Master Plan Study on Lower Asahan River Basin Development

Vol. 4 In depth Study on the Silau Bunut Rehabilitation Irrigation Project

Appendix 4-A

Soils

Appendix 4-A SOILS

CONTENTS

Page

1.	General	4A-1
2.	Land Systems in the Project Area	4A-2
3.	Soil and Land Classification	4A-2

TABLES

Table A-1	Soil and Land Classification of the Project Area	4A-5
Table A-2	Physio-chemical Properties of Soils	4A-6
Table A-3	Criteria for Potential Land Suitability Classification	4A-7
Tables A-4	to A-13	
	Characteristics and Profile Description	4A-8

4A - i

1. General

The present study on soil and land resources were conducted on the basis of the soil survey carried out from October to December, 1989 by the CV SECON, the local consultant in Bandung. The said survey was done inaccordance with the technical specification which the JICA team submitted to DGWRD and under the supervision of the JICA team.

The objective area of the survey was about 45,000 ha including the whole project area. The field survey was performed by auger boring and profile observatin of typical soils. The intensity of auger survey was one per 200 ha by the grid method in principle and profile observation was done at 35 sites. Laboratory analysis was made on 180 samples taken from typical profiles. The items of analysis include; pH, EC, soil particle distribution, cation exchange capacity, major exchangeable cations and potential soil acidity.

In the survey, the soil and land suitability classifications were made in accordance with the systems commonly adopted in Indonesia. The soil map and land suitability map were prepared on a scale of 1/50,000, based on the results of the survey.

On the basis of the soil map prepared by the local consultant, further study on soil distribution and characteristics in the project area (14,300 ha) were made using mosaic map of 1/20,000 scale by the JICA team and slight modification to the original soil map was made. According to the results of the same, soil classification of the project area was carried out basically in accordance with the system currently adopted by the Soil Research Center, in which soil classification based on land systems are employed. Morphlogical characteristics (wetness of soils, etc.), parent materials and other major characteristics of soils are also considered as well. On the results of the same, land suitability classification for irrigation development was studied. Soil and and classification map was prepared on a base topographic map of 1/50,000 scale and reduced to 1/100,000.

4A - 1

2. Land Systems in the Project Area

The physiographical features of the project area are classified into the following four land systems.

- Tidal flat above storm level,
- Tidal flat above storm level, peat deposit
- Alluvial plains
- Flat plains & fans of Toba tuff

The tidal flat land externsively occupies the lowlying areas of the project area and the alluvial plains are developed along the Silau river. The flat plains & fans of Toba tuff represent the upland area in the project area.

3. Soil and Land Classification

The soils in the project area are classified into six (6) soil units in accordance with soil and land characteristics. The soil units are further subclassified into ten (10) subunits on the basis of surface texture, effective soil depth and drainage conditions. The subunits are employed as soil mapping unit and land unit for land classification. The distribution of soils in the project area is indicated in Table A-1 and the soil map is presented in Fig. 3-1. Physio-chemical properties of the soils are presented in Table A-2. The characteristics of soil unit/subunit and profile descriptions of typical profiles of the soils are indicated in Tables A-4 to A-13.

The potential land classification of the soils in the project area for both irrigated paddy and upland crops are examined principally in accordance with "A Framework for Land Evaluation, FAO". The classification criteria is prepared based on the criteria defined by the Soil Research Center with some modification made taking into consideration of the proposed irrigation and drainage development and the envisaged intensive farming under the present project, as indicated in Table A-3. Accordingly, the soils in the project area are classified into four classes both for paddy and upland crops as; S1 (suitable), S2 (moderately suitable), S3 (marginally suitable) and N (non suitable). The results of the land classification are presented in Table A-1.

4A - 4

Soil Unit	Soil Subnit	No. of Subunit	Land System	Poter Suitabil Paddy	itial Land ity Classes 1/ Upland crops	Dis Area (ha)	tribution Proportion (%)	Classification Indonesian System 2	by 2/ USDA system
Partly ripened poorly drained low land soils	Fine textured, deep, poorly drained	1-1	Tidal flat above storm level	S2	S3	1,650	11.5	Gleisol hidrik	Tropaquepts
Partly ripened very poorly drained low land soils	Fine textured, deep, very poorly drained	II- 1	Tidal flat above storm level	S 2	\$3	2,310	16.2	Gleisot hidrik	Hydraquepts
	Sapric, fine textured, deep, very poorly drained	II-2	·	\$3	\$3	320	2.2	Gleisol humic	
Medium textured alluvial soils	Coarse to medium textured, moderate to deep, moderately drained	III-1	Alluvial plains	S2	S2	1,230	8.6	Aluvial gleik	Tropaquents
	Medium textured, deep, poorly drained	111-2		S2	S2	480	3.4	Aluvial gleik	
Flat volcanic tuff soils	Fine to medium textured, deep, poorly drained	[V-]	Plat plains and fans of Toba tuff	S1	S2	750	5.2	Andosol gleik	Tropzquepts/ Dystropepts
	Fine to medium textured, deep, moderately drained	IV-2		S 2	\$2	370	2.6	Andosol gleik	
	Medium textured, moderate moderately drained	IV-3		52	52	5,430	38.0	Regosol gleik	
Coarse textured volcanie tuff soils	Coarse textured, shallow, well drained	V -1	Flat plains and fans of Toba tuff	\$3	\$3	1,240	8.7	Regosol gleik	Dystrandepts
Moderately deep organic soils	Sapric, very poorly drained, moderate depth 0.5-1 m	VI-1	Tidal flat above storn level, peat deposit	\$3	\$3	360	2.5	Organasol hemist	Troposaprisis
River and riverbed				NR	NR	160	1.1		
Total						14,300	100.0		

Table A-1 SOIL AND LAND CLASSIFICATION OF THE PROJECT AREA

S1 - Suitable, S2 - Moderately suitable, S3 - Marginally suitable N - Not suitable, NR - Not relevant for classification
 Indonesian classification system employed by the local consultant.

Ma of Soil	Coll Dooth	Tort	uro(0)	·	<u> </u>	nH		FC	CEC	E	x. Cation(n	nca/100e)	
Submit	Son Depin	S ICAN	uic(<i>10)</i>	c	Texture	H2O	KCI	ms/cm	mco/100g	ĸ	Na	Ca	Me
oublint				·····	10,100								······································
1.1	0.8	18	28	54	с	6.0	5.2	0.40	-	0.38	0.80	0.80	0.76
•••	8.26	14	24	62	č	6.4	5.5	0.37	32	1.00	2.07	4.35	2.83
	26.105	12	28	60	č	6.7	5.5	0.32	33	0.65	2.10	4.08	2.93
	105 125	18	28	54	č	69	5.8	0.38	31	0.37	1.62	4.71	2.81
	103 - 125	10											
11.1	8.16	16	30	54	с	5.2	4.0	0.02	32	0.65	1.12	3.44	2.54
11.1	16.40	12	40	48	č	5.6	4.6	0.25	25	0.26	2.12	4.08	2.69
	40 105	12	48	40	SiC	6.0	48	0.26	25	0.29	2.58	4.67	2.89
	40.105	12											
11.2	0.25	18	24	58	è	6.1	5.1	0.13	28	0.73	0.81	5.23	2.69
11-2	25 - 105	16	24	60	č	6.5	5.3	0.16	30	0.81	1.17	5.23	2.66
	105.140	16	26	58	č	69	5.9	0.00	33	2.00	2.43	6.03	2.72
	103 - 140	10											
116.1	0 - 36	68	20	12	SL.	5.0	4.2	0.03	17	0.18	0.06	0.21	0.05
	36.94	84	ĩŏ	6	LS	5.5	4.5	0.01	9	0.07	0.10	0.21	0.16
	04.140	48	32	20	1	5.4	41	0.02	13	0.02	0.18	0.40	0.56
												· · · · · · · · · · · · · · · · · · ·	
111-2	0 - 10	20	52	28	CL	5.8	4.4	0.04	45	0.55	0.36	0.48	2.85
111-2	10.26	20	56	24	Sit	57	42	0.01	23	0.24	0.08	0.37	015
	26.52	32	62	6	SiL	52	41	0.00	11	0.23	0.06	0.40	0.09
	52 . 120	20	60	20	Sil	54	43	0.03	0	0.36	0.13	0.75	0.12
	52-120	20								0.50			0.12
IV-1	0 - 13	20	40	40	CL.	5.3	4.2	0.05	32	0.33	0.32	0.83	0.56
	13.23	18	40	42	SICL	5.5	4.2	0.05	24	0.47	0.79	0.96	0.66
	23.70	26	36	38	CI	6.6	5.2	0.05	23	0.86	1 39	0.64	118
	70 - 120	86	6	12	LS	6.8	52	0.04	6	0.37	0.72	0.37	0.90
IV-2	0 - 27	26	36	38	CL.	4.6	4.0	0.02	- 11	0.21	0.03	0.53	0.17
	27 - 47	24	34	42	CI.	4.8	3.9	0.02	12	0.15	0.05	0.37	0.19
	47 - 110	44	22	34	CL.	5.2	42	0.04	28	0.25	0.63	2.56	1 49
IV-3	0 - 17	42	28	30	CL ¹	5.3	4.4	0.15	n	0.30	0.26	0.59	0.46
	17 - 34	46	26	28	SCL.	5.9	5.2	0.04	10	0.09	0.41	0.64	0.67
	34 - 61	60	34	6	SI	65	52	0.01	6	017	0.30	0.53	0.73
	61 - 94	16	66	20	Sil	57	41	0.01	in	031	0.50	0.33	0.50
	01 125	: 14	54	32	SICI	53		0.01	22	0.31	0.71	0.21	0.30
	J4 - 12J	14		JL		J.J	····	0.04	<i>LL</i>	0.45	0.71		V.70
V-1	0 - 14	84	10	6	15	6.0	5.2	0.01		0.12	0.01	0.61	0.10
*-1	1/ 28	82	12	6	18	6.0	1.8	0.01	2	0.12	0.01	0.01	0.10
	28 120	96	12	6	5	50	4.0	0.01	د د	0.17	0.01	0.21	0.10
:	20-120	00		v	3	3.9	.0	0.00	L	0.15	0.05	0.24	0.00

Table A-2 PHYSIO-CHEMICAL PROPERTIES OF SOILS

Note: pH & EC - 1 : 2.5 suspension

4A - 6

	Land Classes									
il & Land		Irrigated 1	Paddy 1/	· · · ·		Upland Crop 1/				
racteristics	Class 1	Class 2	Class 3	N	Class 1	Class 2	Class 3	N		
	<u>(S1)</u>	(\$2)	(\$3)		(\$1)	(\$2)	(\$3)			
Effective soil depth(cm)	>75	50-75	20-50	<20	>100	50-100	25-50	<25		
Texture	finc-medium	line-very fine medium-coarse	coarse	stony	medium-fine	fine	coarse	stony		
Cosrse fragments/ surface soil	none	slight-moderate	moderate-stony	stony	none	slight-moderate	moderate-stony	stony		
Permeability	-	•.		-	high	moderate	low	• ••		
Moisture holding capacity	-	-	-	•	high	moderate	low	very low		
CEC/surface soil (mcq/100g soil)	>25	10-25	3-10	<3	>25	10- 25	3- 10	<3		
Soil fertility (cx-K, Ca & Mg)	high-moderate	moderate-low	•	-	high-moderate	moderate low	-	-		
EC (ms, 1:2.5 suspension)	<1.5	1.5-2.5	2.5-4.0	>4.0	<1.5	1.5-2.5	2.5-4.0	>4.0		
Soil reaction (pH)/ surface soil	5.0-7.5	4.5-5.0	4.0-4,5	<4.0	5.5-7.0	5.0-5.5	4.0-5.0	<4.0		
Terminal acidity (pH)	>4.5	3.5-4.5	<3.5	-	>5.0	4.5-5.0	3.5-4.5	<3.5		
Peat thickness (cm) & degree of decomposition 2/	sapric: <30	sapric: 30-50 fibric:<30 hemic: <30	sapric: 100 fibric: 30-100 hemic: 30-100	fibric:>100 hemic: >100	sapric: <50	sapric: 50 fibric:<50 hemic: <50	- fibric: 50-200 hemic: 50-200	fibric:>200 hemic: >200		
Drainability	poor-moderate	poor-very poor moderate-well	well-excessive	excessive	good	moderate	poor	very poor		
Slope (%)	<0.5	0.5-2	2-5	>5	<3	3-8	8-15	>15		
Erosion hazard		-	•	-	insignificant	slight	moderate	severe		

Table A-3 CRITERIA FOR POTENTIAL LAND SUITABILITY CLASSIFICATION

 1/:
 S1 - Suitable, S2 - Moderately suitable, S3 - Marginally suitable, N - Not suitable

 2/:
 For organic soils only

Table A-4 CHARACTERISTICS AND PROFILE DESCRIPTION -1

Soil unit	: I: Partly ripened poorly drained low land soils
Subunit	: I-1: Fine textured, deep, poorly drained soils
Area	: 1.650 ha(11.5%)
Land class	: Paddy S2; Upland crops S3 1/

Major Characteristics:

The soils derive from marine deposits and are distributed in the flat to swampy lowlying area in the project area. The soils are fine textured, poorly drained soils with deep effective soil depth and soil reaction is acid to slightly acid and CEC is high. The surface layer of the soils are generally abundant with reddish yellow mottlings and seasonal drying of surface soil is identified through morphological observation, though the saturated misture regime prevails most of a year due to rice cultivation and seasonal inundation. The unit is usually used for paddy field and partly for coconut field. Considerably high productivity of rice cultivation is expected under proper irrigation.

Typical Profile

Location :	Ujung Kubu
Topography : Drainage :	flatLand use: Mix of coconut & paddypoorDepth of inundation: +15cm
Soil depth (cm)	
Ò - Ś	Yellowish gray (2.5Y 5/1), clay, no mottling, sticky and plastic, organic matter content high, pH 6.0
8 - 26	Dark grayish yellow (2.5Y 5/2) + orange (7.5YR 6/8, mottling), clay, sticky and plastic, pH 6.4
26 - 105	Gray (5Y 5/1) + orange(7.5YR 6/8, mottling), clay, very sticky and very plastic, pH 6.7
105 - 125	Gray (5Y 6/1), clay, no mttling, sticky to very sticky and plastic to very plastic, pH 6.9

Table A-5 CHARACTERISTICS AND PROFILE DESCRIPTION -2

Soil unit	: II: Partly ripened, very poorly drained low land soils
Subunit	: II-1: Fine textured, deep, very poorly drained soils
Area	: 2,310 ha (16.2%)
Land class	: Paddy S2: Upland crops S3 1/

Major Characteristics:

The soils are developed from marine deposits and are distributed in the flat to swampy lowlying area in the project area. The soils are fine textured, very poorly drained soils with deep effective soil depth and soil reaction is acid to slightly acid and CEC is considerably high. The profile shows greyish color with or without mottlings, indicating continuous moisture saturation or inundation of soils almost throughout a year. The unit is exclusively used for the cultivation of local variety of paddy. Poor drainability is the primary constraint in the unit and drainage improvement is pre-requisite for successful irrigation farming.

Typical Profile

Location :	Sei Mentaram	
Topography:	flat	Land use: Rainfed paddy
Drainage :	very poor	Depth of inundation: +20cm
Soil depth (cm)		
0 - 16	Olive blac sticky and	k(5Y 3/2), clay, no mottling, plastic, high in organic matter, pH 5.2
16 - 40	Dark olive mottling),	(5Y 4/3) + orange(7.5YR 6/8, clay, sticky and plastic, pH 5.6
40 - 105	Light yello silty clay,	ow(2.5Y 7/4) + orange(7.5YR 6/8), very sticky and very plastic, pH 6.0

Table A-6 CHARACTERISTICS AND PROFILE DESCRIPTION -3

Soil unit: II: Partly ripened, very poorly drained low land soils: II: Partly ripened, veSubunit: II-2: Sapric, fine textured, deep, very poorly drained soilsArea: 320 ha (2.2%)Land class: Paddy S3: Upland crops S3 1/

Major Characteristics:

The soils are found in an limited area in lowlying area close to the Bunut river. The surface layer is covered with well decomposed organic materials and the bearing capacity of the soils is extremely low. The soils are fine textured and very poorly darined. The effective soil depth is deep. The soil reaction is slightly acid and CEC is considerably high. The area distributed with the soils is inundated throughout a year and used for paddy field. Drainage improvement is essential for the introduction of the intensive farming in the area.

Typical Profile

Location	:	Silo Bonto	· · · · · ·
Topography	:	flat	Land use: Rainfed paddy
Drainage	:	very poor	Depth of inundation: +30cm
Soil depth			
(cm)		· .	
0 - 25		Gray(5Y clay, stic decompo surface la	6/1)+dull brown(7.5YR 5/4, mottling), ky and plastic, rich in well sed organic materials, pH 6.1 ayer covered with sapric material
25 - 105		Light gra clay, ver	y(5Y 7/2) + bright brown(7.5YR 5/6), v sticky and very plastic, pH 6.5
105 - 140		Litght gr pH 6.9	ay(5Y 7/1), clay, no mottling, sticky and plastic,

Table A-7 CHARACTERISTICS AND PROFILE DESCRIPTION -4

Soil unit	: III: Medium textured alluvial soils
Subunit	: III-1: Coarse to medium textured,
	moderate to deep, moderately drained soils
Area	: 1,230 ha(8.6%)
Land class	: Paddy S2; Upland crops S2 1/

Major Characteristics:

The soils are formed from the alluvial deposits of the Silau river and distribute along the both sides of the Silau river. Due to the stratification of materials different in texture, texture and effective soil depth varies within the unit. However, majority are medium textured and moderate to deep. Soil reaction is slightly acid to acid and CEC is low to medium. Drainability is moderate, in general. The area distributed with the soils is mainly used for paddy field with the exception of limited area for coconut field. The potential for irrigated rice farming is considered to be high when the area is freed from seasonal flooding occurring frequently at present.

Typical Profile

Location Topography Drainage	: Sei Lama : flat : moderate	Land use: Rainfed paddy Depth of inundation: +18cm
Soil depth (cm) 0 - 36	Yellowis slightly s	h brown(2.5Y 5/4), sandy loam, no mottling, ticky and slightly plastic, pH 5.0
36 - 94	Dull yello and non p	ow(2.5Y 6/4), loamy sand, non sticky plastic, pH 5.5
94 - 140	Brownish 5/8 mottl slightly p	gray(5YR 5/1) + bright brown(7.5YR ing), loam, slightly sticky and lastic, pH 5.4

Table A-8 CHARACTERISTICS AND PROFILE DESCRIPTION -5

Soil unit: III: Medium textured alluvial soilsSubunit: III-2: Medium textured, deep, poorly drainedArea: 480 ha(3.4%)Land class: Paddy S2; Upland crops S2 1/

Major Characteristics:

The soils are found at the right bank side of Silau river in limited area and considered to be formed from medium textured alluvial deposits of the river. The effective soil depth is generally deep with some exception of moderate depth. Drainage condition of the soils is poor and soil reaction is slightly acid and CEC is medium to low. The soils are predominantly used for paddy cultivation. Considerably high productivity of rice farming in the area is expected under proper irrigation.

Typical Profile

Location	: Lubuk Sirambe
Topograhy	: flat Land use: Irrigated paddy
Drainage	: poor Depth of inundation: +10cm
Soil depth (cm)	
0 - 10	Grayish olive(5Y 5/3) + brown(10YR 4/6, mottling), clay loam, sticky and plastic, pH 5.8
10 - 26	Grayish olive(5Y 6/2) + bright reddish brown(2.5YR 5/6, mottling), silty loam, sticky and plastic, pH 5.7
26 - 52	Dark grayish yellow(2.5Y 4/2), silty loam, no mottling, slightly sticky and slightly plastic, pH 5.2
52 - 120	Gray(5Y 5/1), silty loam, no mottling, sticky and plastic, pH 5.4

Table A-9 CHARACTERISTICS AND PROFILE DESCRIPTION -6

Soil unit: IV: Flat volcanic tuff soilsSubunit: IV-1: Fine to medium textured, deep, poorly drainedArea: 750 ha(5.2%)Land class: Paddy S1; Upland crops: S2 1/

Major Characteristics:

The soils are derived from fine to medium textured volcanic tuff deposits and distributed in limited extent in the fringe of flat fans of Toba tuff. The surface soil texture is fine to medium and effective soil depth is deep. Soil reaction is slightly acid and CEC is considerably high. Drainage condition is poor due to texture and physiographical conditions The unit is used for paddy and coconut field. High productivity of irrigated paddy is anticipated when the seasonal inundation is successfully prevented through drainage improvement.

Typical Profile

	5.	*1
Location : Topography : Drainage :	Binjai Sebangan flat poor	Land use: Irrigated paddy Depth of inundation: +13cm
Soil depth (cm)	· · ·	
0 - 13	Grayish mottling, organic r	olive(5Y 5/2), clay loam, no sticky and slightly plastic, natter content medium, pH 5.3
13 - 23	Dull yell mottling) slightly p	ow(2.5Y 6/4) + orange(7.5YR 6/8, , silty clay loam, sticky and lastic, ph 5.5
23 - 70	Light gra 5/8, mott and sligh	y(2.5Y 7/1) + bright brown(7.5YR ling), clay loam, slightly sticky tly plastic, pH 6.6
70 - 120	Yellowish mottling,	h gray(2.5Y 6/1), loamy sand, no non sticky and non plastic, pH 6.8

Table A-10 CHARACTERISTICS AND PROFILE DESCRIPTION -7

Soil unit Subunit	: IV: Flat volcanic tuff soils : IV-2: Fine to medium textured, deep, moderately drained	
Area Land class	: 370 ha(2.6%) : Paddy S2; Upland crops S2 1/	

Major Characteristics:

The soils are developed from volcanic tuff deposits of fine to medium and cover a small part of the project area. The effective soil depth is deep and drainability is moderate. The soil reaction is acid to slightly acid and CEC is medium. The unit is used for paddy field at present and potential for irrigated irce farming is high.

Typical Profile

Location Topography Drainage	••••••	Sei Balai flat moderate	Land use: Oil palm estate Groundwater depth: 39cm
Soil depth (cm)			
0 - 27		I r r	Dull yellowish brown(10YR 5/3), clay loam, no mottling, sticky and plastic, organic matter content low, pH 4.6
27 - 47		I 1 I	Light gray(10YR 8/1) + orange(7.5YR 6/8, nottling), clay loam, sticky and plastic, oH 4.8
47 - 110		I I S	Light gray(10YR 8/1) + orange(7.5YR 6/8, mottling), clay loam, slightly sticky and slightly plastic, pH 5.2

Table A-11 CHARACTERISTICS AND PROFILE DESCRIPTION -8

Soil unit	: IV: Flat volcanic tuff soils
Subunit	: IV-3: Medium textured, moderate, moderately drained
Area	: 5,430 ha(38.0%)
Land class	: Paddy S2; Upland crops S2 1/

Major Characteristics:

The soils are derived from medium textured volcanic tuff deposits and occupy the majority of upland area in the project area. Surface soil texture is medium and effective soil depth is moderate underlain with coarse volcanic glasses. The depth to the coarse layer differs on locations, generally deeper than 70cm. While, the soils are sometimes interbedded with coarser materials. The drainability of the soils is moderate due to coarse fraguments. The soil reaction is slightly acid to acid and CEC is moderate. The area covered with the unit is extensively used for paddy field and partly for coconut field. High productivity of rice under intensive irrigation farming is expected because of preferable internal drainability.

Typical Profile

Location Topograhy Drainage	: Pasar Lembu : flat : moderate	Land use: Rainfed paddy Depth of inundation: +10cm
Soil depth (cm) 0 - 17	Gray(sticky moder	5Y 6/1), no mottling, clay loam, and plastic, organic matter content ate, pH 5.3
17 - 34	Gray() mottlin and sli	5Y 6/1) + yellowish brown(10YR 5/8, ng), sandy clay loam, slightly sticky ghtly plastic, pH 5.9
34 - 61	Light 5/8, m and sli	gray(2.5Y 7/1) + yellowish brown(10YR ottling) sandy loam, slightly sticky ghtly plastic, pH 6.5
61 - 94	Grayis (10YF sticky	sh olive(5Y 4/2) + yellowish brown 5/8, mottling), silty loam, slightly and slightly plastic, pH 5.7
94 - 125	Gray(sticky	5Y 4/1), no mottling, silty clay loam, and plastic, pH 5.3

Table A-12 CHARACTERISTICS AND PROFILE DESCRIPTION -9

Soil unit	: V: Coarse textured volcanic tuff soils	
Subunit	: V-1: Coarse textured, shallow, well drained	т.
Area	: 1,240 ha(8.7%)	
Land class	: Paddy S3; Upland crops S3 1/	

Major Characteristics:

The soils are derived from coarse to medium textured volcanic tuff deposits and distributed in and around the village yard in the upland area of the project area. The surface layer of the soils is coarse textured rich in volcanic glasses and usually underlain with layers of finer texture. The effective soil depth, therefore, shallow and drainability is good. The soil reaction is slightly acid anc CEC of surface soil is low. The soils are utilized for paddy field and village yard. The percolation loss of irrigation water, however, is not so large due to high ground water table at present. In order to improve the productivity of paddy, management of soil fertility and careful application of fertilizer for minimizing percolation losses is essential in the area.

Typical Profile

Location Topography Drainage	: Meranti : flat : good	Land use: Coconut field Groundwater depth: 79cm
Soil depth (cm)		Doub and disk have (CND 2 (2) 1
0 - 14		Dark reddish brown(5YR 3/2), loamy sand, nonsticky and non plastic, organic matter content low to medium, pH 6.0
14 - 28		Brown(7.5YR 4/4), loamy sand, non sticky and non plastic, pH 6.0
28 - 120		Grayish brown(7.5YR 4/2), sand, non sticky and non plastic, pH 5.9

Table A-13 CHARACTERISTICS AND PROFILE DESCRIPTION -10

Soil unit: VI: Moderately deep organic soilsSubunit: VI-1: Sapric, very poorly drained, moderate depth 0.5 - 1mArea: 360 ha(2.5%)Land class: Paddy S3; Upland crops S3 1/

Major Characteristics:

.

The soils are organic soils covered with well decomposed organic materials of moderate depth, 50 - 100cm. The distribution is limited and found in the lower reach of the Bunut river in the project area. The drainage condition is very poor and bearing capacity is low. The soil reaction is acid. Drainage development is prerequisite for successful irrigation farming.

Typical Profile

Topography :	Air Hitam flat Land use: Rainfed paddy	
Diamage .	Depth of inundation: +25cm	
Soil depth (cm)		
0 -30	Brownish black(10YR 3/2), well decomposed organic layer, non sticky and non plastic	
30-60	Brownish brown(10YR 3/2), fairly decomposed organic layer, deribs of tree and leaves identified	
60-90	Glei layer, dull yellow(2.5Y 6/3), heavy clay, no mottlings, sticky to very sticky and plastic to very plastic	
90-110	Glei layer, olive gray(5Gy 6/1), heavy clay, no mottling, sticky to very sticky and plastic to very plastic	

Master Plan Study on Lower Asahan River Basin Development

Vol, 4 In depth Study on the Silau-Bunut Rehabilitation Irrigation Project

Appendix 4-B

Climate and Hydrology

Appendix 4-B CLIMATE AND HYDROLOGY

CONTENTS

1.	Climate Conditions	Page
	Summary of Climate Conditions (Table B-1)	4B-1
2.	Rainfall in and around the Project Area	
	Average Annual Rainfall and Total Rainfall from January to August (Table B-2)	4B-2
	Monthly Average Rainfall (Table B-3)	4B-3
	Correlation Coefficient of Monthly Rainfall (Table B-4)	4B-4
	Representative Monthly Rainfall for Irrigation Planning (Table B-5)	4B-5
	Maximum Probable Rainfall: 1-day, 2-day and 3-day Rainfall of 5-year Return Period (Table B-6)	4B-6
•	Exceedance Probable Rainfall: 1-day, 2-day and 3-day Rainfall of 5-year Return Period (Table B-7)	4B-7
•	Location of Rainfall and Water Gauging Stations (Fig. B-1)	4B-8
	Monthly Rainfall at Representative Stations (Fig. B-2)	4B-9

3. Low-Flow Runoff Analysis

3.1 Rainfall for Low-flow Analysis

Monthly Rainfall for Low-flow Analysis by Tank Model Method (Table B-8)	4B-10
Double Mass Curve Analysis (Runoff - Rainfall Relationship)	
- for the Silau Rriver Basin (Fig. B-3)	4B-11
- for the Bunut River Basin (Fig. B-4)	4B-12

4B - i

3.2 Low-flow Analysis by the Tank Model Method

Results of Low-flow Analysis

-	at Kisaran (Table B-9)	4B-13
-	at Prapat Janji (Table B-10)	4 B-14
Tank	Model Dimension Ap[plied (Fig. B-5)	4B-15
Runo	ff Simulation by Tank Model (Fig. B-6)	4B-16

3.3 Estimated Monthly Average Discharge

	Silau River at Ksaran (Table B-11)	4B-18
-	Piasa River at Tinggi Raja (Table B-12)	4B-19
-	Silau River at Prapat Janji (Table B-13)	4B-20
	Bunut River at Bunut Highway Bridge (Table B-14)	4B-21

2.4 Basic Year for Water Resource

	a					
Salootion	of Rocia	Voor	(T_{O}))		100
ouccuon	or Dasic	rear	made D-10		 	48-22
				,	 	

4. Tidal Influence in the Low-Lying Area

Observation Poing of Tide (Fig. B-8)	4B-23
Observation Resuts of Tide (Fig. B-9)	4B-24
Tidal Influence in the Ujun Kubu and Tambung Tulang Drainage Canal (Fig. B-10)	4B-25

											(8	tation: S	ei-Dadon)
Item	JAN.	FEB.	MAR.	APR,	MAY	JUNE	JULY	AUG.	SEP.	OCT.	NOV,	DEC.	Annual
Mean Temperatur (de	gree C.)												
Sei Dadap ('66-'88)	25.7	26.0	26.3	26.6	26.7	26.6	26.4	26.3	26.2	26.2	26.2	25.9	26.3
Daily-Max Temperatu	re (degree	e C.)											
Sei Dadap ('66-'82)	31.5	32.0	32.4	32.7	32.9	32.9	32.6	32.4	32.1	31.8	31.4	31.3	32.2
Daily-Min Temperatu	re (degree	• C.)											
Sei Dadap ('69-'82)	21.8	21.5	21.9	22.7	22.7	22.5	22.3	22.2	22.5	22.6	22.5	22.2	22.3
Absolute-Max Temper	rature (de	gree C.)											
Sei Dadap ('66-'82)	34.5	35.0	35.0	35.5	36.0	36.0	35.5	35.5	35.5	35.0	33.5	35.0	36.0
Absolute-Min Temper	ature (de	gree C.)					•			÷			
Sci Dadap ('69-'82)	16.8	17.0	18.6	18.7	20.0	13.5	18.2	16.5	19.5	19.0	20.0	18.6	13.5
Relative Humidity (%))												
Sei Dadap ('66-'88)	88.7	87.6	88.2	88.4	87.9	86.8	87.0	88.3	88.5	89.4	89.7	89.3	88.3
Wind Velocity (m/s)													
Sei Dadap ('79-'88)	0.19	0.24	0.25	0.23	0.24	0.25	0.25	0.23	0.28	0.22	0.21	0.21	0.23
Sunshine Duration (%)						•						
Sei Dadap -		-	-		-	-	· -	-		-	-	-	-
Aek Loba ('70-'88)	57,5	65.2	54.0	54.2	57.8	59.5	62.1	59.9	52.2	59.1	57.0	50.2	57.4
Evaporation (mm)													
Sei Dadap ('79-'88)	93.5	104.8	111.5	112.5	111.9	108.3	112.4	114.8	106.0	105.5	87.9	91.9	1261.0
Rainfall (mm)													
Sei Dadap ('58-'88)	102	78	99	106	131	119	143	151	230	242	164	137	1,702.0

Table B-1 SUMMARY OF CLIMATIC CONDITIONS

Source; Bandan Meteorologi dan Geofisika (BMG), Balai Wilayah I, Sampali

					Unit: mm
Code No.	Station Name	Ave. Rainf	Annual all	Ave. Tot from Jan	al Rainfall . to Aug.
. : .	, , , , , , , , , , , , , , , , , , , 				· · · · · · · · · · · · · · · · · · ·
5.04	Lidah Tanah	1,594	(1,392)	840	(726)
6.06	Bunut	1,948	(1,878)	1,053	(1,022)
147/6.10	Hessa	1,689	(1,682)	883	(906)
6.18	Sei Baleh	1,537	(1,550)	792	(805)
145B/6.19	Sei Dadap	1,702	(1,782)	929	(975)
6.22	Serbangan	1,823	(1,681)	913	(866)
6.28	Sibogat	1,846	(1,846)	1,002	(1,002)
145	Kisaran	2,290	(2,290)	1,208	(1,208)
	· .				
Average		1,734	(1,687)	916	(900)

Table B-2AVERAGE ANNUAL RAINFALL AND TOTAL RAINFALL
FROM JANUARY TO AUGUST IN AND AROUND
PROJECT AREA

Note: 1)

2)

Locations of the rainfall stations are presented in Fig. B-1.

() indicates the calculated value using the data of range from 1986 to 1988.

3) Average values indicate the calculated values excluding Kisaran.

4) Monthly average rainfalls at the stations in and around Project area are presented in Table B-3.

Table B-3 MONTHLY AVERAGE RAINFALL IN AND AROUND PROJECT AREA

															Unit: mm
Code No.	Station Name	Jan.	Fcb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Ánnual Total	JanAug. Total
5.04	Lidah Tanah	83.4	78.6	67.6	89.2	107.7	89.7	93.2	116.5	180.1	211.5	157.8	116.5	1,391.8	725.9
6.06	Bunut	109.4	98.9	99.3	124.9	122.7	128.7	151.1	186.9	255.1	250.9	181.5	168,1	1,877.5	1,021.9
147/6.10	Hessa	103.1	71,7	78.1	109.0	132.9	116.5	149.1	145.8	215.6	228.5	171.4	160.2	1,681.9	906.2
6.18	Sei Baleh	70.4	89.0	69.6	. 77.2	111.8	103.7	128.1	155.3	211.4	228.2	167.9	138.1	1,550.7	805.1
145B/6.19	Sei Dadap	115.5	75.1	104.6	123.7	149.0	137.1	140.7	129.2	256.1	235.9	162.1	152.7	1,781.7	974.9
6.22	Serbangan	98.9	66.0	92.6	96.3	115.4	99.1	139.1	158.8	193.3	264.8	172.2	184.5	1,681.0	866.2
6.28	Sibgat	92.9	100.0	86.6	108.6	111.6	151.3	160.4	190.8	237.5	232.5	179.0	194.7	1,845.9	1.002.2
145	Kisaran	134.9	120.8	98.2	175.4	121.1	146.3	181.8	229.9	290.0	342.5	228.4	220.9	2,290.2	1,208.4
Average		96.2	82.8	85.5	104.1	121.6	118.0	137.4	154.8	221.3	236.0	170.3	159.3	1,687.2	900.3

Note: 1) Locations of the rainfall stations are presented in Fig. B-1.

2) The caluculation period is in the range from 1968 to 1988.

Code No.	5.04	6.18	6.22	6.28	6,06	6.27	6.21	6.11	6.12	6.14	6.02	6.15	145	6.19	6.10	6.23	6.26
5.04	<u>, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,</u>											alay 16700 ya muni in ya yiki ya aka				***	
6.18	0.69									•	·						
6.22	0.73	0.59	: `												÷		
6.28	0.80	0.62	0.90														
6.06	0.69	0.61	0.78	0.87													
6.27	0.56	0.49	0.72	0.81	0.79												
6.21	0.58	0.61	0.60	0.50	0.59	0.53											
6.11	0.54	0.49	0.57	0.74	0.63	0.65	0.59										
6.12	0.57	0.54	0.60	0.68	0.66	0.67	0.72	0.64									
6.14	0.43	0.56	0.49	0.59	0.57	0.66	0.52	0.62	0.71		1. 1.						
6.02	0.37	0.46	0.42	0.48	0.39	0.37	0.51	0,52	0.47	0.59							
6.15	0.61	0.51	0.66	0.64	0.66	0.63	0.58	0.66	0.66	0.72	0.39						
145	0.47	0.55	0.56	0.76	0.66	0.55	0.52	0.47	0.63	0.44	0.11	0.42					
6.19	0.56	0.56	0.71	0.74	0.70	0.71	0.58	0.55	0.65	0.62	0.32	0.66	0.59				
6.10	0.62	0.61	0.75	0.78	0.72	0.77	0.67	0.57	0.72	0.60	0.30	0.60	0.63	0.72			
6.23	0.52	0.35	0.55	0.05	0.32	0.13	0.33	0.33	0.29	0.31	0.22	0.37	0.35	0.23	0.35		
6.26	0.63	0.60	0.71	0.65	0.70	0.64	0.51	0.57	0.66	0.69	0.34	0.67	0.56	0.73	0.77	0.14	

Table B-4 CORRELATION COEFFICIENT OF MOTHLY RAINFALL

Note: 1) Locations of the rainfall stations are presented in Fig. B-1.

2) Correlation coefficients of monthly rainfall between Sibogat (6.28) and the other stations, between Bunut (6.06) and the other stations, and between Hessa (6.10) and the other stations are relatively higher than those of others.

REPRESENTATIVE MONTHLY RAINFALL FOR Table B-5 **IRRIGATION PLAN (STATION; HESSA (6.10))**

						·····	******							Unit: mm
Year	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Annual Total	Jan-Aug Total
1968	155	10	74	123	74	94	175	142	252	249	126	155	1,629	847
1969	76	80	84	7	184	144	103	146	269	229	284	124	1,730	824
1970	100	39	74	161	138	174	99	127	260	353	145	150	1,820	912
1971	193	89	105	63	63	154	105	197	184	243	94	271	1,761	969
1972	51	12	17	135	41	48	141	46	226	189	260	130	1,296	491
1973	175	43	118	128	100	87	85	145	194	183	109	304	1,671	881
1974	26	238	5	170	33 -	279	107	98	189	177	72	8	1,402	956
1975	97	16	125	109	184	164	.130	239	246	206	93	67	1,676	1,064
1976	102	172	36	65	233	73	339	98	183	78	120	82	1,581	1,118
1977	53	211	33	94	74	133	102	181	234	447	331	204	2,097	881
1978	52	60	94	160	. 185	163	122	135	217	231	123	145	1,687	97 1
1979	49	73	53	118	93	171	246	56	225	80	248	43	1,455	859
1980	87	79	22	160	47	91	154	250	212	277	142	365	1,886	890
1981	72	153	80	162	118	111	159	154	308	283	182	45	1,827	1,009
1982	86	104	58	118	99	100	331	197	84	145	261	90	1,673	1,093
1983	90	2	94	.7	255	106	76	118	126	121	95	147	1,237	748
1984	145	130	64	99	109	207	66	35	207	99	64	56	1,281	855
1985	43	102	178	86	140	16	165	125	211	225	271	122	1,684	855
1986	241	32	168	148	267	169	146	151	147	220	43	234	1,966	1,322
1987	111	30	92	113	81	56	69	357	352	310	266	192	2,029	909
Ave.	100.2	83.8	78.7	111.3	125.9	127.0	146.0	149.9	216.3	217.3	166.5	146.7	1,669.4	922.7

Note:

1) The values presented above include supplemented values for lacking data period.

2) Hessa rainfall station is selected as the representative station of the aerial rainfall of the project area.

The selection criteria applied to are as fllows:

- the station has long term (more than 20 years) record

- the record is available in series
 average annual and monthly rainfall is similar to that of stations in the area (See Table B-2 and Fig.B-2) - correlation coefficient between representative station and the other stations is relatively higher than that
- of others (See Table B-4)

3) According to the design standard of DGWRD, the design year is selected based on the rainfall having 80% dependability. As seen in Table B-14, the year of 1979 is selected as the design year for the irrigation plan based on the analysis of annual rainfall and total rainfall from January to August.

		N	faximum Probable	Rainfall	
Code	Station Name	1-day	2 Continuous days	3 Continuous days	
	· · · · · · · · · · · · · · · · · · ·				 ,
5.04	Lidah Tanah	98 (112)	118 (149)	130 (164)	
6.06	Bunut	103 (113)	117 (143)	144 (207)	
147/6.10	Hessa	102 (130)	127 (165)	147 (207)	
6.18	Sei Baleh	* 127 (200)	153 (253)	* 172 (277)	
145B/6.19	Sei Dadap	114 (169)	129 (170)	150 (188)	
6.22	Serbangan	111 (144)	135 (176)	160 (220)	
** 145	Kisaran	190 (247)	227 (299)	237 (314)	
		1			

Table B-6MAXIMUM PROBABLE RAINFALL OF 1-DAY,
2 CONTINUOUS DAYS AND 3 CONSECUTIVE
DAYS WITH A 5 YEAR RETURN PERIOD

Note: 1) Locations of the rainfall stations are presented in Fig. B-1.

2) () indicates the maximum observation rainfall.

3) According to the following selection criteria, Sei Balah station is selected as the representative rainfall station for drainage plan.

- Long (more than 20 years) and series rainfall record is available
- Station which indicates the maximum probable rainfall of 1-day, 2 continuous days and 3 continuous days.

The exceedance probable rainfall of 7 stations is tablated in Table presented above. In accordance with the design standard DGWRD, the design rainfall is estimated based on 3 days continuous probable rainfall with a 5 year return period.

The estimated design rainfall is 172 mm for 3 days.

4) ** The rainfall record at Kisaran is short priod of 16 years.

Table B-7EXCEEDANCE PROBABLE RAINFALL OF 1-DAY,
2 CONTINUOUS DAYS AND 3 CONSECUTIVE DAYS

							Unit: mm
Return Period	Lidah Tanah 5.04	Bunut 6.06	Hessa 6.10	Sei Baleh 6.18	Sei Dadap 6.19	Serbangan 6.22	Kisaran 145
1/2	.82	85	-76	84	90	87	125
1/5	98	103	102	127	114	111	190
1/10	109	114	119	155	129	128	233
1/20	119	125	135	183	144	143	-
1/30	125	132	145	198	153	152	-
1/50	132	140	157	218	163	164	-
1/100	142	150	173	244	178	179	. .

Maximum 1 day Rainfall

Maximum 2 continuous days Rainfall

Unit: mm Lidah Tanah Sei Baleh Bunut Hessa Sei Dadap Serbangan Kisaran **Return Period** 5.04 6.06 6.10 6.18 6.19 6.22 1/21/5 1/10 1/20 1/30 -1/50 -1/100

Maximum 3 continuous days Rainfall

·		· · · · · · · · · · · · · · · · · · ·					Unit: mm
Return Period	Lidah Tanah 5.04	Bunut 6.06	Hessa 6.10	Sei Baleh 6.18	Sei Dadap 6.19	Serbangan 6.22	Kisaran 145
1/2	102	113	111	121	119	127	154
1/5	130	144	147	172	150	160	247
1/10	149	165	171	205	171	182	309
1/20	167	185	194	237	191	203	
1/30	178	196	207	256	202	215	-
1/50	191	211	223	279	216	230	-
1/100	208	230	245	310	236	251	-
•							

Note: 1) Locations of the rainfall stations are presented in Fig. B-1.

Table B-8 REPRESENTATIVE MONTHLY RAINFALL FOR LOW-FLOW ANALYSIS BY TANK MODEL METHOD

													Unit: mm
Year	Jan.	Feb.	Mar.	Apr.	May	Jun,	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Annual Total
- +070	0.15					-							
1968	245	116	253	101	366	446	- 298	380	460	369	229	247	3,510
1969	219	140	85	122	250	122	184	209	289	383	600	384	2,987
1970	250	21	296	245	178	324	255	202	414	384	307	261	3 227
1971	86	374	310	42	207	207	. 54	300	200	170	100	201	3,221 2 477
1972	24	104	70	134	128	52	118	. 83	200	2/1	287	115	1,477
1973	142	223	296	325	147	310	267	327	411	283	325	652	3 718
1974	185	259	47	356	244	281	337	. 02	324	311	443	233	3,110
1975	212	112	240	293	196	177	392	177	342	361	352	108	2,112 2,052
1976	171	43	98	147	237	309	243	199	339	154	151	161	2,252
1977	110	67	111	116	299	108	137	225	288	290	201	294	2,232
1978	131	54	98	169	431	335	277	156	356	349	236	215	2,807
1979	117	157	71	340	205	251	104	28	195	293	311	158	2,230
1980	68	150	354	286	378	214	266	419	272	351	311	304	2 272
1981	111	188	67	292	361	235	151	157	513	257	228	115	3,375 2,675
1982	43	31	165	414	245	83	350	495	270	245	262	172	2,075
1983	125	32	212	16	164	207	115	224	314	329	283	141	2,775
1984	226	351	210	383	500	215	186	216	320	425	238	323	2,102
1985	293	136	220	229	297	67	341	228	242	400	572	278	3 303
1986	387	118	219	427	200	213	50	119	333	386	276	354	3,082
1987	90	38	131	300	122	102	283	294	336	482	561	151	2,890
Ave.	161.8	135.7	178.6	236.9	257.8	212.9	220.4	227.0	329.6	323.3	318.2	249.2	2,851.1

Note: The rainfalls at Aek Tarum were applied for the representative rainfalls before 1980 excluding 1976 and after 1984, and those at Sei Silau were applied for them in 1976 and from 1981 to 1983.

4B - 12

Table B-9RESULTS OF LOW-FLOW RUNOFF ANALYSIS
BY TANK MODEL METHOD AT KISARAN

							A					ιι	Jnit: m3/s
Year=1984	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Annual
Observed Runoff (1) Calculated Runoff (2)	3,302.7 1,519.9	3,127.1 2,584.8	2,859.0 2,241.6	2,421.0 2,675.0	4,032.8 4,024.2	2,211.8 2,918.9	1,820.1 1,705.6	1,821.2 1,956.1	1,917.1 2,339.3	2,517.0 3,138.4	2,663.3 3,029.8	2,941.8 2,611.0	31,634.9 30,744.6
(2)/(1)	0.46	0.83	0.78	1.10	1.00	1.32	0.94	1.07	1.22	1.25	1.14	0.89	1.03
Year=1985	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Annual
Observed Runoff (1) Calculated Runoff (2)	2,234.4 2,939.7	1,565.7 1,624.3	2,124.3 1,729.0	1,979.5 1,663.2	2,376.0 2,370.9	1,128.7 1,457.4	1,496.4 1,872.4	1,260.1 1,906.9	1,894.2 2,185.1	2,600.2 2,799.5	3,092.8 4,237.8	3,539.3 3,578.1	25,291.6 28,364.3
(2)/(1)	1.32	1.04	0.81	0.84	1.00	.1.29	1.25	1.51	1.15	1.08	1.37	1.01	1.12
Ycar=1986	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Annual
Observed Runoff (1) Calculated Runoff (2)	3,121.0 2,900.7	2,453.9 2,266.7	2,536.6 1,638.5	2,992.2 3,042.1	1,590.5 2,248.4	1.614.7 1.824.1	1,176.7 1,277.4	961.2 1,047.4	1,444.5 1,877.3	3,264.5 3,044.4	2,587.5 2,706.8	2,468.5 3,074.1	26,211.8 26,947.9
(2)/(1)	0.93	0.92	0.65	1.02	1.41	1.13	1.09	1.09	1.30	0.93	1.05	1.25	1.03
Year=1987	Jan.	Fcb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Annual
Observed Runoff (1) Calculated Runoff (2)	1,525.6 1,420.1	1,390.0 986.6	1,833.5 977.5	1,916.7 1,600.1	1,991.3 1,178.9	1,453.6 944.0	1,597.2 1,325.6	2,248.0 2,172.2	-	-	-	-	13,955.9 10,605.0
(2)/(1)	0.93	0.71	0.53	0.83	0.59	0.65	0.83	0.97	-	-	-	-	0.76

1.00

.

			•••••										Jnit: m3/s
Year=1985	Jan.	Feb.	Mar.	Арт.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Annual
Observed Runoff (1) Calculated Runoff (2)	-	-	-	-		•	827.0 847.1	671.4 850.3	993.6 1,011.7	1,213.7 1,348.6	1,483.4 2,202.6	1,849.7 1,762.2	7,038.8 8,022.5
(2)/(1)	-	- ·	-	-	-	-	1.02	1.27	1.02	1.11	1.48	0.95	1.14
Year=1986	Jan.	Fcb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Annual
Observed Runoff (1) Calculated Runoff (2)	1,666.5 1,434.6	1,274.2 1,181.4	1,466.9 883.9	1,531.1 1,519.9	898.9 1,109.5	840.6 938.1	-	-	867.9 880.1	1,760.9 1,496.3	1,434.7 1,394.9	1,225.3 1,613.4	12,967.0 12,452.1
(2)/(1)	0.86	0.93	0.60	0.99	1.23	1.12	-	•	1.01	0.85	0.97	1.32	0.96
Year=1987	Jan.	Feb.	Mar.	Apr.	Мау	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Annual
Observed Runoff (1) Calculated Runoff (2)	863.7 855.0	895.8 695.8	879.8 628.9	1,011.1 810.7	1,063.8 689.5	858.8 619.1	951.4 672.0	1,206.7 1,006.9	-		-		7,731.1 5,977.9
(2)/(1)	0.99	0.78	0.71	0.80	0.65	0.72	0.71	0.83	•	-	-		1.29

Table B-10 RESULTS OF LOW-FLOW RUNOFF ANALYSIS BY TANK MODEL METHOD AT PRAPAT JANJI

0.95

4B - 16

⁴B - 17

Table B-11 ESTIMATED MONTHLY AVERAGE DISCHARGE AT KISARAN AT KISARAN

Unit: m													
Ann	. Dec.	Nov	. Oct.	Sep	Aug	Jul.	Jun.	May	:. Apr	. Mai	. Feb	r Jan	Yca
81	72.3	91.1	98.8	143.0	85.5	100,3	109.4	66.1	55.6	51.5	54.7	3 52.1	196
67	123.3	165.7	83.4	59.2	45.3	44.3	39.6	48.1	36.4	37.4	55.8	74.5	1969
73	82.9	118.0	98.4	96.2	64.9	64.7	65.0	48.3	64.4	50.1	44.7	82.8	1970
55	63.4	36.9	48.0	73,5	49.5	36.1	53.0	42.7	47.0	93.4	73.5	55.3	197
30.	39.1	56.9	41.4	36.2	17.3	16.8	20.7	23.1	22.7	24.6	31.8	37.5	1972
74	189.8	70.3	81.8	76.5	56.9	39.1	67.2	58.2	84.7	62.3	45.2	59.4	1973
66.	75.9	84.6	68.9	60.6	49.0	52.7	55.0	58.3	64.6	59.6	83.5	81.5	1974
73.	87.7	93.4	83.1	82.3	43.5	53.1	55.9	82.9	99.0	62.3	66,2	73.3	1975
69.	82.9	100.9	77.0	57.9	58.1	58.3	61.2	63.4	77.9	51.5	67.0	82,9	1976
60.	80.8	93.5	120.6	54.3	41.5	32.5	48.3	48.8	45.3	44.7	51.2	60.5	1977
51.3	69.2	62.8	63.3	48.1	29.9	48.2	58.3	49.4	44.0	44.7	53.0	49.2	1978
53.1	65.2	95.3	61.1	51.9	33.4	41.8	59.2	44.0	60.4	37.6	43.7	- 51.6	. 1979
59.4	67.1	91.8	61.4	52.3	73.8	34.8	42.2	70.0	49.4	74.0	44.0	51.1	1980
59.1	47.6	72.6	80.7	78.0	32.0	45.3	46.4	84.3	50.5	40.6	58.3	71.5	1981
61.	54.9	61.2	65.2	54.1	47.5	43.1	45.1	96.8	90.6	68.4	58.2	48.1	1982
51.0	82.0	48.8	87.4	73.0	42.3	45.8	40.6	44.9	27.0	38.7	34.7	45.1	1983
86.4	94.9	88.8	81.2	63.9	58.7	58.7	73.7	130.1	80.7	92.2	107.8	106.5	1984
69.3	114.2	103.1	83.9	63.4	40.6	48.3	37.6	76.6	66.0	68.5	55.9	72.1	1985
71.8	79.6	86.3	105.3	48.2	31.0	38.0	53.8	51.3	99.7	81.8	87.6	100.7	1986
69.2	85.9	91.1	107.3	85.5	72.5	51.5	48.5	64.2	63.9	59.1	49.6	49.2	1987
79.6	91.6	99.1	70.8	121.2	62.1	70.4	72.5	62.1	55.3	80.3	95.2	77.2	1988
1,286.2	1,658.6	1,713.2	1,598.3	1,357.9	973.3	953.5	1,080.9	1,251.8	1,229.7	1,143.2	1,166.5	1,304.9	Total
61.2	79.0	81.6	76.1	64.7	46.3	45.4	51.5	59.6	58.6	54.4	55.5	62.1	Ave.

Note: Monthly average discharges from 1973 to 1987 presented above are the observed records.

									-, <u></u> ,,,,,,,,,,,,			UI	nit: m3/s
Year	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Annual
1968	17.0	17.8	16.8	18.2		38.7	25 2	20.7	514	347	31.7	247	28.2
1060	25.5	17.0	11.4	10.2	15.5	12.2	14.0	14.4	10.6	28.0	60.1	44.0	20.2
1070	- 20,0 - - 10 7	10.1	11,4	10.9	13,5	12.2	14.0	21.0	22.7	20.9	41.0	307	22.9
1970	20.7	13.9	- 10.2	21.0	13.0	21.0	21.0	21.9	33.1	34.0	41.9	20.7	1.L2 10.4
1971	18.2	24.8	32.1	15.0	13.4	17.2	10.9	10.0	23.0	15.4	11.1	21,5	10.4
1972	11.5	9.1	6.5	5.7	6.0	5.0	3.6	3.8	10.8	12,9	18.7	12,1	8.8
1973	19.8	14.1	20.9	29.3	19.3	22.6	12.0	18.8	26.2	28.3	23.8	69.3	25.5
1974	28.2	28.6	19.8	21.7	19,3	18.0	17.2	15.8	20.1	23.4	29.2	26.0	22.2
1975	25.1	22.0	20.9	34.7	28.7	18.3	17.4	13.7	28.4	28.8	32.6	30.5	25.1
1976	28.7	22.5	16.8	26.7	21,3	20.4	19.3	19.3	19.1	26.4	35.5	28.7	23.7
1977	20.2	16.4	14.2	14.3	15.7	15.5	9,5	13.0	17.7	43.0	32.6	27.9	20.0
1978	15.9	17.0	14.2	13.8	16.0	19.3	15.5	8.5	15.4	21.3	21.0	23.5	16.8
1979	16.8	13.5	11.5	20.1	13.9	19.6	13.1	9.9	16.8	20.4	33.3	22.0	17.5
1980	16.6	13.7	25.3	15.9	23.8	13.2	10.4	25.2	17.0	20.5	32.0	22.7	19.7
1981	24.3	19.0	12.6	16.3	29.2	14.7	14.4	9.4	26.7	27.9	24.7	15.3	19.5
1982	15.5	19.0	23.2	31.5	34.0	14.2	13.6	15.2	17.6	22.0	20.4	18.1	20.4
1983	14.3	10.1	11.9	7.4	14.3	12.5	14.6	13.3	24.9	30.4	15.6	28.4	16.5
1984	37.7	38.0	32.2	27.8	46.6	25.1	19.5	19.5	21.4	28.0	30.8	33.3	30.0
1985	24.6	18.1	23.2	22.2	26.3	11.4	15.9	14.4	23.3	36.4	43.2	41.8	25.1
1986	35.5	32.5	24.5	37.9	16.2	19.9	11.6	9.0	13.1	36.5	28.3	31.7	24.6
1987	15.4	10.9	24.7	24.0	22.6	13.8	14.3	25.3	23.9	41.7	33.5	29.8	23.4
1988	27.0	35.1	28.5	16.1	19.7	24.4	23.7	20.0	39.5	19.5	30.2	34.0	26.4
Total	439.4	379.1	379.5	414.8	420.0	353.3	304.1	316.0	452.1	561.5	600.0	579.7	433.5
Ave.	20.9	18.1	18.1	19.8	20.0	16.8	14.5	15.0	21.5	26.7	28.6	27.6	20.6

Table B-12 ESTIMATED MONTHLY AVERAVE DISCHARGE AT TINGGI RAJA

Table B-13	ESTIMATED MONTHLY AVERAGE DISCHARGE
	AT PRAPAT JANJI

							······································					U	nit: m3/s
Year	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Annual
1968	29.0	30.5	28.7	30.8	36.1	58.3	53.6	46.0	75.5	52.8	49.0	39.3	44.1
1969	40.4	31.1	21.4	21.0	26.9	22.7	25.0	25.5	32.7	45.0	87.2	65.4	37.0
1970	44.7	25.4	28.0	35.4	27.0	35.6	35.4	35.5	51.6	52.7	62.8	44.7	39.9
1971	30.6	40.1	50.1	26.4	24.2	29.5	20.8	27.6	40.0	26.8	21.3	34.7	31.0
1972	21.5	18.7	14.9	14.0	14.1	13.0	10.9	11.1	20.9	23.5	31.5	22.3	18.0
1973	32.7	25.7	34.2	45.7	32.1	36.8	22.3	31.4	41.5	44.2	38.4	99.4	40.5
1974	44.0	45.3	32.8	35.5	32.1	30.5	29.3	27.4	33.4	37.6	45.7	41.1	36.1
1975	39.8	36.4	34.2	53.0	44.7	31.0	29.5	24.6	44.5	44.8	50,2	47.2	40.0
1976	44.7	36.8	28.7	42.2	34.8	33.7	32.1	32.0	32.0	41.7	54.0	44.7	38.1
1977	33.3	28.8	25.2	25.6	27.3	27.1	18.9	23.6	30.2	64.0	50.2	43.6	33.2
1978	27.5	29.7	25.2	24.9	27.6	32.2	27.0	17.6	27.0	34.7	34.5	37.7	28.8
1979	28.7	24.9	21.5	33.3	24.8	32.7	23.7	19.4	28.9	33.6	51.1	35.6	29.8
1980	28.4	25.0	40.2	27.7	38.1	24.0	20.1	40.1	29.1	33.7	49.3	36.6	32.7
1981	.38.9	32.4	23.1	28.2	45.4	26.1	25.5	18.7	42.3	43.6	39.5	26.7	32.5
1982	26.9	32.3	37.3	48.7	51.8	25.5	24.4	26.6	30.0	35.7	33.7	30.4	33.6
1983	25.4	20.3	22.1	16.2	25.3	23.2	25.8	24.0	39.8	47.0	27.3	44.3	28.5
1984	56.8	57.6	49.5	43.7	68.9	40.1	. 32.3	32.4	35.1	43.8	47.8	50.9	46.6
1985	39.2	31.2	37.4	36.1	41.5	21.6	26.7	21.7	33.1	39.1	49.4	59.7	36.5
1986	53.8	45.5	47.3	51.0	29.0	28.0	21.7	18.2	28.9	56.8	47.8	39.5	38.9
1987	27.9	32.0	28.4	32.9	34.3	28.6	30.7	38.9	50.8	54.2	47.6	46.3	37.7
1988	41.4	49.6	42.7	32.4	35.0	39.7	38.5	34.7	67.4	42.3	56.8	47.5	43.9
Total	714.1	649.6	630.0	672.3	686.2	600.3	535.7	542.2	747.3	855.4	918.4	890.1	703.5
Ave.	34.0	30.9	30.0	32.0	32.7	28.6	25.5	25.8	35.6	40.7	43.7	42.4	33.5

Table B-14

ESTIMATED MONTHLY AVERAGE DISCHARGE AT BUNUT HIGHWAY BRIDGE

				:					****			Uı	nit: m3/s
Year	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Annual
1068	2 1	2.7	2.2		4.2		67	<u> </u>	10.5	70		50	 F (
1908	5.1	3,2 4 1	2,2	2,4	4.5	2.0	0.7	0.0	10.5	7.0	0.4	5,2 5	5.0
1909	5.1	4.1	3.0	2.9	5.4	2.9	5.2	3.3	4.1	0.2	13.0	9.1	5.1
1970	0.5	 5 7	3.9	4.0	5.8	4.9	5.0	4.0	1.3	7.4	. 9.0	0.3	5.0
1971	4.3	Э. <i>1</i>	7.0	3.8	3.2	4.3	2.9	3.7	5.6	3.7	2.9	4.9	4.3
1972	3.0	2.7	2.2	2,1	1.9	1.8	1.5	1.4	2.4	2.6	4,2	2.8	2.4
1973	1.9	2.5	3.7	5.3	3.1	5.5	3.9	4.8	8.2	5.1	5.9	12.1	5.2
1974	6.5	5.6	3.5	4.5	5.7	4.8	6.5	3.8	4.5	6.0	8.6	6.1	5.5
1975	6.0	3.9	3.6	6.0	4.3	4.1	5.6	4.4	6.1	6.8	7.9	4.3	5.2
1976	4.2	3.5	2.8	2.8	5.1	7.1	6.1	5.4	7.4	5.7	4.3	4.1	4.9
1977	3.7	. 3.3	2.6	2.5	4.2	3.6	2.8	2.7	4.6	6.7	4.2	5.9	3.9
1978	3.1	2.8	2.3	2.1	3.5	5.5	3.6	2.7	3.2	5.2	3.6	3.2	3.4
1979	2.9	2.5	2.1	3.4	3.3	4.5	2.4	2.0	2.0	3.6	5.0	3.9	3.1
1980	2,1	2.0	3.2	2.9	5.6	3.3	2.4	4.5	3.9	4.2	5.8	3.8	3.6
1981	2.9	3.1	2.4	4.0	5.5	4.4	2.9	2.5	9.3	4.8	5.2	3.4	4.2
1982	2.5	2.4	1.9	4.5	4,9	2.8	3.9	8.4	6.2	4.0	5.3	3.9	4.2
1983	2.9	2.8	2.5	2.2	1.9	2.2	2.2	2.1	4.8	5.0	4.8	3.6	3.1
1984	2.8	5.8	4.5	6.1	9.3	6.6	3.7	4.4	5.4	7.3	7.3	6.0	5.8
1985	6.9	4.4	4.0	4.0	5.4	3.8	4.4	4.5	5.3	6.8	- 11.3	8.6	5.8
1986	7.1	6.2	4.1	7.8	5.4	4.6	3.4	2.9	4.9	7.6	7.0	7.8	5.7
1987	3.7	3.2	2.6	4.3	3.0	2.6	3.2	5.2	6.0	7.8	11.2	6.3	4.9
Total	81.7	73.3	65.3	79.2	86.8	87.0	76.3	79.4	111.6	113.5	132.9	111.0	91.5
Ave.	4.1	3.7	3.3	4.0	4.3	4.4	3.8	4.0	5.6	5.7	6.6	5.6	4.6

4B - 21

Table B-15 SELECTION OF BASIC YEAR

1.1		Bunut R.		÷	Silau R.		Representa	live Rainfall
Year	Annual total Discharge (m3/s)	Drought Discharge (m3/s)	Jan-Aug total Discharge (m3/s)	Annual total Discharge (m3/s)	Drought Discharge (m3/s)	Jan-Aug total Discharge (m3/s)	Annual total Rainfall (mm)	Jan-Aug total rainfall (mm)
1968	2034.2	2.51 (Mar)	1152.0	29883,8	41 (Mar)	17558.2	1629 7	847 4
1969	1849.8	2.67 (Jul)	862.0 9	24733.9	35.3 (Mar)	11579.3 6	1730	824 3
1970	2031.2	2.97 (Mar)	1119.3	26818.7	33.3 (Mar)	14780.3	1820	912
1971	1580.3 9	2.61 (Jul)	1057.6	20408.6 5	29.6 (Jul) 8	13645.5 9	1761	969
1972	874,7 1	1.27 (Aug) 1	508.0 1	11210.4 1	15.4 (Aug) 1	5919.4 1	1296 3	. 491 1
1973	1890.6	1.78 (Jan) 3	934.1 10	27200.8	32.6 (Jul)	14373.6	1671 8	881 8
1974	2009.9	2.84 (Mar)	1240.3	24108.4 10	39.2 (Aug)	15263.5	1402 4	956
1975	1912.3	3.07 (Mar)	1150.3	26834.4	40.1 (Jun)	16267.1	1676 10	1064
1976	1784.9 10	2.59 (Mar)	1130.6	25576.7	37.5 (Aug)	15857.5	1581 6	1118
1977	1425.0 6	2.29 (Jul) 9	769.5 4	21986.7 8	26.4 (Jul) 4	11311.9 4	2097	881 8
1978	1243.6 4	2.04 (Mar) 7	778.1 5	18854.2 3	27.2 (Aug) 5	11415.9 5	1687	971
1979	1141.6 3	1.74 (Aug) 2	700.8 3	19604.0 4	27.9 (Aug) 7	11274.2 3	1455 5	859 7
1980	1334.7 5	1.88 (Jan) 6	793.7 6	21745.0 7	30.6 (Jul) 10	13440.2 8	1886	890 10
1981	1531.7 7	2.15 (Mar) 8	846.6 8	21521.0 6	25.9 (Aug) 3	13024.3 7	1827	1009
1982	1548.9 8	1.84 (Mar) 4	959.8	22300.1 9	34 (Jan)	15118.9	1673 9	1093
1983	1125.4 2	1.85 (Jul) 5	571.8 2	18627.8 2	24.1 (Apr) 2	9723.3 2	1237 1	748 2
1984	2106.0	2.69 (Jan)	1313.5	31634.9	45.1 (Sep)	21595.7	1281 2	855 5
1985	2117.1	3.20 (Jul)	1143.7	25300.6	30.4 (Jun) 9	14165.1	1684	855 5
1986	2090.3	2.74 (Aug)	1259.2	26211.8	27.8 (Aug) 6	16446.8	1960	1322
1987	1797.4	2.37 (Jul) 10	844.2 7	25244.0	42 (Jul)	13955.9 10	2029	909
1988			· .	29150.9	46.1 (Apr)	17507.6		
Total	33429.6	47.10	19135.1	498956.7	691.5	294224.2		
Ave.	1671.5	2.36	956.8	23759.8	32.9	14010.7	1669.4	922.7
Return Period								
1/2	1708	2.38	969	24321	33.2	14142	1680	927
1/5	1377	1.93	767	20322	26.5	11306	1469	786
1/10	1182	1.68	657	17873	23	9785	1356	711
1/20	1011	1.48	565	15661	20.2	8546	1263	652
1/30	919	1.37	519	14447	18.8	7918	1216	622
1/50	811	1.25	465	12987	17.2	7209	1162	589
1/100	675	1.11	402	11113	15.3	6374	1099	550

Note: 1) Probable calculation was carried out by Gumbel Method.

2) Drought discharges were estimated based on the minimum 10-day's discharge in every year.

Bloght discharges note commuted backet on the minimum rooky's discharge in every year.
 According to the irrigation design standard of DGWRD, the basic drought year with once in five years probability is selected as basic year for water resource based on the estimated discharges.
 The selection is made by paying attention not only the minimum drought discharge but to the total discharge from January to August. It is considered that the critical nun-off for the irrigation development occurs during rather drought season

in the above duration. As seen in Table B-15, the year of 1977 is selected as the basic year for the study.

Master Plan Study on Lower Asahan River Basin Development

Vol. 4 In-depth Study on the Silau-Bunut Rehabilitation Irrigation Project

Appendix 4-C

Irrigation and Drainage

Appendix 4-C **IRRIGATION AND DRAINAGE**

CONTENTS

1. Present condition of Irrigation and Drainage

<u>Page</u>

Existing Irrigation and Drainage System 1.1

Inventory of Irrigation Canals and Structures (Table C-1)	4C-1
Inventory of Drainage Canals and Structures (Table C-2)	4C-2
Dimensions of Existing Irrigation Canals (Table C-3)	4C-3
Present Condition of Roads (Table C-4)	4C-4
Existing Irrigation Systems in the Silau and Bunut Area (Fig. C-1)	4C-5
Fluctuation of River Water Level at Free Intake on the Silau RiverFig. C-2	4C-6
Present Condition of Weirs	
- Beluru Weir (Fig. C-3)	4C-7
- Serbangan Weir (Fig. C-4)	4C-8
- Panca Arga Weir (Fig. C-5)	4C-9
Existing and Proposed Road Networks in and around the Project Area (Fig. C-6)	4C-10
Flood Protoction Posilition	

1.2tion Facilities r100a F

Inventory of Existing Flood Control Facilities (Table C-5)	4C-11
Main Features of Lower Asahan Flood Control Project	
by DGWRD (Table C-6)	4C - 12

Operation and Maintenance 1.3

Organization of the Irrigation Service Office of DPU North Sumatra in Kab. Asahan Area (Table C-7)	4C-13
Organization of Irrigation Committee in Kab. Asahan (Fig C-7)	4C-14

4C - i

2 Irrigation and Drainage Development Plan

2.1 Irrigation and Drainage Plan

2.2 Flood Protection Plan

Flood Distribution Plan of Bunut River (Fig. C-10) 4C-24

2.3 Operation and Maintenance Plan

Proposed O&M Equipment (Table C-13)...... 4C-25

3. Proposed Project Works

3.1 Water Resource Facilities

Comparison of Movable Weir Type (Table C-14)	4C-26
Comparison of Alternative Inter-Basin Diversion Plans (Table C-15)	4C-27
Upgrading Plan of Wwirs on the Bunut River (Table C-16)	4C-28
Backwater Effect by Fixed Weir (Fig. C-11)	4C-29
Intake Structures of Proposed Silau Integrated Weir (Fig. C-12)	4C-30
Scouring Sluice of Proposed Silau Integrated Weir (Fig. C-13)	4C-31
Flood Frequency of the Silau River at Kisaran (Fig. C-14)	4C-32
Alternative Plan for Inter-basin Diversion (Fig. C-15)	4C-33
Alternative Plan for Profile of Inter-basin Diversion Canal (Fig. C-16)	4C-34

Rehabilitation Plan of Existing Weirs

-	Serbangan Weir (Fig. C-17)	4C-37
-	Beluru Weir (Fig. C-18)	4C-38
-	PANCA ARGA WEIR(Fig. C-19)	4C-39

3.2 Irrigation and Drainage Facilities

Length of Main and Secondary Irrigation Canals							
(Table C-17)							
Related Structures on Irrigation Canals (Table C-18)							
Length of Main and Secondary Drainage Canals (Table C-19)	4C-42						
Related Structures on Drainage Canals (Table C-20)	4C-41						
Profile of Proposed Canals							
- Silau Right Main Irrigation Canal (Fig. C-20)	4C-43						
- Silau Left Main Irrigation Canal (Fig. C-21)	4C-45						
- Serbangan Main Irrigation Canal (Fig. C-22)	4C-47						
- Meranti SupplyIrrigation Canal (Fig. C-23)	4C-48						
- Tambung Tulang Main Drainage Canal (Fig. C-24)	4C-49						
- Silo Bonto Main Drainage Canal (Fig. C-25)	4C-52						
- Air Joman Main Drainage Canal (Fig. C-26)	4C-54						
- Bandar Jepang Main Drainage Canal (Fig. C-27)	4C-55						

- Bagan Batak Main Drainage Canal (Fig. C-28)...... 4C-57

Canal Related Structures (Fig. C-29)4C-59Tide Gate Stuructures on Existing Drains (Fig. C-30)4C-61

On-farm Development Plan (Fig. C-31) 4C-62

3.3 Road Network

Proposed Road Net	work (Table C-21)	4C-65
-------------------	-------------------	-------

3.4 Flood Protection Dike along the Bunut River

Longitudinal Profile of Proposed Flood Dike (Fig. C-32)...... 4C-66 Typical Cross Section of Proposed Flood Dike (Fig. C-33)..... 4C-67

4. Cost Estimate

Wages and Material Prices at Kisaran (Table C-22)	4C-68
Unit Construction Costs for major Works (Table C-23)	4C-69
Direct Construction Costs for Civil Works (Table C-24)	4C-70
Procurement Cost for O&M Equipment (Table C-25)	4C-74
Annual Disbursement Schedule of the Project Cost (Table C-26)	4C-75

	Irrigation	Nos of		Canal la	noth (m)/	andition			· · · · ·								•		
	Scheme	canal	A	B	ngar (ш)/(Č	D	Total	DW	n	TO	CK	CV	AQ	SP	s (nos DP) BR	SW	MD	Tota
I.	Silau River System																		
	1 Si Umbut-umbut	1	490	7,200	1,100	0	8,790	. 0	1	9	0	5	0	1	0	8	0	0	24
	2 Binjai Scrbangan	1	0	150	4,650	0	4,800	0	0	1	0	1	0	2	ō	1	0	0	5
	3 Tasik Malaya	2	50	5,920	1,335	120	7,425	0	1	7	0	5	0	0	0	0	0	. 0	13
	4 Kapias Batu VIII	1	0	10,400	2,100	0	12,500	0	0	2	÷ 0	0	0	0	0	8	0	0	10
	5 Sei Silau	3	0	11,840	1,450	0	13,290	0	1	16	0	2	3	.0	0	14	0	0	36
	6 Bandar Saleh	1	290	1,120	0	0	1,410	0	0	2	0	0	3	0	0	1	0	0	6
	7 Sijambi	3	0	5,055	0	0	5,055	0	1	7	: 0	0	4	1	0	0	0	0	13
	Total I	12	830	41,685	10,635	120	53,270	0	4	44	0	13	10	4	0	32	0	0	107
II.	Bunut River System	I														<u> </u>		·	
II A.	Managed by PU 1 Sei Serani	4	0	4,060	0	0	4,060	i	L	3	0	0	0	0	0	4	0	0	9
	2 Serbangan	5	0	15,155	0	0	15,155	1	1	17	15	3	2	0	2	8	0	0	49
	3 Panca Arga	5	25	1,450	2,270	1,100	4,845	1	1	6	0	1	2	0	0	2	0	0	13
	4 Sei Beluru	1	0	4,000	0	0	4,000	1	1	4	0	0	1	1	0	3	0	0	11
	5 Silo Bonto	0	0	0	0	0	0	Ō	0	0	0	0	0	0	0	0	0	0	0
	6 Desa Gajah	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Total II A	15	25	24,665	2,270	1,100	28,060	4	4	30	15	4	5	1	2	17	0	0	82
11 B,	Village Irrigation 1 Desa Durian	2	0	430	1,240		1,670	1	1	0	0	2	0	0	0	0	0	0	4
	2 Desa Gajah (left bank of Bunut river)	1	0	640	550	0	1,190	2	2	0	0	0	0	0	0	0	0	0	4
	Total II B	3	0	1,070	1,790	0	2,860	3	3	0	0	2	0	0	0	0	0	0	
	Total II	18	25	25,735	4,060	1,100	30,920	7	7	30	15	6	5	1	2	17	0	0	90
	Total (I+II)	30	855	67,420	14,695	1,220	84,190	7	11	74	15	19	15	5	2	49	0	0	197

Tabel C-1 INVENTORY OF IRRIGATION CANALS AND RELATED STRUCTURES

Note: Structures:

DW; Diversion weir, IT; Intake structure, TO; Turnout, CK; Check, CV; Culvert AQ; Aqueduct, SP; Siphon, DP; Drop, BR; Bridge, SW; Spillway/Wasteway, MD; Measuring divice

Name of canal: - SP; Main canal - SS; Secondary canal

Condition of canal: A; Well maintained B; Functioning properly C; Deteriorated/Partiary collapsed D; Completely collapsed

<u></u>	Irrigation	Nos. of		Canal le	ngth (m)/C	Related Structures (nos.)					
	Scheme	drain	A	B	<u> </u>	D) Total	CV.	SP	BR	Total
I.	Silau River System	n									
	1 Si Umbut-umbut	2	0	7,500	1,700	. 0	9,200	0	0	0	0
	2 Binjai Serbangan	0	0	0	0	0	0	0	0	0	0
	3 Tasik Malaya	1	0	0	0	5,430	5,430	· 0	0	• 0	0
	4 Kapias Batu VIII	0	0	0	0	0	0	0	0	Ó	0
	5 Sei Silau	4	0	0	12,600	0	12,600	4	2	6	12
	6 Bandar Salch	1	0	1,500	2,100	0	3,600	0	0	0	Ó
	7 Sijambi	4	0	13,500	0	0	13,500	0	0	0	. 0
	Total I	12	0	22,500	16,400	5,430	44,330	4	2	6	12
П.	Bunut River Syster	n		<u></u>							
	1 Sei Serani	0	0	0	0	0	0	0	0	0	. 0
	2 Serbangan	4	0	13,000	0	Ö	13,000	0	4	8	12
	3 Panca Arga	1	0	6,000	0	0	6,000	0	0	2	2
	4 Silo Bonto	. 1	0	13,900	0	- 0	13,900	0	0	1	1
	5 Desa Gajah	1	0	0	3,200	0	3,200	0	0	1	1
	6 Sei Beluru	1	0	900	0	0	900	0	0	1	1
	7 Others	2	0	13,100	15,700	0	28,800	0	0.	2	2
	Total II	10	0	46,900	18,900	0	65,800	0	4	15	19
	Total (I+II)	22	0	69,400	35,300	5,430	110,130	4	6	21	31

Table C-2 INVENTORY OF DRAINAGE CANALS AND RELATED STRUCTURES

Note: Structures: CV; Culvert, SP; Siphon, BR; Bridge

Condition of canal: A; Well maintained B; Functioning properly

C; Deteriorated/Partiary collapsed D; Completely collapsed

Name of canal:

SP; Main canal SS; Secondary canal

Table C-3 DIMENSION OF EXISTING IRRIGATION CANALS

Scheme	Canal	Total	How	-		2000T		Caral IN:		
ocheme	Callar	Lenoth	- 110 W Ca (m3	pacity (a)	Gradian	Canai i	ven ter	Canai Du	nension	Downark
(DP)	Name	(m)	Max	Min	V) a Gicili	High		<u>_</u>		ACHIAIK
(01)	Taune	<u></u>	- MIGA	374111		mgn	LOW			
1. SILAU RIVER S	SYSTEM									
1. Si Umbut umbut	SP-Si Umbut2	7,430	3.74	0.47	1/1,500 - 1/1,750	13.76	8.05	4.4 - 1.8	2.7 - 0.9	Earth Canal
2. Tasik Malaya	SP-T. Malaya SS-T. Malaya	140 7,390	5.76 3.64	4.68 0.30	1/1,150 1/1,450	9.51 8.70	8.50 3.16	3.3 - 2.8 3.8 - 1.7	2.0 - 1.9 1.9 - 0.7	Earth Canal Earth Canal
3. Kapias Bt.VIII	SS-K.Batu VIII	2,620	3.27	0.40	1/1,150	8.70	4.77	3.7 - 1.6	1.7 - 0.9	Earth Canal
4. Sci Silau	SP-Sci Silau SS-Silau Kn SS-Silau Kr	1,635 5,670 6,465	28.15 9.20 5.60	13.76 0.97 0.56	1/1,400 1/1,000 - 1/1,200 1/1,400 - 1/1,450	11.50 11.09 11.39	11.19 4.10 3.49	7.5 - 7.4 4.8 - 2.2 4.0 - 1.8	3.2 - 2.3 2.2 - 0.7 2.0 - 0.9	Earth Canal Earth Canal Earth Canal
5. Bandar Salch	SS-B. Saleh	1,405	0.61	0.15	1/1,400	5.07	3.36	2.0 - 0.9	1.0 - 1.6	Earth Canal
II. BUNUT RIVER	SYSTEM				· .				-	
1. DP. Serbangan	SP-Serbangan SS-Rawang Lama SS-Rawang Baru I SS-Rawang Baru II SS-Rawang Baru III	6,120 3,470 1,835 1,980 1,405	12.43 3.77 0.74 1.65 1.83	0.47 0.05 0.13 0.07 0.41	1/1,800 1/1,200 1/800 1/3,000 1/1,800	9.00 8.57 7.99 6.41 7.41	5.14 5.13 5.09 5.75 6.54	1.8 -13.0 2.7 - 5.0 1.7 - 3.0 1.0 - 3.5 1.7 - 2.6	1.0 - 3.0 0.7 - 1.5 0.7 - 1.0 0.7 - 1.2 1.0 - 1.6	Earth Canal Earth Canal Earth Canal Earth Canal Earth Canal Earth Canal
2. DP. Panca Arga	SP-Panca Arga SS-PA Kn-2 SS-PA Kr-1 SS-PA Kn-1	1,525 1,950 425 700	0.73 0.63 0.27 0.17	0.26 0.48 0.27 0.17	1/800 1/800 1/800 1/1,100	4.67 4.46 5.50 3.38	2.83 3.94 4.97 2.70	0.8 - 1.2 1.1 0.6 1.2	0.9 - 1.1 1.2 - 1.3 1 0.8	Earth Canal Earth Canal Earth Canal Earth Canal
3. Dp. Sei Beluru	SS-Sei Beluru	3,940	0.57	0.11	1/1,400	8.89	5.99	1.0 - 2.0	0.9 - 1.2	Earth Canal
4. DP. Sei Serani	SP-Sei Scrani SS-Sci Scrani I SS-Sci Scrani II SS-Sei Scrani III	935 1,030 1,520 685	0.94 0.18 0.31 0.21	0.06 0.14 0.08 0.13	1/3,800 1/1,600 1/1,000 1/1,300	7.09 7.13 7.27 7.51	7.31 6.40 5.33 6.97	1.4 - 2.1 1.0 - 1.3 0.9 - 1.4 1.0 - 1.1	0.7 - 1.5 0.8 - 0.9 0.7 - 0.9 0.8 - 0.9	Earth Canal Earth Canal Earth Canal Earth Canal
5. DP. Sijambi	SP-Sijambi SS-Tumpat	2,505 1,470	1.48 0.25	0.28 0.20	1/2,100 1/800	3.00 2.78	2.34 1.00	1.0 - 2.3 0.9 - 1.3	1.0 - 1.5 0.8 - 0.9	Earth Canal Earth Canal

Note: B; Canal bottom width. H; Canal height. SP; Main irrigation canal. SS; Secondary irrigation canal.

4C - 3

Pouto	Road Section			Total	Pav	ement Cor	ndition (km)	+ <u>.</u>			Status		
No.	From To		Longth (km)	Width (m)	Asphalted	Gravel M	Macadum	Earth	Bridge (nos.)	Good	Medium Damaged		Remarks
(Provin	icial Road)						*						
P-1	S. Rejanekar	Simpana Kawat	47 20	6.00	47.20			•	25		47 20		: 11
P . 7	Arteri	Kicaran	5 00	6.00	5.00	-	-	•	25	-	47.20	•	HOURIX
P - 10	Sunpang Kawat	Teluk Nibung	18.70	6.00	18.70	-	-	•	7		18.70	: •	Hotmix Hotmix
Sub To	tal - P		70.90	÷	70.90	0.00	0.00	0.00	32	0.00	70.90	0.00	
(Kabup	aten Road)						:				· .		
K - 01	Kisaran	Pasar V	3.00	4 50	3.00			•	2	1.00	2.00		1.1
K - 02	Pasar V	Rawano	6.85	4 50	5.00	•	-	-	2	1.00	2.00 . 6.25	-	
K 03	Pasar V	Pasar XI	545	4.50	· 5.45		-	-	2	0.00	0.32	-	
K - 04	Pasar XI	Silan Lant	13.82	4.50	5.45	-	12.92	-	. 7	12.00	3.43	-	
K - 05	Pasar XI	Air Ioman	3.00	4.50	3 00	-	13.62	-		12.00	11.6.2	-	
K - 06	Air Ioman	Pasar Lembu	3.65	4.50	3,90	•	-	265	3	3.90	2 15	-	
K 07	Air Ioman	Taniuno Balai	5.60	4.50		•	sin	3.05		2 00	3.05		
K 08	Silan Laut	Teluk Nihung	18.06	4.50	•	5 50	5.09	6.60	11	3.00	2.00	0.69	
K 25	Sei Balai	Liuno Kubu	0.76	4.50	-	3,30	0.90	0.50	17	-	18.96		
K . 40	Rawann	Panca Aroa	6.50	4.50	•	-	9.40	0.00	17		8.46	1.00	
K . 50	Panca Area	Sai Balum	7.05	4.50		-	4.20	2.38	2	6.58		-	
K 53	Kisaran	Sinapri napri	4.50	4.30	3.33	-	4.60	-	0	5.00	2.95	•	
K . 54	Decar Miring	Sumourumour	4.30	4.50	4.50	-		-	4	· •	4.50	-	
¥ 55	Lineo Kubu	Derat Dea	0.50	4.50	-	-	6.50	·	12		6.50	-	
K 56	Domotope Dec	Fond, Pao	8.00	4.50	-	•		8.00	- 11	•	6.00	2.00	
N 67	Dokon Minnou	Shau Laut	0.01	4.50	·			6.01	2	-	·· •	6.01	
N-07 V 90.	rekan minggu Sinori nori	Shau Bonio	3.95	4.50	-	-	2.85	1.10	3	3.95	· -	-	
N 80 5	Sipori pori	LUDUK Palas	1.11	4.50		-	•	1.11	3	1.11			
N 02	Pasar LAJa	LUDUK Palas	9.25	4.50	-	-	5.75	3.50	8	5.75	3.50	-	
A 90	cind Kapa	Bagan Baru	2.50	4.00	-	-		2.50	•	-	2.50		
K 92	Kp. Durian	Meranti	5.00	4.00	•	-	2.52	2.48	. 5	5.00		-	
K - 93	Sidomukli	Pondok Bunga	4.80	3.50	•	-	1.30	3.50	3	1.30	3.50	-	
Sub Tota	il - K		136.93	· · ·	27.05	5.50	63.65	40.73	130	51.09	86.14	9.70	·····
Total			207.83		97.95	5.50	63.65	40.73	162	51.09	157.04	9.70	· · · · · ·

Table C-4 EXISTING ROAD CONDITION

Source: 1) Provincial Road; Daftar Jalan-jalan Dikelola, Cabang Dinas PU Bina Marga Asahan, Jun. 1989.

Kabupaten Road; Data-data Jalan Kabupaten Daerah Tingkat H Asahan 1988/89, Seksi Jalan dan Jembatan, PUD Asahan.

4C - 5

4C - 6

.

⁴C - 8

Item	Unit	Quantity/ Description
1 Silau river		
(1) River dike		
1) Length	km	Left side : 18.3. Right side : 17.75
2) Height	m	Old dike ; 1.2, New dike ; more than 2.0
3) Crown width	m	Old dike; 2.0, New dike; more than 4.0
4) Side slope		Old dike ; 1:1.5, New dike ; 1: 2.0
(2) Bank protection	· .	Wooden pile groynes or wooden piles of 17 places
(3) Structures along river		
1) Free intake	nos	5 free intakes of Pasar Baru, Sijambi, T.Malaya,
		S.Silau, and Si Umbut umbut
2) Pump station	nos	2 sites for city water supply and irigation
3) Drainage outlet	nos	7 sites
4) Bridge	nos	5 bridges
5) Ferry terminal	nos	2 sites
2 Bunut river		
(1) River dike		
1) Length	km	Left side : 4.0. Right side : 9.5
2) Height	m	1.0 - 2.0
3) Crown width	m	2.0 - 3.0
4) Side slope		1: 1.0 - 1: 2.0
(2) Bank protection		Non
(3) Structures along river		
1) Intake weirs	nos	2 nos. of Serbangan and Panca Arga weirs for irrigation
2) Pump station	nos	Non
3) Drainage outlet	поѕ	Non
4) Bridge	nos	3 bridges
5) Ferry terminal	nos	Non

Table C-5 INVENTORY OF EXISTING FLOOD CONTROL FACILITIES

Table C-6 MAIN FEATURES OF THE LOWER ASAHAN FLOOD CONTROL PROJECT BY DGWRD

No	Item	Description	Unit	Quantity
1	Backaround		· · ·	
1.	- 1984-85	Master plan study on lower Asahan river b and feasibility study on urgent flood contro	asin development ol plan by JICA	·
	- 1988-89	Detailed design of Lower Asahan river floo	od control project	
2.	Project Works			
	(1) Asahan river			
	- Objective stretch	From Pd. Mahondang to Nantal river	km	19
	- Design flood discharge	10-year flood discharge at Pulau Raja	cum/sec	1,100
	- Major work quantities	- Excavation and dredging $(x 1,000)$	cu-m	3,345
	J 1 1	- Dike embankment (x 1,000)	cu-m	560
	(2) Silau river			
	- Objective stretch	From railway bridge to the confluence	km	20
	- Objective success	with Asahan river	Kiit	20
	 Design flood discharge 	10-year flood discharge at Kisaran	cum/sec	600
	 Major work quqntities 	- Excavation and dredging (x 1,000)	cu-m	2,220
	·	- Dike embankment (x 1,000)	cu-m	1,250
		- Revetment	m	4,130
÷		- Parapet wall	m	3,130
	(3) Lebah river			
	- Objective stretch	Prevention dike for retarding basin	km	15
	 Major work quantities 	- Excavation (x 1.000)	cn-m	220
		- Dike embankment (x 1,000)	cu-m	220
3	Project Cost			-
5.	- Foreign currency nortion		Rn mil	35 020
	- Local currency portion	•	Rp.mil	72,620
	- Total	1	Rp.mil	107.650
	Tom		Kp.mii.	107,050
4.	Economic Evaluation			
	- Economic cost		Rp.mil.	82,517
	- Economic annual	Flood damage reduction and	Rp.mil.	9,125
	benefits	enhancement benefits	%	8.5
	- EIRR		•	
5.	Implementation Schedule			
	(1) Executing agency	Establishing the project office under		
	(2) Construction period	Directorate of River, DGWRD	Veare	· · · · · · · · · · · · · · · · · · ·
			years	-4

Exchange rate : US\$ 1.0 = ¥ 130 = Rp. 1,750

Source : Design Report on River Improvement Works for Lower Ashan River Flood Control Project, Vol. I Main Report, DGWRD, June 1989

Table C-7

ORGANIZATION OF THE IRRIGATION SERVICE BRANCH OFFICE OF DPU NORTH SUMATRA IN KABUPATEN ASAHAN AREA

			(Un	it: person)
Management	Technic	al Staff	Admini-	Casual
Starr	Office	Field	stration	Labour
1				
1				•
			i.	
	6			
	3 3			
	ž			
	4			
		1		
	•	4 8		
·	:	14		
		17		145
iof			1	
101			1	
			4	
			נ ד	
			7	
			/	
2	16	26	. 24	145
				145
	Management Staff 1 1	Management Technic Staff Office	Management StaffTechnical Staff Office1 11 1 $\begin{pmatrix} 6\\ 3\\ 3\\ 4\\ \\ 4\\ \\ 14\\ \\ 14 \\ \\ 14$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Note: 1) Total command area of the office; 28,900 ha

2) Total number of staff; 68 persons

3) Average command area per field staff; 1,100 ha/staff

4) Ration of Admi. staff (24/68=); 35%

(Nos. of admi. staff is superfluous compairing with that of technical staff.)

5) Casual labours are employed for regular maintenance work of the facilities.

Note: Irrigation Committee of Kabupaen Asahan

(1) Members:

Chairman	:	Bupati Kab. Asahan
Secretary	:	Head of Irrigation Branch Office Asahan
Member	:	 Chief of Police Resort Chief of Irrigatin Section of Regional

- Chief of Regional Agriculture Office
 Chief of Sub-Directory
- Chief of Sub-Directorate Land Use (Agraria)
- 5. Chief of Sub-Directorate Rural Development

(2) Interval of Meeting :

Two times in a year at the time just before cropping season in principal

Incidentially, irrigation problems need to meeting

(3) Activities :

No substantial activity of the Committee has been performed. The reasons of poor activities are; i) irrigation activities in Kab. Asahan are relatively not dynamic, ii) lack of information related to irrigation and drainage problems such as inundation area, pest and disease shortage of irrigation water, cropping season are not reported to the irrigation committee members.

Fig C-7

ORGANIZATION OF IRRIGATION COMMITTEE

IN KABUPATEN ASAHAN

Republic of Indonesia MASTER PLAN STUDY ON LOWER ASAHAN RIVER BASIN DEVELOPMENT Japan International Cooperation Agency

4C - 14
Table C-8 ESTIMATE OF IRRIGATION WATER REQUIREMENT

Basic Meteological Data

Item	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
Air Temp	erature (C	entigrade i	n degree)						****			
Max.	31.5	32.0	32.4	32.7	32.9	32.9	32.6	32.4	32.1	31.8	31.4	31.3
Mean	25.7	26.0	26.3	26.6	26.7	26.6	26.4	26.3	26.2	26.2	26.2	25.9
Min.	21.8	21.5	21.9	22.7	22.7	22.5	22.3	22,2	22.5	22.6	22.5	22.2
Relative I	lumidity (%)										
Mean	88.7	87.6	88.2	88.4	87.9	86.8	87.0	88.3	88.5	89.4	89.7	89.3
wind Velo	city(m/s)											
Average	0.19	0.24	0.25	0.23	0.24	0.25	0.25	0.23	0.28	0.22	0.21	0.21
Sunshine ((%)			•								
Average	58	65	54	54	58	60	62	60	52	59	57	50
											· .	

Unit Diversion Water Requirement

Period	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Ocı.	Nov.	Dec.	
(day) 1 - 10	1.48	0.28	0.00	0.89	1.26	1.57	1.21	0.18	0.00	0.67	1.48	1.27	•
10 - 20	0.98	0.31	0.63	1.15	1.03	0.00	0.00	0.00	0.00	0.97	0.33	0.58	
21 -	0.91	0.06	0.45	1.37	1.20	1.10	0.04	0.00	0.00	1.08	0.06	1.67	

Calculation Conditions;

1. All procedures follow DGWRD Irrigation Design Standards.

2. Crop water requirement is based on FAO reference evapotranspiration.

3. Nursery and preparation requirements employ pre-satulation requirement and average water depth of 75mm.

- 4. Pre-satulation requirement is estimated to be 75mm and another 50mm is added if dry-up peeriod is more than 2.5 months.
- 5. Percoration loss is estimated to be 2mm for dry season from Jan. to Aug. and 1mm for rainy season from Sep. to Dec.
- 6. Water layer replacement requirement of 50 mm is introduced.
- 7. Overall irrigation efficiency is estimated to be 60 %.
- 8. Cropping area factor follows the proposed cropping pattern.
- 9. Rainfall distribution pattern of the standard year of 1979 is used for calculation.
- 10. An linear regression is used for effective rainfall estimation.

Effective rainfall = 0.68 * Actual rainfall

- 11. Effective rainfall is based on the results of dayly water ballace simulation supposing that rainfalls less than 5mm is neglected and that maximum and minimum storage depth of paddy are 100 and 50mm respectively.
- 12. The calculation employs physical conditions at Kisaran and meteological conditions at Sci Dadap station(6.19).

Table C-9 ESTIMATE OF DRAINAGE WATER REQUIREMENT

Calculation Table

Case	Land Use Discription	Rainfall Data	Design Rainfall	Water Ballance	Storage	Runoff Coefficient	Drainage Depth	Drainage Modulous
	······································	1	(mm/day)	(mm/day)	(mm)		(mm)	(l/s/ha)
1.	Paddy Field	3 day consecutive rain	172	-5	75	- ·	82	3.16
2.	Non Paddy Field	1 day consecutive rain	127	0	0	0.65		-

Equations for Drainage Requirement

- for Paddy Field Design Drainage Discharge(I/s) = 1.62 * Drainage Modulous * Paddy Arca(A)^ 0.92 = 5.13 A ^ 0.92
- for Non-paddy field
 Design Drainage Discharge(l/s) = 0.116 * Design Rainfall * Runoff Coefficient * Non Paddy Area(A) ^ 0.92
 = 9.58 A ^ 0.92

Calculation Conditions

- 1. Design Rainfall is with 20 % probability of exceedance.
- 2. All calculation procedures follow DGWRD Irrigation Design Standards.
- 3. Water Ballance is a sum of irrigation(positive), evapotranspiration(negative) and percoration(negative).
- 4. Average Storage Depth is estimated based on field investigation.
- 5. Drainage Depth is calculated by the following equation.

Drainage Depth = Design Rainfall + Numbers of consecutive days * Water Ballance - Average Storage Depth.

6. Drainage Modulous is an unit conversed from of Drainage Depth.

7. Runoff Coefficient is selected supposing that non-paddy area is covered by light forest.

Table C-10 WATER BALANCE CALCULATION (1/3) SEPARATE ASSESSMENT

Month Jan.	Period (Day)	Requiremnet	Design	Available	Sumlue	Daeim	Augilable	C
Jan.	(Day)				ouipius	DeatBu	Avaluation	Surptus
Jan.	(Day)		Discharge	Discharge	Discharge	Discharge	Discharge	Discharge
Jan.		(l/s/ha)	(m3/s)	(m3/s)	(m3/s)	<u>(m3/s)</u>	(m3/s)	(m3/s)
Jan.	1 10	1.40	77.04	<i></i>	A.C. 0.07			
	1-10	1.48	77.06	51.06	36.37	4.39	2.59	1.83
	11-20	0.98	50.7	24.7	14.97	3.48	1.68	1.17
P.1	21-	0.91	54.3	28.3	19.27	3.14	1.34	0.87
l'eb.	1-10	0.28	54.84	28.84	26.06	3.17	1.37	1.23
	11-20	0.31	50.8	24.8	21.72	3.06	1.26	1.10
	21-	0.06	47.16	21.16	20.56	3.64	1.84	1.81
Mar.	1-10	0	49.34	23.34	23.34	2.72	0.92	0.92
	11-20	0.63	40.56	14.56	8.31	2.59	0.79	0.47
	21-	0.45	44.26	18.26	13.79	2.42	0.62	0.39
Apr.	1-10	0.89	36.55	10.55	1.72	2.61	0.81	0.35
	11-20	1.15	41.5	15.5	4.09	2.47	0.67	0.08
	21-	1.37	57.98	31.98	18.38	2.52	0.72	0.01
May	1-10	1.26	42.62	16.62	4.11	2.45	0.65	0.00
	11-20	1.03	57.55	31.55	21.33	4.48	2.68	2.15
	21-	1.2	46.52	20.52	8.61	5.64	3.84	3.22
Jun.	1-10	1.57	52.82	26.82	11.24	4.13	2.33	1.52
	11-20	0	54.95	28.95	28.95	3.84	2.04	2.04
	21-	1.1	37.14	11.14	0.22	2.89	1.09	0.52
Jul.	1-10	1.21	38.01	12.01	.0.00	3.21	1.41	0.79
	11-20	0	33.64	7.64	7.64	2.82	1.02	1.02
	21-	0.04	26.43	0.43	0.03	2.29	0.49	0.47
Aug.	1-10	0.18	27.87	1.87	0.08	2.54	0.74	0.65
	11-20	0	38.47	12.47	12.47	2.65	0.85	0.85
	21-	0	56.73	30.73	30.73	2.9	1.1	1.10
Sep.	1-10	0	35.49	9.49	9.49	3.84	2.04	2.04
	11-20	0	27.65	1.65	1.65	3.69	1.89	1.89
	21-	0	99.8	73.8	73.80	6.34	4.54	4.54
Oct.	1-10	0.67	185.74	159.74	153.09	9.26	7.46	7.11
	11-20	0.97	111.05	85.05	75.42	6.98	5.18	4.68
	21-	1.08	70.02	44.02	33.30	4.23	2.43	1.87
Nov.	1-10	1.48	112.65	86.65	71.96	4.14	2.34	1.58
	11-20	0.33	82.06	56.06	52.78	4.33	2.53	2.36
	21-	0.06	85.64	59.64	59.04	4.12	2.32	2.20
Dec.	1-10	1.27	78.26	52.26	39.65	7.82	6.02	536
	11-20	0.58	91.84	65.84	60.08	5.21	3 41	3 11
	21-	1.67	72.98	46.98	30.40	47	29	2.04
					20110	b+ 7	2.7	2.07
						····		

Maintenance Discharge; Monthly 10 Year Drought Discharge Silau River 26.0 Bunut River 1.8

Available Discharge = Design Discharge - Maintenance Discharge

Maximum Irrigation Area; Silau River System: 9,925.62 Bunut River System: 515.87

ha

ha

cum/sec

cum/sec

		Design D	ischarge	Available l	Discharge	Diversion		Water B	alance		Diversion	Plan .
Month	Period	Silau	Bunut	Silau	Bunut	Require-	Silan R	liver	Bunut	River	Silau to	Silau R.
	.1	River	River	River	River	ment	Intake	Surplus	Intake	Surplus	Bunut	Surplus
	(Day)	(m3/s)	(m3/s)	(m3/s)	(m3/s)	(l/s/ha)	(m3/s)	(m3/s)	(m3/s)	(m3/s)	(m3/s)	(m3/s)
Jan.	i-10	77 .1	4,4	51.1	2.6	1.48	6.3	44.8	10.1	(7.5)	7.5	37.24
	11-20	50.7	3.5	24.7	1.7	0.98	4.2	20,5	6.7	(5.0)	5.0	15.51
	21-	54.3	3.1	28.3	1.3	0.91	3.9	24.4	6.2	(4.9)	4.9	19.55
f cb.	1-10	54.8	3.2	28.8	1.4	0.28	1.2	27.6	1.9	(0.5)	0.5	27.10
	11-20	50.8	3.1	24.8	1.3	0.31	1.3	23.5	2.1	(0.9)	0.9	22.62
	21-	47.2	3.6	21.2	1.8	0.06	0.3	20.9	0.4	1.4	0.0	20.90
Mar.	1-10	49.3	2.7	23.3	0.9	0.00	0.0	23.3	0.0	0.9	0.0	23.34
	11-20	40.6	2.6	14.6	0.8	0.63	2.7	11.9	4.3	(3.5)	3.5	8.36
	21-	44.3	2.4	18.3	0.6	0.45	1.9	16.3	3.1	(2.5)	2.5	13.89
Apr.	1-10	36.6	2.6	10.5	0.8	0.89	3.8	6.8	6.1	(5.3)	5.3	1.49
•	11-20	41.5	2.5	15.5	0.7	1.15	4.9	10.6	7.9	(7.2)	7.2	3.42
	21-	58.0	2.5	32.0	0.7	1.37	5.8	26.2	9.4	(8.7)	8.7	17.51
May	:1-10	42.6	2.5	16.6	0.7	1.26	5.4	11.3	8.6	(8.0)	8.0	3.30
-	11-20	57.6	4.5	31.6	2.7	1.03	4.4	27.2	7.0	(4.4)	4.4	22.81
	21-	46.5	5.6	20.5	3.8	1.20	5.1	15.4	8.2	(4.4)	4.4	11.05
Jun.	1-10	52.8	4.1	26.8	2.3	1.57	6.7	20.1	10.7	(8.4)	8,4	11.74
	11-20	55.0	3.8	29.0	2.0	0.00	0.0	29.0	0.0	2.0	0.0	28.95
	21-	37.1	2.9	11.1	1.1	1.10	4,7	6.5	7.5	(6.4)	6.4	0.03
Jul.	1-10	38.0	3.2	12.0	1.4	1.21	5.1	6.9	8.3	(6.9)	6.9	0.00
	11-20	33.6	2.8	7.6	1.0	0.00	0.0	7.6	0.0	1.0	0.0	7.64
	21-	26.4	2.3	0.4	0.5	0.04	0.2	0.3	0.3	0.2	0.0	0.26
Aug.	1-10	27.9	2.5	1.9	0.7	0.18	0.8	1.1	1.2	(0.5)	0.5	0.61
	11-20	38.5	2.7	12.5	0.9	0.00	0.0	12.5	0.0	0.9	0.0	12.47
	21-	56.7	2.9	30.7	1.1	0.00	0.0	30.7	0.0	1.1	0.0	30.73
Scp.	1-10	35.5	3.8	9.5	2.0	0.00	0.0	9.5	0.0	2.0	0.0	9.49
	11-20	27.7	3.7	1.6	1.9	0.00	0.0	1.6	0.0	1.9	0.0	1.65
	21-	99.8	6.3	73.8	4.5	0.00	0.0	73.8	0.0	.4.5	0.0	73.80
Oci.	1-10	185.7	9.3	159.7	7.5	0.67	2.8	156.9	4.6	2.9	0.0	156.89
	11-20	111.1	7.0	85.1	5.2	0.97	4.1	\$0.9	6.6	(1.5)	1.5	79.47
	21-	70.0	4.2	44.0	2.4	1.08	4.6	39.4	7.4	(5.0)	5.0	34.47
Nov.	1-10	112.7	4,1	86.7	2.3	1.48	6.3	80.4	10.1	(7.8)	7.8	72.58
	11-20	82.1	4.3	56.1	2.5	0.33	1.4	54.7	2.3	0.3	0.0	54.66
	21-	85.6	4.1	59.6	2.3	0.06	0.3	59.4	0.4	1.9	0.0	59.38
Dcc.	1-10	78.3	7.8	52.3	6.0	1.27	5.4	46.9	87	(2.7)	27	44 19
	11-20	91.8	5.2	65.8	3.4	0.58	2.5	63.4	4.0	(0.6)	0.6	62.82
	21-	73.0	4.7	47.0	2.9	1.67	7.1	39.9	11.4	(8.5)	8.5	31.36
Note:	(7.5) = M	inus Value					<u> </u>		······································			
	Maintenan	ice Discharg	e; Monthly1	0 Year droug	ht Discharge		Silau River Bumu River	26.0 1.8	m3/s m3/s			

Table C-10 WATER BALANCE CALCULATION POTENTIAL WATER SUPPLY CONDITION (2/3)

Bonut River Average Discharge = Design Discharge - Maintenance Discharge Potential Irrigable Are cii, n

ear	Shau River System:	4,250.7 na	
	Bunut River System:	6,840.2 ha	
	Total Area:	11,090.9 ha	

		Design D	ischarge	Available I	lischarge	Diversion		Water B	alance		Diversion	Plan
Month	Period	Silau	Bunut	Silau	Bunut	Require-	Silau R	iver	Bunut	River	Silau to	Silau R.
	1. I.	River	River	River	River	ment	Intake	Surplus	Intake	Surplus	Bunut	Surplus
	(Day)	(m3/s)	(m3/s)	(m3/s)	(m3/s)	(l/s/ha)	(m3/s)	(m3/s)	(m3/s)	(m3/s)	(m3/s)	(m3/s)
Jan.	1-10	77.1	. 4.4	51.1	2.6	1.48	6.3	44.8	8.8	(6.2)	6.2	38.60
	11-20	50.7	3.5	24.7	1.7	0.98	4.2	20.5	5.8	(4.1)	4.1	16.41
	21-	54.3	3.1	28.3	1.3	0.91	3.9	24.4	5.4	(4.0)	4.0	20.38
Feb.	1-10	54.8	3.2	28.8	1.4	0.28	1.2	27.6	1.7	(0.3)	0.3	27.36
	11-20	50.8	3.1	24.8	1.3	0.31	1.3	23.5	1.8	0.6)	0.6	22.91
	21-	47.2	3.6	21.2	1.8	0.06	0.3	20.9	0.4	1.5	0.0	20.90
Mar.	i-10	49.3	27	23.3	0.9	0.00	0.0	23.3	0.0	0.9	0.0	23 34
	11-20	40.6	2.6	14.6	0.8	0.63	2.7	11.9	3.7	(2.9)	2.9	8.94
	21-	44 3	24	18.3	0.6	0.45	19	163	27	(2.0)	20	14 30
Apr.	1-10	36.6	26	10.5	0.8	0.89	3.8	68	53	(4.5)	4.5	231
	11.20	41 5	2.5	15.5	07	1 15	49	10.6	68	(6.1)	61	4 47
	21-	58.0	25	32.0	07	1 37	5.8	26.2	8.1	(7.4)	74	18 76
May	1-10	42.6	25	16.6	07	1.26	54	113	25	(6.8)	6.8	4 45
	11.20	57.6	45	31.6	27	1.03	44	27.2	61	(3.4)	3.4	23.75
	21-	46.5	5.6	20.5	3.8	1.0.0	51	15.4	71	(3.3)	33	12 15
lun	1-10	52.8	41	26.8	23	1.57	67	20.1	93	(7.0)	7.0	13 18
	11.20	55.0	3.8	29.0	20	0.00	0.0	29.0	0.0	20	0.0	28.95
	21-	37.1	29	11.1	11	1.10	47	65	65	(5.4)	5.4	1.04
ы	1.10	38.0	32	12.0	14	1.10	51	69	7.2	(5.8)	5.8	1.04
J L L L L L L L L L L	11.20	33.6	28	76	10	0.00	0.0	76	0.0	1.0	0.0	7.64
	-21-	264	2.3	0.4	0.5	0.04	0.2	03	0.2	03	0.0	0.26
Ano	1-10	27.9	25	19	0.2	0.18	0.8	11	11	(0,3) (0,3)	0.0	0.78
	11-20	38 5	27	12.5	0.0	0.00	0.0	12.5	0.0	0.0	0.0	12 47
	21-	567	29	30.7	11	0.00	0.0	30.7	0.0	11	0.0	30.73
Seo	1.10	35.5	3.8	95	2.0	0.00	0.0	05	0.0	20	0.0	0.10
nop.	11.20	27.7	37	16	10	0.00	0.0	1.6	0.0	1.9	0.0	1.65
	21.	00.8	63	73.8	4.5	0.00	0.0	73.8	0.0	4.5	0.0	73.80
Oct	1-10	1857	0.3	159.7	75	0.67	28	156.0	4.0	35	0.0	156.80
000	11.20	111.1	7.0	85.1	5.2	0.07	2.0 A 1	- 80.0	57	(0.6)	0.0	80.36
	21.	70.0	4.2	44.0	24	1.08	46	30 4	5.1	(4.0)	4.0	35 46
Nov	1.10	1127	4.2	867	23	1.00	63	39.4 80.4	8.8	(4.0)	64	73.04
1404.	11.20	821	4.1	561	2.5	0.33	1.4	54.7	0.0 2 A	0.4)	0.4	54.66
	21.	85.6	41	59.6	2.2	0.06	03	59.4	0.4	2.0	0.0	50.38
Dec	2. 1.10	78 3	78	52.3	60	1 27	5.4	46.9	25	25	15	45 36
D	11.20	91.8	52	65.8	3.4	0.58	2.4	63.4	3.4	0.0	0.0	63.35
	21.	73.0	47	47.0	29	1.53	2.5	30.0	9.4 Q Q	0.0 (7.0)	2.0	32.55
	21.	73.0	4.7	47.0	2.7	1.07	7.1	37.7	7.7	(7.0)	7.0	32.07
Note:	(7.5) = Mi	nus Value	·	·		· · · · ·						
	Maintenan	ce Discharg	e; Monthly	10 Year droug	ht Discharge		Silau River	26.0	m:3/s			
							Bunut River	1.8	m3/s			

Table C-10 WATER BALANCE CALCULATION (3/3) PROJECT CONDITION

Average Discharge = Design Discharge - Maintenance Discharge

Potential Irrigable Area:	Silau River System:	4,251 ha
- · ·	Bunut River System:	5,922 ha
	Beluru River System:	128 ha
	Tolal Area:	10,300 ha

			: 				
	Source	Name	Intake	· · · · · · · · · · · · · · · · · · ·	Area (ha)	New 2017	Peak Diversion
No.	of	of	Facility	Gross	Gross	Net	Discharge
	Water	Main Syster	m	Area	Sawah	Sawah	(M3/S)
1.	Silau R.	Silau Kr.	Silau Integrated Weir	3,644.2	2,863.2	2,565.5	4.28
2.	Silau R.	Silau Kn.	Silau Integrated Weir	2,326.9	1,881.6	1,685.2	2.81
	Sub-Total-	Silau R. (1-2)	· · · · · · · · · · · · · · · · · · ·	5,971	4,745	4,251	7.09
3.	Bunut R.	Serbangan	Serbangan Weir	4,160.3	3,025.4	2,709.4	4.52
4.	Bunut R.	Meranti	Meranti Weir	2,184.5	1,890.4	1,692.9	2.83
5.	Bunut R.	Panca Arga	Panca Arga Weir	1,807.8	1,696.4	1,519.3	2.54
б.	Bunut R.	Beluru	Beluru Weir	175.4	142.3	127.5	0.21
	Sub-Total-B	Sunut Area (3-	6)	8,328	6,755	6,049	10.10
	TOTAL			14,299	11,499	10,300	17.19

Table C-11 PROPOSED IRRIGATION SYSTEM

No.	Water	Name of	Outlet River/Canal	Projec	t Area	Extern	al Area	Total Drainage
	Shed	Main System	:	Area (ha)	Discharge (M3/S)	Area (ha)	Discharge (M3/S)	Discharge (M3/S)
1.	Silau/Asahan	(1) Serdan	Serdan R.	948.8	3.04	-	-	3.04
		(2) SI Umbut2	Dp. Si Umbut2	687.7	2.28	400.0	2.40	4.68
		(3) Air Joman	Dp. Air Joman	1,331.2	4.43	1,140.0	6.22	10.65
		(4) Kapias	Kapias R.	350.0	1.12	-	-	1.12
		(5) Bandar Jepang	Dp. Bandar Jepang	2,264.4	7.37	9,700.0	44.60	51.97
		(6) Tg. Balai	Asahan R.	62.5	0.23	-	-	0.23
2.	Bunut R.	(1) Air Hitam	Dp. Air Hitam	568.4	1.86	900.0	2.68	4.54
		(2) Panca Arga	Dp. Meranti	1,521.8	4.92	. –		4.92
		(3) Beluru	Beluru R.	511.6	1.68	400.0	2.40	4.08
		(4) Serani	Serani R.	326.5	1.05	-	-	1.05
3.	Bagan Batak	Bagan Batak	Dp. Bagan Batak	1,239.4	3.79	900.0 *	2.68	6.47
4.	Tambung Tulang	Tambung Tulang	Dp. Tambung Tulang	3,332.4	10.52	1,000.0 *	2.95	13.47
5.	Silo Bonto	Silo Bonto	Dp. Silo Bonto	1,154.4	3.74	4,100.0 *	18.32	22.06
	Total			14,299	46.03	18,540	82.25	128.28

Table C-12 PROPOSED DRAINAGE SYSTEM

Note: *; Drainable area of swampy area downstream of the project area included.

.

130

190

260

	5	310	340
i	6	340	360

120

170

240

⊁ Applied for the Project.

150

210

290

380

390

Fig. C-10 FLOOD DISTRIBUTION PLAN OF BUNUT RIVER

(2)

(3)

(4)

G

Republic of Indonesia MASTER PLAN STUDY ON LOWER ASAHAN RIVER BASIN DEVELOPMENT Japan International Cooperation Agency

No. Item	Specification	Required Nos.	Remark
I. Operation Equipment			
(1) Jeep type car	4,000 cc, 4 x 4	4	
(2) Station wagon	$1,500 \text{ cc}, 4 \times 4$	1	
(3) Motor cycle	100 cc	25	
(4) Wireless radio	50 km	5	
(5) Personnal compu	16 bit w/printer	2	
II. Maintenance Equipent			
(1) Hydraulic backho	0.4 m2/swamp type	2	
(2) Angle dozer	11 ton	2	
(3) Wheel loader	1.0 m3	1	
(4) Motor grader	9 ton/3.1. m	1	
(5) Slope compactor	3 ps	4	
(6) Concrete mixer	0.12 m2	2	
(7) Submergible pun	50 mm dia.	2	
(8) Portable generate	3 kVA	2	
(9) Dump truck	6 ton	2	
(10) Cargo truck	6 ton/crane	1	
(11) Pick-up truck	1 ton, 4 x 4	2	
III. Meteo-hydrological Eq	oment	,	
(1) Rain gauge	7 days	3	
(2) Meteo-station	standard set	2	
(3) Water level gaug	Automatic (7 days)	5	

Table C-13 LIST OF PROPOSED O&M EQUIPMENT

Note: Since no O&M equipment of the irrigation service office is available at present, a one set of the O&M equipment is proposed.

Table C-14 COMPARISON OF MOVABLE WEIR TYPE

	liem	Roller gate	[]ap gale	Rubber tube gate
ł	Gate body (1) Gate type (2) Dimensions (3) Materials (4) Weight	Plate girder roller gate 20.0 m (w) x 3.0 m (h) x 8 nos. Steel	Fish-belly type 43.5 m (w) x 2.55 m (h) x 4 nos. do, as left	Rubber tube (Air filling up type) 40.2 m (w) x 2.55 m (h) x 4 nos. Rubber
2	Civil works (1) Piers (b x l x nos) (2) Foundation	2.0 m x 11.0 m x 9 nos. RC pile (#=500, 1=10 m), 81 nos.	2.0 m x 8.0 m x 5 nos. Non	3.5 m x 8.0 m x 5 nos. Non
3	Operation (1) Flow control - Control method - Flood time	Under flow (possible delicate control) Starting generator by manually	Over-flow(possible delicate control) Automatic tumbling with relation to the water level sensor	Overflow (On-off control only) Automatic tumbling with relation to the water level sensor
	(2) Flushing of silt	Partial open (jet flow flushing)	Full open of a part of gate	Full open of a part of gate
4	Maintenance (1) Painting (2) Repair (3) Cost	Once every 5 years required Fulfill every portion by local technics Medium	do, as left Fulfill by local except pressure pipe Medium	Not required Fulfill by local except pressure pipe and rubber body Medium
5	Durability	More than 30 years	More than 30 years	More than 30 years (Recent information shows more than 30 years)
6	Construction period	Long (2 years)	Rather short (1.5 years)	Rather short (1.5 years)
7	Construction cost (Direct cost only, (1) Gates (incl. intake gate, etc) (2) Civil works (3) Others (4) Total (Ratio)	Unit : Rp. million) 6,480 2,330 890 9,700 (100)	5,125 2,030 725 7,889 (81)	3,520 2,030 565 6,115 (63)

Item	Alternative 1	Alternative 2 (Proposed Plan)	Remarks
I. General			
- Diversion point on the Silau	Prapat Janji, 20 km upstream Kisaran	Siumbut Umbut, 1 km downstream Kisaran	
- Inflow point to Bunut	Sidodadi, 16 km upstream Kisaran	1.5 km upstream Serbangan Weir	
- Hìstory	Proposed by DPU in 1983 and PR-III	Alternative Plan newly proposed	PR-III:Progress report III in Oct. 1989
II. Physical Cond	lition		
- Diversion discharge	7.8 m3/sec	7.4 m3/sec	In Alt-1, conveyance loss of 5% through the Bunut river is considered
- Intake facility	Independent side- overflow Free Intake	Conjunctive use of the Silau Integrated weir	In Alt-1, the similar Silau integrated weir is also required to supply the stable irrigation water to the Silau area
- Inter-basin canal	Enlargement of existion drain through oil palm plantation area (6.1 km)	New channel through Rubber plantation area (8.3 km)	
- River improvement	Enlargement of river cross sections of the Bunut river (15.8 km)	Not required	
- Construction Cost(Rp. mill)	3,837	3,103	
II. Operation and	Maintenance		
- Daily operation and Maintenance	Difficult to communicate with the irrigation area downstream	Easy to operate in accordance with demand of the Bunut irrigation area	
- Access condition	Approx. 1 hr from Kisaran via Kabupaten road	Within 10 min. from Kisaran by asphalt paved Kabupaten road	

Table C-15 COMPARISON OF ALTERNATIVE INTER-BASIN DIVERSION PLANS

Item	Serbangan weir	Panca Arga weir	Beluru weir
CONDITIONS OF EXISTING	STRUCTURES		
1 Dimension s			
(1) Construction year	1943	1974	1983
(2) Weir hody			
Type	Wooden stop-log weir	Concrete fixed weir	Gabion matress fixed
-31-	(Semi permanent)		weir
	()		
W X H (m)	2.0(w) x1.7(h) (6 spans)	Crest width = 9.0 m	Crest width = 13.5 m
(3) Intake gate(s)	Right bank	Right bank	Right bank
WXH(m)	1.7 x 1.0 (5 nos)	1.0 x 1.0 (1 no)	1.0 x 1.0 (1 no)
	Left bank	Left bank	
	1.4 x 1.0 (3 nos)	1.0 x 1.0 (1:no)	· .
2 Flood flow canacity of	80 m2/c	12	21 - 2/2
existing weir (m3/sec)*	00 m3/8	12 1115/8	21 103/5
3 Main constraints	- Leakage from stop-logs	- Flooding caused by the weir	- Leakage from weir bod
	- Deterioration of	 Intake gates are not 	 Intake gates are not
	foundation (45 years)	functioned well	functioned well
•	 Wooden intake gates are 		
	deteriorated		
UPGRADING PLAN			
(1) Design flood	80 2/-	80 2 <i>l</i>	(0
discharge	80 m3/s	80 m3/8	ou mays
(30-year flood)			
(so your nood)			
(2) Irrigation command	Right bank : 2,710 ha	Right bank : 1,520 ha	Right bank(1) : 130 ha
arca (ha)	Left bank : 1,690 ha		0 ()
· · · · · · · · · · · · · · · · · · ·		•	
(3) Intake discharge	Right bank : 4.52 m3/s	Right bank : 2.54 m3/s	Right bank : 0.21 m3/s
(m3/s)	Left bank : 2.83 m3/s		1
2 Harrodian alay of time 1-	turne turne		
2 Upgrading plan of diversion s	Monually organized	Concerts fined mult	
(i) Type	manuary-operated	(Widening the wait creat)	Concrete fixed weir
	(Installing of steel gates)	(which mg me went cresh)	(Existing gabion matres
:	(manning of stoor galos)		is fully used)
(2) Dimensions	· .	the set for all	
	-	El. 4.8	El. 13.0
Crest El.		0.8	2.0
Crest El. Weir height	-	0.0	
Crest El. Weir height Crest length	-	25.0	13.5
Crest El. Weir height Crest length Diversion gate	2.5 (w)x 2.0 (h) x 6 nos.	25.0	13.5
Crest El. Weir height Crest length Diversion gate Sluice gate	- 2.5 (w)x 2.0 (h) x 6 nos.	25.0 2.0 (w)x 1.0 (h) x 1 no.	13.5 1.3 (w)x 2.0 (h) x 2 no.
Crest El. Weir height Crest length Diversion gate Sluice gate	2.5 (w)x 2.0 (h) x 6 nos.	25.0 2.0 (w)x 1.0 (h) x 1 no.	13.5 1.3 (w)x 2.0 (h) x 2 no.
Crest El. Weir height Crest length Diversion gate Sluice gate 3 Intake structure and Related fa	2.5 (w)x 2.0 (h) x 6 nos. accilitics 2.5 (w) = 2.0 (t) = 2	25.0 2.0 (w)x 1.0 (h) x 1 no.	13.5 1.3 (w)x 2.0 (h) x 2 no
Crest El. Weir height Crest length Diversion gate Sluice gate 3 Intake structure and Related fa (1) Replacement of	2.5 (w)x 2.0 (h) x 6 nos. acilitics 2.5 (w)x 2.0 (h) x 2 nos.	25.0 2.0 (w)x 1.0 (h) x 1 no. 1.6 (w)x 1.0 (h) x 2 nos.	13.5 1.3 (w)x 2.0 (h) x 2 no 1.0 (w)x 1.0 (h) x 1 no

Table C-16 UPGRADING PLAN OF WEIRS ON THE BUNUT RIVER

Note: Design concept of the upgrading plan (1) The diversion structure should pass the design flood discharge safely.

(2) Conditions of the existing structure are to be maintained as far as possible.

*: Freeboard of 60 cm is considered for estimating the flow capacity.

Range of Flood Discharge (m³/s)

Fig. C-14 FLOOD FREQUENCY OF THE SILAU RIVER AT KISARAN

Republic of Indonesia MASTER PLAN STUDY ON LOWER ASAHAN RIVER BASIN DEVELOPMENT Japan International Cooperation Agency

4

4C - 35

Table C-17 LENGTH OF MAIN AND SECONDARY IRRIGATION CANALS

	Name of	Nos. of		Canal length			
No.	irrigation	canals	New	· · ·	Total		
	block	1	canal	Level I	Level II	Total	
				· · · ·			
Maiı	n Canal						
1. 5	ilau river system	-	10,000	0.000	0	0.000	10.000
1	Silau Kanan	1	10,000	2,000	0	2,000	12,000
2	Silau Kiri	1	5,700	5,100	2,800	7,900	13,600
	Sub-total	2	15,700	7,100	2,800	9,900	25,600
II. B	unut river system						
3	Serbangan	· 1	0	3,900	1,500	5,400	5,400
4	Panca Arga	2	6,800	0	600	600	7,400
5	Meranti	1	5,200	0	0	Ó	5,200
6	Beluru	0	0	0	0	0	0
	Sub-total	4	12,000	3,900	2,100	6,000	18,000
				** ***	4.000		10.000
	Total	6	27,700	11,000	4,900	15,900	43,600
	. *		1997 - 1997 1997 -				
Secor	adary Canal						
. Si	lau river system					· ·	
1	Silau Kanan	6	5,100	12,300	5,300	17,600	22,700
2	Silau Kiri	12	23,500	3,100	12,100	15,200	38,700
	Sub-total	18	28,600	15,400	17,400	32,800	61,400
B	mut river system	0	0	0	0	0	0
3	Serbangan	12	25 800	7 200	2 800	10 000	35 800
4	Panca Arga	5	7 700	500	. 0	500	8 200
5	Meranti	7	20,500		400	400	20.000
6	Belum		0	300	-100	300	20,500
~	Sub-total	25	54.000	8 000	3 200	11 200	65 200
		. 25		0,000		11,200	05,200
	Total	43	82,600	23,400	20,600	44,000	126,600
				· .	- 		
lain	and Secondary Canal						
	and occontain y Canar						
1	Silan Kanan	7	15 100	14 300	5 300	10,600	34 700
2	Silau Kiri	, 13	29,100	8 200	14 000	23,000	59,700
~	Sub-total	20	44 300	22 500	20,200	A2 700	87 000
	San Inter	20	11,000	JVU	20,200	42,700	07,000
. Bi	mut river system						н. 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 -
3	Serbangan	13	25,800	11,100	4,300	15,400	41,200
4	Panca Arga	7	14,500	500	600	1,100	15,600
5	Meranti	8	25,700	0	400	400	26,100
6	Beluru	1	0	300	0	300	300
	Sub-total	29	66,000	11,900	5,300	17,200	83,200
t~~	tion Canal Tatal	40	110 200	74 400	AE 600		
1124	cion Canar Futar	47	110,000	34,400	· 20,500	27.200	170,200

Note; Level I: Special Maintenance or Reshaping only Level II: Flow Capacity Expansion Required Source; Field Inventory Survey by JICA Oct. 1989

		Nos of St	f Structure Sub-		Nos of St	iniciure	Sub-	Nos of S	Nos of Structure	
No.	Structure	New	Repair	Total	New	Repair	Total	New	Repair	Total
	·	(nos)	(nos)		(nos)	(nos)		(nos)	(nos)	
			Main			Secondar	y		Total	
I. Sil	au river system									
1	Turn out/Diversion	28	0	28	58	12	70	86	12	98
2	Aquiduct	0	0	0	0	5	5	0	5	5
3	Siphon	0	0	0	2	0	2	2	0	2
4	Bridge	11	0	11	17	21	38	28	21	49
5	Culvert	0	0	0	6	6	12	6	6	12
6	Drop	7	0	7	0	1	1	7	1	8
7	Spillway	0	0	0	10	0	10	10	0	10
	Sub-total	46	. 0	46	93	45	138	139	45	184
									<u>.</u>	
II. Be	mut river system									
1	Turn out/Diversion	16	0	16	85	6	91	101	6	107
2	Aquiduct	0	0	0	3	1	4	3	1	4
3	Siphon	1	0	1	1	1	2	2	1	3
4	Bridge	8	0	8	12	14	26	20	14	34
5	Culvert	0	0	0	4	0	4	4	0	4
6	Drop	0	0	0	0	2	2	0	2	2
7	Spillway	0	0	0	5	0	5	5	0	5
	Sub-total	25	0	25	110	24	134	135	24	159
	Total	71	0	71	203	69	272	274	69	343

Table C-18 RELATED STRUCTURES ON IRRIGATION CANALS

Note; Level I: Special Maintenance or Reshaping only Level II: Flow Capacity Expansion Required Source; Field Inventory Survey by JICA Oct. 1989

Table C-20 RELATED STRUCTURES ON DRAINAGE CANALS

		Nos of St	ructure	Sub-	Nos of St	uclure	Sub-	Nos of Str	ucture	
No.	Structure	Structure New Repair	Total	New	Repair	Total	New	Repair	Total	
		(nos)	(nos)		(nos)	(nos)		(nos)	(nos)	
			Main			Secondar	y		Total	
L Sil	au river system									
1	Culvert	4	0	4	. 4	8	12	8	8	16
2	Siphon	0	0	0	0	0	0	0	0	0
3	Bridge	1	0	1	2	3	5	3	3	6
4	Junction (w/ culvert)	7	0	7 -	36	0	36	43	0	43
	Sub-total	12	0	12	42	11	53	54	11	65
II. Bu	nut river system									
1	Culvert	2	1.	3	8	7	15	10	8	18
2	Siphon	0	0	0	1	0	1	1	0	1
3	Bridge	10	0	10 1	6	12	18	16	12	28
4	Junction (w/ culvert)	10	0	10	41	0	41	51	0	51
	Sub-total	22	1	23	56	19	75	78	20	98
		- 	÷ .				на на селото на селот По селото на			
	Total	34	1	35	98	- 30	128	132	31	163

Note; Level I: Special Maintenance or Reshaping only Level II: Flow Capacity Expansion Required

Source; Field Inventory Survey by JICA Oct. 1989

	Name of	Nos. of		Canal length (m	ı)		
No.	irrigation	canals	New		Rehabilitation		Total
	block		canal	Level I	Level II	Total	-
Main	1 Drain						
I. Si	ilau river system			· .	· · · · ·		
1	Bandar Jepang	1	300	4,100	4,100	8,200	8,500
2	Si Umbutumbut	1	0	0	1,400	1,400	1,400
3	Sci Serdang	0	0	0	0	0	0
4	Air Joman	1	4,000	3,000	0	3,000	7,000
5	Biniai Serbangan	0	0	0	0	0	0
	Sub-total	3	4,300	7,100	5,500	12,600	16,900
II. B	unut river system						
6	Air Hitam	1	0	0	3,900	3,900	3,900
7	Silo Bonto	1	0	0	11,400	11,400	11,400
-8	Tambung Tulang	1	0	0	14,100	14,100	14,100
9	Meranti	1	2,600	0	0	0	2,600
- 10	Beluru	0	0	0	0	· 0	0
11	Bagan Batak	1	0	0	9,800	9,800	9,800
	Sub-total	5	2,600	0	39,200	39,200	41,800
	Total	8	6,900	7,100	44,700	51,800	58,700
Seco	ndary Drain						· .
I. Si	ilau river system						
1	Bandar Jepang	5	9,600	0	4,200	4,200	13,800
2	Si Umbutumbut	2	3,700	.0	2,200	2,200	5,900
3	Sei Serdang	2	1,300	0	0	0	1,300
4	Air Joman	6	11,600	0	0	0	11,600
5	Binjai Scrbangan	1	2,000	Ö	0	Û	2,000
	Sub-total	16	28,200	0	6,400	6,400	34,600
17 D							
н. Б	A in Hitem	· · ·	0	0	< (00	5 (00	5 (00
0 7	Air rillain Cile Dente	۲. ج	24,000	0	2,000	3,000	3,000
/	SHO BORIO	2	24,000	7 000	2,300	2,500	27,100
0	Tambung Turang	8	19,500	7,000	100	7,100	20,400
10	Refum	0	10,200	0	400	400	10,200
10	Beren Betek	1	2,100	0	400	400	2,500
11	Bagan Batak	2	700	0	8,500	8,500	9,200
	Sub-total	24	62,900	7,000	17,100	24,100	87,000
	Total	40	91.100	7.000	23,500	30,500	121.600
				.,			
Main	and Secondary Drain						
1. 31	Durdes Issuen		0.000	1 100	0 200	10,100	22.202
· 1	Danuar Jepang	0	2,200	4,100	8,300	12,400	22,300
2	SI OMOULOMOUL		5,700	0	3,000	3,600	1,300
5	Ser Seruarg		1,300	0	0	1 000	1,300
4	All Johnan	· · · ·	13,000	3,000	U O	5,000	18,000
J	Binjai Seroangan	1	2,000	U 7 100	0	10,000	2,000
	500-10101	19	32,300	7,100	11,900	19,000	51,500
II. Bi	unut river system					.*	
6	Air Hitam	3	0	0	9,500	9,500	9,500
7	Silo Bonto	6	24,600	0	13,900	13,900	38,500
8	Tambung Tulang	9	19,300	7,000	14,200	21,200	40,500
9	Meranti	7	18,800	0	0	0	18,800
10	Beluru	1	2,100	0	400	400	2,500
11	Bagan Batak	3	700	0	18,300	18,300	19,000
	Sub-total	29	65,500	7,000	56,300	63,300	128,800
Drain	lage Canal Total	48	98,000	14,100	68,200	82,300	180,300
	· .	2	•				

Table C-19 LENGTH OF MAIN AND SECONDARY DRAINAGE CANALS

Note; Level I: Special Maintenance or Reshaping only Level II: Flow Capacity Expansion Required Source; Field Inventory Survey by JICA Oct. 1989

⁴C - 43

4C - 45

4C - 46

4C - 47

4C - 48

48

.
