C.2.5. PERMEABILITY TEST

frmamury its neur									$\frac{\text { and }}{\text { minem }}$	
									-m	
\cdots	am	\cdots	$\sqrt{2}$	\%	\%	${ }^{1 \times 1}$		$=$.em	\%ome
min	Sese		un	\%	(,.en					
\%	come	-	, m	\ldots	os.			${ }^{10}$	x	chine

C.2.6. TRIAXIAL SHEAR TEST

TRIAXIAL COMPRESSION TEST (UU-TEST)
SAMPLING SPOT
a PLACE: \qquad KHLQNG - SI - YAT
SAMPLE NO.
QDEPTH: NO_{2} TPB $-1(1.90-5.50)$

	SCOPE OF STTRESS	C $\mathrm{kgf/cm}$	\varnothing degree	$\tan \phi$	$C^{\prime} \mathrm{kgf/cm}$	A'degree
	MORMALLY COMSOLDATEO REGION	0.105	13.723	0.244		
	over consolioateo meton					

NORMAL STRESS $\sigma\left(\mathrm{kgf} / \mathrm{cm}^{2}\right)$

TRIAXIAL COMPRESSION TEST (UU-TEST)
SAMPLING SPOT
\& PLACE: TPB-1 (1.90-5.50)
DATE 4-4-1990

	SPECIMEN NO.	10	20	3Δ	
MINOR PRINCIPAL STRESS $\sigma 3 \mathrm{l}$ ($\mathrm{kl} / 1 / \mathrm{cm}^{2}$		1.00	2.00	3.00	
	PRINGIPAL STRESS $(611-63) \mathrm{kgt} / \mathrm{cm}^{2}$	0.877	1.537	2.121	
	COMPRESSION STRAIN ε f $\%$	15.072	11.842	17.880	
	PORE WATER PRESSURE Uf hot/cm ${ }^{2}$.			
	PORE PRESSURE COEFFIENT. A f				
	\cdots.				

TRIAXIAL COMPRESSION TEST (CU-TEST)
SAMPLING SPOT
\& PLACE: KHLONG-SI-YAT DATE 29-3-1990
SAMPLE No:
QDEPTH: NO \quad TPB-1 $1.90-5.50)$

	SCOPE OF STRESS	C $\mathrm{kgt} / \mathrm{cm}$	$\not)^{\text {DE }}$ DREE	$\tan \phi$	$\mathrm{C}^{\prime} \mathrm{kgt/cm}$	S'OEGREE
	(VorkAlit	0.049	18.051	0.326	0.084	24.194
	OVER COMSOLIDATTED					

TRIAXIAL COMPRESSION TEST ($\overline{C U}-T E S T$)
SAMPLING SPOT
Q PLACE:TPB-1 $(1.90-5.50)$

Q PLACE: KHLONG-SI-YAT DATE 29-3-1990
SAMPLE No. NO TPB-1 (1.90-5.50)

$$
P=0.08\left(\mathrm{~kg} / / \mathrm{cm}^{2}\right) \quad \alpha=24.21 \text { DEGREE }
$$

TRIAXIAL COMPRESSION TEST (UU-TEST)

SAMPLING SPOT a PLACE:		KHLONG - SI-YAT			DATE 6-4-1990	
SAMPLE NO. QDEPTH: NO, TPB-2(0.00-4.00)						
${ }^{\sim}$	SCOPE OF STRESS	C. $\mathrm{kgf} / \mathrm{cm}$	¢ DEgREE	$\tan \phi$	$c^{\prime} \mathrm{kgf/cm}$	¢' degree
${ }_{4}^{6}$	RORMALIY CONSOLIOATEO REGION	0. 244	10.242	0.181		
	OVER CONSOLIAATED		\because			

NORMAL STRESS \& $\left(\mathrm{kgf} / \mathrm{cm}^{2}\right)$

TRIAXIAL COMPRESSION TEST (UU-TEST)
SAMPLING SPOT
\qquad DATE 6-4-1990

	SPECIMEN No.	10	$2 \bigcirc$	3Δ	
MINOR PRINCIPAL STRESS $63 \mathrm{kof} / \mathrm{cm}^{2}$		1.00	2.00	3.00	
	PANGIPAL STEESS $(\sigma 1-83) \mathrm{kot/cm}^{2}$	1.047	1.391.	1.912	
	Compression strain ε I \%	18.408	15.092	19.898	
	PORE WATER PRESSURE Uf $\mathrm{kg} / / \mathrm{cm}^{2}$				
	Pore pressure coeffient af				

TRIAXIAL COMPRESSION TEST (CU-TEST)
SAMPLING SPOT KHLONG-SI-YAT DATE 8-3~1990
SAMPLE No. NO TPQ-2(0.00-4.00)

	SCOPE OF STRESS	C $\mathrm{kgf/cm}$	¢ DEGREE	$\tan \beta$	c^{\prime}. $\mathrm{kgf/cm}$	ϕ^{\prime} degree
	NORMALLY Consolioated region	0.098	15.010	0.268	0.049	35.965

TRIAXIAL COMPRESSION TEST (CU-TEST)

SPECIMEN No.		10	20	3Δ	\%
MINOR PRINCIPAL STRESS $\sigma^{\prime} 3$ kgl/ cm^{2}		1.00	2.00	3.00	
	PRINCIPACSTRESS $(8)-63) \mathrm{kgt/cm}^{2}$ DIFERENCE	0.985	1.830	2.363	
	COMPRESSION STRAIN E	11:186	8.530	9.174	
	PORE WATER PRESSURE Uf Kigt $/ \mathrm{cm}^{2}$	0.722	1.505	2.232	
	PORE FRESSURE COEFFIENT Af	0.748	0.923	0.945	

TRIAXIAL COMPRESSION TEST $(C U-T E S T) \quad$ (STRESS PATH)

SAMPLINGSPOT KHLONG-SI-YAT
Q PLACE:
SAMPLENO QDEPTH: NO TPB- $2(0.00-4.40)$
DATE $-8-3-1990$
$P=0.04\left(\mathrm{~kg} / \mathrm{cm}^{2}\right) \quad \alpha=35.98$ DEGREE

C.2.7. ROCK TEST

คุณสมบัติของหินย่อยแสะกร่วต

บนาตระบิกร่			Invaxin \% 4 ¢
	Q 1	Q 2	
	$\underset{\substack{\text { Khao Ba Ra Rum Quarry } \\ \text { (} 3 \mathrm{~km} \\ \text { far froa damsite })}}{ }$	Xhao Yai Ma Noi Quariy (8 km far from damsite)	
8			
	-		
-			
ความดางจาเหาะ	. 2.639	2.608	
 การขักี่ โดย 	- .	-	$\text { ไม่ากก่าว่า } 50$
ส่วยสููหายเ เี่วหตลลงงตัวย โิ่ดียมชัลเฟตต้รอยละ	-	-	ข่ม่ากาว่า 12
การถูกน้า-รองละ	0.579	2.059	

C.3.1. SEISMICITY MAP

C.4.1. Bang Pakong Diversion Dam

(1) Topographic Survey for Diversion Dam and Diversion Channel

Scale 1:2,000
(2) Profile Survey for Diversion Channel

Scale Horizontal $1: 2,000$
Vertical 1 : 100
(3) Sectional Survey for Diversion Channel

Scale Horizontal 1:500
Vertical 1:100
Interval $\quad 100 \mathrm{~m}$
(4) Additional River Cross Section Survey

- to clarify the dike of the river upstream of the proposed Diversion Dam

Scale Horizontal $1: 500$
Vertical 1 : 100
Interval $\quad \because \quad 200 \mathrm{~m}$
Section from the proposed diversion dam to the conjunction of the Tha Lat river
(5) Geological Investigation

1) Drilling Test

- Additional Drilling for Diversion Dam
2 hole, Depth
: 50 m
- At least 3 hole for Diversion Channel

Depth : 20 m
2) Laboratory Test

- Specific Gravity
- Moisture Content
- Gradation
- Consistency
- Standard Proctor Compaction
- Permeability
(6) Survey for navigation frequency
-to clarify the transportation on the river
Station : at the Chachoengsao bridge
at the proposed diversion dam site
at Bang Khla
(7) Transportation Survey
-to clarify the traffic on the Chachoengsao bridge and Route 304 and 315,
Station : at the Chachoengsao bridge at the junction of route 304 and 315

C.4.2. CANAL NETWORKS

(1) Route Selection

- Detail route selection on the basis of Topo-map scaled $1: 10,000$ through field investigation
(2) Route Survey
- Topographic Survey Width $100 \mathrm{~m}, ~$
- Profile

Scale Horizontal 1: 500
Vertical 1:100

- Section

Scale 1: 100
(3) Drilling Test

- At the point of structures Depth : at least 20 m

C.4.3. Khlong Si Yat Dam

(1) Plan Map Survey
$\frac{\text { Location }}{\text { Quarry }} \frac{\text { Quantity }}{40 \mathrm{ha}}$
Spillway
Total $\frac{60 \mathrm{ha}}{100 \mathrm{ha}}$
(2) Strip Topography Survey
$\frac{\text { Location }}{\substack{\text { Road } \\
\text { Others }}} \frac{\text { Quantity }}{23 \mathrm{~km}}$

| Total |
| :---: |$\frac{25 \mathrm{~km}}{25 \mathrm{~km}}$

(3) Seismic Prospecting

Location	Quantity	
Quarry	2.0 km	
Main Dam : dam axis	3.2 km	
Main Dam :cross section	0.8 km	
Saddle Dam	1.0 km	$(0.4 \mathrm{~km} \times 2)$
Outlet Works	1.0 km	
Spillway	1.0 km	
Total	9.0 km	

(4) Core Drilling

Location	Quantity	
Dam	$20 \mathrm{~m} \times 60$ Nos.	$1,200 \mathrm{~m}$
Spillway \& Others	$20 \mathrm{~m} \times 30$ Nos.	600 m
Quarry	$50 \mathrm{~m} \times 4$ Nos.	200 m
Total		$2,000 \mathrm{~m}$

(5) Test Pit \& Auger Drilling

Location	Test Pit	Auger Drilling
Damsite	20 Nos.	300 m
Borrow Area	40 Nos.	600 m
Spillway	30 Nos.	500 m
Total	90 Nos.	$1,400 \mathrm{~m}$

(6) Laboratory Test

Location	Physical Test	Mechanical Test
Damsite	20 Nos.	10 Nos.
Borrow Area	40 Nos.	20 Nos.
Spillway	30 Nos.	20 Nos.
Quarry	10 Nos.	10 Nos.
Total	100 Nos.	60 Nos.

APPENDIX-D. IRRIGATION, DRAINAGE AND WATER BALANCE

APPENDIX-D IRRIGATION, DRAINAGE AND WATER BALANCE

LIST OF CONTENTS

D. 1 IRRIGATION WATER REQUIREMENT
T. $D-1-1$ Crop Water Requirement by Modified Penman (Prachinburi) $\cdot \cdot \mathrm{D}-2$
T. D-1-2 Crop Water Requirement by Modified Penman (Chonburi) D-3
F. D-1-1 Kc and $X p$ values by crop D-4
F.D-1-2 Field Hater Requirement (Wet Season Paddy:Broadcasted) D-5
F.D-1-3 Field Water Requirement (Wet Season Paddy:Transplanted) $\because 5$
F.D-1-4 Field Water Requirement (Dry Season Paddy:Broadcasted) .a. D-6
F. D-1-5 Field Water Requirement (Dry Season Paddy:Transplanted) $\cdots D-6$
F. D $-1-6$ Field Water Requirement (Soybean:Dry Season) D~7
F. D-1-7 Field Water Requirement (Groundnuts:Dry Season) D-7
F. D-1-8 Field Water Requirement (Mungbean:Dry Season) D-7
F. D-1-9 Rainfall - Effective Rainfall Relationship D-8
F.D-1-10 Proposed Cropping Calendar D-9
D. 2 CHANNEL STORAGE VOLUME IN WATER CONSERVATION AREA D-10
(EXPERIENCE IN PRA-ONG CHAIYANUCHIT PROJECT AREA)
D. 3 WATER BALANCE SIMULATION
T. D-3-1 List of Data Given in Water Balance Computation D-12
F.D-3-1 0verall Basin Development Plan (Alternative Plan-1) D-13
F.D-3-2 Overall Basin Development Plan (Alternative Plan-2) D-14
F. D-3-3 Overall Basin Development Plan (Alternative Plan-3) D-15
F.D-3-4 Overall Basin Development Plan (Alternative Plan-4) D-16
T. D-3-2 Simulated Results by Sub-Basin (1) D-17
T. D-3-3 Simulated Results by Sub-Basin (2) D-18
T. D-3-4 Simulated Results by Sub-Basin (3) D-19
T. D-3-5 Sumnary of Water Demand Computation (Average in 20 Years) D-20
T. D-3-6 Summary of Water Balance Computation (-do-) D-21
T.D-3-7 Summary of Water Balance Computation (Year of 1979) D-22
T. $1-3-7$ Sumary of Water Balance Computation (Year of 1983) D-23
D. 4 OPTIMUM SCALE OF WATER RESOURCES DEVELOPMENT
T. D-4-1 Irrigation Area by Alternative Plan D-25
T. D-4-2 Required Dam. Storage by Alternative Development Plan D-27
T. D-4-3 Net Production Value by Alternative Development Plan D-25
T. D-4-4 Amount of Water Resources to be Allocated to Sectors D-25
T. D-4-5 Construction Cost by Alternative Plan D-26
T. D-4-6. B/C Ratio by Alternative Development Plan D-27
D. 5 SELECTION OF PRIORITY PROJECT
T. D-5-1 Evaluation from National Economic Point of View D-29
T. D-5-2 Evaluation from Technical Point of View D-30
T. D-5-3 Evaluation from Social Point of View D-31
T. D-5-4 Evaluation from Farm Economic Point of View D-31
D. 6 FLOOD RUNOFF ANALYSIS D-32
T.D-6-1 Daily Rainfall in 0ctober, 1983 D-38
T.D-6-2 Areal Distribution of Daily Rainfall in 0ctober, 1983 D-39
F.D-6-1 Storm Rainfall Analysis D-40
D. 6. 2 Flood Discharg D) 41
F. D-4-2 Runoff Capacity from Paddy Field D-42
T. D-6-3 Basin Characteristics Given for Flood Runoff Analysis D-43
D. 7 INTAKE-RATE TEST
F. D-7-1 Location of Intake rate Test Site D-45
T. $D-7-1$ Data Sheet for Intake-rate Test D-46
F. $D-7-2$ Intake-rates at Various Test Site D-47
D. 8 PEAK TRRIGATION REQUIREMENT D-48
D. 9 RESULTS OF WATER BALANCE SIMULATION
T. D-8-1 Water Demand Computation (Case-1) D-50
T. D-8-2 Runodd and Water Diversion (Case-1) D-51
T. D-8-3. Water Balance at Water Sources (Case-1) D-52
T. D-8-4 Water Demand Computation (Case-2) D-53
T. D-8-5 Runodd and Hater Diversion (Case-2) D-54
T. D-8-6 Water Balance at Water Sources (Case-2) D-55
D. 10 EXISTING IRRIGATION AND DRAINAGE FACILITIES
T. D-10-1 (1) Inventory of Existing Irrigation Canals D-57
T. D-10-1 (2) Inventory of Existing Irrigation Canals D-58
T. D-10-1(3) Inventory of Existing Irrigation Canals D-59
T. D-10-2(1) Inventory of Drainage Canals D-60
T. D-10-2(1) Inventory of Drainage Canals D-61
T. D-10-2(1) Inventory of Drainage Canals D- 62
T. D-10-2(1) Inventory of Drainage Canals D-63
T. D-10-2(1) Inventory of Drainage Canals D-64
D. 11 PRELIMINARY STUDY ON FLOOD SIMULATTION
F.D-11-1 Diagram for Flood Simulation Study D-65
T. D-11-1 Flowing Capacity of River Channel D-66
T. D-11-2 Water Stage - Volume Relationship (1) D-67
T. D-11-3 Water Stage - Volume Relationship (2) D-68
T. D-11-4 Inflow Hydrographs into River Sections (1983) D-70

D. 1 IRRIGATION HATER REQUIREMENT

The following tables and figures present procedures employed in estimating irrigation water requirement:

Table D-1-1 Crop Water Requirement by Modified Penman (Prachinburi)
Table D-1-2 Crop Water Requirement by Modified Penman (Chonburi)
Figure $D-1-1 \quad K c$ and $K p$ values by crop
Figure D-1-2 Field Water Requirement (Wet Season Paddy:Broadcasted)
Figure D-1-3 Field Water Requirement (Wet Season Paddy:Transplanted)
Figure $D-1-4$ Field Water Requirement (Dry Season Paddy:Broadcasted)
Figure D-1-5 Field Water Requirement (Dry Season Paddy:Transplanted)
Figure D-1-6 Field Water Requirement (Soybean:Dry Season)
Figure D-1-7 Field Water Requirement (Groundnuts:Dry Season)
Figure D-1-8 Field Water Requirement (Mungbean:Dry Season)
Tigure D-1 -9 Rainfall - Effective Rainfall Relationship
Figure D-1-10 Proposed Cropping Calendar

Table D-1-1 Crop Water Requirement by Modified Penman (Prachinburi)

```
STATION: PRACHINBURI
Station Index:48430
Latitude: }1\mp@subsup{4}{}{\circ}0\mp@subsup{3}{}{\prime}=
Longitude: 101* 22' E
Elevation of Station above MSL : 5m
Height of Barometer above MSL : : 6m
Height of Thermometer above Ground: 1.20m
Height of Wind Vane above Ground : 11.00m
```

	ITEH	(Unit)	JAN	FEB.	AR	AP	HAX	June	$\underline{1}$	IUUG.	SEP.	-	.	DEC.
1	Tmax	(${ }^{\circ} \mathrm{C}$)	32.4	34.1	35.7	36.0	34.4	33.0	32.2	31.8	31.6	31.8	31.8	31.6
2	Tmin	$\left({ }^{\circ} \mathrm{C}\right)$	19.4	22.1	23.9	24.9	25.1	24.9	24.6	24.6	24.5	24.3	22.4	19.3
3	Tmean	$\left.{ }^{\circ} \mathrm{C}\right)$	25.9	28.1	29.8	30.5	29.8	29.0	28.4	28.2	28.1	28.1	27.1	25.8
4	ea	(mbar)	33.4	38.0	41.9	43.7	41.9	40.1	38.7	38.3	38.0	38.0	35.8	33.2
5	RHmax	(\%)	83.1	86.2	87.9	89.4	91.4	92.7	93.5	593.9	94.1	90.0	84.5	9
6	RHmin	(\%)	40.7	43.3	44.5	49.9	59.2	64.5	67.1	68.6	69.1	63.5	52.9	7
7	RHmean	(\%)	61.9	64.8	66.2	69.7	75.3	78.6	80.3	81.3	81.6	76.8	68.7	63.3
8	ed=ea*RHmean $/ 100$	(mbar)	20.7	24.6	27.7	30.5	31.6	31.5	31.1	31.1	31.0	29.2	24.7	21.0
9	(ea-ed)	(mbar)	12.7	13.4	14.2	13.2	10.3	8.6	7.6	7.2	7.0	8.8	11.2	12.2
10	U ($h=11.00 \mathrm{~m}$)	(knots)	3.6	3.3	2.9	2.4	2.4	2.1	2.1	2.3	2.2	3.0	4.1	4.3
11	U ($h=2 \mathrm{~m}$)	(km/day)	112	103	90	75	75	65	65	72	68	93	128	134
12	$\mathrm{f}(\mathrm{u})=0.27(1+1 / 100)$		0.57	0.55	0.51	0.47	0.47	0.45	0.45	0.46	0.45	0.52	0.62	0.63
13	1-w (Eleva	(1on=5m)	0.25	0.23	0.22	0.21	0.22	0.22	0.23	0.23	0.23	0.23	0.24	0.25
14	($1-w$) $\mathrm{f}(\mathrm{u})$ (ea-ed)	(mm/day)	1.81	1.70	1.59	1.30	1.07	0.85	0.79	0.76	0.72	1.05	1.67	1.92
15	Ra (14.03' N)	(mm/day)	12.4	13.6	14.9	15.7	15.8	15.7	15.7	15.7	15.	14.1	12.8	12.0
16	Cloudiness	(0-10)	3.7	4.7	5.3	6.3	7.6	8.3	38.4	8.7	8.2	6.6	4.	8
17	n/N		0.68	0.58	0.54	0.47	0.34	0.26	0.24	0.20	0.27	0.44	0.58	0.67
18	0.25+0.5n/N		0.59	0.54	0.52	0.49	0.42	0.38	0.37	0.35	0.39	0.47	0.54	0.59
19	$\mathrm{Rs}=15 * 18$	(ma/day)	7.32	7.34	7.75	7.69	6.64	5.97	5.81	5.50	5.89	6.63	6.91	7.08
20	Rns $=0.75 \mathrm{Rs}$	(mam/day)	5.49	5.51	5.81	5.77	4.98	4.48	4.36	4.13	4.42	4.97	5.18	5.31
21	f (T)		15.9	16.3	16.7	16.8	16.7	16.5	16.4	16.3	16.3	16.3	6.1	5.9
22	$\mathrm{f}(\mathrm{ed})=0.34-0.044 \mathrm{sq}$	grt(ed)	0.14	0.12	0.11	0.10	0.09	0.09	0.09	0.09	0.10	0.10	0.12	4
23	$\mathrm{f}(\mathrm{n} / \mathrm{N})=0.1+0.9 \mathrm{n} / \mathrm{N}$		0.71	0.62	0.59	0.52	0.41	0.33	0.32	0.28	0.34	0.50	0.62	70
24	$\mathrm{Rnl}=21 * 22 * 23$	(mm/day)	1.58	1.21	1.08	0.87	0.62	0.49	0.47	0.41	0.55	0.82	. 20	56
25	Rn=Rns-Rnl	(ma/day)	3.91	4.30	4.73	4.90	4.36	3.99	3.89	3.72	3.87	4.15	3.98	3.75
26			0.75	0.77	0.78	0.79	0.78	0.78	0.77	0.77	0.77	0.77	0.76	0.75
27	W*Rn	(mm/day)	2.93	3.31	3.69	3.87	3.40	3.11	3.00	2.86	2.98	3.20	3.02	2.81
28	$14+27$	(mm/day)	4.74	5.01	5.28	5.17	4.47	3.96	3.79	3.62	3.70	4.25	4.69	4.73
29			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
30	ET0	(mm/day)	4.74	5.01	5.28	5.17	4.47	3.96	3.79	3.62	3.70	4.25	4.69	4.73

Table D-1-2 Crop Water Requirement by Modified Penman (Chonburi)

```
STATION: CHONBURI
Station Index: 48459
Latitude: }1\mp@subsup{3}{}{\circ}2\mp@subsup{2}{}{\prime}\textrm{N
Longitude: 100 59' E
Elevation of Station above MSL : 1m
Height of Barometer above MSL : 2m
Height of Thermometer above Ground: 1.50m
Height of Wind Vane above Ground : 13.45m
```

	ITEH	(Unit)	JAN			APR.	M	JUNE	JULY	Y AUG.	SEP.	0 C	NOV.	DEC.
	Tmax	(${ }^{\circ} \mathrm{C}$)	31.7	32.4	33.5	34.3	33.6	32.7	32.2	231.9	31.6	31	31	31.7
	2 Tmin	$\left({ }^{\circ} \mathrm{C}\right.$	20.	. 5	24.	25.4	25.5	25.5	25.1	24.9	24.3	23.6	22	20.4
	3 Tmean	$\left({ }^{\circ} \mathrm{C}\right.$	25.9	27.5	28.9	29.9	29.6	29.1	28.7	728.4	28.0	27.7	26.9	26.1
	4 ea	(mbar)	33.4	36.8	39.9	42.2	41.5	40.3	39.4	38.7	37.8	37.2	35.5	33.8
	5 RHm		84.4	. 4	86.8	87.0	88.0	87.2	8.	89.2	22.2	2.3	88.0	83.3
	6 RHmin	(\%)	48.8	. 8	55.2	55.3	59.3	60.4	81.4	62.4	65.8	84.3	0	7.5
	7 Rlimean	(\%)	66.6	1	71.0	71.2	73.7	73.8	74.9	75.8	79.0	78.3	5	5.4
	8 ed=ea*RHmean/100	(mbar)	22.2	26.2	28.3	30.0	30.6	29.7	29.5	529.3	29.9	29.	25.4	22.1
	9 (ea-cd)	(mbar)	11.2	10.6	11.6	12.2	10.9	10.6	9.9	98.4	47.9	8.1	10.1	$11 . ?$
10	$10 \cup(h=13.45 \mathrm{~m})$	(knots)	4.7	5.2	5.3	4.8	4.2	4.9	4.6	$6 \quad 4.6$	3.5	3.5	4.9	5.1
	U ($h=2 \mathrm{~m})$	(km/day)	146	162	165	149	131	152	143	143	109	109	152	159
	$\mathrm{f}(\mathrm{u})=0.27(1+\mathrm{U} / 100$		0.66	0.71	0.72	0.67	0.62	0.68	0.66	6.66	0.56	0.56	0.68	0.70
13	1-w (Ele	(1a)	0.25	0.23	0.23	0.22	0.22	0.22	0.23	0.23	0.23	0.23	0.24	0.25
14	(1-w)f (u) (ea-ed)	(ma/day)	1.85	73	1.92	1.80	1.48	1.59	50	1.43	1.02	1.04	1.65	2.05
15	Ra (13.22' N)	(mm/day)	12.5	13	15.0	15.7	15.8	15	15.6	15.7	15	14	13.0	12.2
16	Cloudiness	(0-10)	4.0	4.3	4.5	5.4	7.3	8.0	8.1	8.4	8.2	0	2	4.1
17	n / N		0.65	62	0.60	0.53	0.37	0.30	0.29	0.24	0.27	0.40	0.54	0.64
18	$0.25+0.5 \mathrm{n}$		0.58	0.56	0.55	0.52	0.44	0.40	0.40	0.37	0.39	0.45	0.52	. 57
19	Rs=15*18	(mm/day)	7.25	7.67	8.25	8.16	6.95	6.24	6.24	5.81	89	6.39	6.76	. 95
20	Rns $=0.7$	(mm/day	44	75	18	6.12	21	. 68	68	4.36	42	4.79	5.07	. 21
	f(T)		. 9		16.5	7	16.6	16.5	16:4	416.4	16.3	16.2	16.1	9
22	$f(\mathrm{ed})=0.34-0.044$	(ed)			0.11	10	0.10	10	0.10	0.10	10	. 10	12	
23	$\mathrm{f}(\mathrm{n} / \mathrm{N})=0.1+0.9 n / \mathrm{N}$		0.69	0.66	0.64	0.58	. 43	0.37	0.36	0.32	. 34	0.48	. 59	88
	$\mathrm{Rnl}=21 * 22 * 23$	(mm/day)	1.43	18	16	0.97	71	0.61	0.59	0.52	0.55	0.75	14	
25	$\mathrm{Rn}=\mathrm{Rn}$ S-Rn]	(mm/day)	4.01	57	5.03	5.15	4.50	07	4.09	3.84	3.87	4.04	3.93	. 80
26	6W		0.75	77	0.77	0.78	0.78	0.78	0.77	0.77	0.77	0.77	0.76	. 75
	$\mathrm{W} * \mathrm{Rn}$	(mm/day)	3.01	52	3.87	4.02	3.51	3.17	3.15	2.96	2.98	3.11	2.99	2.85
28	$14+27$	(mm/day)	4.86	5.25	5.79	5.82	5.00	4.76	4.65	4.39	4.00	4.15	4.64	. 90
29	9 c		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
30	0 ET0	(mm/day)	4.86	5.25	5.79	5.82	5.00	4.76	4:65	4.39	4.00	4.15	4.64	4.90

Figure D-1-1 Kc and Kp values by crop

Figure 0-1-2 Field Water Requirement (Wet Season Paddy:Broadcasted)

Honth	July			Rugust			Septerber			October			Novester			Decender		
10-day	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
Cropping Pattern																		
1. ELEMERT 1 of Growing sesson	10	19	29	38	48	57	67.	76	86	95	100							
Crop Coefficient (Kc)	0.96	$\begin{aligned} & 1.09 \\ & 0.96 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.17 \\ & 1.07 \\ & 0.96 \end{aligned}$	$\left[\begin{array}{l} 1.25 \\ 1.77 \\ 1.07 \\ 0.50 \end{array}\right.$	$\begin{aligned} & 1.29 \\ & 1.25 \\ & 1.17 \\ & 1.07 \\ & 10.96 \end{aligned}$	$\begin{aligned} & 1.32 \\ & 1.29 \\ & 1.25 \\ & 1.17 \\ & 1.07 \end{aligned}$	$\begin{aligned} & 133 \\ & 1.32 \\ & 1: 29 \\ & 1.25 \\ & 1.17 \end{aligned}$	$\begin{aligned} & 1.32 \\ & 133 \\ & 1.32 \\ & 1.29 \\ & 1.25 \end{aligned}$	$\begin{aligned} & 1.20 \\ & 1.32 \\ & 1.33 \\ & 1.32 \\ & 1.29 \end{aligned}$	$\begin{aligned} & 1.06 \\ & 1.20 \\ & 1.32 \\ & 1.33 \\ & 1.32 \end{aligned}$	$\begin{aligned} & 0.93 \\ & 1.85 \\ & 1.28 \\ & 1.32 \\ & 1.33 \end{aligned}$	$\begin{aligned} & 0.93 \\ & 1.85 \\ & 1.20 \\ & 1.32 \end{aligned}$	$\begin{aligned} & 0.93 \\ & 1.05 \\ & 1.20 \end{aligned}$	$\begin{aligned} & 0.93 \\ & 1.05 \end{aligned}$	0.93			
Kc Averose	0.96	1.02	1,0?	1.11	1.15	1.22	1.27	1. 30	1.28	1.24	1.12	1. 13	1.06	0.99	0.83			
ET0 dy Penman (ma/day)	4.22			4.01			3.85			4.20			4.67					
Elc (mm/day)	4.05	4.39	4. 52	4.45	4.61	4.89	4.89	5.01	4.97	5.21	4.91	4. 75	4.95	4.62	4.34			
Percolation (P. an/day)	2.00			2.00			2.00			2.00			2.00					
$\underline{E l e}+\mathbf{P}$ (om/day)	6.05	6.30	6.52	6.45	6.61	6.80	0.89	7.01	6.97	7.21	6.91	6.75	6.95	6.62	6.34			
Initial Lesching (mot	50																	
Lond Preparation (ma)	150																	
2. Eothition initial lexching	$2 / 9$	$2 / 9$	$2 / 9$	219	1/8													
Land Preparation	273	$2 / 8$	219	$2 / 9$	$1 / 9$													
Norasl Irrigation	$1 / 9$	$3 / 9$	5/9	$7 / 9$	35/36	$1 / 1$	1/1	1/1	111	$1 / 1$	$35 / 30$	$7 / 9$	5/9	$3 / 9$	$1 / 9$			
3. HITER REOUIGETENT Initial tesching (m)	11.1	11.1	11.1	11.1	5.6													
Land Preparation (m)	33.3	33.3	33.3	33.3	16.8													
Hornal Irrigation (ma)	6.7	21.0	36.2	50.2	64.3	68.9	68.9	\%. 1	69.7	72.1	67.2	52.5	33.6	22.1	7.0			
Requiresent (ms/monht	197.1			259.2			208.7			191.8			67.7					

Figure D-1-3. Field Water Requirement (Wet Season Paddy:Transplanted)

Month	July			Rugust			Septesber			October			Noventer			Decester		
10-day	1	2	3	1	2	3.	1	2	3	1	2	3	1	2	3	1	2	3
Cropping Pattern																		
I. ELEPENT x of Growing Season	10	19	29	38	48	57	67	76	85	95	100							
Crop Coefficient ($\mathrm{KC}_{\text {c }}$)	0.96	$\begin{aligned} & 1.07 \\ & 0.96 \end{aligned}$	$\left\|\begin{array}{\|l\|} 1.17 \\ 1.07 \\ 0.96 \end{array}\right\|$	$\begin{aligned} & 1.25 \\ & 1.17 \\ & 1.07 \\ & 0.98 \end{aligned}$	$\begin{array}{\|c\|} 1.28 \\ 1.25 \\ 1.17 \\ 1.07 \\ 0.56 \end{array}$	$\left\lvert\, \begin{aligned} & 1.32 \\ & 1.29 \\ & 1.25 \\ & 1.77 \\ & 1.02 \end{aligned}\right.$	$\begin{aligned} & 1.33 \\ & 1.32 \\ & 1.29 \\ & 1.25 \\ & 1.17 \end{aligned}$	$\begin{aligned} & 1.32 \\ & 1.33 \\ & 1.32 \\ & 1.29 \\ & 1.25 \end{aligned}$	$\begin{aligned} & \begin{array}{l} 1.20 \\ 1.32 \\ 1.33 \\ 1.32 \\ 1.29 \end{array} \end{aligned}$	$\begin{aligned} & 1.05 \\ & 1.20 \\ & 1.32 \\ & 1.33 \\ & 1.32 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.93 \\ 1.05 \\ 1.20 \\ 1.32 \\ 1.33 \end{array}$	$\begin{aligned} & 0.93 \\ & 1.05 \\ & 1.20 \\ & 1.32 \end{aligned}$	$\left\lvert\, \begin{aligned} & 0.93 \\ & 1.05 \\ & 1.20 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & 0.93 \\ & 1.05 \end{aligned}\right.$	0.93			
XC Average	0.96	1.122	1.07	1.11	1. 15	1.22	1.27	1. 30	1.29	1.24	1. 17	1.13	I. 06	0.39	0.93			
ET0 ty Pennsan (midday)		4.22?			4.01			3.85			4.20			4.67				
Elc (mm/day)	4.05	4.30	4.52	4.45	4.61	4.89	4.88	5.01	4.97	5.21	4.91	4. 75	4.95	4.62	4.34			
Percolation (P, miday)		2.101			2.00			2.01			2.00			2.00				
$\underline{E I C}+\mathrm{P}$ (mx/day)	6.05	6.30	6.52	6.45	6. 61	6.89	6.89	2.01	8.97	7.21	6.91	6.75	6.95	6.62	6.34			
Initial Leachimg (min)		50												-				
Land Preparation (ma)		150																
2. EMUATION Initial Leacting			$2 / 9$	$2 / 8$	$2 / 9$	219	1/8											
Land Pregaration			1/9	$2 / 9$	$2 / 9$	$2 / 3$	$7 / 36$	1/36										
Mormal İrigation				1/9	3/9	519	$7 / 9$	35/36	$1 / 1$	1/1	35/36	719	5/3	3/9	1/9			
3. WhER REOUIREMEAT Initial Leaching (ma)			11.1	11.1	11.1	11.1	5.6											
Land Preparstion (mm)			16.7	33.3	33.3	33.3	29.2	4.2										
Norial Irrigation (ma)				2.2	22.0	38.3	53.6	68.2	69.7	32.1	67.2	52.5	38.6	22.1	7.0			
Requiresent (ardmonth)	27.3			200.7			230.5			191.8			67.7					

Figure D-1-4 Field Water Requirement (Dry Season Paddy:Broadcasted)

\cdots Henth	Deceater			January			February			Morch			April			May		
10-doy	1	2	3	1	2	3	1.	2	3	1	2	3	1	2	3	1	2	3
Cropping Pattern																		
1. ELEMEHT I of Growing Season	10	19	29	38	48	57	67	76	86	35	100					\therefore		
Crop Coefficient (X C)	0.88	$\begin{array}{\|l\|} \hline 1.07 \\ 0.98 \\ \hline \end{array}$	$\begin{array}{\|c} 1.19 \\ 1.02 \\ 0.98 \end{array}$	$\begin{gathered} 1.25 \\ 1.17 \\ 1.00 \\ 0.96 \end{gathered}$	$\left\|\begin{array}{l} 1.29 \\ 1.77 \\ 1.07 \\ 10.96 \end{array}\right\|$	$\left[\begin{array}{l} 1.32 \\ 1.29 \\ 1.25 \\ 1.02 \\ 1.02 \end{array}\right.$	$\left[\left.\begin{array}{l} 1.33 \\ 1.32 \\ 1.23 \\ 1.55 \\ 1.17 \end{array} \right\rvert\,\right.$	$\left\|\begin{array}{c} 1.32 \\ 1.33 \\ 1.32 \\ 1.29 \\ 1.25 \end{array}\right\|$	$\begin{array}{\|l\|} \hline 1000 \\ 1.32 \\ 1.33 \\ 1,32 \\ 1.29 \end{array}$	$\begin{array}{\|l\|} 1.05 \\ 1: 20.32 \\ 1: 322 \\ 1: 33 \\ 1.32 \end{array}$	$\begin{gathered} 0.93 \\ 1.05 \\ 1.20 \\ 1: 32 \\ 1.33 \end{gathered}$	$\left\|\begin{array}{l} 0.93 \\ 1.05 \\ 1.20 \\ 1.82 \end{array}\right\|$	$\left\|\begin{array}{l} 0.93 \\ 1,65 \\ 1,20 \end{array}\right\|$	$\begin{gathered} 1 \\ 0.93 \\ 1.05 \end{gathered}$	0.93			
Kc Averoge	0.96	1.02	1.07	1.11	1. 15	1.22	1.27	1.30	1.29	1.24	1.17	1. 13	1.06	0.98	0.93			
Ell by Peman (m/day)	4.82			4.80			5.13			5.54			5.50			4.74		
EIc $\quad \therefore$ (aiddoy)	4.63	4.92	5. 16	5.33	5.52	5.86	6.52	6.67	6.62	6.87	6.48	6.26	5.83	5.45	5.12			
Percolation (P. Em/day)	2.00			2.00			2.00			2.00			2.0					
$\underline{E I C}+\mathrm{P} \quad$ (m/day)	6. 63	6.92	7.16	P. 33	7.52	7.88	8.52	8.67	8.62	8.82	8. 48	8.26	1.83	7. 85	7.12			
Initial leaching (m)	50											:						
Land Preparstion (mm)	150																	
2. EOUHION Initial Leaching	$2 / 9$	219	$2 / 8$	219	1/9													
Lond Preparation	219	$2 / 9$	219	219	1/9													
Horaal Imrigation	$1 / 9$	3/8	5/9	$7 / 9$	35/36	$1 / 1$	$1 / 1$	$1 / 1$	$1 / 1$	111	35/36	$7 / 9$	5/9	3/3	$1 / 9$			
3. HITER RECUIREFERT Initial Leaching	11.1	11.1	11.1	11.1	5.6													
Lend Preparation (m)	33.3	33.3	33.3	33.3	16.8													
Horsal Irrigation (m)	7.4	23.1	39.8	57.0	73.1	78.0	85.2	86.7	88.2	88.?	82.4	64.2	43.5	24.8	7.9			
Requirenent (mindmonth)	203.5			225.5			258.1			235.3			76.2					

Figure D-1-5 Field Water Requirement (Dry Season Paddy:Transplanted)

Month	Decenter			Jamuary			February			Harch			April			May		
10-day	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
Cropping Pattern																		
1. ELEFENT I of Groxing Season	10	19	29	38	48	57	67	76	86	95	100							
Crop Cuefficient (K_{c})	0.96	$\begin{array}{\|l\|} \hline 1.07 \\ 0.36 \\ \hline \end{array}$	$\begin{array}{\|} 1.17 \\ 1.07 \\ 0.96 \end{array}$	$\left\lvert\, \begin{aligned} & 1.25 \\ & 1.17 \\ & 1.07 \\ & 0.96 \end{aligned}\right.$	$\begin{array}{\|l\|} 1.29 \\ 1.25 \\ 1.17 \\ 1.07 \\ 0.96 \end{array}$	$\left\lvert\, \begin{aligned} & 1.32 \\ & 1.29 \\ & 1.25 \\ & 1.17 \\ & 1.07 \end{aligned}\right.$	$\begin{aligned} & 1.33 \\ & 1.32 \\ & 1.29 \\ & 1.25 \\ & 1.17 \end{aligned}$	$\begin{array}{\|l\|} 1.32 \\ 1.33 \\ 1.32 \\ 1.29 \\ 1.25 \end{array}$	$\begin{array}{\|l\|} \hline 1.20 \\ 1.32 \\ 1.33 \\ 1.32 \\ 1.29 \end{array}$	$\begin{array}{\|l\|} \hline 1.05 \\ 1.20 \\ 1.232 \\ 1.33 \\ 1.32 \\ \hline \end{array}$	$\begin{array}{\|} 0.93 \\ 1.55 \\ 1.20 \\ 1.232 \\ 1.33 \end{array}$	$\begin{aligned} & 0.93 \\ & 1.05 \\ & 1.02 \\ & 1.32 \end{aligned}$	$\begin{aligned} & 0.93 \\ & 1.05 \\ & 1.20 \end{aligned}$	$\left\|\begin{array}{l} 0.93 \\ 1.05 \end{array}\right\|$	0.93			
Xc Averoge	10.96	$1: 82$	1.103	1.11	1. 15	1.22	1.23	1.30	129	1.24	1. 17	I. 13	1.06	0. 99	0.93			
EIt by Permari (m/day)	4.82			4.80			5. 13			5.54			5.50			4.74		
EIc (am/day)	4.63	4.92	5. 16	5.33	5.52	5.86	6.52	6. 67	6.62	6.87	6.48	6.28	5.83	5.45	5.12			
Percoiation (P, mm/day)	2.00			2.00			2.00			2.00			2.00					
$\underline{\mathrm{EIc}+\mathrm{P}} \quad$ (uri/day)	6.63	6. 92	7.16	?.33	7.52	7.86	8.52	8.67	8.62	8.87	8.48	8.26	7.83	3.45	7. 12			
Initial Leaching (ma)	50																	
Land Preparation (ma)	150																	
2. EOURTION lnitial Leaching			$2 / 9$	219	$2 / 3$	$2 / 9$	$1 / 3$											
Land Preparation			1/9	$2 / 9$	$2 / 9$	$2 / 8$	$7 / 36$	1/36										
Normal irrigation				1/3	3/9	5/9	$7 / 9$	35/36	$1 / 1$	1/4.	35/36	7/9	5/3	3/9	1/9			
3. 㚅TER REOUIRESERT loitial Leaching			11.1	11.1	11.1	11.1	5.6											
Land Preparation (mm)			16.7	33.3	33.3	33.3	29.2	4.2										
Hornal Irrigation (m)				8.1	25.1	43.7	66.3	84.3	86.2	88.7	83.9	64.2	43.5	24.8	7.9			
Requirement (mm/month)	27.8			210.1			275.8			238.8			76.2					

Figure D-1-6 Field Water Requirement (Soybean:Dry Season)

Honth	Decente:			January			Februsa			Harch			Repil			May		
10-day	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
Cropping Pattem																		
1. ELEFEAT z of Growing Seasen		5	15	25.	35	45	55	65	75	85	95	100						
Crop coelticient (Xp)		0.36	$\begin{aligned} & 0.55 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.73 \\ & 0.55 \\ & 0.56 \end{aligned}$	$\begin{array}{\|} 0.93 \\ 0.73 \\ 0.55 \\ 0.36 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 1.14 \\ 0.93 \\ 0.73 \\ 0.55 \\ \hline \end{array}$	$\begin{aligned} & 1.21 \\ & 1.14 \\ & 0.93 \\ & 0.93 \end{aligned}$	$\begin{aligned} & 1.09 \\ & 1.21 \\ & 1.14 \\ & 0.93 \end{aligned}$	$\begin{array}{\|c\|} 0.95 \\ 1.09 \\ 1.21 \\ 1.16 \end{array}$	$\left[\begin{array}{l} 0.79 \\ 0.95 \\ 1.09 \\ 1.21 \end{array}\right.$	$\begin{aligned} & 0.85 \\ & 0.79 \\ & 0.95 \\ & 1.95 \end{aligned}$	$\begin{aligned} & 0.59 \\ & 0.65 \\ & 0.79 \\ & 0.95 \end{aligned}$	$\begin{aligned} & 0.59 \\ & 0.65 \\ & 0.79 \end{aligned}$	$\left.\left\lvert\, \begin{array}{l} 0.59 \\ 0.65 \end{array}\right.\right]$	0.59			
Kp Average		0.36	0.46	0.55	0. 64	0.84	1.00	1.69	1.10	1.01	0.87	0.75	0.68	0.67	0. 59			
E(Pan E) (m/day)		4.58			4.45	\because		4.70			5.50			$5: 53$			5.14	
Elc - ${ }^{\text {convday) }}$		1.64	2.10	2.45	285	3. 74	4.70	5.12	5.17	5.58	4.79	4.13	3.76	3.71	3.26			
2. EOBNION Normal Irrigation		$1 / 24$	1/3	$2 / 3$	$23 / 24$	$1 / 1$	1/1	$1 / 1$	$1 / 1$	1/1	5/6	$1 / 2$	$1 / 6$					
3. WIER REQUIREFENT Horagl Irrigation (m9)		0.7	7.0	16.3	27.3	37.4	47.0	51.2	51.7	55.6	39.9	$20 . ?$	6.3					
Requirement (manonth)	7.7			81.0			149.9			116.2			6.3					

Figure D-1-7 Field Water Requirement (Groundnuts:Dry Season)

Menth	Decenber			Jaxnary			February			Herch			Rpril			Hes		
10-day	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
Gropping Pattem																		
1. EIEMERT I of Groking Season		4	13	21	23	38	48	54	63	71	79	88	96	100				
Grop Coefficient (kp)		0.42	$\begin{aligned} & 0.58 \\ & 0.42 \end{aligned}$	$\begin{aligned} & 0.75 \\ & 0.58 \\ & 0.42 \end{aligned}$	$\left\lvert\, \begin{aligned} & 0.91 \\ & 0.95 \\ & 0.58 \\ & 0.52 \\ & 0.82 \end{aligned}\right.$	$\begin{aligned} & 1.89 \\ & 0.91 \\ & 0.75 \\ & 0.58 \end{aligned}$	$\begin{aligned} & 1.88 \\ & 1.89 \\ & 0.91 \\ & 0.97 \\ & 0.75 \end{aligned}$	$\begin{array}{\|l} 1.00 \\ 1.08 \\ 1.09 \\ 0.91 \end{array}$	$\begin{aligned} & 0.88 \\ & 1.00 \\ & 1.08 \\ & 1.09 \end{aligned}$	$\begin{array}{\|l\|} 0.78 \\ 0.88 \\ 1.00 \\ 1.08 \end{array}$	$\begin{aligned} & 0.20 \\ & 0.78 \\ & 0.88 \\ & 1.90 \end{aligned}$	$\begin{aligned} & 0.65 \\ & 0.70 \\ & 0.78 \\ & 0.88 \end{aligned}$	$\begin{aligned} & 0.61 \\ & 0.65 \\ & 0.70 \\ & 0.78 \end{aligned}$	$\begin{aligned} & 0.58 \\ & 0.61 \\ & 0.65 \\ & 0.70 \end{aligned}$	$\left.\begin{aligned} & 0.58 \\ & 0.61 \\ & 0.65 \end{aligned} \right\rvert\,$	$\begin{aligned} & 0.58 \\ & 0.61 \end{aligned}$	0.58	
x_{p} Averase		0. 22	0.51	0.58	0.67	0.83	0.96	1.02	1.01	0.94	0.84	0. 75	0.69	0.84	0.61	0.60	0.58	
E (Pan E) - (mi/day)		4.56			4. 45			4.70			5.50			5.53			5.14	
EIc (ma/day)		1.92	2.28	2.58	2.98	3.69	4.51	4.79	4.75	5.17	4. 62	4. 13	3.82	3.54	3.37	3.08	2.98	
2. ECAMTION Nareal Irrigation		$1 / 24$	$1 / 3$	$2 / 3$	23128	$1 / 1$	$1 / 1$	$1 / 1$	$1 / 1$	$1 / 1$	$1 / 1$	$1 / 1$	5/6	1/2	1/6			
3. HMER REOUIREFEM Normal Ifrigation (m)		0.8	7.6	17.2	28.6	36.9	45.1	47.9	47.5	51.7	46.2	41.3	30.8	17.7	5.6			
Requi renent (gro/month)	8.4			82.3			140.5			139.2			54.1					

Figure D-1-8 Field Water Requirement (Mungbean:Dry Season)

Month	Farch			paril			May			June			dily			Rugust		
10-day	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
Eropping Pattern																		
1. ELEGERT I of Growing Season				14	23	43	57	31	86	100				.				
Crop Coetficient (K_{p})				0. 48	$\left[\begin{array}{l} 0.73 \\ 0.48 \end{array}\right.$	$\begin{aligned} & 1.90 \\ & 0.73 \\ & 0.48 \end{aligned}$	$\begin{array}{\|} 1.14 \\ 1.90 \\ 0.73 \end{array}$	$\begin{aligned} & 080 \\ & 1.8 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 0.42 \\ & 0.20 \\ & 1.14 \\ & 1 . \end{aligned}$	$\begin{aligned} & 0.15 \\ & 0.42 \\ & 0.89 \end{aligned}$	$\begin{aligned} & 0.15 \\ & 0.42 \end{aligned}$	0. 15						
Kp Average				0.48	0.61	0.74	0.96	0.98	0.79	0.46	0.23	0. 15						
E (Pon E) (mm/day)	5.50			5.53			5.14			4.50			4.81			4.30		
EIc (mivday)				2.65	3.37	4.09	4.93	5. 04	4.06	2.07	1.31	0.68						
2. ENUATION Mornal Irrigation				1/6	1/2	5/6	1/1	$1 / 1$	$1 / 1$	5/6	$1 / 2$	1/6						
3. WIER REOUIREEAT Horsol Irrigation (mm)				4.4	16,9	34.1	49.3	50.4	40.5	17.3	6.6	1.1						
Requirement (mi/month)				55.4			140.3			25.0								

TABLE D-1-10 PROPOSED CROPPING CALENDAR

D. 2 CHANNEL STORAGE VOIUME IN WATER CONSERVATION AREA (EXPERIENCE IN PRA-ONG CHAIYANUCHIT PROJECT AREA)
(PRA-ONG CHAIYANUCHIT AREA)

รูปตัดตามฐวางคอองषอประทาน
มาตธาฐ่วน 1:200
46.5 sq. ाn $\times 452.2 \mathrm{~km}=21.027 \mathrm{MCM}$
(2) Other Clannels

รปตามขวางคझองธรรมซา
มาตราส่วน $1: 200$
14.8 sq. m x $470.75 \mathrm{~km}=6.967 \mathrm{MCM}$
(3) Unit Area Storage Volume
$(21.027+6.967) \mathrm{MCM} / 81,600 \mathrm{ha}=3.43 \times 10^{-1} \mathrm{MCM} / \mathrm{ha}$

D. 3 WATER BALANCE SIMULATION

The following tables present the basic data and procedures employed in the water balance simulation study:

Table D-3-1 List of Data Given in Water Balance Computation
Figure D-3-1 0verall Basin Development Plan (Alternative Plan-1)
Figure $D-3-2$ 0verall Basin Development Plan (Alternative Plan-2)
Figure D-3-3 0verall Basin Development Plan (Alternative Plan-3)
Figure D-3-4 0verall Basin Development Plan (Alternative Plan-4)
Table D-3-2 Simulated Results by Sub-Basin (1)
Table $D-3-3$ Simulated Results by Sub-Basin (2)
Table D-3-4 Simulated Results by Sub-Basin (3)
Table D-3-5 Sumary of Water Demand Computation (average in 20 years 1968-1987)

Table D-3-6 Summary of Water Balance Computation (average in 20 years 1968-1987)

Table D-3-7 Summary of Water Balance Computation (specific year of 1979)

Table D-3-7 Summary of Nater Balance Computation (specific year of 1983)

Table D-3~1 List of Data Given in Water Balance Computation

FIGURE D-3-1 OVERALL BASIN DEVELOPMENT PLAN (ALTERNATIVB PLAN-1)

CROPPING AND IRRIGATION PLAN (ALTERNATIVE PLAN-1)

Notes : 1) Req. C stands for water shortage analyzed in terms of the required live storage of reservoirs.
2) Ava.S stands for available storage capacity at the proposed damsites.
3) Effective live storage of freshwater at the proposed Bang Pakong diversion dam is estimated at 30 MCM and is treated as the available channel storage in the water balance simulation study.

FIGURE D-3-2 OVERALL, BASIN DEVELOPMENT PLAN (ALTERNATIVE PLAN-2)

CROPPING AND IRRIGATION PLAN (ALTERNATIVE PLAN-2)

Notes : 1) Req. C stands for water shortage analyzed in terms of the required live storage of reservoirs.
2) Ava.S stands for available storage capacity at the proposed damsites.
3) Effective live storage of freshwater at the proposed Bang Pakong diversion dam is estimated at 30 MCM and is treated as the available channel storage in the water balance simulation study.

CROPPING AND IRRIGATION PLAN (ALTERNATIVE PLAN-3)

Notes: 1) Req. C stands for water shortage analyzed in terms of the required live storage of reservoirs.
2) Ava. S stands for available storage capacity at the proposed damsites.
3) Effective live storage of freshwater at the proposed Bang Pakong diversion dam is estimated at 30 MCM and is treated as the available channel storage in the water balance simulation study.

CROPPING AND IRRIGATION PLAN (ALTERNATIVE PLAN-4)

Notes: 1) Req. C stands for water shortage analyzed in terms of the required live storage of reservoirs.
2) Ava.S stands for avai lable slorage capacity at the proposed damsites.
3) Effective live storage of freshwater at the proposed Bang Pakong diversion dam is estimated at 30 MCM and is treated as the available channel storage in the water balance simulation study.

Table D-3-2 Simulated Results by Sub-Basin (1)
UPPER PHRA PRONG
BLOCK NO $=1+2+3+$

KHLONG PHRA SATHUNG

MIDDLE PHRA PRONG

YEAR	HATER DEMAND	BASIN RUHOFF	E.RAIN RETURH	$\begin{aligned} & \text { TAIL-END } \\ & \text { OUTFLOH } \end{aligned}$	$\begin{aligned} & \text { RIVER } \\ & \text { RATER } \end{aligned}$	SUPPLY F CHANNEL	FROM---A)	REQUIREO CAPACITY
	(MCM)	(MCH)	(HCN)	(NCH)	(MCM)	(19CF)	(HCH)	(HCM)
1968.	145.905	354.283	56.424	1379.176	137.507	2.142	54.449	37.072
1969	134.818	429.241	67.306	1723.136	120.470	1.318	60.746	60.278
1970	127.947	458,783	61.625	1747.008	116.565	2.142	51.913	49.364
1971	125,083	416.768	59.214	1428.711	118.625	1.071	45,354	45.354
1972	118.136	429.801	69.148	1799.805	106.623	1.071	43.897	43.897
1973	130.998	395.176	61.894	1500.926	128.067	2.162	34.795	30.996
1974	122.203	424.830	60.956	1514.899	115.700	1.581	33.175	33.175
1975	124.393	413.648	59.656	1501.780	121.476	2.069	31.269	31.268
1976	117.258	572.639	88.231	2118.118	99.667	1.071	59.605	59.805
1977	108.690	488.483	74.393	1641.912	101.295	2.142	37.658	36.795
1978	128.329	513.346	75.093	1561.082	120.761	1.741	42.593	42.593
1979	148.895	519.910	76.148	1715.676	141.604	2.045	41.800	41.536
1980	109.610	606.151	87.532	2031.387	100.439	1.071	40.319	40.319
1981.	108.068	\$39.508	75.421	1986.838	103.120	2.142	34.251	22.707
1982	121.449	516.830	73.803.	1847.269	101.840	1.990	80.159	60.159
1983	110.089	607.864	96.915	2295.905	105.776	1.071	40.520	65.447
1984	123.068	501.278	68.980	1785.404	114.005	2.142	50.564	48.913
1985	117.930	502.113	66.727	1863.045	108.645	1.071	39.227	39.227
1986	119.070	509.273	72.681	1839.998	111.914	1.071	40.149	40.149
1987	132.082	396.129	56.118	1381.583	126.766	2.142	34.348	29.207
TOTAL	2474.021	9596.027	1408.259	34663.633	2300.862	33.236	876.791	858.061
MEAN	123.701	479.801	70.413	1733.182	115.043	1.662	43.840	42.903
		$1 / 2=41.9$	$\begin{array}{r} \text { ROBABILIT } \\ 1 / 5= \end{array}$	$\begin{aligned} & \text { TY OF REQUIR } \\ & =\quad 52.2 \end{aligned}$	$\begin{aligned} & \text { RED CAPAC1TY } \\ & 1 / 7=55.3 \end{aligned}$	$\begin{array}{r} (\mathrm{MCH})=- \\ 1 / 10= \end{array}$	$0=58.3$	

Table D-3-3 Simulated Results by Sub-Basin (2)
MAENUM HANUMAN SUB-BASIN
BLOCK NO. $=9+10+11+12+13+14+15+16+17+$

YEAR	HATER DEMANO	$\begin{aligned} & \text { OASIN } \\ & \text { RUNOF } \end{aligned}$	E.RAIH RETURA	$\begin{aligned} & \text { TAIL-END } \\ & \text { OUTFLOW } \end{aligned}$	---MATER RIVER	SUPPLY CHANNEL.	$\text { FRON- } \quad \text { DAM }$	REQUIRED CAPACITY
	(MCM)	(HCM)	(MCH)	(MCM)	(MCM)	(MCM)	(HCH)	(MCH)
1968	220.930	993.190	91.365	933.115	168.248	3.459	71.631	46.118
1969	193.363	1359.310	127.290	1410.913	104.091	2,648	117.677	111.208
1970	203.509	1164.884	93.025	1135.753	141.755	2.342	80.198	78.067
1971	213.963	1115.632	98.325	1091.393	146.650	2,675	92.555	86.656
1972	191.870	1260.967	125.322	1303.609	104.660	2,617	109.165	101.553
1973	210.029	1081:619	117.177	1059.106	157.717	3.833	70,340	59.798
1974	204.166	1257.609	111.362	1236.313	150.533	2,818	71.636	68.606
1975	169.502	1466.837	152.495	1523.851	117.676	2.604	73,860	69.286
1976	185.185	1353.187	123.179	1390.707	112.223	2,368	98,398	92,184
1977	197.013	1172.852	12.761.	1180.701	126.794	3.080	93.169	86.818
1978	204.199	1412.236	132.895	1451.991	119.716	2.690	109.651	106.178
1979	281.455	1406.468	128.194	1363.923	196.337	4,756	91.163	80.363
1980	182.286	1489.140	137.104	1549.784	100.216	2.337	88.816	80.187
1981	192.247	1460.575	121.350	1476.081	123.747	3.644	88.602	79.628
1982	200.321	1202.721	107.202	1238.013	100.497	2.849	126.273	119.922
1983	208.963	1360.917	131.666	1377.397	145.474	2.654	95.918	75.803
1984	207.466	1369.610	122.438	1398.102	121.069	2.767	113.324	108.809
1985	209.052	1245.842	100.272	1228.473	139.478	2.635	81.610	81.186
1986	221.714	1139.028	95.023	1103.780	155.186	3,689	91.318	84.779
1987	206.405	1107.474	99.343	1082.798	142.939	4,550	81.148	54.778
TOTAL	4083.737	25420.066	2327.785	2S535.773	2676.002	60.817	1852.451	1669.886
MEAN	203.187	1271.003	116.389	1276.789	133.800	3.041	92.623	83.494
		$1 / 2=82.8$	$\begin{aligned} & \text { PR08ABILIT } \\ & 9 \quad 1 / 5= \end{aligned}$	$\begin{aligned} & Y \text { of REQU1 } \\ & 99.7 \end{aligned}$	ED CAPACITY $1 / 7=104.3$	(HCH) $1 / 10$	$0=108.8$	

UPPER BANG PAKONG SUB-BASIM

$\begin{aligned} & \text { BLOCK } \\ & \text { TCA }= \end{aligned}$	$\begin{gathered} \mathrm{NO}=18+19+ \\ 275700 .(H A) \end{gathered}$		$20+21+$	(CUM)	rcv=	1 (HCM)			
	YEAR	VATER DETMAND	8ASIN RUNOFF RUtiof	E.RAIN RETURN	TALL-END OUTFLOW	$\begin{aligned} & \text { HATER } \\ & \text { RIVER } \end{aligned}$	SUPPLY CHANNEL	ROM-- DAM	REQUIRED CAPACITY
		(MCH)	(MCH	(HCM)			(H)		
	1968	1477.558	919.948	503.269	2991.430	911.790	57.447	733.585	665.862
	1969	1323.624	1031.288	524.214	3964.426	896.594	27.029	624.646	622.543
	1970	1320.959	1155.714	557.152	3867.957	892.653	51.250	567.163	509.896
	1971	1363.887	998.761	495.484	3339.593	852.307	62.109	695.208 :	651.714
	1972	1247.638	1011.558	512.230	3896.590	861.862	47.431	520.492	\$17.220
	1973	1480.174	783.270	446.026	3020.708	925.802	57.677	725.619	629.628
	1974	-1369.339	920.723	512.266	3463.072	917.737	46.604	626.645	590.684
	1975	1389.501.	849.638	483.920	3611.993	921.949	51.618	646.263	593.558
	1976	1308.806	933.217	553.740	4377.367	832.187	29.047	687.186	679.785
	1977	1378.124	890.751	479.464	3381.842	972.032	48.162	567.427	545.305
	1978	1502.359	900.816	486.445	3662.463	934.362	46.351	764.226	729.743
	1979	1718.399	817.646	459.598	3623.588	951.813	51.945	984.435	908.709
	1980	1343.315	1078.714	561.998	4461.387	935.472	42.404	590.375	588.061
	1981	1409.996	1180.879	566.793	4382.648	976.698	47.207	576.194	544.469
	1982	1443.929	920.152	491.350	3721.757	929.102	61.278	667.172	541.757
	1983	1211.509	1130.852	631.439	4756.406	855.513	39.708	557.869	500.867
	1984	1356.048	900.768	498.844	3945.563	830.564	40.096	715.663	696. 317
	1985	1425.993	938.101	518.521	3839.861	912.652	45:513	695.052	657.618
	1986	1396.982	982.130	541.057	3863.335	830.573	26.997	793.362	788.312
	1987	1454.466	881.066	471.079	3004.458	939.656	76.895	644.745	458.231

TOTAL $27922.57419223 .95710294 .969 \quad 75176.37518081 .285 \quad 956.76613383 .29712518 .258$ $\begin{array}{lllllllllll}\text { MEAN } & 1396.129 & 961.198 & 514.748 & 3758.819 & 904.064 & 47.838 & 669.165 & 625.913\end{array}$

MAENUM NAKHON NAYOK SUB-BASIN

$T C V=26.711(\mathrm{MCN})$

YEAR	HATER DEMAND	$\begin{array}{r} \text { BASIM } \\ \text { RUNDFF } \end{array}$	E. RAIM RETURN	$\begin{aligned} & \text { TAIL-ENDC } \\ & \text { OUYFLOH } \end{aligned}$	RI-HATER RIVER	SUPPLY CHANNEL		REQUIRED CAPACITY
	(HCM)	(HCM)	(HCM)	(MCH)	(NCM)	(MCH)		
1968	677.444	1011.944	313.230	864.848	390.292	58.980	243.831	223.042
1969	586.315	1318.528	379.088	1307.969	353.962	62.381	186.835	162.623
1970	540.482	1489.544	382.115	1477.600	360.372	53.969	136.916	114.544
1971	595.114	1209.438	358.766	1176.410	326.082	71.785	215.299	185.582
1972	481.163	1350.879	394.902	1378.324	357.405	32,332	105.397	99.385
1973	689.673	1017.213	294.831	895.854	380.856	S2.125	273.485	250.516
1974	554.380	1119.865 1323	329.871	.993.857	435.820 359.45	42.689 83.247	91.314	84.162
1975 1976	585.941 526.394	1323.782 1305.378	381.014 445.251	1280.621 1404.110	359.454 337.650	83.247 28.593	158.362	118.737
1977 1978	514.681	1305.378 970.908	445.251 311.425	1404.110 816.581	337.650 403.783	28.593 66.210	180.283 160.480	178.545 144.540
1978	679.570	1081.064	340.250	1074.433	317.556	44.068	180.480 340.405	178.540 332.585
1979	758.058	980.445	304.345	858.059	386.446	54.893	336.001	300.436
1980	539.220	1297.450	394.260	1316.116	362.696	35.291	159.712	153.199
1981	575.223	1315.833	364.795	1277.376	347.533	67.632	177.601	128.913
1982	602.048	1320.244	372.122	1291.140	369.242	55,544	194.358	118.929
1983	506.298	1540.531	485.399	1653.078	308.969	73.308	147.839	109.419
1984	615.767	1155.201	362.821	1114.289	339.898	48.919	243.850	240.858
1985	649.826	1227.306	394.834	1187.323	404.267	77.599	188.301	180.055
1986	607.808	1301.444	397.958	1302.401	361.397	46.639	217.280	213.387
1987	818.458	874.758	264.589	624.600	440.974	95.482	298.085	164.841
total	12203.836	24191.727	7252.352	23294.953	7344.641 1	1151.682	4055.614	3484.275
MEAN	610.192	1209.586	362.617.	1164.748	367.232	57.584	202.781	174.214
		$1 / 2=160$.	$\begin{array}{r} \text { KOBABILIT } \\ 1 / 5= \end{array}$	$\begin{aligned} & \text { OF REQUI } \\ & 222.4 \end{aligned}$	RED CAPACIIY $1 / 7 \approx 243.6$	(MCM) $1 / 10=$	$0=265.9$	

Table D-3-4 Simulated Results by Sub-Basin (3)
KHLONG THA LAT SUB-BASIN

YEAR	HATER DEMAND	BASIM RUNOFF	E,RAIH RETURN	TAIL-END OUTFLOH	RIVER RATER	SUPPLY F CHANNEL	FROM---D	REQUIRED CAPACITY
	(MCH)	(MCH)	(MCM)	(HCH)	(HCM)	(MCM)	(MCM)	(MCM)
1968	83.631	586.191	11.839	581.327	65.966	4.614	66.930	49.421
1969	69.462	638.222	\% 11.927	618.978	57.854	5.577	42.671	51.206
1970	70.750	995.801	13.618	979.139	58.327	6.488	38.025	34.200
1971	78.432	847.510	12.329	638.879	62.230	5. 509	59.685	43.844
1972	82.541	554.388	11.927	535.528	66.587	8.204	51.996	39.595
1973	79.737	524.992	10.889	503.773	86.863	6.612	47.391	36.736
1974	79.405	487.495	12.195	480.194	63.880	4.489	55.969	43.515
1975	75.394	672.195	12:822.	844.315	86.013	5.442	39.077	36.617
1976	74.188	680.627	12.888	667.520	59.516	6.807	46.530	36.211
1977	71.504	719.477	12.236	675.451	65.398	6.949	16.911	23.578
1978	75.449	744.328	12.710	724.736	63.056	6.245	42.911	38.581
1979	84.514	724.634	12.634	718.799	66.788	7.122	63.775	45.434
1980	76.711	785.773	12.496	761.175	64.729	5.072	42.132	38.350
1981	76.342	1089.290	15.390	1083.560	60.252	4.405	50.927	40.956
1982	82.054	586.383	11.155	568.846	64.902	4.654	53.286	41.661
1983	70.567	877.295	14.573	856.236	60.450	7.041	39.052	27.461
1984	73.424	590.213	11.458	554.771	86.982	5.438	26.299	13.871
1985	78.820	604.058	12.070	595.543	62.100	4.776	54.456	44.599
1986	74.000	889.100	13.341	691.849	56.240	4.377	63.307	45.908
1987	75.513	559.185	11.129	519.241	67.024	6.289	27.865	5.668
TOTAL	1532.437	13757.133	249.424	13399.83?	1265.155	114.113	928.993	737.389
MEAN	76.622	887.858	12.471	689.991	63.258	5.706	46.450	36.869
		$1 / 2=33$.	R08A81LIT	$\begin{aligned} & \text { IY of REQUI } \\ & =52.1 \end{aligned}$	RED CAPACITY $1 / 7=58.5$	$\mathrm{Y}_{1 / 10}$	$0=65.3$	

LOWER BAMG PAKONG SUB-BASIM
$\mathrm{BLOCK} N 0 .=38+39+40+41+42+43+44+45+46+47+48+49+50+51+52+53+54+$
TCA= $310600 .(\mathrm{HA})$

YEAR	HATER DEMAND	BASIN RUNOFF	E,RAIN RETURH	$\begin{gathered} \text { TAIL-ENDS } \\ \text { OUTFLOH } \end{gathered}$	--HATER RIVER	SUPPLY CHANEEL	FROM----M)	REQUIRED CAPACITY
	(M CH CH)	(MCH)	(MCH)	(HCM CH)	(MCM)	(MCM)	(19CM)	(MCH)
1968	1124.968	597.754	166.907	4573.270	818.693	52.137	498.042	436.371
1969	1073.045	536.618	176.116	6007.594	745.824	46.075	512.181	444.232
1970	1101.788	632.798	173.279	6483.055	813.712	67.275	418.206	371.681
1971	1064.335	607.613	187.397	5440.117	717.125	67.439	554.673	461.364
1972	1126.173	525.039	175.974	5853.113	795.050	47.801.	468.292	395.333
1973	1095.015	539.252	172.184	4530.695	772.637	86.685	496.530	407.490
1974	1035.804	850.847	197.119	5211.707	752.617	50.708	457.796	397.206
1975	1109.873	533.885	188.182	5626.141	824.174	46.271	498.786	408.629
1976	1063.538	563.216	178.791	6660.801	715.715	69.600	531.723	449.260
1977	1119.612	473.669	165.548	4830.645	842.018	47.857	442.563	397.479
1978	1125.317	\$21.425	179.275	5634.465	752.193	50.784	592.892	512.140
1979	1229.848	383.351	158.450	5187.242	807.293	44.955	675.812	588.144
1980	1084.232	495.527	173.958	6645.410	769.590	52.399	520.145	434.932
1981	1101.396	568.823	180.833	6860.527	784.348	48.671	469.692	405.387
1982	1094.307	506.231	175.167	5879.469	739.327	73.102	509.079	450.078
1983	979.778	695.531	210.318	7850.164	704.022	49.197	479.144	338.458
1984	1152.975	469.223	167.383	S692.418	806.457	45.941	574.492	514.416
1985	1111.525	416.291	172.937	5643.148	750.895	50.648	541.825	472.735
1986	1117.381	550.172	188.391	6054.488	752.206	46.303	576.838	502.833
1987	1108.732	568.275	174.175	4161.891	856.894	75.693	379.421	282.201
TOTAL	22019.410	10835.520	3542.36011	4426.0621	15520.7581	1119.541	10198.117	8670.328
MEA ${ }^{\text {a }}$	1100.970	541.776	177.118	5721.301	776.038	55.977	509.906	33.516

$$
\begin{array}{cccc}
1 / 2=428.4 & 1 / 5=490.5 & 1 / 7=508.6 \quad 1 / 10=526.4
\end{array}
$$

entire bang pakong river basin
BLOCK NO, $=1+2+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+203$
$21+22+23+24+25+26+27+28+29+30+31+32+33+34+$
$41+42+43+44+45+46+47+48+49+50+51+52+53+54+$
$\mathrm{ICA}=1766000 .(\mathrm{HA}) \quad \mathrm{QMA}=17.660(\mathrm{CUM}) \quad 47+48+49+5 \mathrm{TCV}^{+}{ }^{+}{ }^{+}$

YEAR	HATER DEMAND	BASIH RUNOFF	E.RAI ${ }^{\prime}$ RETURN	$\begin{gathered} \text { TAIL-END } \\ \text { OUTFLOH } \end{gathered}$	$\begin{gathered} \text { RIVER } \\ \text { RATER } \end{gathered}$	SUPPLY Chaminel	FROM~~-->	REMUIRED CAPACITY
	(MCM)	(HCM)	(NCM)	(MCH)	(MCM)	(MCH)	(MCM)	(HCM)
1968	4347.113	5599.316	1329.358	4573.270	2833.312	190.687	2024.789	1767.199
1969	3945.469	6637.352	1522.883	6007.594	2619,309	154.417	1851.952	1736.862
1970	3912.260	7274.230	1487.769	8483.055	2720.677	194.264	1555.260	1397.800
1971	4010.345	6141.273	1401.050	5440.117	2586.713	223.532	1930.703	1727.075
1972	3753.365	6514.508	1527.135	\$853.113	2595.300	146.523	1561.982	1442.931
1973	4256.496	5588.082	1318.671	4530.695	2814.614	219.417	1896.793	1637.385
1974	3885.148	6106.734	1415.642	5211.707	2811.333	158.226	1535.138	1398.162
1975	4009.908	6482.199	1452.352	5626.141	2781.062	201.239	1708.573	1487.996
1976	3812.944	6855.668	1673.975	6660.801	2449.655	144.598	1933.095	1814.187
1977	3998.460	5884.707	1395.802	4830.645	2332.334	183.852	1570.928	1475.049
1978	4282.977	6236.402	1460.447	5634.665	2662.003	159.641	2199.455	2040.994
1979	4838.523	6101.750	1401.140	- 5187.242	2940.581	176.150	2527.765	2227.863
1980	3831.776	7155.723	1636.513	6645.410	2665.620	148.792	1691.206	1555.191
1981	3932.445	7600.270	1563.484	6860.527	2694.079	188.599	1625.029	1414.762
1982	4085.028	6376.453	1479.884	5679.469	2628.490	210.547	1893.378	1691.911
1983	3594.122	7797.113	1873.969	7650.164	2481.919	181.964	1646.835	1367.121
1984	4062.702	6256.371	1455.448	5692.418	2571.675	154.476	2032.161	1917.341
1985	4094.425	6325.762	1503.394	5643.148	2706.426	191.302	1851.723	1678.427
1986	4072.399	6572.508	1553.565	6054.488	2639.385	136.891	2008.661	1895.910
1987	4443.402	5555.398	1264.388	4161.891	2965.569	273.658	1781.331	1237.421
TOTAL	81	9061.562	29716.	426.062	53999.992	3636.753	36826.828	32911.359
MEAK	4058.456	6453.078	1485.846	5721.301	2700.000	181.838	1841.341	1645.568
	PROBABILITY OF REQUIRED CAPACITY (KCM)							

Table D-3-5 Summary of Water Demand Computation (average in 20 years 1963-1987)

Table D-3-6 Sumiary of Water Balance Computation (average in 20 years 1968 - 1987)

Table D-3-7 Sumary of Water Balance Computation (specific year of 1979)

Table D-3-7 Summary of Water Balance Computation (specific year of 1983)

D. 4 OPTIMUM SCALE OF WATER RESOURCES DEVELOPMENT

Tha following tables summarize the procedures employed to determine the optimum scale of water resources development:

Table D-4-1 Irrigable Area by Alternative Plan
Table D-4-2 Required Dam Storage by Alternative Development Plan
Table D-4-3 Net Production Value by Alternative Development Plan
Table D-4-4 Amount of Hater Resources to be Allocated to Sectors
Table D-4-5 Construction Cost (Agricultural Sector) by Alternative Plan

Table D-4-6 B/C Ratio by Alternative Development Plan

TABLE D-4-1 IRRIGABLE AREA BY ALTERNATIVE PLAN
(Unit = ha)

	Wet Season		Dry Season				$\begin{aligned} & \text { Net } \\ & \text { Irrigation } \\ & \text { Area } \end{aligned}$
	Paddy	Veget.	Paddy	Upland C	Veget.	Orchrd	
Alt. Plan-1	339,600	28,000	67,200	120,000	28,000	24, 200	406,800
Alt. Plan-2	339,600	28,000	38,200	120,000	28,000	24, 200	406,800
Alt. Plan-3	339,600	28,000	0	120,000	28,000	24,200	406,800
Alt. Plan-4	339,600	28,000	0	15,000.	28,000	24, 200	406,800

Note: Net irrigation area $=339,600+28,000+15,000+24,200=406,800$ ha

TABLE D-4-3 NET PRODUCTION VALUE BY ALTERNATIVE DEVELOPMENT PLAN
(Unit = million baht)

Sub-Basin	Alt. Plan-1	Alt. Plan-2	Alt. Plan-3	Alt. Plan-4
Lower Bang Pakong	648	624	547	501
Tha Lat	103	100	95	92
Upper Bang Pakong	1,365	1,300	1,194	382
Nakhon Nayok	160	137	62	62
Middle Phra Prong	96	85	85	59
Maenum Hanuman	254	240	240	198
Phra Sathung	254	239	239	205
Upper Phra Prong	412	390	390	338
Total	3,292	3,115	2,852	1,837

TABLE D-4-4 AMOUNT OF WATER RESOURCES TO BE ALLOCATED TO SECTORS
(Unit $=\mathrm{MCM} \& \%$)

Sector	Alt. Plan-1	Alt. Plan-2	Alt. Plan-3	Alt. Plan-4
Irrigation	$4,066(92 \%)$	$3,607(92 \%)$	$2,997(91 \%)$	$2,412(87 \%)$
Industrial Suupply	$215(5 \%)$	$215(5 \%)$	$215(6 \%)$	$215(8 \%)$
Water Supply	$116(3 \%)$	$116(3 \%)$	$116(3 \%)$	$116(4 \%)$
Fishery	$14(0 \%)$	$14(0 \%)$	$14(0 \%)$	$14(1 \%)$
Total	4,412	3,953	3,343	2,758

Note: Irrigation and fishery are counted as agricultural sector.

TABLE D-4-5 CONSTRUCTION COST (AGRICULTURAL SECTOR) BY ALTERNATIVE PLAN
(Unit = million baht)

Iten	Dam No.	Alt. Plan-1	Alt. Plan 2	Alt. Plan-3	Alt. Plan-4
Dam	1	814	685	685	615
	4	961	820	820	-
	5	-	-	\%-\% -	170
	Rabom	97	97	97	97.
	8	1,185	1,056	896	786
	10	738	738	696	696
	11	247	223	223	\square
	12	885	754	754	577
	15	174	150	139	-
	18+19	1,943	1,939	1,951	1,419
	20	1,820	1,548	1,548	1,222
	21	169	152	111	111
	22	1,048	837	616	616
	Total	9,957	8,902	7,839	6,212
	Agri.	$92 \%=9,160$	92\% $=8,190$	$91 \%=7,133$	$88 \%=5,466$
Diversion Dam		595	595	595	595
Main Facilities		12,302	12,302	12,302	12,302
On-farm Facilities		4,037	4,037	4,037	4,037
Total		26,094	25, 124	24,067	22,400

Note: (1) The Rabom dam is at present under construction.
(2) The proposed Khlong Luang dam is assigned as the No. 1 dam.
(3) About 1,500 million bahts of construction cost of the Bang Pakong diversion dam is allocated fiftyfifty between agriculture and other sectors. The cost for agricultural sector is then allocated between both banks of the Bang Pakong river, as;
$1,500 \times 50 \% \times 384.6 \mathrm{MCM} / 484.6 \mathrm{MCM}=595$ million bahts (Left bank) and $1,500 \times 50 \%-595=155$ (Right bank).

TABLE D-4-6 B/C RATIO BY ALTERNATIVE DEVELOPHENT PLAN

Item	Alt. Plan-1	Alt. Plan-2	Alt. Plan-3	Alt. Plan-4
Benefit.				
- Benefit (1)	3,292	3,115	2,852	1,837
$-0 /$ M Cost (2)	302	301	300	299
$-((1)-(2)) / 0.12$	24,917	23,450	21,267	12,817
Cost				
Financial Cost	26,094	25,124	24,067	22,400
- Bcononic (0.9)	23,484	22,611	21,660	20,160
B/C Ratio	1.06	1.04	0.98	0.64

Note: Discount rate was taken at 12% and project life was considered to be 60 years as an average.

TABLE D-4-2 RROUIRED DAM STORAGE BY ALTERNATIVE DEVELOPMENT PLAN (Unit $=$ MCM)

Dam No.	Alt. Plan-1	Alt. Plan-2	Alt. Plan-3	Alt. Plan-4
1	172	119	119	79
4	370	300	300	-
5	-	-	-	81
Rabom	(40)	(40)	(40)	(40)
8	565	470	288	157
10	160	160	122	122
11	105	86	86	-
12	350	290	290	193
15	150	98	45	-
18	327	322	204	204
20	152	133	133	99
21	230	188	90	90
22	126	98	71	71
Total	2,747	$2,304 *$	1,788	1,136

Note: (1) Rabom dam is under construction.
(2) $2,304 \mathrm{MCM}(*)$ includes losses due to evaporation and seepage, that correspond to 10% of the required capacity.

D. 5 SELECTION OF PRIORITY PROJECT

The following tables sumarized the procedures employed to select the priority sub-project:

Table D-5-1 Evaluation from National Economic Point of View
Table D-5-2 Evaluation from Technical Point of View
Table D-5-3 Evaluation from Social Point of View
Table D-5-4 Evaluation from Farm Economic Point of View

TABLE D-5-1 EVALUATION FROM NATIONAL ECONOMIC POINT OF VIEW (B/C RATIO)

Sub-Basin	Incremental Benefit			Feasible Investment		Cost		B/C Ratio	
	Incre. Beneft	$0 / \mathrm{M}$ Cost	$\begin{aligned} & \text { Bene } \\ & \text {-fit } \end{aligned}$	Discount Rate		$\begin{array}{r} \text { Finan- } \\ \text { cial } \end{array}$	Economic	Discount Rate	
				10%	12 \%			10%	12%
Lower Bang Pakong	624	52.7	571.3	5,713	4,761	5,168	4,651	1.23	1.02
Tha Lat	100	6.9	93.1	931	776	707	636	1.46	1.22
Upper Bang Pakong	1,300	97.7	1202.3	12,023	10,019	8,118	7,306	1.65	1.37
Nakhon Nayok	137	54.4	82.6	826	688	3,379	3,041	0.27	0.23
Middle Phra Prong	85	13.5	71.5	715	596	822	740	0.97	0.80
Maenum Hanuman	240	21.4	218.6	2,186	1,822	3,060	2, 754	0.79	0.66
Phra Sathung	239	22.4	216.6	2,166	1,805	1,957	1,761	1.23	1.02
Upper Phra Prong	390	32.0	358.0	3,580	2,983	1,808	1,627	2.20	1.83
Total	3,115	301	2,814	28, 140	23,450	25, 019	22,516	1.25	1.04

Note: Benefit, feasible investment and cost are given in million bahts.

TABLE D-5-2 EVALUATION FROM TECHNICAL POINT OF VIEL (DAM CONSTRUCTION AND COMPENSATION)

Note: (1) No proposed damsite in the Middle Phra prong sub-basin.
(2) Decimal point denotes 0.5 point (ex. $1 .=1.5$). Three(3) point is given for the grade " A "(excellent or no problem), 2 point is given for " B ", while 1 point for " C " and " D ", and 0 point for " \S " (difficult).
(3) For compensation of the reservoir area, 3 point is given for " A " where no or less impact is evaluated, 2 point for " B " (moderate) and 1 point for " C " where a considerable impact is presumed.

TABLE D-5-3 EVALUATION FROM SOCIAL POINT OF VIEW (URGENCY AND INIABITANT'S NEEDS)

	Inhabitant's Needs					Supply Urgency	
Sub-Bas in	Irrigat.	Domestic	Road	Elec	Evaluat.	Industry	Domes.
Lower Bang Pakong	2	1	(3)	(1)	3	3	3
Tha Lat	3	1	(2)	(1)	4	3	3
Upper Bang Pakong	3	1	(2)	(1)	4	2	2
Nakhon Nayok	2	1	(3)	(1)	3	2	2
Middle Phra Prong	2	1	(3)	(1)	3	1	1
Maenum Hanuman	2	1	(3)	(1)	3	1	1
Phra Sathung	1	1	(3)	(2)	2	1	1
Upper Phra prong	1	1	(3)	(1)	2	1	1

Note: Needs for road and electricity were excluded from overall evaluation. Inhabitants's needs: $3=$ eager, $2=$ moderate and $3=$ modest. Urgency: $3=$ very urgent, $2=$ moderate and $1=$ not urgent.

TABLE D-5-4 EVALUATION FROM FARM ECONOMIC POINT OF VIEL (PER HA BENEFIT)

Sub-Basin	Annual Benef it (Million B)	Benef ic- ial Area (ha)	Unit Area Benef it (1000baht/ha)	Evalua -tion
Lower Bang Pakong	624	68,900	9.1	2
Tha Lat	100	6,900	11.8	3
Upper Bang Pakong	1,300	136,900	9.4	2
Nakhon Nayok	137	76,400	1.8	1
Middle Phra Prong	85	16,600	5.1	1
Maenum Hanuman	240	28,100	8.2	2
Phra Sathung	239	29,700	8.0	2
Upper Phra Prong	390	43,300	9.2	2
Total	3,115	406,800	7.7	

Notes: Evaluation; 3 points for benefit $>10.0,2$ points for $10.0 \leqq$ benefit $\leqq 7.5$ and 1 point for benefit <7.5.

D. 6 FLOOD RUNOFF ANAIYSIS

D. 6.1 Flood Rainfall

Probable 3 Day Consecutive Rainfall

As is seen in Figure D-6-1, probable 3 day consecutive rainfall has a close relation with the average annual rainfall at selected rain stations, where storm rainfall data are available. The following equation was developed to estimate probable consecutive rainfall in each irrigation block (see Tables D-6-1 and D-6-2).
$X=0.0865 \times Y+65.1$
where, $X: 3$ day consecutive rainfall which would occur once in 10 years, in mm

Y : Average annual rainfall (mm)

Hourly Distribution of Storm Rainfall

Hourly distribution of storm rainfall was determined in proportion to the actual pattern of the storm rainfall measured at stations in September 1972 (cf. Appendix A-2-10).

Runoff Coefficient during Flood

Amount of flood runoff was plotted against the amount of flood rainfall at stations. An envelope curve was drawn mainly from the data obtained at the station kgt.12, as shown in Figure D-6-1. This envelope curve was then converted into an equation showing relation between the accumulated storm rainfall and rainfall loss as under:
$\mathrm{SL}=0.5 \mathrm{x} \mathrm{SR}$, when $\mathrm{SR}<100 \mathrm{~mm}$
$\mathrm{SL}=0.375 \mathrm{x} \mathrm{SR}+12.5$, when $\mathrm{SR}>100 \mathrm{~mm}$
where, SL : Cumulative loss of rainfall (mm) SR : Cumulative rainfall (mm)

Effective Rainfall

Effective rainfall is, then, calculated as follows:
$S R E_{t}=S R_{t}-S L_{t}$
$R E_{t}=S R E_{1}-S R E_{t-1}$
where, SRE : Cumulative effective rainfall (mn)

$$
\mathrm{t}, \mathrm{t}-1: \text { time }
$$

D.6.2 Flood Runoff Model

The mechanism of surface runoff may fall generally into two parts; namely (1) the behaviour of rain water which flows down a sloping surface and pours directly into river channel and (2) the behaviour of lateral inflow which pours into such a stream. As a simplified stream condition, the behaviour of unsteady flow in an open channel with distributed lateral inflow along a channel is studied hydraulically to establish the basic relationship between the rate of inflow and runoff in a strean or on a sloping surface. Hydrographs under this simplified condition are easily computed for both laminar and turbulent flows, and the hydraulic character of hydrographs resulting from simulated inflow at a given rate are investigated. The method of characteristics was employed to express this phenomenon. Breif explanation is as below:

If the law of resistance of Manning's type is used, unsteady flow in an open channel with a given rate of lateral inflow would be expressed for the practical purposes by the equations;

$$
\begin{aligned}
& A=n \times I^{-1 / 2} \times R^{2 / 3} \times Q=k Q^{p} \text { and } \\
& \frac{\partial A}{\partial t}+\frac{\partial Q}{\partial X}=q .
\end{aligned}
$$

The method of characteristics is applied in order to solve the above equations and the characteristic curves are given as follows:

$$
\begin{aligned}
\frac{d X}{1}= & \frac{d t}{d A / d \bar{Q}}=\frac{d t}{p k Q^{n}}=\frac{d Q}{q} \\
\text { where, } & A: \text { cross-sectional area of flow (sq. } \mathrm{m}) \\
& n: \text { Manning's roughness coefficient } \\
& I \text { : water surface slope of flow } \\
R & : \text { hydraulic radius (} \mathrm{m} \text {) } \\
Q & : \text { discharge (cu. } \mathrm{m} / \mathrm{sec}) \\
\mathrm{k}, \mathrm{p} & : \text { constants } \\
t & : \text { time } \\
X & : \text { distance along channel (m) } \\
& q: \text { lateral inflow per unit length of channel }(\mathrm{cu} . \mathrm{m} / \mathrm{sec} / \mathrm{m})
\end{aligned}
$$

This means that to solve the former equations is to solve the following two equations on a characteristic curve, which is expressed as $\mathrm{dX} / \mathrm{dt}=\mathrm{Q}^{1-\mathrm{p}} / \mathrm{pk}$. Thus;

$$
\begin{aligned}
& q d t=p k Q^{p-1} \text { or } q t=k Q^{p}+\text { constant, and } \\
& \mathrm{qdX}=\mathrm{d} \mathrm{Q} \quad \text { or } \mathrm{qX}=\mathrm{Q}+\text { constant }
\end{aligned}
$$

Taking that constant $=0$, the flow condition is expressed for a given magnitude of lateral inflow q, as;

$$
\begin{aligned}
& t=k Q^{P} / q \text { and } \\
& t=k X Q^{p-1}
\end{aligned}
$$

When $q=0$, it is expressed on a characteristic curve given above that $\mathrm{A}=$ constant and $\mathrm{Q}=$ constant $=(\mathrm{A} / \mathrm{k})^{1 / \mathrm{p}}$. The flow condition is so given as follows:

$$
X=\left(Q^{1-p} / \mathrm{pk}\right) \mathrm{t} .
$$

The time lag of concentration of runoff is generally recognized to be remarkable for drainage area mainly composed of low flat paddy because of storage capacity on a paddy plot. A paddy plot surrounded by levees with certain depth of flooding water can be regarded as a small reservoir and, therefore, the conception of simplified reservoir operation could be introduced to take into account the effect of rain water deposit on a paddy plot.

A storage function is introduced to calculate the specific runoff capacity from a paddy plot by the following equation:
$\frac{d V}{d t}=I-0$
where V denotes storage on a paddy plot, I and 0 , inflow into and outflow from a paddy plot respectively, and time. The above equation can be divided by the water surface area on a plot, A, and then transformed:

$$
\frac{d H}{d t}=i-0
$$

where H shows ponding depth on a plot, i specific inflow corresponding to effective rainfall on a plot, and o specific outflow corresponding to the specific runoff capacity from a paddy plot. A differencial equation is constructed to solve the above equation by a computer as;

$$
H_{t+1}=H_{t}+\left(\mathrm{RE}_{2}, \mathrm{t}+1=\frac{0_{1}-0_{2}+1}{2}\right) \Delta \mathrm{t}
$$

where $R_{t, t+1}$ represents effective rainfall between time t and $t+1$ and Δt is a time interval given for computation. The specific runoff capacity from paddy fields is thus computed at corresponding time t, and then this is considered as a lateral inflow of drainade canal or stream.

Application of the Characteristic Method to a Real Problem

(1) For a Slope

- In the case when $r \neq 0$
$\mathrm{t}=\mathrm{kq}^{\mathrm{p}} / \delta \mathrm{r}$
$\mathrm{t}=\mathrm{kXq}^{\mathrm{p}-1}$
- When $\mathrm{r}=0$

$$
\begin{aligned}
& \mathrm{t}=\mathrm{pkX} / \mathrm{q}^{1-\mathrm{p}}=0.6 \mathrm{q}^{-0.4}\left(\mathrm{~N} / \mathrm{I}^{1 / 2}\right)^{0.6} \mathrm{X} \\
& \text { where, } \delta: \text { conversion rate from } \mathrm{min} / \mathrm{hr} \text { to } \mathrm{m}^{3} / \mathrm{sec}=0.2778 \times 10^{-6} \\
& \mathrm{r}: \text { effective rainfall (malhr) } \\
& \mathrm{q}: \text { discharge per unit width of slope }\left(\mathrm{m}^{3} / \mathrm{sec} / \mathrm{m}\right) \\
& \mathrm{N}: \text { equivalent roughness coefficient of slope } \\
& \mathrm{I}: \text { slope }=\sin \theta \\
& \mathrm{X}: \text { flow distance }
\end{aligned}
$$

(2) For River or Channel : As stated previously with theoretical conception.
(3) For Paddy Field

- for ditch

$$
A_{m}=k Q_{m}{ }^{p}
$$

$$
\frac{\partial A_{\mathrm{m}}}{\partial \mathrm{t}}+\frac{\partial Q_{\mathrm{m}}}{\partial \mathrm{X}}=(2 \mathrm{~b} 0) \alpha, \text { and }
$$

- for lateral drainage canal

$$
A_{b}=k Q_{b}{ }^{p}
$$

$$
-\frac{\partial A_{b}}{\partial t}+\frac{\partial Q_{b}}{\partial X}=\frac{Q_{m}}{2 b}
$$

where, A_{m}, Q_{m} : flow area and discharge in a ditch
A_{b}, Q_{b} : flow area and discharge in a laretal canal
$\mathrm{k}, \mathrm{p}:$ constants
$\alpha:=0.2778 \times 10^{-6}$
b : see Figure
0 : runoff capacity per unit area ($\mathrm{mm} / \mathrm{hr}$)

Table D-6-3 presents basin characteristics given for flood runoff analysis, and Figure D-6-2 shows the concept of runoff capacity from the paddy field.

TABLE D-6-1 DAILY RAINFALL IN OCTOBER, 1983
Daily Rainfall in (1983 October) (1)

Day	-0304	0308	0321	-0522.	0606	0001	0916.	0917	2204	2207
-				6.2	7.1			2.6		0.9
7	-	13.0	-		8.1					-
8	-	12.4		9.1	17.6	3.2	7.4	-	14.5	-
9	-	24.0	-	1.0	16.0	13.0	4.5	63.1	22.5	43.2
10	35.1	38.6	30.4	44.1	12.7	13.2	18.7	21.8	62.5	70.5
11	16.2	45.6	40.4	49.3	6.4	15,6	7.8	25.6	26.6	92.3
12	8.2	5.7		2.8	48.8	18.8	--	0.3	35.8	9.5
13	0.0	12.7	40.0	36.7	2.3	40.1	\bigcirc	10.0	22.6	56.2
14	14.5	10.0	15.5	21.0	14.7	-	35.8	0.7	10.2	
15	0.0	8.4	${ }^{-}$	-	7.4	10.3	7.6		16.2	27.5
16	10.1	-	6.5	2.7			-	\cdots	12.1	-
17	0.0	11.5			48. 4	6.0	17.6	26.1	5.2	28.2
18	25.6	40.0	45.5	41.1	39.4	50.1	132.0	37.6	22.3	73.9
19	56.6	3.3	40.4	14. 9	28.7	25.8	6.9	1.5	8.6	
20	0.0	-	8.5		25.1	0.1	2.6	7.8	29.5	4.2
21	.	--	0.5	-	--	14.5	0.9		6.2	
22	: -	-	-	,	-	0.9	9.6	11.0	15.8	-
23	-	..	-	3.3	-	4.2	27.9	51.5	3.5	-
24	-	-	-		-			.-	-	-
25	.	-	-	-	\cdots	-	.	-	51.2	-
Total	196.3	231.2	277.7	262. 2	283.0	215.8	280.3	259.6	324.3	406.4

Daily Rainfall in October 1983 (2)

Day	2215	2517	2553	4402	-4404.	4106	4408	1412	4413.	2513
6	--	-	0.8							1.0
7	5.7			10.0	-	-	-	-	-	
8	2.4	7.9	4.8	--	6.0	5.8	6.7	26.0	25.3	6.0
9	22.8	3.9	2.3	35.5	2.9	11.2	13.1	31.8	4.0	2.9
10	83.2	111.0	55.1	10.0	51.3	60.2	49.5	97.5	88.0	69.4
11	16.7	59.0	2.4	G0. 0	1.0	-	2.8	4.9		3.0
12	5.6	110.0	41.0	15.0	8.2	-	48.5	1.8	51.0	51.7
13	22.4	136.7	5.7	20.5	5.2	-	33.3	43.9	26.3	7.2
14	22.6	8.3	0. 1	-	2.9	15.0	--		52.6	0.5
15	107.4	33.5	21.3	15.0	21.8	16.5	-	24.5	3.7	26.8
16					2.6	-	8.0		3.0	
17	35.5	-	27.7	30.5	55.3	-	65.9	85.3	37.6	34.9
18	31.4	49.6	21.7		34.1	23.0	5.0	18.8	9.0	27.3
19	12.3	..		-	0.7	30.5	-	-	1.3	-
20	-	-	5.7	-	6.7	25.0	6.8	25.6	7.2	7.2
21	-	1.3	-	-	,		-	..	7.1	-
22	-	3.2	7.0	-	0.8	\cdots	-	66.0	0.4	8.8
23	-	-	-	-	-	-	-	-		-
24	-	-	.	-	-	-	-	8.3	-	-
25	-	-	-	-	-	-	-		-	

$\begin{array}{lllllllllll}\text { Total } & 398.0 & 524.4 & 195.9 & 226.5 & 199.5 & 187.2 & 239.6 & 434.4 & 316.5 & 246.7\end{array}$

TABLE D-6-2 AREAL DISTRIBUTION OF DAILY RAINFALL IN OCTOBER, 1983

(av) TTYanivy 30 SSOT gaily 0 HOO

D. 6. 3 Flood Discharge

The following peak discharge and total amount of the design flood were obtained for (1) existing basin condition and (2) anticipated condition in future, as the result of the preliminary study of flood analysis. For the computation, topographic condition of irrigation block including drainage area and surface slope by land use and length and slope of river channel was read on $1 / 50,000$ topo-maps (Table D-6-3).

Peak Discharge and Flood Volume Analyzed

	Drainage	Basin	Existing		Anticipated	
			Peak	Specific	Peak	Specific
Station	$\frac{\text { Area }}{(\mathrm{sq} . \mathrm{km})}$	$\frac{\text { Rainfali }}{(\mathrm{mm})}$	$\begin{aligned} & \text { Discharge } \\ & (\text { cum } / \mathrm{sec}) \end{aligned}$	$\frac{\text { Volume }}{(\mathrm{mm})}$	Discharge (cum/sec)	$\frac{\text { Volume }}{(\mathrm{mm})}$
801	1,628	247.6	1500.6	115.2	2056.0	131.8
701	2,643	227.9	1203.3	82.8	1408.6	88.6
601	5,241	223.3	3079.0	91.4	3941.0	102.3
501	2,130	247.6	1492.2	118.5	1700.6	125.1
401	10,128	171.2	5750.9	85.8	7063.8	102.8
301	1,933	199.0	1085.4	97.0	2129.1	118.4
201	2,493	153.9	1042.7	68.8	1060.0	70.2
101	17,660	145.8	8,361. 8	72.3	10181.3	89.8

FIGURE B-6-2 RUNOFF CAPACITY FROM PADDY GIELD

$\begin{aligned} & \text { Sub } \\ & \text { Basin } \end{aligned}$	Site No	Watershed Area (sq. kim)				Slope Gradient.			River Chan.	
		Paddy	Upland	Others	Total	Pad.	Upld	0thr	ling t	Slope
UPP-3	803	0.0	0.0	266.0	266.0	300	200	30	30	90
	802	215.2	103.0	455.6	774.0	200	170	10	58	1450
-1	801	250.4	272.1	65.5	588.0	200	160	10	58	2900
KPS-4	704	19.7	231.2	363.1	614.0	200	150	40	48	170
-3	703	26.2	304.2	507.6	838.0	200	120	80	45	1100
-2	702	92.4	103.3	605.3	801.0	200	150	120	38	1900
-1	701	161.3	163.2	65.5	390.0	300	200	100	50	5000
MPP-1	601	195.2	218.2	556.6	970.0	500	450	200	63	6300
MHM-5	505	0.0	- 0.0	68.0	68.0	400	300	25	8	90
-6	506	0.0	56.5	39.5	96.0	500	400	15	7	35
-4	504	38.8	3.9	131.3	174.0	800	500	60	18	450
-8	508	0.0	0.0	64.0	64.0	200	100	60	10	250
-9	509	0.0	0.0	147.0	147.0	1000	500	50	20	80
-7	507	0.0	0.0	232.0	232, 0	1000	800	100	28	350
-3	503	0.0	0.0	273.0	273.0	200	150	110	37	300
-2	502	0.0	0.0	159.0	159.0	500	300	170	28	40
-1	501	206.4	340.6	370.0	917.0	2000	800	80	53	1300
UBP-3	403	346.9	374.5	28.6	750.0	1000	400	300	40	8000
-5	405	0.0	0.0	107.0	107.0	300	200	130	15	35
-4	404	230.3	103.6	60.1	394.0	500	250	110	35	1200
-2	402	177.2	262.8	6.0	446.0	1000	250	60	38	8000
-1	401	919.4	134.8	5.8	1060.0	5000	3000	400	43	8000
MNN-6	306	0.0	0.0	151.0	151.0	200	100	10	18	450
- -5	305	34.3	82.1	339.6	456.0	3000	500	300	40	110
-4	304	0.0	0.0	114.0	114.0	200	100	10	8	60
-3	303	179.4	14.1	121.5	345.0	1000	300	60	25	1700
-2	302	260.3	46.2	62.5	369.0	5000	5000	400	15	1900
-1	301	342.8	8.0	147.2	498.0	5000	5000	400	35	3500
KTL-9	209	1.3	24.5	559.2	585.0	200	100	70	38	420
-8	208	3.8	36.4	350.8	391.0	200	100	20	38	380
-7	207	2.5	98.7	293.8	395.0	200	140	70	33	1700
-4	204	7.9	100.8	28.3	137.0	200	100	100	25	2500
-6	206	1.8	82.3	96.9	181.0	200	180	100	18	1800
-5	205	7.6	121.2	488.2	617.0	200	200	100	43	1100
-3	203	0.0	62.7	6.3	69.0	5000	3000	200	18	1000
-2	202	1.3	77.3	7.4	86.0	5000	3000	200	15	7500
-1	201	13.7	15.2	3.1	32.0	5000	3000	400	22	9000
LBP-17	117	11.9	3.6	4.5	20.0	5000	500	400	7	3500
-16	116	22.0	160.8	16.2	199.0	5000	400	400	30	1250
-15	115	18.5	41.8	4.7	65.0	5000	300	300	12	500
-14.	114	12.5	171.3	17.2	201.0	5000	250	300	25	830
-13	113	27.8	12.7	15.5	56.0	5000	400	400	8	800
-12	112	1.4	250.0	92.6	344.0	2000	100	70	15	500
-11	111	6.4	137.9	39.7	184.0	2000	200	70	15	1000
-10	110	25.3	53.9	5.8	85.0	2000	200	300	13	1300
-9	109	26.2	54.6	7.2	88.0	2000	200	70	15	300
-8	108	99.5	77.8	4.7	182.0	5000	500	300	28	2800
-7	107	39.7	415.5	45.8	501.0	2000	100	70	25	190
-6	106	59.6	13.0	7.4	80.0	2000	200	200	25	1050
-3	103	438.9	82.2	4.9	526.0	5000	3000	400	45	15000
-2	102	48.4	12.6	58.0	119.0	5000	3000	400	8	15000
-5	105	104.8	172.2	2.0	279.0	2000	100	70	20	670
-4	104	83.9	41.6	16.5	142.0	5000	800	400	15	5000
-1	101	0.0	1.6	33.4	35.0	5000	500	400	10	1700

D. 7 INTAKE-RATE TEST

Intake-rate tests were conducted at the selected five (5) sites in the proposed Tha Lat Expansion irrigation area. Figure D-7-1 shows the selected sites, and the measurenents are summarized in Table D-7-1. They were further analyzed in order to obtain the basic intake-rates and others as given in Figure $\mathrm{D}-7-2$.
FIGURE D-7-1 LOCATION OF INTAKE-RATE TEST SITES
(

TABLE D-7-1 Data Sheet for Intake Rate Test

Reading	Time between			
Time	Readings	Water Level	Difference	Accumulation
(Hr)	(min.)	(cm.)	(min)	(mm)
(1) No. 1	site			
11:24	0	24.33	0.0	0.0
30	6	23.42	9.1	9.1
40	16	22.83	5.9	15.0
50	26	22.30	5.3	20.3
12:10	46	21.40	9.0	29.3
30	66	20.67	7.3	36.6
13:00	96	19.72	9.5	46.1
(2) No. 2	site			
11:32	0	19.50	0.0	0.0
- 37	5	19.08	4.2	4.2
45	13	18.65	4.3	8.5
12:05	33	18.03	6.2	14.7
25	53	17.57	4.6	19.3
55	83	17.14	4.3	23.6
(3) No. 3	site			
13:30	0	20.0	0.0	0.0
35	5	19.5	5.0	5.0
40	10	18.7	8.0	13.0
50	20	17.3	14.0	27.0
14:00	30	16.6	7.0	34.0
15	45	16.1	5.0	39.0
30	60	15.7	4.0	43.0
15:00	90	15.1	6.0	49.0
- 30	120	14.6	5.0	54.0
16:00	150	14.2	4. 0	58.0
30	180	14.0	2.0	60.0
17:30	240	13.5	5.0	65.0
(4) No. 4	site			
10:45	0	20.0	0.0	0.0
50	5	18.7	13.0	13.0
55	10	18.2	5.0	18.0
11:05	20	17.3	9.0	27.0
15	30	16.6	7.0	34.0
30	45	16.0	6.0	40.0
45	60	15.7	3.0	43.0
12:15	90	15.3	4.0	47.0
45	120	15.0	3.0	50.0
13:15	150	14.8	2.0	52.0
4.45	180	14.6	2.0	54.0
14:45	240	14.2	4.0	58.0
(5) No. 5	site			
9:50	0	20.0	0.0	0.0
55	5	19.5	5.0	5.0
10:00	10	19.3	2.0	7.0
10	20	19.0	3.0	10.0
20	30	18.9	1. 0	11.0
35	45	18.7	2.0	13.0
50	60	18.4	3.0	16.0
11:20	90	18.0	4. 0	20.0
50	120	17.7	3.0	23.0
12:20	150	17.5	2.0	25.0
50	180	17.2	3.0	28.0
13:50	240	16.8	4.0	32.0

D. 8 PEAK IRRIGATION REQUIREMENT

Peak Irrigation Requirements

Note(*): Probable value during 5-year drought period.

D. 9 RESULTS OF WATER BALANCE SIMULATION

The following tables summarize the simulated results of water balance for the subject feasibility study area:

Tables	Case of Computation
D-9-1	1
D-9-2	1
D-9-3	1
$D-9-4$	2
$D-9-5$	2
D-9-6	2

Remarks
Water demand computation Runoff and water diversion Water balance at the water sources Water demand computation Runoff and water diversion Water balance at the water sources
TABLE D-9-1 WATER DEMAND COMPUTATION (COMPUTATION CASE-1)

 rerm rer rer re merm
 -

 $0000000000000-000004000-100000000000-10000-100000000 \mathrm{H}$

Momón

vioviooonoincoominoinooongininounoinininoopooooninginmomominominomominooomon

-

∞	0	0	\rightarrow	N	\cdots	\checkmark	!	ω	N	∞	0	0	\square	c	m	\checkmark	in	∞	-
$\cdots 10$	0	N	\cdots	N	A	N	\cdots	0	\cdots	\cdots	\cdots	∞							
山10	0	on	\cdots	0	0	0	0	or	on	0	On	σ	∞	0	0	$0 \cdot$	on	∞	0
>180	-	\leftarrow	\cdots	\cdots	r	\rightarrow	-	5	\cdots	$\stackrel{\rightharpoonup}{ }$	\cdots	F	\rightarrow	\cdots	\cdots	\square	\cdots	\cdots	-

