(d) Silau river

In the Silau river, especially downstream of Kisaran, the river bed fluctuation shows a tendency of gradual aggradation. Owing to the river bed aggradation the flow area of river channel becomes smaller and the recent flood overflowed the right bank and inflicted some damages to the downstream areas. The sediment production rate seems to be higher.

(e) Asahan river and others

Due to the sediment deposition at the river mouth of the Asahan river, water depth has decreased and the navigation of big ship is becoming difficult even in high tide. In the upper reaches of Asahan river and other rivers, sedimentation seems to be not a serious problem.

2. Sedimentation of Silau and Asahan River

The annual sediment runoff and river bed fluctuation were estimated for the following river reaches where the urgent flood control plan is prepared.

- Silau River : From Kisaran to the confluence with the Asahan river.

Asahan River: From the Pulau Raja to the confluence with the Silau river.

(1) Modeling

For sedimentation study of the Silau and Asahan rivers, the basin can be divided as follows: (Refer to Fig. E-4)

Silau River

Zone - S1: Mountain and hill area, upstream of Kisaran, 1,050 km², primary sediment production and transportation occurs.

Zone - S2: Alluvial plain area, downstream of Kisaran to the confluence at Asahan River (Tg. Balai), 151 km², little sediment production, sediment transportation zone.

Asahan River

Zone - A0: Lake Toba catchment area, 3,674 km², no sedimentation (for river bed material).

Zone - A1: Mountain and hill area between Regulating dam and Pulau Raja, 812 km², primary sediment production and transportation occurs.

Zone - A2: Alluvial plain area including swamp between Pulau Raja and Tg. Balai, 1,216 km², little sediment production, sediment transportation zone.

Zone - A3: Estuary between Tg. Balai and the sea, sediment transportation to the sea occurs by both river flow and tidal flow.

(2) River conditions

The river conditions of the Silau between Kisaran and Tanjung Balai (Zone - S2) and of the Asahan between Pulau Raja and Tanjung Balai (Zone - A2), are summarized as follows. (Refer to Figs. E-5 to E-9)

(a) Channel geomorphology

The river length, mean with and mean river bed slope of the Silau Zone - S2 are respectively 22 km, 125 m and 1/1,700. Those of the Asahan River zone - A2 (from Pulau Raja to the confluence with the Lebah River, Zone - A21) are respectively 58 km, 75 m and 1/6,000. As to the rest reaches up to Tanjung Balai in Zone - A2 (Zone - A22), the river length is 11 km, the river width becomes wider in the downstream reaches and 600 m at Tanjung Balai, and the river bed slope is nearly level.

(b) Flow and sediment discharge capacity

The flow capacity of Zone - S2 is 800 m³/sec at Kisaran and becomes smaller in the lower reaches to 150 m³/sec near Tanjung Balai. That of Zone - A2 is 1,300 m³/sec at Pulau Raja and 200 m³/sec - 450 m³/sec through the lower reaches.

The sediment discharge capacity of flow discharge 100 m³/sec is 10⁻¹ - 10⁻³ m³/sec in Zone - S2, 10⁻¹ - 10⁻⁴ m³/sec in Zone - A21 and 10⁻² - 10⁻⁷ m³/sec in Zone - A22. In sediment discharge capacity, Zone - S2 of the Silau river is larger than Zone - A2. That in Zone - A22 of the lower reaches of the Asahan river is very small because of the wide river width.

(c) River bed materials

In Zone - S2 of the Silau river and Zone - A2 of the Asahan river, the river bed materials is almost uniform sand (uniformity coefficient = 1.5) and its mean grain size is 0.7 mm in Zone - S2 and 0.5 mm in zone - A2. For each zone, there is little difference in grain size distribution between the upper and lower reaches. The specific gravity of these sands is around 2.60 g/cm³.

(d) Regime of river bed and sediment transportation

Judging from the river bed materials and hydraulic data, the river bed regime (or form of river bed roughness) must be ripple, and the sediment transportation regime (or form of sediment transportation) is a mixed type with suspended load and bed load.

(3) Sediment runoff and river bed fluctuation

(a) Reference points

For Zone - S2 of the Silau river, the reference points of sediment inflow and outflow are respectively Kisaran and the confluence with the Asahan River at Tanjung Balai. For Zone - A2 of the Asahan River, the reference point of sediment inflow is Pulau Raja and that of sediment outflow is set at the confluence with the Lebah river because the sediment discharge capacity by river flow is obviously small due to wide river width and the sediment transportation supposed to be controlled by tidal flow in the river reaches between that point and Tanjung Balai.

(b) Sediment discharge formula

Considering the form of sediment transportation(for both zone, river bed materials are carried in the form of suspended load and bed load), Brown Formula of Eq. 1 that is suitable for this type of sediment transportation form is applied as shown below:

$$\Phi B = 10\phi^{2.5} - 1$$
(Brown Formula)

where,
$$\Phi B = \frac{qB}{\sqrt{Sgdm}}$$

(non-dimensional sediment discharge)

$$\Phi = \frac{Ur*^2}{Sgdm} = \frac{RIe}{Sdm}$$

(non-dimensional tractive force)

qB : sediment discharge per unit width

S : specific gravity of sediment grain in fluid

g : acceleration of gravity dm : mean grain diameter

U*: friction velocity

$$U* = \sqrt{\frac{To}{\eta}} = \sqrt{gRIe}$$

To: tractive force η: density of fluid

R: hydraulic radius

Ie : energy slope of flow

Eq. 1 is written as Eq. 2 and 3.

$$\frac{qB}{\sqrt{Sgdm}} = 10 \cdot \left(\frac{RIe}{Sdm}\right)^{2.5}$$

qB = C (RIe)^{2.5}
$$C = \frac{10 \cdot g^{0.5}}{S^2 \cdot d m}$$
 3

Total sediment discharge of river section (QB) is obtained from Eq. 4.

$$QB = B \cdot qB \qquad \qquad 4$$

Using Eq. 3, Eq. 4 can be re-written as Eq. 5.

QB = C' (RIe)^{2.5} C' =
$$\frac{10 \cdot \text{Bg}^{0.5}}{\text{S}^2 \cdot \text{d m}}$$

From Manning formula (Eq. 6), energy slope of flow (Ie) is obtained as Eq. 7.

$$V = \frac{1}{n} \cdot R^{2/3} \cdot Ie^{1/2}$$

where,

$$Ie = \frac{V^2.n^2}{R^{4/3}}$$

n: Manning roughness coefficient

By substituting Eq. 7 into Eq. 5, Eq. 5 is rearranged as Eq. 8.

$$QB = \frac{10 \cdot g^{0.5} \cdot B \cdot V^{5} \cdot n^{5}}{S^{2} dm R^{5/6}}$$

Here, if the constant values: $g = 9.8 \text{ m/sec}^2$, S = 1.6, d = 0.7 mm (for Silau river) and 0.5 mm (for Asahan river) are given, Eq. 8 can be written as Eq. 9.

QB =
$$C \frac{B(V.n)^5}{R^{5/6}}$$

C = 17,459 for Silau River
24,475 for Asahan River

(c) Sediment discharge rating curves

Two kinds of sediment discharge rating curve are established as shown below (Refer to Figs. E-10 and E-11). The one is the rating curve for wash load that is prepared on the basis of the existing and new sampling data. The other is the rating curve for river bed materials that is prepared on the basis of the hydraulic data and the above mentioned formula.

Sediment discharge rating curve for wash load

$$Q_{SW} = 1.0 \times 10^{-6} \times Q^2$$
 (for Silau river at Kisaran)

Osw =
$$2.5 \times 10^{-7} \times Q^2$$
 (for Asahan river at Pulau Raja)

- Sediment discharge rating curve for river bed materials

(Silau river)

$$Q_S = 4.867 \times 10^{-5} \times Q^{1.343}$$
 (sediment inflow at Kisaran)

$$Qs = 3.519 \times 10^{-7} \times Q^{2.421} \quad (Q \le 150 \text{ m}^3/\text{sec})$$

$$Q_S = 6.527 \times 10^{-2}$$
 (Q > 150 m³/sec)

(Asahan river)

$$Qs = 1.340 \times 10^{-6} \times Q^{1.685}$$
 (sediment inflow at Pulau Raja)

$$Qs = 5.373 \times 10^{-10} \times Q^{3.073} \quad (Q \le 350 \text{ m}^3/\text{sec})$$

sediment outflow at confluence with

Lebah River
$$(O > 350 \text{ m}^3/\text{sec})$$

Qs =
$$3.533 \times 10^{-2}$$
 (Q > $350 \text{ m}^3/\text{sec}$)

where, Qs: sediment discharge of river bed materials

(d) Estimation of Sediment Runoff and River Bed Fluctuation Using the above mentioned rating curves and annual mean discharge (shown in Fig. E-1), sediment inflow and outflow are estimated for Zone - S2 of the Silau river and Zone - A22 of the Asahan river. The river bed fluctuation is also estimated by the following equation on the assumption that the annual sediment balance estimated be equivalent to the change of river bed height (Refer to Tables E-2 to E-4).

$$Z = \frac{\Delta Qs}{B \cdot \Delta X \cdot (1 - \lambda)} x \, \Delta t$$

where, ΔZ : annual mean fluctuation of river bed

ΔQs: annual sediment balance

B: mean river width $\Delta X:$ total river length $\lambda:$ void ratio (= 0.4)

 Δt : time (= one year)

The results of estimation are as follows:

= Annual Sediment Balance =

Silau River (Kisaran - Tg. Balai)

(1) Flow : $2,003 \times 10^6 \text{m}^3$

(2) Wash Load Inflow : $156 \times 10^3 \text{m}^3$ (78 ppm) (3) River Bed Materials Inflow : $423 \times 10^3 \text{m}^3$ (211 ppm)

(4) Total Sediment Inflow : 579 x 10³m³ (289 ppm)

(5) River Bed Materials Outflow : 324 x 10³m³
 (6) Balance of River Bed Materials : 99 x 10³m³

(7) River Bed Fluctuation : 6.0 cm

Asahan River (Pulau Raja - Lebah River)

(1) Flow : $4,695 \times 10^6 \text{m}^3$

(2) Wash Load Inflow : $202 \times 10^3 \text{m}^3$ (43 ppm) (3) River Bed Materials Inflow : $210 \times 10^3 \text{m}^3$ (45 ppm)

(4) Total Sediment Inflow : 412 x 10³m³ (88 ppm)

(5) River Bed Materials Outflow : $197 \times 10^3 \text{m}^3$ (6) Balance of River Bed Materials : $13 \times 10^3 \text{m}^3$

(7) River Bed Fluctuation : 0.5 cm

= Specific Sediment Yields (S.S.Y.) =

Silau River (at Kisaran, 1,050 km²)

(1) S.S.Y. of Wash Load
 (2) S.S.Y. of River Bed Materials
 (3) Total S.S.Y.
 (403 m³/km²/year
 (52 m³/km²/year

Asahan River (at Pulau Raja, 812 km² excl. Lake Toba catchment area)

(1) S.S.Y. of Wash Load

249 m³/km²/year

(2) S.S.Y. of River Bed Materials

259 m³/km²/year

(3) Total S.S.Y.

508 m³/km²/year

3. Conclusion and Recommendation

(1) Present conditions on sedimentation

In the Silau river between Kisaran and Tanjung Balai, the river bed fluctuation shows a tendency of gradual aggradation. Because of this, section area of river channel becomes smaller and the flood has recently overflowed the right bank and given some damages in the downstream areas. Due to the sedimentation at the mouth of the Asahan river, water depth has decreased and the navigation of big ship is becoming difficult even in the high tide time.

(2) Sediment production

There are no large scale mountain break and land slide in the watershed. The most sediments which are supplied into the river channel are considered to be produced by the sheet erosion mainly in the mountain and hill area. According to the estimation of sediment runoff, the specific total sediment yield is 500 - 550 m³/km²/year. The specific sediment of river bed materials is about 400 m³/km²/year for the Silau river and about 260 m³/km²/year for the Asahan river. The value of the Silau river is 1.5 times larger than that of the Asahan river.

(3) Sediment deposition

The annual sediment runoff of river bed materials is $423 \times 10^3 \text{m}^3$ at Kisaran and $324 \times 10^3 \text{m}^3$ at Tanjung Balai in the Silau river. The annual balance is deposition of 99 x 10^3m^3 and mean river bed aggradation of 6 cm/year. In the Asahan river, the amount of annual sediment runoff at Pulau Raja and the confluence with the tributary Lebah river, are $210 \times 10^3 \text{m}^3$ and $197 \times 10^3 \text{m}^3$ respectively. The annual balance is deposition of $13 \times 10^3 \text{m}^3$ and aggradation of 0.5 cm/year. These values are smaller than those of the Silau river. However, in the lower reaches between confluence of Lebah river and the river mouth, the river width becomes wider and the capacity of sediment transportation is very small. Through these reaches sediments seem to be carried by tidal flow.

(4) Recommendation for flood control plan

In the Silau river, the sediment runoff and river bed aggradation are larger in comparison with other rivers. If the sedimentation of the Silau river remains within this extent, stable river course will be established by designing appropriate cross section and longitudinal section of the river. However, in the case that extensive and new plantation development in the upperstream areas would be planned, it is recommended that the possible measure of check dam to reduce sediment runoff should be studied in the planning.

'Table E-1 General Information of Sedimentation for Objective Rivers

Rivers			•	
Items	Asahan	Silau	Kualuh	Bunut
Catchment Area (km²)	6,903.5 (at T.Balai inc. Silau R.) 5,702.1 (at T.	1,201.4 (at T. Balai	3,909.4	867.5 (Upstream from Kiri Kiri. R.)
	Balai exc. Silau R.)			
	3,674:0 (Toba Lake Catchment area)			
River length (km)	139 (Sakur R.)	124	198	81
Watershed Height (EL.m)	1,450	1,800	1,700	420
Mean Basin Slope	0.0104 (1/100)	0.0145 (1/70)	0.0086 (1/120)	0.0052 (1/190)
River Bed Materials	Through the alluvuniform sand.	rial plain,	river bed mate	rials are
Hydrology	Mean annual rainf plain area, but i mountain area.		**	
Geology	Mountain area : t Low hilly area: l Alluvial plain: f	aterite und	erlain by soft	white tuff
Land Use	Mountain area : m Low hilly area: c Alluvial plain: p	oil palm and	rubber planta	

Table E-2 Annual sediment Runoff Volume at Kisaran

Sediment	Discharge Range	Mean (m³/s) Discharge	Rating Curve	Days	Sediment Volume (10°m³)
	$0 - 50m^3/s$	39.53		143.57	19.4
	50 - 100	67.45	0	181.25	71.2
	100 - 150	117.53	Qsw =	32.98	39.4
II a a la	150 - 200	166.28	1.0x10 ⁻⁶ Q ²	4.89	11.7
Wash	200 - 250	217.93		1.41	5.8
Load	250 - 300	280.47		0.58	3.9
	300 - 350	311.30		0.08	0.7
	350 - 400	381.60		0.08	1.0
	400 - 450	415.30		0.08	1.2
	450 - 500	457.40	÷	0.08	1.4
	< Total>	(64)		365	155.7
	050m ³ /s	39.53	· · · · · · · · · · · · · · · · · · ·	143.57	84.2
	50 - 100	67.45		181.25	218.0
Suspended	100 - 150	117.53		32.98	83.6
tand	150 - 200	166.28		4.89	19.8
Load	200 - 250	217.93	Qs =	1.41	8.2
and	250 - 300	280.47	$4.867 \times 10^{-5} \times Q^{1.34}$	0.58	4.7
	300 - 350	311.30	noonia ng	0.08	0.8
Bed	350 - 400	381.60		0.08	1.0
Load	400 - 450	415.30		0.08	1.1
	450 - 500	457.40		0.08	1.3
	< Total>	(64)		365	422.7
< Ground	I Total>			365	578.4

Table E-3 Annual Sediment Runoff Volume at Pulau Raja

Sediment	Discharge -	mean (m³/s)	Rating Curve	Days	Sediment
	Range	Discharge			Volume(10 ³ m ³
COMPLETE LEGISLATION CONTRACTOR AND SERVICE	50 - 100m³/s	87.50		78.91	13.0
	100 - 150	127.74	Qws =	139.16	49.0
	150 - 200	169.39	2.5×10 ⁻⁷ ×Q ²	99.89	61.9
Wash	200 - 250	221.46		21.41	22.7
Land	250 - 300	271.00		9.09	14.4
Load	3000- 350	322.95		13.16	29.6
	350 - 400	361.10		2.59	7.9
	400 - 450	432.03		0.48	1.9
	450 - 500	460.27		0.31	1.4
	<total></total>	(149)	00	365	201.8
	50 - 100m³/s	87.50		78.91	17.1
	100 - 150	127.74	· .	139.16	57.1
Suspended	150 - 200	169.39	Ωs =	99.89	65.9
	200 - 250	221.46	1.340×10 ⁻⁶ ×Q ^{1.6}	585 ^{21,41}	22.2
Load	250 - 300	271.00	1.340χ10 χΩ	9.09	13.2
and	300 - 350	322.95		13.16	25.7
	350 - 400	361.10		2.59	6,2
Bed	400 ~ 450	432.03		0.48	1:5
Load	450 - 500	460.27		0.31	1.1
	<total></total>	(149)	-	365	210.0
<ground< td=""><td>Total></td><td></td><td></td><td>365</td><td>411.8</td></ground<>	Total>			365	411.8

Table E-4 Annual Sediment Outflow at Lower Reaches of Silau R. and Asahan R.

Section	Discharge *1 Range (m³/s)	Mean *2	Rating Curve	Days	Sediment Volume(10³m
	0 - 50m³/s	39.53	Qs ≃	143.57	32.1
	50 - 100	67.45	$3.519 \times 10^{-7} \times Q^{2.42}$	181.25	147.6
Silau R.	100 + 150	117.53		32.98	
	150 - 200	166.28		.4.89	27.6
	200 - 250	217.93	Qs =	1.41	8.0
	250 - 300	280.47	$6.527 \times 10^{-2} \text{m}^3/\text{s}$	0.58	3.3
	300 - 350	311.30		0.08	0.5
	350 - 400	381.60		0.08	0.5
•	400 - 450	415.30		0.08	0.5
	450 - 500	457.40		0.08	0.5:
	< Total>			365	323.6
	50 - 100m³/s	105	Qs =	78.91	6.0
Asahan R.	100 - 150	153	5.373x10 ⁻¹⁰ xQ ^{3.0}	139.16	33.4
Asanan N.	150 - 200	203	5.373x10 TxQ	99.89	57.2
:	200 – 250	266		21.41	28.1
	250 - 300	325	·	9.07	22.0
	300 - 350		Qs =	13.16	40.1
	350 - 400	- .	$3.533 \times 10^{-2} \text{m}^3/\text{s}$	2.59	7.9
	400 - 450	-		0.48	1.5
	450 - 500	-		0.31	0.9
	< total>	-		365	. 197.1

Note:

^{*1 :} Discharge at Kisaran and Pulau Raja

^{*2:} For Asahan R., mean discharge is multiplied by 1.2 considering the downstream area of Pulau Raja.

Fig. E-1 Hydrology for Sdimentation Study

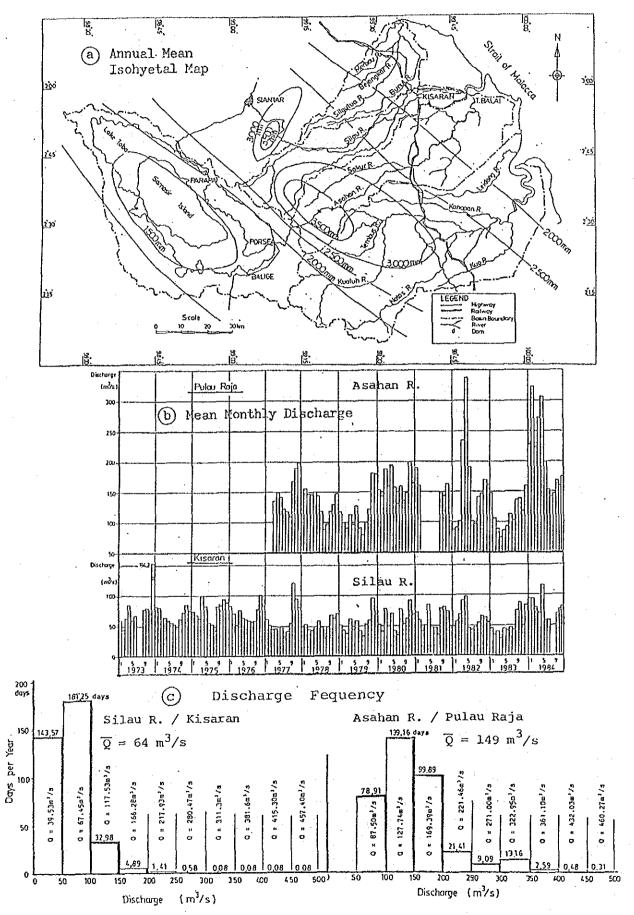


Fig. E-2 Topographical Basin Profile



Fig. E-3 Geological Basin Profile

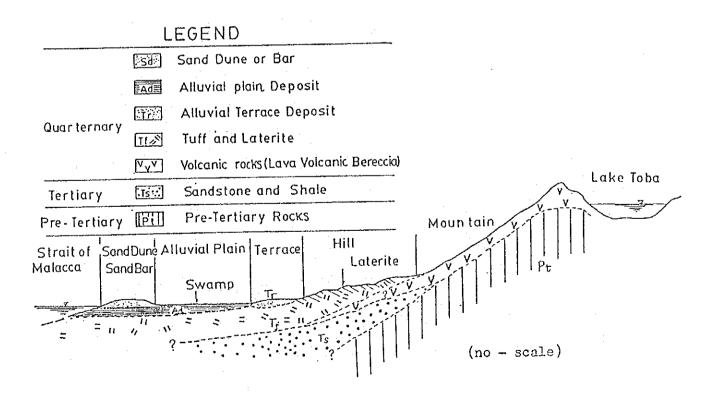
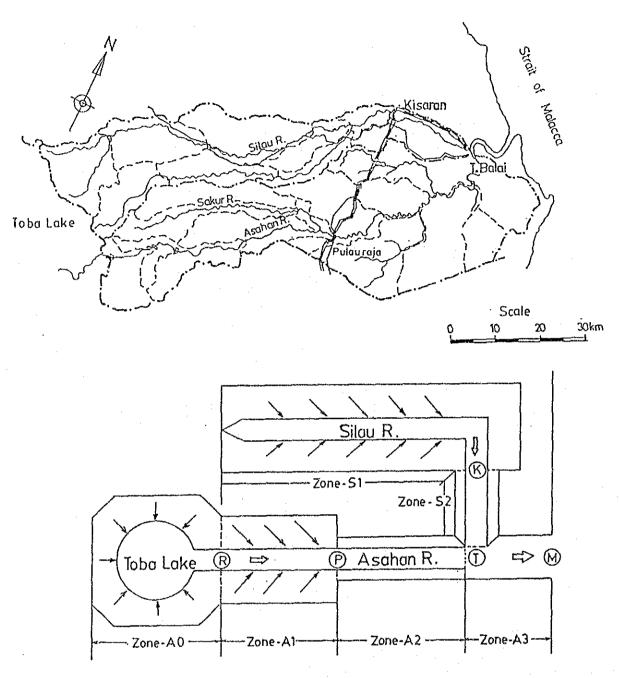



Fig. E-4 Sedimentation Modeling for Silau and Asahan River

Zone and Reference Point	Area (km²)	Annual Hainfall (mm)	Basin Slope	Тородгарну	Surface Geology	Land Use
Zone – S1	1,050.2	3,000	1/43	Hountain	Weathering Volcanic	Forest
K) Kisaran	1,050.2	-	-	and Hill	Rocks and Laterite	
Zone - S2	151.2	2,000	1/1,000	Hill and	Laterite and	Rubber Tree and
īs, T. Balai	1,201.4		-	Alluvial Plain	Alluvial-Deposits	Paddy Fleld
Zone - AO	3,674.0	-	-	Hountain	Volcanic Ash and	Forest and
A Regulating Dam	3,674.0	1,800	-	and Lake	Weathering Rocks	Paddy Field
Zone - A1	812.3	3,000	1/40	Hountain	Weathering Volcanic	Forest
P Pulau Raja	4,486.3	-	-	and HIII	Rocks and laterite	
Zone - A2	1,215.8	2,000	1/4,000	Hill, Alluvial	Laterite and	Oil Palm and
DA, T. Balai	5,702.1	_	-	Plain and Swamp	Alluvial Deposits	Bush
j) T. Balai	6,903.5	-	-	•	•	-
Zone - A3	-	-	-	Estuary	-	-
1 River Houlh	l		_	-	-	-

Fig. E-5 Flow and Sediment Discharge Capacity of Silau and Asahan River

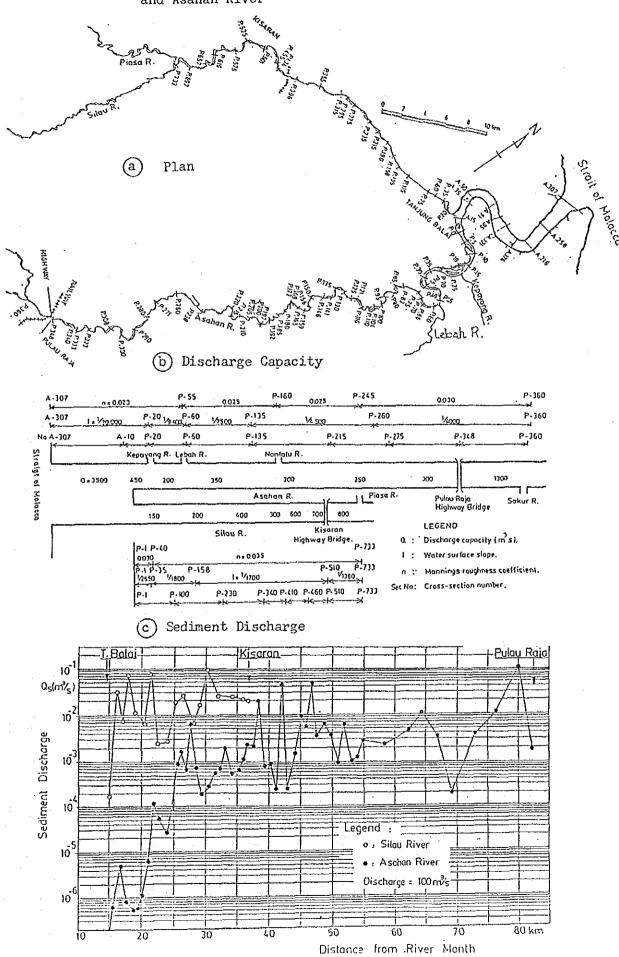
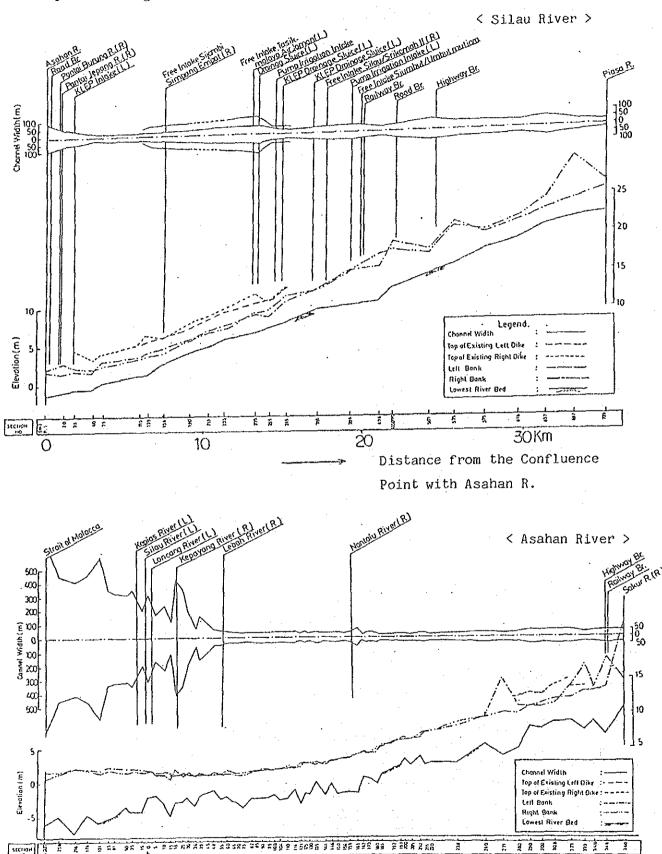



Fig. E-6 Longitudinal Profile of Silau and Asahan River

20

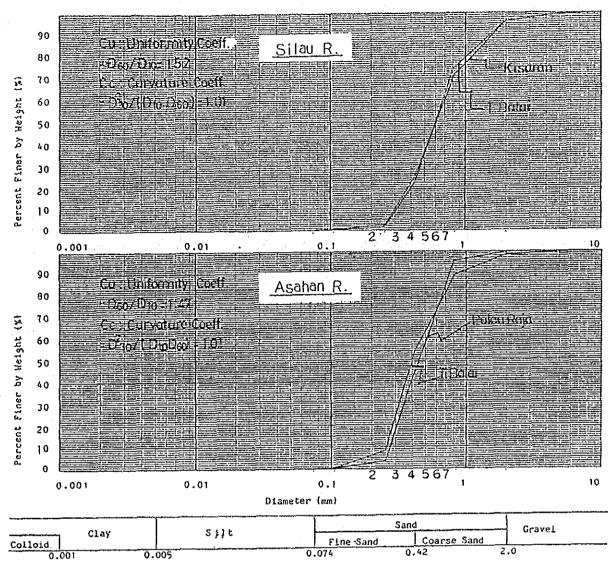
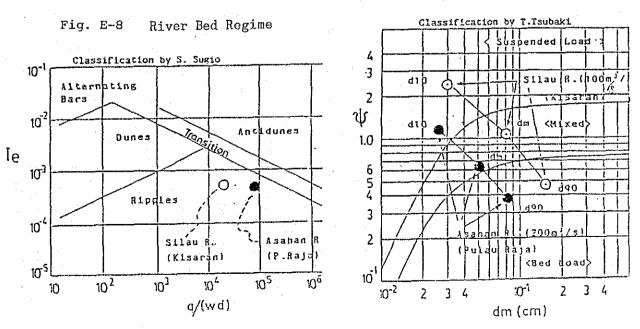
1Ö

30

50

Distance from River Mouth

Fig. E-7 Grain Size Distribution of River Bed Materials

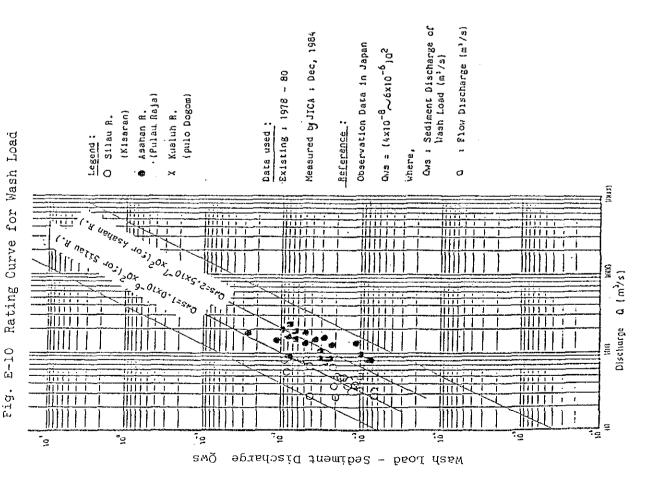


Fig. E-9 Sediment Transportation Regime

Appendix 2-F

Present Condition of Rivers

Appendix 2-F

PRESENT CONDITIONS OF RIVERS

TABLE OF CONTENTS

1.	Presen	t Conditions of Rivers	Page 2F-1
	1.1	River System	2F-1
	1.2	Characteristics of Rivers	2F-1
	1.3	Cross-Sections and Longitudinal Profiles of River Channel	2F-3
	1.4	Discharge Capacity of River Channels	2F-3
2.	River	Facilities	2F-5
÷	2.1	River Dikes	2F-5
	2.2	Bridge, Drainage Outlets and Intakes	2F-6

LIST OF TABLES

			Page Page
Table	F-1	Catchment Area and Distance of Major Points from River-Mouth	2F-7
	F-2	List of Existing Survey Results on Plan, Profiles and Cross-Sections of River Channel	2F-8
	F-3	List of River Survey by JICA Study Team	2F-9
	F-4	Manning's Roughness Coefficient under Existing Conditions of Channel Applied for Calculation	2F-11
	F-5	Estimated Discharge Capacity of Existing Channel	2F-12
	F-6	River Improvement Works (1982 - 1984)	2F-14
	F-7	Creeping Distance of Existing Dike	2F-15
	F-8	Dimension of Main Bridge	2F-16
	F-9	Existing Intakes along Asahan and Silau Rivers	2F-17
•		LIST OF FIGURES	
Fig.	F-1	General Map of River Basin	2F-18
	F-2	Location Map of River survey	2F-19
	F-3	River Profile	2F-20
	F-4	Discharge Capacity of Existing River Channel	2F-24
	F-5	Location Map of Existing Dikes	2F-25
	F-6	Typical Cross-Section of Existing Dikes	2F-26
	F-7	Profile of Highway Bridges	2F-27
	F-8	Profile of Intakes	2F-30

1. Present Conditions of Rivers

1.1 River System

The major rivers dissecting the study area are the Bunut river in the northern part, the Asahan and Silau rivers in central part and the Kualuh river in the southern part. A general map of the said river basins is shown in Fig. F-1. The catchment area and distance at major points from the river mouth are shown in Table F-1.

1.2 Characteristics of Rivers

(1) Bunut river

The Bunut river, a big tributary of the Kiri river, has a catchment area of 621 sq.km wit its 59 km length. The Bunut river originates in low hills of about 300 m in elevation, about 25 km southwestward from Kisaran. The river flows northeastward in parallel with the Silau river up to Kisaran. Downstream from Kisaran, the river flows northward through rubber and oil palm estates and paddy field. Afterwards, the river joins the Silau Tua river at Kwala Sikasim and finally joins to the Kiri river near Labuhan Ruku. Downstream from Kisaran, three irrigation intake weirs are constructed and the lands on both banks have been developed for paddy field. To protect the land from flooding the dike of 14 km in total length has been built downstream from Serbangan intake weir.

(2) Asahan river

The Asahan river has a catchment area of 6,863 sq.km including Lake Toba catchment area of 3,674 sq.km, with 150 km length. The Asahan river originates from Lake Toba. The lake has vast natural regulating function by its wide water surface area of 1,100 sq.km. The water level of the lake is being controlled at about El. 905 m by Regulating dam located at 14 km downstream from the outlet of Lake Toba.

The Asahan river flows down northeastward on steep slopes of mountain along deep and narrow valleys up to Bandar Pulau, about 65 km from Lake Toba through Siguragura and Tangga dams for hydropower generation. Downstream from Bandar Pulau, the river flows eastward and the river slope decreases gradually and the surrounding topography changes from hill to plain. The lands on both banks of the river have been developed for

rubber and oil-palm estates. At a point about 3 km upstream from highway bridge at Pulau Raja, the river joins the Sakur river.

Downstream from Pulau Raja, the river flows northeastward with meanderings on the alluvial plain. The river slope decreases gradually toward downstream, being 1/4,000 and 1/13,000 respectively in the vicinity of Pulau Raja and Tanjung Balai. The dike of about 11 km in length is built on the right bank to protect the area of Padang Mahondang. In the downstream reaches from Padang Mahondang, the swamp area extends widely to the right bank and partly to the left bank.

At Tanjung Balai, the Asahan river joins the Silau river and finally empties into the Strait of Malacca. Downstream from Tanjung Balai the river widens gradually toward the sea, being 200 m and 1,500 m respectively in the vicinity of Tanjung Balai and the rivermouth.

(3) Silan river

The Silau river, a big tributary of the Asahan river, has a catchment area of 1,180 sq.km with a total length of about 100 km. The river originates on the eastern slope of Mt. Parparean and flows northeastward along steep and narrow valleys. At Samba huta, it joins the Ambalutu river. Downstream from the confluence, the topography changes from hill to plain and the land beside the river has been developed for estates of rubber and oil palm. Afterwards, the river flows eastward and joins the Piasa river at Jati Sari. From Jati Sari to Kisaran, the river flows northward with meanderings on the plain. The river slope decreases gradually toward downstream from 1/800 to 1/1,500. In the downstream reaches from Kisaran, the river flows eastward and finally joins to the Asahan river at Tanjung Balai. In this stretch, there are some irrigation intakes and drainage outlets. The lands on both banks of the river have been developed for paddy field. The continuous dike has been built on both banks to protect the land from floodings.

(4) Kualuh river

The Kualuh river has a catchment area of 3,820 sq.km of wide area with its total length of 165 km. The Kualuh river originates on the northeastern slope of Mt. Sihabuhabu and flows northeastward along steep and narrow valleys. Near Pulo Dogom, the river joins the Harimau river. Downstream from Pulo Dogom, the river flows eastward and the surrounding topography changes from hill to plain. The river slope

decreases gradually toward downstream. At Kuala Tani, the river joins the Natas river. In the stretch between Pulo Dogom and the confluence of the Natas river, estates of rubber and oil palm and paddy field extend to both banks of the river. To protect the paddy field, the dike has been built on the left bank in the downstream reaches of highway bridge. Afterwards, the river flows with meanderings on the alluvial plain and joins the Kanopan river at Teluk Binjai and the Kuo river at Kuala Bangka. The swamp area extends widely to the right bank downstream from the confluence of the Natas river and the left bank downstream from the confluence of the Kanopan river. Afterwards, the Kualuh river flows northward and finally empties into the Strait of Malacca at Tanjung Leidong. Downstream from the confluence of the Kuo river, the Kualuh river widens gradually toward the sea, being 200 m and 4,000 m respectively in the vicinity of Kualuh Bangka and the estuary.

1.3 Cross-Sections and Longitudinal Profiles of River Channels

The existing survey results on cross-sections of the river channels are collected and those are listed in Table F-2. In order to check the collected survey results and to obtain additional cross-sections, check and supplemental survey were carried out by the Study Team during the period from November 1984 to July 1985. The items and quantity of the survey are listed in Table F-3, and the survey location is shown in Fig. F-2.

Based on the surveyed cross-sections of river channel, the longitudinal profiles of the rivers are prepared as shown in Fig. F-3 and the cross-sections are compiled in Data Book.

1.4 Discharge Capacity of River Channels

The discharge capacity of the existing river channel are estimated based on water level calculation by the nonuniform flow method with regard to the Bunut, Asahan, Silau, Kualuh and Kanopan rivers. In the calculation, the values of Manning's roughness coefficient shown in Table F-4 are applied in this study considering the existing channel conditions.

The estimated discharge capacities are shown in Table F-5 and Fig. F-4. From the figure, the following facts are revealed:

(1) Bunut river

- (a) The channel upstream from highway bridge at Bunut has comparatively high discharge capacity more than 80 m³/sec.
- (b) Downstream from the bridge, the capacity decrease to 70 m³/sec near the confluence with the Beluru river.
- (c) Downstream from the confluence with Silau Tua river, the capacities increase toward the river-mouth of the Kiri river from 130 to 500 m³/sec.

(2) Asahan river

- (a) The channel upstream from highway bridge at Pulau Raja has comparatively high discharge capacity of 1,300 m³/sec.
- (b) Downstream from the bridge, the discharge capacities decrease gradually toward downstream. Near the confluence of the Nantalu river, the capacity decreases to extremely low value of 200 m³/sec.
- (c) Downstream from the confluence of the Lebah river, the capacities increase toward the river-mouth from 100 to 3,500 m³/sec.

(3) Silau river

- (a) The channel upstream from Kisaran has comparatively high discharge capacity more than 950 m³/sec.
- (b) In the vicinity of Kisaran, the capacity is 700 m³/sec. Downstream from Kisaran, the capacity decreases from 600 to only 150 m³/sec.

(4) Kualuh river

(a) The channel upstream from highway bridge at Gunting Saga has comparatively high discharge capacity of 1,100 m³/sec.

- (b) Downstream from the bridge, the capacities decrease gradually toward downstream. Near the confluence with the Pamengke river, the capacity decreases to low of 200 m³/sec.
- (c) Downstream from the confluence, the capacities increase toward the rivermouth from 350 to 1,500 m³/sec.
- (d) The discharge capacities of the downstream reaches of the Kanopan river are from 50 to 100 m³/sec.

2. River Facilities

2.1 River dikes

In the study area, the river dikes of 86 km in total length have been constructed in the middle and lower reaches. The dike length for each river is as follows:

~.	<u> </u>	Dike Length (km)	<u></u>
River	Mainstream	Tributary	Total
Bunut river	14		14
Silau river	28	-	28
Asahan river	11	4	15
Kualuh river	22	7	29
Total	. 75	11	86

The location of these existing dikes is shown in Fig. F-5. Almost all the dikes are constructed in the form of cross-section with crown width of 2.0 to 3.5 m, side slope of 1:1 to 1:2 and height of 1 to 4 m as illustrated in Fig. F-6. River improvement and rehabilitation works during 1982 to 1984 are listed in Table F-6.

The stability of existing dike body is examined using the formula of seepage line, because the existing dikes were constructed close to the stream course and the stability of dike body seems insufficient against percolation during high-water period. The formula and criteria applied are as follows:

 $L = c x (k x h x t/e)^{1/2}$ Eq.(F.1)

where, L: Creep distance (m)

c: Constant (2.0 m/hr)

k: Coefficient of permeability

e: Void ratio of dike body

h: Mean water depth (m)

t: Duration of high water (hr)

In this equation, dike body is defined as stable when the calculated creep distance is smaller than the allowable distance.

The assumed condition and the result of calculation are shown in Table F-5. From the table, it is preliminary concluded that the existing dikes are generally not stable against permeability, except some dikes which has smaller permeability coefficient than 0.03.

2.2 Bridge, drainage outlets and intakes

The river facilities such as bridge, drainage outlet, intake exist along the river courses. The location and dimension of bridges are listed in Table F-8 and the profiles of major bridges are shown in Fig. F-7. The dimension of drainage outlets and irrigation intakes are prepared in Table F-9 and the profiles of intakes are shown in Fig. F-8.

Table F-1 Catchment Area and Distance of Major Points from River-mouth

River	Point	Catchment	Distance
•		area	(12.)
		(Km2)	(Km)
Bunut river			
Dance Five:			
Mainstream	Highway Br.	115	25
Mainstream	Confluence of Silau	292	4
·	Tua River		
Silau Tua river	Confluence to Bunut river	323	4
Mainstream	Confluence to Kiri river	621	0
Asahan River			
Mainstream	Outlet of Lake Toba		152
Mainstream	Regulating dam	3,674	135
Mainstream	Sigura-gura dam	-	130
Mainstream	Tangga Dam	3,820	125
Mainstream	No.3 dam site (under	3.888	. 117
	planning)		•
Mainstream	Confluence of Sakur river	4,160	80
Sakur river	Confluence to Mainstream	311	
Mainstream	Pulau Raja	4,471	77
Mainstream	Simpang Empat	4,727	41
Mainstream	Confluence of Silau river	5,101	15
Mainstream	River-mouth	6,284	0
Silau river			
Mainstream	Confluence of Piasa river	659	36
Piasa river	Confluence to Silau river	330	~
Mainstream	Kisaran	1,036	23
Mainstream	Confluence to Asahan river	1,183	0
Kualuh river			
Mainstream	Pulo dogom	1,116	117
Mainstream	Highway Br.	1,171	102
Mainstream	Confluence of Natas river	2,090	81
Natas river	Confluence to Kualuh river	515	
Mainstream	Confluence of Kanopan rive	2,623	56
Mainstream	Rivermounth	3,815	0

Table F.2 List of Existing Survey Results on Plan, Profile and Cross-section of River Channel

River	Survey Year	Surveyed Stretch	Kind of Survey	Scale	Survey Company
Asahan River	1982	River-mouth Confluence of Silau River Length: 15.8 km (Ave. interval of C-section: 50 m)	Plan Profile Cross-section	1/2,000 V: 1/200, H: 1/2,000 V: 1/200, H: 1/400	PT. Yarmaya
		Confluence of Silau River Confluence of Tarum River Length: 69.5 km (Ave. interval of C-section: 200 m)	Plan Profile Cross-section	15,000 V: 1/200, H: 1/5,000 V: 1/200, H: 1/500	PT. Esconsoil
	1982	Upstream from Confluence of Tarum River Length: 12.8 km (Ave. interval of C-section: 50 m)	Plan Profile Cross-section	1/2,000 V: 1/200, H: 1/2,000 V: 1/200, H: 1/400	Pr. Yaramaya
Silau River	1981	Confluence of Asahan River Confluence of Plasa River Length: 20.5 km (Ave. interval of C-section: 50 m)	Plan Profile Cross-section	1/2,000 V: 1/200, H:1/2,000 1/200	PT. Nusantara Survey

Table F.3 List of River Survey by JICA Study Team (1/2)

	ē			(Ave)
Checking Survey				
1. Bench Mark Leveling	ı	INALUM B.M - Kisaran B.M	82 km	i
2. Bench Mark Setting	Asahan Silau	Rivermouth - Confluence of Sakur R. Tg. Balai - Confluence of Piasa R.	67 25	1.2 km 1.4 km
3. Profile Leveling	Asahan Silau	Rivermouth - Confluence of Sakur R. Tg. Balai - Confluence of Piasa R.	82 km 35 km	1 1
4. Longitudinal River Water Level Survey	Asahan Silau	Rivermouth - Confluence of Sakur R. Tg. Balai - Confluence of Piasa R.	67 points 25 points	1.2 km 1.4 km
5. Cross-section Leveling	Asahan Silau	Rivermouth - Confluence of Sakur R. Tg. Balai - Confluence of Piasa R.	67 sections 25 sections	1.2 km 1.4 km
Supplemental Survey				
1. Bench Mark Leveling	1	Pulau Raja B.M - Aek Kanopan B.M Sungai Bajangkar B.M - Tg. Tiram B.M Aek Kanopan B.M - Teluk Binjai B.M Nantalu R.(MBK7)- Leidong R.(Air hitam)	18 km 18 km 35 km 15 km	1
2. Bench Mark Setting	Kualuh Bunut Nantalu Lebah Kanopan	Rivermouth - Highway Br. Rivermouth - Bunut Confluence of Asahan R10 km upstream point Confluence of Asahan R14 km upstream point Teluk Binjai - Pernangkaan	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2.4 km 1.8 km 3.3 km 7.0 km

٠,

Table F.3 List of River Survey by JICA Study Team (2/2)

Kind of Survey	River	Stretch	Quanticy	Interval (Ave)
3. Profile Leveling	Kualuh	Rivermouth - Highway Br.	100 km	Į
	Bunut	Rivermouth - Bunut	44 km	ı
	Nantalu	Confluence of Asahan R10 km upstream point	10 km	1
	Lebah	Confluence of Asahan R14 km upstream point	14 km	
	Kanopan	Teluk Binjai - Pernangkaan	7 km	ı
4. Longitudinal River	Kualuh	Rivermouth - Highway Br.	42 points	2.4 km
Water Level Survey	Bunut	Rivermouth - Bunut	25 points	1.8 km
	Nantalu	Confluence of Asahan R10 km upstream point	4 points	3.3 km
5. Cross section Leveling	Kualuh	Rivermouth - Highway Br.	42 sections	2.4 km
•	Bunut	Rivermouth - Binut	25 sections	1.8 於用
	Nantalu	Confluence of Asahan R10 km upstream point	4 sections	3.3 km
	Lebah	Confluence of Asahan R14 km upstream point	3 sections	7.0 km
	Kanopan	Teluk Binjai - Pernangkaan	5 sections	1.8 km

Table F-4 Manning's Roughness Coefficient under Existing Channel Conditions applied for Calculation of Discharge Capacity

	Channel stretch	Manning's n
1.	Bunut River	÷
	River-mouth - B 8 (0.1 km downstream from Balai river)	0.025
	B 8 - B 17 (0.5 km downstream from Panca Arga Intak	e) 0.030
	B 17 - B 26 (Highway bridge)	0.035
2.	Asahan River	
	River-mouth - P 55 (0.4 km downstream from Lebah river	0.023
	P 55 - P 160 (0.3 km downstream from Nantalu river)	0.025
	P 160 - P 245 (16.4 km upstream from Nantalu river)	0.028
	P 245 - P 360 (Tarum river)	0.030
3.	Silau River	
	Asahan river - P 40 (2.75 km upstream from Bandar Jepang river)	0.030
	P 40 - P 510 (Highway bridge at Kisaran)	0.035
4.	Kualuh River	
	River-mouth - K 19 (0.5 km upstream from Kanopan river)	0.025
	K 19 - K 31 (0.5 km upstream from Nantalu river)	0.028
	K 31 - K 42 (Highway bridge)	0.030
5.	Kanopan River	
	Kualuh river - KP 3 (5.4 km downstream from Road bridge)	0.028
	KP 3 - KP 5 (8.2 km upstream from Road bridge)	0.035

Table F-5 Estimated Discharge Capacity of Existing Channel (1/2)

	Channel s	tretch	Discharge	Capacity	(cms)
1.	Bunut River	(including a part of the Kiri	river)		•
	River-mouth	- B 4 (0.9 km upstream of Roa	ad Br.)	500	
	в 4-в 6	(3.2 km downstream of Bala	i R.) .	300	
	B 6 - B 10	(3.3 km upstream of Balai l	R.)	200	
	B 10 - B 12	(1.9 km upstream of Silau	rua R.)	130	
	B 12 - B 18	(1.1 km upstream of Panca Intake)	Arga	70	
	в 18 - в 22	(0.6 km upstream of Serban Intake)	gan	70	
	в 22 - в 26	(Highway Br.)		80	
2,	Asahan River	•			-
	River-mouth	- A 10 (0.4 km upstream from Silau river)		3500	
	A 10	- P 20 (0.2 km downstream from Kepayang river)		450	
	P 20	- P 60 (0.6 km km upstream from Lebah river)		200	
	P 60	- P 135 (5 km downstream from Nantalu river)		350	
	P 135	- P 215 (10.6 km upstream from Nantalu river)	·	200	
	P-215	- P 275 (14.5 km downstream from Highway bridge at Pu		250	
	P 275	- P 348 (Highway bridge)		350	
	P 348	- P 360 (Confluence of Saku	r river)	1300	
	P 348	- P 360 (Confluence of Saku	r river)	1300	

Table F-5 Estimated Discharge Capacity of Existing channel (2/2)

	Channel s	retch	Discharge	Capacity	(cms)
3.	Silau River			·	
	Asahan river	- P 100 (5.7 km downstream intake, Sijambi/Simpang E	from Free mpat)	150	
÷	P 100	- P 230 (4.1 km downstream intake, Tasikmalaya/Air J		200	•
	P 230	- P 340 (2.6 km downstream intake, Silau/Srikamah II		400	
	P 340	- P 410 (0.9 km downstream Railway bridge)	from	300	
	P 410	- P 460 (0.2 km upstream fr Kisaran road bridge)	On	600	
	P 460	- P 510 (near highway bridg	e)	700	
	P 510	- P 733 (Confluence of Pias	a river)	950	
4.	Kualuh River				
	River-mouth	- K 11 (5.9 km downstream c	f Kuo R.)	1500	
	K 11 - K 18	(1.5 km downstream of Kan	nopan R.)	1100	
	K 18 - K 22	(5.6 km upstream of Kanop	oan R.)	350	
	K 22 - K 26	(2.9 km upstream of Pamer	gke R.)	200	
	к 26 - к 29	(0.4 km upstream of Sidar	i R.)	350	
	K 29 - K 36	(6.6 km upstream of Simar	ıgalam R.)	300	
	K 36 - K 39	(5.5 km downstream of Hig	hway Br.)	350	
	K 39 - K 42	(Highway Br.)		500	
5.	Kanopan Rive	<u>c</u>			
	Kualuh river	- KP 2 (4.1 km upstream fro Kualuh river)	om	100	
	KP 2 - KP 4	(Road bridge)		90	
	KP 4 - KP 5	(8.2 km upstream from Roa	d bridge)	50	

Table F.6 River Improvement Works (1982 - 1984)

Site	Year	Location	Budget (million Rp.)	Remarks
A. Asahan River				
1. Kec. Pulau Rakyat	1982	P 310 - 255 P 260	100.0	Reconstruction of broken Dike (82 Apr. Flood) Lining of river channel $L=0.415~\mathrm{km}$
2. Kec. Pulau Rakyat	1984	P 322 - 309 P 323 - 324	50.0	Heightening $L=1.75~\mathrm{km}$ and New Dike $L=0.55~\mathrm{km}$
3. Kec. Pulau Rakyat	1984	P 276 - 275 P 323 - 322	50.0	Reconstruction of broken Dike L = 46 m and New Dike L = 0.31 km (including
4. Kec. Pulau Rakyat	1984	P 321 - 278	50.0	L = 2.1 km/ of broken Dike L = 62 m
5. Kec. Pulau Rakyat	1984	P 276 - 275	19.84	Reconstruction of broken Dike $L = 22 \text{ m}$
B. Silau River				
1. Kec. Air Joman	1983	P 155 - 165	251.1	Rehabilitation (R); $L = 605 \text{ m} (L)$: $L = 598 \text{ m}$
2. Kec. Simpan Empat	1984	P 155	258.8	Heightening (R); $L = 1.00 \text{ km}$ (L): $L = 1.00 \text{ km}$

Note : Collected from DPUP, North Sumatra

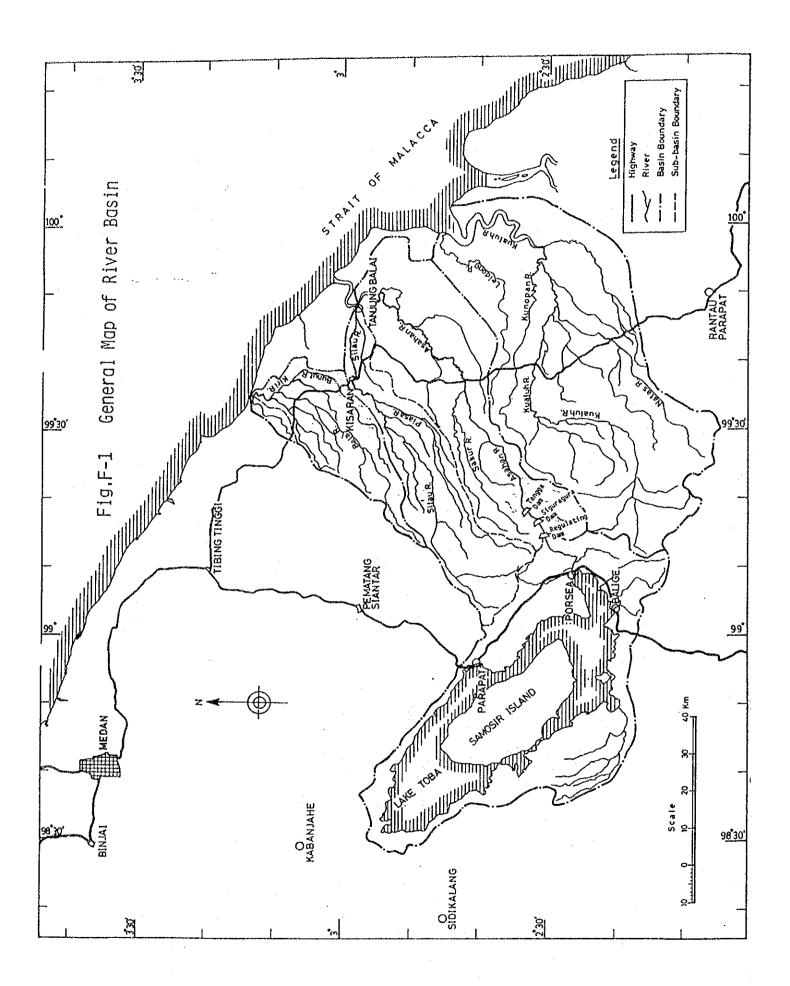
Table F-7 Creeping Distance of Existing Dike

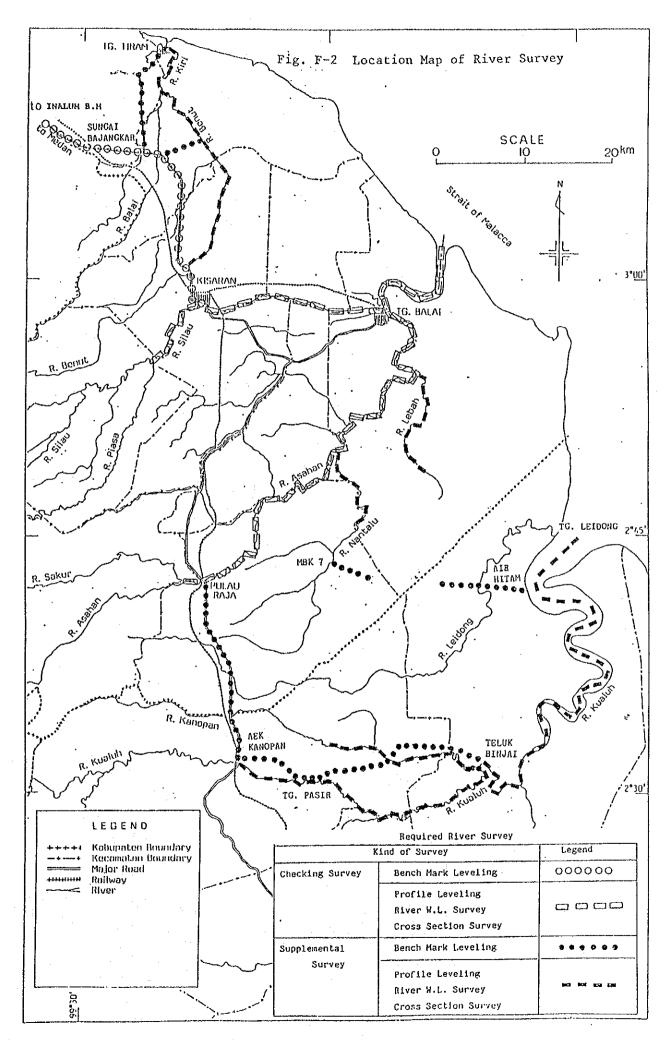
Item	_	Case	
	1	2	3
. Coefficient of permeability (k=0.2 m/hr)		
- Void ratio of dike	0.5	1,0	1.5
- Mean water depth (m)	1.4	1.4	1.4
- Duration of flood (hr)	48	48	48
- Creep distance of seepage line (m)	10.4	7.3	6.0
- Allowable creep distance (m)	5.0	5.0	5.0
. Coefficient of permeability (k=0.1 m/hr	<u>)</u>		
- Void ratio of dike	0.5	1.0	1.5
- Mean water depth (m)	1.4	1.4	1.4
- Duration of flood (hr)	48	48	48
- Creep distance of seepage line (m)	7.3	5.2	4.2
- Allowable creep distance (m)	5.0	5.0	5.0
. Coefficient of permeability (k=0.03 m/h	<u>r)</u>		·
- Void ratio of dike	0.5	1.0	1.5
- Mean water depth (m)	1.4	1.4	1.4
- Duration of flood (hr)	48	48	48
- Creep distance of seepage line (m)	4.0		2.3
- Allowable creep distance (m)	5.0	5.0	5.0

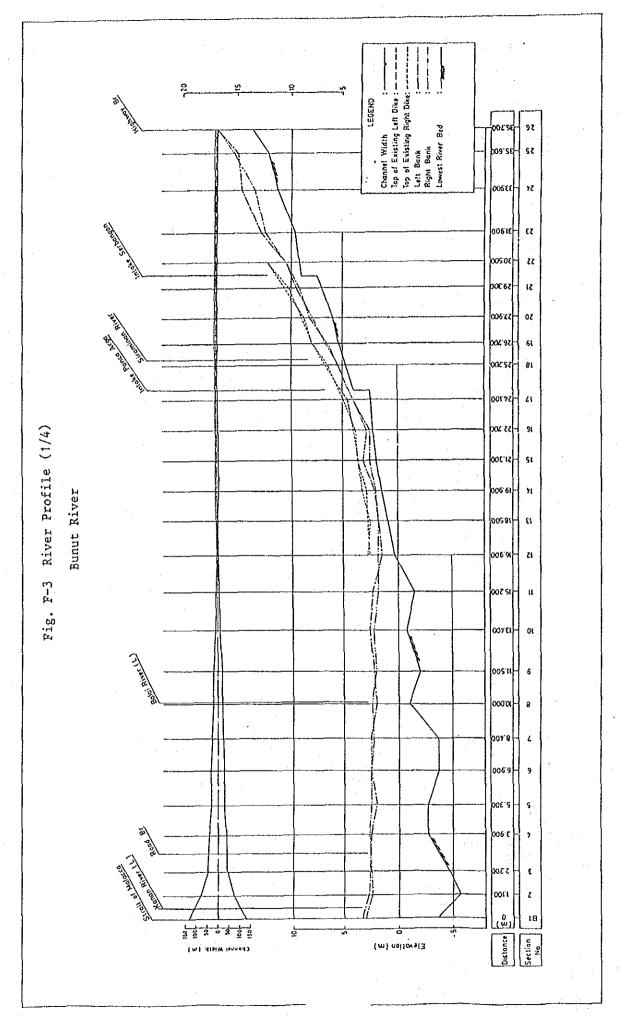
Formula applied:

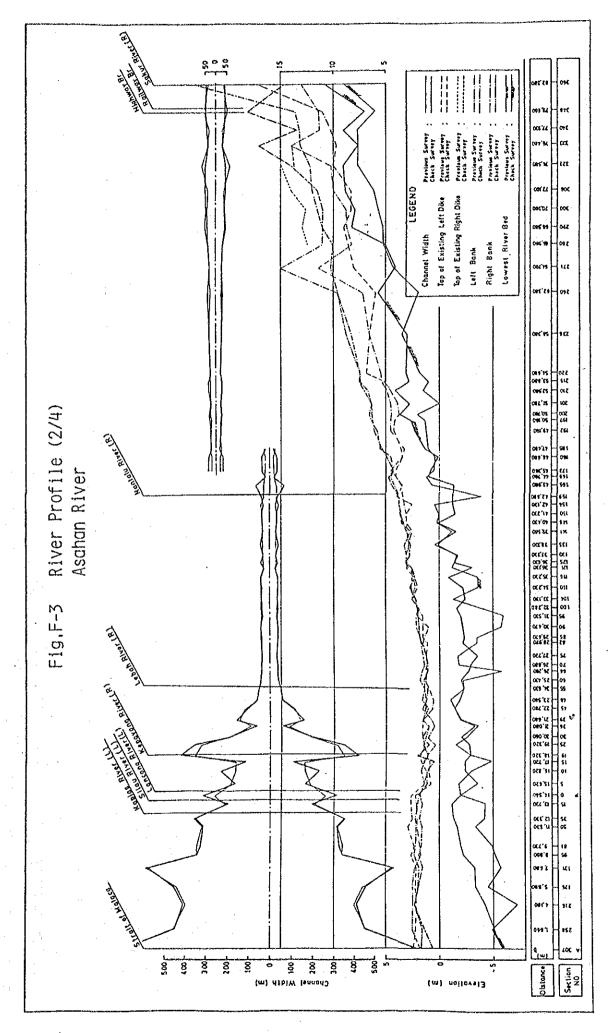
 $L = C(k.h.t/e)^{1/2}$

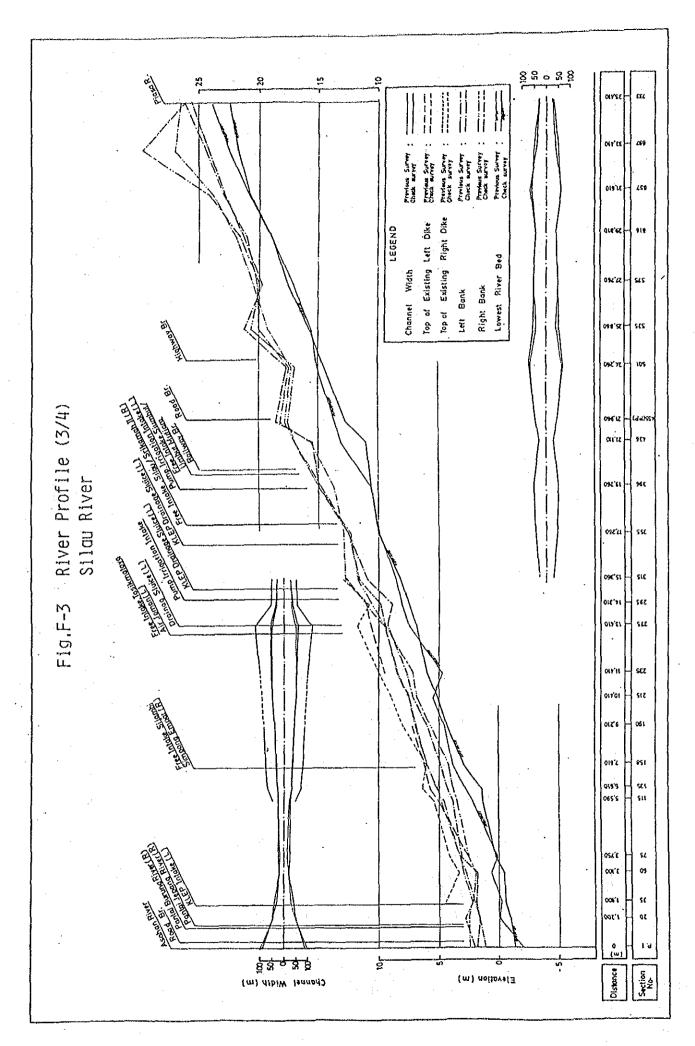
- where, L: Creep distance of seepage line (m)
 - C: Constant (2.0 m/hr)
 - k: Coefficient of permeability
 - e: Void ratio of dike body
 - h: Meam water depth (m)
 - t: Duration of flood (hr)

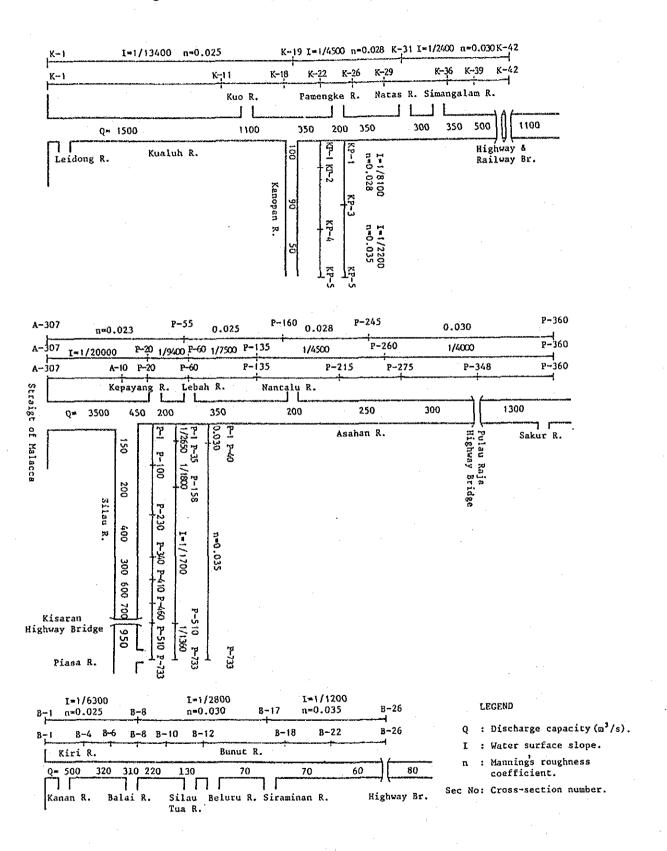

Table F.8 Dimension of Main Bridge


Name of Bridge	Location	Elevation of Road-face	Length (m)	Width (m)	Data Source	Remarks
1. Asahan R						
– Asahan Br.	P-346		28.0+33.6 +28.0 =89.6	1.0+6.0	Bina Marga	Highway
- (Kapias kiri Br.) - (Selat Lancang Br.)	Kapias.K.R. S.Lancang R.		42.3 69.4	0.65+4.0+0.65	DPUP Site Survey	
2. Silau R.						
- Muara Silau Br.	P-3		7.5+10.5+10x 11.0+9.0=137.0	1.0+5.4	DPUP	Reconstruction Plan is under Consideration
- Silau Br.	P-510	22.552	2(20.0+28.0) +33.6=129.6	1.6+7.0 + 1.0	Bina Marga	Highway
- Silau Br.	D-460	19.045		4.0	Bina Marga	
- (Bandar Jepang Br.) B.Jepang R.	B.Jepang R.		19.20	3.20	Site Survey	


DPUP : Dinas P.U. Propinsi Dati I Sumatera Utara, Seksi Asahan

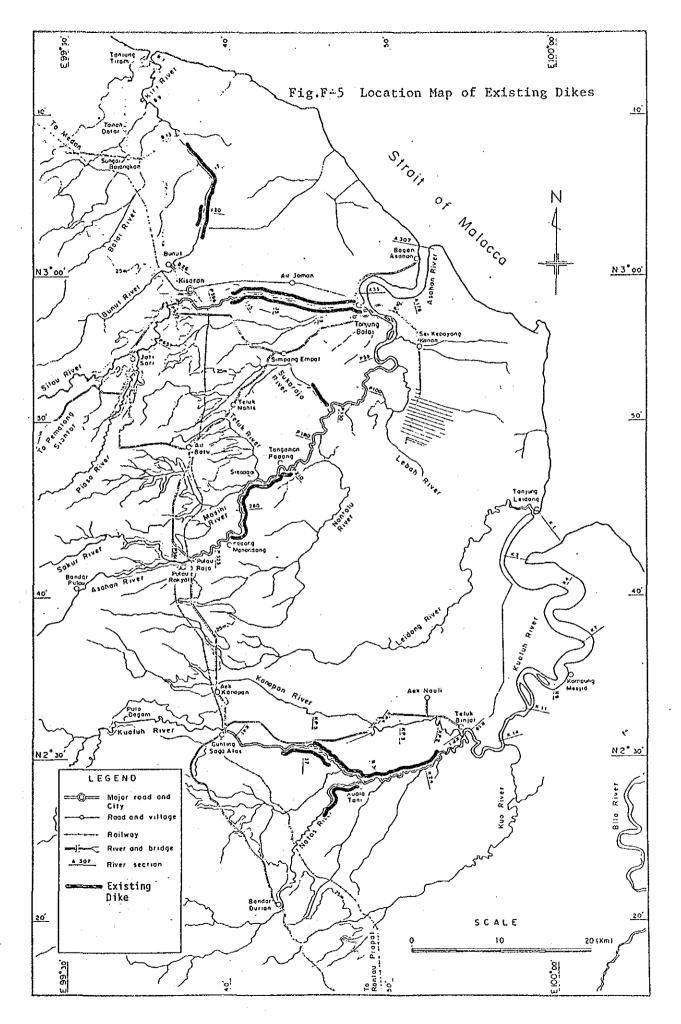
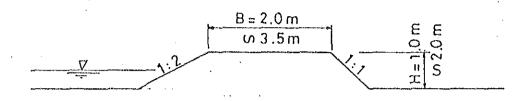
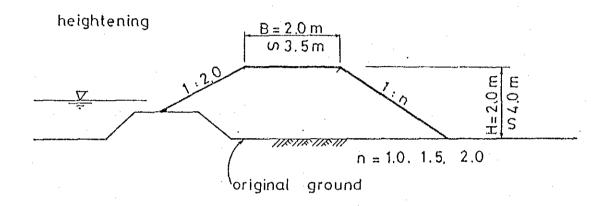

Table F.9 Existing Intakes along Asahan and Silau River,

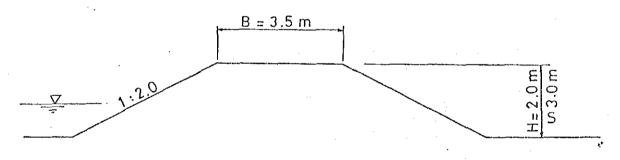

Description	Location	Width (m)	Remarks
1. Asahan River			
Padang Mahondang	P - 295 (R)	1.3 x 2	with gate
2. Silau River			
KLEP Intake	P - 33 (L)	5.0	
Intake/Sijambi	P - 156 (R)	0.6 + 1.0 + 0.8	with gate
Intake/Tasik Malaya	P - 268 (L)	1.2 × 4	with gate
Drainage Sluice	P - 278 (L)	1.0 × 2	with gate
Pump Irrigation Intake	P - 301 (L)	0 300 x 21.5 HP x 2	not used since 1981
KLEP Drainage Sluice	P - 308 (L)	1.5	with gate
KLEP Drainage Sluice	P - 347 (L)	0 800	with gate
Intake/Srikamah II	P - 363 (R)	1.3 × 3	with gate
Pump Irrigation Intake	P - 395 (L)		not used since 1982
Intake/Siumbut-umbut	P - 408 (L)	1.2 × 3	



2F - 23

Fig. F-4 Discharge Capacity of Existing River Channel


Fig. F-6 Typical Cross-Section of Existing Dike

Asahan river

Silau river

heightening -

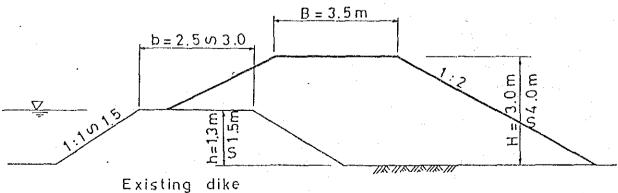
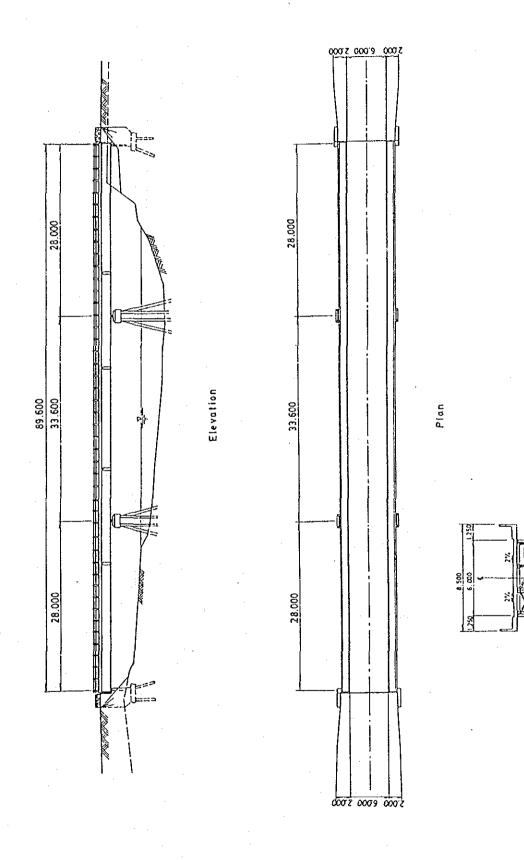
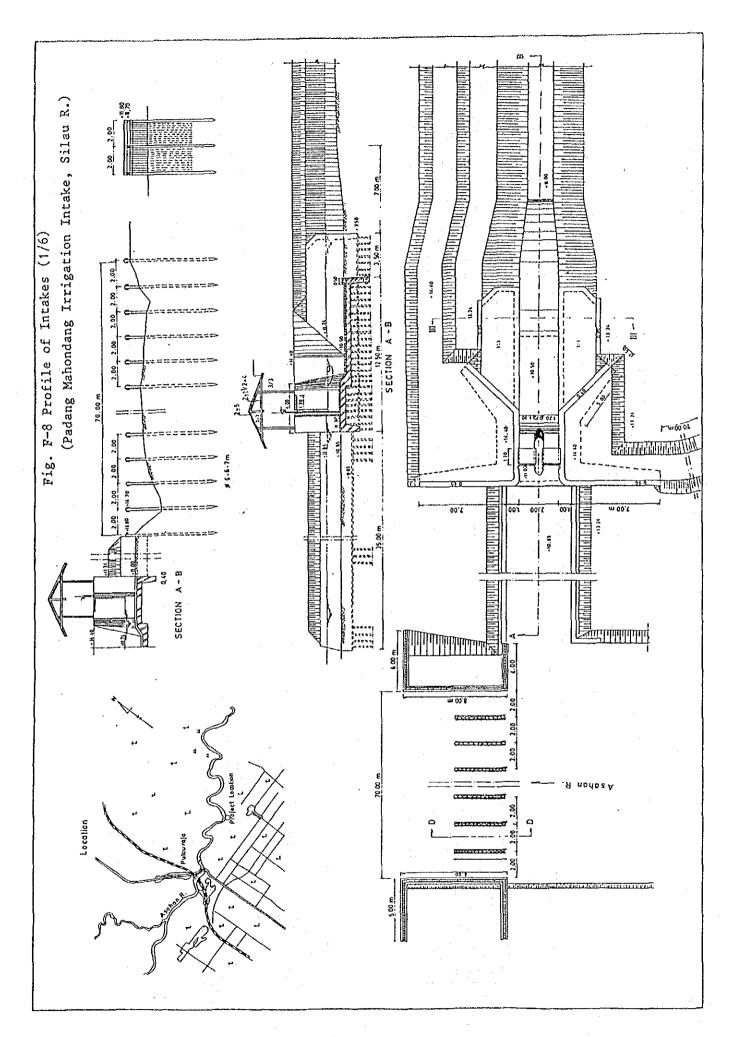
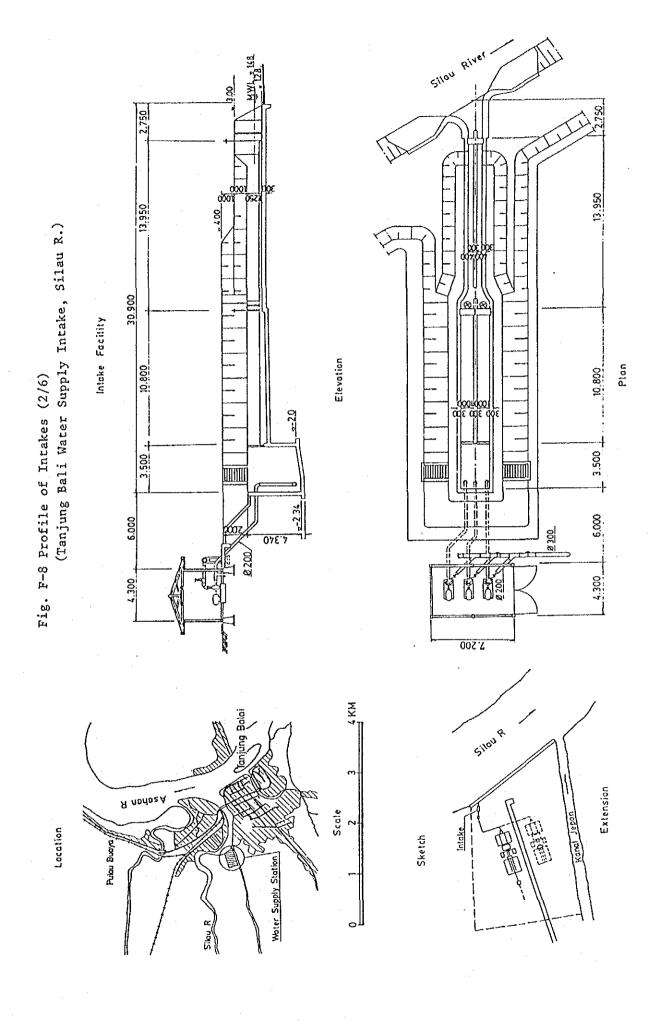



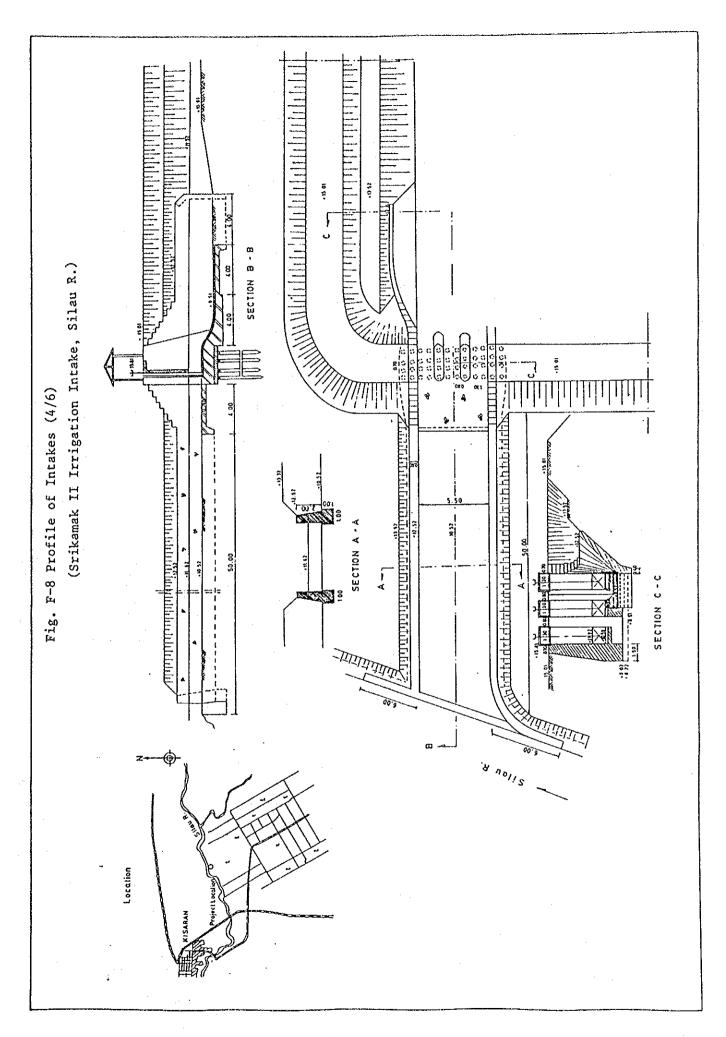
Fig.F₋7 Profile of Highway Bridges (1/3) (at Pulau Raja, Asahan River)

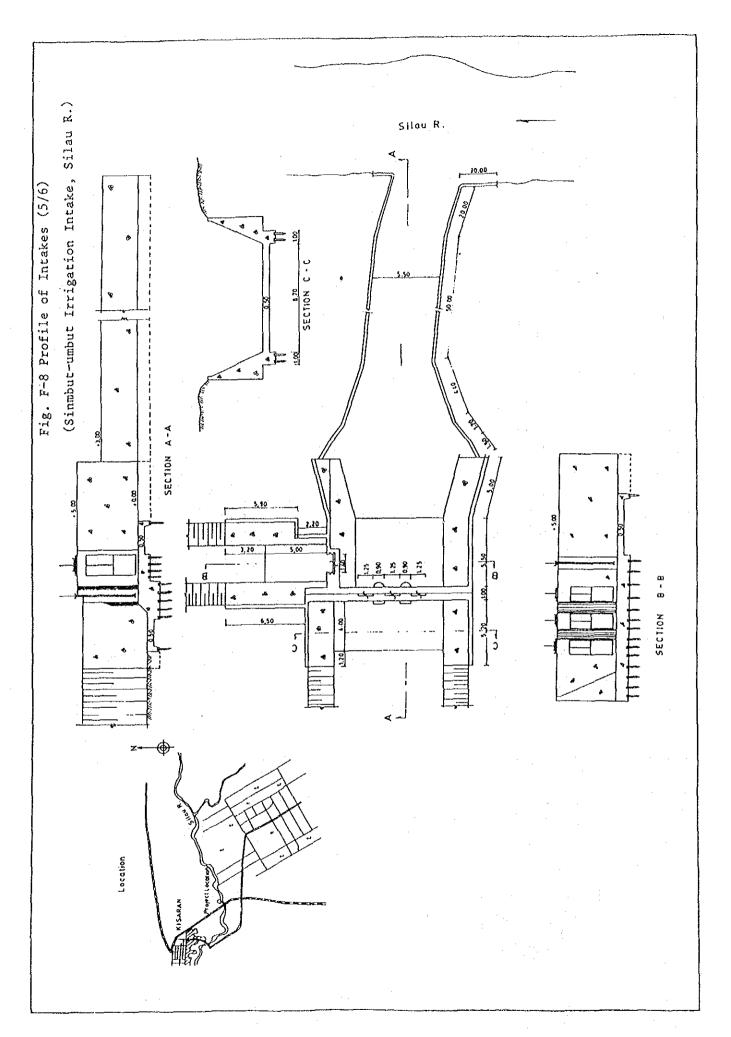
Section

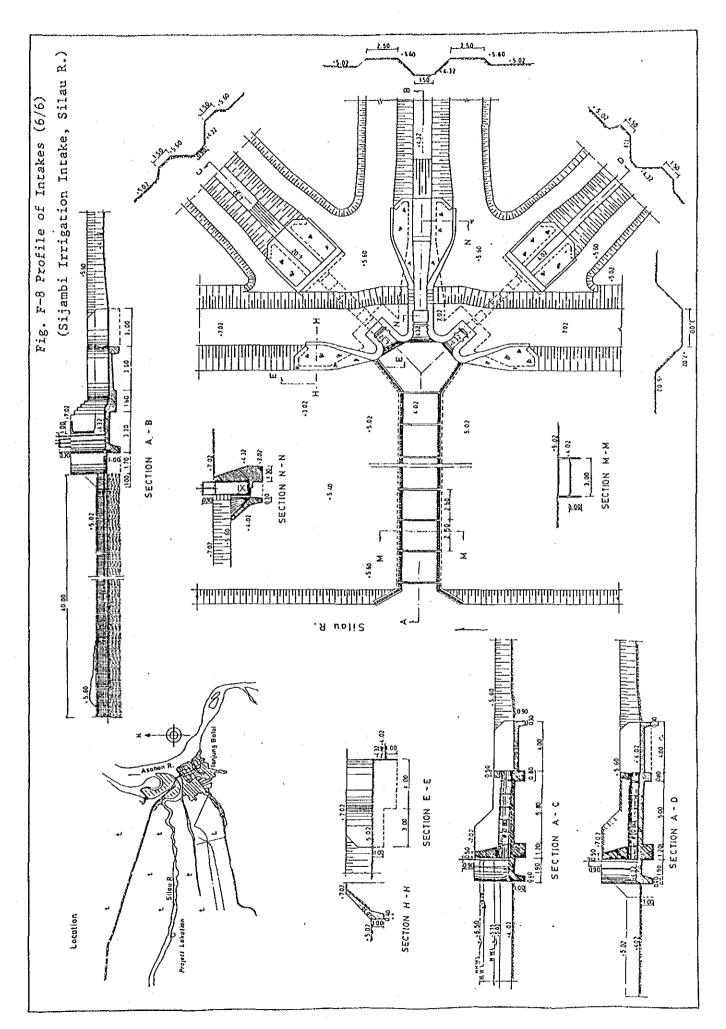

Fig.F-7 Profile of Highway Bridges (2/3) (at Tanjung Balai, Silau River)



to R.Prapat Profile of Highway Bridges (3/3) (at Kisaran, Silau River) 129,6000 Plan Elevation 20,000


Section


Fig.F-7



Broken 11, 50 (Tasik Malaya Irrigation Intake, Silau R.) Fig. F-8 Profile of Intakes (3/6) 000 000 % Elevation Silau R. Plan Sketch Location

Vol. 2 Flood Control Plan

Appendix 2-G

Flood Discharge and Damages

Appendix 2-G

FLOOD DISCHARGE AND DAMAGES

TABLE OF CONTENTS

			Page
1.	Gene	ral	2G-1
2.	Flood	l Discharge	2G-1
	2.1	Past Major Floods	2G-1
	2.2	Flood Discharge Analysis of Asahan and Silau Rivers	2G-2
•	2.3	Flood Discharge Analysis of Kualuh and Kiri River Basins	2G-5
3.	Flood	ling Mechanism	2G-6
	3.1	Flooding Characteristics	2G-6
	3.2	Flooding Conditions	2G-8
4.	Flood	Damages	2G-9
	4.1	Methodology	2G-9
	4.2	Probable Flood Damages	2G-17
	4.3	Average Annual Flood Damages	2G-18

LIST OF TABLES

			Page
Table	G-1	Annual Maximum Discharge Records	2G-20
	G-2	General Features of Storage Function	2G-21
	G-3	Storage Function for Sub-Basins of Asahan and Silau Rivers	2G-22
	G-4	Discharge-Storage Relation of Existing Channel of Asahan and Silau Rivers	2G-24
	G-5	Assumed Existing Channel Condition of Asahan and Silau Rivers	2G-26
	G-6	Probable Peak Flood Discharges of Asahan and Silau Rivers under Existing Condition	2G-27
	G-7	Probable Peak Flood Discharge of Asahan and Silau Rivers	2G-28
	G-8	Discharge - Storage Relation of Improved Channel of Asahan and Silau Rivers	2 G-30
	G-9	Improved Channel Condition of Asahan and Silau Rivers	2G-35
	G-10	Estimated Flooding Condition due to Past Floods	2G-36
	G-11	Estimated Flooding Condition due to Probable Floods	2G-37
	G-12	Storage Function for Sub-Basins of Kualuh River	2G-38
	G-13	Discharge - Storage Relation of Existing Channel of Kualuh River	2G-39
	G-14	Assumed Existing Channel Condition of Kualuh and Kiri Rivers	2G-40
	G-15	Storage Function for Sub-Basins of Kiri River	2G-41
	G-16	Discharge - Storage Relation of Existing Channel of Kiri River	2G-42
	G-17	Probable Peak Flood Discharge of Kualuh and Kiri Rivers under Existing Condition	2G-43
	G-18	Probable Peak Flood Discharge of Kualuh and Kiri Rivers (with channel improvement)	2G-45
	G-19	Discharge - Storage Relation of Improved Channel of Kualuh River	2G-46
	G-20	Discharge - Storage Relation of Improved Channel of Kiri River	2G-47
	G-21	Improved Channel Condition of Kualuh and Kiri Rivers	2G-48
	G-22	Estimated Flood Damage of Past Floods	2G-49
	G-23	Estimated Flood Damage of Probable Floods	2G-51
	G-24	Average Floor Space of House/Building in Study Area	2G-56
	G-25	Unit Price of House/Building in 1985	2G-57
	G-26	Estimated Value of Household Effects in 1980	2G-58
	G-27	Growth Rate of Per-Capita Regional Income and Consumer Price Index (CPI) in Medan	2G-59
	G-28	Damage Rate of Inundation and Sedimentation for House/ Building, Household Effects and Stored Goods	2G-60

			Page
	G-29	Number of Houses/Buildings in Each Kecamatan and Kotamadya of Flood Prone Area	2G-61
	G-30	Number of Households in Each Kecamatan and Kotamadya of Flood Prone Area in 1980	2G-62
	G-31	Estimated Value of Stored Goods in Commercial Sector in 1980	2G-63
	G-32	Estimation of Property in Small Industry	2G-64
	G-33	Unit Values of House/Building, Household Effects and Stored Goods in 1985 for Flood Damage Estimation	2G-66
	G-34	Economic Price of Paddy (for Import)	2G-67
	G-35	Damage Rate of Agricultural Crops	2G-68
	G-36	Economic Price of Maize (for Import)	2G-69
	G-37	Economic Price of Soybean (for Import)	2G-70
	G-38	Unit Price of Agricultural Crops for Flood Damage Estimation	2G-71
	G-39	Probable Flood Damages under Present Condition	2G-72
	G-40	Probable Flood Damages in AD 2005	2G-77
	G-41	Average Annual Flood Damages	2G-82
		LIST OF FIGURES	
Fig.	G-1	Sub-Basins of Rivers	2G-84
ı ığ.	G-2	Runoff Simulation Model of Asahan and Silau Rivers under	
		Present Condition	2G-85
	~ ~		
	G-3	Discharge Hydrograph of Major Floods in Asahan and Silau Rivers	2G-86
	G-4	Discharge Hydrograph of Major Floods in Asahan and Silau Rivers Typical Rainfall Pattern	2G-86 2G-89
	G-4 G-5	Discharge Hydrograph of Major Floods in Asahan and Silau Rivers Typical Rainfall Pattern Flood Frequency of Asahan and Silau Rivers	2G-86 2G-89 2G-90
	G-4 G-5 G-6	Discharge Hydrograph of Major Floods in Asahan and Silau Rivers Typical Rainfall Pattern Flood Frequency of Asahan and Silau Rivers Typical Rainfall Distribution during Three Months	2G-86 2G-89
	G-4 G-5	Discharge Hydrograph of Major Floods in Asahan and Silau Rivers Typical Rainfall Pattern Flood Frequency of Asahan and Silau Rivers Typical Rainfall Distribution during Three Months Runoff Simulation Model of Asahan and Silau Rivers for Alternative Schemes	2G-86 2G-89 2G-90
	G-4 G-5 G-6	Discharge Hydrograph of Major Floods in Asahan and Silau Rivers Typical Rainfall Pattern Flood Frequency of Asahan and Silau Rivers Typical Rainfall Distribution during Three Months Runoff Simulation Model of Asahan and Silau Rivers for Alternative Schemes Runoff Simulation Model of Kualuh and Kiri River Basins	2G-86 2G-89 2G-90 2G-91
	G-4 G-5 G-6 G-7	Discharge Hydrograph of Major Floods in Asahan and Silau Rivers Typical Rainfall Pattern Flood Frequency of Asahan and Silau Rivers Typical Rainfall Distribution during Three Months Runoff Simulation Model of Asahan and Silau Rivers for Alternative Schemes	2G-86 2G-89 2G-90 2G-91 2G-93
	G-4 G-5 G-6 G-7	Discharge Hydrograph of Major Floods in Asahan and Silau Rivers Typical Rainfall Pattern Flood Frequency of Asahan and Silau Rivers Typical Rainfall Distribution during Three Months Runoff Simulation Model of Asahan and Silau Rivers for Alternative Schemes Runoff Simulation Model of Kualuh and Kiri River Basins Discharge Hydrograph of Major Floods in Kualuh River Possible Flooding Area	2G-86 2G-89 2G-90 2G-91 2G-93 2G-96 2G-98 2G-99
	G-4 G-5 G-6 G-7 G-8 G-9	Discharge Hydrograph of Major Floods in Asahan and Silau Rivers Typical Rainfall Pattern Flood Frequency of Asahan and Silau Rivers Typical Rainfall Distribution during Three Months Runoff Simulation Model of Asahan and Silau Rivers for Alternative Schemes Runoff Simulation Model of Kualuh and Kiri River Basins Discharge Hydrograph of Major Floods in Kualuh River	2G-86 2G-89 2G-90 2G-91 2G-93 2G-96 2G-98

1. General

This Appendix 2-G presents detailed description with regard to flood discharge analysis and flood damage study including their methodology and basic approaches.

The runoff mechanism of major past floods is simulated with regard to the Asahan, Silau and Kualuh river basins. Probable flood discharge is estimated under the conditions of both existing and alternative flood control schemes on the basis of simulation analysis of the past floods. Detailed discussion for the alternative schemes is presented in Appendix 2-H.

Probable flood damages and average annual flood damages are estimated based on the flood-runoff analysis.

2. Flood Discharge

2.1 Past Major Floods

Water-level data were available at Pulau Raja, Kisaran and Pulo Dogom since 1977, 1973 and 1979 respectively, although it might be subjected to error in estimating flood-peak stages. Because some of them were obtained from thrice-daily staff-gage readings at 7 A.M., 12 A.M. and 5 P.M. while a series of heavy rainfall usually happens before midnight and flood due to them reaches the water-level gaging stations within 6 or 7 hours. The annual maximum discharges which were given by converting corresponding water levels are shown in Table G-1.

It is recognized that the flood of Jan. 1984 was the most remarkable for Pulau Raja and Pulo Dogom while Kisaran experienced the biggest one in December 1973. The basin seems to have encountered annual maximum floods as often in September through January and also in May. It should be noticed that the discharges at Pulau Raja have been affected by the regulation of the dams upstream since February 1981. The maximum flood peak from the residual drainage area upstream from Pulau Raja seems to be recorded in September 1977 when Kisaran also experienced the second biggest flood in peak discharge since 1973.

On the other hand, the Asahan and Silau river basins might be experienced most remarkable damage due to the same flood in December 1973 according to verbal information from the site. The maximum discharge of the flood seems to be 800 m³/sec on the basis of

discontinuous hydrography at Kisaran. In addition average basin rainfalls both of Pulau Raja and Kisaran in December 1, 1973 are situated in first and secondary ranks since 1963, that is, exceedance probabilities are 1/11 and 1/22 at least, respectively.

2.2 Flood Discharge Analysis of Asahan and Silau Rivers

2,2,1 Flood runoff from Asahan and Silau river basins

The Asahan and Silau river basins were divided into sub-basins as shown in Fig. G-1. The flood simulation model to analyze flood runoff mechanism of the Asahan and Silau river basins was installed by the Study Team. The model simulates hydraulic behavior in the basin as it responds to various flow conditions. It incorporates river basin components of sub-basins, channels, dams and retarding basins as shown in Fig. G-2. The storage-function method was selected among analytical tools to calculate flood runoff from each sub-basin and channel. Its general features are shown in Table G-2. The storage coefficients which compose the storage functions depend on both basin and channel conditions. Hydrological conditions during the floods of May 1975, Sept./Oct. 1977, May 1982 and Jan. 1984 were selected to determine the storage coefficients taking into account completeness of hydrological data, size of peak flood discharge and volume, duration of high water and amount of flood damage. The former two floods occurred before the construction of the Regulating and Tangga dams while the others occurred after the completion of the dams.

Average basin rainfalls to be hydrological input to the simulation model as well as falling pattern were estimated by use of isohyetal maps during the same periods because of poor records in mountainous area of which rainfall volume seems to be predominant in flood times.

Hydraulic response of the simulation model to rainfall input has to show almost the same discharge hydrographs which were observed at Pulau Raja and Kisaran if the storage coefficients are reasonable. The storage coefficients of sub-basin which were determined after several trials are shown in Table G-3. The discharge - storage relations of channels were also determined as shown in Table G-4 assuming channel conditions which is shown in Table G-5. Calculated hydrographs of flood discharge are shown in Fig. G-3 with actually observed records to demonstrate their coincidence.

(1) Runoff from residual area

After verification of the simulation model probable flood discharge was calculated with an assumption that hourly distribution of rainfall during the Sept./Oct. 1977 flood would be emerged. Because peak discharge from the residual drainage area of Pulau Raja which excludes runoff from Lake Toba is the biggest in the recorded period since 1977, and Kisaran experienced the second biggest peak in discharge since 1973. In addition accumulated rainfall of the 1977 flood on hourly basis shows highly concentrated pattern as compared with those of others as shown in Fig. G-4, which would provide the biggest discharge in peak. Although the Dec. 1973 flood should also be taken into consideration as a typical runoff pattern which might possibly be design flood, both data on hourly rainfall distribution and water level hydrograph at Pulau Raja are not recorded.

Probable one-day rainfall volume was taken up for the calculation of probable discharge because of the reasons below:

- (a) All the rainfalls are daily measured at 7 A.M. every day,
- (b) Concentration time is 6 or 7 hours,
- (c) Most of rainfall series which bring floods start in the evening,
- (d) Time interval between rainfall series is longer than the concentration time.

(2) Runoff from Lake Toba

Data on water level of Lake Toba is available during the period of 1916 through 1932, and also from 1957 to 1984. On the other hand, outflow of Lake Toba has been observed at Siruar/Regulating dam since 1956. Annual maximum water level and outflow of Lake Toba by present regulation rule were calculated using 10-day average net inflow estimated from the above data with an assumption that initial water level of Lake Toba is El. 905.0 m at the beginning of flood. On the basis of the calculation result probable maximum outflow which was regulated by the Regulating dam was estimated as follows:

Return period (year) : 2 5 10 15 20 25 30 50 100 Max. outflow (m³/sec) : 315 400 400 400 400 400 400 400 400

Detail description is presented at Appendix 2-K.

(3) Flood overlapping study

Major floods in the past of which daily discharge was bigger than 170 m³/sec for the residual area of Pulau Raja and also 200 m³/sec for Kisaran were picked up by the Study Team in consideration of discharge capacity of existing channel. Seasonal distribution of the flood frequency is shown in Fig. 5. The following flood characteristics were recognized from the frequency analysis:

- (a) Flood is often appeared during September through January and also in May,
- (b) From a viewpoint of flood size, bigger floods occur in September through January.

Objective flood of Sep./Oct. 1977 is recognized as a typical flood which satisfies the above characteristics. Considering that major floods have often been observed from September to January, big flood might possibly occur in December when the Regulating dam spills the annual maximum discharge.

On the other hand, from a viewpoint of rainfall records since 1963 when most of rainfall gaging stations started their operations, it is recognized that the residual area received much rainfall during three months from October to December in 1963 and 1969 as shown in Fig. G-6. In the same period the Regulating dam spilled remarkable outflow.

In conclusion, it is assumed that the basin receives the probable outflow from the Regulating dam in addition to the probable flood discharge from the residual area at the same time.

(4) Probable flood discharge

On the basis of the above conclusion, probable peak flood discharge was calculated at major points under present conditions. They are shown in Table G-6. Probable peak discharges under the conditions of proposed flood control schemes is also shown in Table G-7. They were calculated by use of discharge - storage relations of improved channels as shown in Table G-8, which were given with an assumption of channel conditions in Table G-9. The runoff simulation model of the alternative schemes are shown in Fig. G-7. Detailed description with regard to the alternative schemes is presented in Appendix 2-H.

2.2.2 Flooding in Lower Area

In addition to the runoff simulation mentioned above, flooding condition in lower areas of the Asahan and Silau rivers was also analyzed. The lower area which has suffered from habitual inundation is recognized in the right bank of the Asahan downstream from Pulau Raja and the both sides of the Silau downstream of Kisaran. In the analysis flooding mechanism was classified into two types, that is, storage type and diffusion type in consideration of topographic features.

The diffusion-type flooding is appeared in the upper part of the area, and its topographic feature shows gentle slopes. The excess water over the river bank flows downward on the flood-plain without standing, while flow width varies depending on the discharge. On the basis of information on damage due to the past floods of Sept./Oct. 1977, May 1982 and Jan. 1984, the flooding conditions were estimated assuming Manning's n and slope as 0.08 and 1/2,000 respectively. They are shown in Table G-10.

On the other hand, the storage-type flooding is appeared in the downstream part of the area. Its topographic feature is almost flat, and store the overflow water over the river bank because of the shortage of drainage capacity. Maximum water level, inundation area and stored volume were estimated by use of the following equation:

$$dS(t)/dt = I(t) - O(t)$$
where, $S(t)$: storage (m³)
$$I(t)$$
: inflow (m³/sec)
$$O(t)$$
: outflow (m³/sec)
$$t$$
: time (sec)

The estimated maximum flooding condition during the flood time is shown in Table G-10.

Flooding condition due to probable floods was also estimated as shown in Table G-11. In the calculation of the diffusion-type flooding, it is assumed that overflow water spreads down with constant depths of 0.6 m and 0.5 m for the Asahan and Silau rivers respectively in consideration of the past flooding condition. Because the overbank flow spreads so widely without much difference in depths even though inflow discharge is increased. The maximum flooding condition in the storage-type flooding area was also estimated by use of hydrographs of probable floods as shown in Table G-11.

2.3 Flood Discharge Analysis of Kualuh and Kiri River Basins

The same methodology as those of the Asahan and Silau river basins was used to analyze flood runoff from the Kualuh and Kiri river basins. Flood-runoff simulation model was provided by the Study Team as shown in Fig. G-8, of which sub-basins are shown in foregoing Fig. G-1.

The simulation model of the Kualuh river basin was examined to determine storage coefficients of sub-basins under the hydrological conditions in major past floods of Sep. 1983 and Jan. 1984. Simulated discharge hydrographs during the flood times are shown in Fig. G-9 with observed data. Estimated storage coefficients are also shown in Table G-12. As for runoff calculation of channels discharge - storage relations were provided as shown in Table G-13 assuming channel conditions shown in Table G-14.

The storage coefficients of the Kiri river basin were estimated in consideration of those of the Asahan and Silau river basins because discharge hydrograph of any flood has not been recorded. They are shown in Table G-15. Discharge - storage relations and assumed channel conditions are also shown in Tables G-16 and G-14 respectively.

Probable flood discharge of the both river basins was calculated at major points under present conditions. They are shown in Table G-17. Probable flood discharge under the conditions of the alternative flood control plans, which is explained in APPENDIX H, is also shown in Table G-18. It is assumed that discharge - storage relations are changed by improved channel conditions. They are shown in Tables G-19 to G-21.

3. Flooding Mechanism

3.1 Flooding Characteristics

The river basins are situated in heavy rainfall zone by the monsoons and characterized by the topographic features of river profiles with steep slope. Such heavy rainfall frequently brings about inundation in low-lying area of the lower basin.

After heavy rainfall in the mountainous areas, the river stage rises rapidly in the middle reaches and river water overtops the bank exceeding the discharge capacity. The flooding in the plain thus may be caused by the following two factors:

- (a) Overbank flow of flood water due to small discharge capacity of channel.
- (b) Insufficient capacity of drainage system in low-lying area.

Figure G-10 shows possible flooding areas based on the data collected from DPUP, North Sumatra and the informations obtained through field survey.

The flooding conditions for each river are as follows:

(1) Bunut river

As the drainage area of the Bunut river is small of 120 km² at Serbangan irrigation weir, flood discharge and inundated area were comparatively small even in the September 1983 flood. After construction of dikes of 14 km in total length, flood damage has been further reduced.

(2) Silau river

The Silau river has continuous dikes on the both banks in the stretch between Kisaran and near Tanjung Balai. But those dikes have often been destroyed, especially in the downstream reaches, even by discharges less than its discharge capacity. It seems that those dikes are as a whole not firm and maintained with insufficiency.

(3) Asahan river

The Asahan river also has dike of 11 km long on the right bank in the downstream reaches of Pulau Raja. This dike has occasionally been destroyed by floods due to the same reasons as those of the Silau river.

The overtopping excess water runs eastward and the area on the right bank is inundated. The duration of inundation is considerably long as two or three months.

In the downstream reaches from the existing dike, the discharge capacity is smaller than that of the upstream reaches so that the excess water above capacity intrudes into the broad swamp on the right bank through various small tributaries, and the whole swamp area becomes a huge flood-plain.

In the swamp area, an intricate channel network and several rivers exist, but this system is completely inadequate to evacuate the water. As a consequence, this area is inundated for considerable long time.

(4) Kualuh river

The most floods overflow mainly to the left bank area in the middle reaches downstream from highway bridge due to the topography. The area which consists of considerably large paddy field had often suffered from floodings before the present dikes were constructed in total length of 29 km. Since then floodings have been reduced remarkably.

3.2 Flooding Conditions

According to the data on the past floods collected from DPUP, North Sumatra and the informations obtained through the field survey, the floods in the last eight years from 1977 to 1984 are as follows:

Bunut river : Sep. 1983

Silau river : Sep. 1977, Apr. 1983, May 1983, Feb. 1984, Apr. 1984,

May 1984 and Sep. 1984.

Asahan river : Oct. 1977, Dec. 1978, Mar. 1980, Apr. 1982, May 1982 and

Jan. 1984.

Kualuh river : Sep. 1983, Oct. 1983 and Jan. 1984.

Out of them, the following floods are selected for the estimation of flooding conditions and damage.

Asahan river : Sep. 1977, May 1982 and Jan. 1984

Silau river : Sep. 1977, May 1982 and May 1984

In order to estimate flooding conditions, a contour map of the study area is made as shown in Fig. g-11 based on the existing data on topography. Both the contour map and results of discharge analysis in the lower area, provided flooding conditions such as inundated area, depth and duration of the said floods as shown in Table G-22.

The flooding conditions for probable floods of 2-, 10-, 30- and 100-year were also estimated as shown in Table G-23. The probable inundation area of the 10-yr and 30-yr floods are presented in Fig. G-12.

4. Flood Damages

4.1 Methodology

4.1.1 Basic strategy

Flood damages are estimated in principle, from properties in flooding area multiplied by the damage rate depending on the flooding conditions. The damages are estimated for respective properties such as house/building, household effects, stored goods, agricultural crops, public facilities and others. Damages consist of direct and indirect damages. Direct damages are further classified into three categories such as damages to buildings including properties therein, agricultural products and public facilities.

Flood damages under future condition in the year of AD 2005 are also estimated for the establishment of the long-term plan in the study area.

All the monetary values are expressed by the economic prices as of the end of March 1985. The conversion rate of foreign and local currencies are assumed at:

$$US$1 = Rp. 1,100 = Japanese \forall 250$$

The methods adopted to the estimation of damages for respective properties are discussed further in the following paragraphs.

4.1.2 Damages to house and household effects

(1) Damages to houses

The unit value of residence/farmhouse under present conditions is estimated as:

Vh = Af x Cev Eq(G.2)
=
$$75 \text{ m}^2 \text{ x Rp. } 22,400/\text{m}^2 = \text{Rp.1,680,000/house in urban area}$$

 $= 45 \text{ m}^2 \text{ x Rp. } 13,400/\text{m}^2 = \text{Rp. } 605,000/\text{house in rural area}$

where, Vh: unit value of a house (Rp./house),

Af: average floor space for a house (m²), and Cev: evaluated price for unit area (Rp./m²).

A weighted-mean floor space of residence/farmhouse are estimated as shown in Table G-24. As for the price of unit area for a house, weighted-mean price of temporary, small, semi-permanent and permanent houses is applied as shown in Table G-25.

Damages to residence/farmhouses in AD 2005 are estimated based on the increases of unit value and population. Unit value of residence in urban area, e.g. in Tanjung Balai, is assumed to increase to Rp. 1,875,000 for a house though the number of houses does not change.

Unit value of residence/farmhouse in rural area is estimated using the average growth rate of population and increase of unit value. Growth rate of 1.2% per annum (1980 to 1983 in Kabs. Asahan and Labuhan Batu) is applied for the estimation under future condition. Evaluated price for unit area of house is assumed to increase to Rp. 17,600/m².

(2) Damages to household effects

The values of total household effects in residence or farmhouse are estimated as follows:

Vhe = Ohe x P - Eq(G.3)

= Rp. 857,800/house x 2.29 = Rp. 1,960,000/house in urban area

 $= Rp. 528,900/house \times 2.29 = Rp.1,210,000/house in rural area$

where, Vhe: value of household effects per house (Rp./house),

Ohe: standard value of household effects for each house (Rp./house),

and

P: index for estimation of current value in 1985.

 $(= 2.29 = 1.30 \times 1.76)$

The standard value of house household effects are estimated using the data on monthly family expenditure in 1980 as shown in Table G-26. The average period of use and duration life of property are considered for the estimation.

Growth rate of per-capita regional income and consumer price index (CPI) of North Sumatra, which are provided in Table G-27, are applied for the estimation of the index P.

Future increase of household effects is estimated based on the increase of GRDP in commercial sector. The annual growth rate of 4.5% is adopted considering the circumstances of surrounding area.

(3) Damage rate

The rates of damage to house/building and household effects are presented in Table G-28 applying Japanese standards which are also adopted in the similar projects in Indonesia.

4.1.3 Damages to commercial sector

(1) Damages to building

The unit value of buildings in commercial sector such as store, trade, restaurant and hotel is estimated as follows:

Vs = Af x Cev Eq(G.4) = $150 \text{ m}^2 \text{ x Rp. } 25,000/\text{m}^2$ = Rp.3,750,000/building in urban area = $100 \text{ m}^2 \text{ x Rp. } 15,000/\text{m}^2$ = Rp.1,500,000/building in rural area

where, Vs: unit value of building in commercial sector (Rp./building),

Af: average floor space for a building (m²), and

Cev: evaluated price for unit area (Rp./m²).

The existing buildings of commercial sector are assumed to be permanent and semipermanent houses for urban and rural areas respectively.

Damages to buildings in AD 2005 are estimated based on the increases of unit value and number of buildings. Unit value of building in urban area is assumed to increase to Rp. 4,500,000/building though the number of building is not change.

Unit value of building in rural area is estimated using the average increase of GRDP in commercial sector. The annual growth rate of 4.5% is adopted for the estimation.

(2) Damages to household effects in commercial sector

Numbers of house/building and household in each Kecamatan and Kodya Tanjung Balai in and around the flood prone area are presented as shown Tables G-29 and G-30. Total number of house/buildings except "others", which is one of the items for number of house/building, corresponds to the number of households, because owners and their families in Indonesia generally live in their stores, restaurants, hotels and small industries. Considering the above matters, the value of household effects in commercial sector are estimated in similar manner as that in residence/farmhouse, e.g.,

Increase of household effects in AD 2005 is estimated based on the increase of GRDP in commercial sector. The annual growth rate of 4.5% is adopted for the estimation.

(3) Damages to stored goods

The value of stored goods in commercial sector is estimated as follows:

$$Vc = (Vsf + Vsd + Vsc + Vsfl + Vsp) \times P$$
 Eq(G.6)
= Rp. 1,234,000/building x 1.76 = Rp. 2,170,000/building

where, Vc: value of stored goods in commercial sector,

Vsf: stock value of food and beverage,

Vsd : stock value of furnishing/durable goods,Vsfl : stock value of fuel, light, water for house,

Vsp: stock value of personal goods, and

P: index for estimation of current value in 1985 (= 1.76).

The total stock value is estimated as shown in Table G-31 with their 1980-prices. The quantity of stored goods in a store in 1985 is assumed to be same as those in 1980, and the average increase of CPI is applied for the index P. The value of Rp. 2,170,000/building is also applied for that of the Kualuh river area in Kab. Labuhan Batu.

Increase of stored goods in commercial sector in AD 2005 is estimated based on the increase of GRDP in commercial sector. The annual growth rate of 4.5% is adopted for the estimation.

(4) Damage rate

The rates of damage to buildings, household effects and stored goods in commercial sector are shown in Table G-28 applying the standard in Japan.

4.1.4 Damages to small industry

(1) Damages to buildings

The unit value of small industry is estimated as follows:

 $Vi \approx Af \times Cev$ Eq(G.7)

 $= 200 \text{ m}^2 \text{ x Rp. } 25,000/\text{m}^2 = \text{Rp. } 5,000,000/\text{workshop in urban area}$

 $= 200 \text{ m}^2 \text{ x Rp. } 20,000/\text{m}^2 = \text{Rp. } 4,000,000/\text{workshop in rural area}$

where, Vi: unit value of small industry (Rp./workshop),

Af: average floor space for a workshop (m²), and

Cev: evaluated price for unit area (Rp./m²)

Damages to workshop in AD 2005 are estimated based on the increases of unit value and number of workshops. Unit value of workshop in urban area is assumed to increase to Rp. 6,000,000/workshop though the number of workshops is not change.

For the workshops in rural area, damages are estimated using the average increases of workshops and unit value. Average increase of 4% per annum in Kab. Asahan from 1980 to 1983 is adopted and unit value of workshop is assumed to increase to Rp. 4,800,000/ workshop.

(2) Damages to household effects in small industry

In the flood prone area of the Asahan and Silau rivers, workshops of handicraft, brick and clothes occupy about 85% of total workshops. As same as the commercial sector,

owners and their families are assumed to live in their workshops. The values of total household effects in small industry are estimated in the same manner as that of ordinary house, e.g.,

Future increase of household effects is estimated based on the increase of GRDP in commercial sector. The annual growth rate of 4.5% is adopted for the estimation.

(3) Damages to property in small industry

The value of stored goods in a small industry is estimated as follows:

where, Vi : value of property in a small industry,

Vsp: stock value of products,

Vsm: stock value of raw materials, and Veq: value of machines and equipments.

The stock value of products and raw materials are estimated to be equivalent to half of monthly gross output and 82% of monthly input cost, respectively. The gross output and input cost per workshop are estimated by the GRDP in industry sector in Kab. Asahan.

The value of machines and equipments is estimated to be equivalent to ten times of annual capital cost which is calculated by the following equation:

$$Cc = Pi/N - Clb$$
 Eq(G.10)

where, Cc: annual capital cost (Rp./workshop),

Pi : GRDP in industry sector in Kab. Asahan (Rp./yr),

N: number of establishment in Kab. Asahan, and

Clb: total labor cost for one workshop.

Detail process of the estimation is presented in Table G-31.

Increase of stored goods in workshop in AD 2005 is estimated based on the increase of GRDP in industry sector. The annual growth rate of 7% is adopted for the estimation considering the circumstances of surrounding area.

(4) Damage rate

The rates of damages to buildings, household effects and property of workshop for small industry are shown in Table G-28 applying the standards in Japan.

4.1.5 Damages to other building

The unit value of other buildings such as local government office, mosque, church, school, etc., are estimated as follows:

Vo = Af x Cev Eq(G.11)
=
$$250 \text{ m}^2 \text{ x Rp. } 25,000/\text{m}^2 = \text{Rp. } 6,250,000/\text{building in urban area}$$

= $200 \text{ m}^2 \text{ x Rp. } 25,000/\text{m}^2 = \text{Rp. } 5,000,000/\text{building in rural area}$

Damages in AD 2005 are assumed to be Rp. 7,500,000/building and Rp. 6,000,000/building for urban and rural areas respectively, based on the increase of unit value. In the rural area, increase of population (1.2% per annum) is also considered.

Damages to property in this category are assumed to be equivalent to 10% of the value of building.

Unit values of house/building, household effects and stored goods are summarized in Table G-33.

4.1.6 Damages to agricultural crops

(1) Wetland paddy

The unit value of wetland paddy are estimated as follows:

 $V_p = Y_p \times P_p \qquad Eq(G.12)$

= 2.5 ton/ha x Rp. 193,000/ton = Rp. 482,500/ha for the Asahan and Kualuh river areas in 1985

= 3.0 ton/ha x Rp. 193,000/ton = Rp. 564,000/ha for the Silau and Bunut river areas in 1985

where, Vp: value of paddy field in net area (Rp./ha),

Yp: Unit yield rate of paddy (ton/ha), and

Pp: unit price of paddy (Rp./ton).

a. Unit price of paddy

Based on the price of rice predicted by the World Bank (IBRD), the firm-gate price of paddy (dry stalk paddy) is estimated at Rp. 193/kg and Rp. 251/kg in 1985 and 2005 respectively as shown in Table G-34. The unit yield rates of 2.5 ton/ha is adopted for the Asahan and Kualuh rivers. For the Silau and Bunut rivers, 3.0 ton/ha is adopted.

b. Cropping pattern and flood season

The representative cropping pattern in the study area is as follows:

Stage : Transplanting Tillering Booling Heading Ripening

Month: Oct. Nov. Dec. Jan. Feb.

On the other side, the area has a flood season from September to January which meets growing period of paddy.

c. Reduction rate

In consideration of growing stage of paddy in flood season, the yield reduction rates for respective flooding condition are presented in Table G-35.

(2) Upland crops

The upland crops are further classified into upland paddy, maize and soybean. These are the major crops in the Study Area.

For the damage estimation of upland paddy, the unit yield rate is assumed at 2.0 ton/ha and the unit price in Table G-34 is applied. The unit prices of maize and soybean are estimated as shown in Tables G-36 and G-37 respectively, and prices per unit area are listed in Table G-38 with paddy price. Their reduction rates are presented in Table G-35.

(3) Rubber, oil palm and other crops

Flood damages to other products such as cassava, sweet potato, peanut, and estate products of rubber and oil palm are assumed at 5% of the sum of the wetland paddy and upland crops.

4.1.7 Damages to public facilities

Damages to public facilities such as river dike, road, bridge, irrigation intake, canal and drainage outlet are assumed at 30% of the direct damages.

4.1.8 Indirect damages

The indirect damages which are accrued from the losses due to interruption of smooth traffic and other economic activities in the flooding area were assumed at 10% of the total direct flood damages.

4.2 Probable Flood Damage

4.2.1 Damages under present condition

Table G-39 shows the calculation result of probable flood damages under present conditions. Total flood damages are summarized below.

(Unit: Rp. million)

River	2-yr	5-yr	10-yr	15-yr	30-yr	50-yr	100-yr
Bunut River	1,139	2,111	2,597	3,083	4,493	5,904	5,985
Asahan River	7,673	9,780	11,573	13,303	17,693	19,462	21,231
Main stream	1,595	2,932	4,034	4,136	4,269	4,339	4,409
Silau river	6,078	6,848	7,539	9,167	13,424	15,123	16,822
Kualuh River	1,553	2,587	5,099	5,994	6,890	7,487	8,084
Mainstream	995	1,355	3,193	3,743	4,294	4,662	5,029
Kanopan river	558	1,232	1,906	2,251	2,596	2,825	3,055
Total	10,365	14,478	19,269	22,380	29,076	32,853	35,300

4.2.2 Damages under future condition

Probable flood damages under future condition in the year of AD 2005 are estimated based on the increases of property and unit value. The calculation results of probable flood damages under the future conditions are presented in Table G-40 summarizing below:

(Unit: Rp. million)

River	2-yr	5-yr	10-yr	15-yr	30-yr	50-yr	100-yr
Bunut River	1,600	3,246	4,069	4,892	7,286	9,679	9,797
Asahan River	14,471	17,991	21,006	24,804	33,904	37,620	41,299
Main stream	2,467	4,701	6,506	6,672	6,902	7,014	7,125
Silau river	12,004	13,290	14,500	18,132	27,038	30,606	34,174
Kualuh River	2,142	4,189	8,339	9,905	11,470	12,513	13,556
Mainstream	1,248	2,190	5,236	6,188	7,139	7,774	8,408
Kanopan river	894	1,999	3,103	3,717	4,331	4,739	5,148
Total	18,213	25,426	33,414	39,601	52,696	59,812	64,652

4.3 Average Annual Flood Damages

The average annual flood damages were estimated as a cumulus of flood-damages segments derived from probable flood damages multiplied by the corresponding probability of flood occurrence.

The average annual flood damages in the year of 1985 and 2005 are estimated as shown in Table G-41 and summarized below:

·	·	(Unit: Rp. million)
River	AD 1985	AD 2005
Bunut River	1,352	2,048
Asahan River	5,993	11,192
Mainstream	1,564	2,491
Silau river	4,429	8,701
Kualuh River	1,940	3,027
Mainstream	1,162	1,761
Kanopan river	778	1,266
Total	9,285	16,267

Table G.1 Annual Maximum Discharge Records

(b)													566)
naluh R.) Discharge (cms)		1	I	ı	.1	1	ı	i	450	416	463	544	674 (666)
Pulo Dogom (Kualuh R.) ate W.L. Discharg (m) (cms)		t	1.	I	, I, '	;	1	1	3.26	3.13	3,31	3.60	4.02
Pulo D Date		I	1	1	ı	I	ı	1	Nov.22	Oct.23	Oct.18	Dec. 8	Jan. 25
nu R.) Discharge (cms)		080	292	236(260)	230	464(530)	187	196	187	285	346(370)	236	258
Kisaran (Silau R.) W.L. Disch (m) (cms	c c	3.30	2.25	2.00	1.97	2.90	1.75	1.80	1.75	2.22	2.47	2.00	2.10
Kisar Date	c s	Dec.2	Sep.30	May 20-21	May 21	Sep.30	Dec.21	Nov.20	Mar.17	May 29	May 24	Dec.18	May 24
(Asahan R.) . Discharge (cms)		î	ı	i .		373(440)	324	278	333	317	491 (460)	295	521(510)
(A.s.		1	1	1	. 1	3.62	3.36	3.10	3.41	3.32	4.18	3.20	4.31
Pulau Raja Date W.L.		i	ı	I	i	Sep.29	Dec.22	Dec.13	Nov. 3	Nov.17	May 23	Sep.13	Jan.25
Year		19/3	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984

Remarks; Discharge with parentheses is estimated by runoff culculation.

Table G.2 General Features of Storage Function

Equation for drainage area

p s = k q (storage equation)

r - q = ds/dt (continuity equation)

Q = 1/3.6 f Aq (t + T) + 1/3.6 (1 - f) Aq (t + T) + Q

where; Q: runoff from a drainage area (cms)

Q : base flow (cms)

E

A : drainage area (sq.km)

f : primary runoff percentage

T : lag time (hr)

1

q ,q : specific discharge from the primary

1 2 or saturation area (mm/hr)

r : rainfall intensity (mm/hr)

s: storage in a drainage area (mm)

k,p : coefficients

Equation for a channel

S = k 0 - T 0(storage equation)

I - 0 = ds/dt (continity equation)

Q(t) = 0(t - T)

where; Q: runoff from a channel exit (cms)

O: discharge in a channel (cms)

I: inflow to a channel (cms)

S: storage in a channel (cms.hr)

Table G.3 Storage Function for Sub-basins of Asahan and Silau Rivers (1/2)

Sub-basin No.	Drainage area		Coefficien	t	Lag-time
territ manuscher auf erfanteren ihrer er	(km2)	K	P	f1	(hr)
Asahan river	5702.1				•
100	3674.0	903		***	-
101	146.0	57.46	0.333	1.0	0.591
102	68.0	58.01	0.331	1.0	0.419
103	107.9	50.72	0.367	1.0	1.087
104	168.7	27.89	0.587	1.0	1.911
105	139.9	43.99	0.411	1.0	2.028
106	153.8	39.04	0.451	1.0	2.038
107	28.0	23.55	0.670	1.0	0.226
108	197.1	22.65	0.691	1.0	1.198
109	96.7	11.40	1.000	1.0	0.398
110	233.8(74.5)	11.40	1.000	1.0	1.648(0.911
111	233.5(195.3)	11.40	1.000	1.0	0.667
112	79.9	11.40	1.000	1.0	0.292
113	227.4	11.40	1.000	1.0	1.436
114	147.4	11.40	1.000	1.0	0.439
(124)	(159.3)	(11,40)	(1.000)	(1.0)	(0.737)
(125)	(85.1)	(15.12)	(0.810)	(1.0)	(1.066)
(126)	(289.5)	(11.40)	(1.000)	(1.0)	(1.423)

Remarks ; Data with parentheses are used for floodway scheme which is discussed in APPENDIX H.

Table G.3 Storage Function for Sub-basins of Asahan and Silau Rivers (2/2)

Sub-basin No.	Drainage area	C	oefficien	t	Lag-time
والمراجعة والمستحددة والمستحددة والمستحددة والمستحددة والمستحد والمستحددة والمستحدد والمستحددة والمستحددة والمستحددة والمستحددة والمستحددة والمستحددة والمستحددة والمستحددة والمستحددة والمستحدد والمستحدد والمست	(km2)	K	P	£1	(hr)
Silau river	1,201.4				
115	136.1	56.87	0.336	1.0	0.935
116	125.4	27.45	0.594	1.0	1.259
117	65.5	23.11	0.680	1.0	0.915
118	184.1	60.10	0.322	1.0	0.753
119	181.1	47.32	0.388	1.0	0.940
120	227.4	25.14	0.637	1.0	1.360
121	85.4	24.17	0.657	1.0	1.147
122	45.2	15.09	0.949	1.0	0.368
123	151.2	11.40	1.000	1.0	1.264

Discharge - Storage Relation of Existing Channel of Asahan and Silau Rivers (1/2) Table G.4

	S	ı		ı	ι	1	1	ı	1	I	1	ı	t	nnel 10	S	0	280	380	580	900	1150	1520	2260	3100	4300	5180
Channel	δ	1		Į		1	1	. 1	1	ı	1		I	Channel	0	0	30	50	100	200	300	087	200	1000	1500	2000
	S	ļ		1	1	ľ	t,	i	ı	ı	i	ı	ı	nel 9	S	0	250	340	510	790	1020	1440	1960	2700	3800	7000
Channel	8	1		1	• • • • • • • • • • • • • • • • • • •	i	ł	1	1	1	ì		1	Channe	oʻ.	0	30	50	100	200	300	200	700	1000	1500	2000
1	S	0	7	۲)	120	180	225	270	310	400	200	730	066	nel 8	လ		1		. 1	1	ţ	ı	ł	·I	t	1
Channel	0	0	i C	S S	100	200	300	400	200	700	950	1300	2000	Channel	O	1	J	1	ı	1	1	1	I	ŧ	. 1	1
- 1	S	0		90	165	240	350	478	730	980	1300	1800	2200	Channel 7	S	ı	1	1	ı	1	1	ŀ	ı	ı	1.	ł
Channel	0	0	,	20	50	100	200	340	500	700	1000	1500	2000	Char	٥	1	1	1	ĭ	ì	1	1	١	1	1	1
Channel 1	S	0	, C.	C71	270	410	630	750	1020	1200	1550	1980	2600	Channel 6	S	ı	1	i	ł	i	i	. 1	ı	ı	ı	1
Cha	0	0	7	*	20	100	200	260	400	200	700	1000	1500	Cha	Q	t	ı	ι	ŧ	ŧ	ι	ŧ	ι		ι	Į

Remarks; Q: Discharge (m3/s)

S : Storage (m /s.hr)

Table G.4 Discharge - Storage Relation of Existing Channel of Asahan and Silau Rivers (2/2)

Channel 15	S	. <	>	392	530	800	1220	1560	2500	3650	6200	9500	14000															
Ch	0	c	>	30	20	100	200	300	700	200	700	1000	1500										•					
Channel 14	S	. c	>	245	330	200	770	980	1320	1460	2000	3150	4250															
Cha	0	c	>	30	50	100	200	300	200	590	900	1400	2000	-	1 .		I											
Channel 13	S		>	185	210	325	490	630	860	1060	1400	2100	2650		Channel 18	S		1	i	į.	ı	1	ı	1	. 1	ŀ	ı	1
Cha	0			70	20	100	200	300	200	700	1000	1500	2000		Cha	0		i	ļ		I	1	!	449	r	I	t	1
Channel 12	S	c	>	360	490	740	1130	1450	2000	2400	3000	4050	4850		Channel 17	တ		i	ı	1	ı	1	1	į	ı	i	1	ì
Cha	0	c	>	30	20	100	200	300	500	700	1000	1500	2000		Cha	O		·1	1	1	ı	i	1	I	t	i	1	ı
Channel 11	S		· >	176	200	310	470	009	830	1030	1470	2050	2600		Channel 16	S		ŀ	ı	1	ı	•	ı	1	, I	i	ı	ı
Chai	0		>	70	. 50	100	200	300	200	700	1000	1500	2000		Cha	0		1	I	l	ı		1	1	ı	ı	l	I

Table G.5 Assumed Existing Channel Condition of Asahan and Silau Rivers

	Channel Width (m)			. 08	100	200	1	t		1	1			100	140.	100	100	200	250		ł	ı	ı	
	Channe														**									
Channel	Width (m)		-	50	50	100	1	1	ı	1	t			50	70	50	. 08	100	120	130	F	f	ı	
Low-water Channel	Depth (m)			3.0	3.0	ы Б.	ı	1	ì	1	ı			3.0	3.0	3.0	3.0	3.0	3.0	1.7		ľ	ı	
	Manning n			0.030	0.030	0.030	1		ı	ı	. 1			0.040	0.035	0.050	0.035	0.030	0.030	0.030		•	ı	
	Slope			1/1300	1/800	1/4000		ı	1	i	1			1/200	1/600	1/60	1/700	1/500	1/1700	1/1430	ı	1	1	
	Length (km)			18.0	11.5	2.8	ı	ı	i	1	1			33.8	26.2	25.4	30,3	14.7	14.7	21.7	ı	ı	I	
	No.				7	m	7	5	9	7	8			6	10	*	12	13	14	15	16	17	18	
	River	٠	Asahan	Asahan	Sakur	Asahan	Asahan	Asahan	Asahan	Asahan	Asahan	 211911	2110	Piasa	Piasa	Silan	Silau	Silau	Silau	Silau	Silan	Silau	Silau	

Table G.6 Probable Peak Flood Discharges of Asahan and Silau Rivers under Existing Condition

•						(Unit	: m3/s)
Site				ı Period			4.00
· · · · · · · · · · · · · · · · · · ·	2	5	10	15	30	50	100
Asahan River							
Regulation dam	315	400	400	400	400	400	400
Proposed site of Parhitean dam	394	562	650	698	807	899	1,033
Before join Sakur R.	512	675	810	882	1,061	1,182	1,403
Pulau Raja	625	826	1,001	1,106	1,355	1,523	1,839
After join Teluk R.	703	848	1,022	1,127	1,377	1,546	1,861
Flood area Inflow Outflow	904 391	1,001 429	1,081 436	1,187 440	1,437 447	1,607 453	1,923 460
After join Kepayang R.	402	440	448	452	459	464	471
After join Silau R.	753	797	810	816	828	835	861
Silau River							
Kisaran	449	457	565	670	911	1,055	1,300
Tanjung Balai	362	369	375	403	463	490	532
Tributaries							
Sakur River	113	157	220	253	326	374	448
Masihi & Teluk Rivers	136	140	143	145	147	149	151
Nantalu & Lebah R.	140	142	143	144	145	145	146
Sukaraja River	106	106	106	106	109	116	124
Max. Flooding W.Level							
Asahan River (EL,m)	3.59	4.07	4.08	4.09	4.10	4.11	4.13
Silau River (EL,m)	3.52	3.56	3.59	3.75	4.07	4.22	4.45
					_		

Table G-7 Probable Peak Flood Discharges of Asahan and Silau Rivers (1/2)

				nit: m3/s)	
Site	والمقدودة والمستان والمرارية والمداوة والمستان فالقواوي		O-year flood	114	7
Part and the second	Alternat	ive 1 A	lternative 2	Alternative	
sahan River					
Regulation dam	400		400	400	
Parhitean dam					
Inflow	807		807	807	
Outflow	500		500	500	
Before join Sakur R.	753		753	753	
	1,067		1,067	1,067	
Pulau Raja	591		-		
Floodway	547		935	935	
After join Masihi R.			-	974	
After join Nantalu R.	524		4 046	·	* 1
After join Sukaraja R.	598		1,015	1,083	
After join Lebah R.	620	•	554	1,085	
Retarding basin					
Inflow			1,127	- .	
Outflow			726	. -	
After join Kepayong R.	626		739	1,071	
After join Silau R.	1,266		1,322	1,592	
micor join brade in	• •			**	
ilau River	04.4		011	911	
Kisaran	911		911	711	
Cributaries					
Sakur River	326		326	326	
Masihi & Teluk R.	147		147	147	
Nantalu River	29		88	88	
Sukaraja River	109		109	109	
Lebah River	53		45	61	
Leban kiver	23		7,5		
letarding basin					
Max W.L (EL.m)	_		3.04	-	
Max Area (km2)	-		94.2		
Max Vol. (MCM)	***		91.6	 ·	
Remarks ;					
Alternative 1	Asahan R.:	channel	improvement	combined wit	h
•		floodwa			
!	Silan R.:		improvement		
		-			
Alternative 2	Asahan R.:	channel	improvement	combined wit	h
		retardi	ng basin	and the second	
·	Silau R. :		improvement		
•		:		1.0	
Alternative 3	Acahan P .	channel	improvement		
Alternative 3	avanen K	ahanna1	improvement		
•	orran K. :	Chamer	Tubrovement		

Table G-7 Probable Peak Flood Discharges of Asahan and Silau Rivers (2/2)

Alternative 2

Alternative 2				(Unit :	m3/s)	
Site	U	rgent pla			-term pla	
1	5-yr	10-yr	15-yr	15-yr	30-yr	50-yr
Asahan River						
Regulation dam	400	400	400	400	400	400
Parhitean dam						
Inflow	562	650	698	698	807	899
Outflow	562	650	698	500	500	600
Before join Sakur R.	675	810	882	690	753	896
Pulau Raja	826	1,001	1,106	941	1,067	1,250
Retarding basin						
Inflow	948	1,044	1,106	1,057	1,127	1,250
Outflow	705	719	723	720	726	734
After join Kepayong R	. 718	732	736	733	739	747
After join Silau R.	1,169	1,171	1,198	1,192	1,322	1,475
Silau River						
Kisaran	469	565	670	670	911	1,055
Tributaries						
Sakur River	157	220	253	253	326	374
Masihi & Teluk R.	140	143	145	145	147	149
Nantalu River	86	87	87	87	88	88
Sukaraja River	106	106	106	106	109	116
Lebah River	43	43	44	44	45	47
Retarding basin						
Max W.L (EL.m)	2.93	3.00	3.02	3.01	3.04	3.07
Max Area (km2)	89.1	92.0	93.4	92.4	94.2	96.6
Max Vol. (MCM)	82.5	87.5	90.0	88.2	91.6	96.3
			**			

Discharge - Storage Relation of Improved Channel of Asahan and Silau Rivers (1/5) Table G-8

S		Channel 2	Channel	nel 3	Cna	Channel 4	Channe	nnel 5
	0	S	0	S	0	S	0	S
Alternative 1								
o	C	C	c	O	0	0	0	0
14 125	φ.	80	50	75	50	230	20	145
	20	165	100	120	100	350	100	220
100 410	100	240	200	180	300	069	250	370
630	200	350	300	225	200	1550	500	1200
260 750	340	478	400	270	900	2050	700	1650
	200	730	200	310	800	2600	1000	2250
500 1200	700	980	700	400	1000	3150	1500	3000
700 1550	1000	1300	950	500	1500	4250		
	1500	1800	1300	730				•
500 2600	2000	2200	2000	066				
Alternative 2					0	0	1	i
					20	380	į	1
Same as	Same	e as	Same as	as	100	570	1	1
Alternative 1	Alt	Alternative 1	Alte	Alternative 1	300	1150	ı	t
					200	2500		i
					009	3400	ı	ł
					800	4300	ŀ	J
					1000	5400	1	ı
					1500	7400	ı	i
Alternative 3					!	·		
Same	Same	as	Same	28.	Same	as	Same	Same as
Alternative 1		1 townstian 1	* 4 + 4	1	/ 1 t	C 0.1.1.1.0.1.0.1.1.0.1.0.1.0.1.0.0.1.0.0.1.0.0.1.0.0.1.0.0.1.0.0.1.0.0.1.0.0.1.0.0.1.0.0.1.0.0.1.0	4 1 2 4	

Remarks; Q: Discharge (m3/s) S: Storage (m3/s.hr)

Discharge - Storage Relation of Improved Channel of Asahan and Silau Rivers (2/5) Same as Alternative 1 280 380 580 900 1150 1520 2260 3100 4300 5180 0 s Channel Q 0 30 50 100 200 300 480 700 1000 1500 Alternative 1 Channel 9 Q S 250 340 510 790 1020 1440 1460 2700 3800 4700 Same as 0 30 50 100 200 300 500 700 1500 Channel 8 Q S 340 520 840 2900 3800 5800 8000 9800 50 100 220 450 450 600 800 1500 2000 330 490 740 970 1520 2180 2950 3450 4750 6550 8200 Channel O 50 100 200 300 400 500 600 700 1500 2000 315 480 480 860 2800 3900 4700 320 490 990 22000 2900 3600 4300 စ Alternative 2 Alternative 1 Table G-8 Channel Q 50 100 270 270 550 800 1000 50 100 320 500 500 630 800 1000

Discharge - Storage Relation of Improved Channel of Asahan and Silau Rivers (3/5) Alternative 1 Channel O Same as Channel 9 Alternative 1 Same as Alternative 2 Channel 8 0 S Same as 6100 4300 Channel 0 1500 0001 Channel 6 0 S Alternative 3 Table G-8

Alternative 1 Discharge - Storage Relation of Improved Channel of Asahan and Silau Rivers (4/5) Alternative 1 380 500 960 1550 2500 3150 4000 5200 Same as Channel Same as 50 80 180 300 500 700 1000 0 Alternative 1 245 330 500 770 770 980 1320 1460 2000 3150 Alternative 1 Same as Channel Same as 30 30 100 200 300 500 500 500 1400 2000 Alternative 1 Alternative 1 185 210 325 490 630 860 1060 1400 2100 2650 Same as Channel Same as 0 40 50 100 300 500 700 1500 O Alternative 1 Alternative 1 Same as . Channel 12 360 490 740 1130 1450 2000 2400 3000 4050 Same as 30 30 50 200 200 500 500 700 1500 Alternative 1 Alternative --- 176 200 310 470 600 830 030 က် 1470 2050 Same as Alternative 3 Alternative 2 Channel Alternative 1 Same as Table G-8 0 40 50 200 300 500 700 1500

Discharge - Storage Relation of Improved Channel of Asahan and Silau Rivers (5/5) Table G-8

				-					÷											•							
inel 18 S		0	145	220	340	640	780	1100	1400	1950			ı	1		i	i	1	T	1	1					Same as	
Channe 1 Q		0	20	100	200	320	200	200	1000	1500		-	1	1	1	i	ı	i	1	t	1	1	1		:	Same as	4 4 4 .
Channel 17 Q S	·	0	380	570	1600	2300	3400	4400	2600	7200			1		Į.	ι	1	ŧ	i	1	1	l	l,			Same as	
Char		0	20	100	200	300	200	200	1000	1500			1	1	ı		•	I	1	I ,	ı	i				Same	1
nnel 16 S	-1 -1	0	200	330	980	1400	2100	2650	3400	4400	7e 2	: 	1	1		1	•	t ·	V	•	1	· t	ı	ı	၈ ၈	Same as	
Channel 0	Alternative	0	20	100	200	300	200	700	1000	1500	Alternative			ı	1	1	ı	i		i	ì	I	•		rernarive	Same	1 444
		-																			+ 3						٠

Table G-9 Improved Channel Condition of Asahan and Silau Rivers

					Low-water	Channel	
River	No.	Length (km)	Slope	Manning n	Depth (m)	Width (m)	Channel Width (m)
Asahan					•		
		-					
Asahan		18.0	1/1300	0.030	3.0	50	80
Sakur	2	11.5	1/800	0.030	3.0	20	100
Asahan	ო	2.8	1/4000	0.030	3,5	100	200
Asahan	7	16.2 (9.7)	1/3500	0.030	3.0	85	500
Asahan	Ŋ	6.5	1/3500	0.030	3°0	70	500
Asahan	9	13.9	1/3500	0.028	3.0	-	200
Asahan	7	15.0	1/3500-1/4600	0.025	2.9	110 (80)	500
Asahan	∞	9.2	1/18000	0.023	3.0	110	800
Silau							
Piasa	σ	33.8	1/200	0.040	3.0	20	100
Piasa	10	26.2	1/600	0.035	3.0	70	140
Silau	, -	25.4	1/60	0.050	3.0	50	100
Silan	12	30.3	1/700	0.035	3.0	80	100
Silau	13	14.7	1/500	0.030	3.0	100	200
Silau	14		1/1700	0.030	3.0	120	250
Silan	15	21.7	1/1430	0.030	1.7	130	255
Silau	16	•	1/2500	0.030	1.5	70	780
Silau	17	15.3	1/3400	0.030	7.	90	480
Silau	18	4.7	1/3400	0.030	2.1	160	480
-							

Remarks : Channel length and low-water channel width with parentheses is for alternative 1.

Table G-10 Estimated Flooding Condition due to Past Floods

Diffusion-type Flooding Area

A A A PORTING OF THE PARTY OF T	A	sahan			Silau	
Flood	Overbank inflow (*) (m3/s)	Width (m)	Depth (m)	Overbank inflow (*) (m3/s)	Width (m)	Depth (m)
1977	239	2000	0.60	326	4000	0.48
1982	257	2000	0.63	169	2500	0.43
1984	305	5000	0.40	52	1000	0.36

(*) Peak discharge - carrying capacity (200 m /s)

Storage-type Flooding Area

**************************************		Asahan			Silau	
Flood	W.L (E1.m)	Area (km2)	Volume (10 m3)	W.L (El.m)	Area (km2)	Volume (10 m3)
				•	.**	
1977	3.12	133.6	81.3	3.58	12.4	13.1
1982	3.15	138.8	86.4	3.22	9.3	8.9
1984	3.64	191.7	172.8	3.03	7.6	6.6

Table G-11 Estimated Flooding Condition due to Probable Floods

Diffusion-type Flooding Area

73			0:1	
Return Period (yr)	Asahan Overbank (*) inflow(m3/s)	Width (km)	Silau Overbank (*) inflow(m3/s)	Width (km)
100	1639	13.7	1100	12.5
50	1323	11.1	855	9.7
30	1155	9.7	711	8.1
15	906	7.6	470	5.3
10	801	6.7	365	4.1
5	626	5.2	257	2.9
2	425	3.6	249	2.8

^(*) Pack discharge - Carrying capacity (200 m3/s)

Storage-type Flooding Area

Return		Asahan			Silau	
Period (yr)	Max. W.L (E1.m)	Max.Area (km2)	Max.Volume (10 m6)	Max.W.L (El.m)	Max.Area (km2)	Max.Volume (10 m6)
100	4.13	243.2	270.3	4.45	21.7	28.0
50	4.11	241.6	265.4	4.22	18.7	22.8
30	4.10	240.9	263.1	4.07	16.9	19.6
15	4.09	239.8	259.9	3.75	13.8	15.0
10	4.08	239.3	258.1	3.59	12.5	13.2
5	4.07	238.2	254.8	3.56	12.2	12.9
2	3.59	186.1	164.0	3.52	11.9	12.4

Table G-12 Storage Function for Sub-basins of Kualuh River

Sub-basin No.	Drainage area		oefficier	ıt	Lag-time
many known with ring &	(km2)	K	P	fí	(hr)
201	529.6	37.82	0.395	1.0	2.402
202	58.6	21.20	0.622	1.0	1.016
203	459.4	34.85	0.421	1.0	1.006
204	292.8	33.08	0.439	1.0	2.088
205	381.5	40.73	0.373	1.0	1.431
206	70.7	29.77	0.477	1.0	0.793
207	71.6	12.51	0.940	1.0	0.920
208	235.2	32.32	0.447	1.0	1.016
209	52.6	11.40	1.000	1.0	0.201
210	194.8	11.40	1.000	1.0	1.162
211	148.0	21.41	0.617	1.0	0.823
212	75.1	15.08	0.812	1.0	0.591
213	134.2	11.40	1.000	1.0	0.748
214	117.1	24.72	0.551	1.0	0.960
215	306.6	11.40	1.000	1.0	1.572
216	375.4	11.40	1.000	1.0	2.018
217	85.1	15.12	0.810	1.0	1.066
218	224.8	11.40	1.000	1.0	1.274
219	96.3	11.40	1.000	1.0	0.829
Total	3909.4			1	

Table G-13 Discharge - Storage Relation of Existing Channel of Kualuh River

0	S	0	S	O	S	8	S	ď	S	0	S
0		0	0	0	0	0	0	0	0	0	0
20	460	30	135	30	350	50	340	30	120	20	490
100	700	20	185	20	470	100	520	50	170	100	740
200	1100	100	280	100	200	170	720	105	260	220	1200
300	2300	300	240	300	1350	300	1950	360	3200	200	2600
200	6400	200	730	450	1750	430	3700	200	4100	700	10500
300	16000	700	006	700	2450	200	2400	850	6200	950	18500
000	19000	1000	1100	1000	3250	1000	7100	1000	6800	1500	25000
	•	2000	1700	2000	5400	2000	11500	2000	10800	2000	30500
Cha	Channel 7	Channe		Cha	Channel 9	Cha	Channel 10	Cha	Channel 11	Cha	Channel 12
	S	Ò	S	0	S	0	S	0	S	0	S
0	0	0	0	0	0	0	0	0	0	0	0
20	100	20	250	50	290	50	2900	20	240	30	450
30	140	40	400	30		100	4400	30	420	20	620
50	240	70	006	20		300	8400	50	1100	100	910
70	350	100	1500	100		200	12000	100	4200	170	1200
100	760	300	7000	140	_	700	17000	150	8800	340	7500
200	09/	450	12000	200	.,	1000	25000	200	20000	630	13500
300	1000	200	16000	1000	.,	1500	35000	1000	31000	1000	19500
500	1400	1000	20000	2000	ս յ	2000	42000	2000	48000	2000	32500

Remarks; Q: Discharge (m3/s) S: storage (m3/s.hr)

Table G-14 Assumed Existing Channel Condition of Kualuh and Kiri Rivers

					T.OW-Water	Low-water Channel	Channel Width
River	No.	Length (km)	Slope	Manning n	Depth (m)	Width (m)	(E)
Kualuh R.		•	·				
	*	26.4	1/1900	0.035	3.0	20	2000
	7	49.3	1/70	0.040	3.0	01	10
	ო	20.6	1/1600	0.035	3.0	100	150
	7	21.6	1/2400	0.030	3.0	70	500
	5	10.5	1/2600	0.035	3.0	30	1000
-	9	24.3	1/4500	0.028	3.5	50	2500
	7	15.9	1/2200	0.035	2.0	15	30
	8	20.9	1/8100	0.028	2.5	20	2000
	σ,	37.2	1/9300	0.030	3,0	10	1000
	0	53.5	1/13400	0.025	4.0	120-4000	2500-4000
		31.3	1/8000	0.030	3.0	01	1000
	12	22.5	1/10000	0.030	4.0	50	1000
Kiri R.							
		12.4	1/620	0.035	3.0	10	20
	7	13.1	1/1200	0.035	2.5	10	1000
	M	8.2	1/2800	0.030	2.0	20	1000
	7	9.6	1/310	0.035	3.0	10	20
	ν	13.1	1/440	0,035	3.0	01	20
	9	10.0	1/2000	0.030	2.5	5	500
-	7	18.0	1/820	0.035	3.0	10	20
	∞	4.8	1/1600	0.035	2.5	10	500
	σ	15.2	1/6300	0.025	4.0	09	300
	10	12.6	1/4200	0.030	3.0	30	80

Table G-15 Storage Function for Sub-basins of Kiri River

Sub-basin No.	Drainage area		oefficien		Lag-time
	(km2)	K	P	f1	(hr)
301	86.1	22.87	0.636	1.0	1.350
302	30.6	17.27	0.793	1.0	0.317
303	65.0	14.99	0.886	1.0	0.444
304	112.3	16.30	0.829	1.0	1.400
305	114.2	25.55	0.583	1.0	1.608
306	72.5	21.16	0.676	1.0	0.965
307	62.6	21.10	0.678	1.0	0.656
308	21.7	11.40	1.000	1.0	0.196
309	55.7	24.86	0.596	1.0	0.576
310	42.7	15.89	0.846	1.0	0.601
311	77.6	19.35	0.725	1.0	1.127
312	14.7	11.40	1.000	1.0	0.176
313	39.2	11.40	1.000	1.0	0.333
314	72.6	11.40	1.000	1.0	1.127
Total	867.5				

Table G-16 Discharge - Storage Relation of Existing Channel of Kiri River

																							٠.	
nel 5	S		0	9	105	190	330	760	570	720			inel 10	S	0	160	210	330	700	1550	2050	2750		
Channel	Ò		0	30	80	150	300	200	700	1000			Channel	0	0	30	20	100	200	200	700	1000		
Channel 4	S		0	35	50	80	200	300	370	780		1	Channel 9	S	0	200	340	520	780	1000	2300	3200	4400	
Char	0		0	30	50	100	300	200	200	1000			Cha	0	0	20	20	100	200	300	200	700	1000	
Channel 3	S		0	40	130	340	880	2300	3000	3500	4100		Channel 8	S	0	30	09	170	650	006	1200	1400	1600	
Cha	Ò		0	20	50	100	200	400	900	800	1000		Cha	O	0	30	20	100	250	400	009	800	1000	
nnel 2	S		0	09	100	350	920	1600	3300	4400	2400		 ۱. ۱	S		95	150	240	420	800	1000	1300		·
Channel	δ		0	50.	40	100	200	300	200	700	1000		Channel	ð	0	30	09	100	200	200	200	1000		
Channel 1	S	÷	0	9	80	100	170	260	200	630	810		Channel 6	S	0	20	09	120	360	1500	2000	2600	3100	
Chai	C)		0	30	50	70	120	200	200	700	1000		Cha	0	0	20	30	50	100	250	400	009	800	

Remarks; Q: Discharge (m3/s) S: storage (m3/s.hr)

Table G-17 Probable Peak Flood Discharges of Kualuh and Kiri Rivers under Existing Condition (1/2)

			•			(Unit	: m3/s)
Site			Retur	n Period	(year)		
	2	5	10	15	30	50	100
Kualuh River							
Pulo Dogom	661	729	880	978	1101	1270	1378
Guntung Saga Atas	657	673	795	885	1001	1170	1299
After join Simangalam River	547	575	605	676	765	877	967
After join Natas R.	760	791	828	914	1022	1155	1265
After join Kanopan R.	669	691	705	714	734	782	822
After join Kuo R.	698	719 -	732	741	769	816	857
After join Leidong R.	747	772	789	799	812 '	828	849
Kiri River							
Bunut	51	63	70	73	80	88	95
Desa Gajah	77	92	101	105	113	121	129
After join Silau Tua River	197	231	253	266	287	307	325
After join Balai R.	251	294	321	338	364	390	413
After join Kanan R.	290	339	353	366	389	412	433

Table G-17 Probable Peak Flood Discharges of Kualuh and Kiri Rivers under Existing Condition (2/2)

						(Unit	: m3/s)
Site				ı Period			
Makanakan periodo de la compansa del compansa del compansa de la c	2	5	10	15	- 30	50	100
Tributaries							
Tembus R.	221	265	324	362	411	468	521
Simangalam R.	110	111	111	111	112	112	115
Natas R.	214	218	226	240	258	279	299
Kanopan R.	82	82	83	83	83	84	84
Kuo R.	43	43	43	43	43	44	44
Leidong R.	54	54	54	54	54	54	54
Silau Tua R.	78	93	102	108	117	125	132
Balai R.	57	67	74	78	85	92	98
Kanan R.	34	41	46	48	53	57	61

Table G-18 Probable Peak Flood Discharge of Kualuh and Kiri Rivers (with Channel Improvement)

Kualuh River Kiri River Site Peak Discharge Site Peak Discharge (m3/s)(m3/s)Main Stream Main Stream 80 1101 Bunut Pulo Dogon Guntung Saga Atas 1001 Desa Gajah 110 After join Silau Tua R. 298 After join Simangalam R. 797 After join Natas R. After join Balai R. 377 1055 After join Kanopan R. 1006 After join Kanopan R. 394 After join Kuo R. 1036 930 After join Leidong R. Tributaries -Tributaries Silau Tua R. 117 411 Tembus R. Balai R. 85 Simangalam R. 112 258 Kanan R. 53 Natas R. Kanopan R. 118 Kuo R. 43 54 Leidong R.

Remarks; Probability of rainfall volume is taken up for 30-year return period.

Discharge - Storage Relation of Improved Channel of Kualuh River Table G-19

5 0 460 700 1100 2300	20 30 300 300 500 700 1000	280 135 185 280 540 730 900 1100	2000 2000 300 300 450 700 1000 2000	7 7 6 2 5 4 5 6	0 50 100 200 400 600 800 1000	\$ 250 380 580 1900 3700 4600 5500 9000	2000 2000 2000	\$ 120 170 260 3200 4100 6200 6800	2000 2000 2000 2000 2000	210 330 640 1800 4000 7000 8700
	30 30 50 300 500 500	135 185 280 280 540 730 900 1100	0 30 50 100 300 450 700 1000	350 470 470 700 1350 1750 2450 3250 5400	0 100 200 200 400 600 800 1000 2000	N 00 00 00 00 0	30 30 50 105 500 850 1000 2000	0 120 170 260 3200 4100 6200 6800	50 100 300 300 500 750 1500 2000	210 330 640 1800 4000 5000 7000 8700
	30 50 100 300 700 1000	135 185 280 280 540 730 900 1100	30 50 100 300 450 700 1000 2000	350 470 700 1350 1750 2450 3250 5400	50 100 200 400 600 800 1000 2000	N 00 00 00 00 0	30 50 105 360 500 1000 2000	120 170 260 3200 4100 6200 6800	50 300 300 500 750 1500 2000	210 330 640 1800 4000 7000 8700
	50 100 300 500 700	185 280 540 730 900 1100	50 100 300 450 700 1000 2000	470 700 1350 1750 2450 3250 5400	100 200 400 600 800 1000 2000		50 105 360 500 850 1000 2000	170 260 3200 4100 6200 6800 10800	100 300 500 750 1000 1500 2000	330 640 1800 4000 5000 7000 8700
	100 300 500 700	280 540 730 900 1100	100 300 450 700 1000 2000	700 1350 1750 2450 3250 5400	200 400 600 800 1000 2000		105 360 500 850 1000 2000	260 3200 4100 6200 6800 10800	300 500 750 1000 1500 2000	640 1800 4000 5000 7000 8700
	300 500 700 1000	540 730 900 1100 1700	300 450 700 1000 2000	1350 1750 2450 3250 5400	400 600 800 1000 2000		360 500 850 1000 2000	3200 4100 6200 6800 10800	500 750 1000 1500 2000	1800 4000 5000 7000 8700
	500 700 1000	730 900 1100 1700	450 700 1000 2000	1750 2450 3250 5400	600 800 1000 2000	0000	500 850 1000 2000	4100 6200 6800 10800	750 1000 1500 2000	4000 5000 7000 8700
	700	900 1100 1700	700 1000 2000	2450 3250 5400	800 1000 2000	000	850 1000 2000	6200 6800 10800	1500 1500 2000	5000 7000 8700
	1000	1100	1000 2000	3250 5400	2000	60	1000	6800 10800	1500	7000 8700
		1700	2000	5400	2000	<u> </u>	2000	10800	2000	8700
	2000				10	1				
			200	L	740 740	1				
Channel 7	Chann	nel 8	Channe	nnel 9	CIIA	Channel 10	Chai	Channel 11	Cha	Channel 12
S	0	S	0	S	0	S	Ò	S	0	S
0	0	0	0	0	0	0	0	0	0	0
100	20	09	70	290	50	2700	20	240	30	450
140	20	100	30	550	100	4100	30	420	50	620
240	100	250	20	1500	200	6200	20	1100	100	910
350	150	380	100	2600	400	9400	100	4200	170	1200
760	200	200	140	10500	009	13500	150	8800	340	7500
760	300	670	200	25000	800	17500	200	20000	630	13500
000	400	820	1000	38000	1000	21000	1000	31000	1000	19500
400	500	096	2000	29000	2000	33000	2000	48000	2000	32500

Remarks; Q: Discharge (m3/s) S: storage (m3/s.hr)

Discharge - Storage Relation of Improved Channel of Kiri River Table G-20

nel 5 S	0 60 105	190 330 460 570	720	s 10	0 9	210	330	1550	2050	2750
Channel 0	30 8	150 300 500 700	1000	Channel Q	0 6	20 00	100	500	700	1000
nel 4 S	0 35 50	80 200 300 370	780	nnel 9 S	0 00	340	520	. 1000	2300	3200 4400
Channe 1 0	30	100 300 500 700	1000	Channe Q	0 0	20 22	100	300	200	700 1000
nnel 3 S	0 40 150	. 420 620 750 1000	1400 2100	nnel 8 S	0 0	9	170	006	1200	1400 1600
Channe 1 Q	20 20 50	100 150 200 300	1000	Channe 1 Q	ဝင္က	20.	100	400	009	1000
Channel 2 Q S	0 60 100	180 280 450 700	950 1300	Channel 7 Q S	0 %	150	240	800	1000	1300
Char	0 20 40	60 80 110 200	300 200	Chai	0 0	09	100 200	200	700	1000
Channel 1 Q S	00 08	100 170 260 500	630 810	Channel 6 Q S	0 6	09	120	1500	2000	2600 3100
Cha	30	70 120 200 500	700 1000	Cha	0 0	30	100	250	700	800

Remarks; Q: Discharge (m3/s) S: storage (m3/s.hr)

Table G-21 Improved Channel Condition of Kualuh and Kiri Rivers

					Low-water	r Channel	Channel Width
River	No.	Length (km)	Slope	Manning n	Depth (m)	Width (m)	(m)
Kuslub R							
	•	26.14	1 / 1900	0.035		C U	
	- ·	1 0	2001.	0.00) (0	2000
	7	49,3	1/70	0.040	3.0	õ	01
	m	20.6	1/1600	0.035	3.0	100	150
	4	17.7	1/1600	0.030	3.0	40	009
. *	'n	10.5	1/2600	0.035	3.0	30	1000
	9	12.6	1/2500	0.028	3.5	50	1000
:	7	15.9	1/2200	0.035	2.0	5	50
	φ	7.6	1/3700	0.028	2.5	20	100
1111	ത	37.2	1/9300	0.030	3.0	10	1000
	01	47.4	1/13400	0.025	4.0	120-4000	2500-4000
	****	31.3	1/8000	0.030	3.0	10	1000
	12	22.5	1/10000	0.030	4.0	50	1000
\$	-						
Kiri K.							
		12.4	1/620	0.035	3.0	10	20
	. 2	13.1	1/1200	0.035	2.5	10	100
	က်	8.2	1/2800	0.030	2.0	20	200
	7	7.6	1/310	0.035	3.0	10	20
	'n	13.1	1/440	0.035	3.0	10	20
	9	10.0	1/2000	0.030	2.5	01	500
	7	18.0	1/820	0.035	3.0	10	20
	Ø	8.7	1/1600	0.035	2.5	10	500
	ტ -	15.2	1/6300	0.025	4.0	09	300
	10	12.6	1/4200	0.030	3.0	30	80
٠							

Table G-22 Estimated Flood Damage of Past Floods (1/2)

1. Asahan river

Item	Unit		Flood	
		Sep.1977	May 1982	Jan.1984
V Turn lahad ana				
) Inundated area				
House/building	nos.	562	565	1249
Paddy	ha	1980	2010	2740
Uplands crops	, 11	30	150	570
Oil palm	H	,•••		
Rubber		-	_	-
Others(including swamp) "	13690	14340	22390
Total		15700	16500	25700
) Average inundated dept	h .			
House/building	m	0.50	0.50	0.64
Paddy	11	0.60	0.60	0.74
Upland crops	, u	0.40	0,40	0.50
Oil palm	Ħ	••	•	_
Rubber	11		_	_
Others	11	0.50	0.50	0.64
) Maximum inundated dept	h		•	
House/building	m	1.40	1.40	1.90
Paddy	H H	1.62	1.65	2.14
Upland crops	11	0.50	0.50	0.55
Oil palm	11	_	_	•••
Rubber	11	_	Acre	_
Others	11	1.40	1.40	1.90
) Inundated				
duration	day	5	81	69
) Peak discharge	•		÷	
at Pulau Raja	cms	450	486	512

Note: based on the computation results on the topographic map and field survey.

Table G-22 Estimated Flood Damage of Past Floods (2/2)

2. Silau river

Item	Unit	· <u></u>	Flood	
		Sep.1977	May 1982	May 1984
) Inundated area				
House/building	nos.	7300	3860	3405
Paddy	ha	4658	3036	1329
Upland crops	tt	46	30	30
Oil palm	11	100	•••	
Rubber	Ħ	101	- %	
Others	FF	855	527	459
Total	**	5760	3593	1818
Average inundated depth			•	
House/building	m	0.60	0.57	0.50
Paddy	13	0.70	0.60	0.60
Uplands crops	11	0.50	0.50	0.50
Oil palm	ŧī	0.50	-	• =
Rubber	18	0.50	-	. · · · -
Others	11	0.60	0.57	0.50
Maximum inundated depth	·			e e
House/building	m	1.58	1.22	0.85
Paddy	11	1.83	1.47	1.10
Upland crops	11	1.08	1.00	0.80
Oil palm	'n	0.50	-	_
Rubber	13	0.50		_
Others	Ħ ·	1.58	1.22	0.85
Inundated		4		
duration	day	6	4	. 8
Peak discharge			(4).	310
* 0011			420	

Note: based on the computation results on the topographic map and field survey.

Table G-23 Estimated Flood Damage of Probable Floods (1/5)

1. Bunut river

Item	Unit		Probab	le Flood	
		2-yr	10-yr	30-yr	100-yr
1) Inundated area					
House/building	nos.	759	1710	2799	3589
Paddy	ha	1615	2280	3290	4150
Uplands crops	Ħ	19	36	68	96
Oil palm	ii.	_	_	-	
Rubber	11	10	90	225	355
Coconut palm	Ħ	25	170	400	525
Others	H .	81	144	217	319
Total	Ť1	1740	2720	4200	5450
2) Average inundated d	epth .				
House/building	m	0.75	1.10	1.40	1.70
Paddy	Ħ	0.75	1.10	1.40	1.70
Upland crops	t r	0.75	1.10	1.40	1.70
Oil palm	H	-	***	_	
Rubber	tt	0.20	0.45	0.75	1,50
Coconut palm	. II	0.75	0.90	1.05	1.25
Others	rs	0.75	1.10	1.40	1.70
3) Maximum inundated d	epth				
House/building	m	0.80	1.15	1.45	1.75
Paddy	11	1.10	1.50	1.75	2.10
Upland crops	11	0.80	1.15	1.45	1.75
Oil palm	17	••			
Rubber	8.9	0.25	0.50	0.80	1.50
Coconut palm	**	0.80	1.15	1.55	1.75
Others	ŧτ	0.80	1.15	1.45	1.75
4) Inundated					
duration	day	2	3	4	4
5) Peak discharge					
at Bunut	cms	51	70	80	95

Table G-23 Estimated Flood Damage of Probable Floods (2/5)

2. Asahan river

Item	Unit		Probab	le Flood	
		2-yr	10-yr	30-yr	100-у
) Inundated area					
House/building	nos	733	1387	1441	1486
Paddy	ha	2434	4866	5103	5467
Uplands crops	11	160	876	966	1076
Oil palm	11	-	•	166	608
Rubber	11	_	-	ou n	_
Others (including swan	np) "	13996	23675	28925	32129
Total	11	16590	29417	35160	39280
) Average inundated dep	oth	• •			
House/building	m	0.51	0,65	0.78	0.80
Paddy	11	0,61	0.75	0.88	0.90
Upland crops	ŧt	0.50	0.50	0.51	0.52
Oil palm	11		_	0.50	0.50
Rubber	11	. 	<u> -</u>	-	, -
Others	ŧı	0.51	0.65	0.78	0.80
) Maximum inundated dep	th				
House/building	m	1.59	2.08	2.10	2.13
Paddy	II	1.84	2.33	2,35	2.38
Upland crops	tt	0.50	0.58	0.60	0.63
Oil palm	11		-	0.50	0.50
Rubber	tt	200	₩		_
Others	11	1.59	2.08	2.10	2.13
Inundated		more	more	more	more
duration	day	than 5	than 7	than 7	than 7
) Peak discharge					
at Pulau Raja	cms	625	1001	1355	1839

Table G-23 Estimated Flood Damage of Probable Floods (3/5)

3. Silau river

************	I t e m	Unit		Probabl	e Flood	
	A STATE OF THE PROPERTY OF THE		2-yr	10-yr	30-yr	100-yr
1)	Inundated area				•	
	House/building	nos.	6350	7364	9581	11809
	Paddy	ha	3270	4686	4932	5387
	Upland crops	71	33	47	49	54
	Oil palm	11	-	100	1092	1300
	Rubber	11	~	101	1598	1805
	Others	Ħ	802	864	1754	3932
	Total	11	4105	5770	9425	12478
2)	Average inundated dept	h				
	House/building	m	0.57	0.57	0.68	0.80
	Paddy	11	0.67	0.67	0.78	0.90
	Uplands crops	ŧi	0.50	0.50	0.50	0.50
	Oil palm	tt	_	0.50	0.50	0.50
	Rubber	Ħ	_	0.50	0.50	0.50
	Others	H	0.57	0.57	0.68	0.80
3)	Maximum inundated dept	h ·				
	House/building	m	1.52	1.59	2.07	2.25
	Paddy	71	1.77	1.84	2.32	2.70
	Upland crops		1.02	1.09	1.57	1.95
	Oil palm	Ħ		0.50	0.50	0.50
	Rubber	#1	RD-	0.50	0.50	0.50
	Others	11	1.54	1.59	2.07	2.25
4)	Inundated	•				
•	duration	day	5	6	6	6
5)	Peak discharge					
	at Kisaran	cms	449	565	911	1300

Table G-23 Estimated Flood Damage of Probable Floods (4/5)

4. Kualuh river

T	t e m	Unit		Probab	le Flood	
J.	t, C III		2-yr	10-yr	30-yr	100-yı
) I1	nundated area					
Н	ouse/building	nos.	397	1498	2028	2557
	addy	ha	1730	6785	8110	9430
	pland crops	11	140	345	435	530
	il palm	Ħ	-	**	_	
	ubber	rı	متد		170	350
	thers	***	3160	7600	8905	10190
_	otal	11	5030	14730	17620	20500
2) A	verage inundated depth	I		•		
Ħ	ouse/building	m	0.30	0.45	0.50	0.55
	addy	11	0.30	0.45	0.50	0.55
	plands crops	**	0.30	0.45	0.50	0.55
	il palm	**		-	_	
	ubber	17		_	0.10	0.25
	thers	11	0.30	0.45	0.50	0.55
3) Ma	aximum inundated depth					
н	ouse/building	m	1.00	1.75	2.00	2.25
	addy	11	1.00	1.75	2.00	2.25
	pland crops	ft	1.00	1.75	2,00	2.25
	il palm	I.I.	***	_	, 	-
	ubber	ft	-	_	0.15	0.30
_	thers		1.00	1.75	2.00	2.25
) Lı	nundated		more	more	more	more
•	uration	day	than 7	than 7	than 7	than 7
) P	eak discharge					
a	t Pulo Dogom	cms	661	880	1101	1378

Table G-23 Estimated Flood Damage of Probable Floods (5/5)

5. Kanopan river

•	I t e m	Unit		Probab	le Flood	
			2-yr	10-yr	30-yr	100-yr
1)	Inundated area				·	
	House/building	nos.	252	885	1089	1176
	Paddy	ha	713	2310	3074	3265
	Upland crops	11	23	7 7	185	212
	Oil palm	11		-	_	_
	Rubber	11		•••	30	50
	Others	11	1324	2333	4303	4783
	Total	ττ	2060	4720	7592	8310
2)	Average inundated depth	•				
	House/building	m ·	0.40	0.55	0.70	0.75
	Paddy	11	0.45	0.60	0.70	0.75
	Uplands crops	H	0.45	0.50	0.55	0.60
	Oil palm	11	•	 ,		_
	Rubber	11		-	0.20	0.25
	Others	11	0.40	0.55	0.70	0.75
3)	Maximum inundated depth		•			
	House/building	· m	0.75	1.25	1.50	i.75
	Paddy	11	1.25	1.75	2.00	2.25
	Upland crops	11	0.75	1.25	1.50	1.75
	Oil palm	H ·	-	_	Plan	_
	Rubber	11		_	0.20	0.25
	Others	11 .	0.75	1.25	1.50	1.75
4)	Inundated		more	more	more	more
•,	duration	day	than 7	than 7	than 7	than 7
5)	Peak discharge					
	at Highway bridge	cms	108	109	109	110

Table G-24 Average Floor Space of House/Building in Study Area

-	វ. ហាក្នុង ភ្នំព		Url	Urban Area			Rura	Rural Area	
(m2)	(m2)	Tg.Balai	Asahan	Total	Space(m2)	Asahan	L.Batu	Total	Space (m2)
- 19	15	217	650	196	13,005	10,686	6,200	16,886	253,290
20 - 29	25	672	856	1,528	38,200	30,612	19,048	49,660	1,241,500
30 - 39	35	648	3,035	3,683	128,905	34,690	21,437	56,127	1,964,445
65 - 05	45	884	1,956	2,840	127,800	32,210	22,504	54,714	2,462,130
9 - 05	09	2,206	1,748	3,954	237,240	15,976	14,196	30,172	1,810,320
70 - 99	85	1,396	2,638	4,034	342,890	5,963	10,812	16,775	1,425,875
100 - 149	125	373	3,183	3,556	444,500	836	2,194	3,030	378,750
150 199	175	150	425	575	100,625	162	227	389	68,075
200 - 299	250	117	170	287	71,750	225	145	370	92,500
300 -	300	67	52	101	30,300	248	206	754	226,200
Total	ļ	6,712	14,713	21,425	1,535,215	131,998	696,96	228,967	9,923,085
Ave.(m2/house	(A)			71.66	99			43.34	.34

Source : Penduduk Sumatera Utara No.4, Hasil Sensus Penduduk 1980 ; Biro Pusat Statistik, Jakarta.

Table G-25 Unit Price of House/Building in 1985

Description	Unit Price (Rp/m2) <u>/</u> 1	Ratio in the Area /2	
I. Urban Area			
Parmanent house	25,000	0.80	20,000
Semi-parmanent house	15,000	0.10	1,500
Small house	10,000	0.05	500
Temporary house	7,000	0.05	350
Total	· -	1.00	22,350
II. Rural Area			
Parmanent house	25,000	0.15	3,750
Semi-parmanent house	15,000	0.35	5,250
Small house	10,000	0.30	3,000
Temporary house	7,000	0.20	1,400
Total	• • • • • • • • • • • • • • • • • • •	1.00	13,400

Note; /1 House depreciation rate of 50 % is considered.

our estimation based on the field survey and information in the Kec. Simpang Empat office.

Estimated Value of Household Effects in 1980 Table G-26

				. !		(Unit : Rp)
		Monthly	Monthly Expenditure	re re	Estimated Amount of	Amount of
Paticular	Per	Capita	Fan	Family *1	Household	Effects
	Urban	Rural	Urban	Rural	Urban	Rural
1. Food, beverage	7,965	6,859	45,560	36,833	1,498 *2	1,211 *2
 Household furnishing and durable goods 	343	324	1,962	1,740	353,160 *3	313,200 *3
3. Clothing and other wear	681	767	3,896	2,653	93,504 *4	63,672 *4
4. Fuel, light, water for house	2,024	099	11,577	3,544	11,577 *5	3,544 *5
5. Personal goods	1,160	457	6,635	2,454	398,100 *6	147,240 *6
 Others(tax,contribution, ceremony, etc.) 	1, 560	193	3,203	1,036	l	4
Total	12,733	8,987	72,833	48,260	857,839	528,867
		ورساني النوادية والمواسعة والمساولة				

Source : Sumatera Utara Dalam Angka 1983, p.443.

assuming one family consists of 5.72 and 5.37 persons for the urban and rural, respectively. Note: *1

assuming equivalent to one-day family expenditure to these things.

assuming equivalent to 15-year family expenditure to these things. assuming equivalent to 2-year family expenditure to these things.

assuming equivalent to one-month family expenditure to these things.

7⊀

assuming equivalent to 5-year family expenditure to these things.

Table G-27 Groth Rate of Per-capita Regional Income and Consumer Price Index (CPI) in Medan

	Per-capita Re			Consumer	
Year	1975-price		Rate *1	Index	
•	(Rp)	1975	1980	1977	1980
	<u></u>	=100	=100	=100	=100
1975	76,864.37	100,0	72.5		
1976	81,731.64	106.3	77.1		
1977	88,264.28	114.8	83.3	100.0	64.1
1978	65,268.66	123.9	89.9		
1979	100,303.87	130.5	94.6		
1980	106,015.55	137.9	100.0	156.1	100.0
1981	111,640.59	145.2	105.3	174.6	111.9
1982	(116,139.46) *3	151.1	109.5	186.3	119.3
1983		160	116	209,4	134.1
1984		170	123	239	153
1985		180	130	274	176

Source : Sumatera Utara Dalam Angka, 1983.

Note : *1 assuming at 6.07 % per annum.

*2 assuming at 14.47 % per annum.

*3 preliminary estimate by the document.

Damage Rate of Inundation and Sedimentation for House/ Table G-28 Building, Household Effects and Stored Goods

I. Damage Rate of Inundation

Item	Inu	ndation de	pth above	floor level	(cm)
	0-49	50-99	100-199	200-299	300-
House/Building	0.053	0.072	0.109	0.152	0.220
Household effects	0.086	0.191	0.331	0.499	0.690
Stored goods	0.180	0.314	0.419	0.539	0.630

II. Damage Rate of Sedimentation

Item	Sedimentatio	on depth (cm)
	less than 60 cm	more than 60 cm
House/Building	0.43	0.57
Household effects	0.50	0.69
Stored goods	0.54	0.63
		· .

Source: Manual for River and Sabo Works in Japan; International Engineering Consultants Association, Japan, 1977.

Note: (1) Rate in the "less than 60 cm" is adopted for the estimation.
(2) Floor height is assumed at 10 cm for I and II.

Table G-29 Number of Houses/Buildings in Each Kecamatan and Kotamadya of Flood Prone Area

						(Unit	: Nos.)
	Kecamatan/	Residence/	Store/	Small	Hotel/	Others	Total
************	Kotamadya	Farmhouse	Trade	Industry	Restaurant		
I.	Kabupaten Asal	han					
1.	Pulau Rakyat	11,679	151	75	17	1,372	13,294
2.	Sei. Kepayang	6,848	129	38	13	1,426	8,454
3.	Kisaran	21,910	756	145	40	2,719	25,570
4.	Air Batu	10,313	172	25	18	605	11,133
5.	Air Joman	6,826	99	20	3	355	7,303
6.	Simpang Empat	6,411	42	9	0	560	.7,022
7.	Tanjung Balai	11,521	198	51	1	620	12,391
Ś	Sub-total	74,788	1,610	363	92	7,657	84,510
II.	Kotamadya Tanjung Balai	6,363	694	100	133	1,038	8,328
To	otal	81,151	2,304	463	225	8,695	92,838

Source: Penduduk Kabupaten Asahan 1980.

Table G-30 Number of Households in Each Kecamatan and Kotamadya of Flood Prone Area in 1980

Kecamatan/ Kotamadya	Population	Number of Households	Ave. Population per Household
I. Kabupaten Asaha	n		
1. Sei. Kepayang	36,308	7,022	5.17
2. Tanjung Balai	61,524	11,652	5.28
3. Air Joman	38,866	7,802	4.98
4. Kisaran	57,122	21,819	5.79
5. Simpang Empat	33,950	6,518	5.21
6. Air Batu	57,122	10,560	5.41
7. Púlau Rakyat	62,219	12,183	5.11
Sub-total	416,312	77,556	5.37
II. Kotamadya Tanjung Balai (*) 42,814	7,484	5.72
III. <u>Kabupaten</u> <u>Labuhan Batu</u> (*)		
1. Kualur Hilir	43,971	9,367	4.69
2. Kualuh Hulu	95,164	17,249	5.52
3. Aek Natas	42,271	8,520	4.96
Sub-tota1	181,406	35,136	5.16
Total	640,532	120,176	5.33

Source : 1. Penduduk Kabupaten Asahan, 1980.

Note: (*) data in 1983.

^{2.} Kotamadya Tanjung Balai Dalam Angka, 1983.

^{3.} Penduduk Kabupaten Labuhan Batu, 1983.

Table G-31 Estimated Value of Stored Goods in Commercial Sector in 1980

Paticular	Monthly Family Expenditure (Rp)	ly enditure)	Monthl the A: River	Monthly Expenditure in the Asahan and Silau River Areas (Rp 10 ⁶) *	Silau	Ratio of Purchase from	Average Monthly Income per Store *3	Estimated Amount of Stored Goods
*	Urban	Rural	Urban	Rural	Total	Store *2	(Rp)	(Rp)
1. Food, beverage	45,560	36,833	332.7	2,856.6 3,189.3	3,189.3	0.50	630,000	157,600 *4
2. Furnishing and durable goods	1,962	1,740	14.3	134.9	149.2	0.95	56,050	672;600 *5
3. Clothing and other wear	3,896	2,653	28.5	205.8	234.3	06.0	83,380	166,760 *6
4. Fuel, light, etc. for house	. 11,577	3,544	84.5	274.9	359.4	0.95	135.000	67,500 *7
5. Personal goods	6,635	2,454	48.5	190.3	238.8	06.0	84,980	169,960 *8
6. Others	3,203	1,036	23.4	80.4	103.8	ı	ı	
Total	72,833	48,260	531.9	531.9 3,742.9 4,274.8	4,274.8	1	674,710	1,234,420

Households in the area in 1980 is estimated at 7,303 and 77,556 for urban and rural, respectively. × Note:

our estimation based on the interview survey.

Number of commercial sector in the area is estimated at 2,529 in 1980.

assuming equivalent to one-week store income to these things.

assuming equivalent to one-year store income to these things. 9

assuming equivalent to 2-months store income to these things. assuming equivalent to 2-weeks store income to these things. assuming equivalent to 2-months store income to these things.