社会開発調査部報告書

AND RURAL DEVELOPMENT

FEDERAL DEPARTMENT OF WATER RESOURCES

FEDERAL

REPUBLIC OF NIGERIA

THE STUDY FOR GROUNDWATER DEVELOPMENT IN SOKOTO STATE

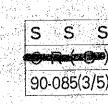
VOLUME 3 SUPPLEMENTARY REPORT 1

JULY,19

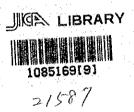
524 61.8

SSS

FEDERAL DEPARTMENT OF WATER RESOURCES MINISTRY OF AGRICULTURE, WATER RESOURCES AND RURAL DEVELOPMENT FEDERAL REPUBLIC OF NIGERIA


THE STUDY FOR GROUNDWATER DEVELOPMENT

IN SOKOTO STATE


VOLUME 3 SUPPLEMENTARY REPORT 1

JULY,1990

JAPAN INTERNATIONAL COOPERATION AGENCY

No. 32

.

FEDERAL DEPARTMENT OF WATER RESOURCES MINISTRY OF AGRICULTURE, WATER RESOURCES AND RURAL DEVELOPMENT FEDERAL REPUBLIC OF NIGERIA

THE STUDY FOR GROUNDWATER DEVELOPMENT

SOKOTO STATE

VOLUME 3 SUPPLEMENTARY REPORT 1

JULY, 1990

JAPAN INTERNATIONAL COOPERATION AGENCY

	· · · · · · · · · · · · · · · · · · ·			
· · · · · · · · · · · · · · · · · · ·		国際協力事業団 2158?		

TABLE OF CONTENTS

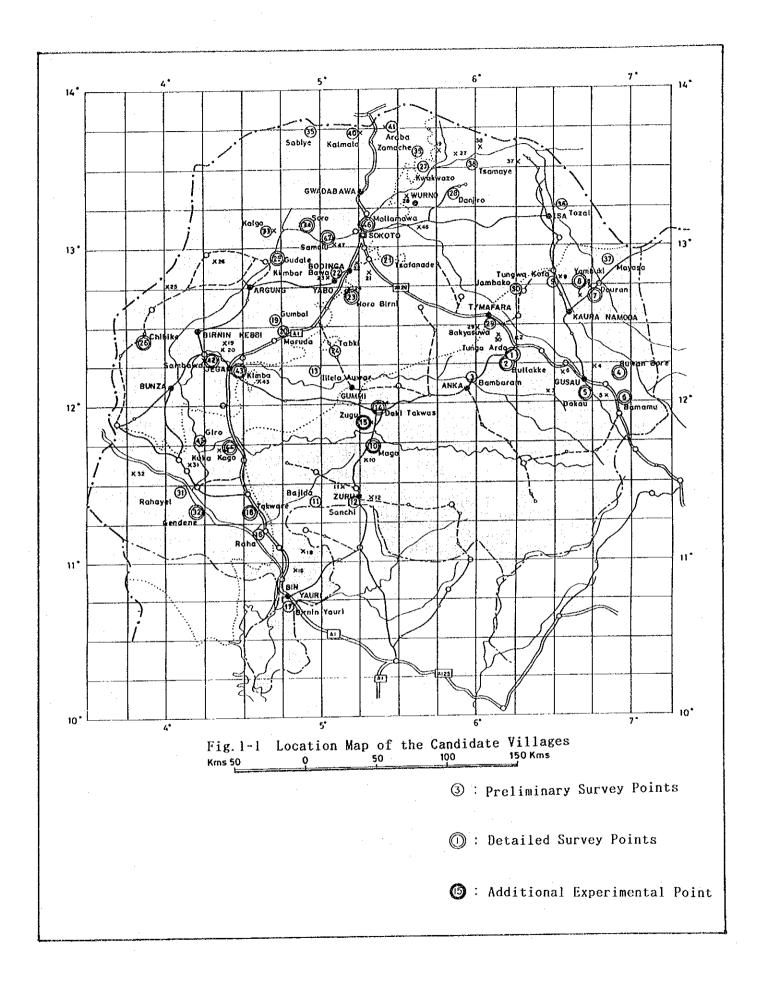
1.	SUMM	ARY OF SITE SURVEY	1-1
	1-1 Pre	liminary Survey	1-1
	1-2 Det	ailed Survey	1-12
	1-3 Ado	litional Experimental Survey	1-16
2.	TRANSI	ENT ELECTROMAGNETIC SURVEY (TEM Survey)	2-1
	2-1 The	Principle of TEM	2-1
	2-2 Me	asuring System	2-3
	2-3 Res	ults of Field Work	2-6
	2-4 Res	ults of Interpretation	2-11
3.	SEISMIC		3-1
4.	HYDRO	GEOLOGICAL MAPS	4-1
			1.
	No. 1	Tunga Ardo	4-2
	No. 2	Bullakke	
	No. 3	Bambaram	4-12
	No. 4	Ruwan Bore	4-13
	No. 5	Dokau	4-18
	No. 6	Bamamu	4-22
	No. 7	Dauran	4-26
••] •	No. 8	Yambuki	4-31
	No. 9	Tungwa Kofa	4-36
	No. 10	Maga	4-40
	No. 11	Bajida	4-47
	No. 12	Sanchi	4-50
	No. 13	Illelar Auwal	4-53
	No. 14	Daki Takwas	4-56
	No. 15	Zugu	4-61
	No. 16	Raha	4-67
	No. 17	Birnin Yauri	4-70
	No 18	Takware	4-73

No. 19	Gumbai	4-77
 No. 20	Maruda	4-81
No. 21	Tsafanada	4-85
No. 22	Kimbar Bawa	4-89
No. 23	Horo Birni	4-93
No. 24	Tabki	4-100
No. 25	Gudale	4-104
No. 26	Chibike	4-108
No. 27	Kwakwazo	4-112
No. 28	Danjiro	4-116
No. 29	Bakyasuwa	
No. 30	Jambako	4-123
No. 31	Rahayel	4-127
No. 32	Gandene	4-130
No. 33	Kalgo	4-134
No. 34	Soro	4-138
No. 35	Sabiye	4-143
No. 36	Tozai	4-146
No. 37	Mayasa	4-149
No. 38	Tsamaye	4-152
No. 39	Zamache	4-156
No. 40	Kalmalo	4-159
No. 41	Araba	
No. 42	Sambawa	
No. 43	Kimba	4-171
No. 44	Kuka Kogo	4-177
No. 45	Giro	4-181
No. 46		4-184
No. 47		4-189
		• •

APPENDIX

- 1. LIST OF DATA COLLECTED
- 2. PREVIOUS INVESTIGATION AND RELEVANT GROUNDWATER
- 3. QUESTIONNAIRE SHEEL USED IN THE FIELD SURVEY
- 4. TECHNICAL TRANSFER PROGRAM
- 5. SURVEY EQUIPMENT / MATERIALS SUPPLIED BY JICA
- 6. SPECIFICATION FOR TEST DRILLING AND TEST WELL CONSTRUCTION
- 7. SPECIFICATION FOR TEST WELL CONSTRUCTION AND HAND PUMP INSTALLATION
- 8. SPECIFICATION FOR LEVELLING SURVEY
- 9. SPECIFICATION FOR MODEL WATER SUPPLY SYSTEM CONSTRUCTION
- 10. SCOPE OF WORK

1. SUMMARY OF SITE SURVEY


1-1 Preliminary Survey

The field surveys for the hydrological study and related water supply study were conducted by separate groups. While the hydrological study group did not always locate its observations with respect to the candidate villages, the group for hydrogeological and related water supply study visited the candidate villages one by one.

Forty-seven villages were visited from bases located at Sokoto, Argungu, Gusau, Zuru, Yauri and Koko. (Fig. 1-1)

The study group, after arriving in each candidate village, was divided into small parties for more effective engagement in the following activities:

- a) Interview with the village head or village representative on the social conditions of the village, especially on water supply circumstances as reflected in the prepared questionnaire.
- b) Observation of the existing water supply system and water sources, including measurement of water level in wells, checking of water quality (color, taste, temperature, electric conductivity, etc.), and sampling water for quality tests in the laboratory.
- c) Topographic and geological mapping of the village and its surrounding area by pacing distances and using a clinometer to determine azimuth. Most of the villages have been mapped on a scale of 1/5,000 to represent the following items:
 - clustered areas
 - location of existing water sources for domestic use
 - peculiar topographic features such as alluvial flats, terraces, ditches, or water channels, hills, cliffs, etc.
 - type and facies of the rock where outcrops are found
 - location of geophysical survey points
 - direction

 d) Resistivity prospecting (ERP) in a method of vertical sounding using an McOHM type resistivity meter and four equally spaced electrodes. This survey was usually conducted by two parties with the cooperation of 5 to 8 local, casual laborers in each village.

The number of points measured was 2 to 4 in each village.

e) Resistivity mapping or resitivity sounding through the magnetotelluric method (MT method) by use of ELF-MT or PL-MT equipment. Two to five points were surveyed in each village with the cooperation of 2 to 4 local, casual laborers. For a comparison of the result with the above ERP, the survey points were located mostly to correspond with those of the ERP.

1 - 3

The results of preliminary survey are summarized in Table 1-1.

Table 1-1 Summary of Findings in Candidate Villages (1/8)

SQ	Detailed Survey	S/Q	S\Q	I	SVQ	SIG	DS
Grand-	water potential	Generally poor (High in partial weathered zone)	Generally poor	Poor	Generally poor (High in partial weather- ed zone)	High in deep weather ed zone	Generally poor
Suitable	Water Supply System	Semi- urban type or rural type	Hand- pumps or Rural system1	Hand- pumps	Semi- urban type or Rural type system	Semi- urban type system	Hand- pump or Rural type system
siopment	Topgoraphic Characteristics	Gentle bill	Rock hill	Generally flat	Close to river	 Generally flat Near from a stream 	 Generally flat Small fadama
water -Deve	Electric Conduc- tivity	(μ /cm) 280	660	l ···	002	12.4	I
on for Ground	Free Water Level m. B. G. S	14.7	I	1	13.7	12.4	1
Natural Condition for Groundwater Development	Hydrogeological Feature Type, depth of formation or aquifer, Estimated yield	 Basement (Sch) weathered / fractured schist 	 Basement(Gr) Fadama/ weathered granite 	• Basement	 Basement Partially weathered to deep (more than 100m) 	 Basement (Gn) Deep weathering (more than 200m) or factured zone along tectonic line 	 Basement (Gr) Partially covered with recent river deposit
Existing Water Source of Demestic Use	Quantity, Qualily and Major Probem	 Well is far from settlement Not enough year, through year, 	 Not enough (only one hand- pump in the scattered village) 	 Not enough through year Far (2km) from Settlement 	 Muddiness 	 Not enough that through year Salty (well), (high E/C) 	 Not enough, no water in dry season Guinea worm
Existing Water Sou	Type, Number of Water Soure	 1 deep dug well River Ponds 	e 1 hamd- pump	 Limited to river water 	 1 deep dug well stream 	 A number of private deep wells stream 	 Small streams and ponds
Remarks on	Economic, Social or Health Environment	• Guinea worm	1	 	 Guinea worm 	• Guinea worm	• Semi- urban
Access.	ibility	Pood Cood	Good	Excel- lent	Fairlly good	Poor	Poor
Population.	Village Type (Clustering)	 30,000 Scattererd (12 settlements) 	 10,500 Scattererd 	10,000 Scattered Each settlement is very small	 11,500 Two concentrated settlements 	 10,000 Concentrat- ed (about 5ha) 	 10,000 Scattererd (7 settle- ments)
Villace Norre	Local Government	Tunga Ardo Anka	Bullakke	Bambaram Anka	Ruwan Bore Gusau	Dokou Gusau	Bamamu Gusau
	ż Ż		୍ ମ	m	4	വ	Q

TABLE 1-1 Summary of Findings in Candidate Villages (2/8)

	D/S Detailed Survey	D/S	D/S	I	D/S	·	I
	Grand. I water potential	General- ly poor (High in partial weather ed zone)	General- ly poor (High in partial weather ed zone)	General- ly poor	Generally poor (High in partial weath- ered zone)	Generally poor (High in partial weath- ered zone)	Generally poor (High in partial weath- ered zone)
	Suitable Water System	Semi- urban type	Semi- urban type or Rural type system	S. A. R. D. A has a plan to drill hand pumps	Semi- urban type	Hand- pumps	Hand- pumps are preferable (by request)
loptisent	Topgoraphic Characteristics	 Generally flat Near from a river 	Gentle slope along a river	Flat but near to small hills	 Generally flat 	 A smooth hill, near from a river 	 Generally flat Sur- rounded by mountains
water Deve	Electric Conduc- tivity	(mc/m)	1,200	1	300 300	l	190
on for Ground	Free Water Level m. B. G. S	I	12.0	I	7.8	ľ	4.0
Natural Condition for Groundwater Development	Hydrogeological Feature Type, depth of (formation or yield	 Basement (Sch) Deep Weathering to 40~70m 	 Basement(Gn, Peg) Deep weathering (50-70m) 	 Basement Fresh rock is near to GS (15~40m) 	 Basement Irregular deep weathering (60~100m or more) 	 Basement (Gn) Shallow surface weathering (15 to 45m) 	 Basement (Gf, Qz) Weathered gneiss
Existing Water Source of Demestic Use	quantity. Qualify and Major Probern	 Not enough through year 	 Not enough in dry season Salty (well) 	 Not enough through year Far (2km) from Settlement 	 No water from wells in dry season. 	• Not clean	 Not enough through year
Existing Water Sou	Type, Number of Water Soure	 Stream 2 hand 2 pumps (One is broken) 	 1 deep dug well Earth dam 	• Stream	 1 hand pump 6 deep dug wells streams 	 Limited to river water 	 2 shallow dug wells
	Remarks on Economic, Social or Health Environment	 Semi- urban 	 Guinea worm Large village Semi- urban 	I	 Semi- urban scale 	1	 Located in moun- tains area
	Access- ihility	Excel- lent	Fairly good	Good	Excel- lent	Very poor	Poor
	Population, Vullage Type (Clustering)	23,500 Concentrat- ed (about 20ha)	25,000 Concentrat- ed (about 40ha)	1,500 Scattered (3 settlements)	 4,000 2 concent- rated settlements 	 4,000 Concentrated 	 15,000 Not concentrated, but not so scattered
	Village Name Local Government	Dauran • Kaura Namoda	Yambuki • Kaura Namoda	Tungwa Kofa • Kaura Namoda	Maga Luru Zuru	Bajida Suru	Sanchi a Zuru
	W0.	2	ω	٥٦ ۲	10	11	12

Table 1-1 Summary of Findings in Candidate Villages (3/8)

80	Detailed Survey	l	S/Q	D/S•	l	1	SVQ
Grand-	water potentiel	Gezeruity भहंध	Generaliy poor	High in deep weathered zotue	Ge serriby Ligh	Very poor	Gazarrally Migh (partially)
Suitable	Wator Supply System	Semi- urban type	Semi- urban type system	Semi- urban type system	Rural type system or Hand- pumps	Hand- pums	Hand- pumps (are by request)
elopment	Topgoraphic Churscteristics	 General- ly flat, but slopes gently to swamp 	 Generally flat, near from fadama 	 A gentle slope, near from a river 	 A gentle hill surrounde d by fadama 	 Smooth hills devlded by small streams 	 Generally flat, near from a river
water Dev	Electric Conduc- tivity	(µu/c 13) 280 285		330 ~ 470	330	510 ₹	630
ion for Ground	Free Water Level m. B. G. S	9.0	9.0~17.8	10,9~11.2	2.6	7.0~15.6	5.0
Natural Condition for Groundwater Development	Hydrogeological Feature Type, depth of formation or aquifer, Estimated	• Gwandu F.	 Basement Partially covered With recent river deposit Very shallow sur- face weathering (5to 15m) 	 Basement Weathered Zone (5~10m³/d/m) 	Quaternary deposit - 10~20m, (100m3/d/m)	 Basement Weathered/frac- tured Zone 	• Illo F. (70m3/d/m)
Existing Water Source of Demestic Use	Quantity, Quality and Major Probem	 Not enough in dry season 	 Not enough in dry season 	 Mot enough in dry season 	 Not enough and poor quality 	 Recharging rate is very low in every well Turbid through year 	 Not enough in dry season
Ezisting Water So	Type, Number of Water Soure	 At leasts shallow wells 	 More than 10 deep dug wells 	 2 deep dug wells 	 2 shallow dug wells 	 7 deep dug weils 	 More than 80 shallow dug wells mostly dried up in dry aerson
Romarks on	Economic, Social or Health Environment	I	 Semi- urban Located at a tramport junction 	1	· · · · · I · · · · ·	 Semi- urben 	J
Access-	ibility	F'airly good	Excel- lent	Excel- lent	Poor	Excel- lent	Good
Population,	Village Type (Clustering)	 10,000 Concentrat- ed (about 14.4ha) 	 20,000 Concentrat- ed (about 35ha) 	 4,000 Concentrat- ed (about 10ha) 	 2,200 Concentrat- ed (about 20he) 	 22,000 Concentrat- ed (about 20ha) 	 10,000 Concentrat- ed (about 25ha)
Village Name	Local Government	Illelar Auwal Gummi	Daki Takwas Gummi	Zugu Gummi	Raha Yauri	Birnin Yauri Yauri	Takware Yauri
	No	ř	14	ю Н	16	14	87

Table 1-1 Summary of Findings in Candidate Villages (4/8)

5	D/S Detailed Survey	I	I	I	1	SVC	Ī
	urand- water potential	Generally high	Generally high	Generally high	Generally high	Generally high	Generally poor
	Supply Supply System	ha she ha		Rural type	Hand- pumps	Semi- urban type system	Rural type
elopment	Topgoraphic Characteristics	 Narrow valley plain Fadama 	 Narrow valley plain Fadama 	 The edge of plateau 	 Gentie slope, near from river, pond 	• Generally flat	 Generally flat, near from Fadama
water Devi	Electric Conduc- tivity	(µwem) 510 570	260	115 - 240	380	300	240
ion for Ground	Free Water Levei m. B. G. S	3.8~6.15	3.2~4.15	8. 8. 9.	12.2~15.0	45.5	47.3
Natural Condition for Groundwater Development	Hydrogeological Feature Type, depth, of formation or aquifer, Estimated yield	 Gwandu F. Alluvium (- 4~-10m, >100m3/d/m) 	 Gwandu F. Alluvium (- 4~-6m, >100m³/d/m) 	 Kalambaina F./ Rima G. (10m³/d/m) 	. Gwandu F./ Kalambaina F. (80m³/d/m)	• Kalambaina F. (40m ³ /d/m)	 Rimam F. / Gundumi F. (30)(60/m³/d/m)
Eristing Water Source of Demestic Use	Quantity, Qualily and Major Probem	 Enough water through year 	 Enough water through year 	 No water from dug wells in dry season 	 Quality is good (well) 	 Not enough in dry season 	 Not enough in dry season
Existing Water So	Type, Number of Water Soure	 about 40 shellow dug wells 2 hend pumps (under constraction) 	 about 60 shallow dug wells 3 hand pumpe (under constraction) 	 1 hand pump 5 deep dug wells 	 3 deep dug wells pond 	 I deep dug well about 100 shallow dug wells 	 I deep dug well a big pound
Remarks on	Economic, Social or Health Environment		 Less demand for addition- al W/source 	 Very near from Sokoto 	 Less demand for addition- al W/source 	 High demand for borehol 	 Less demand for addition- al Wisource
Access	ibility	Good	Poor	Good	Poor	Fairly good	Excel- lent
Population,	Village Type (Clustering)			 2,000 Not Concentrated, but not so scattered 	300 Concentrat- ed (about 1.5ha)	8,000 Concentrat- ed (about 25ha)	 200 Concentrat- ed (about 2ha)
Village Name	Local Government	Gumbai Birnin kebbi	Maruda Birnin kebbi	Tsafanade Bodinga	Kimbar Bawa Bodinga	Horo Birmi Yabo	Tabki Yabo
	No.	6 r	50	51	52	23	27 44

1 – 7

Table 1-1 Summary of Findings in Candidate Villages (5/8)

		r	F	r		r	1
S/C	Detailed Survey	SVQ	S/Q		1	1	· · · ·
Grand-	water potential	Generally high	Generaliy Ligh	Generally high	Generally bigh	Generally poor	Generally poor
Suitable	Wster Supply System	Semi- urban type system	Semi- urban type or Rural type system	Semi- urban type system or Hand- pumps	Rural type system or Hand- pumps	Rural type system or Hand- pumps	Hand- pumps (many)
lopment Topgoraphic Characteristics		Generally flat, near from big Fadama of Niger river	Generally flat along a stream	Fadama of River Rima	Generally flat Near from small Fadamas	Generally flat near from a stream	• Generally flat, along a river
ater Develo	Electric T Conduc- C tivity	(µu/cm)	9 20 7	480	1,650	8	250
a for Groundw	Free Water Level m. B. G. S	6.4~9.7	36.0	7.8~9.2	20.3	1	12.7
Natural Condition for Groundwater Development	Hydrogeological Feature Type, depth of (comation or aquifer, Estimated yield	Gwandu F. Alluvium/ Gwandu F. (30m ³ /d/m)	• Gwandu F. (47m ³ /d/m)	 Rima G. Alluvium/ Rima G. (10m³/d/m) 	• Rima G. (2~10m ³ /d/m)	 Bassment (Gn~Gr) Monotonous surface westhering (30-40m) Partial deep westhering (fissure) (2-10m³)d/m) 	 Bsement (Gr) Weathered/fractured granite (5~10m³/d/m)
	H Quantity, Qualily and Major Probern	Quality is poor, but bearable Not enough in dry season	 Quality is poor, but bearable Not enough through year 	 Quality is poor, but bearable Not enough through year 	 High iron content Not enough in dry season 	 Not enough through year 	• One well is not enough for the so many people
Eristing Water Source of Demestic Use	Type, Number of Water Soure	 4 deep dug well 	 I deep dug well only 	 4 deep dug weils pond (for animals) 	 2 hand pumps 1 deep dug well 	• 1 hand pump	 1 deep dug well Stream
Remarks on	Economic, Social or Health Environment	1	 High demand for further water 	1		 Located near the Gusau Road 	1
Access	ibility	Good	Good	Poor	Poor no access in heavy rain	Good	Poor
Population.	Village Type (Clustering)	11,000 Concentrat- ed (about 10ha)	5,000 Scattered (3 settlement)	4,000 Concentrat- ed (about 15ha)	 2,000 Concentrat- ed (about 2ha) 	 1,000 (~3,000) Scattered (more than 3) (settlements) 	 22,000 Concentrat- ed (about 50ha)
Villare Name	Local Gevernment	Gudale Argungu	Chibike Argungu	Kwakwazo Wurno	Danjiro Wurno	Bakyasuwa Talata Mafara	Jambako Talata Mafara
		25	26	51	58	53	30
			•	1 0			

1 – 8

Table 1-1 Summary of Findings in Candidate Villages (6/8)

S/C	Detailed	Survey	I	S/C	I	SVQ	I	<u> </u>
Grand. D		potential St	Generally high	Genarally bigh	Generally (pertially)	Generally high	Generally (particily)	Generally high
Suitable		Supply System	Rural type o system	Semi- urban type or Rural type system	Hand-	Rural type (system	Hand- pumps	Hand- pumps
lopment		Topgoraphic Characteristics	• Generally flat, with I dotted hills	 Gentle hill, near from the River Niger 	 Goalle soomth hill, near from Fedama of River Rima 	 Flat, and near from a river 	 Generally sloping to the NW 	• Generally flat
rster Deve	:	Electric Conduc- tivity	(年 /6日) 330	I	120 ~	$\begin{array}{c} 120\\ \widetilde{}\\ 210\\ 210\end{array}$	55	500
on for Ground		Free Water Level m. B. G. S	13.7	4.0~7.8	19.5~27.7	0.6~0.7	18.5	9. 9.
Natural Condition for Groundwater Development	Hydrogeological Feature	Type, depth of formation or aquifor, Estimated yield	• III0F.	 Ille F. (20∼100m³/d/m) 	• Gwandu F. (20m ³ /d/m)	 Gwandu F. (33m³/d/m) 	 Gwandu F 	• Gwandu F.
Existing Water Source of Domestic Use		Quantity, Qualify and Major Prohem	 Not enough in dry season 	 Not enough in dry season 	 Water quality is poor but bearable . Quantity is barely satisfactory 	 Water quality is poor but bearable Not enough Through year 	 Water quality is poor 	 Water quality is poor, but bearable
Existing Water So		Type, Number of Water Soure	 At least 4 shallow dug wells 	 3 shallow dug wells River (Niger) 	 6 deep dug wells 	o 5 deep dug wells	 1 shallow day well 	 At least 3 shallow day wells
Remarks on	Economic,	Social or Health Environment	 Located on the west aide of the River Niger 	 Located on the west side of the River Niger 	 In rainy season, access roeds are cut off 	I.	 Located near the border of Rapublic of Niger 	 In rain Season, secess roads are cutoff
Access-	Ibility		Poor	Good	Poor	Good	Poor	Роог
Population,	Village Type	(Clustering)	1,500 • Concentrated (about 4ha)	3,100 (~11,000) Concentrated (about 4ba) Scattered village also	 3,000 Concentrat- ed (about 9ha) 	 4,500 Concentrat- ed (about 3ha) 	 3,000 Concentrated (about 6ha) 	 5,000 Concentrated (about 28ha)
Village Name		Local Government	Rahayel .	Gendene • Bagudo	Kalgo Silame	Soro e Silame	Sabiye	Tozai Isa
	;	o V	18	32	33 -	34	iç ç	ဗ္ဗ

Table 1-1 Summary of Findings in Candidate Villages (7/8)

D/S Detailed Survey ł I I. i I 1 (partially) Generally (partially high) Generally high potential Generally Generally Generally Generally poor Grand-2004 200d मृद्धे मु water can be used if rehabilit ated Eristing system is apropria to if rehabili-tated aproprea te if rebabilit ated Semi-urban type system Hand-pumps Existing system Semi-urben type **Existing** system Suitable Water Supply System Plateau, near from Generally flat Generally flæt, neær from Gronyo Dæm es-carpments Generally flat, facing to Kalmelo Lake Generally flat flat, facing to the Zamfara river Generally Characteristics Topgoraphic Natural Condition for Groundwater Development Electric Conduc-tivity Poor but bear-sbie (185~ Poor but bear-sele (515~ 660) (⊭ /cm) 650 700 700 1,700 22 1 20 40 1 295 Free Water Level m. B. G. S 34.0-39.8 7.7~10.0 6.4~10.5 7.7~8.2 80 I Kalambaina F/ 'Rima G. Iydrogeological Feature Gwendu F/ Kalambaina F. Type, depth of formation or squifer, Estimated yield Kalambaina F. Rima G. /Gundumi F. Gwandu F. Basement • . bearable (well) Enough water (river) at not clean Quantity is rather good for the system Water is saity Water quality is poor but bearable Water quality is poor but bearable Not enough through year Water is not so poor but turbid Pool maintenance for power pumps aqaanq basa baa Quantity, Qualily and Major Probam maintenance Maintenance Water Source of Demestic Use for existing Salty but and not borehole encugn Poor • ٠ • • . . . • 2 boreboles with water tanks 3 deep dug wells 2 hand pumps (not moving) 6 deep dug weils Type, Number of Water Soure distribution (not moving) shallow/deep dug wells Zdeep dug wells River (Zemfara) 3 hand pumps l small carth distribu-tion (not moving) 10 deep dug wells Water Water Existing dam 8 Located • along Zamfara • River • Health Environment Resettled by New to the border of Niger In rainy season, access roads are cut of constructi Goronyo Dam urban Guinea worm (a few) Remarks on Semi-Semi-urban jo ao Sconomic, Social ar 1 • Fairly good Access-ibility Faily good Good Good Good Very 10,000 concentrated (about 56ha) 8,000 Concentrate-d (about 14ha) concentrated settlements 5,500 Made up of 18 1,500 Concentrat-ed (about 5ha) 50,000 Concentrat-ed (about 40ha) 3,200 Concentrat-ed (about 20ha) Population, Village Type (Clustering) • • . . ٠ • • ٠ Local Government Village Name Gwadabawa Gwadabawa Sambawa Tsamaye Kalmalo Mayasa Zamache Araba OULTIM Jega Isa ISS х°. 3 33 ŝ ŝ 40 41 · . .

Table 1-1 Summary of Findings in Candidate Villages (8/8)

D/S Detailed Survey ŝ ł SQ ŝ I Generally high Generally bigh Generally Generally high Generally high Grand-water potential 100d Semi-urban type or Rural type system type or Rural type system Semi-urban type system (under preparation) Suitable Water Supply System type system Semi-urben type system Semi-urban Semi-urban escarpments Near from fadama Generally Flat Generally flat, between fadama end hill Gentle slope Gentle slope, facing to Gulbinka bordered by Generally flat, facing Characteristics to the Zamfara river Topgoraphic Natural Condition for Groundwater Development ٠ • • Conduc-tivity Electric (m) H) 140 <u>6</u>3 × 53 ī i ł Free Water Lovel m. B. G. S 23.0~26.0 8.6~11.4 L 22 I (50~100m³/d/m) Kalambaina F/ Rima G. Hydrogeological Feature Type, depth of formation or aquifer, Estimated Gwandu F./ Kalambaina F. (20~80m³/d/m) Gwendu F. (75m³/d/m) (03m³/d/m) IIIo F. IIIo F. . • • . Wells are far (850m) from the settlement Water quality is poor but bearable (well) Quantity is enough, but not clean (river) Not enough through year Very poor quality with sánitary problem Quantity, Quality and Major Probem Quantity is barely satisfactory (well) Existing Water Source of Damestic Use ÷ 6 • • ø Limited to river water, of Gulbinka 6 deep dug wells 2 hand pumps (not moving) 2 deep dug wells Many shallow i hand pump (broken) 3 deep dug Type, Number of Water Sours wells (River Zamfare) wells in the fadame 0 • ę . • 9 fadama of the River Rima along Zamfar a River and dysentery Located Environment Located prevalent Near the Gastro-enteritis Remarks on along Rima River Economic, Social or Health are • e i Bog Access-Ibility Good 500 POOL Good 4,500 Concentrat-ed (about 5ha) 7,300 Concentrat-ed (about 10ha) 10,000 Concentrat-ed (about 5ha) 6,200 Concentrat-ed (about 13ha) 3,500 Concentrat-ed (about 5ha) Population, Village Type (Clustering) • ÷ • ٠ . Local Government Kuka Kogo Mallamawa Village Name Samalu Kimba Sokoto Sokoto Bunza Jega Jega Giro 46 47 43 ž \$ 55

1-2 Detailed Survey

A field survey for hydrogeological study was conducted in detail in the 21 selected candidate villages and their surroundings, based on the results of preliminary hydrogeological investigation and additional aerial photography interpretation. A detailed site survey was simultaneously conducted in order to properly locate test drilling sites. (Fig. 1-1)

This hydrogeological reconnaissance was carried out parallel to geophysical prospecting in each candidate village. Based on the results of reconnaissance and the geophysical prospecting, a comprehensive hydrogeological analysis was simultaneously conducted in order to evaluate the groundwater potential to determine test drilling points and to prepare for the planning of a water supply system.

The results of this work are summarized in Table 1-2 and are presented in detail in the outline maps of the detailed hydrogeological survey in this volume.

V 15	Village Name		Table 1-2 Groundwater Potential		rvey (1/3)	Willingness and Davahility	Access-	Result of Test Drilling	Recommendable
6 9	Population (Local Gov.)	Hydrogeological Features	Result of Geophysical Prospecting	Expected W/Quality	Easth Eavironment	ion enance	ibility	and Well Discharge	Water Supply System
	Tunga Ardo 30,000 (Anka)	-Weathered and fractured schiat with granite dykes -S/C : 9m3/d/m (from existing boreholes)	Partial deep weathering (more than 60m) in the southeast of settlement Higher G/water potential is expected along granite dyke	-Good -E/C 280 (µu/ cm)	Scattered village with 12 settlements Guinea worm disease Urgent necessity for borehole water	Strong (100% of Fami. N1~5/M/F)	Good	۲/D (80m) 17 <i>t</i> /min by عند انگ	Numbers of hand- pump wells with 40 to 50 m depths
13	Bullake 10,500 (Anka)	Thin Alluvial deposits and weathered granite with pegmatite veins ·S/C : 3m ³ /d/m	Basin shaped deep weathering (45~ 90m) in N-S direction controled by structural lineament	-Good -E/C 660	-Scattered village Shortage of water in dry season	Normal (100% of Fami. N1~3/MF)	Good	I	6 to 8 hand-pump wells with depth of 40 to 60 m at the places of basin wide deep weathering
*	Ruwan Bore 11,500 (Gusau)	.Weathered and fractured schist with quartzite veins ·S/C: 0.7-32m3/d/m	-N-S basin shaped deep weathering (70~170m) controled by structural lineament Higher G/water potential along quartzite veins	-Good -E/C 700	-Guinea worm disease -Urgent necessity for borehole water	Normal (More than 50% of Fami. N2~3/M/F)	Fairly good	T/D(84m) 49€/min T/W(90m) 84~1682/min by air lift	Smell capacity power pump elevated tank and gravity destribution system with 4 to 5 communel fauset
10	Dokau 10,000 (Gusau)	Wastbord and Factured solit Elitated is wide fractured non- with a ridath N 3 lineatest GC : 0.3-ear?Min (Ortaids of Factured non)	Very deep weathering in whole area with fracturing and fault clay -G/water potential may generally be high, but w/level might be different by place to place due to irregular fracturing facies	.Salty .E/C 1,200	Concentrated and semi- urban style village -Urgent requirement for borehole water -Guinea worm disease	Strong (100% of Fami. N1~5/M/F)	Poor	I	Borehole with power pump, elevated tank near the center of village with gravity distribution system
. ဖ	Bamamu 10,000 (Gusau)	•Weathered and fractured granite covered with thin Alluvial deposits. •S/C: 1~14m ³ /d/m	-Valley shaped partial deep weathering (45~60m) in N.S direction controled by structural lineament	l	Scattered village with 7 settlements -Guinea worm disease -Urgent necessity for borehole water	Strong (100% of Fami. N1~5/M/F)	Poor	ł	6 to 7 hand pump wells with depth of 40 to 50 m at the places of basin wide deep weathring
<u> </u>	Dauran 23,500 (Kaura Namoda)	•Weathered schist with fractured zone •S/C : 1~200m ³ /d/m	•Valley shaped partial deep weathering (45~90m) in directions of NW and NE	-Good -E/C 890	Semi-urban style village Serious shortage of water through the year	Normal (More than 70% of Fami. N1~3/M/F)	Excell- ent	T/W(84m) 120~2106/min by air lift	2 wells with motor pump with semi- urban type water supply system (Gravity)
00	Yambu 25,000 (Kaura Namod	-Weathered gneiss and granite with fractured zone -S/C: 2~200m ³ /d/m	·Partial deep weathering (45~160m) in NS, NW and NE directions controled by structural lineament	-A little salty .E/C 1,200±	Semi-urbau style village Seriously sufferd by Guines worm disease Shortage domestic water has begun due to collapse of the dam by 1986'2 flood.	Strong (100% of Fami. N1~5/M/F)	Fairly good	(m08)C(77 18) (m201)W77 (m201)W77 19) 19) 19) 19)	2 wells with small capacity motor pump with semi- urban type water supply system (Gravity)
]	NS) : Range of specific c ; Naira	S/C : Range of specific capacity of existing wells nearby or surroundings of concerned area N : Naira	uromdings of co		E/C:Electric Conductivity in µu/cm /M/F:Per Month Per Family	hu/cm		

· .

1 - 1 3

 Table 1-2 Result of Detailed Survey (2/3)

 .

· ·		•	F	1	-				ì
Recommendable	water Supply System	Gravity distribu- tion system, with a water source of drilled Test Well.	Numbers of hand pump boreholes with more or less 30m deep.	One deep well with motor pump, and gravity distribution system. Well depth 100~ 150m.	80 to 100m deep well with motor pump, and gravity distribution system.	Gravity distribu- tion system, with a water source of drilled test well. (small capacity motor pump)	2 boreholes with depth of more or less 120m. Gravity distribu- tion system.	60m deep borehole with small capacity power pump, and Gravity distribu- tion system for major settlement	
Result of Test Drilling	and Well Discharge	T/D(34m) 5~204/min T/74(138m) 120~2004/min by air lift	. 1	T/W 1 (130m) T/W 2 (120m) 4000/min by air lift	I	T/D(150m) 2096/min T/W(120m) 3806/min by air lift	I	. 1 .	
Access-	ibility	Excel- lent	Excel- lent	Excel- lent	Good Poor	Fairly good	Poor	Poor	y in µu/cm ily
Willingness and Payability	for Operation and Maintenance	Normal (100% of Fami. N 1/M/F)	Normal (100% of Fami. N 2.MJF)	Normal (100% of Fami. N 1/M/F)	Less than Normal (100% of Fami. N 0.5/M/F)	Strong (100 of Fami. N 5/MF)	Normal (100% of Fami. N /M/F)	Normal (100% of Fami. N/M/F)	: Electric Conductivity in µu/cm :Per Month Per Family
Social and	Health Environment	Serious shortage of domestic water during dry season	Concentrated and semi-urban style village Serious shortage of domestic water partic- ularly in dry season	Serious shortage of water for domestic use during dry season	Shortage of water for domestic use during dry season	Particularly strong desire for deep well construction, because numbers of shallow dug wells dry up during dry , season	Shortage of water for domestic use especially during dry season	-Scatterd village with 3 settlements -Shortage of water for domestic use especially in dry season	g wells nearby or surroundings of concerned area E/C : $_{\rm fM/F}$
	Expected W/Quality	-Good -E/С 95~300	Good -E/C 52-300	·Good ·E/C ·380~470	Good E/C 930	Good -E/C 300	.Good .E/C 160~710	-Good -E/C 46	or surroundings
Groundwater Potential	Result of Geophysical Prospecting	·Basin shaped deep weathering (70~ 170m) in a direction of NE-SW controled by structural lineament	Generally monotonous and shallow surface weathering with a depth ranging from 20 to 30m. Comparatively poor G/water potential	Deep weathering (more than 100m) along the river in accordance with lineament of fractured zone Probable high G/water potential along quarzite vein	-Aquifer of medium to coarse grained sand probably lie in a depth of between 10 and 40m, and deeper than 70m.	Numbers of minor aquifer are presumed between 30 and 200m depth, with frequently alternated by beds of clayey material	-Major aquifer consisting of sand presumably lies between 80 and 120m depth.	-Major aquifer composed of coarse sand lies between 30 and 60m depth.	S/C : Range of specific capacity of existing wells nearby N : Naira
	Hydrogeological Features	-Weathered and fractured schist and meta-sediments with guartzite veins -S/C:0.8m ³ /d/m	•Weathered schist and meta- sediments •S/C : unknown due to no nearby borehole	Weathered meta- sediments with quartzite vein N-S wide fractured zone is apparent along the river	-Illo Formation -Consists mostly of semiconsolidated fine to medium sand -S/C: 70m ³ /d/m	Taloka Formation Consists mainly of semiconsolidated fine to medium sand -S/C:7~180m ³ /d/m	-Gwandu and Kalambaina Formations -S/C : 0.3~216m³/d/m	-Upper members of Gwandu Formation -S/C : 0.5~24m ³ /d/m	S/C : Range of spec N : Naira
Village Name	Population (Local Gov.)	Maga 4,000 (Zuru)	Daki Takwas 20,000 (Gummi)	Zugu 4,000 (Cummi)	Takware 10,000 (Yauri)	Horo Birni 8,000	Guđale 11,000 (Argungu)	Chibike 5,000 (Argungu)	
5 (ਵ ਦੇ	10	17 1	10 11	18	53	52	56	

	r		·	T	1			1	1	ר
	Recommendable	Water Supply System	One borehole with gravity distrubu- tion system for major settlement	Gravity distribu- tion with a sourse of drilled test well	One borehole with a depth of more than 110m. and gravity distribution system	One borehole of 120 to 150m deep, and gravity distribution system	Gravity Gravity distribution system using drilled test well as a source.	Numbers of shallow/deep hand pump wells as point sources	One borchole of 100~150m deep, and gravity distribution system	
	Result of Test Duilling	and Well Discharge	l	T/W (150m) 9002/min by air lift	1	1	T/W (113m) 8002/min by air lift	l .	1	
	Access-	ibility	Good	Good	Good ₹	Good ∼ Poor	Good	Good ∼ poor	Good	y in µv/cm ily
()	Willingness and	for Operation and Maintenance	Normal (100% of Fami. N 1/M/F)	Strong (100% of Fami. N 3/M/F)	Normal (100% of Fami. N 1/M/F)	Normal (100% of Fami. N 1/M/F)	Normal (100% of Fami. N 2/M/F)	Normal (100% of Fami. N 1/M/F)	Normal (100% of Fami. N 1~2/M/F)	E/C : Electric Conductivity in µu/cm fM/F : Per Month Per Family
Result of Detailed Survey (3/3,	Social and	Health Environment	Scattared village with a major settlamast overto tha River Niger. Bridge and ane road are under construction as of 1960 Skortage of water in dry watern	Shortage of domestic water in dry season	Shortage of domestic water in dry season	Shortage of domestic water in dry season	Diseases caused by river water drinking	Shortage of domestic water	·Shortage of domestic water	
		Expected W/Quality	-A little poor -E/C 1300	-Good E/C 300 (Guwandu Formation)	·Good ·판/C 295~ 440	-Good -E/C 140~ 680]	ł	-Good -E/C 59~81 (But only in Gwandu Formation)	rroundings of con
Z-T JOIE I	Groundwater Potential	Result of Geophysical Prospecting	Major aquifer being composed of coarse sand is expected in deeper than 60m .	High G/water potential is expected from frequently alternated beds. Major aquifer is sand or limestome which lies in deeper portion than 40m.	·Frequently alternated sand and silty material. Major aquifer proba- bly lies deeper than 110m BGS.	.Very high G/water potential is expected by abundance of gravelly material overlain/alternated with other beds.	·High G/water potential is expected owing to alternation of fine sand, gravelly sand and silty material. Major aquifer may exist between 30 and 100m deep.	Poor C/water potential due to the formations composed mostly of silty or clayey materials down to 200m deep.	Good aquifer of limestome or marly limestome is underlain between 20 and 40m deep. Lower portion than that is also supposed to be full of aquifers.	pacity of existing wells nearby or surroundings of concerned area
		Hydrogeological Features	-Illo Formation composed mostly of semi-consolidated fine to coarse sand -S/C : 1.8-53m3/d/m	Lower members of Gwandu Forma- tion and Kalambaina For- mation SC : 1.4~59mVdm	-Gwandu Forma- tion composed mostly of sandy and clayee material -S/C : 1.3~93m3/d/m	Taloka Formation S/C : 1.5~42m ³ /d/m	·Illo Formation ·S/C: 7~160m3/d/m	.Kalambaina and Wurno Formations .S/C : 0.7~5.6m3/d/m	-Gwandu and Kalambaina For- mations S/C : 1.7-79m3/d/m	S/C : Range of specific capacity of existing N : Naira
	Village Name	Population (Local Gov.)	Gendene 3,100 (~11,000) (Bagudo)	Soro 4,500 (Silame)	Sambawa 8,000 (Jega)	Kimba 6,200 (Jega)	Kuka Kogo 3,500 (Jega)	Mallamawa 10,000 (Sokoto)	Samalu 4,500 (Sokoto)	N.C.
	5	2 ਦੇ	32	34	42	43	र्ष र	46	47	

Table 1-2 Result of Detailed Survey (3/3)

1-3 Additional Experimental Survey in the Basement Area

- An additional detailed hydrogeological survey was carried out in Zugu, one of the candidate villages included in the basement complex area (Fig. 1-1). The purpose of this survey work was:
- to brush up the hydrogeological survey methodology
- to introduce the method of seismic refraction in hydrogeologic investigation,
- to review the method of site selection for the drilling based on the comprehensive analyses of all of the results including every different survey, and
- to establish the appropriate guideline for the groundwater investigation, particulary in the basement complex area, a so-called difficult area.

In order to accomplish the above-mentioned purpose, the following activities were undertaken;

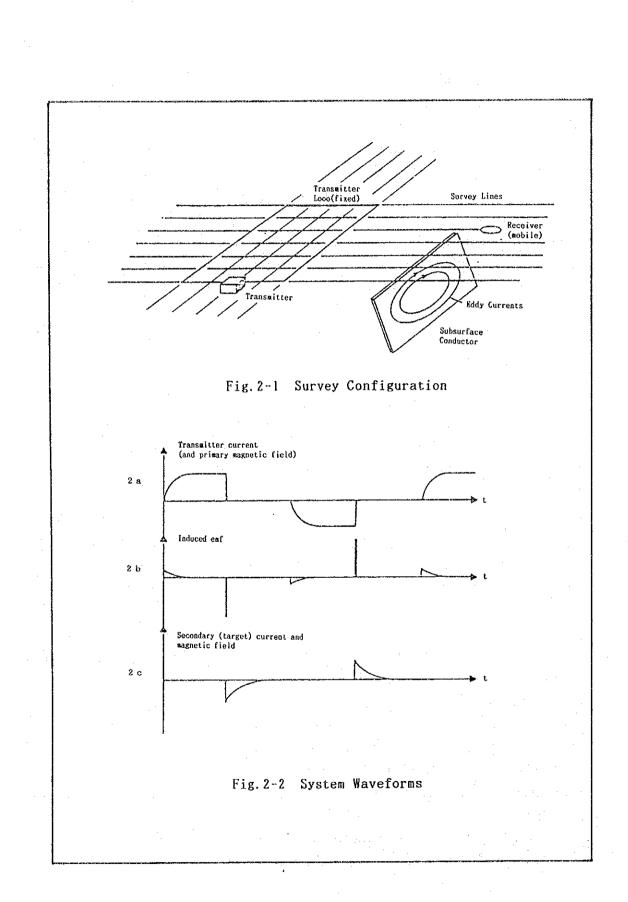
- Hydrogeological field reconnaissance with remote sensing
- Survey line fixing work (checkerboard pattern with 100m intervals), and a revision of the topographic map prepared in the previous stage
- Transient electro-magnetic (TEM) survey and its rough analysis
- Electric resistivity sounding, the field operations involved, the resistivity classification by depth, and preparation of the iso-depth map of fresh bedrock, which established the major basis for determination of the drilling points
- Seismic refraction survey, the field operations involved and the explanation of the principle and analytic procedures.
- Test well construction and pumping test to confirm the lithologic formation and yielding capacity of the wells

Survey results are included in this volume.

2. TRANSIENT ELECTROMAGNETIC SURVEY (TEM SURVEY)

According to the plan of operation for the Stage II an electro-magnetic technique using an EM-37 survery kit was to be applied in selected sites for a comparatively macro-scopic survey, focusing mostly on the basemet complex area. The field works of this TEM survey, however, were carried out only at the two sites (Ruwan Bore and Tunga Ardo) in the basement complex area, due to a breakdown of the equipment (Transmitter), of which repars took about 30 days.

Techniques of measuring, analysis and maintenance were transferred to a limited number of 2 persons of the TEM, through actual field operations, since operations/analysis of the TEM survey is somewhat difficult for amateurs.


2-1 The Principles of TEM

Transient electro-magnetic systems (TEM) with their inherent ability to generate highly valuable diagnostic data have been increasingly used for exploring greater depths, improving rejection of conductive overburden or host rock response and enhancing definition of ore-bearing structures.

The principle of transient electro-magnetic systems is to lay a large loop (Figure 2-1) in the area to be explored and then cause a steady current to flow in the loop for a sufficiently long time to allow the eddy currents generated at turn-on time to dissipate. This current is then sharply terminated in a controlled fashion (Figure 2-2(a)). A rapid reduction in the transmitter current (which means a corresponding rapid reduction in the transmitter primary magnetic field) induces an electromotive force (emf) in nearby conductors. The magnitude of this emf is in proportion to the time rate-ofchange of the primary magnetic field at the conductor. A large emf of short duration is obrained by reducing the transmitter current to zero in a short time (Figure 2-2(b)). This emf causes eddy currents to flow in the conductor with a decay that is afunction of the conductivity, size and shape of the conductor. The decay currents in turn generate a proportional secondary magnetic field (Figure 2-2(c)), whose time rate-of change is measured by a receiver coil.

The amplitude of transient decay is measured at numerous intervals and at many cycles of the signal pulses to reduce the effect of noise.

2 – 1

Conductive targets usually produce signals with small initial amplitude that decay relatively slowly with time. Poor conductors yield signals with high initial amplitude but which decay rapidly. Initially after turn-off, the eddy currents flow on the surface of the conducting body. A stage is then reached at which the eddy currents have diffused into and are completely distributed within the target body. This period is referred to as the "late time". Measurements carried out at this stage yield very diagnostically useful information about both the shape and conductivity of the targe.

In late time the voltage output at the receiver coil, e(t), is given by the equation:

$$e(t) = \frac{KM}{p^{3/2} \cdot t^{5/2}}$$

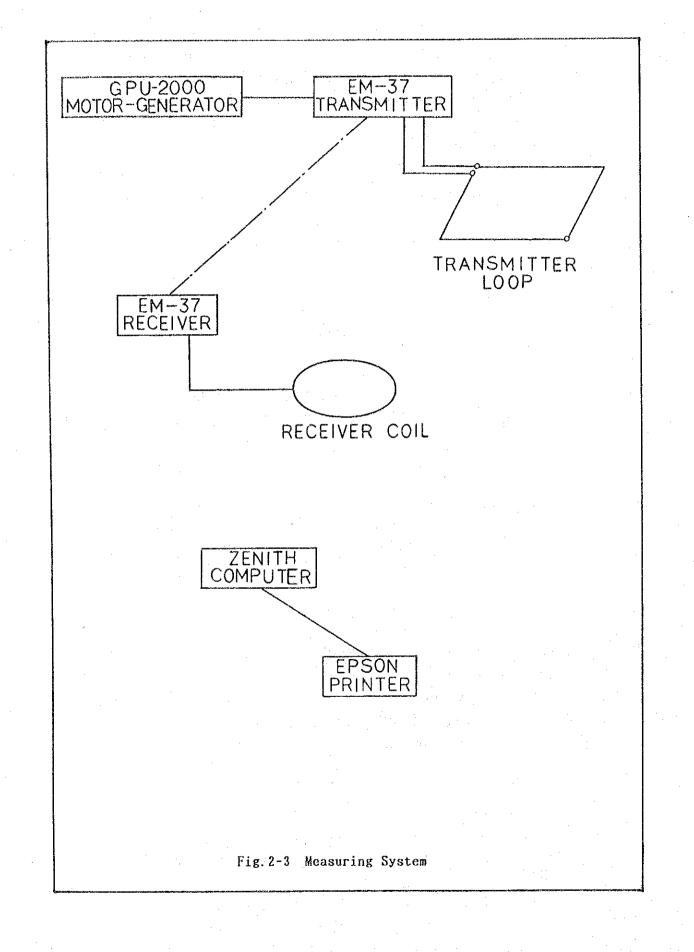
where

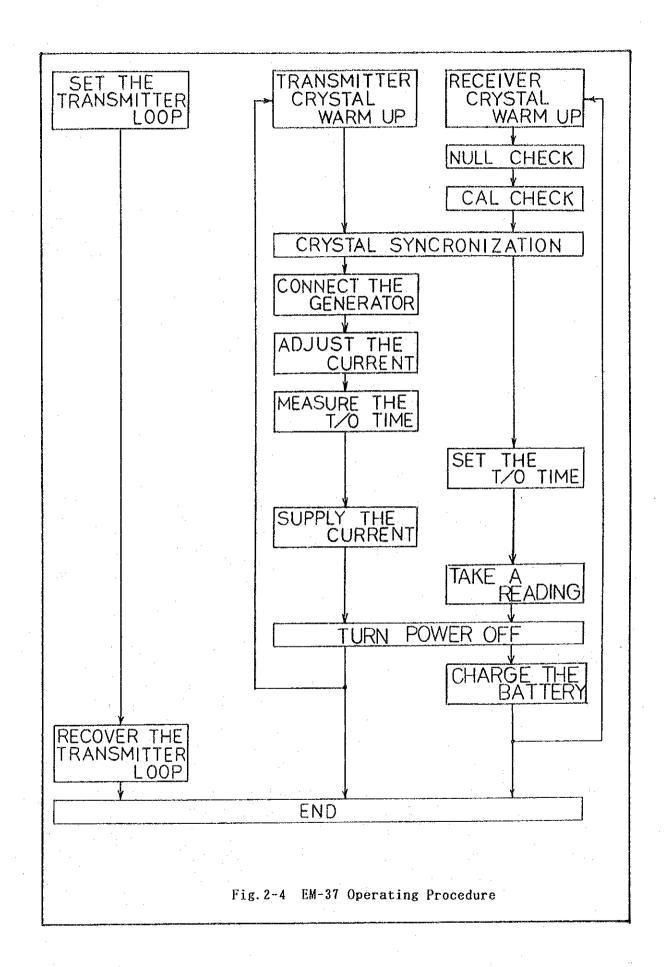
M = transmitter dipole moment
 p = ground resistivity in ohm-meters
 t = time in seconds

and $\mathbf{k} = \mathbf{a}$ constant

Inverting the above equation gives us an apparent resistivity of the ground as a function of time as shown below :

$$pa(t) = \frac{KM^{2/3}}{e(t)} \cdot \frac{1}{t^{5/3}}$$


Thus, by simply measuring the output voltage at the receiver coil we can obtain an apparent resistivity. In homogenous ground, this apparent resistivity is not a function of time but is equal to the true resistivity of the homogenous half space (HHS). However, in heterogenous ground this apparent resistivity is a function of time.


2-2 Measuring System

The EM-37 measuring system and operating procedure are shown in Figures 2-3 and Figure 2-4.

Depending on the geological terrain, two modes of survey are employed: a

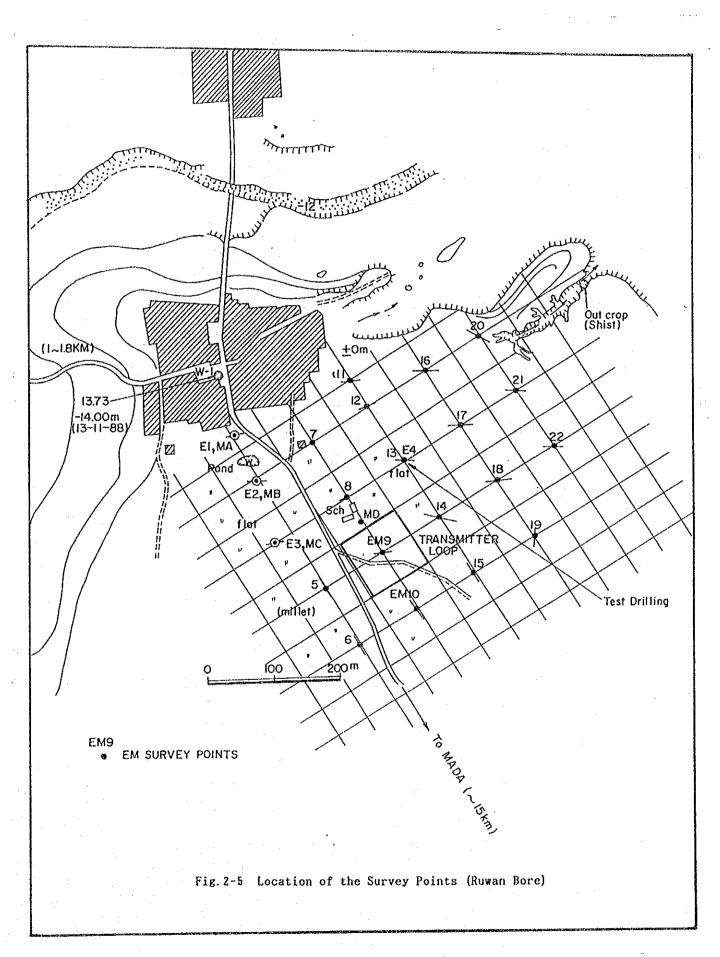
2 – 3

2 – 5

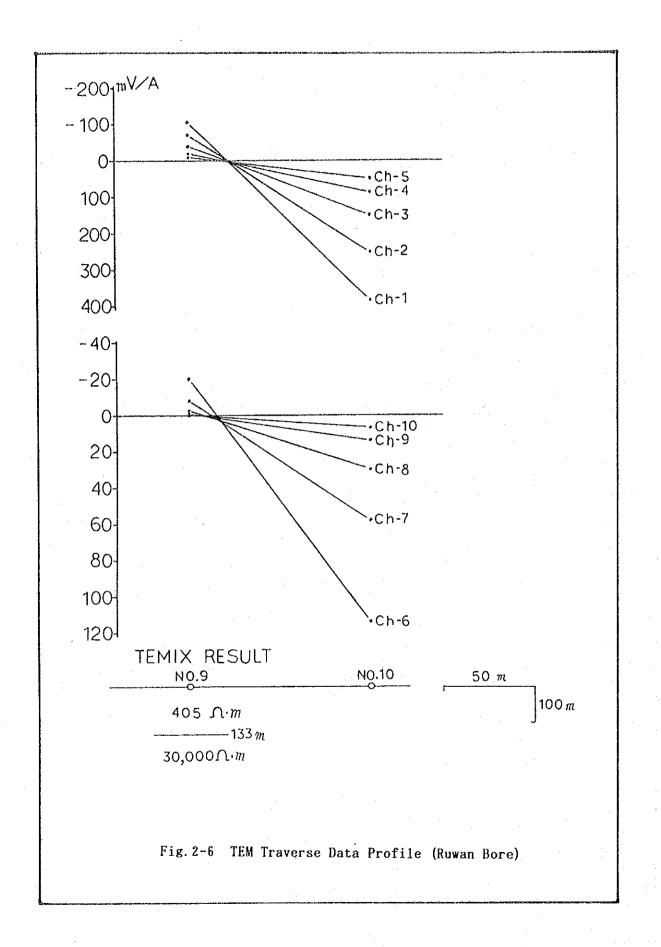
fixed transmitter loop and an unfixed transmitter loop mode.

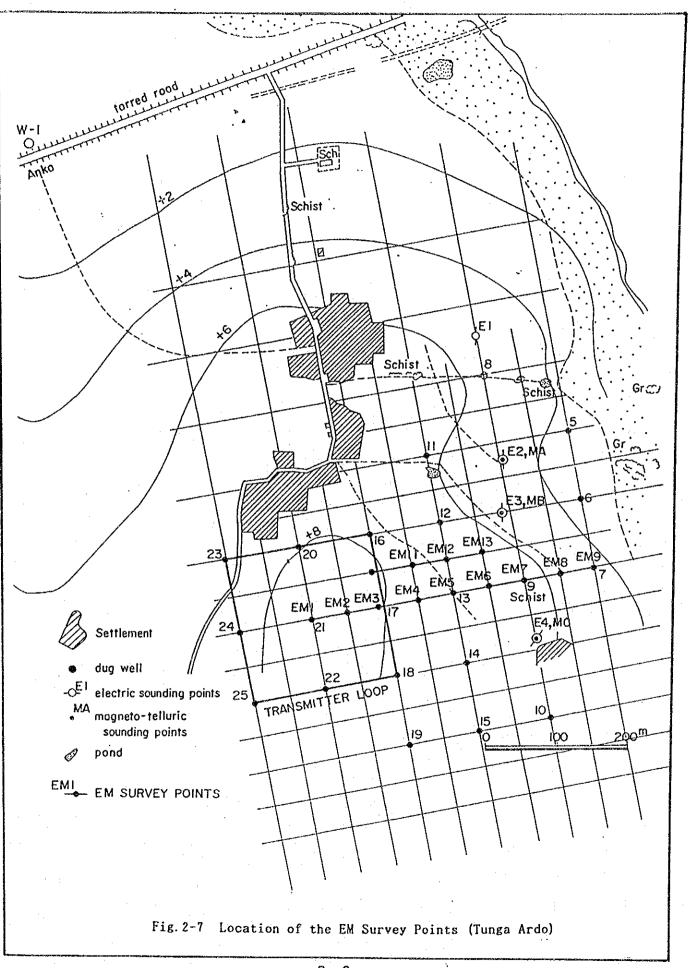
In the basement complex area, the fixed transmitter loop mode is employed. In this mode, a large loop is laid down in the vicinity of the survey area and the receiver is moved to different measurement stations along mapped-out traverse lines.

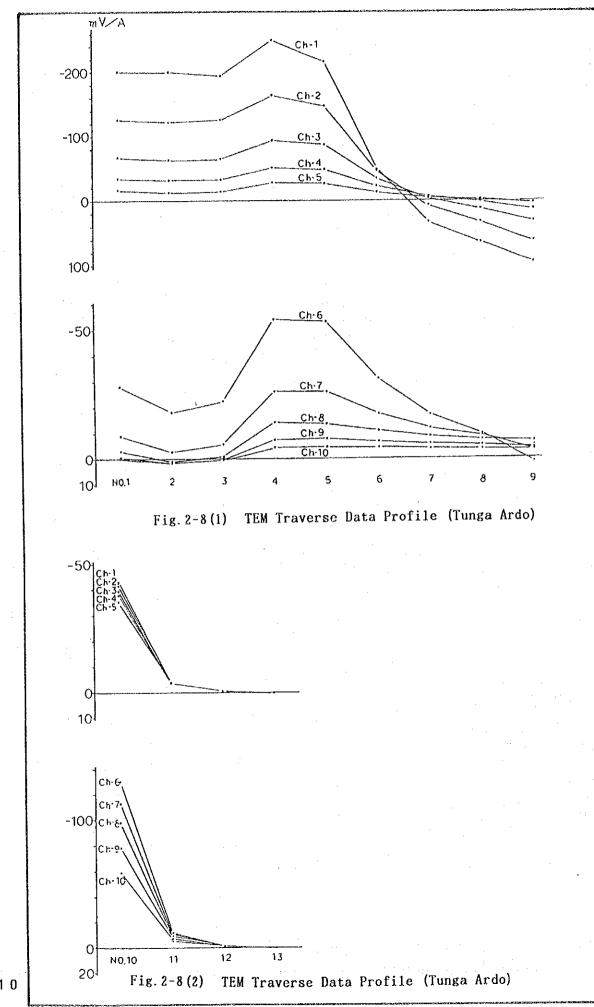
In the sedimentary terrain, the unfixed transmitter loop mode is used. In this mode, a small transmitter loop is laid down and the receiver is placed at the center of the loop. After measurement, the entire set-up is moved to the next measurement station while maintaining the same transmitter-receiver distance.


In either mode, one operator each is required for the transmitter and receiver. Four laborers are needed for loop laying, and a fifth is needed to guard the equipment. It is desirable to have a radio link between the transmitter and receiver operators, especially in the fixed transmitter loop mode.

2-3 Results of Field Work


TEM surveys were carried out in the Ruwan Bore and Tunga Ardo areas. Respectively for these areas, the survey stations and the data obtained from them are shown in Figures 2-5 and 2-7, "Location of EM Survey Points", and in Figures 2-6 and 2-8, "TEM Traverse Data Profile". The TEM traverse data profiles show survey stations along traverse lines on the abscissa and recorded voltage at the respective stations divided by transmitted current value on the ordinate.


The TEM survey at Ruwan Bore was carried out at only two stations, this as a test run of the equipment. The TEM traverse data profile shows not only recorded data but also the results interpreted by the TEMIX computer program supplied with the EM-37 kit.


Resistivity in the Ruwan Bore area is high so that the received voltage, is small, especially being collected in late time, in channels greater than seven. In order to obtain greater depth of penetration, it is required to obtain data in late time. However due to electro-magnetic noise in the area, we could not obtain noise-free data in late time at lower transmitting frequencies.

2 – 7

2 - 1 0

The survey results are in the Data Report as the field records and the TEMIX outputs. Because resistivity in the Ruwan Bore area is very high, the results lack resistivity data at shallow depths.

As shown in Figure 2-7, the transmitter loop used in the Tunga Ardo area is 200m by 200m, so that the transmitter dipole moment of the area is much greater than that in the Ruwan Bore area.

The survery stations in the Tunga Ardo area were arranged along a linecutting square across a presumed general geological trend. First, a survey line connecting atation EM-1 and station EM-9 was established as a main line, then a parallel subordinate line connecting station EM-10 and station EM-13 was set. Stations EM-1,-3,-5,-7, and -9 were set at the same locations as electrical resistivity sounding points 21, 17, 13, , and 7, respectively.

TEM data obtained along the main traverse line show a significant difference at stations EM-4 and -5. The recorded voltages of channels 1 through 5 change polarity from negative at stations EM-1 through EM-6 to positive at stations EM-7 through EM-9. The recorded voltages of channels 6 through 10 show a similar pattern. TEM data obtained along the subordinate traverse line do not reflect such a change in polarity, but rather a decrease in voltage with distance from the transmitting loop. As shown in the Data Report, the signals recorded beyond channel 11 are very small and may be contaminated by noise.

2-4 Results of Interpretation

The data obtained from each survey station were transferred to a computer, and the TEMIX program was used to interpret transient curves into onedimensional vertical columns. A typical flowchart of TEMIX software is given in Figure 2-9. The data along the traverse lines were interpreted twodimensionally by MOTEM program, also supplied with the EM-37. The outputs of the TEMIX and MOTEM programs are given in the Data Report.

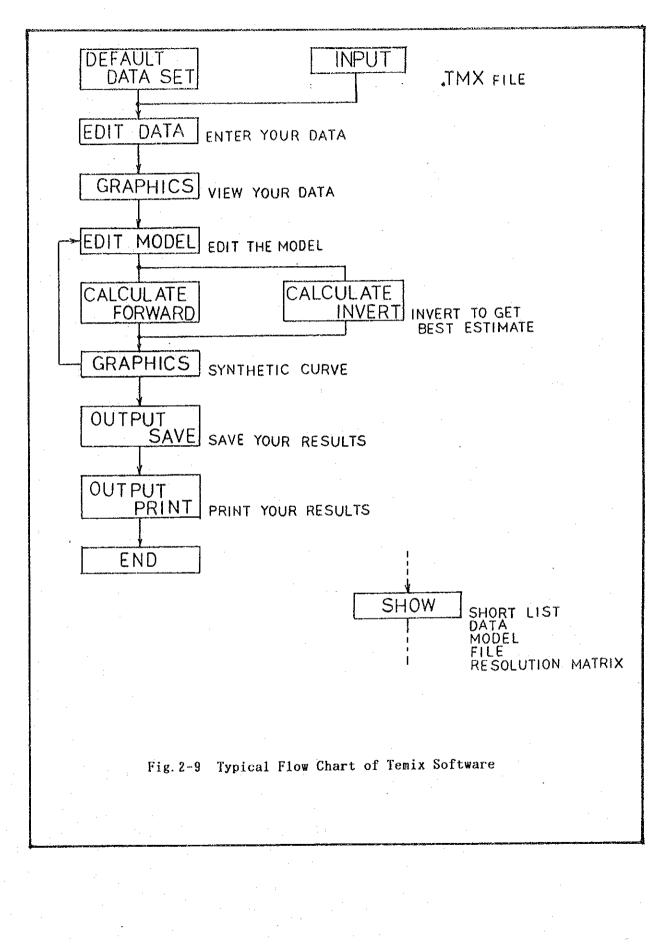
The interpreted results form Ruwan Bore are shown in Figure 2-6. Based on the general geology of the study area, we infer that the geology beneath station EM-9 is an about 130m-thick weathered layer underlaying by resistive fresh basement rock. The resistivity of the area is very high, so that the deep weathering zone cannot be mapped in detail through TEM as it can be through electreical resistivity sounding.

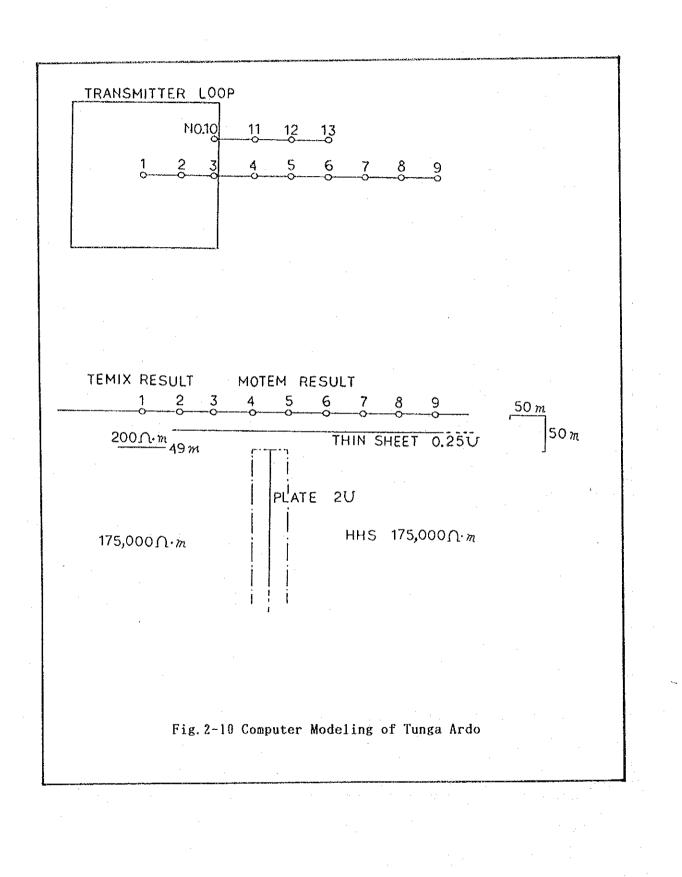
Two-dimensional interpretation is carried out for the data between stations EM-1 and EM-9 along the traverse line, and the data at staion EM-1 are interpreted one-dimensionally by the TEMIX program in the Tunga Ardo area. The results are shown in Figure 2-10.

The one-dimensional interpretation at station EM-1 indicated that the geology beneath the station is similar to that in the Ruwan Bore area, with a weathered layer about 50m thick overlaying resistive fresh basement rock.

For the two-dimensional interpretation by MOTEM, the following initial model is assumed.

- 1) Resistivity of the environment is assumed to be $175,000\Omega$ ohm-m.
- 2) A thin sheet with a longitudinal conductivity of 0.25 S, the same longitudinal conductivity as the first conductive layer at station EM-1, is assumed to extend to a depth equalling half of that of the first layer.


Thus, the initial model constructed is as if the resultant one-dimensional structure at station EM-1 was continuously existent along the entire traverse line.


The position and conductance of vertical thin plate conceived of as lying below the formerly mentioned horizontal sheet of 0.25 S were adjusted in the simulation to fit collected data. The model given by the MOTEM program which fits best was the one in which the vertical plate was positioned between stations EM-4 and EM-5, with a longitudinal conductivity at 2 S. For calculation, if the thickness of the shin plate was assumed to be 50m, its resistivity was assumed to be 25 ohm-m. This conductive shin plate was assumed to represent a fractured zone filled with groundwater and clay.

We interpret that the geology of the area is resistive basement rock overlain by a conductive weathered layer with a thickness of 50m.

Total conductivity over the resistive basement rock by resistivity sounding is mapped in Figure 2-11, Total Conductivity Map. Toatl conductivity is the sum of the longitudinal conductivity of each layer over the resistive basement rock. It is greater than 150 mS along the main traverse line. A thin conductive

2 – 1 2

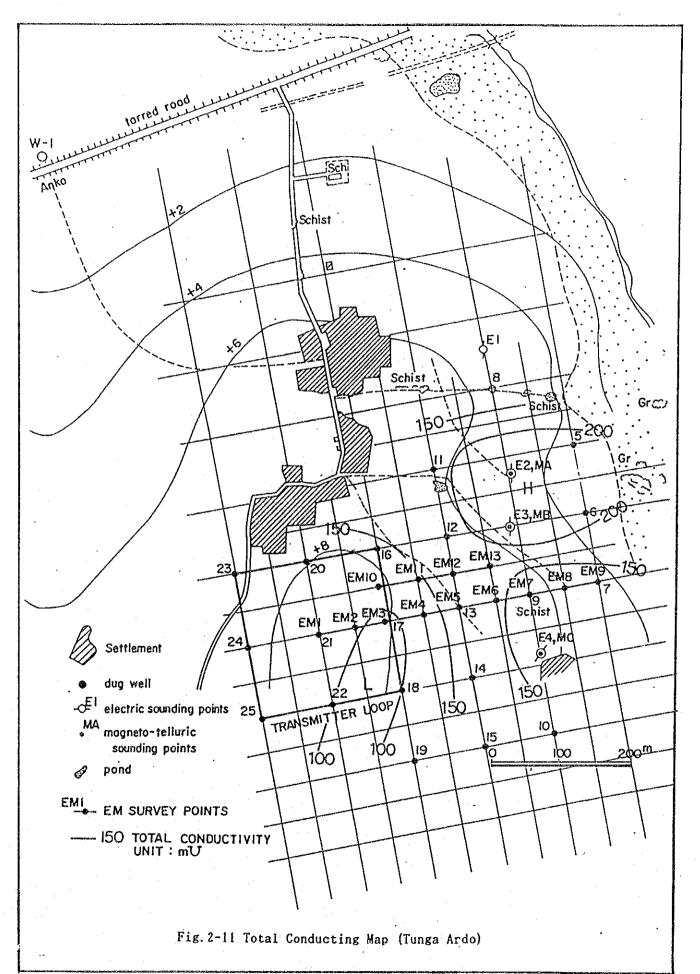


plate is interpreted to intrude into the basement. The results are consistent with both the TEM survey and resistivity soundings.

It took about two hours to set up the transmitter loop for the TEM survey in the Tunga Ardo area, and it took about 15 to 30 minutes to measure at each station. Overall, then, TEM measurement is faster than that of resistivity sounding, which takes about two hours to measure at each point. However, as stated above, resistivity sounding can yield more detailed interpretation resistivity layers at shallow depths than a TEM survey.

With the advantages that TEM offers, we believe that the most efficient approach to the evaluation of an area's geology is to investigate in this sequence : TEM survey, resitivity sounding, and, finally, seismic sounding. This approach should be tested and confirmed.

3. SEISMIC REFRACTION SURVEY

Seismic refraction methods use seismic waves to determine the thickness and extent of aquifer materials where the formations are arranged so that the density increases with each successively lower layer. Seismic surveys are based on the velocity distribution of artificially generated seismic waves in the ground. Seismic waves can be produced by hammering on a metal plate, by dropping a heavy ball, or by using explosives. Energy from these sources is transmitted through the ground by elastic waves. The amount of energy is relatively low in comparison with the energy released by an earthquake, so the disturbance cannot be detected far from the point where the wave is initiated. The waves are called elastic because, as the waves pass a point in the rock, the particles are momentarily displaced or distorted, but immediately return to their original position or shape after the wave passes. Three types of waves can be created: compressional (P) waves, share (S) waves, and surface waves. The arrival of a seismic wave is detected by geophones (seismometers) placed firmly in the ground. Compressional waves are the first to arrive at the geophones, and therefore are the most useful in seismic surveys. In general, the higher the density and elasticity of the rock unit, the faster the P wave will be transmitted. The velocity is much less and the energy is dissipated more quickly if the material is unconsolidated or poorly consolidated.

Three distinct paths are taken by compressional waves in the ground: direct (surface), refracted, and reflected. For a two-layered setting, these three wave paths are as shown in Figure 3-1. The exact arrival time of the seismic wave will depend on which path it takes and the density of the material. A single seismic impulse can be recorded as three separate arrivals at the geophone. In practice, however, only the first arrival can be readily recognized. At geophone-seismic source spacings generally used in refraction surveys, direct waves usually arrive at the geophone after refracted and reflected waves because surface materials are normally less dense than deeper materials. Because surface waves will not provide information about subsurface aquifer conditions, refracted and reflected waves are the most valuable for groundwater investigations. In most geologic settings, more than two distinct rock or sediment layers exist, thereby complicating the seismic analysis.

During a refraction survey, the investigator measures the time the seismic wave takes to reach one or more geophones placed at known distances from the seismic source. By plotting the distance-time relationship, the depth of several geologic units can be estimated at a particular site as long as each successively lower unit has a higher seismic velocity. The elapsed time and the distance traveled also provide information on the type of geologic material.

Each geologic formation has a characteristic seismic velocity that affects arrival time. Some representative seismic velocities are given in Table 3-1. In the field, local seismic velocities can also be estimated by measuring the travel time to and from a particular formation whose depth is already known from a drilling log. If a waterfilled well is available, one or more geophones can be lowered into the well at successively greater depths to obtain travel times from seismic source placed at the surface (Mooney, 1981). Seismic velocities can also be obtained by conducting refraction surveys.

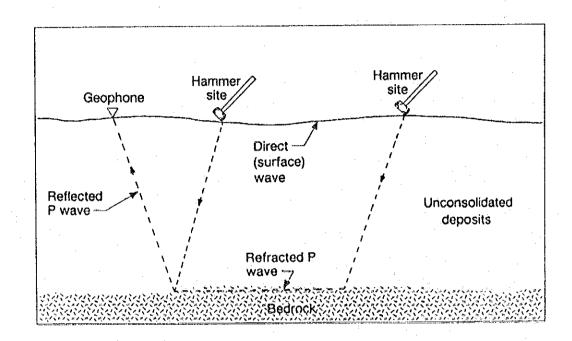


Fig. 3-1 Waves from a seismic disturbance can travel as surface, reflected, and refracted waves. In water well exploration, analyses of refracted and reflected waves can determine the depth to bedrock at a potential drilling site.

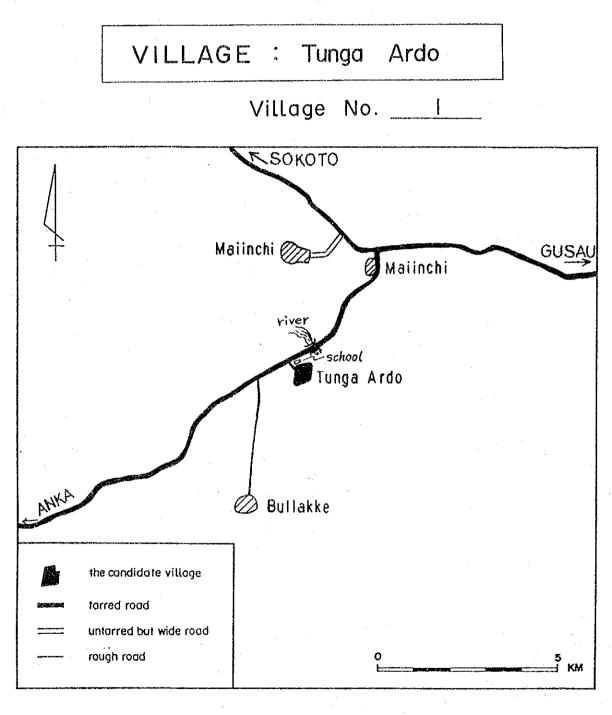
Seismic investigations are carried out from a point where borehole information is available or where the stratigraphy has been determined through other geophysical methods. To locate the water table with the refraction method, the water table should be well above the contact between the bedrock and the overlying alluvial deposits (Wallace, 1970). If seismic exploration methods are used in conjunction with other geophysical methods, exploratory drilling costs can be minimized.

In the seismic reflection method, the seismic wave produced by a hammer blow or other seismic source reflects off the bedrock and returns directly to the geophone, where the elapsed time is recorded. In order to maximize the reliability of the reflected wave energy, hammer stations are usually not more than 30 ft (9.1m) from the geophone.

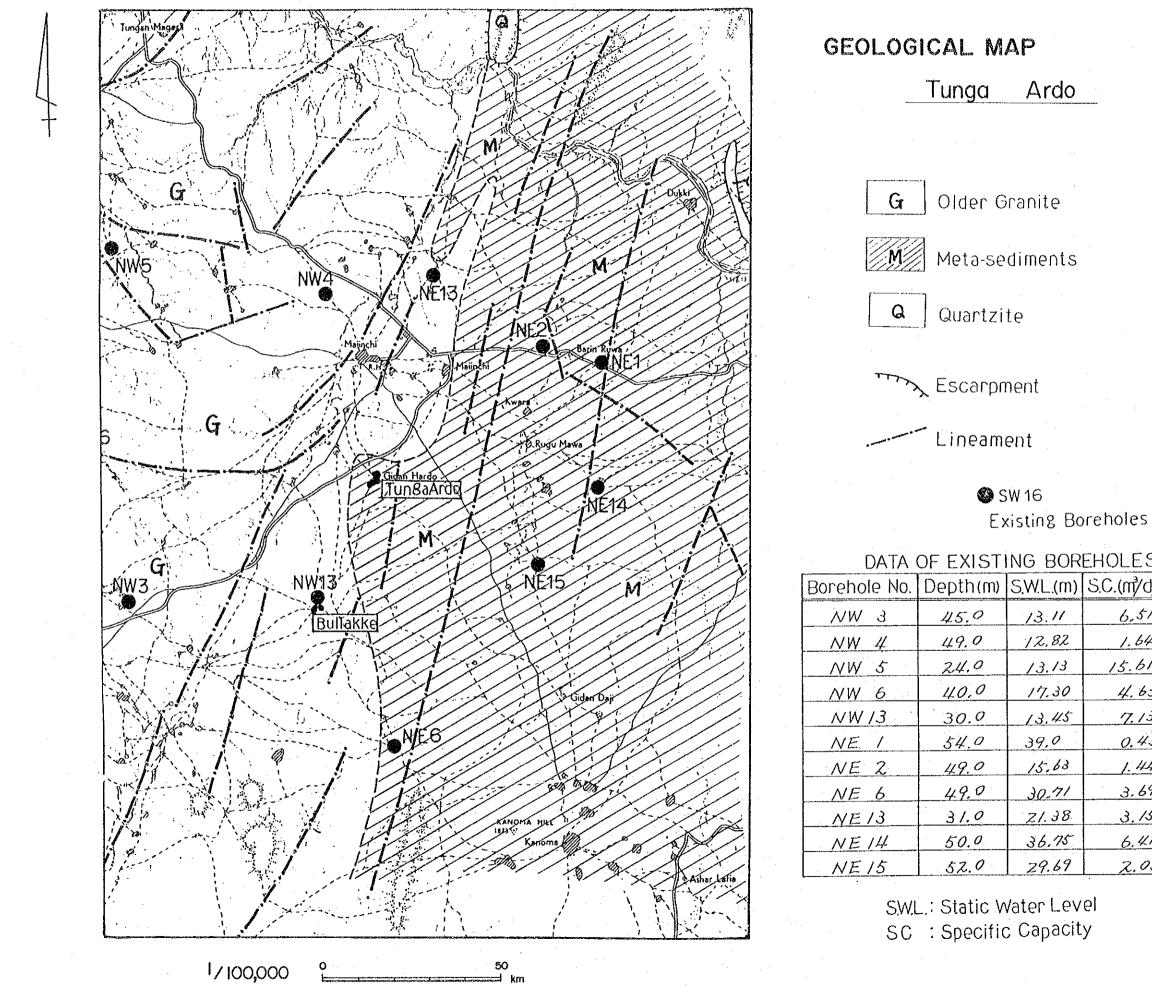
The most difficult problem with the reflection method is that the reflected wave is never the first to appear on the seismic record. Therefore, on an ordinary receiving device its arrival is almost impossible to recognize among the multitude of other wave arrivals. This problem can be overcome by using signal enhancement, which permits the operator to separate the primary reflected wave from other waves. In practice, the operator strikes a hammer plate one or more times at five to ten sites that are located within 30 ft (9.1 m) of the geophone. The seismic signals received from these sites are summed automatically by the seismograph. When the signals from several hammer sites are summed, the surface waves and other extraneous impulses which ordinarily obscure the primary reflected wave are canceled out, leaving the primary reflected wave prominently displayed on the cathode ray tube. This wave travels essentially the same distance even if the hammer sites are moved, as long as they are not too far from the geophone and the depth to bedrock is considerably greater than the spacing of the hammer sites.

Material	Velocity*		
	ft/sec	m/sec	
Weathered surface material	1,000 - 2,000	305 - 610	
Gravel, rubble, or sand (dry)	1,500 - 3,000	457 - 915	
Sand (wet)	2,000 - 6,000	610 - 1,830	
Clay	3,000 - 9,000	915 - 2,740	
Water (depending on tempe-	4 700 5 500	1,430 - 1.680	
rature and salt contenct	4,700 - 5,500		
Sea water	4,800 - 5,000	1,460 - 1,520	
Sandstone	6,000 - 13,000	1.830 - 3,960	
Shale	9,000 - 14,000	2,740 - 4,270	
Chalk	6,000 - 13,000	1,830 - 3,960	
Limestone	7,000 - 20,000	2,130 - 6,100	
Salt	14,000 - 17,000	4,270 - 5,180	
Granite	15,000 - 19,000	4,570 - 5,799	
Metamorphic rocks	10,000 - 23,000	3,050 - 7,010	
Ice	12,050	3,670	

Table 3-1	Approximate Range of Velocities of Compressional (P) Waves
200200-	for Representative Materials Found in the Earth's Crust
	tor Ronrogantative Waterais Found in the Bai Mi & Vi usv

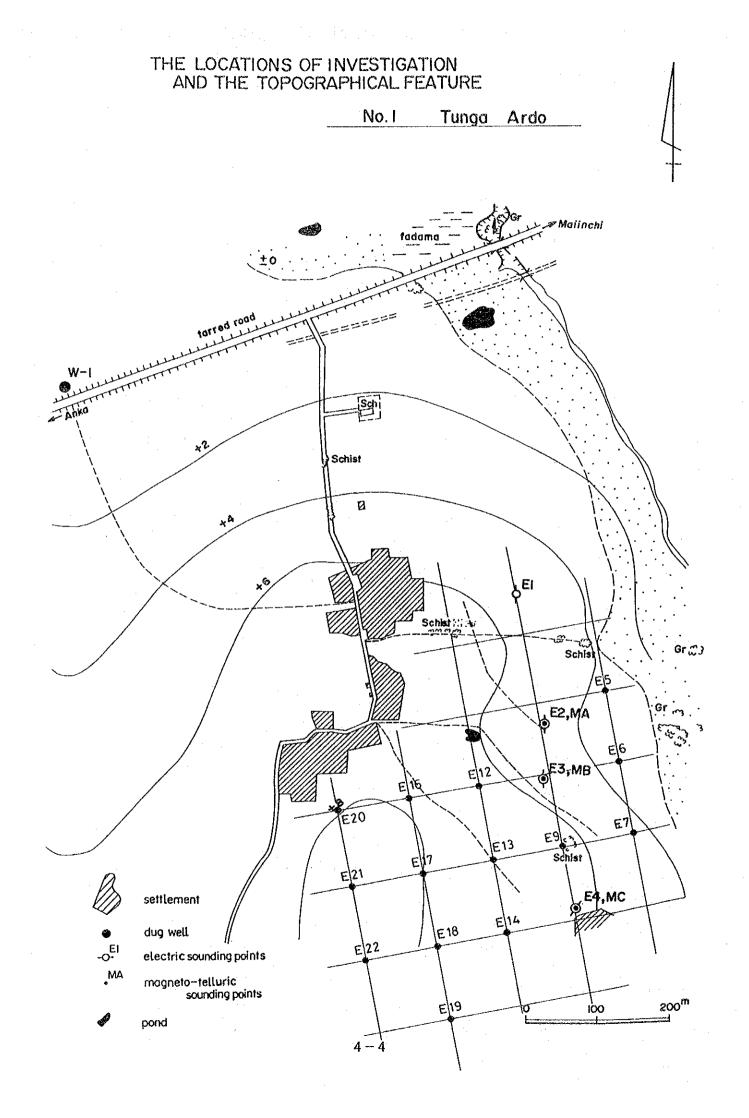

* The higher values in a given range are usually obtained at depth. (Jakosky, 1950)

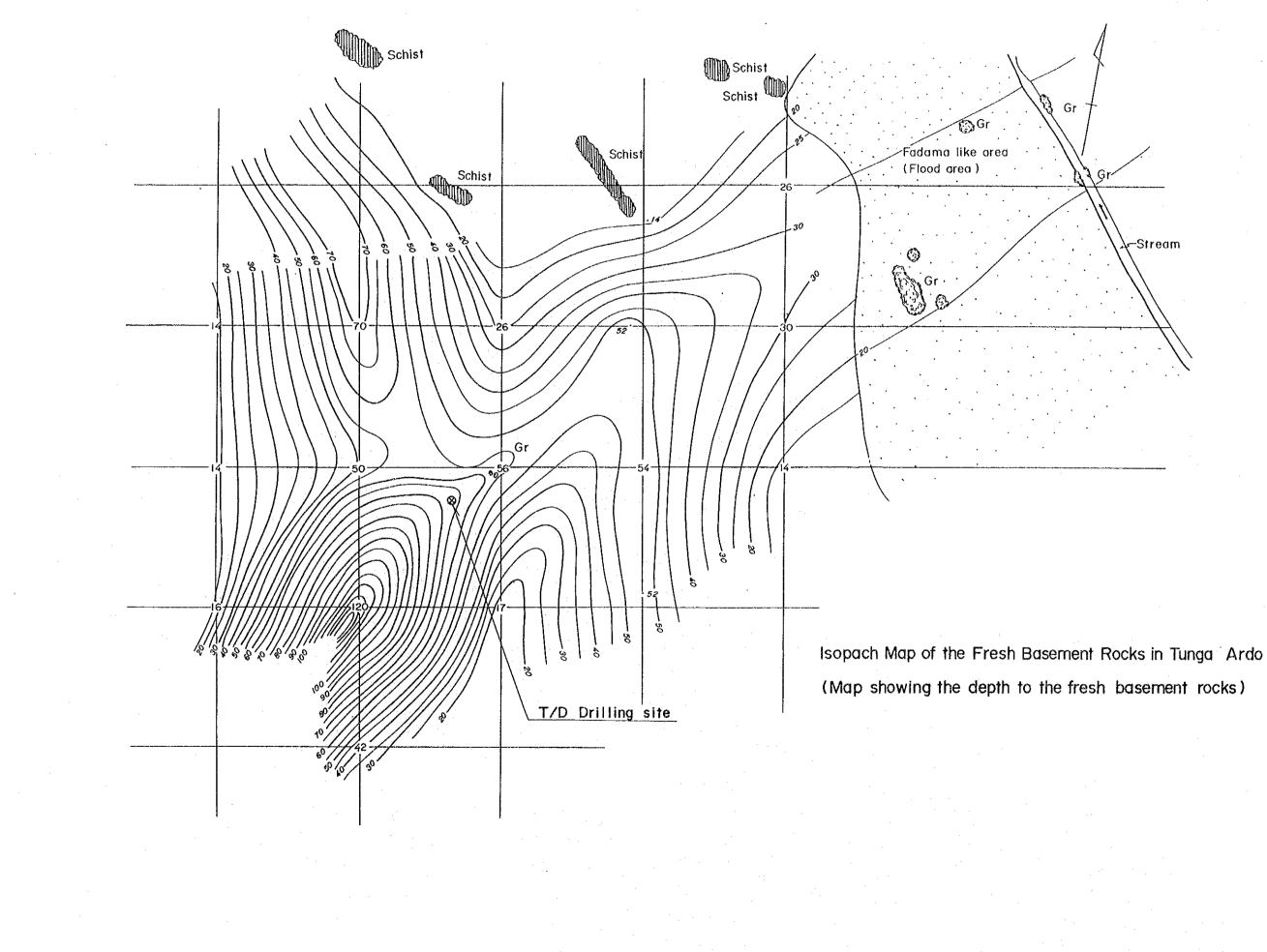
(Quated from "Groundwater and Wells, FLETCHERE, G. D. Edit")

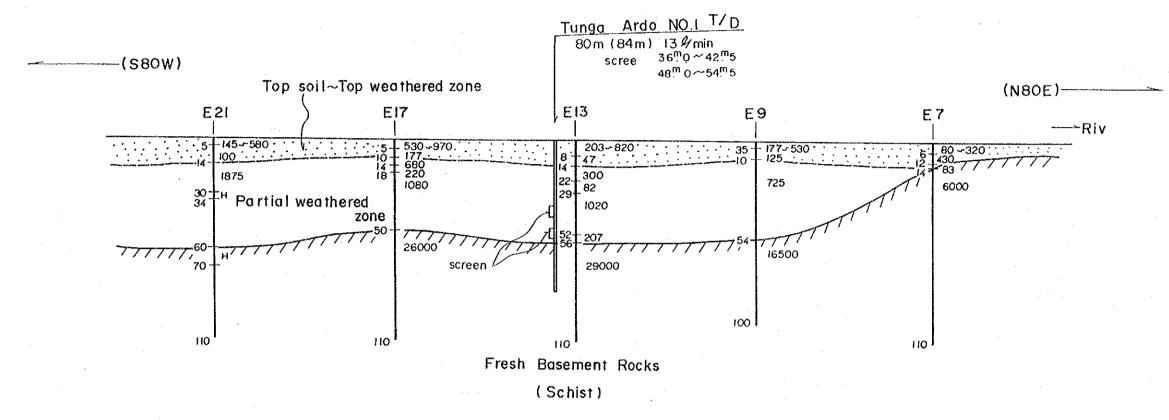

4. HYDROGEOLOGICAL MAPS

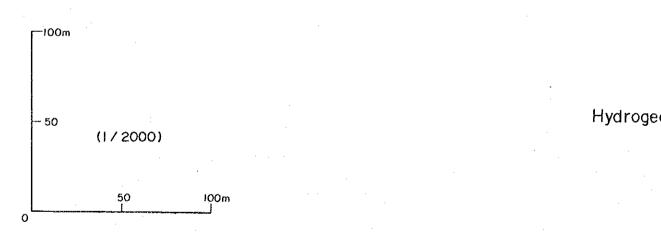
4 – 1

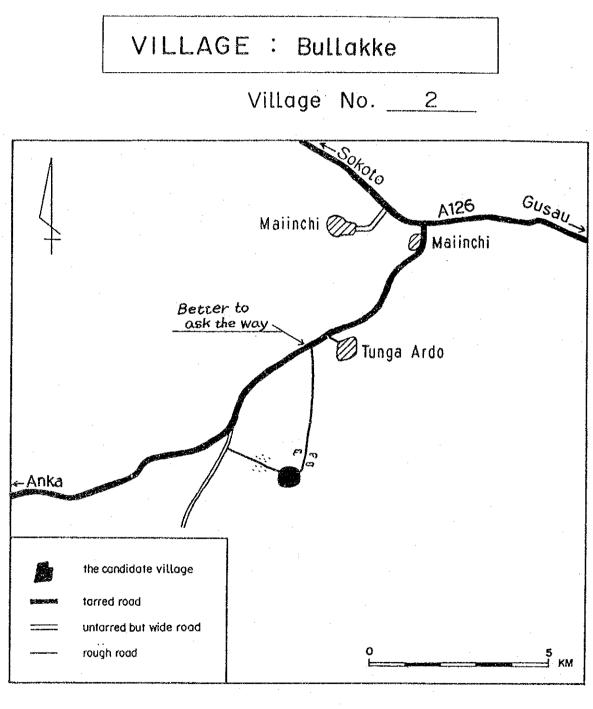
The Study for Groundwater Development in Sokoto State

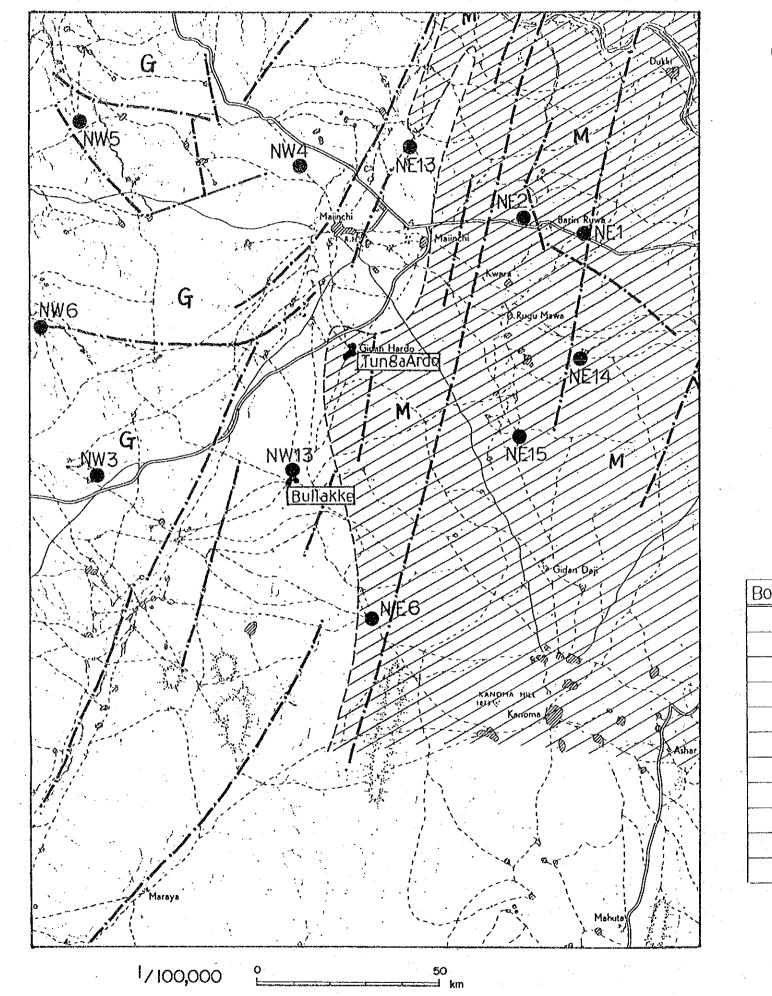


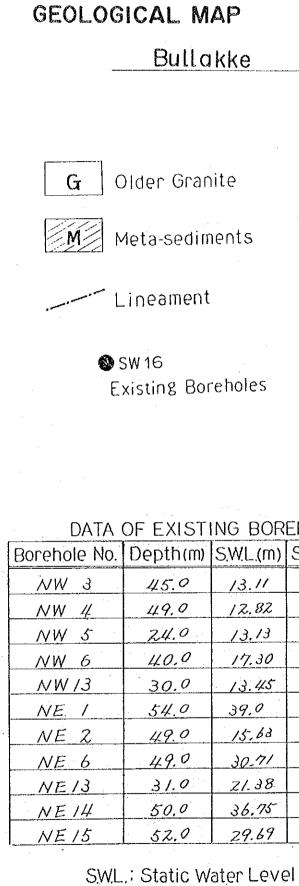

LOCATION MAP (1/100,000 Sheet _____


	1.4
30R	EHOLES
(m)	S.C.(m/d/m)
11	6.51
82	1.64
13	15.61
30	4.63
45	7.13
0	0.43
63	1.44
.71	3.69
38	3.15
,75	6.41 .
69	2.03

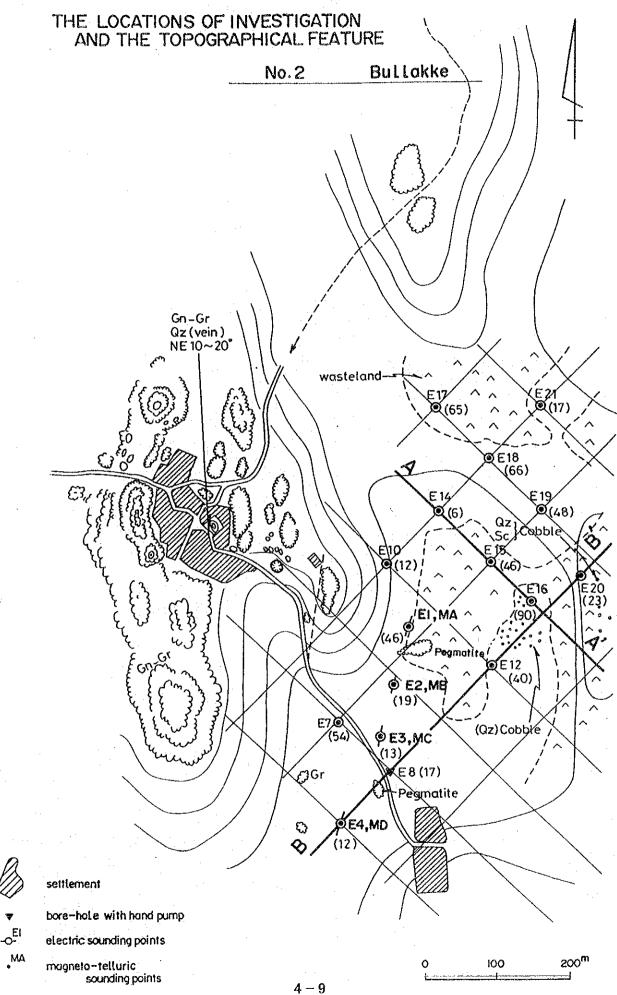

4 -- 3

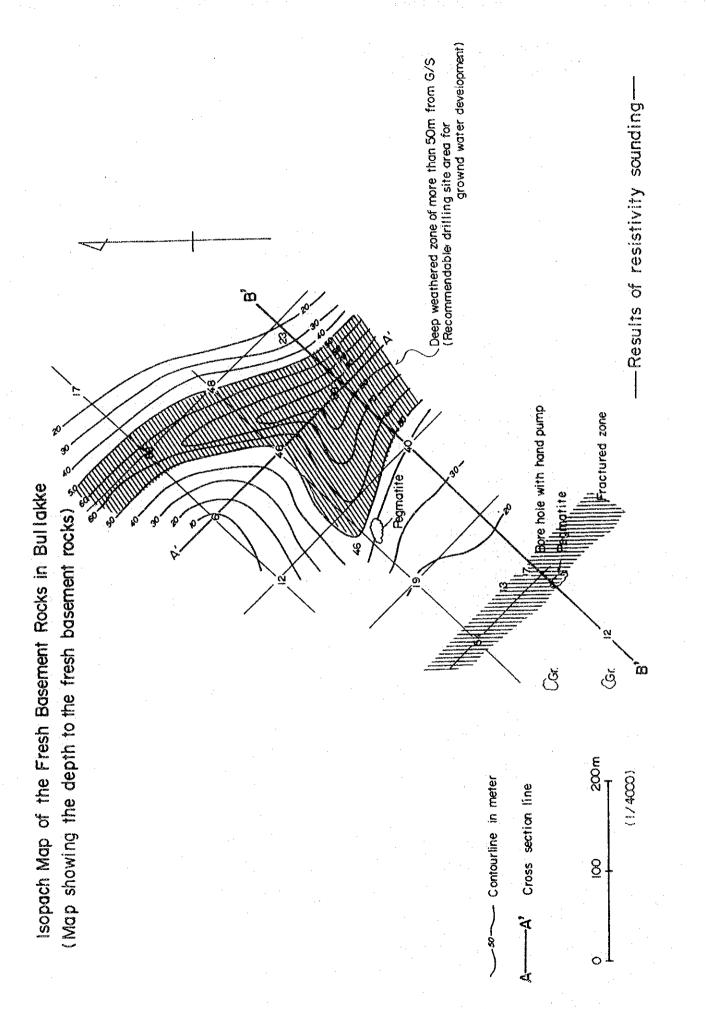

4 – 5



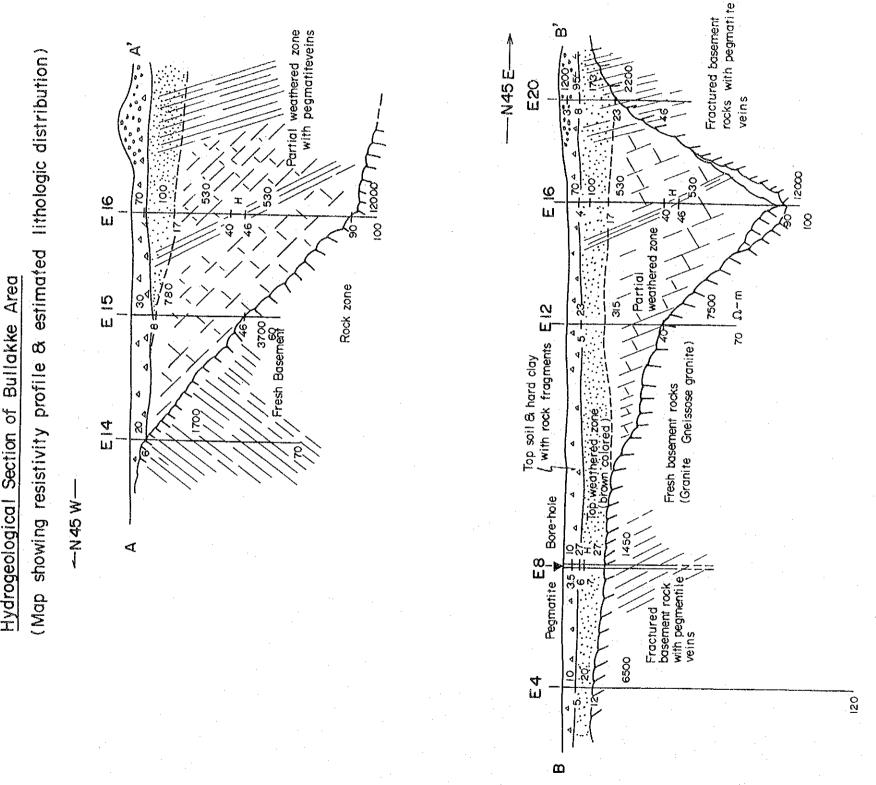

Hydrogeological Section of Tunga Ardo Area

The Study for Groundwater Development in Sokoto State

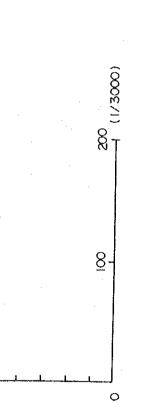

LOCATION MAP (1/100,000 Sheet <u>53</u>)



SC : Specific Capacity


OREHOLES		
(m)	S.C.(m∛d/m)	
7	6.51	
32	1.64	
3	15.61	
30	4.63	
25	7.13	
2	0.43	
53	1.444	
71	3.69	
8	3.15	
75-	6.41	
59	2.03	

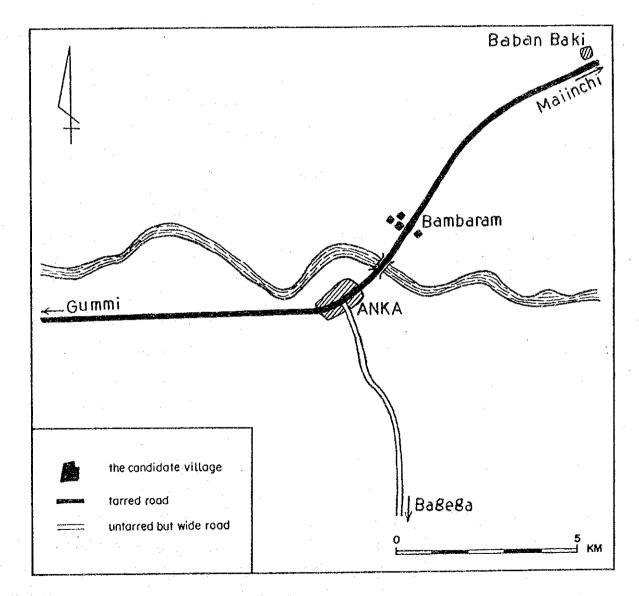
4 -- Y


4 - 1 0

Hydrogeological Section of Bullakke Area

(1/1500)

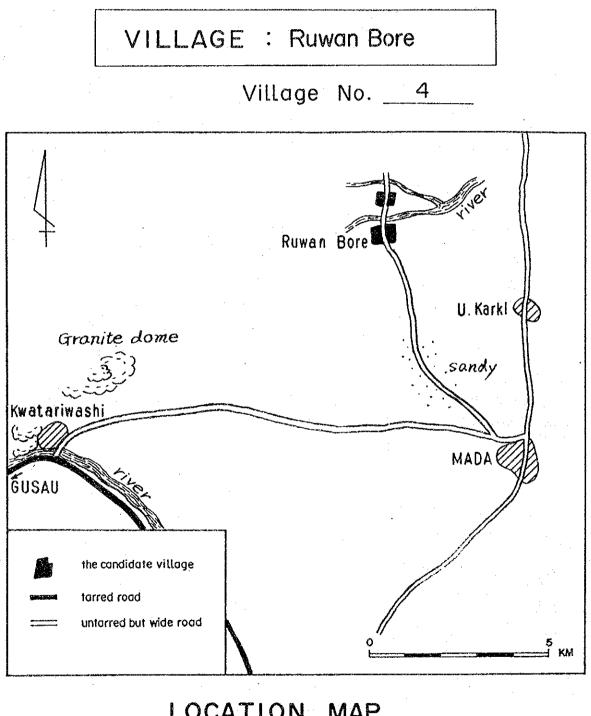
50 m_


Results of resistivity sounding-

The Study for Groundwater Development in Sokoto State

VILLAGE : Bambaram

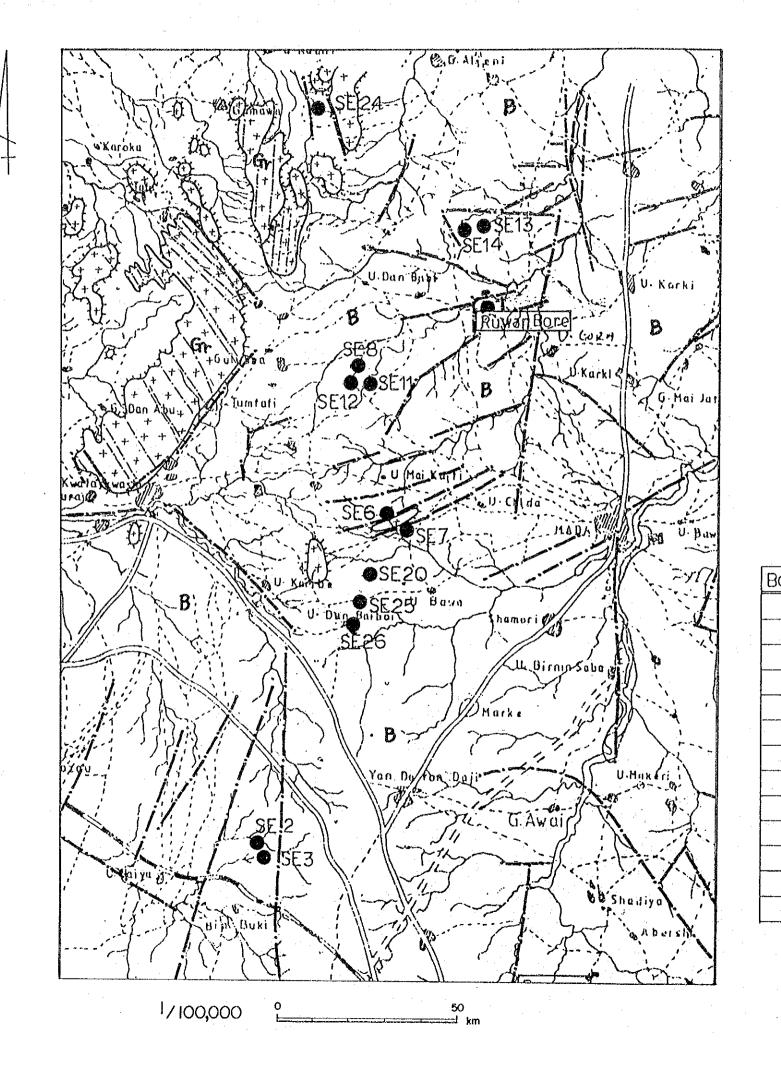
Village No. <u>3</u>

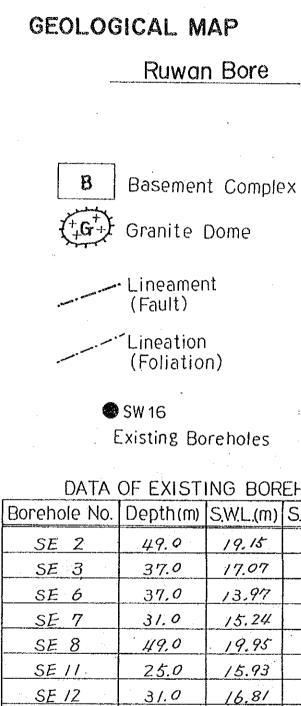


LOCATION MAP

(1/100,000 Sheet 52)

4−12


The Study for Groundwater Development Sokoto State in



LOCATION MAP

(1/100,000 Sheet 54)

4 - 1 3

SWL: Static Water Level SC : Specific Capacity

23.0

25.0

33.0

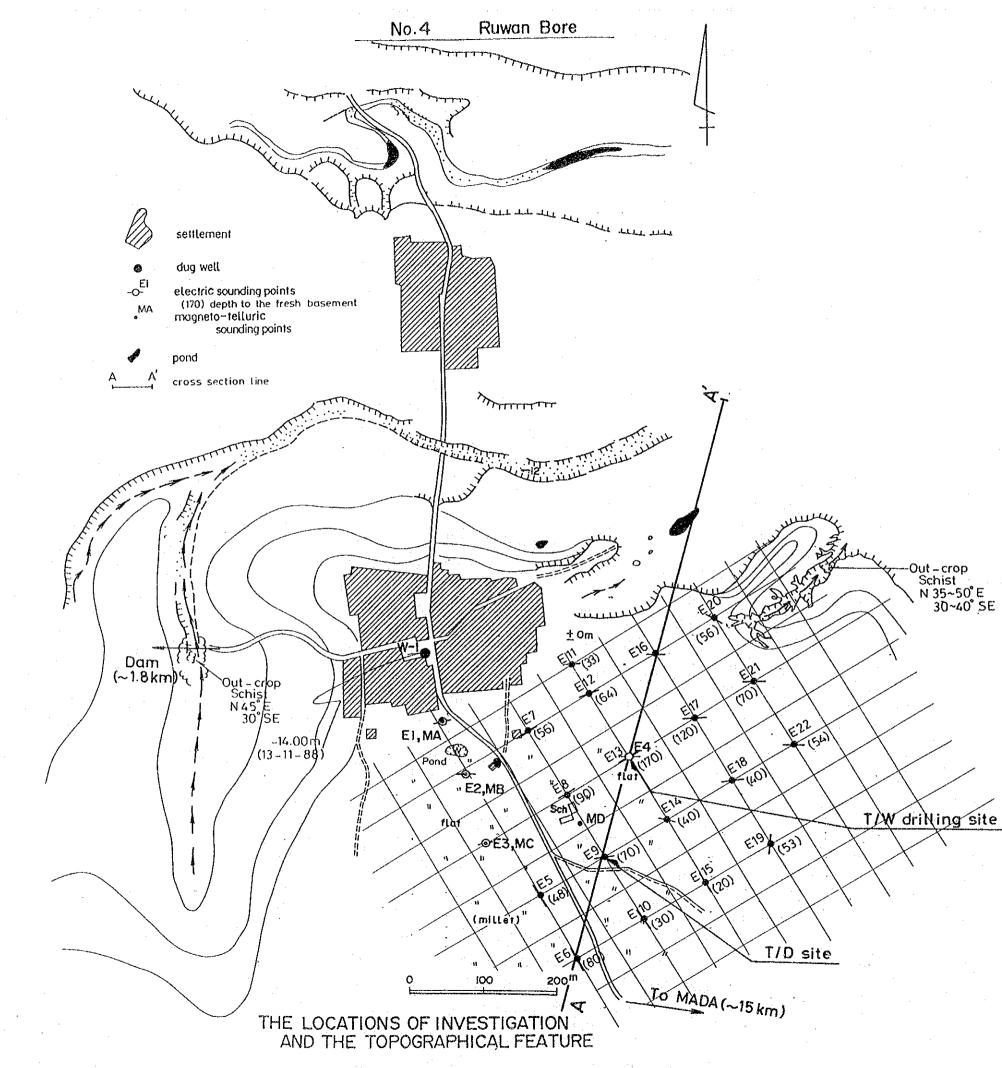
49.0

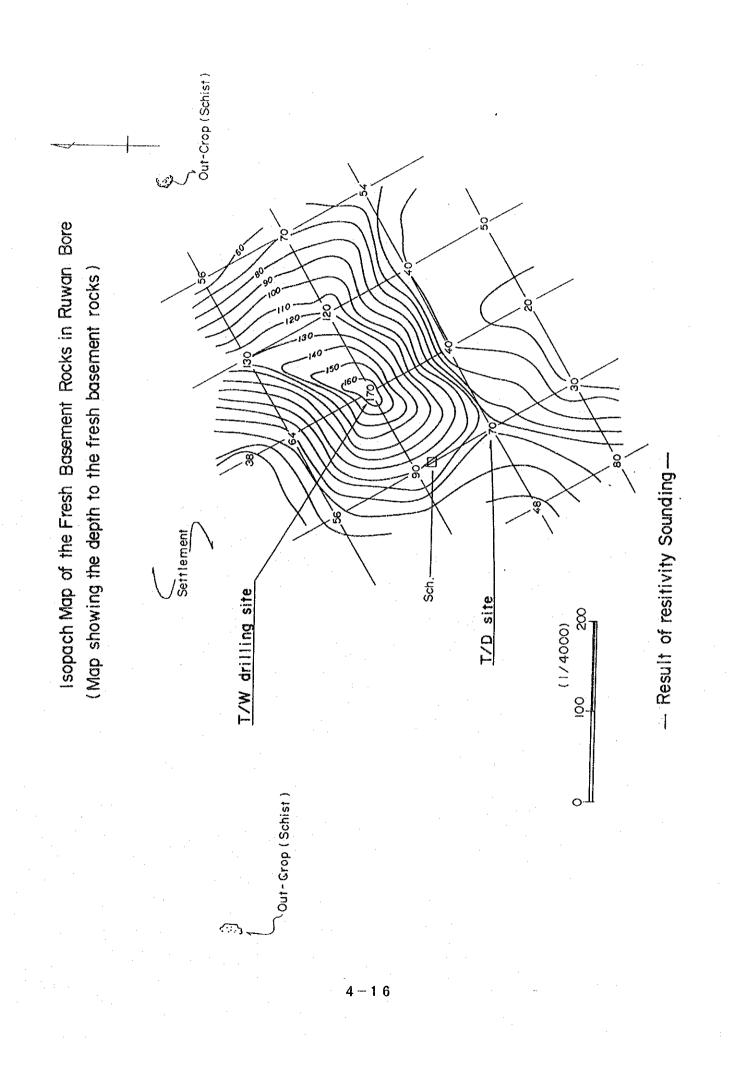
33.0

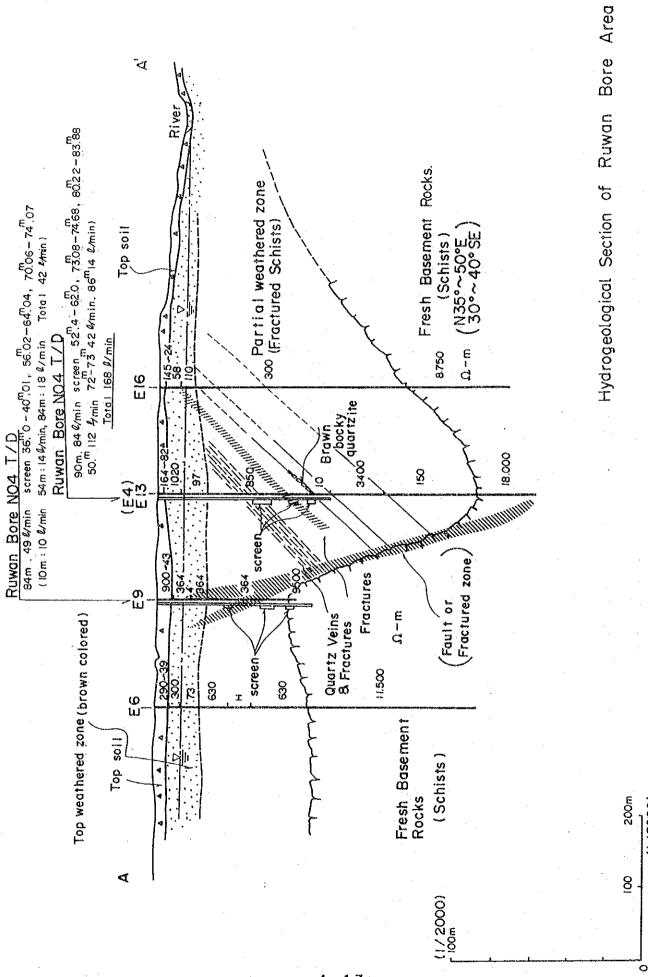
31.0

<u>SE 13</u>

SE 14

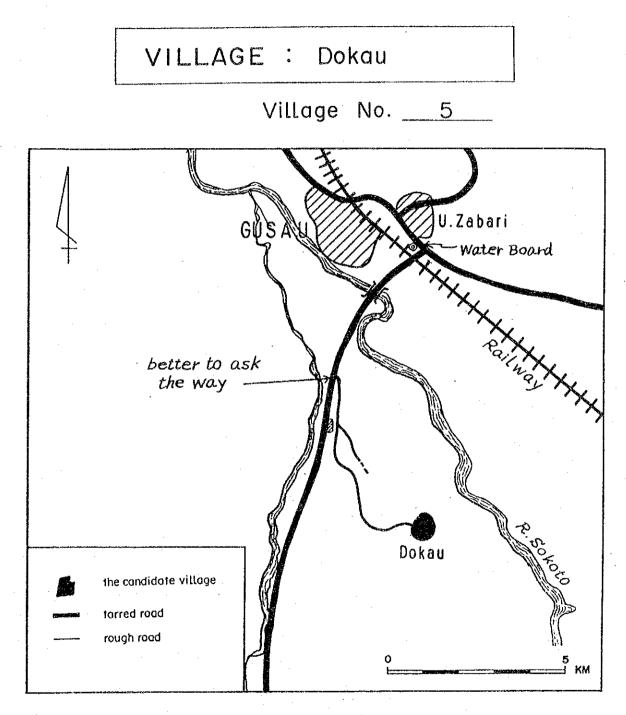

SE 20

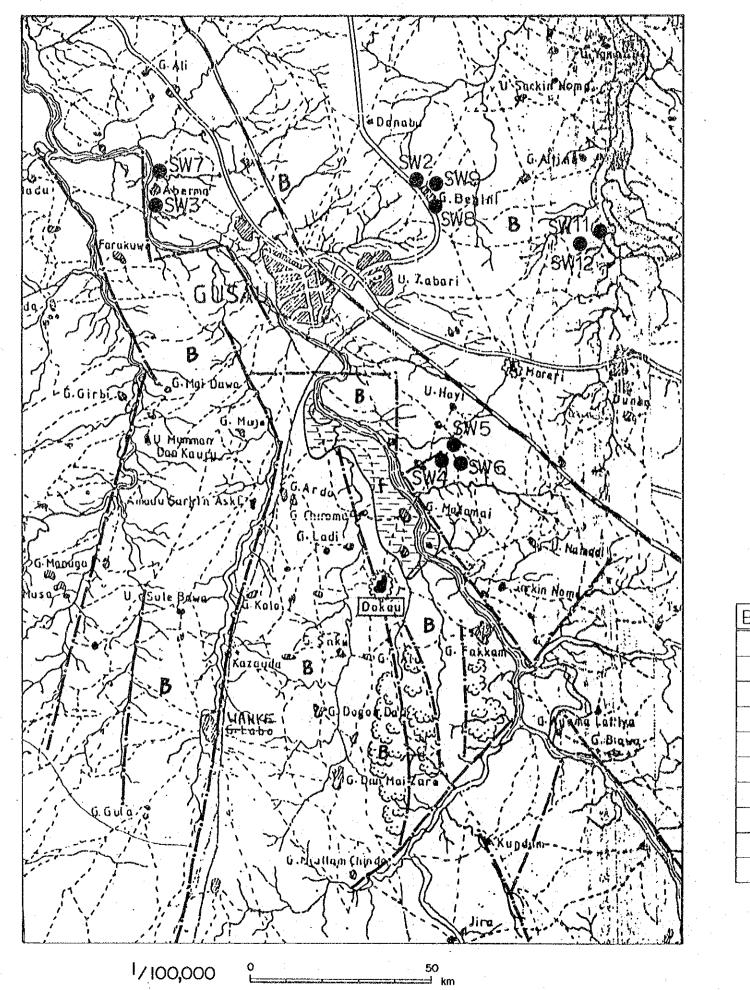

<u>SE 24 -</u>

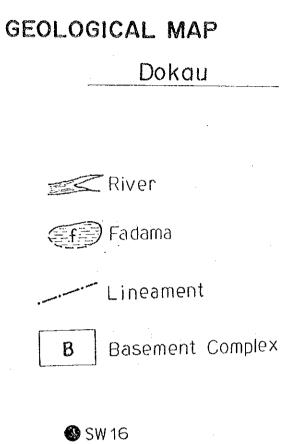

SE 25

SE 26

NG BOREHOLES		
5.W.L.(m)	S.C.(m³/d/m)	
19.15	Z,42	
17.07	1.04	
13.97	1.15	
15.24	0.69	
19.95	0.74	
15.93	5.52	
16.81	3.02	
9.19	31.76	
9.19.	2.25	
15.96	5.81	
11.91	1.57	
20.28	6.83	
15.85	14.26	

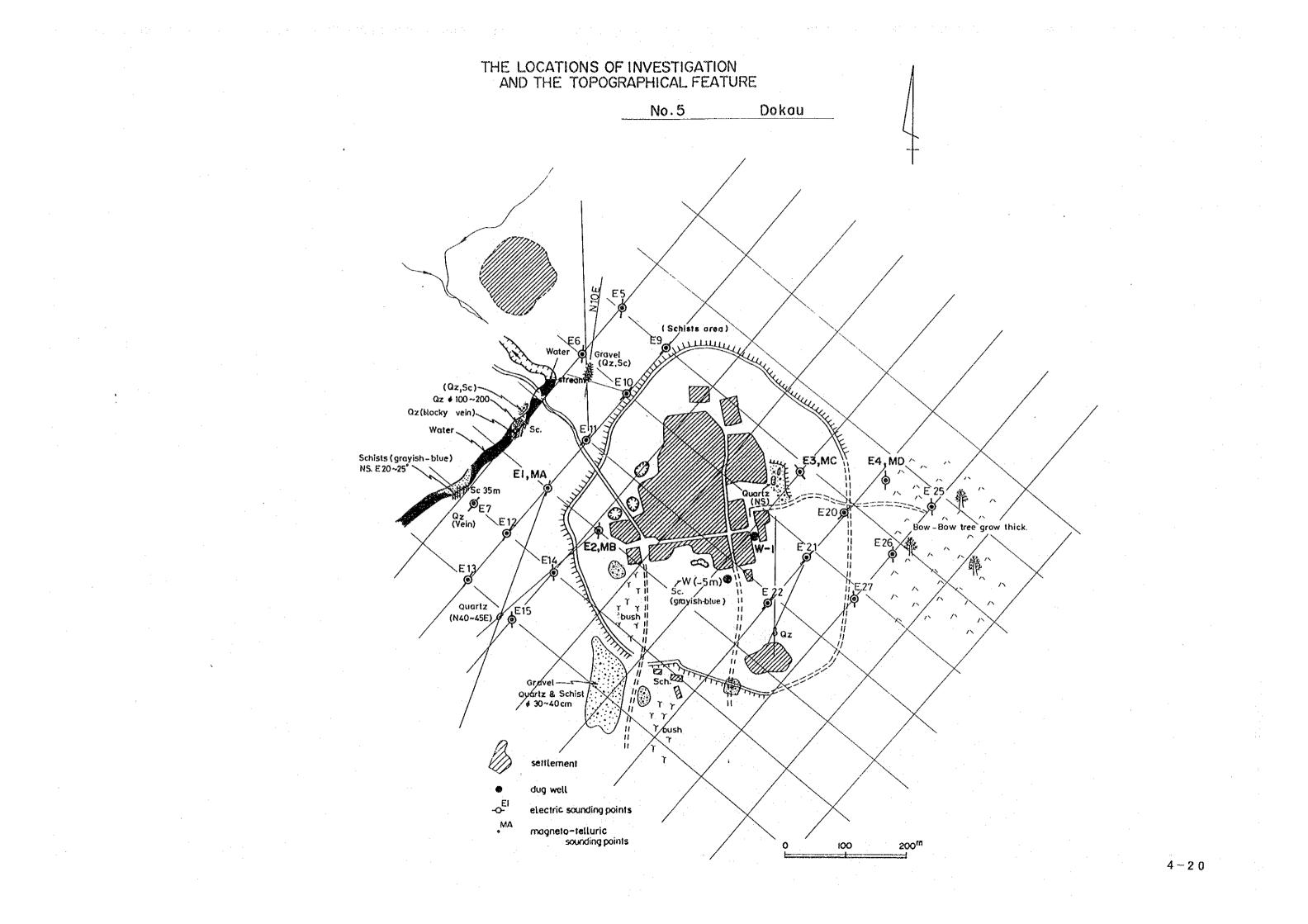


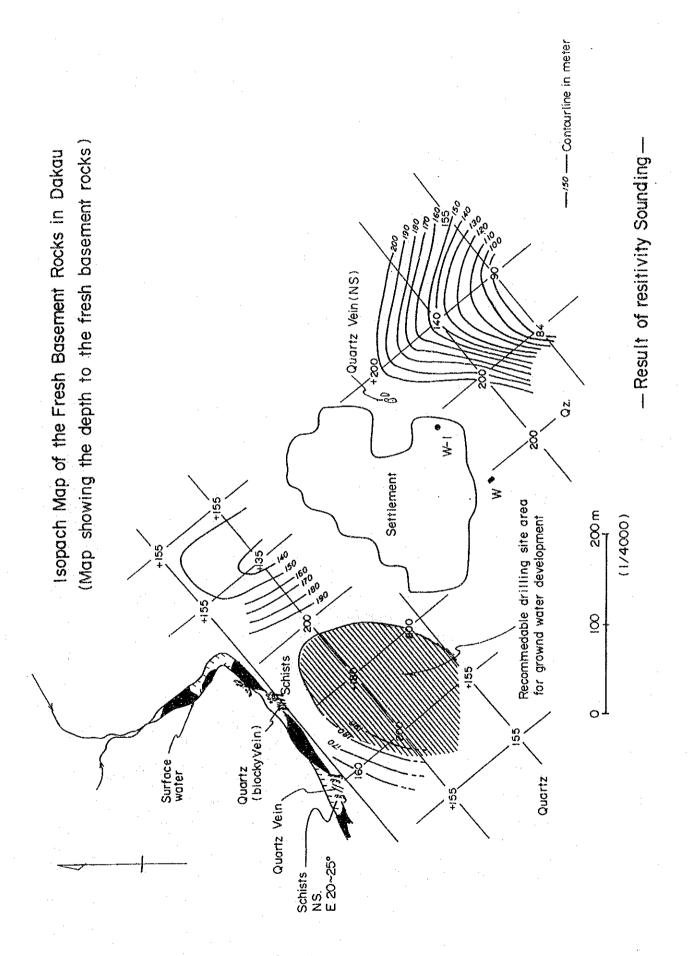

(1/2000)


The Study for Groundwater Development in Sokoto State

LOCATION MAP

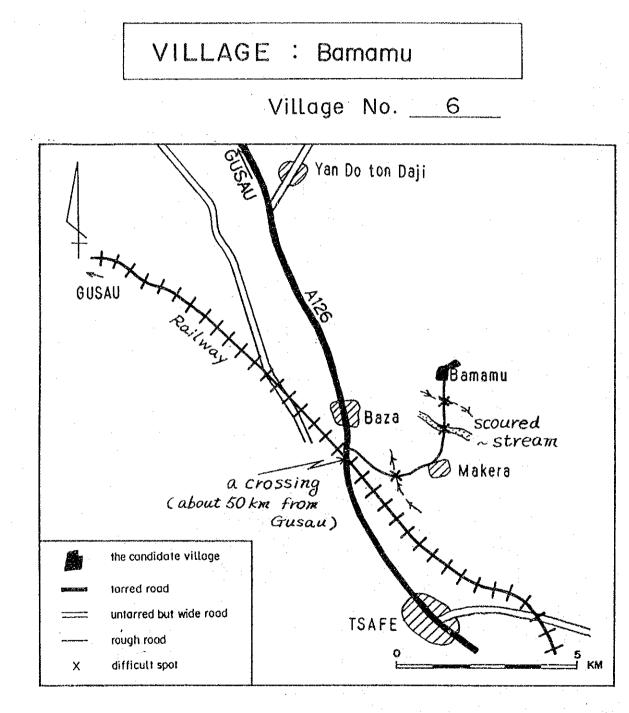
(1/100,000 Sheet 54)


DATA OF EXISTING Borehole No. Depth(m) S.W.I 17.0 SW Z 2. 61.0 SW 3 15 SW 4 49.0 12 SW 5 49.0 8 SW 6 37.0 11. 31.0 SW 7 8 18.0 SW 8 З. SW 9 31.0 3. SW // 31.0 З. SW /2 37.0 Э.

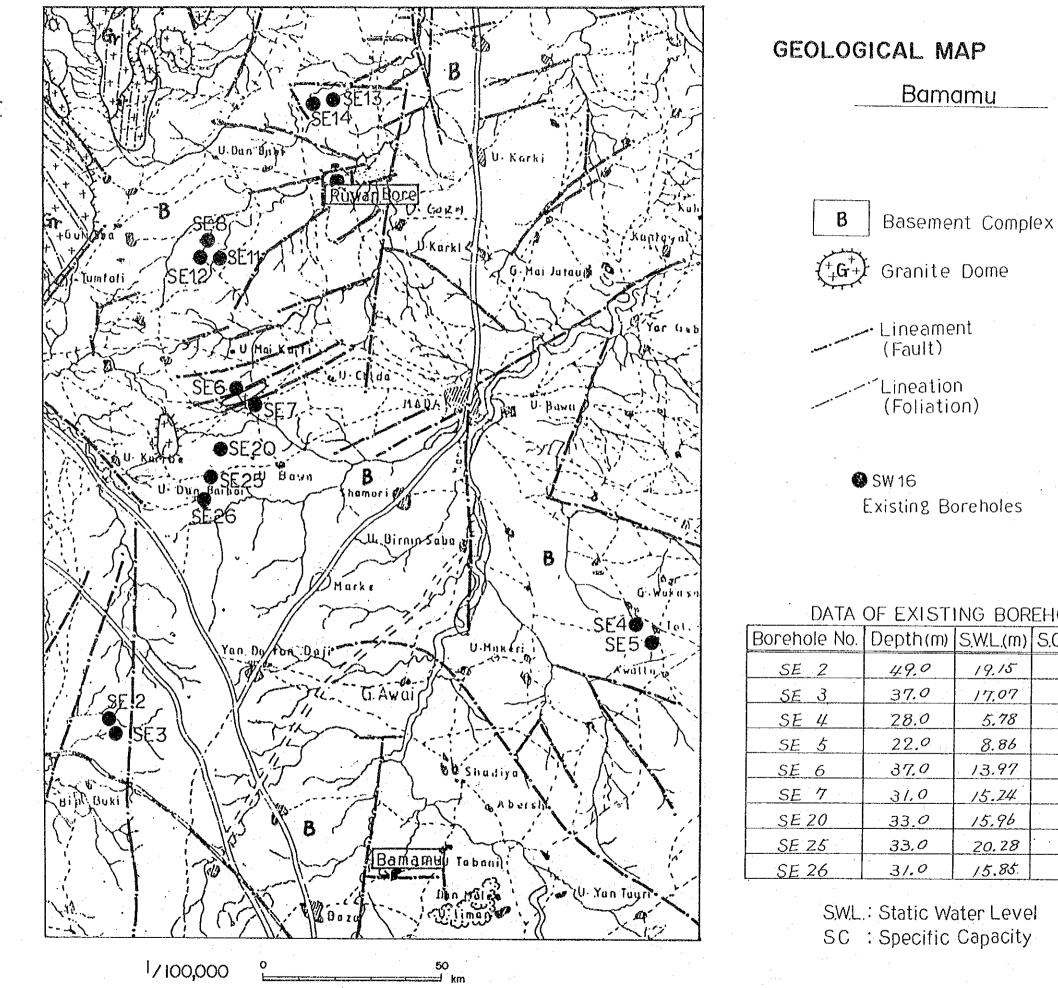

> SWL: Static Water Level SC : Specific Capacity

Existing Boreholes

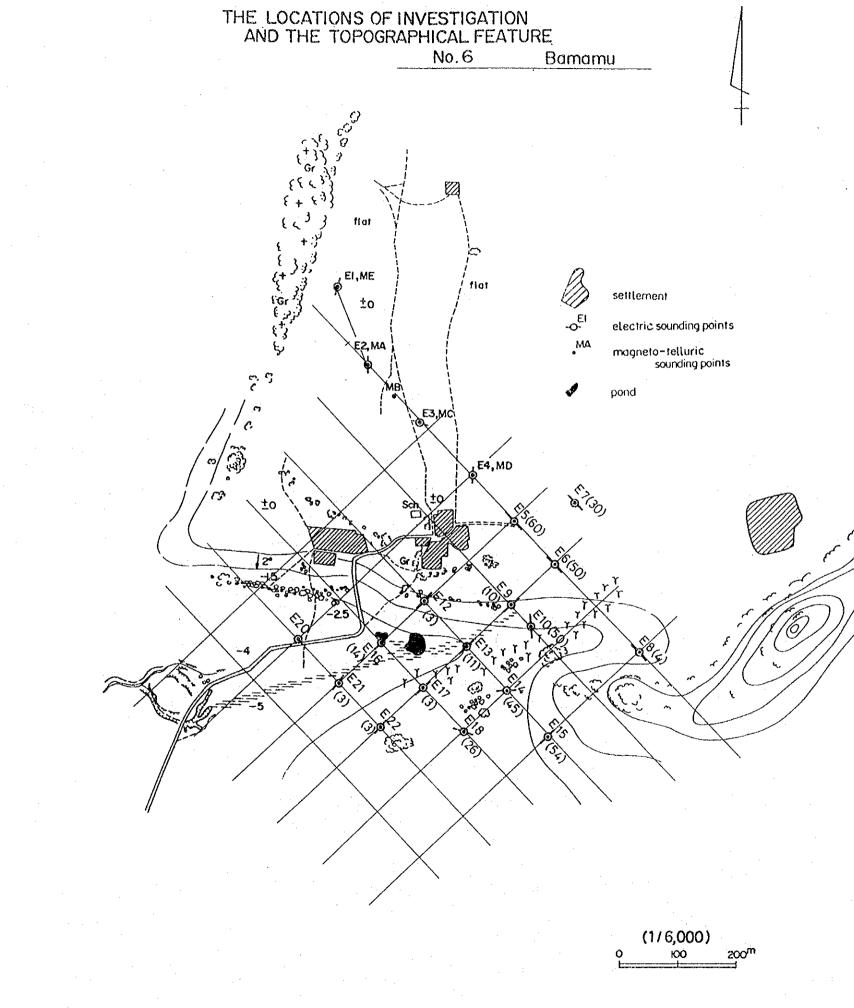
BOREHOLES				
L.(m)	S.C.(m³/d/m)			
,716	<i>0.</i> 23			
5.50	5.84			
06	0.51			
8,17	0.69			
.35	0.85			
.85	1.17			
. 47	5.93			
.12	2.14			
.63.	2.17			
.85	1.18 ·			

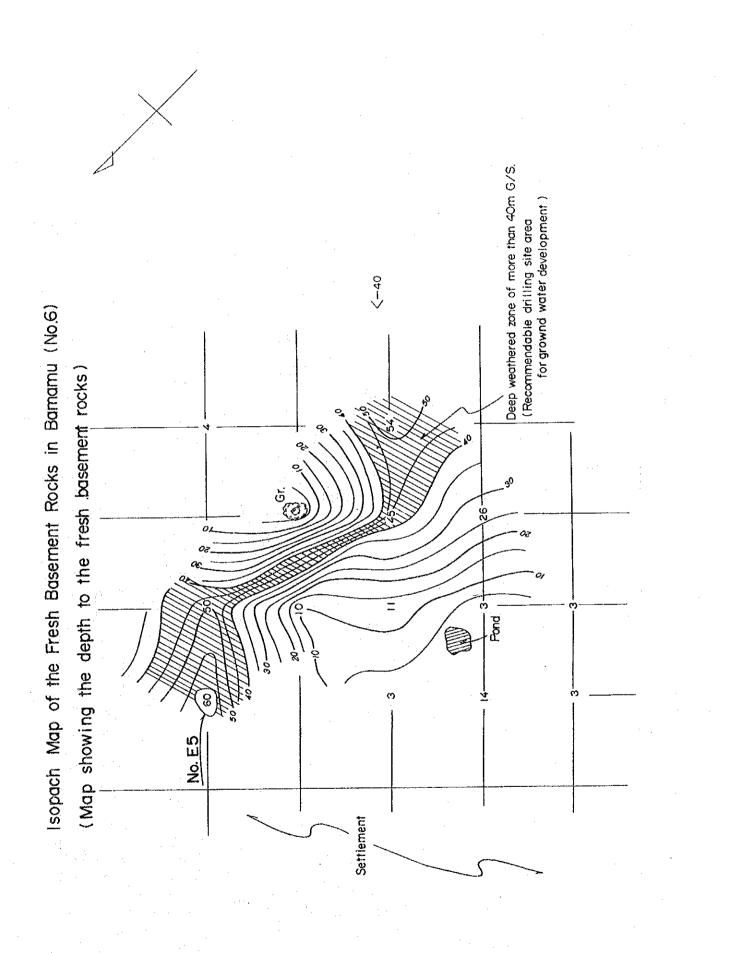

4-19

4 - 2 1

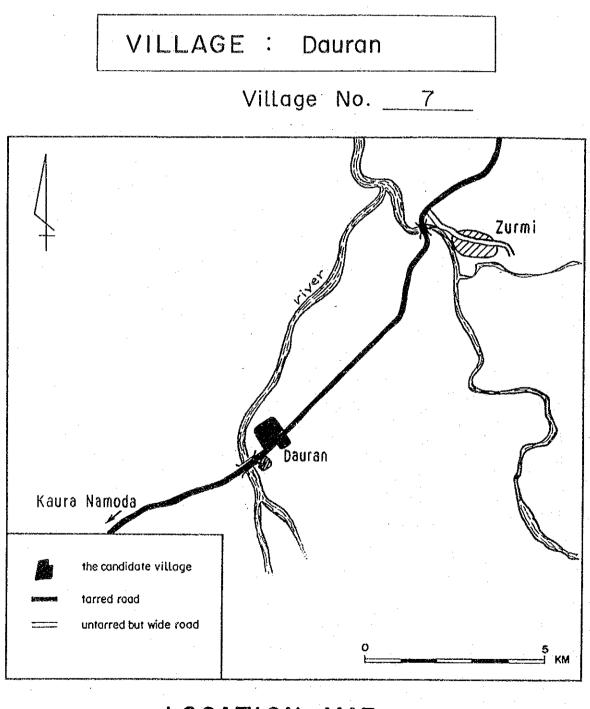

The Study for Groundwater Development in Sokoto State

LOCATION MAP

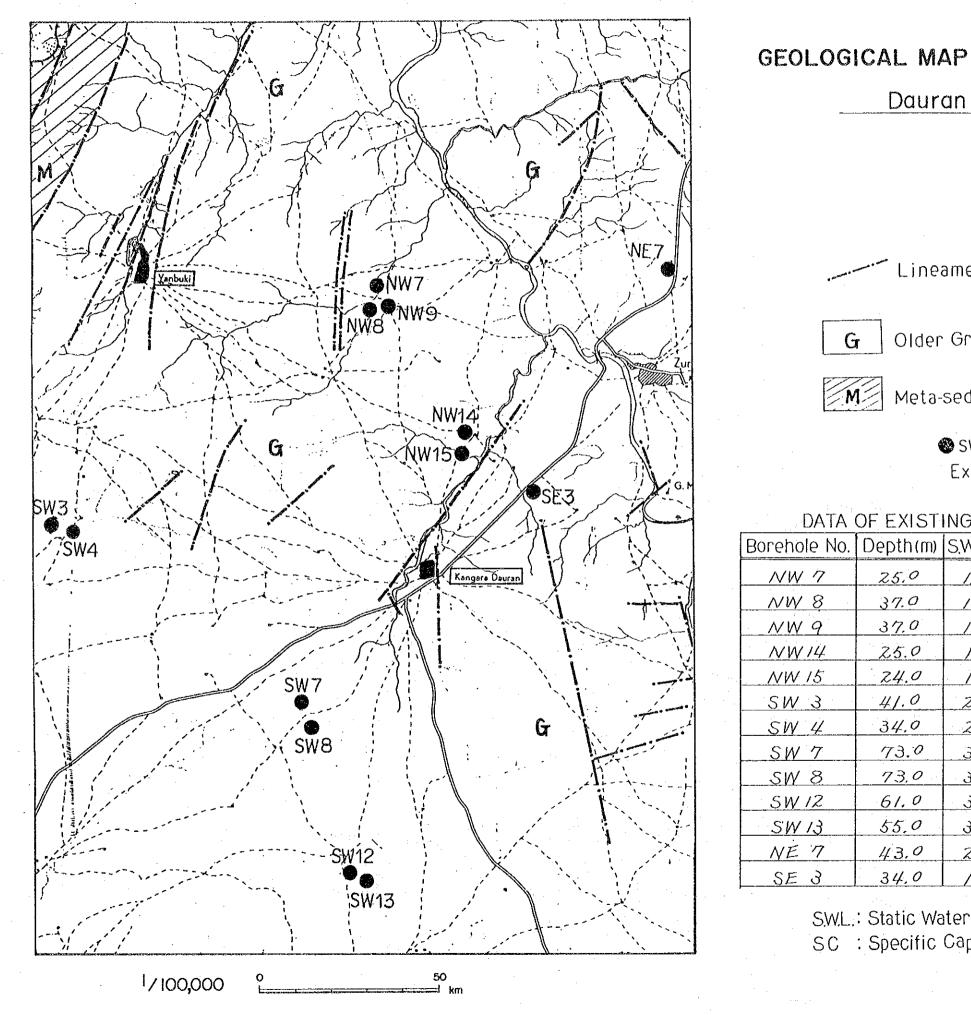

(1/100,000 Sheet 54)

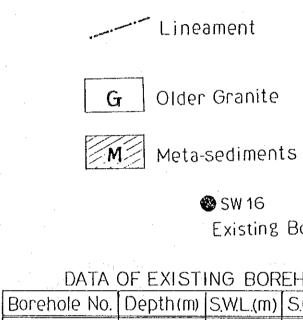

4 - 2 2

OREHOLES				
(M)	S.C.(m∛d/m)			
'5	2.42			
77	1.04			
78	6.70			
36	11.776			
77	1.15			
4	0.69			
6	5.81			
28	6.83			
<i>35</i> .	14.26			


4 - 2 3

4 -- 2 5


The Study for Groundwater Development in Sokoto State



LOCATION MAP (1/100,000 Sheet 32

)

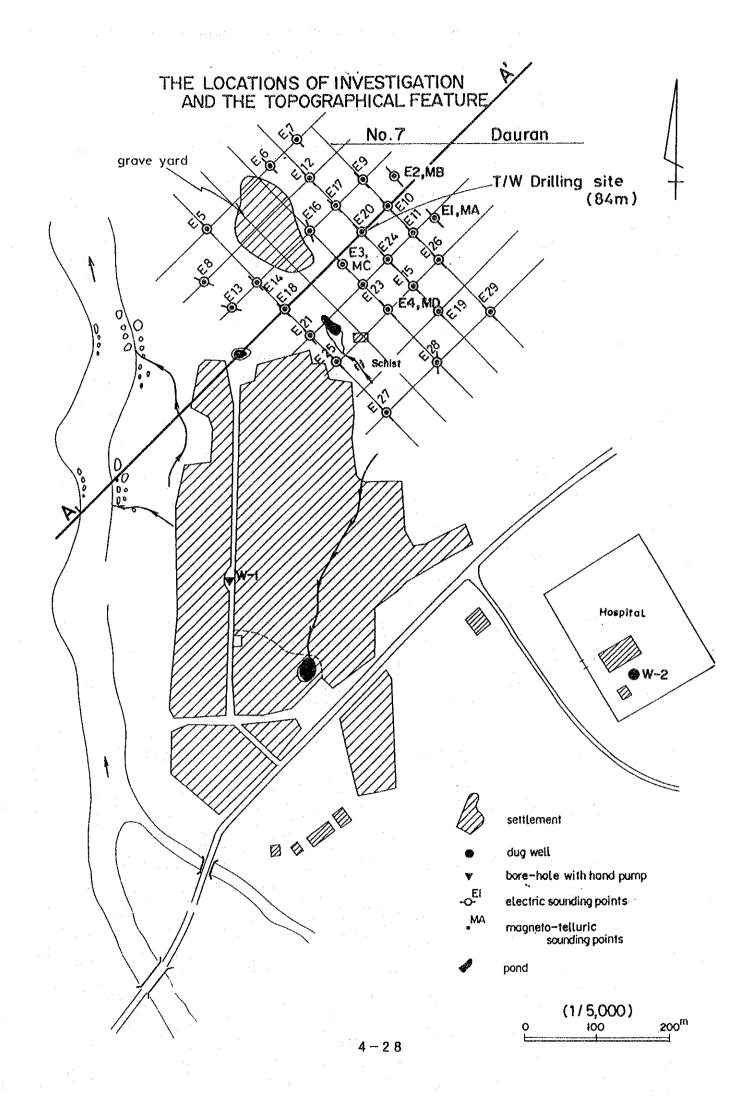
4-26

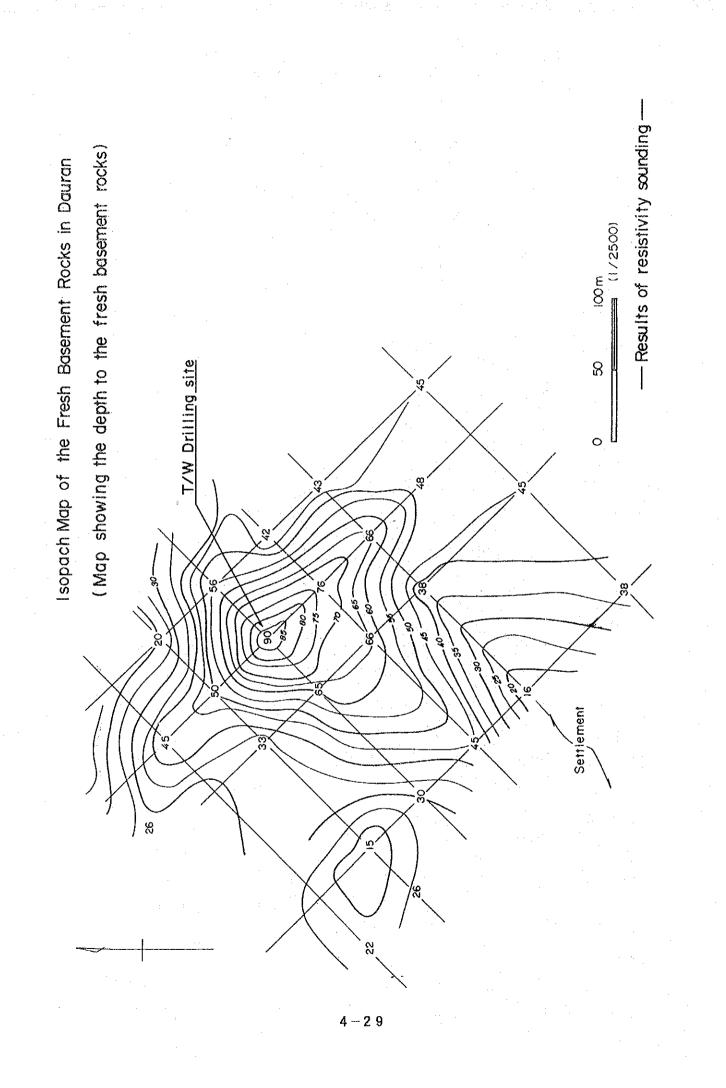
Dauran

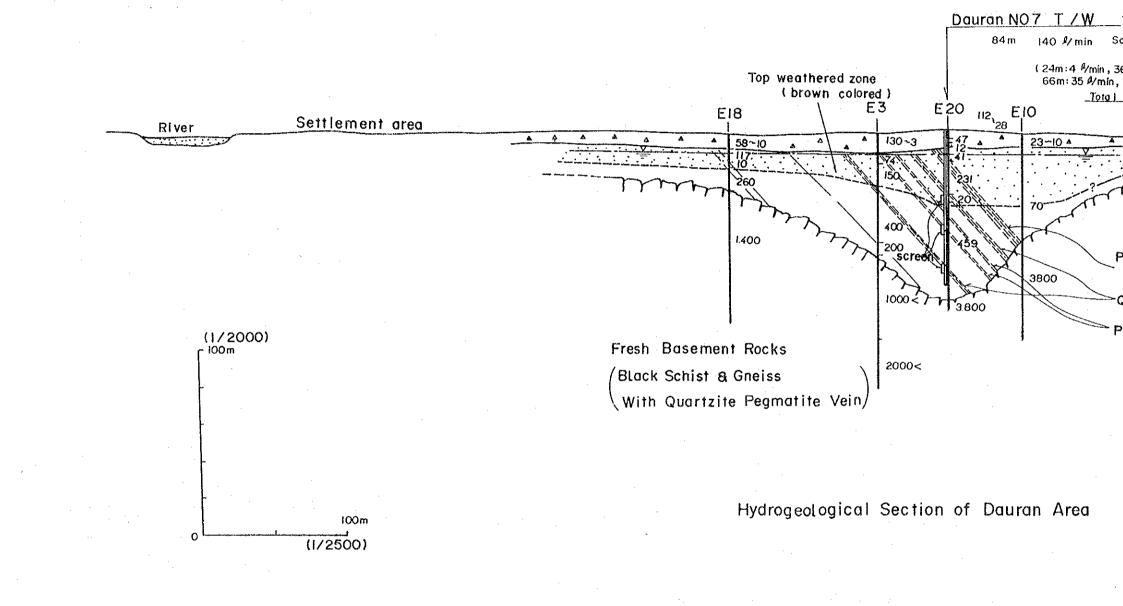
NW 7 25.0 12. NW 8 37.0 /3. NW 9 37.0 14. 25.0 NW14 10. 24.0 NW 15 11. 41.0 <u>SW 3</u> 24 34.0 24 SW 4 73.0 38. SW 7 73,0 SW 8 38. 61.0 30. SW 12 55.0 33. SW 13

G

SWL.: Static Water Level SC : Specific Capacity

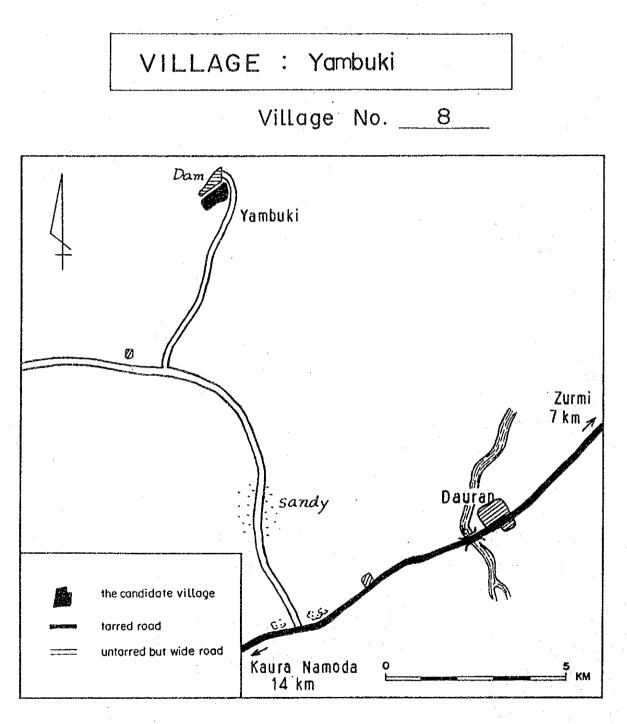

43.0


34.0


Existing Boreholes

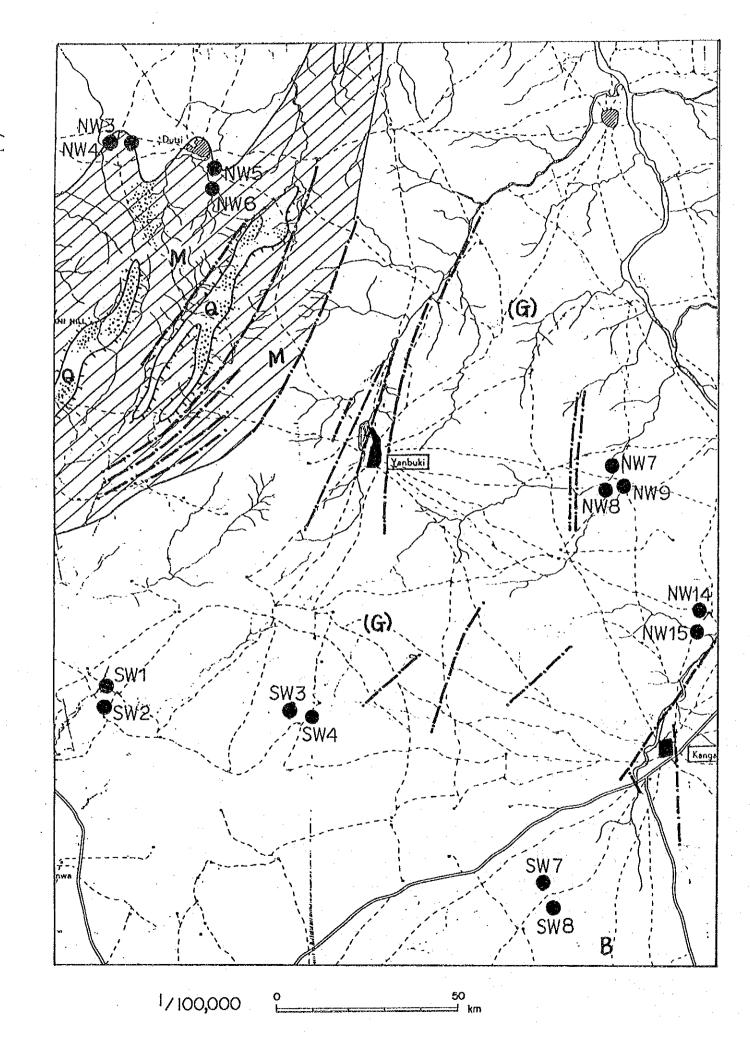
IG BOR	EHOLES
<u>SWL.(m)</u>	S.C.(m∛d/m)
12.60	Ż16,00
13.63	1.19
14.04	59,59
10.51	17.44
11.85	5.19
24.99	3.97
24,33	55.74
38,75	54.74
38.26	4.50
30.25	3.32
33.79	34.36
26.97	4.96
15.15	10.77

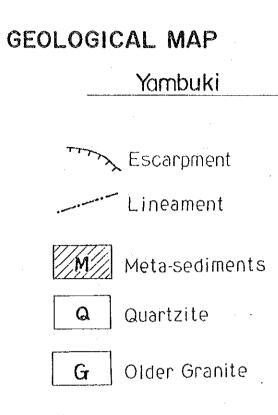
4-27


Pegmatite Veins 8 Fractures

Quartz Veins & Fractures

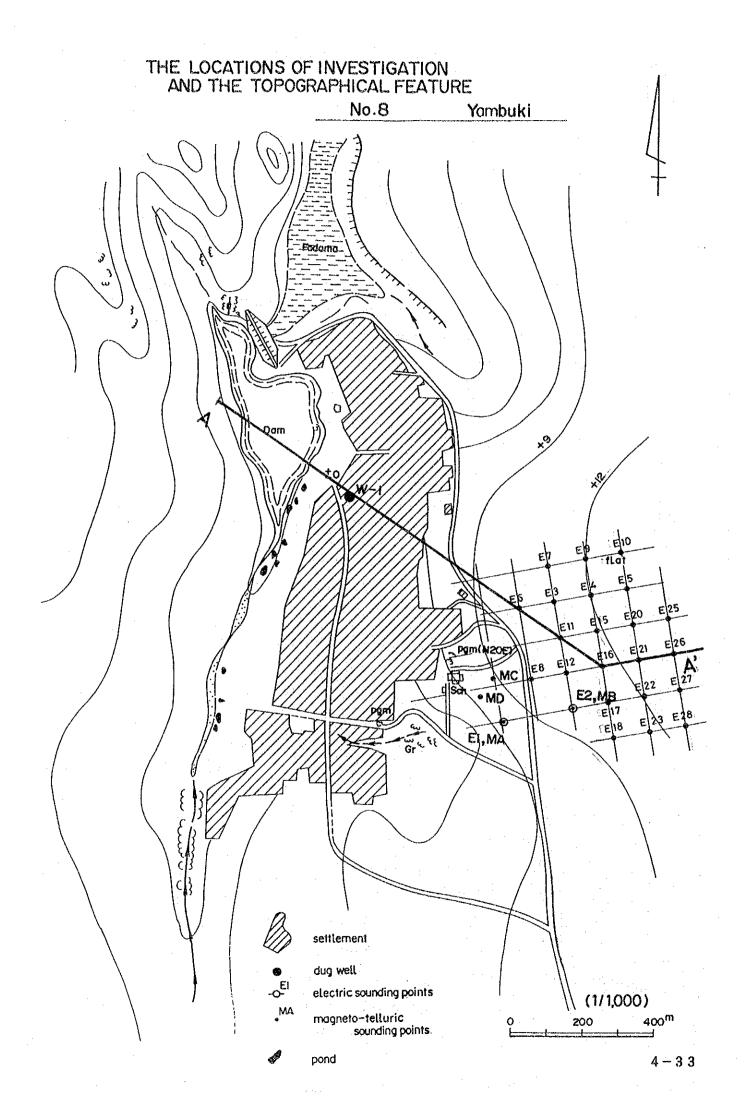
Pegmatite Veins & Fractures

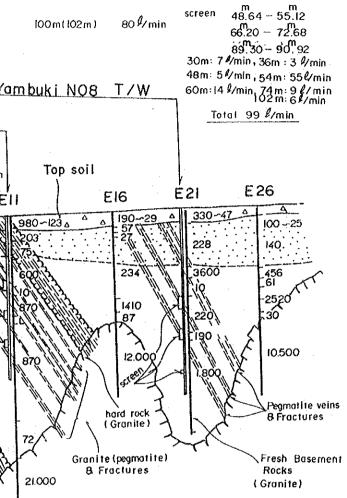

4-30


The Study for Groundwater Development in Sokoto State

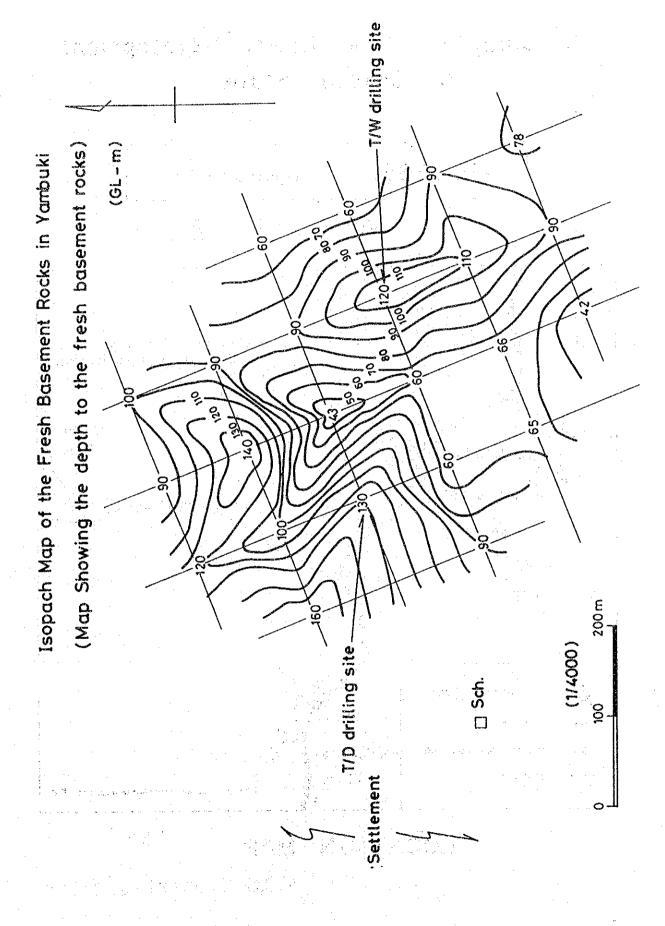
LOCATION MAP (1/100,000 Sheet 32)

4 - 3 1




DATA OF EXISTING BOREHOLES					
Borehole No.	Depth(m)	S <u>.W.L.(</u> m)	S.C.(m³⁄d/m)		
NW 3	40.0	29.19	3.39		
NW 4	43.0	28.76	4.97		
NW 5	25.0	3.05	6.70		
NW 6	31.0	5.04	1.92		
NW 7	25.0	12.60	216.00		
NW 8	37.0	13.63	1.19		
NW 9	37.0	14.04	59.59		
NW 14	25.0	10.51	17.44		
NW 15	2,4,0	11.85	5.19		
SW /	40.0	31.41	106.25		
SWZ	49.0	29.60	4.14		
SW 3	H1,0	24.99	3.97		
SW 44	34.0	24,33	55.74		
SW 7	73.0	38.75	54.74		
SW8	73.0	38.26	4.50		


SWL.: Static Water Level SC : Specific Capacity


SW 16 Existing Boreholes

4 - 3 2

