PRELIMINARY STRUCTURAL DESIGN

6.1 Major Structures for Drainage Improvement in Priority Area

East and West of Mangahan area and Malabon-Navotas area are selected as the priority area of drainage improvement for the feasibility study. In this section, preliminary structural design for the following major structures is described for each priority area.

East and West of Mangahan

- Lakeshore Dike
- Backwater Dike
- Drainage Channel
- Pump Station
- Regulation Pond
- Sluice Gate
- Bridge

Malabon-Navotas

- Ring Dike
- Drainage Channel
- Pump Station
- Sluice Gate
- Navigation Lock

6.2 East and West of Mangahan

Preliminary design of major structures is made based on the least construction cost method.

Lakeshore Dike

The optimum shape of the lakeshore dike is determined by the following procedure.

- Examination of the wave effect of the Laguna Lake to the top elevation of the dike with various bank slope;

- Examination of the shape of the dike with various embankment material and method:
- Determination of the optimum shape of the dike by construction cost comparison; and
- Study of the consolidation settlement of the foundation.

(1) Crest Elevation

The crest elevation of the lakeshore dike was determined by the following equation:

where, EL : crest elevation of the dike

HWL : design high water level of Laguna Lake (EL 13.8 m)

H': Wave setup to the dike

0.5 : allowance

To define the design wave, the Bretschneider's method is applied under the following condition:

Water Depth of Laguna Lake : 2.3 m
Wind Velocity : 20 m/s
Fetch Length : 20 km

Then, the following characteristics of the wave are obtained.

 Wave Height (H)
 : 0.78 m

 Wave Length (L)
 : 9.89 m

 Wave Period (T)
 : 2.7 sec

A wave setup to the dike can be calculated by the Savielle's diagram which is a function of dike slope and a ratio of (H/L).

As a result, crest elevation of lakeshore dike was calculated from the above-mentioned equation, as follows:

Dike Slope	HWL	 Н	Crest (EL)
1:2	EL 13.8	1.2	EL 15.5
1:3	EL 13.8	0.8	EL 15.1
1:4	EL 13.8	0.6	EL 14.9
1:5	EL 13.8	 0.5	EL 14.8
1:10	EL 13.8	0.3	EL 14.6
	•		the open the east of the

(2) Alternative Shape of Lakeshore Dike

The following five alternative shapes of the dike were considered by means of different material and construction method.

- Case 1: Embankment by dredged materials from the bottom or lakeshore of the Laguna Lake.
- Case 2: Embankment by mixed soil of dredged materials with borrowed materials.
- Case 3: Embankment by dredged materials for the center part and borrowed materials for the outer part.
- Case 4: Embankment by borrowed materials.
- Case 5: Embankment by mixed soil of dredged materials with cement or lime powder.

The stable shape of each of the above cases was determined from the stability analysis of slip circle method based on the following foundation condition and material properties.

Foundation Condition

**************************************		Soil Pr	perties		
Depth		$A = s\alpha$ (t/m^3)	c' (t/m ²)	η' (°)	N-Value
GL - EL 6.90 m	Clay	1.64	1.10	22.0	10
EL 9.0 - EL 6.5 m	Sand	1.75	1.80	36.0	. 1. 1 5 1
EL 6.5 - EL -5.5 m	Clay	1.50	1.90	20.0	5
EL -5.5 - EL-10.5 m	Clay	1.70	3.20	18.5	20-50

where, A: wet unit weight

saturated unit weight

c': cohesion

n': angle of internal friction

Embankment Material

		Soi		
Case	Material American	A = s (t/m ³)	c' (t/m ²)	n' (°)
10 1 10	Dredged Material	1.60	0.90	11.0
2	Mixed Clay	1.60	1.10	22.0
3	Borrowed Material	1.70	3.00	22.0
ani Allanda Jawa mala	Dredged Material	1.60	0.90	11.0
4	Borrowed Material	1.70	3.00	22.0
5	Soil Material	1.70	3.00	22.0
		4.4		and the state of the state of

Typical shapes of the lakeshore dike for the above five alternatives are presented in Fig. 5-6-1.

(3) Optimum Shape of Lakeshore Dike

Baden ver alleget eggente (il bedagt to glassific)

Bahataka Indigan di nediken ng

The optimum shape of lakeshore dike was determined by comparing the construction costs for the foregoing five alternatives as tabulated in Table 5-6-1. The summary of construction cost is presented in the following table.

Case	Bank Slope	Crest Elevation	Construction Cost (in 1000 peso/m)
1	1:10	EL 14.6	3 5
2	1:3	EL 15.1	(a. j. 4) 4, 22 , (b. 1)
3	1:4	EL 14.9	21
· 4	1:2	EL 15.5	18
5	1:2	EL 15.5	29

Consequently, Case 4 of embankment with borrowed material is considered as the optimum case because it is the most economical with a simple construction method.

(4) Consolidation Settlement

Consolidation settlement of the foundation of the lakeshore dike under Case 4 was calculated using the mode shown in Fig. 5-6-2. In this calculation, it was assumed that consolidation settlement does not occur for the dike itself because compaction was provided.

From the soil mechanics analysis, the total quantity of settlement was calculated at 0.7 m and consolidation time of 70% and 80% of the foundation results in about 1.5 and 2.8 years, respectively. The detailed calculation procedure is compiles in the Data Book (Volume 1).

Backwater Dike

As a connected dike to the lakeshore dike, backwater dikes are provided for Napindan Channel, the Buli, Baho, Mahaba and Lower Bicutan rivers. (Refer to Fig. 5-6-3.)

For the Napindan Channel, earth dike and parapet wall are provided for the lakeside stretch and for the landside stretch, respectively. In designing the earth dike, a similar shape of the lakeshore dike is basically adopted. However, revetment is not provided at the water side and its dike crest is set at EL 14.6 m, only considering a freeboard of 0.8 m derived from the planning criteria by design discharge, since effect of wave setup by the lake water is not considered.

An R.C. parapet wall is proposed in the urbanized area for the landside river stretch, where a revetted channel cross section having a 1:1 side slope is provided to protect from foundation failure of the wall.

Along the river courses of the Buli, Baho, Mahaba and Lower Bicutan, the same type of diking of the earth dike of the Napindan Channel is proposed at present, since river improvement plans in their upper reaches are not concreted.

edan si kabil depak kan never ki iki sibuwa

ather that are a first and was a first out of

Typical cross sections of backwater dike are shown in Fig. 5-6-4.

Drainage Channel

Since there are relatively lots of open space in East and West of Mangahan, trapezoidal type of cross section with a side slope of 1:2 without revetment is adopted for improvement of existing drainage channels and construction of drainage channels. Basically, excavated channel method without diking is proposed, providing a design water depth of 2 to 3 m. As for closed channel, R.C. box culvert with two or three rectangular cross sectional areas is adopted considering a design water depth of connected drainage channel. Main features and design condition of drainage channels are summarized in Table 5-6-2. The proposed longitudinal profile and typical cross sections are shown in Figs. 5-6-5 and 5-6-6, respectively.

Pump Station

A submersible type pump is applied for the pump equipment which can be operated by diesel generator through the economical comparison study between the conventional type and the submersible type (refer to ANNEX). In addition to the said power supply equipment, garbage removal equipment such as mechanical rake, belt conveyor and hopper, and concrete structures such as sand basin, surge tank and operation house are provided, accordingly. The general layout of the pump station is presented in Fig. 5-6-7.

Regulation Pond

Six regulation ponds are provided beside the pump stations along the lakeshore dike. Each pond is designed to be excavated at a 3 m depth with a cut slope of 1:2 from the ground level. At the boundary of drainage channel and pond, an overflow section of concrete structure is placed to control the inflow water from drainage channel. The general layout of the regulation pond is shown in Fig. 5-6-8. The schematic profile of the regulation pond, pump station and sluice gate is shown in Fig. 5-6-9.

Sluice Gate

The proposed sluice gates are classified into four types as follows:

. 18 1711 <i>- 18</i>					
	Type			Site	
Open channel type/	appurtenant	to pump sta	ation	2	
Box culvert type/a	ppurtenant t	o pump sta	tion	7	·
Open channel type/	independent			3 1	
Box culvert type/i	ndependent			2	

A cross sectional area of sluice gate is determined based on 1 m/s of flow velocity at sluice inside and considering the relation of the connecting drainage channel to the width.

Sluice gates mainly consist of concrete structure and steel roller gate. Open channel type sluice gate is adopted in the case that a large cross section area for sluiceway is required from the design discharge and/or navigation of vessel. While, a box culvert type sluice gate is installed when a relatively small size gate is required.

The main dimensions of fourteen sluice gates are tabulated in Table 5-6-3. Fig. 5-6-10 shows a typical layout of a sluice gate.

Bridges

Four bridges are planned to be constructed along the lakeshore dike as follows:

- Napindan Channel Bridge
- Mangahan Floodway Bridge
 - Mangahan Diversion Bridge
 - Lower Bicutan River Bridge

The design of bridges was carried out in consideration of Philippine and Japanese standards, especially the following items:

(a) Vertical Clearance

Vertical clearance between the superstructure of the bridge and the HWL of the river is set at 1.50 m.

(b) Span between Piers

Span between piers is set to reduce the obstruction rate of the piers to the flow area at less than 4.0%.

(c) Type of Superstructure

Common and economical type of superstructure is used. In principle, the type of superstructure in relation to the span is set as follows in the Philippines.

MARK AND MARKATORY TRANSPORTER

I brace comme been secure for all a along the Philosophy whom a problem

Туре	Span
Reinforced Concrete Bridge	
- Reinforced Concrete Precast Slab or Reinforced Flat Slab	6.00 m
- Reinforced Concrete Deck Girder	8.00 - 21.00 m
- Reinforced Concrete Box Girder	22.00 - 30.00 m
Prestressed Concrete Bridge	
- Channel Beams	11.00 - 13.40 m
- T-Beams	15.80 - 18.90 m
- Box Girders Steel Bridge	Over 30.00 m
- Composite I-Beam	15.00 - 30.00 m
- Steel Plate Girder	20.00 - 50.00 m
- Railway Bridge	9.00 - 30.00 m
- Steel Truss	36.50 - 128.00 m

(1) Bridge Across Napindan Channel (Napindan Bridge)

Napindan Bridge is designed as follows considering the above design criteria (refer to Fig. 5-6-11):

Length : 129.50 m

Width of Roadway : 9.10 m

Type : Prestressed Post-Tensioned

Composite I-Beam

Span : 3 spans (42.50 m each)

Prestressed post-tensioned composte I-beam bridge is the most economical compared with steel plate girder and steel truss bridges. Steel pile foundation of about 20 m in length is adopted to reach the

stiff layer of C3 of the weathered Guadalupe Formation which has enough bearing capacity of N-value 20-50.

(2) Bridge Across Mangahan Floodway (Mangahan Floodway Bridge)

Mangahan Floodway Bridge is designed as follows (refer to Fig. 5-6-11):

Length

248.00 m

Width of Roadway

: 9.10 m

: Prestressed Post-Tensioned

Composite I-Beam

Span

: 6 spans (41.00 m each)

The above type was determined for the same reason as the Napindan Bridge. Steel pile foundation of about 20 m in length is also provided.

(3) Bridge Across Mangahan Diversion Channel

The Mangahan Diversion Channel Bridge is designed as follows:

Length

60.00 m

Width of Roadway : 9.10 m

Type

Reinforced Concrete

Span

: 2 spans (30.0 m each)

(4) Bridge Across Lower Bicutan River

30.00 m

Width of Roadway 全国对抗 古苏州,山田县 9.10 m

Type(2 a) /grad pathing

: Reinforced Concrete

Span

1 span

6.3 Malabon-Navotas

Major structures in Malabon-Navotas are designed preliminarily based on the least construction cost method. Locations of proposed structures are illustrated in Fig. 5-6-12.

Ring Dike

Ring dike in the north bank of the Malabon River consists of a coastal dike with a length of 5,700 m, Malabon River dike with a length of 3,500 m and a ring dike with a length of 6,700 m against high tide.

Coastal dike is provided along the seashore line of Navotas Island and its crest is set at EL 13.5 m, which is derived from hydraulic analysis and empirical DPWH standards. Malahon River dike is designed considering the Master Plan of the Malabon River and existing condition of river structures. Therefore, freeboard of Malabon River dike is determined by the design discharge of the river.

Coastal dike and Malabon River dike, providing their crest widths of 3 m, are made of borrowed earth material with a revetted slope of 1:2 at the waterside and a slope of 1:2 without revetment at the landside. As for the ring dike against high tide, which is drawn on the north drainage boundary, reinforcing work for existing tide dike is provided. The dike is designed to be earth dike with a slope of 1:2 at both sides and its crest with a 3.0 m wide is set at EL 12.5 m.

In the south bank of the Malabon River, a river dike 3,600 m long along the Malabon River and a coastal dike 1,100 m long along the seashore line and the river course near estuary of the Malabon River are proposed, providing the same shapes as in the north bank of the Malabon River. Since there is inadequate open space for diking along the Navotas River and Estero de Marala, a parapet wall with 8,500 m of total length is provided at both sides of the water courses. Top elevation of the parapet wall is set at EL 13.5 m of the same level that the coastal dike is set. A shape of parapet wall is mostly the same as that of the landside backwater dike along the Napindan Channel.

Typical cross sections of dike and rivers are presented in Figs. 5-6-13 and 5-6-14.

Drainage Channel

Design concept of drainage channel in Malabon-Navotas is basically the same as that in East and West of Mangahan. Principal features and design condition of proposed drainage channel are described in Table 5-6-4. The longitudinal profiles and typical cross sections of the channels are shown in Figs. 5-6-15 and 5-6-16, respectively.

Pump Station

Most components of the pump station in malabon-Navotas are the same as in East and West of Mangahan. Submersible pumps are also applied. A general feature is illustrated in Fig. 5-6-17.

Sluice Gate

Proposed sluice gates in Malabon-Navotas are classified into four types as follows:

Туре	Site
Open channel type/appurtenant to pump statio	n 1
Box culvert type/appurtenant to pump station	4
Open channel type/independent	5
Box culvert type/independent	2

Basic design concept is the same in East and West of Mangahan. Main features and design condition are summarized in Table 5-6-5. Typical drawings are shown in Fig. 5-6-18.

Navotas Navigation Lock

A navigation lock is planned to be constructed at the estuary of the Navotas River near Tanza. This structure is designed assuming that one thousand dead weight ton class vessel can pass. Main features of the lock are described below: Lock chamber: 20 m wide and 120 m long

Gate chamber: 32 m wide and 30 m long (seaside)

32 m wide and 27 m long (river side)

Miter gate : 10.0 m (W) x 6.6 m (H) x 2 units (seaside)

10.0 m (W) x 6.0 m (H) x 2 units (river side)

Bascule bridge: 10.0 m (L) x 1.5 m (W) x 2 units

For the foundation works, reinforced concrete piles of 20 m long are provided to reach the stiff layer with adequate bearing capacity of N-value over 50, namely the Guadalupe Formation. Fig. 5-6-19 shows the general drawing of the Navotas navigation lock.

TABLES

Table 5-2-1 MAIN FEATURES OF PUMPING STATIONS EXISTING IN MANILA AND SUBURBS

Pumping Station	Drainage Area (ha)	Pump Diameter & Units (mm)	Pump Capacity (m ³ /s)	Pump Starting Water Level (m)	Poak Discharge (m ³ /s)	Point of Discharge
North						
(1) Valencia	277	1000x4	10.5	10.50	38.8	Pasig River
(2) Aviles-Sampaloc	345	1200x4	14.1	10.50	47.9	-do-
(3) Qulapo	212	1000x4	9.5	10.50	33.5	-do-
(4) Binondo	304	1000x4	11.4	10.00	30.5	-do-
Sub-Total	1,138		45.5			
South						
(1) Makati	142	1200x2	7.0	11.30	24.1	Pasig River
(2) Sta. Clara	150	1000x2	5.3	11.00	20.1	-do-
(3) Pandacan	104	1000x2	4.4	10.50	22.1	-do-
(4) Paco	178	1000x3	7.6	10.50	23.6	-do-
(5) Libertad	755	1650x6	48.0	9.60	130.0	Manila Bay
(6) Tripa de Gallina	1,725	1650x8	56.0	9.90	165.0	Parañaque River
Sub-Total	3,054		128.3			
Total	4,192	٠,	173.8			

Table 5-2-2 FEATURES OF MAJOR ESTEROS IN MANILA AND SUBURBS

	* -1.1		h	idth	Datak	
No. Estero	Total Length (km)	Section No.	Max. (m)	Min. (m)	Ave. (m)	Point of Discharge
NORTH						
1. Vitas	1.84	0+000 - 1+365	73.0	37.5	52.6	Manila Bay
4 %.		1+365 - 1+835	49.7	33.1	40.3	
2. La Reina	1.31	2+861 - 1+548	20.0	11.0	15.8	Est. Vitas
	1.55	0+000 - 1+548	48.2	12.3	23.1	Pasig
3. Binondo	0.90	0+000 - 0+889	35.0	16.0	22.3	Pasig
). Dinongo	0.50	07000 - 01009	33.0	20.0	66.5	(Binondo
						P.S.)
1. Quiapo	0.96	0+000 - 0+958	70.0	10.0	25.6	Pasig
i. Quiapo	0.90	04000 - 04938	70.0	10.0	23.0	(Quiapo
						P.S.)
Can Mayol	1 22	2.407 1.179	30.0	10.0	18.7	Est. Quiapo
5. San Miguel	1.32 1.18	2+497 - 1+178 0+000 - 1+178	11.0	6.8	9.0	Pasig
	2.10	21273				
HTUOZ	•			u fan u Lister		
l. Sta. Clara	1.34	0+000 - 1+338	10.0	4.0	6.2	Pasig
						(Sta.
						Clara
e en						P.S.)
2. Pandacan	1.78	0+000 - 1+775	27.5	7.5	18.1	Pasig
						(Pandacan
			,			P.S.)
	2.43	4+200 - 1+775	17.5	7.0	11.3	Pasig
3. Paco	1.6	0+000 - 0+600	39.5	20.0	26.4	Pasig
		0+600 - 1+400	27.0	15.0	20.4	
		1+400 - 1+600	15.0	15.0	15.0	
1. Tripa de Gallina	2.00	0+000 - 2+000	22.5	4.0	12.7	Est. Pandacan
	3.00	2+000 - 2+623	15.0	7.0	10.3	Manila Bay
						(Libertad
		2+623 - 5+000	21.0	8.0	12.3	P.S.)
			71 1			
(Parañaque)	1.79	3+615 - 4+944	42.0	14.5	26.6	Manila Bay
	-	4+944 - 5+400	20.0	15.5	18.3	(Tripa de Gallina
						P.S.)
	H .					

Table 5-2-3(1/4) FEATURES OF EXISTING DRAINAGE MAINS AND OUTFALLS IN MANILA AND SUBURBS (NORTH)

		Total		No.		-,-		Point
No.	Name	Length (m)	No.	of Bays	Width (m)	Depth (m)	Gradient (1/1000)	
1.		2,973.3		2	2.57	2.57		Estero de
	Interceptor		2	2	2.57	2.57	0.350	Maypajo
	· · · · · · · · · · · · · · · · · · ·		3	- 2	2.46	2.46	0.350	•
			4	2	2.38	2.38	1.130	
			5	2	2.20	2.20	1.130	
			6	2	1.69	1.69	0.593	
				d ti	Ţ.			
				:		:		
2.		650.0	1	1	2.00	1.40	n.a.	Blumentritt
	Margal Main		2	1	1.52	(dia.)	n.a.	Interceptor
				1 }			•	1
				May 1			tar transfer	
3.	Solis-Tecson	1,475.0	1	2	2.20	1.50	1.000	Estero de
:	Main		2	2	1.60	1.40	1.000	Sunog-Apog
10.00	ing distriction of the		3	1	2.00	1.40	1.000	The American
			4	1	1.07	(dia.)	2.500	Application of the state of
				M.		•		
				- 4,1 -		•		
4	South	1,415.5	1	1	4.40	3.30	0.320	South Antipol
	Antipolo Main	1000	2	1	4.40	2.60	0.360	Open Channel
	150		3	1	3.00	2.50	0.350	······································
			4	1	2.00	2.40	0.430	*
				¥*				111
•			::	1000		11. 10.0	A Comment	visit er i lære for e
5	Tayuman Main	1,605.0	1	1	2.40	1.40	n.a.	Estero de Vii
- 11 - 11.			2	1	2.00	1.20	n.a.	•
			3	. 1	1.00	0.80	n.a.	
		and the state of		17.11.				Property of the Contraction
			٠.	45.75		and the second		
6.	Zurbaran Main	705.0	1	2	2.15	1.50	0.700	Estero de Sar
71.5	Carlo Constants	and the second	2	1	2.95	1.50	0.700	Lazaro
٠.	gar sawa a sas	April 10 Miles		4.0			ign.	
10			-					
	: Not availabl			145				
		şaranı, t	-	The second	*		:	
1000								
	The state of the s		12.5				**	
d for a	eri e i kalina ali e							•

Table 5-2-3(2/4) FEATURES OF EXISTING DRAINAGE MAINS AND OUTFALLS IN MANILA AND SUBURBS (NORTH)

No.	Name	Total Length (m)	Sec. No.	No. of Bays	Width (m)		Gradient (1/1000)	Point of Discharge
7.	Visayas Main	668.0	1	2	2.05	2.05	0.966	Estero de
		14.0	2	. 2	1.69	1.69	0.854	Valencia
			3	1	2.94	1.57	0.854	
8.	Washington-Piy	361.0	1	1	2.40	2.10	0.720	Estero de
	Margal Main		2	• 1	1.37	(dia.)		Bamo Bamo
9.	Economia Main	586.0	1	2	2.20	1 50	15.652	Josefina-
9.	ECONOMIA MAIN	500.0	2	1	4.40	1.50 2.10	0.423	Lepanto Main
			3	1	3.20	1.80	0.423	Lepaillo maili
			4	1	2.20	1.60	0.420	
					2.20	1.00	0.500	
10.	Lepanto-	1,156.1	1	. : 1	4.22	2.40	1.010	Lepanto-Gov.
	Josefina Main	_,	2	1	4.10	2.70	1.040	Forbes Mains
			3	1	3.20	3.20	0.667	
				•			The second of th	
11.	Lepanto-Gov.	1,057.0	. 1	3	3.60	2.80	1.107	Estero de
	Forbes Main							Sampaloc
			:					
			_				12.2%	
12.	Severino Reyes	536.0	1	1	3.20	1.60	1.500	Estero de
	Main	teres in the						Qulapo
	•		V		:			
13.	Dachago Vain	1 100 0		•	4.28	1.00	0.000	Mandle Bay
iJ.	Pacheco Main	1,108.0	1 2	1 1	2.94	1.90 1.50	0.800	Manila Bay
		e de la companya de La companya de la co	Z		2.34	1.30	0.000	
				. 1, .	3	e distribution di series di se Series di series di		Blanco de la composición del composición de la composición de la composición del composición de la com
14.	Lakandula Main	876.2	· .1	1	3.84	2.02	0.400	Manila Bay
	ENGINE IN INC.	07 U.L	2	i i	2.94	1.57	0.508	
			3	ī	2.70	1,45	0.540	
	•		4	. 1	2.20	1.20	0.620	
					100			

Table 5-2-3(3/4) FEATURES OF EXISTING DRAINAGE MAINS AND OUTFALLS IN MANILA AND SUBURBS (SOUTH)

No. : : Name : : : : : : : : : : : : : : : : : : :	Total Length (m)	Sec. No.	No. of Bays	Width (m)	Depth (m)	Gradient (1/1000)	Point of Discharge
1. Makati	410.0	1	1	2.60	2.00	2.500	Makati P.S.
Headrace No.1		2	1		2.00		
		1000		. *			*
2. Makati	625.0	1	1	5.00	2.50	0.500	Makati P.S.
Headrace No.2		2	1	4.00	2.00	0.500	
	to the second		: 1				
3. Estrada Main	592.0	1	1	2.94	1.57	n.a.	Tripa de
		2	1	1.52	(dla.)		Gallina
		·: 3 .	1	1.22	(dia.)	n.a.	
		4	1	0.91	(dla.)	n.a.	
		1.4			* :		
A Vila Ame	* 204.0			0.05	0.05	0.070	Mandla Dan
4. Vito Cruz Outfall	1,324.8	1	1:	2.05	2.05	0.370	Manila Bay
Outlatt	erineria. Table annoque	٠					•
5. Zobel-Roxas	1,016.0	1	1	4.40	2.10	0.676	Tripa de
Main	i i	2	1, -	2.80	1.60	0.575	Gallina
		3	1	1.37	(dia.)	0.900	7.5%
	. 41.1						
C Duandia Barrer	4 OF6 A			4 60	3.00	0 500	135
6. Buendia-Roxas Outfall	1,956.0	1 2	3 3	4.60 3.80	3.20 3.20	0.500 0.500	Libertad P.S.
VULTATI		3,	3	3.60	3.20	0.500	
		3, 4	3	3.60	3.20	0.500	
	1 0	. •	₩.	0.40	0.20	*	
And the second							

n.a. : Not available

Table 5-2-3(4/4) FEATURES OF EXISTING DRAINAGE MAINS AND OUTFALLS IN MANILA AND SUBURBS (SOUTH)

No.	Name	Total Length (m)	Sec. No.			•	Gradient (1/1000)	and the second s
		:	. , i					
7.	Libertad	1,800.0	1	1	4.70	3.20	0.300	Libertad P.S.
	Outfall	ŕ	2	1	3.50	4.00	0.340	
	1		3.	1	2.75		0.319	
	<i>2</i> *		. :				1175	est of the second
		* * * *		* *			1000	Harry A
8.	EDSA Outfall	1,733.0	1	2	4.30	2.50	0.552	Libertad P.S.
			. :					
_			١.			. Y 2012		
9.	Padre Faura	1,157.0	1	1	3.20		and the second second	Manila Bay
	Main		2	1	2.20	1.80	1.300	
				•		1.5		
10.	Remedios	1,338.0	1	1	4.40	3.00	0.367	Manila Bay
	Main	1,000.0	2	1	3.35	2.80	0.454	WOFF OF
			3	i	2.80	2.40	and the second second second	
			4	1	1.37	(dia.)	0.874	
	Control of the second				. :	200	\$1.540	
11.	Zobel Orbit	1,170.0	1	1	5.00	3.00	0.500	Pasig River
	Outfall		2	1	5.00	3.00	11.100	
			3	1	5.00	3.00	1.000	
						100		

Table 5-2-4(1/2) DRAINAGE DISTRICTS AND DRAINAGE METHODS

	Drainage District	Area (ha)	Drainage Method
<u>Nor</u>	th Manila and Suburbs		
1.	Sunog Apog	802	Gravity drainage through Estero de Sunog Apog and Estero de Vitas to Manila Bay.
2.	Vitas	573	Gravity drainage through Estero de Vitas and Estero dela Reina to Manila Bay. A pumping stations will be constructed.
3.	edig og grundet i grenne skjet Balut (speciel Skyge og de	36 to 1997	Gravity flow to Manila Bay. A pumping station will be constructed.
4.	Northeast Pasig	. : 72	Gravity drainage to Pasig River.
5.	Valencia P.S.	277	Pump drainage to Pasig River.
6.	Aviles-Sampaloc P.S.	345	-do-
7.	Quiapo P.S.	212	-do-
8.	Binondo P.S.	304	-do-
9.	Northwest Pasig	69	Gravity drainage to Pasig River.
10.	North Manila Bay	168	Gravity drainage to Manila Bay.
	Sub-Total 2	,858	

Table 5-2-4(2/2) DRAINAGE DISTRICTS AND DRAINAGE METHODS

	Drainage District	Area (ha)	Drainage Method
Sou	uth Manila and Suburbs		
1.	Makati Slope	307	Gravity drainage to Pasig River.
2.	Makati P.S.	142	Pump drainage to Pasig River.
3.	Sta. Clara P.S.	150	en e
4.	San Andres	339	Pump drainage to Pasig River. A pumping station will be constructed.
5.	Pandacan P.S.	104	Pump drainage to Pasig River.
6.	Paco P.S.	178	-do-jes
7.	Balete	85	Gravity drainage to Manila Bay.
8.	Southwest Pasig	141	Gravity drainage to Pasig River.
9.	South Manila Bay	388	Gravity drainage to Manila Bay.
10.	Libertad P.S.	755	Pump drainage to Manila Bay.
11,	Tripa de Gallina P.S.	1,725	
	Sub-Total	4,314	
	Total	7,172	

Financial Source	Drainage Area	. 1.	Scope of Work
Financial Assistance from	Vitas	1.	Construction of Vitas Pumping Station
Overseas Economic Cooperation Fund (OECF), Japan		2.	Construction of Balut Pumping Station
		3.	Improvement of Estero de Vitas Estero de la Reina, Estero Sunog Apog and Estero Maypajo
		4.	Extension of Solis-Tecson Drainage Main
e nakî de alayê di bi			
	San Andres	1.	Construction of San Andres Pumping Station
		2.	Improvement of Estero de Pandacan and Estero Tripa de Gallina
Local Funds	Vitas	1.	Dredging of Estero de Vitas and Estero Sunog Apog
		2.	Construction of New Kabulusan Outfall
		3.	Improvement of Blumentritt Interceptor
		4.	Improvement of Laterals
	San Andres	1.	Dredging of Estero de Pandacar and Estero Tripa de Gallina

Table 5-2-6 FEATURES OF EXISTING DRAINAGE CHANNELS (DRAINS) IN DAGAT-DAGATAN

No.	Name	Total Length (m)	Section No.	Width (m)	Gradient (1/1000)	Point of Discharge
			٠			
1	Spine Drain	2,000	1	5.0	0.50	Bangkulasi River
			2	4.5	0.85	
	ه مين خوان ويت دوله ويتو ويتو ويتو ويتو دوله ويتو ويتو مين مين ويتو ويتو	ar an	~~~,,,,,,,,,,,		. = = 20 20 11 11 11 11 11 11 11 11 11 11 11 11 11	10 Met 200 Can
?	Saluysoy Drain	1,700	1	4.5	0.30	Bangkulasi River
		en et en de	2	2.5	0.55	
				- 1, 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		
				- -		
	Northern Drain	1,100	1. 1.	4.0	0.48	Estero North Sunog
			.2	3.5	0.48	, 403
		North State of the	3	3.0	0.76	
*.		en e	4	2.0	1.0	
		* The Rev. and #1 The World and and and #1 The Rev Service Service Service Service Service Service Service Ser				سر بعد جات بات من من سند سه تعد جات ها ها بعد سند بعد جات خات بات بات عال جات با
	Southern Drain	800	1	3.0	0.66	Estero North Sunog
		ing and selection of the selection of th	2	2.0	0.90	Apog

Tab1e 5-2-7 FEATURES OF EXISTING OUTFALLS IN PARAÑAQUE-LAS PIÑAS

Item No.	Name	Total Length (m)	Section No.	No. of Bays	Width (m)	Depth (m)	Gradient (1/1000)	Point of Discharge
				٠,				
1	Rivera Outfall	782.0	1	1 -	4.00	3.00	2.580	Manila Bay
	Cucian	· · · · .	e e e e e e e e e e e e e e e e e e e		a de la composición dela composición de la composición de la composición de la composición dela composición dela composición dela composición de la composición de la composición dela composición de la composición dela c	er e e eg	general de la companya de la company	
2	Librada Outfall	545.0	1 2	1	5.40 4.40	3.55 2.75	2.760 4.460	Manila Bay
. :· ·			· · · · · · · · · · · · · · · · · · ·					en e
3	Seaside	518.0	1	1	5.40	4.15	1.350	Manila Bay
	Outfall		2	1	5.40	4.00	1.320	

Table 5-2-8. COMPARISON OF PLMP CAPACITY, FLON CAPACITY, 10-YEAR AND 5-YEAR RETURN PERIOD FLOOD IN MANILA AND SUBURBS

Drainage District	Pump	Pump Capacity for 10-Year Return Period Flood (m ³ /s)	for 5-Year	Drainage Channel	Flow Capacity (m ³ /s)	10-Year Return Period Flood (m ³ /s)	5-Year Return Period Flood (m ³ /s)
	C		**				AR AFTER A
North Manila and	Suburos						414
Sunog Apog	-	-	- '	Estero de Vitas Estero de Sunog Apog	56	151 108	144 97
				Estero de Haypajo	35	91	73
				Blumentritt Interceptor	. 20	37	32
Vitas	(31.8)	31.8	25.2	Estero de Vitas	50	67	60
				Estero dela Reina	20	29	26
Balut	(2.0)	2.0	1.4		Table Later State		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Hortheast Pasig		5.5	4.4				
	10.5	18.0	14.4	Estero de Valencia	30	59	53
Valencia P.S.	10.5	_		Visayas Hain	18	19	17
Aviles-	14.1	18.3		Estero de Sampaloc	40	48	43
Aviies- Sampalec P.S.	37-8	4	****	Lepanto-Gov. Forbes Main	50	48 21	43
				Economia Main Lepanto-Josefina Main	10 20	21 35	19 32
				Estero de San Miguel	5	19	17
	9.5	11.2	9.0	Estero de Quiapo	40	37	33
Quiapo P.S.	9.5	11.5	3.0	Estero de San Miguel	20	18	16
1.00	mak			Severino Reyes Main	, 	15	13
Binondo P.S.	11.4	17.2	13.7	Estero de Binondo	40	50	45
			<u></u>	Estero dela Reina	5	49	44
		. 4					· ',
Northwest Pastg			- ::::				
Horth Hanila Bay			•	Pacheco Nain	8 10	13 9	12 8
				Lakandula Hain			
South Hanila and	Sidniirhe						Ar Fr
	Jun 195			70.1 044 04511	43	40	36
Hakati Slope		- 		Zobel Orbit Outfall			
Makati P.S.	7.0	7.0	5.6	Pond	- 12	25 13	22 · 10
				Makati Headrace No. 1 Makati Headrace No. 2	13 17	16	13
		9.6		Estera da Sta. Clara	5	32	29
Sta. Clara P.S.	5.3						
San Andres	(17.4)	17.4	13.6	Estero de Pandacan Estero Tripa de Gallina	3 5	58 26	51 23
				Extend titha or easting			
Pandacan P.S.	4.4	7.1	5.7	Estero de Pandacan	15	26	24
Paco P.S.	7.6	9,7	7.9	Estero de Paco	50	36	32
		·		Estero de Paco/1	20	28	25
Balete	-	5,3	4.4				
Soutimest Pasig							
						19	17
South Manila Bay		• • • • • •	•	Padre Faura Main Remedios Main	20 17	17	15
·							
Libertad P.S.	48.0	54.2	43.8	Pond		122	110
rinairan L'9.	40.0	J4.£	13.0	Buendia-Roxas Outfall	50	50	45
		•		Libertad Outfall EDSA	8 25	8 25	7 23
		•		Estero Tripa de Gallina/		45	41
	:	* *		Zobel-Roxas Hain	18	19	17
Tripa de	56.0	58.8	46.6	Tripa de Gallina/3	100	132	117
Gallina P.S.				-do- <u>/</u> 4	60	49 65	43 59
-				-do- <u>/</u> 5	20	65	29

Note: Figures in parentheses indicate the planned pump capacity in the project assisted by the Government of Japan.

Bank of channel is lower than the Design Tide Level (EL 11.80 m).

^{/1} Upper reaches of Estero dela Concordia
/2 The reaches between Zobel-Roxas Main and Buendia-Roxas Outfail
/3 The reaches between the pumping station and Dilain Creek
/4 The reaches between Dilain Creek and EDSA

¹⁵ Upper reach from EDSA

Table 5-2-9 CLASSIFICATION OF DRAINAGE DISTRICTS BY FLOW CAPACITY
OF MAIN DRAINAGE CHANNELS

Area (Category I Category	y II C	ategory III	Category IV
North Manila	Quiapo P.S.		Sunog Apog*	° Northwest Pasig
and Suburbs		yan	Vitas*	
	to og Polisioner i skrivet. De formaliset og er skrivet i skrivet og er skrivet i skrivet og er skrivet og er skrivet og er skrivet og er	q	Valencia P.S.**	
			Aviles- Sampaloc P.S.**	
			Binondo P.S.**	
		•	North Manila Bay	/**
South Manila	Makati Slope	************	Sta. Clara P.S.	
and Suburbs	Makati P.S.		San Andres*	
	Paco P.S.	•	Pandacan P.S.**	Totaley S
	South Manila	•	Tripa de Gallina	n P.S.
	Bay Libertad P.S.		eria La Monado Sala La Caracteria de Caracteria	

[Note]

Category I : Drainage districts where the flow capacity of lower reaches of main

drainage channel is more than 10-year return period.

Category II: Drainage districts where it is between those of 10-year and 5-year

return period.

Category III: Drainage districts where it is less than 5-year return period.

Category IV: Drainage districts where main drainage channel(s) needs to be

constructed.

* Indicates the drainage district where channels will be constructed and/or improved soon by Metro Manila Flood Control Project.

** Indicates drainage districts where dredging of main drainage channels will be undertaken soon by the Project for Retrieval of Flood Prone Areas in Metro Manila.

Table 5-2-10 CLASSIFICATION OF DRAINAGE DISTRICTS BY PUMP CAPACITY

Агеа	Category I	Category II	Category III	Category IV
· ·		The state of the s		
North Manila and Suburbs		° Aviles- Sampaloc P.S.	• Valencia P.S.	
		° Qulapo P.S.	º Binondo P.S.	Balut*Northeast Pasig
THE SEC AS A PER 19 THE REAL PRINCIPLE AND A PAGE AND A PAGE A PA	196 - 186 			
South Manila and Suburbs	° Makati P.S.	° Libertad P.S.	° Sta. Clara P.S.	* San Andres*
	inger von Stabe Stabe	° Tripa de Gallina	Pandacan P.S.Paco P.S.	* Balete
•		And the second s	an 14 an garaga an an 14 an an 14 an 1 Taoinn an Taoinn an Airm an Airm an Airm an Airm an 14 a	

[Note]

Category I $\,$: Drainage districts where the pump capacity is almost equal to that for

10-year return period.

Category II : Drainage districts where it is between those of 10-year and 5-year

return period.

Category III: Drainage districts where it is less than 5-year return period.

Category IV: Drainage districts where pump stations need to be constructed.

* Indicates the drainage district where pump station will be constructed soon.

Table 5-4-1(1/34) DESIGN DISCHARGE FOR DRAINAGE FACILITIES (MANILA & SUBURBS : NORTH 10-YR. RETURN PERIOD)

Subdrain	age area	1	Pump Sta	tion	Gat	e			Drain	age Cha	nnel		Reg	ulation	Pond
Code	Area (ha)	Code	D.A. (ha)	Qp (m3/s)	Code [.A. ha)	(m3/s)	Code	D.A. (ha)	0 (m3/s)	Туре	Length (m)	Code	Volume (m3)	
NM-1	1681.0	1-a	304.0	5.8	配配物体状为体管	70年20年3		1-h 1-i 1-j	68.0 140.0 208.0	30.0	I-OCR I-OCR I-OCR	1500 1750 900	152022		*******
Sub-total	1681.0			5.8							I-OCR	4150			****
NM-3	906.0	3-a 3-b* 3-c 3-d*	72.0 277.0 345.0 212.0	5.5 3 7.5 4.2 1.7	-8	70.0	19.0	3-b 3-c* 3-d* 3-e 3-f 3-g*	277.0 139.0 65.0 275.0 70.0 74.0	15.0 10.0 48.0 19.0	I-OCR C-BC C-BC I-OCR I-OCR C-BC	850 1150 600 650 1200 550	10 10 10 15 DI CV	化二甲基苯基	10 v 8 8 E S
Sub-total	906.0		906.0	18.9		70.0		*****	I-OCR	2700.0	C-BC	2300			
NH-4	69.0		69.0		=esocare			4-a 4-b	37.0 32.0	11.0 11.0	C-BC C-BC	750 400		**********	********
Sub-total	69.0	Cantosa	69.0	22222							C-BC	1150			*****
NM-5	168.0						100	5-a 5-b* 5-c	45.0 59.0 32.0	5.0	C-BC C-BC C-BC	600 1100 600	#####		***************************************
Sub-total	168.0									,	C-BC	2300			
Total	2824.0		975.0	24.7	京本 节 世三春双星	70.0	endnes et	(******	I-OCR	6850.0	C-BC Total	5750 12600	3222 22	******	: ::

Note:

*in pump station indicates the extention of the existing pump station.
*in drainage channels indicates the extention of the existing box culvert (drainage main)
1-0CR:Open channel improvement with rectangular section
C-BC:Box culvert construction.

Table 5-4-1(2/34) DESIGN DISCHARGE FOR DRAINAGE FACILITIES (MANILA & SUBURBS : SOUTH 10-YR. RETURN PERIOD)

Subdra ina	ge area	a P	ump Sta	tion		Gate			Drain	age Cha	nne l	erte erte Kitalisk Video erak	Regu	lation	Pond
Code	Area (ha)	Code	D.A. (ha)	Qp (m3/s)	Code	D.A. (ha)	Qp (m3/s)	Code	D.A. (ha)	0 (m3/s)	Type	Length (m)	Code	Volume (m3)	Area (m2)
SM-1	599.0) 1-a*	150.0	4.3	- Bucktu	ocenae:		1-d 1-e	49.0 150.0	12.0 32.0	I-OCR I-OCR				
Sub-total	599.0)	150.0	4.3							I-OCR	2300			
SM-2	706.0	2-a* 2-b* 2-c	104.0 178.0 85.0	2.7 2.3 5.3	2-a			2-e 2-f 2-g	104.0 62.0 115.0	13.0	I-OCR I-OCR I-OCR	950 850 1000		*******	
Sub-total	706.0)	367.0	10.3							I-OCR	2800	*****	*****	
SM-3	141.0	:======)	****	ennununu.	*FP484	***					200257	10000000		******	
Sub-total	141.0	}													
SM-4	388.0)			805522	KNAHES	=====		=======	innees.	2222G4	: acosente	********	4655337	
Sub-total	388.0)						· · · · · · · · · · · · · · · · · · ·							
SM-5	2480.0	5-a* 5-b*	755.0 1725.0	6.2 2.8		45666		5-b 5-f 5-h	509.0	65.0	I-OCR	1000 1050 600			
Sub-total	2480.0)	2480.0	9.0		· · · · · · · · · · · · · · · · · · ·			. :	****	I-OCR	2650			
#408#czpac;	4314.0	********	2997.0	23.6	#####	26507K6	(52260g\$)	an maaaaa	5245E8E		I-OCR Total	7750 7750	*********	nced in the s	

*in pump station indicates the extention of the existing pump station.
*in drainage channels indicates the extention of the existing box culvert (drainage main)
I-OCR:Open channel improvement with rectangular section

Table 5-4-1(3/34) DESIGN DISCHARGE FOR DRAINAGE FACILITIES (MALABON - NAVOTAS 10-YR. RETURN PERIOD)

Subdrai	nage area	10 20 20 20 20 20	Pump Station		Gate		表 m 等 的 吗 b 时	N-14 - 13 A	Drain	Regulation Pond Code Volume Area (m3) (m2)					
Code	Area (ha)	Code	D.A. (ha)	(m3/s)	Code	0.A. (ha)	(m37s)	Code	D.A. (ha)	(m3/s)	Туре	Length (m)	Code	Volume (m3)	Area (m2)
MT-4-1	411.0	4-1-a	411.0	15.9	4-1-a 4-1-b	411.0	68.0	4-1-8 4-1-b	227.0 184.0	38.0 33.0	C-OCT I-OCT	2000 1600	社会教徒を	知器Cprice(2)	2668490
Sub-tota	411.0		411.0	15.9					C-OCT	2000	I-OCT	1600			
MT-4-2	218.0	ecze#2			4-2-a	218.0	39.0	4-2-a	218.0	39.0	C-OCT	1700	.200000	2000 11 12 14 14 16 16 16 16 16 16 16 16 16 16 16 16 16	E BU SS (S) (S) (S) (S)
Sub-tota	218.0 218.0										C-OCT	1700			
MA-1-A	113.0	l-a	113.0	3.6	l-a	113.0	15.0	l~a	113.0	15.0	1-0 <u>01</u>	600			
Sub-total	113.0		113.0	3.6					C-OCT	1000	I-OCT	600			
MA-1-B MA-2-A	164.0	2-a	164.0	4.3	2-a 2-b	164.0	21.0		1 1 4 4 4 4 A A B B B	*******	1045#23	新教学的现在	经转类转位率	# # # # # # # # # # # # # # # # # # #	***************************************
Sub-total	164.0		164.0	4.3			H								
MA-2-B MA-3 MA-4 MA-5	614.0	3-a	614.0	. 20.5	3-a 3-b 3-c 3-d							264511231		2 M 2: P = 0: 3. D	
	614.0		-*		3-e				~~~~~						***
Sub-total															DECK # FI
MA-6	134.0 6	i-a	134.0	7.4	6-a	134.0	28.0	6-a 6-b 6-c	134.0 34.0 34.0	28.0 7.0 7.0	I-0CI C-0CI C-0CT	700 400 500 700			2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	134.0		134.0	7.4					C-OCT	900	I-OCT	700	(+ t . = = = = =		~#
MA-7	240.0 7	FOREKS	****	다른 취임 감독하다				克拉森西宾萨	무대역학보드는	******	经常包包拉线金	점막=======	***		
Sub-total	240.0		240.0	12.1							I-OCT	2200			
MA-8	376.0				8-a	160.0	27.0	******	\$\$\$\$\$\$\$\$	c=nere	*******			******	
Sub-total	376.0								*****						****
HA-9	30.0 9	-9	30.0	2.2	9-a	30.0	*PAUEST	****	CTUBERRY	******	SELECT TO	DERBUSH #		*******	SULPDE
MA-9 Sub-total	30.0		30.0	2.2						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					~ ~ ~ ~ ~ ~
MA-10	91.0			** **		•					Selection of	1000	11.	n Klari i	Charles Co.
Sub-total	91.0								*******						
MA-11	69.0 1	1-a	69.0	4.1	11-a	69.0	14.0	11-a	69.0	14.0	C-BC	800			
Sub-total MA-11 Sub-total	69.0	*	69.0	4.1							C-BC	800			2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 *
MA-12	32.0		41.	100			1				2000	1	1.00	1.3	
Sub-total	32.0														
Moto	2492.0		1775.0	76.1			2. 少小村位县代		C-OCT= C-BC=	5600 800	I-OCT= Total=	5100 11500	*******		50AKE50

Note: C-OCT:open channel construction with trapezoidal section. C-BC:Box culvert construction.

Table 5-4-1(4/34) DESIGN DISCHARGE FOR DRAINAGE FACILITIES (MALABON - NAVOTAS 5-YR. RETURN PERIOD)

Subdraina	ge area	p	ump Sta	tion		Gate			Drain	age Cha	nnel	Regulation Pond			
Code	Area (ha)	Code	D.A. (ha)	Op (m3/s)	Code	D.A. (ha)	(m3/s)	Code	D.A. (ha)	(m3/s)	Type	Length (m)	Code	Volume (m3)	Area (m2)
4T-4-1	411.0	4-1-a	411.0	11.7	4-1-a 4-1-b	411.0	61.0	4-1-a 4-1-b	227.0 184.0	34.0 30.0	C-OCT I-OCT	2000 1600			
Sub-total	411.0		411.0	11.7					C-OCT	2000	I-OCT	1600		~~~~	
MT-4-2	218.0	· DEEER	**************************************	420==081	4-2-a	218.0	35.0	4-2-a	218.0	35.0	C-OCT	1700			CH MPANE
Sub-total	218.0		~~~~~.								C-OCT	1700			
MA-1-A Sub-total	113.0	1-a	113.0	3.0	1-a	113.0	13.0	1-a 1-b	113.0 113.0	13.0 13.0	1-0CT C-0CT	600 1000	Heresa		
Sub-total	113.0		113.0	3.0					C-OCT	1000	I-OCT	600			
MA-1-8 MA-2-A	164.0	2-a	104.0	4.0	2-a 2-b	104.0	19.0	en e	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						:
Sub-total	164.0		164.0	4.0											
MA-2-8 MA-3 MA-4 MA-5	614.0	3-a	614.0	22.0	3-a 3-b 3-c 3-d			:						•	
Sub-total									124 0	25 0		700	*****	20E028¢	
MA-6	134.0	b-a	134.0	0.0	0-a	134.0	2.3	6-b 6-c	34.0 34.0	7.0 7.0	C-OCT	700 400 500			
Sub-total	134.0	2	134.0	6.0				n	C-OCT	900	1-001	700	: Bes 5 8 8	======	esses.
1A-7	240.0	7-a	240.0	9.4	7-a	240.0	37.0	7-a	240.0	37.0	1-0C1	2200			
Sub-total	240.0		240.0	9.4	:	المرابي والمراب					I-OCT	2200			
4A-8	376.0	.exa#22		.626222	8-a	160.0	27.0								
Sub-total	376.0														
A-9	30.0	9-a	30.0	2.0	9-a	30.0	*****	*##5#2#			######################################				
Sub-total	30.0	, pe de se en in Pe e	30.0	2.0											
1A-10															
ub-total	01 0				100										1
	69.0	11-a	69.0	4.0	11-a	69.0	12.0	11-a	69.0	12.0	C-BC	800	. a. er er er er er		
(A-11 Sub-total	69.0		69.0	4.0							C-BC	800			
tA-12	32.0		******	2=== n 0@1		and the same	_==== u					医多种动物		N=E5522	
iub-total Iote:	2492.0		1775.0 nnel con rt consi	62.1					C-8C=	561111	1.488.1	= 5100 = 11500	1675661	cesses.	C II 2 IZ II II I

V-111

Table 5-4-1(5/34) DESIGN DISCHARGE FOR DRAINAGE FACILITIES (MALABON - NAVOTAS 3-YR. RETURN PERIOD)

Subdraina	Subdrainage area Pump Sta			2	Gate			Drain						
Code	Area Code (ha)	D.A. (ha)	Op (m3/s)	Code	D.A. (ha)	(m3/s)	Code	D.A. (ha)	(m3/s)	Туре	Length (m)	Code	Volume (m3)	Are (m2
MT-4-1	411.0 4-1-a	411.0	7.8	4-1-a 4-1-b				227.0 184.0	o a sumplica	GRAHAGA	*****	ucestate	22452525	
Sub-total	411.0	411.0	7.8					C-OCT	2000	I-OCT	1600			
HT-4-2	218.0		(55,55,51)	4-2-a	218.0	31.0	4-2-a	218.0	31.0	C-0C1	1700	*******		MHHH.
Sub-total	218.0				218.0				A Po es es es es es es	C-OCT	1700	******		
	113.0	113.0	2.0	1-a	113.0	12.0	1-a 1-b	113.0 113.0	12.0 12.0	I-007 C-001	600 1000		=#500247	40011
Sub-total	113.0	113.0	2.0					C-OCT	1000	I-OCT	600			
\А-1-В \А-2-А	164.0 2-a	164.0	2.3	2-a 2-b	164.0	17.0	******	26420351	- C C C C C C C C C C C C C C C C C C C	anneter	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	*****		
oub-total	164.0	164.0	2.3						- 62 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2					
1A-2-B 1A-3 1A-4 1A-5	614.0 3-a	614.0	15.8	3-a 3-b 3-c 3-d 3-e										
ub-total	614.0	614.0	15.8									 		
ланана IA-6	134.0 6-a 134.0 240.0 7-a 240.0 376.0 376.0	134.0	4.6	6-a	******	*******	6-a	134.0	23.0	I-OCT	700			uxmas
	4		Δ .	$\mathcal{E}_{\mathcal{A}^{k}}(t) = 0$	21,		6-c	34.0	6.0	Č-ÖČŤ	500			
ub-total	134.0	134.0	4.6					C-OCT	900	I-OCT	700			
A-7	240.0 7-a	240.0	7.2	7-a	240.0	33.0	7-a	240.0	33.0	I-OCT	2200	****		= 11 11 21
ub-total	240.0	240.0	7.2				7			I-OCT	2200			
A-8	376.0	JEZOZEKE:		8-a	160.0	27.0					122220141	******		CH U
ub-total	376.0													
۸-9	30.0 9-a	30.0	1.0	9-a	30.0			en Rueuus	:EFEDERI	acente:	*62265041	-2655	inuncie:	####
ub-total	30.0	30.0	1.0											
A-10	91.0	-202 - 2 8821	easm= ut					_dx#50#=		,	현환화및 및 다양		3 4 3 6 6 2 7 6	
ub-totai	91.0	· • • • • • • • • • • • • • • • • • • •					,							
4-11	69.0 11-a	69.0	2.7	11-a	69.0	11.0	11-a	69.0	11.0	C-BC	800	iner:	iundzens	
ıb-total	69.0 11-a	69.0	2.7							C~BC	800			*****
4-12	32.0	.======	*#**	026*===		*****		==x===;		:branci	1365aceu1	=====	:Ceteens	2225
ıb~tota	32.0			*.			100	2.1	ry ta 1971	Jan Er un	and water to be	1000		
· · · · ·	2492.0	1775.0	43.4	*******	2669===			C-OCT= C-BC=	5600	I-OCT=	5100	ininase:	:=====:	*****

Note: C-OCT:open channel construction with trapezoidal section.

C-BC=
C-BC:Box culvert construction.

Table 5-4-1(6/34) DESIGN DISCHARGE FOR DRAINAGE FACILITIES (MALABON - NAVOTAS 2-YR. RETURN PERIOD)

Subdrain	age area	Pi	wep Star	t ion		Gate	* # # # # # # # # # # # # # # # # # # #	U 독립 N 년 다 S	Draina	* 1 11 11 11 11 11 11 11 11 11 11 11 11	Regulation Pond				
Code	Area (ha)	Code	0.A. (ha)	(m3/s)	Code	D.A. (ha)	(m3/s)	Code	D.A. (ha)	(m3/s)	Туре	Length (m)	Code	Volume (m3)	Area (m2)
MT-4-1	411.0	-1-a	411.0	4.8	4-1-a 4-1-b	411.0	49.0	4-1-a 4-1-b	227.0 184.0	27.0 24.0	C-0CT 1-0CT	2000 1600		EHEDENNE	
Sub-total	411.0		411.0	4.8					C-OCT	2000	I-OCT	1600			
MT-4-2	218.0		engene,		4-2-a	218.0	28.0	4-2-a	218.0	28.0	C-OCT	1700			
Sub-tota)	218.0										C-OCT	1700			
MA-1-A	113.0	l∽a	113.0	1.4	1-a	113.0	11.0	1-a 1-b	0 007	11.0 11.0	1-00T 1-00T	600 1000			
Sub-total	113.0	,===	113.0	1.4					C-OCT	1000	I-OCT	600			
MA-1-B MA-2-A Sub-total	164.0	?-a	164.0	1.6	2-a 2-b	164.0	16.0	rade:Car	MECHARA	.gadaay.		was and a			
Sub-total	164.0		164.0	1.6											
MA-2-B MA-3 MA-4 MA-5			614.0	11.5	3-a 7-b 3-c 3-d		•								
Sub-total	614.0		614.0	11 5											
MA-6	134.0 ()-d	134.0	3.4	6-a	134.0	21.0	6-a 6-b 6-c	134.0 34.0 34.0	21.0 6.0 6.0	I-0CT C-0CT C-0CT	700 400 500	:24:55		
Sub-total	134.0		134.0	3.4					C-OCT	900	I-OCT	700			
**************************************	240.0 7	=== '-a	240.0	5.2	7-a	240.0	30.0	7-a	240.0	30.0	I-OCT	2200	======	******	=annnn=
MA-7 Sub-total	240.0		240.0	5.2		~~					I-OCT	2200			
MA-8															
Sub-total															
MA-9	30.0	}-8 :=====	30.0	8.0	6-9	30.0	nsoeze:	正复数料型基 型	X 重心配投符 72 25 5				.ganese		*******
MA-9 Sub-total	30.0		30.0	0.8				_~~~							
MA-10															
Sub-total	91.0														
HA-11	69.0	1-a	69.0	2.2	11-a	69.0	10.0	11-a	69.0	10.0	C-BC	800	PEREEC		
MA-11 Sub-total	69.0		69.0	2.2							C-BC	800			
MA-12	32.0	.m=====		tterau u ;	2000年二处立		=====	" " " " " " " " " " " " " " " " " " " "		: 4 4 4 4 2 C !	~4=## #				
Sub-total	20.0														
*****	2492.0	165 445 55	1775.0	30.9			se = e z 2 1	- pans us	C-OCT= C-BC=	5600	1-0CT	5100	==##		
Notes	C OCTAGE		1			h +mana-	oddal .	ract tar	. v-uv-	000	ivia!	- 11200			

Note: C-OCT:open channel construction with trapezoidal section. C-BC:Box culvert construction.

Table 5-4-1(7/34) DESIGN DISCHARGE FOR DRAINAGE FACILITIES (EASI OF MANGAHAN 10-YR. RETURN PERIOD)

Subdraina	ge area	Pi	ump Sta	tion		Gate			Orainage Channel				Regulation Pond		
Code	Area (ha)	Code		Qp (m3/s)	Code	D.A. (ha)	Qp (m3/s)	Code	D.A. (ha)	(m3/s)	Туре	Length (m)	Code	Volume (m3)	Area (m2)
M-1	166.6	1-a	166.6	10.0	1-a	166.6	28.0			14.0 17.0		1100 700	1投資利益 配金	60公共14公元36	18646021
Sub-total	166.6		166.6	10.0							C-OCT	1800			
	241.7	2-a	241.7	13.0	2-a	241.7	29.0	2-a-1 2-a-2 2-a-3 2-b	11.0 15.0 20.0 74.3	15.0 20.0	C-0CT C-0CT C-0CT C-0CT	750 550 700 800	, , , , , , , , , ,	*************	
ub-tota)	241.7		241.7	13.0							C-OCT	2800			
M-3	272.2	3-a	272.2	5.1	3-a	272.2		3-a-1 3-a-2 3-a-3 3-b	85.2 150.8 191.7 80.5	10.0 12.0		600 500 900 700	3-a	21300	710
ub-total	272.2		272.2	5.1			1/44.1	- 			C-0CT	2700		21300	710
M-4	195.0	4-a	195.0	3.0	4-a	195.0	18.0	4-a-1 4-a-2 4-a-3	95.7 141.5 195.0	13.0	I-0CT 1-0CT I-0CT	350 350 400	4-a	39000	13000
ub-total	195.0		195.0	3.0							I-OCT	1100		39000	1300
	875.5		875.5	31.1	.	h dwanna	**=******		T 型 型 基 管 面 育 家		C-OCT I-OCT	7300.0 1100.0		60300	2010(

Note: C-OCT:open channel construction with trapezoidal section. I-OCT:open channel improvement with trapezoidal section.

Table 5-4-1(8/34) DESIGN DISCHARGE FOR DRAINAGE FACILITIES (EAST OF MANGAHAN 5-YR. RETURN PERIOD)

Subdraina	age area	Pur	np Sta	tion		Gate			Drainage Channel					Regulation Pond		
Code	Area (ha)	Code		Qp (m3/s)		D.A. (ha)	Qp (m3/s)	Code	D.A. (ha)	0 (m3/s)	Туре	Length (m)		Volume (m3)	Area (m2)	
EM-1	166.6 1	-3	166.6	9.0	1-a	166.6	27.5	1-a 1-b	83.6 83.0	13.0 15.0		1100 700		#3#E###	maerca.	
Sub-total	166.6		166.6	9.0							C-OC1	1800				
EM-2	241.7 2	-a	241.7	11.0	2-a	241.7	28.1	2-a-1 2-a-2 2-a-3 2-b	15.0 20.0		C-OCT C-OCT	750 550 700 800				
Sub-total	241.7		241.7	11.0					~		C-OCT	2800		~~		
EM-3	272.2 3	-a	272.2	5.0	3-a	272.2	16.5	3-a-1 3-a-2 3-a-3 3-b	85.2 150.8 191.7 80.5	9.0 11.0	C-0CT C-0CT C-0CT C-0CT	600 500 900 700	3-a	18000	6000	
Sub-total	272.2		272.2	5.0							C-OCT	2700		18000	6000	
EM-4	195.0 4	-d -a	195.0	2.0	4-a	195.0	17.9	4-a-1 4-a-2 4-a-3	95.7 141.5 195.0	13.0	1-0CT 1-0CT 1-0CT	350 350 400	4-a	33000	11000	
Sub-total	195.0		195.0	2.0					******		I-OCT	1100		33000	11000	
Total Note:	875.5 C-0CT:ope		875.5	27.0						E-44886	C-OCT I-OCT	7300.0 1100.0	252364	51000	17000	

Note: C-OCT:open channel construction with trapezoidal section. I-OCT:open channel improvement with trapezoidal section.

Table 5-4-1(9/34) DESIGN DISCHARGE FOR DRAINAGE FACILITIES
(EAST OF MANGAMAN 3-YR. RETURN PERIOD)

Subdra inag	Subdrainage area Pump Station			Gate	u na na a u		Draina	ige Channel		Regulation Pond			
Códe	Area Code (ha)	D.A. (ha)	Op Code (m3/s)	D.A. (ha)	Qp (m3/s)	Code	D.A. (ha)	0 Type (m3/s)	Length (m)	Code	Volume (m3)	Area (m2)	
EM-1	166.6 1-a	166.6	6.6 1-a	166.6	23.0	1-a 1-b	83.6 83.0	11.0 C-0CT 13.0 C-0CT	1100 700		2 # # # # # # # # # # # # # # # # # # #		
Sub-total		166.6	6.6					C-OCT	1800				
EM-2	241.7 2-a	241.7	9.0 2-a	241.7	23.0	2-a-1 2-a-2 2-a-3 2-b	11.0 15.0 20.0 74.3	9.0 C-0CT 12.0 C-0CT 16.0 C-0CT 10.0 C-0CT	750 550 700 800				
Sub-total	241.7	241.7	9.0					C-OCT	2800				
EM-3	272.2 3-a	272.2	3.5 3-a	272.2		3-a-1 3-a-2 3-a-3 3-b	85.2 150.8 191.7 80.5	5.0 C-0CT 8.0 C-0CT 10.0 C-0CT 6.0 C-0CT	600 500 900 700	3-a	17100	5700	
Sub-total	272.2	272.2	3.5	41 7 L				C-OCT	2700		17100	5700	
EM-4	195.0 4-a	195.0	1.5 4-a	195.0	15.0	4-a-1 4-a-2 4-a-3	95.7 141.5 195.0	8.0 1-0CT 11.0 I-0CT 15.0 I-0CT	350 350 400	4-a	30600	10200	
Sub-total		195.0	1.5			Taurases		1-001	1100		30600	10200	
Total Note: C	875.5	annel cons	20.6 struction wi	th trape	zoidal	section		C-0CT I-0CT	7300.0 1100.0		47700	15900	

C-OCT:open channel construction with trapezoidal section.
I-OCT:open channel improvement with trapezoidal section.

Table 5-4-1(10/34) DESIGN DISCHARGE FOR DRAINAGE FACILITIES (EAST OF MANGAHAN 2-YR. RETURN PERIOD)

Subdra ina	ge area	Pı	ump Sta	tion		Gate			Drain	age Cha	nne i		Reg	ulation	Pond
Code	Area (ha)	Code	D.A. (ha)	(m3/s)	Code	D.A. (ha)	Op (m3/s)	Code	D.A. (ha)	0 (m3/s)	Туре	Length (m)	Code	Volume (m3)	Area (m2)
EM-1	166.6	l-a	166.6	5.3	1-a	166.6	21.0	1-a 1-b	83.6 83.0		C-OCT C-OCT	1100 700	:.	######	
Sub-total	166.6		166.6	5.3							C-OCT	1800			
EM-2	241.7	2-a	241.7	7.3	2-a	241.7	21.0	2-a-1 2-a-2 2-a-3 2-b	11.0 15.0 20.0 74.3	11.0 15.0	C-0CT C-0CT C-0CT C-0CT	750 550 700 800		i	
Sub-total	241.7		241.7	7.3		******					C-OCT	2800			******
EM-3	272.2	3-a	272.2	2.7	3-a	272.2	12.0	3-a-1 3-a-2 3-a-3 3-b	85.2 150.8 191.7 80.5	7.0 9.0	C-0CT C-0CT C-0CT C-0CT	600 500 900 700	3-a	16500	5500
Sub-total	272.2	100	272.2	2.7							C-OCT	2700		16500	5500
EM-4	195.0	4-a	195.0	1.0	4-a	195.0	14.0	4-a-1 4-a-2 4-a-3	95.7 141.5 195.0	10.0	1-0CT 1-0CT 1-0CT	350 350 400	4÷a	28800	9600
Sub-total	195.0	oper redit	195.0	1.0					~~**		1-0CT	1100		28800	9600
Total Vote: (1.5	1.6		16.3	View N		:4-)		*********	\$在开设实配面!	C-OCT 1-OCT	7300.0 1100.0	医多色素 多枝枝	45300	15100

Note: C-OCT:open channel construction with trapezoidal section. I-OCT:open channel improvement with trapezoidal section.

Table 5-4-1(11/34) DESIGN DISCHARGE FOR DRAINAGE FACILITIES (WEST OF MANGAHAN 10-YR. RETURN PERIOD)

Subdraina		ump Sta		n ånderp	Gate	~~~~~							ulation	
Code	Area Code (ha)	D.A. (ha)	******	***	(ha)	QD (a/Em)	电极性 医红斑 医	D.A. (ha)	医皮肤过程 医原	H W LL ON M LL I	医化苯乙酰苯甲甲	Code	Volume (m3)	Area (m2)
(H-1	912.1 1-a	912.1	53.8	1-a	912.1	87.0	1-a-1 1-a-2 1-a-3	71.1 107.4	10.0 14.0	1-001 C-001	500 250			
4	•	:					1-a-3 1-a-4 1-a-5	107.4 107.4 157.7 237.4	21.0	1-001 1-001	700 1000			
					:		1-b-1 1-b-2	237.4 638.6 744.4	71.0	1-00T	900 1650			
	12 m						1-C-1 1-C-2	114.3 85.4	18.0 22.0 15.0	1-001 1-001	500 450 600			
					* *		1-d-2 1-e	131.5 268.0	22.0 39.0 14.0	1-001 1-001 C-001	800 600			
						-	1-f-2 1-f-3	81.5 32.8 167.7	14.0 22.0 27.0	C-OCT	450 450 600			
	912.1	912.1	53.8		912.1			I-OCT C-BC		C-OCT Total	2250 9700			
M-2	514.4 2-a	514.4	13.4	2-a 2-h	514.4		2-a-1 2-a-2 2-b	44×0000	al 30 to 30 to 50 to 50	I-001 I-001	900 1000	2-a	156000	52000
				2-0	31414	45,0	Z-€	82.7 162.2 307.0 55.8 99.5	30.0	1-0C1	1000 850			3t
							2-d-1 2-d-2 2-d-3	99.5 151.4 207.4	11.0 17.0 23.0	C-0C1 C-0C1	500 550 1100			
	514.4	514.4	13.4					1-OCT C-BC	3750.0	C-OCT Total	2150 5900		156000	52000
H-3	683.2 3-a	683.2	23.2	3-a	*********		3-a-1			202889	****	3-a	209100	69700
				3-0 3-c	683.2	65.0	3-a-1 3-a-2 3-a-3 3-b	147.4 249.8	20.0 32.0	1-0C1 1-0C1 1-0C1	300 300			e sele St. St. Wille
	٠						3-ç 3-q-1 3-q-2	456.5 76.1 96.0	44.0	I-0CT I-0CT I-0CT	2350 300 800			san ha
							3-e-1 3-e-2	88.8 124.4 89.8	15.0 21.0	C-OCT	600 550			
		·					3-[-1 3-[-2 3-[-3	110.4	17.0	C-0CT C-0CT C-0CT	550 550			
	•				orași e c		3-g-1 3-g-2	140.2 57.2 86.5		C-OCT C-OCT	400 600			
	683.2	683.2	23.2					I -OCT C-BC	6350.0 0	C-OCT Total	3100 9450	Although	209100	t e a a a
M-4	1427.6 4-a	1427.6	50.0	4-a 4-b	1427.6	=======================================	4-a-1	51.2	5.0 10.0	I-0CT I-0CT I-0CT		******	330900	
			•	4-č	1427.6	102.0		51.2 100.5 146.1 177.2 241.7	14.0 17.0	TANCT	800 500	process of		
		.!					4-a-5 4-b 4-c	346.7 927.3	24.0 32.0 75.0	I-0CT I-0CT I-0CT	1300 400 1450			
					to the		4-d 4-e 4-f-1	1233.7 1427.6 73.5	92.0	I-OCT I-OCT	1000 800 400			
					. 1		4-f-2 4-g-1	92.8 102.1	16.0 17.0	Č-ÖČT I-OČT	600 500			
							4-g-2 4-h-1	114.5 80.7 136.3	19.0 13.0 21.0	L-OCT C-BC C-BC	500 600 600			
		* 1					4-1-1	136.3 164.2	21.0 21.0	Î-ÖÇÎ	250 200			
• .			erije e Territori	:			4-1-4	272.3 272.3 441.9	34.0 47.0	I-OCT I-OCT	1350 500 900			
		٠					4-K 4-1-1 4-1-2	128.4 97.1 139.8	23.0 19.0	1-001	800 250 350	ing Section 1995 Agricultural Section 1995 The Section 1995		
							4-m 4-n	62.1 92.2	12.0 19.0	C-0C†	600 550 900	ing James I		
	· · · · · · · · · · · · · · · · · · ·			·			4-0-1 4-0-2	67.4 126.2	8.0 14.0	I-0CT	900 1900			
ub-total	1427.6	1427.6	50.0	11.				I-OCT C-BC		C-OCT Total	2150 19250		330900	110300
M-5	277.3 5-a	277.3	7.2	5-a	277.3	40.0	a-1 a-2	78.3 101.9	14.0 19.0	C-OCT C-OCT	400	5-a	79500	26500
1. 4.							b-1 b-2 c	101.9 101.5 142.4 277.3	17.0 23.0 40.0	C-0CT 1-0CT 1-0CT	550 550 350	mi kud Silah		4.10
ub-total	277.3	277.3		-				I-OCT C-BC	900	C-OCT Total	1350 2250	in i	79500	26500
otal	3814.6		10246-8	0 CC C S 60	0 E 10 2 E 16 C 7 E	*******	*******	1-0CT	34100	X (2) (2) (3) (4) (4) (5) (4)	11000		775500	

Table 5-4-1(12/34) DESIGN DISCHARGE FOR DRAINAGE FACILITIES
(WEST OF MANGAHAN 5-YR. RETURN PERIOD)

Subdrain		Pump Stat	tion	. G	ate			Draina	age Char	ine l		Reg	ulation	Pond
Code	Area Cod	e D.A. (ha)	0p (m37s)	Code	D.A. (ha)	Op (m3/s)	Code	O.A. (ha)	(m3/s)	Type	Length (m)	Code	Volume (m3)	Area (m2)
₩-1	(ha) 912.1 1-a	912.1	46.0 1	-a	912.1	78.0	1-a-1 1-a-2 1-a-3 1-a-4 1-a-5 1-b-1	71.1 107.4 107.4 157.7 237.4 638.6	13.0	C-0CT C-0CT 1-0CT	500 250 250 700 1000		·.	
				Harris I			1-D-1 1-D-2 1-C-1 1-C-2 1-d-1 1-d-2	744.4 92.0 114.3 85.4 131.5	55.0 64.0 17.0 20.0 13.0	I-0CT I-0CT I-0CT I-0CT I-0CT	1650 500 450 600 800			
							1-e 1-f-1 1-f-2 1-f-3	268.0 81.5 32.8 167.7	35.0 13.0 20.0 25.0	1-0CT C-0CT C-0CT C-0CT	600 450 450 600			
	912.1	912.1	46.0		912.1				7450 0	C-OCT Total	2250 9700	.=====		
	514.4 2-a							82.7 162.2 307.0 55.8	Icinoboac	I-0CI I-0CI I-0CI I-0CI	1000 1000	2-8	138000	46000
							2-q-1 2-q-2 2-d-3	99.5 151.4 207.4	11.0 16.0 21.0	C-0CT	850 500 550 1100		i i i	i Lightag
	514.4	514.4	12.0					I-OCT C-BC	3750.0 0	C-OCT Total	2150 5900	o di	138000	
H-3	683.2 3-a	683.2	2002	-â -b -c	683.2	58.0	3-a-1 3-a-2 3-a-3 3-b 3-c 3-c-1	80.4 120.0 147.4 249.8 456.5 76.1	10.0 15.0 18.0 29.0 39.0	I-0CT I-0CT I-0CT I-0CT I-0CT	750 1000 300 300 2350 300	3-a	183000	61000
							3-d-2 3-e-1 3-e-2 3-f-1 3-f-2 3-f-3	96.0 88.8 124.4 89.8 110.4 140.2 57.2 86.5	16.0	1-00-1 1-00-1 1-00-1 1-00-1 1-00-1 1-00-1	800 550 400 550 550 400			
	683.2	683.2	20.6				3-ğ-2	T OCT	6260 0	Č-ÖCŤ	600 3100		183000	61000
M-4	1427.6 4-a	era i jana se	45.0 4	-a -b -c	1427,6	91.0	4-a-1 4-a-2 4-a-3 4-a-4 4-a-5 4-b 4-c 4-d	51.2 100.5 146.1 177.2 241.7 346.7 927.3	5.0 9.0 13.0 16.0 21.0 29.0 67.0	1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT	9450 900 800 500 1300 1450 1450		258000	
							4-e 4-f-1 4-f-2 4-g-1 4-g-2 4-h-1 4-h-2	1233.7 1427.6 73.5 92.8 102.1 114.5 136.3	91.0 12.0 14.0 16.0 17.0 12.0	I-001 I-001 C-001 I-001 I-001 I-007 C-80 C-80	800 400 500 500 600 600			
							4-1-3 4-1-4 4-1-4 4-1-4 4-1-1	136.3 164.2 224.4 272.3 441.9 128.4 97.1	19.0 25.0 30.0 42.0 21.0	I-001 I-001 I-001 I-001 I-001	250 200 1350 500 900 800 250			
						1.14	4-1-2 4-m 4-n 4-0-1 4-0-2	139.8 62.1 92.2 67.4 126.2	25.0 11.0 17.0 17.0	Î-ÖCÎ C-OCÎ C-OCÎ I-OCÎ	350 600 550 900 1900			
ub-total	1427.6	1427.6	45.0					I-OCT	15650 1450	C-OCT	2150 19250		258000	86000
**************************************	277.3 5-a	277.3	6.0 5	-a	277.3	36.0	a-1 a-2 b-1 b-2	78.3 101.9 101.5 142.4 277.3					63000	21000
ub-total	277.3	277.3	6.0				C	277.3 I-0CT C-BC	36.0 900				63000	
otal	3814.6 I-OCT:open ch C-BC:box culv				3 3 3 3 3 3 5 7 8 6		0 0 0 0 0 0 7	4.四种环络 经基本	三共 司 明 春 田 林	医过程的存在	可知识的医异常溶液	42 E E E E E E E	642000	At 80 to 10 HE Se:

Table 5-4-1(13/34) DESIGN DISCHARGE FOR DRAINAGE FACILITIES
(WEST OF MANGAMAN 3-YR. RETURN PERIOD)

*******	age area	D 1	U~		Gate			וומוני אמ		**************************************	nessana 	ney	. 10 t (VII . 16 1	1 WILL
Code	Area Code (ha)	다 나는 아이를 다 나 뭐 !	E E C = 41 K M :	自己的名词形式	6조보의 도와 이 이 이				(m3/s)	anana. BdG	Length (m)	DOO!	volume (m3)	m2)
/H-1	912.1 1-a	912.1	38.5	1-a	912.1	70.0	1-a-1 1-a-2 1-a-3	71.1 107.4 107.4	8.0 11.0	C-0C1	500 250			
	•						1-8-4	107.4	11.0 17.0	I-0CI	250 700			
				:			1-a-5 1-b-1	638.6	25.0 49.0	1-001	1000 900 1868			* 1 * 1
		• •					1-D-2 1-C-1 1-C-2	92.0	15.0	I-OCT	500 450			
		**					1-q-1 1-d-2	131.5	12.0 18.0	1-001 1-001	600 800	1		:
							1-e 1-1-1	268.0 81.5	31.0 11.0	I-0CI	600 450			
						٠.	1-1-3	167.7	22.0	C-OCT	450 600			
****	912.1	912.1	38.5		912.1			I-OCT C-BC	7450 0	C-OCT Total	2250 9700			
H-2	514.4 2-8	514.4	10.3	2-a	**************************************	******	2-a-1 2-a-2	82.7 162.2	Department.	I-OCT		2-a	110100	36700
	."			2-D	514.4	40.0	2-b	162.2 307.0	15.0 24.0	I-001	1000			·
					•	- 1	2-c 2-d-1	99.5 151.4	9.0	Ç-ÖÇİ	850 500 550			
							Ž-d-3	207.4		Č-ŎĊŤ	1100			~
	514.4	514.4	10.3	1 - 2 · 1		**	٠.	T-OCT C-BC	3750.0	C-OCT Total	2150 5900		110100	36700
M-3	683.2 3-a	683.2	17.1	3-a	-	_	3-a-1	80.4 120.0 147.4	9.6	I-XCI	750 1000	3-a	145200	48100
				3-c	683.2	52.0	3-a-2 3-a-3 3-b	147.4 147.4 249.8	16.0 26.0	Î-ÖCT	300 300			
							3-ç 3-d-1	456.5 76.1	35.0 11.0	I-ŎČŤ	2350 300			
-							3-d-2 3-e-1	96.0 88.8 124.4	14.0 13.0	1-0CT	800 600		·	
10			** :				3-e-2 3-[-]	124.4 89.8	17.0 12.0	Č-ŎČÍ I-OČÍ	550 400			
٠					4.4		3-f-3	140.2	18.0	Ç-001	550 400			
							3-g-2	86.5		č-ŏči	400 600			
	683.2	683.2	17.1		1997			I-OCT C-BC	6350.0 0	C-OCT Total	3100 9450	. /	145200	
H-4	1427.6 4-8	1427.6	40.0		-	-	4-a-l	51.2	4.0	1-0CT 1-0CT	350 900	4-a	188100	62700
·			 	4-b 4-c	1427.6	82.0	4-a-3 4-a-4	51.2 100.5 146.1	8.0 12.0 14.0	i-oct	800 500			- 14 . :
						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4-ã-5 4-b	241.7 346.7	19.0 26.0	i-öct i-öct	1300 400			
		i					4-c 4-d	927.3 1233.7	60.0 74.0	I-OCT	1450 1000			
							4-e 4-f-1 4-f-2	1427.6 73.5	82.0 10.0	Č-ÖČI	400 600			
							4-1-2 4-9-1	102.1	14.0	1-001	500 500			
		12			** **		4-h-1	114.5 80.7	10.0 11.0 17.0	C-BC	000 000 000			
	;			- 32			4-1-1	136.3 136.3 164.2	17.0 17.0	Č-BČ I-OCT	250 200			
						**	4-1-3	224.4 272.3	23.0 27.0	I-ÖČŤ I-OČŤ	1350 500			
				•			4-j 4-k	441.9 128.4	38.0 19.0	I-0C1	900 800			
				. ⁵ 1			4-1-2	128.4 97.1 139.8	16.0 22.0	I-ÖČĪ	350 350			7 - 1
				· .			4-m 4-n 4-0-1	92.2 92.2	10.0 15.0	C-0CT	550 900			
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						4-0-2	126.2	12.0	Ī-ŌĊŤ	1900			
ub-total	1427.6	1427.6	40.0					I-OCT C-BC	15650 1450	C-OCT Total	2150 19250		188100	62700
H-5	277.3 5-a	277.3	4.6	5-a	277.3	32.0	a-1 a-2	78.3 101.9 101.5	12.0	C-OCT	400 400	5-a	57900	19300
							b-1 b-2	101.5 142.4	12.0 15.0 13.0 19.0 32.0	C-0CT C-0CT 1-0CT	400 400 550 550 350			1171
	**************************************			11-1			č	277.3	~~~	1-0¢t				76764
ub-total	277.3	277.3	4.6					I-OCT C-BC		C-OCT Total	1350 2250		57900	19300
otal	3814.6	3814.6	110.5	REPRESE	· · · · · · · · · · · · · · · · · · ·	B 美 医 益 道 点 点	· 하 및 및 최 (6) 및	I-OCT	34100	C-OCT Total	11000 46550		501300	167100

Table 5-4-1(14/34) DESIGN DISCHARGE FOR DRAINAGE FACILITIES
(WEST OF MANGAHAN 2-YR. RETURN PERIOD)

Subdraina	ige area	rump Sta	tion	G	iate		# <b>**</b> **	Orain	age Chai	ine i		Reg	ulation	Pond
Codo	Aras Cada	n A	በአ	Codo :	n a	Nn	Codo	0.A. (ha)	0 (m3/s)	Туре	Length (m)	Code	Volume (m3)	Area (m2)
	(ha) 912.1 1-a	912.1	32.0 1	-a	912.1		1-b-1 1-b-2 1-c-1 1-c-2 1-d-1 1-d-2	71.1 107.4 107.4 157.7 237.6 38.6 744.4 92.0 114.4 131.5 268.5 812.7	13.0 16.0 11.0 16.0 28.0	C-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT	500 250 250 7000 1000 1650 450 450 600 600 450			
	912.1	912.1	32.0		912.1		1-f-2 1-f-3		20.0 7450 0	C-0CT C-0CT Ç-0CT	600			
1-2	514.4 2-a	514.4	8.2 2	-а -b	514.4	36.0	2-a-1 2-a-2 2-b 2-c-1 2-d-1 2-d-3	82.7 162.2 307.0 55.8 99.5 151.4 207.4	7.0 14.0 22.0 7.0 8.0 12.0	I-0CT I-0CT I-0CT I-0CT C-0CT C-0CT C-0CT	900 1000 1000 850 500 550	2-a	101100	33700
	514.4	514.4	8.2						3750.0		2150 5900		101100	33700
4-3	683.2 3-a	<b></b>		ند سعد د د		47.0	2 2 2 2 E W &	80.4 120.0 147.4 249.8 456.5 76.1 96.0	8.0 12.0 15.0 24.0 31.0 10.0 12.0 11.0	I-OCT	750 1000 300 300 2350 800 600 550 400 550	3-a	114000	
	683.2	683.2	15.0					I-OCT C-BC	6350.0	C-OCT Total	3100 9450	***********	114000	38000
	1427.6 4-a		34.3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	-a -b -c	1427.6	72.0	4.2.1	1237-7-658 2467-7-7-658 2427-7-7-8 902-1-658 1236-7-3-2-1-8 902-7-3-2-1-8 1336-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-1-8 1227-4-8 1227-4-8 1227-4-8 1227-4-8 1227-4-8 1227-4-8 1227-4-8 1227-4-8 1227-4-8 1227-4-8 1227-4-8 1227-4-8 1227-4-8 1227-4-8 1227-4-8 1227-4-8 1227-4-8 1227-4-8 1227-4-8 1227-4-8 1227-4-8 1227-4-8 1227-4-8 1227-4-8 1227-4-8 1227-4-8 1227-4-8 1227-4-8 1227-4-8 1227-4-8 1227-4-8 1227-4-8 1227-4-8 1227-4-8 1227-4-8 1227-4-8 1227-4-8 1227-4-8 1227-4-8 1227-4-8 1227-4-8 1227-4-8 1227-4-8 1227-4-8 1227-4-8 1227-4-8 1227-4-8 1227-4-8 1227-4-8 1227-4-8 1227-4 1227-4 1227-4 1227-4 1227-4 1227-4 1227-4 1227-4 1227-4 1227-4	4.000000000000000000000000000000000000	1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT 1-0CT	350 350 800 1000 1000 1000 1000 500 600 500 600 600 500 600 6	4-a	156300	
b-total	1427.6	1427.6	34.3		~~~~			I-OCT C-BC	15650 1450	Total	2150 19250		156300	52100
-5	277.3 5-a	277.3	3.3 5	-9	277.3		a-1 a-2 b-1 b-2 c	78.3 101.9 101.5 142.4 277.3	11.0 14.0 12.0 17.0 29.0	C-0CT C-0CT C-0CT I-0CT I-0CT	400 400 550 550 350	5-a	53100	17700
b-total	277.3	277.3	3.3		Pr • * * * * * * * * * * * * *			I-OCT C-BC	900	C-OCT	1350 2250		53100	17700
tal te: (	3814.6 C-OCT:open cha C-BC:box culve	3814.6	92.8	B 雅 超 春 概 岁	的复数计型通过	医可以口外放射	<b>克拉沃斯多</b> 赞	I-OCT C-BC	34100 1450	*	11000 46550	1 体性的数能力	424500	141500

Table 5-4-1(15/34) DESIGN DISCHARGE FOR DRAINAGE FACILITIES (SAN JUAN 10-YR. RETURN PERIOD)

Subdrain	age area	P	ump Sta	tion	<b>新花原果</b>	Gate	******	<b>******</b>	Draina	age Chai	nnel		Reg	ulation	Pond
Code	Area (ha)	Code	D.A. (ha)	Op (m3/s)	Code	D.A. (ha)	Op (m3/s)	Code		(m3/s)	Туре	(m)	Code	Volume (m3)	Area (m2)
\$J-5-1	283.0	<b>自</b> 位款自存存	********	, <b>, , , , , , , , , , , , , , , , , , </b>	5-1-a	283.0	44.0	5-1-a	283.0	44.0	C-BC	2050	<b>特拉克度多点</b>	生过来写明家园台	<b>学好双带更到</b>
Sub-total		<b></b>				283.0			********		C-BC	2050	******		~~~~~
SJ-5-2	31.0	등 또 더 또 보 봐	1.税应发票条单位		5-2-b	31.0		5-2-a			C-BC	800	<b>以发明</b> 位的词	<b>克莱乔森口语声</b> 望	\$P\$ \$P\$ \$P\$
Sub-total	31.0					31.0						800			
SJ-7-1	256.0		137.0 119.0	8.2	7-1-a 7-1-b	137.0 119.0	28.0	7-1-a 7-1-b	137.0		C-BC	1000 800	医复数形式	<b>聚香酒 新</b> 种锰亚灰	医花童饮食饮料
Sub-tota)	256.0		256.0	15.8		256.0				*******		1800	*****	*********	
SJ-7-2	92.0 7		50.0 42.0	4.1 3.9	7-2-a 7-2-b	50.0 42.0	11.0	7-2-a 7-2-b	50.0 42.0		C-BC	800 500	### # 15 B.B.	****************	<b>FRIEL</b> 32
Sub-total	92.0		92.0	8.0		92.0			(祖王以李明年末2		C-BC	1300			
SJ-8-1	87.0 8	8-1-a	87.0	6.8	8-1-a	87.0		8-1-a				1000	<b>不可以及归</b> 妻	八字 二次 表 公 表 等	e n s n s n s
Sub-total	87.0		87.0	6.8		87.0					C-BC	1000			*
SJ-8-2	59.0 8	3-2-a	59.0	4.2	8-2-a	59.0	11.0	8-2-a	59.0	11.0	C-8C	1100	# # 11 <b>6</b> 11 3	严禁 京 沃 在 图 卷 3	450005
Sub-total	59.0		59.0	4.2		59.0				,	C-BC	1100		¢======	
SJ-9-1	94.0			(	9-1-a 9-1-b	79.0 15.0	15.0	9-1-a	79.0	15.0		1400	*******		11122 <b>5</b> 50
Sub-total	94.0					94.0					C-BC	1400		*11825955	
SJ-9-2	187.0 9		187.0		9-2-a	187.0	40.0	9-2-a 9-2-b	95.0 92.0	20.0 20.0	C-BC	1000 1000	******	***********	
Sub-total	187.0		187.0	9.5		187.0					C-BC	2000		********	
SJ-9-3	62.0 9		62.0	3.5 9		62.0		9-3-a	62.0	14.0	C-BC	850	44=8=4:	********	72 DEC 22
Sub-total	62.0		62.0	3.5		62.0					C-BC	850			
SJ-10	109.0 1		109.0	4.9 1	0-a	109.0	21.0	10-a	109.0	21.0	I-OCR	1300	· ************************************	9 04 4 A A A A A A A A	2.中华多项调查
Sub-total	109.0		109.0	4.9		109.0					I-OCR	1300		********	
Total	1260.0	.200232	852.0	52.7	******	1260.0			I-OCR	1300	C-BC Total	12300 13600	- 传写宏心性:	6. 可以有关的条件:	F 研究配配心线

I-OCR:open channel improvement with rectangular section. C-BC:box culvert construction. Note:

# Table 5-4-1(16/34) DESIGN DISCHARGE FOR DRAINAGE FACILITIES (SAN JUAN 5-YR. RETURN PERIOD)

Subdrain	age area	F	ump Sta	tion		Gate			Drain	age Cha	nne l		Reg	gulation	Pond
Code SJ-5-1									0.A. (ha)	0 (m3/s)	Туре	Length (m)	Code	Volume (m3)	Are (m2
SJ-5-1	283.0						43.34.3		· 14	40.0	C-BC	2050	<b>4 8 8 8</b>		
Sub-total	283.0			a, a a., go dir en da .		283.0					C-BC	2050			
SJ-5-2	31.0			1 - G	5-2-b	31.0	6.0	5-2-a	31.0	6.0	C-8C	800	付 <b>主 (2) Y</b> 故 2		, <b>, , , , , , , , , , , , , ,</b>
Sub-total	31.0					31.0						800			
SJ-7-1	256.0	7-1-a 7-1-b	137.0 119.0	6.5 6.1	7-1-a 7-1-b	137.0 119.0	25.0 24.0	7-1-a 7-1-b	137.0 119.0	25.0 24.0	C-BC C-BC	1000 800			
Sub-total	256.0		256.0	12.6		256.0			india Nasangsalah			1800	****		unus
SJ-7-2	92.0	7-2-a 7-2-b	50.0 42.0	3.3 3.1	7-2-a 7-2-b	50.0 42.0	10.0 10.0	7-2-a 7-2-b	50.0 42.0	10.0 10.0	C-BC C-BC	800 500			
ub-total	92.0		92.0	6.4		92.0					C-BC	1300			
J-8-1	87.0	8-1-a	87.0	5.4	8-1-a	87.0	15.0	8-1-a	87.0	15.0	C-BC	1000			
ub-total	87.0		87.0	5.4		87.0				**	C-BC	1000			
J-8-2	59.0	8-2-a	59.0	3.4	8-2-a	59.0	10.0	8-2-a	59.0	10.0	C-8C	1100		4	
ub-total	59.0		59.0	3.4	-7	59.0	1.00.00	-1146 F.S.			C-BC	1100			
J-9-1	94.0				9-1-a 9-1-b	79.0 15.0	14.0	9-1-a	79.0	14.0	C-BC	1400	14.5		:
ub-total	94.0				184 g. z.	94.0					C-BC	1400	v a = n		
J-9-2	187.0	9-2-a	187.0	7.3	9-2-a	187.0	36.0	9-2-a 9-2-b	95.0 92.0	18.0 18.0	C-BC C-BC	1000 1000 2000.0			
ub-total	187.0		187.0	7.3	D. C. T. D. W.	187.0	I EURUPA				C-BC	2000.0	2 m m # # 10		
J-9 <b>-</b> 3	62.0	9-3-a	62.0	2.8	9-3-a	52.0	13.0	9-3-a	62.0	13.0	C-BC	850			:
ub-total	62.0		62.0	2.8		62.0					C-BC	850			
J-10	109.0	10-a	109.0	3.2	10-a	109.0	19.0	10-a	109.0	19.0	I-OCR	1300			
ub-total	109.0		109.0	3.2	3	109.0					I-OCR	1300			
otal	1260.0 I-OCR:op	404444	852.0	41.1		1260.0	*********	140000	***		******	12300		9509v###	e nan

Note: 1-OCR:open channel improvement with rectangular section. C-BC:box culvert construction.

Table 5-4-1(17/34) DESIGN DISCHARGE FOR DRAINAGE FACILITIES (SAN JUAN 3-YR. RETURN PERIOD)

Subdrain	age area		Pump Stat			Gate				age Cha		.01163119119		ulation	
Code	Area (ha)	Code	(ha)	Op (m3/s)		D.A. (ha)	Qp (m3/s)	100	. (ha)	(m3/s)		(m)		Volume (m3)	(m2)
SJ-5-1	283.0				5-1-a	283.0			283.0			2050	##CZD5	2562555	CERDE
Sub-total	283.0					283.0	*******		. ** ** ** ** ** **		C-BC	2050		··· ** *** *** *** *** *** ***	
SJ-5-2	31.0	******	. ***********		5-2-b	31.0			31.0			800	*=0428	- HERRICK	#uaza
Sub-total	31.0					31.0						800			N = 14 III II
SJ-7-1		7-1-a 7-1-b	137.0 119.0	5.3	7-1-a 7-1-b	137.0	23.0	7-1-a	137.0 119.0	23.0	C-BC	1000 800	***************************************		acent
Sub-total	256.0		256.0	10.3		256.0						1800	~~~~		
SJ-7-2	92.0	7-2-a 7-2-b	50.0 42.0	2 7	7-2-2		a n	7-2-a		9.0	C-BC	800 500		*******	*****
Sub-total	92.0		92.0	5.3		92.0					C-BC	1300			
J-8-1	_ '''	8-1-a	87.0			87.0	14.0	8-1-a				1000			
Sub-total	87.0			4.5							C-BC	1000		*	
J-8-2		8-2-a	59.0	2.7					59.0			1100			-OKAR
ub-total	59.0		59.0			59.0					C-BC	1100			
J-9-1	94.0	.408585		100	9-1-a 9-1-b		12.0	And the second	79.0			1400		33356834	
ub-total	94.0					94.0					C-BC				Pare.
J-9-2			187.0	4.0	9-2-a	187.0	32.0	9~2-a	95.0	16.0	C-BC	1000	100		
ub-total			187.0	4.0		187.0	are distrib		to the second		C-BC	2000			1.54
J-9-3		9-3-a				62.0	11.0	9-3-a	62.0	11.0	C-BC	850		umez====1	
ub-total	62.0		62.0				444	45.			C-BC	850			
J-10						109.0							==# <b>02</b> =:	9=63546#	
ub-total	109.0		109.0	2.3		109.0					I-OCR	1300		_*	
otal	1260.0	******	852.0		chusen:	1260.0	400000	********	I-OCR		C-BC Total	12300 13600	gdawan,	- 双文地亚地名	303Ebi

Note: I-OCR:open channel improvement with rectangular section. C-BC:box culvert construction.

**V-122** 

Table 5-4-1(18/34) DESIGN DISCHARGE FOR DRAINAGE FACILITIES
(SAN JUAN 2-YR. RETURN PERIOD)

Subdrain		P	ump Sta	tion		Gate				ige Cha		(以本等)(水金包)		ulation	
Code	(ha)	Code	(ha)	Qp (ε/Em)	Code	(ha)	Op (m3/s)	Code	D.A. (ha)	(m3/s)	- •	(m)		(m3)	(m2)
SJ-5-1	283.0	enumesu:	T T T T T T T T T T T T T T T T T T T				32.0	5-1-a	283.0			2050		知 15	*********
Sub-total	283.0		******	*****		283.0					C-BC	2050			
SJ-5-2	31.0	120 2 2 2 2			1		5.0			5.0				可以可以放弃的品	924284
Sub-total	31.0					31.0			******			800			~~~~
SJ-7-1	256.0	7-1-a	137.0	4.2	7-1-8		21.0	7-1-a	137.0		C-BC	1000 800	# 2 2 E R E	<b>被照</b> 数算数	## # # # # # # # # # # # # # # # # # #
Sub-total			256.0	8.2	~~~~	256.0						1800			
SJ-7-2	92.0		50.0	2.1	7-2-a	50.0 42.0	8.0	7-2-a		8.0	C-BC	800			
ub-total	92.0		92.0			92.0	74 - 14 - 1 19 - 14				C-8C	1300			
181	87.0	8-1-2	87 A	3.6	R_1_2	27 N	13.0	8_1_2	87.0			1000		25572544	
ub-total	87.0		87.0	3.6		87.0									
J-8-2	59.0	8-2-a	59.0	2.2	8-2-a	59.0	8.0	8-2-a	59.0						20025
ub-total	59.0		59.0	2.2		59.0					C-BC	1100	***		***
J-9-1	94.0				9-1-a	79.0	11.0	9-1-a	79.0	11.0	C-BC	1400			
ub-total	94.0					94.0					C-BC	1400			
J-9-2	187.0	9~2-a	187.0	2.5	9-2-a	187.0	29.0	9-2-a	95.0 92.0	15.0	C-BC	1000	geose:	製造財政管理部項	sacce
ub-total	187.0	arsita e.	187.0	2.5	14.	187.0			and the second		C-BC	2000	_~		
J-9-3	62.0													********	E22000
ub-total	62.0	1. T. P. P.	62.0	1.0		62.0					C-8C	850	 -;		erent.
J-10													£ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		
ub-total						109.0					I-OCR	1300			
otal	1260.0					1260.0			I-OCR			12300 13600	******	EGD#####	ECHECA

Note: I-OCR:open channel improvement with rectangular section. C-BC:box culvert construction.

#### Table 5-4-1(19/34) DESIGN DISCHARGE FOR DRAINAGE FACILITIES (MANDALUYONG-PASIG 10-YR. RETURN PERIOD)

Subdrain	ige area	1	ump Sta	tion		Gate		:. <u> </u>	Drain	age Channel		Reg	ulation	Pond
Code	Area (ha)	Code	D.A. (ha)	Op (m3/s)	Code	D.A. (ha)	Op (m3/s)	Code	D.A. (ha)	0 Typ (m3/s)	e Length (m)	Code	Volume (m3)	Area (m2)
PM5-1	929.0	5对拉拉斯 企业	t	3. 棒机 5. 节 凡 卢 朴	9 X 2 Y 4 7 7	200	<b></b>	5-1-a 5-1-b 5-1-c 5-1-d	188.0	24.0 C-BC 78.0 I-00	2500 R 1000	e 65 20 97 44 145 145	强化 产产 对 粒 环 表	in the extra day has but
Sub-total	929.0			~~~~					I-OCR	1900 C-BC	3900			
PM-5-2	138.0	:=qpRGI	1 64 10 EE 12 12 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	<b>共享发展的</b>	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	az 15 25 20 20		5-2-a	68.0	12.0 C-BC	1200	2226222	********	*=43444
Sub-total	138.0			*						C-BC	1200			
PM-7	458.0	7-a 7-b 7-c	352.0 62.0 44.0	4.1	7-b	352.0 62.0 44.0		7-b	126.0 195.0 31.0 62.0 44.0	48.0 I-00 8.0 C-80 16.0 C-80	T 600 600 600			
Sub-total	458.0		:	23.0					I-OCT	600 C-BC	3700			
	1525.0	:negAtt	******	23.0	2012年1	· 拉里克克克	<b>E</b> 420069		I-0CT	600 C-BC		*******	20572#45	

Note:

I-OCT:open channel improvement with trapezoidal section. I-OCR:open channel improvement with rectangular section. C-BC:box culvert construction.

Table 5-4-1(20/34) DESIGN DISCHARGE FOR DRAINAGE FACILITIES (MANDALUYONG-PASIG 5-YR. RETURN PERIOD)

Subdra ina	ige area	P	ımp Sta	tion		Gate			Oraina	ige Cha	nnel		Regi	lation	Pond
Code	Area (ha)	Code	D.A. (ha)	Op (m3/s)	Code	D.A. (ha)	Op (m3/s)	Code	D.A. (ha)	(a(Em)	Туре	Length (m)	Code	Volume (m3)	Area (m2)
PM5-1	929.0	164258	B 双 # \$ \$ \$ \$ \$ \$ \$	<b>以农民还在</b> 田式和	医黑壁的作节	<b>KEDAT</b>		5-1-a 5-1-b 5-1-c 5-1-d	187.0 188.0 425.0 129.0	22.0 70.0	I-OCR C-BC I-OCR C-BC	900 2500 1000 1400			
Sub-total	929.0								I-OCR	1900	C-BC	3900	7-4 1-3-1		
M-5-2	138.0	:EEEE1111	*********	· 经基础条件	\$ <b>55</b> 55	*********	7.3.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.	5-2-a	68.0	11.0	C-BC	1200	胡麻麻多种灰巾	18672301	292220
Sub-total	138.0							**=**=	~~~~	• ** ** ** <b>**</b> ** **	C-BC	1200	*****	<del></del>	
PM-7	458.0	7-a 7-b 7-c	352.0 62.0 44.0	13.0 3.3 2.1	7-Ď	352.0 62.0 44.0	14.0	7-a 7-b 7-c 7-d 7-e	126.0 195.0 31.0 62.0 44.0	43.0 7.0 14.0	C-BC I-OCT C-BC C-BC C-BC	1700 600 600 600 800			*************************************
Sub-total	458.0			18.4					I-OCT	600	C-BC	3700			
lote:	1525.0	en char	nolim	18.4		enzuese tranez	nidal c	emazaas ection	I-OCT I-OCR		C-BC Total	8800 11300	<b>*******</b>	************	*#****

1-OCR:open channel improvement with rectangular section.

#### Table 5-4-1(21/34) DESIGN DISCHARGE FOR DRAINAGE FACILITIES (MANDALUYONG-PASIG 3-YR, RETURN PERIOD)

Subdrainag	ge area	Pı	ump Sta	tion	in the	Gate			Drain	age Channel		Reg	ulation	Pond
Code	Area (ha)	Code	D.A. (ha)	Op (m3/s)	Code	D.A. (ha)	Qp (m3/s)	Code	D.A. (ha)	0 Type (m3/s)	Length (m)	Code	Volume (m3)	Area (m2)
PM5-1	929.0				3M±GRU:	itende		5-1-a 5-1-b 5-1-c 5-1-d	187.0 188.0 425.0 129.0	19.0 C-BC	900 2500 1000 1400	en une e	0 4 4 4 5 5 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5	R 25 25 E 25
Sub-total	929.0				~~~				I-OCR	1900 C-BC	3900			
PM-5-2	138.0	402026		acau o # = 1	- ERRECE		*******	5-2-a	68.0	10.0 C-BC	1200		****	****
Sub-total	138.0								*****	C-BC	1200			
PM-7		7-a 7-b 7-c	352.0 62.0 44.0	2.6	7-b	352.0 62.0 44.0	13.0 8.0	7-a 7-b 7-c 7-d 7-e	126.0 195.0 31.0 62.0 44.0	18.0 C-BC 39.0 I-OCT 7.0 C-BC 13.0 C-BC 8.0 C-BC	1700 600 600 600 800		3 <b>4</b> 4 4 4 5 5 5	DC3E44
Sub-total	458.0			14.5					I-OCT	600 C-BC	3700			
4 - 14 1 - 1	1525.0	***====		14.5	# <b>*</b> ****	-2200631		TEKSTER	I-OCT C-OCR	600 C-BC 1900 Total	8800 11300	=====	3045ER	# = n u s p i

I-OCT:open channel improvement with trapezoidal section. I-OCR:open channel improvement with rectangular section. C-BC:box culvert construction.

#### Table 5-4-1(22/34) DESIGN DISCHARGE FOR DRAINAGE FACILITIES (MANDALUYONG-PASIG 2-YR. RETURN PERIOD)

Subdraina	ge area	Pu	mp Sta	tion		Gate		Sacht, s	Drain	ige Cha	nne l		Reg	ulation	Pond
Code	Area (ha)	Code	D.A. (ha)	Qp (m3/s)	Code	D.A. (ha)	Qp (m3/s)	Code	D.A. (ha)	(m3/s)	Туре	Length (m)	Code	Volume (m3)	Area (m2)
PM5-1	929.0		00000			ecesias at 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		5-1-a 5-1-b 5-1-c 5-1-d	187.0 188.0 425.0 129.0	17.0 57.0	I-OCR C-BC I-OCR C-BC	900 2500 1000 1400		***********	(法主教会议名
ub-total	929.0								I-OCR	1900	C-BC	3900		*******	
M-5-2	138.0	医安泰世氏公司	*******		ne=exs		enenare:	5-2-a	68.0	9.0	C-BC	1200	.062233	CREMESS	. KERSS
ub-total	138.0								**************************************		C-BC	1200			
M-7		7-a 7-b 7-c	352.0 62.0 44.0	1.9	7-b	352.0 62.0 44.0	12.0		126.0 195.0 31.0 62.0 44.0	35.0 6.0 12.0	C-BC I-OCT C-BC C-BC C-BC	1700 600 600 600 800			
ub-total	458.0			10.9					I-0CT	600.0	C-8C	3700			
0 <b>te:</b>	1525.0 I-0CT:000	an chan	nol im	10.9	eczec t with	trano	oidal s	ezossa ection	I-OCT I-OCR		C-BC Total	8800 11300	***************************************	:	

I-OCR: open channel improvement with rectangular section.

## Tablo 5-4-1(23/34) DESIGN DISCHARGE FOR DRAINAGE FACILITIES (MARIKINA 10-YR. RETURN PERIOD)

Subdrain	age area	P	ump Sta	tion		Gate			Drain	age Cha	nnel	Transition of the second	Reg	ulation	Pond
Code	Area (ha)	Code	D.A. (ha)	Qp (m3/s)	Code	D.A. (ha)	(m3/s)	Code	D.A. (ha)	(m3/s)	•	Length (m)		Volume (m3)	Area (m2)
가-3-1	32.0	e 2 = 1 2 4 4 1	- 22 22 23 23 12			医日收制口流化	· 红球用丹双亚姆:	按以付许是出了			*****	SINSSKERE	医中毒性	可感觉影片性症态	W#828
ub-total	32.0											~ ~ ~ ~ ~ ~ ~ ~ ~ ~			
H-3-2	42.0	<b>46622</b>	KERDIES		PRG0211		an Mare w	CKSCS	.0030000	o P II W II Z M	M = = < 12 22 E	DELCEUM)	n 2#412	E W M M M M M C M	53 54 62 63 43
ub-total	42.0								~~~~	******				********	
M-3-3	149.0	accnee					264043	MCGROOM		carross	9206693	E 2 16 5 2 2 2 2 3		*******	******
ub-total	149.0														
и-3-4	193.0		. Roomat			0.6222000		3-4-a		29.0		1600		<b>刘林昭武至</b> 原本湖	nie ner
ub-total	193.0			********					193.0		C-BC	1600		*****	
M-3-5	76.0	BO & H E Z L	accano.		3-5-a	76.0		3-5-a		14.0	C-OCT	1000	KERKEE	RESTORAL	
ub-total	76.0										C-OCT	1000		14 Cr 44 15 47 41 AV	
M-3-6	125.0		:		PUCEEN				TOMOTER.		2246788		Edberg		Saena
ub-total	125.0			*******											
H-4-1	344.0			*****		. M. O.		4-1-a			C-BC	1000			a.c.a.ka
ub-total	344.0										C-BC	1000			
H-4-2	207.0	*========	~ 4030H;	********	44 E 8 E 6 S		4 4 5 4 6 6		a = 2 6 2 2 2 3	********	4 to 6 to 11 11 11			FRANKLAN	******
ıb-tota l	207.0														
otal	1168.0	******		*= 4322201	396日在登1	* 34 4 10 25 25 20 2	- 一名西盖代巴亚	- 12 12 12 12 13 15	C-OCT	1000.0	C-BC Total	2600 3600	- 14 年 15 代表	*********	r• # # # E

## Table 5-4-1(24/34) DESIGN DISCHARGE FOR DRAINAGE FACILITIES (MARIKINA 5-YR. RETURN PERIOD)

	and the second of the second o	of each flowight of a restaur.	nel Regulation Pond
de D.A. Op (ha) (m3/s)	Code D.A. Op (ha) (m3/s)	Code D.A. () (ha) (m3/s)	Type Length Code Volume Are (m) (m3) (m2
and the second s	et in elitate, a la la granda de		
			official and the company of the transfer of the company of the co
		may now you got you for the see and and day sho you you see see the first you had been been the	
		医克米氏反应性 经现代证券 化二苯甲基甲基甲基甲基甲基甲基	
		-4-a 193.0 26.0	
		193.0	C-BC 1600
	-5-a 76.0 12.0 3		C-0CT 1000
			C-OCT 1000
* •			医有法性利益性抑制性治疗性抗解检验的 化戊二烷四二烷一烷的 575
	4		
			C-BC 1000
	~~~~~~~~~~~~~		· 中区有电子中区中区中区中区中区中区区内区区区区中区中区中区区区区区区区区区区区区区区区
honvol gonofweste			
ha	二位为中央工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工	annel construction with trapezoidal se	C-OCT 1000.0

V_1

Table 5-4-1(25/34) DESIGN DISCHARGE FOR DRAINAGE FACILITIES (MARIKINA 3-YR. RETURN PERIOD)

Subdraina	ge area	Pı	ump Sta	tion		Gate			Drain	age Cha	nne i		Reg	u lation	Pond
Code	Area (ha)		D.A. (ha)	(m3/s)	Code	(ha)	(m3/s)		D.A. (ha)	(m3/s)		Length (m)		(m3)	Area (m2)
PM-3-1	32.0		H22404#2		7.77	*****	7.5			和克尔拉巴拉莱	_========		ಚಿತ್ರವ ಬಿಜಿಕ	SECRE	*****
Sub-total	32.0			100		Sign of		100							
PM-3-2	42.0	可以 好 好 好 好 日	******	- d	1,271	19 kg az 25 fü fü az 2		2000年11月4	经收益金额的国	50年12月日日	用某权特殊工具	*******	2000年以前14	444577	********
Sub-tota)	42.0													~~~~~ <u>~</u>	
M-3-3	149.0	*******			*******	ancy Hrac	*********	24 1 C C C C	16 12 13 13 15 16 16 16 16 16 16 16 16 16 16 16 16 16	os Rusus	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2				
iub-total	149.0													•	
M-3-4	193.0	es es es es es	228822	284444	825324			3-4-a			C-BC		****	(2) 15 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
ub-total	193.0								193.0		C-BC	1600			
H-3-5	76.0	2 2 2 3 3 3 3	*****	****	3-5-a	76.0	11.0	3-5-a	76.0	11.0	C-OCT	1000	*****	2.227 ¥ 221	*4525
ub-total	76.0										C-OCT	1000			**************************************
H-3-6	125.0	4022201	*********	Eczybie:				ZUSÄBES		SHERRE	92253E	252EEX2		经基本基本 经	(veses:
ub-total	125.0										4.17				
M-4-1	344.0	2010 Maist	165 645 61		=¤#£4¤:	.===						1000	6808 88	25=N=381	1822aa
ub-total	344.0										C-BC	1000			
M-4-2	207.0	******	********			====	= E 10 2 ME	******	51243RI	는 다 프 프 르 르 선	****	*******	**====		(RUESES
ub-total	207.0			÷											-4
otal	1168.0 -0CT:op			beenee:	******			********		1000.0		2500 3600	PESEES	******	*#####

Table 5-4-1(26/34) DESIGN DISCHARGE FOR DRAINAGE FACILITIES (MARIKINA 2-YR. RETURN PERIOD)

Subdrain	age area	1.7		at ion			Gate		r s n s i	그 또 당 열 환경 다.	Drair	age Ch				ju lat ion	
Code	Area (ha)	Code	- (ha)∙	{m3≠	(5)	Sec. 35.	: (ha) (m	3/s}	1000	D.A. (ha)	0 (m3/s	1.7	Length (m)		(ms)	(MZ)
PH-3-1	32.0	F461303		1.17			17. 11.	191	100			100	100				
iub-tota i	32.0		wat.			1000	1	4.	1								
PM-3-2	42.0		unnes:														
Sub-total	42.0				. T.			77.77	7	. 12 - 5-11							.nekere
M-3-3	149.0	Catcada	****	1.3.4.1 1.3.4.1		-	oscada oscada										
Sub-total	149.0																
`, γ, 3-4	193.0			asezni		= n ===	. ACINEE			3-4-a	193.0			1600		, file	
Sub-total	193.0		F/1771							144 To 14	102 በ)	C-8C	1600			
M~3~5	76.0	*******	orzac:	Aczee						3-5-a			C-OCT	1000			
Sub-total	76.0												C-OCT	1000			
M-3-6	125.0	55K0C==	====:		.eane		AAE3E		H 12444								· · · · · · · · · · · · · · · · · · ·
ub-total	125.0		~~~~	=====						71							
M-4-1	344.0	6556 8 0 8			12==0	A 21 (2 2 2				4-1-a							
ub-total	344.0									,			C-BC	1000			
M-4-2	207.0	###### #	0 11 21 E C	066521													
Sub-total	207.0														٠.		
otal	1168.0		MURRE!	202E2E	ezasu	********	******		8 2 6 K 3	· 克拉森氏征四甲		1000.	C-BC	2600		- 医强烈性神经数	
lote:	C-OCT:op C-BC:box	en chan culver	nel con	onstri struci	ictio ion.	n wit	h tra	pezoi		section 127	•		Total	3000	•		

Table 5-4-1(27/34) DESIGN DISCHARGE FOR DRAINAGE FACILITIES (PARANAQUE-LAS PINAS 10-YR. RETURN PERIOD)

Subdrain	age area	1 P	ump Sta	tion	-	Gate			Drain	age Cha	nnei		Reg	ulation	Pond
Code	Area (ha)	Code	D.A. (ha)	Op (m3/s)	Code	D.A. (ha)	Op (m3/s)	Code	D.A. (ha)	(m3/s)	Туре	Length (m)	Code	Volume (m3)	Area (m2)
=ы=¤¤сво#: РА-1 _.	882.0	. UE 52 21 78 42 30 41	: :		1-a 1-b 1-c 1-d		* M C; C) X	1-a 1-b	1725.0 213.0	132.0 60.0	C-OCR I-OCR	500 2000		双对中华和 和 尼 5	ZXZEAI
Sub-total	882.0								C-OCR	500.0	I-OCR	2000			
PA-2	242.0	2-a	242.0		2-a 2-b	########		2-8	242.0	24.0	I-OCR	1650	化聚胺的 较级	5 J 2 M 2 C 22	拉萨对尔烈 克
Sub-total	242.0						*******				I-OCR	1650			
PA-3	154.0	****		renerer:						7 75 69 m 94 92 38	462000	F61422211	*****	6 m m m m m m m m	A D U S 10 E
Sub-total	154.0														
PA-4	265.0	4-a	265.0	10.9	4-a 4-b	2000000		4-a-1 4-a-2	238.0 238.0	39.0 39.0	I-OCR C-OCR	1150 150	2000年末本	*****	世界以為 约克
Sub-total	265.0			10.9	*****				C-OCR	150.0	I-OCR	1150			
lote:	1543.0 C-QCR:o	pen chai	nne] çor	19.8 Istructi	on wit	h recta	ngular s	ection	C-OCR=	650.0	I-OCR= Total=		고르지작업식(39 CHECEE	w 2 1 4 2 2 1

Table 5-4-1(28/34) DESIGN DISCHARGE FOR DRAINAGE FACILITIES (PARANAQUE-LAS PINAS 5-YR. RETURN PERIOD)

Subdraina	ge area	P	ump Sta	tion	. :	Gate	4.4.1 ± 1		Drain	age Cha	nnel		Reg	ulation	Pond
Code	Area (ha)	Code	D.A. (ha)	0p (m3/s)	Code	D.A. (ha)	Op (m3/s)	Code	D.A. (ha)	0 (m3/s)	Туре	Length (m)	Code	Volume (m3)	Area (m2)
PA-1	882.0	E 0 6 2 2 2 2 2	포르프르마다	2046564	1-a 1-b 1-c	*********		1-a 1-b	1725.0 213.0	132.0 54.0	C-OCR I-OCR	500 2000		maderen	
			. :		Î-d				1 .00						
Sub-total									C-OCR	500.0	I-OCR	2000			
PA-2 Sub-total	242.0	2-a	242.0	7.0	2-a 2-b			2-a	242.0	21.0	I-OCR I-OCR	1650 1650			
PA-3	154.0			*******	****										
Sub-total															
PA-4	265.0	4-a	265.0	8.0	4-a 4-b	36 E C 5 C 5		4-a-1 4-a-2	238.0 238.0	35.0 35.0	I-OCR C-OCR	1150 150			
Sub-total				8.0					C-OCR	150.0	I-OCR	1150			
***********	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	*****	********	15.0	******	三年有机设计 等	Meder	********	C-OCR=	650.0	I-OCR Total		RHEUEZ		***********

Note: C-OCR:open channel construction with rectangular section.

Table 5-4-1(29/34) DESIGN DISCHARGE FOR DRAINAGE FACILITIES (PARANAQUE-LAS PINAS 3-YR. RETURN PERIOD)

Subdraina	ge area	Pi	ımp Sta	tion	** 50 K 10 B	Gate	有等可以配配的:	OT 10 10 10 10 10 10 10 10 10 10 10 10 10	Draina	ige Cha	nnel	. 四年 6 東 5 年 5 年	Reg	ulation	Pond
Code	Area (ha)	Code	D. A. (ha)	(m3/s)	Code	D.A. (ha)	(m3/s)	Code	D.A. (ĥa)	(m3/s)	Туре	Length (m)	Code	Volume (m3)	Area (m2)
PA-1	882.0	· · · · · · · · · · · · · · · · · · ·	8 13 2 18 W 25 1	***************************************	1-a 1-b 1-c 1-d	erene	正式在某事节节 :	1-a 1-b	1725.0 213.0	132.0 48.0	C-OCR I-OCR	500 2000	22222	45454560	
Sub-total	******						~	****	C-OCR	500.0	I-OCR	2000	~~~~		
PA-2	242.0	2-a	242.0	5.5	2-a 2-b	******	医克林森 红色地	2-a	242.0	19.0	I-OCR	1650	*****	********	· KEUKHE
Sub-tota	~ **				~~~~				~		1-0CR	1650			
PA-3	154.0	D 放弃对 配置 2	*===022	2. 18 18 18 18 18 18 18 18 18 18 18 18 18	nuegue	******		-325034	2000年 1000年	(多月型主烈型)	*****	********	224=FQ	=====	
Sub-total															
PA-4	265.0	4-a	265.0	7.0	4-a 4-b	******	1.公司公司等的	4-a-1 4-a-2	238.0 238.0	31.0 31.0	I-OCR C-OCR	1150 150		经营证整体的位置	*******
Sub-total	~~	·		7.0					C-OCR	150.0	I-OCR	1150			
lote: (C-0CR:op			12.5					C-OCR=	650.0	I-OCR= Total=		= = = = =		:02222

lote: C-OCR:open channel construction with rectangular section.

Table 5-4-1(30/34) DESIGN DISCHARGE FOR DRAINAGE FACILITIES (PARANAQUE-LAS PINAS 2-YR. RETURN PERIOD)

Subdrainag	je area	PL	ımp Sta	tion		z====== Gate	*******	E 12 2 15 25 15	Draina	ige Chai	nne l		Reg	ulation	Pond
Code	Area (ha)	Code	D.A. (ha)	Qp (m3/s)	Code	D.A. (ha)	Op (m3/s)	Code	D.A. (ha)	0 (m3/s)	Туре	Length (m)	Code	Volume (m3)	Area (m2)
PA-1	882.0	eracen:		********	1-a 1-b 1-c 1-d		************	1-a 1-b	1725.0 213.0	132.0 44.0	C-OCR I-OCR	500 2000	a ta ana	V=04= 3 4	**********
Sub-total									C-OCR	500.0	1-0CR	2000			
PA-2	242.0	2-a	242.0		2-a 2-b	#1:H923		2-a	242.0	17.0	I-OCR	1650		- ALLENANE	
Sub-total				4.0	~						I-OCR	1650			
PA-3	154.0			10233111	220250	######################################	namenan.		.0503282				CDEMAG	LESCERE	
Sub-total								~~~		*****					
PA-4	265.0	4-a	265.0	5.0	4-a 4-b	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	. :	4-a-1 4-a-2	238.0 238.0	28.0 28.0	I-OCR C-OCR	1150 150			
Sub-total				5.0					C-OCR	150.0	I-OCR	1150			
			_	12.0					C-OCR=	650.0	I-OCR= Total=				

Note:

C-OCR:open channel construction with rectangular section. I-OCR:open channel improvement with rectangular section.

Tablo 5-4-1(31/34) DESIGN DISCHARGE FOR DRAINAGE FACILITIES (VALENZUELA 10-YR, RETURN PERIOD)

Subdrai	nage area	Fu	mp Sta	tion		Gate		Drainag	je Channe	1		Regu	lation	Pond	•
Code	Area (ha)	Code	D.A. (ha)	Op (m3/s)	Code	D.A. (ha)	Op Code (m3/s)	D.A. (ha) ((m3/s)	ype	Length	Code	Volume (m3)	Area (m2)	
ME-9		9-a 9-b 9-c	562.0 995.0 285.0	3.3 5.9	9-a	562.0	51.8 9-a 9-b- 9-b- 9-b- 9-c	562.0 576.0 210.0 210.0 285.0	52.0 I- 36.0 I- 14.0 I- 2.0 C- 20.0 I-	OCT OCT OCT OCT	2500 2400 3200 500 4800	医超级物金属	游卧脏绕岩污旅		2
Total	1842.0		1842.0	10.9		554.0	oidal coction	C-OCT	To	OCT tal	12900 13400	ian!.	*****	**************************************	

Table 5-4-1(32/34) DESIGN DISCHARGE FOR DRAINAGE FACILITIES (VALENZUELA 5-YR. RETURN PERIOD)

20000.911	age area	Pump Sta	t 10H	Gate		Drain	age Channel		Regu l	ation Pond	
Code	Area Co (ha)	ode D.A. (ha)	Op Code (m3/s)	D.A. Gp (ha) (m3/s	Code	D.A. (ha)	0 Тур (m3/s)	e Length (m)	Code V	olume Area (m3) (m2)	
ME-9	1842.0 9-a 9-b 9-c	562.0 995.0 285.0	1.3 9-a 2.3 0.7	562.0 46.	9-a 9-b-1 9-b-2 9-b-3 9-c	562.0 576.0 210.0 210.0 285.0	47.0 I-00 32.0 I-00 12.0 I-00 2.0 C-00 18.0 I-00	T 2500 T 2400 T 3200 T 500 T 4800	WHM NERED	*********	
Total	1842.0	1842.0	4.3	562.0		C-OCT	500 <u>I</u> -00	1 12900 1 13400	******	********	-
Note:	I-OCT:open	channel im	provement with	trapezoidal s	ection.		7	1 13400 construct	ion with	tranezoidal	•

Table 5-4-1(33/34) DESIGN DISCHARGE FOR ORAINAGE FACILITIES
(VALENZUELA 3-YR. RETURN PERIOD)

Subdrai	nage area	b	ump Stai	ion	Gate	可以已经的世代:		Drain	age Cha	inne1	*********	Regi	lation	Pond	
Code	Area (ha)	Code	D.A. (ha)	Op Code (m3/s)	D.A. (ha)	α0 (α/εm)	Code	D.A. (ha)	(m3/s)	Турс	E Length	Code	Volume (m3)	Area (m2)	
HE-9	1842.0	9-a 9-b 9-c	562.0 995.0 285.0	0.0 9-a 0.0 0.0	562.0	41.6	9-a 9-b-1 9-b-2 9-b-3 9-c	562.0 576.0 210.0 210.0 285.0	42.0 29.0 11.0 0.0 16.0	1-00 1-00 1-00 1-00 1-00	2500 2400 3200 4800				
Total	1842.0		1842.0	0.0	562.0		200 M M M M M	C-OCT	0	<u>[</u> -00]					
Note:	I-OCT:op	en chai	nnel imp	rovement with	trapezo	oidal se	ection.	C-OCT:	open ch	Total anne l	construct	ion wit	h trape	zoidal :	section.

Table 5-4-1(34/34) DESIGN DISCHARGE FOR DRAINAGE FACILITIES (VALENZUELA 2-YR. RETURN PERIOD)

Subdrai	nage area	Pump Stat	ion	Gate	paunasasen <u>u</u>	Draina	ge Channel	#40#####	Regulation	Pond	
Code	Area Code (ha)	D.A. (ha)	Op Code (m3/s)	0.A. (ha) (n	Op Code n3/s)	D.A. (ha)	(m3/s) Type	Length (m)	Code Volume	Area (m2)	
HE-9	1842.0 9-a 9-b 9-c	562.0 995.0 285.0	0.0 9-a 0.0	562.0	37.4 9-a 9-b-1 9-b-2 9-b-3 9-c	562.0 576.0 210.0 210.0 285.0	38.0 1-0CT 26.0 1-0CT 10.0 1-0CT 0.0 C-0CT 15.0 1-0CT	2500 2400 3200 0 4800			
Total Note:	1842.0	1842.0	0.0	562.0	(2) contion	C-OCT	O I-OCT Total	12900 12900	in		at tan

size: 1-Utiopen channel improvement with trapezoidal section. C-OCT:open channel construction with trapezoidal section

													FA 14			0.7	
	Pond Hame	Scale of Facil-	Hax. Water	Max. Flooded	Max. Water	Flooded	Max. Water	Max. Flooded	Hax. Water	ainfall Hax. Floodad	Hax. Water	Max. Flooded	Max. Water	Max. Flooded	Max. Water	Rainfall Max. Flooded	
		itles	Level (EL. m)	Area (km²)	Level	(km ²)	Level (EL, n)	Aroa (km²)	tevei (Et. m)	Area (km²)			Level (EL. m)	Area (km²)	(Et. a)	Area) (ks ²)	
· .	HANILA A	NO SUGURBS													•		
100	HH-1	Existing	12.50	2.15	12.56	2.79	12.63	3.68	12.72	4,83	12.93	7.46	13.03	8.03	13.14	8.27	
	+ + + -	2-Yr 3-Yr	-		-	• •	- ·	7.		-		-			_	-	
** . *		5-Yr 10-Yr	-	-			-		_	-	12.33	1.26	12.36	1.34	12.38	- 1.39	
	N4-2	Existing	11.97	0.20	11.99	0.20	12.01	0.21	12.05	0.21	12.14	0.22	12.19	0.23	12.28	0.24	
	77.5	2-Yr	_	-		-	-	-		-		-		. =	-	-	
	. B.	3-Yr 5-Yr		-		. .		· · ·	-	-	- 1: <u>-</u>	-	-,	-	-	- :	
		10-Yr			. •	•	vi. i	·	. - :.		11.97	0.20	11.97	0.20	11.97	0.20	
	NH-3	Existing 2-Yr	12.20	1.39	12.28	1.78	12.38	2.34	12.51	2.98	12.69	3.89	12.80	4.44	12.94	5.14	
	est Santa	3-Yr 5-Yr	· 1 <u>-</u>	1		-	-	-	_	<u>.</u> .	-	-		_ :· _		-	
	alia da Garante	10-Yr	J. 1 . 160		-	<u>-</u>		16 <u> </u>		-	12.17	1.25	12.18	1.26	12.19	1.35	
	NH-4	Existing	12.30	0.13	12.38	0.16	12.47	0.20	12.53	0.24	12.67	0.34	12.76	0.41	12.87	0.49	
		2-Yr 3-Yr	4 <u>1</u> 5	•	n =	Set <mark>i</mark> ∪	- 				<u>-</u>	7. · <u>-</u>	-		Ī.:		
		5-Yr 10-Yr	• • • · · · · · · · · · · · · · · · · ·		- -	·	· - · .	-	_	-	11.98	0.01	11.99	0.01	11.99	0.01	
	NH-5	Ex15*ing	12.54	0.58	12.56	0.60	12.59	0.64	12.64	0.71	12.77	0.88	12.86	1.00	12.96	1.14	
eri Territoria		2-Yr 3-Yr	-		-		-	•	-		-					-	
		5-Yr	-	-			:		. L. .	-	-	-	-	- 50	40.51		
	HAHILA AI	10-Yr ID SUBURBS	•	er j e r i e			·	-	~ . '		12.49	0.51	12.50	0.52	12.51	0.53	
	(SOUTH H												33.00		10 10	1.06	
	error error og er	Existing 2-Yr	12.39	0.76	12.47	0.90	12.52	0.99	12.61	1.16	12.83	1.57	12.98	1.81	13.13	1.85	
		3-Yr 5-Yr	-	. .	- ·	-! -	- -	-	-	-		: <u> </u>	-	· · · · · · · · · · · · · · · · · · ·	-	*	
		10-Yr	· . <u>-</u> · .	i.∎ Kanalasan	1. -	.	+ 4; . 1 × 1	 		117.	12.25	0.51	12.29	0.59	12,39	0.76	
e e e e e		Existing 2-Yr	12.03	1.10	12.05	1.32	12.10	1.64	12.19	2.26	12.41	3.75	12.49	4.33	12.57	4.76	
		3-Yr			es - C			· ·	-	-				<u>.</u>	4.2		
	Ar Sy West	5-Yr 10-Yг	- <u> </u>			- <u>-</u> -			. • • • •	 	12.05	1.29	12.08	1.45	12.12	1.78	
	SH-3	Existing				0.15	12.10	0.18	12.15	0.24	12.24	0.37	12.32	0.47	12.45	0.64	
		2-Yr 3-Yr	:		1. <u>-</u> . 1.	.1 . 1 	* - * * * * * * * * * * * * * * * * * *			-			-	ur i	-	-	
		5-Yr 10-Yr	.7 - 20.20 (0)	- *** :	-			- 		 -	11.97	0.01	11.97	o.01	11.97	0.02	
	SN-4	Existing	机物质	n 79	12 00	D 85	12.12	1.00	12.19	1.31	12.35	2.03	12.46	2.56	12.52	2.73	
	May 14	2-Yr	12.07			-	- 1	-	~	- 1.3.	12.33		-	-	-		
		3-Yr 5-Yr			.				<u>-</u>	-		- 0.25		- .	11 08	· -	
	相称 医水	10-Үг		<u>-</u> [1]			· · ·	jar t List til	-		11.96	0.25	11.97	0.28	11.98	0.31	
	12.4	Existing 2-Yr	Ara to	1 - 11:	12.31	2.09	12.45	2.66	12.53	3.41	12.72	5.09	12.86	6.39	13.03	7.52	
		3-Yr			45-77		-	_	-	. <u>-</u>	-	 	 		🚉 :	-	
		5-Yr 10-Yr	ļĒ ijs]	. .	. 	- 1 - <u>- 1</u>			1	12.35	2.24	12.44	2.66	12.51	3.22	
H	AK-KOBAJA	VOTAS	· · · · · · · · · · · · · · · · · · ·														
	HT-4-1	Existing 2-Yr	12.51	0.76	12.59	0.82	12.71	0.92	12.92	1.08	13.27	1.36 0.58	13.46 12.32	1.51 0.60	13.63 12.36	1.54 0.63	
		2-Yr 3-Yr		. - 	12.20	U.48	12.20	0.48	12.24	0.52	12.28	0.55	12.30	0.57	12.33 12.29	0.60	
		5-Yr 10-Yr		17	-		e 🗓 Š			0.48		0.50	12.23	0.51		0.54	
10 miles 10 miles		19711			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	e for fire	13	;	40.01	0.51	12 41	0.70	13.56	0.75	13.72	0.80	
	and the second second	and the second second	12 50	0.33	12 66	0.37	12.77	0.42	13.01	0.57	13.41						
	нт-4-2	Existing	12.59	0.33	12.66	0.37	12.77 12.11 12.10	0.10	16.10	0.12 0.11	46.60	0.16	12.25		12.31 12.26	0.21	

ond ent	Scale of Facil- ities	Hax. Water Level	Hax Flooded Area (km ²)	Hax.	Hax. Flooded Area (kg2)	Hax.	Max. Flooded Area	Level	Hax. Flooded	Max. Water Level	Max. Flooded Area	Hax.	Area	Hax. Water Level	Rainfal Hax. Floods Area (km²)
(AL ABON	- ZATOVAN-	. (519/	(KBL)	7551.57	100 1	_1551_67	- A	1-55		1944					
						11 67	0.72	11.14	0.96	11.25	1.33	11.31	1.53	11.39	1.79
(A∗I .	Existing 2-Yr	10.98	0.47	11.03	0.58 0.37	11.07 10.78	0.73 0.39	11,14	0.44	11.03	0.59	11.07		11.11	0.85
	3-Yr	•	- '	-	-	10.73	0.37	10.80	0.40	10.95	0.46	11.02	0.55	11.06	0.68
	5-Yr	•	-	• .	*	-	_	10.74	0.38	10.83	0.41 0.38	10.91 10.79	0.44	11.01 10.86	0.51
	10-Yr	-	-	•		. •	•			10.10	4.10	10,75	0.40	10.40	
A-2	Existing	10.79	0.64	10.85	0.67	10.93	0.71	11.03	0.81	11.12	1.05	11.17	1.19	11.24	1.36
	2-Yr	• •	-	10.78	0.63	10.83	0.66 0.63	10.93 10.84	0.71	11.05 10.98	0.87 0.73	11.09	0.98	11.14	0.98
	3-Үг 5-Үг	-	-	-	-	. 10.70	- 0.05	10.79	0.64	10.88	0.68	10.95	0.72	11.03	0.82
	10-Yr	· · -	-	-	-	•	-	-	-	10.81	0.65	10.84	0.66	10.92	0.70
	Existing	11.06	1.36	11.11	1.43	11.16	1.51	11.25	1.64	11.38	1.83	11.45	1.93	11.53	2.0
A-3	2-Yr	-	1.30	10.83	0.55	10.88	0.77	10.97	1.15	11.07	1.38	11.12	1.45	11.18	1.5
	3-Yr	-	-	-	-	10.83	0.55	10.89	0.81	11.01	1.29	11.05	1.35	11.11	1.43
	5-Yr			•				10.84	0.60	10.93	0.98	10.99	0.81	11.04	1.1
	10-Yr	-		4					0.27			11.35	0.35	11.42	0.40
A-4	Existing	11.06	0.19	11.09 10.83	0.21 0.07	11.13 10.88	0.23	11.19	0.27	11.29	0.33	11.12	0.33	11.18	0.2
	2-Yr 3-Yr	-	-	-	-	10.83	0.07	10.89	0.10	11.01	0.16	11.05	0.18	11.11	0.2
	5-Yr	<u>-</u>	-	-,-,-	-	-	-	10.84	0.07	10.93	0.12	10.99	0.15	11.04 10.96	0.1
	10-Yr		. •		-	-	:	-	•	10.86	0.08	10.89	0.10	10.50	
A-5	Existing	11.17	0.72	11.24	0.74	11.33	0.76	11.48	0.79	11.62		11,70			1.3
n-9	2-Yr	,	-	10.83	0.10	10.88	0.28	10.97	0.59	11.07	0.70	11.12 11.05	0.71	11.18	0.7
	3-11		-		-	10.83	0.10	10.89	0.31	11.01 10.93	0.69	10.99	0.66	11.04	0.7
	5-Yr 10-Yr	. -	-	· ·				10.64	-	10.86	0.21	10.89		10.96	0.5
	10-11	-					£ 1.					44 45	3 10	11 F2	1.1
A-6	Existing	11.04	0.75	11.00	0.78	11.13	0.83	11.22	0.91 0.67	11.35 11.05	0.76	11.43 11.09	1.10 0.79	11.52	0.8
	2-Yr	-	-	10.92	0.51	10.94 10.92	0.57 0.51	10.94		11.00	0.71	11.03	40.00	11,08	0.7
	3-Yr 5-Yr	_	_	_	-	-	-	10.92		10.96	0.62	10.99	0.68	11.02	0.7
	10-Yr	- '	-	-	-	• :		· · ·		10.93	0.54	10.94	0.57	10.97	0.6
	Sulation	11 40	0.80	11.50	0.90	11.59	0.91	11.76	0.92	12.02		12.16	0.93	12.33	0.9
A-7	Existing 2-Yr	11.40	-	11.23	0.62	11.27	0.65	11.35	0.75	11.49	0.90	11.55	0.91	11.61	0.9
	3-Yr	-	-	- . '		11.23		11.28	0.67	11.40	0.80 0.71	11.47 11.36	0.87 0.76	11.54 11.45	0.9
	5-Y <i>r</i>	-	-	: '- -	-	•	· · · · ·	11.24	0.63	11.31		11.28	0.67	11.34	0.7
	10-Yr			ĺ						wal 다					2.5
A-8	Existing		0.75	13.12	0.85	13.16	1.01	13.22	1.30		0.42	13.49 13.03	2.51 0.45	13.57 13.05	2.5 0.5
	2-Yr	•	-	13.00	0.30	13.01 13.00	0.32	13.01 13.01	0.36	13.03 13.02		13.02	0.40	13.04	0.4
	3-Yr 5-Yr		: _	-	-	15.00	-		0.30	13.01	0.34	13.02	0.36	13.02	0.4
	10-Yr	_	-	٠.	-	-	<u>-</u>	-	÷ . †	13.00		13.01		13.01	
		i Turk			0.13	11.37	0.17	11 45	0.21	11,56	0.24	11.60	0.24	11.67	
A-9	-	11.29	0.12	11.32 11.21		11.22	0.09	11.24	0.10	11.29	0.13	11.32	0.14		
	2-Yr 3-Yr	_		-	-	11.21		11.23		11.26		11.28		11.32	
	5-Yr	-	-	~	· -		-	11.21	0.09	11.23 11.21	0.10	11.25 11.22			
	10-Yr	. -	-	-	-	· • • • •				11.61					
A-10	Existing	12.21	0.13	12.26	0.17	12.32		12.45		12.57		12.62		100	**
	2-Yr	-	-	12.00	0.00	12 01	0.01	12.02	0.02 0.01	12.05		12.06 12.05		12.07	
	3-Yr	_	- '	<u> </u>		12.00		12.00		12.02	0.01	12.03	0.02	12.05	0.0
	5-Yr 10-Yr	-	-	: "				-	_	12.01		12.01			
								440.0				egaya da Garaga		40.0	
A-11	Existing	11.11	0.23	11.17	0.24	11.24		11.37		11.53		11.59		11.66 11.10	0.4
	2-Yr			10.92	0.15	10.94 10.92		10.97 10.94		11.02	0.21	11.05		11.04	0.2
	3-Yr 5-Yr	<u>-</u>	<u>-</u> .	-	•	10.92		10.92		10.95		10.96	0.19	11.00	0.2
	10-Yr	-	· · -	-		j b		j. ÷	•	10.93	0.16	10.94	0.17	10.96	0.1
			12	1	1 2 2			13 46	0.08	13.63	n. 18	13.72	0.11	13.83	0.1
A-12	Existing	13.05	0.05	13.13 12.50		13.25 12.51	0.07	13.46 12.53			0.01	12.59	0.01	12.62	0.0
	2-Yr 3-Yr		-	-		12.50	0.00	12.52	0.00	12.55	0.00	12.56	4.5	12.60	1
	5-Yr	-	14		* - 4	: - ·	. .	12.50		12.53 12.51		12.54 12.52	4.5	12.57 12.54	0.0
	10-Yr	, · • .	- .	-	-					16.31	S.00	TEIAP		1 125 121 .	
												7.		F 30-31)	
												: '	11 1 1		
										4	200	0-1-5		er ere	
						٧-	132	£ 1					4 5 5	•	
						•									

	Scale		ainfall				ainfall				Rainfall		ainfall		Rainfall
Pond	of	Hax. Water	Hax. Flooded	Hax.	Max. Flooded	Hax.	Hax. Flooded	Hax. Water	Hax. Flooded	Hax:	Hax.	Max. L Water	Hax. Flooded	Max. Mater	Max. Flooded
Hame	Facil-	Lovel	Area	Level	Area	Level	Area	Level	Area	Leve!	Area:	Level	Area	Level	Area
	ities	(EL. m)	(ka²)	(EL. #)		(EL. m)		(EL. #)		(EL. M)		(EL. #)			(km ²)
EAST O	F HANGAHAN					i ga Tara					4				i je
EN-1	Existing	13.45	0.20	13.58	0.23	13.75	0.29	14.10	0.38	14.44	0.41	14.54	0.43	. 14.61	0.44
	2-Үг	-		13.00	0.13	13.07	0.15	13.33	0.19	13.44	0.20	14.54	0.43	14.61	0.44
	3-Yr 5-Yr	-		• •	-	13.05	0.15	13.28	0.19	13,35		14.54	0.43	14.61	0.44
	10-Yr	. Ī		<u></u> .	-		- - .	13.24	0.19	13.29 13.25	0.19	14.54 14.54	0.43	14.61	0.44 0.44
1										20					
EN-2	Existing 2-Yr	12.94	0.24	13.14 12.73	0.39	13.32 12.77	0.59	13.53	0.81	13.79 12.92	1.09 0.24	13.89 13.89	1.12	14.08 14.08	1.24 1.24
	3-Yr	A	-	-	-	12.73	0.23	12.77	0.23	12.84	0.23	13.89	1.12	14.08	1.24
	5-Yr		-		-	:		12.74		12.79		13.89	1.12	14.08	1.24
	10-Yr	•	:		•			•	7	12.75	0.23	13.89	1.12	14.08	1.24
EM-3	Existing	12.80	0.24	13.01	0.40	13.16	0.63	13.25	0.77	13.65	1.32	13.85	1.56	14.08	1.80
	2-Үг	. -	` <u> </u>	12.73	0.19	12.76	0.21	12.82		12.95		13.86	1.56	14.08	1.80
4 1	3-Yr 5-Yr		. ≯dž			12.73	0.19	12.77	0.22	12.85 12.80	0.28	13.86 13.86	1.56 1.56	14.08 14.08	1.80 1.80
	10-Yr	4 4 <u>4</u> 3	100		_	5 <u>- 1</u>	. .	•	-	12.75	0.20	13.85	1.56	14.08	1.80
£H-4	Existing	12 45	0.29	12.53	0.41	12.85	0.58	13.22	0.75	13.65	0.86	13.86	0.92	14.08	1.01
F-F12	2-Yr	16.40		12.25		12.85	0.58	12.49	0.75	12.63	0.41	13.86	0.92	14.08	1.01
	3-Yr			-	-	12.25	0.19	12.35	0.24	12.54	0.34	13.86	0.92	14.08	1.01
	5-Yr 10-Yr	•	•	-		- *	-	12.27	0.20	12.43 12.31	0.28	13.86 13.86	0.92 0.92	14.08 14.08	1.01
	10-11	· -		-	- · · ·			- 1	· -	16.31	0.24	13.60	0.52	14.00	1.01
WEST OF	манданан			,			tal te Kalonda								
HN-1	Existing	12.58	1.73	12.65	2.10	12.85	3.16	13.22	4.73	13.65	5.84	13.86	6.02	14.08	6.30
	2-Yr	-		12.24		12.29	1.01	12.36	1.11	12.48	1.27	13.86	1.7	14.08	6.30
	3-Yr	- '	- .	-	.*.	12.24	0.95	12.30 12.25	1.03 0.95	12.40 12.34	1.16 1.08	13.86 13.86	6.02 6.02	14.08	6.30 6.30
	5-Yr 10-Yr	-		idit s Siari	1 T		<u>-</u>	12.65	0.30	12.27	0.99	13.86	6.02		6.30
21.3				alla. Nacional											F 01
HH-2	Existing			12.50	2.64 0.33	12.85 11.85	3.68 0.38	13.22 12.00	4.32 0.46	13.65 12.08	4.69 0.81	13.86 13.85	4.87 4.87	14.08 14.08	5.01 5.01
	2-Yr 3-Yr	_		11.77	0.33	11.77	0.33	11.88	0.39	12.03	0.59	13.86	4.87	14.08	5.01
1.		ki i i	1 + 1		. -		.	11.80	0.35	12.01	0.50	13.86	4.87	14.08	5.01
	10-Yr	-		•	· •		v 5 = 11.	. : = :.		11.87	0.39	13.86	4.87	14.08	5.01
H81-3	Existing	12.17	1.54	12,50	2.95	12.85	4.51	13.22	5.28	13.65	5.54	13.86	5.70	14.08	5.87
	2-Yr	- -	ini¥u tu	11.76	0.60	11.83	0.66	11.95	0.77	12.06	1.07	13.86	5.70	14.08	5.87
i.	3-Yr	. - -,	· - · ·	-		11.76	0.60	11.87 11.79	0.70 0.63	12.02 11.97	0.90 0.78	13.86 13.86	5.70 5.70	14.08 14.08	5.87 5.87
	5-Yr 10-Yr	- 1	: [ur <u>ī</u> a	`		-	-	11.84	0.67	13.86	5.70	14.08	5.87
		. • • • •	in die	100							e 04	13.06	6 13	14.08	6.67
HH-4	Existing		2.59	12.63		12.85 12.05	3.85 0.97	13.22 12.12	5.19 1.04	13.65 12.26	1.70	13.86 13.86	6.43 6.43	14.08	6.67
in the	3-Yr	•		12.00		12.00	0.91			12.18	1.46	13.86	6.43	14.08	6.67
	5-Yr		1972 11 1973 12				. -	12.01	0.94		1.24			14.08 14.08	6.67 6.67
	5-Yr 10-Yr		: T	-		• 7	· · ·		1.5	12.05	1.00	13.85	0.43	14.00	0.07
HH-5	F. 4 . 4 4	40.40	0.68	12.50	0.89	12.85	1.35	13.22	1.69	13.65			2.04		2.14
	2-Yr 3-Yr	ari•, r	•	11.94	0.54	11.99	0.56	12.07	0.61	12.21	0.70 0.63		2.04		2.14 2.14
9.8 9.1.6	3-Yr 5-Yr	lua t uajt ua		ang il ana. Sal it ana.	· / 💆 🛷	11.94	U.54 -	12.01 11.95	0.54	12.11 12.04		13.86		14.08	2.14
	10-Yr	- '	-	-	· - ·	: =	•	-	•	11.98		13.85	2.04	14.08	2.14
SAN JUAN	12 13 13 13 13 13 13 13 13 13 13 13 13 13	18 18		$\{ 1, \dots, n \}$						• •	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
SAN JUAN	311 - 131 341 - 131 - 14	1 F 1 1 1 1 1 1 1	4.5	e	5.4 4 2 7		** *				. 17			i pi	1.1
\$1.5-1	Existing	16.19	0.26	16.47	0.27	16.68	0.31	17.03	0.36	17.60	0.45	17.91	0.50	18.29	0.56
	2-Үг	and the second			0.24	15.66	0.24	15.68	0.24	15.72	0.24	15.75 15.73		15.78 15.76	0.24
				-	-	12,00	0.24	15.67	0.24 0.24	15.71 15.70	0.24			15.74	0.24
	10-Yz	•	_	- % .	<u> -</u> -		-	-	_	15 60	0.24		0.24	15.72	0.24
	Existing	1877 A 1825	A 06	16.02	production of the	Acres 100	1.75		100	16 60	0.00	16 60	0.09	16.01	: n. 1n
	Existing: 2-Yr	נא. כנ	מט.ע	15.57	0.05	15.58	0.05	15.59	0.05	15.61	0.05		0.05		0.05
Surj	3-Yr	as 🚉 to	Augusta.	di -	-	15.58	0.05	15.59	0.05	15.61	0.05	15.62	0.05	15.64	0.95
100	* V.	- A - 1					4	15 50	0.05	15.61		15.61	0.05		0.05
194 pro-	10-Yr			-		, 1 1 1 − 1	i i Territoria.		. . *	* .		15.61	0.05	10.GJ	0.05
53-7-1	Existing	14 01	0.33	14.21	: U.3/ :	14.40	0.44	14 04	0.48	14.93	0.58	15.09	0.63		0.70
180 A - 1 191 0 - 1	2-Yr 3-Yr	_	19 4	13.71	0.27	13.75	0.28	13.82	0.29	13.90	0.31	13.93		13.98	0.32 0.32
del de	5-Yr	Jérj ≖ , Piti,	5 · • · · · ·	14 🛖 🗡	7 ·		. -	13.72	0.27	13.80	0.29	13.89 13.83		13.89	0.32
	10-Yr	-		•	•	_				13.73		13.76		13.81	0.29
	-7176 T.		e taje se	2000	100	ega e e	1.50	6.30			1.	1.2			

Pond	Scale	Нах.	Nax.	Max;	ainfail Max. Flooded	Мах.	Hax. Flooded	Kek	Hax. Flooded	Hax.	Max. Flooded	Hax.	Hax. Flooded	Hax.	Rainfal Max. Floods
Name	Facil- Itles	Water Level (EL. #	Flooded Area (km²)	Water Level (El. m)	Area	level (EL. n)	Area	Level	Area (km²)	Level (EL. m)	Area	Level	Агеа	Lovel	Area {km²}
SAN JUAN	1	,1551.77	Latina				Tea Le								
		14.25	0.09	14.50	0.10:	14.67	0.11	14.97	0.13	15.45	0.16	15.71	0.18	16.04	0.20
\$3-7-2	Existing 2-Yr	14.25	0.03	13.72	0.10	13.78	0.07	13.86	0.08	13.97	0.08	14.02	0.08	14.08	0.08
	3-Yr		٠ ــ	-	-	13.71	0.07	13.77	0.07	13.88	0.08	13.92	0.08	13.99	0.08
	5-Yr	-	-		→ 1.	-	·	13.72	0.07	13.80	0.07	13.84 13.76	0.08	13.90	0.08
	10-Yr	-		-	•			-		13.73	0.07	13.70	0.07	13.81	0.0
SJ-8-1	Existing	14.19	0.09	14.45	0.10	14.64	0.11	14.93	0.12	15.41	0.14	15.68	0.16	16.02	0.1
7.	2-Yr	-	· -	13.70	0.05	13.76	0.06	13.82	0.07	13.91	0.07	13.94	0.07	13.99	0.0
	3-Yr	~ :		-	-	13.71	0.06	13.76 13.72	0.07	13.85 13.79	0.07	13.88	0.07	13.94 13.88	0.0
	5-Yr 10-Yr	-	-	-		-	- 1	13.72	-	13.73	0.06	13.75	0.05	13.81	0.0
J-8-2	Existing	14.13	0.06	14:38	0.07	14.59	0.07	14.87		15.35	0.10	15.61	0.10	15.94	0.11
-	2-Yr	- :		13.70	0.05	13.75	0.05	13.81	0.05	13.90	0.05	13.93	0.05	13.97	0.06
	3-Yr	-		•		13.71	0.05	13.76 13.71	0.05	13.85 13.78	0.05	13.88 13.81	0.05	13.93 13.87	0.05
	5-Yr 10-Yr	-		•	: -	-	•			13.73	0.05	13.75	0.05	13.80	0.05
	Pulation	12 27	A 12	12 00	п 10	.12.03	0.24	13.28	0.34	13.55	0.44	13.64	0.45	13.75	0.47
J-9-1	Existing 2-Yr	12.77	0.13	12.89 12.82	0.18 0.07	13.03	0.07	12.65	0.08	12.67	0.09	12.67	60.0	12.69	0.09
		14. <mark>-</mark>	-	-	-	12.63	0.07	12.65	0.08	12.67	0.09	12.67	0.09	12.68	0.0
	5-Yr	-	· -		• -		. - .:	12.65	0.08	12.67	0.09	12.67	0.09	12.68	0.0
4	10-Yr	-		-	-	-	. •	_		12.65	0.03	12.67	0.09	12.58	0.0
J-9-2	Existing	12.98	0.26	13.16	0.31	13.43	0.39	13.66	0.43	14.02	0.48	14.21	0.51	14.45	0.5
	2-Yr	-	_	12.68	0.16	12.70	0.17	12.72	0.18	12.74	0.18	12.75		12.77	0.19
	3-Yr		• .		-	12.69	0.17	12.71	0.17	12.73	0.18 0.18	12.74 12.72	0.19	12.76 12.74	0.1
	5-Yr 10-Yr			-			-	12.68	0.17	12.71 12.70	0.17	12.71	0.18	12.73	0.1
		12.00	0.08	12 20	0.11	13.46	0.14	13.67	0.15	14.01	0.17	14.19	0.18	14.42	0.1
J-9-3	Existing : 2-Yr	13.00	0.00	13.20 12.68	0.05	12.69	0.05	12.71	0.05	12.74	0.05	12.75	0.05	12.77	0.0
2.1.4	3-Үг	_	. <u>-</u>	-	4	12.68	0.05	12.70	0.05	12.72	0.05	12.73	0.05	12.75	0.0
	5-Yr	~			. - '	-	-	12.68	0.05	12.71 12.70	0.05	12.72	0.05	12.73 12.72	0.0
•	10-71	. •	- 	₹		· -			17-1	12.70	J. J			- Gen	100
J-10	Existing	12.89	0.26	12.99	0.31	13.07	0.37	13.20	0.47	13.41	0.62	13.50	0.66 0.20	13.60 12.78	0.6
	2-Yr	-	-	12.68	0.17	12.70 12.68	0.18 0.17	12.72 12.71	0.19 0.18	12.75 12.74	0.19	12.77 12.75	0.20	12.77	0.2
	3-Yr 5-Yr	-		_	_	22.00	-	12.69		12.73		12.74	0.19	12.76	0.2
	10-Yr	- :	- :-	<u>-</u>	-	•	-		-	12.70	0.17	12.71	0.18	12.73	0.1
ANDALUY	ONG-PASIG	: :									2 1		- 1		
W E 1	Eufakina	16 0Å	n 87 :	17.13	0.80	17.36	0.98	17.77	1.26	18.44	1,73	18.61	1.85	18.81	1.9
W-3-T	Existing 2-Yr	-	0.07	16.45	0.33	16.47	0.34	16.49	0.35	16.52		16.54		16.57	0.4
	3-Yr		- · · · · · · · · · · · · · · · · · · ·	÷ .	-	16.46	0.33	16.48	0.34	16.50	100	16.52	0.37	16.54	0.3
	5-Yr	-			-	-	=	16.46	0.33	16.48		16.49 16.48		16.52 16.49	0.3
	10-Yr	÷ .	- '		-	-			· •:	16.47	0.34	10.40	01.14	$A_{ij} V$	
M-5-2	Existing	14.72	0.12	14.82	0.14	14.95	0.17	15.16	0.22	15.52		15.72		15.96	0.4
	2-Yr			14.46	0.06	14.47	0.66	14.47		14.49			0.07		0.0
	3-Yr 	-	ing to a	14.46	0.06	14.47	0.06 0.06	14.48	and the second	14.48	0.06	14.50	
	5-Yr 10-Yr	Ź	-	. . .	· •		• • -			14.46		14.47		14.48	0.0
								11 77	1 50	14 05	1 69	14.13	1.73	14.30	1.7
H-7	Existing			13.53	1.49 0.70	13.62	1.52 0.87	13.77 13.36	1.58 1.17	14.01 13,49	1.47				1.4
	2-Yr 3-Yr	_	-	13.20		13.20	0.70	13.27	-	13.42	1.34	13.48	1.47	13.52	
	5-Yr	. <u>-</u>		- .	-	-		13.21			1.02	13.38	1.21	13.47	1.4
	10-Yr	'	-	. ~	-	·			→ 1.	13.23	0.79	13.27	0.90	13.35	1.1
ARIKIHA				1		$\mathbb{N} = \mathbb{N}$				andi Stationia	inggas Variation		10 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Medical Line Sapari	
¥-3-1	Existing	22.89	0.01	22.97	0.01	23.07	0.01	23.25	0.02	23.67	0.03	23.98	0.04		
· , • - 1	2-Yr	22.03	0.01	22.50		22.51	0.00	22.53	0.00	22.57	0.00	22.59	0.00	22.63	0.0
	3-Yr	. . .	-			22.50	0.00	22.52	0.00				0.00	22,60	0.0
	5-Yr 10-Yr	'.	•		- [<u>.</u>		22.50	0.00	22.53	0.00	22.54	0.00	1	0.0
		-	**		7 1 1		Egiles.	:				42.24	0.05	22 55	0.0
H-3-2	Existing		0.01	22.75			0.02	22.91	0.02	23.16	0.04	23.34		23.65 22.57	0.0
	2-Yr	. - .	1.2	22.50	0.00	22.51 22.50		22.52 22.51		22.54	0.00		0.00		0.0
	3-Yr 5-Yr	- -	٠	-	-	22.50	0.00			22.51		22.52	0.00	22.54	0.0
	3-1												0.00		0.0

	•					5 F.									
		2-Yr R	ainfall	3-Yr R	ainfall_	5-Yr R	ainfall	10-Yr R	ainfail	30-Yr R	ainfall	50-Yr R		100-Yr	
4 1	Scale	Hax.	Max.	Max.	Hax.	Max.	Max.	Max.	Max.	Max.	Hax.	Hax.	Max.	Hax.	Hax.
	of Facil-	Water	Flooded		Flooded		Flooded		Flooded		Fleoded Area	Level	Flooded Area	rator	Floo Area
nuas	ities	Lavel (EL. N)	Area (km²)	Leval (EL. m)	Area (ka ²)	level (EL. ⊯)	Area (km²)	(EL. m)	Area (km²)	Lovei (EL. ≈)		(EL. m)	2.	(EL. n)	
					·	£			7	- 1					
MARIKINA	40 (1.2)		100								v sím				
PM-3-3	Existing	21.51	0.04	21.73	0.05	22.01	0.05	22.51	89.0	22.77	0.11	22.97	0.13	23.31 20.92	0
1	2-Yr	-	-	20.51	0.00	20.55	0.00	20.62 20.56	0.00	20.75 20.68	0.01	20.73	0.01	20.83	Č
	3-Yr 5-Yr				9 <u> </u>	20.52	0.00	20.52	0.00	20.59	0.00	20.64	0.01	20.73	Ç
1.1	10-Yr		- -	-	•		•	-	•	20.53	0,00	20.56	0.00	20.64	. (
PM-3-4	Existing	19.94	0.10	20.04	0.12	20.16	0.15	20.40	0.21	20.62	0.25	20.73	0.27	20.91	
114-0-4	2-Yr	-	-	19.51	0.00	19.53	0.01	19.56	0.01	19.63	0.03	19.66	0.04	19.71	
	3-Yr	-		-	: -	19.51	0.00	19.53	0.01	19.59	0.02	19.61	0.03	19.66 19.61	. (
	5-Yr	=	-			`•.		19.51	0.00	19.55 19.52	0.00	19.53	0.01	19.56	
	10-Yr	-	•	•							7 7 4	1	<i>e</i> .	61 50	
PM-3-5	Existing	20.74	0.03	20.77		20.81	0.04	20.89	0.05	21.05	0.07	21.15	0.08	21.38	
	2-Yr	-	. .	20.72	0.03	20.73	0.03	20.74 20.74	0.03	20.76	0.03	20.76	0.03		
	3-Yr 5-Yr	_	. .	-		20.73	0.03	20.74	0.03	20.74	0.03	20.74			
	10-Yr	<u>-</u> -	-	•	-	-			· -	20.73	0.03	20.74	0.03	20.75	1
PH-3-6	Existing	20.62	0.03	20.64	0.04	20.68	0.05	20.74	0.07	20.87	0.11	20.98	0.14	21.15	
10-2-0	2-Yr	20.02		20.50	.,	20.51	0.00	20.52	0.00	20.53	0.01	20.54	0.01	20.55	1
1.5	3-Yr	-	_ =	, -	: ' -	20.50	0.00	20.51	0.00	20.52	0.01	20.53	0.01	20.54	. !
	5-Yr	.=	. .	• •	816	. s. <u>t</u> .e.	. - .	20.50	0.00	20.51 20.50	0.00	20.52 20.51	0.01	20.53	
1	10-Yr	a, 🧸			in T		ġ.	+5.5					1000	100	
PM-4-1	Existing	18.21	0.18	18.26		18.32	0.28	18.44	0.39	18.57	0.53 0.05	18.63 18.07	0.61	18.74	4. 1
	2-Yr :	· · · •	- 1	18.00	0.00	18.01 18.00	0.01	18.03 18.01	0.03	18.05 18.04	0.04	18.05	0.04	18.07	
taria.	3-Yr 5-Yr	- 1 <u>-</u>	<u> </u>	. :: <u>.</u>		20.00	-	18.01	0.01	18.02	0.02	18.03	0.03	18.05	
	10-Yr	-	1114	•	•		-	·	· •	18.00	0.00	18.01	0.01	18.03	1111
PM-4-2	Existing	18.26	0.11	18.32	0.14	18.39	0.17	18.51	0.23	18.57	0.29	18.62	0.34	18.70	
	2-Yr			18.00		18.01	0.00	18.03	0.01	18.07	0.03	18.08	0.03	18.11	
	3-Yr	-	-		· · ·	18.00	0.00	18.02	0.01	18.05 18.02		18.05 18.02	0.03	18.09 18.06	
	5-Yr 10-Yr				-	-	_	18.00	0.00	18.02			0.01		
						· .							100		
PARAÑAQUI	E-LAS PIÑA	<u>ıs</u>									11/1/1		. 1.		
PA-1	Existing	12.86	2.80	13.00	3.31	13.14	3.50	13.42	3.89	13.69	3.99	13.79	4.02	13.91	
	2-Yr		-	12.17		12.20	0.58	12.23	0.62	12.28	0.69		0.73		. 1
1 10 00	3-Yr		-	, - '-	-	12.18		12.20	0.59		As the same of	12.27	0.68	12.32	
	5-Yr 10-Yr	-	-		-			12.18	0.57	12.27 12.19	0.57				- 1
12010						44 AD				10.10	1 63	12.37	1.90	12.46	
PA-2	Existing 2-Yr	12.02	0.59	12.05 11.96		12.09 11.97	0.84 0.37	12.17 11.97	1.14 0.39	12.30 11.98	0.41	11.98			
	3-Yr		•		- 0.33	11.95	0.35	11.97	0.38	11.98	1.0	11.98	0.41	11.98	
1/4	5-Yr			- 1		ļ. • •	. : :		0.35	11.97				11.98	
	10-Yr			7 (-)				7 to -		11.97	0.36	11.97	0.38	11.97	٠. '
PA-3	Existing	12.13	0.30	12.20	0.42	12.29	0.58	12.44	0.83	12.54	0.98	12.59	1.04	12.65	
	2-Yr	-	•	11.96		11.96	0.01	11.97	0.01	11.98			0.04	11.99	
1 1	3-Yr.		9791		147	11.96	0.00	11.96	0.01	11.97		11.98 11.97			
	5-Yr 10-Yr	*. * .*	. : 5	5 1 2 T	- I	: • .	•	11.95	0.00	11.97 11.96	0.00	11.95	0.02		
		1.1.				10.00						14 66	1.69	12.63	
PA-4	Existing 2-Yr	12.06	0.62	12.11		12.18 11.99	0.94	12.30 12.02	1.26 0.50	12.49 12.06	1.68 0.61	12.55 12.07		-	
100	3-Yr	- 	- -	11.31	.,	11.97		11.99		12.03	0.53	12.06	0.60	12.07	-
	5-Yr	-	-	7.	- -	-	-	11.98	0.39	12.01	0.47 0.41	12.03 12.00			
	10-Yr	6.8		. : -				•		11.99	4.71	22.00	~	*****	
VALENZUEL	<u>À</u>		*. *			i.					1.	ye di		5 T	
NC O	Cylettan	19 11	2.95	12 14	3.52	12.23	4.27	12.37	5.66	12.51	7.58	12.55	8.48	12.61	
	Existing 2-Yr	12.11	2.93	12.10		12.19	3.85	12.25	4.43	12.32	5.16	12.35	5.47	12.39	
				-	_	12.19	3.85	12.25	4.43	12.32		12.35	5.47	12.39	l
100	3-Yr		_					12.23	4.18	12.30					1

Table 5-5-1 OPTIMUM DIMENSIONS OF PUMPS AND REGULATION PONDS FOR EAST AND WEST OF MANGAHAN

Subdrafnage Area	Object ive	Objective Discharge*	5.							DIMESSION OF	Dimensions of Pump
Area	For Land U	For Land Use at 2020	Pump	Pump Station		Regulation Pond	ton Por	Q		For Land	For Land Use at 2000
	D1scharge (m ³ /s)	Specific Discharge (m ³ /s/km ²)	Design Capacity (m ³ /s)	Specific Discharge (m ³ /s/km ²)	High Water Level EL (m)	Bottom Water Height Depth EL (m) (m)	Water Depth (m)	Area (m ²)	Volume (m ³)	Design Capacity (m ³ /s)	Specific Discharge (m ³ /s/km ²)
E4-1	оў •	ۍ ۳	Ø	ν. «τ	13.0	3 3 3 1		t		œ	8.8
8	10.8	4 .	**************************************	4 .0	12.5	•		•	. 1	œ	en en
m m	6.7	2.5	ĽΩ	1.8	12.5	9.5	3.0	6,000	18,000	ហ	1.8
	č.	5.6		1.0	12.0	0.0	3.0	11,000	33,000	8	1.0
₹ 1	ه. ش س	5.0	46	5.0	12.0			ri.		32	m m
\	26.3	F	77	8.3	12.0	o 6	ပ	46,000 138,000	138,000	_	• • • • • • • • • • • • • • • • • • •
	35.2	2.3	20	2.9	12.0	6.0	3.0	61,000	183,000	**	2.0
	66.1	9 ************************************	45	3.2	12.0	9.0	3.0	86,000	258,000	면	2.2
ហ	12.4	A.	9	2.5	12.0	0.6	3.0	21,000	63,000	**	4

* Objective Discharge is the required pump capacity without the regulation pond.

Table 5-5-2 INUNDATION WATER LEVEL WITH AND WITHOUT PROJECT

Name of			Maximum I	nundation	Water Le	vel (E.L	.m)	
Sub- drainage Area	W/ or W/O Project	Return Period	Period	Return Period	Return Period	Return Period	50-Yr. Return Period	Return Period
EAST OF I								
EM-1	W/O	13.40	13.52	13.68	14.02	14.32	14.48	14.56
	W/		- ' .		13.23	13.29	14.48	14.56
EM-2	H/0	12.78	13.00	13.12	13.39	13.65	13.86	14.08
er George	W/	-	-	-	12.73	12.79	13.86	14.08
EM-3	H/0	12.80	13.01	13.16	13.25	13.65	13.86	14.08
	W/		-	· -	12.73	12.78	13.86	14.08
EM-4	W/0	12.40	12.57	12.85	13.22	13.65	13.86	14.08
	W/	-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	_	12.26	12.38	13.86	14.08
WEST OF N	IANGAHAN					filt sa		
HM-1	W/O	12.55	12.60	12.85	13.22	13.65	13.86	14.08
	W/		•	-	12.24	12.31	13.86	14.08
WH-2	W/O	12.15	12.50	12.85	13.22	13.65	13.86	14.08
	₩/	-	orana. Solota	jaran Jaran	11.79	12.00	13.86	14.08
WM-3	W/O	12.15	12.50	12.85	13.22	13.65	13.86	14.08
	H/			- -	11.77	11.92	13.86	14.08
WM-4	H/O	12.35	12.50	12.85	13.22	13.65	13.86	14.08
	₩/	4	- 1	-	12.00	12.08	13.86	14.08
⊀M-5	W/0	12.15	12.50	12.85	13.22	13.65	13.86	14.08
	W/	_		-	11.96	12.06	13.86	14.08

Table 5-5-3 DEVELOPED AREA AFFECTED BY 1986 FLOOD IN MALABON-NAVOTAS

Drainage District ((A) Total Draina Area (km ²)	(B) Developed Area	(C)	(D) Developed	(E)	(F)	(G)
	Total Draina Area	Developed Area	Flooded	Developed	(E)		(G)
	Draina Area	Area					3.4 Table 1
<u> </u>		at Prese (km ²)	Area in 1986 (km²)	Area at Present within (C) (km ²)	(D)/(A)	Developed Area in 2020 within (C) (km ²)	(F)/(A) (%)
MA-11	0.69	0.66	0.69	0.66	95,65	0.69	100.00
MA-3	2.21	1.88	1.94	1.71	77.38	1.77	80.09
MA-6	1.34	0.71	1.09	0.71	52.99	1.09	81.34
MA-4	0.50	0.26	0.50	0.26	52.00	0.3 9	78.00
MA-2	2.05	0.92	2.05	0.92	44.88	1. 28	62.44
MA-5	1.89	1.76	0.78	0.78	41.27	0.78	41.27
VA-9	0.30	0.30	0.12	0.12	40.00	0.12	40.00
MA-1	2.26	0.72	1.81	0.38	16.81	1.82	80.53
4T-4-1	4.11	3.19	0.90	0.34	8.27	0.68	16.55
MT-4-2	2.18	1.87	0.80	0.15	6.88	0.32	14.68
A-7	2.40	1.60	0.34	0.05	2.08	0.34	14.17
MA-12	0.32	0.00	0.00	0.00	0.00	0.00	0.00

Table 5-5-4 ECONOMIC COMPARISON ON DRAINAGE SYSTEM FOR NORTH OF MALABON RIVER

Alternative Case	Integration of Subdrainage Areas for Ring Dike	Project Cost incl. O/M Cost* (million pesos)	Land Acquisition (1,000 m ²)
1	MA-1, MA-2, MA-3, MA-4, MA-5	1,398	402
2	(MA-1+MA-2), MA-3, MA-4, MA-5	1,369	341
3	(MA-1+MA-2), (MA-3+MA-4), MA-4	1,273	325
4	(MA-1+NA-2), (MA-3+MA-5), MA-4	1,257	277 ¹¹
5	(MA-1+MA-2), MA-3, (MA-4+MA-5)	1,662	326
6	(MA-1+MA-2), (MA-3+MA-4+MA-5)	1,070	242
7	MA-1, (MA-2+MA-3), MA-4, MA-5	1,251	347
8	MA-1, (MA-2+MA-3), (MA-4+MA-5)	1,509	332
9	MA-1, MA-2, (MA-3+MA-4), MA-5	1,302	386
10	MA-1, MA-2, (MA-3+MA-5), MA-4	1,308	346
11	MA-1, MA-2, MA-3, (MA-4+MA-5)	1,690	387
12	(MA-1+MA-2+MA-3), MA-4, MA-5	1,245	310
13	(MA-1+MA-2+MA-3), (MA-4+MA-5)	1,537	295
14	MA-1, (MA-2+MA-3+MA-4+MA-5)	1,168	306
15	MA-1, (MA-2+MA-3+MA-5), MA-4	1,239	280
16	MA-1, MA-2, (MA-3+MA-4+MA-5)	1,087	290
17	(MA-1+MA-2+MA-3+MA-4), MA-5	1,158	266
18	(MA-1+MA-2+MA-3+MA-5), MA-4	1,226	243
19	MA-1, (MA-2+MA-3,MA-4+MA-5)	1,001	222
20**	(MA-1+MA-2+MA-3+MA-4+MA-5)	984	185

[Note]

^{*} Including the pump cost estimated under the land use conditions of 2020.

^{**} Optimum drainage system for the north bank of Malabon River.

Table 5-5-5 INUNDATION WATER LEVEL WITH AND WITHOUT PROJECT FOR MALABON - NAVOTAS

			Maximum 1	Inundation	Water Le	vel (E.i	m)	1000年末1000月10日
Area	W/ or W/O	2-Yr. Return Period	3-Yr. Return Period	Period	10-Yr. Return Period	30-Yr. Return Period	50-Yr. Return Period	100-Yr. Return Period
MA-1	W/O	10.77	10.82	10.88	10.98	11.05	11.07	11.11
	W/			-	10.74	10.84	10.90	10.97
MA-2	H/ 0	10.73	10.77	10.83	10.92	11.03	11.07	11.11
	W/	-	-	-	10.77	10.87	10.92	10.99
MA-3	н/0	11.04	11.08	11.13	11.21	11.33	11.39	11.47
	W/	-	-	•	10.82	10.91	10.97	11.03
МА-4	Я/О	11.05	11.08	11.12	11.19	11.28	11.34	. 11.41
	W/	•	~	-	10.82	10.91	10.97	11.03
MA-5	W/0	11.14	11.20	11.28	11.41	11.56	11.63	11.71
	₩/	-	•	-	10.82	10.91	10.97	11.03
MA-6	₩/0	10.99	11.02	11.05	11.11	11.23	11.25	11.31
	₩/	-	~	- ,	10.92	10.98	11.02	11.05
MA-9	W/0	11.29	11.32	11.37	11.45	11.56	11.60	11.67
	H/	-	-	- ,	11.21	11.23	11.24	11.26
MA-11	₩/0	11.11	11.17	11.24	11.37	11.53	11.59	11.66
	¥/	-	-	-	10.92	10.95	10.97	11.00

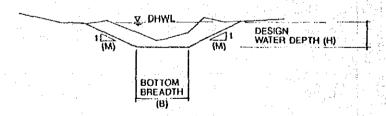

e e

Table 5-6-1 COST COMPARISON OF EMBANKMENT METHOD OF LAKESHORE DIKE (Per Unit Length)

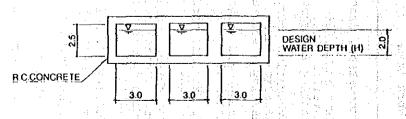

		Unit	Case	Н	Case	2	Case	3	Case	47	Case	មា
Work Item	Unit Cost (P)		uantity	Amount	Quantity Amount Quantity Amount		Quantity	Amount	Quantity Amount Quantity Amount	Amount	Quantity Amount	Amoun
1. Excavation, dredger	E E	50	149	7,450	57	2,850	61	3,050			91	4,550
2. Excavation, dredged material incl. loading hauling & spreading	ស្ដ	30			57	1,710				•	•	•
3. Excavation, borrowed material incl. loading hauling & spreading	ក	100	•		37	3,700	4	4,100	16	9,100		71 A
4. Embankment, dredged material	ෆ E	40	149	5,960		•	19	2,440		t	1	•
5. Compacting, borrowed material	en El	'n	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		i.	1 1	41	210	ਜ 6	460	1	•
6. Embankment, mixed soil vith dredged material & borrowed material incl. mixing	ត ម	40	1	•	46	3,760				•		
7. Embankment, soil cement incl. mixing	е Е	45		1	1	1 1	• • • • • • • • • • • • • • • • • • •		•	1	E 6	4,100
8. Cement (0.08 t/m ³)	ton 1,450	450	٠,	1	ı	1	1		ŧ	1	7.3	10,590
9. Revetment	2 _H	009	26.1	15,660	10.4	6,240	12.8	7,680	8.5	5,100	8 5	5,100
10.Preparatory works (201)	۲. د			5,810		3,650		3,500		2,930		4,870
Total				34,880		21,910		20,980		17,590		29,210

Table 5-6-2(1/2) FEATURES OF PROPOSED DRAINAGE CHANNEL FOR EAST AND WEST OF MANGAHAN

Sub- D.Area				Roghness Co- efficient	Const.		Bottom Breadth (B:m)	W.Depth	Type	Side Slope (M)	Channe l Code	Remarks
EM-1	83.0	15	5000.	0.030	700	, y	8.6	2.0	Trape.	2.0	b	[6] 张某就长的心理时表示:
	83.6	13	5000	0.030	1,100		7.1	2.0		2.0	a	
S-total	166.6				1,800					· · · · · · · · · · · · · · · · · · ·		
M-2	74.3	11	5000	0.030	800		5.7	2.0	Trape.	2.0	b	
.m-c	39.9	18	5000	0.030	700		10.7	2.0	Trape.	2.0	a-3	
	39.7	14	5000	0.030	550		7.9	2.0	Trape.	2.0	a-2	
	87.8	10	5000	0.030	750		5.0	2.0	Trape.	2.0	a-1	
-total	241.7				2,800						, 43, ₆₈, 53 as as as 43, 43, 43	
M-3	80.5	7	5000	0.030	700		2.8	2.0	Trape.	2.0	b	
	40.9	11	5000	0.030	900		5.7	2.0	Trape.	2.0	a-3	
	65.6	9	5000	0.030	500		4.3	2.0	Trape.	2.0	a-2	
	85.2	5	5000	0.030	600		1.3	2.0	Trape.	2.0	a-1	
-tota i	272.2		•		2,700		- 					, pa pa pa pa 18 46 16 16 16 16 16 16 16 16 16 16 16 16 16
H-4	53.5	17	5000	0.030		400	10.0	2.0	Trape.	2.0	a-3	
	45.8	13	5000	0.030		350		2.0	Trape.	2.0	a-2	
	95.7	9	5000	0.030		350	200	2.0	Trape.	2.0	a-1	
-total	195.0	1 435 Per (155 pin 154 hin mit yek 155 mi	# ** # <u># = = = 0</u> 04 14 2	. 44 <u>ca</u> 34 ta 44 44 44 44 44		1,100	· · · · · · · · · · · · · · · · · · ·					
iotal	875.5	: 우 왕 없 부 갖 피 중 웹 표 ⁰	· 乔龙 克 斯 斯 斯 斯 斯 斯 斯 斯 斯 斯 斯 斯 斯 斯 斯 斯 斯 斯	* 7 4 4 4 4 4 4 4 4 4	7 300	1.100		. 4 * * * * * * * * * * * * * * * * * *	********	水分量医型物质异次 对	* 化四氢合物医多米异的	: 四世间 安然表现 4 年 日 日

TYPICAL CROSS SECTION OF TRAPEZOIDAL CHANNEL

TYPICAL CROSS SECTION OF CLOSED CHANNEL (THREE UNITS BOX CULVERT)

Table 5-6-2(2/2) FEATURES OF PROPOSED DRAINAGE CHANNEL Table 5-6-2(2/2) FEATURES OF PROPOSED DRAINAGE CHANNEL FOR EAST AND WEST OF MANGAHAN

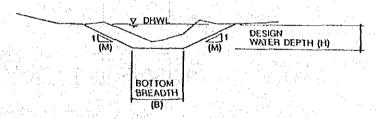

	ub- .Area	Drainage Area (ha)	Design Discharg (m3/s)	Channel e Gradient (1/I)	Roghness Co- efficient	Lenc Const. (m)	gth (movt. (m)	Bottom Breadth (B:m)	Design W.Depth (H:m)	Туре	Side Siope (H)	Channe l Code	Remarks
H	м и озна м М – 1	34.9 51.3 81.5 22.2 46.1 85.4 22.3 92.0 50.0 53.2 79.7 50.3 36.3 0.0 71.1	25 20 13 35 20 17 64 64 55 27 18 13	5000 1500	0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030	600 450	600	15.5 12.0 7.1 16.0 10.0 17.0 14.0 23.0 23.0 12.0 21.0 15.0 15.0	1.2 1.2 2.9 2.3 2.0 1.7	Trape.	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	f-3 f-2 f-1 e-2 d-2 c-1 b-1 b-1 a-3 a-1	
	-total	912.1				2,250				******			<u> </u>
X I	M-2	56.0 51.9 99.5 55.8 89.0 79.5 82.7	21 16 11 8 27 17	5000 5000 5000 5000 5000 5000 5000	0.030 0.030 0.030 0.030	1,100 550 500	850 1,000 1,000 900	12.7 9.3 5.7 8.0 17.0 10.0 7.0	2.0 2.0 2.0 1.5 2.0 2.0	Trape. Trape. Trape. Trape. Irape. Trape. Trape. Trape.	2.0 2.0 2.0 2.0 2.0 2.0	a-2	Antipolo S.Baho
100	-total	514.4				2,150	3,750	14 70 y	***********		2.0		
WI	M-3 %	29.3 57.2 29.6 89.8 35.6 88.9 76.1 22.3 25.0 35.0 6.4 27.4 39.6 80.4	14 10 20 16 13 19 14 15 12 39 39 39 39 29 18 15	5000 5000 5000 5000 5000 5000 5000 500	0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030	550 400 600		9.3 7.1 11.3	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.2 2.4 1.9	Irape.	200000000000000000000000000000000000000	g-2 g-1 f-2 f-2 e-2 e-2 d-1 c c b a-3 a-1	
	-total 1-4	1 - Mark 11 - 18 - 1	13 13	5000	0.030	3,100	6,350 1,400 500	11.0	4.1.7 1.9	Trape.	2.0	0-2	Tipas
		20.0 67.4 92.2 62.1 42.7 97.1 128.4 41.9 60.2 27.9 55.6 80.7 12.1	7 17 11 25 18 21 42 30 25 19 19	500 5000 5000 5000 5000 5000	0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.035 0.015	550 600 250 600 600	900 350 250 800 900 500 1,350 200	2.8 10.0 5.7 15.5 10.7 12.7 17.0 2.0 15.5 11.3 9.0 9.0	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	Trape. Trape. B.Culvert B.Culvert B.Culvert	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 0.0 0.0	n 1-2 1-1 k j 1-4 1-3 1-2 1-1 b-2 h-1	Tipas Tipas Vsusan Vsusan Vsusan Vsusan B=3.0m*3uni B=3.0m*3uni B=3.0m*2uni
9F.		10.3	17 16 14	5000 5000	0.030 0.030 0.030 0.030		500 500	10.0 9.3 7.9	2.0 2.0 2.0	Trape. Trape. Trape.	2.0 2.0 2.0	g-2 g-1 1-2	1 10 10 10 10 10 10 10 10 10 10 10 10 10
		73.5 67.7 12.3 24.2 12.2 64.5 31.1 45.6 49.3 51.2	91 83 67	5000 5000	0.030 0.030 0.030 0.030		800 1,000 1,450 400 1,300 500 800	30.0 30.0 27.0 11.0 8.0 6.0 5.0 2.0	2.0 3.0 2.8 2.7 2.6 2.5 2.4 2.4	Trape.	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	d c b a-5 a-4 a-3 a-2	Taguig Taguig Taguig Taguig Taguig Taguig Taguig Taguig Taguig
Š-	total	1,427.6		roca	a 020	3,600	5,650	16 0	 2	Tuena		~~~~~~~~~~	
WM	1-0	33.0 40.9 101.5 23.6 78.3	30 21 15 17 14	5000 5000 5000 5000	0.030 0.030 0.030 0.030	550 400 400	550 550	12.7 8.6 10.0 7.9	2.0 2.0 2.0 2.0	Trape. Trape. Trape. Trape. Trape.	2.0 2.0 2.0 2.0 2.0	b-2 b-1 a-2 a-1	
S.	-total	277.3				1,350	900	in an	e gritto e			1000	· · · ;

Table 5-6-3 FEATURES OF PROPOSED SLUICE GATE FOR EAST AND WEST OF MANGAHAN

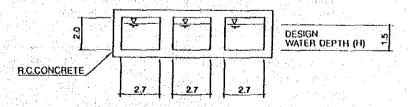
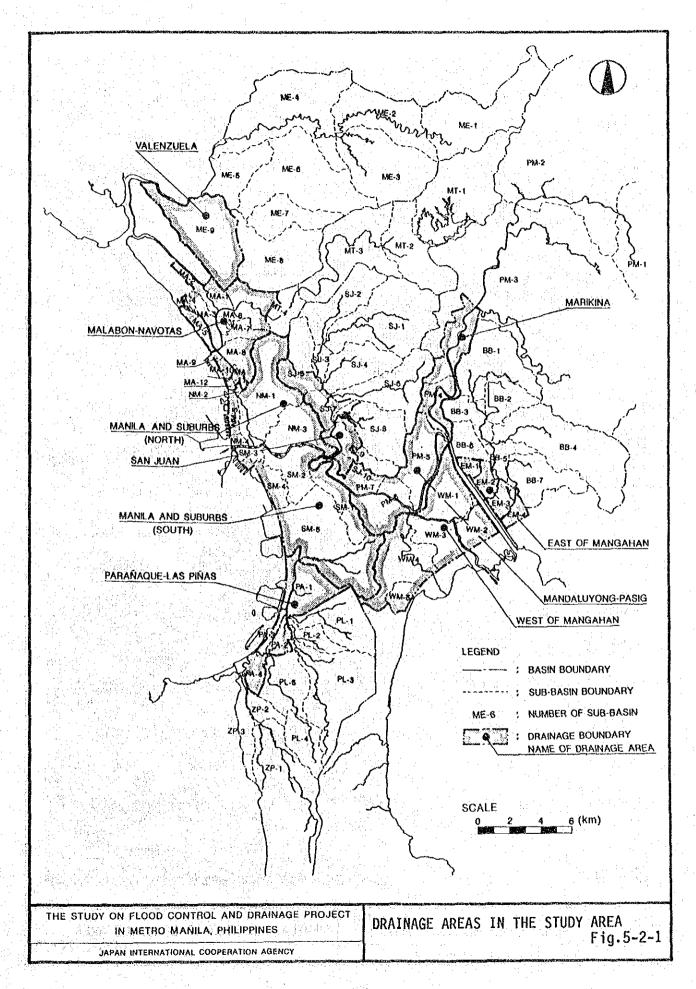

			EAST AND WEST	OF PIANGARIA
ORAINAGE AREA	LOCATION	DESIGN DISCHARGE (M3/S)	түре	CROSS SECTION
EH-1	Buli River STA.0+000	25	Box culvert/Sluice appurtenant to Pump Station	4.2 4.2 V 14.6 BACK WATER DIKE 11.0
EN-2	Baho River STA.0+000	26	Box culvert/Sluice appurtenant to Pump Station	14 44 4.4 VIA.6 BACK WATER DIKE Q GL 12.5 10.5
EM-3	Mahaba River STA.0+000	15	Box culvert/Sluice appurtenant to Pump Station	3.8 3.8 • 14.6 BACK WATER DIKE V • GL 12.5 V 10.5
EM-4	Lakeshore Dike	17	Box culvert/Sluice appurtenant to Pump Station	29 2.9 2.9 N
WM-1	Napindan R. Lower Buli R.	78	Open channel/Sluice appurtenant to Pump Station	13.0 13.0 BACK WATER # 146 DIKE # GL 12.5 # 90
	Antipolo R. STA.0+800	*	Open channel/Sluice	S
NH-2	Lakeshore Dike Anti Polo R. STA.3+100	44	Box culvert/Sluice appurtenant to Pump Station	4.4 4.4 4.4 Q GL.12.0
₩ -3	Lakeshore Dike Labsan R. STA.1+800	58	Box culvert/Sluice appurtenant to Pump Station	# 15.5 LAKESHORE DIKE 4.7 4.7 4.7 4.7 9
	Napindan C. STA.1+628	* .	Box culvert/Sluice	9 14.6 DIKE OF NAPINDAN CHANNEL
	Napindan C. STA.3+906		Box culvert/Sluice	14.6 DIKE OF NAPINDAN CHANNEL 2.0 2.0 3. I 0.0
HM-4	Lakeshore Dike Taguig R. STA.7+970	91	Open channel/Sluice appurtenant to Pump Station	15.2 15.2 LAKESHORE 9.15.5 DIKE
	Tipas R. STA.2+010	•	Open channel/Sluice	2.0 N
	Taguig R. STA.0+000	Navi.	Open channel/Sluice	13.9 DHWL OF PASIG RIVER
¥M-5	Lakeshore Dike Bicutan R.	36	Box culvert/Sluice appurtenant to Pump Station	♥ 15.5 LAKESHORE DIKE 4.8 4.8 ♥ ■ GL 12.0 M 9.5

Table 5-6-4 FEATURES OF PROPOSED DRAINAGE CHANNEL FOR MALABON-NAVOTAS

D.Area A			Gradient	Co-	Length Const. Imp (m) (m)	vt. Breadth	W.Depth	Туре	Side Siope (H)	Remarks
MA-1-A	53.0 60.0	13 13	1500 1500	0.030 0.030	1,000	600 4.0 4.0	2.0 2.0	Trape.	2.0	Panghu lo
S-total	113.0	% in (1 ™ M ⊕ up us us us as		- w - w - w w	1,000	600				
MA-6	64.0 70.0 34.0	25 25 7	2000 2000 5000	0.030 0.030 0.030	400	300 10.0 400 15.0 6.5	2.0 1.6 1.5	Trape. Trape. Trape.	2.0 2.0 2.0	Catmon Catmon
S-total	34.0 202.0 69.0	12	5000	0.030	500 900 800	6.5 700 8.1	1,5	B.Culvert	2.0	B=2.7m*3unft
S-total					800					

TYPICAL CROSS SECTION OF TRAPEZOIDAL CHANNEL

TYPICAL CHOSS SECTION OF CLOSED CHANNEL (THREE UNITS BOX CULVERT)


Table 5-6-5 FEATURES OF PROPOSED SLUICE GATE FOR MALABON-NAVOTAS

DRATHAGE AREA	LOCATION	DESIGN DISCHARGE (M3/S)	ТҮРЕ	CROSS SECTION
MA-1-A	Saltolan R. STA.0+000	13	Box culvert/Sluice apportenant to Pump Station	7 13.2 DIKE OF MALABON RIVER 13.3 3.3
MA-1-B	Pinagkabalian STA.0+000	Havi.	Open channel/Sluice appurtenant to Pump Station	10.0 VI3.1 DIKE OF MALABON RIVER V V GL. 11.0 V 8.0
	Pinagkabalian STA.2+200	Navi.	Open channel/Sluice	10.0 # 125 RING DIKE # 66.11.0 # 8.5
MA-2-B	Dampalit R. STA.5+400	Navi.	Open channel/Sluice	10.0 ¥ 12.5 RING DIKE V ¥ GL 11.0 8.5
	Dampalit R. STA.0+000	Navi.	Open channel/Sluice	TO DIRE OF MALABON RIVER OF B.5
MA-3	Dampalit R. STA.2+200	Navi.	Open channel/Sluice	0 10.0 12.5 RING DIKE 0 0 0 0 0 0 0 0 0
MA-5	Navotas R. STA.2+865	Navi.	Open channel/Sluice	O GL.10 7
KA-6	Catmon Creek STA.0+000	25	Box culvert/Sluice appurtenant to Pump Station	4.2 4.2 13.0 DIKE OF MALABON RIVER 0 0 0 0 0 0 0 0 0
	Longos Creek STA.0+000	*:	Box culvert/Sluice	4.0 # 12.5 DIKE OF MALABON RIVER D # GL.11.0 # 8.0
MA-9	Coastal Dike	2	Box culvert/Sluice appurtenant to Pump Station	13.5 COASTAL DIKE
MA-11	Estero Marala STA.0+950	12	Box culvert/Sluice appurtenant to Pump Station	PARAPET WALL V 13.5 OF ESTERO MARALA O 10 40 9 105 V 6L. 11.0 V 9.05 V 9.0
,	Dagat Dagatan Kavotas R. STA.2+250	*	Box culvert/Sluice	30 V GL. II.8 O I I O O O O O O O O O O O O O O O O

NOTE: Design discharge of "*" presents that the gate size is determined from its maintenance function.

Design discharge of "Havi." presents that the gate size is determined considering navigatin of vessels.

FIGURES

