APPENDIX A-3-1

Study on Flow and Pressure Measurement in Distribution System

STUDY ON FLOW AND PRESSURE MEASUREMENTS IN DISTRIBUTION SYSTEM

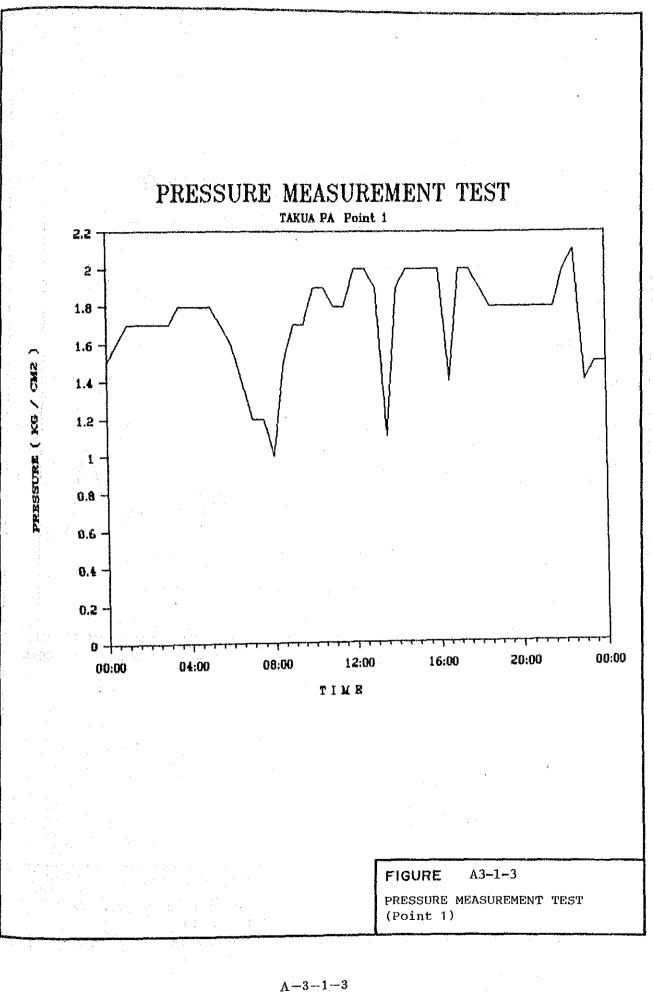
(1) Introduction

APPENDIX

To evaluate the characteristics of the distribution system, pressure and flow measurments were made from August 30, 1988.

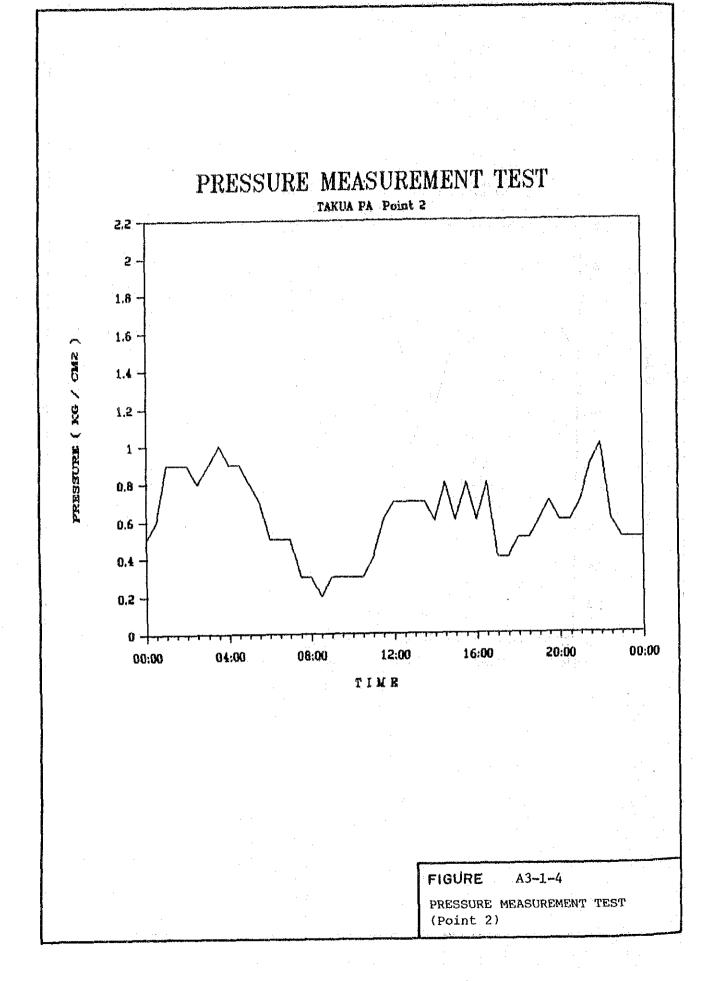
(2) Methords and Results

The flow measurements of 24-hours were conducted at the main distribution pipe in the treatment plant using theultrasonic flow meter with pen recorder. The pressure measurements were made by installing pressure gage at 3 house connections in the distribution system.


The results of flow measurement at the Phang Nga Waterworks, location of pressure measurement points and the results of pressure measurement are shown in Figures A3-1, A3-2 and A3-3 to A3-5, respectively.

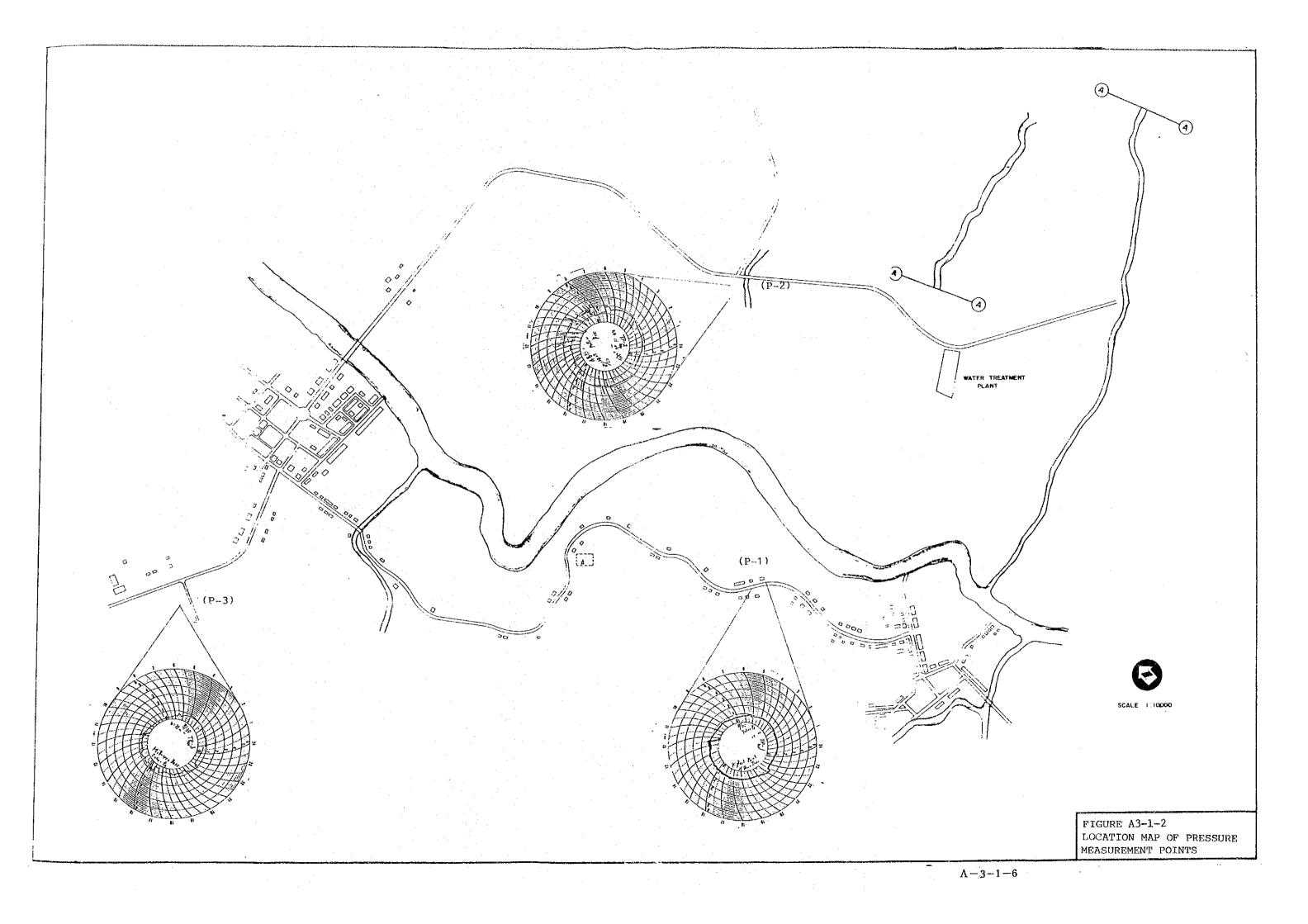
The results of pressure measurements in the existing distribution system show similar pressure conditions with distribution network analysis (refer to section 3.1.3).

A-3-1-1



A-3-1-2




.

н. На страната страната с

A-3-1-4

APPENDIX A-3-2

Study on Water Quality on Distribution Network

 $\mathcal{D} \to \mathcal{D}_{\mathcal{A}}$

APPENDIX WATER QUALITY ON DISTRIBUTION NETWORK

(1) General

Water quality analysis was conducted along the existing distribution mains by use of a potable water quality analizer. Parameters of the analysis are pH, terperature and conductivity.

The results of the analysis are shown in Table A4-1. Sampling points are indicated in Figure A4-1.

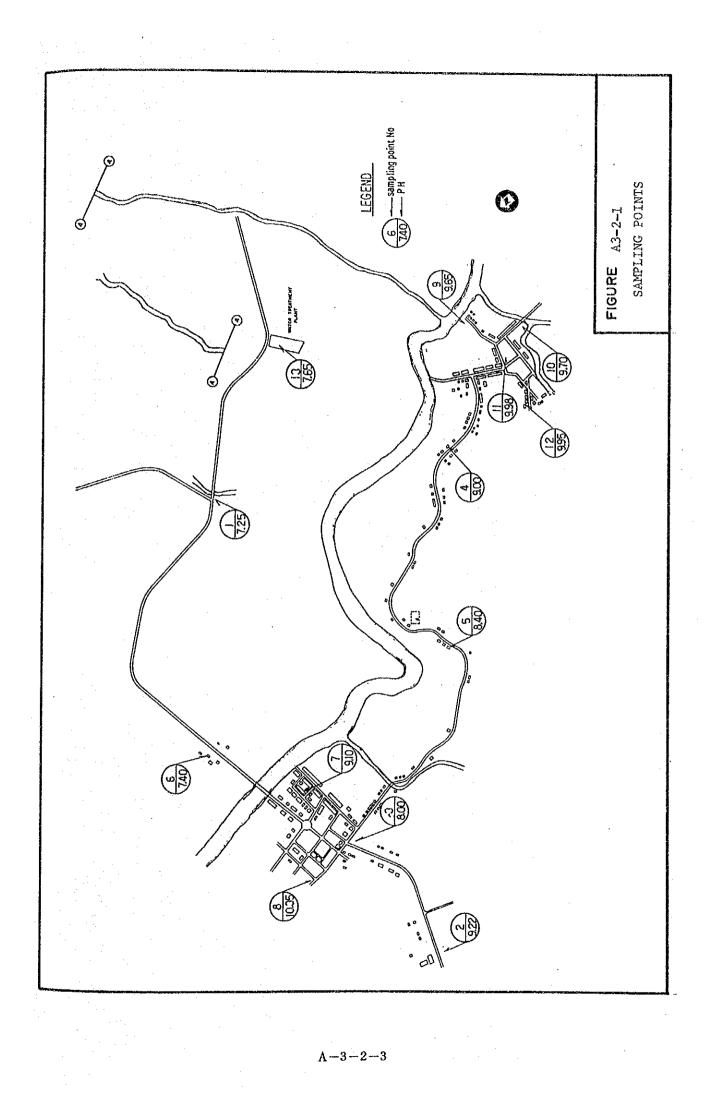
(2) Causes of high pH

Results shows that most of the sampling points except Nos. 1, 3, 6 and 13 have high pH values.

Based on the field investigation, the following causes may result in calcium dissolution from the inner wall of asbestos cement pipes.

- a) Pipe are newly installed, about two year old
- b) Water is retained long inside pipes due to low water flow.

(3) Countermeasure


Drain-off from hydrants or blow-off pipes should be periodically carried out in those area.

A-3-2-1

- 1	able A3-	-21 Re	Table A3-2-1 Results of Water	f Wate	er Qual	itv	Analysis				· · ·	• 2		
			Samp	Sampling Point	oint									
Items	ы	2	ຕ່	÷	i0	ġ	1~	œ	5	10	् रण् न रन्म	2	13	
Hd	7.25	9.22	8.00	9.00	8.40	01.7	9.10	10.35	9.65	9.70	9.98 6	9.95	7.65	
Temp.(°C)	29.0	29.4	29.2	28.7	29.0	28	28 . 9	28.8	28 -1	29.0	29.2	30.0	29.1	
Conductivity (5x10×~~)	•	נט • 01	ہے • ++	თ - 1	4	.4.	21 • 01	+ + *+		9 •	1 0	. 7	् च	
Note : *1 Tr	Treated Water at Water Treatmen	a tt	water	Treatu	nent Pl	n na								

.

A-3-2-2

APPENDIX A-3-3

Jar Test on Raw Water of the Water Treatment Plant

1 General

Jar Test was conducted to evaluate the present dosage rate of coagulant and to verify the appropriate dosage rate. The test was conducted on September 1988 for the raw water presently used by the waterworks, which are from water fall and tin mining pit.

2 Coagulant Used

Aluminum sulfate is being used as coagulant at Takua Pa Waterworks as well as the other waterworks. The chemical is a solid type in a package of 25 kg bag, which is dissolved in the coagulant solution tank with an effective volume of about 1.5 cu.m.

According to the operator, they are consuming 20 kg of aluminum sulfate a day. From this amount of consumption, dosage rate is calculated as below:

Dosage rate (R) for daily average flow rate:

R = 20,000 g/1.350 cu.m/day =14.8 mg/1

Concentration of the coagulant in the solution tank is calculated from the amount of chemical dissolved and the volume of the tank as follows:

Concentration of coagulant solution (C)

C = 20,000 g/1.5 cu m = 13,300 mg/1

This solution was diluted 10 times for use of Jar Test; therefore, solution had the concentration of:

 $13,300 \times (1/10) = 1.330 \text{ mg/L}$

Test Procedure

3

Test procedure followed the PWA's regulation for Jar Test. Sequence and time are shown as follows:

- a) Coagulant dosed
- b) Rapid Mixing, 60 rpm 7.5 min
- c) Flocculation, 40 rpm 7.5 min
- d) Flocculation, 25 rpm 5.0 min
- e) Sedimentation, about 5 min

A-3-3-1

4 Condition and Results

Jar Test was conducted with a series of six different dosage rates for both waters from waterfall and tin mining pit. The condition and results are as shown in Table A5-1 and 2.

Table A3-3-1 Jar Test Condition and Result (Waterfall	Table A3-3-1	Jar Tes	t Condition	and Result	(Waterfall)
---	--------------	---------	-------------	------------	-------------

···· · · ·	, sanar ana kasa kasa aya kasa da kasa kasan kasan kasan kasa kasa kasa	1	2	3	4	5	6
	a an an an a tha an		hele nation was been bond at in a sheet		a mananan ang manangkan kana ang manang manang manangkan kana kana kana kana kana kana k		
	Coagulant Solution (ml)	1.85	3.70	7.41	1.11	14.8	18.5
u	Dosage Rate (mg/l)	2.5	5.0	10	15	20	25
۴.	Turbidity after settling	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
n	На	7.68	7.58	7.52	7.49	7.45	7.42
	Conductivity (micro_ohm/cm)	5.0	4.5	4.6	5.0	5.0	5.0
ò.,	Characteristics of floc F f		Fine floc	Fine floc			

		L	2	3	4	5	6
1.	Coagulant Solution (ml)	0.2	0.4	0.75	1.0	1.5	2.0
2.	Dosage Rate (mg/l)	2.5	5.0	10.0	15.0	20.0	25.0
3.	Turbidity afte settling	r 1.5	2.5	1.5	2.5	1.5	2.5
1.	рН	6.05	6.00	5.90	5.92	6.15	5.85
ŏ.	Conductivity (micro ohm/cm)	3.75	4.25	3.5	3.5	4.1	4.0
	Characteristic: of floc	s Fine floc	Fine floc	Fine floc	Fine floc	Fine floc	Fine floc

Table A3-3-2 Jar Test Condition and Result (Tin Mining Pit)

Since two raw water have quite low turibidity (3.0 and 8.6 for water fall and tin mining pit, respectively), the Jar Test had nearly no effect on the removel of the turbidity.

APPENDIX A-4-1

Study on Water Consumption

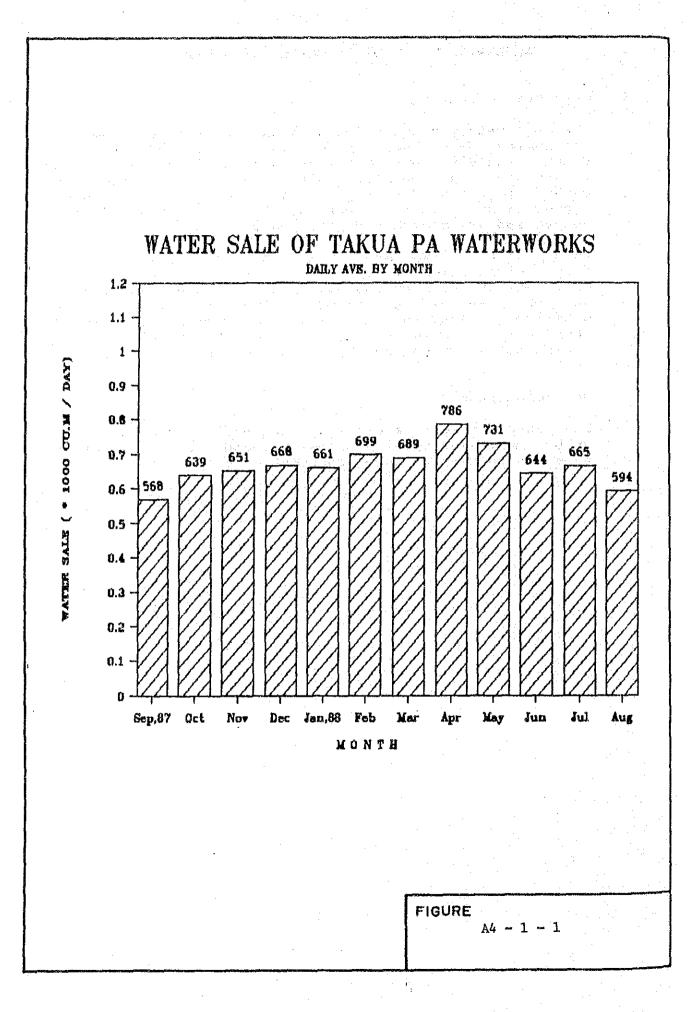
APPENDIX S

STUDY ON WATER CONSUMPTION

Data Collection

1

2


Present water consumption data was collected from the waterworks' meter reading records for the study of water demand and distribution network analysis. Meter reading records at the waterworks office consist of volumes of cards in PWA's format for each connection. Monthly consumptions from September 1987 to August 1988 of each connection are recorded on this card.

Data collection was made in a manner of copying figures water consumption of each consumer for every month. For distribution network analysis, each consumer was located on the map by interviewing meter readers of the waterworks. When the exact locations were not identified, they were located in some extent of the pipeline. Big consumers were also identified for further analysis.

Collected Data

Raw data copied from meter reading books was then summed up by month and by area. The attached sheets hereafter show the summary of water consumption.

A - 4 - 1 - 1

A - 4 - 1 - 2

Table A4 - 1 - 1 Vater Sale of Takua Pa Vatervorks

	·										. i	Unit ; (an -	
Book Ro.	Sep.87	Oct	Rov	Dec	Jan,88	Feb	Xar	Apr	Nay	Jun	Jul	Ang	Total	Day Ave.
1-1	1,370	1,792	1,898	1,810	1,949	1,900	1,898	2,271	2,065	1,403	1.775	1,420	21,554	59.05
1-2	1,098	1,388	1,350	1,535	1,295	1,529	1,550	1,844	1,723	1,078	1,637	1,215	17,248	47.25
2	1,495	2,061	1,959	2,410	1,912	2,405	2,166	2,701	2,451	1,949	2,478	1,828	25.816	70.73
3	1,758	1,991	1,994	2,417	2,065	2,244	2,322	2,545	2,250	2,037	2,230	2,048	25,962	71.13
1-1	2,091	2,386	2,486	2,211	2,723	2,507	2,593	2,882	2,846	2,681	2,591	2,317	30,380	83.23
4-2	2,623	2,765	2,608	2,743	2,558	2,525	2,990	2,897	3,062	2,691	2,827	2,386	32,675	89.52
4-3	2,173	2,599	2,604	2,960	3,516	3,110	3,927	4,435	4,593	1,074	3,695	3,474	41,460	113.59
5	4,434	4,834	4,629	4,498	4,460	3,749	3,902	4,009	3,859	3,400	3,310	3,912	18,658	133.30
Total(cu.m/mo)	17,041	19,816	19,538	20,710	20,478	20,270	21,348	23,585	22,649	19,313	20,603	18,400	243,751	: 667.81
Total(cu.w/d)	568	639	651	668	661	699	689	786	731	644	665	594		

A-4-1-3

APPENDIX A-4-2

Questionnaire Survey for Residents

 $\lambda_{i,j} \geq$

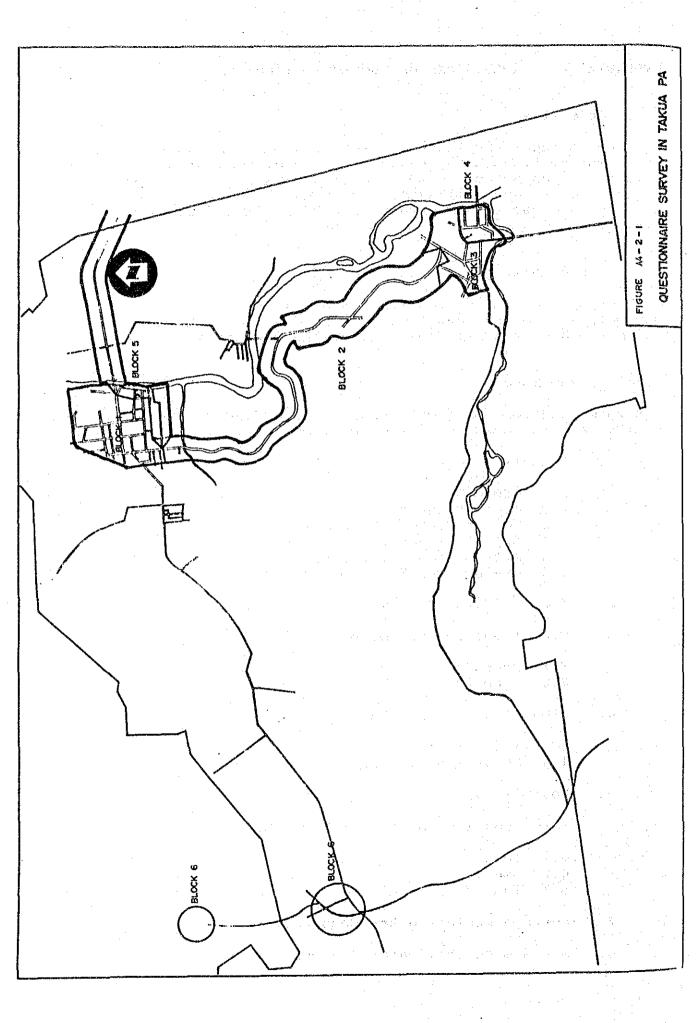
 APPENDIX QUESTIONNAIRE SURVEY IN TAKUA PA

1 Objective

The door-to-door questionnaire survey was conducted to obtain the basic information on the resident's living conditions, water use patterns, responses to the municipal system and/or their own water sources and willingness for house-connection supply, and covered the area served or unserved by the municipal water supply system.

2 Survey Area

The survey area was divided into 6 blocks taking into account the munipality's characteristics as shown in Figure A1-2-1. Block 6 was ban Muang presently unserved by the municipal system.


3 Survey Item

The form used for the questionnaire survey was originally written by Thai and included the following items.

- 1. General
 - 1.1 Address
 - 1.2 Type of House
 - 1.3 No. of Persons in Family
 - 1.4 No. of Employees
 - 1.5 Average Monthly Income
 - 1.6 Average Monthly Medical Expense
- 2. Type of Water Supply
- 3. Conditions in case of Municipal System
 - 3.1 Pressure 3.2 Quantity
- 4. Other Sources than Municipal System
 - 4.1 Type of Source
 - 4.2 Conditions in case of Groundwater
- 5. Potability

6. Water Quality in case of Municipal System

- 6.1 Color
- 6.2 Smell
- 6.3 Turbidity
- 7. Average Monthly Water Consumption
- 8. Average Monthly Water Charge

A-4-2-2

9. Willingness to Pay for Water Charge

10. Water Quality in case of Other Source

10.1	Color
10.2	Smell
10 7	فأجام فحامر والأر

10.3 Turbidity

11. Willingness to Connect to the Municipal System

12. Willingness to Pay for Connection Fee

13. Willingness to Pay for Water Charge

4 Survey Method

Senior high school students were employed as interviewers and were engaged in the questionnaire survey with the guidance of the PWA Head Office staff. The survey was conducted to 158 residents on September 1, 1988.

5 Survey Results

The results of the questionnaire survey are summarized in Table A1-5-1.

1) General

57.0% of the respondents lived in residential houses while 43.0% in commercial buildings.

The total numbers of persons in families and employees were 781 and 339, respectively. Accordingly, one household is composed of 4.94 family members and 2.15 employees on an average with a total of 7.09 persons.

Regarding the average monthly income, 72.8% respondents was in the up-to-4,500 Baht bracket, or 32.3% in the up-to-2,000 Baht, 26.6% in the 2,001-3,000 Baht and 13.9% in the 3,001-4,500 Baht brackets, respectively. The average in respondents weighted by the number of persons and the median in each income bracket was approximately 3,660 Baht, but the number of persons was biggest in the up-to-2,000 Baht bracket.

As to the average monthly medical expense, 39.9% was in the up-to-50 Baht bracket and 22.1%, 12.7% and 15.2% were in the 51-100, 101-200 and 201-500 Baht brackets, respectively. The average in respondents calculated by the same method as the above is 200 Baht, but the number of persons was biggest in the the up-to-50 Baht bracket.

A-4-2-3

2) Type of Water Supply

25.3 % used the municipal system only, 60.8% the other source than the municipal system and 13.9% the combined system of the municipal system and other source(s).

87.3% or 103 out of 118 other sources was groundwater.

		: 	:			====	*****	
Block No.		1	2	3	4	5	6	Total
			222 2	*****	****			
Municipal System Only plus Rain/River		13	. 1 -	7	7 2 5	12	904n 904n	40 2 5
plus Water Vendor plus Well plus Others		2 1*	4	4	3	1 -		14 1
Well Only plus Rain plus Pond/Reservoir		17	16 -	11	9	12	19 1 1	84 1 1
plus Water Vendor		-	-	.		-	2	2
Water Vendor Only	· .		• ••••	. 		-	7 	1
Others					1*	*	 	T
		33	21 ====	22	27 ====	25 ====	30 =====	158 =====

* Rain/River and Well ** Rain/River and Watr Vendor

3) Response to Municipal System

The reputation of the PWA waterworks among 62 respondents using the municipal system was not so good, that is to say, 38.7% complained of low pressure, 8.1% of insufficient water, 51.6% of color, 66.1% of smell and 59.7% of turbidity. However there were big gaps in response by the block. Though the low pressure took place in all served blocks except for Block 2, the respondents in Blocks 2, 3 and 5 took sufficient water. The complaint of color, smell and turbidity occured in all served 6 blocks.

4) Potability

This question was originally intended to know the potability of tap water, but the answer seemed to be made not only for the tap water but also for other source water, since the question followed that on other sources.

Accordingly, the evaluation was made extracting the data from respondents using tap water or well water only.

		Tap Water	well water	
	Drinking Not Drinking Both	23 (57.5%) 13 (32.5%) 2 (5.0%)	64 (76.2%) 12 (14.3%) 5 (5.9%)	
· .	Unknown	2 (5.0%)	3 (3.6%)	
			. محمد مست جند عند المحمد الجمع وحد عليه أبرك لمرة المرة وحمد المحم حدر المرة المرة و	
= 1	Total	40 (100%)	84 (100%)	

57.5% used well water for drinking and 5.0% for drinking and not-drinking in spite of their complaints of its water quality, while 76.2% used well water for drinking and 5.9% for drinking and not-drinking.

The doubt as to the kind of water the respondents (who answered that they didn't use only one source for drinking) used for drinking is remained. They may use the water vendor, although this is not expressed clearly in the survey.

5) Water Quality of Other Sources

As mentioned above, the main water source was the groundwater. 11.9% complained of color, 11.0% of smell and 15.2% of turbidity. Scrutinizing the data block by block, such complaints mostly took place in unserved Block 6 (Ban Muang). Compared with those in tap water, the complaint of water quality was rather less in well water.

6) Conditions of Wells

an an air an a' a' a'

The well depth distribution is shown below. Between 2 and 14 m and 89.3% wells had depths of not more than 10 m. The wells with depths of more than 10 m were located in Blocks 1 and 6.

A-4-2-5

Block No.		>5m	>10m	Unknown	Total
	<5m	<10m	<15m		
	· · · · · ·				e george
1	. 3	16	1	-	20
2	11	9	win	· · · · · · · · · · · · · · · · · · ·	20
3	8	5	-	2	15
4	4		and the second sec	2	12
5	6	2		5	13
6	15	7	1		23
Total	47	45	2	19. 19.	103
Well Depth (m)	4.1 (47)	7.7 (45)	12.5 (2)		
Water Depth (m)	2.2 (47)	3.7 (45)	6.0 (2)		
Operation Time (h/d)	1.8 (28)	1.6 (32)	2.0 (2)		
No.of Fetching Time (1/d)	8.9 (16)	9.4 (9)	- (-)	n an the second se	

The figures in parentheses show the number of wells used for the average calculation.

Average Monthly Water Consumption, Water Charge and Willingness-to-Pay

Regarding the average monthly water consumption, 38.7% of the respondents belonged to the up-to-15 cu m bracket and 24.2% and 8.1% to the 16-30 cu m and 31-50 cu m brackets, respectively. However, 21.0% belonged to the unknown bracket.

35.5% paid for the water charge in the up-to-50 Baht bracket and 27.4% in the 51-100 Baht bracket, while, according to the result on the willingness-to-pay for water charge, 75.8% wanted that the water charge would be in the up-to-50 Baht bracket and 17.8% in the 51-100 Baht bracket. The expectant amount was rather less than the actual payment.

8) Willingness-to-Connect

Out of 158 respondents, 96 didn't use the municipal system at present. However, 38.5% was willing to connect to the municipal system. Such people mainly lived in Blocks 1 and 6. When excluding the data in unserved Block 6, the rate the willingness-to-connect decreased to 21.2%. They wanted that the connection fee would be less than 2,500 Baht (100%)

A - 4 - 2 - 6

7)

and the water charge less than 100 Baht (97.3%). The response to the water charge of the possible consumers was almost equal to that of the existing consumers.

Reasons for unwillingness-to-connect were summarized below

Block No.	1	2	З	4	5	6	Total
		2222		1	====:	=====	
There is a well		8	8	9	8	1	34
Well water is enough	8	2	1			5	16
Well water is clean	-	÷	1			1	2
Well water is convenient	1		-			-	1
Don't use much water		1		**	-		1
Lack of money			1	~	T	-	2
Others	1	2		-	-7-1		3
788 884, 845 904 904 905 905 105 105 105 105 105 105 105 905 905 905 905 905 105 105 105 105 105 105 105 105 105							· . ·
Total	10	13	11	9	9		59

10 13 11 9 9 7 59

Contents of others were as follows:

I will transfer to the new house. Ó

Tap water is unstable. O

Tap water is not potable due to the chlorine smell. ċ.

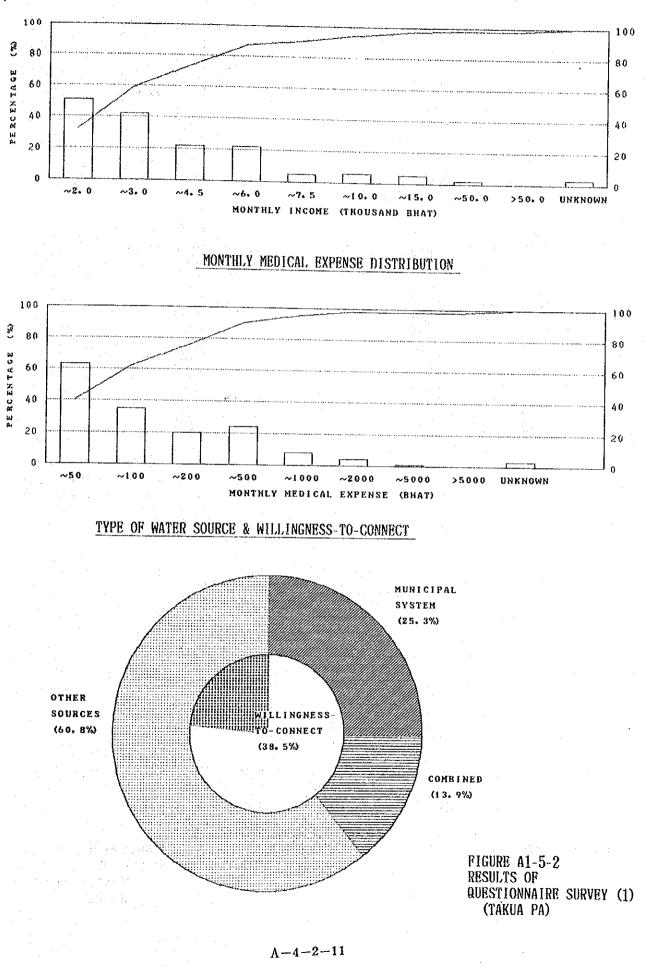
Most people who were unwilling to connect to the municipal system thought that they already had wells and those were enough or clean. The wells were very close and indispensable to their living.

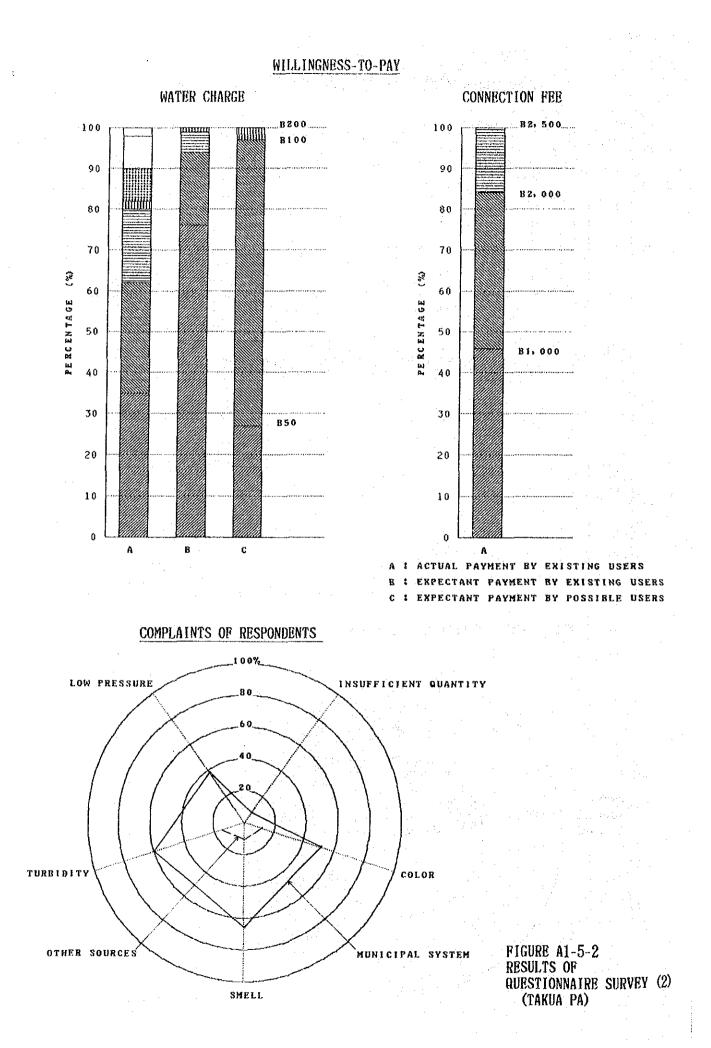
A-4-2-7

•						· · · ·		i di serie Serie di serie
Block Ho.	1 1	2	3		\$	1 6	¦ lotal	Rate (%)
lo, of Samples	33	21	22	21	25	30	158	
	ł		r ·		l E	1	l s st l s l s	
L. General				1	1		t '	
1.1 Address	, El en el		1	1 	1 †	1 . 1		
1.2 Type of House	l F						90	• • •
Residential	16	21					68	43.0
Connercial	17	· · ·	1	12	11	21		1
Residential/Commercial	-		-	-	-		-	
Unknown		•	-				781	
1.3 No.of Persons in Family	153		120	129	125	143		i i
Unknown (No. of Samples)		-	-	-			339	
1.4 Ho.of Employees	16	33	62	64.	44	60	; <u> </u>	
Unknown (No. of Samples)	-	-	-	-	-	i -	i	1 1
1.5 Ave. Honthly Income		1	1 2 1		1	4		1
Baht		ł						
up to 2,000	; 8	5	5	•	25		51	
2,001-3,000	8	1 1	10	-	-	13	•	
3,001-4,500	1 3	3	2		-	1	22	
4,501-6,000	8	4	[4]	4		2		
6,001-7,500	-	-	[- 1]	2	-	1		•
7,501-10,000	1 3	-	1	1		2	•	• •
10,001-15,000	.¦ −2	1 2	1 }	- 1	•	1	5	
15,001-50,000	$ _{1} > 1$	1 · · · · ·	t -	1	1		2	1.2
Over 50,000	-		i	•	1	-	-	
Unknown	11	·	-	3	1 1	-	3	19
1.6 Ave. Monthly Medical Expense	i I		1	l i	! 	1 ¹ 1	1	
Baht) · · · · · · · · · · · · · · · · · · ·	t i 1	1	1 (secondaria) I	l .		
up to SO	; 7	8	12	•		•	63	
51-100	6	5	6	1	; 5		35	
101-200	12	1. 1	•	2	•	5		
201-500	5	5	2	3	1	8	24	
501-1,000	2		2				8	5.1
1,001-2,000	1	1	-		-	2	4	
2,001-5,000	- (-	-	-	1	; -	-	1	
Over 5,000	-	-		-	-	¦ `-	-	
Unknown	-	-	-	3	¦	-	1 3	1.9
. Type of Water Supply	i) 	l Frank		1	-	
Hunicipal System	- 13	. 1	1	1	12	• • • • •	40	25.3
Combined	3	4	4	10		-	22	
Other Sources	17	16	11	10	12		96	
Unknown		-		-	-	; -	-	
8. Nunicipal System	į	1		! !	† 1		l.	1
3.1 Pressure		r 1					i ·	
LOW	8	-	5		1	-	24	38.7
High	1 1	5	.6	13	. 6		37	
Unknown	•	-		va 1	· ·			1.6
3.2 Quantity	1 1	1	1	1	n e e e	• •		
	13	5		1 8	12	• •	49	19.0
Sufficient Not Sufficient	i 1	1 _ 1	i · 11		1 II.	1	5	
Not Sufficient Unknown	i a		i - 1		1	1	8	

A-4-2-8

Table A4-2-1 SUNHARY OF QUESTIONNAIRE SURVEY IN TAKUA PA (CONT'D)


lock Ho.	1	2	3	4	1 · 5	6	Total	¦Rate (%
. Other Sources	1	1	••••••••••••••••••••••••••••••••••••••			*********	·	
Rain/River	1	-		3	· ·	1	i c	1
Pond/Reservoir	-	-	_		 	2	, J 1	1
Hater Vendor	-		-	6		9	15	1
Groundwater-Shallow Hell	20	20	15	12	13	23	103	1
-Deep Well		-				_ 1	103	1
Unknown	-	-	-					l F
, Potability					1		-	1
Drinking	12	18	19	18	21	24	112	1
Hot Drinking	17		-	4	3	24 i 6	30	
Both	4	-3	-	4	_ 1		30 11	19.0
Unknown	· · ·	-	. 3	1		- i	11 5	6.9
. Water Quality (Municipal System)		1	v		• •	- i	3	; 3.2
6.1 Color			l L		1	. 1)
Yes	10	3		1 1 . 9	6 !	- t	32	1 11.7
No	5	1	7	8	1 V 1	_ i	32 27 -	•
Unknown	1	1		· · · ·	Y 1 1 V	_ ; _ ;	3	•
6.2 Smell			†	. 1	. 4		3	4.8
Yes	12	3 !	3	13	10	1	41	1
No		1	8	10	2	_ 1	+1 18	•
Unknown	1	î.	- !	· · ·	1		10	-
6.3 Turbidity			. ł		. 1		3	1 1.7 -
Yes	11	3	5	10	8		37	1 CA7
Ko	1. 4	. • •	ν I λ I	. 7!	5 :		23	
Unknown	1	1	_ 1		. 1		23	
Ave. Honthly Water Consumption		- i	1		- + 		Z '1	3.2
Up to 15 cu m		2	3 !	3 (ب ۵۱	1	24	. 76 1
16-30 cu n		2	4		7 Y		15	
31-50 CU B	1		. 1) T		v 1 1 1	_ +		·
51-75 cu в	2		.÷ _1		1 I 1	i	5	
76-100 cu 🗈			 		_ 1		2	
101-150 cu a		· • •	_ 1	_ 1			· 4	3.2
151-200 cu 🔹		_ !	1 I	. . 1	_ I	I		• • •
201-300 cu a		_ 1					1	1.6
Over 300 cu n	1 1 F _ L	. 1		_ I	1	.]1	1	-
Unknown	i _i	_ i		13	_ I		13	
Ave. Honthly Water Charge			1	74 1		- F	10 1	21.0
Baht	r 	- 1	1	F	1	1		
Up to 50	6	2	х ¹	5		1 _ 1	22	35.5
51-100		+) - !	3 1	× 1	¥ 1 <u>1</u>	- I	17	
101-150	2	1 9 1		۷ ۱ ۱	2	- I - I	11	27.4
151-200		+ 1 _ 1	- 1 _ 1		۱ ۲ ۱ ۱	_ 1	11	17.8
201-300	2		. 1	1 1	4 H _ I	_ 1	5	1.6
301-500	1 41 1 1	1	1 1 ¹	V 1. 1 -	_ 1		3 1	8.1
501-1,000	1 41	· 1	. i	1 I.	_ 1	_ 1	2	48
Over 1,000	· _ F	1 I I I I I I I I I I I I I I I I I I I	_ F	4	_ 1	- i	4	3.2
Unknown	1 1		_ 1 _ 1	1		- í	- 1	
AUMAND	I I		- I	1 4	⁻ 1	- i	1	1.6


Table A4-2-1 SUNNARY OF QUESTIONNAIRE SURVEY IN TAKUA PA (CONT'O)

lock No.		2						
. Willingness to Pay	1	1		1	t 1		e trafi	
Baht			i .	i 1 41	i i	i i	1	([16_3
Up to SO	11	2	1	1 17	10	•	47	75.8
51-100	3	2	i	i *	3		11	
101-200		; 1					3	4.8
201-500	1	-		-	-		1	1.6
\$01-1,000	-	-		•	-	•	-	•
Over 1,000	: -	-			-	-		-
Unknown	- 1	-	- -	•	-	-	-	-
D. Water Quality (Other Source)	1	<u>,</u>			l t	ł		1
10.1 Color		1	i .			1	41.	
Yes	2		2	•	2	8		11.9
Ko	18	1 19	13	19	9	22	100	84.7
Unknown	-	1		1	2		4	3.4
10.2 Smell	ŧ. t	i i	1		1	1	1 ·	t [.] I
Yes	; 3		1	1 1	2	6	13	$1 \le 11.6$
No	17	19	14	18	9	•		65.3
Unknown	-	1 1		1 1	2	24	28	23.1
10.3 Turbidity	1	1		1	1	[1	l Later
Yes	3	-	1	-	-	14	18.	15.1
No	17	19	14	19	11	16		81.
Unknown	-	1		1 1	2	-	4	3.
. Willingness to Connect	1	•		-				
Yes	1	3	· ·	1	3	23	37	38.
No	10	13	11	9	9	! 1	59	61.
Unknown	1 10	ł 10	1 .	1 /	1 <u>/</u>			
) · · · · · · · · · · · · · · · · · · ·	1	1	1	1 1	t 1	1	
2. Willingness to Pay for Connection Fee	1°. 1	1		1 - 2 1	1	t I stati		
Baht	1 1 1	1	1°	1	1	13	17	46.1
Up to 1,000	2 2 5	1 ¹	I [1 -	1	1. 19	1 11	37.1
1,001-2,000	j J	1 1 A	t, I		1 7	j.) 1 i	6	16.
2,001-2,500	1	2	; -	i •	; 3	i I	1. 9	1 10-1
2,501~3,000	i "	; -	i "	i -	i •	i	i T	iene di
3,001-4,000	-		i -	į -		i -	i -	
4,001-5,000	-		•	-		-		i. '
5,001-6,000		1 -	-	•	<u>.</u> -		i -	i g
Over 6,000	; -	-	-	-	-			i 11
Unknown	-	¦ -	-		-	-		1
3. Willingness to Pay for Water Charge	1	1 1	l Lati	1 1	1	l		
Baht	I . I	1	1		l I]	1 1 14	
Vp to SO	; 3	1	¦ . ≞	1 1	1 1 1	6	10	27.0
51-100	1 4	2	-	- i	1 3	16	26	70.
101-200	-	1 <u>-</u>	. -	1 1		-	-	{
201-500	-	; -	-			1 1	1	2.
501-1,000	-	-	-	-	- 1	-	- 1	la dese
Over 1,000	-	-	-	1	-		-	1
Unknown	-		į -	- -	-		-	
	1	1	1	1.5.5	Ì		ļ	1
	4	1	1	F 1. 1	•	•		

A - 4 - 2 - 10

A - 4 - 2 - 12

APPENDIX A-6-1

Construction Unit Cost

.÷.;

Iten	Katerial	Ritting	Labor	SubTotal	fransprt (<800km)	Profit etc.(21%)	Total 1 (#/10%cont)	Pavenent	Yotal 2		
Pipeline	****		*****		**********	*******				******	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	*******		P # A '8	Unit Bate	: (1987)	*******	******	******		
a. A/C Pipe(No											
100 ##	85	21	56		8	35	224	. 140	364	•	
150 an	.142	36	11		11	56	353	154	507		
200 ##	255	- 84	90		19	90	589	166	735		
250 mm	352	88	126	566	29	125	792	179	971		
300	507	127	167	801	40	177	1119	223	1342		
400 mm	970	243	248	1461	80	324	2050	248	2298		
500 mm	1362	341	278		132	444	2812	283	3095	• •	
800 mm	1761	440	354	2555	161	570	3615	319	3934		
23120	· · ·	2 1 1 1 1 1 1								· .	
b. Steel Pipe		(35%)									
150 mm	545	191	99	835	12	178	1127	140	1267		
200 💵	720	252	111	1083	22	232	1471	154	1625		
250 💶	1080	378	153	1611	38	346	2195	165	2361		
300 mm	1330	465	202	1998	58	432	2736	179	2915	•	
400 m	1420	497	250	2167	80	472	2991	223	3214		
500 📷	1785	625	361	2771	160	615	3901	248	4149		
600 mm	2140	749	468	3357	264	760	4820	283	5103		
700 mm	2495	873	582	3950	322	897	5686	319	6005		
*********			******								
		÷									
										•	

lten	Naterial	Fitting (10%)	Labor	SubTotal Tr (<	ansprt 800km} et	rofit c.(21X	Total 1 P)(w/10%cont)	avenent	Total 2	n an an An Anna An An Anna An	n an	Adopted (1988)
	·····	Unit Rate	Based on	Pipe Nater	ial Cost	as of	December, 1988		******	PHA Price	Ratio	ye de de 16 44 44 4 9 44
a. A/C Pipe (C	lass 20 Nor	mal type)								(1987)		+
		(10 X)										
100 en	. 115	12	63	190	7	41	261	153	414	364	1.14	410
150 mm	189	- 19	87	295	12	64	408	168	577	507	1.14	580
200 mm	328	33	101	462	21	101	643	181	824	735	1.12	820
250 mm	454	45	142	641	32	141	895	196	1091	971	1.12	1,090
300 mm	643	- 64	188	895	- 44	197	1249	244		1342	1.11	1,490
400 mm	1217	122	279	1618	87	358	2270	271	2541	2298	1.11	2,540
500 mm	1699	170	313	2182	144	488	3096	309		3095	1.10	3,410
600 mm	2187	219	398	2804	176	626	3967	349	4315	3934	1.10	4,32(
b. Steel Pipe		(15 %)	÷ .									eri () Galanta
150 mm	550	83	111	744	13	159	1008	188	1176	1257	0.93	1,27
200	908	136	125	1168	24	250	1587	181	1769	1625	1.09	1,17(
250 mm	1210	182	172	1564	42	337		196	2332	2361	0.99	2,36
300 ww	. 1507	226	227	1960	63	425	2693	244		2915	1.01	2,94
400	1887	283	281	2451	87	533	3378	271		3214	1.14	3,65(
500 mm	2261	339	408	3006	175	668	4233	309	4542	4149	1.09	4,540
600 ma	2723	408	526	3657	288	829	5252	349		\$103	1.10	5,600
700 mm	3179	477	655	4311	352	979		407	6612	6005	1.10	6,510
800 💵	4527	679	932	6138	460	1385	8781	465	9246	. · · ·		9,250
900 su	5104	766	1051	6921	582	1575	9986	523				10,51
1000 mm	6804	1021	1401	9225	718	2088	13234	581				13,820
1100 🖬	7926	1189	1632	10746	869	2439	15460	639		÷		16,100
1200	9048	1357	1863	12268	1034	2793	17705	691				18,40
1350	11000	1650	2265	14915	1309	3407	21594	784				22,380
1500	12953	1943	2667	17563	1616	4027	25526	871	26398			26,400

Hote: Pipe material prices are estimated from the contractor's purchasing price as of Dec.1988

For Distribution Pipeline (Transportation < 800 km)

ten	Naterial	Fitting	Labor	SubTotal	Yransprt (<800km) e	tc. (213	Total 1 Par)(w/10%cont)		Total 2			Adopte (1988)
. A/C Pipe (C	(****** lass 20 Nor	mal type)	Based on	Pipe Nat	erial Cost		December, 1988		*******	PWA Price (1987)	Ratio	
100	115	(25 %) 29	63	ሳለቱ								
100 mm	115	47	00 87	207	7	45		153	437	- 364	1.20	- 44
200 mm	328	82	- 101	323	12	70		168	614	507	1.21	61
250 mm	-454	113	142	511 800	21	112		181		735	1.21	8
300 mm	643	161		709	32	155		196	1181	971	1.22	1,1
400 mm	1217		188	991	44	217		244	1621	1342	1.21	1,6
	1	304	279	1801	87	397		271	2784	2298	1.21	2,7
500 mm 600 mm	1699	425	313	2437	144	542		309	3744	3095	1.21	3,7
	2187	547	398	3132	176	695	4403	349	4752	3934	1.21	4,7
. Steel Pipe		(35 %)							. •			1
150	\$50	193	- 111	854	13	182	1154	168	1322	1261	1.04	1,3
200 💵	908	318	125	1350	24	289	1829	181	2010	1625	1.24	2,0
250 💵	1210	424	172	1806	42	388	2459	196	2654	2361	1.12	2,6
300 mm	1507	527	227	2262	63	488	3095	244	3338	2915	1.15	
400 se	1887	660	281	2828	87	612		271	4151	3214	1.29	· 4,1
500 mm	2261	791	406	3458	175	763	4835	309	5144	4149	1.24	5,1
600 ##	2723	953	526	4202	288	943	5977	349	6325	5103	1.24	6,3
700 mm	3179	1113	655	4946	352	1113	7052	407	7459	6005	1.24	
800 mm	4527	1584	332	7043	460	1576	9986	465	10451	~ • • • •	1,01	10,4
900 mm	5104	1786	1051	7941	582	1790		523	11867			11,8
1000	6804	2381	1401	10586	718	2374	15045	581	15626			15,6
1100 mm	7926	2774	1632	12332	869	2172	17570	639	18209			18,2
1200	9048	3167	1863	14077	1034	3173	20113	697	20810			20,8
1350 mm	11000	3850	2265	17115	1309	3869	24522	784	25307			25,3
1500	12953	4533	2667	20153	1616	4571	28974	871	29846			29,8

*** Note: Pipe material prices are estimated from the contractor's purchasing price as of Dec.1988

Ite			Naterial	Fitting (10%)		Subfotal			Total,1 Pa (w/10%cont)		Total 2	ge te		Adopted (1988)
			·····	Halt Data	Beard or	Ding Na	torial Post	se of D	ecember, 1988	ŧ	*****>			
	110	Dina	(Class 20 No		paseu oi	i tihe ug	LELIGE VUSE	a vi v	COCHPOL 1 1900			an di terti. Si ya a	_ 1 ·	
a.	a / 0	ribe	101228 20 40	(10 %)			· .			<u>,</u> 14	х. Х. А.			
	100		115		63	190	- 13	43	270	153	423	364	1.16	42
	150		189		87	-295	24	67	424	168	593	507	1.17	5
	200		328		101	462	42	106	670	181	852	735	1.16	8
	250		454		142	641	63	148	937	196	1133	971	1.17	1,1
	300		643		188	895	87	206	1308	244	1551	1342	1.16	1,5
	400		1217		279	1618	175	377	2387	271	2658	2298	1,16	2,60
	500		1699		313	2182	288	519	3288	309	3597	3095	1.16	3,60
	600		2187	219	398	2804	352	663	4201	349	4549	3934	1.16	4,5
Ь.	Stee	el Pij)e	(15 %)									e e te	i sta i
	150		550	•	111	744	26	162	1025	168	1193	1267	0.94	1,2
	200		908	136	125	1168	48	255	1619	181	1801	1625	1.11	1,8
	250		1210	182	172	1564	83	346	2192	196	2387	2361	1.01	2,3
	300		1507	226	227	1960	127	438	2778	244	3022	2915	1.04	3,0
	400	91 .	1887	283	281	2451	175	551	: 3495	271	3766	3214	1.17	3,7
	500	1 8 .	2261	339	406	3006	350	705	4466	309	4775	4149	1.15	4,7
	600		2723	408	526	3657	\$17	889	5636	349	5984	5103		5,9
· .	700	88 ·	3179	477	655	4311	704	1053	6674	407	7081	6005	1.18	7,0
	800	LR.	4527	679	932	6138	919	1482	9393	465	9857	1.1		9,8
	900	22	5104	766	1051	6921	1163	1698	10760	523	11283	l en el c		11,2
- 1	000	1	6804		1401	9225	1436	2239	14190	581	14771	114		14,7
.1	100	11	7926		1632	10746	1738	2622	16616	639	17256	1997. 1		17,2
1	200	# 2	9048		1863	12268	2068	3011	19081	697	19778	÷		19,7
ł	350	11	11000		2265	14915	2617	3682	23336	784	24120			24,1
1	500	13	12953	1943	2667	17563	3231	4367	27677	871	28548			29,5

n frank S

.....

For Distribution Pipeline (Transportation >= 800 km)

lten	Nateria)	Fitting	Labor	SubTotal	Transprt (>=800km)e		Total 1 (w/10%cont)	Pavement	Total 2			Adopted (1988)
a. A/C Pipe	<###### (Class 20 Nor	Unit Rate wal type) (25 %)	Based on	Pipe Ma	terial Cost	as of D	ecember, 198]	\$\$ \$ \$\$			-844 (* b c d o b
100 mm	115	29	63	207	13	46	293	153	446	201	t አባ	
150 mm	189	47	87	323	24	73	293 482	103 168	++0 630	364 507	1.23 1.24	.450
200	328	82	101	511	42	116	+02 736	100		901 1 35	1.25	630 920
250 mm	454	113	142	709	63	162	1028	196	1223	971	1.26	920 1,220
300 mm	643	161	188	991	87	227	1436	244	1680	1342	1.25	1,680
400 mm	1217	304	279	1801	175	415	2630	271	2901	2298	1.26	2,900
500 mm	1699	425	313	2437	288	572	3627	309	3936	3095	1.27	3,94
600 an	2187	547	398	3132	352	732	4637	349	1986	3934	1.27	4,991
b. Steel Pi 150 mm	550	(35 X) 193	111	854	26	185	1171	168	1340	1267	1.05	1,340
200	908	318	125	1350	48	294	1861	181	2042	1625	1.26	2,040
250 mm	1210	424	172	1906	83	397	2514	198	2709	2361	1.15	2,711
300 mm	1507	527	227	2262	127	502	3179	244	3423	2915	1.17	3,42
400 mm 	1887	660 701	281	2828	175	631	3997	271	4268	3214	1.33	4,27
	2261	791	406	3458	350	800	5068	309	5377	4149	1.30	5,38
600 ##	2723 3179	953	526	4202	577	1004	6361	349	6709	5103	1.31	6,710
700 mm	4527	1113	655	4946	704	1187	7520	407	7927	6005	1.32	7,93(
800 ## .		1584	932	7043	919	1672	10598	465	11062			11,060
900 BB	5104	1786	1051	7941	1163	1912	12118	523	12641			12,640
1000 em 1100 em	6804	2381	1401	10586	1436	2525	16001	581	16582			16,580
1200 mm	7926	2774	1632	12332	1738	2955	18726	639	19365			19,37(
	9048	3167	1863	14077	2068	3391	21490	697	22187			22,190
1350 mm	11000	3850	2265	17115	2617	4144	26264	784	27049			27,050
1500 mm	12953	4533	2667	20153	3231	4911	31125	871	31996			32,000

*** Note: Pipe material prices are estimated from the contractor's purchasing price as of Dec.1988

....

Construction Works			3 Lowest (1988)	serie i	(A)*1.35		• • •	PWA's (for 1	Unit (987)	Cost	Adopted Cost (1988)		•
Concrete Work (incl.Form Work,Scafolding)		2,200	/cu =	Baht	2,970	/cu s	****	-		,		· · ·	
Re-Bar	Baht	18	/kg	Baht	24	/kg		•		1.255		14 .	
Unit Concrete Cost (incl.Form Work,Scafolding, Re-Bar(100kg/cu m conc	rete)))		Babt	5,370	/cu n		-			5,400		
Earth Work Excavation (with Backfill)		55	/cu #		79	/cu x		•••••			80		
Soil Fill			/ca n		76	÷	-	÷		1. 4.	120 (Prom PWA	Cost)	1. s.
Architectural Works Administration Bldg. Head Quarter Bldg.			/sq e		6,451 5,160						5,000		

Chlorination House	Baht	2,830	/sq æ	Baht	4,043	/sq 🛙		3610	- 430) · · ·	3,800		
Pamp House (excl.pump pit)	Baht	1,850	/sq a	Babt	2,657	/8q n		3540	- 420	0	3,600		· · ·

a salah s

Construction Works	PWA's Cost (for 1987) (Baht 1000)	Unit Cost (Baht/cu m/h) (A)		Adopted Cost (1988)
***************************************		6===##################################		******
Treatment Facilities			Unit Cost	Unit Cost
			(Baht/cu æ/h)	(Baht/cu m/
Sedimentation Basin			· · · ·	(5410)00 2/
50 cu m/hr	1,310	26,200	34,100	34,000
100 cu m/hr	1,633	16,330	21,200	21,000
200 cu #/hr	3,136	15,680	20,400	20,000
250 cu n/hr	5,133	20,532	26,700	27,000
500 cu m/hr	7,708	15,416	20,000	20,000
1000 cu m/hr	17,723	17,723	23,000	23,000
Pilters	·			
50 cu #/hr	588	11,760	15,300	15 000
100 cu u/hr	1,044	10,440	13,600	15,000
200 cu u /hr	2,227	11,135	14,500	14,000
250 cu m/hr	2,337	9,348	12,200	15,000
500 cu s /hr	4,674	9,348	12,200	12,000
1000 cu #/hr	11,356	11,356	14,800	12,000 15,000
Clear Water Reservoir			Unit Cost	Unit Cost
			(Baht/cu m)	(Baht/cu m)
500 cu 🗉	887	1,774	2,300	2,300
1000 cu m	1,828	1,628	2,100	2,100
1500 cu n	2,699	1,799	2,300	2,300
2000 cu 🔳	2,803	1,402	1,800	1,800
2250 cu 🛚	3,282	1,459	1,900	1,900
3000 cu 🖬	6,633	2,211	2,900	2,900
3300 cu 🖬	6,603	2,001	2,600	2,600
4000 cu #	7,730	1,933	2,500	2,500
5800 cu m	10,809	1,864	2,400	2,400
levated Tank			Cost	Cost
			(Baht 1000)	(Baht 1000)
50 cu m	722		940	900
120 cu #	1,146		1,490	1,500
250 cu .	1,394		1,810	1,800

.

APPENDIX A-8-1

Capacity Calculation of the Water Treatment Plant

Item	: Total System (for 2011)
Planned Flow	: Q= 4,300 cu m/d
(Daily Max)	= 179 cu m/hr
	= 3.0 cu m/min
	: = 0.050 cu m/sec
No. of Treatment	Line
	: 2 Lines
·	:
	: 2,150 cu m/d x 2 lines
(1)	:
Receiving Well	
Criteria	
	: d= 2.0 m
·	 Market and the second se
No.	: 1 unit
	: Circular
	:Dia 1.8 m
•	: v= 5 cu m
	: t= 1.7 min
(2)	:
iixing Tank	•
	:
Criteria	: T= 1.0 min
Dimension	: : Square x 2 units
	L n x W n x D n x units
	: 1.2 1.0 1.2 2
	• • • • • • • • • • • • • • • • • • •
	v = 2.88 cum
	•
	: t = 1.0 min
	•

Takua Pa

Capacity Calculation for Treatment Plant Item : Total System (for 2011) • _ :(3) Coagulant Mixing Coagulant : Solid Aluminum Sulphate (Al2(SO4)3) containing 15 % Al2-03 : : Dosage Rate : 10-25 mg-solid alum/1 Average 10 mg/l Coagulant Solution : 5 % solution 2 Dosage Amount : ٠ 43 kg-Alum/day Coagulant Solution (5 % solution) 1 cu m/day . **...** İ 2 units No. of Mixer : : Batch Type Mixing Type . : : 0.4 cu m/unit Capacity : : 2 units (1 stand by): : Square Dimension х : :Lmx Wmx Dmx units : - 1 1.0 1.0 1.0 ÷ 1.0 cu m/unit v = : : 1.0 cu m Total V = :

Capacity Calculation for Treatment Plant Item : : Total System (for 2011) : (4) : :Flocculator : : : • Type : Hydraulic Flocculation : : ; No. : N = 2 lines x 2 units : : .4 units : = : : : : Unit Flow : q = 0.75 cu m/min/unit ٠ 1 : T = 30 min Criteria : : 1 :WmxLmxDmx n lines Dimension : : 1.0 12,0 2.0 2 • ; : : v = . 24 cu m/unit : : : :t= : 32.1 min : : : •

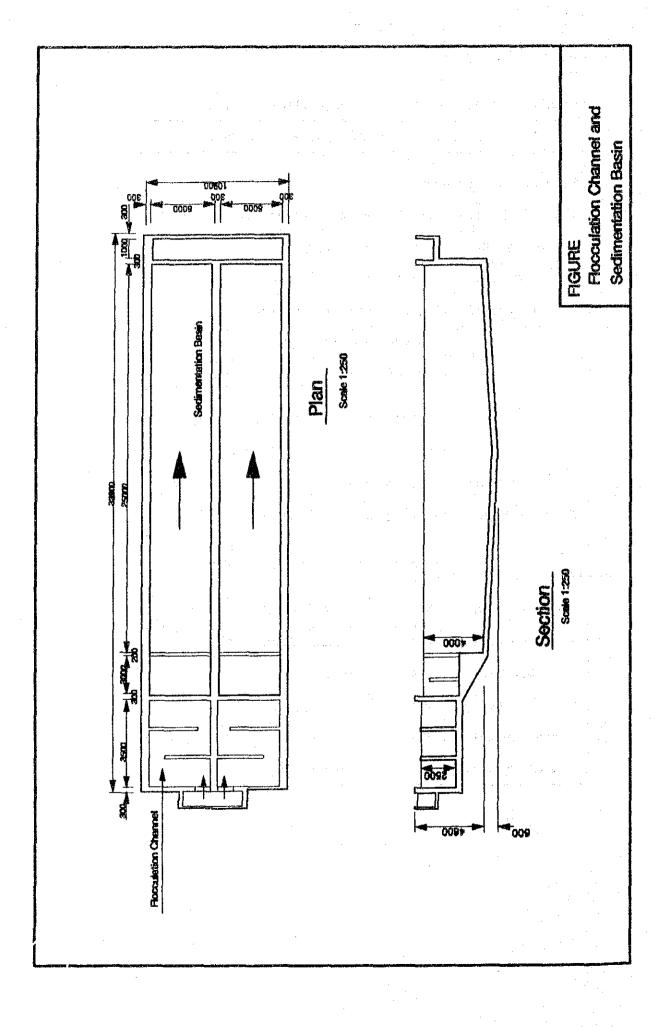
Takua Pa

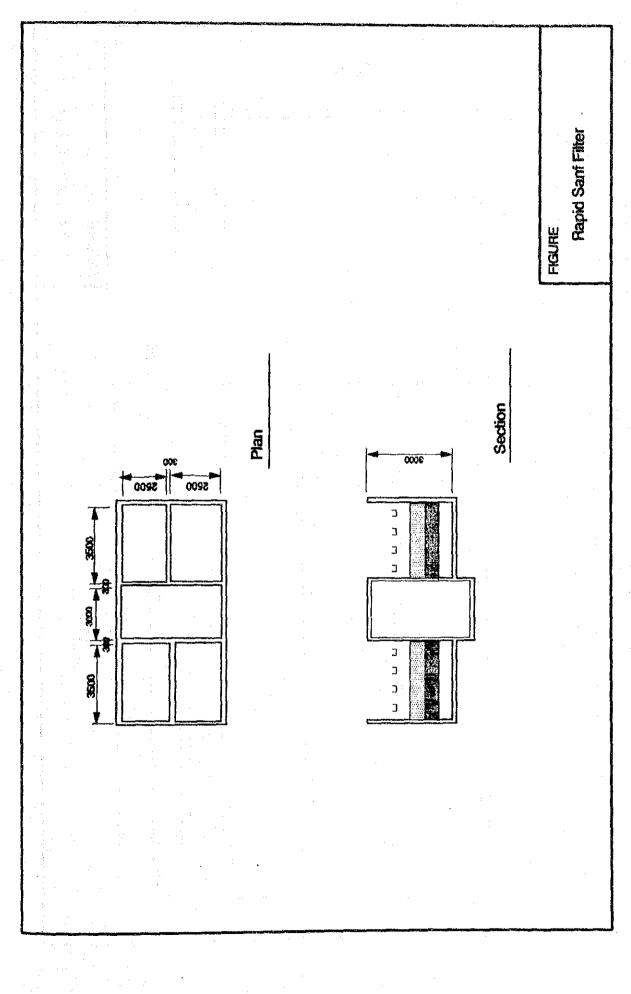
Item	: Total System (for 2011)
(5) Sedimentation Bas	
Туре	: Rectanglar, Horizontal Flow
No.	: N = 2 line x 1 basins :
· · · ·	: : : 2 basins :
Unit Flow	: q = 89.6 cu m/hr/basin :
Criteria	: Retention Time : : T = 4 hours :
Dimension	: W m x L m x D m x N : : 5 25 4.0 2 :
· ·	v = 500 cu m/basin
	: $t = 5.6$ hours :
low velocity	: $v = 7.5 \text{ cm/min}$:
Surface Load	: $a = \frac{17.2 \text{ m}^3/\text{m}^2}{\text{day}}$:
ludge Removal	: Mechanical Scraper :
Sludge Amount	
Solid Amount	• • • • • • • • • • • • • • • • • • •
(ton-DS)	<pre>: So = Q(K(T1-T2)+0.16xB)x10^-6 : where So:Sludge dry weight(ton) : Q :Treated water amount(m3/d) : K :Coefficient converting turbidity : to SS (0.8-1.5 ->>1.2) : T1 :Turbidity in raw water (ave=20) : T2 :Turbidity after Sedimentation (ave : B :Alum dosage rate (ave.= 10 mg/l)</pre>
	: So = 0.07 ton-DS/day :
it	:
	: : w = 99.5 % :
	: : : Sludge Volume :
	: $v = 15 \text{ cu m/d}$

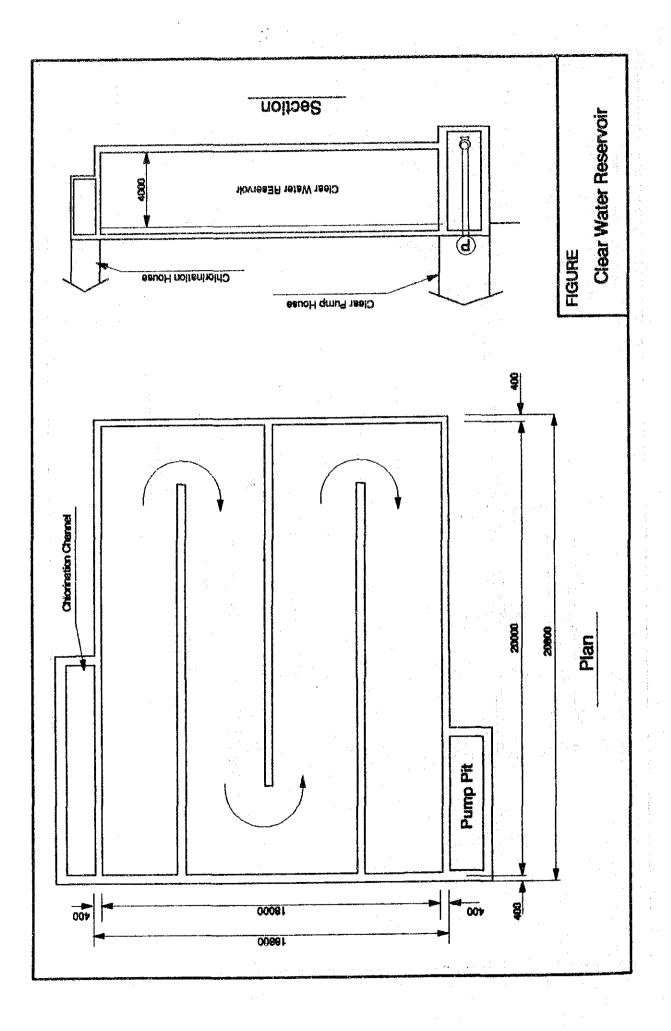
Capacity Calculation for Treatment Plant Item : Total System (for 2011) سيد جين هيه النه الحال اليه الله على علم الله عنه الله جي الله الله عنه الله عن على عنه عنه الله الله الله الل : (6) :Rapid Sand Filter Type : Down Flow, Single Media No. : N = 2 lines x 2 units : = 4 units 1.1 : q = 1,075 cu m/day/unit Unit Flow 1.1 : Criteria : Surface Load • 120 - 150 m3/m2/dayDimension :WmxLmxN units : 2.5 3.5 4 : a = 9 sq m/unit : Surface Load : La = 122.9 m3/m2/day :Filter Washing Frequency : Once a day for each filter Rate : Surface Washing 0.2 m3/m2/min x 5 min : Backwashing 0.6 m3/m2/min x 10 min Water Amount : Surface Washing required : v = 9 sq m/unit x 4 units x 0.2 m3/m2/min x 5 min = 35 cu m/day: Backwashing : v = 9 sq m/unit x = 4 unitsx 0.6 m3/m2/min x 10 min = 210 cu m/day : : Total q= 245 cu m/day 1

A - 8 - 1 - 5

Capacity Calculation for Treatment Plant states and states and states


Solid Amount : in Wastewater :	
Solid Amount (ton-DS)	So = Q*K*(T1-T2)*10 ⁻⁶ where So:Sludge dry weight(ton) Q :Treated water amount(m3/d) K :Coefficient converting turbidit to SS (0.8-1.5 ->>1.2) T1 :Turbidity before filter(ave= 7 T2 :Turbidity after filter(ave =
	So = 0.04 ton-DS/day :
SS Contents	s = 147 mg/l
(7) lear Water Reserv No.	voir : N = 1 units :
. :	
Criteria	Retention Time
Criteria	Retention Time T = 8 hours
	: A start of the s
	T = 8 hours
Required Volume	T = 8 hours V = 1,433 cum $L m \times W m \times D m \times N \text{ units}$
Required Volume	T = 8 hours V = 1,433 cu m L m x W m x D m x N units 18 20 4 1


.


Item	: Total System (for 2011)
8) hlorination Equ	ipment
Injection Point	: at the Inlet of Clear Water Reservoir
Dosage Rate	: 2.0 ppm
Туре	: : Liquid Chlorine (1-ton cylinder)
Amount	9 kg- Cl gas/day
Injector	: Vacuum Type Injector
	: No. of unit 2 units : (excl. 1 units stand-by)
• • • •	: Rate 0.18 kg/h/unit
	: : Capacity 10 kg/h/unit
Storage	: 1 month
Storage Amount	: 9 kg /day x 30 day = 258 kg
	: = & cylinders (50 kg
9) Clear Water	Pump
No.	: N = 2 units + 1 stand-by
Flow per unit	: q = 2.1 cu m/min/unit
Diameter	: : D = 100 mm
Head	: : H = 30 m
Motor output	: P = 20 KW
Total Capacity	: : Q = 6,020 cu m/day

A-8-1-7

· ··•

APPENDIX A-8-2

Distribution Network Analysis

OF OF AK F X HE	L E PIPE NODE ACTOR ADLOS	S : S/Km :	Takua P 82 76 1.25 100 .005	a (Pro	posed)				
РЕ 0.	FROM Node	10 Node	LENGTH (M)	DIA (MM)	НМС	FLOW (LPS)	VELOCITY (MPS)	HEAC (M/KM)	DLOSS (M)
12345670112345689012222222222222333333333444234 1111111111	10 11 12 13 14 15 17 14 19 19 11 22 3 26 25 22 26	$ \begin{array}{c} 1\\ 64\\ 2\\ 3\\ 4\\ 5\\ 6\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 23\\ 24\\ 23\\ 24\\ 23\\ 24\\ 23\\ 24\\ 23\\ 25\\ 37\\ 38\\ 39\\ 37\\ 38\\ 38\\ 39\\ 37\\ 38\\ 39\\ 37\\ 38\\ 38\\ 38\\ 39\\ 37\\ 38\\ 38\\ 38\\ 38\\ 38\\ 38\\ 38\\ 38\\ 38\\ 38$	$\begin{array}{r} 40.00\\ 300.00\\ 1080.00\\ 1080.00\\ 1500.00\\ 150.00\\ 200.00\\ 150.00\\ 200.00\\ 150.00\\ 200.00\\ 150.00\\ 215.00\\ 215.00\\ 215.00\\ 215.00\\ 210.00\\ 100.00\\ 180.00\\ 23.00\\ 267.00\\ 100.00\\ 410.00\\ 295.00\\ 140.00\\ 492.00\\ 100.00\\ 312.00\\ 150.00\\ 312.00\\ 150.00\\ 312.00\\ 150.00\\ 250.00\\ 150.00\\ 250.00\\ 150.00\\ 250.00\\ 150.00\\ 250.00\\ 150.00\\ 250.00\\ 150.00\\ 200.00\\ 70.00\\ 50.00\\ 50.00\\ 50.00\\ \end{array}$	300 300 300 280 300 250 250 250 250 250 250 250 2	110 110 100 100 100 100 100 100 100 100	0.56 0.31 5.47 0.80 0.15 0.48 1.81 4.20 1.33 0.42 0.42 0.64	0.51 0.51 0.50 0.57 0.50 0.48 0.48 0.39 0.37 0.35 0.19L0 0.14L0 0.02L0 0.00L0 0.00L0 0.00L0 0.00L0 0.00L0 0.00L0 0.00L0 0.00L0 0.00L0 0.02L0 0.04L0 0.02L0 0.04L0 0.02L0 0.05L0 0.05L0 0.05L0 0.02L0 0.05L0 0.02	$\begin{array}{c} 1.33\\ 1.33\\ 1.30\\ 1.81\\ 1.29\\ 1.22\\ 1.22\\ 1.22\\ 1.09\\ 0.83\\ 1.26\\ 0.56\\ 0.46\\ 0.01\\ 0.00\\ 0.29\\ 0.13\\ 0.04\\ 1.43\\ 0.29\\ 0.13\\ 0.04\\ 1.43\\ 0.29\\ 0.13\\ 0.04\\ 1.43\\ 0.29\\ 0.01\\ 0.12\\ 0.19\\ 0.88\\ 0.20\\ 0.51\\ 1.60\\ 0.90\\ 0.23\\ 0.04\\ 0.23\\ 0.04\\ 0.23\\ 0.04\\ 0.23\\ 0.04\\ 0.23\\ 0.04\\ 0.23\\ 0.00\\ 0.01\\ 0.71\\ 0.00\\ 0.01\\ 0.71\\ 0.00\\ \end{array}$	$\begin{array}{c} 0.05\\ 0.40\\ 1.40\\ 2.72\\ 2.57\\ 0.18\\ 0.12\\ 0.20\\ 0.16\\ 0.37\\ 0.27\\ 0.12\\ 0.05\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.01\\ 0.00\\ 0.01\\ 0.03\\ 0.01\\ 0.03\\ 0.01\\ 0.03\\ 0.01\\ 0.03\\ 0.01\\ 0.05\\ 0.11\\ 0.05\\ 0.16\\ 0.54\\ 0.06\\ 0.01\\ 0.01\\ 0.01\\ 0.05\\ 0.01\\ 0.00\\ 0.05\\ 0.00\\ 0.00\\ 0.05\\ 0.00\\ 0.05\\ 0.00\\ 0.05\\ 0.00\\ 0.05\\ 0.00\\ 0.05\\ 0.00\\ 0.05\\ 0.00\\ 0.05\\ 0.00\\ 0.05\\ 0.00\\ 0.05\\ 0.00\\ 0.05\\ 0.00\\ 0.05\\ 0.00\\ 0.05\\ 0.00\\ 0.00\\ 0.05\\ 0.00\\ 0.05\\ 0.00\\ 0.00\\ 0.05\\ 0.00\\ 0.00\\ 0.05\\ 0.00\\ 0.00\\ 0.05\\ 0.00\\ 0.05\\ 0.00\\ 0.05\\ 0.00\\ 0.05\\ 0.00\\$
· · ·	· · ·								

PIPE NO.	FROM Node	TO Node	LENGTH (M)	DIA (MM)	HWC	FLOW (LPS)	VELOCITY (MPS)	HEADLOSS (M/KM) (M)
45	40	41	100.00	38	100	0.21	0.19L0	2.79 0.28
47	42	43	575.00	250	100	10.09	0.2110	
48	43	44	110.00	250	110	0.21	0.0010	0.00
50	43	46	367.00	200	110	8.51	0.27LO	0.67
51	46	47	15.00	150	100	3.50	0.2010	
\$2	47		350.00		. 110 .		0.13L0	0.38 0.13
53	48	49	223.00	200	110	0.64		
54	47	50	255.00		100			0.03 0.01
55	50	51	200.00	100	110			0.00 0.00
56	50	51 52	250.00	100	110			0.10 0.02
57	47	52	190.00	150	100	1.71		0.17 0.03
58	52	53	30.00	150	100	1.50	0.0810	0.13 0.00
59	53	54	150.00	100	110	0.29	0.04L0	
60	46	55	15.00	150	100 🗇		0.14LO	0.32 0.00
61			150.00	100	100	0.53	0.07L0	0.14 0.02
62	55	56 57	150.00	150	100		0.09LO	0.16 0.02
63	56	57	152.00	100	100	0.18		0.02 0.00
64	57	57 58	30.00	100	100	1.18	0.1510	0.60 0.02
65	53	58	160.00	150	100	0.38	0.02L0	0.01 0.00
66	58	59	250.00	100	100	0.37	0.05L0	0.07 0.02
67		60	170.00	100	110	2.06		1.42 0.24
68		61	410.00	100	110		0.15L0	0.49 0.20
69	60	62	436.00	100	110	0.22	0.03L0	0.02 0.01
70	1	63	1200.00	250	100	0.04	0.00LD	0.00 0.00
71	64	65	700.00	75	100	0.35	0.0810	0.25 0.18
72		8	300.00	250	100	19.62	0.40	1.26 0.38
73	6	200	380.00	300	110	34.00	0.48	1.20 0.46
74	200	201	810.00	250	110	14 21	0.2960	0.58 0.47
75	201	202	780.00	250	110	13.85	0.28LO	0.56 0.43
76	202	203	660.00	250	110	13.42	0.27L0	0.52 0.35
77	203	204	720.00	100	110	0.28	0.04LO	0.03 0.03
78	203	205	440.00	250	110	12.80	0.26L0	
79		40	2850.00		100	1.26	0.04L0	
80		42	2021.00	250	110	10.82	0.22LO	0.35 0.71
81	61	206	680.00	100	110	0.10	0.01LO	0.01 0.00
82	206	207	720.00	100	110	0.04	0.01L0	0.00 0.00
83		208	1260.00	100	110	0.44	0.06L0	0.08 0.10
84	208	209	880.00	100	110	0.18	0.02L0	
85	33	210	600.00	100	110	0.68	0.0910	0.18 0.11
86	210	211	660.00	100	110	0.42	0.0510	
87	211	212	880.00	100	110	0.14	0.0210	0.01 0.01

A-8-2-2

NODE NO. 1 2 3 4	FLOW (LPS) 0.000	ELEVATION (M)	HGL	60 67 0 UB 6
.	0.000		(M)	PRESSURE
.		13.80	39.95	26.15
	-0.017 -0.104	11.65 11.76	38.15	26.50
**	-1.014	11.60	35.43 32.86	23.67 21.26
5	-0.003	11.20	32.68	21.48
6 8	-0.249 -0.422	11.20 11.48	32.55 31.72	21,35
9	-1.056	12.00	31.52	20.24 19.52
10	-0.966	12.00	31.35	19.35
11 12	-0.811 -0.924	10.20	30.98	20.78
13	-2.186	10.00 10.00	30.71 30.59	20.71 20.59
14	-0.101	10.00	30.54	20.54
15	-0.127	10.00	30.54	20.54
17 18	0.000 -0.032	10.00 10.00	30.54 30.54	20.54 20.54
19	0.000	10.00	30.54	20.54
20	-0.559	10.00	30.49	20.49
21 22	-0.307 -0.470	10.00	30.53 30.78	20.53
23	-1.132	11.00	30.64	19.64
24	-0.149	11.00	30.64	19.64
25 26	-0.368 0.000	11.00 11.00	30.68 30.67	19.68
27	-0.265	11.00	30.66	19.67 19.66
28	0.000	11.00	30.63	19.63
29 30	-0.423 -2.522	11.00	30.62	19.62
31	-2.522	10.47 11.08	-30.56 30.40	20.09 19.32
.32	-2.221	17.10	29.86	12.76
33	-1.296	21.40	29.81	8.41
34 35	-0.043 -0.593	21.40 11.00	29.80 30.57	8.40 19.57
36	-0.243	11.20	30.57	19.37
37	-0.372	11.30	30.57	19.27
38 39	-0.061 -0.209	11.43 11.50	30.57 30.52	19.09 19.02
40	-0.550	12.00	30.57	18.57
41	-0.212	12.00	30.29	18.29
42 43	-0.732 -1.365	22.49 13.84	29.92 29.71	7.43 15.87
43	-0.212	12.00	29.71	17.71
4c	-0.503	12.00	29.47	17.47
47	-0.105	12.00	29.46	17.46
48 49	-0.380 -0.638	15.00 22.50	29.32 29.32	14.26 6.82
50	-0.180	12.00	29.45	17.45
51	0.000	12.00	29.45	17.45
	i.			

.

A-8-2-3

				н ^н аста	
	NODE NO.	FLOW (LPS)	ELEVATION (M)	NGL (M)	PRESSURE (M)
• •	52	-0.691	12.00	29.43	17.43
	53	-0.831	12.00	29.42	17.42
	54	-0.294	12.00	29.42	17.42
	55	-0.261	12.00	29.46 29.44	17.40
	56	-0.353	12.00 12.00	29.44	17.44
	57 58	-0.661 -1.185	12.00	29.42	17.44
	59	-0.369	12.00	29.40	17.40
	60	-0.673	12.00	29.23	17.23
	61	-1.069	12.00	29.02	17.02
	62	-0.223	12.00	29.22	17.22
	63	-0.038	14.60	39.95	25.35
	64	-0.135	13.80	39.55	25.75
	65	-0.345	15.00	39.37	24.37
	100 R	35.908	15.00	40.00	25.00
	200	-0.173	11.20	32.10	20.90
	201	-0.359	11.20	31.62	20.42
	202	-0.433	11.50	31 19	19.69
	203	-0.343	11.40	30.85	19.45
	204	-0.278	11.40	30.82	19.42
	205	-0.718	14.70	30.64	15.94
	206	-0.057	12.00	29.02	17.02
	207	-0.041	12.00	29.02	17.02
	208	-0.258	17.10	29.76	12.66
	209	-0.182	17.00	29.75	12.75
	210	-0.259	21.00	29.70	8.70
	211	-0.282	21.00	29.65	8,65
	212	-0.135	21.00	29.64	8.64
			and the second second		

Л-8-2-4

.

APPENDIX A-11-1

Details of Operation Cost

1102 2,938 3,775 3,794 3,623 3,850 3,869 3,889 3,914 3,538 3,966 4,300 3,981 2, 338 4,621 4,649 4,578 4,712 -----2610. 2,881 2,859 2,917 4,300 3,981 116.2 2009 4,369 3,581 2,839 2008 4,300 3,981 l units (excluding I unit stand-by) i units (excluding 1 unit stand-by) 2,381 2 units (excluding 1 unit stand-by) 2,865 4,300 3,981 4,596 2007 2,866 2,852 3,981 cu m/day 2006 4,574 4, 300 3, 981 2,852 2, 332 4,300 3,981 ° 2005 4:402 4,367 4,333 4,305 4,426 4,418 4,417 4,418 4,426 4,428 4,459 4,484 4,511 4,512 2,813 2,832 2 mits 2,813 889 cu a/day 4,300 3,981 2004 So.of Punps = Bo.of Panps = 2,796 3.2 cu a/sin, No.of Pueps = 2.1 cu a/sin, No.of Pueps = 4,300 3,981 2,796 2003 2,780 3,719 3,726 3,734 3,751 2,780 4,300 2002 960. cu a/d Set Capacity 2.1 cu m/mim, 0.5 cu m/mim, 2,765 2001 4,300 3,981 2,766 2,760 4,300 2,760 20002 , и и Сегое н н су су 2, 755 4,300 3,981 **666**T 2,796 2,769 2,745 2,723 2,702 2,684 2,760 2,755 2,754 2,755 20 KF, H = 20.0 m, 20 KF, H = 30.0 m, 30.0 a, 40.0 a, 2,754 3,718 4,300 3,981 866T Max. Capacity 20 KH, 8 = 10 KH, 8 = 3,775 3,728 3,706 3,676 3,648 3,623 3,726 3,739 4,300 3,981 2,702 2,684 2,760 2,755 1997 4,300 1996 200 mm, P = 100 mm, P = 100 ma, P = 100 ma, P = 4,300 1935. 4,300 1994 TATE TEMENISSION AND DISTRIBUTION COST STUDY (Takaa Pa) 2,795 2,769 2,745 2,723 . 960 889 1993 2. Pitneed Baily Kariwan Mater Desand: QDN {cu n/d} ын Ц Dist Dist I. Plazzed Daily Average Tater Dewand (cu s/d) i. Ester Asount for Intake Design : [cu s/d] 7661 96 96 Zris.Pusp 1661 4,484 4,441 996 888 5 Daily Average Transmission Asount 1530 960 889 6. Purp Characteristics Treatment Capacity Net Treatment Capa Raw water for Treatment Plant Hew Treatment Unit Ray vater for Treatsent Plant [Daily Rax]#1.08#1.1 Feak Factor = Plazzed Total Clear Nater Punp 1 Eas Enter Paup at Eris. 77P Iten at Her WI? -----• ******* Taltas Pa

14-Dec-69

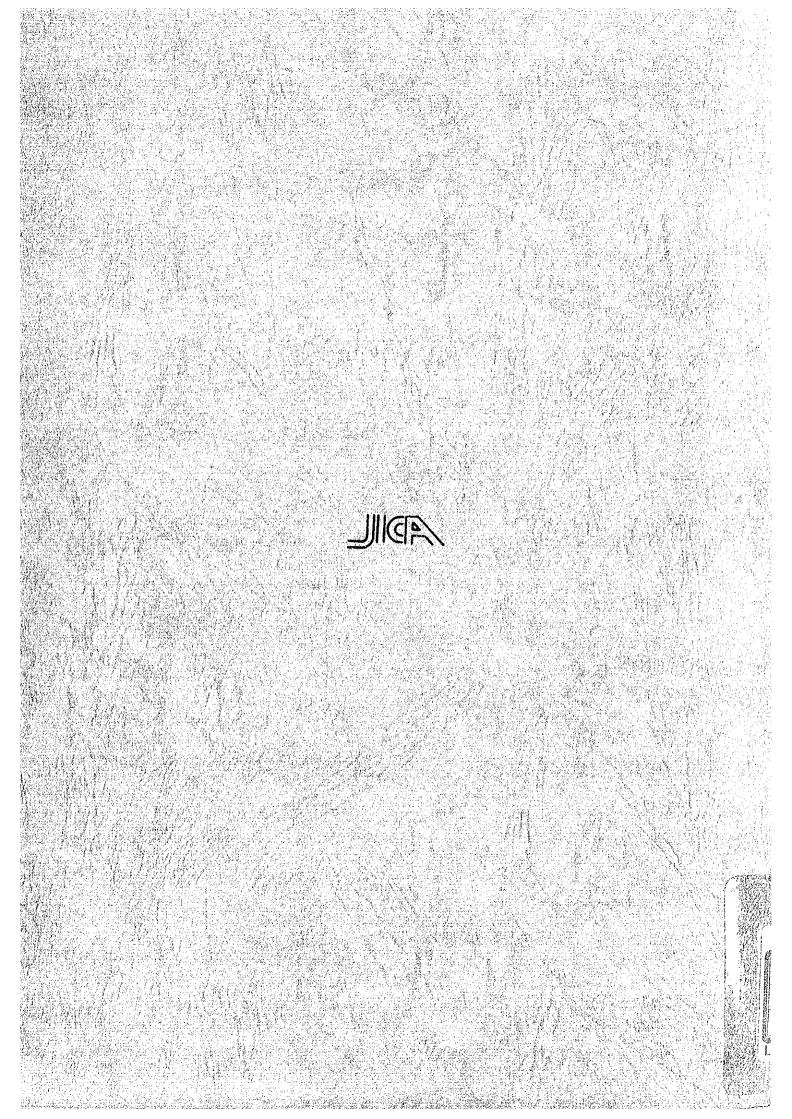
A-11-1-1

ł

14-Dec-89

72.6 1,521 698 14,017 11.4 2;145 33.5 5,362 220 878 1 6,608 88 161 . 2 6,020 2 1,346 1107 72.1 Total 11.3 5,324 21.6 2,129 1 109'3 5,020 5,020 1,364 នាន 570 570 220 575 695 2018 689 592 Total (1990-2011) 13,756 2,116 71.6 5,251 21.4 1,608 6,020 1.366 \$13 48f 267 229 2009 13,670 2,103 1.2 5,258 4,603 6,020 1,364 112 10 220 469 2008 13,599 17.0 2,092 70.3 5,230 4,605 685 6,020 1,344 ģ 3 £19 550 220 2007 2,082 5,205 21.1 16.9 70.5 4,608 818 558 23 55 19 59 6,020 1,346 2006 13,438 16.8 2,657 10.6 5,168 20.9 £,608 23 13 13 220 451 2005 6,020 361 183 13,348 16.7 2,053 59.5 1,608 1,134 20.8 22 83 618 1,344 28 6,020 200F 200F 2,041 -31.8 5,103 13,267 16.6 69.1 **4,6**08 1,314 នទ 19 19 22 155 613 6,020 2003 13,191 16.5 2,029 1,608 20 13 20.5 19 H 220 453 1,34 2002 6,020 13,125 31.5 68.3 82 53 20.4 1,608 73 23 620 ig 🗄 1,36 6,020 2001 13,096 2,015 68.2 1 4,608 5,637 20.4 1,344 922 699 6,020 22 191 2000 11,072 5,028 20.4 31.4 68.1 1,508 1,508 1,34 50 22 663 6,020 **660** 666] 16.3 2,000 58.1 5,026 20.4 1,608 6,020 2 1,344 22 **46**0 539 8 **8** 893 8 1998 13,072 31.4 68.1 5,028 1,608 668 6,020 28 194 194 8 1,344 1997 13,096 16.4 5,037 20.4 2,015 1,608 1,608 68.2 6,020 1,351 23 191 260 220 693 1996 12,736 1,838 19.8 30.6 56.3 4,608 83 555 255 121 6,020 1.34 657 1995 1,972 16.0 **5**6.8 1,931 1,508 4,508 6,020 1,34 2 2 51 19 660 **166**] RAFE TRANSMISSION AND DISTRIBUTION COST STUDY (Takma Pa) 1,988 [2,92] [6.2 61.3 1.96 22 33 15 317 134 £661 13,025 15.3 6.13 4,603 87 5,010 2,004 1,3H 88 8 **459** 1992 Jear. x1,000/j 13,139 63.4 120'1 5,053 . 4,608 1,344 22 3 20 31 1661 [Ink/day] (Babt 110 352 2,041 69.1 5,103 20.7 Chemical (13/7) 13,267 3.81 4,608 22 1,344 3 23 293 98**6**1 Chlorine (ave 2.0 cg/l) 10. Pany Operation Cost 7. Ro. of Operating Pumps 9. Baerfy Commention total cost(Baht 1000 Chesical (kg/y) Cost (Baht 1000). ine (are 13.0 zg/1) Chemical (kg/y) Cont (Baht 1000) Kar.Capa.of Pump Lar.Capa.of Pusp 5. Notor Oxtput (Kn) llue (ave 5.0 ng/l) (ca a) Cost (Bakt 1008) Lar.Capa.of Pusp Total Capacity Baw Bater Pamp Clear Water Pamp Clear Nater Pump Clear Rater Pass kar fater Pup Demand Charge Energy Charge Ray Nater Penp Chemical Cont Total Cost Iten Lt Exis. ITP at Ben MP .

Eakaa Pa


14-Dec-89

1102 767 500 750 757 755 200¢ 747 Bote: Pump is designed for qda {Baily Arerage Desand}
B. Exercy Consumption (HW) = H0.0f Pumps x Motor Output(H) x 24 M/day x [actual daily demand(qla)/max.capacity of pump(8)]
9. Demand Charge = Baht 229 /HW/mou x 12 wow/year x Motor Demand(7) EF
8 Charge = Baht 1.23 /HW x Energy Consumption (8) EWk/day x 365 days/rear
8 Design Pump Semd=Head Lows of Pipelize}+(Actual Head For K.H.L)+(Pump Head I.5 m)
9. Demand Charge = Baht 1.23 /HW x Energy Consumption (8) EWk/day x 365 days/rear
8 Design Pump Semd=Head Lows of Pipelize}+(Actual Head For K.H.L)+(Pump Head I.5 m) -738 Å 2001 736 Electricity fee = Eate of Provincial Electricity Anthority(PEA) for Anathirad as of Japuary, 1984. 736 736 B 1998 737 221 726 T 1995 524 526 FATES TRANSMISSION AND DISTRIBUTION COST STUDY (Takes Pa) 222 4.05 /kg 1.25 /kg 15.60 /kg Q 10.00 1 Alus :Baht Line :Baht Cl gay :Bakt DA : Daily Average DA : Daily Maximum Chemical Cost Operation Chemical Cost **Biscount Late** Tear -----Ites

4,850 x 1000 Baht

μŢ

Takua. Pa

