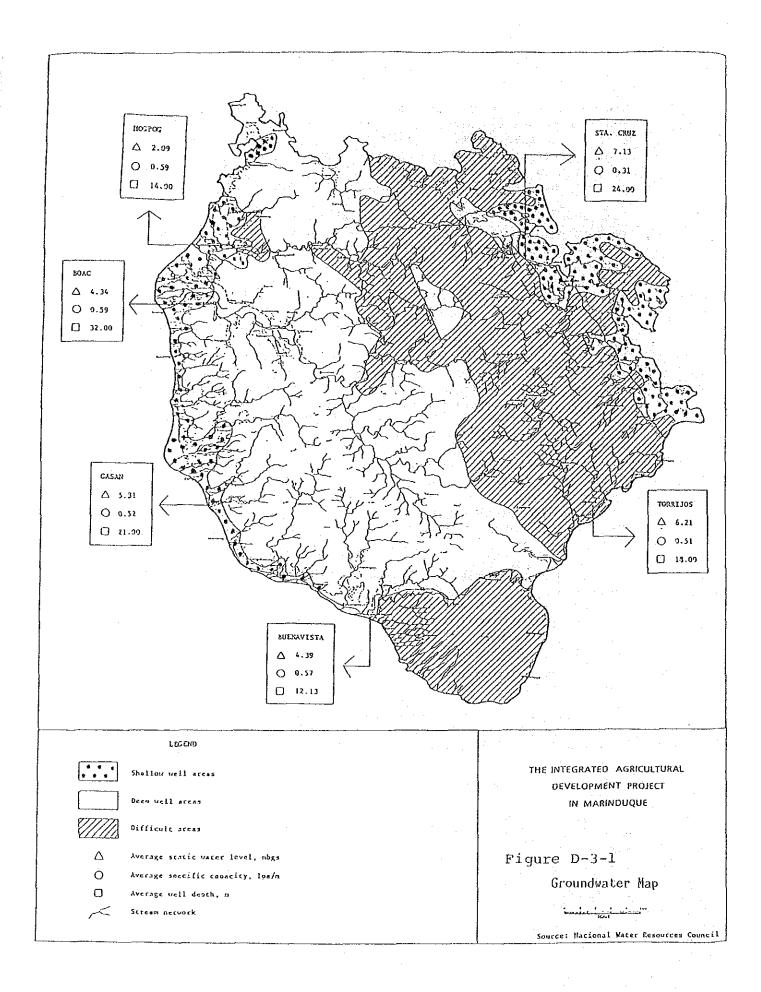
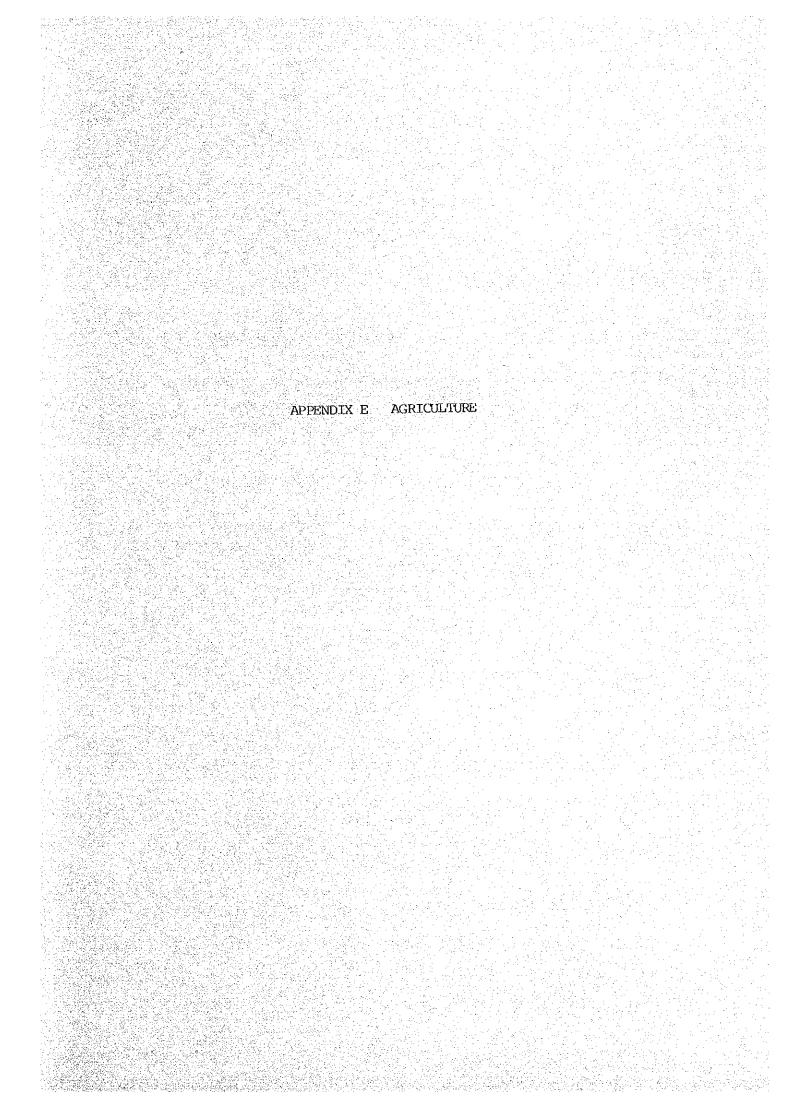
are practically impermeable. The groundwater supply sources are replenished thru fractures in the rocks. This accounts for the high probability of encountering non-productive wells in these areas.

Spring are generally found in the difficult areas, and although the yield may not be substantial, the same may be the only viable source of water in the area.


D-3-3 Development Potential for Groundwater

An assessment of the water resources of Marinduque was undertaken in 1982 by the National Water Resources Council and for lack of data, the groundwater potential was roughly estimated based on the assumption that groundwater recharge is 10% of the annual rainfall in the province. Well capacities were determined from the average specific capacities of existing wells and assuming a maximum drawdown of five meters. Accordingly, the safe yield from shallow wells is taken to be 43,000 lpd while that from deep wells is 320,000 lpd. And as previously discussed, areas underlain by thick layers of sand/gravel in the Quaternary alluvium as well as those covered by the Boac formation with a preponderance of sandstone and conglomerate have higher potentials for groundwater development for domestic use. However, since both formations are distributed along the coast, the selection of well locations should take into consideration the safe distance from the shoreline so as to avoid salt water contamination in the future.


At the seven selected priority areas, the following groundwater conditions and its development potentials are observed:

- Bagtingon area - The western half of the area has been classified as shallow well zone while the eastern half is included in the deep well zone. Considering the thin sand/gravel shallow aquifer with an average thickness of one meter or less, and the predominance of fine clastic members in the sedimentary formations in the deep well areas, the potential for groundwater development is deemed to be relatively low in this area.

- Gasan area The entire area is categorized as shallow well zone and with an average sand/gravel aquifer thickness of more than five meters, the same can be considered as having a fairly good groundwater potential. In this area, deep aquifers of conglomerate belonging to the Boac formation exist, and can also be developed in areas located at a safe distance from the shoreline.
- Boac area The western part is a shallow well zone while the eastern part is a deep well zone. A large portion of the Boac area has a high potential for groundwater development due to the presence of thick sand/gravel layers and conglomerate/sandstone beds in the alluvium and Boac formations, respectively, as well as the existence of free-flowing wells in Barangays Lupac and Tanza.
- Mogpog area The area is divided into three categories: shallow well zone in the western coastal areas, a difficult zone at the middle and a deep well zone at the eastern portion of the Mogpog area. Of these, the difficult zone has a very low potential while the areas classified as the shallow and deep well zones have high potential as these areas have similar conditions to that of the Boac area - thick aquifers in the alluvium and Boac formations and the presence of flowing wells.
- Sta. Cruz area A major portion of the area is classified as the shallow and deep well zones. The alluvium in the shallow well zone as well as the clastic members of the Miocene formations in the deep well zones, is considered to be not important hydrologic units in this part of Marinduque due to its apparent limited vertical and lateral extent.
- Tagum-Angas area This area is categorized mainly as a shallow well zone. Although the alluvium appears to be thick in some portions of the flood plains of the Tawiran river, the upper 20 m, more or less, of the same consist predominantly of clay and therefore, the area is considered to have a low potential for groundwater development. In the places where deep well aquifers of sand/gravel occur beneath the thick clay layer as in Tawiran, the potential may be better.
- Matuyatuya area The western side is a difficult zone while the eastern side is a shallow well area. Both zones have low potential for groundwater development.

D-16

APPENDIX E AGRICULTURE

Page

E1	Present Condition	E 1
E-2	Development Plan	E- 7
E-3	Agricultural Development Projects	E-12
E-4	Agrarían Reform	E-53

APPENDIX E AGRICULTURE

E-1 Present Condition

Table E-1-1 Acreage of Every Slope

	e fair an	
Slope	Acreage	Ratio
(%)	(ha)	(%)
0	4,700	5.8
0~ 3	8,300	10.3
3~ 8	7,200	9.0
8~15	12,500	15.5
15-18	17,600	21.9
18 over	30,200	37.5
Total	80,500	100.0

Table E-1-2 Chemical Analyses of the Surface Soils of the Different Soil Types

				÷					4														. *
	Iron (Fe)	trace	4	18	98	trace	Q	trace	12	trace	trace	თ	trace	ς Γ	ہ میا ر	г{	trace	9	trace	trace	trace	2	trace
m) Manga-	nese (Mn)	9	20	17	108	97	ς Ω	22	41	14	19	55	35	13	44	77	6 1	36	37	13	35	7	Ś
Magne-	sium (Mg)	60	60	30	30	04	50	0 0 0 0 0 0	70	60	40	20	60	30	50	80	40	100	500	230	40	30	20
per million (p.p.m) Magne- M	Calcium (ca)	I,300	3,200	2,400	1,400	2,600	2,700	1,200	1,700	•	2,100	400	2,300	1,200	3,000	3,400	1,800	2,800	13,900	7,500	2,300	1,300	800
1	Potassium (K)	203	127	57	39	208	102	310	66	119	210	38	17	176	70	142	87	114	217	114	215	330	153
Available nutrients in parts	Phosphorus (P)	115	76	12	trace	208	ო	12	9	10	8	trace	trace	ć	trace	35	trace	13		12	39	66	160
Availab	Nitrates (NO ₃)	LTACE	15	r	30	25	trace	10	10	trace	40	trace	25	trace	10	ო	trace	10	01	trace	trace	10	trace
	Ammonia (NM ₃)	01	20	14	25	0 T	10	10	10	10	10	10.	01	10	10	18	10	10	10	10	10	10	10
표 스	Value	6.20	6.25	5.95	4.20	6 90	5.30	5.70	4.80	6.15	5.50	σ	9	5.50	80	9	3	Ś	7.80	0	CU.		6.20
Total	nítrogen (Z)	0.05	0.16	0.11	0.09	0.09	0.07	0.21	0.14	0.10	0.12	0.10	0.15	0.12	0.10	0.14	0.13	0.15	0.21	0.32	0.20	0.10	0.08
Soil type		San Manuel sandy loam	Cabahuan clay	Mogpog clay loam		ψı,	Banhigan clay loam	Timbo clay loam	Banto clay loam	Mtutuya-tuya clay loam	La Castellana clay loam	Maranlig clay	Boac clay loam	Dolores clay loam	Tagum clay loam	Tarug clay loam	Balanacan clay	Gasan clay loam	Bolinao clay	Faraon clay	Balut loam	Gasan loamy sand	Laylay sandy loam
Soil type	No.	96	502					503	507	514	268	501.	513	509	510	508	512	500.	153	132	516	499	504

Е-2

Table E-1-3	Farm Household and Labor Force i	n
	Marinduque Province	

				(unit: hou	useholds, persons)	
•.	Year	Total <u>Household</u>	Total Population	Farm Household	Agricultural Labor Foice	
	1980	32,263	173,715	16,395	26,935	
	1989	38,218	205,780	19,421	31,907	
	1995	42,800	230,400	21,700	35,700	
	2000	46,900	253,100	23,900	39,200	
	2010	56,700	305,500	28,800	47,400	

Source: "Population Census 1980" "Census of Agriculture 1980 NCSO".

- Notes : The figures in the future are estimated based on the following Conditions.
 - (1) 1.9% of annual in creaing rate of population.
 - (2) Age range of working is 15 years and over up to 60 years old.

Table E.1.4. Number and Area of Farms by Tenure of Farm: 1971 and 1980

Tenure of Farm	Number c	f Farms		arms Land ectares)
	1971	1980	1971	1980
MARINDUQUE			%	%
All Farms	12,205	16,395	43,518 (100)	44,555 (100)
Owned	8,740	9,492	31,952 (74)	24,933 (56)
Partly-Owned	1,590	2,657	5,775 (13)	9,034 (20)
Tenanted/leased	1,600	3,816	4,371 (10)	9,165 (21)
Other Farms	275	430	1,420 (3)	1,423 (3)

Source: 1980 Census of Agriculture

Note : Details may not add up to total because of rounding

Crops	Harvested Area	Unit Yield	Production
	(ha)	(ton/ha)	(ton)
1. Coconut 1/	32,470	1.01	32,800
 Paddy (Including upland rice) 	10,894	1.52	16,606
3. Corn	1,020	0.63	639
4. Mungbean	130	0.68	88
5. Camote	51	2.14	109
6. Banana	580	7.13	4,135
7. Mango	67	0.56	37
8. Papaya	52	1.92	100
9. Citrus (Calamansi)	48	1.83	88

Table E-1-5 Cropped Acveage, Production and Yield

Source: Department of Agriculture (1988)

Note : 1/ P.C.A. 1987

Table E-1-6 Livestock and Poultry (1980 - 1987)

						(unit:	per hea	ıd)
Specie	1980		1982	1983	1984	1985	1986	1987
1. Cattle	6,540	6,742	6,950·	7,164	7,462	7,692	7,922	8,080
2. Carabao	20,679	21,318	21,977	22,656	23,325	24,046	24,765	25,262
3. Horse	4,959	5,112	5,270	5,432	5,600	5,744	5,850	5,967
4. Hogs	43,220	45,020	46,895	48,345	49,840	51,381	53,950	55,568
5. Goat	12,514	12,769	13,030	13,295	13,635	14,056	14,406	14,694
6. Chicken	213,246	222,131	231,386	241,027	259,712	267,665	288,415	297,087
7. Duck	9,820					11,673	· · · ·	

Source: Department of A-riculture (DA)

Table E-1-7 Number of Animals Slaughtered (head) and Slaughter Houses

District	No. of Slaughtar Housae	Total	No. of Anima	No. of Animals Slaughtered (head) - 1987	ed (head) -	1987
	orangiirer monaca	TOTAT			201	GCBLS
1. Municipality:				• .		
- Buenavista	7	625	Ś	33	587	1
- Casan	1	1,911	16	302	1,518	ŀ
- Boac	1	2,234	109	312	1,813	1
- Mogpog		2,429	68	402	1,938	i.
- Sta. Cruz	F-1	5,065	543	34	4,488	i
- Torrijos		607	. 22	29	499	I
2. Marinduque Province		12,871	916	1,112	10,843	I

Source: Bureau of Agricultural Statistics Boac, Marinduque

E--5

Table t-1-10 Land Classification by Soil Type

Area

creage

Marinduque Acreage Race

Soil Type No.

Soil Types

sification Land Clas-

Acreage

(unit: ha or %) Study

Post Harvest Facilities Table E-1-S

Number	33	15	10	ю	7	18	46	(.*.
Types Rice Mill (ordinary 3 semi-cono)	I Q I	1 40 1	i do i	, dd I	r db L	I I		Department of Agriculture (D.A.)
Locacion	Santa Cruz	Nogpog	Boac	Gasan	Buenavista	Torrijos	Total	gep. Source: Dep.

Table E-1-9 Study Area of Marinduque

(unic: sq.km)

		Reserved		
Municipality	C Total Area (1)	Forest Area (2)	Islands Area (3)	Scudy Area (1)-(2)-(3)
Boac	212.7	38.8	1	173.9
Buenavista	78.6	23.4	0.2	55.0
Gasan	119.3	25.2	2.7	91.4
Mogpo2	87.7		0.3	87.4
Santa Cruz	346.6	1 6	21.0	222.5
Torrijos	214.3	39 5	1	174.9
Total	959.2	130.0	24.2	805.0

Source: Total area: Provincial Planning and Development Office Reserved forest area and Islands area: JICA Study Team (1:50,000 topographic map)

100.0 ~ ~ ~ ~ 4 4 19 19 85.1 сі] Сі[1.2 0.7 0.7 0041-004 1997-099 2.2 ~ 5,0 ÷ - 5 2.3 0.5 ы. 8, 6 0.0 3.1 11.2 80.500 1.878 1.75 2,469 847 2,063 2,014 399 4,323 993 216 669 600 3.287 63.469 1 775 986 146 600 15,490 11,536 6,227 3,063 986 2,323 2,559 17.065 .04 Ģ. -1 0.10 0.6 20.4 . . 100.0 0.6 85.1 1.9 18 5 5 18 5 5 2.6 ÷.5 5.1 2 11 5.6 0 7.0 0.7 10 10 10 10 10 10 1 c) ~ 11 ം ់ ò 2,014 399 993 216 669 600 1.975 2,446 95,920 2,323 2,469 ź,323 1,879 600 82,229 847 1,063 3,063 3,517 1,975 2.446 146 4,019 17,750 16,196 6,227 3,943 1,473 19,595 . 114 66 96 505 505 514 499' 504 504 118 202 268 515 La Castellana Clay Loam Sough Mountainous Land Umíngan Silt Loam San Manuel Sandy Loam Matuyatuya Clay Loam Tarug-Faraon Complex Banhigan Clay Loam Laylay Sandy Loam Dolores Clay Loam Mogpog Silt Loam Mogpog Ciny Loam Gasan Loamy Sand Gasan Clay Loam Timbo Clay Loam Banto Clay Loam Tarug Clay Loam Tagum Clay Loam Sub-total Balanacan Clay Sub-total Sub-total Soac Clay Loan Sub-total Sub-total Sub-cocal Sub-cotal Cabahuan Clay Maranlig Clay Total Solinao Clay Faraon Clay Balut Loam Beach Sand Hydrosol SC ដ្ឋត 9 B 5-1 Z 七 м

E-6

D-7 DEVELOPMENT FLAM			
Table E-2-1 Production and	and Consumption	tion Balance	· of Rice
1. Fresent Situation		6	 Inter-cropped paddy in coconut land
1.1 Cropping acreage of paddy and production			Abour 1,650 ha. area out of the fotal coconut land which
Irrigated 900 ha x 1902 x 2.5 ton/ha =	4,300 ton		are located on the low-tend under 3 percent slope is suitable to paddy field soil classification. These areas are proposed
Rainfed 4,500 ha x 140% x 1.6 con/ha = Upland paddy 3,500 ha x 85% x 0.7 con/ha =	<pre>con/ha = 10,200 con ton/ha = 2,100 ton</pre>		for new irrigation development with 75% percent land urilization rare.
Total	16,600 ton		1,650 has x 752 = 1,240 ha
1.2 Consumption of rice	present	0	3) Rainfed and Upland paddy
Population	205,000	305,500	
Consumption (kg/person)	103*	** 06	Upland paddy 3,500 has
Total consumption (rice in ton)	21,200	27,500 2.2	Production and Self sufficiency rate in 2010
Total consumption (paddy in ton)	35,500		Irrigated (Sub-Total 3.910 has)
* Provincewide (Marinduque), 1989			Paddy 2,670 ha x 175% x 4.0 ton/ha ≖ 18,700 ton
** Nationwide (Philippines), 1979-81			Inter cropped paddy in coconut land
1.3 Balance of paddy production	at present	in future	n
Production	16,600 ton	16,600 ton	Rainfed 2,980 ha x 110% X 2.5 $con/na = 8,200 con$
Consumption	35,500 ton	45,900 con	upranc recov 3,500 ha x 100% x 0.9 ton/ha = 3,100 ton
Balance	- 18,900	- 29,300	Torrel 38 700 Free
Self-Sufficiency rate	47 %	36 Z	• .
2. Proposed Situation			Self sufficiency 38,700/45,900 x 100 = 84%
2.1 Cropping Acreage of paddy			
1) Irrigated			
a) Rehabilitation of existing facilities		760 ha	
b) New irrigacion projects		1,520 (*1)	
c) Individual pump/Self irrigation		390	
	Total	2,670 ha	

E-7

(*1 Excludes intercropped paddy in coconut land)

•

Table E-2-2	Cropping	Area
-------------	----------	------

(Unit:

ha)

Proposed Total Medium Range Long Range Coconut Area Present Crops Name inter.cropping 29,550 31,100 29,550 32,470 Coconut 2,170 10,120 8,240 7,950 Paddy rice <u>8,010</u> 4,500 3,740 2,170 6,840 1,710 4,670 Irrigated 3,280 6,300 Rainfed 10,400 2,100 Diversified C. 7,800 8,300 5,445 3,150 2,975 Upland rice 2,000 2,700 700 2,000 Corn 1,020 1,800 900 1,100 700 450 Pulse Crops 900 800 700 Root Crops 1,500 800 700 600 300 Vegetable 3,300 1,600 1,700 1,500 Fruit trees 800 200 600 700 (580)Banana 2,500 1,100 1,400 800 (160) Other Fruit 2,000 500 1,500 200 Industrial C. 2,000 1,500 500 (80)200 Coffee <u>4,000</u> 8,000 4,000 3,320 Forage Crop 2,810 51,900 11,470 63,370 48,735 52,158 Total (820)

E--8

M . L 1 .	17 9. 9	Various	0	N1 - 1 - 1
Table	2-2-3	various	CLOD.	uleia
			F	

Tuniti ton/na/	(unit	:	ton/ha)
----------------	-------	---	---------

Crop Name	Present	Without Project	With Project
Coconut	1.01	1.0	1.1
Paddy Rice	·	· ·	
Irrigated	2.50	2.7	4.0
Rainfed	1.60	1.7	2.5
Upland Rice	0.70	0.8	0.9
Diversified C.			
Corn	0.63	0.7	1.5
Pulse Crops	0.68	0.7	1.1
Root Crops	2.14	2.0	10.0
Vegetable	3.08	4.0	10.0
Fruit Trees	. * . *		
Banana	7.13	7.0	12.0
Other Fruit	2.05	2.5	7.0
Coffee	0.67	0.7	1.0
Forage Crop		2.0*	4.0 *

Note: * dried grass

• .			·					·					
	0:0:60 Cavans		I	, I'	1	1/3	1/2	1	Ľ	ì.	2/5	ŀ	
Unit: ha	<u>0:16:0</u> Cavans		- / 		. I	I	,		1 - 1 / 2	· · · ·			
	46:0:0 Cavans		6		-	[-]	1	4	1 1	, ,-1	24	۰۹ ۱۹۹۹ ۱۹۹۹ ۱۹۹۹ ۱۹۹۹ ۱۹۹۹ ۱۹۹۹	
	14:14:14 Cavans			εŋ	1	۳ ۲	Ч	Ч	4	~	4	2	
	자 <u>3</u> 00		30	20	10	20	30	10	60	1.5	40	20	
	P Kg		30	20	10	20	30	10	07	15	30	20	
	N Kg		60	40	30	40	15	30	30	05	80	20	
χ.		Rice	-lrrígated	-Rainfed	-Upland	Vegetable	Pulse/Legumes	Grains (Corn)	Root Crops	Fruit Tree 1 year	(Industrial) 5 year	Forage Crops	
		·			E-	10		•		· · . -		· · ·	

Table E-2-4 Amount of Appied Fertilizer

Table E-2-5 Crops Production

	Présent	Prop	Proposed		
		Medium Range	Long Range		
Coconut	32,500	34,210	32,505		
Paddy Rice					
Irrigated	4,600	18,000	27,400		
Rainfed	10,700	9,400	8,200		
Diversified C.					
Upland Rice	2,400	3,200	3,200		
Cron	700	3,000	4,100		
Pulse/legumes	300	1,000	2,000		
Root Crops	1,400	8,000	9,000		
Vegetable	1,200	2,400	15,000		
Fruit Trees					
Banana	4,100	8,400	9,600		
Other Fruit	400	5,600	17,500		
Industrial C.					
Coffee	56	700	2,000		
Forage Crops	5,620 *	13,200 *	32,000 *		

Note: * dried grass

1. Strengthening of Research Staff (D.A.)

2. Marinduque Agricultural Development and Promotion Farm (M.A.D.P.F.)

3. Strengthening of Agricultural Extension Workers (A.E.W.) (A.P.T.)

4. Pest/Disease Observatory (P./D.O.)

5. Seed Bank

6. DA Municipal Nurseries

7. Irrigation Paddy Cultivation Demonstration Farm

8. Rainfed Paddy/Diversified Crops Cultivation Demonstration Farm

9. Vegetable Cultivation Demonstration Farm

10. Coconut Intercropping Demonstration Farm

11. Hillside Farming Demonstration Farm for Coconut Area

12. Agro-forest Demonstration Farm

13. Post-harvest Facilities for Rice

14. Post-harvest Facilities for Corn

15. Post-harvest Facilities for Coconut

16. Coconut Timber Utilization

17. Rehabilitation of Marinduque Breeding Station (M.B.S.)

18. Cattle Dispersal

19. Carabao Dispersal

20. Goat Stock Farm

21. Goat Dispersal

22. Backyard Poultry Demonstration Farm

23. Grazing Field Demonstration Farm

24. Remodelling of Slaughter House (S.H.R.)

25. Integrated Agriculture Trading Center (I.A.T.C.)

26. Multi-Purpose Agricultural Cooperatives (M.P.A.C.)

27. Strengthening of Registration System of Livestock (S.R.S.L.)

28. Mutual Aid System for Livestock (M.A.S.L.)

29. Public Animals Auction Market (P.A.A.M.)

1. Strengthening of Research Staff

1. Location: Boac, Marinduque

antago a com

2. Objective: To strengthen and increase the research staff of DA

3. Major facilities/equipment:

- Provision of Additional Personnel

Vegetables	l person
Rice	1
Fruits	1 "
Food crops	1 "
Industrial crops	1 . ⁿ
Soil/Fertilization	ана <u>1</u> в стран
Pest/Disease control	1 "
Agro-processing	1 "
Farm management/Farm economics	3 1 11
Farm mechanization	1 n
Water management	1 "
Tota	l 11 persons
	•

~ Provision of Equipment

Miana computor	2	sets
Micro computer		Sets
Copy machine	1	set
Pick up truck	2	units
Motorcycle (100 to 125 d	cc) 11	units

2. Marinduque Agricultural Development and Promotion Farm

1. Location: Tamayo, Sta. Cruz, Marinduque

2. Objectives:

Field application tests on farming patterns are carried out to improve the present farm technics for paddy and other diversified crops such as corn, mungobean, etc. and to establish new farm technics for such crops as vegetables, fruits, industrial crops, etc. in cooperation with or under the supervision of DA. Based on the results of the tests, suitable farming patterns including farming techniques would be selected.

Through continuous and various field trainings on farming patterns, the extension workers, farmer leaders and other farmers would be able to adopt the new farm management technics. The new farm techniques would be transferred to the other farmers in order to increase farm income.

- 3. Najor Activities:
 - Provision of technical guidelines for crop farming
 - Establishment of criteria for crop fertilization based on simple soil analysis
 - Establishment of criteria on water management
 - Development of rotational cropping system on diversified crops
 - Farm management analysis based on field application tests by farming pattern
 - Development of intercropping technology under coconut plantation
- 4. Acreage:

4.1	Total area:	6.5 ha.
4.2	Building and others:	1.5 ha.
4.3	Demo-farm and field application farm:	5.0 ha.

- Coconut + upland crops (vegetables, corn, etc.) (1.0 ha)
 Coconut + fruit and industrial crops (0.5 ha)
 Coconut + forage crops (0.5 ha)
 Paddy (1.0 ha)
 Upland crops (vegetables, corn, etc.) (1.0 ha)
 Fruit and industrial crops (1.0 ha)
- 5. Building and others

5,1	Administrative office (Existing)	(300	sq.m.)
5.2	Lecture rooms	300	sq.m.
5.3	Dormitory (Existing)	300	sq.m.
5.4	Laboratory	250	sq.m.
5.5	Warehouse and research room	400	sq.m.
5.6	Farm management house	300	sq.m.
	(Warehouse for fertilizers, seeds,	insectic:	ides, etc.
	motorpool, office, etc.)		
5.7	Working house of farm labors	60	sq.m.
5.8	Isolation chamber	180	sq.m.
5.9	Animal shed	100	sq.m.
•	Total	(2,190	sq.m.)
		1,890	sq.m.

6. Staffing

		No.
6.1	Training Farm Director	1
6.2	Administrative staff	
	Division Chief	1
	Administrator	1
	Cashier/Accounter/Bookkeeper	1
	Typist	2
	Janitor	2
· .	Driver	3
	Watchman	1
· .	Cuardsman	3
6.3	Training staff	
	Division Chief	1
	Specialist	7
•	Assistant Technician	8

6.4 Maintenance staff Division Chief Mechanic Electrician Carpenter Field worker

7. Furnitures

Desks/Chairs25 setsCabinet10Locker25Typewriter2Fireproof safe1

Total

No.

1

1

i

6

40

1

1

1

5 5

1

1

1

l(incl. camera)

8. Vehicles

Sedan car l Truck l Micro bus l

9. Audio Visual Instruments for Training

TV set (20") Video sets Movie set OHP Micro Computer Word processor Film projector Copy machine Typewriter

10. Experimental Equipment

	No.
Dryer	2 sets
Heater with thermostat	1
Refrigerator 400 l	1
Simple analizer	. 1
Balance	3
Microscope	2
Irrigation facility (4.5 ha)	1
Deepwell for drinking water	1
Experimental desk	3
Exhaust facilities	1
Pest/disease observatory	l unit
Weather observation equipment	l unit
Others (e.g. generator)	L.S.

11. Farm Machines

Plow	5 sets
Hallow	2
Rice milling machine	1
Sheller	1
Power-tiller with attachments	2
Grass cutter	7
Power sprayer	3
Duster	3
Farming tool	L.S.
Tractor with attachments (50 Hp, 30 Hp)	2

12. Annual 0 & M

Farm labours	5 persons
Electric charge 1,000 kwh x 12 mcs.	12,000 kwh
Gasoline 50 1 x 200 day x 2 mos.	20,000 lit.
Diesel oil 100 l x 150 day x 3 mos.	45,000 lit.

F	e	1.	t	1	1	i	z	е	r	÷
---	---	----	---	---	---	---	---	---	---	---

14:14:14	2,400 kg
S.P.	100 kg
Potash	100 kg
Urea	200 kg
Lime 1.5 ton x	6 = 900 ton

Chemical input

Fungicide	e da ser en el	: •	a marta esta
	Liquid		36 1
	Dust	×1.	28 kg
Insectici	de	1	la se de la
	Liquid		18 1
	Dust		30 kg

3. Strengthening of Agricultural Extension Workers

1. Location: All municipalities

 Objectives: To strengthen agricultural extension personnel and facilities.

3. Service Area:

Services will be extended not only to the beneficiaries of the agricultural development projects/programs but also all members of the Barangay (farmers) in the extension worker's service area.

Since one agricultural production technologist (APT) covers three Barangays, a total of 72 AFTs would be recommended.

4. Major facilities/equipment:

-	Motorcycle (100 - 125 cc)	72 sets
-	Simple soil analysis equipment	l2 units
-	Microscope	6 sets
	Office equipment (copy machine,	1
·	typewriter, etc.)	6 sets
	Books	L.S.
	BHF handy talking (12 watt)	72 sets
	BHF communication system (40 watt)	6 units

5. Others:

These extension workers (APT) should be re-trained at the proposed Marinduque Farmer's Training and Demonstration Farm.

4. Pest/Disease Observatory

1. Location: One station in each municipality for a total of 6 places.

2. Objectives:

To forecast accurately (SEWS, surveillance early warning system) and to prevent and control timely the occurrence of pest.diseases and rats. Data on present pest/diseases and rate should be collected at the station.

> l unit l unit

l set

1 unit

l set

1

1

3. Major material/equipment (for each station):

•••	Solar	flourescent	light	trap	

- Spore collector

- Microscope

- Motorcycle (100 - 124 cc)

- BHF handy talking (12 watt)

- Weather observation l unit

4. Staffing (for each station)

- Expert

- Assistant expert

5. Seed Bank

1. Location: Caigangan in Buenavista

2. Objectives:

To establish a stable seed distribution center for upland or diversified crops. The seeds produced in the center would be sold to the farmers at cheaper price.

- 3. Scale: 2.0 ha
- 4. Major facilities/equipment:

-	Building	500	sq.m.
-	Power tiller (10 Hp)	2	units
-	Pick-up Truck (1 ton)	1	unit
-	Motorcycle (100 - 125 cc)	2	units
-	Manual winnower	1	unit
	Powered corn thresher	1	unit
-	Irrigation system (2 ha)	1	unit

5. Annual 0 & M

Farm input (fertilizer)		
14:14:14	400	kg.
Urea	200	kg.
S.P.	200	kg.
Potash	200	kg.
Chemical input		
Fungicide		
Liquid	10	lit
Dust	10	kg.
Insecticide		
Liquid	10	lit
Dust	10	kg.
Labours	5	persons

6. DA Municipal Nurseries

1.	Lo	cation: One in every municipa	lity or a t	otal of	six place	S.
2.	ՕЪ	jectives:		· ,		
	То	increase the number of fruits	and divers	ified cr	ov nurser	ies for
dis		ution to farmers.			•	e Territoria Territoria
3.	Sca	1e: 2,000 - 5,000 sq.m. in ea	ch municipa	lity		
					· · · · ·	
4.	Ma	jor facilities/equipment (for	each place)		• .	
				· .·		
		Irrigation facility	1	unit		
		Deepvell (4", 30 m depth)	1	unit	. '	
		Working house/shed	100	sç.m.		.*
		Fick-up truck (1.0 ton)	2	units	н. 1	
	-	Soil fumigator	1	unit (s	oil injec	tor)
					. ·	
5.	An	rual O & M				
		· · · · · · · · · · · · · · · · · · ·				
	-	Fertilizer (14:14:14)	250	kg.		
		Lime	500	kg.		
	-	Chemical input		••		
		Liquid	2.5	lit		
		Dust	2,5	kg.	ta a series de la	
	-	Insecticide				
		Liquid	2.5	lit		
		Dust	-	kg.		
	-	Nursery 5 spaces x 300 pcs.	1,500		2	
	_	Soil	an an Eastern	cu.m.		
		Labours		persons		
			. 2	herneite		4

7. Irrigated Paddy Cultivation Demonstration Farm

 Location: One farm in each priority development area (a total of 7 areas)

2. Objective:

To demonstrate improve farm technics on irrigated paddy and introduce package of Technology (POT).

3. Scale:

4.

5 to 10 ha. in each farm (one rotational block) under irrigation facilities along the main road.

Major facilities/equipments (for each farm)

On-farm facilities such as farm road with 2.0 m width, farm ditches, farm drain*

- Power tiller and carabaos

One unit of power tiller (10 Hp) with attachments

One carabao for carabao-less farmer

-	Power sprayer	2 units
-	Portable power duster	2 units
-	Power thresher	l unit
	Dry pavement (by using multi-purpose pavement	
	under the road development scheme)	500 sq.m.
-	Warehouse	100 sq.m.
	Rice mill (1/2 ton/hr)	l unit

5. Annual 0 & M

	Input materials:		1 200 1-1
	Compound fer	tilizer (14:14:14)	4,300 kg.
	Urea (45%)	с. 	1,300 kg.
-	Input chemical		
	Fungicide		
	Liquid		60 lit
	Dust		140 kg.
	Insecticide		
	Liquid		80 lit
	Dust		100 kg.
	Seed (HYV)		500 kg.

Note: *Irrigation facilities including on-farm facilities should be developed under the irrigation development scheme. 8. Rainfed Paddy/Diversified Crops Cultivation Demonstration Farm

1. Location: Two places (Gasan, Tagum-Angas)

2. Objective:

To demonstrate improved farming techniques for rainfed paddy/diversified crops.

3. Scale: 1-2 ha. cach of rainfed paddy field along the main road.

4. Major facilities/equipment (for each farm):

Power tiller and carabao One unit of power tiller (10 Hp) with attachment One carabao for carabao-less farmer Knap-sack type hand sprayer 5 units Portable hand duster 5 units Manual operated thresher l unit Dry pavement (by using multi-purpose pavement under the road development scheme) 500 sq.m. Warehouse 100 sq.m. Rice mill (1/2 ton/hr.) l unit Power corn thresher l unit

5. Annual O & M

sinual o a h

- Input materials

Compound fertilizer (14:14:14)	1,000 kg.
(215 kg. for paddy; 285 kg. for	diversified crops)
Urea (65 + 90)	310 kg.
Input chemical	_
Fungicide	
Liquid (3 + 6 lit/ha)	18 lit
Dust (7 + 14 kg/ha)	42 kg,
Insecticide	
Liquid (4 + 8)	24 lit
Dust (5 + 10)	30 kg.

110 kg.

Seed (HYV) (50 + 5)

9. Vegetable Cultivation Demonstration Farm

 Location: Six (6) places (Gasar, Buenavista, Torrijos, Sta. Cruz, Boac and Mogpog)

2. Objective:

To demonstrate improved and advanced faming techniques on vegetable cultivation.

3. Scale: 1-2 ha. each along the main farm-to-marker road

4. Major facilities/equipment (for each farm):

- Power tiller and carabao	
Power tiller (10 Hp) with attachmen	ts lunit
One carabao for carabao-less farmer	
- Knap-sack type hand sprayer	3 units
- Portable hand duster	3 units
- Deepwell with jetmatic hand pump (ϕ	4" x 50 m depth)
Irrigation facilities	l unit

5. Annual O & M

-	Input materials	
	Compound fertilizer (14:)	4:14) 600 kg.
	Urea	200 kg.
	Lime	7 ton
	lnput chemical	
	Fungicide	
	Liquid	14 lit
	Dust	34 kg.
	Insecticide	
	Liquid	22 lit
	Dust	22 kg.
	Seed (HYV)	140 kg.

Coconut Intercropping Demonstration Farm (0 - 8% Slope)

Location: One farm each in six (6) municipalities

2. Objective:

1.

To put up demonstration farms for the intensive utilization of idle space in coconut plantations by intercrop faming method.

3. Scale: 10 to 20 ha, each

4. Major facilities/equipment (for each farm):

· ·	Power tiller with attachments (10 Hp)	l unit
-	Power sprayer	l unit
	Nurseries: coffee, cacao, pineapple, papaya,	
1.1	kalamansi	

5. Annual O & M

-	Seed : vegetables, corn, mungobeans,	etc.
	Input materials (for the first year only)	
	Compound fertilizer (14:14:14)	6,000 kg.
	Urea	2,000 kg,
	Lime	30 ton
	Input Chemical	
	Fungicide	
	Liquid (4 lit/ha)	80 lit
	Dust (10 kg/ha)	200 kg.
	Insecticide	
	Liquid (6 lit/ha)	120 lit
	Dust (7 kg/ha)	140 kg.

 Hillside Farming Demonstration Farm for Coconut Areas (8 - 15% Slope)

1. Location: One farm each in six (6) municipalities

2. Objectives:

To establish a demonstration farm in slope areas planted to coconut and to establish a demonstration farm for contour ridge farm method of industrial crops in slope lands planted to coconut.

3. Scale: 5 to 10 ha. each

4. Major facilities/equipment:

- One carabao for carabao-less farmer

- Nurseries: arrow root, ubi, vanilla, citrus, coffee, black pepper, cacao, pineapple, banana, etc.

12. Agro-forest Demonstration Farm (15 - 18% Slope)

1. Location: One farm each in Torrijos and Buenavista

2. Objectives:

To establish soil conservation methods by introducing pasture grass and intercrop farming insloped areas planted to coconut.

3. Scale: 5 to 10 ha.

4. Najor facilities/equipment:

 Nurseries: citrus, coffee, cacao, pineapple, banana, etc.
 Seed : napiar grass, rhodes grass, vitiver (khus-khus), etc.

13. Post-harvest Facilities for Rice

 Location: 7 places (one each in the seven priority development areas)

2. Objective:

To set up demonstration areas for improved rice post-harvest facilities.

3. Service Area: Jrrigated area

4. Scale: 20 ha.

5. Major facilities/equipment:

Dry pavement (by using multi-purpose pavement under the road development scheme) 500 sq.m.
Warehouse 100 sq.m.
Rice mill (1/2ton/hr.) 1 unit

14. Post-harvest Facilities for Corn

1. Location: One each insix (6) municipalities

2. Objective:

To set up demonstration areas for improved corn post-harvest facilities.

3. Scale: 20 ha.

4. Major facilities/equipment:

Power corn thresher
 Dry pavement (by using multi-purpose pavement under the road development scheme)
 Warehouse
 50 sq.m.

15. Post-harvest Facilities for Coconut

1. Location: One each in six (6) municipalities

2. Objective:

To set up demonstration areas for improved coconut post-harvest facilities.

3. Service Area: 100 ha.

4. Scale: 500 sq.m.

5. Major facilities/equipment:

Copra dryer 2,000 nut/day
Charcoal kiln 7,000 nut/48 hr
Warehouse
200 sq.m.

16. Coconut Timber Utilization

1. Location: One each in the six (6) municipalities of the Province.

2. Objective:

To provide demonstration centers for the utilization of coconut timber.

3. Service Area: One (1) Barangay

4. Major facilities/equipment:

-	Chain saw (33 cc)	5	sets
	Circular saw	5	sets
	Timber yard with shed	1,000	sq.m.
	Lumber yard with shed and disc saw	200	sq.m.
-	Concrete pavement	200	sq.m.
	Saw dust yard	500	sq.m.

5. Staff

5 persons

17. Rehabilitation of Marinduque Breeding Station

- 1. Location: Napo, Sta. Cruz, Marinduque (Existing)
- 2. Objectives:
 - 1) To strengthen artificial insemination programs in order to increase the number of superior and large animals.
 - 2) To experiment on improved pasture grasses.
 - To experiment and improve on breeding and raising methods on livestocks.
 - To experiment on breeding and raising on new species of animals to be introduced in Marinduque.
 - 5) To provide livestock hygiene services.
- 3. Scale: Building and pasture land (16 ha) (Existing)
- 4. Major facilities/equipment:
 - Rehabilitation of the peripheral fence = 10 km
 - Construction of animal shade or barn stock room

Carabao (male)	2 1	neads	30	sq.m.
Carabao (female)	10 1	neads	120	sq.m.
Cow (male)	2 1	neads	30	sq.m.
Cow (female)	10 1	neads	120	sq.m.
Swine (male)	5 1	neads	40	sq.m.
Swine (female)	5 1	ieads	40	sq.m.
Goat	50 H	neads	30	sq.m.
Chicken	1,000	reads	200	sq.m.
liorse (for draft)	2 1	neads	50	sq.m.
·	ŗ	fotal	660	sq.m.

- Water supply system	
Deepwell (\$4", 60m depth), submerged pum	p (1 unit, \$2")
Water supply system including water tank	
- Construction of pig pen with storage room	
or warehouse	240 m ²
- Improvement of the Administrative building	100 m ²
- Motorpool	300 m ²
- Storage/Warehouse for feeds	200 m^2
- Equipment	
Tractor 70 50 Hp with attachments	l unit each
Farm tools	l set
Portable grass cutter	5 units
Generator (2 - 5 KVA)	2 units
Container for freezer semen	7 units
30 1 x 2, 3 1 x 5	
A-I Instruments	10 sets
Microscope	2 units
Furniture (desk, chair, etc.)	L.S.
Generator (300 KVA)	l unit
- Other equipment	L.S.
Pick up truck (1.0 ton)	2 units
Station wagon 4 WD	1 unit
Instrument for preventive inoculation	100 sets
Refrigerator 400 lit	3 units
Incubator (300 - 500 pcs.)	3 units
Other necessary equipment for the succes	sful
performance of A-I	L.S.
Motorcycle	5 units

5. Staffing:

5.1 Manager

5.2 Administrative Division Administrative Officer Administrative Staff

E-35

1

1 1

				- -
	· · ·		· · · ·	
	Cashier		≤ 1 . The form the second s	
	Typist	· · · · ·	ter di sana se	
	Janitor		$1^{\mathrm{at}} 1_{\mathrm{prod}}$, where 1_{prod}	
	Driver		1 3 - 2100 - 2000 - 2000	
	Watchman		1	
	Guardman		1. 1. 1. 3	s.,
	5.3 Extension Division	(A-I)		
	Division Chief		$\mathbf{\hat{L}}_{i}$, the second second	
	A-I technician	.*	3	
	Extension workers		3	
	Asst, A-I technici	an	3	
	Asst. extension wo	orkers	3	
				•
	5.4 Production Divisio	on (Raising)		·
	Division Chief		1	
	Technician		3	
	Field worker		10	
	5.5 Regulatory Divisio	n	·	
	Division Chief		1	
	Technician		2	
	Asst, technician	· .	2	· · ·
	hour coemizion	Total	45	
		TOTAL		
6.	Annual O & M			
0.	Annual O u II	· · ·		
	Labours		5	ereone
		kth x 12 mas		
	- Electric charge 700 - Gasoline 30 lit x 20		24,000 1	
	÷	-	10,000 1	
	Diesel oil 50 lit xFertilizer	Teo days x z	10,000 1	· · · ·
		4 4 4	2,400 k	
	S.P. 170 kg/ha x l		and the second	-
	Urea 200 kg/ha x 2		2,800 k	
	Lime $1.5 \text{ ton } x 14$		21 t	on
			en de la construction de la construction des	
		•		
		•		
		E36		

18. Cattle Dispersal

 Location: At the existing Marinduque breeding station, Napo, Sta. Cruz.

2. Objective:

To multiply the number of cattles by dispersal of pregnant female cattles to cattle-less farmers

3. Major activities:

After pregnanting female cattles at the Malabon breeding station, the cattles would be released to cattle-less farmers. When the infant cattle is female, both cattles would be taken cared of by the farmer for at least 16 months for raising purposes, after which the female infant cattle would be turned to the breeding station. The farmer can keep the original cow.

4. Major materials/equipment:

Ten (10) heads of cows two years and older

5. Staffing:

Staff of the Marinduque Breeding Station may by utilized for this program.

19. Carabao Dispersal

 Location: At the existing Marinduque breeding station, Napo, Sta. Cruz

2. Objective:

To increase the number of carabaos by dispersing pregnant female carabaos to carabao-less farmers.

3. Major activities:

Pregnant female carabaos are distributed to carabao-less farmers. When the newly born carabao is female, it stays with the farmer for 16 months for raising purposes. The original carabao is returned to the breeding station after 16 months. The case is also the same with the male born carabaos.

4. Najor materials:

Ten (10) heads of female carabaes which are more than two years old

5. Staffing:

Staff of the Marinduque Breeding Station in Napo may be utilized for these program.

20. Goat Stock Farm

1. Location: MIST School area, Poctoy, Torrijos

Objective:

2.

3.

4.

To breed and stock 100 heads of goat for the goat dispersal program. These goats could also be utilized for the field practices of the NIST students.

Major activities:

The 100 heads of goat would be breeded and stocked in the MIST Poctoy school area. The new improved goat breed would be provided by the Marinduque breeding station. About ten (10) goat would be provided to farmer beneficiaries. After breeding and increasing his stock, the farmer returns back to the stock farm, ten (10) goats to be dispersed again to other farmers.

Major materials/equipment:

•	Goat shed	50	sq.m.
-	Building (100 sq.m. lecture room)	150	sq.m,
	(50 sq.m. 0 & M room)		
-	Equipment		
	Furniture	1	set
	Typewriter	1	unit
	Deepwell	1	pls
	Inner road	500	m (64 m)
	Bridge/box culvert	1	(20 m X 4 m)
	Locker	1	set
÷.,			

21. Goat Dispersal

1. Objective:

To multiply the number of goats by dispersing a suitable number of goats to goat-less farmers.

2. Major activities:

A group of adult goats, which consists of one male goat and ten female goats, would be dispersed to goat-less farmers. The farmer in turn has to repay back by returning nine heads of new female adult goats and one head of new male adult goat to the Goat Stock Farm within a period of two years. The original goat stays with the farmer.

3. Major material/equipment:

100 heads of goats

1. Location: One farm each in six (6) municipalities

2. Objective:

1.5

To put up demonstration farm for backyard poultry in order to increase farm income, provide employment opportunities and to upgrade nutrition of inhabitants.

3. Major activities:

200 heads of newborn chicks would be given to chicken-less farmers. The farmers in turn should repay the chicks equivalent to 30 pieces of eggs per head or its cash value within a period of one year to the breeding station in Malabon.

4. Major facilities/equipment:

Floor feeding poultry house
Filling bowl

- Feeder

4 pcs.

40 sq.m.

4 pcs.

23. Grazing Field Demonstration Farm

 Location: Hillside or mountaineous areas each in the six (6) municipalities (less than 18% slope) of the Province

2. Objectives:

To establish a demonstration farm which would effectively use idle or cogon lands in or out of coconut plantations. High-grade grasses for feeds can be grown in the farm. With a stable production of grasses the life span of the grazing fields are expected to increase. These fields can be used by small scale farmers so that they can raise livestock to increase their farm income.

3. Method of establishment/improvement:

Land reclamation works without any land slope adjustment would be carried cut in plowing the field.

4. Scale: 10 - 20 ha.

5. Major facilities/equipment:

- Tractor (50 ps)	l unit
- Fence	3,000 m
- Drinking water facility	3 places
- Bathing area	3 places
– Fertilizer (for every few years)	
Phosphoric acid (50 kg/ha)	l ton
Lime (3 t/ha)	60 ton

Note: Areas which suffer from soil erosion should be converted to forest lands which can be utilized as refuge for animals. Under DA's guidance, the farmer who want to raise livestock should talk over the working allotment and decide the rule for maintenance of meadow grass and animals.

24. Remodelling of Slaughter House

 Location: Torrijos, Sta. Cruz, Boac, Mogpog, Buenavista. (A total of 5 places)

2. Objective:

To freeze and store meat in accordance with demand and supply of meat.

3. Major facilities/equipment:

	Freezer	4	sq.m.
	Cold storage	20	sq.m.
```	Concrete pavement with shade	30	sq.m.
	Water supply system	1	
**	Sewerage treatment facilities	1	
	Generator (200 KVA)	1	unit

Note: Under the supervision of the regulatory division of the Marinduque Breeding Station, DA.

25. Integrated Agricultural Training Center

1. Location: Mogpog or Boac municipality

2. Objective:

To provide timely collection, storage and shipping of vegetables, agricultural, livestock and fish products so that farmers would be able to sell at the most advantageous price.

3. Scale: 2.0 ha

4. Major facilities/equipment:

	Warehouse	1,000	sq.m.
_	Cold storage/Ice plant (10 ton/day)	300	sq.m.
-	Freezer warehouse	200	sg.m.
	Packing facilities	L.S.	i
••	Shipping facilities/houses	L.S.	
	Administrative office	200	sq.m.
	$\breve{b}HF$ Communication system (40 - 60 watt)	. 1	set
	Micro computer system	1	set
-	Freeze truck (4 ton)	1	unit
~	Truck (4 ton)	3	units
	Motorcycle (100 to 125 cc)	5	units

#### 5. Staffing:

Director		1
Ice plant expert		3
Cashier		1
Expert for products		5
Driver		4
Typist		1
Janitor		1
	Total	16

26. Multi-Purpose Agricultural Cooperatives (MPAC)

1. Location: One MPAC for every 3 to 5 Barangays

2. Objectives:

To organize and revitalize farmers organization in Marinduque at the Barangay level through the NGO's and/or BACOD and form them into primary multi-purpose agricultural cooperatives (NPAC). These type of cooperatives will not only promote and develop agricultural cooperative production processing and marketing system but also engage in credit extension and provision of necessary services needed by the Barangay, say for example, labor needs, transportation needs, post-harvest facilities, etc.

3. Major activities:

The formation of MPAC must be initiated through the NGO's and where none are existing, through the BACOD of DA by organizing and/or revitalizing farmer's organization in the area. Farmers from three to five contiguous Barangays may organize themselves to form the MPAC, the services of which would depend on the existing needs and resources of the organization which may include all or any of the following services: credit extension, buying agricultural product, production, marketing, procurement, sale of consumer goods and provision of other services.

The BACOD will train NGO's on the over-all concept, nature, policies, types and techniques of cooperative development which they in turn will infuse into the farmers. Training for NGO leaders will be undertaken at the Marinduque Farmer's Training and demonstration Farm. The NGO's shall directly be involved in the establishment and organization of the MPAC in accordance with the guidelines made by BACOD.

For the MPAC to be more effective, aside from the main office/center, other sub-centers/offices shall be put up in other Barangay member areas to serve as warehouse/collection and/or meeting point of goods and/or services.

4. Staffing:

Main Office/Center	
Administrative Officer	1
Bookkeeper	1
Clerk	1
Warehouse helper	2
Sub-Office/Center	
Warehouseman	1
Warehouse helper	2

- 5. Major facilities/equipment: (for each MPAC)
  - Main Officer/Center 50 sq.m. Administrative office 100 sq.m. Store space Warehouse for materials 50 sq.m. 50 sq.m. Rice mill 200 sq.m. Warehouse for agricultural output 100 sq.m. Collecting/shipping place Sub-Office/Branch Office Administrative office (3 to 5 places) 20 sq.m. each 100 sq.m. each Warehouse (3 to 5 places) Equipment for Main Office Truck (4 ton) 1 unit Motorcycle (100 to 125 cc) l unit Balancing (Max. 100 kg.) 5 sets Desk and Chair 9 sets Locker 2 sets Typewriter 5 units

Cash register	5 units
Power thresher	5 units
Milling machine	l unit
Dryer	l unit
Power tiller (10 Hp)	5 units

6. Annual 0 & M

Electric charge Gas

Light/Oil

27. Strengthening of Registration System of Livestock

- 1. Location: Every municipality
- 2. Objectives:

The actual number of livestock would be recorded to establish a suitable development plan for increasing the number of livestock. The program aims to increase the number of superior livestock, the protection of illegal movement of livestock without the permission of the provincial Governor and to prevent the illegal slaughtery of livestock with diseases.

- 3. Najor activities:
  - Preliminary registration
    - Number or name of father and mother of infant livestock
    - Birthday
    - Health check by the inspector of DA
    - Preliminary registration card

#### Registration

- Certificate of Ownership (CO) of health check
- Certification tags (at least two certification tags)
- Photo of livestock
- Measurement of weight and height

- Time of Registration

Preliminary registration

Carabac	within 6 months after birth
Cow	within 6 months atter birth
Horse	within 6 months after birth

- Advanced Registration

Superior species should be registered.

### 4. Act (outline):

Farmers

- When a farmer wants to slaughter his livestock, he should get an approval with the Bureau of Animal Industry (BAI), the Municipal office and get an stamp of approval from the Meat Inspector (MI) prior to slaughtering.
- 2. When a livestock dies, the owner should report this matter to BAI, to the Municipal office and to the MI, and receive a guarantee test. After passing the test, he can sell or eat the meat.
- 3. Sanitation should be maintained at the slaughter houses with proper water supply and drainage.
- Middle man
  - Neat without Certificate of Ownership (CO) or Certificate of Transfer (CT) from the slaughter house should not be sold by the middle man.
- Fenalty
  - Anyone who violates this act should pay some penalties (ex. 6,000 pesos or 6 months imprisonment or more)
- 5. Materials and equipment:

	Registration book		
-	CO for registration		
-	Camera	6	sets
	Stamps	6	sets
	Tags	35,000	pcs.

6. 0 & M Cost:

Film (black and white)

#### 28. Mutual Aid System for Livestock

1. Location: Throughout the Province

2. Objective:

The program aims to compensate farmers for death of livestock through the mutual aid system.

3. Major activities:

A specific amount of money is collected from livestock farmers which would be kept and managed by the Provincial Government. These fund would be used to pay farmers whose livestock dies of illness, accident or infection, which is 80% of the selling cost of the livestock. When infection spreads throughout the province due to the neglect and lack of prevention measures by the government, loss of livestock should be compensated by them. 29. Fublic Animal Auction Market

1. Location: One in each municipality (A total of 6 places)

2. Objectives:

An auction market would be established in order to sell animal meat at fair cost. A temporary storage facility would be needed to have a stable supply of meat for sale in the market.

3. Major activities:

The Municipal government would rent out facilities such as refrigerators or cold storage houses to the middle man and the auctioner. The rental charge would be based on the cost of electricity, labor and others and would be used for the management of the market.

In case there is an over supply of meat, the surplus meat could be kept at the cold storage. When the supply is low, the stored meat could be released to the consumers to maintain the stable flow and price of meat.

4. Building (for one place)

_	Administrative office	(50	sq.m.	х	6)	300	sq.m.
	Auction place	(100	sq.m.	x	6)	600	sq.m.
•	Cold storage room	(50	sq.m.	х	6)	300	sq.m.
-	Refrigeration room	(30	sq.m.	x	6)	180	sq.m.
·	Others	(20	sq.m.	x	6)	120	sq.m.

5. Major facilities/equipment (for one place)

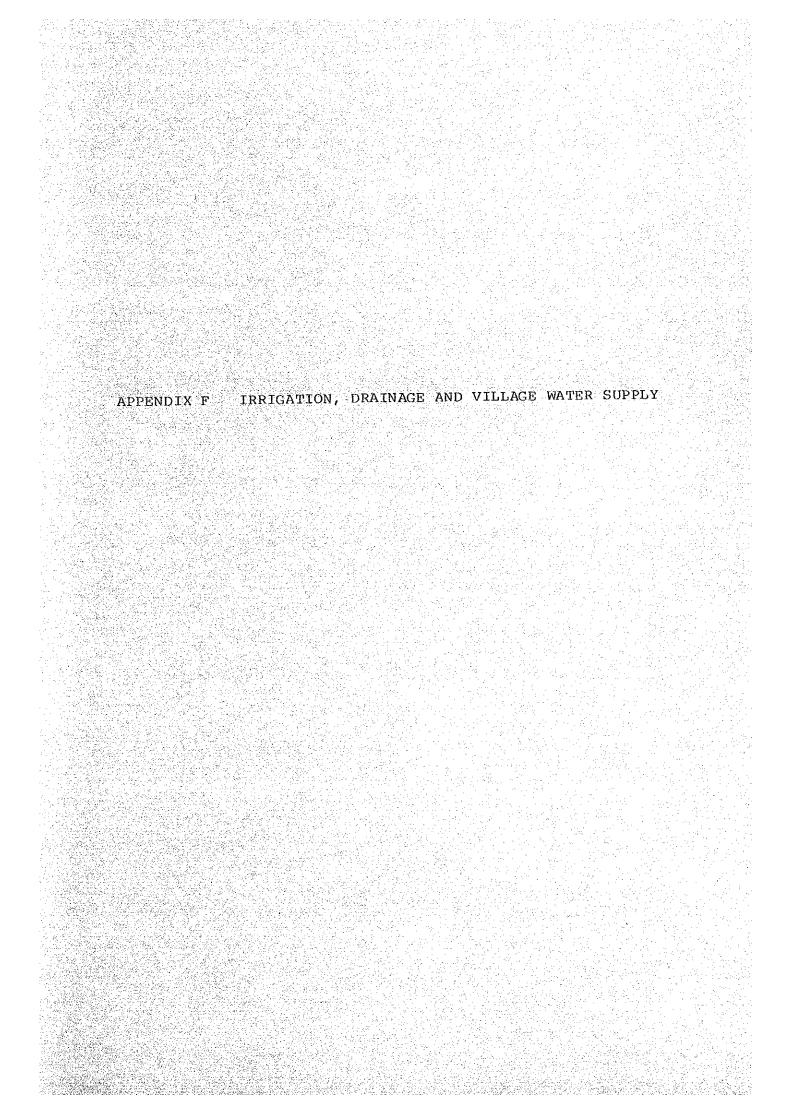
- Office furniture	L.S.
- Motorcycle (100 - 125 cc)	l unit
- BHF Communication system (40 - 60 W)	l set
- Cold storage and refrigeration equipment	l unit

		Employees		Benefici	ciaríes
	Development Plan	(Persons)	Direc	c t	Indirect
г.	Strengthening of Research Staff (D.A.)	Q	·	4	47,400 P
ci	Marinduque Agricultural Development and Promotion Farm (M.A.D.F.F.)	60	006	٩ 0	E
	Strengthening of Agricultural Excension Workers (A.E.W.) (A.F.T.)	10	•	1	=
4. 1	Past/Disease Observacory (P./D.O.)	N	-		-
5.	Seed Eank	15	1,600-	3,000 FH	28,800 FH
ų,	DA Municipal Nurseries	30	300	G FH	( A11 FH )
7	Irrigation Paddy Cultivation Demonstration Farm	·	8,000	HL O	Ξ
	Rainfed Paddy/Diversified Crops Cultivation Demonstration Farm	ł	6,000	0 FH	2
С	Vegetable Cultivation Demonstration Farm	ł	1.4 , 300	0 FH	z
10.	Coconut Intercropping Demonstration Farm	ı	3,800	0 FH	2
	Willside Farming Demonstration Farm for Coconut Area	ł	2,600	HL O	=
12	Agro-forest Demonstration Farm	1	1,000	0 FH	a
¢	Post-harvest Facilities for Rice	14	1,300-1	1,600 FH	=
14.	Post-harvest Facilities for Corn	12.	480-	600 FH	*
15	Post-harvest Facilities for Coconut	12	3,000	O FH	F.
16	Coconut Timber Utilization	60	30.0	0 FH	= .
17.	Rehabilitation of Marinduque Ereeding Station (M.B.S.)	58	26,000	О ЕН	28,800 FH
8	Catcle Dispersal	<b>I</b>	680	0 FH	=
19.	Carabao Dispersal	ı	680	O FH	÷
20	Goat Stock Farm	-		3	1
21.	Goat Dispersal	1	3, 8.30	0 FH	28,800 FH
22.	Backyard Poultry Demonstration Farm	ı	1,250	O FH	н
23.	Grazing Field Demonstration Farm	30	1,200	0 FH	÷
24.	Remodelling of Slaughter House (S.H.R.)	75	26,000	O FH	
25	Integrated Agriculture Trading Center (I.A.I.C.)	4 G	17,300	0 FH	#
26.	Multi-Purpose Agricultural Cooperatives (M.P.A.C.)	305	26,000	O FH	-
27.	Screngthening of Registration System of Livestock (S.R.S.L.)	12	26,000	0 FH	
28.	Mutual Aid System for Livestock (M.A.S.L.)	2	26,000	O FH	-
29.	Public Animals Auction Market (P.A.A.M.)	40	26,000	O FH	n
	Total	1,420			

Note: P: Person(s) FH: Farm Household

Table E-3-1 Expected Number of Beneficiaries

# E-4 Agrarian Reform


# Table E-4-1

Progress of Agrarian Reform (As of June, 89)

	Total Sco	pe		Accompli	shment	
	No. of		No. of			,
Manicipality	Beneficialy	Area (ha)	Beneficialy	Ratio	Area (ha)	Ratio
Boac	159	56.5	118	74	39.3	70
Buenavista	41	15.6	-	·	-	-
Gasan	224	92.3	101	45	41.5	45
Moqpog	36	11.5	24	67	5.8	50
Sta. Cruz	1 32	83.5	83	63	46.1	55
Torríjos	47	23.9	22	47	14.3	60
Total	6 39	283.3	348	54	147.0	52

# Source: DAR Provincial office

Table E-4-2	Number of La (a	Land Owner by (as of June 19	r Farm Size 1988)				
Area Class 100 ha and above 50 to 100 ha 24 to 50 " 15 to 24 " 7 to 12 " 7 to 12 " 7 to 12 " 5 to 7 " Total Source; DAR, 1	Baoc 4 16 16 16 15 154 154 1989	Mogpog 122 67 1282 122 122 122 122 122 122 122 122 12	Sta. Cruz 2 14 33 34 176 195 195	Torrijos 7 21 44 31 126 412 646	Buenavista 1 10 22 39 56 134	Gasan 1 12 12 12 102 217	Toatl 10 (0.5) 13 (0.6) 65 (3.2) 159 (7.8) 139 (6.8) 655 (32.1) 1,001 (49.0) 2,042 (100.0%)
Table E-4-3	Land Holding	Area (a:	Wner by F 1988)	'arm Size			
Area Class 100 ha and above 50 to 100 ha 24 to 50 " 15 to 24 " 12 to 15 " 7 to 12 " 5 to 7 " 7 to 12 " 5 to 7 " Source; DAR, 1	ve 102 246 513 513 673 417 1,479 1989 4,330	Mogpog 60 210 80 587 478 1,415	Sta. Cruz 463 110 424 581 1,464 1,175 4,664	Torrijos 1,261 319 673 796 436 1,117 1,683 6,285	Buenavista 67 187 198 324 211 211 1,315	Gasan 59 207 217 217 715 715 715 715	Toatl 1,826 (9.1) 801 (4.0) 2,064 (10.3) 2,675 (13.4) 1,877 (9.4) 5,573 (25.9) 5,160 (25.9) 19,976 (100.0%)



APPENDIX F IRRIGATION, DRAINAGE AND VILLAGE WATER SUFILY

F-1	Irrigation Plan F	`- 1
	F-1-1Present ConditionFF-1-2Problems on Existing Irrigation SystemFF-1-3Irrigation PlanningFF-1-4Proposed Irrigation ProjectsF	2 2 7 3
F2	Drainage and Flood Protection F	r-33
	F-2-1 Present Condition F F-2-2 Drainage Planning and Flood Protection F	
F3	Village Water Supply F	-37
	F-3-1 Present Condition F F-3-2 Development Plan F	

Page

AFFENDIX F IRRIGATION, DRAINAGE AND VILLAGE WATER SUPPLY

F-1 Irrigation Plan

F-1-1 Fresent Condition

1) Service Area

The acreage of about 5,400 ha is used as paddy field based on the data of DA, 1988. In the central part of the area, the terrain of the laud is mountainous such that paddy field are laid on a narrow gorge. On the other hand, many paddy field were observed in the low laying area, along river stream and seashore. The paddy field which is located at an alluvial plain, has an elevation less than ten meters.

As of August 1989, the total potential service area is about 1,240 ha of paddy fields but actual irrigated area is about 900 ha (73%). The total potential service area covered by NIA-CIS is 647 ha while the actually irrigated during wet season is only 447 ha or a service rate of 69%. For individual pumps, the total potential service area is 32 ha but the actually irrigated area is 15 ha or a service rate of only 47%. Meanwhile, the total potential service area under pump irrigation covered by DA is 124 ha while the actually irrigated area is 63 ha or a service rate of 51%. Under the gravity irrigation, 27 ha is the potential service area is 29 ha while the actually irrigated area is 7 ha or a service rate of 24%. Per estimate, the potential service area for self irrigated facilities is 381 ha while the actually irrigated is 374 ha or a service rate of 98%. (refer to Table F-1-1)

#### 2) On-farm Facilities

There are some on-farm facilities in the CISs areas. After big flood gave severe damages on an intake facility, those facilities were not maintained by farmers. On the general plan of CISs, the proposed density is 13 m/ha on an average. After they are damaged, these facilities became idle. The density of the existing on-farm facilities is quite small compared with the standard which is 60 m/ha. (refer to Table F-1-3)

In the present operational CIS area, the small scale on-farm facilities are observed to be well functioning. These on-farm facilities are not lined in the area.

The farm drains were not constructed for draining excess water on the field. The reason is estimated that the paddy area is generally steepy. But for upper unit production, the drainage systems will be needed in future.

E-1-2 Problems on Existing Irrigation System

1) CIS

As of August 1989, NIA has 21 existing CISs, ten of which are fully-operational, seven are partially- operational and four are non-operational. The reasons why not fully operational are: none rehabilitation after it has been damaged by flood and/or defective constructions of intake works. (refer to Table F-1-2 and Figure F-1-1)

The ClSs indicated in Figure F-1-1 are under following reasons.

Reason A - Defective construction of intake works

Pawa-Tagwak (5) Poctoy (12) Busay (13) Marlangga (16)

Reason B - Destroyed	dam by flood damages
Katubugan (4)	Nabuhay (17)
Bagtingon (19)	Nalbog (20)

Reason C - Non-maintenance of intake works and canals

Amoingon (2)Balanacan (6)Lipa (8)Banuyo (21)Landy-Baliis (7)

Reason D - Dry-up of water source Malinao (18) Bonliw (11)

2) DA

All of the DA projects are not presently maintained because no technical person is actually supervising the project after it was turned over by the defunct Farm Systems and Development Corporation (FSDC) to DA.

F-1-3 Irrigation Planning

1) Effective Rainfall

The effective rainfall for paddy cropping is estimated as the amount of 80% of daily rainfall more than 5 mm and less than 80 mm.

2) Cropping Calendar

In order to increase farm income and to reach self sufficient of rice, double cropping system would be recommended. (refer to Figure F-1-2)

3) Irrigation Efficiency

The irrigation efficiency of 0.5 (based on conveyance loss of 20% on the main and lateral canals, distribution loss of 20% and application loss of 20%) could be applied in designing the facilities.

## 4) Evapotranspiration and ETerop

The maximum rate of 5.8 mm/day and the minimum rate of 3.1 mm/day of evapotranspiration could be calculated in May and January, respectively. The crop coefficient ratio fluctuated from 0.95 to 1.1. Therefore, monthly ETcrop rate will vary from 3.7 in October to 5.0 um/day in June for the first crop, from 3.3 in January to 5.1 mm/day in March for the second crop. The percelation rate of 1.5 mm/day could be used by considering the soil texture in a paddy field. (refer to Tables F-1-4 and F-1-5)

5) Water Requirement on Preparatory Works

Irrigation water will be necessary for the preparatory works such as ploughing, harlowing and land leveling before transplanting of paddy when the farmers meet no adequate amount of rainfall. The amount of water requirement (WR) on the preparatory work would be calculated by a following equation.

WR = SW + S1 + S2 + EV + P + SL

SW; standing water depth for transplanting = 50 mm

- S1; amount of water to saturate the top-soil = 15 mm
- S2; water to be required for saturation of sub-surface soil = 15 mm

EV; mean evapotranspiration rate during the preparatory works

first crop (5.0 + 4.9)/2 = 4.8 mm second crop (4.2 + 3.9)/2 = 4.1 mm

P + SL;	percolation and	seepage loss = 1.5 mm/day
EV + P + SI;	first crop	(4.8 + i.5) x 20 days = 130 mm
	second crop	$(4.1 + 1.5) \times 20 \text{ days} = 110 \text{ um}$

The amount of water depth (WR) of 210 mm (= 50 + 15 + 15 + 130) would be necessary for the preparatory works of the first crop, and also 190 mm for the second crop. Water for the preparatory works will be given on a field at three times.

Application	First Crop	Second Crop
First application of water at 20 days before transplanting	80 mm	70 mm
Second application at 10 days before transplanting	80 mm	70 mm
Third application of water at one day before transplanting	50 mm	50 mm

6) Irrigation Return Flow

Considering the location of the irrigable area and irrigation method of paddy cultivation, some amount of return flow of irrigation water would be expected in the area. For the study, the rate of 25% of the amount of the paddy irrigation would be assumed and applied for irrigation planning. In this case, some suitable facilities would be required to catch water at the downstream of the irrigation system.

7) Diversion Water Requirement

The 10-days diversion water requirement is calculated by using the proposed rainfall of one to five years in return period. The maximum value without effective rainfall is 1.6 lit/sec/ha. (refer to Table F-1-6)

F-1-4 Proposed Irrigation Projects

1) Proposed Irrigation System

The gravity irrigation system is the most advantageous for farmers due to low operation and maintenance cost. First priority would be given to this system. Small scale water impounding project would also be proposed depending on the topographical, hydrological and geological conditions necessary for the foundation of the dam. When the intake water level is lower than the elevation of the target irrigation area, pump irrigation system would be recommended.

F-5

# 2) Proposed Irrigation Acreage

The first priority to irrigate the target area would be given to the rehabilitation works of the existing irrigation system (760 ha). In the Study Area, 27 new irrigation projects would be proposed based on the topo-maps on a scale of 1:10,000. The new construction of irrigation system has 2,760 ha of potential area. These projects would include paddy field of about 1,240 ha which would be intercropped in the coconut lands. A cropping intensity of 75% is expected taking into consideration actual cropping density of coconut trees and soil acceptability of paddy.

1,650 ha x 75% = 1,240 ha

The proposed irrigation projects would be executed for three development stages as follows:

. .

Development Stage	Project	Paddy Area
Short herm	Rehabilitation of existing facilitie	25
	(21 CISs, 4 CPs, 2 SWIPs)	760 ha
	On-going 4 CIPs	260
	Tagum-Angas CIP	480
	(Sub Total)	(1,500)
Nedium Term	9 projects of the First Package CIP	680
	(Sub Total)	(680)
Long Term	Binunga MPP	710
	Other 12 CLPs	630
	(Sub Total)	(1,340)
	Total	3,520
Grand Total	3,520 ha + 390 ha (Self Irrigation)	= 3,910 ha.

After completion of above projects, the irrigable area will expand to 3,910 ha as 4.3 times bigger than the present area. (refer to Figure F-1-3 and Table F-1-7)

F-6

#### 3) Rehabilitation

Four systems namely: Poctoy, Marlangga, Mabuhay and Maliuao which have drought problems during the dry season would be changed to impounding type facilities. Because the intake site of Malinao CIS is not suitable to impounding type, this system will be supplied water from neighbouring Bonliw CIS to be reconstructed to impounding type. Full reconstruction of intake work would be undertaken for Amoingon, Bagtingon and Malbog systems which were damaged by typhoon and seepage.

Rehabilitation work for the existing irrigation systems are as follows:

a) Intake Work (Total 18) Full Reconstruction 3 Partial Improvement 9 Conversion to Impounding Type (H less than 10m) 4 Mini-Concrete Dam 2

Also, water gates would be provided for a more effective use of water resources and protection for flood discharge that will invade the farm.

b)	Canal Improvement	(Total 45 km)
	Concrete Canal	24
	Earth Canal	21

These projects would be undertaken on a short term development basis.

4) New Projects

The on-going 4 CIPs and Tagum-Angas CIP are nominated for short term development programme. For medium and long term development, 9 CIPs and 13 CIPs as well as Einunga MPP will be proposed for development. a) CIP (Communal Irrigation Project)

The total number of above CIPs is 26, and 8 CIPs out of them have been completed in detail design by NIA. (refer to Table F-1-8 and Figures F-1-6 to F-1-8)

b) Tagum-Angas CIP

The Tagum-Angas CIP is small scale resources project located in Sta. Cruz. Detailed drawing of this dam has been completed by NIA, and its purposes are irrigation, village water supply and hydro power. The irrigation service area is 630 ha (480 ha paddy and 150 ha diversified crop). To supplement the upland areas, irrigation facilities such as farm ponds would be implemented after developing field irrigation management techniques for diversified crops. The village water supply is proposed of 324 cu.m per day as follows:

60 lit x 5,400 persons = 324 cu.m/day

The hydro power generation is 1.4 GWH per annum. (refer to Figure F-1-4 and Tables F-1-9, F-1-10)

c) Binunga MPP

Binunga Dam is proposed at the upstream site near Boac river confluence with Culapnit river, and its drainage area is 84 sq.km. Binunga MPP consists of four purposes, namely; irrigation, water supply, hydro power and flood control. The service area is 920 ha of paddy including the existing CISs area of 210 ha which is spread on the right bank side of Boac river.

As a result of water balance for 25 years, the reservoir capacity for these water utilization scheme is 5.7 MCM for w=1/10 years. All the water releases for irrigation and water supply would be utilized for power generation of 3.0 GWH per annum. Further this dam has flood

control capacity of 4.2 MCM that is equivalent to the rainfall of 50 mm on the catchment area. The reservoir sediment volume is estimated at 2.1 MCM for 50 years using the specific sediment value of 500 cu.m/sq.km/year. The total reservoir capacity is 12 MCM. The height of dam above streambed is 32 m and the volume of embankment is 450,000 cu.m.

Alternatively, if the paddy area (about 100 ha) in the left side of Boac river was appended to the service area, the water utilization capacity of this dam would be 7.2 MCM, and 13.5 MCM of the total reservoir capacity. Because the existing hydrological data in the Boac river basin is insufficient to planning water utilization, the data of Tawiran river was used for the water balance of Binunga dam. Further hydrological analysis and feasibility study for above problems would be needed in the near future. (refer to Figure F-1-5 and Table F-1-11)

## Table F-1-1 Existing Irrigation Systems and Area

System/Project & Proper Authority	Potential Service Area (ha)	Actual Irrigated Area (ha)	Irrigation Service Efficienty (%)
1. Communal Irrigation System (NIA)	647	447	69
2. Communal Project (DA) Pump Gravity	124 27	63 0	51 0
3. Small Water Impounding Project (DA)	29	7	24
4. Individual Pump (NIA)	32	15	47
5. Self trrigation Private Pump Gravity	15 366	8 366	98
Total	1,240	(906) 900	73

Source: NIA Provincial Office and JICA Study Team (as of Aug., 1989).

## Table F-1-2 Present Condition of Existing CIS by NIA

ltem	No.	Potential Area (ha)	Act <u>Irri. A</u> W.Season	ual iréa (ha) D.Season	Service Irri. Efficiency(%)
······································		(1)	(2)		(2)/(1)
Total CISs	21	647	447	406	69
fully-operational	10	465	389	366	84
Partially operational	7	118	58	40	49
Non operational	4	64	-	-	~

Source: NIA Provincial Office and JICA Study Team

## Table F-1-3 Present Condition of CIS's Facilities

No.	Name of CIS	Potential	Irri.	Type of		Irrigat	ion Facilit	ies	· _ ·
140.	NUMBERT GES	Area	Area	Diversion	M. Canal	L. Canal	On Farm	Total	Density
		(ha)	(ha)		(km)	(km)	(km)	(km)	(m/ha)
1.	Mansabang	150	150	Gate	1.2	3.7		4.9	33
2.	Assoingon	10	5	Core	1.5	-		1.5	150
3.	Maybo-Malbog	13	10	Trape	1.5	-	0.4	1.9	146
4.	Katubugan	16	5	Core	1.5	1.5	~	3.0	188
5.	Fawa-Tagwak	32	10	Pier	0.6	1.0		1.6	50
б.	Balanacan	16	10	Trape	1.0	-	0.6	1.6	107
7.	Landy-Baliis	60	60	Trape	2.8	1.4	1.9	6.1	102
8.	Lipa	10	5	Core	0.1	1.0	-	1.1	110
9.	Hatuyatuya	23	15	Ogee	0.8	1.0		1.8	- 78
10.	Sibuyao	11	10	Ogee	1.2	0.4		1.6	145
11.	Sonliv	20	20	Ogee	1.9	1.0	-	2.9	145
12.	Poctoy	15	-	Ogee	1.6	0.8	1.}	3.5	233
13.	Busay	5	3	Trape	1.8		-	1.8	360
14.	Malindig	27	27	Core	3.1	<u>-</u>	1.3	4.4	163
15.	Llaya	19	18	Ogec	1.3	-	-	1.3	68
16.	Marlangga	22	-	Ogee	1.0	-	-	1.0	45
17.	Mabuhay	15	-	Ogee	0.5	-	·	0.5	33
18.	Nalinao	12		Ogee	0.5		_ · · ·	0.5	42
19.	Bagtingon	9	9	Core	1.5			1.5	167
20.	Malbog	133	70	Ogee	6.6	0.7	3.0	10.3	- 77
21.	Вапнуо	30	20	Pier	1.1	1.3	1 <u>-</u>	2.4	80
	Total	647	447		<u>33.1</u>	13.8	8.3	55.2	
			Density	51	21	13	85 (m.	/ha)	

Source: Based on General Layout Plan of C15 by NIA

Note : Trape = Trapezoidal

ltem	Jan.	Feb.	Nar.	Δpr.	May	Jun.	Jul.	Λug.	Sep.	Oct.	Nov.	Dec
W	0.74	0.75	0.76	0.77	0.77	0.77	0.77	0.76	0.77	0.76	0.76	0.75
Rns	4.0	5.0	6.1	6.4	5.8	5.0	5.0	4.7	4.5	4.5	4.4	3.6
£(T)	13.2	13.4	13.7	13.8	13.8	13,8	13.8	13.8	13.7"	13.5	13.3	13.1
f(ed)	0.14	.0.11	0.11	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.11
f (n/N)	0.42	0.55	0.64	0.64	0.55	0.42	0.42	0.37	0.37	0.42	0.46	0.37
Rn1	0.8	0.8	1.0	0.9	0.8	0.6	0.6	0.5	0.5	0.6	0.6	0.5
Rn .	3.2	4.2	5.1	5,5	5.0	4.4	4.4	4.2	4.0	3.9	3.8	3.1
1 – W	0.26	0.25	0.24	0.23	0.23	0.23	0.23	0.24	0.23	0.24	0.24	0.25
E(u)	0.65	0.65	0.84	0.84	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.84
ea	32.3	33.2	35.1	37.8	39.2	38.3	37.2	35.9	36.8	36.1	35.5	33.0
ed .	20.3	28.2	27.7	29.5	30.6	31,0	30.7	30.7	30.5	30.4	29.8	27.3
ea-ed	2.0	5.0	7.4	8.3	8.6	7.3	6.5	5.2	6.3	5.7	5.7	5.7
WxRn	2.73	3.15	3.88	4.24	3.85	3.39	3.39	3.19	3.08	2,96	2.89	2.33
(1-W)x(f(u x(ca~ed)	1) 0.34	0.81	1.49	1.60	1.29	1.09	0.97	0.81	0.94	0.89	0.89	1.20
Eto	3.1	4.0	5.4	5.8	5.1	4.5	4.4	4.0	4.0	3.9	3.8	3.5

Table F-1-4 Calculation of Evapotranspiration by Penman Equation

Note: Annual Eto = 1,566.4 mm, Neteorological data = Calapan (1977 - 1986)

Table F-1-5 ETcrop of Paddy

		Fir	st Crop	Seco	nd Crop
Month	Eto	Kc	ETcrop	Kc	ETcrop
. · · · ·	(mm/day)		(mm/day)		(mm/day)
Jan.	3.1	-	-	1.05	3.3
Feb.	4.0	-	-	1.05	4.2
Mar.	5.4	-		0.95	5.1
Apr.	5.8	-		1	-
May	5.1	·	-	•	-
Jun.	4.5	1.1	5.0	-	-
Jul.	4.4	1.1	4.8	-	-
Aug.	4.0	1.05	4.2	_	-
Sep.	4.0	1.05	4.2	-	
Oct.	3.9	0.95	3.7	-	·
Nov.	3.8	-		1.1	4.2
Dec.	3.5			1.1	3.9

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	·     ·     ·     ·       19     -     -     -       53     57     57     57       38     57     57     57       57     67     67     67       57     85     85     85       57     85     85     85       57     85     85     85       57     85     85     85       50     1.0     1     1       53     42     43     12       67     67     67     67       67     63     64     10       67     63     64     0       67     63     64     0       68     0.8     0.7     0

Table F-1-6 Diversion Water Requirement Computation

Table F-1-7 Proposed Irrigation/Drainage Project by Stage

(Cont')

Irrigable Incake Drainage Develop-

		• .									• .																					
	Renarks		**	1	**	**	**	•	**	**	**	**	**	**	**	· **	**	**	ſ	**	**	1		1	ſ	ı	**	ı	**	18		
	Develop- ment Scage	S(R)	S (R)	S (R)	S(R)		S(R)	S(R)	S (R)		S(R)	S(R)	S (R)	S(R)	S(R)	S(R)	S(R)	S(R)	S (R)	S(R)	S (R)	S(R)		S (R)	S (R)	S(R)	S(R)	S(R)	S (R)			
	Drainage Improve- ment (ha)	150	10	2	16	32	15	60	10	33	11	20	15	.v	27	19	22	15	12	6	70	30		ς Ω	59	12	2.7	12	17			
	Tncake Type	0	5	ດ	A	C C	р	G	Â	<b>A</b>	۵	1/Q	1/G	0	۵	þ	1/d	I/O	ຄ	Q	Д	റ		D.,	Đ,	β.	D	H	н		·	
	Irrigable Area (ha)	150	2	13	16	32	. 15	60	10	23	11	20.	15	ŝ	27	19	22	. 15	12	ø	20	30	584	53	υ 10	12	27	12	17	180	(764) 760	
	Name of Project	Mansabang	Amoingon	Maybo-Malbog	Kacubugan	Pawa-Tagwak	Balanacan	Landy-Baliis	Lipa	Масиуагиуа	Sibuyao	Bonliw	Poctoy	Busay.	Malindig	llaya	Marlangga	Mabuhay	Malinao (*l)	Bagtingon	Malbog	Banuyo	Sub-Total	Masiga	Laon	Bincakay	Mabunay	Pawa	Bancad	Sub-Total	Toral	
÷		⁻	~	m	4	, NJ	¢	~	<b>10</b>	6	01	깈	12	(n) - 1	14	13	16	17	13	61	50	21		50	51	52	53	54	55			
	No.	CIS	÷	F	-	= :	5	z	5	.∶ ¥	Ξ.	Ŧ.	E	5	=	:	=	÷	-	÷	2	=		g	:	:	£	SWIF	z			

.CP - Communal Project (DA) - Communal Irrigation System (NIA) - Small Water Impounding Project (DA) - Communal Irrigation Project (NIA) CIS SULP CIP D

Notes:

- Multi-purpose Project

- Diversion G - Intake Gate P - Pump - Impounding Type /I - Change to Impounding Type - Shorr Term M - Medium Term L - Long Term

- Rehabilitation Project - New Project N) (S S I

- Rehabilitarion of Intake Work *

Malinao C/S will be supplied water from Bonliw CIS's intake work to be reconstructed for impounding type. ¥

	Remarks		On soine		-	=	. '																			÷				
Develop-	nent Stage	6	S (N)	S(N).	S (N)	S(N)	M(N)	(N)	M(N)	X(N)	(N)	(N)	(N) W	(N) W	(F) F	L(N)	T(N)	<b>1</b> (N)	L (N)	(N)	$\Gamma(N)$	$\Gamma(N)$	r(n)	$\Gamma(N)$	L (N)	(N) S	(N) T	I (N)	L(N)	
Drainage	Improve- ment (ha)		20	160	60	20	06	00	80	45	25	20	200	120	40	40	50.	25	52	710	70	50	110	45	55	087	06	40	50	
Incake	Type	].	<b>A</b>	ດີ	ĥ	Q	ч	ЪЧ	н	H	ີ ຄ	H	н	н	н	⊧⊣	ы	<u>р</u>	р С	Reservoir	н	н	н	ი	Ţ	Reservoir	н	βu	n	
Irrigable	Area (ha)		20	160	60	50	90	00	80	45	25	50	200	120	40	40	50	25	25	710	20	50	110	5 1 1	35	_	06	40	50	2,760
Name of	Project		Tumagabok	Laon-Mataas	Tawiran	Malindig Ext.	Bahi	Cabugao	Bachao	Antipolo	Amoingon	Balagasan	Baguingon	Bangbang	Masaguisi	Cawit	Tugos (North)	Tugos (East)	Maybo Ext.	Binunga (*2)	Manlunay	Tiguion	Dawis	Bintakay	Buangan	Tagum-Angas (*3)	Laylay-Ihatub	Masiga Ext.	Tapuyan	Total
			22	n N	24	5 10 10	26		30 ()	29	0 M	31	32	33.	34	ა ი	36	37	38	69	04	41	42	4	44	տ †	46	47	87	
1			CIP	=	2	=	=		2	r	±.	<u> </u>	5	÷	2	=	٤	÷	<b>-</b>	ЧРР	CIP	=	=	Ξ	=	= ·	Ŧ	z	2	

Grand Total (*4) 3.910

Total Service Area, 630 ha = 480 ha (Paddy) + (150 ha (Diversified Crop) *2 Total Service Area 920ha = 710ha + 210ha (Existing CISs) ÷ Notes:

*4 3,910ha = 2,760ha + 750ha (Existing CIS, CP and SWIP) + 390ha (Individual Pump/Self Irrigation)

Source: JICA Study Team (based on copo-map 1:10, 200)

Table F-1-8	Engineering	Data d	of	First	Package	CIP
-------------	-------------	--------	----	-------	---------	-----

Engineering Pata				Project	Name			1.
haginering bara	Cabugao	Bachao	Antipolo	Airoingon	Balagasan	Bagt ingon	Bangbang	Masaguisi
Municipality	Gasan	Gasan	Gasau	floac	Boac	Buenavista	Gasan	Sta. Crug
Service Area (*1) - ha	30	80	45	25	50	200	120	40.
lutake Type	Storage	Storage	Storage	Diversion	Storage	Storage	Storage	Storage
Drainage Area - sq.km	.1.1	2.8	2.5	2.6	2.1	8.2	0.8	0.2
Height of Daw ~ m	13.5	15.5	21.5	-	14,0	22.0	15.0	12.0
Volum of Dam - cu.m	43,500	50,700	94,700	-	59,500	166,800	68,100	53,100
Irri. Requirement - cum/s	0,080	0.192	0.129	0.064	0.096	0.384	0.144	0.080
Reservoir Capacity - MCM	0.334	0,740	0,420	-	0.350	1.400	0.600	0.180
Canal Length - km								
Main	1.82	4.19	1.68	2.00	2.10	6.47	2,38	1.63
Lateral	2.08	1.56	1.62	-	1.32	2.67	1.75	

Source: Marinduque Errigation Development Project by NIA (July, 1989)

Sole : (*1) based on scale 1:10,000 topo maps by JICA Study Team

## Table F-1-9 Engineering Data of Tagum-Angas C1P

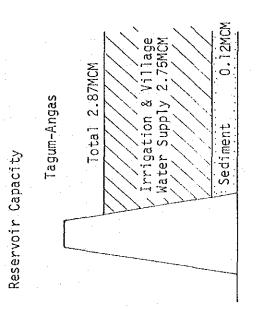
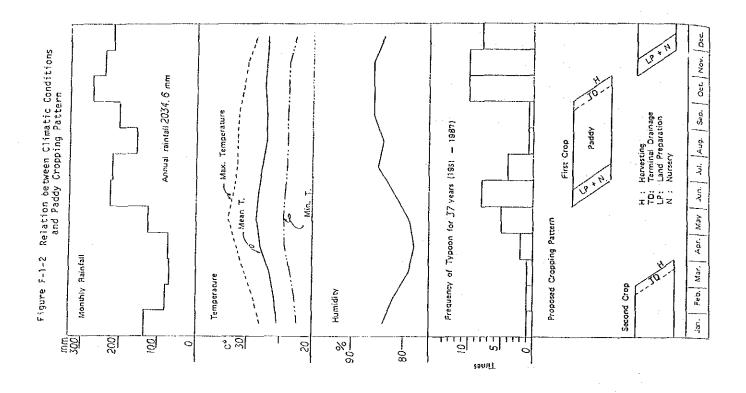
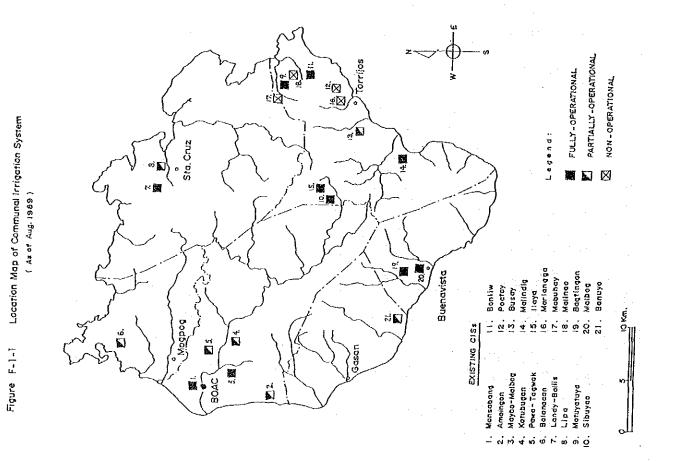

HVDROLOGI CAL DATA		RESERVOIR AREA AT	
Drainage Area Above Dam - sq.km	25.00	Maximum Water Surface Elevation - ha	35.20
terating, and white man street	21100	Normal Water Surface Elevation - ha	26.40
Weam Annual Rainfall ~ em	1657.00	Ninimum Water Surface Elevation - ha	3,20
Hean Annual Bun-off - MCH	19.66		
laflow Design Flood - cu.m/s	381.20		10 A
		RESERVOIR CAPACITY AT	
1 OCALION	Devilla River		
		Maximum Water Surface Elevation - MCM	3.648
Dam		Normal Water Surface Elevation - MCN	2.865
lype	Reekfill	Minimum Water Surface Elevation - MCM	0.119
Height of Dam above Streambed - m	31.60		
Crest Elevation = m	70.60	URRIGABLE AREA	
Crest Leagth = m	125.00		
Crest Width - m	8.00	Paddy (480ha) + Deversified Crop (150h	a) = 630 (*)
Base Width - m	140.00		•
Voluese of Embankment - cu.m.	131,300	HYDRO POWER FACILITIES	
		Installed Capacity - KW	300
8111189A		Number and Capacity of Units - KN	3-100
		Rated Bead = m	20,90
Type	Side Channel with	Maximum Head - m	26.40
	Chute & Flip Bucket	Minimum flead, - m	13,40
Crest Width - m	40.00		
Crest Elevation - m	66.00	POWER WATERWAY	
thute Width - m	10.00		
Design Capacity = cu.m/s	333,74	Diameter of Penstock - m	0.35 m l
		Controls	3-0.35 m & Butterfly
DIVERSION AND OFFICE NORKS			Valves
		ABNUAL ENERGY CENERATION	
Type	R.C. Conduit		
Sucher and Size	1-2.5 m. diameter	Firm - CMP	0.5
Control	2-0.60 m. diameter	Secondary - GMH	.0.9
	H.F. Cates	Total - GWH	1.4 (*)
Diversion Requirement During Construction -			
cu.m/s	30.20	SWITOBYARD	Outdoor 10.00m x 6.03
Trrigation Requirement - cu.m/s	0.53		
Power Requirement - cu.m/s	1,83		
<ul> <li>Papacity at Normal Water Surface Elevation -</li> </ul>			
cu.#/s	5.06		
Capacity at Minimum Water Surface Elevation	1.83		
RESERVOIR ELEVATION		Source: F/S Report (NIA)	
Maximum Water Surface Elevation - m	68.58	(*) JECA Study Team	·
Normal Water Surface Elevation - m	66,00	(*) JIGA SEUGY TEAM	<u></u>
finimum Water Surface Elevation - m	46.00		
atotodo auto aŭticio alcadian - 8	90.14		· · · · · ·

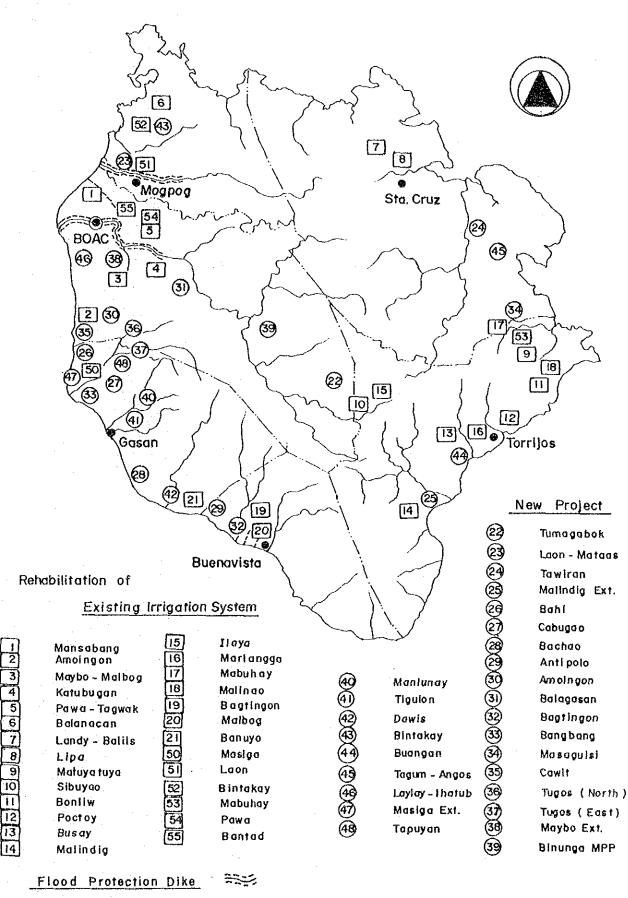
Table F-1-10 Water Balance of Tagum-Angas CIP

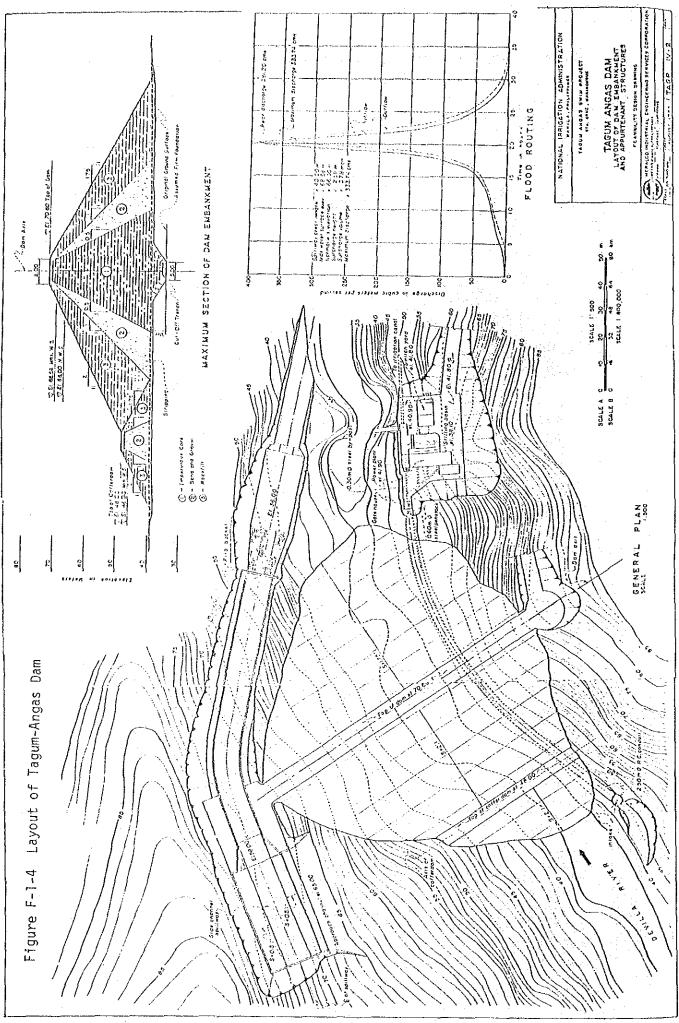
AREA= 630.0 HAS. *** *** WATER BALANCE -- TAGUN.ANGAS

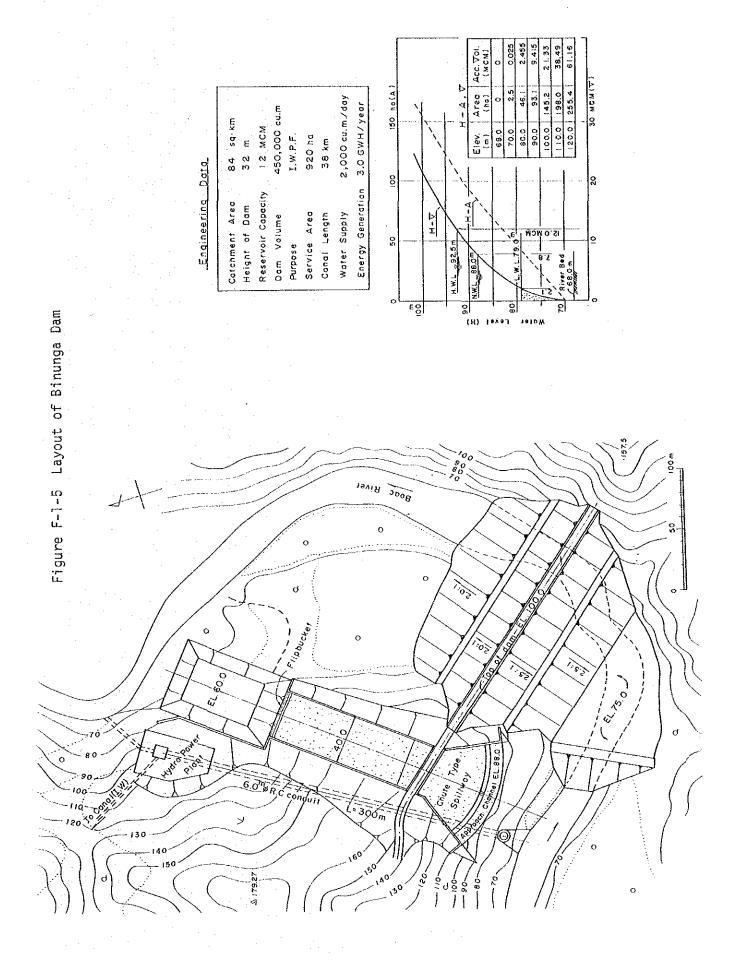
SHORT C-SHORT ENERGY VOLUME SPILL EVAPO YEAR INFLOW IRRI, SUPPLY POWER DEMAND CHCM) CMCM) CMCM) CMCM)

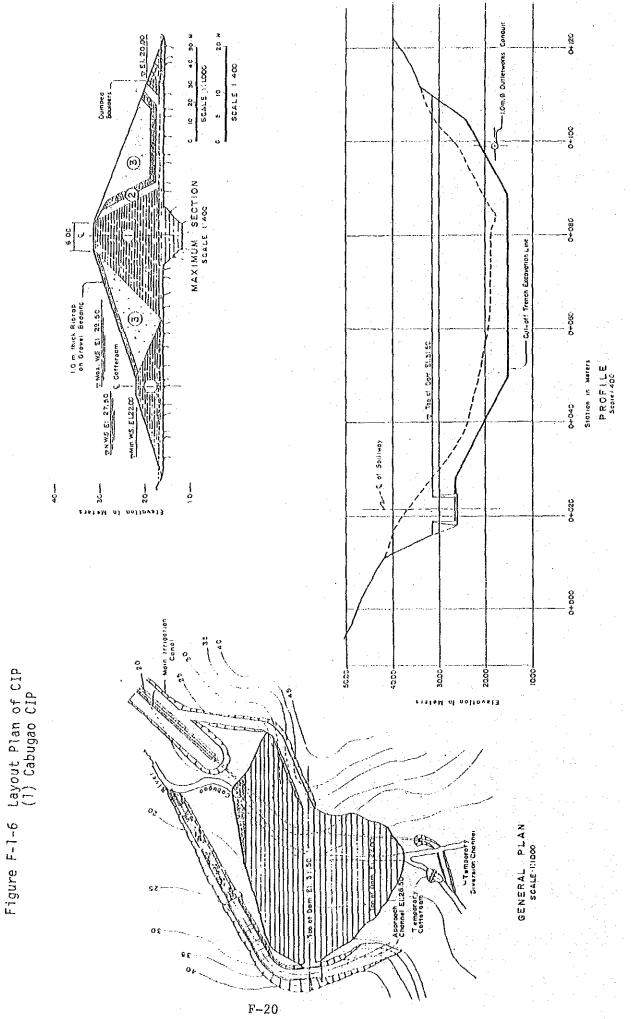

				2											1										-	
H-LEVEL KEL-M)	39.000	-66,000	61.923	62.780	66.000	66,000	000-99	-66,000	66.000	66.000	66.000	66.000	.66.000	66,000	66.000	66.000	66.000	66.000	62.245	66.000	66.000	66.000	66.000	66.000	66,000	
VOLUME	0.000	2.865	1.951	2.111	2.865	2.865	2.865	2,865	2.865	2.865	2.865	2,865	2.865	2.865	2.865	2.865	2.865	2.865	2.013	2.865	2,855	2.865	2.865	2,865	2.865	
ENERGY (GUH)	0.628	1.354	1.021	0.918	276.0	1.883	1.344	1.682	1.810	1.876	1.070	1.516	0.605	2.243	1.205	2.591	1.785	1.627	2.490	1.130	1.591	1.556	1.173	1.221	1.530	1.360
C-SHORT (MCM)	0.000	1.215	976.0	1.381	0.486	0,000	0.000	000.0	00000	0.000	000,000	0.000	.907.0	0,000	0.000	0.000	0.000	0.000	0.000	0.140	000 " 0.	0.000	000 10	000-0	0.000	0.123
SHORT (MCM)																								0.000		0.183
SPILL SPILL	2.713	12.890	7.741	7.731	6.482	1521	967.7	77227	26.296	20.072	25.162	9.592	0.000	5.269	1.856	3-961	18.375	22.722	6.399	10.661	12.681	8.961	2.693	1.461	3.842	9.242
EVAPO (MCM)	0.185	0.141	0.187	0.137	0.150	0.255	672.0	0.254	0.255	722-0	0.182	772.0	0.153	0.208	0.225	0.234	0.250	0.239	C.248	0.175	0.249	0.232	0.197	0.207	0.251	0.214
DEMAND																								22.922		25.418
POWER CMCM)																								14.821		17.316
SUPPLY CHCH)	0.120	0.120	0-120	0.120	0.120	0.120	0-120	0.120	0-120	0 120	0.120	0 120	0.120	0.120	C.120	0,120	0.120	0-120	0.120	0.120	0.120	0.120	0.120	0-120	0.120	0.120
IRRI. CMCM5	7.982	7.982	7.982	7.982	7.982	7.982	7.952	7.982	7.982	7.982	7.982	7.982	7,982	7.982	7.982	7.982	7.982	7.982	7.982	7.982	7.982	7.982	7.982	7.982	7.982	7.982
INFLOW	18.140	12-840	27 290	27-230	.27.350	44920	28.540	37.370	58,420.	53.380	36.290	36.790	14.330	28.820	23.810	32.680	50.130	55.360	32.260	34 150	41.180	37.130	25.380	24.590	31.180	34.806
YEAR	F	е. М	ы	7	۰، ۱	\$	~	ω	o,	9	F1 F1	12	ង	7	۲. ۲	19 19 19	17	18	61	20	21	.22	N N N	72	55	MEAN

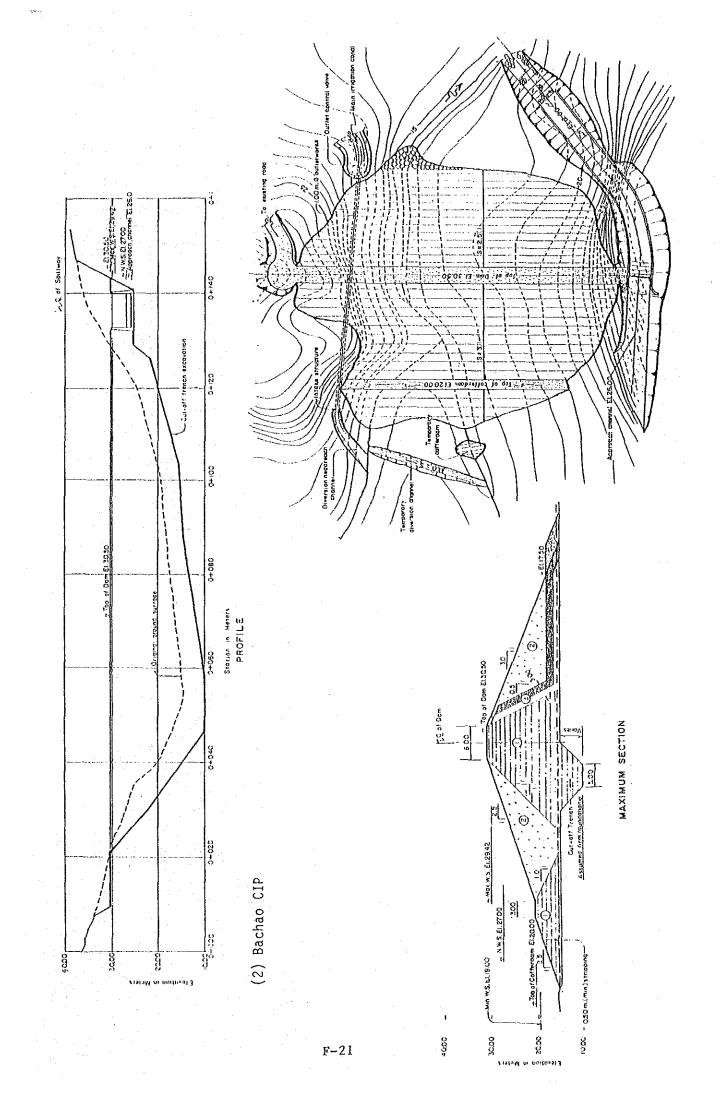


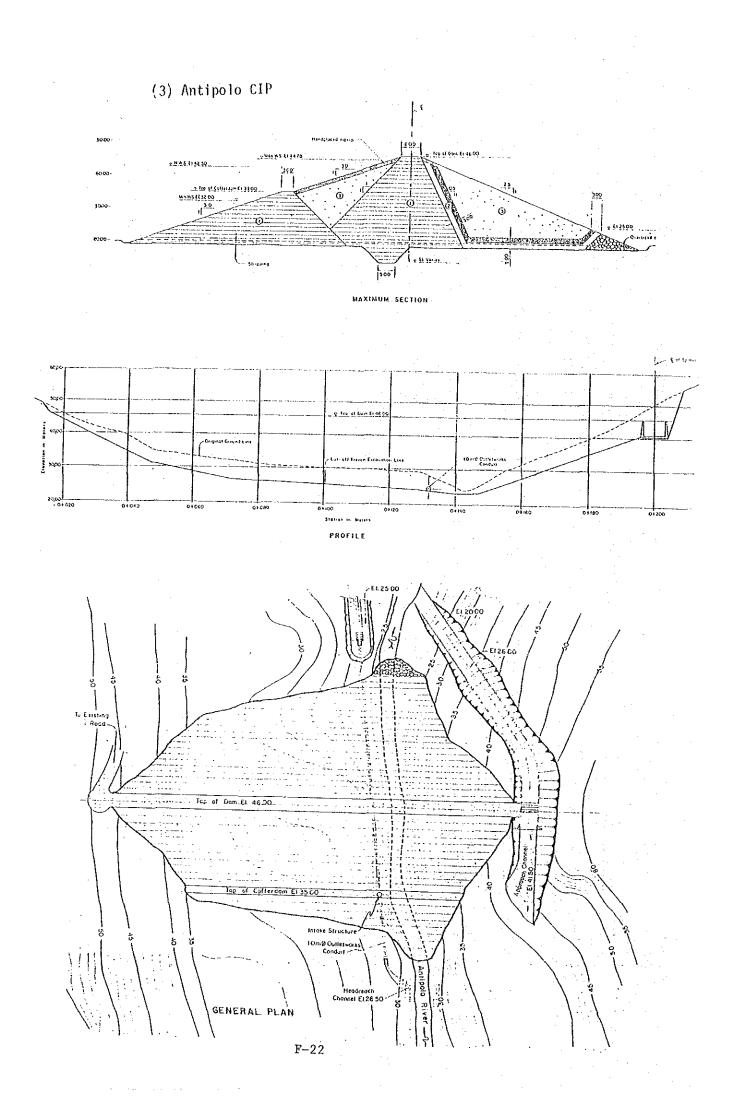


2.1MCM Flood Control 4.2MCM 5.7MCM ł I 1 Total 12.0MCM 4 1 Irrigation &. Water Supply 1 Sediment I 1 ų l i 1.1 1

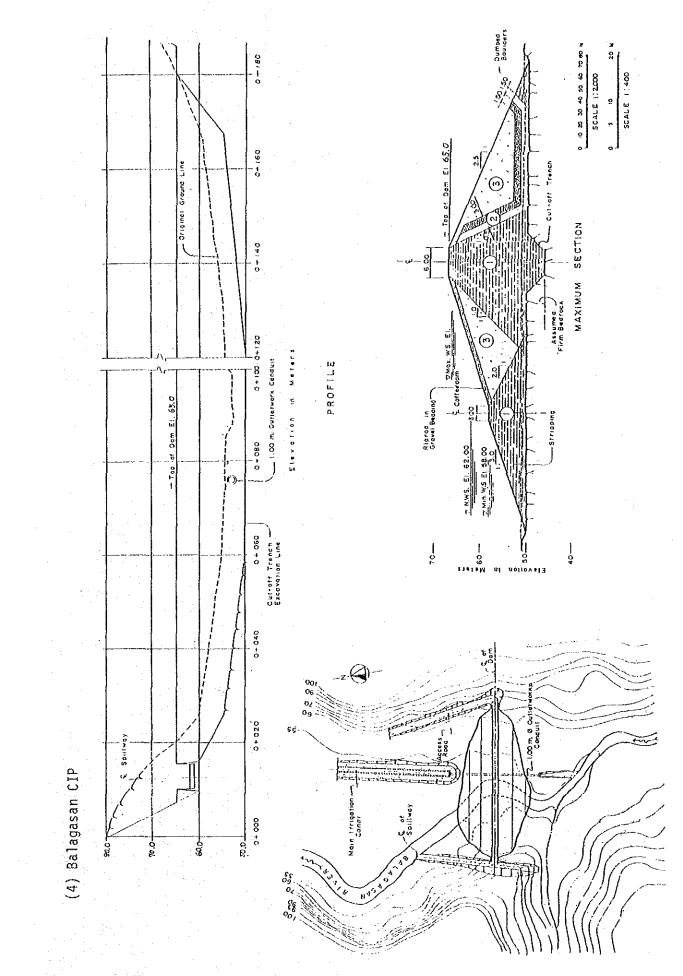

Binunga MPP

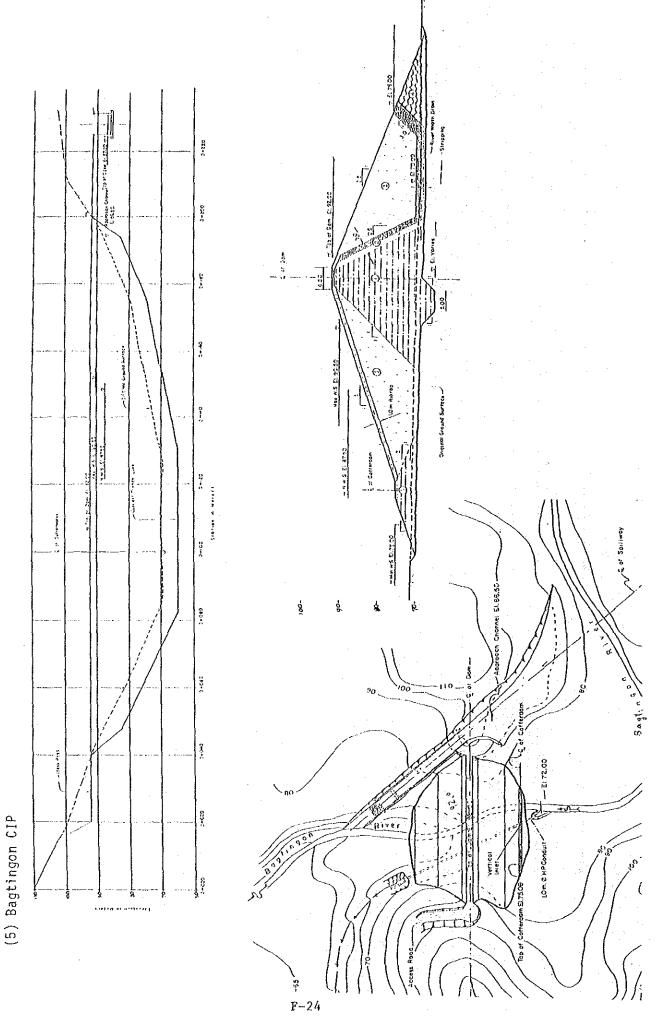

Mpp	BF=0.87 CU.M/S./100SQ.KM	4-LEVEL (EL-M)	88888888888888888888888888888888888888
		VOLUME	88888855588888888888888888888888888888
		CHUBS	445,822,420,420,420,420,420,420,420,420,420,4
		C-SHORT CMCM)	6 000000000000000000000000000000000000
	520.0 HAS.	SHORT (MCM)	6 000000000000000000000000000000000000
		SPILL (MCM)	719, 202 388, 302 388, 302 481, 302 482, 328 482, 328 482
Table F-1-11 Water Balance of Binunga	AREA=	EVAPO (MCM)	
	*** WATER BALANCE BINUNGA.MPP	DEMAND (MCM)	22222222222222222222222222222222222222
		POUER	8, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20
		CHORLY CHORNS	22 22 22 22 22 22 22 22 22 22
		IRRI. (MCM)	22222222222222222222222222222222222222
		U.R.D CMCMD	244 244 244 244 244 244 244 244 244 244
		BASE-F (MCM)	22, 733,950,950,950,950,950,950,950,950,950,950
		INFLOW)	80.950 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15.942 15
	¥	YEAR	นทพงพระระจะการการการการการการการการการการการการการก

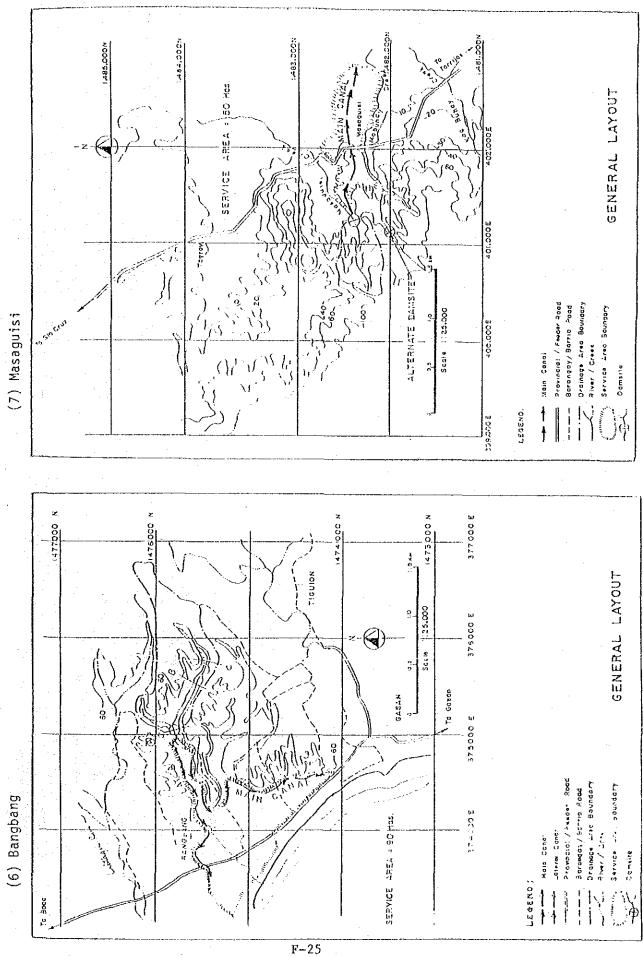


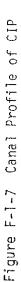



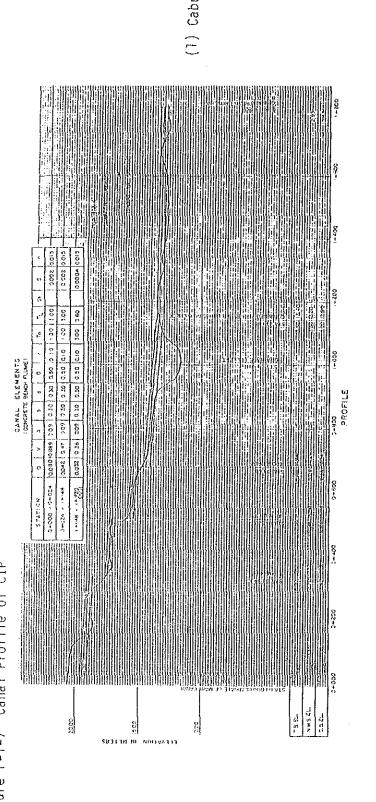



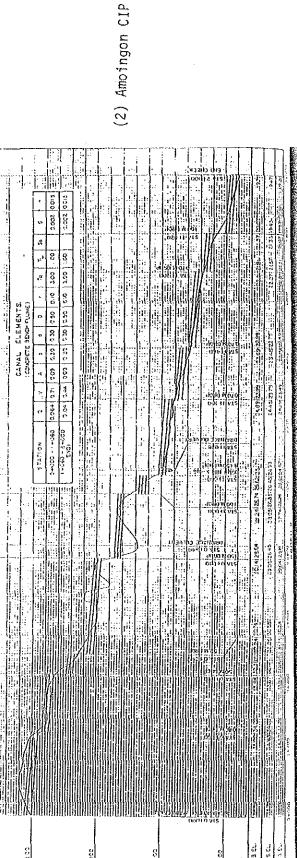







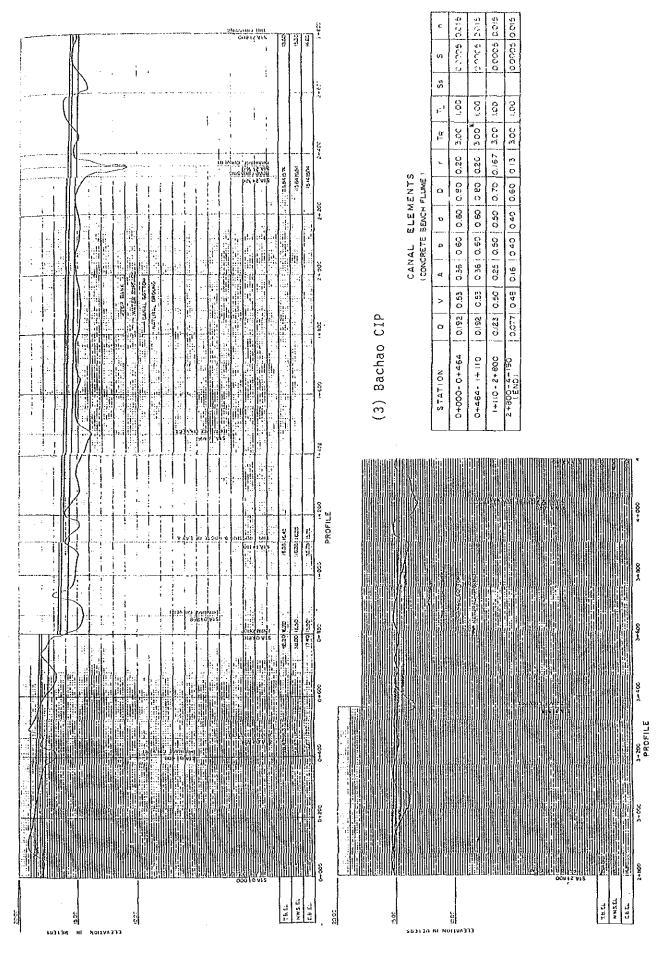


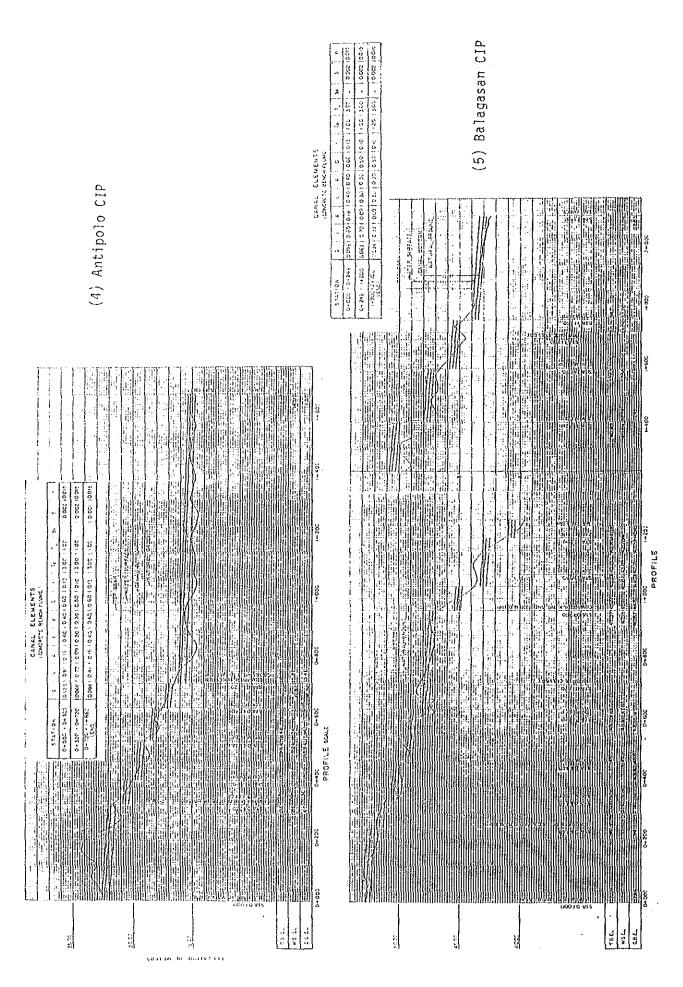


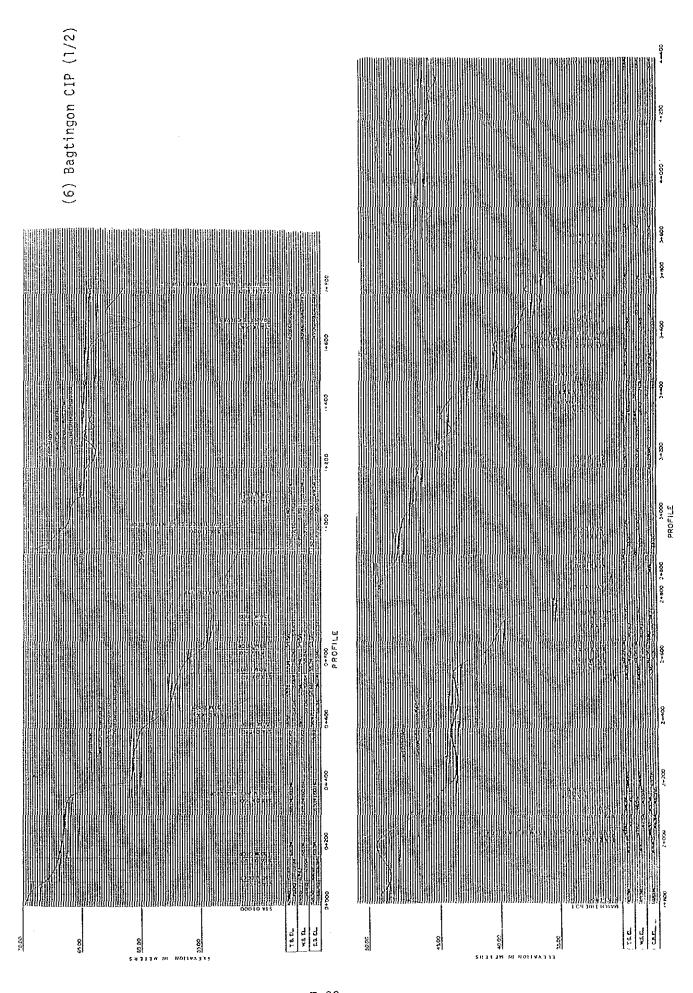



-13 E 1 

2003

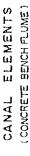

RAFTOR N NOTAVEER

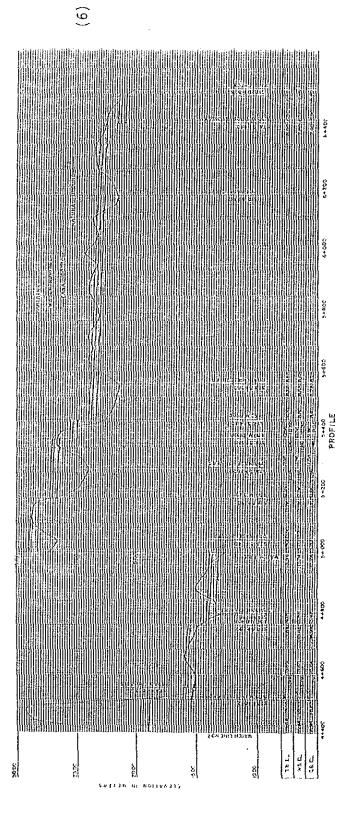

(1) Cabugao CIP


F~26

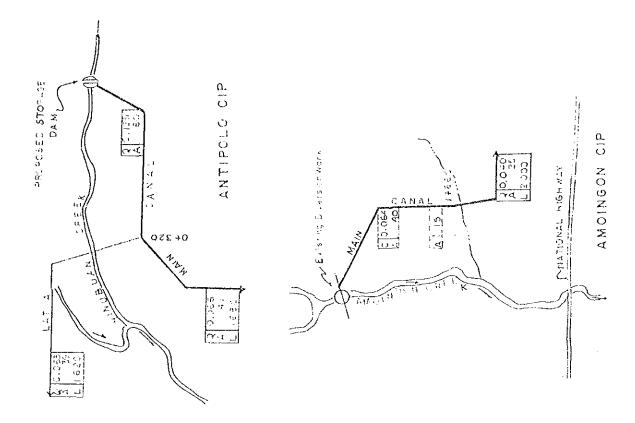
ទ្ឋ

0000



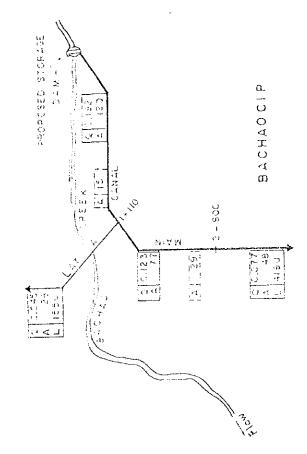



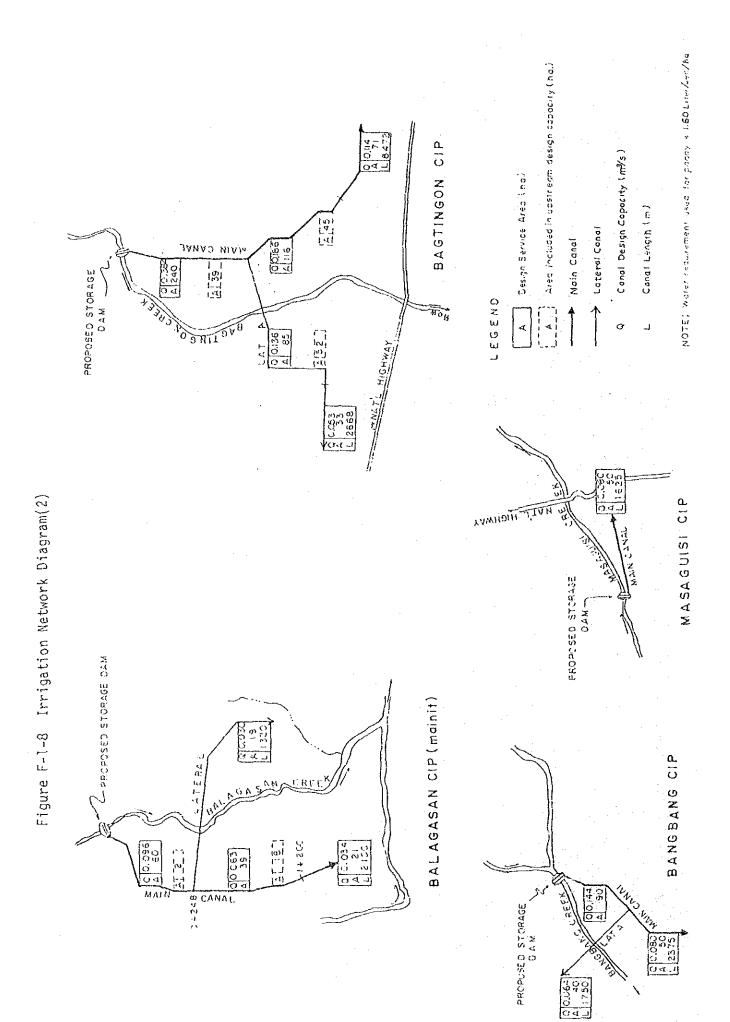




-29

0.015 0.015 0.015 0.001 0.015 0.001 0.015 0.001 0.015 С 0.00 0.001 0,001 ഗ ŝ 1.00 3.00 00.1 ğ 1.00 3.00 0.186 0.74 0.25 0.50 0.50 0.70 0.167 1.00 3.00 0.186 0.74 0.25 0.50 0.50 0.70 0.67 1.00 3.00 ہ=^{_1} 00'1 0.384 0.784 0.49 0.70 0.70 0.90 0.23 1.00 <u>ب</u>عد 0.384 0.784 0.49 0.70 0.70 0.90 0.23 0.30 0.23 0.13 Ļ 0.60 Δ 0.40 0.384 0.784 0.49 0.70 0.70 σ 0.40 ൧ 0.16 ব > 0.7 0114 σ 0+000 + 1+800 1+800 -2+220 2+220 - 3+572 3+572 -5+180 3+572 - 54180 5+180 - 6+548 (END) S TATION







(6) Bagtingon CIP (2/2)











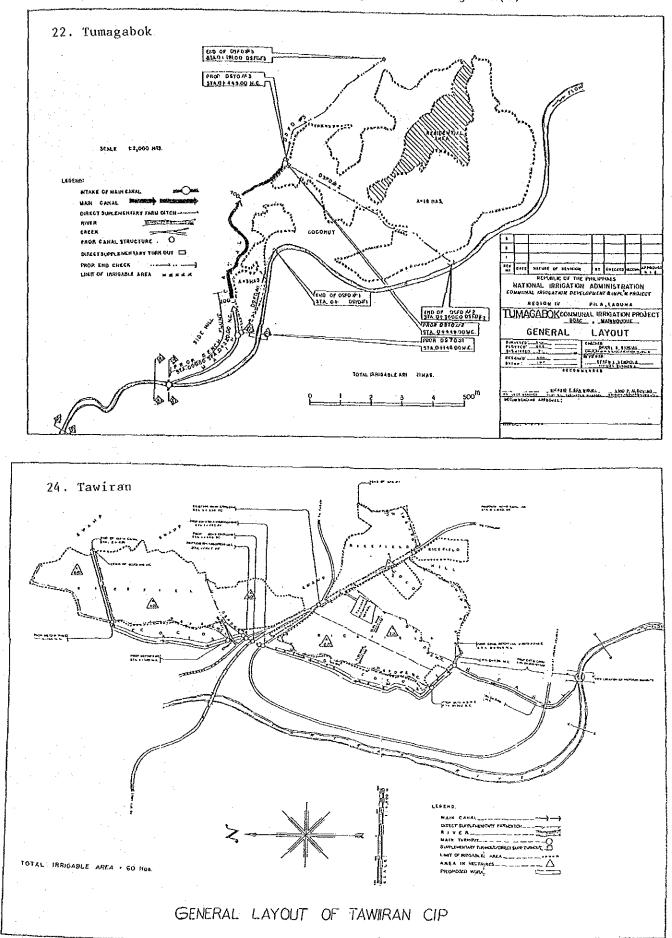



Figure F-1-8 General Layout of CIP by NIA(1)

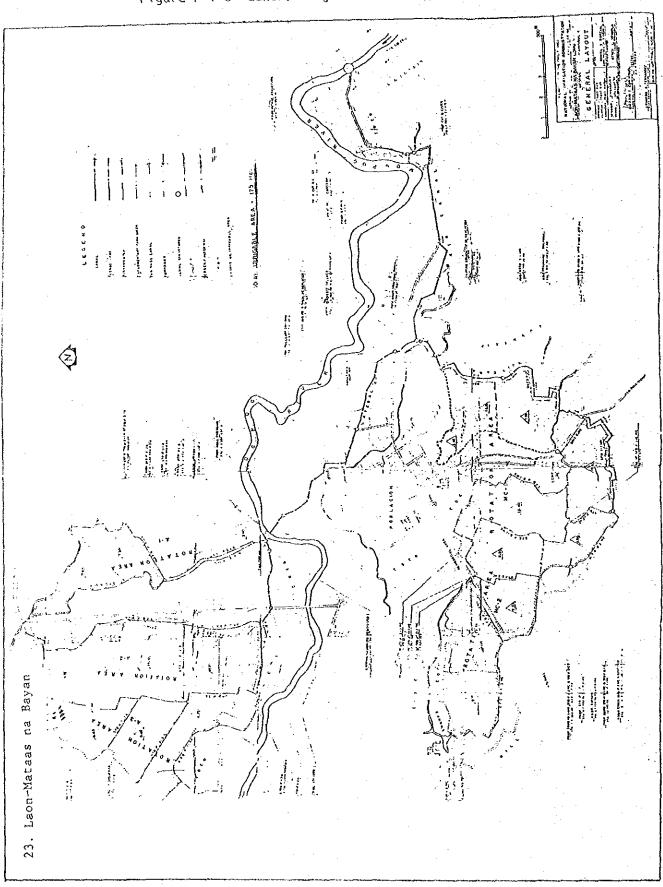
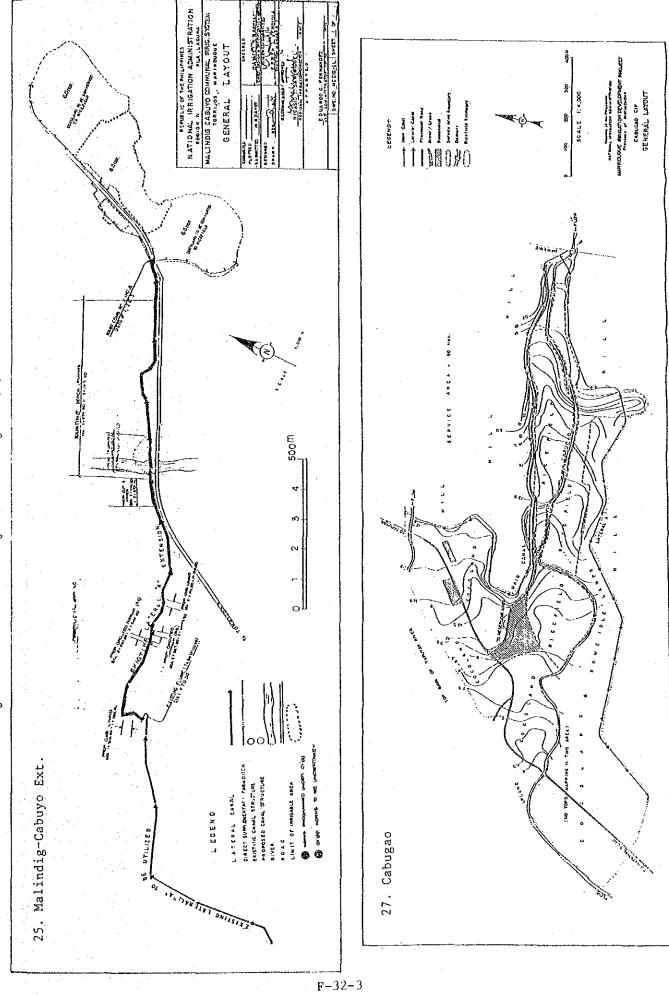
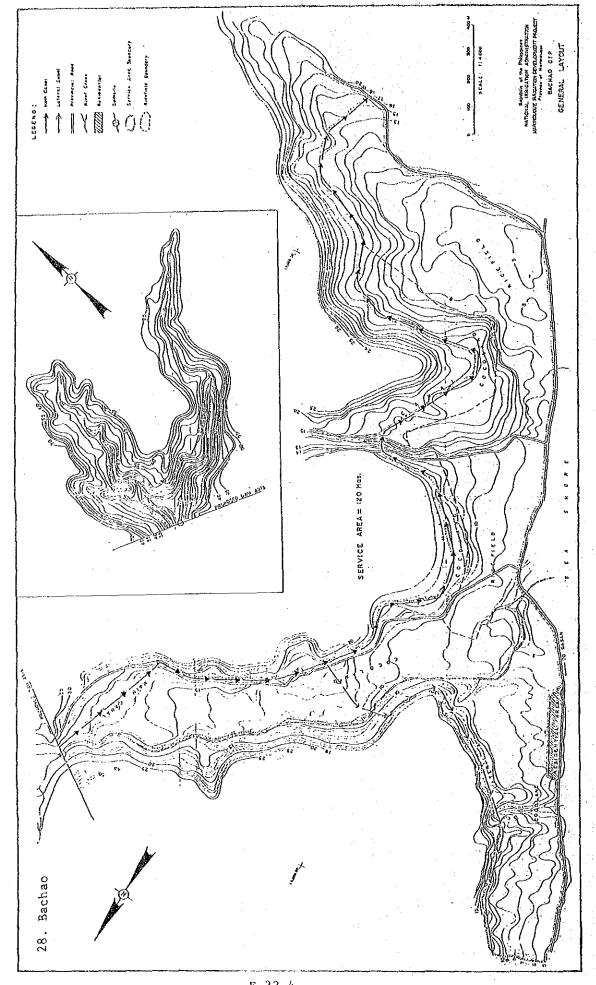




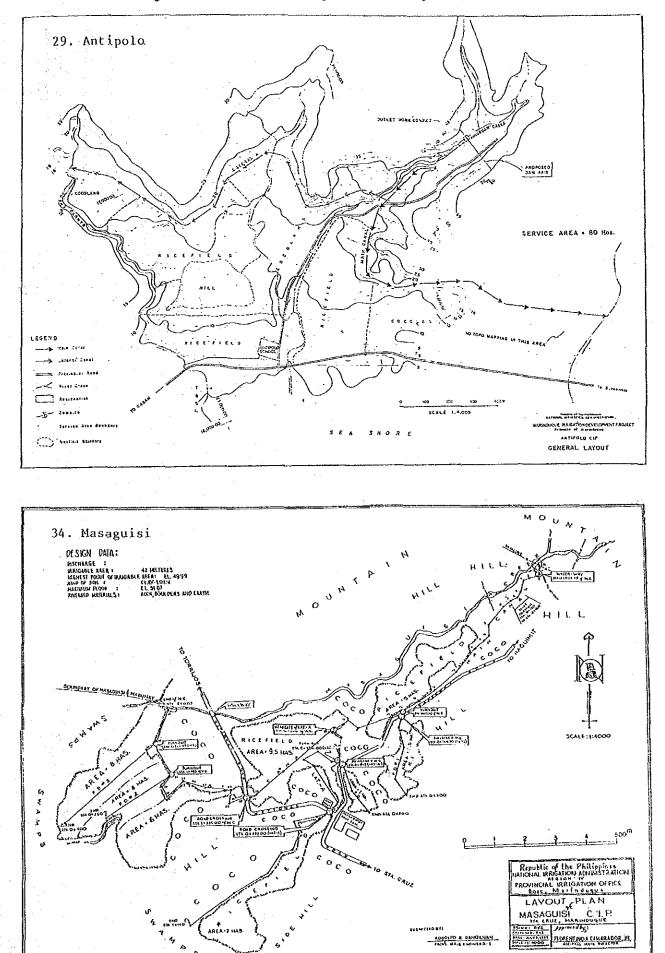
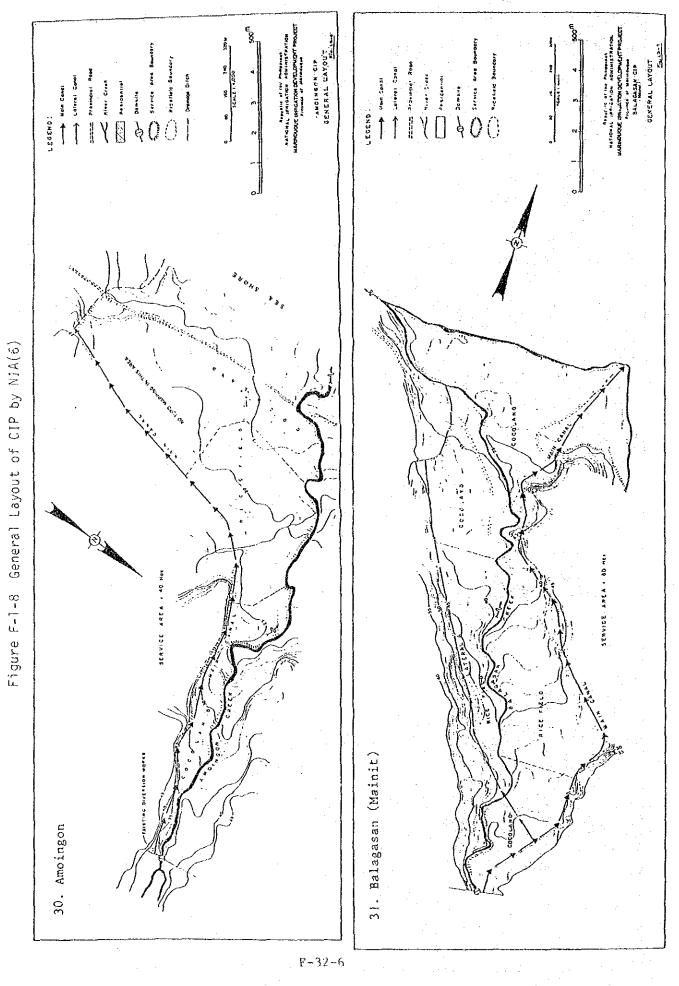
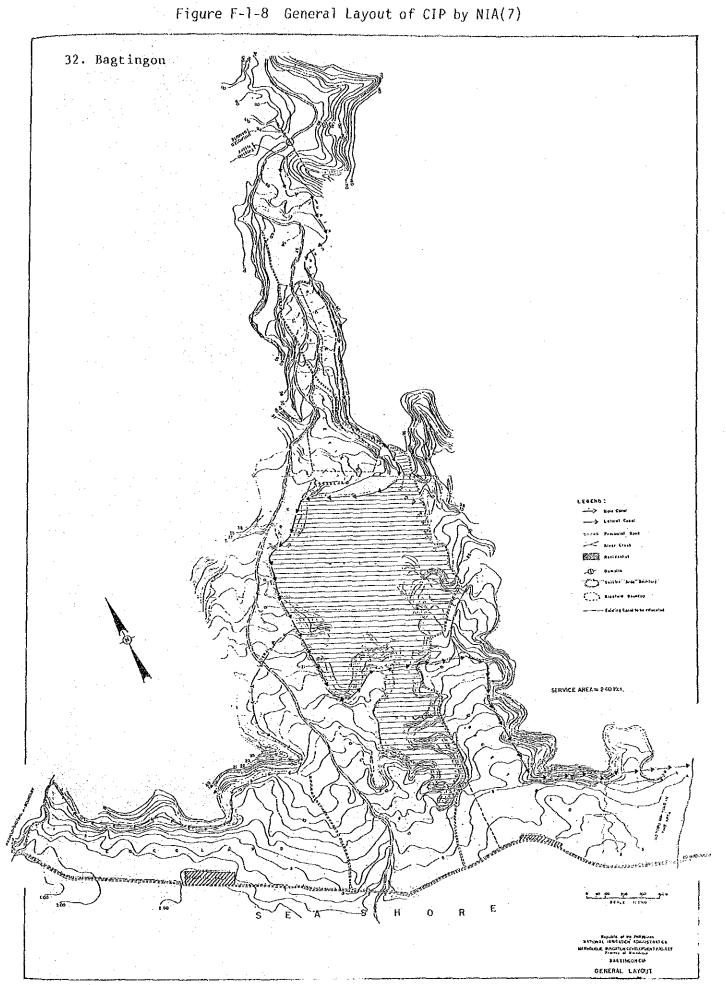
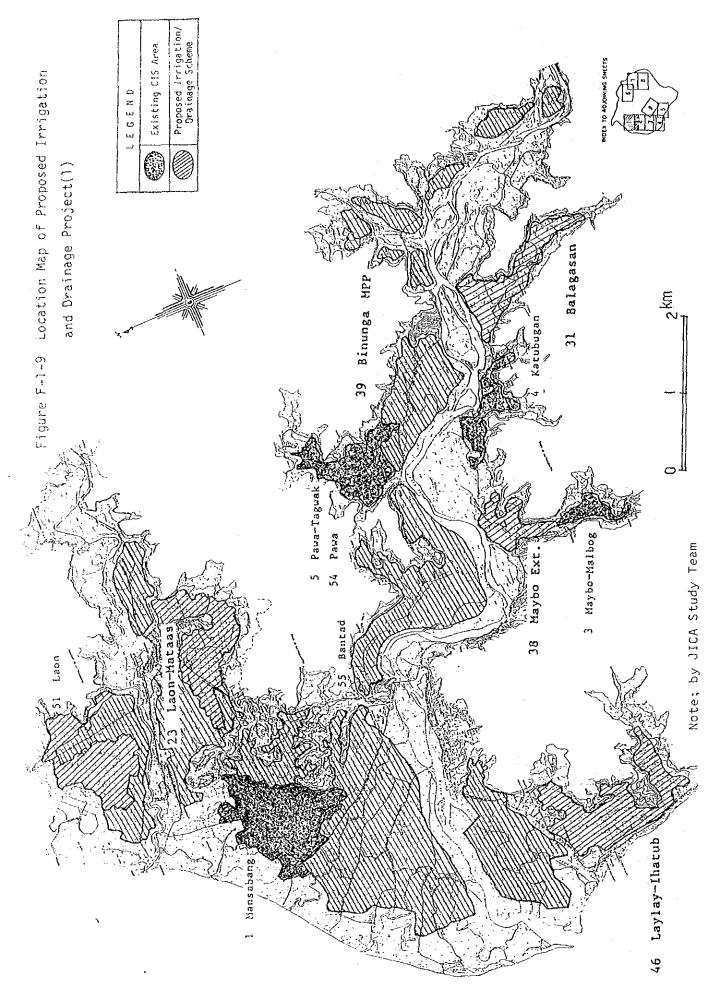

Figure F-1-8 General Layout of CIP by NIA(2)

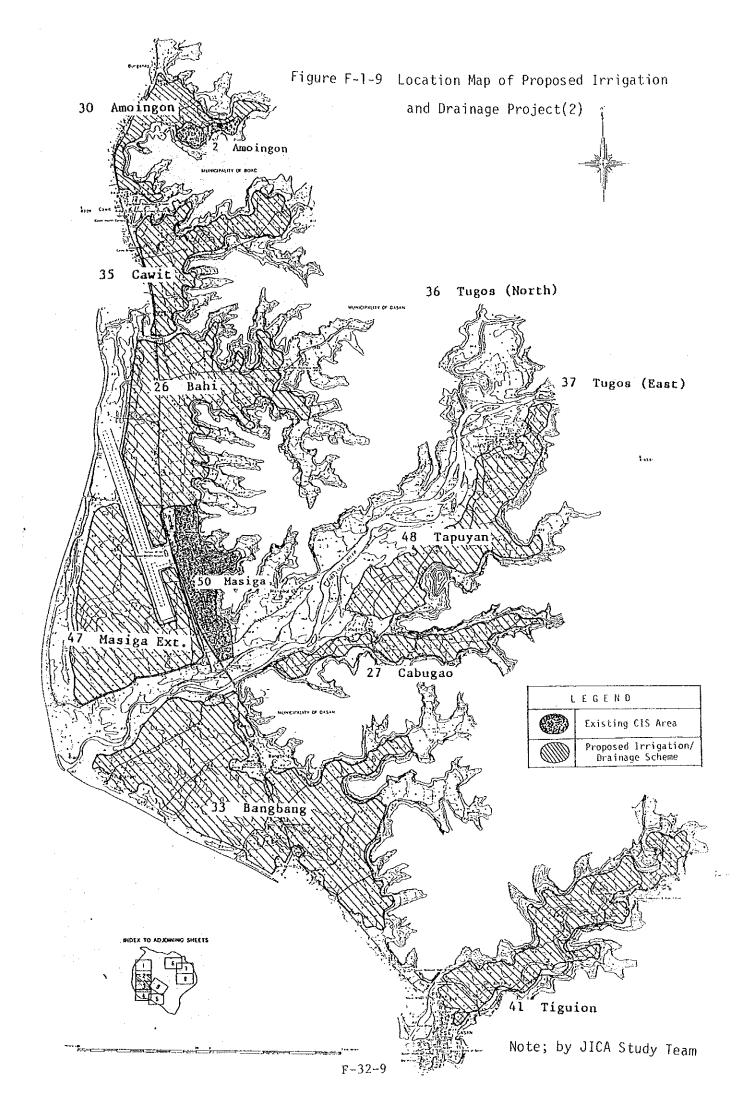


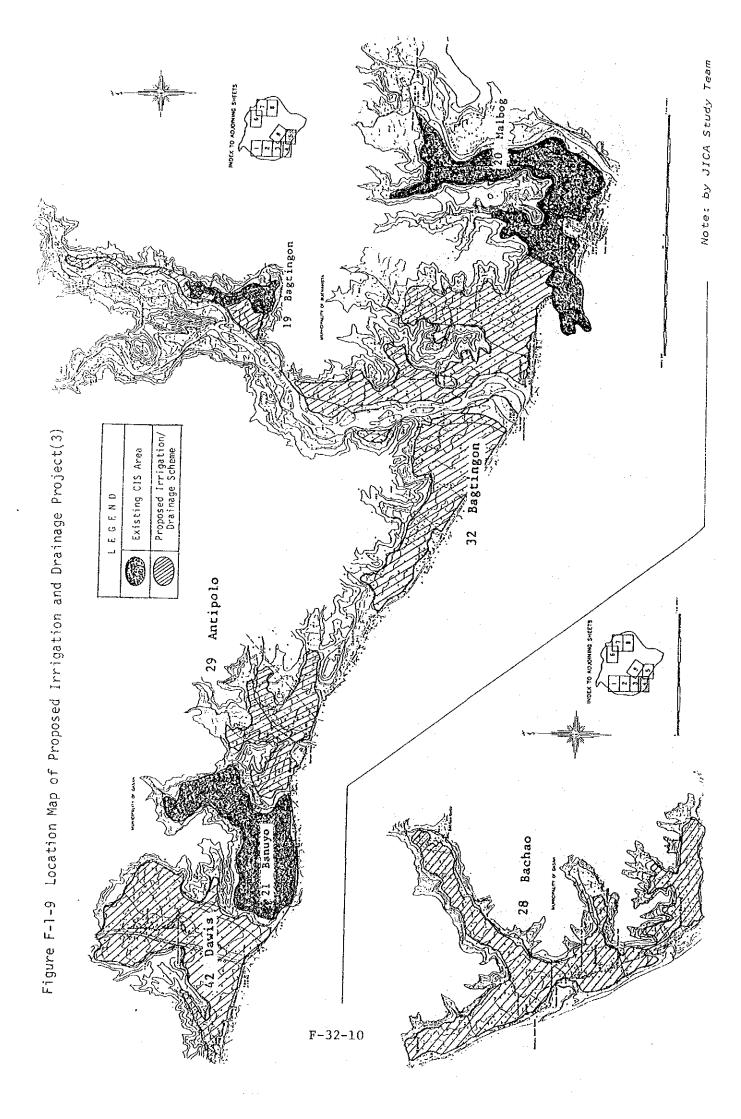
General Layout of CIP by NIA(3) Figure F-1-8



General Layout of CIP by NIA(4) Figure F-1-8



Figure F-1-8 General Layout of CIP by NIA(5)


s

