THE INTERNATIONAL AIRPORT OF CARRASCO

IN:

THE ORIENTAL REPUBLIC OF URUGUAY

FINAL REPORTA (ATTACHMENT)

MARCH: 1990Y

JAPAN INTERNATIONAL COOPERATION AGENCY

7// 75:7 SSF

90 4 054

S S P

190 = 054

JIMA LIBRARY

THE STUDY ON THE DEVELOPMENT PLAN OF THE INTERNATIONAL AIRPORT OF CARRASCO IN THE ORIENTAL REPUBLIC OF URUGUAY

FINAL REPORT (ATTACHMENT)

MARCH 1990

JAPAN INTERNATIONAL COOPERATION AGENCY

国際協力事業団 21300

Attachment 1 Summary of Requirement for Terminal Area Facilities Attachment 2 Calculation Formulae for Facility Requirement for Terminal Area Facilities (1)Passenger Terminal Building (2) Cargo Terminal Facilities Other Terminal Facilities Attachment 3 Result of Demand and Capacity Analysis on Terminal Area Facilities (1)Passenger Terminal Building (2) Cargo Terminal Facilities Attachment 4 Initial Load-Carrying Capacity of Existing Pavement Attachment 5 Required Thickness of Pavement Attachment 6 Alternatives for Correction of Longitudinal Slope of RWY06/24 Attachment 7 Wind Coverage Attachment 8 Comparison Between Alternatives for Secondary Runway Development Attachment 9 Obstacle Limitation Height at Western Apron Attachment 10 Off Peak Construction Practices for Airfield Pavements Utilizing Asphaltic Concrete Attachment 11 Summary on Improvement of B-Runway of Osaka International Airport Supplementary Information of Pavement Work Attachment 12 Attachment 13 Breakdown of Costs and Benefits Attachment 14 Location of the Airport Fire Station Layout Plan of Apron and Passenger Terminal Attachment 15 Building for Long-term Development

Attachment 16

Minutes of Meetings

ATTACHMENT

1

SUMMARY OF REQUIREMENT FOR

TERMINAL AREA FACILITIES

1-1 Calculation of Facility Requirement

1) Apron

Table 1-1 shows required number of aircraft parking aprons.

There should be the following four types of parking aprons:

category 1: B747, DC-10 (MD-11) class

category 2: B767, B707 class

category 3: B727, B737, (MD81) class

category 4: F27 class for domestic flight

Table 1-1 Required number of aircraft parking apron

category	1	2	3	4	5
	B747	B707	B727	F27	cargo
	DC-10	B767	(M0-81)	class	freighter
year	(MD-11)		B737		B707
1989 actual capacity	4	2	2	2	1
1995	3	1	3	3	1
2000	4	2	2	3	1
2010	5	2	2	3	1 1 B747

2) Passenger Terminal and Cargo Terminal Buildings

Table 1-2 and Table 1-3 show estimated facility requirements in total.

Calculation formulae are shown in Attachment $2_{1}(1)$ and $2_{2}(2)$.

Long Term Development 2010 (M^2) $1) \times 1.0$ 3,862 9,065 21,992 9,065 Estimated Facility Requirements in Total for Passenger Terminal Building 1) x 0.9 7,590 2,236 6,831 16,657 2000 Short Term Development 11 $1) \times 0.8$ 6,955 1,934 5,564 14,453 1995 Ħ (Actual Capacity) $1) \times (0.7)$ 1,514 8,130 1,620 2,301 in 1989 2,435 16,000 Design year 4) Administrative and Technical Area (Non-Concessions) PA x (10,000) x 20 m^2 - Non Public Area Concessions Annual Table 1-2 Total 3) Airline Offices Name of facility 1) Public Area Others 8 <u>S</u>

Estimated Facility Requirements in Total for Cargo Terminal Building Table 1-3

						·			
Long Term Development	2010	890	3,060		1,385	5,335	(5) 450	(7) 630	. 6,415
Sevelopment	2000	590	1,450		200	2,540	(2) 180	(2) 180	2,900
Short Term Development	1995	5 15	1,330		<i>დ</i> თ	2,080	(2) 180	(2) 180	2,440
(Actual Capacity)	in 1989	1,220	2,740	400	260	4,620		0	4,620
Design year	Name of facility	1) Export Cargo Facilities	2) Import Cargo Facilities	3) Airline Offices	4) Customs Offices	Sub-Total	5) Work Station (Export)	6) Work Station (Import)	Total

3) Car Parks

According to the result of survey on the actual car incoming and outgoing situation performed June 2 through June 4, 1989, and peak-hour passenger movement, required number of car parks in the each design year have been estimated as Table 1-4.

Table 1-4 Required Number of Car Parks

	Peak-hour Departure	Requir	ed number	r of carp	arks
Design Year	Passengers	Private	Taxi	Bus	Total
Actual	321	352	42	8	402
1995	352	386	46	9	441
2000	388	422	50	10	482
2010	532	585	70	14	669

4) Other Terminal Area facilities

Table 1-5 shows result of facility requirement calculation on other terminal area facilities.

The calculation formulae are made, as Attachment 2 (3), due consideration with actual data on consumption and treatment volume by flight and passenger.

Table 1-5 Estimated Facility Requirements for Other Terminal Area Facilities

Design Year	(Actual	Short	Term	Long Term	
	,		opment	Developmemt	Domonika
 Facility	Capacity) in 1989	1995	2000	2010	Remarks
1. FUEL OIL FACILITY Fuel Oil Tank	1290 kl	1484 kl	1636 kl	2444 kl	Reservation 4 days
2. WATER SUPPLY FAC. Water Tank	133 kl	764 kl	876 kl	1320 kl	Reservation 2 days
3. SEWAGE FACILITY Sewage Treatment Plant	15 M ³ /Hr	15.9M ³ /Hr	18.3M ³ /Hi	127.5M ³ /Hr	
4. FIRE FIGHT. FAC. Water Tank	0 kl	30 kl	30 kl	30 kl	For 3 vehicles
5.GARBAGE HANDLING FACILITY (ton/day) Incinerator	0	10.7	11.3	13.7	:

1-2 Demand/Capacity and Facility Requirement Analysis

Comparison between actual and required capacities of major terminal area facilities in each target year shown in Fig. 1-1 ~ Fig. 1-3.

These figures, cleary indicates that the most of actual terminal area facilities are capable of adequately meeting the demand in the year 1995 and 2000.

However, the following facilities require reconstruction, expansion or modification, from the functional and physical points of view;

1) Apron

- Location and aircraft parking concept (parking configuration) should be modified to suit depending the airport development plan.
- Pavement structures should be improved to achieve the required thickness and profile by ICAO recommendations.

2) Passenger terminal building

1. Public area

Facility	Development measures
- departure concourse	Modify or newly expand existing central terminal
- departure lounge	
- security check	Modify existing central terminal
 check-in counter for Puente Aereo and domestic 	
arrival health checkbaggage claim areaand device	Modify arrival terminal To be installed at existing building

2. Other area

Facility	Development measures
non-public area mainly, administrative	Modify existing central terminal
area	,

Result of demand and capacity analysis by facility is shown in Attachment 3, (1) and (2).

3) Cargo terminal facilities

The result of survey on existing situation clearly indicates that the following facilities have to be developed in the year 1995 and 2000.

Facility	Development measures
Export cargo facilities	
- pallet build-up area	Modifying existing warehouse or newly expand "open shed" at the infront of existing warehouse (1995)
- work station	To be installed at existing
(removable)	warehouse or inside of "open shed," (2000)
Import cargo facilities	
- pallet break-down area	Modifying existing warehouse or newly expand "open shed" at the infront of existing warehouse (1995)
- work station	To be installed at existing
(removable)	warehouse or inside of "open shed," (2000)
- rack	Modifying existing warehouse (2000)

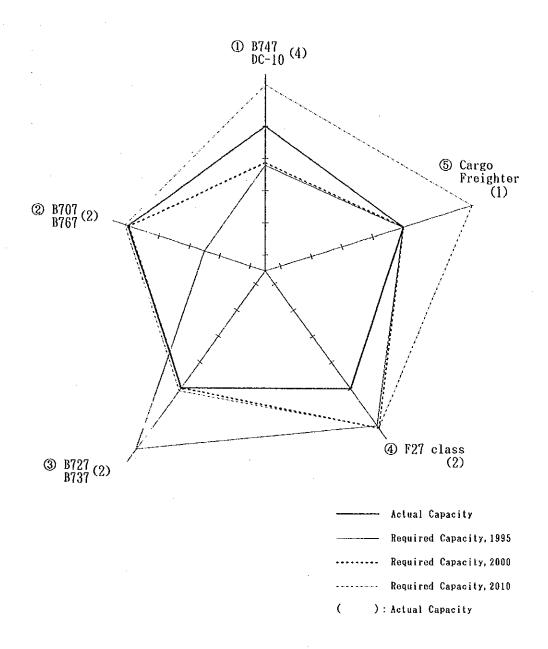


Fig 1-1 Comparison between actual and required capacity (Apron)

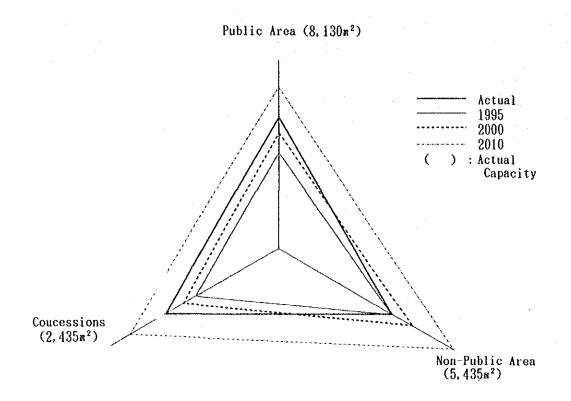
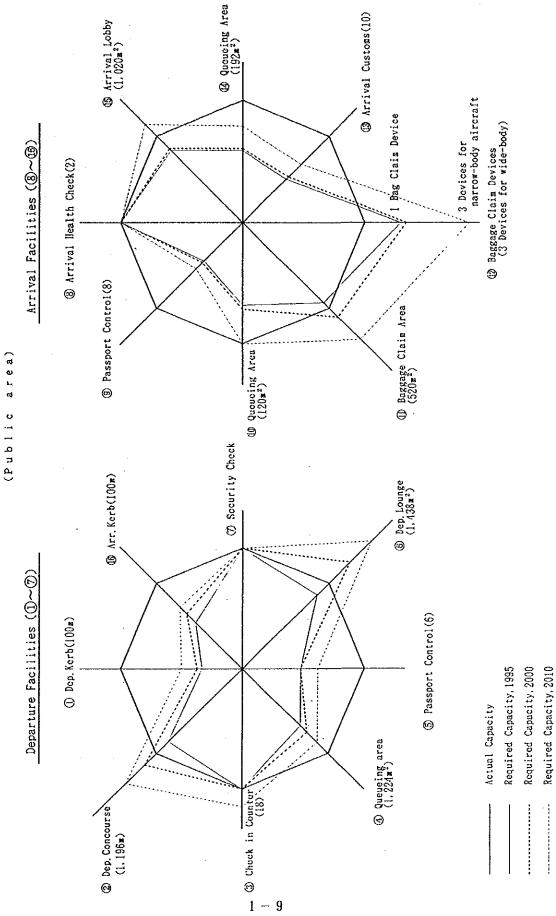



Fig 1-2 Comparison between actual and required capacity

Comparison between actual and required capacities. Fig. 1-3

- 9

4) Rescue and Fire-Fighting Facility

(1) Short term development

To cope with emergency use for fire-fighting vehicles and to avoid interference of water supply to the terminal building, an elevated water tank will be urgently required for exclusive use of the airport fire brigade.

Since the airport still falls in the category 8 airport even in 2010, it will not be required to reinforce the airport fire-fighting vehicles.

(2) Long term development

If the short-term development is materialized, new development will not be required.

5) Fuel Oil Facility

(1) Short term development

In 1995, fuel oil storage capacity of the present facility is slightly less than the required capacity. The existing ESSO and SHELL facility have no oil separaters, so it will be required to install simple oil separaters similar to ANCAP facility.

To satisfy the increasing demand, an additional 346 KL fuel oil reserve will be required by the year of 2000.

(2) Long term development

In 2010, the required oil reserve in the airport will reach 2,444 KL against present capacity of 1,290 KL. It will be necessary to develop a fuel oil facility fundamentally.

6) Water Supply Facility

(1) Short term development

To secure two days consumption, additional 631 M³ water reservation will be required in the year of 1995. Also a new pipe line from the public 800 mm diameter new water line will be required.

In 2000, further 112 M^3 water reservation will be required.

(2) Long term development

In 2010, the required water reserve for two days will reach 1,320 $\rm M^3$ against present capacity of 133 $\rm M^3$.

7) Sewage Facility

(1) Short term development

In 1995, the peak-day demand will be slightly higher the capacity of the existing sewage treatment plan. The peak-day demand in 2000 will reach 18.3 M³ an hour.

(2) Long term development

In 2010, the required capacity of the sewage treatment plant will reach 27.5 $\,\mathrm{M}^3$ an hour against present capacity of 15 $\,\mathrm{M}^3$.

8) Garbage Handling Facility

(1) Short term development

At present, there is no facility to handle garbage in the airport, so it is necessary to install incinerators to suit present demand. In 2000 a further development will be necessary.

(2) Long term development

In 2010, the required capacity of the facility will reach 13.7 tons a day.

ATTACHMENT 2 (1)

CALCULATION FORMULAE

FOR

FACILITY REQUIREMENT

FOR

PASSENGER TERMINAL BUILDING

(1) Passenger Terminal Building

		data 8	assum]	otions
		1995	2000	2010
1. DEPARTURES KERB		 		
Data Required:	*			
a = Peak hour number of ORIGINATING passengers		352	388	532
p = Proportion of passengers using car/taxi		0.75	0.75	0.75
n = Average number of passengers per car/taxi		1.2	1.2	1.2
l = Average kerb length required per car/taxi(me	etres)	6.5	6.5	6.5
t = Average kerb occupancy time per car/taxi(min	nutes)	1.5	1.5	1.5
Assumptions: p = 0.75 n = 1.2 passengers 1 = 6.5 metres t = 1.5 minutes Separate kerb length provided for buses Average number of passengers and size of vehicle is same for cars and taxis				
Kerb length required: $L = \frac{\text{aplt}}{60\text{n}} = 0.095 \text{ ap metres(+10\%)}$				
2. DEPARTURES CONCOURSE(LOBBY)				
Data Required:		[[!
a = Peak hour number of ORIGINATING passengers	INT	276	328	367
	P/A	138	138	176
	DOMES	45	60	68
·	TOTAL	352	388	532
s = Space required per person(square metres)		1.5	1.5	1.5
o = Number of visitors per passenger	INT	2.0	2.0	2.0
	P/A	0.3	0.3	0.3
	DOMES	0.5	0.5	0.5
Assumptions: s = 1.5(square metres) o = 2.0(INT), 0.3(P/A), 0.5(DOMES)				
Area Required: A = s x a(1 + 0)square meteres(+10%)				

	•	data 	т
		1995 	1 2000
3. CHECK-IN COUNTERS (CENTRALIZED, COMMON CHE	CK-IN)	 	
Data Required:		! 	!
a = Peak hour number of ORIGINATING passengers	INT	276	328
	P/A	138	138
	DOMES	45	60
t ₁ = Average processing time per passenger	INT	2	2
(minutes)	P/A	1 1	1
	DOMES	1	1
		; 	
4. QUEUEING AREA - (CHECK-IN LOBBY) Data Required:		 	
4. QUEUEING AREA - (CHECK-IN LOBBY) Data Required: a = Peak hour number of ORIGINATING passengers	INT	 	
Data Required:	INT	}	
Data Required:		 138 	}
Data Required:	P/A DOMES	 138 	 138
Data Required: a = Peak hour number of ORIGINATING passengers	P/A DOMES	 138 45	138 60
Data Required: a = Peak hour number of ORIGINATING passengers s = Space required per passenger(square metres Assumptions:	P/A DOMES	 138 45	 138 60

		data	& assum	ptions
		1995	2000	2010
5. PASSPORT CONTROL - (DEPARTURE IMMIGRATION)	*.	 		1
Data Required:		İ	<u> </u>	
a = Peak hour number of ORIGINATING passengers	INT	276	328	367
	P/A	138	138	176
t ₂ = Average processing time per passenger(minute	es)	0.3	0.3	0.3
Assumptions: t ₂ = 0.3 minutes		 	 	
Control Positions Required: $N = \frac{at_2}{60} \text{ positions(+10\%)}$		 	 	· — — — — — — — — — — — — — — — — — — —
 DEPARTURE LOUNGE (excluding concessions exceeds bar/snack bar facilities) 	ept			
Data Required:		 	<u> </u>	
c = Peak hour number of DEPARTING passengers	INT			367 (183)
	P/A	138	138	1176
	DOMES	45	60	68
s = Space required per passenger(square metres)		2.0	1. 2.0	2.0
Assumption: s = 2.0 square metres		 	 . 	
Area Required: A = cs(+10%)				-
/). number of transit passangers		 	 	!

^{():} number of transit passengers

		data	& assum	ptions
		1995	2000	2010
7. SECURITY CHECK - CENTRALIZED				
Data Required:		!		1
a = Peak hour number of ORIGINATING passengers	INT P/A	 307 	328	464
	DOMES	45	60	68
y = Capacity of X-ray Hand Baggage Unit(pcs/hou	r)	 		" ' ' '
w = Number of hand baggage items per passenger		 		
Assumptions: y = 600 pcs/hour w = 2.0		, 		,
X-Ray Units Required:		 	! 	
$N = \frac{aw}{y} = \frac{a}{300} \text{ units}$		 	1	
	·	 	 	
8. ARRIVALS HEALTH CHECK				
Data Required:		 		
d = Peak hour number of TERMINATING passengers	I INT	400	400	526
t = Average service time per passenger(minutes)		<u> </u>	 	;
Assumption:			! !]
<pre>t = 0.1 minutes Facilities for clearance of passengers within 30 minutes will be sufficient</pre>	 	· 	 	
	! !		! 	
Control Positions Required:	i		ł	

		data	& assum	ption:
		1995	2000	201
		 -	 	
15. ARRIVALS LOBBY (excluding concessions)		 	 	[]
Data Required:		 	1]
d = Peak hour number of TERMINATING passengers	INT	312	312	1432
	. P/A	156	156	188
	DOMES	45	60	68
w = Average occupancy time per passenger(minute	s)	15	15	15
z = Average occupancy time per visitor(minutes)		30	30	30
s = space required per person(square metres)		1.5	1.5	1.5
o = Number of visitors per passenger	INT	2.0	2.0	2.0
	P/A	0.3	0.3	0.:
	DOMES	0.5	0.5	0.9
$\frac{s = 1.5 \text{ square metres}}{\text{Area Required:}}$ $\Lambda = s(\frac{\text{wd}}{60} + \frac{\text{zdo}}{60}) = 0.375(\text{d} + 2\text{do})\text{square metres}$	(+10%)	 	 	
16. ARRIVALS KERB		***************************************		
Data Required:		[i I
d = Peak hour number of TERMINATING passengers		445	460	 594
p = Proportion of passengers using car/taxi		0.75	0.75	0.
n = Average number of passengers per car/taxi		1.2	1.2	1.2
1 = Average kerb length required per car/taxi(m	etres)	 	6.5	6.5
t = Average kerb occupancy time per car/taxi(mi		 	1.5	1.5
Assumptions: p = 0.75 n = 1.2 passengers 1 = 6.5 metres t = 1.5 minutes				
Separate kerb length provided for buses Average number of passengers and size o vehicle is same for cars and taxis				-

			data	& assum	pt
			1995	2000	
13. ARRIVALS CUSTOMS					
The requirements for Customs check (baggage and personal examination) vary depending on the level of inspection reby the authorities and the inspection involved. Each case will require indiconsideration following discussion with inspection authorities at the pre-plant especially where the Red/Green channel implemented.	y widely equired procedures vidual h the ning stage),			
Where Customs checks are implemented the basis of inspection of the baggage proportion of passengers, the following can be utilized.	of a				
Data Required:					į.
e = Peak hour number of TERMINATING pas	ssengers	INT	312	312	14
		P/A	156	156	
f = Proportion of passengers to be cust	toms check	ed			ļ
t ₄ = Average processing time per passen	ger(minute	es)]	1	1
Assumptions: f = 0.5 t ₄ = 1.0 minutes					+
Number of Customs positions required: $N = \frac{\text{eft}_4}{60} \text{ positions(+10\%)}$					
14. QUEUEING AREA - ARRIVALS CUSTOMS			i	<u> </u>	i
Data Required:			1	İ I	1
e = Peak hour number of TERMINATING pas	ssengers	INT	1312	312	14
		P/A	156	 156	1
f = Proportion of passengers to be cust	toms check		 	 	1
s = Space required per passenger(square	e metres)		 	 	+
Assumptions: s = 1.5 square metres 50% of peak hour number of pass at Customs within the first 20	sengers ar minutes	rive			+
Area Required: $A = s \times \frac{20}{60} (\frac{3e}{2} - e) = 0.25e(+10\%)$]	1	
	-		<u></u> -		

	٠			:	
		data	& assum	ptions	
		1995	2000	2010	
11. BAGGAGE CLAIM AREA(excluding claim devices)			 	<u> </u>	.
Data Required:		! 			
e = Peak hour number of TERMINATING passengers	INT	312	312	432	
	P/A	156	156	1188	
	DOMES	45	60	68	
w = Average occupancy time per passenger(minute	s)				
s = Space required per passenger(square metres)		I	1	[
Assumptions: w = 30 minutes			 		
s = 1.8 square metres		 	1	 	
Area Required:		 	1		
$A = \frac{\text{ews}}{60} = \frac{\text{e x } 30 \text{ x } 1.8}{60} = 0.9\text{e square metres}$	(+10%)	! 	[
12. NUMBER OF BAGGAGE CLAIM DEVICES AND AREA TO REQUIRED	В	 	 		
Data Required:		 	! !		
<pre>y = Average claim device occupancy time per wide-body aircraft(minutes): 30(minute z = Average claim device occupancy time per narrow-body aircraft(minutes): 20(minute)</pre>	s)	 	 		
number of devices should be calculated on the result of simulated flight sched and following assumptions] 	
Required Claim Length:		 	 		<u> </u>
Wide-body aircraft: 50-65 metres Narrow-body aircraft: 30-40 metres		; 	 	 	

		data	& assum	ptions
		1995	2000	2010
9. PASSPORT CONTROL - (ARRIVAL IMMIGRATION) Data Required:				
d = Peak hour number of TERMINATING passengers	INT	312	312	1432
t ₃ = Average processing time per passenger(minute	es)	1	<u> </u>	
Assumptions: t ₃ = 0.5 minutes		1 1 1 1	1	! ! !
Control Positions Required: $N = \frac{dt_3}{60} \text{ positions(+10\%)}$				
10. QUEUEING AREA - (PASSPORT CONTROL - ARRIVAL IMMIGRATION AREA)		 	1	
Data Required:		 	İ 	i
d = Peak hour number of TERMINATING passengers	INT	312	312	432
s = Space required per passenger(square metres)		 	 	
Assumptions: s = 1 square metre 50% of peak hour number of passengers ar within the first 15 minutes	rive	 - - -	 	
Area Required: $A = s \times \frac{15}{60} \times (\frac{4d}{2} - d) = 0.25d \text{ square metres}($	+10%)		 	

(2) Cargo Terminal Facilities

	data	& assump	tions
	1995	2000	2010
1. TRACK DOCK (EXPORT CARGO)			1
Data Required:		l 	! !
a = peak day export cargo volume (ton)	41	53	93
f = peak hour factor	0.4	0.35	0.3
k1= cargo handling capacity per dock (ton/h)	6	6	6
w = required width for one dock (M) W1 (10 ton trailer) W2 (truck)	3.6	3.6 2.4	3.6 2.4
Track dock width required:	!	 	
$L = \frac{af}{k1} \times w \ (+10\%)$			
2. TRACK DOCK (IMPORT CARGO)]
Data Required:		l L	 -
b = peak day import cargo volume (ton)	39	60	140
f = peak hour factor	0.4	0.35	0.3
k2= cargo handling capacity per dock (ton/h)	2	2	2
w = required width for one dock (M) W1 (10 ton trailer) W2 (truck)	3.6	3.6	3.6
Track dock width required:			· · · · · · · · · · · · · · · · · · ·
$L = \frac{bf}{k2} \times w (+10\%)$			

	· · · · · · · · · · · · · · · · · · ·		
	data 8	assum	ptions
	1995	2000	2010
3. WORK STATION AREA (EXPORT CARGO - BUILT UP AREA)			
Data Required:			1
a = peak day export cargo volume (ton)	41	53	93
h = working hour (hour)	12	12	12
x1= pallet share	0.15	0.2	0.3
x2= container share	0.25	0.3	0.4
t = handling time (min)	30	25	20
Us= unit space for work station	90	90	90
Work station area required:			
A = a x $\frac{1}{h}$ x(x1 x 1.2 + X2 x 0.5) x $\frac{t}{60}$ x Us	· · · · · · · · ·		
4. WORK STATION AREA(IMPORT CARGO - BREAK DOWN AREA)			
Data Required:			!
b = peak day import cargo volume (ton)	39	60	140
h = working hour (hour)	12	12	12
x1= pallet share	0.15	0.2	0.3
x2= container share	0.25	0.3	0.4
t = handling time (min)	30	25	1 20
Us= unit space for work station	90]	90	90
Work station area required:]
$A = b \times \frac{1}{h} \times (x1 \times 1.2 + X2 \times 0.5) \times \frac{t}{60} \times Us$	 		

	data {	& assum	tions
	1995	2000	2010
5. EXPORT BULK CARGO HANDLING AREA		 	, , ,
Data Required:		 	
a = peak day export cargo volume (ton)	41	53	93
f = peak hour factor	0.4	0.35	0.3
x3= bulk cargh share	0.5	0.4	0.3
Us= unit space for handling area (M2/ton)	40	40	40
Handling area required:		 	·
$A = a \times f \times x3 \times Us (+10\%)$		 	
6. IMPORT BULK CARGO HANDLING AREA		 	
Data Required:	j	 	
b = peak day import cargo volume (ton)	39	60	140
f = peak hour factor	0.4	0.35	0.3
x3= bulk cargh share	0.5	0.4	0.3
Us= unit space for handling area (M ² /ton)	40	40	40
Handling area required:		 	
$A = b \times f \times x3 \times Us (+10\%)$			

	 data & assumption:		
	data {	k assump r	tions
	1995	2000	2010
7. CUSTOMS AREA (EXPORT + IMPORT)		 	
Data Required:	<u>.</u>	 	
a = peak day export cargo volume (ton)	41	53	93
b = peak day import cargo volume (ton)	39	60	140
f = peak hour factor	0.4	0.35	0.3
k1= cargo handling capacity per dock (ton/h)	! 6	6	6
k2= cargo handling capacity per dock (ton/h)	1 2	2	2
1 = depth of customs area per dock (M)	9	9 9	9
customs area required:		 	
$A = (\frac{af}{k1} + \frac{bf}{k2}) \times 1 (+10\%)$!
8. STORAGE AREA FOR IMPORT CARGO		i i i	
Data Required:			
b = peak day import cargo volume (ton)	39	60	140
d = duration of storage (day)	7	5	5
s = story of rack system	2	2	2
Us= unit space (M ² /ton)	6.5	6.5	6.5
Storage area required:		 	
$A = b x d x \frac{1}{s} x Us (10%)$	† 	 	

	 data 8	& assumj	ptions
	1995	2000	2010
9. COLD STORAGE FOR PERISHBLE CARGO	· 	1 	
Data Required:		 	
a = peak day export cargo volume (ton)	41	53	93
b = peak day import cargo volume (ton)	39	60	140
x4= share of perishble cargo	0.05	0.1	0.1
Us= unit space (M ² /ton)	10	10	10
Cold storage area required:	i I		
$A = (a + b) \times x4 \times Us (+10\%)$			
10. AIRLINE AND AGENT OFFICE AREA		i 	! ! !
Data Required:			r
ac= annual cargo volume (ton)	21.365	30.437	62.812
Us= Unit space (M ² /ton)	0.01	0.015	0.02
Office area required:	 	 	
$A = ac \times Us (+10\%)$			

(3) Other Terminal Facilities

	data	data & assumptions			
	1995	2000	2010		
1. FUEL OIL FACILITY.					
Data Required ;					
s = Fuel oil demand (kl/day)	371	409	611		
n = Number of days to stock fuel oil	4	4	4		

Assumptions:

n = 4 days

Table of Fuel Consumption (kl)

D. 41-41-	Flying time	-	Type of Ai	rplane	
Destination	(llr)	727	707 & 767	DC10	747
POA	1.2	8	9	13	16
ASU	2.2	14	16	24	29
AEP	0.4	3	3	5	5
SAO	2.2	14	16	24	29
EZE	0.4	3	3	5	5
RIO	3.4	21	24	38	45
SRZ	4.0	24	28	44	52
SCL	2.6	16	19	29	34
			_	l	

Total Tank Volume Required ;	A Paragram Administration	
V = n.s	 	

		data	data & assumptions		
		1995	2000	2010	
. WATER SUPPLY					
Data Required ;					
n = Peak-day passenger movement	INT'L	3318	3816	5816	
	DOMES	158	164	181	
	TOTAL	3476	3980	5997	
p = water consumption per passenger (1/person)		110	110	110	
Assumptions;					
p = 110 1/person			1		
p is estimated from yearly average cons	umption				
per passenger in year of 1988.					
Tank volume shall be capable of having	two days				
holding of the consumption					
Tank volume ;					
$V = n. p. 2. 10^{-3} = 0.22 n M^3$					
			1		
•		į			

		data	& assumpti	ons
		1995	2000	2010
3. SEWAGE TREATMENT		``		
Data Required ;				
n = Peak-day passenger movement	INT'L	3318	3816	5816
	DOMES	158	164	181
	TOTAL	3476	3980	5997
w = Sewage water per passenger, (1/person)	·	110	110	110
Assumptions ;				
w = 110 l/person				
w is same as water consumption per passe	enger.			
Total sewage water quantity is in propor	tion			
to passenger movement.				
Total sewage water ;				
$Q = \frac{n. \text{ w. } 10^{-3}}{24} = 0.00458 \text{ n. } \text{M}^3/\text{Hr}$	1			
		į		

			data	& assumpti	ons
		;	1995	2000	2010
4. GARBAGE TREATMENT					
Data Required ;					
n = Peak-day passenger movement	ni	INT'L	3318	3816	5816
	nd	DOMES	158	164	181
	na	TOTAL	3476	3980	5997
w _i = Generated quantity per passenger. (kg	/person)				
w ₁ = International line (kg/person)			1.2	1.2	1.2
w_2 = Domestic line (kg/person)			0.45	0.45	0.45
Wt = Generated quantity from place other th	an				
airport. (ton/day)			6.6	6.6	6.6
Assumptions ;					· · · · · ·
$w_1 = 1.2$ kg/day					
$w_z = 0.45$ kg/day					
w _t is estimated by reducing quanti	ty genera	ted			
in airport from current quantity i	n year 19	88;			
$9.0 - (1.2 \times \frac{59185}{30} \times 10^{-3}) = 10^{-3}$	3.6 ton/d	ay			
and, w _t is costant even in future.					
Total generated quantity			-		
$W_a = \frac{W_1. \text{ ni + } W_2. \text{ nd}}{1000} + 6.6 \text{ton/day}$					
					-

ATTACHMENT 3 (1)

RESULT OF DEMAND

AND

CAPACITY ANALYSIS

on

PASSENGER TERMINAL BUILDING

(1) Passenger Terminal Building

+ - - - - - - - - - - - - - - - - - - -	поте	- management							
eloped(/	2010		ı					484	
c.facility to be developed(A-B)	2000		1					184	
c. facili	1995	ACT CANADA	1			<u>:</u>		l	
	b. actual capacity		100			<u>:</u>		1, 916	
acity	2010		42		1,820	380	170	2, 400	
required capacity	2000		31		1,630	300	150	2, 100	
A. re	1995		28		1,370	300	120	1,810	
	name of facility	1. DEPARTIRES KERB	total	2. DEPARTIRES CONCOURSE (M²)	TNI	P/A	DOMES	total	

+	υ 										
reloped(A-B)	2010		ŀ	l				1	1	-	
c.facility to be developed(A-B)	2000		i	l	ı	l			l	1	1
c.facilit	1995		l	l	ı	l		1		ı	1
	b, actual capacity		18	,	P	18+6 *		18	9		18+6 * (720π²)
acity	2010		14	4	7	20		18	4	2	24×30m² (720m²)
required capacity	2000		13	ĸ	2	17		12	4	2	$18 \times 30 \text{m}^2$ (540 m ²)
A. re	1995		10	က		14	-	PUA 3 12 RG 3 other6	PUA 2 4 ARG 2	2	18×30m² (540m²)
3 3	name of facility	3. CHECK-IN COUNTERS (Number) CASE 1 COMMON USE	INI	P/A	DOMES	total	CASE - 2 EXCLUSIVE USE		P/A	DOMES	total

	ט כן		,		masa, arran di searuh	e e e e e e e e e e e e e e e e e e e		an-a-a-a-a-a-a-a-a-a-a-a-a-a-a-a-a-a-a-			
loped(A-B)	2010					 					
c. facility to be developed(A-B)	2000					l					
c. facilit	1995					1					
G	b, actual capacity					1,224+170 *				6+4 ** (100m²)	
acity	2010		550	270	110	930		က	1	$4 \times 10 m^2$ (40 m ²)	
required capacity	2000		500	210	06	800		23	1	$3\times10^{m^2}$ (30^{m^2})	
A. re	1995		420	210	70	700		2		$3 \times 10 m^2$ (30 m ²)	
24	name of Jacilly	4. QUEUEING AREA (Check-in Lobby)	INI	P/A	DOMES	total	5. PASSPORT CONTROL (Dep. Immigration) (Number)	INI	P/A	total	

* at central terminal
* * at central terminal for puente aereo

3 - 3

								· .							
	11 O t							÷				· .			
to be developed(A-B)	2010					322		2	1	$(300m^2)$		(2)			
1	2000					102	-	2	, -	(300m²)		(2)			
c. facility	1995					1		3	ĵ	(300m²)		(3)		ge	
	B. actual capacity					1,438 *			_	(300#²)		actuary there are no inspection counters, but	In the future it is can be installed $(120\pi^2)$	* including transit lounge	
capacity	2010		1,220	390	150	1,760		2	 -((300#z)		2×60m²	(120^{4})		
required cap	2000		1,090	310	140	1,540		2	g-r-d	(300 m2)		2×60m²	$(120m^2)$		
A. re	1995		910	310	100	1,320		1 or 2	1	(300m²)		2×60#2	(120m²)		
	name of facility	DEPARTURE LOUNGE (M ²)		P/A	DOMES	total	7. SECURITY CHECK (UNIT)	INT / P/A	DOMES	total	ARRIVAL HEALTH CHECK (POSITION)	INT/P/A			

Γ						The second secon
	note					
3	to be developed(A-B) 2000 2010		. 1		(120)	
	1		l		(06)	
	c.facility 1995		l		(06)	
	B. actual capacity		8 (160m²)		24M×5M (120)	
	capacity 2010		4×20m² (60m²)		120	
	required cap		3×20m² (60m²)		06	
	A.		3×20m² (60m²)		06	
	name of facility	9. PASSPORT CONTROL (Arr. Immigration) (Position)	INI	10. QUEUEING AREA (Arrival Immigration Area) (M ²)	INI	

*	ט כ											o Granda	
eloped(A-B)	2010					170	W	1	5	H l		170m²	
c. facility to be developed(A-B)	2000					01	N M	1	- 1			20m2	
c. facili	1995						Z B	1	1	+- -		90m²	
D	b. actual capacity					520	M		49M Length× 3			240m²	
city	2010		430	061	70	069	Z	رسا دی	2			410m²	
A. required capacity	2000		310	160	09	530	Z	2	(2)	Н		330,≖2	
A. re	1.995		310	091	45	515	Z B	2	(2)			330#2	
1 2 4 2 1	illy	I AREA (M²)	INT	P/A	DOMES	total	GAGE	INI	P/A	DOMES	TNI	P/A	DOMES
3. 3. 4	name of facility	11. BAGGAGE CLAIM AREA (M					OD 12. NOMBER OF BAGGAGE CLAIM DEVICES		NUMBER			AREA	

W : for wide-body aircraft
N : for Narrow-body aircraft

4 C											
						-					
to be developed(A-B)	2010		!	l						I	
	2000		l	1						l	
c facility	1995		l	l						1	
A trocces lentos					01	$(400m^2)$				192	
acity	2010		7	2	$6 \times 40 m^2$	(200m²)		110		160	
required capacity	2000		က်	2	5×40m2	(20022)		80	40	120	
A. re	1995		က	2	5×40m²	(200m²)		80	40	120	
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1	name or raciffus	13. ARRIVALS CUSTONS (position)	LNI	P/A	+++++++++++++++++++++++++++++++++++++++	וסומז	14. QUEUEING AREA (Arrival Customs)	INI	P/A	total	

		,		**************************************	PANELWIN - NEW PROPERTY.	· · · · · · · · · · · · · · · · · · ·		·	
۱.	ונ ח ר פ								
	ĭI								
loped(A-B)	2010					70		l	
c.facility to be developed(A-B)	2000					l		l	
c.facility	1995					.		l	
D	D. actual capacity					1,020		100	
acity	2010		006	125	09	1,090		65	
required capacity	2000		099	110	50	830		50	
A. re	1995		099	110	40	820		45	
+		γ (M²)	INI	P/A	DOMES	total		total	
1 2 4 3 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4	name of racifity	15. ARRIVAL LOBBY		i	i		16. ARRIVAL KERB	i	1

(2) Cargo Terminal Facilities

1				······································	T -					Na Pagasanah)
	บ			· .								
	0											
-ਦ	[
developed	2010									·-···		
facility to be (A-C)	2000											
c. facili	1995			-		<u></u>						
of existing	After Modification	Of Existing terminal										
B. Capacity of facilities	Actual	·										
icity	2010	3×2.4	2×3.6	= 7.2	17×2. ⊈	= 40.8	4×3.6	55.2				
required Capacity	2000			= 3.6 10.8		9		28.8		••		
A. red	1995		7.7	7.2		= 19.2		19.2				
	name of facility	TRACK DOCK (M) (EXPORT CARGO)			(IMPORT CARGO)				N T SOC COMM. O PROPERTY OF THE PROPERTY OF TH			
	rd E	1. TRA			2. (I			;				

ı	Ь					
•	o =					
developed	2010			_		
facility to be developed (A - C)	2000			-		
c. facil	1995			1		
Capacity of existing facilities	After Modification	Of Existing	767 11110	450	averser averser brakes station handling areas areas 10.8 = 90 cm	
B. Capacity facilitie	Actual			-	Space traverser traverser work station handling 8.2×10.8=	
acity	2010		വ	450	8 2%	
required Capacity	2000		23	180		
A	1995		2	180		
3 2 3 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4	name of facility	3. WORK STATION AREA	-BUILT-UP AREA)	(N ₂)		THE CONTRACTOR OF THE CONTRACT

		1		*******	<u> </u>	·	-		· · · · · · · · · · · · · · · · · · ·		· ·			1	
	р Б														
developed	2010			1											
to be	2000							1					<u> </u>		
c. facility	1995			1		,		<u> </u>							
f existing	After Modification		180	630			10	185 (175) 605							
B. Capacity of facilities	Actual			ł				325						-	
city	2010		ţ~	630			370	280							
required Capacity	2000		6	180		C	330	370							
A. rec	1995		6	180		Ç	360	350		***					
	name of lacility	WORK STATION AREA	(IMPORT CARGO - RRFAK DOWN ARFA)	(Mz)	EXPORT BULK CARGO	HANDLING AREA		IMPORT BULK CARGO HANDLING AREA (N²)							

,	·····	<u> </u>	<u></u>	<u> </u>				·	<u> </u>			 		—	 	7	
	υ - -		·														
developed	2010		20			325		I	620				i c	C88	 		
to be - C)	2000		1	E		ı		I					,	100			
c. facility (A	1995		. 1	rack system	ovided	I		ı	ı					1			
of existing s	After Modification		1	*two stories	should be provided	ı		260						*******			
B. Capacity of facilities	Actual		240			2, 175		1	1, 220	1,940	3, 960			400			
ıcîty	2010		260			2, 500		260	4,580				i c	L, 385			
required Capacity	2000		135			1,080		125	2,400				i.	nne			
A. req	1995		110			980		45	2, 205				i č	233			
some of facility	וומווב כד דמכזוזרה	7. CUSTOMS AREA	(EXPORT + IMPORT) (M2)	8. STORAGE AREA FOR	IMPORT CARGO	(N ₅)	9. COLD STORAGE FOR	(N ²)	Total		Export	10. AIRLINE AND	AGENT OFFICE AREA	(単)			

ATTACHMENT

4

INITIAL LOAD-CARRYING CAPACITY

 $\dot{\mathbf{OF}}$

EXISTING PAVEMENT

The comparison between initial allowable load of existing pavement and operation weight of aircraft in the Short-term and Long term is shown in Table 4-1.

If the initial allowable load is less than future operation weight, reinforcement of pavement should be made.

If the initial allowable load is adequate and existing conditions of pavement is not so poor, repair will be required.

The reinforcement of pavement should be made by the following manner.

a. Flexible pavement

	Short term	Long term
Design load	Take-off weight to RIO DE JANAIRO	Take-off weight to CARACAS
Design life	10 years	10 years

b. Rigid pavement

	Short term	Long term
Design load	Take-off weight to CARACAS	Take-off weight to CARACAS
Design life	20 years	20 years

Table 4-1 Comparison between initial allowable load and aircraft operation weight

a. RWY06/24, TWY-A, TWY-B, TWY-D, APRON

Name of		Initial	Operation weight	of B-747(ton)	Existing
Name of	Location	allowable	Short term	Long term	pavement
Facility		load(ton)	(RIO DE JANAIRO)	(CARACAS)	conditions
DW100 (04	2K448-2K698	340			Good
RWY06/24	Others	181 - 245			Fair to poor
TWY-A	_	159 - 168			Very poor
(DIIIV D	Т7	340		,	Good
TWY-B	Others	168 - 213			Fair to poor
TWY-D	-	32	284	340	Very poor
	S - 1	340			Fair
	S - 2	281			Fair
APRON	S - 3	191	•		Poor
	S-4, S-5	00 40			Fair to
	S-6	32 - 42			very poor

b. RWY01/19, TWY-C, RWY10.28, TWY-E

Name of		Initial	Operation weight	t of B-747(ton)	Existing	
Facility		allowable load(ton)	F27 - MK500	S - 340	pavement conditions	
DWV01/10	0K170-0K400	68			Poor	
RWY01/19	Others	23 - 41			Fair to poor	
TWY-C	-	45 - 59	20	12	Very poor	
DWV t A / 20	0K360-0K725	68	20	1.4	Poor	
RWY10/28	Others	23			Poor	
TWY-E	-	27 - 33			Poor	

FACILI'	ry: Rwy06,	/24	: .	LOCATIO	ON: 1K722	~ 2K148					
D.Y.		CBR OF	SUBGRADE	3.5 %	······································	····					
	SIGN	AIRCRAI	FT (GEAR) T	YPE B-747-	200B						
COND.	ITIONS	ANNUAL	DEPARTURES	3,000							
		1	CALCUL	TION OF EQU	IVALENT THIC	CKNESS					
	ACTUAL	BITUMI-		BASE		SUB-BASE					
MATERIAL	THICKNESS	ROUS	ACTUAL	EQUIVALENCY	EQUIVALENT	ACTUAL	EQUIVALENCY	EQUIVALENT			
PIATERIAL	(cm)	SURFACE	THICKNESS	FACTOR	THICKNESS	THICKNESS	FACTOR	THICKNESS			
	(Cit)	(cm)	(cm)	TACTOR	(cm)	(cm)	PACION	(cm)			
Ballast	37					37	1.0	37			
Macadam	23					23	1.0	36.8			
Asphalt concrete	35.5	13	22.5	1.2	27						
TOTAL		13			27			73.8			
	L EQUIVAL			113.8 са							
SUB-BASE		L: Balle	ast		ASSUMED (
СНЕСК		rem			REQUI		ASSU	MED			
OF			AND BASE		ļ	cm	40	cm			
THICKNESS			SE REQUIRI	EMENT		cm	27	cm			
		JRFACING			13 cm 13 cm						
	Al	LLOWABLE	LOAD		470,000	lb (213 t)		<u>.</u>			

FACILI	ry: Rwy06					ON: 2K148	~ 2K298		
INEC	SIGN		SUBGRADE		3.5 %				
	ITIONS	AIRCRA	FT(GEAR) T	YPE	B-747-2	200B			
COND	TITONO	ANNUAL	DEPARTURE		3,000				
			CALCUL	ATIC		IVALENT THIC	CKNESS		
	ACTUAL	BITUMI-			BASE			SUB-BASE	
MATERIAL	THICKNESS	NOUS	ACTUAL	FO!	IVALENCY	EQUIVALENT		EQUIVALENCY	EQUIVALENT
HVIPITUR	(cm)	SURFACE	THICKNESS	KNESSI		FACTOR THICKNESS		FACTOR	THICKNESS
	(Ciii)	(cm)	(cm)		VOIOK	(cm)	(cm)	PACION	(cm)
Granular	55						55	1.0	55
Bitumi- nous base	10						10	1.6	16
Asphalt			-1.11-1		· · · · · · · · · · · · · · · · · · ·			<u> </u>	
concrete	33	13	20		1.2	24			
TOTAL	98	13				24			71
TOTA	AL EQUIVAL	ENT THICK	(NESS	1	08 cm (43	3 in)	L	L	I
SUB-BASE	MATERIA	L: Grani	ılar			ASSUMED (CBR: 40 %		
СНЕСК	I'	TEM				REQU	IRED	ASSU	IED
OF	S	URFACING	AND BASE			13	CIA	37	СШ
	M	INIMUM BA	ASE REQUIR	EMEN	Т	24	Cm	24	cm
THICKNESS	S	URFACING				13 cm 13 cm			CIII
	A	LLOWABLE	LOAD		······································	460,000	lb (209 t)		

FACILI'	ry: Rwy06,	/24		LOCATI	ON: 2K298	- 2K448						
D.T.C	SIGN	CBR OF	SUBGRADE	3.5 %								
	ITIONS	AIRCRAI	T(GEAR) T	YPE B-747-	B-747-200B							
COND.	TITOVO	ANNUAL	DEPARTURES									
			CALCUL	ATION OF EQU	IVALENT THIS	CKNESS						
	ACTUAL	BITUMI-		BASE			SUB-BASE					
MATERIAL.	THICKNESS	Nous	ACTUAL	EQUIVALENCY	EQUIVALENT		EQUIVALENCY	EQUIVALENT				
MILDIANO	(cm)	SURFACE THICKNESS		FACTOR		THICKNESS	FACTOR	THICKNESS				
	(Сіц)	(cn)	(cm)		(cm)	(ст)	THOTOK	(cm)				
Granular	25				·	25	1.0	25				
Cement concrete	32		12	1.2	14.4	20	1.7	34				
Asphalt concrete	20	13	7	1.4	9.8	,						
			- <u></u>	<u></u>								
TOTAL	77	13		•	24.2			59				
TOTA	AL EQUIVAL	ENT THICK	(NESS	96.2 cm (
SUB-BASE	MATERIAI	L: Granı	ılar		ASSUMED (CBR: 40 %						
СНЕСК		rem			REQUI	ERED	ASSUM					
OF			AND BASE	·		СШ	37.2					
THICKNESS			SE REQUIRI	EMENT		CM	24.2	CM				
HIVORIDOS	L	URFACING	.,		13 cm 13 cm							
	Al .	LLOWABLE	LOAD		400,000	lb (181 t)						

FACILI'	ry: RWY01	/19. RWY	10/28	LOCATION LOCATION	ON: OK170	- 0K400, 0	K360 ~ OK725	-	
			SUBGRADE	3.5 %					
	SIGN		T(GEAR) T		neel				
COND	ITIONS		DEPARTURES		·				
		1111/0722		ATION OF EQU		CKNESS	**************************************	· · · · · · · · · · · · · · · · · · ·	
	I	BITUMI-		BASE		SUB-BASE			
MATERIAL	ACTUAL THICKNESS (cm)	NOUS SURFACE (cm)	ACTUAL THICKNESS (cm)	EQUIVALENCY FACTOR	EQUIVALENT THICKNESS (cm)		EQUIVALENCY FACTOR	EQUIVALEN THICKNES (cm)	
Sand	30					30	1.0	30	
Cement concrete	20					20	1.7	34	
Asphalt concrete	30	10	20	1.2	24	i			
TOTAL	80	10			24			64	
тот	AL EQUIVAL	ENT THIC	(NESS	98 cm (39					
SUB-BASE	MATERIA	: ا			ASSUMED (
CHECK		rem			REQU)	LRED	ASSUN	1ED	
OF	L.,		AND BASE			cm		CR	
THICKNESS			SE REQUIR	EMENT	СШ			CM	
INTORNEOU		JRFACING				CIII	<u> </u>	cm	
	A)	LOWABLE	LOAD		150,000	lb (68 t)			

FACILI	ry: RWY01,	/19		LOCATIO	ON: 1K598	- 1K748			
DYN	ATON	CBR OF	SUBGRADE	3.5 %					
	SIGN	AIRCRA	FT (GEAR) T	YPE Dual wh	neel				
COND.	ITIONS	ANNUAL	DEPARTURE	3,000					
			CALCUL	ATION OF EQUI	IVALENT THI	CKNESS			
	ACTUAL	BITUMI-		BASE			SUB-BASE		
MATERIAL	THICKNESS	NOUS	ACTUAL	EQUIVALENCY	EQUIVALENT	į.	EQUIVALENCY	EQUIVALENT	
MUTERTAR	(cm)	SURFACE	THICKNESS	FACTOR	THICKNESS	THICKNESS	FACTOR	THICKNESS	
	(Cit)	(cm)	(cm)	PACION	(cm)	(cm)	MOTOR	(cm)	
Sand	30					30	1.0	30	
Cement concrete	20		10	1.2	12	10	1.7	17	
Asphalt concrete	20	10	10	1.4	14				
TOTAL	70	10			26			47	
ጥለጥ.	L EQUIVAL	ENT OUT C	/NECC	00 om (00	in)				
SUB-BASE	MATERIAL		ME35	83 cm (33	ASSUMED (יםם.		···	
OUD-DASE		rem			REQUI		ASSUM		
CHECK			AND BASE		VEAO	CM	Addol	CN	
OF			ISE REQUIRI	MENT		CM		- cm	
THICKNESS	<u> </u>	URFACING	IOD KEROTKI	NILDII I				cm	
		LLOWABLE	LOAD		91,000 lb (41 t)				
		77.011110.00	20110	1	02,000 1	(/			

FACILIT	ry: Twy -	A		LOCATIO	ON: T - 1			·				
		CBR OF	SUBGRADE	3.5 %			· · · · · · · · · · · · · · · · · · ·					
	SIGN	AIRCRA	T (GEAR) T	YPE B-747-	B-747-200B							
COND	ITIONS	ANNUAL	DEPARTURES	3,000								
			CALCUL	TION OF EQUI	IVALENT THIC	CKNESS						
	ACOMILLE	BITUMI-		BASE	BASE SUB-BAS							
MAMEDIAI	ACTUAL THICKNESS	NOUS	ACTUAL	EQUIVALENCY	EQUIVALENT	ACTUAL	EQUIVALENCY	EQUIVALENT				
MATERIAL	l	SURFACE	THICKNESS	FACTOR	THICKNESS	THICKNESS	FACTOR	THICKNESS				
	(cm)	(cm)	(cm)	PACION	(cm)	(св)	PACTOR	(cm)				
Sandy gravel	38				:	38	1.0	38				
Cement concrete	25		15	1.2	18	10	1.7	17				
Asphalt concrete	15	13	2	1.2	2.4							
		-										
<u>.</u>												
TOTAL	78	13			20.4			55				
TOTA	AL EQUIVAL	ENT THICE	(NESS	88.4 cm (3	35 in)							
SUB-BASE	MATERIA	L: Sandy	gravel		ASSUMED (
СИЕСК	L	rem			REQU		ASSUM					
OF			AND BASE			CIN	33.4					
THICKNESS			SE REQUIRI	EMENT	21		20.4					
	L	URFACING			13 cm 13 cm							
	A	LLOWABLE	LUAD		350,000	lb (159 t)	 					

FACILI'	ry: Twy -	Α			ON: T - 2			· · · · · · · · · · · · · · · · · · ·		
DE	TON.	CBR OF	SUBGRADE	3.5 %	3.5 %					
	SIGN	AIRCRAI	FT (GEAR) T	(PE B-747-	200B					
COND.	ITIONS	ANNUAL	DEPARTURES	ES 3,000						
			CALCUL	TION OF EQU	IVALENT THI	CKNESS				
		BITUMI-		BASE			SUB-BASE			
	ACTUAL	nous	ACTUAL	EQUITMAL ENCY	EQUIVALENT	ACTUAL	EQUITMAT ENGY	EQUIVALEN'		
MATEKTAL	THICKNESS	SURFACE	THICKNESS	EQUIVALENCY	THICKNESS	THICKNESS	EQUIVALENCY	THICKNESS		
	(cm)	(cm)	(cm)	FACTOR	(cm)	(cm)	FACTOR	(cm)		
Sandy gravel	38					38	1.0	38		
Cement concrete	25		15	1.2	18	10	1.7	17		
Asphalt concrete	20	13	7	1.2	8.4					
				·						
TOTAL	83	13			26.4			55		
TOTA	AL EQUIVAL	ENT THICK	KNESS	94.4 cm	(37 in)					
SUB-BASE	MATERIA	L: Sandy	gravel		ASSUMED	CBR: 40 %				
СНЕСК	I'	rem			REQU	TRED	ASSU			
OF	SI	URFACING	AND BASE		13	cm	39.4			
THICKNESS	M.	INIMUM BA	SE REQUIRE	MENT	22	cm	26.4	СШ		
LUTOVUESS	Si	URFACING				cm	13	CM		
	A)	LLOWABLE	LOAD		370,000	lb (169 t)		· · · · · · · · · · · · · · · · ·		

FACILI	ry: Twy -	A		LOCATIO	: Y - 1	(Widened p	art)			
D.C.		CBR OF	SUBGRADE	3.5 %						
	SIGN	AIRCRAI	FT (GEAR) T	YPE B-747-	200B					
COND	TIONS	ANNUAL	DEPARTURES	3,000	3,000					
		70	CALCUL	TION OF EQU	IVALENT THI	CKNESS				
	A CONTLAT	BITUMI-		BASE			SUB-BASE			
MAMONYAY	ACTUAL	NOUS	ACTUAL	POLITUAL PROV	UIVALENCY EQUIVALENT THICKNESS	ACTUAL	EQUIVALENCY	EQUIVALENT		
MATERIAL	THICKNESS	SURFACE	THICKNESS			THICKNESS	FACTOR	THICKNESS		
	(cm)	(cm)	(cm)	FACTOR	(cm)	(cm)	PACTOR	(сп)		
Tosca	52					52	1.0	52		
Sandy gravel	15					15	1.0	15		
Asphalt	halt 12 *1 10 2		1.2	2.4		·				
TOTAL	98	10			2.4			67		
TOTA	AL EQUIVAL	ENT THIC	KNESS	79.4 сп	(31 in)					
SUB-BASE	MATERIA	L:			ASSUMED	CBR:	-			
CHECK	I'	rem			REQU:	IRED	ASSU			
OF :			AND BASE		10	CID	12.4	cm		
THICKNESS			ASE REQUIRE	EMENT	18	cm	2.4	Cm		
THYOMBESS		URFACING			10	cm	10	CM		
	Al	LLOWABLE	LOAD							

^{*1} Non-critical area.

^{*2} Thickness of base is less than required.

FACILI	ry: Twy -	R		LOCATIO	ON: T5					
			SUBGRADE	3.5 %						
	SIGN		FT (GEAR) T		B-747-200B					
COND.	LTIONS	L	DEPARTURES							
		1		ATION OF EQU	IVALENT THIS	CKNESS				
		BITUMI-		BASE	· · · · · · · · · · · · · · · · · · ·		SUB-BASE			
MATERIAL	ACTUAL THICKNESS (cm)	NOUS SURFACE (cm)	ACTUAL THICKNESS (cm)	EQUIVALENCY FACTOR	EQUIVALENT THICKNESS (cm)	ACTUAL THICKNESS (cm)	EQUIVALENCY FACTOR	EQUIVALENT THICKNESS (cm)		
Sand	30					30	1.0	30		
Cement concrete	20	3	17	1.2	20.4					
Asphalt concrete	10	10		·						
:										

			-							
TOTAL	60	13			20.4			30		
	AL EQUIVAL		KNESS	63.4 cm (
SUB-BASE	SUB-BASE MATERIAL:					CBR:	1-4			
СНЕСК		rem			REQUI		ASSUM			
OF			AND BASE			CM		CM		
THICKNESS			ISE REQUIRE	EMENT		CM		CD		
		URFACING				СИ		СЩ		
	. AI	LLOWABLE	LOAD							

This structure is not applicable to design curve of B-747. (Thickness is too thin.)

								4		
FACILI'	ry: Twy -	В		LOCAT	ION: T5 (Wi	dened part)	***************************************		
DE	SIGN	CBR OF	SUBGRADE	3.5 %	3.5 %					
	ITIONS		FT(GEAR) T		B-747-200B 3,000					
COND.	117049	ANNUAL	DEPARTURES							
					UIVALENT THE	CKNESS				
	ACTUAL	BITUMI-		BASE			SUB-BASE			
MATERIAL	THICKNESS (cm)	NOUS SURFACE (cm)	ACTUAL THICKNESS (cm)	EQUIVALENC FACTOR	Y EQUIVALENT THICKNESS (cm)	ACTUAL THICKNESS (cm)	EQUIVALENCY FACTOR	EQUIVALENT THICKNESS (cm)		
Tosca	50					50	1.0	50		
Gravel	20					20	1.0	20		
Asphalt concrete	20	13	7	1.2	8.4					
TOTAL		13			8.4			70		
	AL EQUIVAL		KNESS	91.4 cm	(36 in)					
SUB-BASE	MATERIA		a		ASSUMED (
СНЕСК	L	l'em			REQU	·	ASSU			
OF			AND BASE			CIR	21.4			
THICKNESS	i		ASE REQUIR	EMENT		CM ·	8.4			
	L	URFACING	LOAD		13	cm	13	CM :		
	A)	LLOWABLE	LUAD		<u> </u>			<u> </u>		

^{*}Thickness of base is less than required.

FACILIT	TY: TWY -	В		LOCATI	ON: T6 - 1			
7.170	· · · · · · · · · · · · · · · · · · ·	CBR OF	SUBGRADE	3.5 %				
	SIGN	AIRCRAI	FT (GEAR) T	YPE B-747-	200B			
COND.	TIONS	ANNUAL	DEPARTURES	3,000				
			CALCUL	ATION OF EQU	IVALENT THE	CKNESS		
		BITUMI-		BASE			SUB-BASE	
*********	ACTUAL	NOUS.	ACTUAL	PAULTICAL DIVAL	EQUIVALENT	ACTUAL	POUTUAT PROV	EQUIVALENT
MATEKIAL	THICKNESS	SURFACE	THICKNESS	EQUIVALENCY	THICKNESS	THICKNESS	EQUIVALENCY	THICKNESS
	(cm)	(cm)	(cn)	FACTOR	(cn)	(cm)	FACTOR	(сп)
Sand	30					30	1.0	30
Cement	25					25	1.7	42.5
concrete								
Asphalt	33	13	20	1.4	28			
concrete								
	·							
TOTAL	88	13			28			72.5
	L EQUIVAL		KNESS	113.5 cm				
SUB-BASE	MATERIA				ASSUMED (,	
СНЕСК		rem			REQUI		ASSU	MED
OF .			AND BASE			cm	41	CM
THICKNESS			SE REQUIRE	EMENT	26		28	cm
111101111100	··· · · · · · · · · · · · · · · · · ·	URFACING			13 cm 13 cm			
····	AI	LLOWABLE	LOAD		470,000	(213 t)		

FACILI	ry: TWY -	В		LOCATIO	ON: T6 - 2		<u> </u>	<u> </u>	
nec	SIGN	CBR OF	SUBGRADE	3.5 %					
	ITIONS	AIRCRA	FT (GEAR) T	YPE B-747-	200В				
COND	FITOUS	ANNUAL	DEPARTURES	3,000					
			CALCUL	ATION OF EQU	IVALENT THI	CKNESS			
	ACTUAL	BITUMI-		BASE			SUB-BASE		
МАТЕВТАТ	THICKNESS	NOUS	ACTUAL	EQUIVALENCY	EQUIVALENT	ACTUAL	EQUIVALENCY	EQUIVALENT	
MATENTAL	l	SURFACE	THICKNESS	FACTOR	THICKNESS	THICKNESS	FACTOR	THICKNESS	
	(cm)	(си)	(cm)	PACION	(cm)	(cm)	PACION	(cm)	
Ballast	50					50	1.0	50	
Macadam	20		10	1.0	10	10	1.6	16	
Asphalt concrete	24	13	11	1.4	15.4				
							·		
TOTAL	94	13			25.4			66	
TOT	L EQUIVAL		KNESS	104.4 сп	(41 in)				
SUB-BASE	MATERIA	L: Balla	ast		ASSUMED (
СИЕСК		rem			REQU:		ASSU		
OF			AND BASE			cm	38.4		
THICKNESS			ISE REQUIR	EMENT	 	CIA	25.4	Cm	
		JRFACING	··			cm	13	CN	
	Al	LOWABLE	LOAD		420,000	lb (191 t)			

FACILI	ry: Twy -	В		LOCATIO	ON: T8	·	·····			
DEC	SIGN	CBR OF	SUBGRADE	3.5 %	3.5 %					
	ITIONS	AIRCRAI	T(GEAR) T	PE B-747-	200B					
COND	FITONS	ANNUAL	DEPARTURES	3,000						
			CALCUL	TION OF EQU	IVALENT THI	CKNESS				
	1.000	BITUMI-		BASE			SUB-BASE			
MIMPORIA	ACTUAL	NOUS	ACTUAL	EULLAY ENGA	EQUIVALENT	ACTUAL THICKNESS	EQUIVALENCY	EQUIVALENT		
MATERIAL	THICKNESS	SURFACE	THICKNESS	EQUIVALENCY	THICKNESS		1 -	THICKNESS		
	(cm)	(cm)	(cm)	FACTOR	(cm)	(cm)	FACTOR	(cm)		
Sand	30					30	1.0	37		
Cement concrete	25		10	1.2	12	15	1.7	25.5		
Aggregate	8		8	1.0	8					
Macadam	6	·	6	1.0	6					
Asphalt concrete	12	12								
TOTAL	81	12			26			55.5		
			*******	00.5	(0.77 1)					
	AL EQUIVAL		(NESS	93.5 cm		300 - 00 C				
SUB-BASE	MATERIAL				ASSUMED (10011	TPD		
CHECK	L	rem	AND DIOT		REQUI		ASSU			
OF	L		AND BASE	SECULA		CM	38	CM		
THICKNESS			ASE REQUIR	MENT		cm	26	СП		
		URFACING	1017			CM	12	CIII		
	A1	LLOWABLE	LOAD		370,000	lb (168 t)				

FACILIT	ry: Twy -	C		LOCATIO	N: T4 - 1			
DT	TAN	CBR OF	SUBGRADE	3.5 %		:		-
	SIGN	AIRCRA	T (GEAR) T	YPE Dual w	neel			
COND	ITIONS	ANNUAL	DEPARTURES	3,000				
		<u> </u>	CALCUL	ATION OF EQUI	VALENT THIC	CKNESS		
		BITUMI-		BASE			SUB-BASE	
MATERIAL	ACTUAL THICKNESS (cm)	NOUS SURFACE (cm)	ACTUAL THICKNESS (cm)	EQUIVALENCY FACTOR	EQUIVALENT THICKNESS (cm)	ACTUAL THICKNESS (cm)	EQUIVALENCY FACTOR	EQUIVALENT THICKNESS (cm)
Sandy gravel	55					55	1.0	55
Well- graded aggregate	25		25	1.0	25			
Asphalt concrete	- 15	10	5	1.2	6			
TOTAL	95	10			31			55
TOTA	L NL EQUIVALI	ENT THIC	L {NESS	96 cm (38	in)		l	L
SUB-BASE	MATERIA		gravel	(0.0	ASSUMED (CBR: 40 %		
		rem			REQUI		ASSU	1ED
CHECK	SI	URFACING	AND BASE		10	CIII	41	СШ
OF	M.	INIMUM BA	ASE REQUIR	EMENT	23	cm	31	cm
THICKNESS		JRFACING			10	cm	10	cm
	Al	LLOWABLE	LOAD		130,000	(b (59 t)		

FACILI'	ry: Twy -	С			LOCATION: T4 - 2					
DEC	STON	CBR OF	SUBGRADE		3.5 %					
	SIGN	AIRCRAI	T(GEAR) T	YPE	Dual wheel					
COMD.	ITIONS	ANNUAL	DEPARTURES		3,000					
			CALCUL	ATION		EVALENT THIC	CKNESS			
	ACTUAL THICKNESS (cm)	BITUMI-			BASE			SUB-BASE		
MATERIAL		NOUS SURFACE (cm)	ACTUAL THICKNESS (cm)	_	VALENCY CTOR	EQUIVALENT THICKNESS (cm)	ACTUAL THICKNESS (cm)	EQUIVALENCY FACTOR	EQUIVALENT THICKNESS (cm)	
Sandy gravel	55						55	1.0	55	
Well- graded aggregate	25		25		1.0	25				
Asphalt concrete	. 10	10								
TOTAL	90	10				25			55	
#POM:	AL EQUIVAL	ENT THE	ARCC	00	cm (35	(n)			<u></u>	
SUB-BASE	MATERIA		ress gravel	90	GE 1 NO	ASSUMED (CBR: 40 %			
aca-aca		rem	Praver	_		REQUI		ASSUN	1ED	
CHECK			AND BASE			10		10	CM	
OF			SE REQUIRE	EMENT	,	21		25	CM	
THICKNESS		URFACING				10		10	cm	
		LLOWABLE	LOAD			100,000 1	b (45 t)			

FACILIT	ry: Twy -	C		LOCAT	ION:					
ND/	TON	CBR OF	SUBGRADE	3.5 %	3,5 %					
	SIGN	AIRCRAI	FT (GEAR) T	YPE Dual w	vheel					
COND	ITIONS	ANNUAL	DEPARTURES	3,000						
			CALCUL	ATION OF EQU	JIVALENT THI	CKNESS				
	AOMILAT	BITUMI-		BASE			SUB-BASE			
MATERIAL	ACTUAL THICKNESS (cm)	NOUS SURFACE (cm)	ACTUAL THICKNESS (cm)	EQUIVALENCY FACTOR	EQUIVALENT THICKNESS (cm)	ACTUAL THICKNESS (cm)	EQUIVALENCY FACTOR	EQUIVALENT THICKNESS (cm)		
Sand	30					30	1.0	30		
Cement concrete	20		15	1.2	18	5	1.7	8.5		
Asphalt concrete	15	10	5	1.2	6					
							<u> </u>			
TOTAL	65	10			24			38.5		
TOTA	L EQUIVAL	ENT THICK	KNESS	72.5 cm	(29 in)					
SUB-BASE	MATERIA	L: Sand			ASSUMED	CBR: 20 %				
СНЕСК		rem			REQU	IRED	ASSU	IED		
OF			AND BASE			cm	34	cn		
THICKNESS	M.	INIMUM BA	ASE REQUIR	EMENT	17	em	24	cm		
THIUMBOO	SI	JRFACING				CM	10	cm		
	Al	LLOWABLE	LOAD		70,000	lb (32 t)				

FACILIT	ry: Twy -			LOCATIO	ON:			
DEC	SIGN		SUBGRADE	3.5 %				
	TIONS		FT (GEAR) T		heel			
COMD	LITONS	ANNUAL	DEPARTURES					
			CALCUL	TION OF EQU.	IVALENT THI	CKNESS		·····
	ACTUAL	BITUMI-		BASE			SUB-BASE	
матгртат	THICKNESS	NOUS	ACTUAL	EQUIVALENCY	EQUIVALENT	1	EQUIVALENCY	EQUIVALENT
PINTERCAND	(cm)	SURFACE		FACTOR	THICKNESS	THICKNESS	FACTOR	THICKNESS
	(Cm)	(cm)	(cm)	MOTOR	(cm)	(cm)	ration	(cm)
Sand	30					30	1.0	30
Cement concrete	22		12	1.2	14.4	10	1.7	17
Asphalt concrete	14	10	4	1.2	4.8			
	·							
TOTAL	66	10			19.2			47
TOTA	AL EQUIVAL	ENT THIC	KNESS	76.2 сш	(30 in)	<u> </u>		
SUB-BASE	MATERIA	L: Sand			ASSUMED (CBR: 20 %		
СНЕСК	I'	TEM	•		REQU	IRED	ASSU	MED
OF			AND BASE		17	cm	39.2	cm
OF THICKNESS	M	INIMUM BA	ASE REQUIR	EMENT	18	cm	19.2	ст
TUTCVNESS	ŞI	URFACING			l	CID	10	СШ
	A.	LLOWABLE	LOAD		73,000	lb (33 t)		

FACILI	ry: APRON			LOCATIO	ON: S - 4			
DEC	TON	CBR OF	SUBGRADE	3.5 %				
	SIGN	AIRCRAI	AFT (GEAR) TYPE Dual wh		neel			
CONDITIONS ANNUAL DEPARTURE		DEPARTURES	3,000					
			CALCUL	ATION OF EQUI	EVALENT THI	CKNESS		
	ACTUAL	BITUMI-		BASE			SUB-BASE	
MATERIAL	THICKNESS	Nous	ACTUAL	EQUIVALENCY	EQUIVALENT	ł	EQUIVALENCY	EQUIVALENT
LINTEKTUD	(cm)	SURFACE	THICKNESS	FACTOR	THICKNESS	THICKNESS	FACTOR	THICKNESS
	(CM)	(cm)	(cm)	TAOTOR	(cm)	(cm)	TAOTOR	(cm)
Sand	30		•			30	1.0	30
Cement concrete	20		10	1.2	12	10	1.7	17
Aggregate	8		8	1.0	8.0			
Macadam	6	6 x 0.5						
Asphalt concrete	6	6						
TOTAL	70	9			20			47
TOT/	AL EQUIVAL	ENT THIC	KNESS	76 cm (30	in)			
SUB-BASE	MATERIA	L: Sand			ASSUMED (CBR: 20 %		
СНЕСК		rem			REQUIRED ASSUMED		1ED	
OF			AND BASE			СЛ	. 29	CM
THICKNESS			ASE REQUIRI	EMENT	18	cm	20	CII
TAIX OHINDOO		URFACING			10		9	cm
	٨١	LLOWABLE	LOAD		73,000	lb (33 t)		

FACILI	ry: Apron	······································		LOCATIO	ON: S - 5			
DEC	SIGN	CBR OF	SUBGRADE	3.5 %				
		AIRCRAI	FT (GEAR) T	YPE Dual wh	heel			
COMD.	ITIONS	ANNUAL	DEPARTURE	3,000				
			CALCUL	ATION OF EQUI	IVALENT THIC	CKNESS		
	ACTUAL	BITUMI-		BASE			SUB-BASE	
MAMPDIAL		nous	ACTUAL	EQUIVALENCY	EQUIVALENT	ACTUAL	EQUIVALENCY	EQUIVALENT
MATERIAL	THICKNESS	SURFACE	THICKNESS	FACTOR	THICKNESS	THICKNESS	FACTOR	THICKNESS
	(сп)	(сп)	(cm)	FACIOR	(cm)	(cm)	racion	(cm)
Aggregate	46		-			46	1.0	46
Macadam	23	5 x 0.5 2.5	18	1.0	18			
Asphalt concrete	7.5	7.5						
TOTAL	76.5	10			18			46
TOTA	L EQUIVAL	ENT THICK	(NESS	74 cm (29	in)			
SUB-BASE	MATERIA	.: Aggre	egate	,	ASSUMED (CBR: 40 %		
СНЕСК	I'	rem			REQUI	RED	ASSUN	1ED
OF	S	JRFACING	AND BASE	<u> </u>	10	CID	28	cm
	M.	ENIMUM BA	SE REQUIRE	MENT	17	Cm	18	CIL
THICKNESS	St	URFACING			10		10	cm
	Al	LOWABLE	LOAD		70,000 1	b (32 t)		

FACILITY: APRON				LOCATI	ON: S - 6			
DESIGN CBR OF SUBGRADE			3.5 %	3.5 %				
	ITIONS	AIRCRAI	T (GEAR) T		heel			
COND.	111000	ANNUAL	DEPARTURE					
			CALCUL	ATION OF EQU	IVALENT THI	CKNESS		
	ACTUAL	BITUMI-		BASE			SUB-BASE	
MATERTAL	THICKNESS	nous	ACTUAL	EQUIVALENCY	EQUIVALENT	ACTUAL	EQUIVALENCY	EQUIVALENT
MATERIAL	(cm)	SURFACE	THICKNESS	FACTOR	THICKNESS	THICKNESS	FACTOR	THICKNESS
	(CIII)	(cm)	(cm)	FACTOR	(cm)	(cm)	PACION	(cm)
Sand	30					30	1.0	30
Cement concrete	20		5	1.2	6	15	1.7	25.5
Asphalt concrete	20	10	10	1.4	14			
TOTAL	70	10			20			\$5.5
	AL EQUIVAL		KNESS	85.5 cm	85.5 cm (34 in)			
SUB-BASE	MATERIA				ASSUMED CBR: 20 %			
CHECK		PEM			REQU		ASSU	
OF			AND BASE		 	CIII -	30	CM
THICKNESS			SE REQUIR	SMENT		CIA	20	cm
	L	JRFACING			L	CM (40 4)	10	CM
	A1	LLOWABLE	LUAD		93,000	lb (42 t)		

FACILITY AND I	LOCATION	RWY06/24	2K298 ~ 2K448	
	SUBGRADE K-VALUE		63 pci	
DESIGN	FLEXURAI	STRENGTH	670 psi (Existing)	
CONDITIONS	AIRCRAF'	r(GEAR) TYPE	B-747-200B	
	ANNUAL I	DEPARTURES	3,000	
	MATERIAL		Graular	
SUB-BASE 1	THICKNES	SS	25 cm	
	EFFECTIV	/E K	108 pci	
M. H.	MATERIAI			
SUB-BASE 2	THICKNES	SS		
	EFFECTIVE K			
EXISTING SLAB	THICKNESS		32 cm	
ALLOWABLE LOAI)		540,000 lb (245 t)	
t = 2.5 (F) F = 1 Cb = 0 he = 12	.0 .75 2.6 in -	Asphalt concre	on rigid pavemen	

t = 7.9 in

h = 12.6 in

Cement concrete 32 cm (12.6 in)

Graular

(Optional design curve is not used.)

FACILITY AND	LOCATION	RWY06/24-2K44	18~2K698,TWY-B T7,APRON S	
	SUBGRAD	E K-VALUE	63 pci	
DESIGN	FLEXURA	L STRENGTH	670 psi (Existing)	
CONDITIONS	AIRCRAF'	T(GEAR) TYPE	B-747-200B	
	ANNUAL	DEPARTURES	3,000	
	MATERIA	L	Tosca	
SUB-BASE 1	THICKNE	SS	30 cm	
	EFFECTI	VE K	123 pci	
	MATERIA	L	Cement treated base	
SUB-BASE 2	THICKNE	SS	30 cm	
	EFFECTI	VE K	335 pci	
EXISTING SLAB	THICKNESS		35 cm	
ALLOWABLE LOA	D		750,000 lb (340 ton)	

FACILITY AND	LOCATION	RWY01/19,	RWY10/28	
	SUBGRADI	E K-VALUE	63 pci	
DESIGN	FLEXURAI	STRENGTH	670 psi (Existing)	
CONDITIONS	AIRCRAFT	r(GEAR) TYPE	Dual wheel	
	ANNUAL I	DEPARTURES	3,000	
	MATERIAL		Sand	
SUB-BASE 1	THICKNES	SS	30 cm	
	EFFECTIVE K		123 pci	
	MATERIAI			
SUB-BASE 2	THICKNES	SS		
	EFFECTIV	Æ K		
EXISTING SLAB	THICKNESS		20 cm	
ALLOWABLE LOA	D		50,000 lb (23 ton)	

FACILITY AND	LOCATION APRONS - 2	2	
	SUBGRADE K-VALUE	63 pci	
DESIGN	FLEXURAL STRENGTH	670 psi (Existing)	
CONDITIONS	AIRCRAFT (GEAR) TYPE	B-747-200B	
·	ANNUAL DEPARTURES	3,000	
	MATERIAL	Tosca	
SUB-BASE 1	THICKNESS	35 cm	
	EFFECTIVE K	137 pci	
	MATERIAL		
SUB-BASE 2	THICKNESS		
	EFFECTIVE K		
EXISTING SLAB	THICKNESS	35 cm	
ALLOWABLE LOA	D	620,000 lb (281 ton)	

FACILITY AND I	OCATION APRON S - 3	3
	SUBGRADE K-VALUE	63 pci
DESIGN	FLEXURAL STRENGTH	670 psi (Existing)
CONDITIONS	AIRCRAFT (GEAR) TYPE	B-747-200B
	ANNUAL DEPARTURES	3,000
	MATERIAL	Sand
SUB-BASE 1	THICKNESS	30 cm
	EFFECTIVE K	123 pci
	MATERIAL	
SUB-BASE 2	THICKNESS	
	EFFECTIVE K	
EXISTING SLAB	THICKNESS	26 cm
ALLOWABLE LOAI)	420,000 lb (191 ton)
$hc = \sqrt{\frac{1.4}{h^1}}$	- Cr·he ^{1.4}	,
Cr =	= 0.35 Cr = 0.75	Cr = 1.0
he =	= 20 cm he = 20 cm	he = 20 cm
he =	= 15.5 hc = 15.5	hc = 15.5
15.5	$5^{1.4} = h^{1.4} - 0.35 \times 20^{1}$	4
h ^{1.4}	1 = 70 h = 26 cm 21 cm	h = 29 cm

FACILITY AND	LOCATION TWY - E	ТЗ - 2
	SUBGRADE K-VALUE	63 pci
DESIGN	FLEXURAL STRENGTH	670 psi (Existing)
CONDITIONS	AIRCRAFT (GEAR) TYPE	Dual wheel
	ANNUAL DEPARTURES	3,000
	MATERIAL	Sand
SUB-BASE 1	THICKNESS	30 cm
	EFFECTIVE K	123 pci
	MATERIAL	
SUB-BASE 2	THICKNESS	
	EFFECTIVE K	
EXISTING SLAB	THICKNESS	22 cm
ALLOWABLE LOA	D .	59,000 lb (27 t)

REQUIRED THICKNESS OF PAVEMENT

Table Calculation of Annual Departures (Year 2000)

,200	1,204 → 1,200						e de l'acceptant de l	Total
	104	11,970	4,697	1,665	1.0	1,665	Q	F-27-MK500 (Domestic)
	1,100	11,970	11,970	1,100	1.0	1,100	D.	B737-200 (Puente Aereo)
→ 4,000	3,826 → 4				and the second s			Total
	632	16,160	11,970	1,796	9.0	2,565 (70%)	D.	B737-200 (Puente Aereo)
	3,194							Subtotal
	300	16,160	11,970	755	9.0	1,258	D.	B737-200 (Other Int'l)
	168	16,160	18,127	126	9.0	210	Ω.	B727-200
	617	16,160	16,060	629	1.0	629	D.T.	B767-200
	221	16,160	16,480	210	1.0	210	D.T.	B707-320
•	839	16,160	16,160	839	1.0	839	D.T.	DC-10-30
	1,049	16,160	16,160	1,049	1.0	1,049	D.D.T.	B747-200B
	Equivalent annual departures of design aircraft	Wheel load of design aircraft (kg)	Wheel load of aircraft (kg)	Equivalent annual departures	Conversion	Forecast annual departures	Gear type	Aircraft

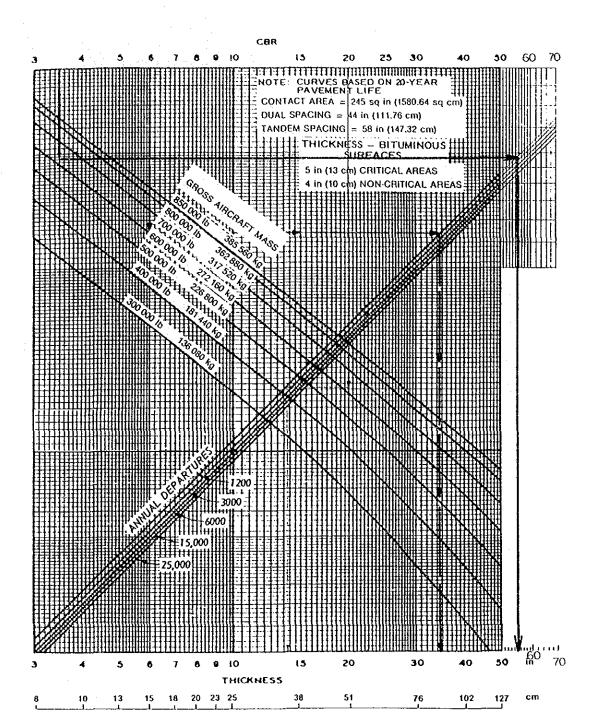


Figure 4-39. Flexible pavement design curves for critical areas, B747-100, SR, 200 B, C, F

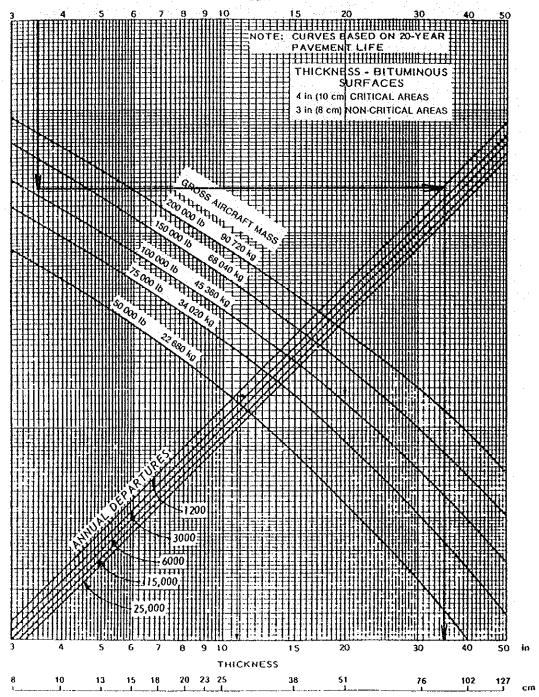


Figure 4-37. Flexible pavement design curvés for critical areas, dual wheel gear

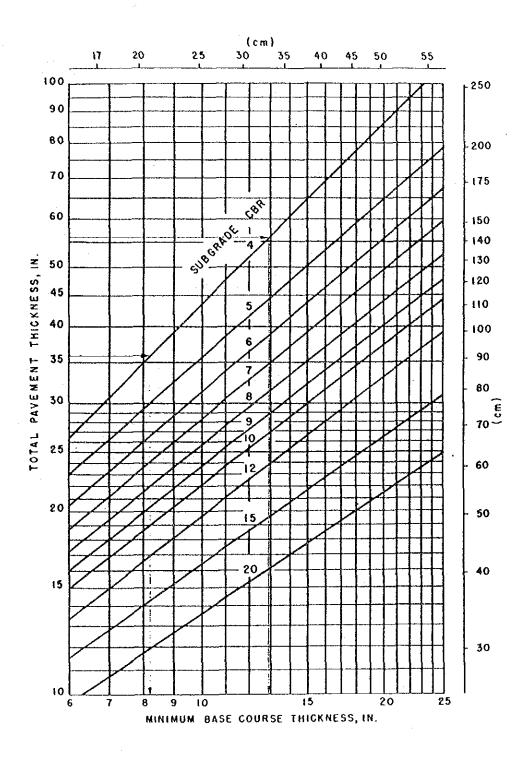


Figure 4-45. Minimum base course thickness requirements

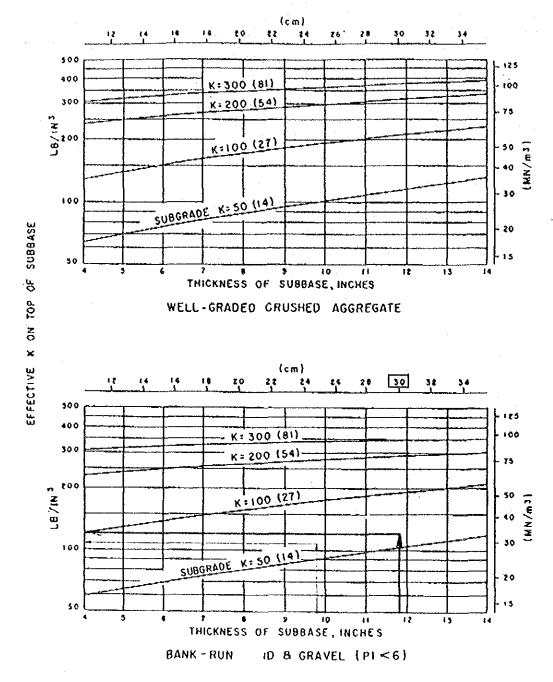


Figure 4-35. Effect of sub-base on modulus of subgrade reaction

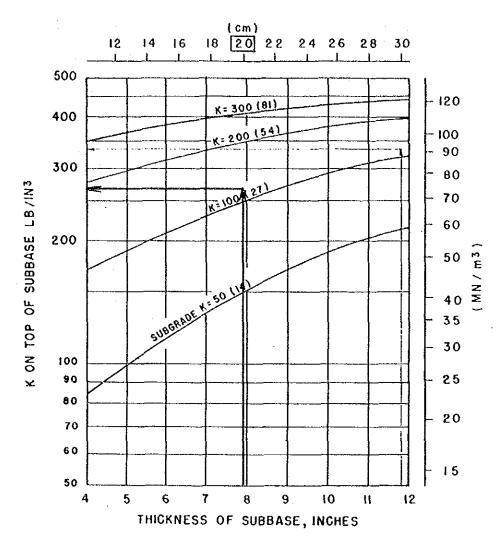


Figure 4-55. Effect of stabilized sub-base on subgrade modulus

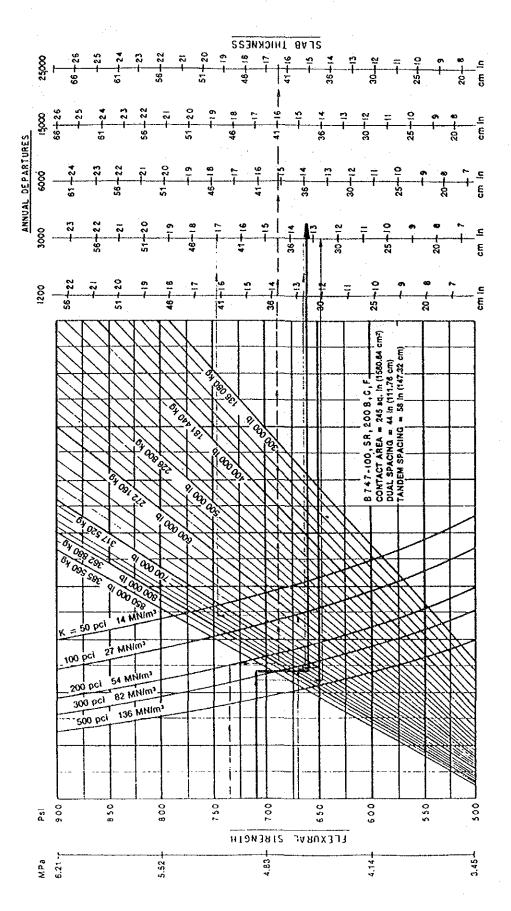
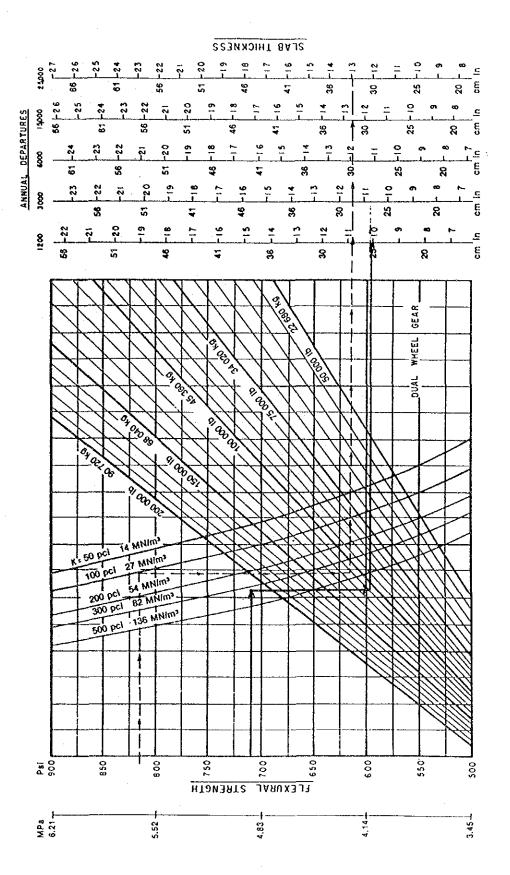
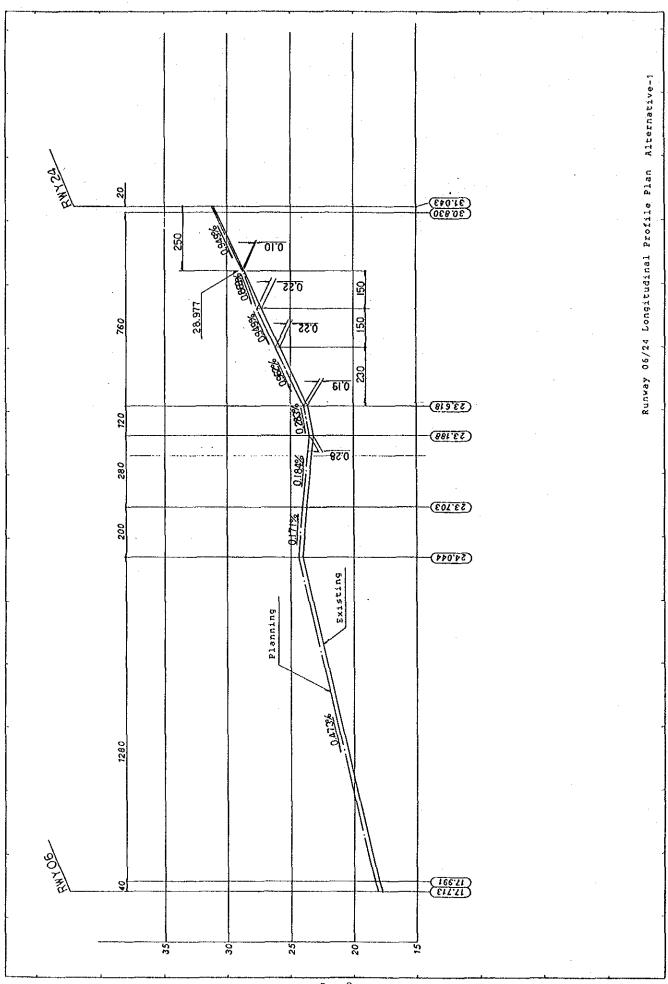
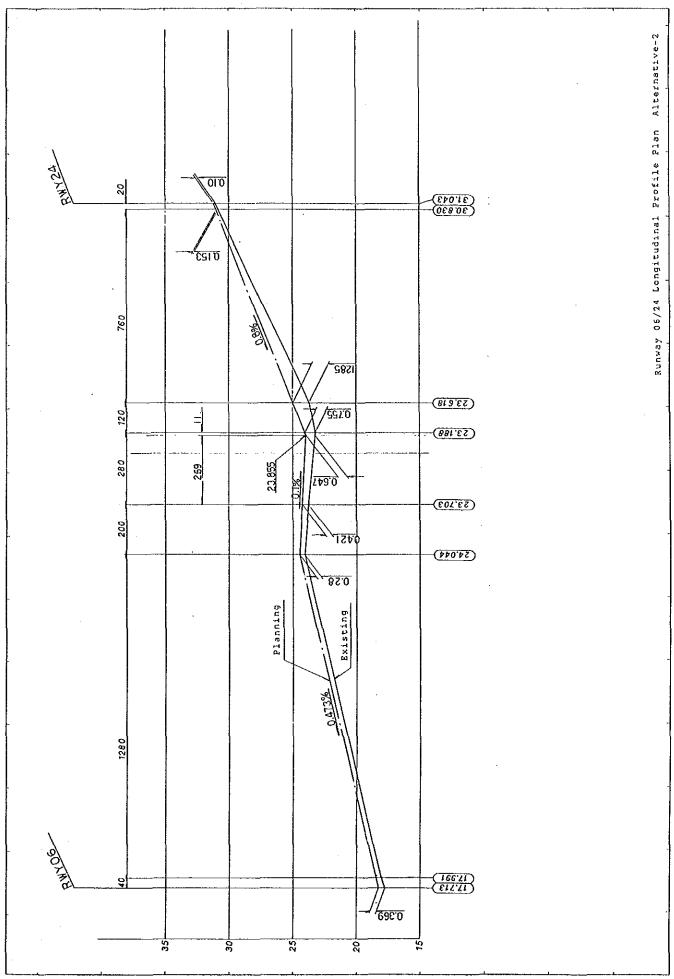
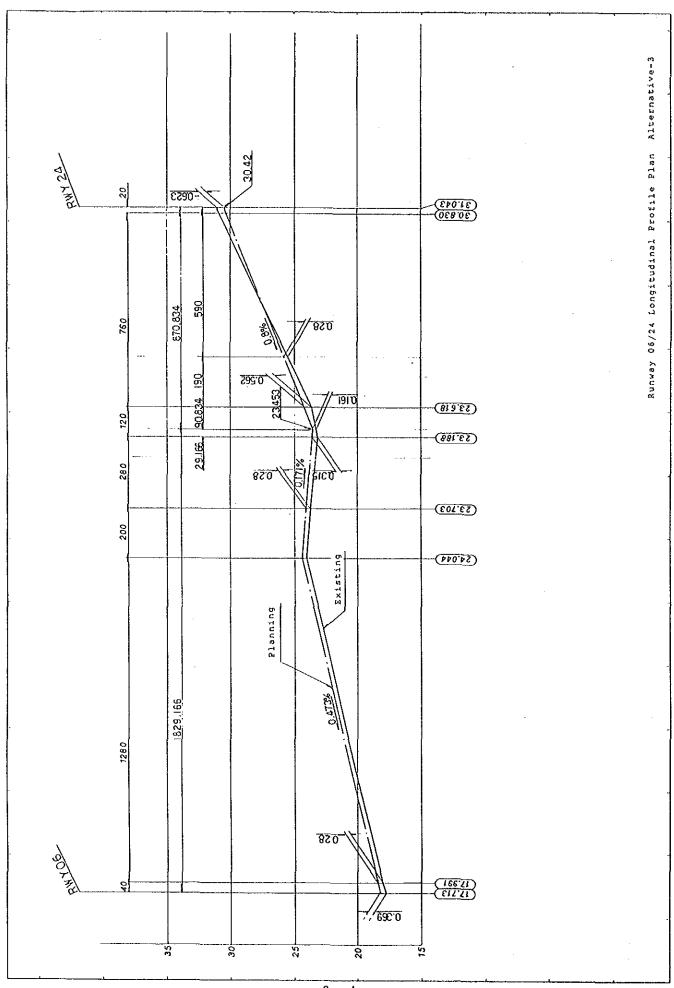


Figure 4-57. Optional rigid pavement design curves - B-747-100, SR, 200 B, C,




Figure 4-47. Rigid pavement design curves - dual wheel gear


ALTERNATIVES FOR CORRECTION OF


6

LONGITUDINAL SLOPE OF RWY06/24

Item	Alternative	Alternative-1	Alternative-2	Alternative-3
Amount of Construction	Volume of Overlay	32,150 m ³	56,890 m ³	28,370 m ²
Work	Area of Replacement	LIN .	Nil	28,390 m ²
Limitation Operation	of Runway	Nil All construction work will be done at night. (out of operation hours)	Nil As same as Alternative-1	Runway will be operated with the length of 2,050 m, 650 m shorter than existing. Overlay and a part of replacement will be done at night.
Maximum the	ickness of	28 cm(6 layers)	128 cm(26 layers)	56 cm(11 layers)
Planning Longitudinal Profile		Maximum slope is 0.95% at the end portion of the Runway 24. As same condition as existing one. It does not satisfy the recommendation of ICAO.	Maximum slope is corrected to 0.8%. It satisfies the recommendation of ICAO.	As same as Alternative-2
Construction Cost (Relative Evaluation)		1	1.8	1.6
Remai	rks	The distance of points at which the longitudinal slope change also does not satisfy the recommendation of ICAO.		It is afraid that the drainage of surface water will be difficult because the elevation of the end of Runway 24 is 60 cm lowered.

7

WIND COVERAGE

			•																	
unit %	TOTAL	98.15	98.29	98.37	98.40	98.43	98.42	98.31	98.11	97.87	97.64	97.47	97.36	97.31	97.36	97.52	97.70	97.85	98.00	
3	DEC	98.67	98.68	98.55	98.28	60.86	98,10	98.09	60.86	98.06	98.01	97.99	97.98	98.05	98.37	98.75	98.90	98.85	98.73	-
	NOV	98.19	97.89	97.54	97.27	97.16	97.22	97.37	97.57	97.65	97.62	97.58	97.58	97.64	77.79	97.94	98.12	98.29	98.32	
€-1	OCI	98.52	98.62	98.69	98.67	98.51	98.19	97.73	97.23	96.72	96.22	95.92	95.89	96.10	96.49	76.96	97.48	97.94	98.30	
AIRPORT	SEP	98.01	98.36	98.46	98.50	98.51	98.51	98.25	97.59	79.96	89.56	95.05	94.74	94.70	94.85	95.22	77.36	96.47	97.29	
O INT'L	AUG	97.95	98.16	98.37	98.61	98.82	98.92	98.89	98.75	09.86	98.23	98.00	97.83	97.71	97.61	97.55	97.56	97.65	97.77	
CARRASCO	วกก	97.81	94.76	98.07	98.15	98.24	98.28	98.14	97.93	97.65	97.28	97.07	96.95	88.96	68.95	86.98	97.12	97.36	97.60	
ΑT	JUN	97.12	97.58	98.04	98.32	98.32	98.11	97.82	97.51	97.24	96.95	96.56	96.13	95.83	95.63	95.65	95.88	96.21	96.64	
D COVERAGE	MAY	97.01	97.37	97.78	98.17	98.54	98.75	98.63	98.35	98.12	97.91	97.73	97.42	97.00	99.96	96.56	09.96	96.65	96.75] - -
WIND	APR	97.28	97.42	97.63	97.88	98.19	98.44	98.47	98.38	98.31	98.29	98.25	98.04	97.75	97.57	97.56	97.55	97.44	97.30	
	MAR	99.44	99.44	99.34	99.19	30.96	86.86	98.94	98.92	98.86	68.86	98.92	98.95	99.04	99.18	99.32	99.41	69.43	99.42	1
TABLE	म्बन	98.73	98.77	98.73	98.71	98.74	98.77	98.68	98.50	98,34	98.28	98,31	98.29	98.23	98.25	88.38	88.52	98.62	79.86	
A.	JAN	99.19	99.19	99.15	40.66	98.94	98.81	98.67	98.49	98.34	98.27	98.32	98.47	88.73	90.66	65.66	88.66	99.32	99.22	,
	RWY DIR.	N 010°E	020	030	040	050	090	070	080	060	100	110	120	130	140	150	160	170	180	

REMARKS 1) Single RWY and Cross Wind Factor $20~\mathrm{KT}$

2) Wind Data (1979 \sim 1984)

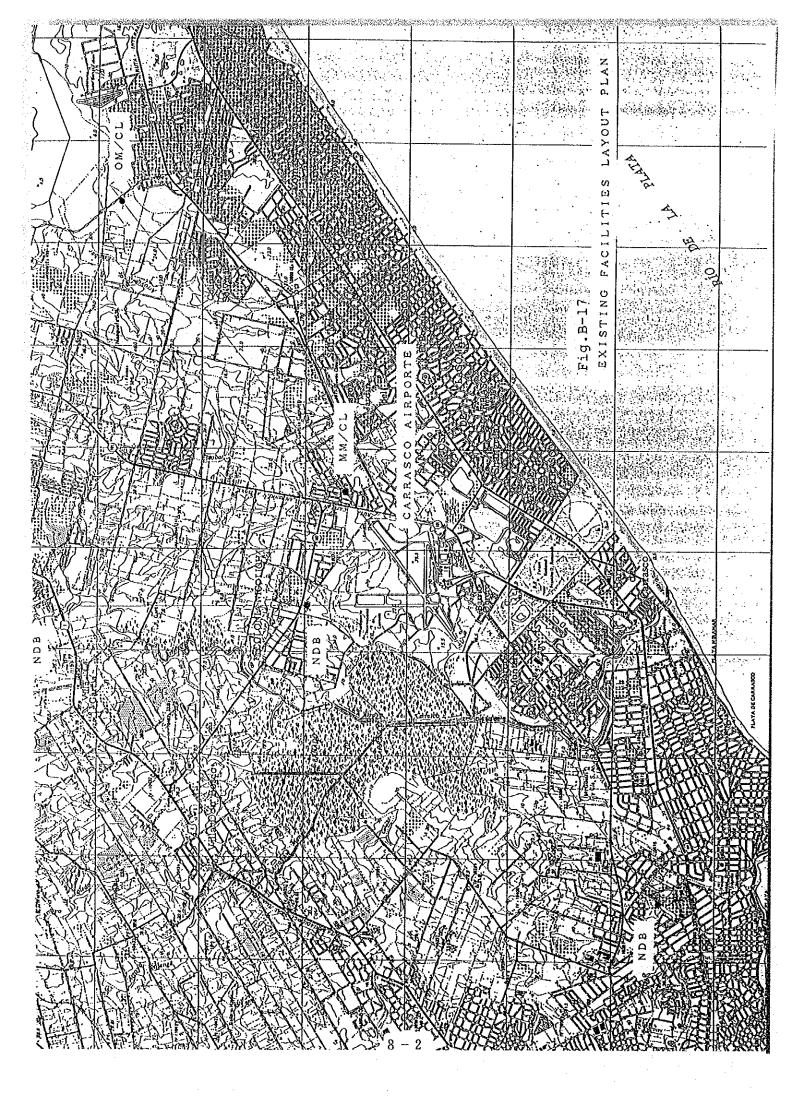
AIRPORT
INT'L
CARRASCO
AT
COVERAGE
WIND

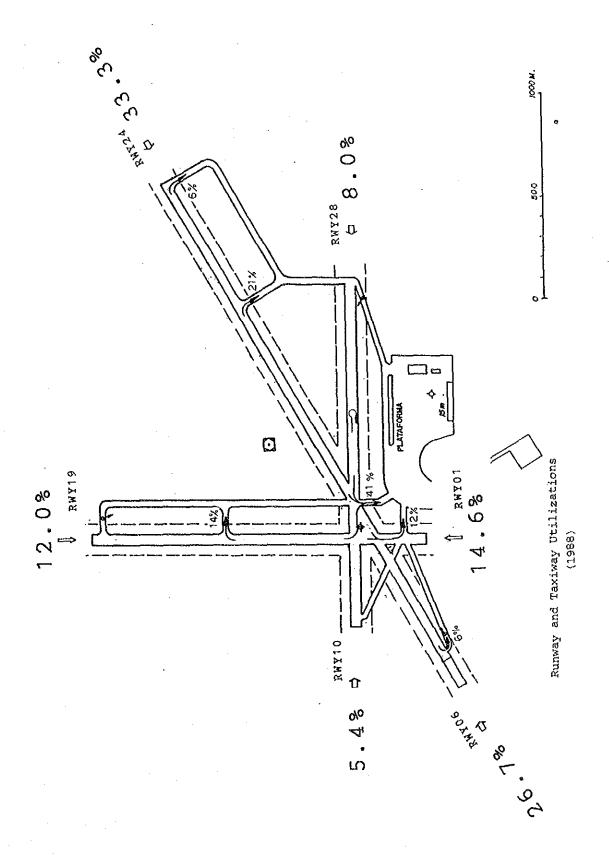
	······	,		······			,	r		·		T	······		r	1	г		·
unit %	TOTAL	90.02	89.43	88.79	88.20	87.64	87.13	86.67	86.34	85.95	85.52	85.28	85.55	86.20	87.11	88.10	89.07	89.88	90.26
'n	DEC	89.52	87.94	86.56	85.79	85.62	85.75	86.06	86.57	86.88	86.91	87.01	87.38	87.90	88.57	89.43	90.34	90.78	90.52
	NOV	87.53	86.18	85.12	84.46	84.09	83.85	83.76	83.89	84.14	84.61	85.33	86.31	87.53	88.69	89.59	90.10	89.74	88.81
E	OCT	89.60	89.28	88.57	87.74	87.04	86.42	85.79	85.16	84.38	83.55	83.00	83.05	83.57	84.45	85.63	86.99	88.32	89.32
AIRPORT	SEP	88.37	88.09	87.56	86.53	85.22	83.89	82.50	81.44	80.87	80.59	80.39	80.67	81.67	83.25	84.93	86.61	88.02	88.60
O INT'L	AUG	90.90	90.61	90.28	89.97	89.47	88.71	87.81	87.09	86.48	85.93	85.70	86.07	86.78	87.60	88.47	89.46	90.36	90.91
CARRASCO	JUL	91.39	91.49	86.06	89.96	88.47	86.64	84.78	83.26	82.01	81.32	81.22	82.12	83.64	85.30	86.75	88.25	89.69	90.81
	NUL	86.29	86.16	85.79	85.51	85.41	85.50	85,57	85.48	85.10	84.77	84.69	84.58	84.43	84.43	84.72	82.08	85.44	86.00
IND COVERAGE AT	MAY	90.71	90.47	90.18	89.84	89.20	88.54	88.04	87.53	86.62	85.47	84.53	84.42	84.94	85.99	87.15	88.23	89.44	90.50
NIM	APR	09.06	99.06	90.71	90.71	90.54	90.29	90.06	89.72	89.02	88.10	87.29	86.99	87.12	87.69	88,35	88.97	89.69	90.36
	MAR	93.71	92.95	92.23	91.77	91.56	91.41	91.30	91:26	86.06	90.19	86.68	89.20	89.49	90.10	91.02	92.21	93.38	94.04
TABLE	EEB	90.72	90.05	89.68	89.47	89.26	89.13	89.07	89.01	88.91	88.63	88.46	88.78	89.48	90.31	96.06	91.36	91.52	91.35
TA	JAN	69.06	89.18	87.74	86.55	85.82	85.46	85.37	85.75	86.16	86.28	86.50	87.13	88.03	89.11	90.24	91.26	91.85	91.75
	RWY DIR.	N 010°E	020	030	040	020	090	070	080	060	100	110	120	130	140	150	160	170	180

REMARKS 1) Single RWY and Cross Wind Factor 13KT

2) Wind Data (1979 \sim 1984)

COMPARISON BETWEEN ALTERNATIVES FOR SECONDARY RUNWAY DEVELOPMENT


Comparison between alternatives for secondary runway development


			RWY01/19	RWY10/28			
	Items		and	and TWY - E			
			TWY - C				
	Cross wind	whole year	98.2	97.6 95.7			
4 m ³ 1	20 kt		97.0				
1. Wind		worst month	(May)	(Sep)			
	Eval	uation	Good	Good			
coverage %	Cross wind	whole year	90.0	85.5			
	13 kt		86.3	80.6			
		worst month	(Jun)	(Sep)			
	Eval	uation	Fair	Poor			
2. Obsta	cles to be r	emoved	Trees	Trees			
	Eval	uation	Good	Good			
3. Construction	ł.	pproach runway equipment)	12,000	11,000			
cost (US\$1,000)	ļ	sion approach	8,000	8,000			
4. Connect	ion with ter	minal area	Fair	Good			
5. Expandal	bility of te 2010	rminal area	Good New terminal area can be provided at north of air base	Good			
6. Aircraf	t noise to M nter	ontevideo	Moderate	Significant			

Remarks:

- 1. Runway length should be extended to 2,050 m and pavement reinforced to accommodate B737 operations.
- 2. Costs of earth works, pavement works and lighting are included in the construction cost.

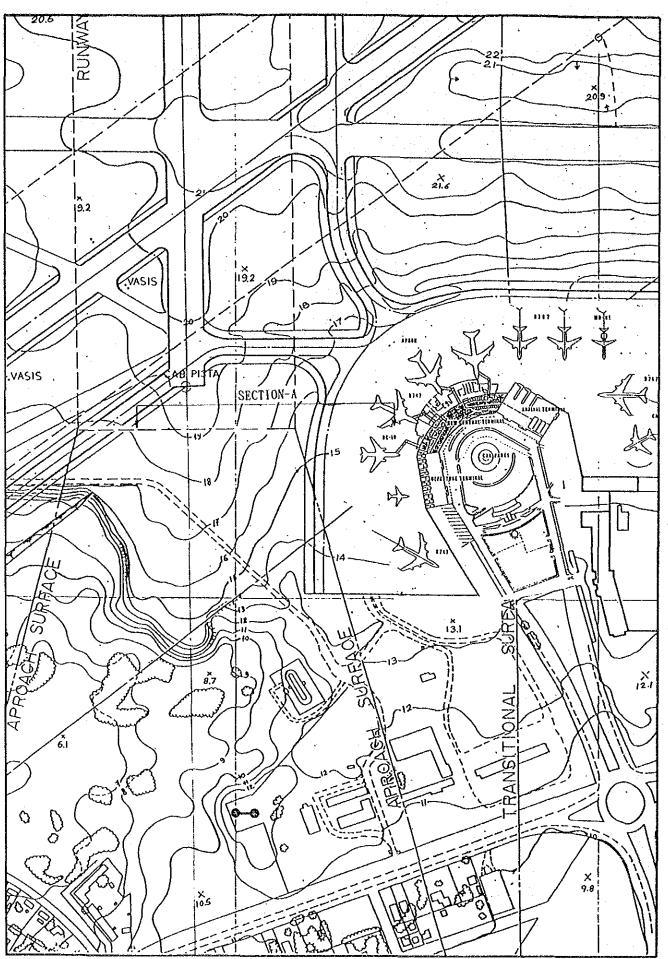
Cost of ILS equipment is also included in case of precision approach runway.

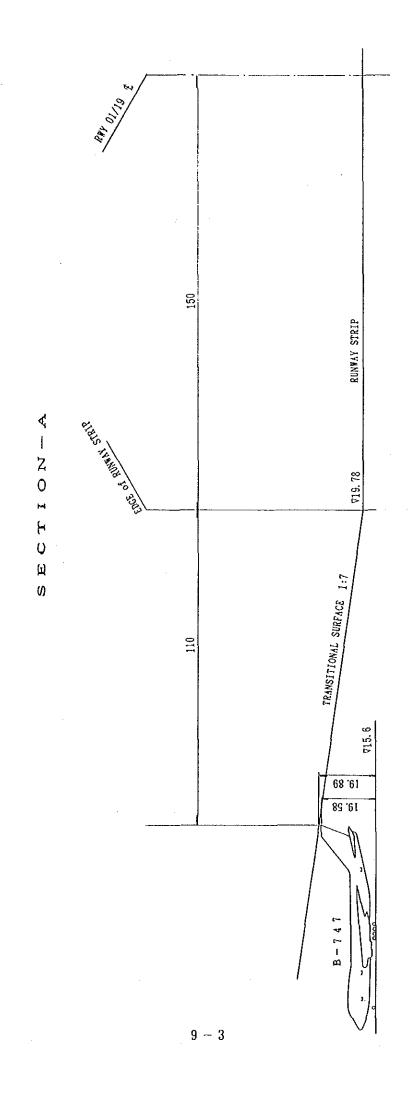
Attachment 9

OBSTACLE LIMITATION HEIGHT
AT WESTERN APRON

Attachment 9 Obstacle Limitation Height at Westen Apron.

In the long-term layout plan, some of the aircraft stands may cause a little problem for obstacle clearance surface. The transitional surface of RWY 01/19 runs close to the tail of some aircraft.


This attachment explains the relationship between the nearest B-747 stand and the transitional surface.


The following figures show this condition.

In Section A, the tail of B-747 is below the transitional surface, and this cause no problem.

At this stage, it is considered that this master plan will cause no significant problem with obstacle clearance.

In the preliminaly design, exact dimensions will be fixed according to this master plan.

Attachment 10

OFF PEAK CONSTRUCTION PRACTICES
FOR AIRFIELD PAVEMENTS
UTILIZING ASPHALTIC CONCRETE

Attachment 10

OFF PEAK CONSTRUCTION PRACTICES FOR AIRFIELD PAVEMENTS UTILIZING ASPHALTIC CONCRETE

INTERNATIONAL INDUSTRY WORKING GROUP

International Air Transport Association

Airport Associations Coordinating Council

International Coordinating Council of Aerospace Industries Associations

1.0 INTRODUCTION

Use of hot dense graded bituminous concrete for overlaying and repairing runways and taxiways during off-peak (in most cases nighttime) periods while reopening to operations (the next morning) has for many years been used for airports throughout the United States. As we conclude the first decade of deregulated environment with air traffic increasing and greater emphasis on capacity, more airports are considering the procedures of off-peak construction for runways and taxiways without loss of revenues, inconvenience to passengers or delays to the air traffic system.

In 1984, the Federal Aviation Administration (FAA) stated that the delays, as a result of runway construction, are of the order of \$135 million, half of which are in direct operating airplane costs. Late in 1985, the Industry Working Group (IWG) composed of representatives from the airline, airport and aircraft industries, designated a task force to provide a working paper to assist airports that are unfamiliar with procedures and practices in developing an off peak construction project. It is the objective of this paper will be able to provide the Airport Manager, Project Manager, Designer and Contractors with insight regarding methods and procedures to be used while employing a contractor for reconstruction of critical areas of the airport that must be available during the peak operating periods each day.

Each airport is unique and will have its own special set of problems. This paper is not a panacea, but will act as a guide to the procedures that are available and should be followed in order to maximize airfield operations and ensure quality construction during critical airfield projects.

In addition to this document, readers could advantageously acquaint themselves with the following publications:

FAA AC 150/5340-1E Marking of Paved Areas on Airports

FAA AC 150/5370-10 Standards for Specifying Construction of Airports

FAA AC 150/5370-2C Operational Safety on Airports During Construction

FAA AC 150/5300-9A Pre-Design, Pre-Bid and Pre-Construction Conferences for Airport Grant Projects

DOT/FAA/RD-80/121 Current Practice on Nighttime Pavement Construction Asphaltic Concrete

ICAO Annex 14

2.0 AIRPORT AUTHORITY'S ROLE

2.1 Project Coordination

Off-peak construction is, by its very nature, a highly visible project requiring close coordination with all elements of the airport during planning, design and virtually daily during construction. Once an airfield paving project has been identified by the Airport, it is important that the airport, users and FAA meet to discuss the manner in which construction is to be implemented. The following key personnel should be in attendance at all planning meetings. From the Airport Authority - the Project Manager, the Operations, Planning, Engineering, and Maintenance, Directors; from the Airlines/FBO's - local Station Managers, Airlines Technical Committee representatives, Pilot and Airline Associations; from FAA - representatives from the control tower, the Airport District Office and Airport Certification inspector. The agenda should include:

- 1. Determination of working hours. Since time is of the essence in off-peak construction, the contractor should be given as much time as possible to overlay the pavement each work period. A minimum period of 8-1/2 hours is recommended. Scheduling of work should be predicated on a time period that will displace the least amount of scheduled flights. The selection of a specific time period should be developed and coordinated with airline and other representatives during the initial planning meetings. Early identification of the hours will allow the airlines to adjust future schedules, as needed, to meet construction demands. It is essential that the runway be opened and closed at the designated time without exception, as airline flight schedules, as well as the contractor's schedules will be predicated on the availability of the runway at the designated time.
- Identification of operational factors during construction and establishment of acceptable criteria including:
 - o Aircraft operations.
 - o Affected NAVAIDS and visual aids.
 - o Security requirements and truck haul routes.
 - o Inspection and requirements to open the area for operational
 - o Placement and removal of construction barricades.
 - o Temporary airfield pavement marking and signing.
 - o Anticipated days of the week that construction will take place.
 - Issuance of NOTAMS and advisories.

3. Lines of Communication and Coordination Elements

It is essential that the Project Manager be the only person to conduct coordination of the pavement project. The methods and lines of communication will be discussed for determining the availability of the runway to start each work period and the condition of the runway prior to opening it for operations.

- 4. Special aspects of construction including pavement transitions and other details as described herein.
- 5. Contingency plan in case of abnormal failure or an unexpected disaster.

2.2 Project Management

2.2.1 Project Manager

It is essential that the Airport Authority selects a qualified Project Manager to oversee all phases of the project, from planning through final inspection of the completed work. This individual should be experienced in design and management of airfield pavement construction projects and be familiar with the operation of the Airport. The Project Manager should be the final authority on all technical aspects of the project and be responsible for its coordination with Airport Operations. contact with any element of the Airport Authority should be made only by the Project Manager so as to ensure continuity and proper coordination with all elements οÉ airfield operations. Responsibilities should include:

I. Planning and Design

- a. Establishment of clear and concise lines of communications.
- b. Participation as a member of the Design Engineer's selection team.
- c. Coordination of project design to meet applicable budget constraints.
- d. Coordination of airport and airlines with regards to design review, including designated working hours, aircraft operational requirements, technical review and establishment of procedures for coordinating all work.
- e. Chairmanship of all meetings pertaining to the project.

II. Construction

- a. Complete management of construction with adequate number of inspectors to observe and document work by the contractor.
- b. Checking with the weather bureau, airport operations and air traffic control prior to starting construction and confiring with the contractor's Superintendent to verify if weather and air traffic conditions will allow work to proceed as scheduled.
- c. Conferring with the contractor's Project Superintendent daily and agreeing on how much work to attempt, to ensure the opening of the runway promptly at the specified time each morning. This is especially applicable in areas where pavement repair and replacement are to take place.
- d. Conducting an inspection with airport operations of the work area before opening it to aircraft traffic to ensure that all pavement surfaces have been swept clean, transitions are properly constructed and marking is available for aircraft to operate safely.

2.2.2 Resident Engineer

The designation of a Resident Engineer, preferably a civil engineer, will be of great benefit to the project, and of great assistance to the Project Manager. Duties of the Resident Engineer should include:

- a. Preparation of documentation of all quantities constructed during each work period.
- b. Ensuring all tests are performed and results obtained from each work period.
- c. Scheduling of inspection to occur each work period.
- d. Observing contract specification compliance and reporting of any discrepancies to the Project Manager and the Contractor.
- e. Maintain a construction diary.

2.3 Testing Requirements

There is no requirement for additional tests for off-peak construction versus conventional construction. The only difference with off-peak

construction is that it requires acceptance testing to be performed at the completion of each work period and prior to opening to operations and results reviewed before beginning work again. These procedures normally will require additional personnel to ensure that tests are performed correctly and on time.

2.4 Inspection Requirements

One of the most important aspects of successful completion of any kind of paving project is the amount and quality of inspection performed. Since the Airport accepts beneficial occupancy each time the runway is open to traffic, acceptance testing must take place each work period.

In addition to the Project Manager and Resident Engineer, the following personnel are recommended as a minimum to observe compliance with specifications:

- o Asphalt Plant Inspector. A Plant Inspector with a helper whose primary duty it will be to perform quality control tests, including aggregate gradation, hot bin samples and Marshall tests.
- Paving Inspectors. There should be two Paving Inspectors with each paving machine. Their duties should include collection of delivery tickets, checking temperatures of delivered material, inspection of grade control methods, and inspection of asphalt lay down techniques and joint construction smoothness.
- o Compaction Inspector. The Compaction Inspector should be responsible for observing proper sequencing of rollers and to work with a field density meter to provide the contractor with optimum compaction information.
- Survey Crew. Finished grade information from each work period is essential to ensuring a quality job. An independent registered surveyor and crew should take cross-sections of the completed pavement at least every 25-foot intervals, transversely and longitudinally, and report the results to the Project Manager at the completion of each work period.
- o <u>Pavement Repair Inspector</u>. Shall be responsible for inspection of all pavement repairs and surface preparation prior to paving.
- Electrical Inspector. Ensures compliance with specifications.

3.0 DESIGN CONSIDERATIONS

Plans and specifications for pavement repair and overlay during off-peak periods should be presented in such detail as to allow ready determination of the limits of pavement repair, finish grades and depths of overlay. Plans and specifications are to be used for each work period by the contractor and inspection personnel, and should be clear and precise in every detail.

3.1 Pavement Survey

A complete system of bench marks should be set on the side of the runway or taxiway to permit a ready reference during cross-sectioning operations. The bench marks should be set at approximately 400-foot intervals. Pavement cross-sectioning should be performed on 25-foot intervals longitudinally, and 12-1/2-foot intervals transversely. Extreme care should be exercised in level operations, since the elevations are to be used in determining the depth of asphalt overlay. The designer should not consider utilizing grade information from previous as-built drawings nor should he consider using surveys that were run during the winter months, as it has been shown that elevations can vary from one season to the next. This is especially critical for single lift asphalt overlays.

After finish grades and transverse slope of the runway are determined, a tabulation of grades should be included in the plans for the contractor to use in bidding the project and for establishment of erected stringline. The tabulation of grades should include a column showing existing runway elevation, a column showing finish overlay grade, and a column showing depth of overlay. Grades should be shown longitudinally every 25 feet and transversely every 12-1/2 feet. This item is considered essential in the preparation of plans for contracting off-peak construction.

3.2 Special Details

Details pertaining to the following items should be included in the plans:

3.2.1 Transitions

At the end of each hot mix asphalt concrete overlay work period, it will be necessary that a ramp be constructed to provide a transition from the completion of a particular course of overlay to tie-in to the existing pavement. In multiple lift overlays, these transitions should be no closer than 500 feet to one another. As far as possible, overlay should proceed from one end of the runway toward the other end in the same direction as predominant aircraft operations so that most aircraft encounter a downward ramp slope. The construction of this transition is one of the most important features in the work period. A ramp that is too steep could cause possible structural damage to the operating aircraft or malfunction of the aircraft's instruments. A ramp that is too long may result in a raveling of the pavement, and

foreign object damage to aircraft engines, as well as taking excessive time to construct. The length of all longitudinal ramp slopes should be 10 feet for each inch of depth of compacted overlay. If required, assuming the full runway width cannot be paved, then five feet of ramp slope in the transverse direction for each inch of overlay is acceptable. The only exception to construction of a ramp is when the depth of overlay is one and one-half inch or less.

A transition ramp may be constructed in two ways, depending upon the type of equipment that is available. The most efficient way is to utilize a cold planing machine to heel-cut the pavement at the beginning and at the end of the work period overlay (Refer to Figures 1 and 2). If cold planing equipment is not available, then a transition ramp should be constructed as shown in Figure 3. In no case should a bond-breaking layer be placed under the transition ramp for easy removal the next work period. Experience has shown that this bond-breaking layer almost always comes loose causing subsequent breaking-up of the pavement under aircraft operations.

3.2.2 In-Pavement Lighting

Details depicting the removal and re-installation of in-pavement lighting are to be included on the plans where applicable. The details should depict the removal of the light fixture and extension ring, placement of a target plate over the light base, filling the hole with hot mix dense graded asphalt until overlay operations are complete, accurate survey location information, core drilling with a 4-inch core to locate the center of the target plate, and final coring with an appropriate sized core machine. The light and new extension ring can then be installed to the proper elevation.

3.2.3 Runway Markings

During the course of off-peak construction of a runway overlay, it has been found acceptable if properly NOTAM'd to mark only centerline stripes and numbers on the new pavement until the final asphalt lift has been completed and final striping can then be performed. In some cases where cold planing of the surface or multiple lift overlays are used, as many as three consecutive centerline stripes may be omitted to enhance the bond between layers.

NOTE: In coordinating the review of this paper with airports outside the United States, it was found that the slope of the transition ramp varies with a number of countries. Included as Exhibit 1 and 2 are recommendations from Boeing Commercial Airplane Company depicting runway roughness criteria as a guide for determining the length (longitudinally) for transition ramps. This is especially critical where overlay asphalt thicknesses are over four inches, a practice not normally used in the United States.

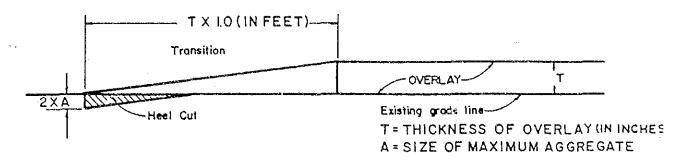


FIGURE I

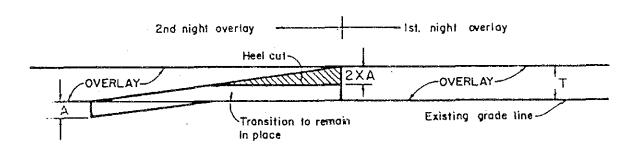


FIGURE 2

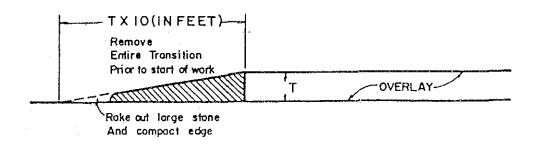
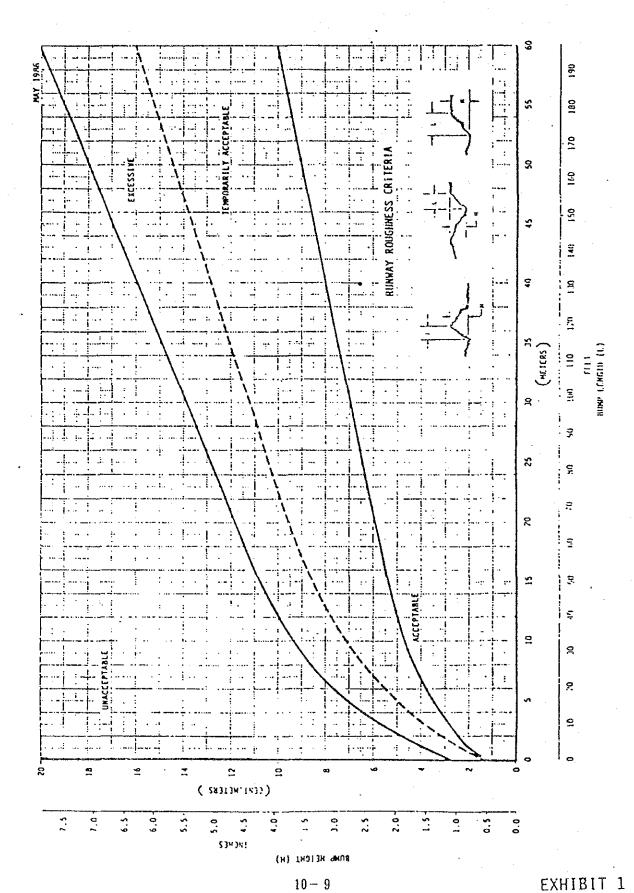



FIGURE 3

ACCEPTABLE RUNWAY ROUGINESS LIMITS (REFERENCE EXHIBIT 1)

ACCEPTABLE (CLASSIFICATION I)

ANY ROUGHNESS IN THIS AREA OF FIGURE I IS ENTIRELY ACCEPTABLE; GENERALLY HOST NEW CONSTRUCTION FALLS INTO THE MIDDLE OF THIS REGIME ON THE CHART,

O TEMPORARILY ACCEPTABLE (CLASSIFICATION 11)

DURING CONSTRUCTION OR REPAIR, THE DASHED LINE CONSTITUTES THE UPPER LIMIT OF ACCEPTABLE GRADIENTS THAT CAN BE USED FOR THOSE DISCRETE SECTIONS OF THE RUNWAY OR FAXIMAY THAT ARE UNDER CONSTRUCTION.

o EXCESSIVE (CLASSIFICATION 111)

ANY BUMP IN THE EXCESSIVE AREA OF THE CHART IS CAUSE FOR THE RUNWAY TO REQUIRE IMMEDIATE REPAIR, SINCE THESE BUMPS INDUCE AIRCRAFT STRUCTURAL FATIGUE.

O UNACCEPTABLE (CLASSIFICATION IV)

BUMP ABOVE THIS LINE IS CAUSE ENOUGH FOR THE RUNWAY TO BE CLOSED TO HIGH SPEED THE UPPER LINE DEFINES OUR AUSOLUTE UPPER LIMIT FOR AIR CARRIER OPERATIONS. TRAFFIC IN THE SECTION OF THE RUNWAY THAT HAS THE BUMP.

3.3 Specifications

In addition to the typical specifications required on any pavement project, the following items should be included:

3.3.1 Stand-By Equipment

The contract should require stand-by equipment at the construction site for all work performed during off-peak construction. The type and amount of stand-by equipment is that which is necessary for completion of the work period should any piece of equipment break down, eg., paving machine, rollers, milling machine, tack truck, etc. Provision should be made for a standby asphalt production plant or sufficient storage bins to provide enough material to reopen the runway should the primary plant break down. Standby equipment may be used for construction to improve productivity, but the contractor should be required to properly repair or replace broken equipment before being allowed to proceed with the next work period. Stand-by equipment should be listed on the daily equipment log as usually required by the contract's specifications.

3.3.2 Obstruction Lighting and Barricades

The contractor will be required to have on hand ample obstruction lighting and barricades to block off any intersecting taxiways or runways and to delineate haul routes to the work site.

Details of lighting and barricades to be used must be documented in drawings as well as the specifications applicable to the work.

3.3.3 Construction Lighting

Adequate temporary construction lighting is another important factor in obtaining quality asphalt overlay during nighttime construction. It is recommended that a minimum of 10 foot candles of illumination be provided in the work area. Highly maneuverable light plants with 1,000 watt metal halide flood lights mounted as high as aircraft, airspace and practicality will allow, should be positioned in sufficient amounts to provide the most natural color illumination and contrast with a minimum of shadows. In addition, all paving machines, rollers, distributor trucks and other equipment, except haul trucks, should be equipped with artificial lumination to safely light-up the area immediately surrounding their work areas. In addition, the Project Manager should strictly enforce lighting requirements as sufficient light is a Pay items major factor in constructing satisfactory overlays. should be established in the contract to allow the contractor to provide temporary lights on a per unit basis.

3.3.4 Special Pay Items

In order to maintain the maximum flexibility in the scheduling of the work, and to avoid unnecessarily inflated prices, special bid items pertaining to lost time may be incorporated in the specifications. These bid items would include suspension time, stand-by time and down time. Suspension time is the suspension of the entire work period with notice of this occurring at least two hours prior to the scheduled start time. Stand-by time occurs when a contractor's forces are mobilized for work and waiting to start. This condition would last for a maximum of two hours after the scheduled start time. At that time a condition called down time would occur, which is the period between the end of the stand-by time and normal quitting time. By having these delay times defined as pay items, the contractor will not have to include compensation in other bid items to cover these delays.

3.3.5 Bonus/Penalty Clauses

As has been stressed throughout this document, it is imperative that the runway be opened on time - following completion of each day's work. One way to highlight this to the contractor is with the use of a Bonus/Penalty Clause. It should for the most part be in proportion to how much revenue is lost by the users when the pavement is not usable. Scheduled airlines and the air traffic control system usually have aircraft en route to coincide with the opening. If this opening is delayed, diversions and/or cancellations costing thousands of dollars will be incurred. Limits to Bonus/Penalty or Liquidated Damage Clauses may vary by jurisdiction but some sort of motivating pressure must be put on the contractor to open on time.

4.0 RECOMMENDED CONSTRUCTION PRACTICES

4.1 Pre-Construction Conference

A pre-construction conference convened and conducted by the Project Manager should be used to discuss various items, including operational safety, testing, quality control, security, safety, labor requirements and environmental factors. At this meeting, all parties affected by construction should assist in a better understanding of potential problems and possible solutions. In addition to the standard checklist of items to discuss at the meeting (Ref: Advisory Circular 150/5300-9A, dated May 1, 1985), the following items are added for emphasis:

4.1.1 Project Submittals

Prior to commencing work on the project, the contractor should be required to file the following with the Project Manager for approval:

- a. A detailed progress schedule showing the proposed schedule of work in areas to be constructed each period.
- b. A complete list of equipment and personnel to be used, including stand-by equipment required by the specifications.
- c. Evidence that the central hot mix asphalt plant(s) meet the requirements of the specifications.
- d. Evidence that the amount of hot mix asphaltic concrete that the contractor proposes to place each work period can be supplied to the job in the time required.
- e. Experience record of the project's Superintendent that the contractor proposes to place in charge of the job. The experience record should list experience on hot mix asphaltic concrete overlays, including any nighttime or off-peak construction.

4.1.2 Inspection and Testing

It should be emphasized to the contractor that acceptance testing will take place each night, and that work will not proceed unless all tests have been recorded and approved. The daily inspection reports should be made by the inspection team and testing lab. Reports should include location and description of work, results of inspection and comments on the specifications. Items considered to be crucial are Marshall test results, in-place density, pavement smoothness and finished grade elevation.

4.1.3 Construction Progress Meetings

A daily progress meeting between the Project Manager and the contractor's project Superintendent should be held to discuss work requirements for the next work period and to review tests results from the previous work period. In addition, there should be a weekly scheduled progress meeting in which elements of the Airport and the local user committee would be invited to attend. Discussions will include scheduling of work for the up-coming week, any new problems, and other operational aspects, as required. Additionally, the Project Manager and the contractor's Superintendent should agree on the amount of quantities placed to date.

4.1.4 Weather

In addition to the requirements of the contract specifications, the Contractor, Project Manager and Airport Operations should establish procedures for determining weather conditions under which work will not begin as scheduled.

4.1.5 Communication

The contractor should be made aware that all communication with the control tower or any other element of the Airport should be made through the Project Manager or his designated representative. This is important as the number of people having contact with elements of the Airport should be limited in order to prevent possible misunderstandings or conflicting information. The Project Manager should have direct radio contact with Airport operations at all times. All requests for closing and opening the runway should be made only by the Project Manager.

.4.1.6 Security During Construction

In addition to the security requirements of the Airport, all personnel and suppliers should be given a drawing showing haul routes, restricted areas and any other details pertinent to the overlay operation. The drawing should contain a note which states: "ANYONE FOUND IN RESTRICTED AREAS WILL BE PROMPTLY AND PERMANENTLY REMOVED FROM THE JOB."

4.1.7 Assembling of Equipment for Nighttime or Off-Peak Overlay Operations

After checking with the weather bureau and airport operations, and the contractor and the Project Manager have determined that the work period can proceed as scheduled. The contractor should be sure that all equipment, including stand-by equipment, is in

operating condition and ready to go. The contractor then assembles all personnel and equipment as close as possible to the work area. Equipment and personnel should be organized so that when notice is given, the contractor's personnel can proceed immediately to the work area. All hot mix plants should be operating and ready to proceed with production of the hot mix asphaltic concrete.

4.2 Construction Techniques

4.2.1 Test Sections

Prior to beginning any work on the project, it is strongly recommended that a test strip with a minimum length of 150 feet, and a nominal thickness of 2 inches, complete with transition ramps, must be placed to provide a trial run for all aspects of the paving operation, communications and acceptance testing.

4.2.2 Limits of Overlay Operations

It is essential that the full width of the overlay be placed each work period. The length of each period's construction should be the maximum possible to limit the number of transverse joints for the entire job. It is recommended that overlay operation begin at the end of the runway and proceed in the primary direction of aircraft operations. In the case of multiple lift overlay operations, it is recommended that the minimum distance between transition ramps be 500 feet.

4.2.3 Asphalt Placing

It is recommended that the contractor should operate two or more paving spreaders in echelon. Each paver should start on the centerline working their way outboard independently, so that as much as possible of the center portion of the runway is overlaid first in case of equipment or weather problems force early suspension of the work. The contractor should hold raking to very minimum and casting of raked material on the mat should be prohibited. If the runway is considered sufficiently smooth, the contractor should be permitted to place hot mix asphalt concrete by use of a traveling stringline. In no circumstances should slope control device be used, since the cumulative error in multiple lane paving will violate the grade control criteria. If in the event that erected stringline is required, then it must be utilized on both sides of the paver for the initial pass followed by a joint matcher on the newly overlaid side of the paver and an erected stringline or traveling stringline on the opposite side. Asphalt placing can continue up to an hour before opening of the runway for traffic, depending upon the capabilities of the inspectors and survey crew to get acceptance testing, striping, and cleaning of the area completed prior to the first aircraft operation, and the pavement surface temperature is below 150°F.

4.2.4 Transitions, In Pavement Lighting, and R/W Marking

See Section 3.2 Special Details.

4.2.5 Work Area Clean-Up

Construction debris must be totally removed from the work area prior to it becoming available for aircraft operations. suction/brush type sweepers should be in operation during the majority of the work period.

The Contractor's Superintendent should accompany the Project Manager and Airport Operations during inspection of the work area and have the necessary manpower and equipment nearby to perform any additional cleanup that may be identified during the inspection.