FEDERAL DEPARTMENT OF WATER RESOURCES MINISTRY OF AGRICULTURE, WATER RESOURCES AND RURAL DEVELOPMENT FEDERAL REPUBLIC OF NIGERIA

THE STUDY FOR GROUNDWATER DEVELOPMENT IN SOKOTO STATE

VOLUME 2
MAIN REPORT

JULY 1990

JAPAN INTERNATIONAL COOPERATION AGENCY

UKE LIBRARY
1085171[5]

21586

FEDERAL DEPARTMENT OF WATER RESOURCES MINISTRY OF AGRICULTURE, WATER RESOURCES AND RURAL DEVELOPMENT FEDERAL REPUBLIC OF NIGERIA

THE STUDY FOR GROUNDWATER DEVELOPMENT
IN
SOKOTO STATE

VOLUME 2 MAIN REPORT

JULY, 1990

JAPAN INTERNATIONAL COOPERATION AGENCY

THE STUDY
FOR
GROUNDWATER DEVELOPMENT
IN
SOKOTO STATE

LIST OF REPORTS

VOLUME 1 SUMMARY REPORT

VOLUME 2 MAIN REPORT

VOLUME 3 SUPPLEMENTARY REPORT I HYDROGEOLOGICAL MAPS

VOLUME 4 SUPPLEMENTARY REPORT II DATABASE MANUAL AND SIMULATION

VOLUME 5 DATA REPORT GEOPHYSICAL PROSPECTINGS,

DRILLING AND PUMPING TESTS

PREFACE

In response to a request from the Government of the Federal Republic of Nigeria, the Japanese Government decided to conduct a study on groundwater development in Sokoto State and entrusted the study to the Japan International Cooperation Agency (JICA).

JICA sent to Nigeria a survey team headed by Dr. Akira KAMATA, Kokusai Kogyo Co., Ltd., composed of members from the above company and the Sanyu Consultants Inc. from April to July, 1988; October, 1988 to March, 1989; May to July and September to December, 1989; February, 1990.

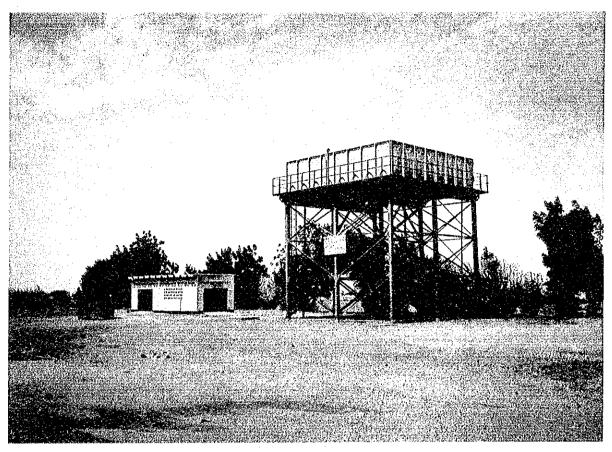
The team held discussions with concerned officials of the Government of Nigeria, and conducted field surveys. After the team returned to Japan, further studies were made and the present report was prepared.

I hope that this report will contribute to the promotion of the project and to the enhancement of friendly relations between our two countries.

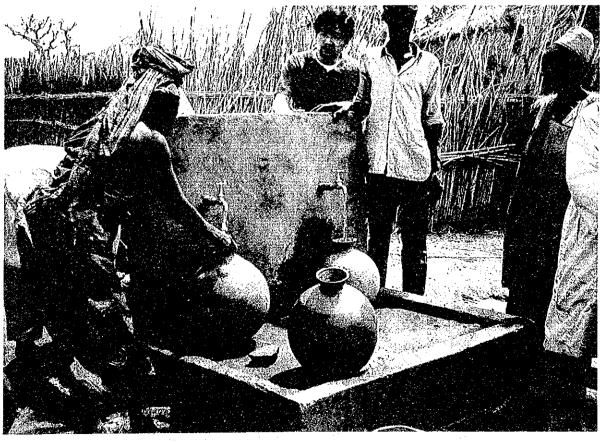
I wish to express my sincere appreciation to the officials concerned of the Government of the Federal Republic of Nigeria for their close cooperation extended to the team.

Konsuta Gamas

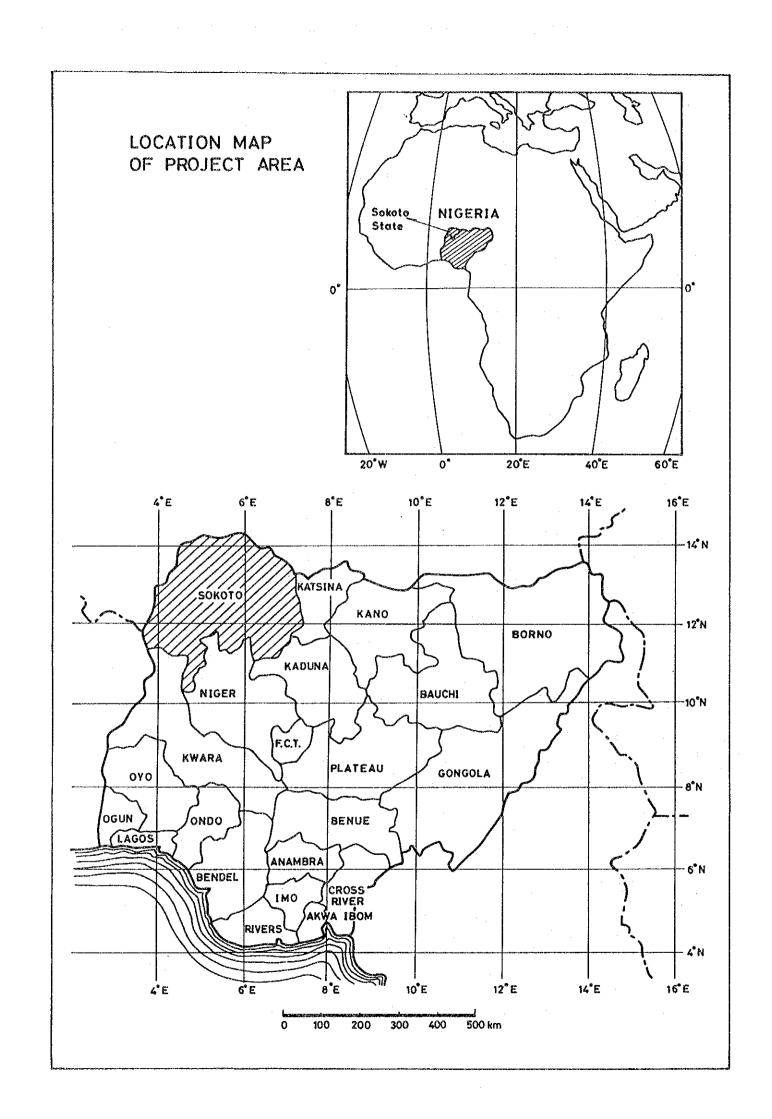
July, 1990

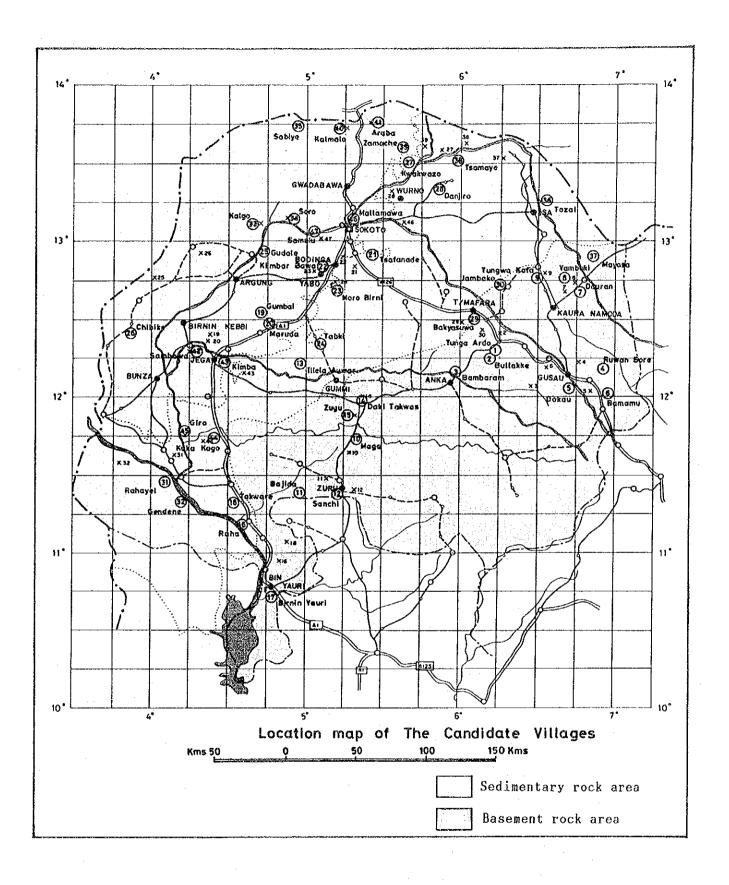

Kensuke Yanagiya

President


Japan International Cooperation Agency

LANDSAT Image of Sokoto State


and the second of the second The second of the second of



Model Water Supply System in Horo Birni

Villagers make use of the water supply system constructed in this project

STRUCTURE OF THE REPORT

This report describes the results of the study carried out from March 1988 through February 1990 for the purpose of clarifying and evaluating the potential of groundwater in Sokoto State, Nigeria and preparing a groundwater development plan for selected areas.

As the study was made in various methods and volumes, the results are summarized in the separate summary report (Volume 1). Various hydrogeological data are included in the supplementary reports (VOLUME 3,4) and the data report (VOLUME 5).

This is the main report (VOLUME 2) and precisely describes major items of the

study.

Chapter 1 is prepared to show the contents of this study conform to the Scope of Work concluded between Japan and Nigeria prior to the study; a brief introduction of the study area is described in the last section.

In Chapter 2, the socio-economic framework of Nigeria and Sokoto State is described. It is necessary at the start of the study to clarify the socio-economic background for the groundwater development.

In Chapter 3, the hydrological features of the Sokoto-Rima River Basin are briefly reviewed. Based on the results of discharge observation, the influent and effluent of the stream with regard to groundwater recharge and discharge are discussed.

In Chapter 4, the hydrogeological features of entire Sokoto State are described. The results of the interpretation of LANDSAT images used prior to the field reconnaissance are explained.

Aquifer properties, water quality, groundwater flow and change in water level and groundwater use are investigated and analyzed based on the existing data and observations.

In Chapter 5, the function and the structure of the database established in this study are described. In order to preserve and manage hydrological and hydrogeological data in Sokoto State, the database was installed into the microcomputer at FDWR Sokoto. The detailed database manual is contained in the supplementary report 2 (VOLUME 4).

In Chapter 6, the results of the hydrogeological survey of the candidate villages are described.

The aquifer distribution and its property in the sedimentary rock area and the basement rock area are examined. Based on the results, an effective method for hydrogeological survey is discussed and summarized as the guideline.

In Chapter 7, a basic concept for the quantitative analysis of groundwater is introduced. Then, the groundwater potential of entire Sokoto State is evaluated by means of the water balance analysis and the simulation of the Sokoto groundwater basin.

In Chapter 8, the groundwater development plan is proposed, putting particular emphasis on the design of the production well.

In Chapter 9, based on the hydrogeological data, analysis and the socio-economic study, a water supply program is formulated in the selected area. A project cost, organization and implementation schedule are proposed. The project is evaluated from the socio-economic points of view. In addition, the design and the process of construction of the model water supply system is described in this chapter. This is useful for future implementation of the project.

In Chapter 10, the results of the study are concluded briefly and the realization of the water supply project for the middle to large scale villages in Sokoto State is recommended.

TABLE OF CONTENTS

Location Map of Study Area Location Map of Candidate sites

PREFACE STRUCTURE OF THE REPORT ABBREVIATION

1.			CTION	1 - 1
	1-1	Backg	ground of the Study	1 - 1
		1-1-1	General	1 - 1
		1-1-2	The groundwater development project	1 - 1
	1-2	Objec	tives of the Study	1 - 2
	1-3	Outli	ne of the Study	1 - 3
		1-3-1	Study period and methodology	1 - 3
		1-3-2	Organization of the study	1-7
			Staffing of the study team	1-8
	1-4	The S	tudy Area	1 - 10
			Natural conditions	1 - 10
		1-4-2	General social conditions	1 - 12
_				0 1
2.			ONOMIC FRAMEWORK	2-1
-			ral	2-1
	2-2		al	2-2
			Population and Labor Force	2-2
			Economics	2 - 3
			Industries	2 - 12
			Foreign Trade	2 - 13
		2-2-5	Social conditions	2 - 19
		2-2-6	Finance	2 - 19
		2-2-7	Summary	2 - 19
	2-3	Sokot	o State	2 - 25
٠		2-3-1	Organization	2 - 25
		2-3-2	Population	2 - 25
		2-3-3	Price conditions	2 - 25
-		2-3-4	Budget	2 - 29
		2-3-5	Summary	2 - 29

	3.	HYDROLOGY	3 - 1
	•	3-1 Condition of Existing Monitoring Network and Related Data	
		3-1-1 Meteorological stations	
		3-1-2 Hydrological station	
		3-1-3 Data collection	*
		3-2 Hydrologic Climate	
		3-2-1 Precipitation	
		3-2-2 Temperature	
		3-2-3 Evaporation	
		3-3 Discharge Observation	
		3-3-1 Field measurements	:
		3-3-2 Rating Curve	The second second
		3-3-3 Observation Result	
		3-4 Stream Hydrology	
		Dulcantifulotogy	
	4.	HYDROGEOLOGY	4.1
	⊶.	4-1 Hydrogeological Feature	
		4-1-1 General features of hydrogeology	
		4-1-2 Features of hydrogeological formation	
		4-1-3 Hydrogeological structure	-
		4-2 Geographical and Geological Features interpretated on	4-12
		LANDSAT image	A 16
٠		4-3 Water Level Observation of Existing Wells	
		4-3-1 Simultaneous observation	
		4-3-2 Continuous observation	
		4-4 Chemical Quality of Water	
		4-4-1 Chemical quality of water for domestic use	
		4-4-2 Ion component of the water	
		4-5 Tritium Concentration	And the second second
		4-6 Aquifer Properties	
		4-6-1 Transmissibility and storativity	
		4-6-2 Specific capacity	
		4-7-1 Dug wells	
		4-7-2 Boreholes	:
		4-7-3 State of groundwater abstraction	
		4-8 Groundwater Flow	
		4-8-1 Basement complex	4 - 56

		4 FC
	4-8-2 The Gundumi and Illo Formations	
	4-8-3 The Rima Group	
	4-8-4 The Sokoto Group	
	4-8-5 The Gwandu Formation	
	4-8-6 Alluvium	4 - 64
5. D	ATABASE FOR GROUNDWATER UTILIZATION AND MANAGEMENT	5 - 1
5	-1 Existing Database	5 - 1
5-	-2 Database Construction	5 - 2
5	-3 Database Utilization and Management	5 - 6
	5-3-1 Database collection and their preservation	5 - 6
	5-3-2 Database operation and management	5 - 7
6. H	YDROGEOLOGICAL SURVEY OF CANDIDATE VILLAGES	6 - 1
	-1 Preliminary Survey	
·	6-1-1 Survey procedure	
	6-1-2 Classification of candidate villages	
	6-1-3 Topographic and geological survey	
	6-1-4 Geophysical prospecting	6-11
	6-1-5 Selection of the sites for detailed survey	6 - 19
6	-2 Detailed Survey	
75	6-2-1 Detailed hydrogeological reconnaissance	
	6-2-2 Geophysical prospecting	
	6-2-3 Test drilling and test well construction	6 - 44
	6-2-4 Pumping tests	
	6-2-5 Chemical quality test	
6	-3 Additional Experimental Survey in the Basement Area	
	6-3-1 Survey methodology	6 - 71
*.	6-3-2 Survey results	6 - 72
6	-4 Guideline for Hydrogeological Investigation	
7. E	VALUATION OF GROUNDWATER RESOURCES	7 - 1
	-1 Basic Concept on Quantitative Evaluation	7 - 1
	-2 Water Balance Analysis	7 - 4
	7-2-1 Water Balance Equation	
	7-2-2 Recharge estimation for unconfined aquifers in the	· .
	sedimentary area	7 - 5

		TOO Delivery estimation for an application of a graifong in the	
		7-2-3 Recharge estimation for unconfined aquifers in the basement complex area	7 - 19
		7-2-4 Recharge volume	7 - 21
		7-3 Groundwater Simulation in the Sokoto Groundwater Basin	7 - 23
٠.		7-3-1 Groundwater simulation procedure	7 - 23
		7-3-2 Modeling of the sedimentary rock area	7 - 23
		7-3-3 Prediction of future groundwater level under estimated	<u> </u>
		pumping conditions	7 - 35
		7-4 The Basin Yield of Basement Rock Area	7 - 50
		7-4-1 Hydrogeological characteristics and recharge	7 - 50
		7-4-2 Evaluation of the yield	7 - 51
		7-5 The Basin Yield of Sedimentary Rock Area	7 - 51
		7-5-1 Hydrogeological structures and flow characteristics	7 - 51
		7-5-2 Evaluation of the yield	7 - 53
		7-6 Necessity of Groundwater Basin Management	4 4 4 4
		1-0 Itoopping of Ground water hands	
	8.	GROUNDWATER DEVELOPMENT PLANNING	8-1
	V.	8-1 Groundwater Development in the Basement Rock Area	8-1
		8-2 Groundwater Development in the Sedimentary Area	8 - 5
	9.	WATER SUPPLY PROGRAM FOR MIDDLE TO LARGE SCALE VILLAGES	9 - 1
	-	9-1 Present Status of Water Supply Program	9 - 1
		9-1-1 National policy	
		9-1-2 Organization	
		9-1-3 Finance	9 - 5
	,	9-1-4 Development activities	9 - 5
		9-2 Water Supply Plan	9 - 8
		9-2-1 Basic plan	9 - 8
		9-2-2 Facilities planning	9 - 14
		9-2-3 Estimated project costs	9 - 19
		9-3 Project Implementation Planning	
		9-3-1 Organization of the implementation	9 - 24
		9-3-2 Implementation planning	9 - 27
		9-3-3 Schedule	
		9-3-4 Operation and maintenance	9 - 29
		9-4 Model Water Supply Facilities in Horo Birni	9 - 31
		9-4-1 System design	9 - 31
		9-4-2 Process of construction	9 - 35
•			
•			•

9-4-3 Water use	9 - 36
9-5 Project Evaluation	9 - 38
9-5-1 Cost-benefit analysis	9 - 38
9-5-2 Economic impact analysis	9 - 45
9-5-3 Social impact analysis	
O. CONCLUSION AND RECOMMENDATION	10 - 1
10-1 Conclusion	10 - 1
10-1-1 Groundwater potential of Sokoto State	
10-1-2Water Supply Project for Middle to Large	
Scale Villages	10 - 2
10-2 Recommendation	
10-2-1 Groundwater Development and Management	
10-2-2Implementation of the Water Supply Project	
BLIOGRAPHY	
LOSSARY	

FIGURES AND TABLES

Fig. 1-1	Flow Chart for the Study for Groundwater	
	Development in Sokoto State	1 - 4
Fig. 1-2	Organizational Chart for the Study	1 - 7
Fig. 2-1	Governmental Organization of Sokoto State	2 - 26
Fig. 2-2	1987 Budget Estimate of the Government of Sokoto State	2 - 30
Fig. 3-1	Location Map of Meteorological Stations	3 - 2
Fig. 3-2	Location Map of Hydrological Stations	3-5
Fig. 3-3	Schematic Map of Discharge Stations	3 - 6
Fig. 3-4	Meteorological Data from Sokoto	3 - 13
Fig. 3-5	Average Monthly Precipitation (1969 - 1987)	3 - 13
Fig. 3-6	Iso Annual Precipitation Map	3 - 14
Fig. 3-7	Average Daily Maximum Temperature (1952 - 1984)	3 - 13
Fig. 3-8	Average Daily Minimum Temperature (1952 - 1984)	3 - 13
Fig. 3-9	Annual Evaporation, Potential-Evapotranspiration, and Precipitation at Katsina, Sokoto, Gusau and Yelwa	3 - 17
Fig. 3-10	Results of Discharge Observation	3 - 22
Fig. 3-11	Schematic Flow Diagram of the System	3 - 26
Fig. 3-12	Rating Curve at Argungu on the River Rima	3 - 27
Fig. 3-13	Hydrograph of the River Rima and Sokoto, 1965 - 1967.	3 - 31
Fig. 3-14	Locations of Hydrological Stations	3 - 32
Fig. 3-15	Schematic Drainage System Map	3 - 33

Fig. 3-16	Monthly Change of Discharge Difference between Sabon-Birni plus Gidan-Doka and Wamako
Fig. 3-17	Hydrograph of the River Rima at Wamako and Argungu 3-38
Fig. 3-18	Effluent of Groundwater to the River Rima between Argungu and Bunza 3 - 39
Fig. 3-19	Effluent of Groundwater to the River Zamfara 3 - 40
Fig. 4-1	Geological Map of Sokoto State 4 - 3
Fig. 4-2	Hydrogeological Cross Sections of the Sokoto State 4-4
Fig. 4-3	Borehole Data Map of Sokoto State 4-5
Fig. 4-4	Specific Capacity Map of Sokoto State 4 - 6
Fig. 4-5	Static Water Level Map of Sokoto State 4 - 7
Fig. 4-6	Schematic Profile for Water Occurrence in the Basement complex Area 4 - 8
Fig. 4-7	Location of Cross Section Line (A-A' B-B' C-C') 4 - 14
Fig. 4-8	Schematic Profile for Groundwater Occurrence in the Sokoto State
Fig. 4-9	Relation between Lineament and Weathering Conditions 4 - 19
Fig. 4-10	Location Map of Hydrological Survey Points 4 - 21
Fig. 4-11	Trilinear Diagram 4 - 39
Fig. 4-12	Distribution of Specific Capacity 4 - 48
Fig. 4-13	Map of the Water Table Configuration 4 - 65
Fig. 4-14	Result of Weekly Water Level Observation 4 - 69
Fig. 4-15	Variation in Static Water Level in Boreholes in the Gundumi Formation

	Fig. 4-16	Schematic Diagram of the Groundwater Flow System	4 - 74
	Fig. 4-17	Water Level Fluctuation at Yauri Road	4 -75
	Fig. 4-18	Comparison of Water Levels between January, 1984 and January, 1989	4 - 76
	Fig. 5-1	Schematic Diagram of the Data Base System	5 - 4
*.	Fig. 5-2	Schematic Diagram of the Hardware Components	5 - 4
	Fig. 6-1	Example of Resistivity Profile	6 - 14
	Fig. 6-2	Flow Chart of Site Selection for Detailed Survey	6 - 21
	Fig. 6-3	Hydrogeological Profile of Ruwan Bore Area	6 - 27
	Fig. 6-4	Hydrogeological Profile of Dauran Area	6 - 28
	Fig. 6-5	Hydrogeological Profile of Yambuki Area	6 - 29
	Fig. 6-6	Hydrogeological Profile of Maga Area	6 - 30
	Fig. 6-7	Hydrogeological Profile of Tunga Ardo Area	6 - 31
	Fig. 6-8	Hydrogeological Profile of Bullake Area	6 - 32
	Fig. 6-9	Hydrogeological Profile of Bamamu Area	6 - 33
	Fig. 6-10	Hydrogeological Profile of Zugu Area	6 - 34
	Fig. 6-11	Hydrogeological Profile of Daki Takwas Area	6 - 36
·	Fig. 6-12	Hydrogeological Profile of Dokau Area	6 - 36
	Fig. 6-13	Histogram of Yield Capacity per Single Well in the Basement Complex (407 wells)	6 - 37
	Fig. 6-14	Hydrogeological Profile of Gudale Area	6 - 40
	Fig. 6-15	Hydrogeological Profile of Samalu Area	6 - 41
-	Fig. 6-16	Hydrogeological Profile of Takware Area	6 - 42

Fig. 6-17 Hydrogeological Profile of Kuka Kogo Area 6-43 Fig. 6-18 Location Map of the Candidate Village for Test Drilling and Test Well Construction 6-45 Fig. 6-19 Results of Drilling 6-48 Fig. 6-20 Lithologic and Geophysical Log of Groundwater Exploration Well 6-51 Fig. 6-21 Schematic Cross Section of the Basement Complex Area 6-59 Fig. 6-22 Lithologic and Geophysical Log of Groundwater Exploration Well 6-61 Fig. 6-23 Hydrogeological Cross Section of Soro Area 6-65 Fig. 6-24 Hydrogeological Cross Section of Horo Birni Area 6-65 Fig. 6-25 Pattern Diagrams 6-70 Fig. 6-26 Trillinear Diagrams 6-70 Fig. 6-27 Location of the Survey Points 6-73 Fig. 6-28 Geographical Map of Zugu Village 6-75 Fig. 6-30 Iso-Depth Map to the Fresh Basement Rock 6-80 Fig. 6-31 Apparent Resistitivity Value Map (Loop A, Ch. 1) 6-82 Fig. 6-32 Apparent Resistitivity Value Map (Loop B, Ch. 1) 6-83 Fig. 6-33 The Traverse Data along Line E and F 6-84 Fig. 6-34 Line F Section 6-90	le e al companyone de la companyone de l	
Fig. 6-18 Location Map of the Candidate Village for Test Drilling and Test Well Construction 6 - 45 Fig. 6-19 Results of Drilling 6 - 48 Fig. 6-20 Lithologic and Geophysical Log of Groundwater Exploration Well 6 - 51 Fig. 6-21 Schematic Cross Section of the Basement Complex Area 6 - 59 Fig. 6-22 Lithologic and Geophysical Log of Groundwater Exploration Well 6 - 61 Fig. 6-23 Hydrogeological Cross Section of Soro Area 6 - 65 Fig. 6-24 Hydrogeological Cross Section of Horo Birni Area 6 - 65 Fig. 6-25 Pattern Diagrams 6 - 70 Fig. 6-26 Trillinear Diagrams 6 - 70 Fig. 6-27 Location of the Survey Points 6 - 73 Fig. 6-28 Geographical Map of Zugu Village 6 - 75 Fig. 6-29 Geological Interpretation Map around Zugu Area 6 - 79 Fig. 6-30 Iso-Depth Map to the Fresh Basement Rock 6 - 80 Fig. 6-31 Apparent Resistitivity Value Map (Loop A, Ch. 1) 6 - 82 Fig. 6-32 Apparent Resistitivity Value Map (Loop B, Ch. 1) 6 - 83 Fig. 6-34 Line F Section <th< th=""><th></th><th></th></th<>		
and Test Well Construction 6 - 45 Fig. 6-19 Results of Drilling 6 - 48 Fig. 6-20 Lithologic and Geophysical Log of Groundwater Exploration Well 6 - 51 Fig. 6-21 Schematic Cross Section of the Basement Complex Area 6 - 59 Fig. 6-22 Lithologic and Geophysical Log of Groundwater Exploration Well 6 - 61 Fig. 6-23 Hydrogeological Cross Section of Soro Area 6 - 65 Fig. 6-24 Hydrogeological Cross Section of Horo Birni Area 6 - 65 Fig. 6-25 Pattern Diagrams 6 - 70 Fig. 6-26 Trillinear Diagrams 6 - 70 Fig. 6-27 Location of the Survey Points 6 - 73 Fig. 6-28 Geographical Map of Zugu Village 6 - 75 Fig. 6-30 Geological Interpretation Map around Zugu Area 6 - 80 Fig. 6-31 Apparent Resisitivity Value Map (Loop A, Ch. 1) 6 - 82 Fig. 6-32 Apparent Resisitivity Value Map (Loop B, Ch. 1) 6 - 83 Fig. 6-34 Line F Section 6 - 87 Fig. 6-35 Guideline for Hydrogeological Investigation for Groundwater Development in the Basement	Fig. 6-17	Hydrogeological Profile of Kuka Kogo Area 6 - 43
Fig. 6-20 Lithologic and Geophysical Log of Groundwater Exploration Well 6-51 Fig. 6-21 Schematic Cross Section of the Basement Complex Area 6-59 Fig. 6-22 Lithologic and Geophysical Log of Groundwater Exploration Well 6-61 Fig. 6-23 Hydrogeological Cross Section of Soro Area 6-65 Fig. 6-24 Hydrogeological Cross Section of Horo Birni Area 6-65 Fig. 6-25 Pattern Diagrams 6-70 Fig. 6-26 Trillinear Diagrams 6-70 Fig. 6-27 Location of the Survey Points 6-73 Fig. 6-28 Geographical Map of Zugu Village 6-75 Fig. 6-29 Geological Interpretation Map around Zugu Area 6-79 Fig. 6-30 Liso-Depth Map to the Fresh Basement Rock 6-80 Fig. 6-31 Apparent Resisitivity Value Map (Loop A, Ch. 1) 6-82 Fig. 6-32 Apparent Resisitivity Value Map (Loop B, Ch. 1) 6-83 Fig. 6-33 The Traverse Data along Line E and F 6-84 Fig. 6-34 Line F Section 6-87 Fig. 6-35 Guideline for Hydrogeological Investigation for Groundwater Development in the Basement	Fig. 6-18	
Exploration Well 6 - 51 Fig. 6-21 Schematic Cross Section of the Basement Complex Area 6 - 59 Fig. 6-22 Lithologic and Geophysical Log of Groundwater Exploration Well 6 - 61 Fig. 6-23 Hydrogeological Cross Section of Soro Area 6 - 65 Fig. 6-24 Hydrogeological Cross Section of Horo Birni Area 6 - 65 Fig. 6-25 Pattern Diagrams 6 - 70 Fig. 6-26 Trillinear Diagrams 6 - 70 Fig. 6-27 Location of the Survey Points 6 - 73 Fig. 6-28 Geographical Map of Zugu Village 6 - 75 Fig. 6-29 Geological Interpretation Map around Zugu Area 6 - 79 Fig. 6-30 Iso-Depth Map to the Fresh Basement Rock 6 - 80 Fig. 6-31 Apparent Resisitivity Value Map (Loop A, Ch. 1) 6 - 82 Fig. 6-32 Apparent Resisitivity Value Map (Loop B, Ch. 1) 6 - 83 Fig. 6-33 The Traverse Data along Line E and F 6 - 84 Fig. 6-35 Guideline for Hydrogeological Investigation for Groundwater Development in the Basement	Fig. 6-19	Results of Drilling 6 - 48
Fig. 6-22 Lithologic and Geophysical Log of Groundwater Exploration Well	Fig. 6-20	
Exploration Well 6 - 61 Fig. 6-23 Hydrogeological Cross Section of Soro Area 6 - 65 Fig. 6-24 Hydrogeological Cross Section of Horo Birni Area 6 - 65 Fig. 6-25 Pattern Diagrams 6 - 70 Fig. 6-26 Trillinear Diagrams 6 - 70 Fig. 6-27 Location of the Survey Points 6 - 73 Fig. 6-28 Geographical Map of Zugu Village 6 - 75 Fig. 6-29 Geological Interpretation Map around Zugu Area 6 - 79 Fig. 6-30 Iso-Depth Map to the Fresh Basement Rock 6 - 80 Fig. 6-31 Apparent Resisitivity Value Map (Loop A, Ch. 1) 6 - 82 Fig. 6-32 Apparent Resisitivity Value Map (Loop B, Ch. 1) 6 - 83 Fig. 6-34 Line F Section 6 - 84 Fig. 6-35 Guideline for Hydrogeological Investigation for Groundwater Development in the Basement	Fig. 6-21	Schematic Cross Section of the Basement Complex Area 6 - 59
Fig. 6-24 Hydrogeological Cross Section of Horo Birni Area 6-65 Fig. 6-25 Pattern Diagrams 6-70 Fig. 6-26 Trillinear Diagrams 6-70 Fig. 6-27 Location of the Survey Points 6-73 Fig. 6-28 Geographical Map of Zugu Village 6-75 Fig. 6-29 Geological Interpretation Map around Zugu Area 6-79 Fig. 6-30 Iso-Depth Map to the Fresh Basement Rock 6-80 Fig. 6-31 Apparent Resisitivity Value Map (Loop A, Ch. 1) 6-82 Fig. 6-32 Apparent Resisitivity Value Map (Loop B, Ch. 1) 6-83 Fig. 6-33 The Traverse Data along Line E and F 6-84 Fig. 6-34 Line F Section 6-87 Fig. 6-35 Guideline for Hydrogeological Investigation for Groundwater Development in the Basement	Fig. 6-22	
Fig. 6-25Pattern Diagrams6 - 70Fig. 6-26Trillinear Diagrams6 - 70Fig. 6-27Location of the Survey Points6 - 73Fig. 6-28Geographical Map of Zugu Village6 - 75Fig. 6-29Geological Interpretation Map around Zugu Area6 - 79Fig. 6-30Iso-Depth Map to the Fresh Basement Rock6 - 80Fig. 6-31Apparent Resisitivity Value Map (Loop A, Ch. 1)6 - 82Fig. 6-32Apparent Resisitivity Value Map (Loop B, Ch. 1)6 - 83Fig. 6-33The Traverse Data along Line E and F6 - 84Fig. 6-34Line F Section6 - 87Fig. 6-35Guideline for Hydrogeological Investigation for Groundwater Development in the Basement	Fig. 6-23	Hydrogeological Cross Section of Soro Area 6 - 65
Fig. 6-26Trillinear Diagrams6 - 70Fig. 6-27Location of the Survey Points6 - 73Fig. 6-28Geographical Map of Zugu Village6 - 75Fig. 6-29Geological Interpretation Map around Zugu Area6 - 79Fig. 6-30Iso-Depth Map to the Fresh Basement Rock6 - 80Fig. 6-31Apparent Resisitivity Value Map (Loop A, Ch. 1)6 - 82Fig. 6-32Apparent Resisitivity Value Map (Loop B, Ch. 1)6 - 83Fig. 6-33The Traverse Data along Line E and F6 - 84Fig. 6-34Line F Section6 - 87Fig. 6-35Guideline for Hydrogeological Investigation for Groundwater Development in the Basement	Fig. 6-24	Hydrogeological Cross Section of Horo Birni Area 6 - 65
Fig. 6-27 Location of the Survey Points 6-73 Fig. 6-28 Geographical Map of Zugu Village 6-75 Fig. 6-29 Geological Interpretation Map around Zugu Area 6-79 Fig. 6-30 Iso-Depth Map to the Fresh Basement Rock 6-80 Fig. 6-31 Apparent Resisitivity Value Map (Loop A, Ch. 1) 6-82 Fig. 6-32 Apparent Resisitivity Value Map (Loop B, Ch. 1) 6-83 Fig. 6-33 The Traverse Data along Line E and F 6-84 Fig. 6-34 Line F Section 6-87 Fig. 6-35 Guideline for Hydrogeological Investigation for Groundwater Development in the Basement	Fig. 6-25	Pattern Diagrams 6 - 70
Fig. 6-28Geographical Map of Zugu Village6 - 75Fig. 6-29Geological Interpretation Map around Zugu Area6 - 79Fig. 6-30Iso-Depth Map to the Fresh Basement Rock6 - 80Fig. 6-31Apparent Resisitivity Value Map (Loop A, Ch. 1)6 - 82Fig. 6-32Apparent Resisitivity Value Map (Loop B, Ch. 1)6 - 83Fig. 6-33The Traverse Data along Line E and F6 - 84Fig. 6-34Line F Section6 - 87Fig. 6-35Guideline for Hydrogeological Investigation for Groundwater Development in the Basement	Fig. 6-26	Trillinear Diagrams 6 - 70
Fig. 6-29 Geological Interpretation Map around Zugu Area 6-79 Fig. 6-30 Iso-Depth Map to the Fresh Basement Rock 6-80 Fig. 6-31 Apparent Resisitivity Value Map (Loop A, Ch. 1) 6-82 Fig. 6-32 Apparent Resisitivity Value Map (Loop B, Ch. 1) 6-83 Fig. 6-33 The Traverse Data along Line E and F 6-84 Fig. 6-34 Line F Section 6-87 Fig. 6-35 Guideline for Hydrogeological Investigation for Groundwater Development in the Basement	Fig. 6-27	Location of the Survey Points 6 - 73
Fig. 6-30Iso-Depth Map to the Fresh Basement Rock6 - 80Fig. 6-31Apparent Resisitivity Value Map (Loop A, Ch. 1)6 - 82Fig. 6-32Apparent Resisitivity Value Map (Loop B, Ch. 1)6 - 83Fig. 6-33The Traverse Data along Line E and F6 - 84Fig. 6-34Line F Section6 - 87Fig. 6-35Guideline for Hydrogeological Investigation for Groundwater Development in the Basement	Fig. 6-28	Geographical Map of Zugu Village 6-75
Fig. 6-31Apparent Resisitivity Value Map (Loop A, Ch. 1)6 - 82Fig. 6-32Apparent Resisitivity Value Map (Loop B, Ch. 1)6 - 83Fig. 6-33The Traverse Data along Line E and F6 - 84Fig. 6-34Line F Section6 - 87Fig. 6-35Guideline for Hydrogeological Investigation for Groundwater Development in the Basement	Fig. 6-29	Geological Interpretation Map around Zugu Area 6 - 79
Fig. 6-32 Apparent Resisitivity Value Map (Loop B, Ch. 1)	Fig. 6-30	Iso-Depth Map to the Fresh Basement Rock 6 - 80
Fig. 6-33 The Traverse Data along Line E and F	Fig. 6-31	Apparent Resisitivity Value Map (Loop A, Ch. 1) 6 - 82
Fig. 6-34 Line F Section	Fig. 6-32	Apparent Resisitivity Value Map (Loop B, Ch. 1) 6 - 83
Fig. 6-35 Guideline for Hydrogeological Investigation for Groundwater Development in the Basement	Fig. 6-33	The Traverse Data along Line E and F 6 - 84
Groundwater Development in the Basement	Fig. 6-34	Line F Section 6 - 87
Complex area	Fig. 6-35	Groundwater Development in the Basement
		Complex area
and successful to the control of the But the control of t		

Fig. 6-36	Guideline for Hydrogeological Investigation for Groundwater Development in the Sedimentary Area 6-91
Fig. 7-1	Water-level Fluctuations in Dug Wells Tapping
	Unconfined Groundwater in Kalambaina and Gwandu Formations
Fig. 7-2	Relation between Groundwater Level and Rate of Decline 7 - 9
Fig. 7-3	Comparison of Computed and Actual Water Level 7 - 15
Fig. 7-4	Areas of the Sedimentary rock and the Basement Rock $$. $$ 7 - 22
Fig. 7-5	General Procedure of Simulation 7 - 24
Fig. 7-6	Generalized Cross Section of Quasi-Three Dimensional Aquifer Simulation Model
Fig. 7-7	Finite Element and Boundary Conditions Used in the Model
Fig. 7-8	Aquifer Thickness 7 - 29
Fig. 7-9	Distribution of Groundwater Abstraction 7 - 34
Fig. 7-10	Comparison of Simulated and Actual Groundwater Level
Fig. 7-11	Predicted Change in Groundwater Level (Case 1) 7 - 41
Fig. 7-12	Predicted Decline in Groundwater level in 30 Years After (Case 1)
Fig. 7-13	Predicted Change in Groundwater Level (Case 2) 7 - 47
Fig. 7-14	Predicted Decline in Groundwater Level in 30 Years After (Case 2)
Fig. 7-15	Boreholes in Basement Area
Fig. 8-1	Standard Well Design for Hand Pump Well 8-3

Fig. 8-2	Proposed Modification of the Well Design in the Basement Rock Area
Fig. 8-3	Standard Well Design for Moter Pumped Well 8-7
Fig. 9-1	Organization of Water Supply in Sokoto State 9-3
Fig. 9-2	Transition of Water Supply Organization in Sokoto State 9 - 4
Fig. 9-3	Location Map of Candidate Villages for Water Supply Schemes 9 - 9
Fig. 9-4	Water Supply System Design 9 - 15
Fig. 9-5	Organization for Implementation 9 - 25
Fig. 9-6	Summarized Procedure of Construction 9 - 28
Fig. 9-7	Tentative Implementation Schedule 9 - 30
Fig. 9-8	Communal Faucet F_1-F_6 9-34
Table 1-1	Member List of the Study Team 1-9
Table 1-2	Mean Monthly Precipitation in Sokoto City 1-10
Table 1-3	Flow Rate of the Rima River at Arugungu 1 - 11
Table 2-1	Population of State 2-4
Table 2-2	Labor Force 2-5
Table 2-3	Gross National Products in Constant 1977/1978 Naira 2 - 7
Table 2-4	Gross National Products in Unadjusted Naira 2-8
Table 2-5	National Disposable Income and Its Appropriation 2 - 9
Table 2-6	Composite Consumer Price Index 2 - 10
Table 2-7	Index Number of Nigeria Industrial Production 2 - 11

Table 2-8	Gross Domestic Product by Industry in 1977/1978 Naira
Table 2-9	Gross Domestic Product by Industry in Unadjusted Naira
Table 2-10	Input-Output Condition (1973) 2 - 16
Table 2-11	Exports by Commodity Sections 2 - 17
Table 2-12	Imports by Commodity Sections 2 - 18
Table 2-13	Electricity Generation and Sales 2 - 20
Table 2-14	Health Indication 2 - 21
Table 2-15	Education Enrollment 2 - 22
Table 2-16	Central Government Revenue 2 - 23
Table 2-17	Central Government Expenditure 2 - 24
Table 2-18	Population of Sokoto State 2 - 27
Table 2-19	Escalation of Retail Market Prices in Sokoto City 2 - 28
Table 2-20	Actual and Estimated Budget of Sokoto State Government 1981 - 1987
Table 3-1	Number of Existing Meteorological Stations 3-3
Table 3-2	Specifications of Meteorological Stations 3-4
Table 3-3	List of Meteorological and Hydrological Data Collected During the Study
Table 3-4	Meteorological Data from Sokoto
Table 3-5	Average Monthly Precipitation (1969 - 1987) 3 - 12
Table 3-6	Average Daily Maximum Temperature (1952 - 1984) 3 - 12
Table 3-7	Average Daily Minimum Temperature (1952 - 1984) 3 - 12

Table 3-	Annual Evaporation and Potential Evapotranspiration . 3 - 16	
Table 3-	Discharges at Observating Points 3 - 21	
Table 3-	10 Water Balance of Sokoto-Rima Basin 3 - 34	٠
Table 4-	Generalized Stratigraphic Section for the Sokoto Region 4-2	
Table 4-	Different Patterns between Older Granites and Metasediments in Basement Rock Area Interpreted on LANDSAT Image	
Table 4-	Inventory of Boreholes for Water Level Observation 4 - 22	
Table 4-	Water Levels in Boreholes Simultaneous Observation	
Table 4-	5 Automatic Water Level Recording 4 - 28	
Table 4	6 Drinking Water Quality Standard 4 - 29	
Table 4	7 Chemical Quality of Water for Domestic Use 4 - 31	
Table 4	Results of Water Quality Analysis (Ion Component) 4 - 36	
Table 4	9 Tritium Concentration 4 - 42	
Table 4	10 Results of Aquifer Tests 4 - 46	
Table 4	Changes in Number of Borehole Construction during 1970 to 1981	
Table 4	Number of Abandoned and Functioning Boreholes 4-53	
Table 4	13 Average Records on Functioning Boreholes -By Local Government	
Table 4	14 Average Records on Functioning Boreholes -By Aquifer	
Table 6	Number of Villages Classified by Population Grade 6-3	
Table 6	2 List of Concentrated Type Villages Classified by Scale 6 - 5	

Table 6-3	Type and Number of Existing Water Sources	6 - 7
Table 6-4	Village Classification with Quantity of Water from Existing Sources	6 - 7
Table 6-5	Number of Villages Classified by Accessibility	6 - 9
Table 6-6	Summary Results of Resistivity Sounding	6 - 15
Table 6-7	The Selected Villages for the Sites of Detailed Survey	6 - 20
Table 6-8	Result of Detailed Survey	6 - 23
Table 6-9	Villages Selected for Test Drilling and/or Test Well Construction	6 - 38
Table 6-10	Results of Pumping Tests	6 - 68
Table 6-11	Ion Component of Water Samples	6 - 69
Table 6-12	The Additional Hydrogeological Survey Conducted in Zugu	6 - 72
Table 6-13	Results of Test Drilling and Pumping Test	6 - 89
Table 7-1	Important Factors in Determining Permissive Yield	7 - 3
Table 7-2	Water Balance Calculated At Kware, Precipitation, Potential Evapotranspiration	7 - 11
Table 7-3	Representative Specific Yield Ranges	7 - 17
Table 7-4	Groundwater Recharge Computed at Sokoto	7 - 18
Table 7-5	Groundwater Recharge Computed at Gusau	7 - 20
Table 7-6	Estimated Permeability	7 - 28
Table 7-7	Representative Specific Storage Ranges	7 - 32
Table 7-8	Predicted Present Groundwater Abstraction	7 - 33

	Table 7-9	Present and Future Pumping Rate in the Sedimentary Area	
	Table 7-10	Pumping Rate after 30 Years 7 - 40	
	Table 9-1	Capital Expenditure on Water Supply by Scheme 9 - 4	
	Table 9-2	Additional Number of Boreholes Drilled in Sokoto State by Scheme	
	Table 9-3	SARDA Drilling Activity 9 - 7	
	Table 9-4	Typical Domestic Water Usage 9 - 11	
	Table 9-5	Various Water Requirements 9 - 11	
	Table 9-6	The Ideal Water Supply and Consumption Proposal by FDWR 9 - 12	
	Table 9-7	Recommended Water Consumption 9 - 12	
Table 9-8		Designed Standard for Velocity and Head Loss 9 - 13	
	Table 9-9	Cost Estimate of the Model Construction 9 - 20	
	Table 9-10	Cost Estimation for Water Supply System 9 - 21	
	Table 9-11	Capital Costs of Each Candidate Site 9 - 42	
Table 9-12		Water Charge Calculation in Middle Village 9 - 43	
	Table 9-13	Water Charge Calculation in Large Village 9 - 43	
1.0			

ABBREVIATION

Organization

AfDB : African Development Bank

DFRRI : Directorate for Food, Road Rural Infrastructure

FDCA: Federal Department of Civil Aviation

FDWR : Federal Department of Water Resources

IBRD : International Bank for Reconstruction and Development

JICA: Japan International Cooperation Agency

KSWB : Katsina State Water Board

LGA: Local Government Authority

MOE: Ministry of Education

MOW: Ministry of Works

MRD : Ministry of Rural Development and Cooperation

NMS: Nigerian Meteorological Service

NWRI: National Water Resources Institute

SARDA: Sokoto Agriculture and Rural Development Authority

SMA : State Ministry of Agriculture

SRRBDA: Sokoto Rima River Basin Development Authority

SSWB : Sokoto State Water Board

USGS : United States Geological Survey

WHO: World Health Organization

Unit

 $Mm^3 : \times 10^6 m^3$

PPM: Parts Per Million

Method

ELFMT: Extremely Low Frequency Magnetotelluric Method

ERS: Electrical Resistivity Sounding

MT : Magnetotelluric Method

PLMT : Power Line Magnetotelluric Method

TEM: Transient Electromagnetic Survey

VES : Vertical Electric Sounding

1. INTRODUCTION

1-1 Background of the Study

1-1-1 General

This report is the final report on the study entitled "The Study for Groundwater Development in Sokoto State" which has been carried out in accordance with the "Scope of Work" agreed upon between the Federal Government of Nigeria through the Federal Ministry of Finance and Economic Development and the Japan International Cooperation Agency (JICA).

The study area covered is almost the whole area of Sokoto State (about 100,000Km²) which is situated in the northwestern part of Nigeria, where the forty-seven (47) villages proposed as study sites are scattered. The location of these 47 sites is shown on the location map. The number of sites involved in geologically classified units are as follows:

14 villages in the Tertiary System (9 in the Sokoto Group and 5 in the Gwandu Formation),

14 villages in the Cretaceous System (7 in the Rima Group and 7 in the Gundumi Formation), and

19 villages in the area where the basement complex is exposed

1-1-2 The groundwater development project

In the 5th Five-Year-Development Plan (1987-1991) of the Federal Republic of Nigeria, the highest priority is given to the promotion of agriculture with emphasis on attaining self-sufficiency in food supply. This is because Nigeria has been in an economic situation of heavy dependence on oil earnings even though the oil market has been stagnant since the early 1980's.

Sokoto State, the project area, is one of the five (5) northern states of Nigeria where traditional small-scale agriculture of self-sufficiency is practiced. Since the northern part of Nigeria has limited precipitation in its short rainy season, water for both agricultural use and drinking is in short supply for more than half of the year. In addition to this natural condition, the recent rapid increase in population in this area makes it difficult to develop the economic base of the area or to improve the living standard of the inhabitants.

Taking this into consideration, the Federal Government of Nigeria and the State Governments have made groundwater development plans, especially in order to obtain drinking water, a fundamental element of life, and in order to increase the economic potential of the area.

While water supply system construction covering urban areas and small villages is in progress, the realization of the plan for middle- to large-scale villages in Sokoto State lags behind due to difficulties such as shortage of labor, budget and equipment/materials for well and supply system construction. Moreover, the hydrogeological conditions in some parts of Sokoto State are not conducive to groundwater development, thus they are classified as "difficult" areas. High technology in groundwater investigation is especially required for areas where Pre-cretaceous basement rocks are exposed (southwestern area of Sokoto State, which constitutes about 42% of the total area). Some of the deep wells constructed through the National Borehole Program in the above areas were not productive, and some of them have not been properly functioning due to poor geological investigation prior to well construction.

In response to these conditions, the Federal Government of Nigeria has requested technical cooperation from the Japanese Government in order to conduct a study for groundwater development, and especially in order to establish effective study methodology for the difficult areas mentioned.

1-2 Objectives of the Study

The objectives of the Study are to clarify and evaluate the potential of groundwater in Sokoto State, and to prepare a groundwater development plan for selected areas through hydrogeological investigation. In particular, the Study places emphasis on the

establishment of an effective method of hydrogeological investigation in the difficult area where the basement complex or Pre-cretaceous sediment are exposed.

Also, during the Study, technology transfer regarding groundwater investigation to the counterpart engineers of Nigeria is to be focused on by the JICA Study Team, especially concerning technology regarding geophysical prospecting methods and the analysis of groundwater potential.

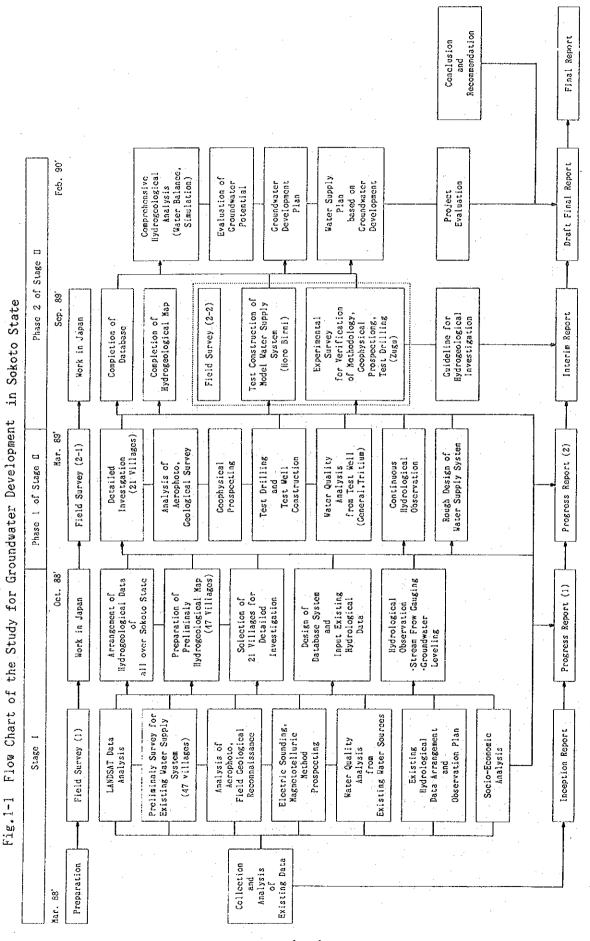
1-3 Outline of the Study

1-3-1 Study period and methodology

The basic project outcome sought as a result of this study is to develop groundwater as a water supply source for domestic use and to construct a simple water supply system for middle to large scale villages with populations of 2,000 to 20,000 in Sokoto State.

Therefore, the Study will, of course, constitute the basis for project implementation. However, it should be emphasized that the project area is not limited to the 47 candidate villages concerned in this study, as the study objective does not only cover the clarification of the groundwater potential of individual villages, but also the classification of groundwater potential for almost the whole of Sokoto State, through the investigation of the area surrounding each village.

The Study is divided into the following stages and phases from the viewpoint of study period and methodology(Figure 1-1).


Stage I April to September, 1988

Stage II Phase 1 October 1988 to March 1989

Stage II Phase 2 May 1989 to February 1990

In Stage I, a hydrogeological investigation was carried out covering almost the whole area of Sokoto State, including 42 individual sites from among the 47 candidate villages, in order to establish a rough classification of the groundwater potential in Sokoto State.

As a result, twenty-one tentative sites were selected in Stage I for

detailed hydrogeological survey in Stage II. Parallel with the above investigation, general hydrological observation of the study area was also conducted.

In Phase 1 of Stage II, the above detailed hydrogeological survey was carried out. In eight villages, test drilling with core sampling and test well construction with pumping tests were carried out to determine the geological stratigraphy and the productivity and hydraulic constants of the aquifers.

Hydrological observation continued, during this period and a level survey was carried out in order to accurately establish the water levels of existing boreholes. In addition, a field survey for water supply system design was also conducted in the above eight villages in order to standardize the design of the system.

In the first six months of Phase 2 of Stage II, an additional detailed hydrogeological survey was carried out in order to establish an effective method of hydrogeological investigation in the so-called difficult area where the basement complex is exposed. A field survey including geological reconnaissance, geophysical prospecting and test well drillings was carried out in Zugu, in the central part of Sokoto State. Drawings and documents for trial water supply system construction in Horo-Birni were also prepared.

In the last six months of Phase 2 of Stage II, a groundwater development plan was formulated in accordance with classified groundwater potential by area, through comprehensive hydrological/hydrogeological analysis, based on the data obtained during the first and second stage.

A model water supply system was constructed in Horo Birni where a test well was constructed and facilitated with a submersible pump, a generator, a water tank and a storage house. The distribution pipeline was laid down and communal faucets were constructed as a pilot water supply system for the middle- to large-scale village.

A data base system for hydrology and hydrogeology was established and transferred to the Nigerian team for the aid of groundwater development planning and management.

Special attention was paid throughout the study period to the establishment of proper investigation methods for the so-called "difficult areas" such as the basement rock areas. The methods were summarized in a guideline and the investigation technology was transferred to the Nigerian team.

1-3-2 Organization of the Study

The organization of the Study is shown in the following organizational chart. The Study is carried out in a practical sense by the joint study team composed of the JICA team and the three Nigerian organizations (with in the doubled frames) shown in the following chart. The Nigirian team was coordinated by the zonal officer of the FDWR Sokoto.

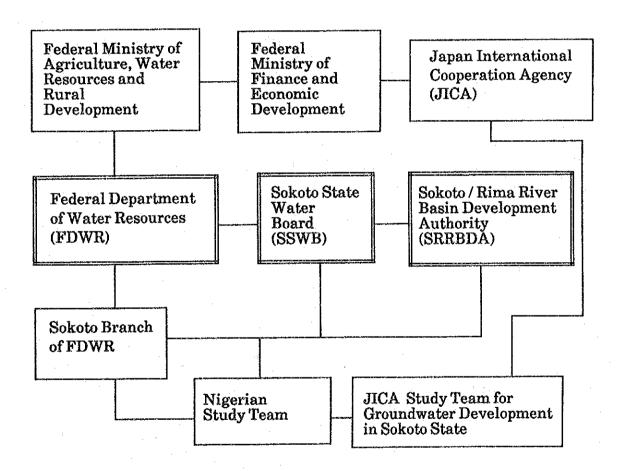


Figure 1-2 Organizational Chart for the Study

1-3-3 Staffing of the Study Teams

The JICA has organized a study team consisting of a team leader and nine (9) additional professionals and experts. The Nigerian agencies organized a study team to act as counterpart to the JICA Study Team, for smooth conduct of the Study and for effective technical transfer. The Study Team members are listed in Table 1-1.

Table 1-1 Member List of the Study Team

Speciality (Title)	Name	Qualification
Hydrogeologist	Akira Kamata	Doctor of Science
Team Leader		CE 3 (Hydrogeology)
Hydrogeologist	Atsuo Kanda	CE (Geology)
Co-Team Leader		
Geologist	Motoo Fujita	CE (Geology)
Survey Expert		
Hydrologist	Toichiro Maekawa	CE (Hydrogeology)
Water Balance Analyst		
Geophysicist (MT) ¹	Eiji Tanaka	CE (Geophysics)
Geophysicist (ERS) ²	Kunio Fujiwara	CE (Geophysics)
Geologist		
Geophysicist (ERS)	Kohmei Ozaki	•
Drilling Supervisor	Toyoharu Nakamura	
Water Supply Planner	Akira Naotsuka	CE (System Design)
	Ko Kawamura	CE (System Design)
Project Economist	Shigeru Kimura	Inf. Mgg. Eng. 4
	in Mathad	
1 MT : Magnetotellur2 ERS : Electrical Resi	stivity Sounding	

 $\divideontimes 4$ IME: Information Managing Engineer Certified by the Japanese Government

NIGERIAN STUDY TEAM Name Agency Speciality (Title) FDWR Sokoto Shamonda, J.A. Zonal Officer, FDWR Sokoto Oty, R.C. Hydrogeologist Ayuba, S.A. Hydrogeologist Olatinwo, O.M. Agricultural Engineer Oburo, Patrick FDWR Benin Senior Geophysicist Ochigbo, John FDWR Sokoto Hydrogeologist Owunna, Boniface C. SRRBDA Principal Hydrogeologist Buba, P.M. Hydrologist Ibrahim, U.U. **SSWB** Senior Hydrogeologist Hydrogeologist (NYSC) Sani, Moh'd Ezeh, Anselm Hydrogeologist Junaidu, Moh'd A. Hydrologist FDWR Sokoto Kende, Mohammed Assistant Engineer

Assistant Engineer

Emoikhare, Ojehomo

1-4 The Study Area

1-4-1 Natural conditions

(1) Location and topography

Sokoto State, the study area, is situated in the northwestern part of Nigeria, in latitude from 10 °N to 14 °N and in longitude from 4 °E to 7 °E, with an elevation ranging from 150m to 850m above sea level. Most of the area is generally flat with a gentle hilly area in its southeast. This hilly area is the north-western part of the North-Middle Plateau and has typical granite monadnocks (Inselberg). Most of the rivers in Sokoto State originate from this highland and flow to the northwest, west, and southwest.

(2) Climate and hydrology

Sokoto State belongs to the climate zone of typical continental tropics. The mean maximum temperature is about 45 °C (highest in April to June) and the mean minimum temperature is about 16 °C (highest in April and May, lowest in December and January).

Annual precipitation is very small in the northern part of the area (400mm), but has a tendency to increase up to 1000mm in a southern direction. Distinction between rainy and dry seasons is clear, that is, about 95% of precipitation is concentrated in a five-month rainy season from May to September. The mean monthly precipitation over the past ten years (between 1974 and 1983) in Sokoto City is shown below.

Table 1-2 Mean monthly precipitation in Sokoto City (mm)

Jan	Feb	Mar	Apr	May	Jun						Total
0	0	0	10			155	250	145	15	15	730

The major rivers in Sokoto State are the Rima River, which flows into the Niger River near the southwestern end of the state, and its branches, or major tributaries the Sokoto River, the Gawon Gulbi River, the Zamfara River, and the Gilbin Ka River.

River sections having water flow throughout the year are limited to the downstream portion of the Rima River. All length of other rivers either contain only river bed water or are dried up completely in the dry season. The flow rate of the Rima River varies extensively in correlation with the extremes of the seasonal precipitation cycle in the area. An example of approximate flow rate month by month is shown below:

Table 1-3 Flow rate of the Rima River at Argungu (m³/sec)

Jan	Feb	Mar	Apr			Jul	Aug	Sep			Dec
less	less	less	less	more	5	10	60		300	10	less
than	than	than	than	or less	•	•	•	iq	•		than
5	5	5	5	5	360	220	350	350	10	5	5

(3) Geology

The geology of Sokoto State is generally classified into the following three geological systems, from older to younger:

- Pre-cretaceous basement rocks: These are widely exposed in the southeastern part of the area and are composed mainly of older granite, undifferentiated metasediment and metamorphic rock.
 From the middle to western part of Sokoto, these basement rocks are overlain by sedimentary rocks.
- 2) Cretaceous sedimentary formations: The distribution of the Cretaceous system is a belt zone in the middle part of the area which runs from the northeast to southwest. This system consists of the Gundumi formation (clay and grit with pebble

beds), the Illo formation (pisolitic clay and grit), and the Rima group (sandstone and mudstone), in ascending order.

3) Tertiary sedimentary formations and younger sediments: The Tertiary system overlies the Cretaceous system in the northwestern area of Sokoto State, and consists of the Sokoto group (clay, shale, marl and clayey limestone) and the Gwandu formation (clays and grits) in ascending order. The total thickness of the system gradually increases from east to west from several meters up to about 270m.

Quaternary sediment partially covers the above three systems along the rivers with a width of from zero to several tens of kilometers and with a maximum thickness of about 30 m.

1-4-2 General social conditions

(1) Industry and economic basis

Sokoto State predominantly depends on an agricultural economy, with over 80% of its active population engaged in farming. The major agricultural establishment in the state is the Sokoto/Rima Valley Scheme of the Federal Government, which is expected to provide irrigation to a total area of about 28,000ha. The Gusau Agricultural Development Project, covering 3,800km² and involving not less than 86,000 small landholders was established jointly by the Federal and State Governments.

However, the majority of agriculture activity is conducted outside of these development project areas in small-scale, rainfed cultivated fields surrounding villages.

In addition to rain-fed cultivation, Sokoto State is characterized by the second largest concentration of livestock in Nigeria, particularly cattle, sheep and goats which number over two million.

No other industries of particular significance exist, although some small-scale manufacturing takes place. Major industrial development projects are still in the planning stages.

(2) Infrastructure

The main public roads are well constructed with asphalt pavement, and the maintenance is fairly good. However, most local roads bound for small villages are left unasphalted. Electrification is limited almost solely to the urban areas, that is, the major seats of local government and their vicinities.

(3) Water supply system

Since the areas where surface water utilization is possible are limited in Sokoto State, groundwater development is common everywhere to provide domestic water supply. Boreholes with energy pumps and gravity-type distribution systems have been increasingly constructed in the urban areas, while dug wells and tube wells with manual pumps are prevalent in the rural areas. In the southern part of the study area where the land consists of hard Pre-cretaceous rocks, however, digging of the wells by inhabitants is very difficult, so shortage of water for domestic use is particularly acute. The northern part of the study area, where sedimentary formation is widely distributed, also has the problem of shortage of drinking water, especially in the dry season, because existing dug wells have not been able to meet the demand of the rapidly growing population.

2. SOCIO ECONOMIC FRAMEWORK

2-1 General

Nigeria has continued to produce about 1.3 million barrels of oil a day over the recent years. This has covered 20 % of the Gross Domestic Product, 95 % of the export value, and 70 - 80 % of the fiscal revenue. Though Nigeria should invest capital acquired from oil producing in diversification and modernization of the economy, the oil stagnancy of the 80's decreased oil producing revenue sharply from 25 billion dollars in 1980 to 6.7 billion dollars in 1987. Thus diversification of the economy has not been achieved.

On June 27th 1986, the Structural Adjustment Program (SAP) was begun. The SAP was a policy aimed at not depending on oil and achieving diversification of production and sound finance and balance of payment. This policy has been practiced by the Second-Tier Foreign Exchange Market (SFEM) since September 1986 and by the Foreign Exchange Market (FEM) since July 1987, in the place of the SFEM, for the abolition of the export-import licensed system, placing it under private management with some public corporation, and for the estimation of tariffs.

The economic growth rate in 1986 declined to 2.1 % below the previous year's mark. But it recovered 1.2 % in 1987. This resulted due to the fact that foreign currency prevailed over domestic industry by the SFEM, and that the FEM made easier the procurement of natural resources and gained an operating rate of about 5 % above the previous year's mark.

On the other hand, the share of oil in the GDP decreased slowly from 15.6% and 15.0% in 1985 and 1986, to 13.5% in 1987, and the ratio of economic dependence on oil declining.

In agricultural sector, transaction in market have liberalized by the abolition of Agricultural Crops Transaction Conference. Thus, instead of whole agricultural depression on account of unseasonable weather, production of cashable crops gained a little.

Balance of payments indicates black at 160 million naira in 1987, because of austerity measure implementing continuously, depreciation of Naira with introduction of SFEM and FEM, reduction of payment by rescheduling and stability of oil price.

The government made efforts to stop inflation by SAP, but depression in agricultural production caused the rise in commodity prices. The government publicitated the growth rate in commodity price at 10.2 %, but the true rate is estimated at more than 40 %. Above all, the price of food rose about by 60 to 100%.

The government attempted to increase wages in order to cope with this rise in prices, but delay in delivery has happened on account of the scarcity in finance resources. In private sectors, recovery is foroging ahead, and it seems difficult to increase wages for inflation except financial institutions.

Unemployment rate in 1986 stands at 10.0 % in urban area and 4.0 % rural area. In 1987 they rose at 10.6 % and 4.9 % respectively. But this estimation was made by the government, so one view holds that it is estimated at about 30 to 40 % around Lagos state in the beginning of 1988.

It is concluded that SAP brought about recovery in economy and industrial activity accompanied with inflation, and that reduction in unemployment rate, depreciation in commodity price and sharp rise in GDP haven't accomplished. They will probably be done in the Fifth Economic Development Plan.

In order to establish the need for a groundwater project to be implemented with the support of foreign found the current socio-economic conditions of Nigeria and Sokoto State are treated in this section. It should be noted, however, that this is attempted with some difficulty, for available recent statistical data is limited to 1980 to 1985.

2-2 Federal

2-2-1 Population and Labor Force

The population of Nigeria is estimated by the Federal Government based on two factors. One is the annual growth rate of the population (4% for Lagos State, and 2.5% for other states). The other is the 1963 census. Accordingly, it is reported the projected mid-year population in 1986 was about 98 million persons. However, it is assumed that the growth rates mentioned above may be underestimated, meaning that the actual population was significantly higher. A periodic census is needed to enhance the effectiveness of implementing economic and social development plans.

From labor force information, unemployment rates of about 33 % were calculated between 1980 to 1985 using the population of age 15 and over and a total labor force. It would be better to use a labor force working population instead of a population of age 15 and over, but the values are still useful, considering the following:

- The percentage of the population of age 15 and over which is students is low
- · The percentage of the population of age 60 and over is low.

Considering the large uncounted labor force, employment conditions in Nigeria have not been good, and this situation continues even at present.

From a sector distribution of the labor force, it is clear that the agriculture sector had the largest share of the labor force, followed by the manufacturing, distribution (wholesale and retail), and service sectors. It is expected that the share of the labor force in the manufacturing sector will expand due to efforts by the Federal Government (Tables 2-1, 2).

2-2-2 Economics

(1) GNP and Its Components

The annual growth rate of the GNP between 1980 and 1985 is calculated as 5.7% in actual Naira and -3.9% in constant terms, and this trend is believed to continue. The GNP deflator is calculated at 9.9%. The change in each real GNP component is summarized as follows:

- Consumption : Public consumption grew 2.0 % annually Private consumption grew -1.6 % annually
- · Capital formation was reduced 14.6 % annually
- Exports were reduced 10.4 % annually
- Imports were reduced 18.2 % annually

Table 2-1 Population of States (in thousands)

STATE	1963	1980	1981	1982	1983	1984	1985	63-85
Anambra	3597	5456	5735	5735	5881	6029	6182	2.5%
Bauch	2431	3688	3781	3877	3975	4076	4179	2.5%
Bendel	2461	3733	3828	3924	4026	4126	4230	2.5%
Benue	2427	3682	3775	3870	3968	4069	4172	2.5%
Borno	2997	4547	4662	4780	4901	5027	5152	2.5%
Cross River	3478	5276	5410	5546	5687	5831	5978	2.5%
Gongola	2605	3952	4052	4155	4260	4368	4448	2.5%
Іпо	3673	5571	5712	5857	6005	6157	6313	2.5%
Kaduna	4098	6217	6374	6535	6701	6671	7044	2.5%
Kano	5775	8760	8982	9209	9442	9681	9926	2.5%
Kwara	1714	2601	2667	2734	2803	2874	2947	2.5%
Lagos	1444	2476	2559	2645	2734	2825	3434	4.0%
Niger	1195	1812	1858	1905	1953	2003	2053	2.5%
Ogun	1551	2353	2412	2473	2534	2600	2666	2.5%
Ondo	2730	4141	4246	4353	4463	4576	4692	2.5%
Oyo	5209	7901	8101	8306	8517	8732	8953	2.5%
Plateau	2027	3074	3152	3232	3314	3398	3484	2.5%
Rivers	1720	2609	2675	2743	2812	2883	2956	2.5%
Sokoto	4539	6885	7059	7238	7421	7609	7802	2.5%
Total	55671	84734	87040	89117	91397	93535	96611	2.5%

Source: National Population Bureau

Note: (1) 1963 estimates are derived from the census taken in that year. Subsequent years' figures are projections.

(2) Annual growth rates are shown.

Table2-2 Labor Force

	ı 				····		
·	1980	1981	1982	1983	1984	1985	80~85
Total Population (Millions)	84.4	86.6	88.8	911.0	93.3	95.7	2.5%
Age15 and Over (Millions)	48. 2	49.4	50. 6	51.9	53. 2	54.6	2, 5%
Total Labor Force (Millions)	32. 2	33. 2	34.0	34.9	35. 5	36. 1	2. 3%
Unemployment Rate (%)	33. 2	32. 8	32.8	32. 8	33. 3	33. 9	0.4%
Sector Distribution of Labor Force (%)							
Agriculture	60.0	59.5	59.0	58.3	58.0	57.8	
Mining and Quarrying	0.4	0.4	0.4	0.4	0.5	0.4	
Manufacturing and Processing	17.0	17.3	17.7	18.0	18.1	18.2	
Building and Construction	1.1	1.1	1.1	1.2	1.2	1.2	
Electricity, Gas and Water	0.2	0.2	0.2	0.2	0.2	0.2	
Distribution	15. 2	15. 4	15.5	15.7	15. 9	16.0	
Transport and Communication	0.6	0.6	0.6	0.6	0.6	0.6	
Services	5.5	5. 5	5. 5	5. 6	5. 6	5. 6	
Total	100.0	100.0	100.0	100.0	100.0	100.0	

Source:(1) National Population Commission

⁽²⁾ National Manpower Board-Federal Ministry of National Planning

The situation is understood to be: oil exports decrease --- capital formation decreases --- import of capital goods decreases.

The National Disposable Income indicates the following:

- The share of labor income (compensation to employees) to gross added value (national disposable income) was 22.7 - 28.5 % between 1980 and 1985. These shares are very small.
- · Depreciation (consumption of fixed capital) is extremely small.

What is needed to improve this situation is a more highly integrated economic structure (Tables 2-3, 4, 5).

(2) Price Conditions

The Consumer Price Index multiplied about 5 times from 1975 to 1985. It is believed that this inflation was caused by an inbalance in the supply and demand. Supply consists of domestic production and imports, and domestic production depends on capital stock like equipment and facilities. The reduction in oil revenue has brought about the decrease of both capital investment and the import of goods (Table 2-6).

(3) Production Indices

The IIP (Index of Industrial Production) in 1984 was about half of that of 1980. The IIP of the mining and quarrying sector decreased due to the world-wide reduction of demand for oil. The IIP of other sectors was lowered by the reduction of domestic demand (Table 2-7).

Table2-3 Gross National Products in Constant 1977/78 Naira (in millions)

	1980	1981	1982	1983	1984	1985	80-85
Consumption Pirvate Public		19525 16594 2931			17258 14412 2846		-1.1% -1.6% 2.0%
Gross Dom. Investment Fixed Capital Form. Changes in Stocks		10987 10555 432	8527 8247 280	6434 6195 239	4649 4453 196	4113 3881 232	-14.4% -14.6% -10.2%
Exports	12758	9781	7343	5756	6227	7349	-10.4%
Imports	8561	10471	7488	4521	2831	3127	-18.2%
Net Factor Income from Abroad	-884	-703	-827	- 532	-674	-821	-1.5%
Gross Nat. Products	31513	29119	28125	26506	24629	25738	-4-0%
GNP Deflator:77/78=100	157.9	179.6	186.7	207.6	241.4	253.5	9.9%
Consumption Private Public	61.0 52.8 8.2	67.0 57.6 10.0	63.1	73.1 62.3 10.8			
Gross Dom. Investment Fixed Capital Form. Changes in Stock	28.4 27.2 1.2	36.2	29.3				
Exports	40.5	33.6	26.1	21.7	25.3	28.6	
Imports	-27.2	-35.9	-26.6	-17.0	-11.5	-12.1	
Net Factor Income from Abroad	-2.7	-2.4	-2.9	-2.1	-2.8	-3.3	
Gross Nat. Products	100.0	100.0	100.0	100.0	100.0	100.0	

Source: Federal Office of Statistics
Note: Annual growth rates are shown.

Table2-4 Gross National Products in Unadjusted Naira (in millions)

	1980	1981	1982	1983	1984	1985	80~85
Consumption	36746	42330	44293	46810	49817	55326	8. 5%
Private	31695	36827	38789	41249	44210	49668	9.4%
Public	5051	5503	5504	5561	5607	5658	9.4%
Gross Dom, Investment	11431	15020	12451	9664	7304	6693	-10.2%
Fixed Capital Form.	10842	14346	12001	9273	6974	6290	-10.3%
Change in Stock	589	674	450	391	300	403	-7.3X
Exports	14307	11584	9542	8031	9425	12002	-3.5%
Imports	11636	15723	12439	8302	5749	7021	-9.6%
Net Factor Income	-1090	-910	-1335	-1167	-1352	-1747	
from Abroad				•			
Gross Nat. Product	49758	52301	52512	55036	59445	65253	5.6%
Consumption	73.8	80.9	84. 3	85.0	83.8	84.8	
Private	63.7	70.4	73.8	74.9	74.4	76. 1	
Public	10.1	10.5	. 10.5	10.1	9, 4	8. 7	
Gross Dom. Investment	23.0	28. 7	23. 7	17.5	12. 2	10. 2	
Fixed Capital Form.	21.8	27.4	22. 9	16.8	11.7	9.6	
Change in Stock	1. 2	1. 3	0.8	0, 7	0.5	0.6	
Exports	28.8	22. 2	18. 2	14.7	15. 9	18.5	
Imports	-23. 4	-30.1	-23. 7	-15. 1	-9, 6	-10.8	·
Net Factor Income	-2. 2	-1, 7	-2.5	-2. 1	-2.3	-2. 7	
from Abroad					1 -		
Gross Nat. Product	100.0	100.0	100.0	100.0	100.0	100.0	

Source: Federal Office of Statistics Note: Annual growth rates are shown

Table2-5 National Disposable Income and Its Appropriation (Million Naira)

	1980	1981	1982	1983	1984	1985	80~85
Compensation of Employees	11883	13789	15373	15275	15243	15188	5.0%
	(23.4)	(25.9)	(28.5)	(27, 2)	(25.1)	(22.7)	*.
			0.5004	00000	49910	10500	6.3%
Operating Surplus				38029			υ. ა <i>դ</i>
	(71.9)	(68.1)	(65.6)	(67.7)	(71, 3)	(74.0)	
Consumption of Fixed Capital	1192	1578	1320	1020	767	691	-10.3%
	(2.3)	(3.0)	(2.5)	(1.8)	(1.3)	(1.0)	
Indirect Taxes	1423	1887	2048	2136	1724	1790	4.7%
THORIEST TORROS	•		(3.8)	(3.8)	(2.8)	(2.7)	
Subsidies	-207	-290	-228	-257	-257	-257	4.4%
Javaracca				(0.5)			
					·-·· :		
National Disposable Income	50848	53212	53847	56204	60797	67000	5.7%
and its Appropriation	(100)	(100)	(100)	(100)	(100)	(100)	

Source: Federal Office of Statistics

Note : (1)Annual growth rates are shown.

(2)"()"shows percentage.

Table2-6 Composite Consumer Price Index

COMPONENT	1980	1981	1982	1983	1984	1985	80~85
All Items	205	248	267	328	458	484	18.7%
Accomodation, Fuel, and Light	170	173	180	240	270	258	8. 7%
Food	200	250	272	336	479	499	20.1%
Drinks	188	193	208	236	290	380	15. 1%
Tobacco and Cola	229	264	278	318	436	549	19.1%
Clothing	270	314	335	398	543	610	17.7%
H. H. Goods and Other Purchases	182	195	213	328	516	542	24.4%
Transport	197	202	224	271	316	357	12, 6%
Other Services	235	283	296	357	497	612	21.1%

Source: Federal Office of Statistics

Note :(1) Base Year 1975=100

(2) Annual growth rates are shown

Table2-7 Index Number of Nigeria Industrial Production

SECTOR	WEIGHTS	1980	1981	1982	1983	1984	80~84
Mining and Quarrying	630	94. 0	67.5	59. 2	56.9	61.7	-10.0%
Manufacturing (Large Scale)	111	207. 3	129. 0	108.6	137.7	121, 2	-12.5%
Manufacturing (Small Scale)	13	191.1	125. 1	101.6	128.9	113.8	-12.1%
Building and Construction	239	102. 2	107.1	89. 4	77. 3	56. 3	-13.8%
Electricity	7	139. 0	162.6	177.3	181. 1	187.8	7.8%
Overall Index	1000	110.2	95. 2	73.3	72. 5	68.6	-11.2%

Source: Federal Office of Statistics

Note :(1) Base year 1977/78=100

(2) Annual growth rates are shown

(4) Foreign Exchange Rate

The exchange rate, naira to dollar has fluctuated as follows.

Year	Rate (Naira/US\$)
Dec. 1983	0.7486
Dec. 1984	0.8083
Dec. 1985	0.9996
Dec. 1986	3.3168
Dec. 1987	4.1408
Apr. 1988	4.2928
Feb. 1989	7 - 8 (approx.)

Because of world-wide reduction in the demand for oil since 1980, the exchange rate has depreciated, first slowly up to 1985, and then steeply from 1986, as oil prices rapidly decreased. The SAP was introduced in order to decreased the dependency on oil, to achieve a diversification in production, and to balance trade. The SFEM was introduced to eradicate the variance between the official and unofficial markets. The First-Tier market was governmentally dictated, and the Second-Tier depended on demand. The SFEM brought about vigorous production activity and transformed the GNP growth rate from minus to plus by 1987. The SFEM was discontinued in July, 1987, because the difference in the markets had disappeared. The autonomous Exchange Market, a free market, is now in effect. But low oil prices still remain, however. The Nigerian economy has not seen smooth grown, and the exchange rate is still rapidly dropping.

2-2-3 Industries

The transition of real added values (GDP) produced by each industrial sector, from 1980 to 1985, shows the following:

- · Agriculture grew slightly.
- Oil, manufacturing, and construction were largely reduced.

Wholesale and retail trade were also reduced by the stagnation of the Nigerian economy.

Accordingly, the share of real added value in agriculture increased.

In order to study the industrial structure of Nigeria, an input-output table is needed. Because of the lack of statistical data, only an input-output table from 1973 is available. However, it is believed that this table is still useful since oil and agriculture are still leading industries. By share of outputs, Nigeria's leading industries are:

Sector	Share (%)
Agriculture, Livestock, Forestry,	
and Fishing	24.0
Distribution trade	17.8
Oil mining	13.7
Building and Construction	13.0

As the ratios of value added concerning these industries, with the exception of building and construction, were over 85 %, their economic effects were small. The import ratios of manufacturing sectors that have great effects were relatively high. For example, the import ratio of the fabricated metal sector was 55.2 %. This situation indicates that only foreign countries enjoyed the economic development occurring in Nigeria. Again, the integration of Nigeria's industrial structure is essential to the recovered health of its economy (Tables 2-8, 9, 10).

2-2-4 Foreign Trade

Oil has been Nigeria's major export, while machinery and transport equipment, manufactured goods, food, and chemicals have been major imports.

From 1980 to 1985, foreign trade shrank with the decrease in oil exports. However, considering the expected expansion of demand for oil and the increase of oil prices in the mid-1990's, foreign trade is expected to grow greatly in the near future (Tables 2-11, 12).

Table 2-8 Gross Domestic Product by Industry in 1977/78 Naira (in millions)

	1980	1981	1982	1983	1984	1985	80~85
Agriculture	6501	6113	7005	6792	6638	6947	1. 3%
Crops and Other	4944	4553	5387	50,77	4813	5017	0.3%
Livestock	1557	1560	1618	1714	1825	1930	4.4%
Mining and Quarrying	7437	5339	4680	4497	4874	5184	-7.0%
Petroleum	6754	4625	4086	3983	4500	4885	-6.0%
Other	682	713	594	513	374	299	-15.2%
Manufacturing	3485	2179	1828	2318	2041	2433	-7,0%
Electricity, Gas, and						÷	
Water	143	. 171	192	200	206	213	8.3%
Construction	3056	3204	2674	2312	1684	1347	-15, 1%
Transportation	1168	1399	1446	1080	811	689	-10.0%
Communication	58	61	60	57	57	56	-0.7%
Wholesale and Retail							
Trade	6317	6342	5642	4973	4559	5012	-4.5%
Housing	978		1056	793	793	1032	1.1%
Government Services	1678	2141		2127	2162	2140	5.0%
Other Services	720	920	1115			1101	8.9%
GDP at Factor Cost	31546	28899		26217		26158	
Net Indirect Taxes	850	923	978	820	458		14.0%
GDP at Market Prices	32397	1 4 A A A A A A A A A A A A A A A A A A	28952	27038	25303	26559	-3.9%
Agriculture	20.6	21. 2	25. 0	25. 9	26.7	26. 6	
Crops and Other	15.7	15.8	19.3	19.4	19.4		
Livestock	4.9	5. 4	5. 8	6.5	7.4	7.4	•
Mining and Quarrying	23. 6	18.5	16.7	17. 2	19.6	19.8	100
	1						
Petroleum	21.4	16: 0	14:6	15. 2	18. 1	18.7	
Petroleum Other	21.4	16. 0 2. 5	14.6 2.1	15. 2 2. 0	18. 1 1. 5	18. 7 1. 1	
Other	2.2	2. 5	2. 1	2.0	1.5	1. 1	
Other Manufacturing	4						
Other	2. 2	2. 5 7. 5	2. 1 6. 5	2. 0 8. 8	1. 5 8. 2	1. 1 9. 3	
Other Manufacturing Electricity, Gas, and Water	2. 2 11. 1 0. 5	2. 5 7. 5 0. 6	2. 1 6. 5 0. 7	2. 0 8. 8 0. 8	1. 5 8. 2 0. 8	1. 1 9. 3 0. 8	
Other Manufacturing Electricity, Gas, and Water Construction	2.2 11.1 0.5 9.7	2. 5 7. 5 0. 6 11. 1	2. 1 6. 5 0. 7 9. 6	2. 0 8. 8 0. 8 8. 8	1. 5 8. 2 0. 8 6. 8	1. 1 9. 3 0. 8 5. 2	
Other Manufacturing Electricity, Gas, and Water Construction Transportation	2.2 11.1 0.5 9.7 3.7	2. 5 7. 5 0. 6 11. 1 4. 8	2. 1 6. 5 0. 7 9. 6 5. 2	2. 0 8. 8 0. 8 8. 8 4. 1	1. 5 8. 2 0. 8 6. 8 3. 3	1. 1 9. 3 0. 8 5. 2 2. 6	
Other Manufacturing Electricity, Gas, and Water Construction Transportation Communication	2.2 11.1 0.5 9.7	2. 5 7. 5 0. 6 11. 1 4. 8	2. 1 6. 5 0. 7 9. 6	2. 0 8. 8 0. 8 8. 8	1. 5 8. 2 0. 8 6. 8	1. 1 9. 3 0. 8 5. 2	
Other Manufacturing Electricity, Gas, and Water Construction Transportation Communication Wholesale and Retail	2. 2 11. 1 0. 5 9. 7 3. 7 0. 2	2. 5 7. 5 0. 6 11. 1 4. 8 0. 2	2. 1 6. 5 0. 7 9. 6 5. 2 0. 2	2. 0 8. 8 0. 8 8. 8 4. 1 0. 2	1. 5 8. 2 0. 8 6. 8 3. 3 0. 2	1. 1 9. 3 0. 8 5. 2 2. 6 0. 2	
Other Manufacturing Electricity, Gas, and Water Construction Transportation Communication Wholesale and Retail Trade	2. 2 11. 1 0. 5 9. 7 3. 7 0. 2 20. 0	2. 5 7. 5 0. 6 11. 1 4. 8 0. 2 22. 0	2. 1 6. 5 0. 7 9. 6 5. 2 0. 2	2. 0 8. 8 0. 8 8. 8 4. 1 0. 2	1. 5 8. 2 0. 8 6. 8 3. 3 0. 2	1. 1 9. 3 0. 8 5. 2 2. 6 0. 2	
Other Manufacturing Electricity, Gas, and Water Construction Transportation Communication Wholesale and Retail Trade Housing	2. 2 11. 1 0. 5 9. 7 3. 7 0. 2 20. 0 3. 1	2. 5 7. 5 0. 6 11. 1 4. 8 0. 2 22. 0 3. 6	2. 1 6. 5 0. 7 9. 6 5. 2 0. 2 20. 2 3. 8	2. 0 8. 8 0. 8 8. 8 4. 1 0. 2 19. 0 3. 0	1. 5 8. 2 0. 8 6. 8 3. 3 0. 2 18. 4 3. 2	1. 1 9. 3 0. 8 5. 2 2. 6 0. 2 19. 2 4. 0	
Other Manufacturing Electricity, Gas, and Water Construction Transportation Communication Wholesale and Retail Trade	2. 2 11. 1 0. 5 9. 7 3. 7 0. 2 20. 0	2. 5 7. 5 0. 6 11. 1 4. 8 0. 2 22. 0	2. 1 6. 5 0. 7 9. 6 5. 2 0. 2	2. 0 8. 8 0. 8 8. 8 4. 1 0. 2	1. 5 8. 2 0. 8 6. 8 3. 3 0. 2	1. 1 9. 3 0. 8 5. 2 2. 6 0. 2	

Source: Federal Office of Statistics Note : Annual growth rates are shown

Table2-9 Gross Domestic Product by Industry in Unadjusted Naira (in millions)

	1980	1981.	1982	1983	1984	1985	80~85
Agriculture		12882			23072	24379	19.5%
Crops and Other	8140	10868	12110	14308	17541	18520	17.9%
Livestock	1870	2014	3089	4197	5530	4858	21.0%
Mining and Quarrying	15012	13330	11251	9923	11284	13026	-2.8%
Petroleum	14137	12442	10454	9201	10730	12583	-2.3%
Other	875	888	797	722	553	442	-12.8%
Manufacturing	5162	3400	2843	3802	3450	4216	-4.0%
Electricity, Gas and							
Water	244	309	386	402	391	395	10.1%
Construction	3671	4001	3604	3268	2494	1995	-11.5%
Transportation	1635	2009	2301	2079	1821	1796	1.9%
Communication	69	73	74	78	81	83	3.8%
Wholesale and Retail							
Trade	9617	10449	10463	10344	10548	12425	5.3%
Housing	1309	1398	1491	1498	1686	2486	13.7%
Government Services	2014	2569	2809	2911	2959	2928	7.8%
Other Services	883	1189	1502	1509	1541	1732	14.4%
GDP at Factor Cost	49632	51615	52027	54325	59330	65466	5. 7%
Net Indirect Taxes	1216	1597	1819	1879	1467	1533	4.7%
GDP at Market Prices	50848		53847	56204	60797	67000	5.7%
Agriculture	20, 2	25. 0	29. 2	34. 1	38. 9	37. 2	
Crops and Other	16.4	21. 1	23.3	26. 3	29.6	28.3	
Livestock	3.8	3.9	5.9	7.7	9.3	9.0	
Mining and Quarrying	30. 2	25.8	21.6	18.3	19.0	19.9	
Petroleum	28.5	24. 1	20.1	16.9	18.1	19.2	
Other	1.8	1.7	1.5	1:3	0.9	0.7	
Manufacturing	10.4	6.6	57	7.0	5.8	6.4	
Electricity, Gas and							
Water	0.5	0.6	0.7	0.7	0.7	0.6	
Construction	7.4	7.8	6.9	6.0	4.2	3.1	
Transportation	3.3	3.9	4.4	3.8	3. 1	2. 7	
Communication	0.1	0.1	0.1	0. 1	0.1	0.1	
Wholesale and Retail				-			
Trade	19.4	20.3	20.1	19.0	17.8	19.0	
Housing	2. 6	2. 7	2. 9	2.8	2.8	3.8	
Government Services	4.1	5.0	5.4	5. 4	5.0	4.5	
Other Services	1.8	2. 3	2. 9	2.8	2.6	2. 7	
GDP at Factor Cost	100.0	100, 0		100.0	100.0	100.0	

Source: Federal Office of Statistics Note : Annual Growth Rates are shown

Table 2-10 Input-Output Condition (1973)

	Ratio of Value Added(%)	Ratio of Imports(%)	Percentage of Total Output
Agriculture	92, 9	1.5	15.9
Livestock	98. 9	0. 2	3. 3
Forestry	98.9	-	1.5
Fishing	94.6	-	3, 3
Oil Mining	90.5	7.0	13, 7
Other Mining and Quarrying	66. 7	2. 1	2. 0
Food, Drink, Beverages, and Tobacco	47.1	9. 0	3. 8
Textiles, Apparel, and Leather Products	29. 2	6, 2	2. 2
Wood and Wood Products Including Furniture	46.0	12. 0	0.3
Paper and Paper Products, Printing and Publishing	42. 9	7. 2	0.7
Drugs and Chemicals	54.7	14.3	1.9
Rubber and Plastic Products	35. 6	24. 8	0.7
Basic Metal Products	23, 6	26. 1	1.5
Fabricated Metal Products, Machinery, and Equipment	31.8	55. 2	1.0
Other Manufacturing Products	54.0	4.8	0.7
Electricity and Water	65, 3	0, 5	0.5
Building and Construction	46, 1	15.7	13.0
Transport	65.3	11.6	4.7
Communication	64.3	2. 3	0.3
Distributive Trade	86.0	-	17. 8
Finance and Insurance	83. 9	2.4	1.1
Producers of Goverment Services	100.0	5. 3	4.5
Hotels and Catering	62. 7		0. 3
Professional Businesses and Other Services	67. 9	79. 7	0.6
Housing	87.4		4.9

Source: National Accounts of Nigeria

Table2-11 Exports by Commodity Sections
(Million Naira)

·.	19	1981	1982	1983	1984	1985	80~85
Food	221 (1. 6)	214	183	273 (3,5)	234	243 (2. 1)	2.0%
Beverages and Tobacco	-		_		· _	· New	
Inedible crude materials except fuels	43 (0, 3)	35 (0. 3)	25 (0. 3)	22 (0, 3)	15 (0. 2)	15 (0, 1)	-19.0%
Mineral Fuel, Lubricants and Related Materials	13330 (97. 5)	10687 (97. 1)	8929 (97. 1)	7303 (94. 5)	8685 (95. 2)	11335 (96. 7)	-3. 2%
Animal and Vegetable Oils and Fats	15 (0. 1)	6 (0.1)	(0)	(0)	(0)	(0)	-27.5%
Chemicals	(0)	2	_	-	(0)	1	
Manufactured Goods Classifies Chicifly by Materials	17 (0. 1)	23 (0. 2)	14 (0. 2)	(0, 1)	12 (0. 1)	6 (0, 1)	-18,8%
Nachinery and Transport Equipment	-			-	-		
Miscellaneous Manufactured Articles	_	-	.			-	-
Commodities and Trans- actions Not Clasified According to Kind	56 (0. 4)	39 (0. 4)	40 (0. 4)	124 (1. 6)	174	114	15. 3%
Total Exports	13682 (100)	11006 (100)	9193 (100)	7733 (100)	9124 (100)	11717 (100)	-3. 19

Source: Federal Of ce of Statistic Note :(1) Annual growth rates are shown. (2)*() "shows percentage.

Table2-12 Imports by Commodity Sections
(Million Naira)

	1980	1981	1982	1983	1984	1985 80~85
Food	1049	1820	1642	1296	843	940 -2.2%
	(12.8)	(14. 4)	(16. 3)	(19. 8)	(18. 8)	(17.0)
Beverages and Tobacco	12 (0, 1)	16 (0. 1)	16 (0. 2)	13 (0. 2)	10 (0. 2)	7 -10.2%
Inedible crude materials except fuels	164 (2. 0)	218 (1. 7)	207	204 (3. 1)	187	274 10.8% (5.0)
Mineral Fuel, Lubricants	118	151	115	52	52	47 -16.8%
and Related Waterials	(1. 4)	(1, 2)	(1:1)	(0.8)	(1, 2)	
Animal and Vegetable	96	128	151	105	101 (2, 3)	55 -10.5%
Dils and Fats	(1. 2)	(1.0)	(1, 5)	(1.6)		(1.0)
Chemicals	881	1220	981	713	656	868 -0.03%
	(10.7)	(9. 7)	(9. 7)	(10. 9)	(14. 6)	(15.7)
Manufactured Goods Classified Chieifly by Materials	1929 (23. 5)	2540 (20.1)	2137 (21. 2)	1477 (22. 5)	845 (18. 9)	
Machinery and Transport	0000	5548	4169	2365	1604	1892 -10.9%
Equipment		(44. 1)	(41. 1)	(36, 2)	(35, 8)	(34.1)
Miscellaneous Manufac-	589	947	642	316	171	176 -21.5%
tured Articles	(7, 2)	(17.5)	(6. 4)	(4. 8)	(3, 8)	(3.2)
Commodities and Trans- actions Not Clasified According to Kind	12 (0. 1)	25 (0. 2)	36 (0.4)	(0. 1)	11 (0, 2)	5 -16.1% (0.1)
Total Exports	8213	12613	10096	6550	4480	5527 -7.7%
	(100)	(100)	(100)	(100)	(100)	(100)

Source: Federal Office of Statistics

Note: (1) Annual growth rates are shown.

(2) "()" shows percentage.

2-2-5 Social Conditions

(1) Electricity Production

The production of electricity has grown favorably, but sales, as economic conditions have grown worse, have not. This sector will be especially important in integrating the industrial structure in the near future (Table 2-13).

(2) Health

The prevalent diseases found in Nigeria result in death rates that are significantly high. Insufficient medical equipment and the lack of doctors are key contributors to inadequate treatment, but prevention of disease is more directly related to a lack of sanitary drinking water (Table 2-14).

(3) Education

The percentage of children enrolled in primary school is fairly high, but the participation rate in secondary school and the number of students going on to higher education is low. Major expenditures will have to be made to expand education in support of the economy and the general welfare of the people (Table 2-15).

2-2-6 Finance

Since 1980, both the income and expenditures of the Federal Government have decreased with oil revenues. Accordingly, social development investment, including the development of water resources, has stagnated (Tables 2-16, 17).

2-2-7 Summary

• The low oil prices and the surplus of the world's oil supply in the 1980's brought Nigeria severe economic conditions: a reduction of real GNP, significant inflation and an inbalance in trade. This situation continues. Large investment is and will be needed to correct inadequate public and private capital.

Table2-13 Electricity Generation and Sales

Consumer Group	1980	1981	1982	1983	1984	80~84
Total Production (1,000 Kw)	6, 911, 765	7, 781, 828	8, 512, 302	8, 641, 183	8, 964, 269	6. 7%
SALES				÷		
Industrial/Commercial	2,500,249	2, 902, 984	2,897,501	2, 970, 666	2, 615, 910	1, 1%
Non-Factor Services	2,013,793	2,724,093	3, 018, 136	3, 135, 699	2, 857, 325	9.1%
Excess Production over Domestic Consumption (Unsold Power)	2, 397, 723	2, 154, 751	2, 596, 665	2, 534, 817	3,491,034	9.8%
(0.000,000,000,000,000,000,000,000,000,0	·					
Number of Residential Consumers	1, 105, 791	1,031,997	1, 156, 319	1,201,524	1,409,106	6.2%
Per Capital Residential	1.7	2. 6	2, 6	2. 6	2.0(1000KWH)
Percentage of Total						
Production to						
Industrial/Commercial	37.5	37.3	34.0	34. 4	29. 2	*.*
Residential	28.8	35. 0	35. 5	36.3	31.9	v
Unsold Generated Power	33.8	27.7	30.5	29. 3	38.9	

Source: National Electric Power Authority, NEPA and F.O.S.

Note : Indicates Number of Meters Installed in Consumer's Premises.

1984 Figures are Provisional.

Table2-14 Health Indicators

(Person)

DISEASES (CASÉS REPORTED)	1980	1981	1982	1983	1984	80~84
Malaria	1, 171, 071	1, 471, 561	1, 147, 518	1, 273, 090	1, 242, 882	1.5 %
Dysentery	234, 071	293.747	272, 079	251, 241	222, 879	-1.2%
Measles	142, 106	129, 671	139,785	136,778	188,591	7.3%
Pneumonia	88, 595	114.692	96, 364	99,070	101,455	3.4%
Gonorrhoea	65, 914	68, 087	56,731	53, 732	55, 139	-4.4%
Whooping Cough	48, 696	56, 913	77,830	70, 024	62, 75	6.5%
Chickenpox	19.161	26, 384	34, 573	41, 203	65, 932	36.2%
Filariasis	22, 561	27, 521	14,640	14.970	12,740	6 -13.3%
Schistosominsis	24, 550	41,662	40,028	41,889	36,710	10.6%
Tuberculosis	9, 694	10, 838	10,949	10, 212	. 10,67	2.4%

Source: Federal Ministry of Health

Table2-15 Education Enrollment

	1980	1981	1982	1983	1984	1985	80~85
1. PRIMARY SCHOOL							
Population in Primary Age Bracket (1000person)	13.632	15, 082	15. 467	15.862	16, 350	16, 684	4. 1%
Number of Primary Schools	35, 723	36, 626	37.611	37, 888	38. 211	**	1.4%
Total Enrollment in Primary Schools (1000person)	12, 117	13,777	14.397	14, 533	14, 387	14, 611	3. 8%
Primary Enrollment Ratio(%)	84	91	93	92	88	88	⊸.
2. SECONDARY EDUCATION -ALL PHASES							
Total Enrollment in Secondary Education (1000person)	1,864	2. 345	2, 880	3, 234	3, 402	-	12.8%
Participation Rate Per 10000 Pupils	226	277	321	358	329	-	-
3. POST-SECONDARY							
ÍNSTITUTIONS		1.7					
Polytechnics/Colleges of Technology		:			4	•	
Number of Institutions	23	. 24	27	29	29	29	4.7%
Total Enrollment	30466	46244	52373	61630	59585	_	14.4%
Number of Graduates	4574	7730		22738		_	37.8%
ATC'S/Colleges of							7 17 - 17
Education						•	
Number of Institutions	36	36	36	36	36	36	_
Total Enrollment	26792	26300	36667	38772	-	-	7, 7%
Number of Graduates	5329	7336	8308	12842	_	_	19.2%
Universities							
Number of Institutions	16	18	20	24	27	- 26	10.2%
Total Enrollment	57542	75921	89096	97407	113158	109228	13.7%
Number of Graduates	11610	12422	13020	15066	-		5.3%

Source: Federal Ministry of Education

Table2-16 Central Government Revenue

(Million Naira)

	1980	1981	1982	1983	80~85
Oil Revenue	12353	9267	7815	6786	-18, 1%
Profit Tax	8564	6326	4840	3747	-24, 1%
Rents and Royalties	3789	2942	2969	3040	-7.1%
Non-Oil Revenue	2878	3400	3934	4161	13.1%
Import Duties	1403	1749	1648	1115	-7.4%
Export Duties	-	-	_	-	231.7%
Excise Duties	406	577	688	869	28. 9X
Company and Other	597	522	762	1145	24.3%
Taxes	·	÷			
Non-Tax Revenue	472	552	836	1031	29. 7%
TOTAL CURRENT REVENUE	15231	12682	11749	10947	-10.4%
Allocation to State and Local Government	3095	4911	4258	4156	10.3%
Retained Federal Revenue	12136	7771	7490	6791	-17.6%

Source: Federal Republic of Nigeria Official Gazette

Table2-17 Central Government Expenditure

(Million Naira)

5975 727 1035 36 509 173 10 58 104 56 12 9 83	7065 368 1015 392 713 112 4 83 89 28	7358 1020 916 478 512 146 231 98 129 31	5624 1361 808 574 589 162 216 59 160	7873 1178 802 596 658 87 203 166	6976 838 1101 698 697 164 - 185 288	2. 93 1. 23 13. 83 6. 53 -1. 03 84. 93 26. 13 22. 63
1035 36 509 173 10 58 104 56	1015 392 713 112 4 83 89 28	916 478 512 146 231 98 129 31	808 574 589 162 216 59 160	802 596 658 87 - 203 166	1101 698 697 164 185 288	1. 25 13. 85 6. 55 -1. 05 84. 95 26. 15 22. 65
1035 36 509 173 10 58 104 56	1015 392 713 112 4 83 89 28	916 478 512 146 231 98 129 31	808 574 589 162 216 59 160	802 596 658 87 - 203 166	698 697 164 185 288	13. 83 6. 53 -1. 03 84. 93 26. 13 22. 63
36 509 173 10 58 104 56 12 9 83	392 713 112 4 83 89 28	478 512 146 231 98 129 31	574 589 162 216 59 160	596 658 87 - 203 166	698 697 164 185 288	6. 5) -1. 0) 84. 9) 26. 1) 22. 6)
509 173 10 58 104 56 12 9 83	713 112 4 83 89 28	512 146 231 98 129 31	589 162 216 59 160	658 87 203 166	164 - 185 288	-1. 0 84. 9 26. 1 22. 6
173 10 58 104 56 12 9 83	112 4 83 89 28	146 231 98 129 31	162 216 59 160	203 166 42	185 288	84. 9 26. 1 22. 6
10 58 104 56 12 9 83	4 83 89 28 8 9	231 98 129 31	216 59 160 38	203 166 42	185 288	26. 1 22. 6
58 104 56 12 9 83	83 89 28 8 9	98 129 31 8	59 160 38	166	288	22.6
104 56 12 9 83	89 28 8 9	129 31 8	160 38	166		
12 9 83	8 9	8			41	-6.0
9 83	9	=	^	_		
9 83	9		9	14	11	-2.5
83		9	10	22	21	18.6
	20	21	20	46	58	-7.0
40	53	15	13	-	-	-19.6
2793	4994	3855	1607	4061	2875	1.0
8089	5697	6423	5875	3812	7613	-1.2
485	115	86	126	112	137	-22. 4
	479	155	358	99	284	-17.0
	69	78	113	45	28	-17.9
	•	369	367	88	126	~29.0
		53	93	35	59	-20.
		169	434	156	171	-17.
333	422	116	142	25	653	14.
131	14	26	79	. 11	12	-37.
414	400	137	228	129	135	-20.
1119	540	659	210	- '	211	-28.
		780	700	82	168	-31.
2271	1179	677	766	248	204	-38.
15	13	43	46	28	28	13.
30	1072	3074	2214	2756	5397	282.
	40 2793 8089 485 723 76 729 188 443 333 131 414 1119 1132 2271	40 53 2793 4994 8089 5697 485 115 723 479 76 69 729 382 188 139 443 624 333 422 131 14 414 400 1119 540 1132 248 2271 1179 15 13	40 53 15 2793 4994 3855 8089 5697 6423 485 115 86 723 479 155 76 69 78 729 382 369 188 139 53 443 624 169 333 422 116 131 14 26 414 400 137 1119 540 659 1132 248 780 2271 1179 677 15 13 43	40 53 15 13 2793 4994 3855 1607 8089 5697 6423 5875 485 115 86 126 723 479 155 358 76 69 78 113 729 382 369 367 188 139 53 93 443 624 169 434 333 422 116 142 131 14 26 79 414 400 137 228 1119 540 659 210 1132 248 780 700 2271 1179 677 766 15 13 43 46 30 1072 3074 2214	40 53 15 13 - 2793 4994 3855 1607 4061 8089 5697 6423 5875 3812 485 115 86 126 112 723 479 155 358 99 76 69 78 113 45 729 382 369 367 88 188 139 53 93 35 443 624 169 434 156 333 422 116 142 25 131 14 26 79 11 414 400 137 228 129 1119 540 659 210 - 1132 248 780 700 82 2271 1179 677 766 248 15 13 43 46 28 30 1072 3074 2214 2756	40 53 15 13 - - 2793 4994 3855 1607 4061 2875 8089 5697 6423 5875 3812 7613 485 115 86 126 112 137 723 479 155 358 99 284 76 69 78 113 45 28 729 382 369 367 88 126 188 139 53 93 35 59 443 624 169 434 156 171 333 422 116 142 25 653 131 14 26 79 11 12 414 400 137 228 129 135 1119 540 659 210 - 211 1132 248 780 700 82 168 2271

Source: Federal Republic of Nigeria Official Gazette and Central Bank of Nigeria Note :(1)In Current Expenditure, Water Resources and Works are combined between 1981 and 1983 only.

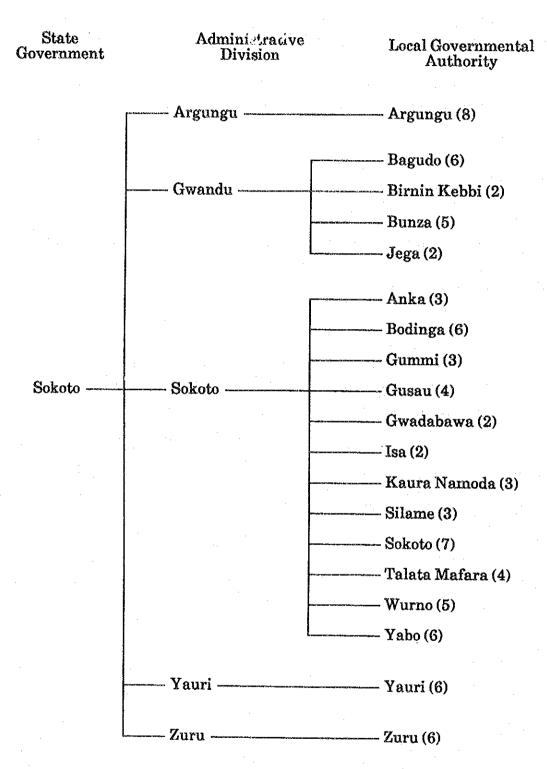
⁽²⁾ From 1984, Water Resources is merged with Ministry of Agriculture, Transport with Civil Aviation/Communication, and Works with Housing.

⁽³⁾Other Capital Expenditure — Rural Deveropment, Federal Capital Territory, National Loan Fund for Parastatals and Government owned-Companies.

- Therefore, social development programs, including those relating to water resources, have been delayed.
- However, the expectation of high oil prices, brought about by an increasing demand in the mid-1990's, promises that the Nigerian economy will show significant growth in the near future.

2-3 Sokoto State

2-3-1 Organization


Sokoto State consists of five administrative divisions and nineteen local governmental authorities. Eighty-three districts exist under these local governmental authorities (Figure 2-1).

2-3-2 Population

The population of each local government authority in 1963 and 1987 is shown in Table 2-18. A population growth rate of 2.5 % estimated by the Federal Government suggests that the population of Sokoto State is growing rapidly.

2-3-3 Price Conditions

The escalation of retail market prices in Sokoto City is shown in Table 2-19. This table indicates that inflation was a serious problem and is so even now.

Note: Figures in () show numbers of districts

Figure 2-1 C:vernmental Organization of Sokoto State

Table 2-18 Population of Sokoto State

(Unit: Persons)

Local Government		63 Figures		87 nation
Argungu	293,985		531,740	
B/Kebbi Bunza Jega Bagudo	183,413 190,723 193,404 165,150	Sub-Total 732,690	331,740 344,970 349,820 298,710	Sub-Total 1,325,240
Anka Bodinga Gwadavana Gummi Gusau Isa K/Namoda Silame Sokoto T/Mafara Wurno Yabo	120,099 212,561 397,874 163,254 374,300 258,491 299,938 191,943 312,821 284,389 320,990 256,360	Sub-Total 3,193,020	217,230 384,460 719,650 295,280 677,010 467,540 542,510 347,170 565,810 514,380 580,580 463,690	Sub-Total 5,775,310
Yauri	115,075		208,140	
Zuru	204,019		369,020	
Total	4,538,789		48,209,440	

Notes: 1987 population is projected at the rate of a 2.5 % rate of growth based on 1963 census figures.

Source: Papers prepared for Sokoto State Statistical Handbook 1987, Sokoto State Economic Planning Dept.

	Table 2-19	Escalation of Retail Market Prices in	tetail Mark	et Prices in	Sokoto City	Ÿ	(Unit: Naira)
Commodity	Description	Measure/	1976	1980	1986	Amn. Infl. Rate (%)	. Rate (%)
Commission	Trondrings	Quantity	Oct Dec.	Jul Sep.	Jul Sep.	76/80	98/08
Rice	White	Mudu	0.51	0.95	4.20	23.0	28.0
Rice	Brown	Mudu	0.44	1.23	3.69	29.0	20.1
Guinea Corn	Grain	Mudu	0.18	0:30	0.82	13.6	18.2
Millet	Grain	Mudu	0.17	0.30	0.79	15.3	17.5
Maize	Grain	Mudu	0.15	0.40	0.85	27.8	13.4
Wheat	Grain	Mudu	1	ı	2,32	ı	1
Ground-nut	Shelled	Mudu	ł	0.20	2.45	į	51.8
Yam	Tubers	5 Medium		7.00	9,53	ţ	5.3
Cassava (Gari)	Yellow	Mudu	0.30	0.50	red red	13.6	14.2
Banana	Ripe	Bunch of 10	İ	1.60	1,87	ı	2.6
Oranges	Ripe	5 Medium	ı	•	1,20	1	İ
Palm Oil	O:I	Large Beer B	0.45	1.00	2,50	22.1	16.5
Eggs	Agric	10 Eggs	0.50	1.00	3.43	18.9	22.8
Beef	Agric	1 Kilo	I	4.00	7.04	1	6.6
Sugar	St. Louis	1 Pkt	0.39	0.85	2.13	21.5	26.5
Salt	Cooking	1 Bag	ı	5.00	28.32	l	33.5
Soap	Lux	1 Cake	l	0.25	0.97	·	25.3
Tyres	175×14	One	in the second se		215.00	-	

Notes: Soap price, 0.25, is as of Jan. - Mar., 1980

Source: Quarterly Reports on Prices of Selected Commodities in Some Towns in Sokoto State Jan. - Mar., 1977; Jan. - Mar., Apr. - Jun., Jul. - Sep., 1980; Jul. - Sep., 1986

2-3-4 Budget

The state budget consists of two portions: the recurrent portion and the capital portion. The recurrent portion is comprised of working expenses, like personnel costs, overhead costs, and debt service payments composed of by interest, repayments and refunds. Statutory allocation and locally generated revenue are income sources for the recurrent portion.

The capital portion is comprised of expenses to promote public enterprise, such as agriculture, irrigation, power, roads, education, health, water supply, sewerage and drainage, housing, and son on. Grants from the Federal Government, domestic loans, foreign sources such as the World Bank, and some local funds are income sources for the capital portion (Figure 2-2).

Table 2-20 summarizes the state budget from 1981 to 1987. The actual recurrent portion, revenue and expenditure, from 1981 to 1985, is unknown due to a lack of statistics. This table reveals that:

- The capital portion is much too small in comparison with the recurrent portion.
- · No growth has taken place in the capital portion.

2-3-5 Summary

In summary:

- · Sokoto State's population is surely and rapidly growing.
- · Prices are increasing too.
- Capital expenditure is not growing at all due to the current recession in Nigeria.

Accordingly, Sokoto State needs to increase its capital, to be paid for promoting public enterprises, like water supply, from foreign countries, besides at low cost.

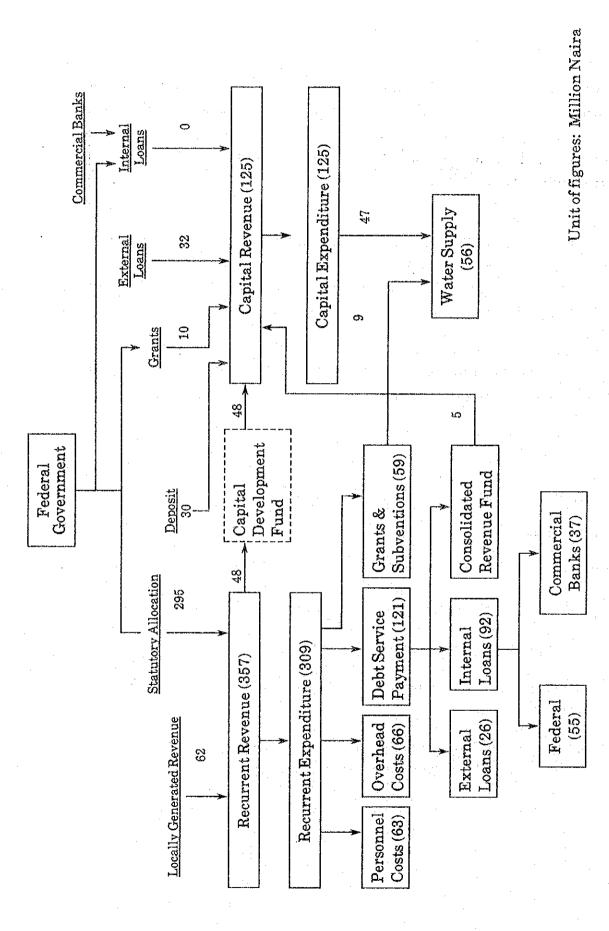


Figure 2-2 1987 Budget Estimate of the Government of Sokoto State

Table 2-20 Actual and Estimated Budget of Sokoto State Government 1981-1987

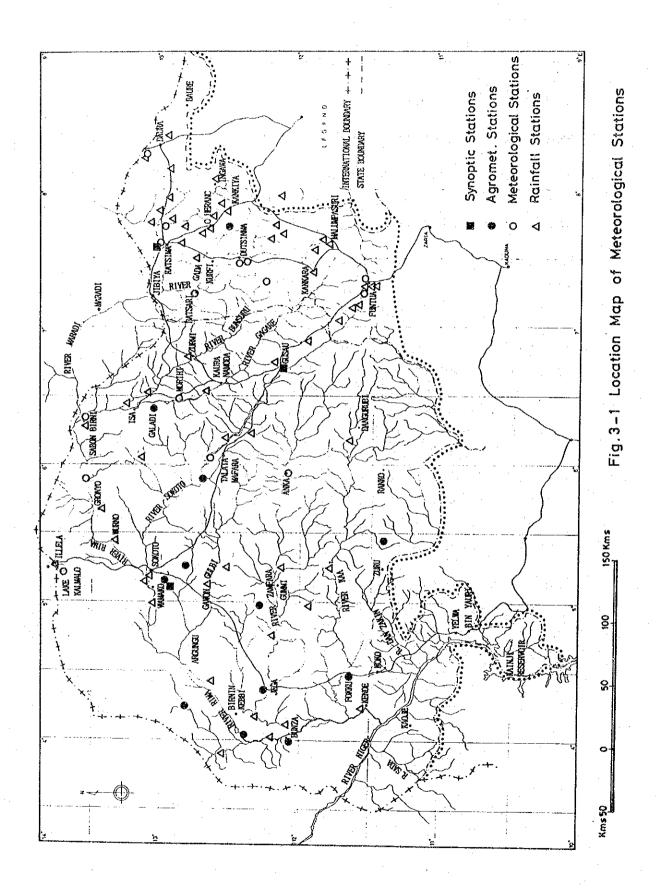
	-	•	,				
	Actual 1981	Actual 1982	Actual 1983	Actual 1984	Actual 1985	Revised 1986	Estimated 1987
Revenue: Recurrent Revenue Statutory Allocation Locally Generated Revenue Transfer from Reserves Transfer to Capital Dev. Fund Sub-Total Capital Budget Transfer from Consolidated Funds Internal Loans External Loans Grants Sub-Total	110 21 131 131 131	11111 0800081	11111 002220 1	0 6 4 6 5	20 20 65 121	23 25 310 310 25 25 433 433	29 62 30 48 125 434 434
Expenditure: Recurrent Expenditure Personal Costs Overhead Costs Debt Service Payments Grants & Subventions Sub-Total	1111	1111				59 53 119 80 311	63 66 59 309
Economic Sector Social Sector Regional Dev. Sector General Administration Sub-Total Total	15 8 33 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	72 21 118 116	22 23 106 1 1	9 30 90	101 101	464 CA 464 CA 464 46 6	23 25 25 25 25 25 25 25 25
				1			>

Note: (1) " - " means unknown

Source: Recurrent and Capital Estimates of The Government of Sokoto State, 1987

⁽²⁾ Water supply is included in regional development sector

3. HYDROLOGY


3-1 Conditions of Existing Monitoring Network and Related Data

3-1-1 Meteorological stations

Meteorological stations are classified into four types:

- 1. Synoptic meteorological stations operated by the Federal Department of Civil Aviation (FDCA), which have standardized and high quality data collected over long periods.
- 2. Agrometeorological stations generally operated by agencies involved in the agricultural sector such as the State Ministry of Agriculture (SMA) and the Sokoto-Rima River Basin Development Authority (SRRBDA).
- 3. Meteorological stations often operated by schools for educational purposes or by development agencies, such as the Sokoto State Water Boards (SSWB) or the SRRBDA, particularly in relation to water resource management.
- 4. Rainfall stations, where only precipitation is measured. They are often sited at schools and colleges. As precipitation has the greatest variation in time and space of all the meteorological variables, a great number of rain gauges were installed throughout the whole area. However, because of unsystematic management, data available are scant compared to the number of rain gauges installed.

The number of existing meteorological stations in the Sokoto-Rima basin is given in Table 3-1, and their locations are shown in Fig. 3-1. Specifications of synoptic, agrometeorological, and meteorological stations are given in Table 3-2.

3 – 2

Table 3-1 Number of Existing Meteorological Stations

Station Type	Number
Rainfall Stations	27
Meteorological Stations	12
Agrometeorological Stations	8
Synoptic Stations	3

3-1-2 Hydrological stations

There are more than 50 hydrological stations in the Sokoto-Rima basin (Fig. 3-2). However, discharge measurements have been carried out only at 18 stations. The distribution of discharge stations is shown schematically in Fig. 3-3. At the other stations, only gauge readings have been carried out. The conditions of the stations are generally poor. Many of them need to be rehabilitated.

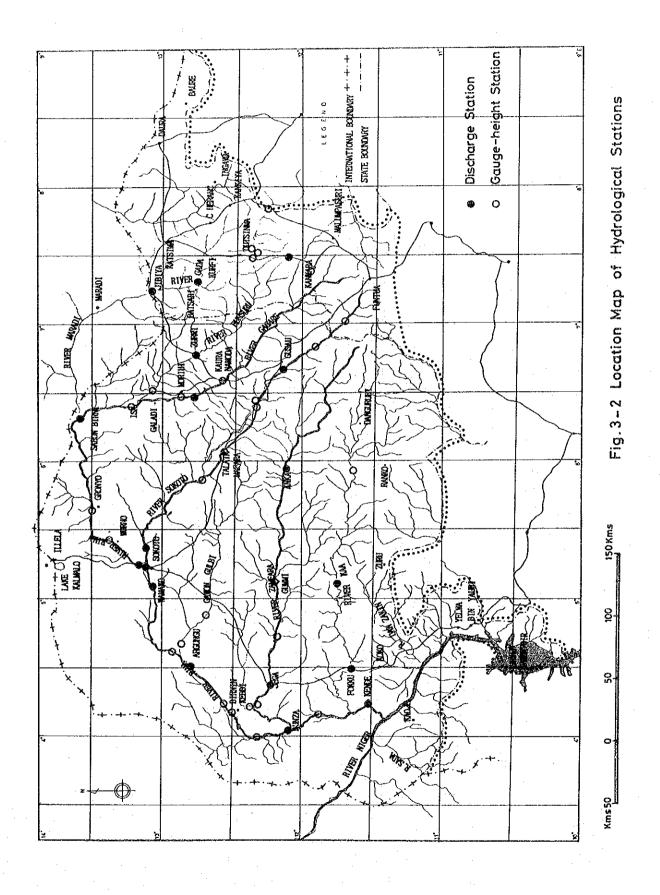
3-1-3 Data collection

Several existing reports and yearbooks were reviewed, and several relevant organizations were visited to collect meteorological and hydrological data on the Sokoto-Rima basin. Available data are summarized in Tables 3-3.

They have been entered into the data-base constructed by JICA study team for the project. For detailed explanation about the data-base, the reader can refer to Chapter 5.

3-2 Hydrological Climate

The most reliable and complete data is obviously that gathered at the synoptic stations: Sokoto, Gusau and Katsina Aerodromes. Besides this, data at Yelwa Station is considered reliable, because the station is operated by the Nigerian Meteorological Service (NMS). These four stations were chosen as the basis for discussing the general climate conditions of the area.


Specifications of Meteorological Stations Table 3-2

														٠.							~~			
	BECORD PONSHINE	0	0	0	0			0	0														O.	0
	BULB	0	0	0	0	0			·	0		0		0	0	0	0	0	0		0			0
E.	BOLB BULB	0	0	0	0	0				0		0	·	0	0	0	0	0	0		0			0
W I	HIN THERM	0	0	0	0	0				0		0		0	0	0	0	0	0		0	0	0	0
8 D	NAX THERM	0	0	0	0	0				0		0		O	0	0	0	0	0		0	0	0	0
d d I	EVAPO PAN	0		0	0		0	0	0		0		0		0	0	0	0	0		0		0	0
B 0.	AVNE MIND	0	0	0	0				0					0					0	0		0	0	0
32	AEMOMETER	0	0	0			0	0	0						0			0	0			0	0	0
-	BAINGAGE	0	0	0	0	0.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0
r		•		•	`	*			40.	``	`		25		•	•	,	`	•	` .	•	•	20%	29
	rongilnde	06 42	07.41'	05°15′	05° 53′	05.12	06°01′	07.30	06 25' 4	07. 45'	08.28		07"12'		07 45	07.18	08,17,	07,30	05.13	07*37'	07.14	08,50	05"53"	04°45'
\vdash		2			*		•			2	*		7		,		3		•	•		-	30.	•
	TATITUDE	12.10	13.01	12,55	12.40	12.57	12.40'	12.24	13 02 50"	12,32	12°53'		12,50		12.56	12, 15,	13,05,	12.25	13,43,	13.00	11°38′	13.43	13,30,3	10°53′
	PGENCY	7-4		F-4	03	63	4	ഹ	ഹ	ဖ	ъ	3	α,	æ	ø	60	∞	œ	2-	တ	2	11	4	7
	STATION NAME	GUSAU ARBODROME	XATSINA AERODOME	SOKOTO NEW AIRPORT	I. R. S. BAKURA	KASARAWA	BIRNI-TUDU	DUTSIN-MA(ZOBE DAM)	GALADI	KAPINSOLI	MORIXI	กมก2	BATSARI	F. G. G. C. BAKORI	AJIWA DAN	DAN MUSA	DAURA	DUTSIN-MA WATER WORKS	L. KALKALO	KATSINA T. C	MAIRUWA	SABON BIRNI J. P. S.	GORONYO DAN	YELKA
	Station Type	21	1 d o	gau	ļ	οŢ	Bol	010	əşəi	RLOB	₩ :						əi	gol.	0106	ate!	ı			

Abbreviation of Agency 1:Met. Service

2:Ahmadu Bello University 3:Ministry of Natural Resources 4:Impresit Bakolori 5:S.R.R.B.D.A. 6:Kaduna State Agric Dev. Project 7:F.D.W.R. / M.W.E.S.

9:Geography Master 10:K.S.W.B. / S.R.R.B.D.A. 11:School Master

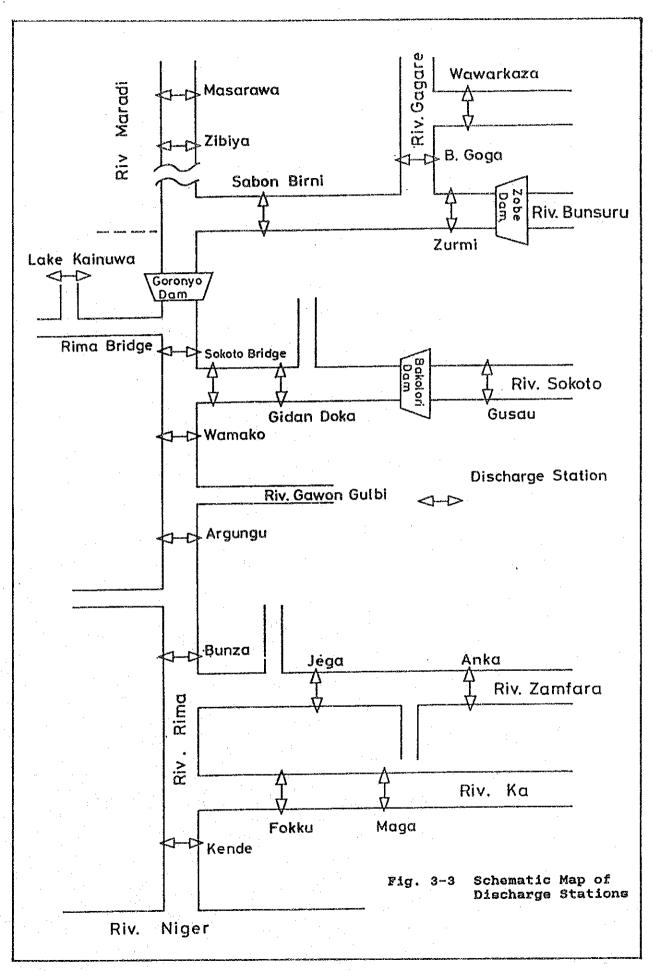


Table 3-3 (1) LIST OF METEOROLOGICAL AND HYDROLOGICAL DATA COLLECTED DURING THE STUDY

									-														•					* .												
																ת י						1974-1977									1973-1974 1976-1978									
								-			0.75	100	1973-1975		1066-1001	n T . * O n				1071-1071	A T = T /	1968-1970									1967-1969	•			1975-1980					
ILE						1977-1977	1968-196		1976-1	1972-197	1040-107	19751	1969~197		1067-106	198951)))))		971-197	1975-1975	0 0 7 1 0 0 0	1950-1966		٠.					.19	1976-1978	.13		1080-1060	0.7100	969-1972	73-1975		1973-1975		1975-1977
DATA AVAILABLE		1977-1986 1968-1987		0.000	19961	1968-19	1966-1	1973-19	1972-19	1965-196	Ţ	1953-1970	3-1		87 10 1 8 7 E	1954		1968-197	6.	1969-1971	100	1930~1944	. 1	1957-1961	1962-196	1966-1968		1975-1975	1980-196	1953	1953-195	1071-101	1969-1969	067-7067	1939-196	1967-19	1964-197	7	49-1	-196
PERIOD DA	79-19	5-197	79-19	1955-1987	21 - ES	50-19	9	-19	6		200	5	6.7			1947-1952		_	1951-1951	50-1	51-197	27-192	50-1	50-195	'n	I I		1	7	7	ī	1959-1976	֓֞֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜	, I	-	Ξ,		7 00	40.0	1963-1965
T STATION NAME				SOKOTO	BAKORI L A SCHOOL	ВАКИВА	BATAGARAWA JNR PRY SCHOOL	BATSARI ELE SCHOOL		BINDAWA JNR PRY SCHOOL	CHAFF	CHERANCHI ELE SCHOOL	DAN MUSA EDUCATION OFFICE	DANKAMA ELE SCHOOL DAHDAWA GOVT BARM	DAUDAWA INR PRY SCHOOL		DAURA. JNR PRY S	DAURA SNR PRY SCHOOL	DUTSI PRY SCHOOL	POISIN MA INE PRY SCHOOL	FUNTUA C A P GINNERY	FUNTUA JUR PRY SCHOOL	GADA	GALAL SOR PRY SCHOOL	GOBARAN: JNR PRY SCHOOL	GORONYO	GUSANI AFRONROMF	GUSAU. AGRIC	GWADABAWA	ILLELA	INGAWA ELE SCHOOL.	ISA PRY SCHOOL ISAGEBO ETE SCHOOL	TIBLYA INB DRY SCHOOL	;	KAFINSOLT AGRIC STATION	KAITZ ELE SCHOOL	KANKIVA BEN SCHOOL	KASARAWA	AERODROME	ANTONIA TRAINING COLLEGE
TINU	DAY DAY	DAY DAY	DAY	DAY A Y	W NO	MOM	MOM	NO E	Z (2 0 0	NON	NOW	NO.	N O	NO W	NOW	MOM	NOW :	200	Z Z	MON	Now	NO C	Z Z Z Z Z Z	N N	NOW				N O	NO.	Z Z O O X X	NO NO NO	MON	NON S	N O O	N O	WOW	NON NO	305
AITEM	2-				· : <u>·</u> :	<u></u>	ئے		_																			* .												
DATA	RAIN	RAIN	RAIN	RAIN	RAIN	RAIN	RAIN	KAIN	FAIS	N A S	RAIN	RAIN	HAIN	HAIN	RAIN	RAIN	RAIN	NAIN	NA AC	RAIN	RAIN	HAIN	KAIR	NAN	RAIN	X Z	NAIN N	RAIN	MAIN	RAIN	27.4	Z Z	PAIN	RAIN	FAIN	ZZZ	RAIN	RAIN	RAIN	

Table 3-3 (2) LIST OF METEOROLOGICAL AND HYDROLOGICAL DATA COLLECTED DURING THE STUDY

DATA ITEM	UNIT	STATION NAME	PERIOD DATA AVAILABLE
n a r M	NON	C C COMON VOLLAN	791-291 535-1983-1953-1953-197
21.40	2 2	AND MANAGED AND ACTIONS	761-1660 1662-1667 1665-1669 1673-167
2101	5 6	TO THE THE TOTAL CONTROL	0.5 10.0 10.0 10.0 10.0 10.0 10.0 10.0 1
KAIN	S	KIRA JNR DKY SCHOOL	08-1900 1902-1903 1907-197
RAIN	NON	KOTORKOSHI AGRIC	56-1956, 1970-1975
RAIN	NOW W	KURFI EDUCATION OFFICE	52-1962 1967-1967 1969-1972
RAIN.	MON	KUSADA ELE SCHOOL	50-1961 1963-1963 1965-19
RAIN	MON	KWARE	47-196
RAIN	MON	MAI INCHI	52-196
RAIN	NOM	MAIDUWA ELE SCHOOL	50-196
MAIN	MON	•	63-197
RAIN	NON	PRY	27-192
NIVE	NOW.		50-1969
HAIN	NOW	MARU T T C	52-1956 1960-1969 1971-1972
RAIN	MON	MASHI ELE SCHOOL	50-1955 1957-1957 1959
HAIN	MON	MATAZU JNR PRY SCHOOL	50-1965 1967-1969 1971-1974
RAIN.	WOW	MORIKI	27-1927 1930-1940 1953-1955 1957-1958 1961
RAIN	MON	MUSAWA L A SCHOOL	50-1958 1960-1963 1967-1970 1972-1973 1975-197
RAIN	MON	RAFINDADI SCHOOL	50-1955 1962-196
RAIN	MON	RIMI JUR PRY SCHOOL	50-1962 1964-196
RAIN	MON	SABON BIRNI	62-1972
RAIN	NON	SAFANA JNR PRY SCHOOL	50-1963 1966-196
RAIN	MON	SHINKAFE	58-1963 1966-197
RAIN	MON	SHINKAFE N T C	62-1967 1969
RAIN	MON	SOKOTO AERODROME	10-1948 1950-198
RAIN	NOM	AT GUSAU	61-1975
RAIN	NOM	SOKOTO FORESTRY DEPARTMENT	52-1966 1968-1981
RAIN	MON	UFF	52-1963 1965-196
RAIN	NO NO NO NO NO NO NO NO NO NO NO NO NO N		56-1964 1966-196
RAIN	NOX OX	TALATA MAFARA D'C,	53-1965 1967-197
RAIN	MON	TANGAZA	52-1963 1965-196
RAIN	NO NO N	TURETTA	51-1951 1953-196
RAIN	NO.	WURNO	57-1959 1964-196
HAIN	MON	YANDAKI JNR PRY SCHOOL	962 1964-196
RAIN	MON	YELWA	65-198
RAIN	NOM	ZANGO ELE SCHOOL	50-196
	÷		

Table 3-3 (3) LIST OF METEOROLOGICAL AND HYDROLOGICAL DATA COLLECTED DURING THE STUDY

		ı				
DATA LTEM	UNIT	STATION NAME		PERIOD DATA AVAILABLE		
MAX. TEMP	NOM	GORONYO DAM		1981-1983 1952-1985		
	NO.			941-1946 1949-1966 1968	1-1984	
MAX. TEMP	Z Z	SOKOTO		943-198		
	X O X	YELWA		943-196		
	NOE	GORONYO DAM		981-198		
MIN. TEMP	NOW	GUSAU		952-1985	9	
MIN. TEMP	2 2 2 2 2 2 2 2 2 2 2 2	NATOINA ATTEA		41 1 1 44 6 1 6 4 6 6 6 6 6 6 6 6 6 6 6	F061.	
	N N			943-198		
MIN. TEMP	MOM	YELWA		43-1966 1968-1978 1980	-1984	
EVAPORATION	DAY	KATSINA		969-197		
EVAPORATION	DAY	ZOBE DAM		85-198		
EVAPORATION	Z S	GORONYO DAM		81-1983		
EVAPORATION EVAPORATION	Z 20 0 2	GUSAU ZATETNA ATTWA		40		
EVAPORATION	Z Z			62-1978 19		
EVAPORATION	NOW	YELWA	:	0-1966 1958-1981 1983	-1984	
MAX. HUMID	NOE	GORONYO DAM	•	81-198		
MAX. HUMID	WON			978		
SIN. BORID	N S	GORONYO DAM		981-198		-
	Z Z			62-198		
	NOW	KATSINA		951-196		
	NOM	SOKOTO		966-1983 1987-198		
	MON	YELWA		51-1966 1968-19		
1500 HUMID	MON	KATSINA		51-1966 1968-198		
	NON	SOKOTO		-1980		
1500 HUMID	NOW	YELWA	٠	53-1		
	MON	GORONYO DAM		81-198		
MIN. FIND	MOM			1981-1983		
AVE. WIND	MON	KATSINA AJIWA		78-198		
SUNSHINE	NOW	GUSAU		82-1982 1985-1985		
SUNSHINE	Z Z O O Z Z	KAISINA YELWA	-	-1966 1971-1980 1983 -1966 1971-1979 1981	11985 11984	
					٠.	

Table 3-3 (4) LIST OF METEOROLOGICAL AND HYDROLOGICAL DATA COLLECTED DURING THE STUDY

B					1980-1983															
PERIOD DATA AVAILABLE	1977-1977	1969-1969	1968-1968	1968-1968	1972-1976 1978-1978 1980-1983	1985-1987	1972-1977 1979-1980	1972-1975	1968-1968	1962-1970	1962-1971	1968-1968	1978-1983	1964-1967	1962-1971	1969-1973 1975-1977	1984-1987	1978-1983	1968-1968	1068-1068
UNIT: STATION NAME	RIVER BUNSURU AT ZOBE	GADA AT		KA AT FC		RIVER KARADUWA AT ZOBE DAM	RIVER' MARADI AT JIBIYA	MARADI	Η:	RIVER RIMA AT SABON BIRNI	RIVER RIMA AT WAMAKO	RIVER SHELLA AT KALGO	SHINACH	RIVER SOKOTO AT BAKOLORI	RIVER SOKOTO AT GIDAN DOKA	RIVER SOKOTO AT GUSAU	RIVER SOROTO AT TALATA MAFARA	.35	RIVER ZAMFARA AT ANKA	RIVER ZAWWARA AT WALCO
UNIT	DAY	DAY	DAY	DAY	DAY	DAY	DAY	DAY	DAY	DAY	DAY	DAY	DAY	DAY	DAY	DAY	DAY	DAY	DAY	NAC.
DATA ITEM	DISCHARGE	DISCHARGE	DISCHARGE	DISCHARGE	DISCHARGE	DISCHARGE	DISCHARGE	DISCHARGE	DISCHARGE	DISCHARGE	DISCHARGE	DISCHARGE	DISCHARGE	DISCHARGE	D1 SCHARGE	DISCHARGE	DI SCHARGE.	DISCHARGE	DISCHARGE	DISCHARGE

3-2-1 Precipitation

Annual precipitation at Sokoto Aerodrome from 1955 to 1987 is given in Fig. 3-4 and Table 3-4. Average precipitation during the period was 632mm/year. The wettest year was 1965, when annual precipitation was 974mm. The driest year was 1987, with only 325mm of precipitation. A series of dry years lasted through the late sixties and early seventies after a series of wet years in the early sixties. A similar condition resumed from the late seventies into the eighties.

The monthly average precipitation from 1969 to 1987 from Sokoto, Yelwa, Katsina, and Gusau is given in Fig. 3-5 and Table 3-5. Each location has a very similar monthly change in precipitation. The driest place is Katsina, having 536mm. This great difference in annual precipitation (nearly 400mm) is probably caused by a regional change in climate conditions. Fig. 3-6 is an iso annual precipitation map drawn from average annual precipitations from 1953 to 1957.

3-2-2 Temperature

The average daily minimum and maximum temperature at Sokoto Aerodrome from 1955 to 1982 are given in Fig. 3-4 and Table 3-4. The average daily minimum and maximum temperatures throughout the period were 21.2°C and 34.8°C, respectively. Changes in the average daily maximum temperature are not seen over the course of time, though the average daily minimum temperature has been increasing slightly.

The average daily minimum and maximum temperatures by month, from 1952 to 1984, are given in Fig. 3-6 and Table 3-6, and in Fig.3-7 and Table 3-7, respectively.

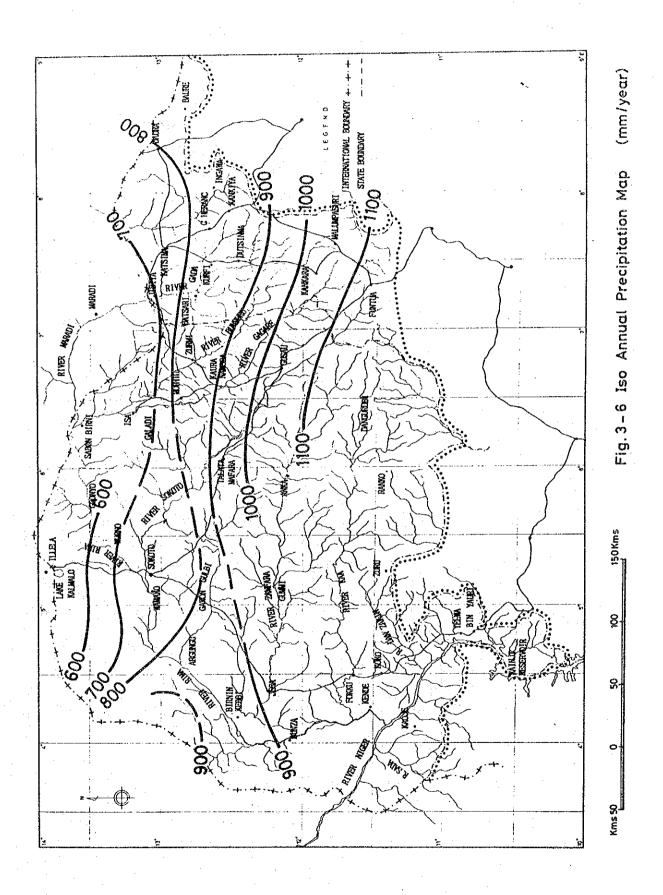
The maximum average daily temperature is the lowest in January, during the dry season, and August, the wettest month. The minimum average daily temperature, on the other hand, is the lowest only during the dry season. Changes of temperature at each station are quite similar. The hottest area is around Sokoto, which has average minimum temperature of 21.1°C and 34.8°C respectively. The coolest place is Katsina, which has average minimum and maximum temperature of 19.3°C and 33.3°C respectively.

TABELS-4 METEOROLOGICAL DATA FROM SOKOTO

	*	UNIT:mm/ye	ar °C
	PREP.	TEMP MAX	TEMP MIN
1955	708.9	33.4	20.1
1956	707.4	34.7	20.7
1957	880.6	34.3	20.3
1958	887.7	35.0	20.7
1959	561.1	35.0	20.6
1960	894.8	34.6	20.7
1961	640-6	34.0	20.0
1962	672.1	35.2	21.5
1963	792.5	35.5	21.5
1964	729.2	34.9	20.7
1965	973.6	34.8	20.2
1966	648.2		1
1967	586.7	34.3	20.9
1968	488.7	35.0	20.5
1969	629.9	35.4	22.0
1970	629.4		20.7
1971	483.6	35.2	21.3
1972	547.6	35.3	21.8
1973	388 1	36.2	22.6
1974	472.9		21.7
1975	558.3	34.5	21.3
1976	850.4	34.7	21.6
1977	812.0	34.7	21.0
1978	712.6	34.7	21.7
1979	595.6	35.3	21.5
1980	557.5	35.1	21.7
1981	556.9	34.0	21.7
1982	568.8	34.3	
1983	620.7		:.
1984	466.8		
1985	434.8		
1986	475.8	·	
1987	324.5		

TABEL 3-5 AVERAGE MONTHLY PRECIPITATION (1969-1987)
(UNIT:mm)

				(UNITEMM
	SOKOTO	YELWA	KATSINA	GUSAU
1	0	0	0	0
2	0	0	0	0
3	2	14	1	3
4	3	30	2	21
5	35	90	27	72
6	76	127	63	109
7	155	205	161	. 196
8	191	229	186	240
9	85	175	87	168
10	14	44	9	21
11	0	1	0	0
12	- 0	. 0	. 0	0
TOTAL	561	915	536	830


TABEL 3-6 AVERAGE DAILY MAXIMUM TEMPERATURE (1952-1984)

				(UNIT: C
	SOKOTO	YELWA	KATSINA	GUSAU
1	32.4	35.1	29.1	31.6
2	35.5	37.3	32.7	34.7
3	38.6	38.6	36.3	37.7
4	40.1	37.9	38.7	38.6
5	38.4	34.9	37.6	36.3
6	35.6	32.5	35.2	33.1
7	32.1	30.4	31.4	30.3
8	30.5	29.8	29.9	29.3
9	32.3	30.7	31.9	31.1
10	35.1	33.0	34.5	33.8
11	34.6	35.9	32.7	34.0
12	32.8	35.2	30.3	32.2
AVERAGE	34.8	34.2	33.3	33.6

TABEL 3-7 AVERAGE DAILY MINIHUM TEMPERATURE (1952-1984)

	1. 1. 1. 1. 1. 1. 1. 1.		<u> </u>	(UNIT: *C
	SOKOTO	YELWA	KATSINA	GUSAU
1	15.7	15.7	12.1	14.4
2	18.0	19.0	14.9	16.9
3	21.9	23.8	19.4	20.7
4	25.5	26.3	23.5	23.8
5	26.1	25.3	24.8	23.8
6	24.3	23.5	23.2	22.0
7	22.6	22.9	21.6	21.1
8	22.0	22.5	20.9	20.8
9	22.1	22.2	21.3	20.4
10	21.7	21.9	19.8	19.0
11	18.4	17.2	15.5	15.2
12	15.9	14.6	14.6	14.1
AVERAGE	21.1	21.2	19.3	19.4

Fig. 3-5 Average Monthly Precipitation (1969 - 1987) SECTION SECTIO 3-8 Average Daily Minimum Temperature (1952 - 1984) 出て出るに MONTE Fig. TEMPERATURE (C) PRECIPITATION (mm) O-DAILY MAININ TEP O-DAILY MINIM TEP 3-7 Average Daily Maximum Temperature (1952 - 1984) Fig. 3-4 Meteorological Data from Sokoto TEMPERATURE (C) HONTH Fig. ANNUAL PRECIPITATION (sm) TEMPERATURE (C)

3-2-3 Evaporation

The annual total evaporation at Katsina, Gusau, Sokoto, and Yelwa are given in Table 3-8 and Fig. 3-9. Potential evapotranspiration calculated by the Thornthwaite empirical formula and annual precipitation at each station are shown in the Table. Evaporation and potential evapotranspiration are both sometimes greater than precipitation observed at the same point. Although they do not represent an actual volume of water withdrawn as evapotranspiration, it appears that most of the water supplied by precipitation is lost to evapotranspiration.

3-3 Discharge Observation

Discharge observation at some hydrological stations was carried out monthly.

The purpose of discharge observation is to determine river flow at hydrologically important points along the main river. River flow is the basic data in investigating the feature of water balance, especially in regards to circulation between shallow groundwater and surface water. River flow is known directly from the results of observation. It can also be determined from the water level recorded by a gauge reader by using a rating curve. All of the points selected for discharge observation have had published rating curves.

However, the curves are not adequate for application to recent river conditions, because significant changes of river bed morphology caused by high annual sedimentation are believed to have taken place after the establishment of the curves.

New rating curves will be established after gathering sufficient discharge data.

3-3-1 Field measurements

Four discharge stations were chosen as observation points.

- 1. Kainuwa at Lake Kainuwa
- 2. Argungu on the Rima River

f		-T																									
^		ر					. 1	979.0	73			48			28	811.	77.	4	72.	64.	800	74.	82.	896.	m	584.0	m m
FORMULA)	MET. STA	Ω	1737.9	672.	712.	733.	(C)	730.				1735.7		670.	741.	805.	1679.9	663.	704	736	733.		812.	1783.7	730.		1728.9
(THORNTHWAITE	YELWA	¥	2682.0	710.	887.	872.	844.	934					3163.5	310.			3627.3			2800.9	156.		2918.3			ď	O)
r i on		ပ	873.0	41	77.	60	50.	74.		586.0	×2		32.	853 53	47.	89.	73	57	70.	12.	88	0	57.	56.	88		41
_ EVAPOTRANSPIRAT EVAPOTRANSPIRAT! (EAR)	Α 0	В	1689.6	069	773.	770.	694.	99		673.	1747.9	810.		726.	790.	1870.9		706.	1767.5	688.	761.	775.	782.	751.			1738.7
ξĘΣ.	SOKOT	◂	960.	5195.9	939.	91.	88.	39.	33	20.	71.	38	46.	34.	14.	61.	4172.3	ις)	ິດ	89	72	Ą.	63	02.	13	4980.0	4374.8
AND POTENT : MIC UNIT : MI		ບ	908.0	51.			66	26.	47	7	15.	38.	ဗ္ဗ	09,	41.	22	852.0	66.	S	66.	013.	05.	96.	87.	N	Ġ	880.8
EVAPORATION PORATION CIPITATION	U AERODROME	Ф	549.	1455.2	547.	585.	522.	512.		5	573.	573	546.	521.	633.	692	1533.2			533.	1548.6		608.	555.	553	1485.6	553
ANNUAL EVAP A: EVAPORAT C: PRECIPIT	GUSAU		828.	89	708.	584.	820.	043.	38	064.	731.	973.	309	220.	068.	2	22.5	921.	035	946.	332.	992.	270.	675.	3848.4	977.	3792.8
ω	ROME	U	05.	771.0	, do	83	ເດ	က က	۶ ۱.			50.	72.	89	~	7.2	30	, in	8	97	27.	::	73	50	98	C	624.4
Tab. 3-	INA AERODROM		481.		513	549	452	470.				571.	468.	444	561	616	478	533.	599.	521.	543.	606.	590.	538.	586.	593.	1526.1
	KATS	∢	341.	727.	333	55.55	385	420.	S 50	730	342.	524.	823	972	489	51.5	531	307	333.	333	349.	373.	670.	322	525	677.	4414.9
		YEAR	8	96	96	96	ဗ	96	96	9	96	96	97	9.7	6	σ	, O	0	9	6	6	9	8	9	60	Ç	AVER