· · ·		Target Yield	Farmagate Price (Finance)	Gross Income	Production Cost	Crop Income
Crop	Season	Project	B/t	<u>B/rai</u>	<u>B/rai</u>	B/rai
Paddy	Wet	4 ton/ha				
		640 kg/rai	3.82	2,445	(T.P) 872	1,573
	Dry	4.5 ton/ha			i Angla ng pangla	1
		720 kg/rai	3.82	2,750	(B.C) 852	1,898
	•			• .		· · ·
laize	Wet	2.1 ton/ha		$(a_1)^{(i)} = a_1^{(i)}$	n. Regional des agrecos	• .
		336 kg/rai	2.66	894	524	367
	Dry	2.5 ton/ha				
		400 kg/rai	2.66	1,064	524	540
Soybean		1.9 kg/ha			al de la composition	
		304 kg/rai	6.77	2,058	1,130	928
Groundnuts		1.9 ton/ha				
JI OUTIGINUES .		304 kg/rai	5.00	1,520	1,030	490
		Jor agriat		1,320	1,030	490
ungbean		1.1 ton/ha	· .	··· · ·	and the second	
		176 kg/rai	7.36	1,295	1,005	290
		. •			·	
Vegetable		14.3 ton/ha				
		2,288 kg/rai			· · · ·	4,300
Mango		13.8 ton/ha	· · · ·			
		2,208 kg/ha	6.00	13,248	4,670	8,578
Note: 1. Ve	Plot 1. Plot 2.	Green bean - Ba Sweet corn - Ch Tomato - Chines	illi	2,280 680 1,340	n an Arrange Anna Anna Anna Anna Anna Anna Anna Ann	· · ·
	(Total)			(4,300)		

Table I.3.86 Crop Budget

Alternative Farm Budget	1 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	Baht rai Baht rai Baht rai Baht rai	- 12.1 19,033 8.09 12,726 6,263 2.60 4,935	- 0.24 88 0.16 59 108 0.18 37	1,485 1.27 1,179	686 1.11 544 -	435 1.20 348	8,600 0.11 473 1.64 7,052 0.07 301	- 2.53 21,702 1.68 14,411	0.0 17,577 15 41,296 8.00 14,155 10.00 27,497 ,569		,000 ,300 ,500 61,500 61,500		Note: These figures are those in the Frogress Keport
Table I.3.87 A	20 rai	Baht rai	25,451 - - 3.3	- 117 - - 0.2	1.	- -	- 1.5	602 2.0	28,822	54,992 1		61, 61, 61,		
Tat	ſ	Baht/rai rai	1,573 16.18 1,898 –	367 0.32 540 -	928	- 067	- 290	4,300 0.14	8,578 3.36	20.00	опе :	20 3 20 3 20 3		
			Paddy, Wet Dry	Maize, Wet Dry	Soybean	Groundnucs	Mungbean	Vegetable	Mango 8	Tocal (Wet + Dry)	Target farm income:	At percent Growth rate in future	(Footnotes)	へっしょうぶょう うちょく

Item		Chemical Fertilizer	Pesticides Insecticides	Seed
Local Merchant / Landlo	rd in Village	3.6 %	5.0 %	in & out 17.3%
Merchant / Landlord in T	own	62,2	77.5	17.4
Relatives		0.9	-	13.0
Neighbors		1.8	-	21.7
State Entep.		9.0	· . · · - ·	-
Financial Institution		23.4	-	
Government Agency		· <u>+</u>	15.0	34.8
Group / Association		3.6	2.5	· · · · · · · · · · · · · · · · · · ·
Total	s	100.0	100.0	100.0
Number of sample	241	(111)	(40)	(23)

TABLE I- 3-88 SOURCES OF INPUT MATERIALS PURCHASED BY FARMERS - Khlong Si Yat Beneficial Areas Unit : Percent of Sample

Source : Socio - agro Economic Survey, 1989, RID

. .

TABLE 1- 3-89 TYPES OF PURCHASERS FOR AGRICULTURAL PRODUCTS

	- Khlo	ng Si Yat I	Beneficial Arc	as- Uni	it : Percent of	Sample
Item	All Crops	Rice	Mangoes	Coconuts	Betel Nuts	Others
Local Merchants	•	· -				
In village	40.0	35.1	37.5	58,3	53.8	57.1
Out village	23.6	22.3	0.0	33.3	30.8	0.0
Mercheant/Purchasers				· .	15.4	28.6
Menchant in town	20.0	13.8	62.5	8.3	0.0	0.0
Rice mill	17.3	20.2	0.0	0.0	0.0	14.3
Factory	1.8	0.0	0.0	0.0	0.0	0.0
Relatives	0.9	1.1	0,0	0.0	0.0	0.0
Neighbours	0.9	1.1	0.0	0.0	0.0	0.0
Government agency	3.6	4.3	0.0	0.0	0.0	0.0
Money institution	4.5	5.3	0.0	0.0	0.0	0,0
Total	100.0	100.0	100,0	100.0	100.0	100.0
Number of sample	(110)	(94)	(8)	(12)	(13)	(7)

Source : Socio - agro Economic Survey, 1989, RID

en andre en de services. Andre en											- · .							•	
							· · ·		· · · ·	· ·	f.	:		:	×.				
Sample	Neighbors	4.1	467	29.0	110	0.8		994) 2019 - 121,		0.0	0.0	0.0	4.4	0.0	4.4	95.6	100.0		
SOURCES Unit : Percent of Sample	Relatives	2.5	910	0:0	0.0	1.0		-38 - 17 	:	0 .0	0.0	0.0	0.0	0.0	9.0	91.0	100.0		n an San San San San San San San San San San San San San San
M BY SOURCES Is - C Unit Perc Sources -	Merchant Relatives Neighbors	0.8	4.0	28.0 28.0	÷	1.0			<i>स्</i> .वर्ष्	0.0	0.0	0.0	0.0	0.0	0.0	100.0	100.0	£	a Merza (2003) Martin adi Martin
NED DURING YEAR PER FARM BY SOI - Khlong Si Yat Beneficial Areas - Um Debts Insured During Year by Sources	Cooperative	2.5	815	12.5	205	1.0				0.0	0.0	50.7	26.7	22.7	100.0	0.0	100.0		
DURING YE Khlong Si Yat bts Insured I	Com.Bank	5 5	2,459	13.5	0,0	0.3				0.0	0:0	26.7	0.0	6.7	33.3	66.7	100.0	1. 20	under der versten Recellen vers
<u> </u>	BAAC	36.9	7,853	12.3	1,582	1.0				5 73	0.0	28.9	28.6	27.4	87.7	12.3	100.0	9.RID	
	Total	49.2	12,307	14.8	1,896	1.0		i• .		2.5	0.0	26.3	19.7	19.7	68.4	31.6	100.0	ic Survey, 198	
TABLE 1 3.30 3.30 1. 1. 1. 1. 1. 1. 1. 1.	Unit	d%	Baht	%	Baht	Yrs 🔅	••			8	%	8	%	%	8	%	°°	gro Econom	
TABLE	Item	% of farm having	Principal	Interest Rato	Outstanding. end Yrs	Loan Period	Purpose of Loams for	Agriculture	Purchased	Equip./Tools	Land	Animal	Farm-imput	Hired Labor	Sub-total	Non Agriculture	Total	Source : Socio - agro Economic Survey, 1989.RID	

Сгор	At Present	With Project	Incremental Volume	Existing Production in 10 Pistricts
Paddy (Wet Season)	73,003t	137,600 t	64,597 t] 552,163t
Paddy (Dry Season)	600	30,960	30,360) ('89/87-'88/87)
Maize	_	2,620	2,620	4,927
Soybean	-	5,025	5,025	2,645
Groundnuts	-	4,395	4,395	551
Mungbean	•	3,476	3,476	73
Vegetables	5,760	65,637	59,877	11,075
Orchard (mango)	16,865	98,808	81,943	50,860
Cassava	38,689			about 6% of
Total	134,917	348,521		Sanam Chaiket

TABLE I-3-91 INCREMENTAL VOLUME OF AGRICULTURAL PRODUCTION

TABLE I- 3-92 APPLICATION VOLUME OF INPUTS, AT PRESENT AND WITH THE PROJECT

(A) At Present

	Cł	<u>nemical Fertiliz</u>	er		Pesticide	
Crop	Per Rai	Cropped Area	Per Farm	Per Rai	Cropped Area	Per Farm
Paddy (Wet)	$29.5\mathrm{kg}$	27.27 rai	804 kg	6.6 B	27.27 rai	180 B
Vegetable (Wet)	100.0	0.03	3	289.4	0.03	.9
Vegetable(Dry)	116.0	0.03	3	660.0	0.03	20
Fruits/Tree Crops	55.0	2.25	124	268.1	2.25	603
Total		29.58	934		29.58	812
Per Rai 3	2kg					

(B) With the Project

Chemical fertilize	40,200	ton
Cultivate Area	42,500	ha
Application Volume per ha	945	kg
Application Volume per rai	151	kg
	•	·

(D) Growth rate of fertilize 151Kg/rai + 32 Kg/rai = 472 %

· · ·	DOMES	TIC SEC	TOR		•	
	n e		Divers	sion Dam	Si Yat D	am Storage
	Item	e Berneri Berneri	Financial	Economic	Financial	Economic
		-	Million	Baht	Mi	llion Baht

1,450 (0.868)

148 (0.848)

76 (0.920)

68

174

1,916

1,207

709

1,060

150

106

71

138

954

560

1,514

901 (0.850)

94 (0.884)

65 (0.920)

68

113

782

459

1,241

1,670

155

167

83

208

2,283

1,438

845

TABLE I-3-93 ALLOCATION OF JOINT COST, AGRICULTURE AND INDUSTRY & DOMESTIC SECTOR

TABLE I-3-94

1. Construction Cost

Administration

Total

6. Cost Allocation

5. Physical Contingency

Agriculture (63%)

Industry & Domestic (37%)

2. 3. -

4.

Compensation Cost

Engineering Services

I-3-94 COST ALLOCATION FOR INDUSTRIAL & DOMESTIC SECTOR

1	Divers	ion Dam	Si	at Dam	storage
Item	Financial	Economic	Fina	ncial	Economic
Cost (Mill. Baht)	845	709	560		459
Intake Water			e de la composición de la comp		
Industry (MCM)	100 (83%) 100	70	(84%)	70
Domestic (MCM)	20 (17%) 20	15	(17%)	15
Total	120	120	85		85
Cost Allocation					
Industry (Mill Baht)	701 (83%) 588	465	(83%)	381
Domestic (Mill. Baht)	144 (17%	b) 121	95	(17%)	78

A. Diversion Dam

Industry: (Financial Price)

 $= \frac{127 \text{ MB} + 3.5 \text{ MB}}{93 \text{ MCM}} = 1.40 \text{ Baht/CM}$

Note: MB = Million Baht (Ecnomic price)

 $\frac{588 \text{MB} (1 + 0.208) \times 0.15 + 588 \text{MB} \times 0.005}{93 \text{ MCM}}$

 $= \frac{106.5 \text{ MB} + 2.9 \text{ MB}}{93 \text{ MCM}} = 1.18 \text{ Baht/CM}$

Domestic: (Financial Price)

 $\frac{144\text{MB}(1 + 0.208) \times 0.15 + 144\text{MB} \times 0.005}{13.95 \text{ MCM}}$

 $= \frac{26.1 \text{ MB} + 0.7 \text{ MB}}{13.95 \text{ MCM}} = 1.97 \text{ Baht/CM}$

(Economic price)

 $\frac{121 \text{MB} (1 + 0.208) \times 0.15 + 121 \text{MB} \times 0.005}{13.95 \text{ MCM}}$

 $= \frac{21.9 \text{ MB} + 0.6 \text{ MB}}{13.95 \text{ MCM}} = 1.61 \text{ Baht/CM}$

B. Si Yat Dam

Industry: (Financial Price)

 $\frac{465 \text{MB} (1 + 0.26) \times 0.1425 + 465 \text{MB} \times 0.005}{65.1 \text{ MCM}}$

 $= \frac{83.5 \text{ MB} + 2.3 \text{ MF}}{65.1 \text{MCM}} = 1.32 \text{ Baht/CM}$

(Ecnomic price) $\frac{381MB(1 + 0.26) \times 0.1425 + 381MB \times 0.005}{65.1 \text{ MCM}}$

2000 1000 1000

 $= \frac{68.4 \text{ MB} + 1.9 \text{ MB}}{65.1 \text{ MCM}} = 1.08 \text{ Baht/CM}$

Domestic: (Financial Price) <u>95MB (1 + 0.26) × 0.1425 + 95MB × 0.005</u> 10.46 MCM 17.06 MP + 0.48 MP

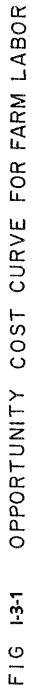
 $= \frac{17.06 \text{ MB} + 0.48 \text{ MB}}{10.46 \text{ MCM}} = 1.68 \text{ Baht/CM}$

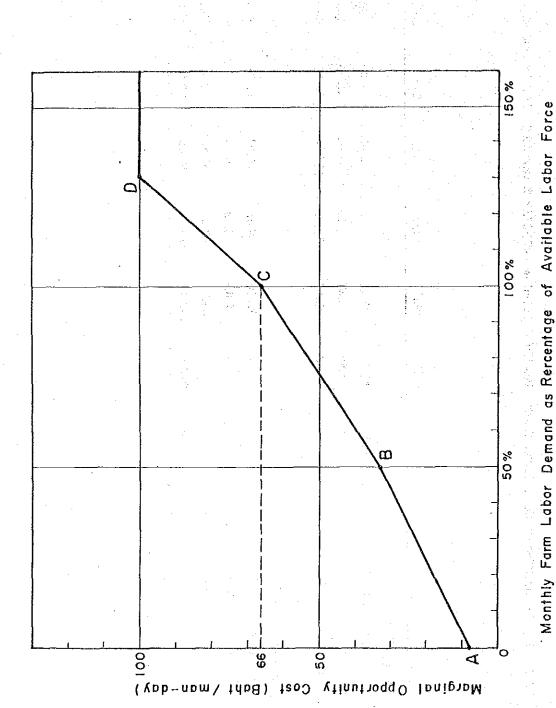
(Economic price)

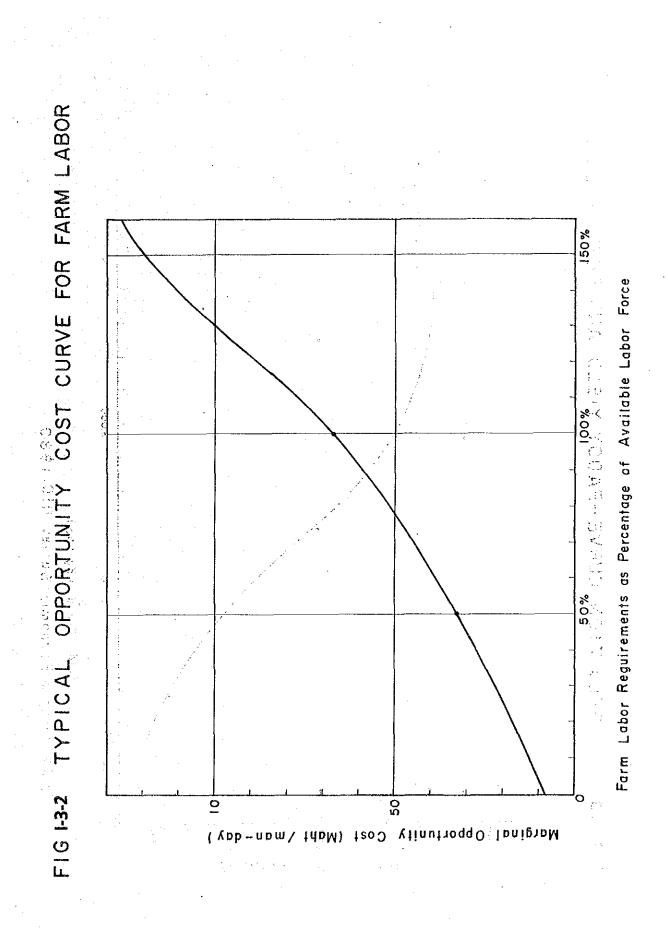
 $\frac{78 \text{MB} (1 + 0.26) \times 0.1425 + 78 \text{MB} \times 0.005}{10.46 \text{ MCM}}$

 $= \frac{14.0 \text{ MB} + 0.39 \text{ MB}}{10.46 \text{ MCM}} = 1.38 \text{ Baht/CM}$

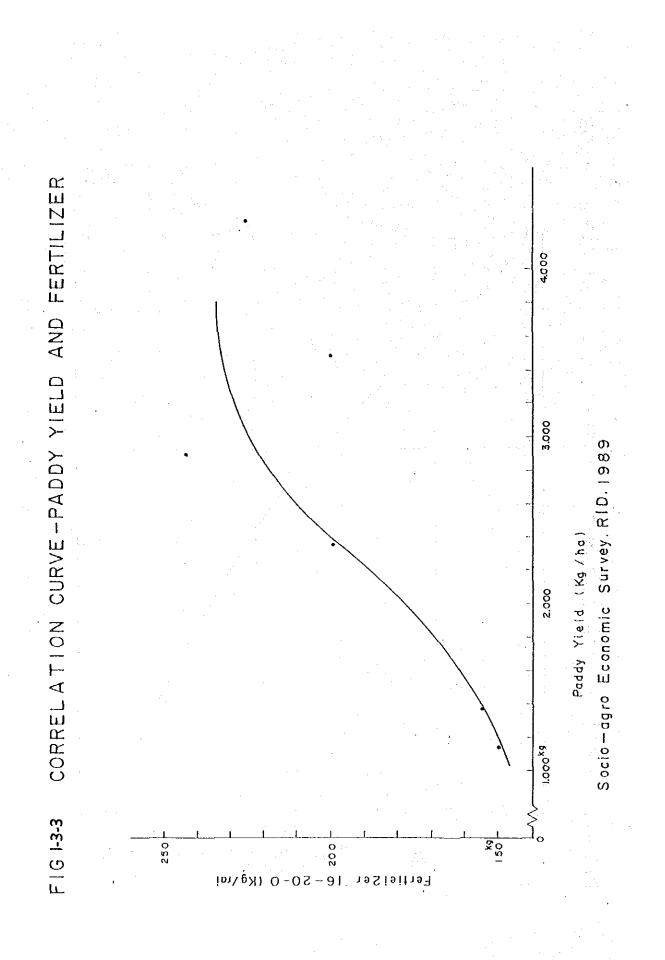
TABLE 1-3-96 PROJECT OF INTAKE WATER VOLUME IN INDUSTRY WATER AND DOMESTIC WATER SECTOR

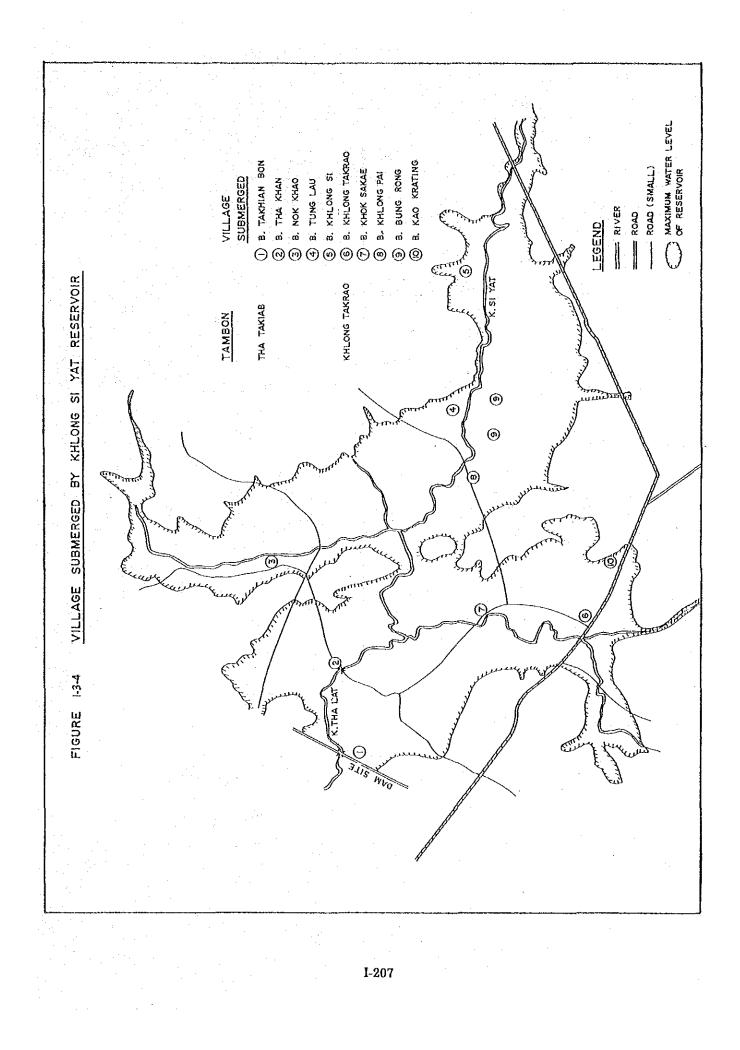

	1996	1997	1998	1999	2000	2001	2002
Phase I							
Water Demand (120 McM)	50	60	70	80	100	100	100
1. Industry	(20%)	(%09)	(%01)	* 80%)	(100%)		
$(120 \mathrm{MCM} \times 83\%)$	4	00	12	16	20	20	20
2. Domestic	(20%)	(40%)	(%09)	(%08)	(100%)	(100%)	(100%)
$(120 \mathrm{MCM} imes 17\%)$	54	68	82	96	120	120	120
Total				·			
<u>Phase II</u>	*****						
Water Demand (85 MCM)	· .	-	:				
1. Industry	۱	1.	35	42	49	56	70
$(85 \text{ MCM} \times 17\%)$			(35%)	(%09)	(20%)	(%0%)	(200%)
2. Domestic	*	i Iş	က	v	6	12	15
$(85 \text{ MCM} \times 17\%)$			(20%)	(40%)	(%09)	(80%)	(100%)
Total	Ĩ	- 1	38	48	85	89	85 85
Grand Total	54	68	120	144	178	188	205

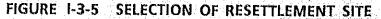

TABLE 1-3-97 PROJECTION OF COLLECTIBLE SUPPLY WATER VOLUME IN INDUSTRY & DOMESTIC SECTOR WATER

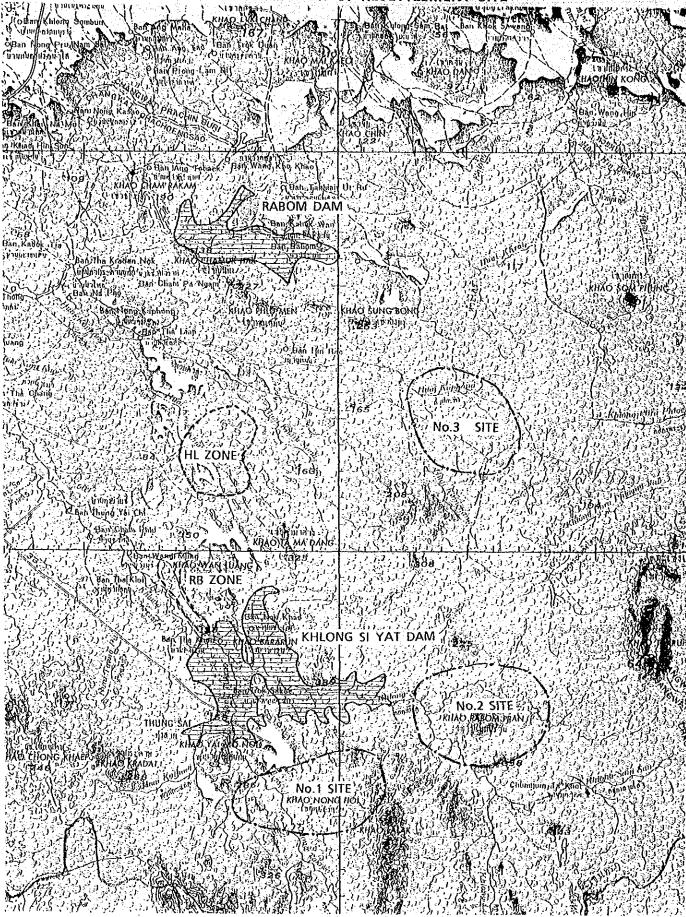

.

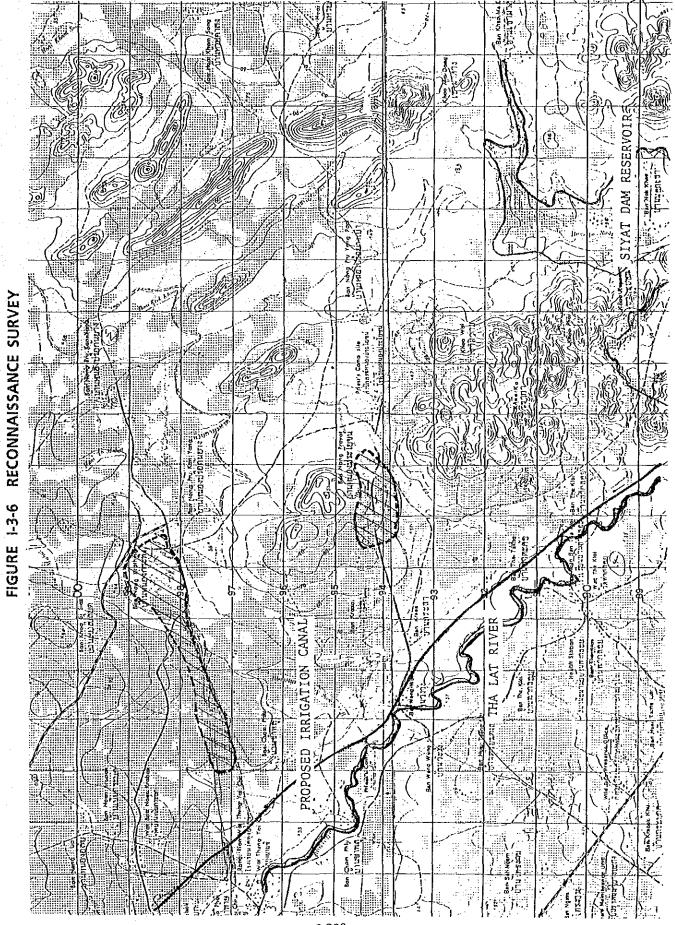
	1996	1997	1998	1999	2000	2001	2002
Phase I (Diversion Dam)			8				
Industry (MCM)	45.50	55.80	65.10	74.40	93.00	93.00	93.00
Domesti (MCM)	2.79	5.58	8.37	11.16	13.95	13.95	13.95
Sub-Total (MCM)	49.29	61.38	73.47	85.56	106.95	106.95	106.95
<u>Phase II</u> (Si Yat Dam)							
Industry (MCM)			32.55	39.06	45.57	52.08	65.10
Domestic (MCM)	ı	. 1	2.09	4.19	6.28	8.37	10.46
Sub-Total (MCM)	t	ł	34.64	43.25	51.85	60.45	75.56
Total	49.29	61.38	108.11	128.81	158.80	167.40	182.51

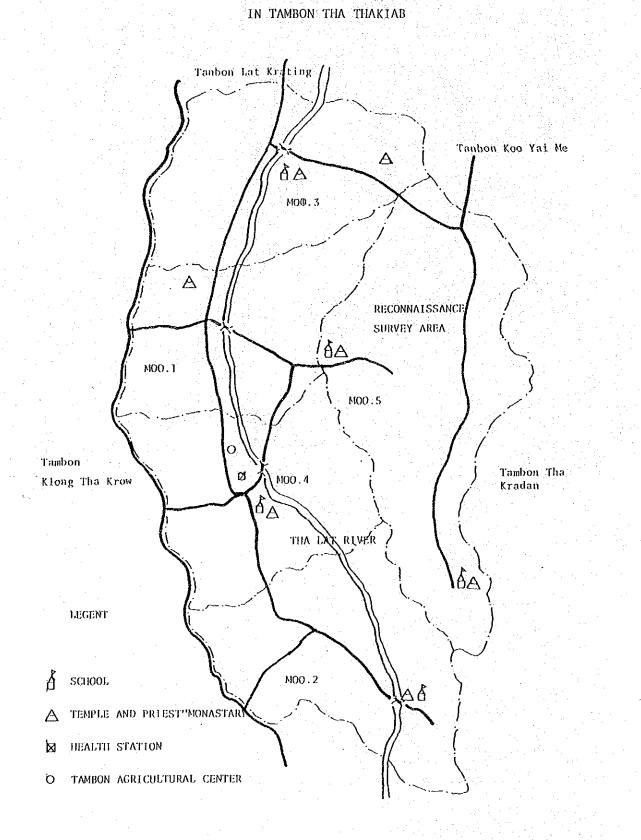

•











1-208

1.3.7 FIG, VILLAGES AND MAIN SOCIAL STRUCTURE

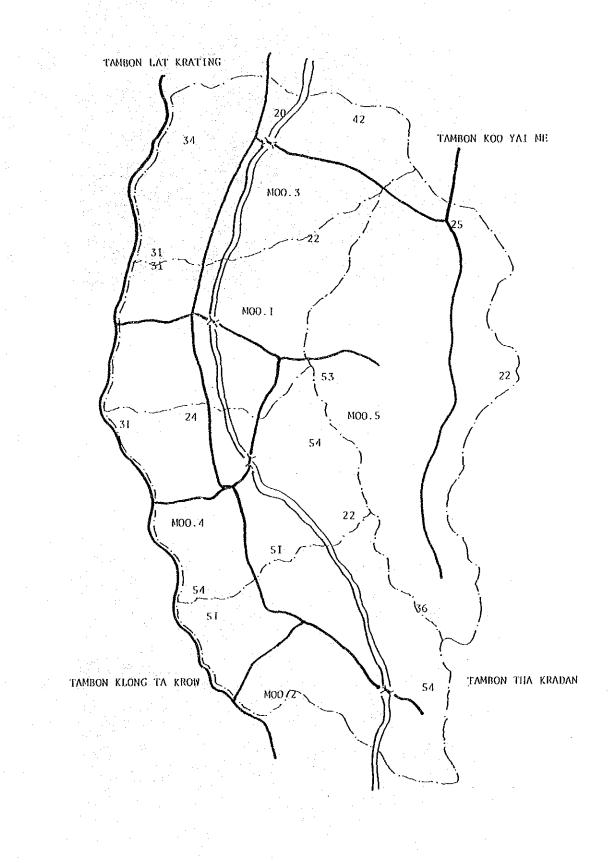


FIG. I.3.8 SOIL MAP IN TAMBON THA TAKIAB

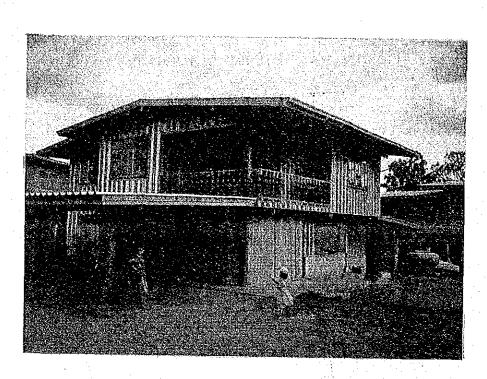


FIG. 3.9 DWELLING MODEL OF TYPE 3

ł

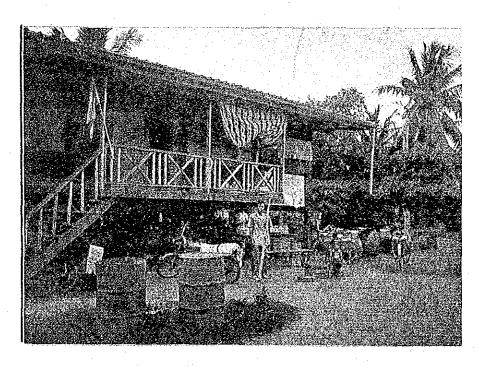
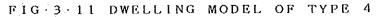
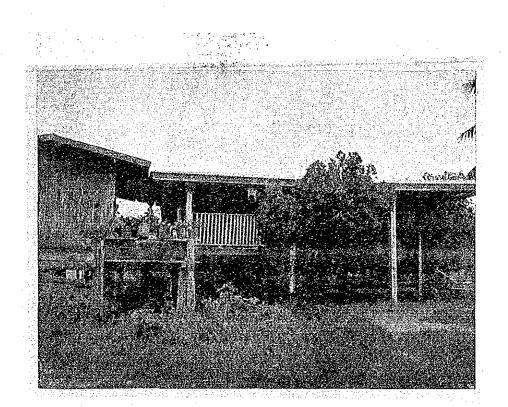




FIG-3-10 DWELLING MODEL OF TYPE 4

FIG·3·12 DWELLING MODEL OF TYPE 4

FIG.3.13 DWELLING MODEL OF TYPE 4

FIG-3-14 DWELLING MODEL OF TYPE 5

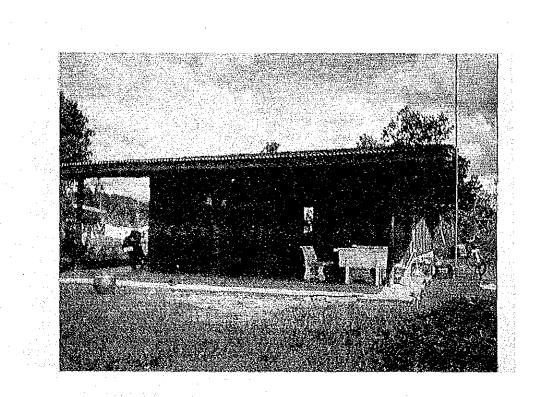
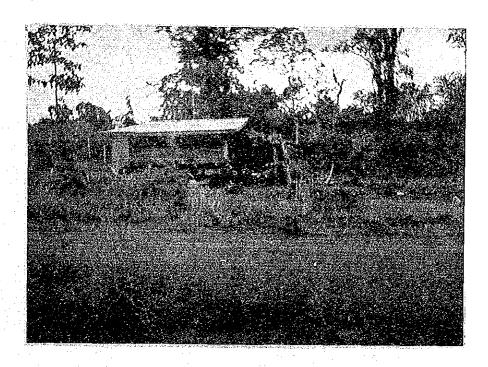
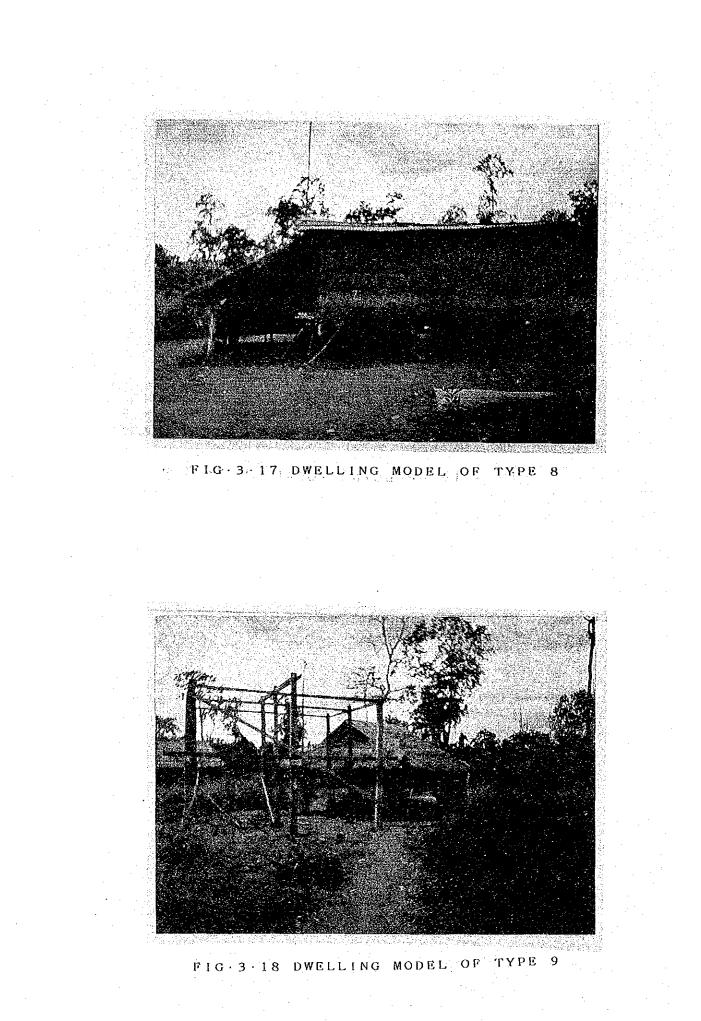




FIG.3.15 DWELLING MODEL OF TYPE 6

FIG·3·16 DWELLING MODEL OF TYPE 8

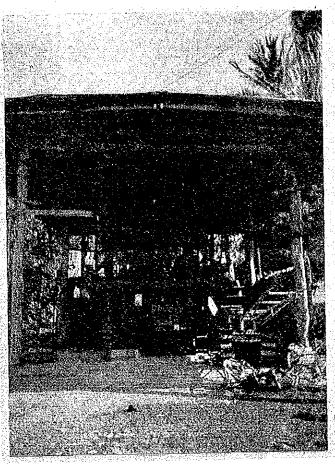


FIG.3.19 DWELLING MODEL OF TYPE 10

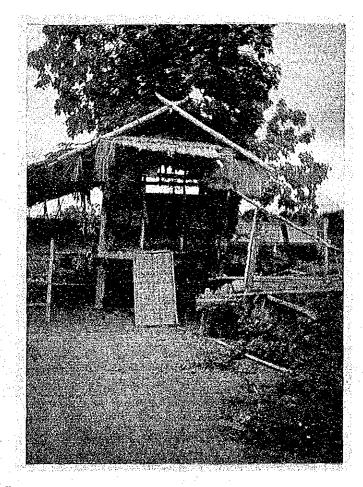
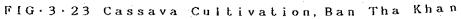
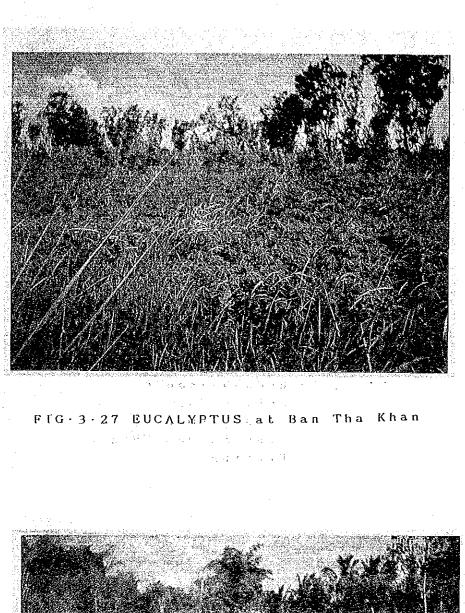


FIG-3-20 DWELLING MODEL OF TYPE 11 I-217



FIG·3·21 Paddy Field at Ban Tha Kan

FIG·3·22 Paddy Field at Khok Sakae


FIG·3·24 Maize Cultivation , Ban khok Sak ae

FÍG-3-25 Groungnuts Cultivation, Ban Khlo ng Takrao

FIG-3-26 Sesame Cultivation at Ban Khlon g Takrao

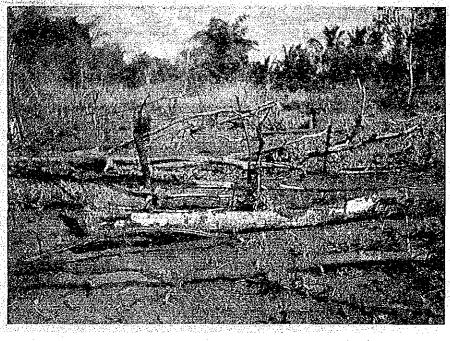


FIG-3-28 Cleaning Land at BAN Nok Khao

· · ·

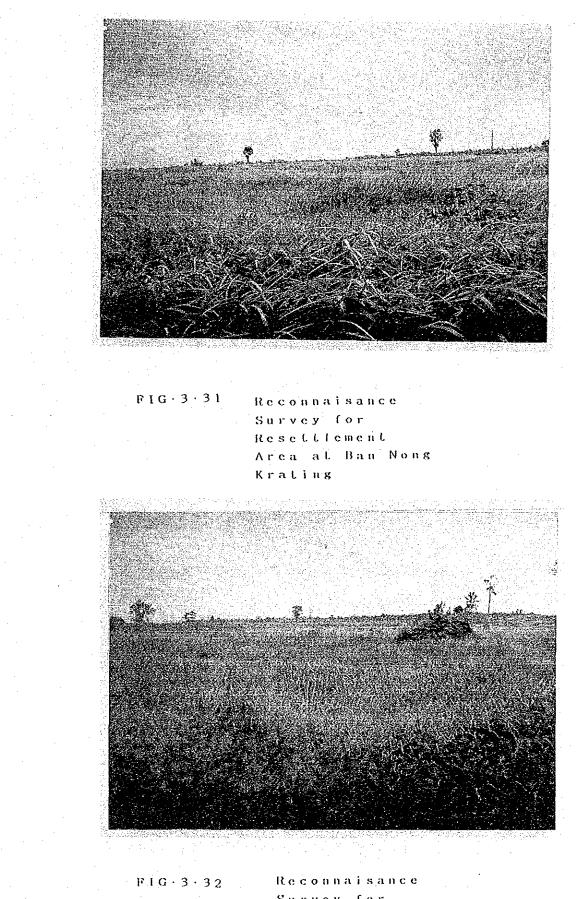


FIG-3-29 Reconnaisance Survey for Resettlement Area at Ban Nong Krating

FIG-3-30 Reconnaisance Survey for Resettlement Area at Ban Nong Krating

1-222

Reconnaisance Survey for Resettlement Area at Ban Nong Krating I-223

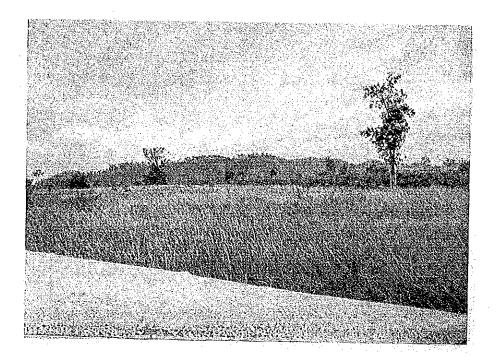


FIG-3-33 Reconnaisance Survey for Resettlement at Ban Nong Prayat

FIG-3-34 Reconnaisance Survey for Resettlement Area at Ban Nong Prayat

I-224

. .

APPENDIX-J. ENVIRONMENTAL ASSESSMENT

APPENDIX-J. ENVIRONMENTAL ASSESSMENT

LIST OF CONTENTS

J.1 Tasks to be Carried Out for environmental Impact Assessment of
Si Yat Dam and Bang Pakong Diversion Dam
J.2 Land Ownership in ThailandJ-2
J.3 NEB's Water Quality Standard in Natural Stream
J.4 NEB's Water Quality Classification of Natural Stream
J.5 Properties of Water Samples for Khlong Si Yat
J.6 Properties of Water Samples from Bang Pakong River (NEB)
Table J-6-1 Properties of Water Samples from Bang Pakong River(1986)J-6
Table J-6-2 Properties of Water Samples from Bang Pakong River(1987)J-7
Figure J-6-1 DDT Concentration Value during 1985-1987J-8
Figure J-6-2 α -BHC Concentration Value during 1985-1987 J-8
Figure J-6-3 Dieldrin Concentration Value during 1985–1987 J-9
Figure J-6-4 Aldrin Concentration Value during 1985-1987 J-9
Figure J-6-5 Heptachlor Concentration Value during 1986-1986 J-10
Figure J-6-6 Heptachlor Concentration 1n 1987 J-10
Figure J-6-7 Dissolved Oxygen Value at Percentile 20
Figure J-6-8 BOD Value at Percentile 80
Figure J-6-9 Total Coliform Bacteria Value at Percentile 20 J-12
J.7 Properties of Water Samples from Bang Pakong River (JICA)
Table J-7-1 Result of Water Quality Survey (1) J-13
Table J-7-2 Result of Water Quality Survey (2) J-14
Table J-7-3 Result of Water Quality Survey (3)J-15
Table J-7-4 Result of Water Quality Survey (4)J-16
Table J-7-5 Result of Water Quality Survey (5)

TASKS TO BE CARRIED OUT FOR ENVIRONMENTAL IMPACT ASSESSMENT OF SI YAT DAM AND BANG PAKONG DIVERSION

J.1

r	1	Y			· · · · · · · · · · · · · · · · · · ·	г	r
Environmental Component	Data Collec- tion	Review	Field Obser- vation	Field Survey	Data Analy- sis	Effect Evalu- ation	Recom- menda- tion
1. Physical Resources	[· · · · · · · · · · · · · · · · · · ·		
1.1 Climate	x	\checkmark	NN	NN	NŊ	\checkmark	\checkmark
1.2 Surface Water	X	· V	NN	NN	NN	l ṽ	V
Hydrology	1	v	1414	1111	1111	, V	
1.3 Surface Water	√	· 🗸	\checkmark	· • V	\checkmark	\checkmark	\checkmark
Quality	Ý	v	v	, v	v	v	
1.4 Ground Water		√	1	NN	\checkmark	\sim	-√-
1.5 Geology	x	$\overline{\mathbf{v}}$	\sim	NN	NN	$\overline{\mathbf{v}}$	V V
	X	\sim		NN	PA	V	\checkmark
1.6 Erosion/ Sedimentation		Ŷ	, v	ININ	PA PA	V V	V V
1.7 Soils in Reservoir	\vee	. 🗸 -		\checkmark			\checkmark
Area		· V	v	v	l v	v	V .
1.8 Soils in Resettlement	\vee	\checkmark	·√	\checkmark		\checkmark	\checkmark
	x	\mathbf{V}	$\sqrt{1}$	NN	NN	↓ V	
1.9 Soils in Irrigation	A	v	v	INTA	1414	v	v
Area							
2. Ecological Resources							
		\checkmark	\checkmark	\checkmark	\checkmark	· - V	
2.1 Fisheries/Aquatic	V V	v	, v	v	V .	v	V
Biology 2.2 Forestry/Wildlife		\checkmark	$\mathbf{V}_{1}^{\mathbf{r}}$	\checkmark		$\overline{\mathbf{v}}$	V
2.2 Forestry/Windine	l v	v	v .	V .	v	v	
2 Human Has Values	•						
3. Human Use Values 3.1 Land Use in		. V .	\sim	-√	\checkmark		\vee
	V V	V I		· · •	v		V
Reservoir	x	\checkmark	\checkmark	NN	PA	\checkmark	\checkmark
3.2 Irrigation/Water	A.	. •	Ň	ININ		v	V
Supply 2.2 Lond temperature	· - V	\checkmark	\checkmark	NN	\checkmark	\checkmark	\checkmark
3.3 Land tansportation	∛		\checkmark	NN	\bigvee		\checkmark
3.4 Navigation	∛	\checkmark	↓ V		\bigvee	$\overline{\mathbf{v}}$	V
3.5 Mineral Resources	· · ·	v		v			
4 Quality of Life Volues							
4. Quality of Life Values	-√	· 🗸	√ .	-√ ¹	\checkmark		\checkmark
4.1 Socio-economic in			V	v	v	V .	V
Reservoir	v		\checkmark	NN	3/	\checkmark	
4.2 Socio-economic in	X	\checkmark	v	PININ		Ň	
Irri Area	1		-√*	\checkmark	\checkmark	\sim	
4.3 Compensation/	<u>√</u>	V	V	v	V .	V	
Resettlement				\checkmark	· 🗸	$\overline{\mathbf{v}}$	
4.4 Public Health						V V	\checkmark
4.5 Archaeology/	N N	V	V i.	Y I	. V .	· · ·	
Tourism							

Notes: X = Data available in the feasibility study $\sqrt{}$ = Activities to be carried out by Enví. team NN = Not necessary as work will be done by the feasibility study team

PA = Part of data might need further analysis for EIA

Ω
R
\leq
1
ъ
Y
ب شده
Г
N
ΝI
<u> </u>
1
E
RSI
(<u>-</u> 1
\mathbf{Z}
3
0
Ω
g
\geq
\sim
5

- 11 - 11 \ - 11 \	9						· · ·	
	Inheritrance	ខ	ទ	ទ	Ç	Full	°N N	
Right	Sale	Full	Full	C3	2	Full	Full	
· · ·	Rent	Full	Full	Full	Full	N0 N	°N N	
	Use	Full	Full	ö	បី	Full	Full	
	Тах	Yes	Yes	Yes	Yes	Yes	Yes	
Existance of	Certificate	Yes	Yes	Yes	Yes	Yes	ou	
[eca]	Ground	Land Code 1954	Land Code 1954	Land Code 1954	Land Code 1954	Gov. Agencies' permit *	No	(Illegal)
Item	Novable Properties	səY	Yes	Yes	Yes	es Yes	Yes	
	Land	Yes	Yes	Yes	Yes	Yes	Yes	
	Item	Title Deed	Pre-Registered Title Deed	Nor Sor 3	Sor Kor 1	Sor Tor kor	Por Bor Tor 5	(Illegal)
	No.	1	<u>67</u>	n	শ	ъ	9	

Source : Lang Ownership Sub-Division, Law and Land Division, KID

* Public Welfare Department ans Royal Registration of Land Allocation for Cultivation (1972) and Forestory Department,

MOA, has Royal Registration of Forestry for their ground of permittance.

Public notice for 30 days at the district office is required.

C1 : Five years consecutive use is required.
C2 : Public notice for 50 days at the district office is required.
C3 : Public notice for 60 days at the district office is required.
C4 : Public notice for 60 days at the district office is required.

Public notice for 60 days at the district office is required, and it will transfer the title to Nor Sor 3.

	·					
		C	lasses o based c	f Water n Utiliz		
Constituent	Unit			0		
		÷ 1 .	2	3	4	5
Salinity	ppt	ND	ND	ND	ND	ND
Dissolved Oxygen	ppm	N .	6	4	2	ND
pH		N	1 5-9	5-9	5-9	ND
Eletrical Conductivity	umhos/cm	.	<	750 1/		- >
Total Coliform	MPN/100		. .			
Bacteria	ml	N	5,000	20,000	ND	ND
BOD	ppm	N	1.5	2.0	4.0	ND
NO ₃ – N	ppm	N	5.0	5.0	5.0	ND
NH 3 - N	ppm	N	0.5	0.5	0.5	ND
Total Phosphorus	ppm	·	0	.05 _2/	·	-
Total hardness as CaCO,	ppm	<		· 300 <u> </u>		>
Alkalinity as CaCO 3	ppm		>	20	2/	
Total Solid (T.S.)	ррп	~~~	<	1,500	3/	>
Total Disssolved Solid	ppm	*	<	500	<u>_</u> _/	>
Suspended Solid (S.S.)	ppm	·		ND	,	>
Chloride (CL)	ppm	←	<	250	3_/	
Heavy Metal Cu	ppm	N	0.1	0.1	[0,1]	ND ND
Zn	ppm	N		1.0	1.0	ND
Cd .	ppm	N	← 0.005			ND
Cr M-	ppm	N	0.05	0.05	0.05	ND
Mn Buc	ppm	N	1.0	1.0	$1.0 \\ 0.02$	ND ND
Pesticides:- α BHC Aldrin	ppb	N N	0.02	0.02	0.02	ND
Heptachlor	ppb	N N	$\begin{array}{c} 0.1\\ 0.2 \end{array}$	0.1 0.2	$0.1 \\ 0.2$	ND
γ BHC	ppb ppb	NÐ	ND	ND ND	ND ND	ND
j DNC	ppb	מא	עוז	עא	11.17	עא

J.3 NEB's Water Quality Standard in Natural Stream

NEB's Water Quality Standard in Natural Stream (Excluded Sea Water)

Notes

N

¥

:

= Normal condition of natural water

ND = Not defined

= For stream having less than 100 ppm hardness (as $CaCO_3$)

= For stream having more than 100 ppm hardness ** $(as CaCO_3)$

= Irrigation water supply standard of RID
= USA's environmental standard لد

2/

- 3/ = Drinking water standard of MWA
- 4/ = USA's public water supply standard

J.4 NEB's Water Quality Classification of Natural Stream NEB's Water Quality Classification of Natural Stream Water quality is still natural condition, without contamination Class 1 : from any activities, and it can be utilized for Drinking and domestic use with simple treatment facilities Natural breeding of primary aquatic life Conservation of aquatic eco-system Class 2 The stream with contamination from some activities, and can be utilized for Drinking and domestic use with normal treatment facilities Conservation of aquatic animals _____ Fisheries Swimming and water sport Class 3 ; The stream with contamination from some activities, and can be utilized for Drinking and domestic use with normal treatment facilities Agriculture Class 4 : The stream with contamination from some activities, and can be utilized for Drinking and domestic use with special treatment facilities -Industry The stream with contamination from some activities, and can be Class 5 : utilized for

- Navigation

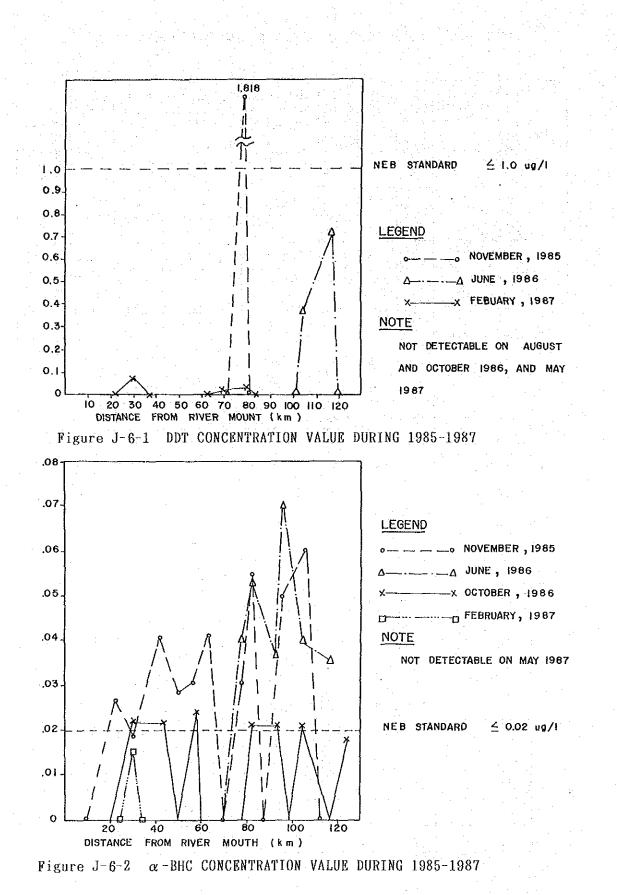
J. 5 PROPERTIES OF WATER SAMPLES FROM KHLONG SI YAT

							1
CI (ppm)	ç	ίο	4	л о	4 6	6.7	6.4
SO4 (ppm)	4	۲-	ດ	ø	3 8	1.0	1.9
HCO ₃ (ppm)	72	42	88	48	110.7	53.1	55.5
Na (ppm)	<i>6</i> 3	5-	14	2	20.7	6.9	6.9
Mg (ppm)	ę	67	4	ო	3 8	3.3	2.9
Ca (ppm)	15	თ	16	10	12.4	12.0	12.0
Soluble Sodium (%)	28	31	35	29	49	26	56
Hardness (ppm CaCO ₃)	51	33	56	37	46 8	43	42
Turbidity (NTU)	25	OII	110	100	34	22	15
(mqq) SUT	95	19	102	63	109	72	20
Conductivity (µmhos/cm)	148	3 2	160	66	171	112	109
Hď	7.5	6.7	7.2	6.5	7.2	6.8	6.7
Ĭtem	Jun. 28, 1986	Jun. 22, 1986	Jun. 22, 1986	Jun. 22, 1986	Aug. 13, 1986	Sep. 28, 1986	Oct. 12, 1986
Sampling No.		୍ୟ	ო	4	<u>م</u> ر	S	6

Source : Land Ownership Sub-Division, Law and Land Division, RID

Note : TDS = Total dissolved solids

ppm = μοται aissolvea so ppm = parts per million


J. 6 PROPERTIES OF WATER SAMPLES FROM BANG PAKONG RIVER (NEB) TABLE J-6-1 PROPERTIES OF WATER SAMPLES FROM BANG PAKONG RIVER (1986)

(Year=1986)

			2							(1001	.=1999)
	mple No.	pH	Conductivity (µmhos/cm)	00 (ng/l)	BOD (mg/1)	COD (mg/1)	Total Coliform (MPN/100ml)	Fecal Coliform (NPN/10ml)	Total P (mg/l)	Alkalinity (mg/l)	NH3-N (mg/1)
1.	Bang 1	Pakon 7. 47	g River 17,991	4.68	1, 41	47.05	2, 463	235	0. 015	57.63	0, 314
	2	7.45	11, 116	4.69	1.98	38.20	4, 448	1, 170	0, 016	44, 03	0.189
	3	7.33	9,616	4. 29	0.95	16.57	3, 825	935	0. 031	40. 78	0.025
	4	7.29	9, 147	4. 30	1.78	21.67	6, 763	9, 200	0. 026	36.40	0.04
	5	7.23	7,986	4.18	0.92	23.19	5, 095	1, 310	0, 021	35, 30	0.109
	6	7.15	6,630	4. 20	0. 88	15.33	5, 118	910	0. 026	38.80	0.105
	7	7.12	5,854	4, 20	1.03	14.07	12, 625	960	0.018	32.68	0.138
	8	7.25	7, 346	4,10	1.06	15.23	3, 703	2, 705	0. 021	32.48	0.129
	9	7, 21	4,616	4, 18	0.61	15, 49	4, 660	1, 205	0.032	34, 21	-
	10	7.17	3, 463	4, 61	0.88	13.24	1, 783	198	0.028	35.78	 1995 -
	11	7.18	3, 465	4.61	0.89	12.90	10, 180	1,678	0.024	37.50	0.050
	12	7.22	3,085	4.86	0.42	12.97	1,810	125	0.038	38.70	0, 14(
	13	7.21	2, 831	4.50	0.93	14.14	1, 558	155	0.029	37.48	0.013
	14	7.17	2, 081	4, 55	0.59	9.83	1,865	140	0.018	33, 68	0.01(
	15	7.26	723	4.61	0.65	8.57	1,028	960	0.010	36.71	0, 005
	16	7. 19 [.]	375	4, 83	0.81	13.59	3, 305	220	0.032	33.00	0.069
2.	Nakho 1	on Nayo 7.27	ok River 356	4.04	1.04	17.80	2, 475	2, 945	0.005	28. 38	0. 135
	2	6, 78	121	3.61	0.84	8.62	2, 918	1, 270	0.007	11.48	0.379
	3	6.67	116	2. 70	0.88	11.80	2, 598	275	0.013	7.00	0. 123
	4	6.50	146	2. 58	0.88	6.33	13, 367	4, 195	0.009	8, 96	0.010
3.	Prace	hin Riv 7.22	/ег 298	5, 45	0. 99	12.88	36, 113	8, 165	0, 025	41.30	0.074
	2	7.29	137	5.60	0.98	8.22	49, 125	1, 160	0.004	43.88	0, 140
	3	7, 51	140	5, 95	1.19	14.81	13, 575	13, 100	0.004	43. 48	0.005
	4	7.61	161	5. 98	1.10	11.08	9, 270	860	0.015	47.60	0.120

TABLE J-6-2 PROPERTIES OF WATER SAMPLES FROM BANG PAKONG RIVER (1987)

				·					(Year	=1987)
Sample No.	płł	Conductivity (µmhos/cm)	DO (mg/1)	BOD (mg/l)	COD (mg/1)	Total Coliform (MPN/100ml)	Fecal Coliform (NPN/10ml)	Total P (mg/l)	Alkalinity (mg/l)	NH₃-N (mg/l)
1. Ban 1	g Pakon 17,44	g River 19,175	5.74	1.18	20, 41	11,875	7, 270	0.016	65, 63	0. 055
2	7.49	16, 986	4.57	0.81	13,60	24, 625	1, 155	0.015	65.80	0.060
3	7, 33	14, 305	4.25	0.91	14.60	1,050	735	0.007	53. 28	-
4	7.31	13, 255	4.29	0, 98	31.75	7, 443	1, 385	0. 025	49,98	0.020
· 5	7.26	11, 176	3.89	0.98	27.05	10, 325	1,273	0.012	42.90	0.034
6	7.21	9, 216	3.72	0, 71	26.80	3, 585	1, 115	0.011	39, 33	0.025
7	7.21	8, 451	3.75	0.83	23.10	12, 300	3, 533	0.015	45, 05	0. 035
8	6.94	7, 115	4.40	0.85	14.80	5, 253	3, 023	0. 020	45.75	-
9	7.01	5, 911	4.79	0.85	15/05	2, 225	1,110	0. 030	36.10	0.005
10	7.02	4, 482	5.11	0.62	23, 23	10, 693	660	0.013	43, 59	0.024
n	7.11	4, 356	5.25	0.70	22.30	5, 785	845	0. 009	42.70	-
12	7,05	3, 630	5,00	0. 53	21.63	1,170	555	0.009	44.05	0.009
13	7.19	3, 025	4.97	0.80	21.98	1, 733	293	0.015	41.15	-
14	7,18	. 1,654	5. 35	1.25	16.91	1,698	365	0.009	40.42	0. 020
15	7.23	428	5.65	0.75	13.98	1,455	248	0.010	36.95	-
16	7, 21	197	5.63	1.03	12.09	8, 553	200	0.015	37.88	0. 040
2. Nak 1	hon Nay ⁶ .77	ok River 182	4, 94	0.90	22,00	2, 098	255	0.021	35. 81	0. 030
2	6, 42	170	4.50	0.85	11.00	2, 125	245	0.040	22. 60	0. 079
3	6. 21	169	4.30	0, 89	11.00	1,683	148	0.031	13.04	0,060
4	6, 08	171	3. 40	1.19	9.80	2, 943	200	0, 019	9.80	0, 055
3. Pra 1	chin Ri 1 ^{7,45}		6.06	0.94	12.00	3, 673	1, 828	0.004	47. 44	0.043
2	7, 34	172	6.08	0.70	-	2, 090	880	0.067	60.88	0.010
3	7.38	131	5, 96	0.86	10,00	2, 225	1, 175	0.011	57.80	0. 060
1	7.26	149	6. 10	0.45		5,350	725	0. 020	56.50	0. 051
5	8, 10	. 28	6.00	1,00	11,00	5, 400	1,700	0.010	14.00	0.100
6	7.47	100	6.00	1.65	11,00	-	-	0.010	57.45	0. 065

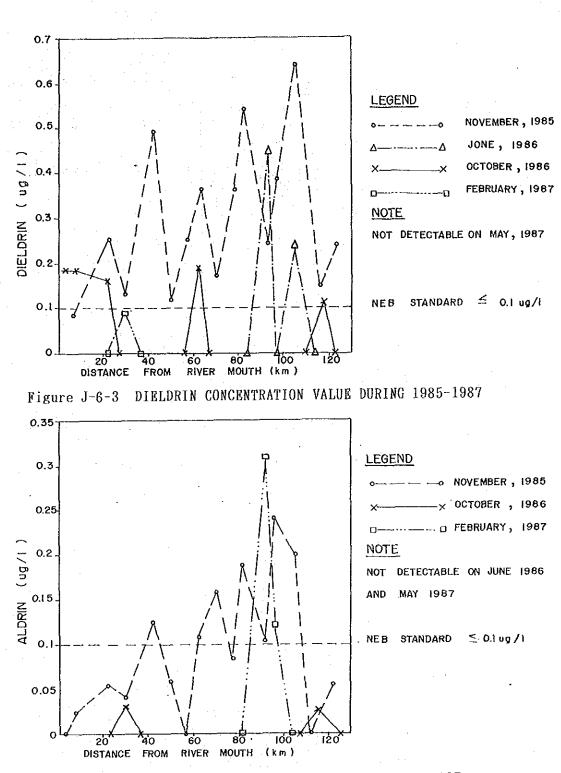


Figure J-6-4 ALDRIN CONCENTRATION VALUE DURING 1985-1987

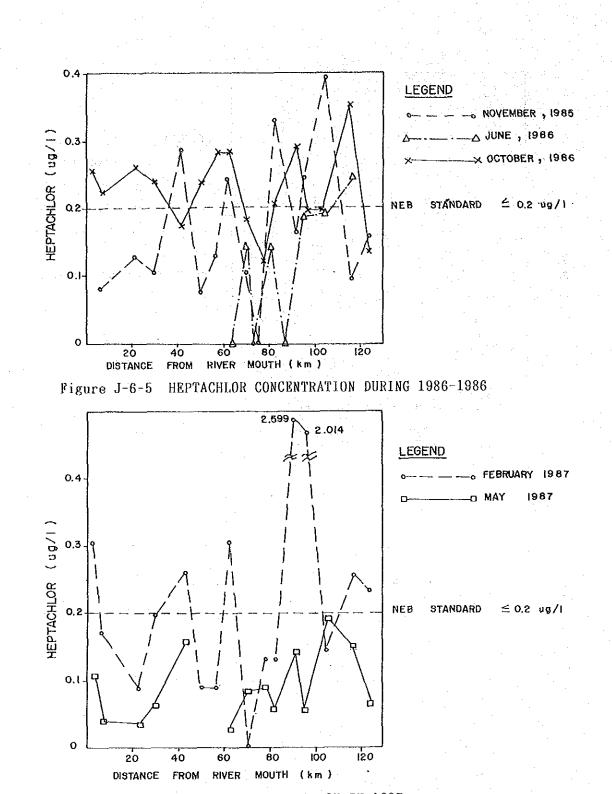


Figure J-6-6 HEPTACHLOR CONCENTRATION IN 1987

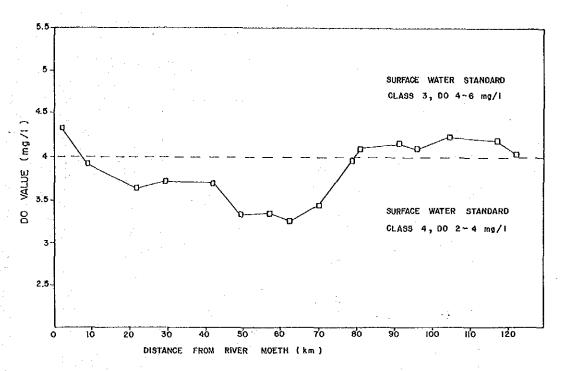
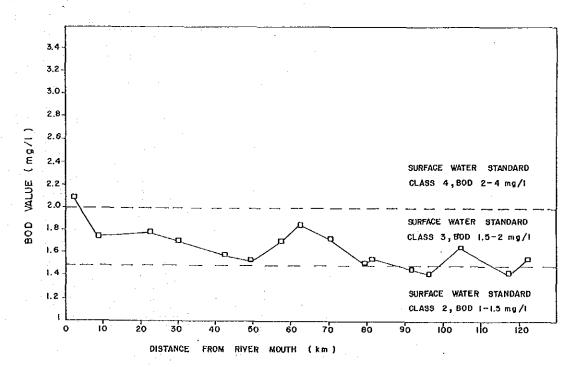
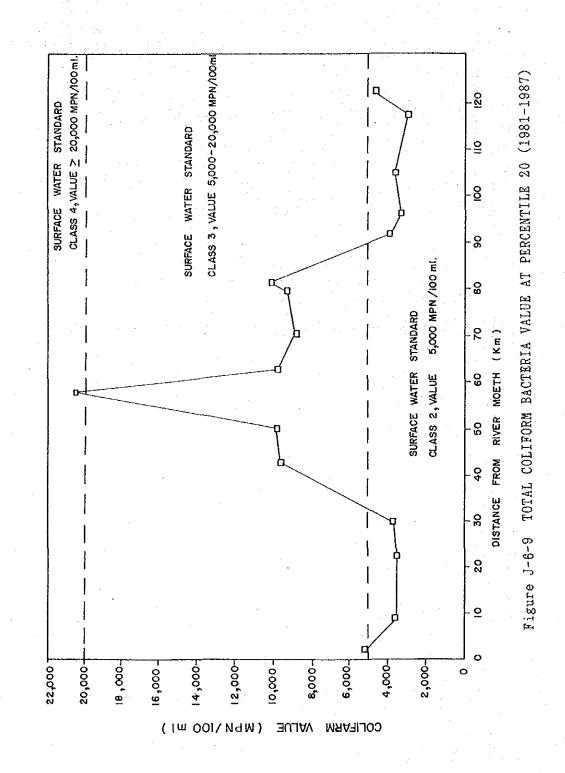




Figure J-6-7 DISSOLVED OXYGEN VALUE AT PERCENTILE 20 IN BANG PAKONG RIVER

.

J.7 Properties of Water Samples from Bang Pakong River (JICA)

Table J-7-1 Result of Water Quality Survey (1)

Results of Water Quality Survey in Bang Pakong River December 20, 1989

Results of Water Quality Survey in Bang Pakong River

Dece	December 20, 1989	1989					January 9.	1990			
Constituent		Sa	Sampling Sta	Station No.		Constituent		Sa	Sampling Station No	ation No.	
:		1	2	3	*			T		3	4
Salinity	ppt.	0.0163	0.0172	0.0185	0.055	Salinity	ppt.	0.850	1.326	6.000	12.500
Dissolved Oxygen	.add	6.1	6.0	4.9	4.3	Dissolved Oxygen	ppm.	6.7	6.7	6.1	6.2
Hydrogen ion activity (pH)	1.	7.0	7.0	6.7	6.7	Hydrogen ion activity (pH)	1	6.7	6 9 9	7.3	7.7
Electrical Conductivity μ mhos/cm at 25°C	n at 25°C	166	172	207	304	Electrical Conductivity mahos/cm	/cm at 25°C	1,560	2,530	8,910	20,500
Biochemical Oxygen demand (B0D5) ppm.) ppm.	0.74	1.02	0.88	0.61	Biochemical Oxygen demand (BOD5)	5) ppm.	2.18	1. 38	1.36	1.37
NO3 - N	ppm.	0.18	0.19	0.34	0.56	NO3 - N	ppm.	0.92	1.04	I. 02	0.82
NH3 - N	ppa.	0	0	0	0	NH3 - N	.aqq	0	0	0	0
Total dissolved Phosphorus	ppm.	trace	0.01	. 10 0	0.07	Total dissolved Phosphorus	bpm.	0-04	0.04	0.05	0.03
Total hardness as CaCO3	.mqq	43.0	43.0	42.5	47.5	Total hardness as CaCO3	ppa-	167.1	264.7	920.8	2075.4
Alkalinity as CaCO3	ррм.	26.0	24.0	19.5	21.0	Alkalinity as CaCO3	ррш.	35.5	35.5	46.0	63.6
Total Solid (T.S.)	.udd	264	256	244	668	Total Solid (T.S.)		1308	2072	6044	13630
Total Dissolved Solid (T.D.S)	-mqq	122	126	152	202	Total Dissolved Solid (T.D.S)	ррш.	584	1578	5950	13554
Suspended Solid (S.S.)	ppa.	142	130	92	466	Suspended Solid (S.S.)	-mdd	324	494	94	76
Chloride (C1)	ppm.	15.6	16.7	25.2	46.4	Chloride (Cl)	, mqq	427.3	690.4	2770.5	6527.5
Heavy Metal :- Cu	ppa.	0.006	0.003	0.002	0.008	Heavy Metal :- Cu	ppm.	0	0	Ċ.	0
. uZ	,mqq	0.013	0.013	0.005	0.013	Zn	-mqq	0	0	0.003	G
. Cđ	ppm.	0	0	0	0	Cd	рда.	0	0	0.001	0.001
CL	.mqq	0.015	0.022	0.005	0.013	Cr	-mdd	0	0.024	0.015	0,008
Ч	, mqq	0.074	0.090	0.067	0.098	R. L	ppm.	0.006	0.003	0.014	0.021
						Pesticides : BHC	ppb.	WN	0.0111	WN	0.0317

Notes : NM = No Measurement

Aldrin

0.2828

Ϋ́́ ΝN

0.0111 0.2673

WN N

ppb. ppb.

Table J-7-2 Result of Water Quality Survey (2)

Results of Water Guality Survey in Bang Pakong River March 8, 1990

.

Results of Water Quality Survey in Sang Pakong River

February 7, 1990

Constituent Sampling Station No.	4	bpt. 17.409 17.971 20.919 23.446	Dissolved Oxygen ppm. 5.6 5.2 5.7 5.6	7.2 7.3 7.4	Electrical Conductivity #mhos/cm at 25 C 26,700 28,300 28,500 35,800	Biochemical Oxygen demand (BOD5) ppm.	NO3 - N 1.43 1.50 1.32 1.04	0	Total dissolved Phosphorus ppm. 0 0 0	I Total hardness as CaCO3 ppm. 2965.17 3077.27 3311.48 4187.77	Alkalinity as CaCO3 ppm. 65.06	Total Solid (T.S.) ppm. 18.250 18.800 20.270	Total Dissolved Solid (T.D.S) ppm. 18,190 18,700 20,170 25,690	Suspended Solid (S.S.) ppm. 60 100	Chloride (C1) 8597.99 8855.78 9562.50 12456.4	Heavy Metal :- Cu ppm. 0.014	Zn 20.049 0.048 0.066 0.094	Cd ppm. 0.050	Сг ррш. 0.027 0.029 0.041	Mn nom 0.017 0.019 0.018 0.029
n No.	Ŧ	603 20.900	6 4.7	3 7.4	600 33,500	63 2.19	15 1.04	0	0	7.0 3897.5	1 85.1	800 25,860	140 25,300	660 560	8396.9 10227.7	19 0.019	22 0.024	02 0.001	37 0.025	25 0.029
Sampling Station No	ମ 	.63 18.603	4.6	7.3	00 28.600	8 1.63	1 1.15	0	0	. 8 3337.0	6 75.1	50 21,800	90 21,140		ຕຸ	4 0.019	3 0.022	0 0.002	4 0.037	7 0.025
Samplin	2	15.1	4.7	7.4	22,900	1.58	1.81	o	0	2572.8		16.450	16.190	260	6652.	0.01	0, 02:	0.02	0.03	0.01
	7	13.550	4.5	7.3	C 21,000	1.04	1.69	0	0	2394.6	61.5	15, 180	14,600	580	6153.4	0.012	0.017	0.020	0.030	0.014
		ppt.	ррш.	1	a at 25) ppm.	ppm.	ppm.	-mqq	, mqq	.mqq	ppa.	ppm.	ppm.	, adq	-mqq	ppm.	ppm.	ърп.	.000
Constituent		Salinity	Dissolved Oxygen	Hydrogen ion activity (pH)	<pre>Electrical Conductivity #mhos/cm at 25 °C</pre>	Biochemical Oxygen demand (BOD5) ppm.	NO3 - N	NH3 - N	Total dissolved Phosphorus	Total hardness as CaCO3	Alkalinity as CaCO3	Total Solid (T.S.)	Total Dissolved Solid (T.D.S)	Suspended Solid (S.S.)	Chloride (C1)	Heavy Metal :- Cu	Zn	Cd	Cr	U N

Table J-7-3 Result of Water Quality Survey (3)

Results of Water Quality Survey in Bang Pakong River May 3, 1990

uaj	υ,		v

	May 3,	1990		· · · ·	
Constituent	· · · · · · · · · · · · · · · · · · ·	Sa	impling S	tation No	lai
	· · · ·	_1	2	3	4
Salinity	ppt.	15.303	15.724	19.305	22. 253
Dissolved Oxygen	ppm.	4.3	4.8	3.2	3.2
Hydrogen ion activity (pH)	-	7.00	7.04	6.86	6.75
Electrical Conductivity BC x 10) ⁶ at 2	5 C 21,800	22,400	27, 500	31,700

Results of Water Quality Survey in Bang Pakong River April 28, 1990

	Constituent		S	ampling S	tation No	
			_1	2	3	4
Salinity	<u>.</u>	ppt.	13.325	13.950	18.252	21.130
Dissolved	Oxygen	ppm.	5.4	5.3	4.6	3.8
Hydrogen i	on activity (pH)		7,28	7.05	6.36	6.52
Electrical	Conductivity EC x 1	0° at 25 (: 19,100	19,900	16,000	30,100
Pesticides	: BHC	ppb.	NM	0.1374	NM	0.1257
	Heptachlor	ppb.	NM	0.0468	мм	0
	Aldrin	ppb.	NM	0.0923	NM	0.1720
	внс	ppb.	NM	0	NM	0.3366

Results of Water Quality Survey in Bang Pakong River June 5, 1990

Constituent		Sa	mpling St	ation No.	<u> </u>
		<u> </u>			4
Salinity	ppt.	1.008	1.292	3.48	6.20
Dissolved Oxygen	ppm.	8.2	8.0	6.3	4.9
Hydrogen ion activity (pH)	-	7.5	7.9	7.0	6.9
Electrical Conductivity EC x 10) ° at 25 C	2,000	2,550	5,950	9,700

	1		<u> </u>	
Constituent		Sampling Station No.		
Constituent	1	2	3	4
Salinity ppt	13.325	13.950	18.252	21.130
Dissolved Oxygen ppm	5.4	5.3	4.6	3.8
Hydrogen ion activity (pH) -	7.28	7.05	6.36	6.52
Eletrical Conductivity Jumhos/c	m 19,900	21,300	27,100	31,900
Biochemical Oxygen demand (BOD 5) ppm	0.64	3.37	1.60	0.90
No ₃ – N ppm	0.87	1.30	1.89	1.88
NH 3 - N ppm	0	0	0	0
Total Phosphorus ppm	0.09	0.12	0.12	0.08
Total hardness as CaCO ₃ ppm	2,343.0	6 2,496.2	3,209.4	3,872.0
Alkalinity as CaCO ₃ ppm	36.5	51.0	62.0	73.1
Total Solid (T.S.) ppm	13,280	14,450	18,940	22,940
Total Dissolved Solid ppm (T.D.S)	13,020	14, 230	18,720	22,610
Suspended Solid (S.S.) ppm	260	220	220	330
Chloride (CL) ppm	6,580.3	3 7,007.6	9,058.6	10,938.7
Heavy Metal Cu ppm	0.022	0.023	0.032	0.040
Zn ppu	0.002	0.015	0.017	0.032
Cd ppm	0.003	0.001	0	0.001
Cr ppm	0.040	0.050	0.046	0.046
Мп ррл	0.024	0.028	0.045	0.048
Pesticides : $lpha$ BHC ppb	NM	0.1374	NM	0.1257
Heptachlor pph	NM	0.0468	NM	0
Aldrin ppt	NM	0.0923	NM	0.1720
γ BHC ppb	NM	0	NM	0.3366
/ DHO _ PP0		<u> </u>		

Table J-7-4 Result of Water Quality Survey (4) Result of Water Quality Survey in Bang Pakong River <u>April 20, 1990</u>

Notes : NM - No. Measurement

Table J-7-5 Result of Water Quality Survey (5)

Result of	Water Quality	Survey in	Bang	Pakong	River
	May	3, 1990			

Constituent	÷.,				
		1	2	3	4
Salinity	ppt	15.303	15.724	19.305	22.253
Dissolved Oxygen	ppm	4.3	4.8	3.2	3.2
Hydrogen ion activity (pH)		7.00	7.04	6.86	6.75
Eletrical Conductivity um	nos/cm	21,600	22, 200	27,700	31,600
Biochemical Oxygen demand (BOD 5)	ppm	0.40	0.32	0.80	1.04
NO 3 - N	ppm	1.33	1.29	1.61	1.19
NH 3 – N	ppm	0	0	0	0
Total Phosphorus	ppm	0.08	0.09	0.15	0.12
Total hardness as CaCO ₃	ppm	2,547.3	2,649.4	3,158.8	3, 718.8
Alkalinity as CaCO 3	ppm	43.54	45.54	55.05	64.06
Total Solid (T.S.)	ppm	15,455	16,095	20,890	23, 945
Total Dissolved Solid (T.D.S)	ppm	15, 295	16,040	20, 490	23,920
Suspended Solid (S.S.)	ppm	160	55	400	25
Chloride (CL)	ppm	7,434.9	7,605.8	9,400.4	11,280.5
Heavy Metal Cu	ppm	0.033	0.026	0.033	0.044
Zn	ppm	0.025	0.005	0.011	0.101
Cd	ppm	0.002	0.006	0.006	0.007
Cr	ppm	0.038	0.047	0.046	0.045
РЪ	ppm	0	0	. 0	0
Mn	ppm	0.030	0.033	0.033	0.040

. *

