSTRUCTION SECTION

Experiment Section No. Length	9 or Ing No		<b>-</b>	Sieve Analys	alysis ( P	us ( Passing % by wt. )	by wt.	-		Liquid Limit	Plast1- dtv	Plasti- Naturat #Soaked atv Maisture CBR	#Socked	Swell	Soll Classifi	Solf Classification	0.5 E	200	000 1000 1000 1000 1000 1000 1000 1000
Environmental Condition	:	37.5	0.91	12.5	Sleve S 9.5	Size (mm) 4.75 2	00	0,425	0.075		×	Content %	*	*	-	-		E .	
Section No. 5	a N N	8	96	96	96	8	18	7	5	54	16	39.49	4.	0	×	НМ	മ	8	ß
L = 400 m. Trece Martirez to	No. 2	ğ	6	18	82	68	57	42	28	38	E E	19,68	ନ୍ଦ୍ର	0	() :	S S	4	8	28
G. M. Alvarez	н Ус.	8	26	68	96	76	99	49	8	8	<b>CD</b>	06°61	с. М.	0	ທ 	U S	2	8	8
The rood run up accross	No. 4		001	8	<b>3</b> 8	10	88	61	12	8	21	34.51	60	0.26	Z.	МН	ŭ	4	7
the ridge through level of grassy pasture land.				. 2		-		:				-			-	.1		5	
				1.	2			. *					2				:		
															-				
IND	UNIFIED SOIL CLASSIFICATION	LL CLAS	SSIFIC	CATION			•			•									
	Silty sands, silty gravelly sands	silty	grave	elly s	ands	:									•		s." :	, <b>,</b> ,	
SC CLAYEY ML Silts,	Clayey sands, clayey gravelly sands Silts, Verv fine sands silty or cl	claye; Tine s	V grai	velly vilty	5.7	ds clavov fino		0 P L C C C C C C C C C C C C C C C C C C	н - н - н		•			· .					
1	Micaceous silts, diatomaceous	ts, di	Latom	aceous	2 m	ilts, volcanic ash	Canto	use: :	•						•				
CH B19h	High plasticity clays, Sandy or High plasticity clays, sandy of	tv cla	73, SV	andy o	-	ty clays	- SA		•		NOTE					•		•	
		4	•		7				•	· · ·	<b>*</b>	Natu	Natural Water Content	er, Cont	ent				
	•	••				. •						67	67 blows per each 3 layer	sr. edch	3. layer				
						:	•			•••		4	days soaking	king		2		 	
			1		·			÷	•. •.		2 2 2			-	: 4	-	ļ:		
			1		•.			:	• •		• •		:			-			
													;					ni Nj Zer	

ų,

.

8-16

the second s

#### i) Section No. 1

Surface condition of this section for the most part was found to be irregular and bumpy due to poor graded sand and gravel containing cobbles and boulder.

and the set of the

Section No. 2

— ii)

This section is in a fair to good conditions, consisting in part a weak subgrade of silty clay soil. The existing gravel surface along the test section is quite well maintained but some portions which is partly comprised of boulder materials tend to be bumpy.

iii) Sections No. 3 and No. 4

These sections are in fair to bad conditions, with deterioration mostly found in areas adjacent to a wide ricefield area. Roadside drainage is poor along the whole length of the ricefield tract requiring ditch reshaping to rectify the problem.

iv) Section No. 5

Although this section has been patched well and maintained at frequent intervals throughout the year, due to repeating loading by heavy trucks passing by, the section deteriorates easily.

#### (3) Material Survey

a) Material Survey

The pavement material sources for experimental pavement constructions were studied, and laboratory tests on the materials were carried out at the Bureau of Research and Standard Laboratory. The test items are shown in Table 8.1-10.

Test Items		Materials
Materials Standard	Surface Course	Straight Asphalt Cut-back Asphalt Emulsified Asphalt Portland Cement Gravel, Sand Crushed Stone
Properties -	Base and Sub-base Course	Combined Crushed Stone Crushed Stone river-run, sandy, gravel
Mixture Design		Cement Concrete

TABLE 8.1-10 TEST ITEMS FOR PAVEMENT MATERIALS

Test results were examined and applied in structural design and construction of experimental pavements.

- b) Findings of Material Survey
- i) Base and Subbase Course Aggregates

The test results of combined crushed stone aggregates for the base course and river-run sandy gravel for the subbase course are presented in Appendix 8-4. The results meet DPWH specification requirements.

ii) Surface Course Aggregates

The test results of course aggregates and fine aggregates for the surface course are presented in Appendix 8-4. The results meet DPWH specification requirements.

iii) Portland Cement Concrete Mixture Design

The test results of the mixture design are presented in Appendix 8-4. The results meet DPWH specification requirements.

iv) Straight Asphalt, Cut-back Asphalt and Emulsified Asphalt

The standard properties of these asphaltic materials were studied from the various test reports of the Bureau of Research and Standard Laboratory. Most test results conform to the DPWH specification requirements (AASHTO M20, AASHTO M82 and AASHTO M140). Representative test reports are presented in Appendix 8-4.

v) Cement

The test results obtained for Type 1 cement for PCC pavements are presented Appendix 8-4. The results meet DPWH specification requirements. (AASHTO M85)

#### 8.1.5 Structural Design

(1) Design Methods

a) Design Methods for Bituminous Pavements

The following design methods were reviewed for the structural design of experimental construction for the low-class pavements.

- The Basic Design Equation for Flexible Pavements, AASHTO Guide for Design of Pavement Structures (1986)
- Road Note 29. A Guide to the Structural Design of Pavement for New Roads (TRRL 1970)
- Road Note 31. A Guide to Structural Design of Bituminous Surfaced Roads in Tropical and Sub-tropical Countries (TRRL 1977)
- Manual for Design and Construction of Asphalt Pavements (Japan Road Association 1988)

The design practice of the design methods are described below.

i) AASHTO Guide for Design of Pavement Structures

Design of asphalt concrete and surface treatment pavements carrying significant levels of traffic (i.e., greater than 50,000 8.2-ton ESAL) during the performance period.

Design Equation and Design Chart (Nomograph) are provided.

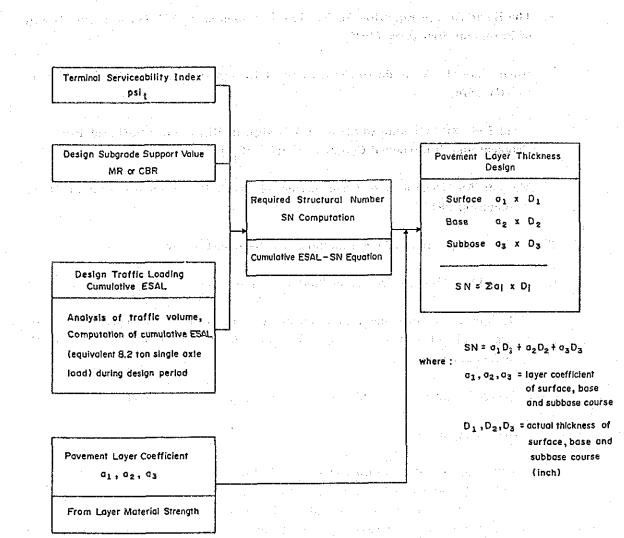
#### Design Input:

- W = Cumulative number of 8.2 ton ESAL
- M = Subgrade soil resilient modulus (psi)
- pt = Design terminal serviceability index, or
- $\Delta PSI = Difference$  between initial design serviceability index and design terminal serviceability index ( $\Delta PSI=po-pt$ )

Design Output:

- * Pavement Structural Number, SN
- * Layer thickness of pavement structure obtained from SN equation

$$SN = \sum_{i} (D_{i} \times a_{i})$$


where,  $D_i = ith$  layer thickness (inches),

 $a_i = ith layer coefficient$ 

Also to the large the compact of a second second second

e de la sector de la construction d

The flow of structural design by the AASHTO design method is shown in Figure 8.1-3.



## FIGURE 8.1-3 FLOW OF FLEXIBLE PAVEMENT STRUCTURAL DESIGN AASHTO DESIGN GUIDE (1986) METHOD

ii) Road Note 29

Design for rolled asphalt and coated macadam pavements carrying from 10,000 to 80 million 8.2 ton ESAL over the design period.

The following design charts are introduced.

Minimum thickness of surfacing and road base for design ESAL

- Rolled asphalt road base and there exists a second state of the second state of the
  - Dense macadam road base
  - Lean concrete road base soil cement and cement-bound granular road base.
  - Wet-mix and dry-bound macadam road base

Thickness of subbase for design ESAL and subgrade CBR value

iii) Road Note 31

Design for bituminous surface treatment and asphalt concrete pavements carrying from 50,000 to 2.5 million 8.2 ton ESAL over the design period.

المحمية المحمي والمتطوة البر

Design charts are introduced for type of bituminous surfacing, base course thickness for the following design ESAL range, and required subbase thickness for the design ESAL and subgrade CBR value.

and the spectrum and the second

Design ESAL of up to 0.5 million

Bituminous surface treatment with 15 cm crushed stone base.

Design ESAL of over 0.5 million

For stage construction:

To add either a 5cm asphalt concrete overlay or a 7.5cm crushed stone course with bituminous surface treatment.

_ ** _ :

For complete construction:

To be either a 5 cm asphalt concrete surface with 15 cm crushed stone base or bituminous surface treatment with 20 cm crushed stone base.

iv) Japan Road Association Design of Asphalt Pavements

Design for asphalt concrete pavements carrying light-traffic to heavy-traffic.

Design Equations and Design Charts are introduced.

Design Input : Cumulative number of 5.0 ton equivalent wheel loads over design period N, subgrade CBR value

Design Output : Pavement thickness H (cm) Pavement structural thickness  $T_A$  (cm).

 $T_A$  = Required thickness if the total depth of the pavement is to be constructed using hot asphalt concrete for surface course.

The layer thickness of surface, base and subbase course are obtained from the following  $T_A$  equation.

where,  $a_i = Conversion$  coefficient of i th layer

 $\frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}$ 

Example of conversion coefficient.

Surface hot mix asphalt concrete  $a_1 = 1.0$ 

Base Crushed stone CBR = 80 % a₂ = 0.35

Subbase Crusher run CBR = 25 % $a_2 = 0.25$ 

 $T_i$  = Thickness of pavement components of i th layer

A design catalogue for the pavement thickness (Surface, Base and Subbase), is provided for subgrade CBR (CBR = 2, 3, 4, 6, 8, 12 and 20), five traffic volume classes, and for a 10-year design period.

b) Design Methods for PCC Pavement

The Basic Equation for Rigid Pavements provided in the AASHTO Guide for Design of Pavement Structure (1986), was used for the structural design of PCC pavement model.

c) Design Methods for Gravel Surfaced Pavement

Low-Volume Road Design and Design Chart for Aggregate-Surfaced Roads provided in the AASHTO Guide for Design of Pavement structure (1986), were used for the structural design of gravel surfaced pavement models.

After careful studies of the design methods, the Study Team adopted the methods developed by the AASHTO Guide for Design of Pavement Structure, 1986.

Design equations and design charts are provided in Appendix 8-5.

- (2) Structural Design of Experimental Pavement Models
  - a) Design Condition

The following design conditions were applied for the structural design of experimental pavement models.

i) Traffic Condition

Based on the findings of the traffic volume survey and axle load distribution survey, the following traffic data as shown in Table 8.1-11 were adopted in design.

	Truc	k	Bus		Traffic Growth
Section	Number of Vehicles*	Load Factor	Number of Vehicles*	Load Factor	Rate p.a.
No. 1, No. 2	7	0.503			3.0%
No. 3, No. 4	24	0.922	2	0.038	3.0%
No. 5	137	1.233	. 59	0.613	5.0%
No. 5	137	1.362**	59	0.559**	5.0%

TABLE 8.1-11 TRAFFIC CONDITION

 * Number of vehicles: per day direction
 ** Vehicle Load Factor for PCC pavement Traffic growth rate was assumed.

ii) Design Performance Period

The expected performance period up to the point the pavement terminal serviceability index (pt = 1.5 and pt = 2.0) level is reached for each pavement model shown in Table 8.1-12 was adopted in design.

Section	Traffic Condition	Pavement Model	Terminal Serviceability Index pt	Design Performance Period
No. 1 through No. 4	Low and Medium	GR SBST DBST BMP AC (4 cm) AC (5 cm)	1.5 7 2.0 7	5 years 2 years - 5 years - 8 years - 8 years -10 years
No. 5	Неаvy	AC (5 cm) AC (5 cm) PCC (18 cm)	2.0	3 years 8 years

TABLE 8.1-12 DESIGN PERFORMANCE PERIOD

* RD : Allowable Ruting Depth

As the means used for investigating the service performance of medium-type, 5 cm AC pavement structures and 18 cm PCC pavement structures, during the 5-year follow-up survey period, the accelerated procedure for accumulation of heavy traffic was adopted for road section No. 5.

Pavement structures with an expected performance period of 3 years (pt = 2.0 level) were designed for 5 cm AC pavements and that of 8 years (pt = 2.0 level) for 18 cm PCC.

iii) Design CBR Values for Subgrade

Based on the findings of the subgrade soil condition survey conducted for each section and those of subgrade soil laboratory tests, design subgrade values as shown below were adopted.

	Section	Pavement Model	Design CBR	Section Pavement Design Model CBR
• • •	No. 1	No. 1 GR No. 2 SBST No. 3 DBST No. 4 BMP	4 % 4 % 4 %	No.         2         No.         5         GR         3         %           No.         6         SBST         3         %           No.         7         DBST         3         %           No.         8         BMP         3         %
	No. 3	No. 9 DBST No. 10 BMP No. 11 AC (4cm) No. 12 AC (5cm)	3 % 8 %	No. 4 No. 13 DBST 8 % No. 14 BMP 5 % No. 15 AC (4cm) 3 % No. 16 AC (5cm) 3 %
	No. 5	No. 17 AC (5cm) No. 18 PCC(18cm		e a construction de la servición de la construction de la construction de la construction de la construction de Actor de la construction de la const

TABLE 8.1-13 DESIGN CBR VALUE

The subgrade CBR values determined for each section are as described in Appendix 8-6

The required SN was computed from the  $M_R = 1500 \times CBR$  correlation formula, instead of from the subgrade soil Resilient Modulus  $M_R$  (psi).

Material

iv)

Cavite province has scarce material sources and only materials of subbase course are found near the construction sites. Although experimental pavements including the use of locally available material for base course and/or gravel surfacing are considered worthwhile in pursuit of cost savings, the use of local materials are, in this project, limited for subbase course in construction of the purpose of the project which is to analyze the functional and structural performance of various types of pavement models constructed in the conventional way with conventional materials in accordance with the current specifications. Thus, all materials are assumed to be procured in Metro Manila and Rizal Province except for subbase course material to be obtained from the quarry near the construction sites.

v) Layer Coefficient

. . .

an an an an an an Araba an an tha an an tha an an tha an an tha an an that an an that an an an an an an an an a

In flexible pavement design, AASHTO Design Guide (1986) suggests the structural layer coefficients (a value). A value for this coefficient is assigned in the pavement structure in order to convert actual layer thickness into structural number (SN).

 $SN = a_1D_1 + a_2D_2m_2 + a_3D_3m_3$ 

where  $\mathbf{a}_i$ : ith layer of coefficient

 $\mathbf{D}_i$  : **i th layer (inches)** if the second state is the second state of the secon

the second is a it hayer drainage coefficient of the second

e the second start of the

The representative structural layer coefficients in the AASHTO design guide are listed in Table 8.1-14.

TABLE 8.1-14 REPRESENTATIVE LAYER COEFFICIENTS FOR FLEXIBLE PAVEMENTS (AASHTO DESIGN GUIDE) Layer Coefficient, a Material Strength Materials al Elastic Modulus (psi) Surface: 0.42 400,000 Dense Graded 0.39 350,000 Asphalt Concrete 0.38 300,000 a2 CBR Base: 0.14 100 Granular

الاستعرار المراجعية أنحاب لمراسية المعرب يربرو متروا التكل ال

Aggregates	60	n den en de la composition de la compos La composition de la c	0.135
Subbase: Granular Aggregates	CBR 30 25 20	: .	a3 0.110 0.10 0.095

For the structural design of the experimental pavements, the layer coefficients shown in Table 8.1-15 were applied based on the material test results and the representative layer coefficients explained in Table 8.1-14.

TABLE 8,1-15	STRUCTURAL	DESIGN	0F	EXPERIMENTAL	PAVEMENTS
--------------	------------	--------	----	--------------	-----------

Pavement	Construction Material and Method	Conditions	Layer coefficient
Surface	Hot mix AC	Marshall stability 1600 lb. or more	• 0.39
	BMP DBST SBST		0.25 0.25 0.25
Base	Crushed stone	CBR value: 80 %	0.135
Subbase	Granular aggregates	CBR value: 25 %	0.10

0.25 were adopted.

#### vi) Drainage Coefficient

Drainage coefficient values for modifying structural coefficient of base and subbase materials for flexible pavements,  $m_2=0.9$  (for base) and  $m_3=0.9$  (for subbase) are applied.

For rigid pavement, drainage coefficient Cd=0.9 is used.

vii) Design Reliability Factors Z and S

In AASHTO's Basic Design Equation Z and S

 $Z_R$ : standard normal deviation

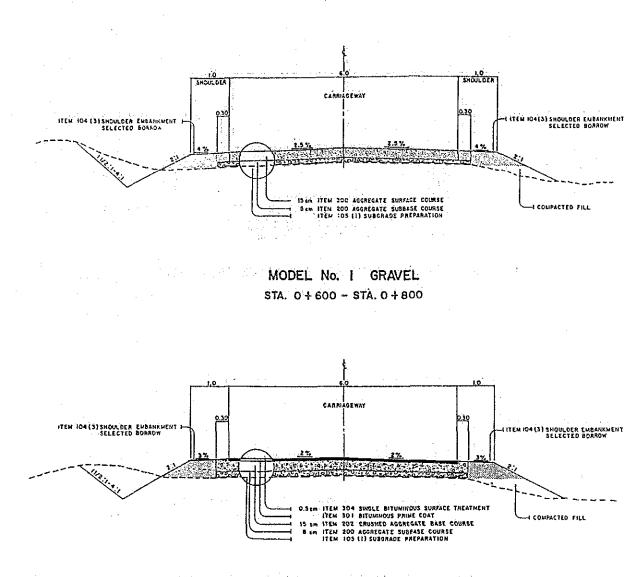
 $S_o$ : combined standard error of the prediction and performance prediction are included as design reliability considerations.

In this design,  $Z_R = 0$  corresponding to a 50 percent level of reliability was applied.

b) Pavement Structure of Experimental Pavement Models

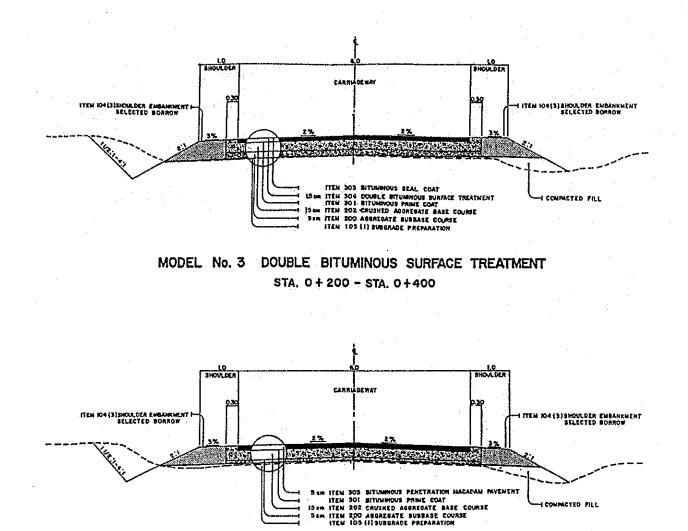
Table 8.1-16 summarizes the structural design for eighteen (18) experimental pavement models, while design computations conducted for each model are given in Appendix 8-6. The pavement structure and typical roadway section for each model are shown in Figure 8.1-4.

TABLE 8.1-16 (1) SUMMARY OF STRUCTURAL DESIGN OF EXPERIMENTAL PAVEMENT MODELS


UQ2	Design Traffic Volume	Model No.	Design	Design	7				4 4 4 4 Q	0	70401
Sec. No.	Bus Truck Day-direction	ravenen i Type	CBR %	Year	ESAL	NSN	CT LUC			C B C B C B C B C B C B C B C B C B C B	
No. 1		- e-1	4.0	S	×	E .	E	15	1	22	20
	Vehicle Load Factor	\$	4.0	5	×	1.046	SBST	2°0	15	<b>00</b> -	23.5
	- 0.503	NO. 3 DBST No. 4 BMP	4.0	4 00	4.71 x 10 ³ 1.08 x 10 ³	1.184	DBST	2.2 T	15	തഗ	25 • 5 25 • 5
No. 2	ون ا	1	3.0	ы 19	×	i	GB	15	.	8	23
	Vehicle Load Factor	9	3.0	2	×	1.192	SBST	0.5	15	12	27.5
	- 0.503	5	3.0	4	×	1.361	DBST	1.5 .	15	14	30.5
			3.0	æ	1.08 x 10 ³	1.564	BMP	ស្រុ	15	10	30
No. 3	2 24		3.0	4	×	1.928	DBST	1.5	15	30	46.5
	Vehicle Load Factor		3.0	7	×	2.131	BMP	ល	15	26	46
	0.038 0.922	No. 11 AC 4 cm	8.0	ø	×	1.472	AC	4	12	αÿ	24
	-			10	9.90 x 104	1.554	AC	ល	12	9	23
No.4	2 24		8.0	ល	4.22 x 10 ⁴	1.326	DBST	1.5	5	13	29.5
	Vehicle Load Factor		5.0	7	×	1.742	BMP	ഗ	ក	16	36
	0.038 0.922	15 AC 4	3.0	2	6.89 x 10*	2.147	AC	4	ទ	23	42
	· · · · · · · · · · · · · · · · · · ·	Å		ŋ	×	2.229	AC	ئ	12	21	41

EPC: Experimental Pavement Construction

8-27


TABLE 8.1-16 (2) SUMMARY OF STRUCTURAL DESIGN OF EXPERIMENTAL PAVEMENT MODELS

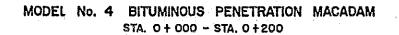
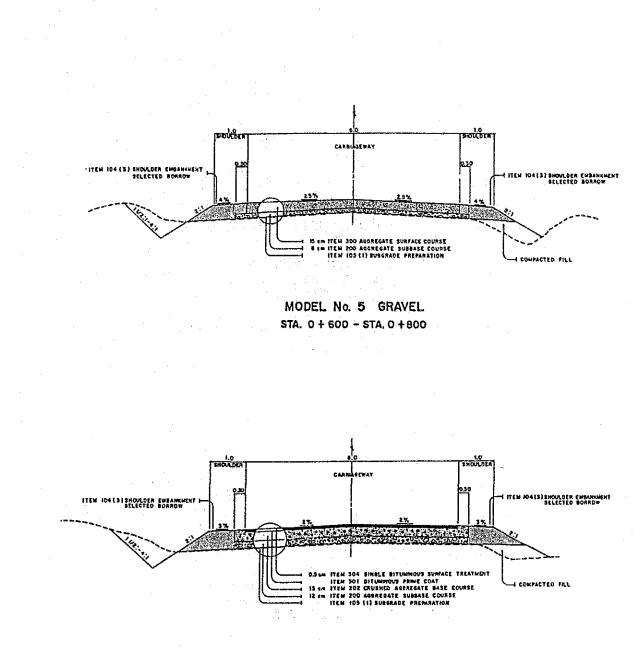
CBRX Year ESAL SN cm c cm cm c cm for 5 cm 5.0 3* 2.33 x 10° 2.158 AC 5 15 19 C f medium-traffic type AC and PCC pavement c c 18 - 20	EPC	Design	Design Traffic Volume	Model No. Pavement	Design Subgrade	Design Period	Design	Desîgn	Surface	Base	Subbase	Total	
No. 5 % 91 $(12)$ Wo. 17 AC 5 cm 5.0 5* 2.33 x 10° 2.158 AC 5 15 19 53 $(12)$ $(12)$ Tranible Favements $(12)$ $(12)$ Tranible Favements $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12$	Sec. No.		Truck Day-direction		CBR ×	Year	ESAL	SN	CB CC	E C	CB	E S	
<ul> <li>No. 5 59 137 No. 18 PCC 18 cm 5.0 84 7.56 x 10⁶ - PCC 18 - 20 38 (for High Levelent) (for High Levelent) (for Bigh Levelent) 0.559 1.384: 5 Performance of mediam-traffic type AC and PCC pavenent t for the experiment of servicential by accelerated accumulating neavy traffic of this road section.</li> </ul>		59 Vehicle   (for Flexi  0.613	137 Load Factor ble Pavement) 1.233	17 AC 5	5.0	* ເ	×	2.158	· · ·		19	39	•
Traific Growth Rate: 5 percent p.a. * for the experiment of serviceability performance of medium-traific type AC and PCC pavement by accelerated accumulating heavy traffic of this road section.	1	59 Vehicle   (for Rigid 0.559	137 Load Factor Pavement)	18 PCC 18	сл С	* *	×	1		1	20	38	
		ic Growth Rate r the experime accelerated a	: 5 percent p.a. nt of serviceabili ccumulating heavy t	ty performance of 1 traffic of this ro	medium-traf ad section.	type	AC and	avement					
								• • •	:				
	· · · · · · · · · · · · · · · · · · ·									1979 - A.		st Co Station Station	
							· · ·	• • • •				a na marana a sa angara a s	

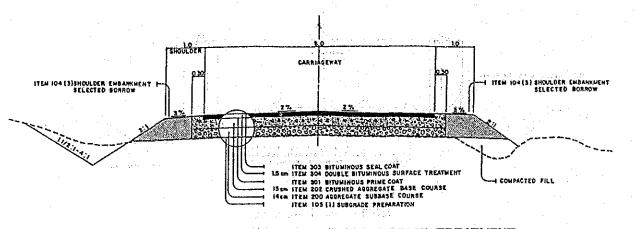


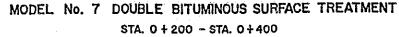
MODEL No. 2 SINGLE BITUMINOUS SURFACE TREATMENT STA. 0 + 400 - STA. 0 + 600

> FIGURE 8.1-4 (1) TYPICAL ROADWAY SECTION CONSTRUCTION SECTION NO. 1





FIGURE 8.1-4 (2) TYPICAL ROADWAY SECTION CONSTRUCTION SECTION NO. 1



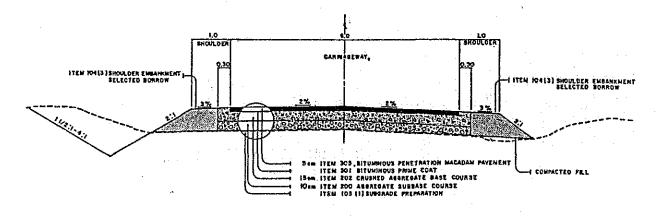


MODEL No. 6 SINGLE BITUMINOUS SURFACE TREATMENT STA. 0 + 400 - STA. 0 + 600

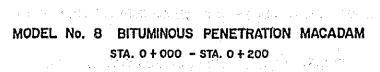
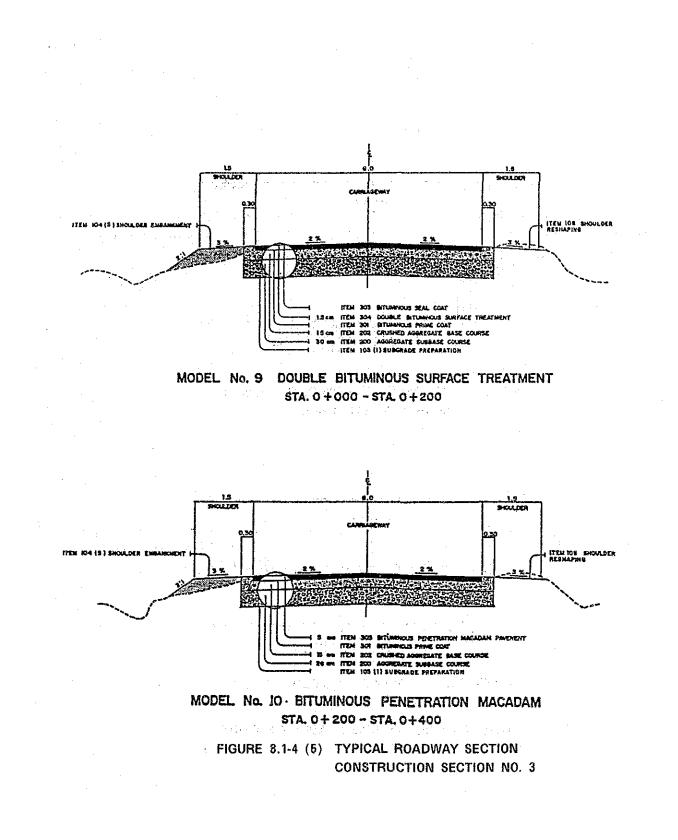
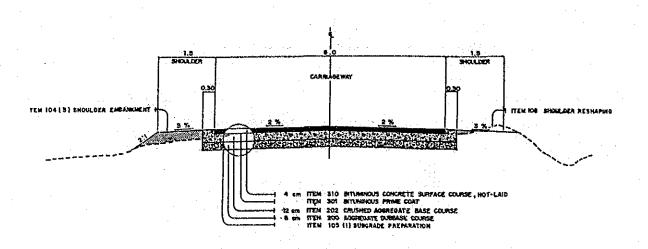
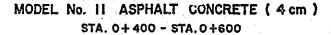
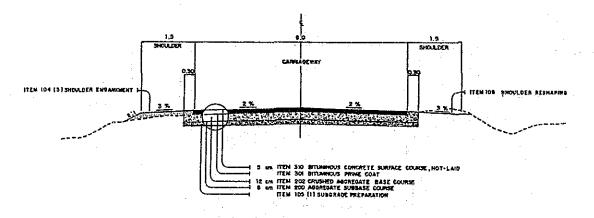
FIGURE 8.1-4 (3) TYPICAL ROADWAY SECTION CONSTRUCTION SECTION NO. 2

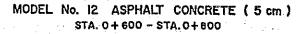
지수는 것은 것은 것이 있는 것이 같이 봐.

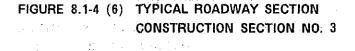


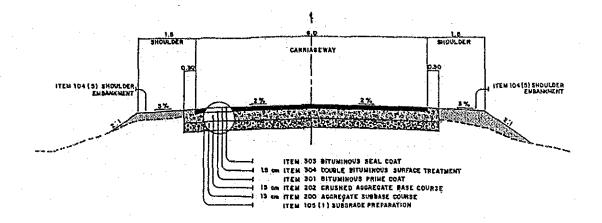


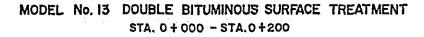


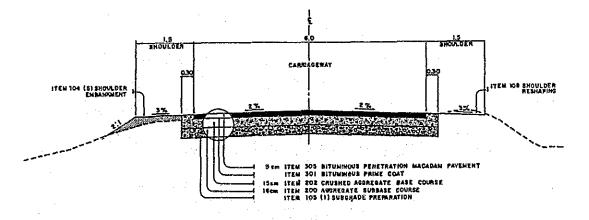








FIGURE 8.1-4 (4) TYPICAL ROADWAY SECTION CONSTRUCTION SECTION NO. 2



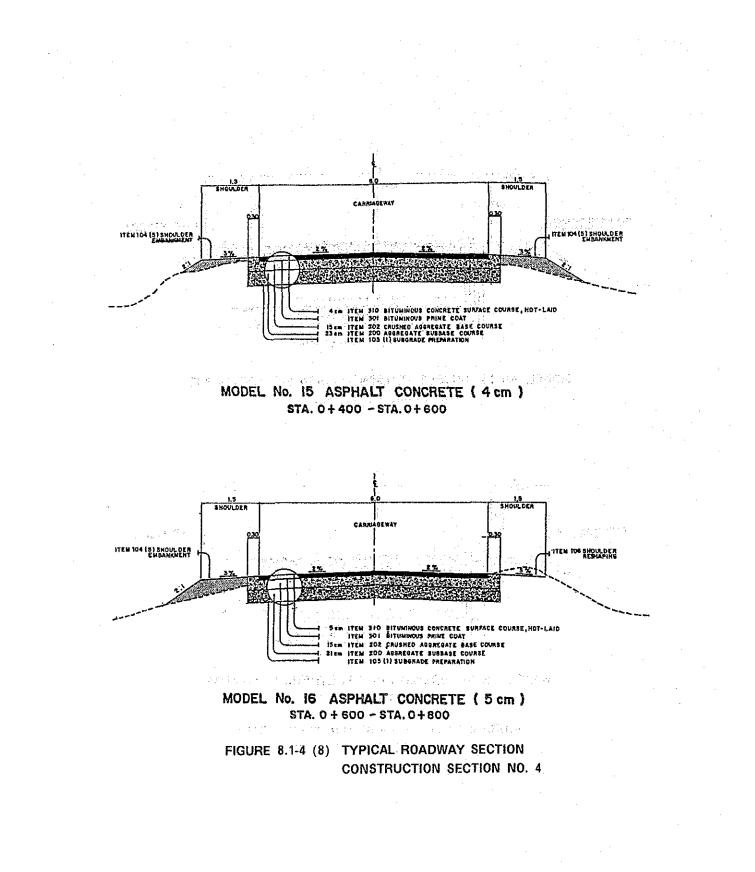



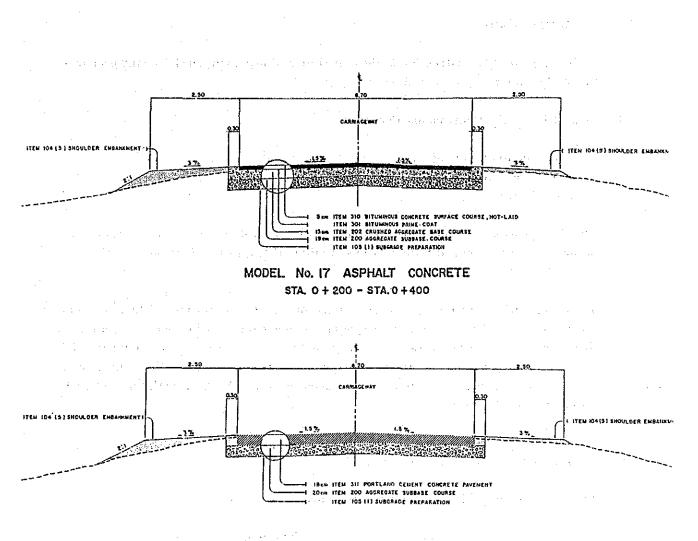










MODEL No. 14 BITUMINOUS PENETRATION MACADAM STA. 0 + 200 - STA. 0 + 400

FIGURE 8.1-4 (7) TYPICAL ROADWAY SECTION CONSTRUCTION SECTION NO. 4





## MODEL No. 18 PORTLAND CEMENT CONCRETE STA. 0 + 000 - STA. 0 + 200

## FIGURE 8.1-4 (9) TYPICAL ROADWAY SECTION CONSTRUCTION SECTION NO. 5