#### 2-4 DIGITAL COMPUTER TECHNIQUES FOR GLOW PROBLEMS

There are four broad classes of groundwater models which are (1) physical, (2) analog, (3) analytycal formula, (4) numerical, which include the finite difference and the finite element. The first two models are not presently favored. Analytical formulas are widely used for flow problems. They require only paper, pencil, and tables of well function, due to idealized aquifer and boundary conditions. With the aid of a pocket-computer, they can be applied to wide areas.

In more compex hydrogeological conditions, numerical models must be used to avoid inaccuracy. There are many numerical techniques which include the finite difference (FD) and the finite element (FE). They only differ from one another in the way the differential equations are approximated and solved with a digital computer. Comparision between the FD and the FE is shown in Table 2-1. Each technique has its advantages and disadvantages.

#### 2-4-1 FINITE DIFFERENCE METHOD

(1) Governing Equation

The partial differential equation which governs the non-steady state twodimensional flow of groundwater in an artesian nonhomogeneous and isotropic aquifer, can be stated as follows:

$$\frac{\partial}{\partial x} \left( T \frac{\partial h}{\partial x} \right) + \frac{\partial}{\partial y} \left( T \frac{\partial h}{\partial y} \right) = S \frac{\partial h}{\partial t} + W \qquad (21)$$

where,

T: transmissivity  $(L^2T^{-1})$ 

S: storativity (dimensionless)

h: artesian head (L)

x,y: cartesian coordinates (L)

w:source or sink (L T-1)

t: time(T)

2 - 2 1

| Attribute           | FD                                                                      | FE                                                                                |
|---------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| 1 Code Availability | Excellent                                                               | > Good                                                                            |
| 2 Convenience       | Mesh generation<br>relatively automatic<br>data handling can be<br>easy | > by hand or<br>automatic                                                         |
| 3 Accuracy          | Mesh design roughly<br>approximates<br>boundary and<br>location of well | < Mesh can follow<br>boundary condition,<br>observation well, and<br>pumping well |
| 4 Flexibility       | Easier to modify                                                        | > not easy                                                                        |
| 5 Code Efficency    | Usually in-core                                                         | <pre>&gt; in-core or out-core</pre>                                               |

 Table 2-1
 Comparison between FD and FE

(2) Finite Difference Approximation

In the finite difference technique, space and time variables are treated as discrete parameters. Firstly, the aquifer investigated is subdivided into rectangular blocks by the grid system. These blocks have volume  $\Delta x \ \Delta ym$  where "m" is the thickness of the aquifer. (Figure 2-8)

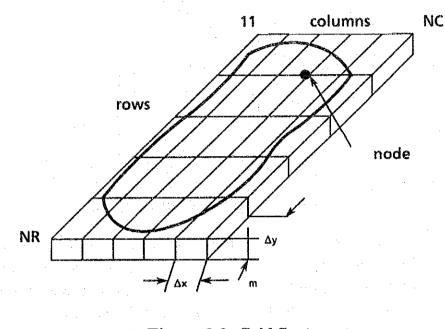



Figure 2-8 Grid System

2 - 2 3

The differentials  $\partial x$  and  $\partial y$  are approximated by the finite lengths  $\Delta x$  and  $\Delta y$ , respectively. The area  $\Delta x$  and  $\Delta y$  should be small compared with the total area of the aquifer, so that the discrete model reasonable represents the continuous aquifer.

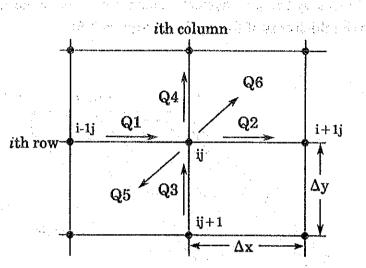


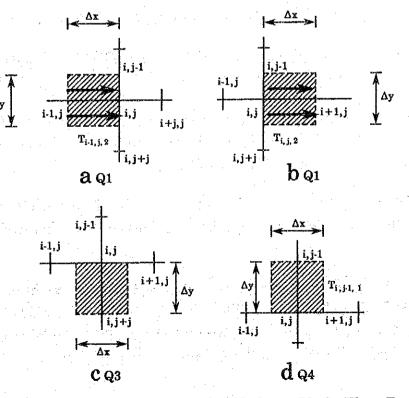

Figure 2-9 Finite Difference Grid

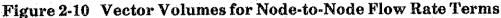
The groundwater flow in the aquifer is approximated by the flow between nodes. Flow rate terms Q1, Q2, Q3, . . . Q6 are arbitrarily assigned flow directions as illustrated in Figure 2-9. Q1, Q2, Q3 and Q4 represent node-to-node water transfer rates. Q5 is the flow rate associated with the amount of water taken into or released from storage per unit time increment  $\Delta t$ . Q6 is defined as a net withdrawal rate and represents source or sink term W of Eq. (11). The conservation of mass requires that the flow rates entering and leaving the node ij are equal as follows:

Q1 + Q3 = Q2 + Q4 + Q5 + Q6(22)

Determining the values of the flow rate terms of Eq. (22) involves three considerations. First, it is necessary to define what portion of the aquifer is represented by each individual term. Secondly, it must be kept in mind that, although the flow rates may take place in any direction in the aquifer system, they are restricted to the x and y directions in the finite difference approach. The portions of the aquifer included in the flow rate terms then may be referred to as 'vector volumes' to emphasize that not only a volume but also the direction of flow is being considered. Finally, since time is discretized, Eq. (22) represents an instantaneous balance at the end of a time increment.

#### (3) Derivation of Approximate Equation


Horizontal projections of the vector volume of the node-to-node flow rate terms, Q1, Q2, Q3 and Q4, are defined as illustrated in Figure-11. All Vector volumes of Figure-12 have a vertical dimension extending the full depth of the aquifer, m. Furthermore, the portion of aquifer involved with each of these flow rate terms extends in width one-half of the grid interval of either side of the line between node points, and is equal in length to the grid interval. Darcy's Law is then applied to the flow rate terms, Q1 through Q4, to give


| $Q1 = T_{i-1,j,2} (h_{i-1,j,-h_{i,j}}) \Delta y / \Delta x$  | (23a) |
|--------------------------------------------------------------|-------|
| $Q2 = T_{i,j,2}(h_{i,j}-h_{i+1,j}) \Delta y / \Delta x$      | (23b) |
| $Q3 = T_{i,j,1} (h_{i,j+1} - h_{i,j}) \Delta x / \Delta y$   | (23c) |
| $Q4 = T_{i,j-1,1} (h_{i,j} - h_{i,j-1}) \Delta x / \Delta y$ | (23d) |



T<sub>i,j,1</sub>: aquifer transmissivity within the vector volume between nodes i, j, and i, j+1 (see Figures 2-10c and d)

- T<sub>i,j,2</sub>: aquifer transmissivity within the vector volume between nodes i, j, and i+1, j (see Figure 2-10a and b)
- h<sub>i,j</sub> : calculated heads at the end of a time increment measured from an arbitrary reference level at node i, j





Horizontal projections of the vector volumes of the flow terms Q5 and Q6, extend the full depth of the aquifer and have horizontal dimensions of  $\Delta x$  and  $\Delta y$ , the volumes being centered around the node point i, j.

The flow rate terms Q5, representing the rate at which water is taken into storage, is given by

$$Q5 = S \Delta x \Delta y (h_{i,i} h_{i,i}) / \Delta t$$
(24)

where,

h0<sub>i,j</sub>: calculated head at node i, j at the end of the previous time increment  $\Delta t$ 

 $\Delta t$ : time increment elapsed since last calculation of heads

The flow rate term Q6 is made equal to a net withdrawal rate from the vector volume of node i, j of Figure-11 as follows,

Q6=Q1,j

(25)

Substitution of Equations (23), (24) and (25) into Equation (22) results in

 $T_{i-1, j, 2}(h_{i-1, j} - h_{i, j}) \Delta y / \Delta x + T_{i, j, 1}(h_{i, j+1} - h_{i, j}) \Delta x / \Delta y = T_{i, j, 2}(h_{i, j} - h_{i+1, j}) \Delta y / \Delta x + T_{i, j-1, 1}(h_{i, j} - h_{i, j-1}) \Delta x / \Delta y + S \Delta x \Delta y (h_{i, j} - h_{i, j}) / \Delta t + Q_{i, j}$ 

Dividing both sides of Equation (26) by the product of  $\Delta x \Delta y$ , yields

 $T_{i-1,j,2}(h_{i-1,j}-h_{i,j}) / \Delta x^{2} + T_{i,j,2}(h_{i+1,j}-h_{i,j}) / \Delta x^{2} + T_{i,j,1}(h_{i,j+1}-h_{i,j}) / \Delta y^{2} + T_{i,j-1,1}(h_{i,j-1}-h_{i,j}) / \Delta y^{2} = S(h_{i,j}-h_{0,j}) / \Delta t + Q_{i,j} / \Delta x \Delta y$ (27)

Equation (27) is the finite difference form of the partial differential equation (see Equation (21)) governing the nonsteady state, two-dimensional flow of groundwater in an artesian, nonhomogeneous aquifer.

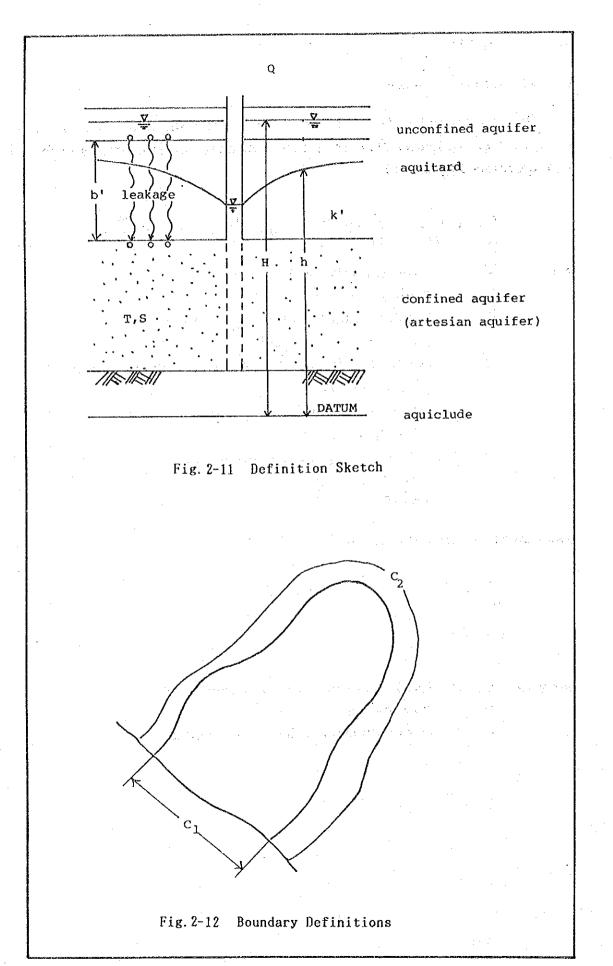
Since an equation of the same form as Equation (27), is constructed for every node, a set of simultaneous equations should be solved for the principle unknown  $h_{i,j}$ .

The way of deriving the finite difference equation shown here, is based on physical standpoint involving Darcy's Law and the Principle of Conservation of Mass, which was given by Prickett and Lonnquist (1971). Remson et al. (1971) give rather complete mathematical derivations of finite difference equations.

in the first state of the

## 2-4-2 FINITE ELEMENT METHOD

## (1) Governing Equation

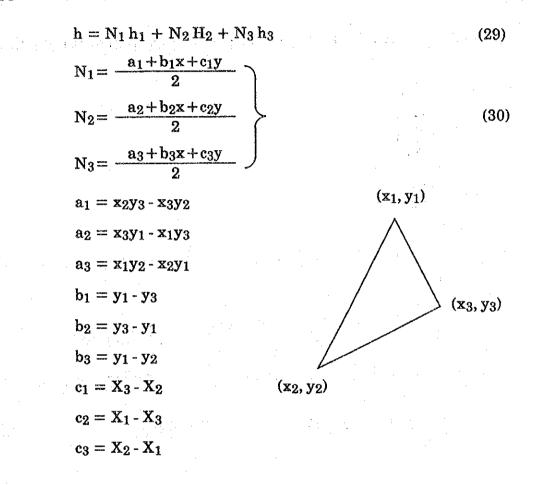

The governing differential equation for two-dimensional, essentially horizontal groundwater flow in a non-homogeneous, isotropic, aquifer with leakage is (see Figure 2-11)

|              | T) 6/        | $(\frac{\partial h}{\partial x}) + \frac{\partial}{\partial y} (T \frac{\partial h}{\partial y}) + Q + \frac{k'}{b'} (H-h) = S \frac{\partial h}{\partial t}$ (28-a) |
|--------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| where        | Т            | : transmissivity (L/T)                                                                                                                                               |
|              | S            | : strativity (1)                                                                                                                                                     |
|              | h            | : artesian heads : solution variables (L)                                                                                                                            |
|              | x,y          | : Cartesian coordinates (L)                                                                                                                                          |
|              | Q            | : net flux into the aquifer from point or distributed sources                                                                                                        |
|              | · .          | (and skins) (L/T)                                                                                                                                                    |
|              | k'           | : vertical permeability of the aquitard above the aquifer (L/T)                                                                                                      |
|              | þ,           | : thickness of the aquitard                                                                                                                                          |
|              | $\mathbf{H}$ | : piezometric head in a vertically ajacent aquifer separated by                                                                                                      |
|              |              | the aquitard (L)                                                                                                                                                     |
| н<br>1. с. н | t            | : time (T)                                                                                                                                                           |

and boundary conditions are (see Figure 2-12)

| $\frac{\partial \mathbf{h}}{\partial \mathbf{x}} = \mathbf{V}$ | on Cl | (28-b) |
|----------------------------------------------------------------|-------|--------|
| $\mathbf{h} = \mathbf{H}\mathbf{C}$                            | on C2 | (28-c) |

| in which | V  | : | flux into aquifer from uncomputed area |
|----------|----|---|----------------------------------------|
|          | Hc |   | constant head                          |
|          | n  | • | outward normal vector to the boundary  |




2 - 2 8

### (2) Finite Element Formulation

Equation (28-a) is solved by dividing the aquifer domain into elements and points as illustrated in Figure 2-12.

In the divided triangular finite element the unknown artesian head can be approximated by the combination of linear shape function Ni(x,y) as



where h: unknown artesian heads in a triangular finite element

h1, h2, h3: artesian heads at each corner of a triangular finite element

 $\Delta$ : area of a triangular finite element

xi, yi: cartesian coordinates at each corner of a triangular finite element (i=1,2,3)

According to the Galerkin Method, the weighted and integrated equation residual is equal to zero. Therefore, Equation (28-a) is rearranged as follows :

$$\int [N]^{T} [Te \frac{\partial [N]}{\partial x} \{he\} + Te \frac{\partial [N]}{\partial y} \{he\} + Qe + \frac{k'}{b'} [N] \{He\} - \frac{k'}{b'} [N] \{he\} - \frac{k'}{b'} [N] \{he\} - \frac{\partial [N]}{\partial t} \{he\} ] d\Omega e = 0$$

$$(31)$$

In which superscript(e) denotes the particular element under consideration.

$$[N] = [N_1 N_2 N_3]$$
$$[N] T = \begin{pmatrix} N_1 \\ N_2 \\ N_3 \end{pmatrix}$$
$$\{h\} = \begin{cases} h_1 \\ h_2 \\ h_3 \end{cases}$$

1

Using Green's First Theorem and applying the boundary conditions (28-b) and (28-c), we have

$$\iint [Te \frac{\partial [N]^{T}}{\partial x} \frac{\partial [N]}{\partial x} + Te \frac{\partial [N]^{T'}}{\partial y} \frac{\partial [N]}{\partial y} + \frac{ke}{be} [N]^{T} [N]$$

$$+ \frac{ke'}{be'} [N]^{T} [N] + \frac{Se}{\Delta t} [N]^{T} [N] \{he\} ] d\Omega e = \iint [N]^{T} Qe d\Omega e$$

$$+ \iint \frac{ke'}{be'} [N]^{T} [N] \{He\} d\Omega e + \iint \frac{Se}{\Delta t} [h]^{T} [N] d\Omega e \qquad (32)$$

Therefore, Equation (32) is rearranged as follows :

$$[Ke] {he} = {fe}$$
(33)

in which

$$[Ke] = Te \iint \frac{\partial[N]T}{\partial x} \frac{\partial[N]}{\partial x} d\Omega e + Te \iint \frac{\partial[N]T}{\partial y} \frac{\partial[N]}{\partial y} d\Omega e + \frac{ke'}{be'} + \frac{ke'}{be'} \iint [N]T[N] d\Omega e$$
(34)  
$$\{fe\} = -\iint [N]T Qe d\Omega e + \iint \frac{ke'}{be'} [N]T[N] d\Omega e \iint \frac{Se}{\Delta t} [N]T[N] \{hoe\} d\Omega e$$
(35)

[ke] : element "stiffness" matrix

{fe} : element "force" vector

where

We can calculate according to the equation derived so far.

 $\int \int Te \frac{\partial [N]T}{\partial x} \frac{\partial [h]}{\partial x} d\Omega e$   $= Te \cdot \begin{pmatrix} \frac{\partial N_1}{\partial x} \\ \frac{\partial N_2}{\partial x} \\ \frac{\partial N_3}{\partial x} \end{pmatrix} \begin{pmatrix} \frac{\partial N_1}{\partial x} & \frac{\partial N_2}{\partial x} & \frac{\partial N_3}{\partial x} \end{pmatrix} \cdot \Delta$   $= Te \cdot \begin{pmatrix} \frac{b_1}{2\Delta} \\ \frac{b_2}{2\Delta} \\ \frac{b_3}{2\Delta} \end{pmatrix} \begin{pmatrix} \frac{b_1}{2\Delta} & \frac{b_2}{2\Delta} & \frac{b_3}{2\Delta} \end{pmatrix} \cdot \Delta$ 

| Те                      | b1 b1 | b1 b2 | b1 b3 |
|-------------------------|-------|-------|-------|
| $=$ $\frac{1}{4\Delta}$ | b2 b1 | b2 b2 | b2 b3 |
| · · · · · ·             | b3 b1 | b3 b2 | b3 b3 |

In the same way, we have

$$\iint Te \frac{\partial [N]T}{\partial y} \frac{\partial [N]}{\partial y} d\Omega e$$
$$= \frac{Te}{4\Delta} \begin{pmatrix} c_1 & c_1 & c_2 & c_1 & c_3 \\ c_2 & c_1 & c_2 & c_2 & c_2 & c_3 \\ c_3 & c_1 & c_3 & c_2 & c_3 & c_3 \end{pmatrix}$$

In order to evaluate the integral

## $\int [N]^T [N] d\Omega e$

(37)

2 - 3 1

We can use the formula

$$\iint N \frac{i}{1} N \frac{j}{2} N \frac{k}{3} d\Omega e = \frac{i!j!k!}{(i!+j!+k!+2)} 2\Delta$$
(38)

12

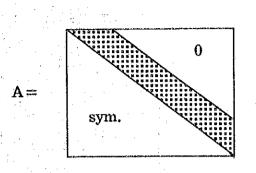
Integration Formula (38) is valid for two-dimensional elements. Using Formula (38), the integral

$$\iint [\mathbf{N}]^{\mathrm{T}} [\mathbf{N}] \,\mathrm{d}\Omega \mathrm{e} \tag{39}$$

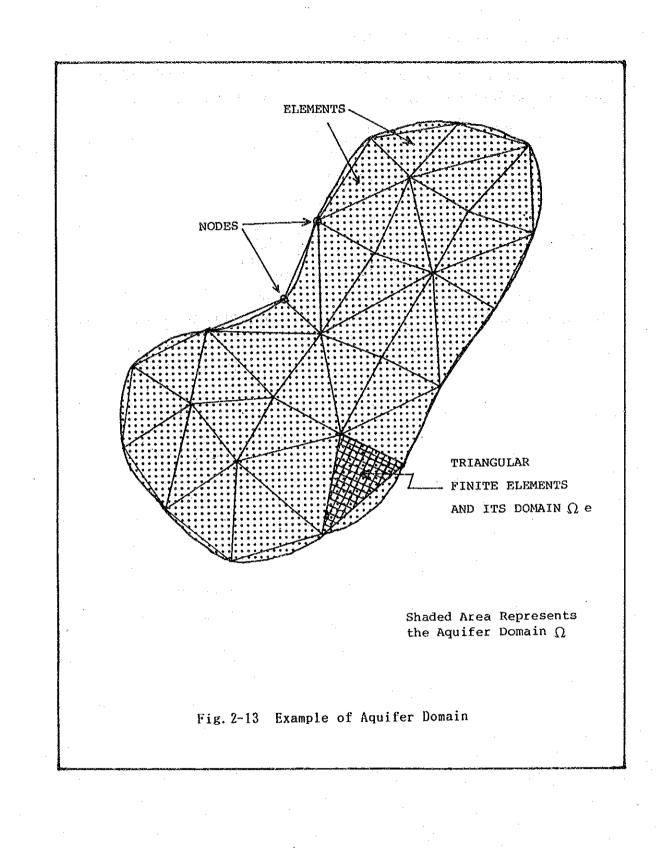
is as follows :

|                                     | $\int \int N_1^2 d\Omega e$   | $\int\int N_1 N_2  d\Omega e$       | $\int \int N_1 N_3 d\Omega e$       |
|-------------------------------------|-------------------------------|-------------------------------------|-------------------------------------|
| $\int \int [N]^{T} [N] d\Omega e =$ | $\int \int N_2 N_1 d\Omega e$ | $\int \int N \frac{2}{2} d\Omega e$ | $\int\int N_2  N_3  d\Omega e$      |
|                                     | $\iint N_3 N_1 d\Omega e$     | $\int \int N_3 N_2 d\Omega e$       | $\int \int N \frac{2}{2} d\Omega e$ |

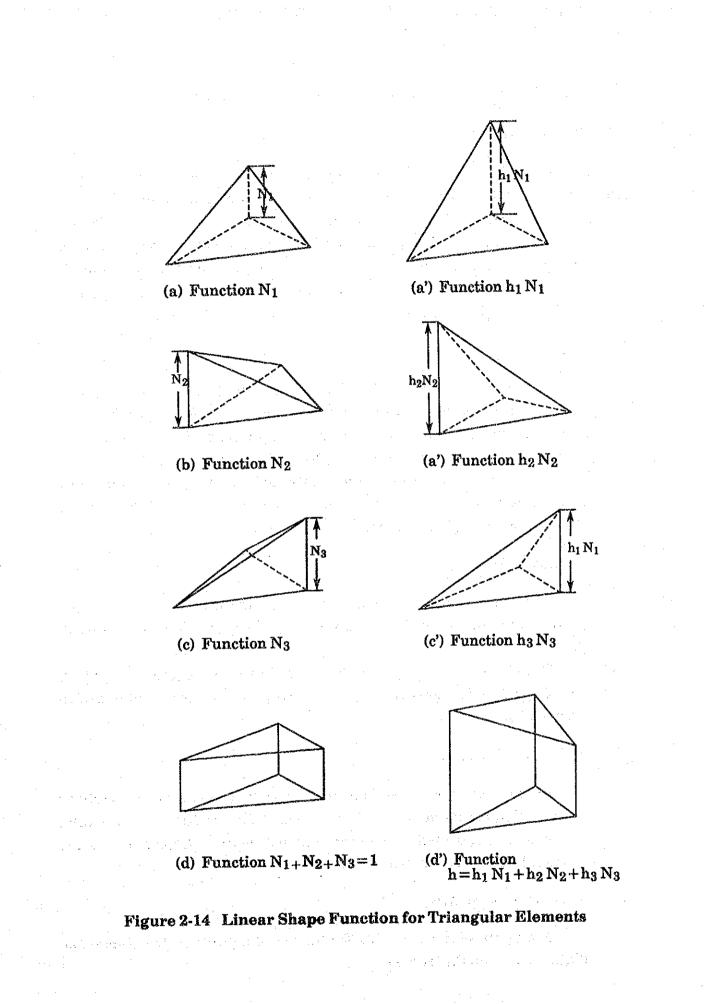
$$= \begin{pmatrix} \frac{1}{6} & \frac{1}{12} & \frac{1}{12} \\ \frac{1}{12} & \frac{1}{6} & \frac{1}{12} \\ \frac{1}{12} & \frac{1}{12} & \frac{1}{6} \end{pmatrix} \Delta$$
(40)


Assembling the element "stiffness" matrix and "force" vector, we obtain

[K] {h} = {f} Where [K] =  ${}_{e}^{\Sigma}$  [Ke]: the global "stiffness" matrix {f} =  ${}_{e}^{\Sigma}$  {fe}: the global "force" vector {h} =  ${}_{e}^{\Sigma}$  {he}


Solving above the matrix equation, we obtain unknown heads.

## (3) Soltion of the Matrix Equation


The systems of equations obtained in the most practical problems are not only symmetric but also banded matrix which may be written as



In this case, we can solve the matrix equations quickly and reduce the capacity of the computer memory.



2 - 3 4



– 3 5

#### 2-5 CASE STUDY OF SOME GROUNDWATER BASINS IN JAPAN

#### 2-5-1 KUMAMOTO PLAIN

Kumamoto City is located in the western part of the Aso Volcano, Kyushu Island, in the south-western part of Japan. The municipal water supply is obtained from production wells in the lava flow deposits and unconsolidated delluvial deposits within the city. The municipal water supply has been obtained from three major pumping centers, which are Kengun, Kashima and Nuyamazu. The average daily groundwater withdrawal of the three pumping centers is  $120,000m^3/day$  in 1980 and is supposed to rise to  $250,000m^3/day$  in 1990.

### (1) Hydrogeology

As shown in Figures 2-15 and b kumamoto Plain is covered mostly by volcanic deposits such as lava flow (To) and welded tuff (ASO-3, ASO-4). Togawa lava flow constitutes the main aquifer, and alluvial clayey sediments and most of the ASO-3 and ASO-4 constitute aquitards.

Water occurs in leaky artesian conditions, and recharge is derived from the lateral flow through the Mt. Aso recharge area and the vertical leakage flow through aquitards.

#### (2) Simulation Model

It is possible to simulate the complex aquifer conditions with simple multi-layered aquifer model systems as shown in Figure 2-15 and Figure 2-16.

The Model has two aquifers (TO-1, TO-2) and two aquitards (ASO-3, ASO-4) underlying phreatic aquifers (HO, TA) in which water tables assume to be constant.

(3) Hydrologic Constants

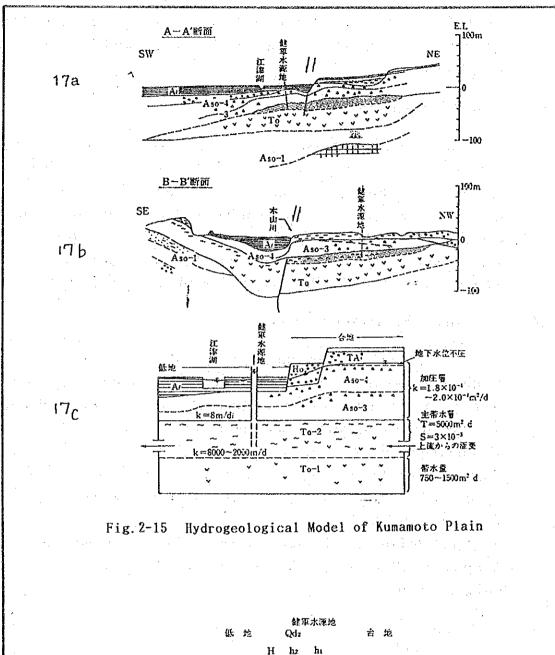
Based on aquifer and well production test data, average transmissivity and storativity of the main aquifer are  $5000m^2/day$  and  $3x10^{-3}$  respectively. The average permeability of unconsolidated deposits (aquitards) range between  $1.8x10^{-4}$  and  $2.0x10^{-4}m/day$ .

#### (4) Subdivision of the Area

and the factor of the second states and the second states and the second second states and the second second se

Finite element subdivision for the model aquifer on the Kumamoto Plain is shown in Figure 2-17.

The model has 292 triangular elements and 160 nodes. The three pumping area were subdivided more minutely and production wells were represented at each node.


#### (5) Verification of the Model

The accuracy and reliability of the model were assessed by a study of records on past pumpage and water levels. Water level declines and a piezometric surface map obtained by the simulation model were compared with actual water level declined and piezometric surface map for January 1978. As shown in Figure 2-18 and Figure 2-19, differences in the computed water level and the actual one are not significant when considered in relation to the accuracy and adequacy of hydrogeologic data (Figure 2-20).

## (6) Prediction of Future Water Level

It is reasonable to assume that the simulation model may be used to predict, with reasonable accuracy, the effects of future groundwater development and the practical sustained yield of the aquifer. Simulation was carried out to understand the effects and influence of a selected scheme of pumping conditions. A water level decline map based on computer simulation for the present maximum withdrawal (A-plan) is shown in Figure 2-21. Results of the simulation are summarized and evaluated as shown in Table 2-2.

It is concluded that it is feasible to develop proposed pumping rate without significant influence on production wells and adjacent existing water utilization systems.



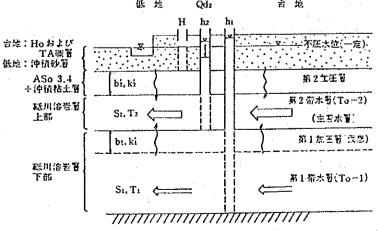
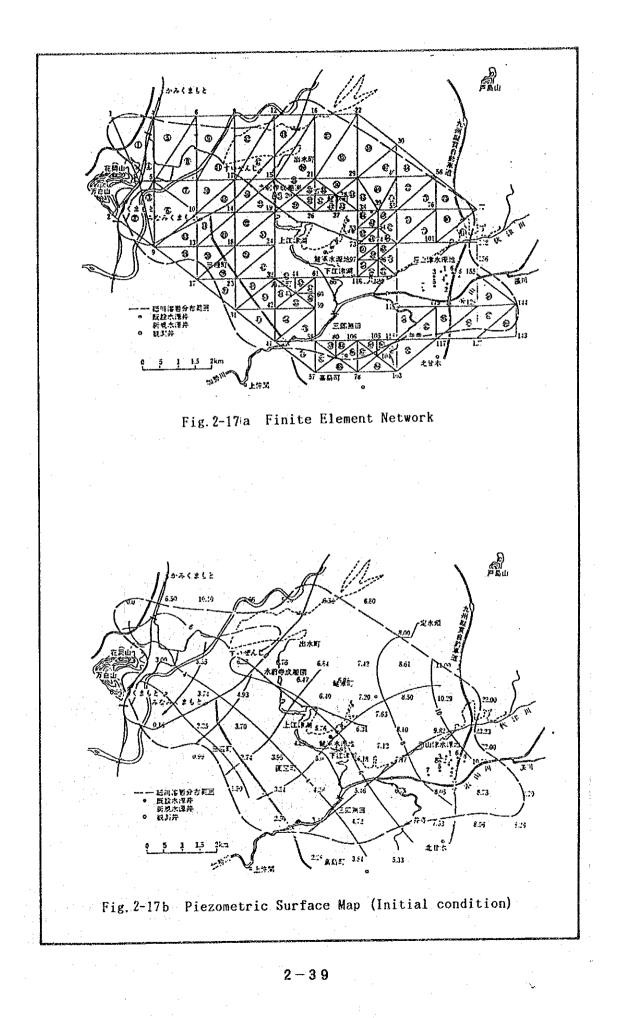
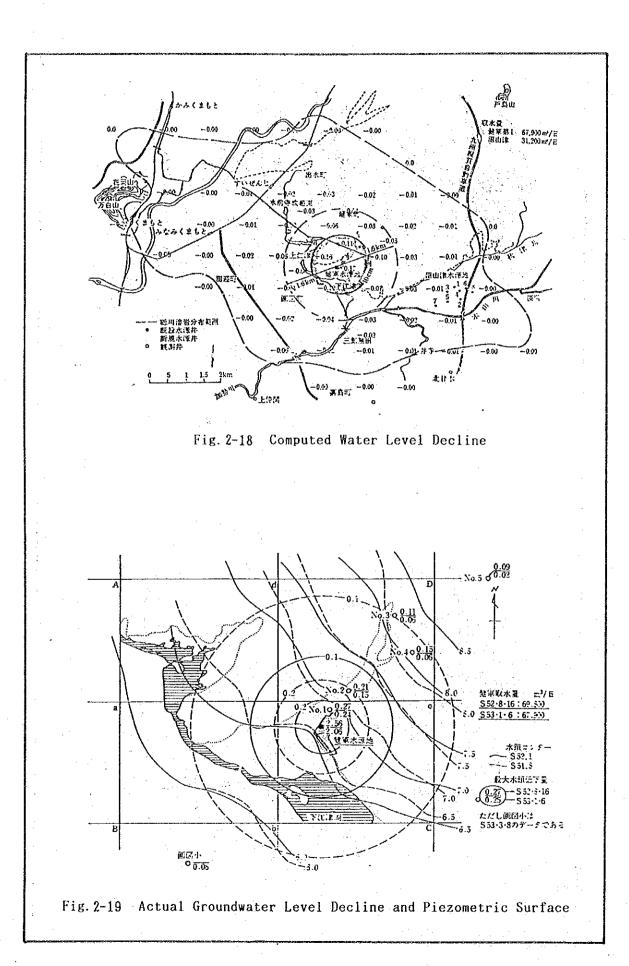





Fig. 2-16 Multi-layered aquifer system of Kumamoto Plain

2 - 3 8





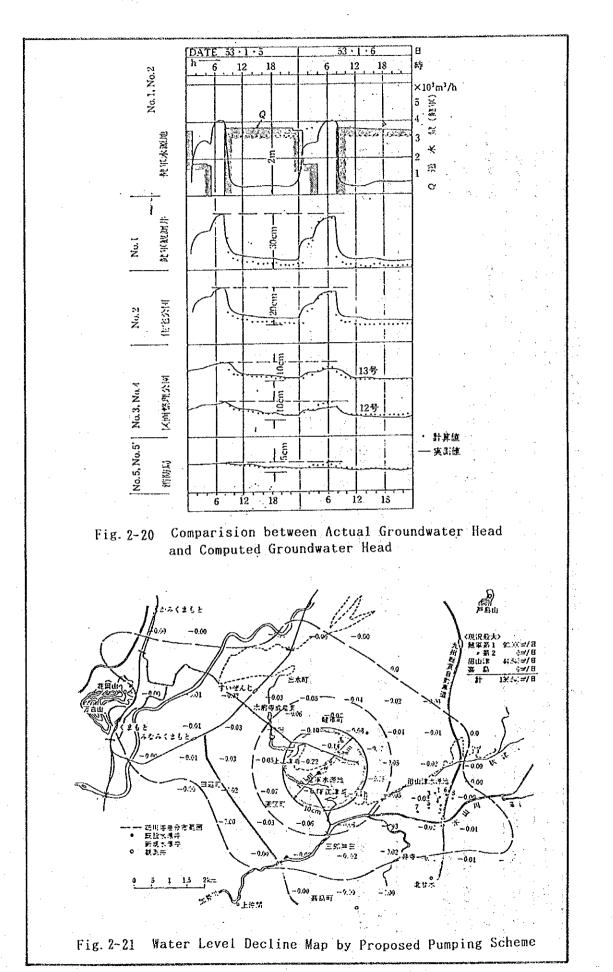



Table 2-2 Response and Evaluation of Simulation

| Name of Plan                            | Pumping | Pumping Withdrawal (m3/day) | (m3/day)      | Respo                                                                                                                            | Response and Evaluation |                                          |
|-----------------------------------------|---------|-----------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------|
| Pumping Center                          | Kengun  | Kengun Nuyamazu             | Kasima Kengun | Kengun                                                                                                                           | Nuyamazu                | Kasima                                   |
| A Plan<br>Present Maximum<br>Withdrawal | 92,000  | 44,640                      | 0             | Adjacent area is slightly affected by pumping.<br>Radius of influence<br>circle is $1.3 \sim 1.1 \text{km}$<br>in 10cm drawdown. | not affected            | Affected by<br>Kengun in<br>4cm drawdown |
| B Plan<br>4th-Extension                 | 101,000 | 54,720                      | 50,160        | Adjacent area is little<br>affected by extension.<br>"R" is 1.4~1.21km<br>in 10cm drawdown.                                      | Same as A plan          | Affected by<br>Kengun in<br>5cm drawdown |

2 - 4 2

#### 2-5-2 THE NOBI PLAIN

### (1) Land Subsidence

The Nobi Plain is located in the central part of Japan and is about 1,300km<sup>2</sup> in area (Figure 2-22). There are over 5 million people living on the plain which is one of the important industrial areas in Japan.

In 1959, a typhoon occurred on the plain on September 26, which inflicted great damages. After this typhoon, a wide area of the plain was submerged for a long time. By this submergence, it was evident that an area of 186km<sup>2</sup> was below the mean sea level at that time.

The yearly rates of subsidence on this plain were 1-2cm during the period from 1950 to 1960, 2-4cm during the period from 1960 to 1965, and more than 10cm at certain places during the period from 1965 to 1975. (Figure 2-23) As of 1977, maximum subsidence exceeded 100cm. For such subsidence, more than 270km<sup>2</sup> of land had subsided below the mean sea level by 1980 (Figure 2-24).

#### (2) Withdrawal of Groundwater

The cause of this subsidence is the increasing withdrawal of groundwater. In 1960, the groundwater withdrawal on this plain was 850,000m<sup>3</sup>/day. The amount of pumpage increased rapidly in the 1960's, and the withdrawal reached 3,500,000m<sup>3</sup>/day in 1973 (Figure- 2-25).

The major use of groundwater is industrial, which amounts to 60% of the total with agricultural use of groundwater close to 20%.

(3) Water Level

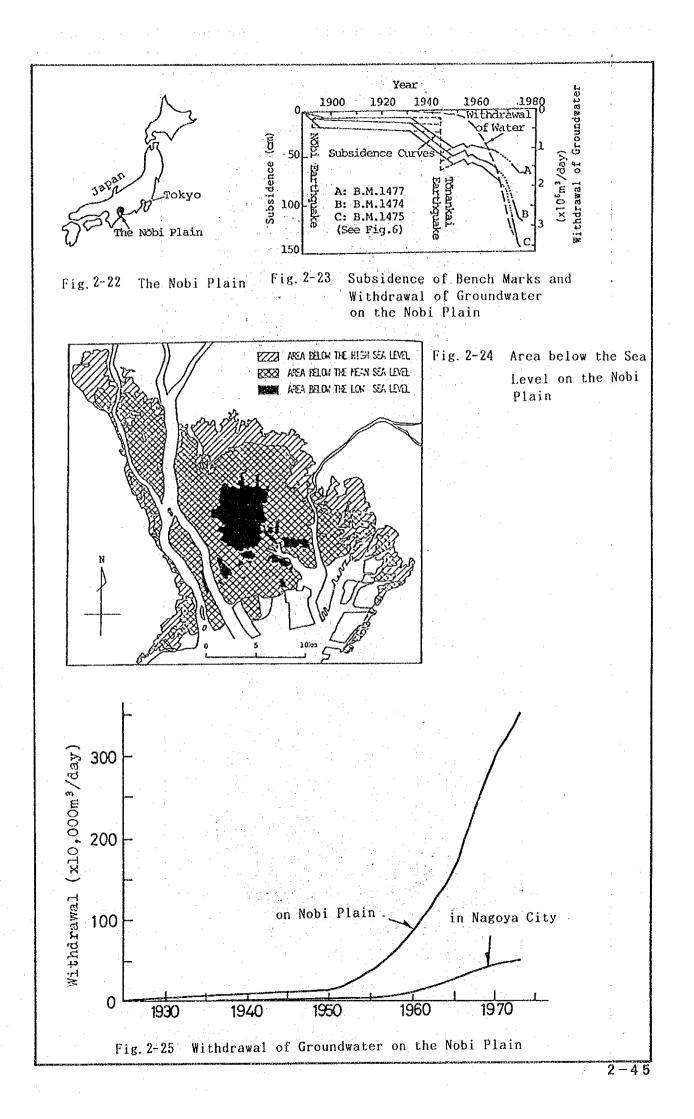
Increasing withdrawal of groundwater has caused the steep decline in the water level. In 1973, water level in the 1st confined aquifer dropped to the level of 30m below ground, and that of the 2nd aquifer dropped to -40m (Figure 2-26, Figure 2-27).

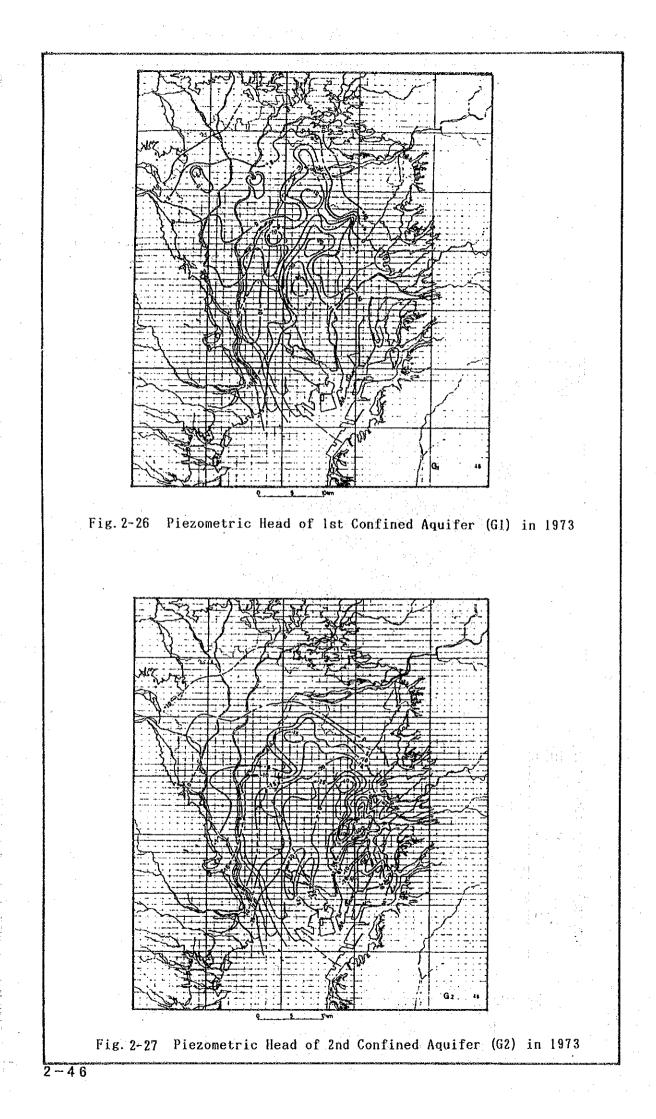
#### (4)Subsurface Geology

The Nobi Plain is underlain by younger sediments (Tertiary to Quarternary). The yearly decline in the water level has caused compaction of these sediments. 

The subsurface stratigraphy on this plain is shown in Table 2-3. The Tertiary and the younger sediments are composed of an alternation of clay, sand and gravel beds (Figure 2-28). These gravel beds (G1, G2, G3) are main aquifers on the plain. The clay beds (H, D3) overlying the gravel beds. are aquitards and very compressive. The distribution of thickness of clay beds are shown in Figure 2-29.

#### Groundwater Simulation :(5)


For the purpose of preventing land subsidence, we executed an investigation sponsored by the Aichi Prefecture and the Chubu Regional Construction Bureau within the Ministry of Construction. The investigation consisted of pumping tests, hydrogeological analysis and model simulation. The model simulation was aimed at simulating the groundwater flow and the subsidence, and to determine the withdrawal which would cease the land subsidence.


On the basis of the hydrogeological structure, we constructed a digital computer simulation model which consisted of quasi three-dimensional multi-aquifer by the Finite Element Method (Figure 2-30).

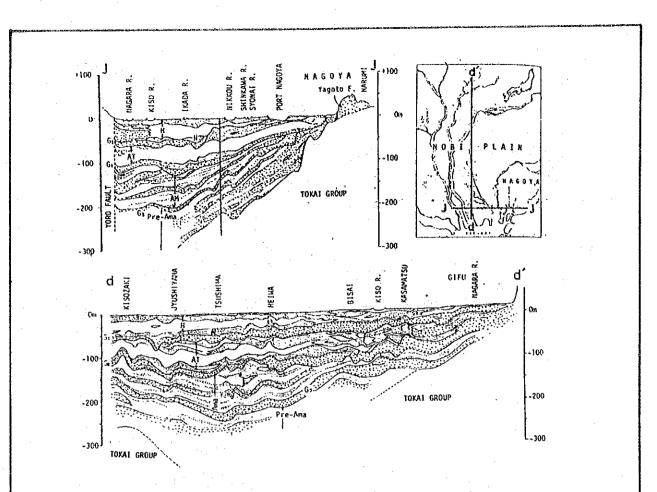
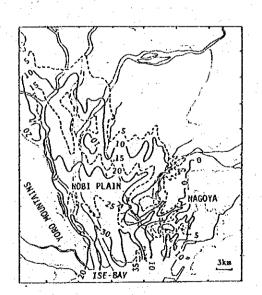
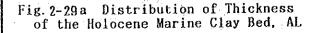
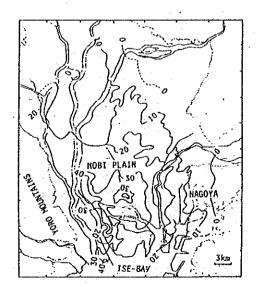
In calibrating the model with the observed water level and subsidence, we incorporated future withdrawal plans into it. Based on the response of the model, we were able to determine a safe yield (Figure 2-31).

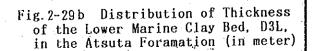
Presently, withdrawal of groundwater on the plain is being controlled by the regulations set up by the authorities, and the land subsidence has ceased. and the second secon 5.21

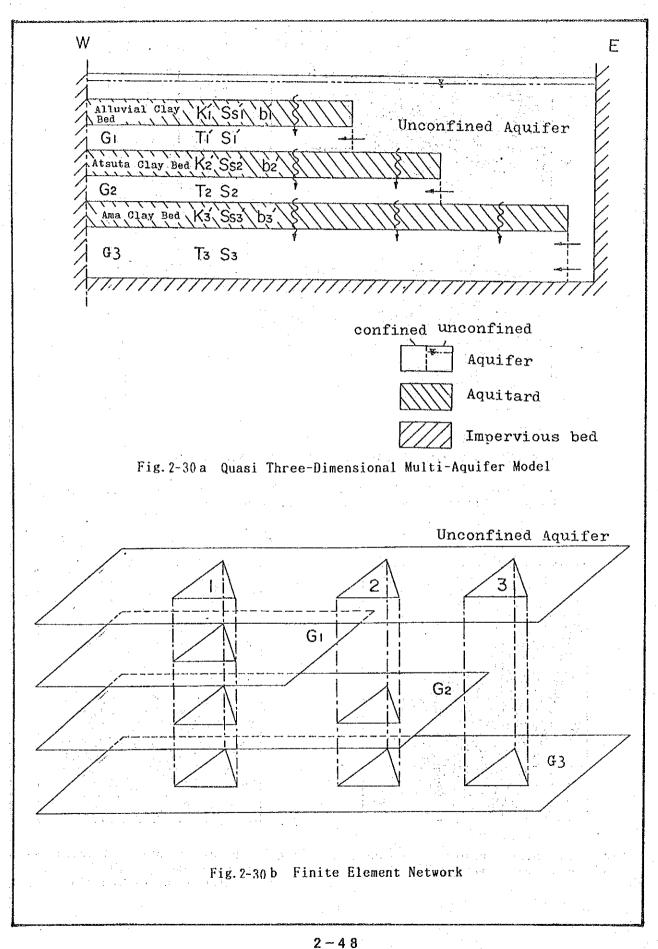
化晶体的 医马克氏病 化二氟化合物 化化合物



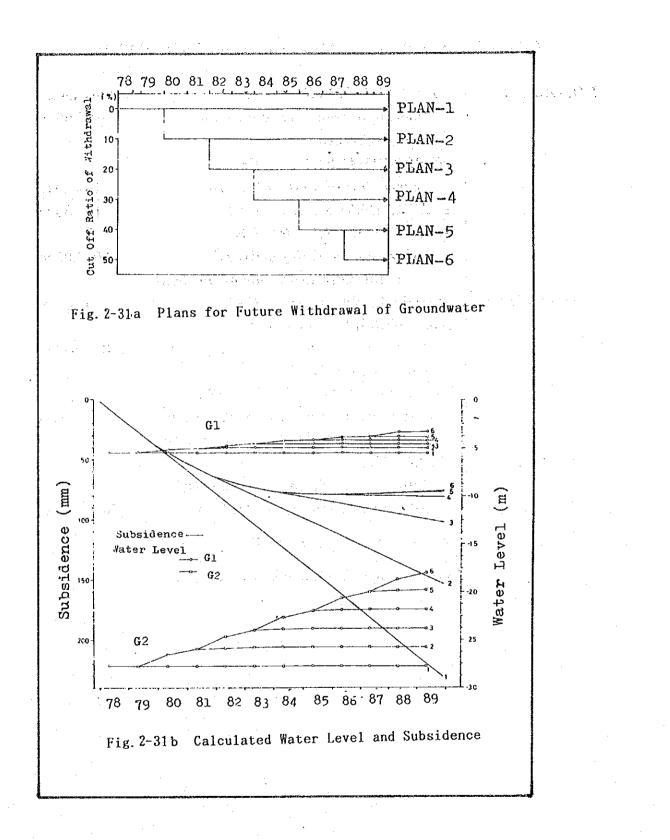




Fig. 2-28 Geologic Cross Section of the Nobi Plain


II : Nanyo Formation (Holocene), N : Nobi F., AT : Atsuta Foramation, Dotted : gravel, Fine dotted : sand, Blank : clay












. .



| HOLOCENE                                | ( NANYO FORMATION (H)                                                  | (Thickness)  |
|-----------------------------------------|------------------------------------------------------------------------|--------------|
| •                                       | { (loose upper sand bed and very soft                                  | 10 - 60 m    |
|                                         | marine clay bed)                                                       | -            |
|                                         | ( NOBI FORMATION (N)                                                   |              |
|                                         | (alternation of sand and silt bed)                                     | 10 - 20 m    |
|                                         | DAIICHI GRAVEL BED (G1)                                                | 10 - 30 m    |
|                                         | ATSUTA FORMATION $(D_3)$                                               |              |
|                                         | (upper sand and clay beds and<br>unconsolidated lower marine clay bed) | 10 - 100 m   |
| PLIESTOCENE                             | DAINI GRAVEL BED (G <sub>2</sub> )                                     | 5 - 30 m     |
|                                         | AMA FORMATION GROUP                                                    |              |
|                                         | (alternations of semiconsolidated sand, clay and gravel beds)          | 30 - 100 m   |
|                                         | PRE-AMA FORMATION GROUPS                                               |              |
| • • • · · · · · · · · · · · · · · · · · | (alternations of semiconsolidated sand,<br>clay and gravel beds)       | 30 - 70 m    |
| PLIOCENE                                | ( TOKAI GROUP                                                          |              |
| · · ·                                   | (alternations of semiconsolidated 200 -                                |              |
|                                         | 100 m clay, sand and gravel beds)                                      | 200 - 1000 m |

# Table 2-3 The Subsurface Stratigraphy on the Nobi Plain

MIOCENE SERIES

PRE-TERTIARY BASEMENT ROCK

#### REFERENCES

- (1) Bachmat, Y. etal (1977) : The Use and Utility of Numerical Models in Groundwater Resource Management, Draft Final Report, SCOPE.
- (2) Carsraw, H. S. and J. C. Jaeger (1954) : Conduction of Heat in Solids, Oxford Univ. Press, Oxford.
- (3) Fujinawa, K. (1977a) : Finite Element Analysis of Groundwater Flow in Multiaquifer Systems ; 1. The Behavior of Hydrological Properties in Aquitards while being Pumped. J. Hydrol., 33.
- (4) Fujinawa, K. (1977b) : Finite Element Analysis of Groundwater Flow in Multiaquifer Systems;
   2. A Quasi Three-Dimensional Flow Model, J. Hydrol., 33.
- (5) Fujisaki, K., H. Oka and A. Kamata (1979) : A Galerkin Finite Element Analysis of Unsteady Groundwater Flow by a Quasi Three-Dimensional Multi-Aquifer Model and a Three-Dimensional Model, Earth Sci., Vol.33, No.2, pp. 73-84 (in Japanese).
- (6) Hayami, K. (1955) : The Change of Hydraulic Head and Land Subsidence in Osaka city and Amagasaki City, Report of Osaka Harbor Technics Resear. Soci. (in Japanese).
- (7) Hantush, M. S. (1960) : Modification of the Theory of Leaky Aquifers, Jour. Geophys. Res., Vol.65, No.11, pp.28-41.
- (8) Hantush, M. S. (1967) : Flow to Wells in Aquifers Separated by Semipervious Layers, Jour. Geophys. Res., Vol. 72, No.6, pp. 1709-1720.
- (9) Kamata, A., M. Murakami and K. Harada (1973) : Application of a Quasi Three-Dimensional Aquifer Model to Analyzing Land Subsidence, Earth Sci., Vol.27, No.4, pp.131-140 (in Japanese).
- (10) Kamata, A., N. Miyamoto and T. Shibasaki (1975) : A Model Simulation Study of Leaky Aquifer Management : An Example of Irrigation Project in Nepal, Proc. IX ICID Moscow, Q. 31, R51, pp.899-915.
- (11) Kamata, A., K. Harada and H. Nirei (1976) : Analysis of Land Subsidence by the Vertical Two-Dimensional Multi-Aquifer Model, Land Subsidence Proc. 2nd Intl. Sympo. Unesco, pp201-210.

- (12) Kamata, A. (1981) : Present Status and Direction of Groundwater Simulation Study : Fluid Dynamics in a Deep Sedimentary Basin, Tokai University Press, pp 137-150 (in Japanese).
- (13) Lohman, S. W. (1961) : Compression of Elastic Artesian Aquifers, USGS Profess. Papers., 424-B.

- (14) Neuman, S. P. and P. A. Witherspoon (1969a) : Theory of Flow in a Confines Two-Aquifer System, Water Resour. Res., Vol. 5, No.4, pp. 803-816.
- (15) Neuman, S. P. and P. A. Witherspoon (1969b) : Applicability of Current Theories of Flow in Leaky Aquifers, Water Resour. Re., Vol. 5, No.4, pp.817-829.
- (16) Peaceman, D. W. and H. H. Rachford (1955) : The Numerical Solution of Parabolic and Elliptic Differential Equations, Jour. Soc. Indust. Appl. Math. 3, pp.28-41.
- (17) Prickett, T. A. and C.G. Lonnquist (1971) : Selected Digital Computer Techniques for Groundwater Resource Evaluation, Bull. No.55, Illinois State Water Surv., Urbana.
- (18) Prickett, T. A. (1975) : Modeling Techniques for Groundwater Evaluation, Advance in Hydroscience, Vol.10.
- (19) Remson, I. et al. (1971) : Numerical Methods in Subsurface Hydrology, Wiley (Interscience), New York.
- (20) Shibasaki, T., A. Kamata and S. Shindo (1969) : The Hydrologic Balance in the Land Subsidence Phenomena, Land Subsidence IASH-Unesco, Vol. 1, pp.201-215.
- (21) Shibasaki, T., A. Kamata and M. Wada (1971) : Application of the Water Balance Simulation for Predicting Land subsidence : A Digital Computer Approach , Memoires IASH, Vol.9, pp.197-202.
- (22) Tyson, H. N. and E. M. Weber (1964) : Groundwater Management for the Nation's Future : Computer Simulation of Groundwater Basins, Proc. ASCE, HY4, pp.59-77.

2 -- 5 2

- (23) Wadachi, K. and T. Hirono (1939) : On the Land Subsidence of Noshi-Osaka (No.1), Disaster Research Institute Report, No.2 (in Japanese).
- (24) Walton, W. C. (1970) : Groundwater Resource Evaluation, Mcgraw-Hill, New York, pp.664.

## 3. QUASI-THREE DIMENSIONAL MULTI AQUIFER MODEL BY FINITE ELEMENT METHOD

| 0001 C  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0002 C  | * * * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0003 C  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0004 C  | * QUASI-THREE DIMENSIONAL *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0005 C  | * MULTI AQUIFER MODEL *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0006 C  | * BY FINITE ELEMENT METHOD *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0007 C  | *JICA, K.FUJISAKI, T.MAEKAWA*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0008 C  | ***********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0009 C  | THE WAY WAS NOTED TO UN WE SECOND AN RELATED AN $(A = 0, A = 0, $ |
| 0010    | COMMON NEL, NNO, NSTEPS, ID, NP, NE, G (500, 29, 4), T (450, 4), S (450, 4),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0011    | * DX, DY, DT, NOP(450, 4), NC(4), NOC(80, 4), F(500), Q(450, 4),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0012    | <pre>* H(500,5),V(4,500),U(4,500),HO(80,4,144),KD(500,4),<br/>D(500,4),D(7,0),D(7,0),HO(80,4,144),KD(500,4),</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0013    | * B(500,4),D(7,2),E(7),NBAND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0014    | COMMON LYL(450,4), NWEL.ST(500),NOB(40),SJ(40),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0015    | * HJ(40,4), HDT,LXL(500,4),IP,H0(500,4),NBK,NLL,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0016    | * LBL(287),NL(15),NLE(15,50),NLP(15,50),IHW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0017    | REAL*4 KD,L.QIN(450),RIN(450)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0018    | REAL*8 F,G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0019 C  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0020    | ACCEPT *, NFUTU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0021    | ACCEPT *, QMULT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0022 C  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0023    | CALL GDATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0024    | IF(IP) 20,20,10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | 10 CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|         | 20 CALL FORMK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0027 C  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0028    | DO 1000 N=1,NSTEPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0029 C  | TRANSMENT PO 4 OF N FO 4 MUEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0030    | IF (NFUTU. EQ. 1. OR. N. EQ. 1) THEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0031    | IF(IHW.EQ.1) THEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0032    | DO 100 I=1, ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0033    | $\frac{\text{READ}(16)}{(\text{QIN}(J), J=1, \text{NEL})}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0034    | IF(N.EQ.1)READ(15) (RIN(J), J=1, NEL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0035    | DO J=1,NEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0036    | Q(J,I)=QIN(J)*QMULT-RIN(J)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0037    | END DO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         | 100 CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0039    | END IF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0040    | END IF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0041 C  | N/0->1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0042    | NT=N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0043    | DO 500 M=1,4 $(ATAL(ATAL))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0044    | CALL CALAH(NT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|         | 500 CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0047 C  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0040 00 | 100 2001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0048 20 | DOO STOP<br>END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|              |      | SUBROUTINE FORMK                                                          |
|--------------|------|---------------------------------------------------------------------------|
| 0001         | с    | SUBROUTINE FORM                                                           |
| 0002         | d    | *****                                                                     |
| 0003         | č    | * *                                                                       |
| 0005         | č    | * SUB PROGRAM TO FORM GLOBAL MATRIX *                                     |
| 0006         | č    | * *                                                                       |
| 0007         | Ċ    | * * * * * * * * * * * * * * * * * * * *                                   |
| 0008         | a    |                                                                           |
| 0009         |      | COMMON NEL, NNO, NSTEPS, IL, NP, NE, G(500, 29, 4), T(450, 4), S(450, 4), |
| 0010         | *    |                                                                           |
| 0011         | *    |                                                                           |
| 0012         | *    |                                                                           |
| 0013         |      | COMMON LYL(450,4), NWEL,ST(500),NOB(40),SJ(40),                           |
| 0014         | *    |                                                                           |
| 0015         | *    |                                                                           |
| 0016         |      | DIMENSION E(4,4)                                                          |
| 0017         |      | REAL*4 KD,L                                                               |
| 0018         |      | REAL*8 F,G,E<br>DO 100 I=1.NNO                                            |
| 0019<br>0020 |      | DO 100 $J=1$ , NRO                                                        |
| 0020         |      | DO 100 $K=1$ , IL                                                         |
| 0022         |      | G(I,J,K)=0.0                                                              |
| 0023         | 100  | DO 1500 ID=1.IL                                                           |
| 0024         |      | DO 1000 N=1.NEL                                                           |
| 0025         |      | CALL STIFF(E.ID.N)                                                        |
| 0026         |      | DO 200 I=1,4                                                              |
| 0027         |      | II=NOP(N,I)                                                               |
| 0028         |      | DO 200 J=1.4                                                              |
| 0029         |      | JJ=NOP(N,J)                                                               |
| 0030         |      | PP=11-11+1                                                                |
| 0031         |      | IF(LL-NBAND) 210,210,2000                                                 |
| 0032         |      | IF(LL) 200,200,220                                                        |
| 0033         |      | G(II, LL, ID) = G(II, LL, ID) + E(I, J)                                   |
| 0034         |      | CONTINUE                                                                  |
| 0035         | 1000 | CONTINUE                                                                  |
| 0036         |      | NNC=NC(ID)<br>IF(NNC) 350,350,310                                         |
| 0037<br>0038 | 210  | DO 300 I=1,NNC                                                            |
| 0039         | 310  | J=NOC(I,ID)                                                               |
| 0040         |      | G(J, 1, ID) = G(J, 1, ID) * 10.0 * * 8                                    |
| 0040         | 300  | CONTINUE                                                                  |
| 0042         |      | CALL SOLV1(ID)                                                            |
| 0043         | 1500 | CONTINUE                                                                  |
| 0044         |      | RETURN                                                                    |
| 0045         | 2000 | WRITE(6,601) N                                                            |
| 0046         | 601  | FORMAT(/10X, 'ERROR IN BAND WIDTH NO.', I4)                               |
| 0047         |      | STOP                                                                      |
| 0048         |      | END                                                                       |
|              |      |                                                                           |
|              |      |                                                                           |
|              |      |                                                                           |
|              |      |                                                                           |
|              |      |                                                                           |
|              |      |                                                                           |
|              |      |                                                                           |

3 – 2

| 0001 |     | SUBROUTINE STIFF(E.ID,N)                                                    |
|------|-----|-----------------------------------------------------------------------------|
| 0002 | С   |                                                                             |
| 0003 | С   | *****88888**************                                                    |
| 0004 | С   | * *                                                                         |
| 0005 | С   | * SUB PROGRAM TO FORM ELEMENT MATRIX *                                      |
| 0006 | С   | * *                                                                         |
| 0007 | Ċ   | * * * * * * * * * * * * * * * * * * * *                                     |
| 0008 | ā   |                                                                             |
| 0009 | -   | COMMON NEL.NNO.NSTEPS, IL.NP.NE.G(500,29,4), T(450,4), S(450,4),            |
| 0010 |     | * DX, DY, DT, NOP(450, 4), NO(4), NOC(80, 4), F(500), Q(450, 4),            |
| 0011 |     | <pre>* H(500,5),V(4,500),U(4,500),HC(80,4,144),KD(500,4),</pre>             |
| 0012 |     | * B(500,4),D(7,2),R(7),NBAND                                                |
| 0013 |     | COMMON LYL(450,4), NWEL,ST(500),NOB(40),SJ(40),                             |
| 0014 |     | * HJ(40,4), HDT,LXL(500,4),IP,H0(500,4),NBK,NLL,                            |
| 0015 |     | <pre>* LBL(287),NL(15),NLE(15,50),NLP(15,50),IHW</pre>                      |
| 0016 |     | DIMENSION E(4,4)                                                            |
| 0017 |     | REAL*4 KD.W                                                                 |
| 0018 |     | REAL*8 F,G,E                                                                |
| 0019 |     | T = NOP(N, 1)                                                               |
| 0020 |     | J=NOP(N,2)                                                                  |
| 0021 |     | K = NOP(N, 3)                                                               |
| 0021 |     | L=NOP(N, 4)                                                                 |
| 0023 |     | $P_1=T(N,ID)*DY/DX/6.0$                                                     |
| 0023 |     | P2=T(N, ID) * DX/DY/6.0                                                     |
| 0025 |     | P4=DX*DY*S(N,ID)/DT/36.0                                                    |
| 0025 |     | P3=0.0                                                                      |
| 0020 |     | IF(ID-1) 50,50,70                                                           |
| 0027 | ۲.  | 0  LL=LYL(N, ID)                                                            |
| 0020 | : . | IF(LL)110,110,80                                                            |
| 0023 | g   | 0 GO TO (100,110).LL                                                        |
| 0031 |     | O CONTINUE                                                                  |
| 0031 | ,   | IF(LYL(N,ID)) 110,110,100                                                   |
| 0033 | 10  | 0 $P3 = (KD(I,ID) + KD(J,ID) + KD(K,ID) + KD(L,ID)) / (B(I,ID) + B(J,ID) +$ |
| 0033 | t U | * B(K,ID)+B(L,ID))                                                          |
| 0034 | 11  | 0 IF(ID+1-IL) 120,120,140                                                   |
| 0036 |     | 0 IF(LYL(N, ID+1)) 140,140,130                                              |
| 0037 | 13  | 0 P3=P3+(KD(T,TD+1)+KD(J,ID+1)+KD(K,ID+1)+KD(L,ID+1))/                      |
| 0038 | ,0  | * (B(I,ID+1)+B(J,ID+1)+B(K,ID+1)+B(L,ID+1))                                 |
| 0039 | 1.4 | 0 P3=P3*DX*DY/36.0                                                          |
| 0040 | 1.1 | E(1,1)=2.0*P1+2.0*P2+4.0*P3+4.0*P4                                          |
| 0041 |     | E(1,2) = -2.0 * P1 + P2 + 2.0 * P3 + 2.0 * P4                               |
| 0042 |     | E(1,3) = -P1 - P2 + P3 + P4                                                 |
| 0043 |     | E(1,4)=P1-2.0*P2+2.0*P3+2.0*P4                                              |
| 0044 |     | E(2,2)=E(1,1)                                                               |
| 0045 |     | E(3,3)=E(1,1)                                                               |
| 0046 |     | E(2,1)=E(1,2)                                                               |
| 0040 |     | E(3,4)=E(1,2)                                                               |
| 0048 |     | E(4,4)=E(1,1)                                                               |
| 0040 |     | E(4,3)=E(1,2)                                                               |
| 0045 |     | E(2,4)=E(1,3)                                                               |
| 0051 |     | E(3,1)=E(1,3)                                                               |
| 0052 | · . | E(4,2)=E(1,3)                                                               |
| 0053 |     | E(2,3)=E(1,4)                                                               |
| 0053 |     | E(2,3)=E(1,4)                                                               |
| 0054 |     | E(3,2)=E(1,4)<br>E(4,1)=E(1,4)                                              |
| 0055 |     | RETURN                                                                      |
| 0056 |     | END                                                                         |
| 0001 |     |                                                                             |

3 - 3

Ŀ

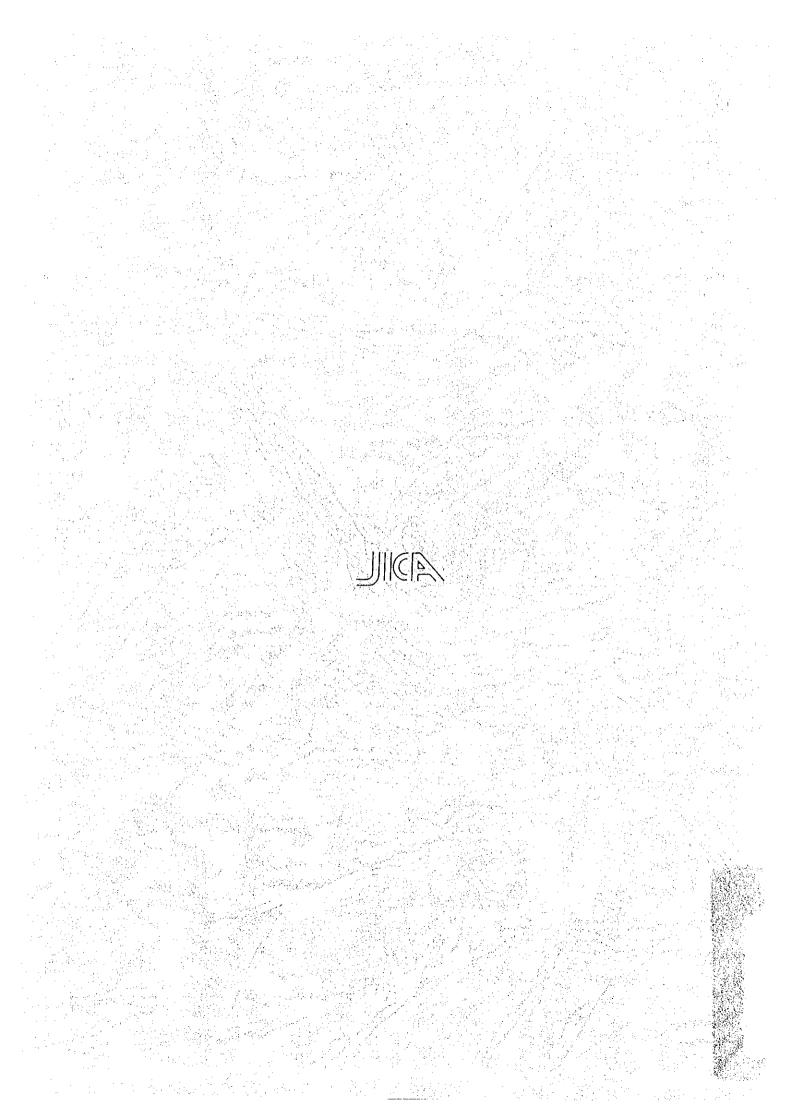
.

| 0001 | SUBROUTINE SOLV1(ID)                                                        |
|------|-----------------------------------------------------------------------------|
| 0002 | 0                                                                           |
| 0003 | C ************************************                                      |
| 0004 | C * *                                                                       |
| 0005 | C * TO REDUCE GLOBAL MATRIX *                                               |
| 0006 | C * *                                                                       |
| 0008 |                                                                             |
|      |                                                                             |
| 0008 |                                                                             |
| 0009 | COMMON NEL, NNO, NSTEPS, IL, NP, NE, G(500, 29, 4), T(450, 4), S(450, 4),   |
| 0010 | <pre>* DX, DY, DT, NOP(450, 4), NC(4), NOC(80, 4), F(500), Q(450, 4),</pre> |
| 0011 | <pre>* H(500,5),V(4,500),U(4,500),HC(80,4,144),KD(500,4),</pre>             |
| 0012 | * B(500,4),D(7,2),E(7),NBAND                                                |
| 0013 | COMMON LYL(450,4), NWEL,ST(500),NOB(40),SJ(40),                             |
| 0014 | <pre>* HJ(40,4), HDT.LXL(500,4),IP,H0(500,4),NBK.NLL,</pre>                 |
| 0015 | <pre>* LBL(287),NL(15),NLE(15,50),NLP(15,50),IHW</pre>                      |
| 0016 | REAL*4 KD, R                                                                |
| 0017 | REAL*8 F.G                                                                  |
| 0018 | DO 300 $N=1$ , NNO                                                          |
| 0019 | I=N                                                                         |
| 0020 | DO 290 L=2,NBAND                                                            |
| 0021 | I = I + 1                                                                   |
| 0022 | IF(G(N,L,ID)) = 240,290,240                                                 |
| 0023 | 240 $C=G(N,L,ID)/G(N,1,ID)$                                                 |
| 0024 | J=0                                                                         |
| 0025 | v u                                                                         |
|      | DO 270 K=L.NBAND                                                            |
| 0026 | J=J+1                                                                       |
| 0027 | IF(G(N,K,ID)) 260,270,260                                                   |
| 0028 | 260  G(I,J,ID) = G(I,J,ID) - C * G(N,K,ID)                                  |
| 0029 | 270 CONTINUE                                                                |
| 0030 | G(N,L,ID)=C                                                                 |
| 0031 | 290 CONTINUE                                                                |
| 0032 | 300 CONTINUE                                                                |
| 0033 | RETURN                                                                      |
| 0034 | END                                                                         |
|      |                                                                             |
|      |                                                                             |
|      |                                                                             |
|      |                                                                             |
|      |                                                                             |
|      |                                                                             |
|      |                                                                             |
|      |                                                                             |
| ·    |                                                                             |

| 0001         |        | SUBROUTINE CALAH(NT)                                                                  |
|--------------|--------|---------------------------------------------------------------------------------------|
| 0002         | С      |                                                                                       |
| 0003         | · C    | ***********                                                                           |
| 0004         | С      | * *                                                                                   |
| 0005         | C      | * TO CALCULATE WATER HEAD BY AQUIFER *                                                |
| 0006         | C      | * *                                                                                   |
| 0007         | C<br>C | * * * * * * * * * * * * * * * * * * * *                                               |
| 0008<br>0009 | U      | COMMON NEL, NNO, NSTEPS, IL, NP, NE, G(500, 29, 4), T(450, 4), S(450, 4),             |
| 0009         |        | * $DX, DY, DT, NOP(450, 4), NC(4), NOC(80, 4), F(500), Q(450, 4),$                    |
| 0011         |        | * H(500,5),V(4,500),U(4,500),HC(80,4,144),KD(500,4),                                  |
| 0012         |        | * B(500,4),D(7,2),E(7),NBAND                                                          |
| 0013         |        | COMMON LYL(450,4), NWEL, ST(500), NOB(40), SJ(40),                                    |
| 0014         |        | <pre>* HJ(40,4), HDT,LXL(500,4),IP,H0(500,4),NBK,NLL,</pre>                           |
| 0015         |        | <pre>* LBL(287),NL(15),NLE(15,50),NLP(15,50)</pre>                                    |
| 0016         |        | COMMON /BK2/NNF,NFL(20,2),TR(20,60)                                                   |
| 0017         |        | REAL*4 KD.W                                                                           |
| 0018         |        | REAL*8 F.G                                                                            |
| 0019         |        | DO 1000 ID=1,IL                                                                       |
| 0020<br>0021 |        | IC=ID+2<br>IE=ID+1                                                                    |
| 0021         |        | DO 100 I = 1.NNO                                                                      |
| 0022         |        | 100 F(I)=0.0                                                                          |
| 0024         |        | DO 200 N=1,NEL                                                                        |
| 0025         |        | I = NOP(N, 1)                                                                         |
| 0026         |        | J=NOP(N,2)                                                                            |
| 0027         |        | K = NOP(N, 3)                                                                         |
| 0028         |        | L=NOP(N, 4)                                                                           |
| 0029         |        | P4=DX*DY*S(N,ID)/DT/36.0                                                              |
| 0030         | ~      | Q4=Q(N,ID)*0.25                                                                       |
| 0031         | C      | 110 F(I)=F(I)+P4*(4.0*H(I,IE)+2.0*H(J,IE)+ H(K,IE)+2.0*H(L,IE))-Q4                    |
| 0032<br>0033 |        | F(J)=F(J)+P4*(2.0*H(I,IE)+2.0*H(J,IE)+2.0*H(K,IE)+ H(L,IE))-Q4                        |
| 0034         |        | F(K) = F(K) + P4*( $H(I, IE) + 2.0*H(J, IE) + 4.0*H(K, IE) + 2.0*H(L, IE)) - Q4$      |
| 0035         |        | F(L) = F(L) + P4 + (2.0 + H(I, IE) + H(J, IE) + 2.0 + H(K, IE) + 4.0 + H(L, IE)) - Q4 |
| 0036         | С      |                                                                                       |
| 0037         |        | IF(ID-1) 150,150,190                                                                  |
| 0038         |        | 150 LL=LYL(N,ID)                                                                      |
| 0039         |        | IF(LL) 202,202,160                                                                    |
| 0040         |        | 160 GO TO (201,205),LL                                                                |
| 0041         |        | 190 CONTINUE<br>IF(LYL(N,ID)) 202.202.201                                             |
| 0042         |        | 201 P3=DX*DY*(KD(I,ID)+KD(J,ID)+KD(K,ID)+KD(L,ID))/                                   |
| 0044         |        | * (B(I,ID)+B(J,ID)+B(K,ID)+B(L,ID))/36.0                                              |
| 0045         |        | F(I)=F(I)+P3*(4.0*H(I,ID)+2.0*H(J,ID)+H(K,ID)+2.0*H(L,ID))                            |
| 0046         |        | F(J) = F(J) + P3 + (2.0 + H(I, ID) + 4.0 + H(J, ID) + 2.0 + H(K, ID) + H(L, ID))      |
| 0047         |        | F(K)=F(K)+P3*( H(I,ID)+2.0*H(J,ID)+4.0*H(K,ID)+2.0*H(L,ID))                           |
| 0048         |        | F(L)=F(L)+P3*(2.0*H(I,ID)+H(J,ID)*2.0*H(K,ID)+4.0*H(L,ID))                            |
| 0049         |        | GO TO 205                                                                             |
| 0050         |        | 202 $F(I) = F(I) + V(ID, I)$                                                          |
| 0051         |        | F(J) = F(J) + V(ID, J)                                                                |
| 0052         |        | F(K)=F(K)+V(ID,K)<br>F(L)=F(L)+V(ID,L)                                                |
| 0053<br>0054 |        | 205 IF(IC-5) 207,207,200                                                              |
| 0054         |        | 207 IF(LYL(N,IE)) 209,209,208                                                         |
| 0056         |        | 208 P3=DX+DY+(KD(I,IE)+KD(J,IE)+KD(K,IE)+KD(L,IE))/                                   |
| 0057         |        | <pre># (B(I,IE)+B(J,IE)+B(K,IE)+B(L,IE))/36.0</pre>                                   |
|              |        |                                                                                       |

| 0058 |   |      | F(I) = F(I) + P3 * (4, 0 * H(I, IC) + 2, 0 * H(J, IC) + H(K, IC) + 2, 0 * H(L, IC)) |
|------|---|------|-------------------------------------------------------------------------------------|
| 0059 |   |      | F(J) = F(J) + P3 + (2.0 + H(I, IC) + 4.0 + H(J, IC) + 2.0 + H(K, IC) + H(L, IC))    |
| 0060 |   |      | F(K) = F(K) + P3 * (H(I,IC) + 2.0 * H(J,IC) + 4.0 * H(K,IC) + 2.0 * H(L,IC))        |
| 0061 |   |      | F(L) = F(L) + P3 * (2.0 * H(I, IC) + H(J, IC) + 2.0 * H(K, IC) + 4.0 * H(L, IC))    |
| 0062 |   |      | GO TO 200                                                                           |
| 0063 |   | 209  | F(I) = F(I) - U(IE, I)                                                              |
| 0064 |   |      | F(J)=F(J)-U(IE,J)                                                                   |
| 0065 |   |      | F(K) = F(K) - U(IE, K)                                                              |
| 0066 |   | 1    | F(L)=F(L)-U(IE,L)                                                                   |
| 0067 |   | 200  | CONTINUE                                                                            |
| 0068 | C |      |                                                                                     |
| 0069 |   | 220  | NNC=NC(ID)                                                                          |
| 0070 |   |      | IF(NNC) 270,270,250                                                                 |
| 0071 |   | 250  | DO 260 I=1,NNC                                                                      |
| 0072 |   |      | J=NOC(I.ID)                                                                         |
| 0073 |   |      | F(J)=G(J,1,ID)*HC(I,ID,1)                                                           |
| 0074 |   |      | CONTINUE                                                                            |
| 0075 |   |      | IF(ID-4) 300,275,300                                                                |
| 0076 |   |      | IF(NNF) 300,300,280                                                                 |
| 0077 |   | 280  | DO 290 I=1,NNF                                                                      |
| 0078 |   |      | J=NFL(I,1)                                                                          |
| 0079 |   |      | K = NFL(1,2)                                                                        |
| 0800 |   | 0.00 | F(J) = F(J) + TR(I, NT) + 0.5                                                       |
| 0081 |   |      | F(K) = F(K) + TR(I, NT) * 0.5                                                       |
| 0082 | C |      | ONTL COLUCITD)                                                                      |
| 0083 | Ċ |      | CALL SOLV2(ID)                                                                      |
| 0085 | 0 |      | DO 400 I=1.NNO                                                                      |
| 0086 |   | 100  | H(I,IE)=(F(I)+H(I,IE))*0.5                                                          |
| 0087 |   |      | CONTINUE                                                                            |
| 0081 |   | 1000 | RETURN                                                                              |
| 0089 |   |      | END                                                                                 |
| ~~~~ |   |      |                                                                                     |
|      |   |      |                                                                                     |

| 0001 |   | SUBROUTINE SOLV2(ID)                                                      |
|------|---|---------------------------------------------------------------------------|
| 0002 | С |                                                                           |
| 0003 | C | *********                                                                 |
| 0004 | С | *                                                                         |
| 0005 | C | * TO SOLVE SIMULTANEOUS EQUATIONS *                                       |
| 0006 | С | * *                                                                       |
| 0007 | С | * * * * * * * * * * * * * * * * * * * *                                   |
| 0008 | C |                                                                           |
| 0009 | - | COMMON NEL, NNO, NSTEPS, IID, NP, NE, G(500, 29, 4), T(450, 4), S(450, 4) |
| 0010 |   | * DX.DY.DT,NOP(450,4),NC(4),NOC(80,4),F(500),Q(450,4),                    |
| 0011 |   | <pre>* H(500,5),V(4,500),U(4,500),HC(80,4,144),KD(500,4),</pre>           |
| 0012 |   | * B(500,4),D(7,2),E(7),NBAND                                              |
| 0013 |   | COMMON LYL(450,4), NWEL,ST(500),NOB(40),SJ(40),                           |
| 0014 |   | * HJ(40,4), HDT,LXL(500,4),IP,H0(500,4),NBK,NLL,                          |
| 0015 |   | <pre>* LBL(287),NL(15),NLE(15,50),NLP(15,50),IHW</pre>                    |
| 0016 |   | REAL*4 KD,R                                                               |
| 0017 |   | REAL*8 F.G                                                                |
| 0018 |   | DO 300 N=1,NNO                                                            |
| 0019 |   | I=N                                                                       |
| 0020 |   | DO 290 L=2.NBAND                                                          |
| 0021 |   | I=I+1                                                                     |
| 0022 |   | 290 F(I)=F(I)-G(N,L,ID)*F(N)                                              |
| 0023 |   | 300 F(N) = F(N)/G(N, 1, ID)                                               |
| 0024 | C |                                                                           |
| 0025 |   | N=NNO                                                                     |
| 0026 |   | 350 N=N-1                                                                 |
| 0027 |   | IF(N) 500,500,360                                                         |
| 0028 |   | 360 L=N                                                                   |
| 0029 |   | DO 400 K=2.NBAND                                                          |
| 0030 |   | L=L+1                                                                     |
| 0031 |   | IF(G(N,K,ID)) 370,400,370                                                 |
| 0032 |   | 370 F(N) = F(N) - G(N, K, ID) * F(L)                                      |
| 0033 |   | 400 CONTINUE                                                              |
| 0034 |   | GO TO 350                                                                 |
| 0035 |   | 500 RETURN                                                                |
|      |   | END                                                                       |


| 0001           | SUBROUTINE GDATA                                     |                                                    |
|----------------|------------------------------------------------------|----------------------------------------------------|
| 0002           | C                                                    | •                                                  |
| 0003<br>0004   | C * C *                                              | *******                                            |
| 0005           | C * SUB PROGRAM FOR DATA                             | ENTRY *                                            |
| 0006           | C *                                                  | *                                                  |
| 0007           | C ************************************               | * * * * * * *                                      |
| 0009           | -                                                    | ID,NP,NE,G(500,29,4),T(450,4),S(450,4),            |
| 0010           |                                                      | 0,4),NC(4),NCC(80,4),F(500),Q(450,4),              |
| 0011<br>0012   | * H(500,5),V(4,50<br>* B(500,4),D(7,2)               | 0),U(4,500),HC(80,4,144),KD(500,4),<br>F(7),NBAND  |
| 0013           | COMMON LYL(450,4),                                   | NWEL,ST(500),NOB(40),SJ(40),                       |
| 0014           |                                                      | ,LXL(500,4),IP,H0(500,4),NBK,NLL,                  |
| 0015           | * LBL(287),NL(15)<br>COMMON /BK2/NNF,NFL(20          | ,NLE(15,50),NLP(15,50),IHW                         |
| 0017           | REAL*4 KD.L                                          | , _ , , IR ( E 0 , 00 , )                          |
| 0018           | REAL*8 F,WNA(40),G                                   |                                                    |
| 0019<br>0020   | C<br>ACCEPT *,IHIN                                   | 10:READ >0:FILE                                    |
| 0021           | ACCEPT *, TBAI                                       | ITO MODIFY T VALUE                                 |
| 0022           | ACCEPT *,KBAI<br>C                                   | TO MODIFY KD VALUE                                 |
| 0023           |                                                      | D, NSTEPS, NP, NE, NBAND, NWEL, IP, IHW, DX, DY, I |
| 0025           | * NBK, NLL                                           |                                                    |
| 0026<br>0027   | 100 FORMAT(1015,3F10.5/215<br>131 FORMAT(6F10.5)     | )                                                  |
| 0028           | C                                                    |                                                    |
| 0029           | IF(NWEL) 190,190,180                                 |                                                    |
| 0030<br>0031   | 180 READ(17,136) (WNA(I),N<br>190 CONTINUE           | OB(I), I=1, NWEL)                                  |
| 0032           | 136 FORMAT(5(A8,I4))                                 | · ·                                                |
| 0033           | 0                                                    |                                                    |
| 0034           | READ(17,101) (NC(I),I=<br>DO 200 I=1,ID              | 1,ID)                                              |
| 0.036          | J=NC(I)                                              |                                                    |
| 0037           | IF(J) 200,200,201                                    |                                                    |
| 0038<br>0039   | 201 READ(17,102) (NOC(K,I)<br>READ(17,103) (HC(K,I,1 |                                                    |
| 0040           | 200 CONTINUE                                         | ) I K-1 J O Z                                      |
| 0041           | 101 FORMAT(415)                                      |                                                    |
| 0042 .<br>0043 | 102 FORMAT(2014)<br>103 FORMAT(20F4.0)               |                                                    |
| 0044           | 0                                                    |                                                    |
| 0045           | READ(17,141) NNF                                     |                                                    |
| 0046<br>0047   | IF(NNF) 400,400,410<br>410 READ(17,142)((NFL(I,J)    | .J=1.2).T=1.NNF)                                   |
| 0048           | DO 420 I=1,NNF                                       |                                                    |
| 0049<br>0050   | 420 READ(17,143) (TR(I,J),                           | J=1,NSTEPS)                                        |
| 0050           | 400 CONTINUE<br>141 FORMAT(I5)                       | · · · · · · · · · · · · · · · · · · ·              |
| 0052           | 142 FORMAT(2014)                                     |                                                    |
| 0053<br>0054   | 143 FORMAT(10F8.0)<br>C                              |                                                    |
| 0055           | IF(NBK.EQ.0) GO TO 500                               |                                                    |
| 0056           | READ(3,138) (LBL(I),I=                               | 1,NEL)                                             |
| 0057           | READ(3,146) (NL(I),I=1                               | ,NLL)                                              |
|                |                                                      |                                                    |
|                |                                                      |                                                    |

3 – 8

| 0058         |              | DO 510 I=1,NLL                                                                                   |
|--------------|--------------|--------------------------------------------------------------------------------------------------|
| 0059         | 610          | J≃NL(I)<br>READ(3,147) (NLE(I,N),NLP(I,N),N=1,J)                                                 |
| 0060<br>0061 |              | CONTINUE                                                                                         |
| 0062         |              | FORMAT(1015)                                                                                     |
| 0063         |              | FORMAT(10(I4,I2))                                                                                |
| 0064         | C            |                                                                                                  |
| 0065         |              | WRITE(6,104) NEL, NNO, ID, NSTEPS, NP, NE, NBAND, NWEL, IP, IHW, DX, DY, DT,                     |
| 0066         |              | * NBK, NLL                                                                                       |
| 0067         |              | IF(NWEL) 205,205,204                                                                             |
| 0068         |              | WRITE(6,137) (WNA(I),NOB(I),I=1,NWEL)                                                            |
| 0069         | 205          | CONTINUE<br>WRITE(6,105) (I,NC(I),I=1,ID)                                                        |
| 0070<br>0071 |              | DO 210 I=1, ID                                                                                   |
| 0072         |              | J=NC(I)                                                                                          |
| 0073         |              | IF(J) 210,210,211                                                                                |
| 0074         |              | DO 212 K=1,J                                                                                     |
| 0075         | 212          | WRITE(6,106) I,NOC(K,I),(N,HC(K,I,N),N=1,NSTEPS)                                                 |
| 0076         | 210          | CONTINUE                                                                                         |
| 0077         |              | DT=DT/2.0                                                                                        |
| 0078         |              | HDT=DT/2.0<br>IF(NNF) 430,430,440                                                                |
| 0079<br>0080 | 440          | WRITE(6,144) NNF                                                                                 |
| 0081         | 440          | DO 435 $I=1$ , NNF                                                                               |
| 0082         | 435          | WRITE(6,145) (NFL(I,J),J=1,2),(J,TR(I,J),J=1,NSTEPS)                                             |
| 0083         |              | CONTINUE                                                                                         |
| 0084         |              | IF(NBK.EQ.0) GO TO 550                                                                           |
| 0085         |              | WRITE(6,148)                                                                                     |
| 0086         |              | DO 540 I=1.NLL                                                                                   |
| 0087         | <b>C</b> A A | J=NL(I)<br>WRITE(6,149) I,(N,NLE(I,N),NLP(I,N),N=1,J)                                            |
| 0088         |              | CONTINUE                                                                                         |
| 0089<br>0090 | - + -        | FORMAT(/10X,' (PERIMETER OF FLOW CALCULATION)'/)                                                 |
| 0091         |              | FORMAT( $10X$ , $10$ , $12/(10X, 10('(', 12, ')', 14, 12, 2X)))$                                 |
| 0092         |              | FORMAT(1H1///10X,'<<< NIGERIA SOKOTO AQUIFER MODEL INPUT'                                        |
| 0093         |              | * ' DATA >>>'//10X,'NEL =',15,7X,'NNO =',15/10X,                                                 |
| 0094         |              | * 'ID =', I5, 7X, 'NSTEPS=', I5/10X, 'NP =', I5, 7X,                                             |
| 0095         |              | * 'NE =', 15/10X, 'NBAND =', 15, 7X, 'NWEL =', 15/10X,                                           |
| 0096         |              | * 'IP =',I5,7X,'IHW =',I5/                                                                       |
| 0097         |              | <pre>* 10X,'DX =',F11.5,1X,'DY =',F11.5/ * 10X,'DT =',F11.5/10X,'NBK =',I5,7X,'NLL =',I5/)</pre> |
| 0098<br>0099 |              | FORMAT(/10X.'(HEAD-KNOWN-NODE) '/10X.4('NO.',11,'AQUIFER',15,2X))                                |
| 0100         | 105          | FORMAT(/10X,'NO', I1, 'AQUIFER NODE', I5/(10X,5('(',I3,')',F5.1)))                               |
| 0101         |              | FORMAT(//(10X,6(12,F8.4)))                                                                       |
| 0102         | 137          | FORMAT(//(10X,5(A8,'(',I4,')')))                                                                 |
| 0103         | 144          | FORMAT(/10X,I4)<br>FORMAT(10X,2I4/(10X,10('(',I2,')',F8.0)))                                     |
| 0104         | 145          | FORMAT(10X,2I4/(10X,10('(',I2,')',F8.0)))                                                        |
| 0105         | С            |                                                                                                  |
| 0106         |              | READ(9,107) ((NOP(I,J),J=1,4),I=1,NEL)<br>DO 215 I=1,ID                                          |
| 0107<br>0108 |              | DO 215 J=1,NEL                                                                                   |
| 0109         | 215          | LYL(J,I)=1                                                                                       |
| 0110         |              | FORMAT(8011)                                                                                     |
| 0111         |              | DO 220 I=1.ID                                                                                    |
| 0112         |              | READ(2) $(T(J,I), J=1, NEL)$                                                                     |
| 0113         |              | READ(2) $(S(J,I), J=1, NEL)$                                                                     |
| 0114         |              | DO J=1.NEL                                                                                       |
|              |              |                                                                                                  |

3 — 9

| 0115 | T(J.I)=T(J.I)*TBAI           |
|------|------------------------------|
| 0116 | END DO                       |
| 0117 | 220 CONTINUE                 |
| 0118 | 107 FORMAT(32I4)             |
| 0119 | 108 FORMAT(10F8.0)           |
| 0120 | 109 FORMAT(10F8.5)           |
| 0121 | C                            |
| 0122 | DO 245 I=1,ID                |
| 0123 | DO 245 J=1,NNO               |
| 0124 | 245 LXL(J,I)=1               |
| 0125 | 140 FORMAT(80I1)             |
| 0126 | DO 250 I=1,ID                |
| 0127 | READ(2) (KD(J,I),J=1,NNO)    |
| 0128 | READ(2) (B(J,I),J=1,NNO)     |
| 0129 | DO J=1,NNO                   |
| 0130 | KD(J,I)=KD(J,I)*KBAI         |
| 0131 | END DO                       |
| 0132 | 250 CONTINUE                 |
| 0133 | READ(4) (H(I,1),I=1,NNO)     |
| 0134 | IE=ID+1                      |
| 0135 | IF(IHIN.EQ.0) THEN           |
| 0136 | DO 290 I=2.IE                |
| 0137 | 290 READ(4) (H(J,I),J=1,NNO) |
| 0138 | ELSE                         |
| 0139 | DO I=1.IHIN-1                |
| 0140 | DO J=2.IE                    |
| 0141 | READ(29)                     |
| 0142 | END DO                       |
| 0143 | END DO                       |
| 0144 | DO I=2,IE                    |
| 0145 | READ(29) (H(J,I),J=1,NNO)    |
| 0146 | END DO                       |
| 0147 | END IF                       |
| 0148 | 112 FORMAT(10F8.6)           |
| 0149 | 113 FORMAT(10F8.6)           |
| 0150 | 114 FORMAT(10F8.6)           |
| 0151 | 115 FORMAT(10F8.0)           |
| 0152 | 116 FORMAT(10F8.2)           |
| 0153 | 117 FORMAT(20F5.1)           |
| 0154 | DO 302 I=1,NNO               |
| 0155 | 302 ST(I)=0.0                |
| 0156 | DO 303 I=1,ID                |
| 0157 | DO 303 J=1,NNO               |
| 0158 | H0(J,I)=H(J,I+1)             |
| 0159 | V(I,J)=0.0                   |
| 0160 | 303 U(I,J)=0.0               |
| 0161 | C                            |
| 0162 | RETURN                       |
| 0163 | END                          |

