このように実質5年間の短期間における栽培技術の研究活動であったが、研究員による数多くの栽培試験の実施と、各地の優秀な協力農家の間場及び労力の提供により、今までボホールの中低地で不可能と思われていた各種の主要野菜類の栽培適応性が実証された。そして、多くの周辺農家にも認識されたことは、ボホールにおける野菜生産に対する意識が大きく前進したものと確信する。今後さらに栽培法の研究と改良が必要な品目もあるが、適正技術の開発と普及活動のコンビネーションにより適正な野菜栽培法が紹介されていくならば、主要野菜類は、栽培面積当りの収益も高いことから、技術移転の要求は高まり、野菜生産は確実に拡大するものと思われる。

3、 将来の展望と助言。

最近のセブ市場やタグビララン市場の野菜消費は、消費者の知識が多様化してきたためか、 種類も量も徐々に増加の傾向がみられる。

今日、フィリピンの人口増加が著しいことを考慮すると、主要穀物の生産拡大はもちろんのこと、野菜の生産と消費の拡大も図っていくことが重要であろうと思われる。今後、数年後を予想すると、90年代のフィリピンの社会、経済が順調に向上するならば、中小都市においても良質の緑黄野菜志向が向上するものと予想される。よって、今後の消費傾向の内容には、注目すべきいくつかの変化を予想する必要があろう。それらをあげてみるならば、

第1に、多種多様な野菜が消費されるようになる。特に高級野菜類のカリフラワー、レタス、アスパラガス、セロリーなど。

第2に、近い将来、野菜需要の周年化傾向が一般化する。

第 3 に、品質の優れたものが好まれるようになる。特に、スイカ、スィートメロン類では、 糖度の高いもの、ミディアムサイズの良質で高級感覚のものであれば、それは消 費される傾向にある。

よって近い将来、ボホールで多様な良質野菜が生産されるようになり、自給を満たすレベル に達すれば、すぐ真近にあるフィリピン第2の都市で、年々拡大しつつあるセブ市への野菜 供給は、増々重要性が高まるであろう。

このような社会、経済的進展が予想される中で、すでに栽培法等、ガイダンスの行なわれ たボホールの数ケ所では徐々にその生産性が向上しつつあると言われる。

しかし、多くの一般農家レベルでは畑作物を含め、まだ低い生産性を呈している所もある ため、その普及活動を通して、すぐれた野菜栽培農家グループを各地に発足させ、主要野菜 生産の適正技術の移転につとめることが大事である。

よって、改善された技術情報は普及訓練を通じて、すみやかに農家へ提供されなければならない。そのためにも農業普及員に対しても、野菜に関する種々の知識、技術の修得が必要となってくるのは当然である。

今後の研究活動は、過去5年間の研究事例や成果をさらに有効に活用して、下記のような 研究課題を維持し、将来の諸問題に応じた研究テーマを実施できるようにすべきである。

- 1. 耐暑、耐病性早生品種の継続的スクリーニング。
- 2. 輪作体系を応用した栽培型の確立
 - a. 有支柱利用による多品目継続栽培型:ウリ科、インゲン豆、トマトの組合せ
 - b. 乾期における水田利用野菜栽培型:キャベツ、ハクサイ、スイカ、メロン等
- 3. 適正栽培規模の確立
 - a. 栽培管理上の省力化
 - b. 単収、品質の向上

また、ユニット/ haベースは $1,000 \, n^n (10 \, a)$ 当りに変更する方が、もっと実際的で、現地の情況に適している。

- 4. 病虫害の予察と防除対策の検討(別添、表3参照)
- 5. 野菜市場の動向に応じた栽培時期の検討(別添、表4参照)
- 6. 有機物(堆肥)の継続的応用による生育・収量及び土壌改善の検討

これらの研究を通して、新しい技術の導入、開発は研究員にとって重要な任務であるが、つ ねに生産性の向上、栽培時期別収益性及び農家の経営能力(規模)を考慮した改良技術の検 討が重要である。このことを認識して、無理のない適正な研究計画を図ることが肝要である。

おわりに

研究員の活動能力が、この5年間にことまで成長し、研究の成果を得るようになったのは、新しいものに対する興味をもって、初歩から野菜栽培の研究活動に接し、専門家と共に数多くの試験栽培をこなしたことによるものが大きい。

それは、さらに彼らに何とか対応できる能力が備なわっていたためであろう。この5年間の 活動をふりかえり、自己評価をさせて頂くならば、おおむね、所期の目的を達成したが、不十 分な研究もいくつか残ったことを認める。しかし、私は、この研究員たちが、プロジェクトか ら学び得た知識と技術をもって、彼ら自身の努力によって研究を続けられるならば、またそれ が、自然環境的に不可能なものでなければ、さらに適正な改良技術が多く得られるものと理解 している。

今後、熱帯における野菜研究活動の遂行において、研究テーマや地域差、予算不足、そして 自然災害等で苦労することもあろうが、必ずそれは、ボホールの中小規模の野菜生産農家の生 産性向上のためと、引いては、農民の生活レベルの向上に貢献するものと確信する。

この野菜研究活動において、得られた各種の試験結果、資料などの添付は数が莫大になるため省略した。それらの詳細は、すでに多く発行されているAPC Technical News、APC Annual Report 1、『、及びVegetable Technical Hand Book 1、』 などを参照して頂き

たい。

最後に、このボホール島における野菜栽培研究の活動遂行のために参加、協力をして頂いた 下記の組織、及び人々に対し、心から感謝いたします。

- IPB、野菜研究部育種関係部門、UP、ロスパニオス市
- B P I 、バギオ農業試験場 バギオ市
- ・アジア野菜研究開発センター 台湾
- ベングェト州立大学作物学部 ラ・トリニダッド市
- フィリピナス・カネコ・種苗・コーポレーション リパ市
- ・農業省第7管区農業局 セブ市
- ・ボホール州農業局及び普及員 タグビララン市
- ・ボホールAPC、野菜研究部研究員 タグビララン市
- ボホール島で選抜された先進的な協力農家の人々

1990年1月31日 **

JICA派遣専門家 日 高 健 夫

<添付した表>

- 表-1 適応野菜作目の品種及び栽培特性
- 表-2 適応野菜類の適正施肥量
- 表-3 ボホールで発生する病害
- 表-4 ボホールにおける各野菜栽培の適正時期

表一1 選抜した適応野菜作目の品種及び栽培特性の一覧

(フィリピン・ポホールA P C 1985年~1989年の研究成果より)

	tion is the second of the second	141			
作付品目	有望品種	適地	栽培適期	平均収量 /ha	特性
トマト	BPI Na 1 & Na 2	平地/山間地	7月~3月	30 ~ 35 t	早生、耐暑性強、着果多良
	マリキット	y.	· · //	25 ~ 28	中早生、立枯れ病やや弱、着果良
ナス	ダバオロングパーブル	平地/山間地	6月~3月	30 ~ 35	長ナス系、草勢強、長期栽培可
	ジャックポット	"	n,	40 ~ 45	[ii]
	ディングロス	"	"	38 ~ 40	[7]
ピーマン	ブルースター (台)	平地/山間地	6月~4月	20 ~ 25	早生、果肉良、大果、耐乾性弱
	ローカルセブ	"	"	23 ~ 27	早生、中果、耐暑性強
キューリ	バンバー 94 (台)	平地/山間地	7月~3月	65 ~ 70	早生、節成、着果多良、耐病性強
	ポイントセットIPB	"	"	$50 \sim 55$	早生、半節成、ピックル系
キャベツ	レジストクラウン	山間地	8月~1月	30 ~ 35	早中生、大玉、結球良、収58日前後
	KKクロス ★	平地/山間地	7月~2月	24 ~ 26	早生、耐暑性強、大中玉、結球良
	KY2□ス ★	"	"	24 ~ 26	n 耐病性有
	エキスプレス 60 ★	"	"	27 ~ 29	早生、高温結球性強、収53日前後
	カプコー	"	"	21 ~ 25	早生、耐暑性強、中玉、結球良
	カゲロウ	山間地	"	20 ~ 26	早生、中玉、結球良
ハクサイ	WR 55 − 60 ★	山 間 地	8月~1月	25 ~ 30	早生、耐暑性強、結球良、収45日
i .	ミカド55 ★	<i>"</i>	"	20 ~ 24	<i>u u</i>
	ノゾミ60 ★	"	11	25 ~ 30	早生、 // 結球やや弱
	レイナイレーナ	"	9月~1月	17 ~ 21	早生、結球良(中玉系AVRDC-Hy62)
ニンジン	МТクロダ	山 間 地	7月~2月	10 ~ 12	耐暑耐病性強、姿良、濃橙、収78日
	MSDDF	"	"	18 ~ 20	" "
	ミカトアー・リー5インチ	"	"	12 ~ 16	早生、耐暑性強、姿良、橙、収75日
ダイコン	タイナンNa 1	山間地	8月~2月	22 ~ 25	早生、短系胴太、耐暑性強
	ミノワセ	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	"	25 ~ 28	耐暑性強、ス入り早い、収40日内
スイカ	シュガーベビー	平 地	6月~4月	35 ~ 40	早生、中玉黒皮、草勢強、糖度10前後
:	" *	山間地	2月~5月	30 ~ 33	"草勢強、密植多収可
メロン 類	GY-9 (マクワ)★	平 地	2月~6月	28 ~ 33	早生、草勢強、着果多、果肉白、糖度中
	JADE(ミツホ)★	"	"	28 ~ 33	# 果肉淡白緑、糖度中上
	ガルフストリーム★ (カンタロープ)★	"	"	25 ~ 30	草勢強、果肉橙、糖度中
カリフラワー	スノークイン メイケツ	山間地	9月~1月	10 ~ 12	早生、中型蕾、ナンプ病弱、収45日内
タマネギ	未選抜	"			
ジャガイモ	未 選 抜	"			•
·	· · · · · · · · · · · · · · · · · · ·	L			

★印:稲ワラマルチを応用した乾期水田あと作が可能なもの

表-2 中小農家向け野菜栽培の適正施肥量表

作付品目	必要成分量 (kg / ha)	(肥料の種類) (成分量表示)	元 肥 (9/m²)	追肥 1 (9/m³)	追肥 2 (9/m³)	備考
キャベツ	120 - 60 - 60	14 14 14	43			アルカリ土壌
		45 - 0 - 0		7	7	
キャベツ	120 - 120 - 60	14 - 14 - 14	43			酸性土壤
		0-18-0	33			
		45 - 0 - 0		7	7	
ハクサイ	70 - 70 - 70	14-14-14	25	25		
ハナヤサイ	110 - 90 - 90	14-14-14	64			
a e e e		21-0-0	<u> </u>	9		
トマト	90 - 60 - 60	14-14-14	43			
		21- 0- 0		14		
ピーマン	100 - 120 - 80	14-14-14	30	15	15	長期栽培
		21 - 0 - 0	5	3	3	
		0-18- 0	10	5	5	<u> </u>
ナス	100 - 120 - 80	14-14-14	30	15	15	長期栽培
		21 0 0	. 5	. 3	. 3	
		0-18-0	10	. 5	5	
キューリ	100 - 85 - 60	14-14-14	21	21		
		21-0-0	10	10		
		0-18-0	7	7	. '	
スイカ	90 - 140 - 70	14-14-14	25	25		
		21 - 0 - 0	5	5		
		0-18-0	20	20		
ニンシン	80 - 85 - 60	14-14-14	21	21	٠	
		21 - 0 - 0	10	10		
		0-18-0	5	5		
ダイコン	40 - 45 - 25	14-14-14	9	9	:	
		21 - 0 - 0	4	4		,
		0-18-0	6	6	٠.	

表一3 ボホール島で発生する主要病害

作付品目	病 害 の 種 類
h 7 h	青枯病、立枯病、ウィルス病、葉カビ病
ナー・ス	褐色輪紋病、脊枯病
ピーマン	輸紋病、ウィルス・モザイク病
トウガラシ	モザイク病
キャベッ	黒ハン病、黒腐病
ハクサイ	黒ハン病、軟腐病、黒腐病
ハナヤサイ	軟腐病、黒ハン病
キューリ	うどんこ病、萎ちょう病、つる枯病、ウィルス病
スイカ	炭そ病、つる枯病、ウィルス病
マスクメロン	うどんこ病、炭そ病
アンパラヤ	炭そ病
= y ÿ y	苗立枯病、黒ハン病
ダイコン	黒ハン病、モザイク病
ササゲ	サビ病、ウィルス・モザイク病

表一4 ボホール島における各野菜栽培の適圧時期

Transplanting on utilization during a dry March is one pattern in paddy field possible cultivation Remarks season. MARCH 2nd Harvesting FEB JAN APPROPRIATE VEGETABLE CULTIVATION PATTERN IN BOHOL Pruning DEC NOV OCT Harvesting period SEPT Sowing AUG JULY Sowing Range of 4 possible sowing period JUNE MAYAPRIL auliflower Cabbage (Hi I I vl and) ucumber F abbage lowland) umpalaya Eggplant Melon tring Beans hinese lomato Squash abbage Carrot Radish Nater pepper Sweet

II. 野菜研究の業務内容技術指導の経過

ボホール農業振興センター(APC)の完成(1985年2月)と共に、当地熱帯における 野菜栽培の研究活動が開始されることになったが、当初、野菜部に採用された研究員たちの、 野菜に関する知識は農科大学を卒業しているにもかかわらず、野菜作物の栽培には全くはじめ て接するという状況であった。

よって、すべて初歩から野菜園芸に関する知識、各種の栽培実習など圃場準備を含め、播種から収穫までの一貫した栽培の体験的な学習指導を行う必要があった。

さらに担当スタッフを棄薬類、果菜類、根菜及び豆類に振り分けることにより、すべて各自 が間場実習を通して、栽培試験計画、栽培管理、病虫害防除、データ収集、そして観察力の向 上などを養うため、最初の1年は研究員に対する栽培知識や管理技術の指導に努めた。

その後、順次栽培知識・技術が向上するにつれ、野菜別の種子消毒、播種法、育苗及び定植 時の準備や作業の段取り、施肥法、さらに栽培法の改善につながるアイデアなど、これらの経 験的知識が栽培の基礎知識として徐々に定着した。

このように体験的に実施された各種の試験栽培を通じて、適正品種の選抜、適正施肥の検討、 栽培法の検討などから有効な資料、結果を得られるようになり、各研究員が農家圃場での栽培 試験を通じて、直接、農家に対して栽培の技術移転が行なえるようになった。

ことまで到達するのに2年半を要したと思料しているが、農家圃場試験の協力農家、内陸部 カルメンや山間地マヤナ地区のグループは、各栽培試験の管理作業やセンターでの野菜栽培セ ミナー参加を通じて技術を修得し、彼ら独自にキャベツ、ハクサイ、ニンジンなどを作りはじ め、毎週末の収穫から臨時収入を得るようになってきている。

この間にカウンターパートをつくばの野菜生産コースに派遣(88年2月~11月)、帰国 後、徐々に研修の成果をいかし研究活動を行なっている。

現在、研究員1名をつくばの同コースに派遣(89年2月~11月)しており、帰国後は、 特に栽培法の改善に研究の主体をおくよう考えている。

今後も改善発展のための目標となる諸問題点は下記のように

- 1. 適正有望品種の情報不足
- 2 栽培法、施肥技術の未熟
- 3. 病虫害に対する防除法の無知
- 4. 不良採種種子の使用
- 5. 市場の情報不足

の理由であり、徐々に向上しつつあると云われるが、一般農家レベルではまだ低い生産性にあ り、指導・改善が必要である。

すでに周知のとおり州都タグビララン市場にでまわる野菜類のほとんどはセブ島からの入荷

にたよっている。

よって、平場では栽培しやすい果菜類の有望品種の栽培法、施肥法など、より適正な耕種基準の確立、さらに山間地の冷涼野菜についても耐病性導入品種をもちいた房年栽培の検討、市場価格を考慮した栽培型の検討などが必要である。

今後、これらの研究成果をいかし、野菜農家の育成と生産の増強を計ることにより、多くの 低所得農家の生活向上に寄与できるものと確信する。

表-5 選抜した適応野菜作目の品種及び栽培特性の一覧 (1986年~1989年の研究成果から)

1989年9月30日現在。

作付品目 有望品種 適地 栽培適期 特別 トマトBPI Na 1、Na 2 平地/山間地 7月~3月早生、耐暑性強 財産 中早生、立枯れ病にやや弱い ナスス、草勢良、長期栽培 Jack pot 同 同 同 同 同 同 同 同 同 同	生 可
Marikit 回 同 中早生、立枯れ病にやや弱い ナ ス D. L. P 平地/山間地 6月~3月 長ナス系、草勢良、長期栽培	
ナ ス D. L. P 平地/山間地 6月~3月 長ナス系、草勢良、長期栽培	
	ij
Jack pot নি	
Ding ras 同 同	
ピーマン Blue Star 平地/山間地 6月~4月 早生、大果、果肉良、耐乾性	号
Local Cebu 回 岡 早生、中果、耐暑性強	
キューリ Bumper 94 平地/山間地 7月~2月 早生、節成、着果多	
Pointsett " 単節成、ピックルス型	
キャベッ Resist crwn 山 間 地 7月~1月 やや中性、大玉系結球良、収	57日前後
KK Cross ★ 平地/山間地 6月~2月 射暑、結球性良、水田あと作	に良
KY Cross ★ 同 同 国	
Express 60 ★ 同 同 高温結球性強、収50日内	
Cabuko ★ 同 同 早生、耐暑性強	
Kageroo 山間地 同 早生、中玉	
ハ ク サ イ WR 55 - 60 ★ 山 間 地 8月~1月 耐暑結球良、収45日内	
NOZOMI 60 ★ 同 同 耐暑結球やや弱	
Lyna Elena 同 9月~12月 結球良、中玉系(AVRDC系H	y - 62)
= ン ジ ン MT - Kuroda lli 間 地 7月~3月 耐暑耐病、姿良、濃橙	
KS-Kuroda	
Early 5 inches 同 同 早生、耐暑、姿良、橙	
タ イ コ ン Mino-Wase 山 間 地 8月~2月 耐暑強、収40日内	
ス イ カ Sugur Baby ★ 平 地 6月~4月 黒皮中玉、中糖度、草勢強	
山 間 地 3月~5月 草勢強、密植多収可	
メ ロ ン 類 GY-9 ★ 平 地 2月~6月 草勢強、中糖度	
カリフラワー 未選抜 山間地	
玉 ネ ギ 同 同	
ジャガイモ 同 同	

★印:稲ワラマルチを応用した乾期水田あと作可能なもの

- 11. 研究課題別調査表
- 1、 栽培適応性の検討

平成元年度研究課題別調查表

究 課 題:栽培適応性の検討 豣

部 課 題:キャベツの適正品種の選択(山間地) 紃 派遣専門家(年次):日 高 健 夫 (84.11-90.2) カウンターパート: Eugine Cahiles, Rezalina Guibao

	Eugine Cahiles, Rezalina Guibao
調査項目	対 象 ; 専 門 家
1. 実施項目	山間地におけるキャベツの適正品種選抜試験 使用品種:11品種(表-6参照) 試験時期:1989年6月~8月 試験 地:山間地 Mayana 、Jagna 農家圃場
2. 成果の概要	6月の雨期入り初期に播種し、のち適時降雨の期待できる山間地に
	おいて、現地で入手可能な5品種と、導入種(日本)6品種をもちいて検討した。
	結果は別添の通りで、すでに1昨年に有望適正品種として選抜して
	いるKK cross、KY cross を含め、新しく現地で市販されはじめた、
	Resist Crown 及び導入種の Express 60、Kageroo、Nastubare、New
	Summer Autum等を山間地での新たな栽培適応品種と評価した。
	Resist Crown は大玉系で球形良いが、Nastubare とともにやや中
;	晩性である。また、すでに選抜品種のKK cross、Express 60 は導入
	種 Kageroo、Summer Autum を含め中玉系早生を示し、収穫まで日
	数も52~54日でNastubare より10日早い収穫が可能とみる。し
	かし、導入種は現地でいまだ市販ルートにないため、Resist Crown
	のみを新たに追加できる適正品種であることを明らかにした。
: .	
3. 残された問題	○ナンプ病等、病虫害対策
	○適時の種子確保
4. 継承発展の可能性	今後、山間地区でのキャベツ栽培が拡大し、ひんぱんに行なわれる
3. AEMANDER OF HOLE	ようになれば、慢性的な病虫害発生をまねくので、耐病性早生、中
	一小玉系品種の導入を計り、適正品種試験を継続する。
5. 今後の対応	○耐病性品種の流通確保、種苗業者への情報提供
0. 7 12 2 AT 10	100 A CHOOLDY A MINKS BEELD A 22 III AND IN ACTA
技術移転評価	A
A 80%以上	B 50~80% C 50%以下 D 0%

Investigation results of the performance of cabbage varieties (Mayana, June-August 1989) 級 1 6

	YIELD TAB	26.7	2 2.9	2 1.7	2 6.2	2 1.9	3 5.0	1 9.3	2 6.0	1 9.9	2 5.8	2 7.3
DISEASE	(%)	0	0	5.8 8 8	0	0	0	0	0	0		0
SHAPE INDEX	CV(%)	6,47	7.20	14.14	6.5	7.7 2	5.2	4.05	8.3 4	1 6.2 2	5.2 1	9.16
HEAD S	HEAN	0.73	0.80	0.99	0.76	0.70	0.72	0.72	7 9 0	1.23	0.76	0.60
[Jul	(%) CA	7.02	6.76	2 4.2 1	2 3 5 5	9.76	8.03	1 6.5 0	18.60	14.60	4.2.7	3.98
SOLIDITY	MEAN(gm/cc)	0.42	0.64	0.56	0.62	0.50	0.6 1	0.44	0.56	0.59	0.51	0.55
CHIT	CV(%)	2 0.5 1	1 4.3 6	2 1.3 0	13.97	1 3.4 7	19.61	1 8.5 2	1 4.0 2	3 5 3 5	12.12	19.64
HEAD WEIGHT	MEAN(gms)	640	5 4 9	5 2 1	628	525	840	464	625	4.78	620	656
URITY		2.94	2.7.1	6.93	6.08	0	0	3.99	0	6.30	5,6	0
DAYS TO MATURITY	MEAN DAYS CV(%)	22	2	ങ ഗ	í0 4.	5 0	0 9	n 4	5 3	5 7	& 8	5 3
	VARIETY	KK Cross (市販)	2. Shogun(鄰入)	3. Cabuko (市販)	4. Kageroo (導入)	5. Leo (市販)	6. Resist Crown (市級)	7. Tropical 7. Delight(導入)	8. New Summer Autumn (導入)	9. Marion Market (市販)	10. Natsubare (導入)	11. Express 60 (導入)

平成元年度研究課題別調查表

研 究 課 題:栽培適応性の検討

細 部 課 題:キャベツの耐暑性適正品種の選択(平地向)

派遣専門家(年次):日 高 健 夫 (84.11-90.2)

カウンターバート: Eugine Cahiles, Rezaline Guibao

	調査項目	対 象 : 専 門 家
1,	実 施 項 目	平地における耐暑性キャベツの品種適応性試験 使用品種:11品種(表-7参照) 試験期間:1989年6月~8月 試験地:Tubigon Sub-Center
2.	成果の概要	最も気温・湿度の上昇する雨期入り初期の低平地において、キャベ
		ツの栽培適応性をみるため、現地で市販または注文により入手可能な
		5品種及び導入種(日本)6品種をもちいて検討した。 結果は表-7のとおりで、すでに現地山間地で有望品種を選抜して
		いるKK cross、KY cross を含め、新しく Cabuko、kageroo、Express
		60、Leo、等一応平地での栽培可能品種と評価した。
		今後の追加確認試験を要するが、これらはHead 重 5 0 0 ~ 7 0 0 g
		で結球性も悪くなく、適時の降雨、また水管理によって、定植後45~50日前後で収穫可能であり、導入種Kageroo、Express 60を除く
		市販の4品種で十分栽培できることを明らかにした。しかし、最適期
		はいく分、夜温の下がる10月中旬~1月初旬が良いと思われる。
	± .	
	残された問題	○病虫害の発生容易
	継承発展の可能性	○地温低下を計るため、稲ワラマルチを応用した試験の継続
•	今後の対応	○病虫害防除策
		○新たな耐暑・耐病性品の導入
Ž	術 移 転 評 価	$oldsymbol{A}$. The first of

表一7 Investigation results of the performance of cabbage varieties (Tubigon, June-August 1989)

5 - 26.83
C1
0.89
1 6 0
0.74
1 9.5
483
4.64
5 2
Kagerou (導入)
4. X

研 究 課 題:栽培適応性の検討

細 部 課 題:乾期における耐暑性白菜の適正品種の選択

派遣専門家(年次):日 高 健 夫 (84.11-90.2) カウンターパート: Eugine Cahiles、Rezaline Guibao

	Tag the call to th
調査項目	刘 泉 : 専 門 家
1. 実 施 項 目	
	高温乾期のマヤナ野菜生産ガイダンス地区農家圃場にて導入品種の品
	種適応試験を行なった。
2. 成果の概要	
4 以 木 り 帆 女	日定植、7月22~29日にかけて収穫した。圃場は湧水近くの天水
	日で、定植後、軽くシキワラマルチを施した。協力農家は2日毎の水
·	やり作業や除草追肥等、適時管理作業を行なったが、予想どうりコナ
	ガの多発とナンプ病が一部発生、防除作業を7~10年に実施するこ
	とになった。
	結果は下表のとおりで、2品種とも60%近い収穫率で平均重1kg
	を越え、結球性も中上を示し、同品種の適応性は良とみた。乾期作は
	水管理、病虫害防除等作業のため9月~11月作よりコスト高になろ
	うが、市場価格が上昇するので収益性は高いとみた。
	プル、10%100日ル上がプロジンで表面、口、体制、ところに6
	表一8 Yield characteristics of each cabbage variety
	20 Troid onarticionarios of odon choolago variety
	: Marketable yield : Harvest rate : Mean Head Weight : Solidity
·	Variety : (tone/ha) : (%) : (gram) : (g/cc)
•	WR 5 5: 2 3 8 4 : 5 9.7 2 : 1,2 0 4 : 0.4 4
	WR 60: 2227 : 56.94 : 1,129 0.31
3. 残された問題	○乾期作は高値取引きが可能であるが、病虫害発生のリスクが高い。
Alabett	ATT MALLIN ON LAST
4. 継承発展の可能性	↓○経済性の検討
	2 乾期作を通じ、確認試験の継続
5. 今後の対応	病虫害の予察早期防除
	○ 種苗店に表われる市販の新品種の適正試験の考慮
北谷的松南南	\mathbf{B}
技術移転評価	D .
A 80% N F	B 50~80% C 50%以下 D 0%

2. 栽培適正品種の選択

平成元年度研究課題別調查表

併 究 課 題:栽培適正品種の選択

紃 課 題:人参の乾期作適応品種の検討

派遣専門家(年次):日 高 健 夫 (84.11-90.2)

カウンターパート: Eugine Cahiles, Nonita Ibara

					· · · · · · · · · · · · · · · · · · ·	
調査項目		刘	象 :	功 ["]	家	
1. 実 施 項 目 2. 成 果 の 概 要	試験せのは、 おいましょり はい はい はい はい ない はい ない はい ない の て 中 耐 を はい はい の で 中 耐 を はい はい はい はい かい にい れい はい はい かい にい れい はい	Fi-Early Larly L	5 inches (roda (noda (カー4) 取い い 、 と 乾 切 た と 敬 け て 、 と 乾 切 て 。 こ い ひ か 並 し 温 ジ	ミカド) T₂	Kuroda (サンル・スター・スター・スター・スター・スター・スター・スター・スター・スター・スター	Mayana by Mayana by Mayana to 大 to 大 to 大 to 大 to 大 to 大 to 大 to 大
	$egin{array}{cccccccccccccccccccccccccccccccccccc$	根径 cm 3.9 3.3 2.9	根長cm 1 5.7 1 7.8 1 7.2	収量 t/ha 1 4.8 8 9.1 6 1 1.5 1		
	T4 :	3. 2	1 6. 3	1 0.3 9		
3. 残された問題	○適正品種4	D種子確保				
4. 継承発展の可能性	o 乾期作試題	倹の継続				
5. 今後の対応			る栽培法の 、うね間灌	改善として、 水の応用等	条間の稲ワ	ラマルチ、
技術移転評価	Α				· · · ·	

Λ 80%以上

50~80% C

50%以下. D 0%

3. 栽培適応性の検討

平成元年度研究課題別調查表

題:栽培適応性の検討 D)

細 部 課 題:導入種メロンの栽培適応性の検討

派遣専門家(年次):日 高 健 夫 (84.11-90.2)

カウンターパート: Eugine Cahiles

	調查項目	対象: 専門家	
	実 施 項 目	導入種メロンの品種適応性試験 使用品種:9品種(表一9参照) 試験期間:1989年2月~5月	
	成果の概要	試 験 地:ダオメインセンター つくばの集団研修から帰国したカウンターパートが持ち帰った日	本
	100 N -> 101 D	種 9 品種をもちいてポット(1/2000アール)栽培を行なった。	
		開花交配期に一部(Mystar、Louis、Ivory)にウドンコ病の発	4/1
		をみたが、防除され、3連区27株、1株2果取りで、ほぼ全品種	
			: १८
		おいて良質果を収穫した。	
		結果は別添資料のとおりで、各品種ごと、果実の特性を調べたの	
		センターの研究員みなで食味し、一致した賞養を得た。これにより	Ť
		来の小規模高級メロン栽培に一目の可能性をみた。	
	•		
	•		
	残された問題	○種子の入手確保	
	継承発展の可能性	 。	
•	Mary June - June 12	- PH-30 C -> VOV. EL SEZ HETK AND -> > / AG	
	人然の対は	 。将来の市場性の検討	
•	今後の対応	○ 竹木 ○ 中物性 ○ 秋的	
	術 移 転 評 価	$oldsymbol{A}$	

表-9 Characteristics of the Different Varieties of Sweet Melon

APC Dao, April 1989

				**	
VARIETIES	MATURITT (DAP) *	SHAPE	NET	SKIN COLOR	FLESII COLOR
Colden Crispy (C C)	$\frac{2^{14}-2^{18}}{2^{14}-2^{18}}$	Oblong	No net	Golden Yellow	Creamy White
Mystar (MY)	30 - 34	Round	No net	Cream	Green
Klisabeth (KL)	37 - 41	Round	No net	Yellow	Creamy White
Ivory(IV)	37 - 40	Globe	No net	Ivory	Green
	3.8 - 4.2	Oval	Fine net	Yellow Green	Pale Green
Louis (LO)	3 8 - 4 2	Oblong	Coarse	Light Yellow	Creamy White
Juliana (JU)	37 - 40	Oblong	Coarse	Light Yellow	Creamy White
Tohou (TO)	42 - 46	High Globe	Medium Coarse	Gray Green	Yellow Green
Bonus (BO)	39 - 43	Round	Fine	Green	Green
			•		

*DAP-Days After Pollination

図-1 ADAPTABILITY TRIAL ON SWEET MELONS (Dao, Tagbilaran City, 1989)

題:栽培適応性の検討 研

課 題:ピーマンの適正品種の検討

派遣専門家(年次):日 高 健 夫 (84.11-90.2)

カウンターパート: Eugine Cahiles, Felipe Apale

	調査項	ß		刘』	ķ ;	中	門 家		
1.		1 1	試験品種: 試験品種: 規地 Cel さikoo をikoo をixi をはてわ 種とと またした。 種とと はたいな はている。 はない。 はない。 はない。 はない。 はない。 はない。 はない。 はない	Die Ti-Local Ka Ti-Local Ka Ti-Blue State 1988年1月 でKagoko (分 したい したい したい したい で したい したい で 大 で したい したい したい したい したい したい したい したい したい したい	ngoko r(台湾) x(台湾) ズイス イイス イイス イイス イイス イイス イイス イイス イイス イイス	T2-Loc T4-Eik 験地: Tub garian Gre f2種の良 、すでに たるため、」 たるため、」 にるため、」	sigor Sub en と云わ 質果を市場 選抜してい 又種期間 4 :Blue St これはカバ	Center れる) ふで入手、 、る Blue S ケ月の長 ar をあれっ レフォル ニ	追ta助 量アプ 熟 品製
	·			であるが、や Vield in (٠.
			Treatm	ent: Ri	-:	: 	Total	:	
			Ti	1 3,62	1 2.7 1	: 1 3.1 7	: 3 9, 5 0° :	: 1 3,1 7	
			T2	: 3 1.1 5	: 2 7, 5 3	2 9 1 9	8 7.8 7	2 9 2 9	
			Тз	3 2 0 6	2 9 5 7	3 1.7 9	9 3, 4 2	3 1 1 4	
			T_4	1802	: 1846	: 1 9 0 3	: : 5 5 5 1	: : 1850	
				<u> </u>	•		•	1	
	-n to 1	मर्घ धर					, *	•	
3.	残された	四超	Oハイラス 	・スリップス	の発生、生	子に 取判			
						•			
4.	継承発展の正	可能性	1	は市場での需 後も耐病性高			-	きされて	いる。
5.	今後のう	対 応	o Local C	Cebu 種の健良	種子の生産	E.			
					•				
ţ.	術移転言	严価	- A						

研 究 課 題:栽培適応性の検討

細 部 課 題:ナスの現地種適正品種の検討

派遣専門家(年次):日 高 健 夫 84.11-90.2 カウンターパート: Eugine Cahiles、Felipe Apale

調查項目	対象: 専門家
調査項目 1. 実施項目 2. 成果の概要	対象:専門家 ローカル種ナスの適正品種選抜試験 使用品種:表-11の通り 試験期間:1988年1月上旬~1988年7月下旬 試験地:Elprogresso、Carmen 協力農家:Cosme Unajan 農家を通じたローカル種の種子収集に数ケ月を要し、さらに播種後 の発芽が揃わず、育苗・植付がバラつき、手間取ることになったが、 のち顧調に生育、2月下旬より収調を開始した。5月中旬に切りもどしを行ない、再度6月中旬から7月下旬にかけて、切りもどし後の2回目の収穫を行った。 結果は下表のとおりで、Dingras、CLPは耐暑性の強い中~早性 を示し、収量20 ton 前後を得たが、すでに適品種として選抜している Davao Long Purple にはおよばない。 (収量:2回目の収穫分は含まれていない)
	表一11 Yield performance in tons/per hectare
	Treatment : R1 : R2 : R3 : Total : Mean
	T ₁ -Saryaya : 6.23: 7.53: 6.88:20.64: 6.88
	T_2 -Dingras : 1 3 0 7 : 2 7.7 6 : 1 7.9 3 : 5 8.7 6 : 1 9.5 9
	T _s -E.G. Collection : 5.52: 7.52: 6.21:19.25: 6.42
	T ₄ -Claveria Long Purple : 2 0.0 8 : 2 3.8 9 : 1 6.6 9 : 6 0.6 6 : 2 0.2 2
3. 残された問題	収集においてローカル種としての特定
 4. 継承発展の可能性 	さらにローカル種の種子収集を行ない、反復・確認試験が必要
5. 今後の対応	選抜有望ローカル種の健良種子生産
技術移転評価	A
	D 70 00%

A 80%以上

B 50~80%

C 50%以下

0 %

4. 栽培適応作目の検討

昭和63年度研究課題別調查表

究 課 題:栽培適応作目の検討 Df

細 部 課 題:玉ネギの栽培適応性の検討

派遣専門家(年次):日 高 健 夫 (84.11-90.2)

カウンターパート: Eugine Cahiles

	調	査	頂	8		対象: 専門家
1.	実	К	į	項	8	玉ネギ栽培適応性試験
						使用品種: Yates Red、Yates Yellow 試験期間: 1987年9月下旬~1988年2月下旬
					٠. '	試験期间:1987年9月下旬~1988年2月下旬 試験地:Mayana 協力農家:Marcelino Ednalgan
2.	ъb	果	Ø)	押	要	当地の玉ネギは小径赤玉で主にルソン島からセブ経由で不定期に入
	11/4	<i>></i> 1<	• • •	ጕንኄ		背している高値移入品目のひとつである。
						消費者当りの需要は小さく、一定しているが、供給が不安定なため、
						市場価格は例年大きく上下し、年平均キロ当り15~40ペソの価格
•						差がある。このような状況から、ボホールにおいて玉ネギの栽培可能
						が見いだせるならば、多数の小規模農家にとって高収益となりえるこ
						とから、その適応性を検討してみた。
					İ	試作栽培の結果は下表のとおりで、播種から収穫まで約5ケ月を要
				•		した。植付後、生育が長期にわたるため、圃場が雑草におおわれ、病
						害をまねくこともあり注意を要する。しかし、管理の指示を与え、作
						業を実施したことにより、やや小径ではあるが、収穫にこぎつけた。
						赤玉のほうが黄玉より日もち良く貯蔵性あり、適種で一応適応性有り
						と見た。
-						
						: Wt.(w/leaves) : L, (cm) : W (cm) : Yield/5.0 m^2
						T. Yates Red : 5 5.88 grams : 3.83: 5.40: 27.94 kgs.
			•			T ₂ Yates Yellow: 5 1.00 grams: 4.05: 5.07: 25.50 kgs.
					ļ	
3.	残	3	n i	た問	題	種子の確保難、さらに高価格
		•				
					- {	
4.	纵	承 発	屁 o) 可能	244	○導入種をもちいて適応試験を継続
••	n91: 7	3.70	/	, ,,,,		4777.12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
•						
						commence and the total teleform as the costs of an arm to the costs of a second
5.	今	後	Ø	ХŢ	応	○旧間地の野菜栽培技術を修得した先進的農家 2 ~ 3 戸を選び、玉ネ
				٠		ギの試作を継続的に実施、データ収集と平行して、玉ネギ農家の育
-	-				.	成を試みる。
技	術	移	転	Ξ¥.	循	
<u> </u>					1	B 50~80% C 50%以下 D 0%

研 究 課 題:栽培適応作目の検討

組 部 課 題:ジャガイモの栽培適応性の検討(II)

派遣専門家(年次):日 高 健 夫 (84.11-90.2)

カウンターパート: Bugine Cahiles

調査項目	対	象 :	専門	家
1. 実施項目		nstitufe of T4-APC 84 T5-APC 84 T6-APC 82 年 1 2月下旬	Plant Breadin - 4	g、Los Banionより Berolina 1-1 4-6 3月下旬
2. 成果の概要	移人 に 会回、 の の の の の の の の の の の の の	在、一芽な、かたで試がなる、年2状ど殺っ。、験があた。この比が関を、この比がのない。 試較	ではどこにもま では上昇し、5 ~85%で比較 ~85%でを 3回文 に草文 でも のの のの のの では のの のの のの に草文 のの のの に草文 のの のの のの にする のの のの のの のの のの のの のの のの のの の	戦培されてなく、高 月及び11月~12 校的良く、84-1 校的た。期間中、8 を行なったため80 は中程度で約80 品種(平均回第1回
	試作では Planta (ハ 表-12 Yield in VARIETY/	tons/hectar		
	CLONE	REP	REP I	AVERAGE
	Cosima Granola APC 84-5	4. 1 7 8. 4 0 8. 6 6	1. 7 0 1 0. 4 1 5. 6 3	2. 9 3 9. 4 0 7. 1 5
	APC 84-4 APC 84-1	1 2.0 9	5. 8 0 4. 2 2	8. 9 5 7. 1 6
	APC 82-232 Berolina	8. 5 9 9. 4 1	3. 4 4 2. 5 8	6. 0 2 6. 0 0
	81~1	7. 1 5	6.18	6.67
	84-6	3. 2 a	1, 5 4	2. 2 3
3. 残された問題	種イモの適期入手	が困難		
4. 継承発展の可能性	○品種適応試験の継	続		
5. 今後の対応	o IPB, Potato P	rogram とのf	青報交換	
技術移転評価	С			

A 80%以上

B 50~80%

C 50%以下

D 0 %

5. 栽培法の改善

昭和63年度研究課題別調查表

研 究 課 題:栽培法の改善

細 部 課 題:キャベツの栽植法の検討

派遣専門家(年次):日 高 健 夫 (84.11-90.2) カウンターパート: Eugine Cahiles、Rezalina Guibao

	調査項目	対	象:	専 門 家	
1.	寒 施 項 目	処 理 法: T ₁ -30 T ₃ -40	施密度の検討 ロス 試験 8年11月下旬~	i 地:カルメン、農 ~1989年2月下 号り T ₂ -30cm×60cm T ₄ -40cm×60cm T ₆ -50cm×60cm	· 旬 m 2 条平行 m ″
2.	成果の概要	なり、生育よく良生 総合的にみれば、 理上の容易性などが しかし、最も効率 られるのはT.の4	護中玉を得るこ。 中玉重、葉面 から T. または Ts 率的に栽培、肥り 0×602条平行	音管理が行なえ、良 う植であることが認	表参照) 収量性、肥培管 とがわかる。 質玉の収量が得 められる。
11.2		表一13 Yield cabbag		onomic character	istics of
		Treatment:	Mean Head Wei (gram)	gh Biggest Leaf Area(cni)	Days to Maturity
		T_1	2 2 1	4 1 0.3 9	7 1
		T_2	3 5 5	5 2 8 6 9	6 9
		Тз	3 1 4	4 7 2.68	6 9
		T_4	582	5 7 2.1 9	6 7
		Υ_5	5 7 1	5 1 9.1 6	6 8
		To	7 2 2	5 4 5. 6 0	6 7
3.	残された問題				
4.	継承発展の可能性	○乾期・雨期におり	ける2~3ヶ所、	での再確認試験	
5.	今後の対応	他の有望品種での	の検討		
技	術移転評価	A			

Λ 80%以上

B $50 \sim 80\%$

C 50%以下 D

D 0%

研 究 課 題:栽培法の改善

細 部 課 題:カリフラワーの栽植法の検討

派遣専門家(年次):日 高 健 夫 (84.11-90.2) カウンターパート: Eugine Cahiles、Rezalina Guibao

調査項目	刘 泉 : 專 門 家
1. 実施項目	カリフラワーの適正規植法の検討 使用品種:メイゲツ 試験 地:山間地マヤナ農家圃場 試験期間:1988年11月下旬~1989年2月下旬 処理法:Ti-30cm×60cm3条千鳥り植T ₂ -30cm×60cm2条平行植 T ₃ -40cm×60cm " T ₄ -40cm×60cm " T ₅ -50cm×60cm " T ₆ -50cm×60cm "
2. 成果の概要	上記の処理で試験を実施し、下表のような結果を得た。3条千鳥り植えより2条平行植えの方が葉数も多くなり生育よく、良質花蕾を得ることを示し、収穫まで日数は1日ちがいのみで差はないものとみた。総合的にみれば、これも、ほぼキャベツと同様40cm×60cm2条平行が良い生育草勢を示し、また最も効率的に栽培の肥培管理作業が行なえる上で、この栽植距離が適正と認められる。 表-14 Yield and agronomic characteristics of cauliflower
	Treatment Mean Head No of leaves Days to Maturity
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3. 残された問題	o ナンプ病の防除
4. 継承発展の可能性	o 確認試験を反復実施する
5. 今後の対応	。他有望品種での検討
技術移転評価 A 80%以上	A B 50~80% C 50%以下 D 0%

平成元年度研究課題別調查表

研 究 課 題:栽培法の改善

翻 部 課 題:ナスの適正栽植法の検討

派遣專門家(年次):日 高 健 夫 (84.11-90.2)

調 査 項 目 対 象 : 専 門 多 1. 実 施 項 目 現地産ナスの適正栽植距離試験 使用品種:ダバオロングパープル 試験期間: 1 9 8 9 年 1 月中旬~ 5 月中旬 試験 地: Elprogreso、Carmen 協力農家: Cosm	e Unajan
使用品種:ダバオロングパープル 試験期間:1989年1月中旬~5月中旬 試験 地:Elprogreso、Carmen 協力農家:Cosm	
試験期間: 1989年1月中旬~5月中旬 試験地: Elprogreso、Carmen 協力農家: Cosm	
試験地: Elprogreso、Carmen 協力農家: Cosm	
	•
2. 成果の概要 処理法: T ₁ =100cm×50cm T ₂ =100cm×60cm	
$T_3 = 100 cm \times 70 cm$ $T_4 = 100 cm \times 80 cm$!
$T_{3}=1\ 0\ 0\ cm\times9\ 0\ cm$	
2. 成 果 の 概 要 ダバオロングパープルはビサヤ地域で一般によく知	수 35 35 마시네 또 그-
ス系のローカル品種である。草勢強く、植付後3ケ月	もたっと早天か
120cm程に達する。	の活んべ 44-88
収量調査は6週間連続収穫を行なった結果は下の図	·
をつめると収量増となるが、1株当り収は減り、着果	
傾向を示した。また株間を広くすることで全収量は滅	
収は増える。つまり、着果数、果重ともに増加し、良	
密植型は病害発生をまねきやすいのは当然考えられる	
に薬剤散布量が増えることになる。担当研究員による	
評価(自然で無理のない草勢)、さらに試験結果の検	
$100 cm$ 、株間 $60 \sim 70 cm$ が適正であると判定した	٥
図-3 Density Trial in Eggplant	
Carmen, Bohol; Jan-May 1	989
20	
☐ Yield ∕ha	
15 Yield/plt	1200
3. 残された問題 (1000 🔀
	800 🚊

- 4. 継承発展の可能性
- 5. 今後の対応

技 術 移 転 評 価 A 80%以上

B 50~80%

Т1

C 50%以下

T 4

T 5

Т3

D 0%

400 200

T 2

課 題:栽培法の改善 研 乳

題:ウリ科作目の栽培法の改良 綳 部 課

健 夫 (84.11-90.2) 派滑專門家(在次

派遣専門家 (年次):日 カウンターパート: Eug					
調査項目	対	象 : 1	j . ["]	家	
A B B B B B B B B B	類における有支柱、 の検討。 品種:選抜品種 Bu 期間:1988年! 般的に灌木の枝支札	mper 94 9月~11月 主のみが使用さ	試験地:Tu れているウリ	bigon Sub-C 類の栽培にお	enter VV
いて 理を にな ワラ	いるのがよくみられるかけ、手の加えるかを検討した。 が成功が、有支柱無 多収となり、収量	れる。この状況 ぐあいで、どの 結果は下表の通 マルチよりは有	を一部改良す ように良質果 りで、無支柱 支柱稲ワラマ	るため、4つ ・多収取りが 無マルチより ルチの応用の	の処 可能 も稲
TREATMENTS	TOTAL NUMBER OF FRUIT HARVESTED	TOTAL WEIGHT OF FRUITS (kgs)	AVERAGE WEIGHT(gm)	AVERAGE LENGIH(cm)	Yield (t∕ha)
T ₁ (Control)	180	7 7.4 6	4 3 0	2 5	2 0.7 9
T ₂ (with mulching using rice straws, without support)	316	8 7.8 2	278	26	2 3.5 7
Ts (no mulching with support	404	140.83	3 4 9	26	3 7.8 2

残された問題

using bamboo)

 T_4 (mulching using rice straws with support)

継承発展の可能性

いく分、強度の強い割竹を使った合掌式支柱を組み、収穫後の有支 柱を利用したササゲ栽培など、小規模で経済的輪作体系の応用

 $1 \ \, 6 \ \, 3. \ \, 9 \cdot 3$

3 7 6

後の対応

輸作体系との組合せ

4 3 6

技術

A

В 50~80% Ċ 50%以下 0 %

4 2 0 0

2 7

平成元年度研究課題別調查表

研 究 課 題:栽培法の改善

細 部 課 題:スイカ栽培法の検討

派遣専門家(年次):日 高 健 夫 (84.11-90.2)

カウンターバート: Eugine Cahiles、Tito Canas

調查項目	対象: 専門家
1. 実 施 項	目 スイカ栽培法確認試験(農家圃場)
	使用品種: Sugur Baby
	試験期間:1989年1月下旬~4月中旬
	試験地:Cambugan, Jagna 協力農家名:NECINO LLOREN
2. 成果の概	要 APCの野菜セミナー参加者の中から農家を選び、その農家が自分
	の畑で提供された必要資材を使って、農家主体によるスイカの生産栽
	培を行なった。
	これはセミナーでどの程度、栽培技術習得ができているかを評価す
	る目的を含め、スイカの栽培法の確認を検討した。その栽培管理作業
	は、その農家の自主的努力にまかせ、野菜部担当スタッフは週1回の
	巡回視察を行ない生育・管理状況をチェックした。
•	結果は下表のとおりで、適時に管理技術を応用することにより、農
	家は良質果、高収量を得ることを認識した。これにより、夢の仕立て
e.	及び管理法、交配作業の効果等が確認された。
Æ-16 Comparat	ive data from 10 sample hills and the whole area (282 hills)

表一16 Comparative data from 10 sample hills and the whole area (2.8.2 hills)

· · · · · · · · · · · · · · · · · · ·	BER OF FRUITS ER HILL(pcs.)		IELD PER HILL kgs.)	ESTIMATED YIELD PFR 1,000 m ² (tons)			
Pollinated hills	Non-Pollinated	Pollinated 10 hills	Non-Pollinated 282 hills	Pollinated 10 hills	Non-Pollinated 282 hills		
2. 5 0	2. 1 3	1 1.9 0	2. 8 3	5. 9 5	1.42		

- 3. 残された問題
- ○栽培圃の選定、適期の収穫判定法等
- 4. 継承発展の可能性
- 他地区農家圃場での確認試験
- 5. 今後の対応
- 前もって栽培の必要資材の準備に対する認識の向上

技術移転評価

A

A 80%以上

B 50~80%

C 50%以下

) ()%

研 究 課 題:栽培法の改善

細 部 課 題;トマトの栽培技術の改良

派遣専門家(年次):日 高 健 夫 (84.11-90.2)

カウンターパート: Eugine Cahiles, Felipe Apale

			<u></u>		<u> </u>		111			- 	
調査項目		· 対 		:	Ţl	ې .	["]	· 家 ———		<u> </u>	· · · · ·
1. 実施項目	トマトにおけ			t法(摘芽)の応	用化	よる	収量」	曽の検討	11.5
	使用品種: B 試験期間: 1			η El		e) (F소	tile	u' l-	11	1 1 1 A	
	試験別問・1 摘芽処理: T.										
	Ts	:3 本化	上立(主	一种一	強い情	則芽 2	本刻	U_{\bullet}	他全抗	商芽)	"
	Γ_4					0下、	2 番	:目側:	芽まり	で摘芽し	Ý.
		NON	汝任(当	-)汉 [正]	43.)			1.			- :
2. 成果の概要	現地のトマ	1品種(は、ほと	んど	加工	トマト	91	プで	、分本	支性、草	勢
	ともに強くブ										
	培であるため										
	よって、初期	の側芽々	をコント	ъ п —	ルし、	て枝剗	を記	定す	ると、	とにより	
	収量にどのよ										
	果を得た。そ		1.0								
	となり、仕立										
	で収量増とな		4.00		, C	の結果	· NX. A	P.C.	Tech	News	VC
	も記載した。	(No.1	U 参照,	, .							٠.
			Ž	1 一 ヺ	7						
			Γ			,	1				- 1
	TREATMI	ENT ;	Ri	1	Rz	R	3 1	ror	'AL	MEAN	
	T _t -No nippi	ng '	2,5	5 . 3.	1 7	4. 3	0	1 0.	0 2	3.34	
			1 1 .	i		ì	į				
	T ₁ -Single S	tem	1.93	3 2.	4 7	2. 7	, 0 i	7.	1 0	2.37	
·	T3-Three St	em :	2.81	7 2,	8 4	3. 3	6	9.	0.7	3.02	
]			1				
	T ₄ -Multiple	Stem	3.6	1 4.	68	3.8	1 1	1 2.	1 3	4.04	
, i						•					,
3. 残された問題	○摘芽時期の	病害伝统	杂						-		
											1.1
4. 継承発展の可能性	他導入品種	での応力	用試験の	つ継続	、確認	認			•		
		٠.									
			'				•				
5. 今後の対応		1 1									1.3
		٠.			:	· - ·					
北 郊 拉 土 鄂 加	1/河地里	rki on 2	Y :								
技術移転評価	A(研究員		<i>.</i>						·	<u>-</u>	
A 80%以上	B 50 ~	2 n 0/		. 0	· 5 A	% N	-E.		- TS -	0 %	

研 究 課 題:栽培法の改善

細 部 課 題:トマトの適正苗令の検討

派遣専門家(年次):日 高 健 夫 (84.11-90.2)

カウンターパート: Eugine Cahiles, Felipe Apale

	調查項目		刘	象	:	専 [4]	家		
1.	実 施 項 目	トマトの異な					の検討		
		使用品種;							٠.
		試験期間: 1 苗令処理: 1	19.884	[12月~	1989年	3月 試験地	こクオスロークロ	インセン: 生 かし?	グー ちロざ
	ely fil as hinr isfi					21 口田、 三異なってお			
2.	成果の概要			and the second second					
		にも差がみら							
		験として定権) ーこし	(1) なつん	·箱本、列係	i 東作でス	1. 540 64	(9"
		ような結果を		. 1. 10 1	z barran ber Je	1 H W	h on He f	€ 10 Z 10 1	a Lo
	in the second	***		and the second second		いて1果当			
		の変化はみら							
		おいて増加し			The state of the state of			and the second s	
		て1株当りの	ノ収重か	・増加する	ることか引	1 固試験負	付とし	(特りれ)	<u>-0</u>
	,		ä	5-18	植付け時の	の苗の状況			
			Ti	T ₂	Тз	T.		T ₅	
		本葉数	2~3	2~4	4 ~ 5	5 5 ~ 6	6	~ 7	
		草丈 cm	4~5	7~8	8 ~ 10	12~14	1 15	~17	
		第1花蕾	未発生	未発生	極一部発	生発生增	9 発生	ほぼ全株	_
		蕾の状態		_	視認	可視認容易	。	/開花前	
			L	L	<u> </u>				
			Į.	3-4 Y	TRI.D PI	ER PLANT			
			12		.111110 1.				
									5 0
			13	00					70
		·	. 19	200	–wwt∕frt(g	(rams) 🔸	9 no. 1	of frts	60
:			12	.00 [00
	残された問題	○試験法の検	_{Pd} 11	00				4	50
3.	AX S IT IC IN IS	播種同一か		00				•	40
		植付同一か	kgs		,				••
		467 [1]-1 ×	9 کت	00				1 11	30
4.	継承発展の可能性		Q	00	-		- B		20
			o	00 [20
			7	00 -					10
				Ţ					0
			•	0 T1	Т 2	Т3	T 4	Т 5	U
5.	今後の対応	○異なった配	品種を係					1.0	
		A (AP				* *			
支	術 移 転 評 価	TALL	ン 羽 ブしき	イレフェンドン	<i>)</i>	•			

題:栽培法の改善 研 究 綶

課 題:キャベツの施肥試験 細

派遣専門家(年次):日 高 健 夫 (84.11-90.2)

カウンターパート: Eugine Cahiles 担当リサーチャー: Rezalina Gibao

i	調	查 項	E.			刘	象 : ウ	[11] [8]	<u> </u>
1.	実	施	項	収量	月一4月期 量増の検討 日品種:K]	ベン栽培において異なる。 栽 植 法:	なった N 施肥 畦間 6 0 cm× k	
				試	験 地;島	中央部 力	カルメンの協力農家	[畑地	er de la grande de la companya de l La companya de la co
2.	成	果の	概				定植とし、市場個		
			1.				腹時を目標とした高		A Company of the Comp
				I			cどのような変化が cある。Ti、T₂の□		· ·
				- 1		the state of the s	であり、Nの増加に		4
							『中期に入るころは	and the second s	
		•		. 1		and the second of	k管理及び稲ワラマ	12	
				1			Head 重で4009	前後、T₅、T₀	においては6(
] 9]	头上が得り	っれるもの	りと推測した。		
				3		Yield and of cabba	l other agronomic ge.	characteris	tics
,					Treatm	ents: N	lean Head Weight (grams)	: Est. Yield :(tons/ha)	
				Ti	0-0-0		6 7	2.48	0.18
				T2	0-120-	70	1 4 5	5. 3 7	0.39
				Ta	40-120) - 70	2 5 2	9. 3 3	0, 5 5
				T_{\bullet}	80-120	70	2 5 9	9.59	0, 5-8
				$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $	120-12	•	3 1 7	1 1 7 4	0.58
				To	160-12		3 6 3	1 3. 4 4	0, 5 8
				-					
•	残	され	た問題	題	応期作に お	s ける肥タ	かのための水管理、	害虫(コナカ) 防除等
		v -24 F3	· · · · · · · ·	.	i.	vi itila libra saa w	re car on the		
•	継刀	於 発展	り可能	性 º 7	有、次年度	と乾期に書	身 度実施		1 1
			対 !	応しの	時前に稲り	/ラを十分	}確保しておく		
•	今	後の		· 1					
•	今	後の							
•	今	後 の				•			

平成元年度研究課題別調查表

課 題:栽培法の改善 (I) 筅

課 題:適正施肥量の検討

旅遊専門家(年次):日 高 健 夫 (84.11-90.2)

カウンターパート: Eugine Cahiles, Felipe Apale

i	調	査	項				対	象	:	專	[11]	家
1.	猆	ħ	Ú	項		量及び組合。 使用品種:	止効果の ダバオロ)検討 ングパー	- プル			ン酸(P)の適正な施肥 igon Sub-Center
2.	成	果	Ø	概	燛	Tub i gon-	Calape	:地区は!	ノン酸、	カリを	:よく含	んだ中性~弱アルカ
												培がよく見られると
						*						知られていない。現
												及びPの異なった施
									に ウ な 旅	5肥効果	さかあり	、生長・収量に差が
٠						表われるから				e h	N. 0	0.01.0.0.0
						Lais d	4.7 (2.7)					0.0 kg + P - 2.0.0
			•									Pとの異なった組合
												:い。これは栄養生長
							-					:落ち等、着果数を減 : 控型しなとこれは
												:施肥したところは、
							•					よって、この試験が 100kg/ha(10
												・100kg/na(10 で経済的に収量を得ら
									E H T 3	1 6 3 6) 旭北(姓の別に水里で行う
						れることを	めりかい	· 1/Co				
		•					•					
3.	БÜ	Ł	in t	こ間	期							
J.	22	<u>.</u>	40 /	C 1H)	1825		*					•
						•	*					
4.	級	承- ※	配の	可能	≨#±	。他地区で	の適正維	四科試験の	D実施			
1.	SATE A	3r JU	112	7 138	., 1, 1, 2,		- 22 11.11	3170000	- > = 7			
5.	今	1%	Ø)	按	応	○普及を通	じた栽培	子農家への	の情報も	是供		
~ •	,	1/	-	~• J	LLI,	24 77 G 765	· = •••		,	•		

80%以上

B 50~80% C 50%以下 D 0%

表-20 Combined effect of nitrogen and phosphorus on the yield of eggplant,

Treatm	ents	Marketable Yield		
N level (kg/ha)	P level (kg/ha)	(t/ha)		
0	0	6, 4, 0		
	100	5, 9, 5		
i I	200	8. 9. 7		
1 0 0	0	2 0.4 0		
	100	2 0.7 0		
	200	2 1.9 0		
1 0 0	0	2 2 7 7		
	100	1 9.0 0		
]	2 0 0	2 3.8 7		
3 0 0	0	2 1, 3 0		
	100	2 1, 2 0		
	200	2 1.0 0		

表-2.1 The effect of nitrogen on the yield of eggplant.

Treatment	Marketable Yield
N level (kg/ha)	(t / ha)
0	7. 1 1
100	2 1, 0 0
2 0 0	2 1, 8 8
3 0 0	2 1.1 6

表-22 The effect of phosphorus on the yield of eggplant.

Treatment	Marketable Yield
P level (kg/ha)	(t/ha)
0 1	1 7. 7 1
100	1 6 7 1
200	1 8 9 3

6. 輪作体系の組み方

昭和63年度研究課題別調查表

研 究 課 題:輸作体系の組み方

細 部 課 題:経済的輪作栽培の検討

派遣専門家(年次):日 高 健 夫 (84.11-90.2)

カウンターペート: Eugine Cahiles, Felipe Apale

調査項目	対象: 専門家
1. 奥 施 項	有支柱を応用した野菜作目の経済的輪作栽培の検討 使用作目:第1作トマト、第2作ササゲ、第3作キューリ、第4作サ サゲ、第5作ニガウリ(10月現在栽培中期)、第6作ササゲ 試験期間:1988年7月~第6作終了まで 試験地:パングラオ 使用支柱の種類:1.ココナッツ材(Hardwood) 2.かん木材(ローカル材取混ぜ)
2. 成果の概	要 現在までに4作目を終了。第5作目ニガウリを実施中である。中期 資料、第4作までの栽培結果(表-23、24)をみると、耐久性あ るココナッツ材支柱を施したものより、かん木材使用の方が収益が多 い。これは、ローカル支柱材料が大小取りまぜで、安価なためである が、第5作目実施中のニガウリ栽培においては、草勢よく、果が肥大
	するにつれ、棚支柱は倒伏状態になりつつある。しかし、ココナッツ 材使用の方は、今だ耐用性強く、まだ5~6作は可能な状態にある。 栽培経過をたどれば、第1作トマトはモザイクバイラス病にみまわれ収量が激減した。第2作ササゲ、第3作キューリは病害なく良収を 得たが、第4作ササゲは天候不順で発芽が悪かった上、バイラス病に みまわれ良収を得られなかった。
	小規模土地利用による輪作から収益性を計るには、耐久資材を投入 する方が長期的には有効とみる。しかし、リスクとしては、病虫害の 多発、天候不順、また良収であっても市場価格の低下などがあり、コ スト回収に時間を要する。 よって、この栽培型のポイントは資材購入力のある野菜農家で、早
	期の病虫害防除、予察、水管理作業の容易性を有することが条件であることが明らかになってきた。
3. 残された問	图 ° Cost & Return の正確性 農家による正確な収調と記録など
4. 継承発展の可能	生 ・長期的試験計画をもって反復、確認試験の実施
5. 今後の対	□ oAPC研修を受けた優秀な野菜農家の協力を依頼
技術移転評	iti B

A 80%以上。

B 50~80% C 50%以下 D 0%

表 23 Yield deta on 2.7.20 m² Area in a Succession of planting using permanent trellises of two different classes of supporting/trellising materials.

CNOR	MATMRILIS	REP 1	REP 11	TOTAL	AVERAGE (kgs)
1. Tomato	Hardwood	6. 0	7. 1 0	1 3, 1 0	6, 5 5
	Local wood	7. 4 5	5. 9 6	1 2 4 1	6, 7 0
2. Stringbeans	Hardwood	2 4 4 0	2 5. 6 7	5 0 0 7	2 5. 0 3
	Local wood	2 4 3 8	2 5. 9 5	5 0 3 3	2 5. 1 6
3. Cucumber	Hardwood Local wood	6 0 0 0 5 7 9 0	5 7.3 0 5 1.1 0	1 1 7.3 0 1 0 0 0 0	5 8. 6 5 5 4. 5 0
4. Stringbeans	Hardwood	1 6, 2 0	1 6. 3 0	3 2 5 0	1 6. 2 5
	Local wood	1 7, 6 5	1 7. 4 0	3 5 0 3	1 7. 5 2

A. Fertilizer and Insecticide cost of the 27.36 sq. m. area

1.	Tomato	Į.	1	7.	4	0
2.	Stringbean	S	1	5.	8	0
3.	Cucumber		1	9.	2	Ó
4.	Stringbeans	S	1	5.	8	0
	መርመል፤		6	g	9	n

B, Cost of Trellising Materials

表-24 Partial cost and return analysis

	PRODUC-	Ave,	Yield Cos	TOTAL	PARTIAL		
	TION	Toma to (№5/kg)		Cucumber (¥4/kg)		GROSS INCOME	NET INCOME
Hardwood (ココナッツ材)	¥432.60	¥32.75	¥125.15	X 2 3 4.6 0	¥ 97.50	¥490.00	J× 57.80
Local wood (かん木材)	¥1 0 8.2 0	£33,50	₽125.80	¥218.00	¥105.12	¥482.42	¥374.22

表-25 選抜した適応野菜作目の品種及び栽培特性の一覧 (1986年~1989年の研究成果から)

1989年9月30日現在

作付品目	有銀品種	適地	栽培適期	特化
トマト	BPI Nal. Na2	平地/自間地	7月~3月	早生、耐暑性強
	Marikit	[7]	[8]	中早生、立枯れ病にやや弱い
ナース	р, ъ. Р	平地/山間地	6月~3月	長ナス系、草勢長、長期栽培可
	Jackpot	(ते)	[ā]	同 .
	Dingras	ĬĨ	[6]	[व]
ピーマン	Blue Star	平地/山間地	6月~4月	早生、大果、果肉良、耐乾性弱
	Local Coba	[ii]	, "	早生、中果、耐暑性強
キューリ	Bumper 94	平地/山間地	7月~2月	早生、節成、着果多
	Point sett	"	"	半節成、ピックル系
キャベツ	Resist cross	山間地	7月~1月	やや中性、大玉系結球良、収57日前後
	KK cross 🖈	平地/山間地	6月~2月	耐暑、結球性良、水田あと作に良
	KY cross	वि	[6]	[i]
	Express 60 🖈	[7]	詞	高温結球性強、収50日内
	Cabuko 🛪	[6]	[6]	早生、耐暑性強
	Kageroo	山間地	衙	早生、中玉
ハクサイ	WR 55-60 ★	山間地	8月~1月	耐暑、結球良、収45日内
	NOZOMI 60 🛪	[ii]	同	耐暑、結球やや弱
٠	Lyno Elena	同	9月~12月	結球良、中玉系(AVRDC系Hy-62)
= > 9 >	MT - Kuroda	山間地	7月~3月	耐暑耐病、姿良濃橙
•	KS~Kuroda	[6]	同	[r]
	Early 5 inches	同	[ii]	早生、耐暑、姿良、橙
タイコン	Mino ~wase	山間地	8月~2月	耐暑強、収40日内
スイカ	Sugur Baby ★	平 地	6月~4月	馬皮、中玉、中糖度、草勢強
		山間地	3月~5月	草勢強、密植多収可
メロン類	GY-9 ★ Jade	平 地	2月~6月	草勢強、中糖度
カリフラワー	未選抜	川 間 地		
玉 ネ ギ	[6]	[ñ]		
ジャガイモ	[7]	间		

★印:稲ワラマルチを応用した乾期水田あと作可能なもの

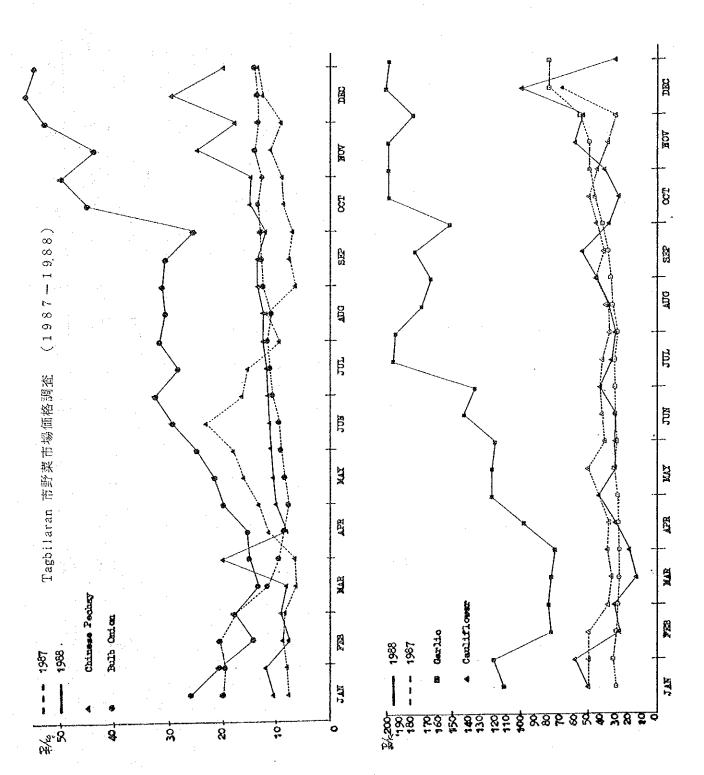
N. 后動寒癥亵(野菜部門)

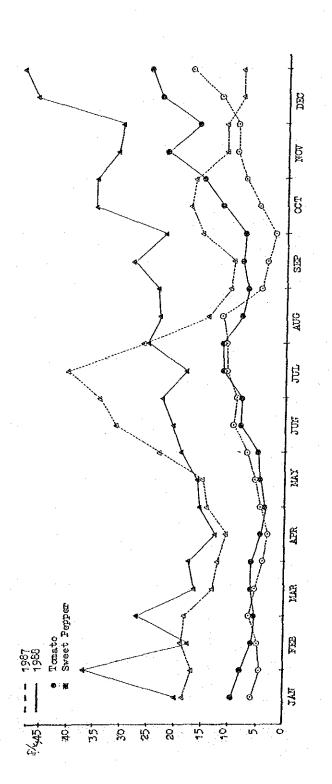
		-		
)ţ	草石	(8	±	788 活 助 日 程 表 789 790
	į	þ		12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1
1. 適応品種の選抜 A 果整額の適正	応品権の選抜果薬類の適所品利の検討	な数数		
1 > 4			○87年度までに選抜した現地適正品額BPI#1、#2 及び pope	
			ら十分生産性(27~35 t/ha)を得らいる。	
0; 00 4 7 1 1		Sweet nember	o ロングくーング米型岩嶺電台でackbot、Dingras 約道足対策。 o スメルメメニップ×丼汽车等へ回窓上の両にローセクセン語	
			(C. W閩庭館)を追加選拔。	
4 +	. y . (の節成商収益品種Bumper 94 にまさる現地倒はまだ見い出せ	
			トない。 Bointsett は危盟 かあるが既然窟地かの無情政策が	
			次聚。86	♦
rų. Κ	た		o Sugare Baby や地画政制かは閩南橋へ、矩馬衛上入中可続。 む私知で皆思かちゃナイッカーを一部発表を「コート」。	
т ж сс	>		をも式りませが合くさい。 一つレンク・ロン色権に着式十年を祀ん、即が総済存権が決盟。	(January 1997)
科				7
* * * · ·	. 3	٠	- 0 二配出一事出てや不経行在少期認、通品部分家扱した。	↑
- i		•	KY cross, Resist croner AE	会会
2. 124	_		上版かれている。	(
:			WR-55, NOZOMI 60 12 23	
3. カリフ	177-		ロナンア族の総任が多く、既凡、以ノーグムソ、以ノーボーラ	
			たが40~55名が収数をかめものもあるが、まれ適用品換と	
		-	ってな過抜しがたい。	
C. 歲狀 勸	170'			
1. *11	7		の高温税型を除げば栽培はたやずいが、市場の総数は簡めた小	
			いいた 多 し メ ク が 大 か い 。 ナ ト に 反 よ の 即 任 か 随 板 し ト お り 、	
			٥٫	
2. 11 2.	λ			d
			下部部の適応和や対接したいる。	
	- :		KS-Jus. T-Summer the	
3	新規の追加検討作目	名田		
a) %+	シャガイホ		○ 保賀品盤の周溢ん契製が思ってってたがないが、一匹9品種	
			を山間地や数岩し、昭和Granolaが適性を示した。奴襲雑語	
A 6	K-		の国国国内をいて統領の国際開発所入口した。 Netes Red A	
			しゅうだっころうだられて着る	

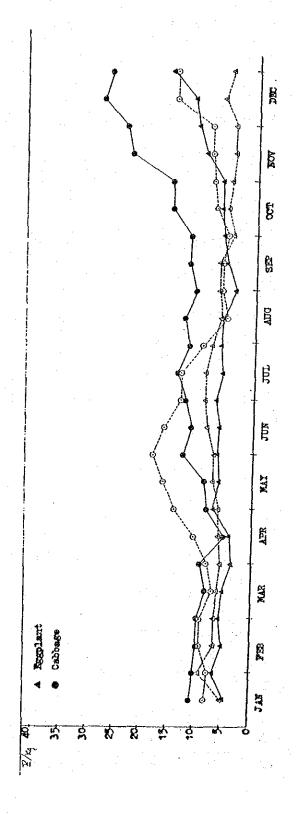
4		88. 活動 日 複 表 ,89 ,90
1 型 2 多	沃	12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1
・数站符の改器		
A. 適圧敷粘液の複鉛		
1. 面の適圧権有罪を役割	のトマト:毎今3週間泊後が横台瀬道と認める。 ナス英作用で配用可。	
	○キャペツ:田命2~3回間においれ変化は見られない。3~	
	4 週間が適期。	
	。街主要作目についたは後針中。	
2. 夢やき状による収配塩の検討	のある必果のあるわれるトットにおいて、第1果形の開花消ま	Communication of the Communica
	場の値下の強い側が	
	アクレクを	
3. おりやどしの内田 名米 おりい	レイスにおいて効果があり、当結収数2ヶ月级、活勢がおとろ	△
h	火はこめた園、柚上50m近辺か切りもとしを行なりにとドエ	
	り、 かの k 1 ケ 月 後 か ら 専 既 虫 質 来 の 収 髄 を 口 語 な れ と か 理	
	深みもた。APC News 8 均衡照。	
4. ウリ類におひる有支柱、稲ワ	○かたた風解されたいるネットキャップの応用効果に加え、支	« Terrometronicommunical D
シャケチの応託 組織されていた	在のみんなく艦ワルトラドを通信行託かめいとが収室を倍は一	
	天部した。	
	o 昭 高 記 記 記 記 記 記 た な と い と の 記 記 の 記 記 の 記 記 の 記 記	♦
	いた。	
5. メロソ類の被站浜、排റ勘約.	マメイカ代おける製作型による意味的位の制御、交配による収 部形の方式のなどが技術が明示よる収売者を表級に対象に対し	₽
M 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	70	
6. エンシン ら 通 旧 語 日 参 串 甚 ら	○任何の均一化、反気多収を計るため3回間引き、接終保問10 ・ こま・ こまらい・ これが カー・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	- Annual Control of the Control of t
校的	~1566の単窓のつの重数四つなり番号のないではい。の頁面一般接中	A
7. 適正穀植法の検討	○各主要作目について一応適正株間を確立した。	
	サム・カーレン、ド	
	田ネキ、ジャガイも、メロン強についた次年限総括予院。	
B. 適正施肥強の検討 1. 適正施肥量施肥時期の検討	。	
	アック参展)したが、いくしかの作目にしか地域別に再校記	
	か の 数 の が の が わ い な の が の が の が の が の が の が の が の が の が の	
-	が一年、受験国の政治権(Makan)、人家人員からにもつ、信頼の参のデータが終めれてない。80年度に共権再権認予定。	

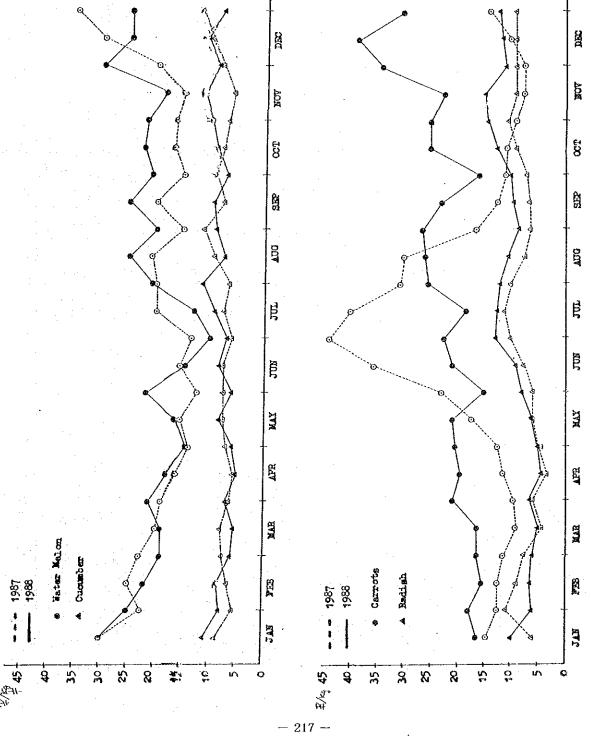
89 300	Ŷ . ;	4			
羅 数 8					
動 9 101112 1 2	❖	*			
在2345678					
12 1 2	水 笠。 類 ,	← 6 ° 新 	aye.	⇒ ° 葡	
成	 Tubigon 地区のナス枠については、N+P組間よりNのみの植肥、効果の高いにとを確認した。 山間地マケナのキャスツだおいて、N間の塩加による塩板はみられるが、P間投入効果は非常に少ないように思われる。 次年度早島に確認試験や予距。 の研究員の活筋・一もの分担塩、前作数窗間による試製圖土類の不為一位等、諸理由に契約に参減、新たな成果としては、 	米橋認の状況。女年茂東衛中原。 ・カンメンのベムロットルアクイソンリアおいて、大田あと作 (境却作)なこれメイカ戦略を実施した。場談に超待以上の 昭時収入を命めことがらぎ、その信頼の有益権を疑認した。 ・山間地にナナ地区で発期における大田あと作些用メイカ機等 の口能性を実際した。 ・有技性を利用した、輸発的・小憩核輪に核站(4~5 作)の にお称うし、当一十	り品にも元、出した。 倒:トセト→サグ→キューリ→サガー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	感失だめの、かの少処の形大麻が暇みたずらいれば、 進若のから、 進去のる。	
部 写 7 物	 施肥塩の検討の続き) o Tu の か の か の が を を を を を を を を を を を を を を を を を を	を で	A D 色 D 和 B B B B B B B B B B B B B B B B B B		

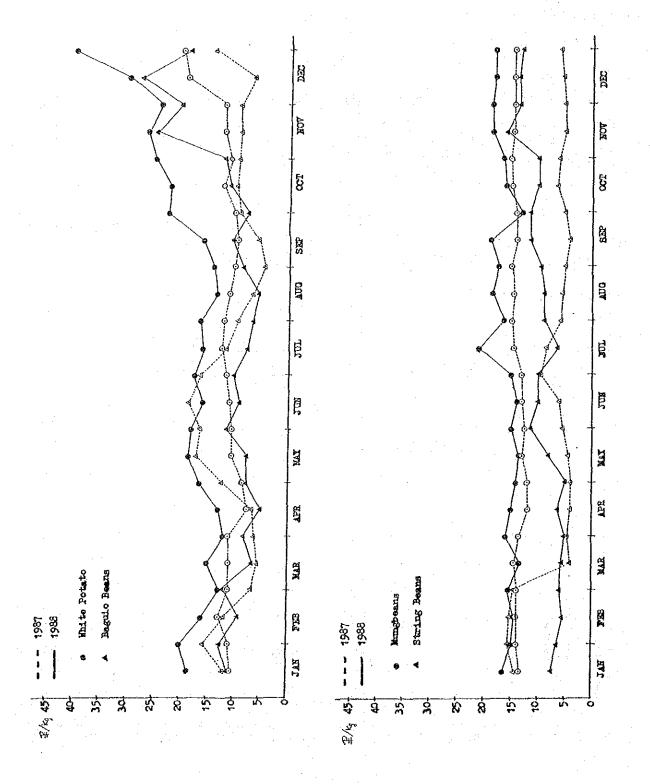
表 - 26 フィリピン・ポホール 農業開発計画の成果と今後の課題

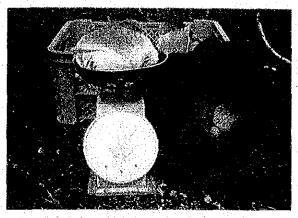

	今後の課題			※・ 単徳 品・コール・コール・コール・コール・コール・コール・コール・コール・コール・コール	ベクサイ、ガリンフソー の高値移入野蛛品田の適正品種の後半・痛器 アタス、玉ネギ、ジャガイモ棒	の適正ローカル種の健良種子生産	一部たな役長期床併の複数「適口箱配配及び降越の複型 ペグサイ、「アンン、Hネ光、ジャガイホ の右綴物類用でよる収越機构の複型 の商用館の上級及び形像対象	○市務価格を劣感した王教作目の教告時期・ 型の癌立 ○経済的輪作栽培型の確認 1. 水田利用 2. 有支柱利用
\sim 1990. 2. 1)	協力の成果(延長後)			后 说 说 读	ナンシャー ソジン — 9 6 — 舞や在脳形	1. ナース ― Jackpot (CLP), Dingras 2. ピーレン ― ホブローカル艦(C―W脳依権), Blue Star (布裁権) 3. メロン強 ― メイカ:Sugur Baby, メロン: レクワウリ 4. キャベツ ― KY Cross, Express 60, Cabuko	の研究員に対し、苗床の適地設認、適虫電の早期発見財除の効果を理解された。 ○トレト製塩における芽かや独の応用による収電道の効果を明らかにした。 (APC Tech New 10 応復原) ○定植苗の百合道により生育・収電に並があることを明らかにした。(トレト、キャベン等) ○メイカの適正要管理と交配作業の効果を認識させた。 ○有支柱、稲ワシャルチの応用により収監値が得られることを明らかにした。(ウリ類) ○適定数値距離を明らかにした。キャベツ、ハクサイ、ナメ、メイガ、小豆、etc.	のシアゴン地区がはN+P肥より、Nの冬の後状が高いにとな出のがたした。 ○ 適応野栞作目のおおよやの栽培適期を把握した。 ○ 有支柱を使った維存的、小規模輸作栽培の収益性を認識した。
現行協力期間(1989.2.2.	岛 力 項 目	1. 研究活動 1. 福 作	6 6 6	3 野 城(1) 遠応作品品福の諸定			(2) 被免法の改治	(3) 輪作体系の組み方


SUITABLE


TRANSPL-ANTING ON MARCH IS ONE CA A POSSIE

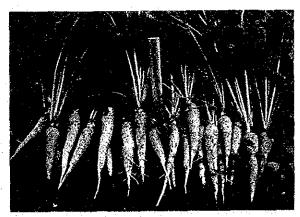

REMARKS


MARCH PEB JAN OEC Š HARVESTING PERIOD PRUNNING Cultivation Pattern in Bohol CO SEPT AUG JULY RANGE OF A POSSIBLE SOWING PERIOD Appropriate Vegetable ----ESI S VW.Y APRIL TOMTO SWEET PEPPER CABBACE (HILLYLAND) WATERMELON CAUUFLOWER C-CABBAGE CUCUMBER AMPALAYA CABBAGE LOW LAND ST. BEANS EGGPLANT SQUASH CARROT RADISH



平場において強い耐熱性を示し、 収獲されたキャベツ適正品種: ツビコンサブセンター

異なった苗令によるキャベツ栽培試験:ダオメインセンター


協力農家が独自に行なったキャベツ栽培の収かく風景: 山間地野菜生産支援地区ヤヤナ

水田あと作のハクサイ栽培試験圃風景:山間地ヤヤナ 農家圃場

成力農家独自はよるハクサイ生産圃風景:山間地マヤナ

追加選抜された高雄作目のひとつであるニンジンの 適正品種:山間地マヤナ

協力農家圃場におけるカリフラワー栽培試験の 苗植付け風景:山間地マヤナ (スライド)

導入種メロンのポット栽培試験:ダオメインセンター (スライド)

有支柱利用による長期輪作栽培の一環、トマト 栽培試験:平地パングラオ(スライド)

櫃田木世子

(1987年1月7日~1990年2月1日)

土 壤 肥 料

I	総合報告	書	227
	1. 土壤雅	料セクションの概要	227
	2. 9-9-	チハイライト	228
	2 1*	ボホール土壌肥沃図	228
	$2-2^{-X-2}$	* APCーカルメンおよびウバイ圃場の水稲に対する	
	•	有効態リン測定法の検討	233
:	$2 - 3^{-1}$	XAPC 圃場における湛水が土壌養分に及ぼす影響	236
	2 - 4	アルカリ土壌における落花生の養分状態	241
	$2 - 5^{\times}$	×アルカリ水田における有機物投与効果	245
	2 - 6	低CEC酸性土壌(タリボン)における作物生育阻害要因	251
	2 - 7	低 C E C 酸性土壌 (タリボン) における作物栽培技術	254
	2 - 8	低CEC酸性土壌(タリボン)における作物増収技術	256
	2 - 9	中 C E C 酸性土壌(カルメン)における作物生育阻害要因	258
	2 - 10	ボホールにおけるリン鉱石(グアノ)の有効性調査	260
11	研究課題	[別調査表	264
	1. 化学的)・物理的な土壌の改良	264
	1 - 1	地域別土壌の理化学的特性の把握	264
	1 - 2	微量要素欠乏の実態調査と対策技術/アルカリ土壌対策	274
	1 - 3	酸性土壤对策技術	281
	1 - 4	天然資源の利用	289
	1 - 5	技術移転手法	291
I	活動実績	表	293
ì	系付資料		

- * 農業省Bureau of Sorts との共同
- ** APC稲作部門との共同

1 総合報告書

1. 土壌肥料セクションの概要

ボホール農業開発プロジェクトは1983年2月1日に日・比両政府によって調印され、ボホール農業振興センター(Bohol Agricultural Promotion Center; B-APC)が1985年1月に開所した。これに先だち1984年9月に最初の土壌肥料専門家(白石勝惠)が派遣され、2名の研究官(researcher)と1名の技官(aid)とともに土壌肥料実験室を開設するための準備を始めた。1985年3月には農業省の土壌局(Burcau of Soils)ボホール支所が3名の分析官(Chemist)と2名の技官とともに土壌肥料部門に合併した。後にB-APCによりそれぞれ1名の分析官と技官が補充された。すべてのスタッフは専門家の下で土壌肥料分野の基本的な分析手法の訓練を受けた。

最初の専門家は1986年9月に任期を終え、1987年1月に後任(櫃田木世子)が赴任した。同時期にB-APCによって新たに2名の分析官が採用された。 さらなる実験技術習得のため、同年5月に5名の分析官と1名の研究官がマニラのPhilippine Jnstitute of Pure and Applied Chemistryに送られ1カ月の研修を受けた。これらの訓練を通じて土壌肥料部門スタッフは同分野で必要とされる基本的な物理化学的土壌分析、作物・堆肥および水の化学分析に習熟した。さらに同部門ではプロジェクトの行動計画(Tentative Schedule of Imprementation)に従ってボホールの問題土壌および天然資源について研究を行っている。これらの概要および今後の課題は"リサーチハイライト"に示した。同部門ではさらに必要に応じて他の政府機関、特別プロジェクト、農民から寄せられる依頼分析をも行っている。

今までに同部門が上梓した印刷物は下記の如くである。

- a) ボホールの土壌肥沃図
 - リサーチハイライト 1
- b) ボホールにおけるリン鉱石(グアノ)資源調査 リサーチハイライト X
- c) 土壤肥料実験手法
 - 一土壌肥料分野に必要な土壌および作物の理化学分析について翻訳・編纂した。本 文は6章、160ページ、70項目の分析手法から成り、これに15ページの付 録が添えられている。
 - 一本文においては第1章で土壌肥料実験の基礎として知っておくべき育苗・石灰施 与・標準溶液作成の各方法および原子吸光分析機使用上の留意点について記載し た。第2章では38項目の土壌化学分析手法を、第3章では4項目の土壌物理分 析手法を紹介した。続く第4章では11項目に及ぶ作物の化学分析法を述べた。

第5章においては4項目の肥料およびリン鉱石分析法を示し、最後の第6章で9項目の水の化学分析法を記した。

- 一付録においては原子量および各種化合物の分子量を示した。さらに化合物中の代表的元素あるいは分子の含量比およびその逆数を示し、式量計算の簡便化に資した。次いで各種指示薬の特性を記し、代表的液体試薬の濃度および各種試薬の水飽和溶解量を記載して化学実験資料とした。
- 一各分析項目について実施上気付いた点をノートとして示した。
- 一分析結果の計算法をそれぞれ具体的に例示した。
- 一特に日本の研究者によく用いられる分析手法についても記載してある。
- 一本実験書は教科書や各種資料が非常に不足しているフィリピンの他の研究・教育 機関でも利用でき、技術・研究者の育成に資する。

2. リサーチハイライト

2-1 ボホール土壌肥沃図

はじめに

主として農民から寄せられた257点の土壌(第1図)のpH、 腐植、有効態P(オルセン法)および1.34N硫酸抽出Kに関する既存のデータを分析し、土壌分類図

(1947年作成)を参考にしつつKを除く各項目について肥沃図を作成した。

成果の概要

- a)全体の9%の試料が4.8(最低) \leq pH \leq 5.5 に属し、現在耕作されている圃場には低 pH自体の害がほとんど無いといえた(第1表)。
- b) 66%の試料がpH6.5以上であり、アルカリ障害が多いと推察された(第1表)。
- c) pHは北東部で低く、 南西部になるにつれて高くなった(第2図)。
- d) pHと有機物および有効態 p との間にはそれぞれ正の相関があった(第2表、第2、 3 および4図)。
- e) pH 6.5以下と有効態 p 10 ppm以下の地域はおおむね一致し、 pH 6.5 が p 施与の 可否の目安となり得た(第2および3図)。
- f) 土壌肥沃図の概要は4地点のAPC 圃場のより詳細な土壌分析値と矛盾しなかった (第3表)
- g) 本結果は農業改良普及員の施肥指導および換金作物の契約栽培農地選定の基本資料 となり得る。
- h) 結果の概要が絶対視されることを防ぎ、場合によっては特定地の詳細な検討を施す 必要がある。

今後の課題

- a) Kについては抽出液の酸度が高すぎて値が大きくなり、作物生育との関連で議論できなかったので、適正なK抽出法について検討する必要がある。
- b) 近年の手法に基づいた土壌分類図を作成し、肥沃度との対応をより詳細に確認し直 す必要がある。

表一1 Frequency distribution of fertility factors in Bohol farmer's fields

o.H. pH	4.5 < рН ≦ 5.5	5.5 < рН ≦ 6.5	6.5 < pH ≤ 7.5	7.5≦ pH	Total
0 < 0.M. \(\lefta \) 1	1	4	1	0	6
1 < 0.M. 5 2	15	26	15	2	58
2 < 0.M. 5 3	6	23	67	12	108
3 < 0.M.	1	11	51	22	85
Olsen's P					
0 < P ≤ 5	2	7	4	0	13
5 < P ≦ 10	16	23	18	2	59
10 < P ≤ 20	4	19	48	21	92
20 < P	. 1	15	64	13	93
H ₂ SO ₄ ext. K			. – . – . – . –		
0 < K <u>\$</u> 40	4	7	23	12	46
40 < K ≤ 80	13	21	44	8	86
80 < K <u>≤</u> 120	5	20	40	11	76
120 < K	1	16	27	5	49
Total	23	64	134	36	257

表-2 Summary of the fertility analysis of farmer's fields in Bohol

Items analyzed	рН (H ₂ O)	0. M. (%)	Olsen's P (ppm)	H ₂ SO ₄ ext. K (ppm)
Range	4.8 - 7.9	0.6 - 4.5	1.2 - 100	2.5 - 250
Average	6.8	2.7	21.3	83.9
Cor. coef. between pH		0.567**	0.314**	0.009
Cor. coef. between O.M.	. مست		0.488**	1 <u>.</u> -

Note: n = 257, 5% > 0.117, 1% > 0.121

表-3 Soil characteristics of Bohol-APC experimental fields


Items analyzed	Tagbilaran	Bilar	Carmen	Ubay	Tubigon
Soil texture	C	L	L	SL	С
(O _C H) Hq	7.6	8.1	7.0	5.1	7.5
Org. matter (%)	2.7	3.9	2.4	1.6	1.7
Olsen's P (ppm)	50.5	15.4	6.0	6.5	18.0
CEC (me/100g)	24.0	28.0	13.2	8.1	40.1
Ex. K (me/100g)	0.51	0.07	0.06	0.06	0,24
Ca (")	39.89	70.10	9.94	2.19	34.38
Mg (")	2.07	0.89	0.75	1.72	8.02
A1 (")	Trace	Trace	Trace	0.50	Trace
Sol. Fe (ppm) ¹	14	20	912	870	519
Mn (") ²	14	Trace	7	104	1
$Z_n (^n)^3$	5.60	0.76	0.99	0.78	1,14
B (")4	_	0.13	0.10	0.12	0.34

Note: 1. Extractant; N NH₄OAc, pH 4.5

2. " ; " , pH 7.0

3. " ; pH 4.0

4. " ; hot water

oxtimes -1 Locations of analyzed soil samples in Bohol (257 sites)

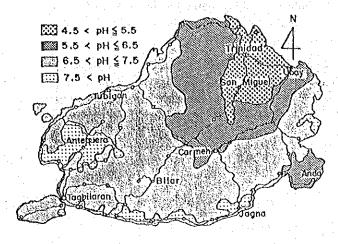
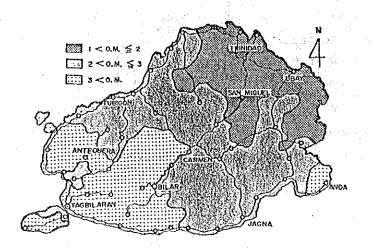



図-2 Geographical distribution of soil pH in Bohol

oxtimes -3 Fertility status in Bohol based on organic matter content

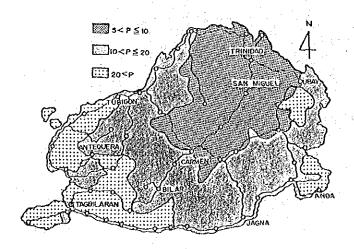


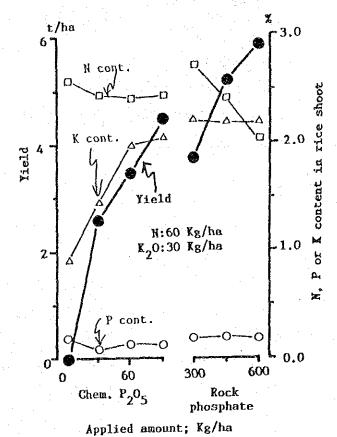
図-4 Fertility status in Bohol based on extractable phosphorus content

2-2 APC-カルメンおよびウバイ闘場の水稲に対する有効態P測定法の検討 はじめに

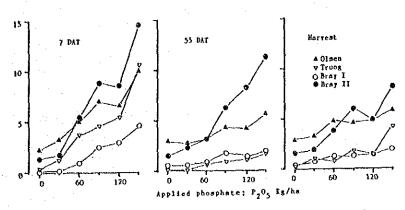
水稲の収置指標となり得るP測定法を稲作セクションの実験闡場から試料を得て検討した。

同セクションによって P_2O_6 施与に対する水稲(1R64)の収量動向が調査された。 ウバイ間場では P_2O_5 を0から30 kgごとに150 kg/Laまで増していった。Nは45および90 kg/Laの2水準が用いられたが、 K_2O は一率に30 kg/Laであった。カルメン 間場では P_2O_5 を0から30 kgごとに90 kg/Laまで増加していった。同時に300、600 および900 kg/Laのリン鉱石(グアノ)施与試験が行われた。Nおよび K_2O はいずれにおいてもそれぞれ60および30 kg/Laであった。両圃場において移植(施肥)後1週間、55日および取機時の土壌中有効態PをO1sen、Truog、Bray I およびI の方法で測定した。

成果の概要


- a) 両圃場においてリン酸施与の増加に伴い収量は増加した(第5、6図)。
- b) ウバイ圃場では Bray [法による抽出値が最も高かった。施与後時間の経過ととも に値は低下したが、いずれの方法においても可給態 Pはリン酸施与量の増加に伴い上 昇した(第7図)。
- c) カルメン圃場ではOlsen 法による抽出値が最も高かった。 施肥後1週間では全ての方法による可給態Pが施与量と正の相関を示したが、その後はOlsen 以外の方法では収量との関係は認められなくなった(第8図)。
 - d)可給態Pと収量との関係はウバイ圃場ではBray II、カルメン圃場ではOlsen 法によるものが最も明瞭であった。いずれにおいても施肥後1週間目の値が10 ppm以上であれば41/ka程度かそれ以上の収量が得られていた(第9図)。
- e) カルメン圃場のリン鉱石(グアノ)施与区ではOlsen 法による可給態P抽出量は低かったにもかかわらず、高収量を得た(第9図)。

今後の課題


- a) 各土壌型に適した可給態P測定法を検討する必要がある。
- b) リン鉱石の有効性について同時に含まれる塩基類にも注意しつつ検討することは課題足り得る。

Nice yield response to P₂O₅ application and change of N, P and K contents
 in shoot at Ubay paddy field

\[
\overline{\mathbb{N}} - 6
 \]
 Rice yield in response to P₂O₅
 application and change of N, P
 and K contents in shoot at Carmen
 paddy field

 $\mathbb{Z}-7$ Phosphorus availability by four extractants at different rice growth stage in Ubay

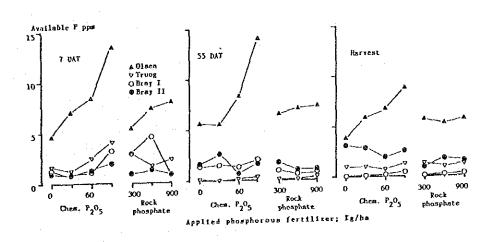


図-8 Phosphorus availability by four extractants at different rice growth stage in Carmen

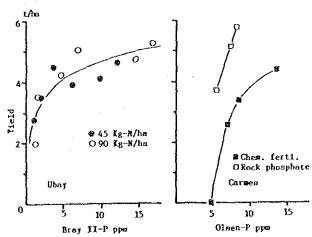


図 - 9 Yield response to available phosphorus extracted one week after transplanting / fertilization

2-3 APC 圃場における湛水が土壌養分に及ぼす影響

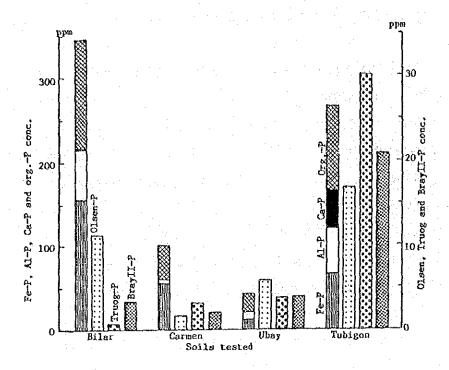
はじめに

ビラール、カルメン、ウバイおよびトッピゴンのAPC 水田 無処理区から採取した土壌の各形態のPを測定した。次いで1/5,000 aのワグネルポットに2 lの脱塩蒸溜水を添加し、60-40-40 kg/kaに相当する三要素肥料を均一に混入した各々2 kgの土壌を加え、土壌還元に伴う無材イオンの変動を12週間に渡って調査した。なお、毎週500 mlの冠水を各種測定用に採取し、不足分を更新した。

成果の概要

- a) 全P量はビラール〉トゥビコン》カルメン〉ウバイであった。ビラールおよびトゥビコンではPe-P〉Org-P〉AI-P〉Ca-Pであったが、ビラールのCa-Pはごくわずかだった。カルメンではPe-P〉Org-P〉Ca-P、ウバイではOrg-P〉Pe-P〉AI-Pであり、ともにCa-Pは痕跡程度であった(第10図)。
- b) カルメン(pH 5.3) およびウバイ(pH 5.9) 土壌のけんだく液 pH は湛水によりいずれも急激に上昇し、2週間でpH 7前後となった後はほぼ一定であった。 トゥビゴン土壌(pH 7.0)の pH は湛水によっても大きな変化はなかった。 ビラール土壌(pH 7.8) では湛水一週間で pH 7.6 まで低下したが、 その後はほぼ一定であった(第11図)。
- c) ウバイ、トゥビゴン、ビラール土壌のECはいずれも湛水5~7日で最高になり、 その後は低下したが、カルメンでは22日目に最高になった後、低下した。 ECの平 均はウバイ〉トゥビゴン〉ビラール〉カルメンの傾向であった(第12図)。
- d) Eh はいずれの土壌においても湛水によりまず急激に低下し、 その後はゆるやかに 上昇する傾向があった。ビラールおよびトゥビゴンでは最低値を得るまでに2週間、 カルメンおよびウバイでは3週間を要した。 Eh の平均はトゥビゴン〉ビラール》カ ルメン〉ウバイであった(第13図)。
- e) 土壌溶液中の Fe は Eh の低下により指数関数的に上昇し、ウバイ〉カルメン〉ビラール〉トゥビゴンの傾向があったが、後2者ではほとんと痕跡程度であった(第14 図)。
- f) 土壌溶液中Mn は土壌間差が大きく カルメン》ウバイ〉トゥビゴン〉ビラールの傾向があったが、ビラールではほとんど痕跡程度であった。前2者では Eh の低下により指数関数的に上昇したが、 Eh の変化が小さかったトゥビゴンおよび Mn が痕跡程度であったビラールでは両者の関係は不明瞭であった(第15図)。
- g) 土壌溶液中 P 濃度はトゥビコン〉ウバイ〉カルメン〉ビラールであった。いずれの 土壌においても湛水後 1 週間で最高となった後 7 週目までは低下傾向にあり、その後 はわずかに上昇した(第 1 6 図)。

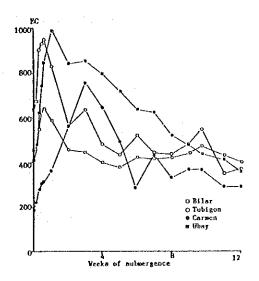
以上の結果から次のように推論した。


- h) ビラール土壌では豊富な Fc ー P にもかかわらず、 飽和状態の石灰のため還元が進まず P が利用されにくい。土壌 pH およびリン吸着率も高く(第17図)、 施与肥料が利用されにくい。
- i) カルメン土壌では湛水後3~4週までEhが著しく低下するに伴いMn 濃度が急上昇した。Ecの変化はMn濃度とよく対応していた。 土壌個有の全P量はウバイに次いで少ないが、 CECおよびP吸着率が中程度であるため施与肥料の放出がウバイより低くおさえられる。同圃場では移植後3~4週に下位葉の赤枯が観察される品種があり、この時期の茎葉中K含有率も不足していた(課題5、第19図)。

これは強罿元状態で生ずる根の養分吸収能の低下によるものと思われる。この解消 のためには土壌への石灰施与あるいはKの増施といったことが考えられる。

- j) ウバイ土壌では土壌個有の全P量が少いが、 CECおよびP吸着率が著しく低いため、Pをはじめとする施与肥料が土壌溶液中に放出されやすい。湛水後3週間ほどの急激な還元に伴いFe 濃度が高まるにもかかわらず明瞭な生育障害を生ずるに至らないのは、初期の高濃度養分状態によるものとみられる。肥料切をおこさないような施肥管理が必要である。
- k)トゥビゴン土壌では多量のCa Pのため可給態Pが豊富である。 塩基飽和度が高く、施与肥料が利用されやすい。

今後の課題


- a) カルメン土壌への石灰施与あるいは K 増施が赤枯解消に有効であるか否かを確める 必要がある。
- b) ウバイ土壌に対する石灰施与あるいは K 増施も有効かもしれない。 さらに同土壌に 対する分施肥効果も検討課題である。

 $\boxtimes -10$ Phosphorus fertility of four Bohol soils

図-11 Change of pH in submerged solutions depending on weeks of submergence

 $extbf{2}-12$ Change of EC in submerged solutions depending on weeks of submergence

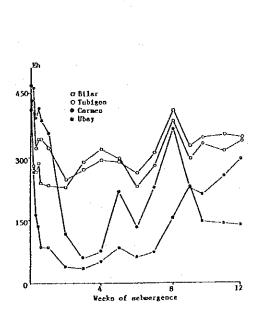
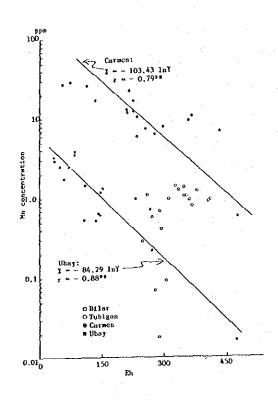
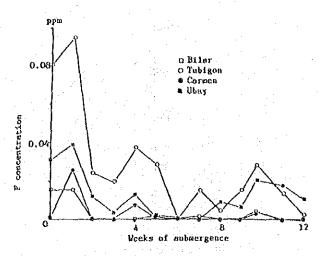




図-13 Change of Eh in submerged solutions depending on weeks of submergence

図-14 Change of iron concentration in submerged solutions depending on Bh

□ 16 Change of phosphorus concentration in submerged solutions depending on weeks of submergence



図-17 Phosphorus absorption capacity of soils of B-APC experimental fields

2-4 アルカリ土壌における落花生の養分状態

はじめに

アルカリ土壌におけるピーナッツの生産性向上技術を検討するために、(A)栽培園場での土壌および作物の養分調査、(B)有機物施与効果、(C)性質の異なる肥料の施与効果、(D)養分の薬面散布効果、(D)闘場での追試を行った。

成果の概要

- (A) 8 圃場の各々で正常株と黄化株およびそれぞれの地点の土壌を採取、分析して次の結果を得た。

 - b)作物地上部の一般化学分析によると、黄化株では正常株より K、 P、 Mg および Zn 含有率が高かった。 Bは一地点を除いて黄化株の方で高かった。他の元素含有率に明瞭な差は無かった(第5表)。
 - c)以上の結果からは、通常アルカリ土壌の問題とされるFe、Mn、あるいはZn 欠乏、さらに黄化因の一つであるMg 欠乏をあげることはできず、 作物体黄化の理由を見出すことはできなかった。
- (B) ビーナッツ地上部から作った堆肥を1/8、1/4および1/2の体積割合で土と 混ぜ、同作物をボット栽培したところ、有機物割合が上昇するにつれて生育、特に収 量は著しく増加した(第6表)。
- (C) 生理的中性・および酸性肥料の効果をみたところ、酸性肥料の方がわずかに有効であったが、ともに有機物施与効果に較べるとはるかに劣った(第6表)。
- (D) 三要素のみ、微量要素のみ、および両者を合わせた完全葉面散布剤をつくり、ポット試験で週一回の散布を試みた。葉面散布した地上部の生育は無処理区をわずかに上回る程度であったが、完全液を散布すると収量は三要素区と大差ない程上昇した(1/40、1/20、1/8稀釈率)(第7表)。
- (II) 生育不良が充分な三要素施与で回復するのか根以外からの養分施与が有効なのかを確認するため、項目(D)を關場で追試したところ、収量は無施与区で三要素区の1.5倍と最高となり、次いで葉面散布区が三要素区をわずかに上回るという(D)とは逆の結果となった。

今後の課題。

- a) 三要素施与効果の確認
- b) 葉面散布効果の検討
- c) 実現可能な有機物投与法の検討

聚一4 Chemical characteristics of the soils at different peanut growth sites

									~					-	-	-
age.	Yel- low	8.1	2.4	31	31	88	0 3	53.4	2.1	0 1	33	162	9.3	0.1	4.5	0.3
Average	Green	8.0	2.3	35	28	40	0.4	50.6	2.2	0.1	31	145	8.7	0.1	3.2	0.3
В	Yel- low	8.0	2.7	83	144	59	0.6	72.0	5.2	0.2	14	133	3.4	0	16.7	0.2
	Green	8.1	3.1	86	286	62	0.8	71.2	6.8	0.5	10	127	2.7	٠; ٥	7.2	0.5
9	Yel- low	8.0	2.9	43	37	33	0.3	62.7	2.0	0.0	32	197	7.6	0.2	#- #-	0.3
	Green	7.9	3.2	21	99	53	0.3	62.4	2.0	0.1	32	122	5.2	0.1	0.5	0.3
ít,	Yel- low	7.6	3.6	8	37	59	0.4	7.67	2.4	0.1	21	88	3.0	0.0	0.3	0.7
	Green	8.0	3.7	41	28	52	0.3	64.8	2.5	0.1	26	129	2.0	0.2	8	0.5
2	Yel- low	8.3	7.8	22	12	25	0.3	8.84	2.1	0.1	24	205	28.9	0.2	15.2	0.3
	Green	8.3	r,	22	.00	25	0 3	49.1	2.2	0.0	23	206	27.6	0.2	16.7	0.3
α	Yel- low	8.2	2.8	12	ന	40	0.2	51.0	1.9	0.1	27	134	5.2	0.0	0.0	7.0
	Green	7.9	2.8	6	N	777	0.1	34.7	8	0.0	13	78	3.4	0.1	0.0	0.4
S	Yel- low	8.0	1.4	17.	9	20	0.3	46.9	0.8	0.1	26	246	14.2	٠. د.	1.2	0.3
	Green	8.1	1.4	10	4	. 19	0.1	47.8	1.0	0.1	67	255	17.8	0.0	0.0	7 0
æ	Yel- low	8.3	1.7	15	m	39	0.2	61.8	0.1	0.0	19	162	5.4	0.0	0.2	0.1
	Green Yel-	8.2	H.3	11	m	38	0.2	48.6	8.	0.0	\$	131	4.9	0.1	0.0	0.1
₩		8.0	2.0	53	0	27	0.3	7.45	p-4	0.1	31	132	6.1	0.0	£,	0.2
Į.	Green Yel	7.4 8.0	1.6	65	38	26	0.7	25.9	6.0	0.1	78	108	6.2	0.0	7.0	0.1
Site	Growth	pH(H20)	Org. C(X)	Olsen-P(ppm)	Bray II-P(n)	232	Ex. K(me)	" Ca(")	" Mg(")	" Na(")	Ca/Mg	Base sat. %	Sol. Fe(ppm)	" Na(") 0.0	" Zn(")	п В (п)
-	· ·	L.,														

表一5 Element content of peanut plant at different grnwth sites

			سند	-						-	
Average	Yel- low	3.96	0.41	2.02	2.54	0.61	0.01	274	100	48	45
Ave	Green	3.87	0.25	1.10	2.42	0.48	8.0	215	109	34	39
Ħ	Yel- low	4.24	0.50	3.29	1.73	0.65	8.	63	82	27	41
	Green	3.51	0.25	1.53	2.13	0.48	0.0	83	123	04	32
S.	Yel- low	4.24	0.70	3.27	2.77	0.92	0.01	159	86	20	71
	Green	4.09	0.39 0.70	1.36	2.77	0.65	0.00	112	103	25	43
ઘ	Yel- low	5.15	0.46	1.62	1,73	0.54	0.01	185	64	57	37
hard	Green	4.29	0.24	99.0	2.60	0.54	0.00	176	101	34	92
E	Yel- Iow	3.82	0.25	1.12	3.12	0.59	0.01	245	105	43	07
и	Green	4.17	0.19	0.91	2.65	0.57	0.0	165	85	41	33
О	Yel- low	3.20	0.38	1.88	3.23	0.52	0.01	226	128	42	20
, ,	Green	3.21	0.22	0.79	3.12	0.46	0.01	290	193	31	34
ິ່ງ	Yel- low	3.54	0.36	1.93	3.06	0.67	0.01	282	72	84	777
	Green	4.57	0.29	1.60	2.08	0.40	0.01	155	51	777	56
~			0.40	1.82	2.48	0.51	0.01	530 568	72	25	67
₽ +4	Green Yel-	3.62	0.22 0.40		2.19 2.48	0.34 0.51	0.01		77	31	26
۔۔۔۔	Yel- low	3.16	0.23 0.24	1.25	1.85 2.19		0.01	463	212	35	29
	Green	3.49	0.23	1.15	1.85	0.43	0.00	207	173	23	27
Site	Growth Green Tel-	N (7) 3.49 3.16 3.62 4.31	P (")	(E) M	 E	Mg (m)	Na (m)	Fe(ppm)	Ma(")	Zn(")	B(")

Treatment	Relative shoot dry wt.	Relative pods wt.		
Compost 0	35	4		
1/8	55	49		
1/4	73	76		
1/2	100*	100*		
Neutral ferti.	44	:		
Acid ferti.	55	13		

^{*14.6}g/2 plants/pot

Effect of foliar spray at different dilution ratio on peaut growth

Treatment	Relative shoot dry wt.	Relative pods wt.
No application	1 40	44
2007	40	***
Chem. NPK	100*	100**
NPK foliar spr		
dilution ratio) 55	68
1/400	55	73
1/40 1/20	. 65	70
1/20	35	50
1/4	15	0
Micro elements	foliar spray	
dilution ratio		
1/400	54	63
1/40	48	55
1/20	50	63
1/8	50	61
1/4	31	14
Complete eleme	ents foliar spr	ау
dilution ratio)	
1/400	50	34
1/40	51	85
1/20	73	99
1/8	66	93
1/4	47	1

^{**11.9}g/2 plants/pot

^{* 10.0} g/2 plants/pot ** 16.1 g/2 plants/pot

2-5 アルカリ水田における有機物投与効果 はじめに

水稲を標準施肥栽培(63-46-30kg/ka)すると、一般にビラール圃場(pH 8.1)における収量はカルメン圃場(pH 6.8)より低いが、 さらに堆肥施与(10+/ /ka)すると、カルメン圃場と同程度の収量が得られる(稲作部門)(第18図)。両圃場における作物体(11664)を稲作部門試験区から得て、アルカリ土壌における堆肥施与効果を作物体中養分含量から検討した。なお、両土壌(ともにローム)の化学的性質は第8表に示した。

成果の概要

- a) ビラールにおける堆肥施与区の無機元素含有率は、同圃場の三要素に較べて収穫時の K が高く P が低い以外は明らかな差は無かった (第19図)。
- b) 圃場間で各元素含有率を比較すると、NおよびPにはほとんど差がなかった。K、Ca、Mgといった塩基はビラールの方がカルメンより高かったが、Zn、B、Mn といった微量元素およびSi は逆にビラールで低かった。Fe は移植後 3 週間目はカルメンで高かったが、6 週間目には逆転し、その後は大差なかった。

K含有率はカルメンで生育初期に欠乏レベルであり、 Si は両土壌で収穫期に不足レベルだった(第19図)。

- c) 作物体地上部に保持されていた各元素の量は移植後12週目に最高となり、その後下位葉の枯死消失に伴い低下した。ビラールの堆肥区およびカルメンの三要素区での N集積量は化学肥料として施与した量のほぼ2倍、Pは1/3倍そしてKは3倍であった。ビラール三要素区でのN集積量は化学肥料のほぼ1.5倍、Pは1/4倍そして Kは2倍であった(第20図)。
- d) 本試験と同程度の収量が目されており、有機物が完全に分解利用されると仮定すると、1作で得られる茎葉は次作で必要とされるK、Ca、Mgといった多量元素およびMn、Zn、Bといった微量元素の50%以上を供給することができる。さらに化学肥料でまかなえなかったKの全量およびNの収量を供給することができる(第9表)。
- e) 堆肥施与による乾物量の増加に伴いすべての元素の吸収量が増加したが、 NPKの 増施によって生育量がさらに増す(稲作部門)ことから、堆肥に含まれる三要素と同 量の化学肥料を付加することによっても同様の効果が得られるかもしれない。
- f) より高い収量を得るためにはより多くの養分元素が必要とされる。ビラールおよびカルメンの標準施与区の2倍の収量(8.7 t / ka)を得た1RR1 圃場の場合と比較してみると、カルメンのMn および Zn 以外のすべての元素がより多く吸収されている。すなわち P、K、Mg、Si、Bは両土壌標準区の2倍以上、Fe および Znはビラール標準区の2倍以上であった。特に両圃場での P、K、Bおよびビラールでの Si

吸収量は1RR1の場合の1/4以下であった(第2表)。従って両土壌において同 含有率で2倍の収量を得たとしても、P、K、BおよびビラールのSi 吸収量はいず れも少いことになる。これらの元素の増施は収量増に特に効果的かもしれない。しか しながらアルカリ土壌でのP、B、Si を含む化学肥料の施与は溶解度あるいは難溶 性塩の形式といった点から有効ではない。この点有機物はこれらの元素の有効な供給 元となり得る。

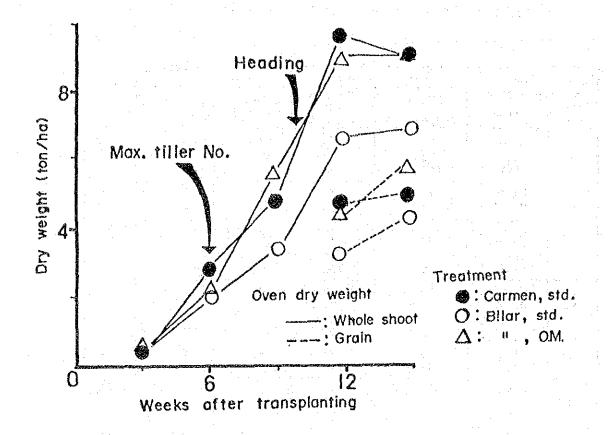
今後の課題

畑状態での有機物投与効果の調査

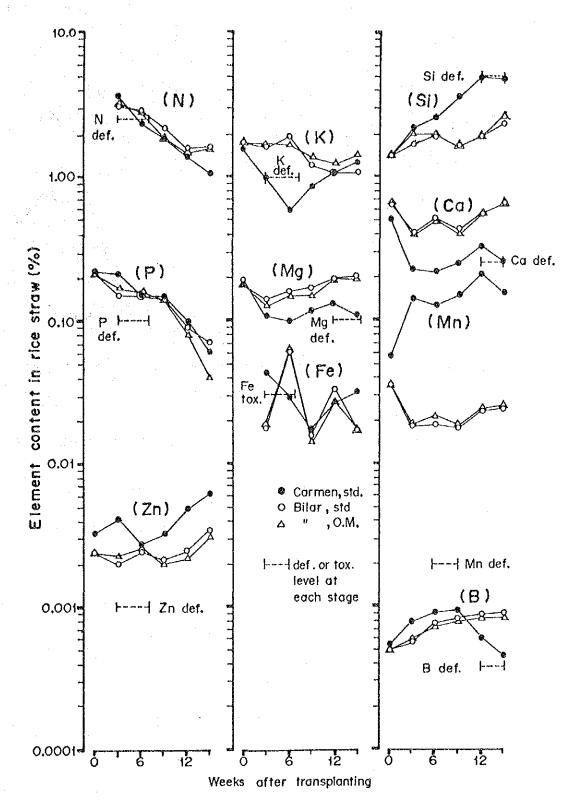
表一8 Chemical characteristics of soil and irrigation water of Bohol-APC experimental fields

per imetral 110140		ساني پريون ويون		
Sampling time		Tillerin	g stage	
Items analyzed Location	Bilar	Carmen	Ubay	Tubigon
Soil				
рН (H ₂ O)	8.1	7.0	5.1	7.5
Org. C (%)	2.70	1.24	0.95	0.87
Avail. P (ppm)	15.4	6.0	6.5	18.0
P ₂ O ₅ ab. coef.	1990	1010	550	2060
2 5 CEC (me/100g)	28.0	13.2	8.1	40.1
Ex. K (")	0.07	0.06	0.06	0.24
Ca (")	70.10	9.94	2.19	34.38
Mg (")	0.89	0.75	1.72	8.02
Na (")	0.08	0.11	0.11	0.42
A1 (")	Trace	Trace	0.50	Trace
Base Sat. %	254	82.3	56.5	107
Ca/Mg	78.8	13.3	1.3	4.3
Sol. Fe (ppm)1	20.1	912	870	519
Mn (") ²	Trace	7.0	104.0	1.1
Zn (")3	0.76	0.99	0.78	1.14
в (")4	0.13	0.10	0.12	0.34
Si (") ⁵	15.7	45.9	23.6	105.1
Irrigation water		İ	·	-
pН	7.7	8.0	7.7	7.2
Si (ppm)	1.1	6.3	3.4	18.8

Note: Extractants of 1, 2, 3, 4 and 5 are N NH₄OAc at pH 4.5, N NH₄OAc at 7.0, N NH₄OAc at pH 4.5, hot water and water, respectively


表一9 Amounts of element taken up by rice plants in Carmen and Bilar standard treatments compared with those in IRRI, Laguna(1)

	Plant	Max. val	ue(2)	At har	est(3)	b/a
Ele- ment	analyzed Location	Shoot (kg/ha): a	Ratio to IRRI value (%)	Straw: b (kg/	Grain 'ha)	(%)
N	Carmen	120	73	42	64	35
	Bilar	96	59	33	58	34
	IRRI	164	100	-		-
P	Carmen	11	25	2	6	18
	Bilar	7	15	2	6	29
	IRRI	46	100	-	-	-
K	Carmen	73	23	52	9	71
	Bilar	48	16	27	13	56
	IRRI	309	100		-	-
Ca	Carmen	19	70	10	2	53
	Bilar	22	81	16	4	73
	IRRI	27	100	-	-	
Mg	Carmen	10	30	4	3	40
	Bilar	9	26	5	4	56
	IRRI	35	100		-	-
Si	Carmen	398	45	195	115	49
	Bilar	102	11	58	61	57
	IRRI	890	100	-	-	-
Fe	Carmen Bilar IRRI	2.45 1.36 4.79	51 28 100	1.30 0.43	0.83 0.23	53 32 -
Min	Carmen Bilar IRRI	11.90 0.96 1.32	902 73 100	6.62 0.60	1.00 0.26 -	56 63 -
Zn	Carmen	0.33	94	0.25	0.08	76
	Bilar	0.13	37	0.08	0.05	62
	IRRI	0.35	100	-	-	-
В	Carmen	0.05	8	0.02	0.01	40
	Bilar	0.04	6	0.03	0.01	75
	IRRI	0.66	100	-	-	~


Note: 1. IR-8 was used (8.70 t/ha of grain yield), and the amount of fertilizers was not reported.

2. At 12 weeks after transplanting for B-APC trials and at maturity for IRRI $\,$

3. At 15 weeks after transplanting

图—18 Change in dry weight of rice shoot at different growth stage in Carmen and Bilar paddy fields

∠ Change of element content in rice shoot at different growth stage in Carmen and Bilar paddy fields

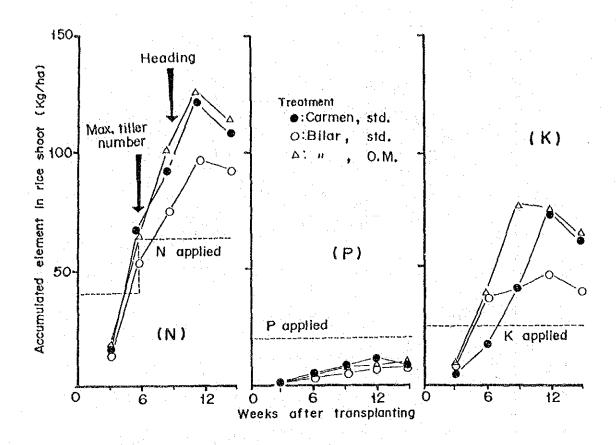


図-20 Amount of accumulated element in rice shoot at different growth stage in Carmen and Bilar paddy fields

2-6 低CEC酸性土壌(タリボン)における作物生育阻害要因

はじめに

タリボン酸性土壌(SL、pH 4.6)の生育阻害要因を次の方法で同定した。

- a) 2 カ所の綿の生育不良圃場において、それぞれ生育の異なる地点の土壌および作物 養分を比較した。
- b)ポットを用いて綿に対する石灰および他元素施与効果を調べた。
- c) 生理的酸性および中性肥料を用いて綿の三要素試験を行った。
- d) 圃場において綿に対する Ca およばMg 施与効果を調査した。

成果の概要

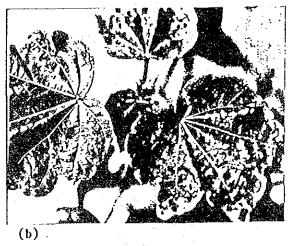
- a) 生育不良な地点では良好な地点に較べて土壌中塩基、特に置換性 Ca および Mg が低く、その結果 pH および塩基中和度が低かった。 これは作物に反映され、生育不良地点では地上部 Ca および Mg 含有率が低かった(第10表)。
- b) 第一葉からみられる褐色斑、生長点の壊死といった生育不良要因は、N、P、K、B、Mo、Ca、Zn、Fe あるいはMn 施与によっては解消されなかったが、 石灰施与によっては正常な生育を示した(第21図)。
- c) タリボン土壌における三要素の必要性は P 〉 N 〉 K であった (第11表)。
- d) 性理的酸性肥料の投与では綿は生育不良であったが、中性肥料では正常な初期生育を示したことから、根の養分吸収能を向上させるために pH 自体を上昇させることも必要とみられた(第11表)。
- e) 石灰および三要素施与区で播種後40日頃からみられる下位葉の黄・赤化は、石灰に4%のMgを添加することで解消した。
- f)以上のことから次のように結論した。タリボン土壌における一義的生育阻害要因は Ca 欠乏であり、 石灰および三要素施与によって生育が向上すると次いでMg 欠乏が 発現する。綿の良好な養分吸収のためには pH自体の上昇も必要である。 B施与によ り葉数が増したことから B不足の可能性もある。

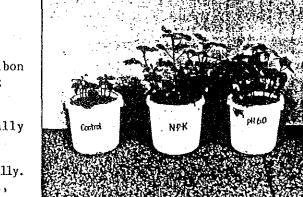
今後の課題

第一義および第二義的生育阻害要因が解決された後に起こり得る微量要素欠乏についての調査

表-10 Nutritional status of soils and cotton plants from different growth site


		a y Arti	r jili		
Soil	and the second s	Sandy 1	am soil		
Items Location	Talil	on	Trinidad		
analyzed Growth	Poor	Better	Poor	Better	
pH (H ₂ O)	4.6	5.1	4.8	5.1	
Org. C (%)	1.0	1.0	0.4	1.0	
Bray II-P (ppm)	5.7	6.9	2.2	1.3	
CEC	4.2	4.5	3.8	6.9	
Ex. K (me/100g)	0.04	0.13	0.05	0.07	
Ca (")	0.06	0.88	0.32	1.34	
Mg (")	0.07	0.45	0.36	1.12	
A1 (")	0.71	0.17	0.28	0.10	
Base Sat'n %	4	33	20	37	
Sol. Fe (ppm)	13	12	. 10	18	
Mn (")	24	24	31	22	
Zn (")	0.70	0.78	0.44	1.76	
В (п)	0.10	0.20	0.09	0.12	
	Cotton 1	eaves*		· .	
N (%)	4.27	4.04	4.80	4.51	
P (")	0.42	0.43	0.37	0.39	
K (")	2.95	2.12	3.09	1.62	
Ca (")	1.05	2.39	1.70	2.66	
Mg (")	0.28	0.60	0.51	0.73	
Fe (ppm)	255	92.7	222	113	
Mn (")	6620	649	7070	239	
Zn (")	38.7	35.8	50.6	56.8	
В (")	27.6	37.1	25.5	30.1	


^{* 50} days after emergence


表一 11 Bffect of lime or NPK application on the early cotton growth in low CEC acid soil (Talibon)

Treatment	Soil pll at sowing	Relative dry matter wt.
No application	4.7	36
Liming w/o NPK*		
S	5.5	90
M	6.0	100**
L	6.5	100
Three major		
elements w/o lime		
NPK	4.1	104
- N	4.3	62
-₽	4.2	42
- K	4.2	71
Alkaline		
fertilizer		
NPK	5.0	601

^{*} S, M and L mean small, medium and large amount of application, respectively.

- (a) Cotton planted in original Talibon soil showed the necrosis at growing points and did not further grew.
- (b) Plants applied NPK grew abnormally showing brown spots in the leaves.
- (c) Limed(pH 6.0) plants grew normally. NPK applied plants were the largest, but the growth was abnormal.

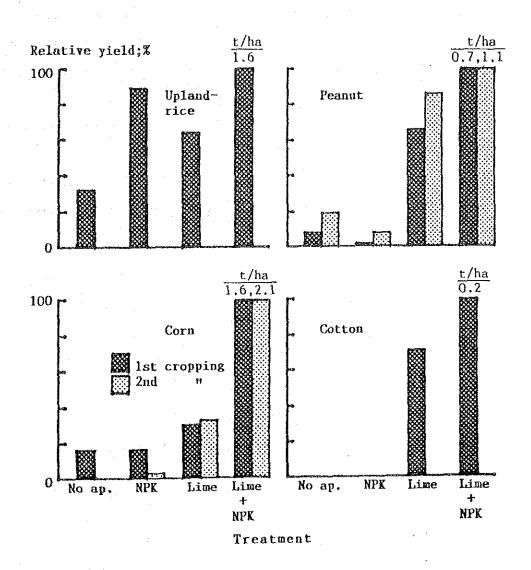
図-21 Growth response of cotton plants to the application of lime or NPK in low CEC acid soil (Talibon)

(c)

^{**} Dry weight of medium liming treatment (8.26g/8 plants/pot) is assumed as 100%.

2-7 低CEC酸性土壌(タリボン)における作物栽培技術

はじめに


低CEC酸性土壌における基本的作物生産技術を次の方法で検討した。 タリボン圃場でCa適応性および三要素要求量の異なる陸稲、 落花生、トウモロコシ、綿の1種の作物(第12表)を栽培し、当地で一般的な酸性肥料および石灰の施与効果を調査した。 処理は無施与、三要素のみ、石灰のみ、それに三要素および石灰の完全区の1種であり、それぞれ相当する区に三要素は60-40-40kg/ka(20kg/kaのNは尿素で追肥)、石灰は3t/kaを全作物一率に全層施与した。

成果の概要

- a) 全作期を通じて無施与区および三要素区の土壌 pHは 4.2~4.8、 石灰区 それに三要素 はよび石灰区の pHは 6.2~7.4 であった。
- b) 完全区と比較して無施与区でもある程度の収量を得られたのは陸稲のみであった。 (第22図)。
- c) 陸稲では三要素区の収量が無施与区を上回ったが、他作物では同程度かあるいは劣った(第22図)。
- d) すべての作物において石灰施与効果が認められたが、落花生と綿において特に顕著 だった(第22図)。
- e) 同水準での石灰および三要素施与効果はトウモロコシ〉綿〉落花生〉陸稲の順で大きかった(第22図)。
- f)以上の結果から次のように結論した。営農資金が充分でない場合は(i)三要素肥料よりも石灰の購入に重点をおき、(ii)石灰および三要素要求量の兼ね合いで都合の良い作物を選んで輪作体形をつくり、次第に土壌を肥沃化して有利な換金作物を作付できる条件をつくっていくよう助言することができる。すなわち、最初は無施与でもある程度の収穫が期待できる陸稲を栽培し、その収益から石灰を購入して落花生を栽培して充分な収益を得、次いで石灰の残効を利用して三要素のみを投与してトウモロコシを栽培し、その収益で三要素と不足石灰を補って綿を栽培するといったやり方が営農的に無理がない。

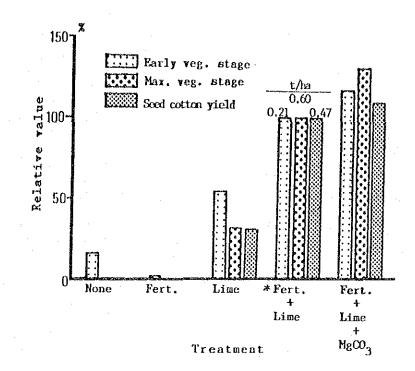
表一 12 Nutritional characteristics of tested crops

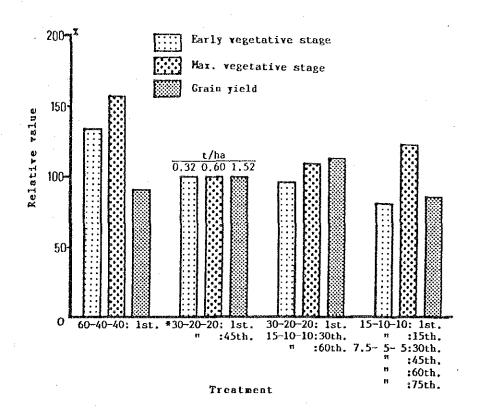
Crop	Upland rice	Peanut	Corn	Cotton
Necessity of NPK	Small	Small	Large	Large
Calcium adaptability	Low	High	Low	High

≥ 22 Effect of time and / or NPK application on relative grain or seed cotton yield of four crops in acid sandy loam soil

2-8 低CEC酸性土壌(タリボン)における作物増収技術

はじめに


低CEC酸性土壌における作物増収技術を知るために、タリボン間場において、(A)石灰の残効、(B)Mg 施与効果、(C)三要素分施効果を調査した。


成果の概要

- (A) 先に性質の異なる4作物を用いて三要素および石灰の施与効果を調べたと同じ間場で、三要素は第1回目と同量を対応する区に新たに施与し、陸稲、落花生、トウモロコンの三作物を栽培して石灰の残効を調べた。
 - a) 全作期を通じて無施与区および三要素区の土壌 pH は $4.2 \sim 5.0$ 、 石灰区および 完全区の土壌 pH は $5.1 \sim 6.2$ に保たれた。
 - b) 陸稲の収量は病害のため非常に低かったが、落花生、トウモロコシでは大幅に上回った。石灰および三要素に対する反応は第1作と同様だった(第22図)。
- (B) 綿を用いて三要素施与のもとに石灰単一区と4%Mg添加区との生育を調査したところ、Mg添加により生育盛期の地上部乾物重は30%、収量は9%の増加をみ(第23図)、繊維が長くつやを増すという品質の向上がみられた。
- (C) タリボン土壌は養分保持能が著しく低いことから(CEC4)、石灰および炭酸マグネシウム施与のもとでトウモロコシに対する肥料分施効果を調査した。60-40-40kg/taのNPKを播種期とその後45日目の2回に分けて施与する通常の方法に較べ、同量の肥料を播種期から1カ月おきに3回に分施すると、13%の収量増をみた(第24図)。

今後の課題

- a) 石灰残効の継続調査
- b) 最低必要マグネンウム量の調査
- c) 有機物投与効果の調査

 $\boxtimes -24$ Effect of split fertilization on corn growth in low CEC acid soil (** the growth in the twice fertilization is assumed as 100 %)

2-9 中CCC酸性土壌(カルメン)における作物生育阻害要因はじめに

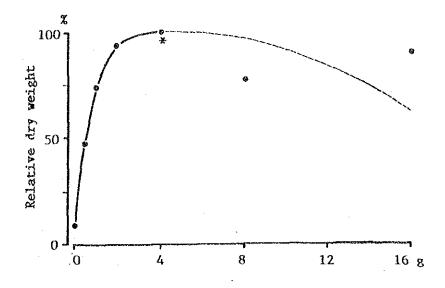
中CEC酸性土壌における作物生産技術について調査した。 生育不能地点とそれより もやや良好な地点の土壌を分析比較した。それにもとついてトウモロコンを用いて三要 素、石灰およびリン酸施与試験を鉢にて行った。

成果の概要

- a)作物生育が不能なカルメン酸性土壌(pll46)のCECは14でタリボン酸性土壌の4に較べたら高いが、全塩基は0.63 ml/100 g、塩基飽和度は4.5%とタリボン土壌同様大層低かった。同地方の生育可能地点と比較しても、全塩基および塩基飽和度の低さが顕著だった(第13表)。
- b) 石灰および三要素施与試験によると、P〉K〉石灰〉Nの順で著しく不足していた。 石灰によりpH6程度に矯正すると、 KおよびNの不足は大幅に改善されたが、P不 足は依然として著しかった(第14表)。
- c) 石灰施与により土壌 pH を 6.0 に矯正し、N および K 施与のもとでリン酸施与試験をしたところ、 $49 P_2 O_5 / 3.3 kg 土壌 でトウモロコシの初期生育は最高となった(第 25 図)。これはリン酸吸収係数(<math>896$)の 13.5% に相当した。
- a) 同土壌において充分な収量を得るためには石灰施与によって土壌 pHを 6.0 程度に 矯正し、リン吸の 10%程度のリン酸投入が必要となるが、当面は耐低塩基および耐 低リン性の強い作物を選び徐々に改良目標に近付けていくことが現実的である。

今後の課題

栽培可能な作物選定、圃場での実証試験、リン酸および石灰の残効調査が必要である。


表-13 Chemical characteristics of medium CEC acid soil (Carmen) at different peanut growth sites

表一14 Effect of Liming and NPK on early corn growth

Site	Peanut	growth
Items analyzed	Better	Poor
рн (н ₂ 0)	4.8	4.6
pH (KC1)	3.6	3.7
Org. C (%)	2.2	2.7
Olsen's P (ppm)	3.5	4.0
Bray-II P (")	1.7	1.4
CEC (me/100g)	19.7	14.0
Ex. K (")	0.59	0.08
Ca (")	5.26	0.37
Mg (")	0.45	0.14
Na (")	0.06	0.04
A1 (" ")	2.18	2.06
Total base (")	6.36	0.63
Base sat. %	32	4.5
Sol. Fe (ppm)	91.9	52.1
Mn (")	65.7	7.9
Zn (")	2.9	0.4

THE RESIDENCE WAS ARRESTED FOR THE PROPERTY OF	
Treatment	Relative dry wt. (%)
No application	
pll 4,2	7
Liming	
рН 5.0 рН 6.0	17 22
Acid fert.	
·N	34
P	14
-K NPK	18 35
Alkaline fert.	
NPK	57
Liming (pH 6.0) and acid fert.	
N	87
-Р	34
-K NPK	69 100*

* 12.70 g/2 plants/pot are assumed as 100%.

 \boxtimes -25 Effect of phosphate application on early corn growth in medium CEC (Carmen) acid soil (\pm 29.0 g / 2 plants / pot is assumed as 100 %)

2-10 ボホールにおけるリン鉱石の有効性調査

はじめに

コウモリ糞由来のリン鉱石(グアノ)を可能な限り調査し(27洞窟、第26図)、 $pH(H_2O)$ 、2%クエン酸可溶性P、全N、P、KおよびCa を測定した。 性質の異なる2種のリン鉱石の形態別Pを調査し、鉢試験を行った。

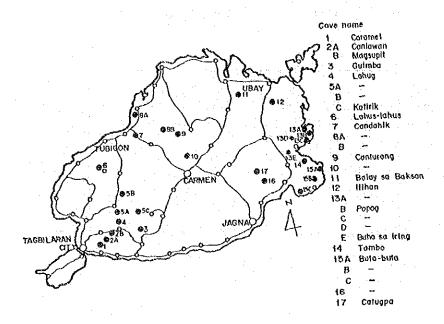
成果の概要

- a) すでに商品として採窟されている洞窟を除いては、埋蔵量はごくわずかであった。
- b) 平均pHは44であり、酸性矯正効果は望めない(第15表)。
- c) 市販化学肥料(ソロホス)と同等(クエン酸可溶性P45%)以上の有効態Pを含んでいたのは全サンプル(250点)の8.7%であった。
- d) pHと有効態 Pとの間には正の相関があり、pHがリン鉱石の有効性の指標となり得た(第15表)。
- e) 有効態 P 含量は同一地点でも層位によって大きく異なり、部分的試料から肥効を概括するのは困難である。
- 「) 畑状態で有効なリン鉱石はCa Pが多く含まれていた。 一方水田状態でのみ有効なものはFe Pが主体を占め(第16表、第2図)、湛水によってFe Pが還元放出されるものと推測された(第28図)。
- j)以上の結果から次のように結論した。一般にリン鉱石(グアノ)の有効態P含量は低く、品質は一定せず、土壌および酸化・還元状態によって肥効が異なるため、普及技術の確立は困難である。埋蔵量も多くはなく、過度の期待はできない。それにもかかわらず需要がある場合は、pHが高いものを選ぶよう助言できる。

今後の課題

- a) 残効調査
- b) 異なる性質のリン鉱石の生成由来を知る。

表-15 Chemical characteristics of rock phosphate(guano) in Bohol


Items	[Tota	l amount (()		2% ctric acid
analyzed	ри (п ₂ 0)	N	Р	K	Ca	Fe	soluble P (%)
Range	2.4~7.6	trace ~(1.41) 9.98	1.30 ~18.51	trace ~4.04	trace ~37.21	0.08 ~24.81	trace ~ 9.75
Average	4.4	(0.16)	12.01	0.54	3.33	6.30	1.11
Std. deviation	1.40	(0,21)	4.00	0.88	7.07	5,10	2,39
Cor. coef. between pli	- .	(n.s.)	-0.219**	0.172*	0.201*	n.s.	0.245**

n = 150 () = without fresh guano

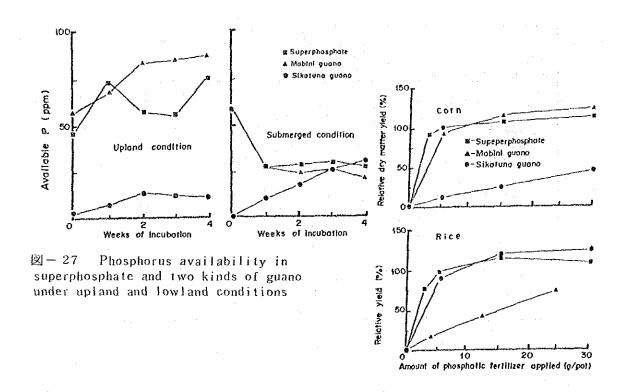

5% level > 0.159 1% level > 0.208

表-16 Element content of two kinds of rock phosphate (guano) compared with that of superphosphate(Solophos)

Super-	Rock phosphate (guano)		
phosphate	Mabini	Sikatuna	
-	0.5	0.1	
7.4	16.5	13.2	
4.5	9.6	0.4	
2.4	3.1	0.3	
1		0.7	
1.1	1.1	4.4	
	0.2	0.1	
10.4	35.0	Trace	
	1.0	7.3	
	7.4 4.5 2.4 3.2 1.1	Super- phosphate Mabini - 0.5 7.4 16.5 4.5 9.6 2.4 3.1 3.2 1.4 1.1 1.1 - 0.2 10.4 35.0	

⊠-26 Location of caves in Bohol sampled for rock phosphate

 $\boxtimes -28$ Effect of superphosphate, Mabini guano and Sikatuna guano application on the growth of corn and rice (± 5 g of superphosphate treat, is assumed as 100 %)

表一十 Frequency distribution of fertility factors in Bohol farmer's fields

O.M. PH	4.5 <pl 5.5<="" th="" ≤=""><th>5.5< \$15 6.5</th><th>6.5< ८।≤7.5</th><th>7.5<ph -<="" th=""><th>Total</th></ph></th></pl>	5.5< \$15 6.5	6.5< ८।≤7.5	7.5 <ph -<="" th=""><th>Total</th></ph>	Total
0<0,M, 51	1	4	1	٥	- 6
1 < 0.H. 5 2	10	26	15	2	- 3a
2 < 0, M, \ 3	6	23	.67	12	108
3<0.M.	1 H		51	22	0.
Gisen's P					
0 <p≤5< td=""><td>2</td><td>7</td><td>4</td><td>D</td><td>13</td></p≤5<>	2	7	4	D	13
D< P 5 10	16	23 .	18	2	59
(0 < P ≦ 20	. 4	19	48	21	9.2
20 < P	1	15	64	13	93
H, 50, 111, K					
. 0 < K ≤ 40	4	7	23	12	46
40 < K 🖁 80	.13	21	44	8	86
80 < K & 120	5	20	40	11	76
120 < K	1	16	27	5	49
Total	23	64	134	36	257

表-2 Summary of the fertility analyses of farmer's fields in Bohol

ltems analyzed	pH (H ₂ O)	0. M. (%)	Olsen's P(ppm)	H 2804 ext. K (ppm)
Ronce	4.8-7.9	0.6-4.5	1.2-100	2.5-250
Average	6.8	2.7	21.3	83.9
Cor. coef between pH	- .	0.567**	0.314**	0.009
Cor, coef. between O.M.	••	_	0.486**	

Hom: n= 257, 5% > 0.117, 1% > 0.121

表一3 Soil characteristics of Bohol-APC experimental fields

lterns analyzed	Tooblieran	Bilor	Carmen	Uboy	Tubigon
Soll fexture	С	l,	L	S L	С
pH (H ₂ Q)	7.6	8.1	7.0	5.1	7.5
Org. molter (%)	2.7	3.9	2.4	1.6	1.7.
Olsen's P (ppm)	50.5	15.4	6.0	6.5	18.0
CEC (me/100g)	24.0	28.0	13.2	8,1	40.1
Ex.K (")	0.51	0.07	80.0	0.06	0.24
Cal ")	39.89	70.10	9.94	2.19	34.38
Mg(*)	2.07	0.89	0.75	1.72	8.02
All)	Trace	Troce	Trace	0.50	Trace
Sol. Fc (ppm)	14	50	912	870	519
Mn (")?	14	Troce	7	104	1
Zn (")	5.60	0.76	0.99	0.78	1.14
, 8 (m) ^t	-	0.13	0.10	0.12	0.34

ISIE 1. Extractions; N NH₂OAc, pH 4.5 2, pH 7.0 3, pH 4.0

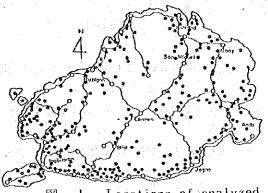


図-1 Locations of analyzed soil samples in Bohol (257 sites)

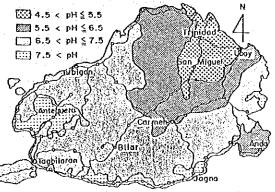
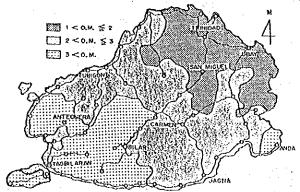



図-2 Geographical distribution of soil pll in Bohol

□ 3 Fertility status in Bohol based on organic matter content

図-4 Fertility status in Buhol based on extractable phosphorus content

1988~1989.年度研究課題別調查表

II 研究課題別調査表

1. 化学的・物理的な土壌の改良

1-1 地域別土壌の理化学的特性の把握

研 究 課 題:化学的・物理的な土壌の改良

細 部 課 題:地域別土壌の理化学的特性の把握

派遣専門家(年次):櫃田木世子(1987年1月7日~1990年2月1日)

カウンターパート: Concepcion Payapaya, Adracion Tirol

					· Concepcion Payapaya, Adracion Tiroi
	調	查り	i I	B	刘 象 : 専 門 家
1.	実	施	JJ.		主として農民から寄せられた 257点の土壌(第1図)の pH、 腐植、
					有効態P(オルセン法)および1.34 N硫酸抽出Kに関する既存のデ
		•			ータを分析し、土壌分類図(1947年作成)を参考にしつつKを除く
					各項目について肥沃図を作成した。
2.	戍	果。	りす	既要	a)全体の9%の試料が48(最低)≤pH≤5.5に属し、現在耕作
					されている圃場には低 pH 自体の書がほとんど無いといえた(第1
					表)。
					b) 66 %の試料が pH 6.5 以上であり、アルカリ障害が多いと推察さ
					れた(第1表)。
•		•		•	c) pllは北東部で低く、 南西部になるにつれて高くなった(第2図)
					d) pHと有機物および有効態Pとの間にはそれぞれ正の相関があっ
			=		た(第2表、第2、3および4図)。
				;	e) pH 6.5以下と有効態 P 10 ppm 以下の地域はおおむね一致し、pH
					6.5がP施与の可否の目安となり得た(第2および3図)。
					f)土壌肥沃図の概要は、4地点のAPC圃場のより詳細な土壌分析
		٠.			値と矛盾しなかった(第3表)。
					g)本結果は農業改良普及員の施肥指導および換金作物の契約栽培農
					地選定の基本資料となり得る。
					h)結果の概要が絶対視されることを防ぎ、場合によっては特定地の
					詳細な検討を施す必要がある。
3.	残	され	た	問題	a) Kについては抽出液の酸度が高すぎて値が大きくなり、作物生育
					との関連で議論できなかった。
					b) 近年の手法に基づいた土壌分類図を作成し、肥沃度との対応をよ
					り詳細に確認し直す必要がある。
4.	継	承発展	Ø) n	能性	3-b) についてはBurean of Soils / Land Resources Evaluation
					Project の依頼により土壌分類図作成に必要な土壌の理化学分析を完
	_				了した。
5.	今	後の	ĎΪ	付. 吃	上記結果について Bureau of Soils と連絡を保つ
			. :		
技	紡	移車	点言	子 個	A
		800	27 1. 1		B 50~80% C 50%UF D 0%

課 題:化学的・物理的な土壌の改良 郁

題:地域別土壌の理化学的特性の把握 綳 課

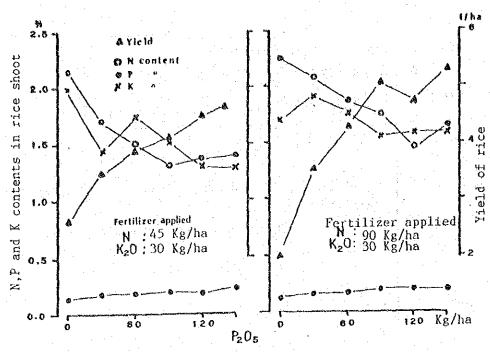
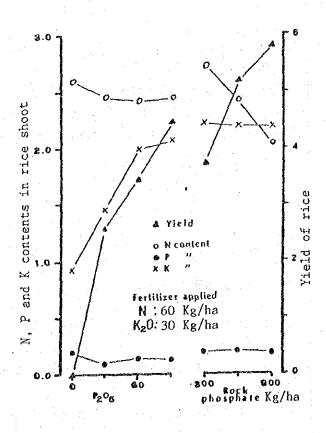
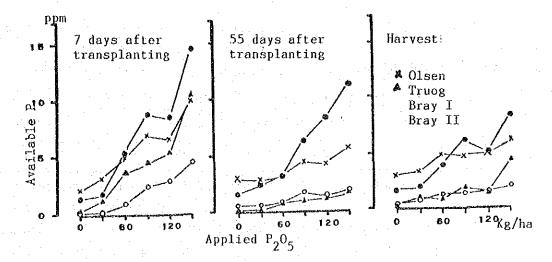
派遣専門家(年次):櫃田木世子(1987年1月7日~1990年2月1日)

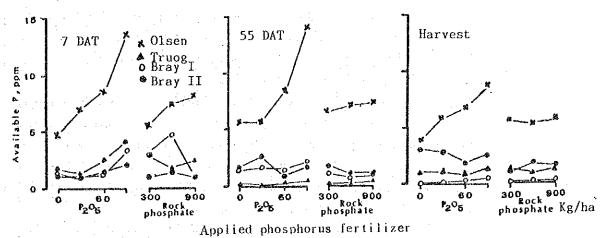
カウンターパート: Concepcion Payapaya, Adracion Tirol

	Concepción i ayapaya, increación i i i o
調査項目	刘 象 : 専 門 家
1. 実施項目	水稲の収量指標となり得るP測定法を稲作セクションの実験圃場から
	試料を得て検討した。
	同セクションによって P2Os施与に対する水稲(IR64)の収量動向
2. 成果の概要	が調査された。ウバイ圃場では P₂O₅ を 0 から 30 kgごとに 150 kg/&a
	まで増していった。 Nは 45 および 90 kg/kaの 2 水準が用いられたが、
	K₂Oは一率に 30 kg/laであった。カルメン圃場では P₂O₅を 0 から 30
	kgごとに 90 kg/staまで増加していった。 同時に 300 、 600 および
	900 kg/haのリン鉱石(グアノ)施与試験が行われた。 N および K2 O
	はいずれにおいてもそれぞれ 60 および 30 kg/Aaであった。両圃場に
•	おいて移植(施肥)後1週間、 55日および収穫時の土壌中有効態 P
	をOlsen、Truog、Bray Iおよび』の方法で測定した。
2. 成果の概要	a) 両圃場においてリン酸施与の増加に伴い収量は増加した(第5、
	6 図)。
	b) ウバイ圃場ではBray Ⅱ法による抽出値が最も高かった。施与後
	時間の経過とともに値は低下したが、いずれの方法においても可給
	態Pはリン酸施与量の増加に伴い上昇した(第7図)。
·	c) カルメン圃場ではOlsen 法による抽出値が最も高かった。施肥後
	1 週間では全ての方法による可給態 P が施与量と正の相関を示した
	が、その後は Olsen 以外の方法では収量との関係は認められなくな
	った(第8図)。
	d)可給態 P と収量との関係はウバイ圃場では Bray Ⅱ 、カルメン圃
	場ではOlsen法によるものが最も明瞭であった。いずれにおいても
	施肥後1週間目の値が10 ppm以上であれば4 ton /ka 程度かそれ
	以上の収量が得られていた(第9図)。
	e)カルメン圃場のリン鉱石(グアノ)施与区では Olsen法による可
	給態P抽出量は低かったにもかかわらず、高い収量を得た(第9図)。
3. 残された問題	a) 各土壌型に適した可給態 P値および b) リン鉱石の有効性の検定
	法が課題となり得る。
4. 継承発展の可能性	項目3については経験値を出し得るが、その機構を理解するのは現在
	のAPCのレベルからいって困難である。
5. 今後の対応	A P C 圃場に関して収量指標となり得る可給態 P の経験値を得る。
技術移転評価	C

A 80%以上

B 50~80% C 50%以下 D 0%


図-5 Change in N.P and K contents and yield of rice plants with different P2Os application in Ubay

Chage in N, P and K contents and yield of rice plants with different P₂O₂
 application in Carmen

Phosphorous availability by four extractants at different growth stage in Ubay

Phosphorus availability by four extractants at different growth stage in Carmon

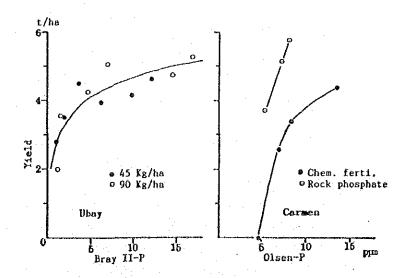
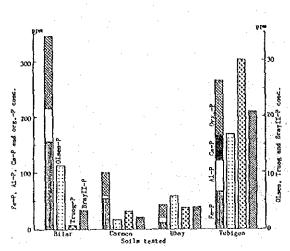


図-9 Yield response to available phosphorus concentration extracted at one week after transplanting \angle fertilization

ØF 題:化学的・物理的な土壌の改良

쌔 褓 課 題:地域別土壌の理化学的特性の把握


派遣専門家(年次):櫃田木世子(1987年1月7日~1990年2月1日)

カウンターパート: Concepcion Payapaya, Adracion Tirol

調査項目	刘 象 : 專 門 家
1 実 施 項 目	Bilar, Camen, Ubay およびTubigon のAPC 水田無処理区から採取し
	た土壌の各形態の P を測定した。次いで1 / 5,000 a のワグネルポッ
	トに20の脱塩蒸溜水を添加し、60-40-40 kg/Aaに相当する三要
	素肥料を均一に混入した各々 2 kgの土壌を加え、土壌還元に伴う無機
	イオンの変動を 12 週間に渡って調査した。 なお、毎週 500 ㎖の冠水
·	を各種測定用に採取し、不足分を更新した。
2. 成果の概要	a) 全P量はBilar 〉Tubigon 》Carmen 〉Ubay であった。Bilar
	および Tubigon では Fe-P〉Org-P〉A1-P〉Ca-P であったが、
	Bilar のCaーPはこくわずかであった。Carmen ではFeーP〉
	Org-P〉AI-P、UbayではOrg-P〉Fe-P〉AI-Pであり、と
	もにCa-Pは痕跡程度であった(第 10 図)。
	b) Carmen (pH 5.4)および Ubay (pH 5.2) 土壌のけんだく液
	pHは湛水によりいずれも急激に上昇し、 2週間でpH 7 前後とな
	った後はほぼ一定であった。 Tubigon 土壌(pH 7.3)の pHは湛水
	によっても大きな変化はなかった。Bilar 土土壌(pH 8.1)では
	遊水1週間でpH 7.6まで低下したが、 その後はほぼ一定であった
	(第11图)。
	c) Ubay、Tubigon、Bilar 土壌のECはいずれも湛水5~7日で
	最高になり、その後は低下したが、Carmen では 22月目に最高にな
	った後、低下した。 ECの平均は Ubay 〉 Tubigon 〉 Bilar 〉 C
	Carmen の傾向があった(第12図)。
	d) Eh はいずれの土壌においても湛水によりまず急激に低下し、そ
	の後はゆるやかに上昇する傾向があった。 Bilar および Tubigonで
	は最低値を得るまでに2週間、Carmen およびUbay では3週間を
	要した。 Eh の平均は Tubigon 〉 Bilar 》 Carmen 〉 Ubay であった (第 13 図)。
	(男 13 四)。 e)土壌溶液中のFe は Bh の低下により指数関数的に上昇し、 Ubay
	> Carmen > Bilar > Tubigon の傾向があったが、後2者ではほと
	んと痕跡程度であった(第14図)。
	f) 土壌溶液中Mn は土壌開差が大きくCarmen 》Ubay 〉Tubignn 〉
	Bilar の傾向があったが、Bilar ではほとんど痕跡程度であった。
-1	前2者ではEhの低下により指数関数的に上昇したが、Ehの変化が
	小さかった Tubigon およびMn が痕跡程度であった Bilar では調者
	. C ~ フ ic Itubigon w & o into w px py 4 th C coy フ ic D i i at C i & pu 4
<u> </u>	

課題: 研 究 課 題: 細部 派遣専門家(年次): カウンターパート:

土壌個有の全P量はUbay に次いで少ないが、CECおよびP吸着率が中程度であるため施与肥料の放出がUbayより低くおさえられる。同間場では移植後3~4週に下位葉の赤枯が観察される品種があり、この時期の茎葉中K含有率も不足レベルまで低下する(課題5)。これは強選元状態で生ずる根の養分、吸収能の低下によるものと思われる。この解消のためには土壌への石灰施与あるいはKの増施といったことが考えられる。 j) Ubay 土壌では土壌個有の全P量が少いが、CECおよびP吸着率が著しく低いため、Pをはじめとする施与肥料が土壌溶液中に放出されやすい。湛水後3週間ほどの急激な還元に伴いFe 濃度が高まるにもかかわらず明瞭な生育障害を生ずるに至らないのは、初期の高濃度養分状態によるものとみられる。肥料切をおこさないような施肥管理が必要である。 k) Tubigon 土壌では多量のCa-Pのため可給態 Pが豊富である。塩基飽和度が高く、施与肥料が利用されやすい。 a) Carmen 土壌への石灰施与あるいは K増施が赤枯解消に有効であるか否かを確める必要がある。 b) Ubay 土壌に対する石灰施与あるいは K増施も有効かもしれない。さらに同土壌に対する分施肥効果も検討課題である。3 - a) については実施中 5. 今後の対応 位 上 技術移転評価 C	調查項目	対象: 専門家
た。いずれの土壌においても被水後1週間で最高となった後7週目までは低下傾向にあり、その後はわずかに上昇した(第 16 図)。以上の結果から次のように推論した。 h) Bilar 土壌では豊富な FeーPにもかかわらず、 飽和状態の石灰のため遊売が進まずPが利用されにくい。 土壌 pHおよびリン吸着率も高く(第 17 図)、 施与肥料が利用されにくい。 。) Carmen 土壌では谌水後3~4 週まで Bhが著しく低下するに伴い加 濃度が急上昇した。 EC の変化は Mn 濃度とよく対応していた。土壌 個有の全 P量は Ubay に次いで少ないが、CEC および P吸着率が中程度であるため施与肥料の放出が Ubay より低くおさえられる。同間場では移植後3~4 週に下位葉の赤枯が観察される品種があり、この時期の茎葉中 K含 育率も不足レベルまで低下する(課題5)。これは強強元状態で生ずる根の養分、吸収能の低下によるものと思われる。この解消のためには土壌への石灰施与あるいは Kの増施といったことが考えられる。 j) Ubay 土壌では土壌個有の全 P量が少いが、CEC および P吸着率が著しく低いため、Pをはじめとする施与肥料が土壌溶液中に放出されやすい。 法水後3週間ほどの急激な量元に伴い下。濃度が高まるにもいかわらず明瞭な生育障害を生ずるに至らないのは、初期の高濃度養分状態によるものとみられる。肥料切をおこさないような施肥管理が必要である。 k) Tubigon 土壌では多量のCaーPのため可給酸 Pが豊富である。塩塩和度が高く、施与肥料が利用されやすい。 a) Carmen 土壌への石灰施与あるいは K増施も有効かもしれない。さらに同土壌に対する石灰施与あるいは K増施も有効かもしれない。さらに同土壌に対する分施肥効果も検討課題である。 4. 継承発展の可能性 5. 今後の対応 口上		の関係は不明瞭であった(第 15 図)。
までは低下傾向にあり、その後はわずかに上昇した(第 16 図)。 以上の結果から次のように推論した。 h) Bilar 土壌では豊富な FeーPにもかかわらず、 飽和状態の石灰のため還元が進まず Fが利用されにくい。 土壌 pH およびリン吸着率も高く(第 17 図)、施与肥料が利用されにくい。 i) Carmen 土壌では被水後 3 ~ 4 週まで Bh が 著しく低下するに伴い Mn 濃度が急上昇した。 EC の変化は Mn 濃度とよく対応していた。 土壌 個有の全 P 最は Ubay に次いで少ないが、C B C および P 吸着率が中程度であるため 施与肥料の放出が Ubay より低くおさえられる。 同間場では移植後 3 ~ 4 週に下位業の赤枯が観察される品種があり、この時期の薬薬中 K 含 有率も不足レベルまで低下する(課題 5)。これは強選元状態で生ずる根の養分、吸収能の低下によるものと思われる。この解消のためには土壌への石灰施与あるいは K の増施といったことが考えられる。 j) Ubay 土壌では土壌個有の全 P 量が少いが、 C B C および P 吸着率が著しく低いため、P をはじめとする施与肥料が土壌溶液中に放出されやすい。 湛水後 3 週間ほどのと違たを流に伴い Fe 濃度が高まるにもかかわらず明瞭な生育障害を生ずるに至らないのは、初期の高濃度養分状態によるものとみられる。肥料切をおこさないような施肥管理が必要である。 k) Tubigon 土壌では多量のCaーP のため可給患 Pが豊富である。 塩整和度が高く、施与肥料が利用されやすい。 a) Carmen 土壌への石灰施与あるいは K 増施も有効かもしれない。 さらに同土壌に対する入焼地効果も検討課題である。 4. 継承発展の可能性 5. 今後の対応 同上		g)土壌溶液中 P 濃度は Tubigon 〉 Ubay 〉 Carmen 〉 Bilar であっ
以上の結果から次のように推論した。 h) Bilar 土壌では豊富な Fe ーP にもかかわらず、 飽和林態の石灰のため還元が進まずP が利用されにくい。 土壌 pH およびリン吸着率も高く(第17図)、施与肥料が利用されにくい。 i) Carmen 土壌では謎水後3~4週まで Bh が著しく低下するに伴い Mn 濃度が急上昇した。 BC の変化は Mn 濃度とよく対応していた。土壌 個有の全P量は Ubay に次いで少ないが、CE C におよび P 吸着率が中程度であるため施与肥料の放出が Ubay より低くおさえられる。同圃場では移植後3~4週に下位葉の赤枯が観察される品種があり、この時期の茎葉中 K 含有率も不足レベルまで低下する(課題5)。これは強選元状態で生ずる根の養分、吸収能の低下によるものと思われる。この解消のためには土壌への石灰施与あるいは K の増施といったことが考えられる。 j) Ubay 土壌では土壌個有の全P量が少いが、 C B C および P 吸着率が著しく低いため、P をはじめとする施与肥料が土壌溶液中に放出されやすい。 湛水後3週間ほどの急激な凝定に伴い下e 濃度が高まるにもかかわらず明瞭な生育除害を生ずるに至らないのは、初期の高濃度養分状態によるものとみられる。肥料切をおこさないような施肥管理が必要である。 k) Tubigon 土壌では多量のCa ーP のため可給患 P が豊富である。 塩基飽和度が高く、 施与肥料が利用されやすい。 a) Carmen 土壌への石灰施与あるいは K 増施も有効かもしれない。さらに同土壌に対する分施肥効果も検討課題である。 4. 継承発展の可能性 3~ a) については実施中 5. 今 後 の 対 応		た。いずれの土壌においても湛水後1週間で最高となった後7週目
h) Bilar 土壌では豊富な Fe-P Kもかかわらず、 飽和状態の石灰のため還元が進まずPが利用されにくい。 土壌pHおよびリン吸着率も高く(第17 図)、 施与肥料が利用されにくい。 i) Carmen 土壌では甚水後3~4 週まで Ehが著しく低下するに伴いMn 濃度が急上界した。 ECの変化はMn 濃度とよく対応していた。土壌個有の全P量はUbayに次いで少ないが、CEC およびP吸着率が中程度であるため施与肥料の放出がUbay より低くおさえられる。同間場では移植後3~4 週に下位薬の赤枯が観察される品種があり、この時期の薬薬中 K含有率も不足レベルまで低下する(課題5)。これは強選元状態で生ずる根の養分、吸収能の低下によるものと思われる。この解析のためには土壌への石灰施与あるいは Kの増施といったことが考えられる。 j) Ubay 土壌では土壌個有の全P量が少いが、 CEC およびP吸着率が著しく低いため、Pをはじめとする施与肥料が土壌溶液中に放出されやすい。 湛水後3 週間ほどの急激な還元に伴いFe 濃度が高まるにもかかわらず明瞭な生育障害を生ずるに至らないのは、初期の高濃度発み状態によるものとみられる。肥料切をおこさないような施肥管理が必要である。 k) Tubigon 土壌では多量のCa-Pのため可給患 Pが豊富である。塩土酸和度が高く、施与肥料が利用されやすい。 a) Carmen 土壌への石灰施与あるいは K増施が赤枯解消に有効であるが否かを確める必要がある。 b) Ubay 土壌に対する石灰施与あるいは K増施も有効かもしれない。さらに同土壌に対する石灰施与あるいは K増施も有効かもしれない。さらに同土壌に対する分権肥効果も検討課題である。 4. 継承発展の可能性 5. 今後の対応		までは低下傾向にあり、その後はわずかに上昇した(第 16 図)。
のため還元が進まずPが利用されにくい。 土壌 pHおよびリン吸着率も高く(第17図)、施与肥料が利用されにくい。 i) Carmen 土壌では湛水後3~4週までEhが著しく低下するに伴いMn 濃度が急上昇した。 ECの変化はMn 濃度とよく対応していた。土壌値有の全P量はUbay に次いで少ないが、CECおよびP吸着率が中程度であるため施与肥料の放出がUbay より低くおさえられる。同間場では移植後3~4週に下位葉の赤枯が観察される品種があり、この時期の茎葉中K含有率も不足レベルまで低下する(課題5)。これは強潤元状態で生ずる根の養分、吸収能の低下によるものと思われる。この解消のためには土壌への石灰施与あるいはKの増施といったことが考えられる。 j) Ubay 土壌では土壌個有の全P量が少いが、CECおよびP吸着率が著しく低いため、Pをはじめとする施与肥料が土壌溶液中に放出されやすい。 湛水後3週間ほどの急激な還元に伴い下e 濃度が高まるにもかかわらず明瞭な生育障害を生ずるに至らないのは、初期の高濃度養分状態によるものとみられる。肥料切をおこさないような施肥管理が必要である。 k) Tubigon 土壌では多量のCa-Pのため可給態Pが豊富である。塩基飽利度が高く、施与肥料が利用されやすい。 a) Carmen 土壌での石灰施与あるいはK増施が赤枯解消に有効であるか否かを確める必要がある。 b) Ubay 土壌に対する石灰施与あるいはK増施も有効かもしれない。さらに同土壌に対する石灰施与あるいはK増施も有効かもしれない。さらに同土塊に対する分施肥効果も検討課題である。 4. 継承発展の可能性 5. 今後の対応		以上の結果から次のように推論した。
率も高く(第17 図)、施与肥料が利用されにくい。 i) Carmen 土壌では湛水後3~4週まで Bh が著しく低下するに伴い Mn 濃度が急上昇した。 BC の変化は Mn 濃度とよく対応していた。 土壌 個有の全 P 量は Ubay に次いで少ないが、CBC および P 吸着率が中程度であるため 施与肥料の放出が Ubay より低くおさえられる。 同間場では移植後3~4週に下位葉の赤枯が観察される品種があり、この時期の茎葉中 K 含有率も不足レベルまで低下する (課題5)。これは強選元状態で生ずる根の養分、吸収能の低下によるものと思われる。この解消のためには土壌への石灰施与あるいは K の増施といったことが考えられる。。 j) Ubay 土壌では土壌 個有の全 P 量が少いが、 C E C および P 吸着率が著しく低いため、P をはじめとする 施与肥料が土壌 落液中に放出されやすい。 湛水後3週間ほどの急激な還元に伴い F ε 濃度が高まるにもかかわらず明瞭な生育障害を生ずるに至らないのは、初期の高濃度養分状態によるものとみられる。肥料切をおこさないような施肥管理が必要である。 k) Tubigon 土壌では多量のCa - P のため可給態 P が豊富である。塩 基飽和度が高く、施与肥料が利用されやすい。 a) Carmen 土壌への石灰施与あるいは K 増施も有効かもしれない。さらに同土壌に対する分施肥効果も検討課題である。3 - a) については実施中 4. 継承発展の可能性 5. 今後の対応 6.		h) Bilar 土壌では豊富な Fe-Pにもかかわらず、 飽和状態の石灰
i) Carmen 土壌では継水後3~4週までBhが著しく低下するに伴いMn 濃度が急上昇した。 BC の変化はMn 濃度とよく対応していた。土壌個有の全P量はUbay に次いで少ないが、CEC およびP吸着率が中程度であるため施与肥料の放出がUbay より低くおさえられる。同間場では移植後3~4週に下位葉の赤枯が観察される品種があり、この時期の茎葉中K含有率も不足レベルまで低下する(課題5)。これは強還元状態で生ずる根の養分、吸収能の低下によるものと思われる。この解消のためには土壌への石灰施与あるいはKの増施といったことが考えられる。 j) Ubay 土壌では土壌個有の全P量が少いが、CEC およびP吸着率が著しく低いため、Pをはじめとする施与肥料が土壌溶液中に放出されやすい。 湛水後3週間ほどの急激な還元に伴いPe 濃度が高まるにもかかわらず明瞭な生育障害を生ずるに至らないのは、初期の高濃度養分状態によるものとみられる。肥料切をおこさないような施肥管理が必要である。 k) Tubigon 土壌では多量のCa-Pのため可給態Pが豊富である。塩塩利産が高く、施与肥料が利用されやすい。 a) Carmen 土壌への石灰施与あるいはK増施が赤枯解消に有効であるか否かを確める必要がある。 b) Ubay 土壌に対する分施肥効果も検討課題である。 4. 継承発展の可能性 5. 今 後 の 対 応 同 上 技 術 移 転 評 価 C		のため還元が進まずPが利用されにくい。 土壌 pHおよびリン吸着
いMn 濃度が急上昇した。 EC の変化は Mn 濃度とよく対応していた。 土壌個有の全 P量は Ubay に次いで少ないが、CEC および P吸着率が中程度であるため施与肥料の放出が Ubay より低くおさえられる。同間場では移植後 3~4 週に下位葉の赤枯が観察される品種があり、この時期の茎葉中 K 含有率も不足レベルまで低下する(課題5)。これは強還元状態で生ずる根の養分、吸収能の低下によるものと思われる。この解剤のためには土壌への石灰施与あるいは K の増施といったことが考えられる。 j) Ubay 土壌では土壌個有の全 P量が少いが、 CEC および P吸着率が著しく低いため、Pをはじめとする施与肥料が土壌溶液中に放出されやすい。 湛水後 3 週間ほどの急激な還元に伴い Fe 濃度が高まるにもかかわらず明瞭な生育障害を生ずるに至らないのは、初期の高濃度養分状態によるものとみられる。肥料切をおこさないような施肥管理が必要である。 k) Tubigon 土壌では多量のCa - Pのため可給態 Pが豊富である。塩基飽和度が高く、施与肥料が利用されやすい。 a) Carmen 土壌への石灰施与あるいは K 増施も有効かもしれない。さらに同土壌に対する分施肥効果も検討課題である。 5) Ubay 土壌に対する分施肥効果も検討課題である。 4. 継承発展の可能性 5. 今 後 の 対 応 同 上 技 術 移 転 評 価 C	•	率も高く(第17図)、施与肥料が利用されにくい。
土壌個有の全P量はUbay に次いで少ないが、CECおよびP吸着率が中程度であるため施与肥料の放出がUbayより低くおさえられる。同間場では移植後3~4週に下位葉の赤枯が観察される品種があり、この時期の茎葉中K含有率も不足レベルまで低下する(課題5)。これは強選元状態で生ずる根の養分、吸収能の低下によるものと思われる。この解消のためには土壌への石灰施与あるいはKの増施といったことが考えられる。 j) Ubay 土壌では土壌個有の全P量が少いが、CECおよびP吸着率が著しく低いため、Pをはじめとする施与肥料が土壌溶液中に放出されやすい。湛水後3週間ほどの急激な還元に伴いFe 濃度が高まるにもかかわらず明瞭な生育障害を生ずるに至らないのは、初期の高濃度養分状態によるものとみられる。肥料切をおこさないような施肥管理が必要である。 k) Tubigon 土壌では多量のCa-Pのため可給態 Pが豊富である。塩基飽和度が高く、施与肥料が利用されやすい。 a) Carmen 土壌への石灰施与あるいは K増施が赤枯解消に有効であるか否かを確める必要がある。 b) Ubay 土壌に対する石灰施与あるいは K増施も有効かもしれない。さらに同土壌に対する分施肥効果も検討課題である。3 - a) については実施中 5. 今後の対応 位 上 技術移転評価 C	· ·	i) Carmen 土壌では湛水後3~4週までEhが著しく低下するに伴
が中程度であるため施与肥料の放出がUbayより低くおさえられる。同圃場では移植後3~4週に下位葉の赤枯が観察される品種があり、この時期の茎葉中K含有率も不足レベルまで低下する(課題5)。これは演還元状態で生ずる根の養分、吸収能の低下によるものと思われる。この解消のためには土壌への石灰施与あるいはKの増施といったことが考えられる。 j) Ubay 土壌では土壌個有の全P量が少いが、CECおよびP吸着率が著しく低いため、Pをはじめとする施与肥料が土壌溶液中に放出されやすい。湛水後3週間ほどの急激な還元に伴いFe 濃度が高まるにもかかわらず明瞭な生育障害を生ずるに至らないのは、初期の高濃度養分状態によるものとみられる。肥料切をおこさないような施肥管理が必要である。 k) Tubigon 土壌では多量のCa-Pのため可給態 Pが豊富である。塩基飽和度が高く、施与肥料が利用されやすい。 a) Carmen 土壌への石灰施与あるいはK増施も有効かもしれない。さらに同土壌に対する石灰施与あるいはK増施も有効かもしれない。さらに同土壌に対する分施肥効果も検討課題である。 3 ー a) については実施中 5. 今後の対応 同上 技術移転評価 C		いMn 濃度が急上昇した。 EC の変化は Mn 濃度とよく対応していた。
同間場では移植後3~4週に下位葉の赤枯が観察される品種があり、この時期の茎葉中K含有率も不足レベルまで低下する(課題5)。これは強選元状態で生ずる根の養分、吸収能の低下によるものと思われる。この解消のためには土壌への石灰施与あるいはKの増施といったことが考えられる。 j) Ubay 土壌では土壌個有の全P量が少いが、CECおよびP吸着率が著しく低いため、Pをはじめとする施与肥料が土壌溶液中に放出されやすい。湛水後3週間ほどの急激な還元に伴いFe 濃度が高まるにもかかわらず明瞭な生育障害を生ずるに至らないのは、初期の高濃度養分状態によるものとみられる。肥料切をおこさないような施肥管理が必要である。 k) Tubigon 土壌では多量のCa-Pのため可給態Pが豊富である。塩基飽和度が高く、施与肥料が利用されやすい。 a) Carmen 土壌への石灰施与あるいはK増施が赤枯解消に有効であるか否かを確める必要がある。 b) Ubay 土壌に対する石灰施与あるいはK増施も有効かもしれない。さらに同土壌に対する分施肥効果も検討課題である。 4. 継承発展の可能性 5. 今後の対応 同上 技術移転評価 C		土壌個有の全P量はUbay に次いで少ないが、CECおよびP吸着率
この時期の茎葉中K含有率も不足レベルまで低下する(課題5)。 これは強震元状態で生ずる根の養分、吸収能の低下によるものと思われる。この解消のためには土壌への石灰施与あるいはKの増施といったことが考えられる。 j) Ubay 土壌では土壌個有の全P量が少いが、CECおよびP吸着率が著しく低いため、Pをはじめとする施与肥料が土壌溶液中に放出されやすい。湛水後3週間ほどの急激な還元に伴いFe 濃度が高まるにもかかわらず明瞭な生育障害を生ずるに至らないのは、初期の高濃度養分状態によるものとみられる。肥料切をおこさないような施肥管理が必要である。 k) Tubigon 土壌では多量のCa-Pのため可給態Pが豊富である。塩基飽和度が高く、施与肥料が利用されやすい。 a) Carmen 土壌への石灰施与あるいはK増施が赤枯解消に有効であるか否かを確める必要がある。 b) Ubay 土壌に対する石灰施与あるいはK増施も有効かもしれない。さらに同土壌に対する分施肥効果も検討課題である。3 - a) については実施中 5. 今 後 の 対 応 同 上 技 術 移 転 評 価 C		が中程度であるため施与肥料の放出が Ubay より低くおさえられる。
これは強選元状態で生ずる根の養分、吸収能の低下によるものと思われる。この解消のためには土壌への石灰施与あるいはKの増施といったことが考えられる。 j) Ubay 土壌では土壌個有の全P量が少いが、 CECおよびP吸着率が著しく低いため、Pをはじめとする施与肥料が土壌溶液中に放出されやすい。 湛水後3週間ほどの急激な還元に伴いFe 濃度が高まるにもかかわらず明瞭な生育障害を生ずるに至らないのは、初期の高濃度養分状態によるものとみられる。肥料切をおこさないような施肥管理が必要である。 k) Tubigon 土壌では多量のCa-Pのため可給態Pが豊富である。塩基飽和度が高く、施与肥料が利用されやすい。 a) Carmen 土壌への石灰施与あるいはK増施が赤枯解消に有効であるか否かを確める必要がある。 b) Ubay 土壌に対する石灰施与あるいはK増施も有効かもしれない。さらに同土壌に対する分施肥効果も検討課題である。3-a)については実施中 5. 今後の対応 日 上 技術移転評価 C		同圃場では移植後3~4週に下位葉の赤枯が観察される品種があり、
おれる。この解消のためには土壌への石灰施与あるいはKの増施といったことが考えられる。 j) Ubay 土壌では土壌個有の全P量が少いが、 CECおよびP吸着率が著しく低いため、Pをはじめとする施与肥料が土壌溶液中に放出されやすい。 湛水後3週間ほどの急激な還元に伴いFe 濃度が高まるにもかかわらず明瞭な生育障害を生ずるに至らないのは、初期の高濃度養分状態によるものとみられる。肥料切をおこさないような施肥管理が必要である。 k) Tubigon 土壌では多量のCa-Pのため可給應Pが豊富である。 塩基飽和度が高く、施与肥料が利用されやすい。 a) Carmen 土壌への石灰施与あるいはK増施が赤枯解消に有効であるか否かを確める必要がある。 b) Ubay 土壌に対する石灰施与あるいはK増施も有効かもしれない。さらに同土壌に対する分施肥効果も検討課題である。 4. 継承発展の可能性 5. 今 後 の 対 応 同 上 技 術 移 転 評 価 C		この時期の茎葉中K含有率も不足レベルまで低下する(課題 5)。
いったことが考えられる。 j) Ubay 土壌では土壌個有の全P量が少いが、 CECおよびP吸着率が著しく低いため、Pをはじめとする施与肥料が土壌溶液中に放出されやすい。 湛水後3週間ほどの急激な還元に伴いFe 濃度が高まるにもかかわらず明瞭な生育障害を生ずるに至らないのは、初期の高濃度養分状態によるものとみられる。肥料切をおこさないような施肥管理が必要である。 k) Tubigon 土壌では多量のCa-Pのため可給態Pが豊富である。 塩基飽和度が高く、施与肥料が利用されやすい。 a) Carmen 土壌への石灰施与あるいはK増施が赤枯解消に有効であるか否かを確める必要がある。 b) Ubay 土壌に対する石灰施与あるいはK増施も有効かもしれない。さらに同土壌に対する分施肥効果も検討課題である。 4. 継承発展の可能性 5. 今 後 の 対 応 同 上 技 術 移 転 評 価 C		これは強還元状態で生ずる根の養分、吸収能の低下によるものと思
j) Ubay 土壌では土壌個有の全P量が少いが、CECおよびP吸着率が著しく低いため、Pをはじめとする施与肥料が土壌溶液中に放出されやすい。 湛水後3週間ほどの急激な還元に伴いFe 濃度が高まるにもかかわらず明瞭な生育障害を生ずるに至らないのは、初期の高濃度養分状態によるものとみられる。肥料切をおこさないような施肥管理が必要である。 k) Tubigon 土壌では多量のCaーPのため可給態Pが豊富である。塩基飽和度が高く、施与肥料が利用されやすい。 a) Carmen 土壌への石灰施与あるいはK増施が赤枯解消に有効であるか否かを確める必要がある。 b) Ubay 土壌に対する石灰施与あるいはK増施も有効かもしれない。さらに同土壌に対する分施肥効果も検討課題である。 4. 継承発展の可能性 5. 今後の対応 同上 技術移転評価 C		われる。この解消のためには土壌への石灰施与あるいはKの増施と
率が著しく低いため、Pをはじめとする施与肥料が土壌溶液中に放出されやすい。湛水後3週間ほどの急激な還元に伴いFe 濃度が高まるにもかかわらず明瞭な生育障害を生ずるに至らないのは、初期の高濃度養分状態によるものとみられる。肥料切をおこさないような施肥管理が必要である。 k) Tubigon 土壌では多量のCa-Pのため可給態 Pが豊富である。塩 基飽和度が高く、施与肥料が利用されやすい。 a) Carmen 土壌への石灰施与あるいは K増施が赤枯解消に有効であるか否かを確める必要がある。 b) Ubay 土壌に対する石灰施与あるいは K増施も有効かもしれない。さらに同土壌に対する分施肥効果も検討課題である。 4. 継承発展の可能性 5. 今後の対応 同上 技術移転評価 C		いったことが考えられる。
出されやすい。湛水後3週間ほどの急激な還元に伴い下e 濃度が高まるにもかかわらず明瞭な生育障害を生ずるに至らないのは、初期の高濃度養分状態によるものとみられる。肥料切をおこさないような施肥管理が必要である。 k) Tubigon 土壌では多量のCa-Pのため可給態 Pが豊富である。塩基飽和度が高く、施与肥料が利用されやすい。 a) Carmen 土壌への石灰施与あるいは K増施が赤枯解消に有効であるか否かを確める必要がある。 b) Ubay 土壌に対する石灰施与あるいは K増施も有効かもしれない。さらに同土壌に対する分施肥効果も検討課題である。 3 - a) については実施中 5. 今後の対応同上 技術移転評価 C		j) Ubay 土壌では土壌個有の全P量が少いが、 CECおよびP吸着
まるにもかかわらず明瞭な生育障害を生ずるに至らないのは、初期の高濃度養分状態によるものとみられる。肥料切をおこさないような施肥管理が必要である。 k) Tubigon 土壌では多量のCa-Pのため可給態 Pが豊富である。塩基飽和度が高く、施与肥料が利用されやすい。 a) Carmen 土壌への石灰施与あるいは K増施が赤枯解消に有効であるか否かを確める必要がある。 b) Ubay 土壌に対する石灰施与あるいは K増施も有効かもしれない。さらに同土壌に対する分施肥効果も検討課題である。 4. 継承発展の可能性 5. 今後の対応 同上 技術移転評価 C		率が著しく低いため、Pをはじめとする施与肥料が土壌溶液中に放
の高濃度養分状態によるものとみられる。肥料切をおこさないような施肥管理が必要である。 k) Tubigon 土壌では多量のCa-Pのため可給態 Pが豊富である。塩基飽和度が高く、施与肥料が利用されやすい。 a) Carmen 土壌への石灰施与あるいは K増施が赤枯解消に有効であるか否かを確める必要がある。 b) Ubay 土壌に対する石灰施与あるいは K増施も有効かもしれない。さらに同土壌に対する分施肥効果も検討課題である。 4. 継承発展の可能性 3-a) については実施中 5. 今後の対応同土		出されやすい。湛水後3週間ほどの急激な還元に伴いFe 濃度が高
な施肥管理が必要である。 k) Tubigon 土壌では多量のCa-Pのため可給態 Pが豊富である。 塩基飽和度が高く、施与肥料が利用されやすい。 3. 残された問題 a) Carmen 土壌への石灰施与あるいは K増施が赤枯解消に有効であるか否かを確める必要がある。 b) Ubay 土壌に対する石灰施与あるいは K増施も有効かもしれない。さらに同土壌に対する分施肥効果も検討課題である。 4. 継承発展の可能性 5. 今後の対応 債上 技術移転評価		
k) Tubigon 土壌では多量のCa-Pのため可給態Pが豊富である。 塩基飽和度が高く、施与肥料が利用されやすい。3. 残された問題a) Carmen 土壌への石灰施与あるいはK増施が赤枯解消に有効であるか否かを確める必要がある。b) Ubay 土壌に対する石灰施与あるいはK増施も有効かもしれない。さらに同土壌に対する分施肥効果も検討課題である。4. 継承発展の可能性3-a) については実施中5. 今後の対応同上技術移転評価C		
基飽和度が高く、施与肥料が利用されやすい。 3. 残された問題 a) Carmen 土壌への石灰施与あるいはK増施が赤枯解消に有効であるか否かを確める必要がある。 b) Ubay 土壌に対する石灰施与あるいはK増施も有効かもしれない。さらに同土壌に対する分施肥効果も検討課題である。 4. 継承発展の可能性 3 - a) については実施中 5. 今後の対応 同上 技術移転評価 C	•	
 3. 残された問題 a) Carmen 土壌への石灰施与あるいは K増施が赤枯解消に有効であるか否かを確める必要がある。 b) Ubay 土壌に対する石灰施与あるいは K増施も有効かもしれない。 さらに同土壌に対する分施肥効果も検討課題である。 4. 継承発展の可能性 3-a) については実施中 5. 今後の対応 同上 技術移転評価 C 		1
るか否かを確める必要がある。 b) Ubay 土壌に対する石灰施与あるいはK増施も有効かもしれない。 さらに同土壌に対する分施肥効果も検討課題である。 4. 継承発展の可能性 5. 今後の対応 同上 技術移転評価 C		
b) Ubay 土壌に対する石灰施与あるいはK増施も有効かもしれない。 さらに同土壌に対する分施肥効果も検討課題である。 3-a) については実施中 5. 今後の対応 同上 技術移転評価 C	3. 残された問題	
4. 継承発展の可能性 3-a) については実施中 5. 今後の対応 同上 技術移転評価 C		
 4. 継承発展の可能性 3-a) については実施中 5. 今後の対応 同 上 技術移転評価 C 		
5. 今後の対応 同 上 技術移転評価 C		
技術移転評価 С	4. 継承発展の可能性	3 - a) については実施中
技術移転評価 С	m	
	5. 今 後 の 対 応	
	技術战転評価	C
A 80%以上 B 50~80% C 50%以下 D 0%		

⊗ − 10 Phosphorous supply ability
of four soils

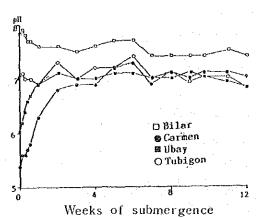
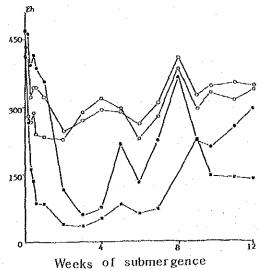
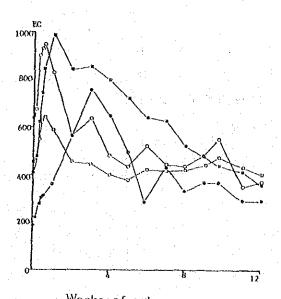
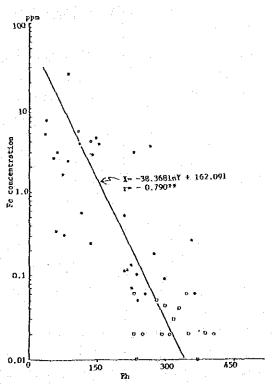
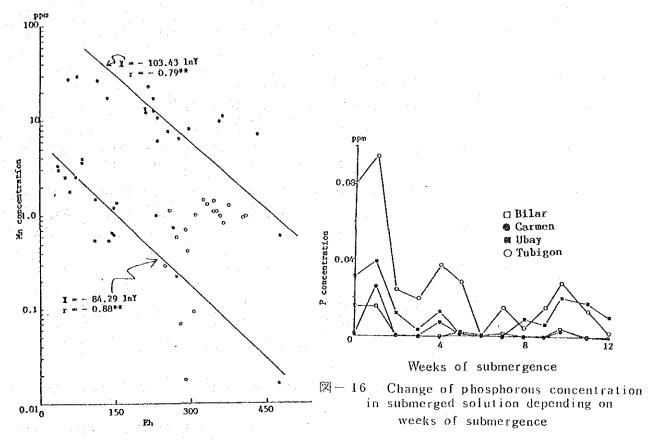
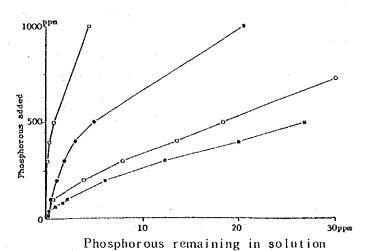


図-11 Change of pH depending on weeks of submergence


図-13 Change of Eh depending on weeks of submergence.


Weeks of submergence
図-12 Change of EC depending on weeks of submergence

 $\boxtimes -14$ Change of iron concentration in sufmerged solution depending on Eh

⊠-15 Change of manganese concentration
 in submerged solution depending on Eh

oxtimes -17 Phosphorous absorption capacity of four soils

研 究 課 題:化学的・物理的な土壌の改良

細 部 課 題:地域別土壌の理化学的特性の把握

派遣専門家(年次):櫃田木世子(1987年1月7日~1990年2月1日)

カウンターパート: Concepcion Payapaya, Adracion Tirol

	Concepcton 1 ayapaya, Autacron 11101
調査項目	対 象 : 専 門 家
1. 実施項目	中CEC酸性土壌における作物生産技術について調査した。生育不能 地点とそれよりもやや良好な地点の土壌を分析比較した。それにもと づいてトウモロコンを用いて三要素、石灰およびリン酸施与試験を鉢
2. 成果の概要	にて行った。 a)作物生育が不能なカルメン酸性土壌(クレイ、 pH 4.6)のCEC
	は14で、タリボン酸性土壌の4に較べたら高いが、全塩基は0.63 ml/100 g、塩基飽和度は4.5%とタリボン土壌同様大層低い。同 地方の生育可能地点と比較しても、全塩基および塩基飽和度の低さ が顕著だった(第4表)。
	b) 石灰および三要素施与試験によると、P〉K〉石灰〉Nの順で著しく不足していた。 石灰により pH 6 程度に矯正すると、K および Nの不足は大幅に改善されたが、P不足は依然として著しかった。 (第5表)。
	c) 石灰施与により土壌 pHを 6.0 に矯正し、 Nおよび K 施与のもとでリン酸施与試験をしたところ 4 g P ₂ O ₅ /3.3 kg土壌でトウモロコシの初期生育は最高となった (第1図)。これはリン酸吸収係数 (896)の 13.5% に相当した。
	d) 同土壌において充分な収量を得るためには石灰施与によって土壌 pHを 6.0 程度に矯正し、リン吸の 10 %程度のリン酸投入が必要と なるが、当面は耐低塩基および耐低リン性の強い作物を選び徐々に 改良目標に近付けていくことが現実的である。
·	
3. 残された問題	2 - d)実現のための作物選定、圃場での実証、リン酸および石灰の 残効調査が必要である。
4. 継承発展の可能性	対象地は交通の便がきわめて悪く、また治安も危ぶまれるため圃場実 験は困難ではあるが、農家の協力を得られればある程度は可能である。
5. 今後の対応	協力農家の獲得と実験手法を指導する。
技術移転評価	В
	B 50~80% C 50%NF D 0%

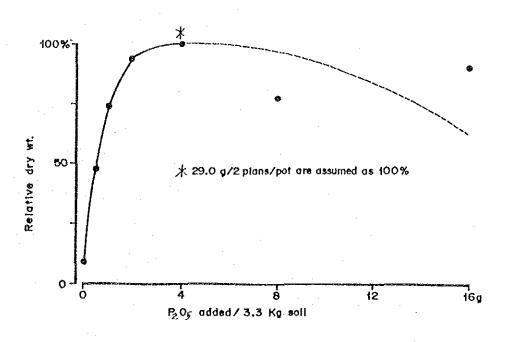
A 80%以上

í

B 50~80%

C 50%以下

0%


表一 4 Chemical characteristics of medium CEC acid soil (Carmen) at different peanut growth sites

表一 5 Effect of liming and NPK early corn growth

Site	Peanut	growth
Items analyzed	Better	Poor
pH (H ₂ O)	4.8	4.6
рН (KĈI)	3.6	3,7
Org. C(%)	2.2	2.7
Olsen's P (ppm)	3.5	4.0
Bray-II P (")	1.7	1.4
CEC (Mioog)	19.7	14.0
Ex.K(")	0.59	0.08
Ca (")	5.26	0.37
Mg (")	0.45	0.14
Na(")	0.06	0.04
At (")	2.18	2.06
Total cations (")	8.54	0.63
Base sat. %	43	4.5
Sol. Fe (ppm)	91.9	52.1
Mn (")	65.7	7.9
Zn (")	2.9	0.4

Treat	Relative dry wt.(%)
No application pH42	7
Liming pH5 pH6	17 22
Acid ferti. - N - P - K N P K	34 14 18 35
Alcaline ferti. NPK	57
Liming(pH6) and acid ferti. -N -P -K NPK	87 34 69 100*

*12.70 9/2 plans/pot are assumed as 100%

⊠-18 Effect of phosphate application on early corn growth in medium CEC(Carmen) acid soil.