第 7 章

環境対策と評価

第7章 環境対策と評価。

	頁	
7.1 要 。	7 -	1
7.2 環境の現状と排出基準	7 -	3
7.2.1 環境の現状	7 -	3
7.2.2 環境基準と排出基準	7	5
7.3 環境対策設備	7 —	9
7.3.1 環境対策の基本的考え方	7 -	9
7.3.2 石炭火力と環境保全	7 –	9
7.3.3 環境対策の概要	7 —	10
7.3.4 集 じ ん 器	7 —	15
7.3.5 煙突髙さ	7 -	20
7.3.6 排水処理装置	7 -	22
7.3.7 そ の 他	7 -	25
7.4 環境影響評価	7 –	26
7.4.1 予測の手法	7 -	26
7.4.2 予測結果と評価	7 -	32
7.5 環境モニタリング	7 —	44

Lite of Figures

図 7.3-1	石炭火力発電所ブロックフロー
図 7.3-2	火力発電所環境対策のしくみ
Fig 7.3-3	Efficiency Curve of Electrostatic Precipitator
Fig 7.3-4	Gas Temperature and Electical Resistivity of Fly Ash
図 7.3-5	ESP集じん面積の算定手法
図 7.3-6	SOx着地濃度と風速、煙突実高さ(セミララ炭大気安定度中立)
図 7.3-7	排水処理装置フロー図
図 7.3-8	発電所の排水処理フローシート
図 7.4-1	障壁による減衰量
Fig 7.4-2	Ground Level Concentration Curve (Houry, Average)
Fig 7.4-3	Envelope Destribution of Thermal Effluent
図 7.4-4	音源と障壁の位置
図 7.4-5	等音線図(夜間)
図 7.4-6	等音線図 (昼間)
Fig 7.5-1	Monitoring Positions for Air Pollution

List of Tables

表 7.1-1	計算結果
表 7.2-1	大気に係わる環境基準
表 7.2-2	騒音に係わる環境基準
Table 7.2-3	Environmental Standard of Water Quality (Sea & River Mouth)
表 7.2-4	大気に係わる排出基準
Table 7.2-5	Effluent Regulations
表 7.3-1	石炭、油、LNGだきボイラ排ガスの性状比較
表 7.3-2	排水処理装置基準設計
表 7.4-1	計算式の定数

表 7.4-2 煙源の諸元

表 7.4-3 最大着地濃度及び最大着地濃度距離

表 7.4-4 計算結果

表 7.5-1 モニタリング項目

第7章 環境対策と評価

7.1 要 旨

本石炭火力発電計画調査では、既に第1ステージの調査において3候補地点より Masinloc地点が選定されている。したがって本章ではMasinloc地点に300MW × 2基の石炭火力発電所を建設した場合の、環境問題を種々の角度から検討することにした。

フィリピン共和国は環境保全に関する法規制が整備されており、JICA調査団は、この 法規制を参考として環境評価とその対策を検討した。

① 大気汚染による影響

発電所には、高性能の電気集塵器(ESP)(集塵効率99%以上)を設置し、また排ガスの拡散を大きくし、汚染物質の着地濃度を下げるため 120mの高煙突を設置する。従って、ボサンケ・サットンの式による短期拡散予測結果によると最大着地濃度地点においても、環境基準を大きく下廻る。また、最大濃度地点は1台運転時において発電所より12.5km、2台運転時において17.1kmであり、周辺地域への悪影響はない。

最大着地濃度(大気安定度 中立、5 ~/s)

e e e e e e e e e e e e e e e e e e e	環境基準	1 台運転時	2台運転時
SO x	0.30 ppm (H)	0.024 ppm	0.028 ppm (H)
	0.14 ppm (D)	0.014 ppm	0.016 ppm (D)
NO x	0.10 ppm (H)	0.015 ppm	0.017 ppm (H)
Dust	0.25 mg/scm (H)	0.004 mg/scm	0.005 mg/scm (H)
	0.18 mg/scm (D)	0.002 mg/scm	0.003 mg/scm (D)

備考 (H): Hourly value

(D): Daily average value

また粉塵発生の防止に関しては貯炭場、揚炭設備には散水装置、石炭コンベアには 防塵用カバーを設置する。又灰捨場にはスプリンクラーを設置する他、灰捨てが終っ た所から被覆土をする等粉塵の飛散を防止する対策をすることにより、周辺地域への 悪影響はない。

② 温排水による影響

温排水の拡散予測計算は電子計算機を用いたシュミレーション計算によりアメリカの環境保護局(EPA) で開発された "Mostafa A, Shirazi and Lorin R. Davis の式"を使用した。計算は1、2号運転時の放流量25m'/sで行った。

結果の概要は以下の通りである。

表7:1-1年時,第四緒中果以中国的第一部的表現方面

	+b -1e	₩ J	1= 3X	to exercise	1℃上昇は	戟	9	℃上昇は	戉
ケース	放 流量 (m')	取 水 水 温 (℃)	恒 流 流 速 (m/s)	到達距離 沿岸 方向	推 (km) 神 合 方 向	拡 散 面 積 (kml)	到達距離 沿 岸 方 向	推 (km) 神 合 方 向	拡散 面積 (kml)
1	,		0.0	0. 274	1. 704	0. 6741	0. 030		0. 0134
2	25	31	0. 05	0. 840	1. 266	0. 4029	0. 064	0. 236	0. 0114
3			0. 15	1. 014	0. 465	0. 1387	0. 141	0. 177	0. 0083

これによると 1 \circ 上昇域は沖合方向の到達距離で 1.7km、拡散面積は0.67km、3 \circ 上昇域は各々 0.3km、0.01kmであった。以上の計算から次の通り温排水による周辺環境への悪影響はない。

- ・温排水は海の表層部にうすく拡散するため、海底に生息する生物には影響を与えない。
- ・水深の浅い沿岸部の影響については本放水口が沿岸部から約 300m離れている事 および恒流15cm/sを考慮した計算ケースにおいても、温排水は沿岸部に接近しな いため、生物には影響を与えない。
- ・温排水が取水口に与える影響については、取・放水口間の距離を約 800m確保している事、および深層取水方式を採用しているため再循環の影響はない。

7.2 環境の現状と排出基準

- 7.2.1 環境の現状

Masinloc地点における環境の現状は以下の通りである。

(1) 大気質

発電所計画地点から半径10km以内には、大気汚染を生ずるような産業活動はなく、 自動車等の走行による排気ガスの影響、および農作物収穫後の焼却作業、住居から 発生する煙の影響はあるものの、大気質環境濃度は非常に低いレベルにあると想定 される。

(2) 水 質

淡水の水源としてはサイト東側のLawis river 及びサイト南側のMasinloc river が考えられるが、Lawis river の上流にはクロムを採鉱しているCoto鉱山が稼働中であり、水質汚染が懸念された。この為水質分析を行ったが全Crは定量限界値 0.02ppm 以下であった。しかしLawis river の川石に付着した泥のCr含有量は0.65%であり、クロムが下流に漂着していることを示している。

(3) 気象

フィリピン諸島はフィリピンの気候類型では4地域に区分され、当地域はI型に属し、乾期と雨期の区別が明らかな地域である。

当地点の風向、風速を発電所排煙の大気拡散との関連で述べると次のようになる。 2月から3月にかけては北西の風が卓越し、排煙はOyon湾に面した各市町村の方 向へ拡散することになる。

またそれ以外の月はOyon湾または南シナ海の方向に拡散されることになる。

風速が弱いときは、不安定な大気安定度の出現が予想され、乾季には特に顕著になると考えられる。

(4) 潮 流

本地点は外海に面しているが、潮流の流速は小さく1ノット程度である。また、 Oyon湾の潮流のデータは少ない。

(5) 地 形

Siteの北西側は、標高 5 mから25mのなだらかな丘陵地で、海岸線との間に水田がある。Lawis river 側は広い平地である。海域は遠浅で珊瑚礁が広く発達している。

サイト南側には、Oyon湾が隣接しており、南東6kmには居住者の比較的多い Masinloc町がある。また東側約15kmにはZambalesの尾根(標髙 1,000m以下)がそびえている。

(6) 人口と産業活動

発電所計画地点近傍の住民の職業は、主に農業と漁業である。また海岸線を南北に走る国道に面して集落がある。しかし半径30km以内には大気汚染源となる主要な煙源はない。

(7) サイト周辺の土地利用

発電所用地として取得が必要な地域には、水田とココヤシの果樹園があり、海浜には少数の漁師が住んでいる。

7.2.2 環境基準と排出基準

(1) 環境基準

大気、騒音及び水質の環境基準を、表7.2-1~3に示す。

なお、本地点に適用される騒音の地域類型は未定であり、水質の海域類型はSC が予想される。

表7.2-1 大気に係わる環境基準

物質	二酸化硫黄 SO ₂	二酸化窒素	一酸化炭素 CO	浮遊粒子状 物 質 SPM	光 化 学 オキシダント OX
24時間値	369µg/scm 0,14 ppm	:		180 µg/scm	
8時間値			10mg/scm 9 ppm		
1時間値	850µg/scm 0.30 ppm	190 µg/scm 0.10 ppm	35mg/scm 30 ppm	250 µ g/scm	120µg/scm 0.06 ppm

Remark:scm stands for standard cubic meter

表7.2-2 騒音に係わる環境基準

_				
	:	昼 間	朝・タ	夜 間
AA	静穏地域	5 () dB	4 5 dB	4 () dB
А	住居地域	5 5 dB	5 0 dB	4 5 dB
В	商業地域	6 5 dB	6 O dB	5 5 dB
С	軽工業地域	7 O dB	6 5 dB	6 O dB
D	重工業地域	7 5 dB	7 0 dB	6 5 dB
1	BH 157 八	ANO DMC	AM 5 ~ AM 9	DM10 - AM 5
時	間区分	AM 9 ∼PM 6	PM 6 ∼PM10	PM10~AM 5

Table 7,2-3 Environmental Standard of Water Quality (Sea & River Mouth)

	T			
	Type		SC	
Quality Parameter		14 15		منتشه
Temperature °C			3 (2)	· :
Dissolved Oxygen			5	e Santanar
5-day BOD at 20 °C			20	19/3 1 1
PH MPH (100m)			6, 5~8, 5	400
Coliform, MPN/100ml Phenolic Substances /mg/1	•		5000 0. 02	
Phenoric Substances /mg/			U, UZ	
Trace Elements				
Arsenic	· · · · · · · · · · · · · · · · · · ·		0, 05	4
Barium	:	10.00	0.05	
Cadmium			0.01	
Chromium			0.05	
Copper			0. 02	
Cyanide			0.05	 55
Lead			0.05	
Mercury			0.002	
Selenium			0, 05	٠
Silver			0. 05	
Organic Chemicals				
Synthetic Detergents (MBAS)	* *		0. 5	
				<u> </u>
Oil and Grease			5	
Persistent Pesticides			$(\mu g/1)$	
Aldrin			0.01	1111
DDT			0, 02	
Dieldrin			0.005	
Chlordane			0.04	
Endrin			0.002	
Heptachlor			0. 01	
Lindane	e e e		0. 02	
Taxaphane			0.01	
Methoxychlor			0.005	
2, 4-0			2. 0	٠
Nutrients			(b)	

Remarks: 1 (2) Rise in temperature.

(b) Shall not be present in concentrations to cause deliterious or abnormal biotic growth.

3. All units are in mg/1 except those indicated.

Water usage and classification: Classifications Best Usage

Class SC: For the propagation and growth of fish and other aquatic resources.

^{2.} All values are maximum permissible except for dissolved oxygen which is minimum permissible.

(2) 排出基準

大気、水質の排出基準を表7.2-4~5に示す。

表7.2-4 大気に係わる排出基準

٤.				
	物質	全硫黄酸化物	窒素酸化物	粒子状物質
	基準値	* 250mg/scm	2 g/scm (as NO ₂)	300mg/scm

Remarks

* Where limit cannot be met, control to be by stack height.

Table 7.2-5 Effluent Regulations

Quality Parameter	Type	Other	Coastal Waters (SC)
Color in platinum cobalt (unit		200 5, 5~9
Temperature in °C	t de la companya de l		40
Phenols			7
Suspended solids			200
BOD			250
Oil/Grease	1.24	refer	15
Detergents	,		10
Barium (Ba)		5
= · · · · · · · · · · · · · · · · · · ·	Cq)		0. 1
	Cu)		na tu <mark>l</mark> iku til stær
	Cr ⁺⁶⁾		0.1
•	Fe)		20
	Pb)		0. 5
· • · · · · · · · · · · · · · · · · · ·	Li)		
	Mn)		5
	Hg)		0, 002
	Mo) Ni)		0.5
• • • • • • • • • • • • • • • • • • • •	Se)		1
	Ag)		i
	Zn)		10
	As)		Ŏ. 5
Beryllium (Be)		1
	CI)		
	CN)		0. 5
• • • • • • • • • • • • • • • • •	F)		10
Polychlorinated Byphenyl (PCB)		0,003

Remarks

Maximum allowable levels in mg/l. "Coastal Water" means an open body of Water along the country' coastline starting from the shoreline (MLLW) and extending outward up to the 200-meters isobath or three-kilometer distance, whichever is farther.

7.3 環境対策設備

7.3.1 環境対策の基本的考え方

Masinloc地点に、石炭火力発電所建設を計画するに当たって、環境対策上、最も考慮しなければならない点は、

石炭火力発電所が、周辺地域の環境に悪影響を与えない事 極力将来に対する配慮を行うこと

である。

JICA調査団は、上記の基本的な考えを基に次の項目について検討を行った。

- (イ) 大気汚染による影響
- (ロ)温排水による影響
- (ハ) その他排水処理、灰捨場による影響

これらの項目を検討するため、JICA調査団は、Masinloc地点の周辺地域の自然環境、社会環境について調査した。

これらの調査結果に基づいて、Masinloc地点周辺に適したシステムを計画した。

7.3.2 石炭火力と環境保全

石炭火力発電所の環境問題としては、大気汚染(硫黄酸化物,窒素酸化物,ばいじん等)、水質汚濁(発電所排水、灰処理排水等)、騒音、粉じん、石炭灰処理などがあげられる。

石炭火力に係る環境問題に対し、重油火力と比較してみると、特に異なるのは大気 汚染と石炭灰の処理である。

表7.3-1に示すように、石炭火力の排ガス性状は重油火力のそれと大巾に異なる。 未処理の排ガスでは、ばいじん濃度は 100倍以上も高く、SOx、NOx濃度も高い。ま た石炭の輸送、貯蔵に伴い炭じんが発生し、石油火力よりも高度な大気汚染防止対策 が要求される。

次に石炭中の灰分は他燃料に比べ極めて高く15~20%あり、石炭灰の処理の問題がある。

なお、これらの問題以外にも、貯炭場からの排水、発電所設備からの排水、貯炭場からの排水等の対策の必要があり、環境保全対策にはかなりの努力が必要である。

図7.3-1に日本で工業化が進んだ地域に建設される一般的な石炭火力発電のブロ

ックフローを、また図7.3-2に環境対策を示す。

7.3.3 環境対策の概要

本石炭火力発電所の環境対策設備の概要を以下に示す。

- ① 大気汚染対策
 - (a) 硫黄酸化物
 - ・石炭混炭設備(石炭の硫黄分を調整する)
 - ・高煙突と高吐出ガス速度 (120mの高さと30m/s の排出速度で着地濃度を低める)
 - (b) 窒素酸化物
 - ・高煙突と高吐出ガス速度(硫黄酸化物の項と同じ)
 - (c) ばいじん
 - ・電気集じん器(低温型, 140℃。集じん効率99%以上でばいじんを除去する)

一直,加州市大学、大学、广东东西、各种联合各种工作。

- ・高煙突と高吐出ガス速度(硫黄酸化物の項と同じ)
- ② 温排水対策
 - ・復水器冷却水出入口温度差8℃以下
- ③ 一般排水対策
 - ・排水処理装置(排出は凝集沈澱ろ過装置,油分離装置、PH調整装置により SS 200mg/1以下,油分15mg/1以下、PH 5.5~9に浄化される)
- - ・主要な騒音・振動発生機器は、発電所敷地境界線より遠くへ離れて設置し、主要な機器は屋内に収納する。
- ⑤ その他の対策
 - ・貯炭場、灰捨場からの粉じん飛散を防止する。
 - ・貯炭場、灰捨場の雨水は、一旦沈澱させてから排水する。

表 7.3-1 石炭・油・LNG だきボイラ排ガスの性状比較

炊	料種類	石 炭	重油	LNG	
鰲	高位発熱・量 (kcal/kg)	6000 ~ 7000	10 500	13 000	
料	灰 分(%)	15 ~ 20	0.1以下	0	
性状	硫黄分(%)	0.5~2.0	1~2	‡ 0	
	整素分(%)	1.5~2.0	0.1 ~ 0.3	0.01~0.05	
排	Eの出口ばいい ん量 (g/Nm³)	10~ 25	0.1~0.2	0	
かス 性状	AH出口 SOx (ppm)	400 ~ 1600	500 ~ 1000	‡ 0	
	Eco壯口 NOx (ppm)	400~ 600	200~300	150 ~250	

備寿 排力ス中 諸濃度は乾ガスベースである。

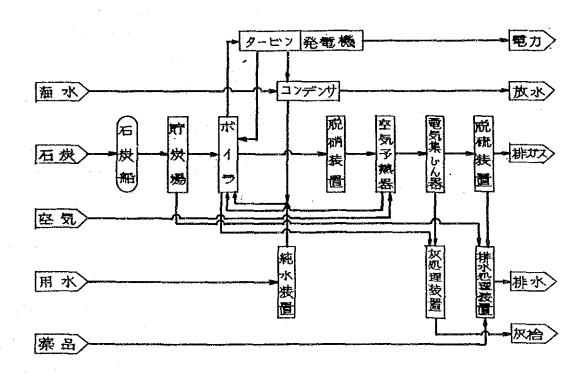
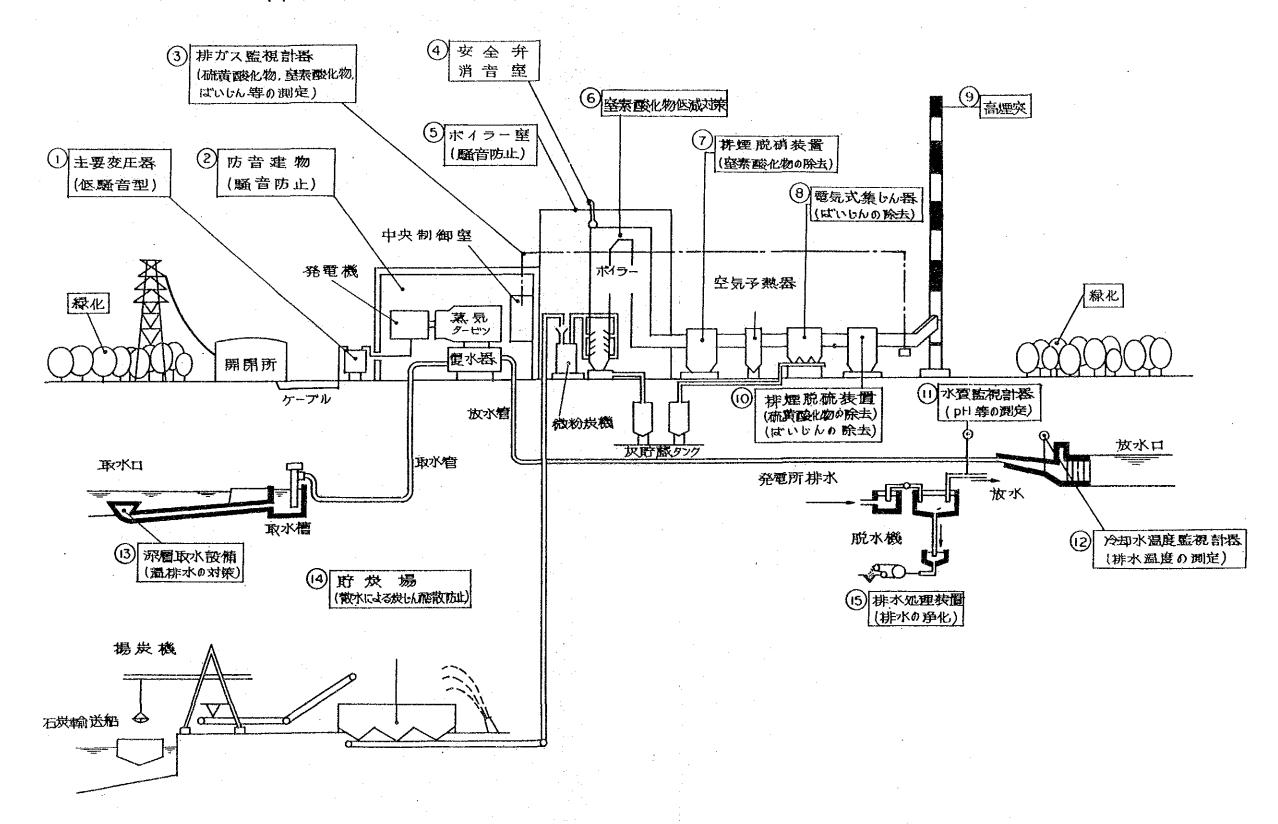



図 7.3-1 石 炭火力発電 所 ブロックフロー

図7.3-2 火力発電所環境対策のしくみ

7.3.4 集じん器

(1) 低温集じん器と高温集じん器

石炭が火炉内の高温雰囲気 (1200~1600℃) で燃焼すると、石炭中の炭素、水素等はほぼ完全に燃焼し、石炭灰と燃焼ガスが生成される。火炉内で生成した石炭灰は、一部、炉壁に付着したり、炉底に落下するが、大部分は燃焼ガスとともに煙道下流へと移行する。

一般に、微粉炭ボイラにおいて生成する灰は、その約10%程度が溶融して、クリンカホッパーに落下し、約10%程度が、やや粒子の大きいシンダーアッシュとして節炭器ホッパーおよび空気予熱器のホッパーに堆積する。そして残りの80%程度は粒子の小さいフライアッシュとなりボイラから排出される。このフライアッシュを捕集するため集じん器を設ける。

i) Type

フライアッシュの集じん装置は下記の3つが考えられる。 (Costの安い順)

(4) 機械式集じん器 (サイクロン式)

大きい粒子の灰が捕集されやすい。

排出濃度1.0g/m'N 以上

- (n) 電気式低温乾式集じん器 (Cold-ESP 120~150 ℃程度) 灰の電気抵抗が低い灰 (10 ~10 11 Ω - cm) の時採用。
 - (ハ) 電気式高温乾式集じん器 (Hot-ESP 300~400 ℃程度) 灰の電気抵抗が高い灰(10¹² Ω-cm以上) の時採用。
 - ii) Cold-ESPとHot-ESP の比較

Cold-ESPとHot-ESP の比較は、経済性と集じん性能から検討する。

(4) 経済性

Cold-ESPは、ボイラ空気予熱器の後流側 130℃程度の領域に設置するがHot-ESP は、ボイラ節炭器と、空気予熱器の間、 350℃程度のガスを引出し、集じん器で処理後、又空気予熱器に戻す方式である。

Hot-ESP の実ガス体積は、Cold-ESPに比して約 1.5倍 273+350 ≒ 1.5 273+130

となり、集じん器の寸法および、ガスダクト等で相当に大形、コスト高となる。

(ロ) 集じん性能

電気式乾式集じん器の性能は、灰の電気抵抗に大きく影響される。すなわち、 灰の電気抵抗が $10^{12}\Omega$ — cm以上となると、集じん極に於いて逆電離現象(バックコロナともいう)が発生し課電が不安定となり、集じん効率が低下する。

- 一般的な、灰の電気抵抗と集じん性能の関係をFig 7.3-3に示す。
- 一方、灰の電気抵抗は石炭中のS分および石炭灰中のアルカリ金属(Li、Na、K)とガス温度により、大きく変化する。

これらの関係をFig 7.3 — 4に示す。また、フライアッシュの化学組成も電気抵抗に関連し、Na₂O、SO₃、が多いと電気抵抗が低く、SiO₂、Al₂O₈、CaO₂、MgO が多いと電気抵抗が高くなる。

(ハ) 形式の選定

本発電所で使用する設計炭の性状から見て、ガス温度 140 \mathbb{C} 010^{10} $\sim 10^{11}$ Ω -cm 程度の電気抵抗がえられるものと推定される事から、経済性と併せ Cold-ESPを採用する。

尚、詳細設計に当たっては、石炭のサンプル分析等を行い、灰の性状を確認 する事がのぞましい。

Fig. 7.3-3 Efficiency Curve of Electrostatic Precipitator

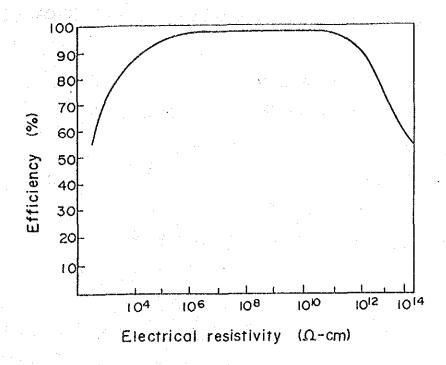
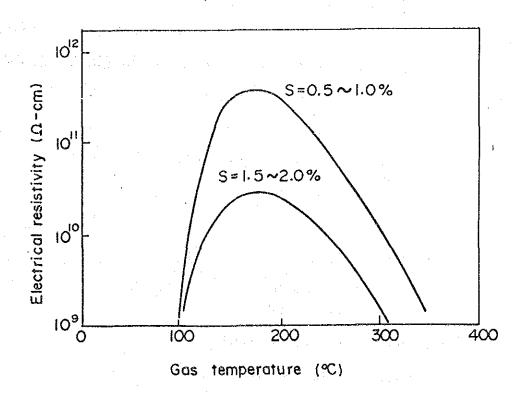



Fig. 7.3 - 4 Gas Temperature and Electrical Resistivity of Fly Ash

(2) 基本仕様の検討

i) 基本仕様

基本仕様の検討にあたっては、セミララ炭/レミントン炭の混炭比を50/50 をベースとし、灰分の多いセミララ炭又は集じん性の悪いレミントン炭の焚増も考慮した。

① タ イ プ : 乾式横型

② 基 数 : 2基/缶

③ 処理ガス量 : 約1,050 m'N/h・wet

④ 入口ガス温度 : 140 ℃

⑤ 集 じ ん 率 : 99.0%以上

⑥ 調 質 設 備 : 将来水注入による方法を考慮する。

(調質設備の要否)

調質設備としてSO₃ やNH₃ を注入する方法は諸外国において特に既設ESP の性能向上対策として、多く採用されている。しかし調質剤のハンドリングのわずらわしさや捕集灰の処理(NH₃を含んだダスト)等の二次的な問題が考えられることから新設火力用としては望ましくない。

これ等に代る方法として、煙道注水による調質はハンドリングが容易で二次的な 問題も少ないことから最適な方法と考えられる。しかし、煙道注水による性能向 上効果は炭種によって差があるため、発電所運転開始後の各炭種による集じん器 効率の実績を把握した上で検討することが望ましい。

ii) 最適SCA(Specific Collecting Area) の算定

石炭焚ポイラ用ESP の集じん率は次式で表される。

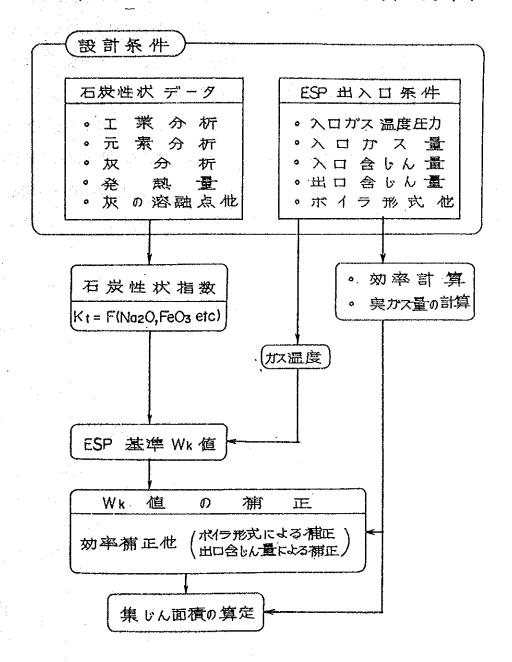
 $\eta = \{1-e^{-(Wk \cdot f)k}\} \times 100$

ここで、 η:集じん率 (%)

f:比集じん面積(SCA) (m'/m'/s)

f = <u>集じん面積 (m')</u> 実ガス量 (m'/s)

Wk:見掛けのダスト移動速度 (m/s)


k : 粒径分布により決まる定数

注) フライアッシュの場合, 0.5 を採用

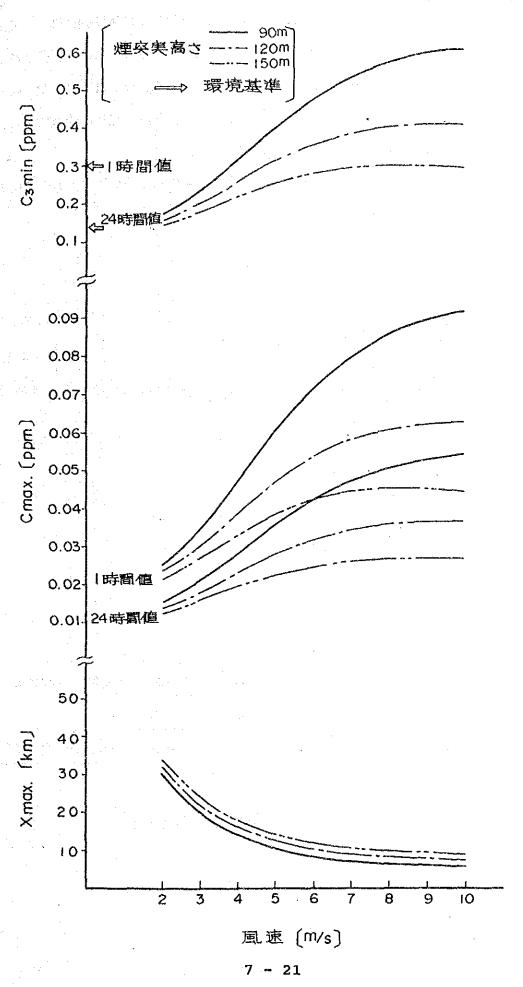
上式において各炭種の集じん性をあらわすダスト移動速度Wkは、各炭種の石炭・灰性状の他にポイラの運転条件(特にガス温度)により変わる。

従って、集じん器の基本的な寸法は、前述 i) の基本仕様と、石炭及び石炭灰の性状に則り、図7.3-5のSCA の算定手順を基に決定される。

図7.3-5 ESP集 bん面積の算定手法

7.3.5 煙突高さ

煙突は環境保全の観点より2缶集合型とし、その諸元は次の通りとする。


① 高さ 120m :排出ガスの濃度拡散を考慮して決定した。

② 口径 4m (頂部):排出ガスの吐出速度、量、温度より決定した。

煙突高さ及び口径の選定に当たっては、大気質の環境基準・排出基準、現在の大気 質環境濃度、排煙の性状、及び大気拡散場の気象条件の把握が必要である。

本地点では、現在の大気質環境濃度及び気象条件のデータが十分でない。従って図7.3-6の通り発電所2台運転時のSDx排出量について、セミララ炭とレミントン炭の混炭比を65/35とし、大気安定度を中立の条件としてボサンケ・サットン式を用い3分値、1時間値、24時間値を計算した。以上の計算、およびマシンロック地点周辺の環境の現状、ならびにカラカ発電所1、2号機の煙突高さも考慮して煙突高さを120 mに選定した。なお、大気安定度が不安定な場合は、中立の場合と比較して最大着地濃度地点(Xmax)は煙源に近づくが、最大着地濃度(Cmax)は小さくなる。

図73-6 SOx着地濃度と風速,煙突実高さ(紫光線 中血)

7.3.6 排水処理装置

石炭火力の各設備・装置から排出される排水は定常運転時に連続的に排出するものと設備の始動時、停止時あるいは定期点検・保守時に排出されるものに区分される。前者については水量・汚濁物濃度等は比較的よく管理され把握されているが、後者については非定常排出で多量、かつ濃度の高いものが排出され、操作の仕方により大巾に変動するので排出の実体を把握することが難しい。

図7.3-7に排水処理装置フロー図を、図7.3-8に一般的な石炭火力発電所の排水処理フローシート (排煙脱硫装置 無)を示す。

排水処理装置の基本設計を表7.3-2に示す。

図7.3-7 排水処理装置フロー図

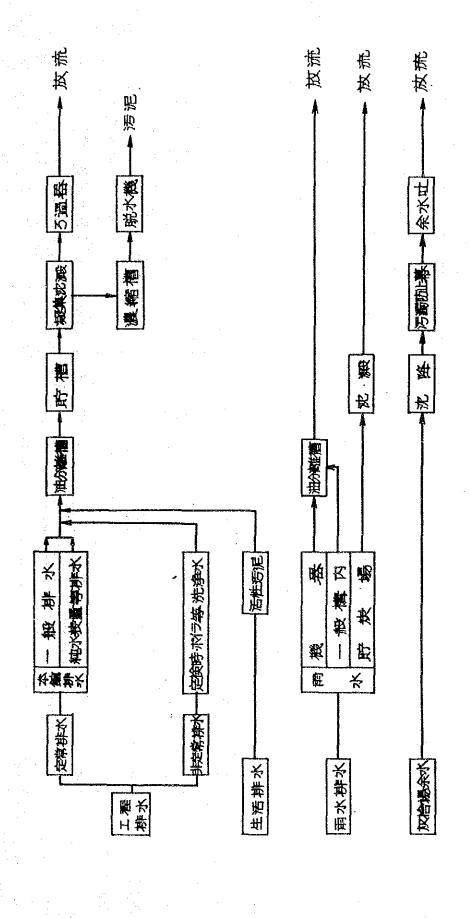


図7.3-8 発電所の排水処理フローシート

表7.3-2 排水処理装置基本設計

十 月 日	ほった						#校園 好流	i i						Carried States			
1	Ž.	:	净化槽	中和橋	MPI-CPI									一種			
1	H (<	七日, 七回	80 七日	100 七日	120 七日	1,200 七回		120 七/回	500 仁恒	120 七/回	800 七回	1,200 七回		500 七回	1,500 七回		:
	O i 1	mg/1	ינט	0	10	C		0	0	0	0	0		0	0	15	- 12
	Mn	mg/1	0.1		0.1	0.1		0.1	0.1	0.1	23	20		10	20	ഹ	5
運	Z.	mg/1	0.1	0.1	0.1	0.1		0.1	0.1	0.1	යි	 S		01	100		
¥	рт Ф	mg/l	0.1	ις.	1	H	-			₩	7,000	1,000		3,000	2 000	20	20
×	SS	mg/1	150	88	8	Ħ		-	2	2	25,000	2,000		5,000	5,000	230	200
##	. 000	mg/1	150	10	ഹ	0		2	100	100	20	(re-)) 	30,000	(Fe ²⁺)	[800]	[BOD] 250
	電気伝導度	ms∕cm	400	15,000	200	မ	-	10	25	25	7,000	5,000			50,000		
	丟	l	2	23	ω	တ		တ	o,	တ	'n	ردي د د د د د		တ	83	⁷ .	್ಟ್ರಿ
T I		(定点排水)	・ 七 五 出 本 は 本 領 神 が の 神 が の は は は は は は は は は は は は は	・水処理装置・水処理装置	·合油排水	・ポイラーブロー水	(非定常排水)	・復水器漏洩テスト排水	·洗缶排水	· 脱気器洗净排水	· ESP 洗净配寸	·AII洗净排水	・ボイラ化学統御	廃液	発命次	歌計值	排水基準

7.3.7 その他

- ① 粉じん飛散防止対策
- (4) 石炭受払い時の粉じん対策

粉じんが発生するおそれのある箇所は揚炭機、コンベアなどであるが、粉じん 防止対策として散水装置の設置、コンベアカバーの設置などの方策をとる。

- (n) 貯炭場からの粉じん飛散を防止するため散水する。
- (A) 灰捨場の粉じん対策 灰捨場からの粉じん飛散を防止するため、散水、覆土などを行う。

(2) 騒音・振動

騒音・振動防止対策

発電所にはポイラー、タービン、コンプレッサーなど様々な機器が設置されており、これらの運転に伴い騒音や振動が発生する。この対策としては、騒音・振動発生機器はできるだけ屋内に収納し、屋外に設けるものについては必要な防止対策を行なうとともに、緩衡緑地帯を設けることが望ましい。

7.4 環境影響評価

7.4.1 予測の手法

- (1) 大気拡散予測
 - i) 排煙拡散予測手法

排煙拡散予測に当たっては、ボサンケ・サットンの式により短期予測計算を行った。

排煙の拡散現象は、時間的にも空間的にも時々刻々変化する現象であるので、 大気拡散予測に当たっては、技術的に知り得る自然界等の情報を有効に活用できるとともに、それらの知り得る情報のレベルに適合した予測手法を選択することが重要である。

一般に、理論的、実証的研究成果に基づく予測手法としては、電子計算機を用いる数値計算予測手法と、風洞実験装置等を用いる実験手法とがある。発電所に関する環境影響調査における大気拡散予測は、数値計算予測を主体に行なわれている。

ii) 短期拡散予測計算式

短期拡散予測計算は、ボサンケ・サットンの式により行なった。予測対象物質 は硫黄酸化物、窒素酸化物及びばいじんとし、これらは同じ挙動をするものとし た。

① ポサンケ I 式による有効煙突高さの計算式

$$He = Ho + \alpha (Hm + Ht)$$

$$H m = \frac{4.77}{1 + 0.43 \cdot U/V} \cdot \frac{\sqrt{Q \cdot V}}{U}$$

H t = 6.37g ·
$$\frac{Q (T-T_1)}{U^3 \cdot T_1}$$
 (log e J² + $\frac{2}{J}$ - 2)

$$J = \frac{U^2}{\sqrt{Q \cdot V}} (0.43 \sqrt{\frac{T_1}{g \cdot G}} - 0.28 \cdot \frac{V}{g} \cdot \frac{T_1}{T - T_1}) + 1$$

記号

He:有効煙突高さ (m) Q:排出ガス量 (m/s, 28℃換算)

Ho:煙突の実高さ (m) T1:排出ガス密度が大気密度に等しくなる温度(K)

α :排煙上昇係数T :排出ガス温度 (K)U :風速 (m/s)G :温度勾配 (℃/m)

V : 排出ガス速度 (m/s) g : 重力加速度 (= 9.8m/Sec²)

② サットンの拡散計算式

$$C(X) = \frac{2 q \cdot \eta}{\pi \cdot C y \cdot C z \cdot U \cdot X^{2-n}} \cdot \exp \left(-\frac{1}{X^{2-n}} \cdot \frac{H e^2}{C z^2}\right)$$

$$C_{\text{max}} = 0.234 \cdot \frac{Cz}{Cy} \cdot \frac{q}{U \cdot He^2} \cdot \eta$$

$$X \max = (\frac{He}{Cz})^{\frac{2}{2-n}}$$

記号

C(X): 風下軸上距離Xの地点における地上濃度(硫黄酸化物及び窒素

酸化物:m/m', ばいじん:kg/m')

X: 風向に沿った風下距離 (m)

Cmax : 最大着地濃度 (硫黄酸化物及び窒素酸化物:m/m, ばいじん

: kg/m')

Xmax : 最大着地濃度地点までの距離 (m)

q : 汚染物質の排出量 (硫黄酸化物及び窒素酸化物:m/s,28℃

換算,ばいじん:kg/m')

Cy: 水平方向の拡散パラメータ

Cz : 鉛直方向の拡散パラメータ

U : 風速 (m/s)

n : 大気の乱れ係数

He : 有効煙突高さ

η : 時間修正係数

(2) 温排水拡散予测

i) 予測手法

発電所の取水口から取り入れられた海水冷却水は、復水器を通過する時に蒸気から熱を奪い、7~9℃程度水温が上昇し放水口から放流される。

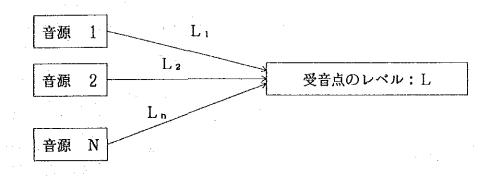
温排水は周囲の海水より温度が高い。すなわち密度が小さいので海の表層部に 薄く拡がる密度流の性質をもっている。この温排水が拡散冷却される過程は、主 に以下の3つの物理現象が複雑に組み合わさって行なわれる。

- ・温排水自身の放出によって生ずる流れによる熱の移動
- ・周囲の冷たい海水との混合稀釈
- ・海表面から大気への放熱

又、温排水の拡散を支配する条件は以下の通りである。

- (a) 温排水の放出条件
 - ・放水口の配置, 形状
 - 放水流速
 - ・放水量
 - ・放水温度
- (b) 自然条件
 - ・海岸,海底地形
 - ・海域の流動及び拡散特性
 - 気象条件

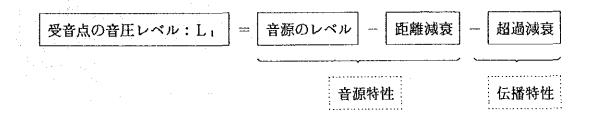
温排水拡散範囲を予測する手法には、電子計算機を用いたシュミレーション計算および水理模型による方法がある。本プロジェクトにおいては、簡便で広く使用されている電子計算機を用いたシュミレーション計算による事とした。予測に用いたモデルは1974年アメリカの環境保護局(EPA)で開発され又、国際原子力機関(IAEA)でオーソライズされている"Mostafa A. Shirazi and Lorin R. Davis の式"を使用した。


予測の範囲は、取・放水口の温度を8℃として温排水が放水口前面海域での水温上昇が1℃および3℃の範囲について予測した。

(3) 騒音予測

発電所の騒音予測計算は、Feasibility Study の段階では電子計算機を使用しても、或る精度で予測することは困難である。従って、本報告書では騒音問題を検討する目安として、パーソナルコンピュータを使用して予測計算した。

i) 計算方法の概要


プラント内の多数の音源機器による受音点の音圧レベルは、次式により求められる。

$$L = 10 \log \left(10^{\frac{L_1}{10}} + 10^{\frac{L_2}{10}} + 10^{\frac{L_{10}}{10}} \right)$$

L: 受音点における音圧レベル (dB)

L1: 音源1が単独に存在する場合の受音点における音圧レベル (dB) 各音源の受音点への寄与度L1は、次の関係式により求められる。

ii) 予測計算式 (点音源)

発電所の運転に伴う騒音の予測については、距離による減衰、障壁の効果、空 気の吸収等を考慮し、騒音レベルを次の式から計算した。

SPL = PWL - 20logr - 8 - Ar - AE

記号

SPL: 予測点における音圧レベル (ホン)

PM : 音源のパワーレベル (ホン)

r : 音源から予測点までの距離 (m)

Ar : 障壁による減衰量 (ホン) (注1)

A_E: 空気の吸収による減衰量(ホン)(注2)

(注1) 障壁による減衰量 Ar

音源、予測点間の直接音経路と障壁回折音経路の差からフレーネル数(N)を算出し、第7.4-1 図から減衰量を求める。

(注2) 空気の吸収による減衰量 A_E

Beranek(I) の近似式

 $A_E = 5.5 \times f \times r \times 10^{-6}$

を使用した。ただしfは周波数、rは受音点(計算点)

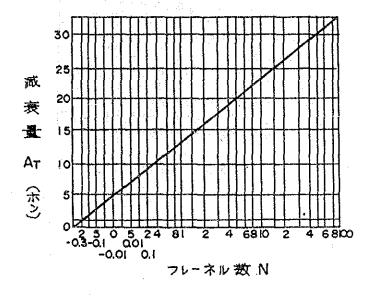
と音源の距離である。

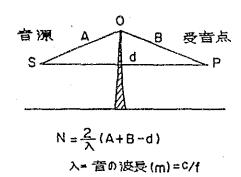
以上の計算式を用いて求めた音源からの到達音をオクターブバンド成分からオーバーオール到着音、dB(A)を計算した。

(4) A特性補正

オクターブバンド成分SPLfに下表のA特性補正を行い、SPL(A)f を求めた。 $SPL(A)f = SPLf + \Delta f$

f (Hz)	63	125	250	500	1000	2000
△f (dB)	-26	-16	-9	-3	0	+1


(n) SPL(A)fの合成


SPL(A)fを次式により合成し、オーバーオール到達音、dB(A)を求めた。

f = 63, 125, 250, 500, 1000, 2000 (Hz)

図7.4-1 障壁による減衰量

官源,予測点間の直接音経路と障壁回折音経路の差からNを算出し,次図から 減衰量を求める。

f = 周 波 数 (Hz) c = 空気中の音速 (m/s)

7.4.2 予測結果と評価

(1) 大気質

i) 計算条件

サットンの拡散式における計算条件は、風速 $5\,\text{m/s}$ 、大気安定度は中立とした。計算に用いた定数は表7.4-1のとおりである。

また、煙源の諸元はボイラー定格負荷時の値を用いた。 (表7.4-2)

表7.4-1 計 算 式 の 定 数

		-	_	_		
	項	目		単位	1時間値	24時間値
地	Ŀ	濃	度		サッ	トン式
有	効 煙	突 髙	ਟੇ		ボサン	ケ I 式
	戾		温	ຽ	28	28
大	風		速	m/s	5	- 14 - 12 - 14 - 15 - 14 - 17 - 17
気	拡散	ペラメー	- 9		C y = C z = 0.07	C y = C z = 0.07
条	大気の)乱れ係	系数	<u>-</u>	n = 0.25	n = 0.25
件	温度	更 勾	配	℃/m	G = 0.0033	G = 0.0033
	排煙	上昇係	数	_	$\alpha = 0.65$	$\alpha = 0.65$
時	間修	正係	数		$\eta = 0.15$	$\eta = 0.15 \times 0.59 = 0.089$

表7.4.2 煙 源 の 諸 元

		والمستحدث والمستحد والمستحدث والمستحدث والمستحدث والمستح				
	項	B	単位	1号機	2号機	合 計
		種 類	-	2 缶 第	集合形	
煙	突	地表上の高さ	m	1	20	
		等価口径	m	4	4	5.7
排出	ガス量	(湿ガス)	10° m¹N/h	941	941	1, 882
log etc	11. m or 12 m	温 度	J	130	130	
煙笑	出口のガス	速度	m/s	30	30	
ば	T	排出濃度	mqq	936	936	_
煙	硫黄酸化物	排 出 量	m¹N/h	803	803	1,606
が扱	As to The Plants	排出濃度	ppm	550	550	
出び濃排	窒素酸化物	排 出 量	m'N/h	500	500	1,000
度出 量	137 1 5 10 2	排出濃度	mg/m'N	181	181	
. [1	ばいじん	排 出 量	kg/h	155	155	310

- 注: 1. 記載数値は、ポイラー定格負荷時(石炭専焼時)の値を示す。セミララ炭/レミントン炭の混炭比は50/50 とする。
 - 2. 排出濃度は、乾ガスベースである。
 - 3. 窒素酸化物排出濃度は、O2 = 6%換算値を示す。

ii)計算結果

計算による最大着地濃度及び最大着地濃度距離は、表7.4-3のとおりである。 また、地上濃度曲線は図7.4-2のとおりである。

件 運 転 条 2台運転時 1 台運転時 E 項 270 354 8 有 効 煙 突 髙 m 0.0237 0.0276 1時間値 硫黄酸化物 ppm 0.0140 0, 0163 24時間値 0.0172 1時間値 0,0148 最大着地濃度 窒素酸化物 ppm

1時間値

24時間値

 mg/m^3

km

ばいじん

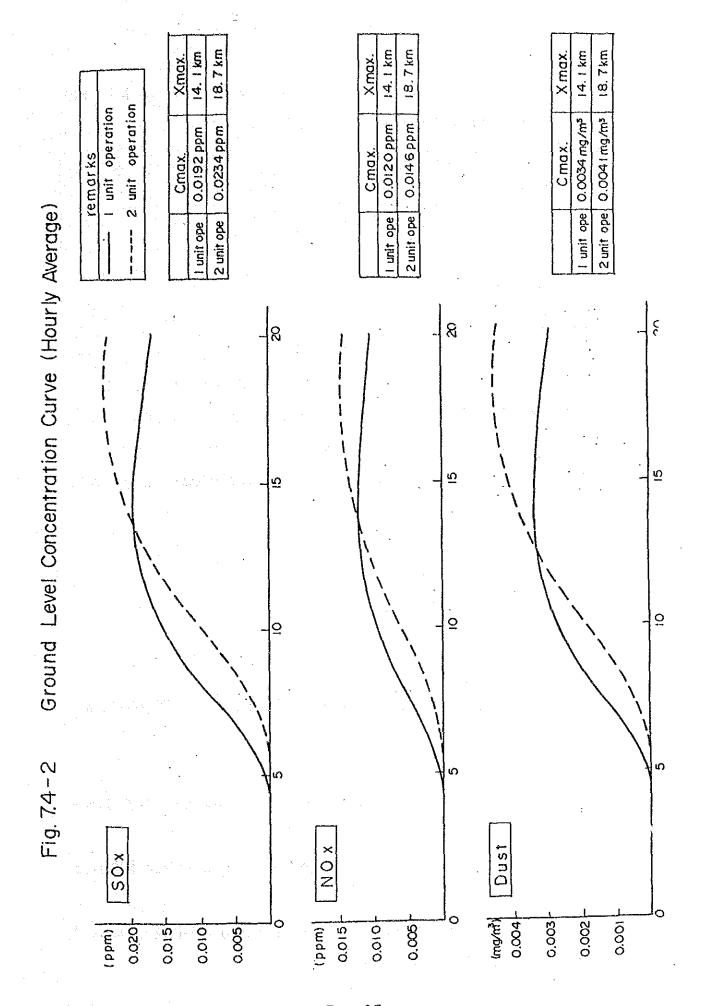
最大着地濃度距離

表7.4-3 最大着地濃度及び最大着地濃度距離

iii) 環境影響評価

以上の短期拡散予測計算結果によると、1,2号機の硫黄酸化物、窒素酸化物 及びばいじんの地上への寄与濃度はきわめて低く、1,2号機のばい煙による周 辺環境への影響は少ないものと考えられる。

0.0041


0.0024

12.5

0.0048

0.0028

17.1

(2) 温排水

i) 計算条件

予測に用いた計算条件は、レイアウト、発電所プラント条件および本サイトの 気象、海象条件を勘案の上以下の様に決定した。

- (a) 放流水の条件
 - ・流量

25.0m/s (2基ベース)

・初期流速

 $0.7 \,\mathrm{m/s}$

・幅

11.0m

・水深

3.3 m

(b) 取水水質

水温31℃、塩分量 3.0%、密度1.0176659

(c) 放水水質

水温39℃、塩分量 3.0%、密度1.0146516

(d) 海域の変動

本サイトで実施した流向・流速観測の結果、および予測結果の安全性を考慮 し、次の3ケースとした。

- i)静水時
- ii)恒流

0.05m/s

iii)恒 流

0.15 m/s

ii)計算結果

海表面での1 C および3 C 上昇域の各ケース毎の到達距離及び拡散面積を表7.4 -4 に示す。

また拡散範囲の包絡図を図7.4-3に示す。

計算の結果、1℃上昇域の冲合方向到達距離および拡散面積とも静水時に最大となりその値は 1.7km、0.67kmである。

3℃上昇域についても同様で沖合方向到達距離は 0.3kmおよび拡散面積は0.01 kmである。

沿岸方向の到達距離は恒流流速が最大 (v = 0.15 m/s) の時に最大となり、1 ℃では 1.0 km、3 ℃では 0.1 kmである。 なお、包絡分布の設定は、本予測が簡易予測であるため、最大到達距離を半径 とした半円状分布として表わした。

表7.4-4 計算結果

	放水取水恒速			1℃上昇域			3℃上昇域			
	1. 1	放水流量	取 水 温	流速	到達距		拡 散	到達距離	推(km)	拡散
l	ケース	(m')	(で)	(m/s)	沿岸	沖 合	面積	沿岸	沖 合	面積
		(1117	(0)	(11) (1)	方 向	方 向	(km)	方 向	方 向	(km²)
	1			0.0	0. 274	1.704	0. 6741	0. 030	0, 252	0, 0134
	2	25	31	0. 05	0.840	1. 266	0. 4029	0.064	0. 236	0. 0114
	3 ·			0. 15	1. 014	0. 465	0. 1387	0. 141	0, 177	0, 0083

iii) 環境影響評価

温排水による1℃上昇域は沖合方向の到達距離で 1.7km、拡散面積は0.67km、3℃上昇域は各々 0.3km、0.01kmであった。以上の計算から温排水による周辺環境への悪影響はない。

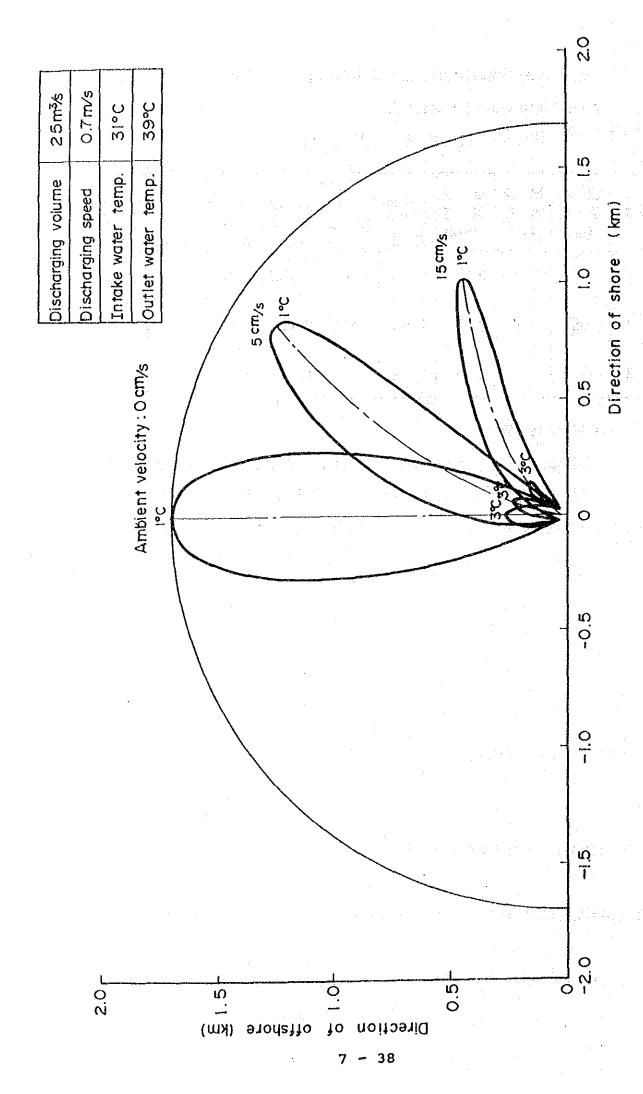


Fig. 7.4-3 Envelope Distribution of Thermal Effluent

(3) 騒 音

i) 計算条件

- a) 音源に関するもの
 - ・音源はすべて点音源とする。線音源および面音源とみなされるものは、点音源に置換して行なう。

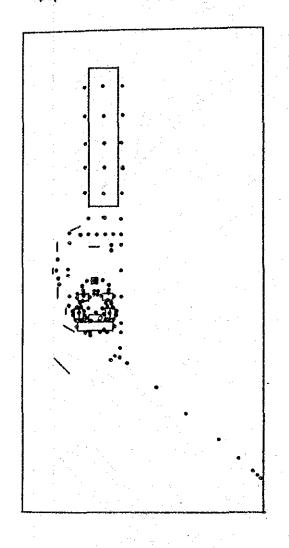
音源には指向性がないものとする。

- ・パワーレベルは中心周波数63Hzから 2,000Hzまでの6パンドで与える。
 - ・入力として使用するパワーレベル (Lw) は機側で得られた音圧レベル (Lp) から計算した値を使用する。
- b) 障壁に関するもの
 - ・障壁は厚みのない、地面に垂直に立った壁とする。
 - ・回折減衰については、減衰量の上限値を25dBとする。この減衰量に対応するFresnel 数(N) はN=15.8である。
 - ・障壁が2枚以上重なっている場合の回折減衰の計算は最も効果的な障壁に よる減衰量だけを考慮し、他の障壁の効果はすべて無視する。
 - ・障壁の透過音については無視している。

ii)入力データ

a) 音源データ様式

b) 障壁データ様式


iii) 計算結果

揚運炭関係機器を停止した夜間、および運転した昼間の発電所周辺の騒音レベルコンタを図7.4−5および図7.4−6に示す。

iv) 環境影響評価

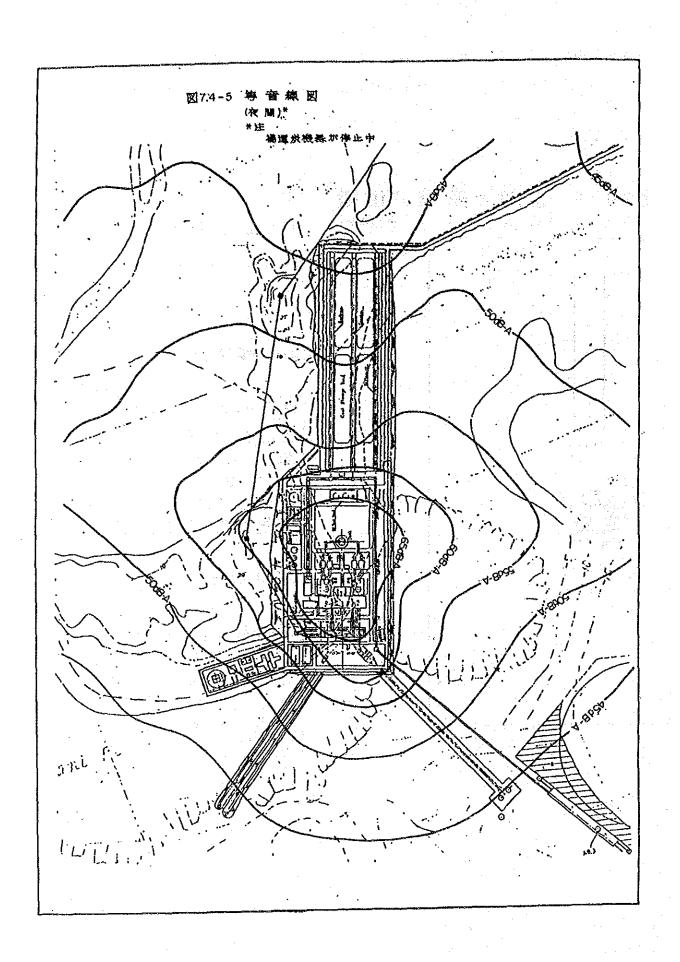
騒音の環境基準は地域の類型が住居、商業地域では夜間それぞれ45dB、55dBと 規定している。従って、夜間揚運炭関係機器を運転する場合も考慮すると、今後 の地域類型の指定如何によっては、十分な騒音低減対策の検討が必要となる。

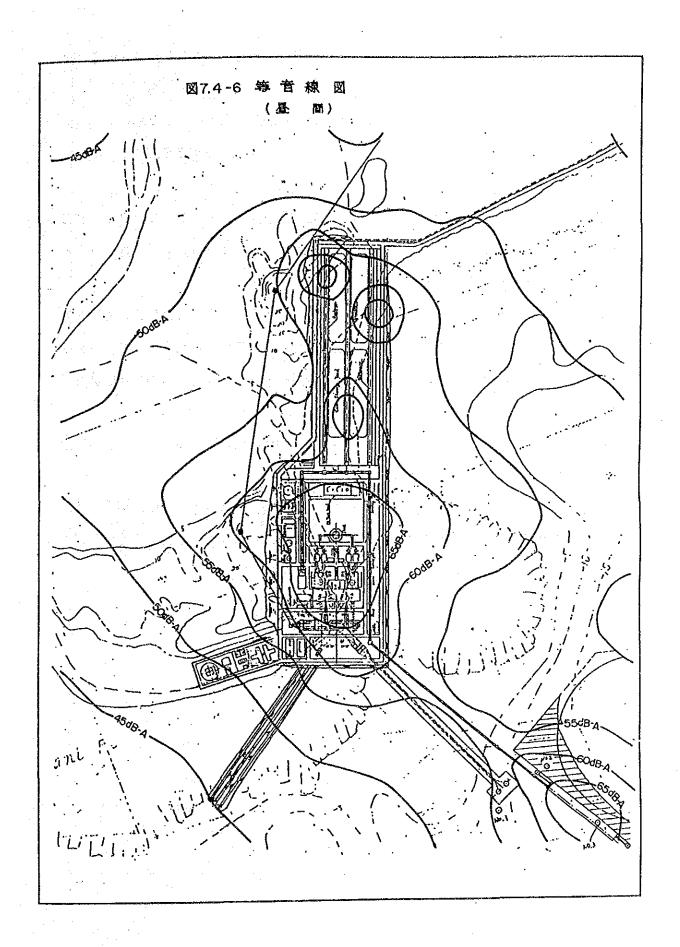
図7.4-4 音源と障壁の位置

---- 障壁の位置

・ 音源の位置

主要な職音源のレベル


(dB·A)


主要な騒音源	SPL	PWL
ボイラー 建屋	63	
ターピン 産屋	65	
主変压器		109
語引通風機		125
循環水ポップ		107

主要な障壁

(m)

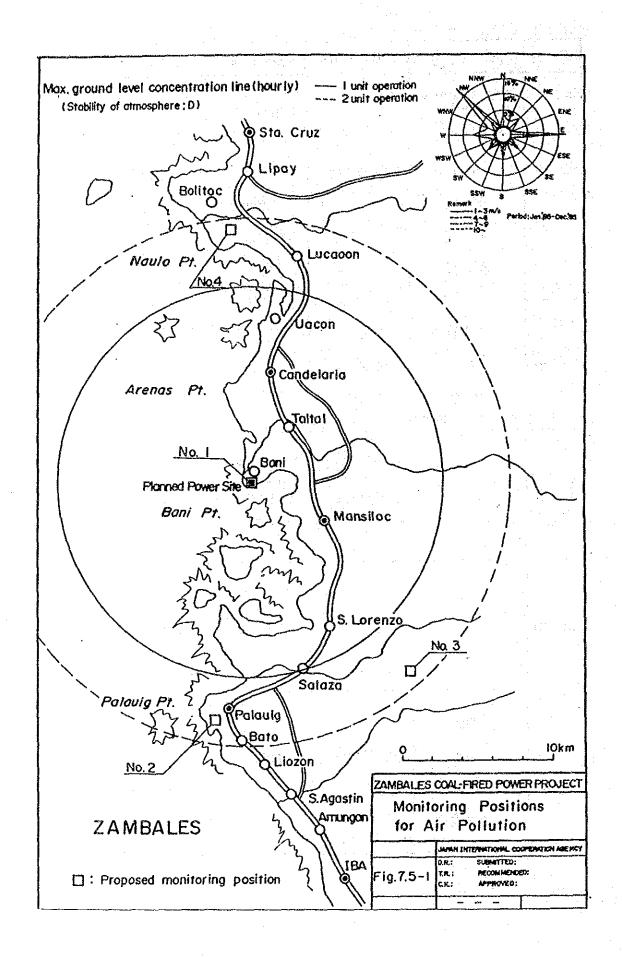
主要な障壁	WXDXHX基
ボイラー 建屋	20.5x 42.5x 80x 2
タービン建屋	137 x 34 x 30x1
バッカ壁	16 x 42.5 x 40x2
集じん器	36 x 25 x 23x2
貯 炭 場	100 x 520 x 13 x 1

7.5 環境モニタリング

発電所運転に伴う周辺環境への予測は、前述の通りである。しかしながら、周辺住民 および関係官庁から見れば、これら予測値に対する実証が望まれるであろう。

上記の事から、NAPOCOR は、これら関係者に対する理解と信頼を得るために、発電所 運転開始前と後の周辺環境のモニタリングを行い、その変化、影響度を調査する事が望 ましい。

望ましいモニタリングの項目、周期、場所を表7.5-1に示す。又、モニタリングの 開始は、発電所運転開始前、後の比較を行う必要から1号機運転開始の18ヶ月前(ボイ ラ火入れの約1年前)から行う事が望ましい。


モニタリング項目の内、大気汚染測定は、予測着地濃度、風向、および人口密度を考慮して図7.5-1に示す地点とし、又、測定は1台の自動車に全項目のモニタリング装置を搭載した、移動測定により、1週間毎4ヶ地点をそれぞれ測定する方法が経済的である。

尚、全てのモニタリング地点は、自動車の排ガス影響を受けない所で、かつ、測定値 の変化を見ることから、固定した場所を選ぶべきである。

また、ボイラ火入れ後は、煙突から排出されるばい煙のモニタリングが必要となる。 なお、発電所工事中の、建設工事による周辺環境へのモニタリングは、必要な項目を 選んで実施することが望ましい。

表7.5-1 モニタリング項目

区分	項目	場所・	周 期	備 考	
大気	SOx NOx Dust 風 向 風 速 気 温	別図の4地点	各地点各々 1回/月 各地点每 1週間連 続記録	移動測定局による	
水 質	P·H SS 水 温	取水口 放水口 灰捨場排水	1回/月	手分析	
騒音		発電所敷地 境界10地点	1回/月 (昼間および 夜間)	手分析	
振 動		同上	1回/年	同上	
排ガス	SOx NOx Dust ガス温度	煙突又は煙道	連続記録	発電所にて 常時監視	

第 8 章

工事工程

第8章 工 事 工 程		
	頁	
8.1 要 旨	8 —	1
8.2 工事着手前の諸手続き	····· 8 –	1
8.3 工事工程	8	2

List of Figuers

Fig 8-1 Zambales Coal-Fired Power Project Schedule

Fig 8-2 Zambales Coal-Fired Power Project Construction Schedule

第8章 工事工程

8.1 要 盲

Masinloc地点に2×300MW の石炭火力発電所を計画、建設する場合の工程は大きく分けて2段階となる。工事に着手する前の工程としては、1990年3月に本調査報告書が提出されてから、契約者が選定され、契約締結となるまでである。この所要月数を30ヶ月とした。建設の実施工程としては契約締結から1号機の運転開始までを43ヶ月とした。この結果契約締結が1992年10月、1号機の運転開始は1996年5月になる。また2号機は1号機の6ヶ月後に運転開始するものとした。

8.2 工事着手前の諸手続き

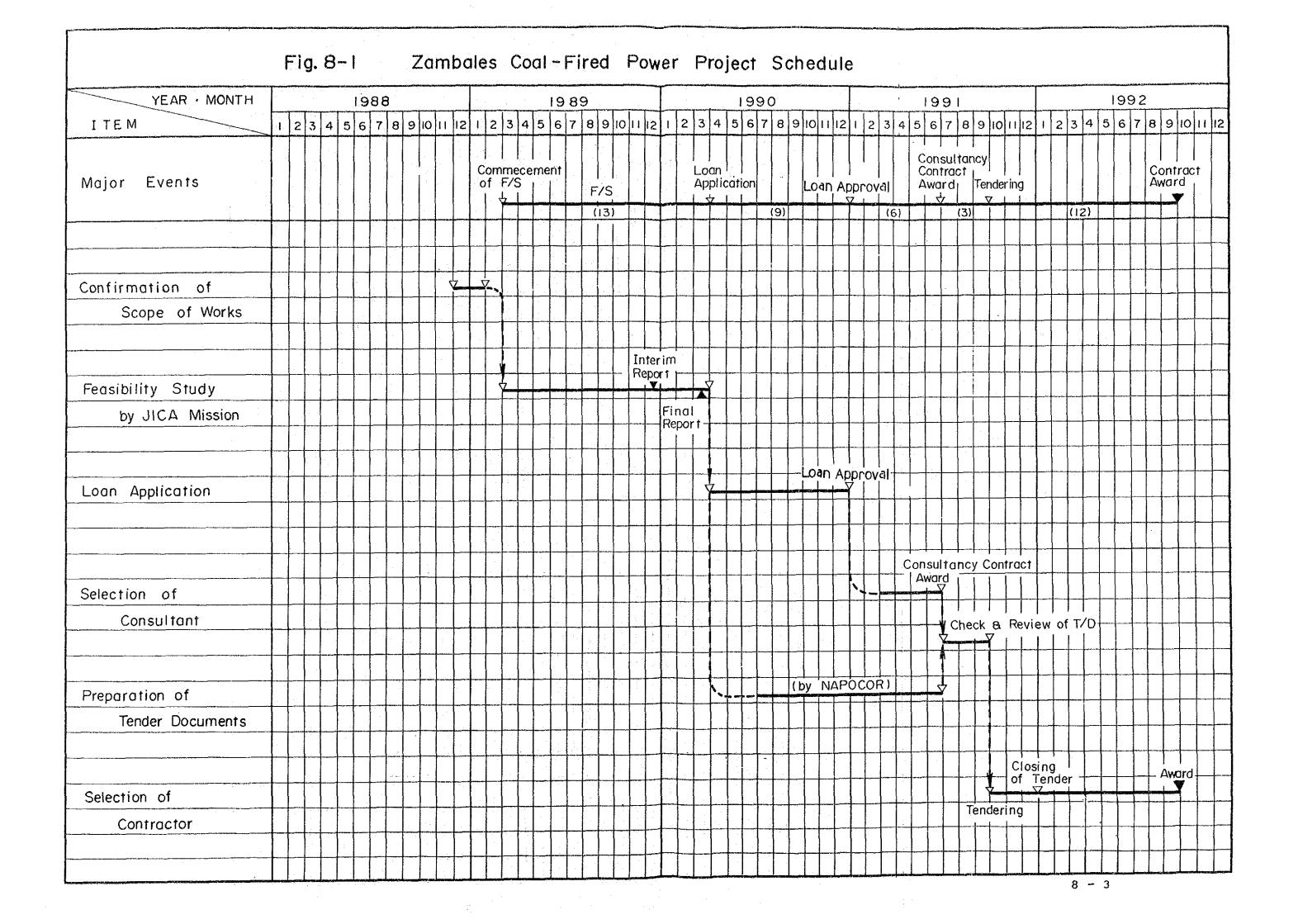
工事着手前の工程表を図8-1に添付する。工事前の諸手続きとしてはつぎの事項が ある。

- 1) NAPOCOR が実施する資金調達
 - 2) 用地取得交渉 (淡水源利用の為の交渉等を含む)
 - 3) 融資承認
 - 4) NAPOCOR による入札書の作成
 - 5) コンサルタントの選定
 - 6) 契約者の選定

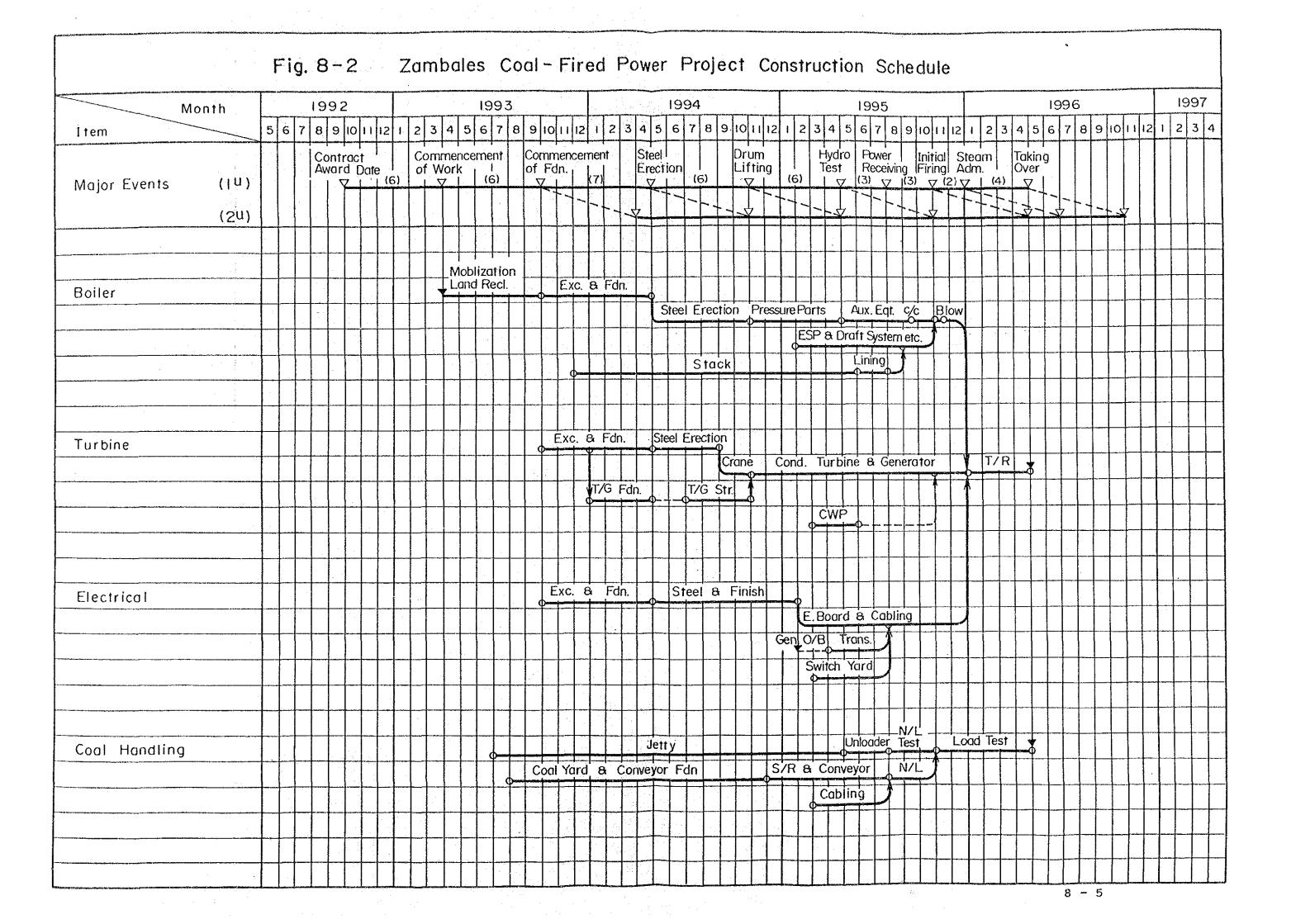
本計画を出来る限り早期に実施するためには、工事着手前工程の内、次に述べる3つの不可欠で重要な業務を円滑に進める必要があると思われる。第1は資金調達である。NAPOCOR は本調査報告書を受領後、出来るだけ速やかに資金調達に必要な書類を作成し、関係方面の了解を取付けることである。第2は入札書の作成である。NAPOCORは既にCalaca発電所の計画、建設を進めてきている。この経験と、本報告書の予備設計の内容により入札書はNAPOCORが作成する方針としている。第3は契約者の選定である。本計画を円滑且つ早期に実施するため、ここではfull turn key により施工されることを前提とした。

以上の前提のもとに、工程上の主要項目は次のようになる。

融資承認1991年1月コソサルタント契約1991年7月入 札1991年10月


8.3 工事工程

契約締結後の工事工程を図8-2に添付する。本工程は日本国内及び海外における同 規模の石炭火力の実績を勘案して作成した。


契約締結から工事着手までの6ヶ月の間は、主要機器並びに土木構築物の設計期間である。

1号機に就いて工程上の主要項目を示せば次のようになる。2号機は6ヶ月遅れで進むものとしている。

工事着	手		1993年 4 月
立	柱	*	1994年5月
ドラム	揚	the second of	1994年11月
水圧誌	、験		1995年 5月
火 入	ħ		1995年11月
通	気	v	1996年1月
運	開		1996年5月

		•		
		. •		
			•	
	•			
	*			
				4 ±
			and the second s	

第 9 章

概算工事費

第9章 概算工事費

	Nin O marr 1644 SAL recor after Tall	
to Walter Live		頁
9.1 要		
9.2 工事	世の算定方針	. 9

List of Tables

Table 9.3-1 Breakdown of Capital Cost (US $\$ \times 1000$)

Table 9.3-1 Breakdown of Capital Cost (Million \$)

Table 9.3-2 Disbursement Schedule (US $\$ \times 1000$)

Table 9.3-2 Disbursement Schedule (Million \$)

第9章 概算工事費

Zambales石炭火力発電所 (2×300MW) の建設工事費は類似プロジェクトを参考にして算出した。工事費の構成と、各々の概算額を示せば次の通りである。

単位 US\$×1,000

	10		20		計		
	外貨分	内貨分	外貨分	内貨分	外貨分	内貨分	外貨+内貨
直接工事費	288, 642	100, 333	177, 359	30, 722	466, 001	131, 055	597, 056
間接工事費	24, 156	15, 868	14, 070	6, 193	38, 226	22,061	60, 287
建設中利子	22, 228	49, 471	11, 148	11, 973	33, 376	61, 444	94, 820
合 計	335. 026	165, 672	202, 577	48, 888	537, 603	214, 560.	752, 163

工事費の詳細を表9.3-1に、各年度の資金展開を表9.3-2に示す。

- 9.2 工事費の算定方針
 - (1) 工事費はフィリピン共和国における内貨分と外貨分に分ける。内貨分には、国内労務者の賃金、フィリピン国内で調達しうる工事用資材、付加価値税(VAT) 等を含め、その他は全て外貨分に計上する。
 - (2) 工事費は1989年9月時点の現在価格を基準とし、エスカレーションは見込んでいない。
 - (3) 直接工事費は第6章記載の発電設備並びに第7章記載の環境対策設備を建設するに 必要な費用を計上する。考慮した事項は次の通りである。
 - i) 建設に必要な仮設備の内 NAPOCORが準備する設備については計上していない。
 - ii) 試運転に必要な燃料費は、試運転によって発生する電力料金と相殺されるものと して計上していない。
 - iii) 工事用電力、工事用水は含まない。
 - iv) NAPOCOR が実施する金融機関融資手続きに必要な経費は含まない。
 - v)輸出保険及び海上輸送費の合計3%を外貨分に加える。
 - vi) 送変電設備については火力発電所の受電箇所である Hermosa変電所までを計上した。
 - vii) 用地買収費、補償費合計 P61,544,737 についてはNAPOCOR の算定した値を採用し内貨分として計上した。
 - (4) Engineering fee は直接工事費の2.5%を計上した。この費用は NAPOCORがコンサルタントを雇用し、設計施工管理をアシストさせるための費用 (人件費、諸経費、技術料、旅費、通信費等) である。
 - (5) 管理費は直接工事費の1,5%を計上した。この費用はNAPOCOR が本計画を推進するに必要な経費(海外企業との打合せための出張、工場検査のための出張及び要員訓練費等)である。

- (6) 予備費は外貨分については、直接工事費の5%、内貨分については直接工事費の10%を計上した。この費用は止むを得ない理由によって設計変更を行う場合に引き当てるものとする。
- (7) 輸入税、VAT についてはフィリピン共和国の法令に従い、NAPOCOR が支払うものとし、VAT は機器代金(CIF) の10%を計上した。輸入税は免除されるものとした。
- (8) 建設利子は建設中の支払計画に従って、外貨分の金利2.9%、内貨分の金利17%として計算した。
- (9) 建設工事費の支払い条件は下記の通りとして年度別所要資金を算出した。

① 輸入機器(機器代) : 契約時15%、船積時75%、完成時10%

② 土木関係工事費 : 契約時15%、出来髙払75%、完成時10%

③ 管理費及びEngineering fee: 年度別の仕事量に連動して設定

(A) V A T : 輸入品の陸揚げ時 100%

Table 9.3-	Breakd	lown of Ca	pital Cos	10 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				IS\$ x 100	00
Item	U	Init No. 1		Unit No. 2			Total		
i cen	F.C.	L.C.	Total	F.C.	L.C.	Total	F.C.	L.C.	Total
Direct Cost						A Park	: /(J./A.)		
Electrical & Mechanical Equipment a. Boiler and its accessory b. Turbine and its accessory c. Generator and its accessory d. Coal Handling Equipment	91,300 66,371 12,779 55,714	5,550 2,579 514 4,264	96,850 68,950 13,293 59,978	88,514 64,979 12,114 0	5,550 2,579 514 0	94,064 67,558 12,628 0	179,814 131,350 24,893 55,714	5. 158 1. 028	136,508
Sub Total	226, 164	12,907	239,071	165,607	8.643	174,250	391,771	21,550	413,321
2. Civil and Architectural Works a. Harbour Facilities b. Cooling Water Facilities c. Power House and Stack d. Other Facilities	11,950 11,157 10,186 11,421	6,879 7,650 7,029 29,321	18,829 18,807 17,215 40,742	0 0 6.243 343	0 0 3,543 800	0 0 9,786 1,143	11,950 11,157 16,429 11,764	6,879 7,650 10,572 30,121	18,829 18,807 27,001 41,885
Sub Total	44,714	50,879	95,593	6,586	4,343	10,929	51.300	55,222	106,522
3. Transmission Line	9,357	4,886	14,243	0	0	0	9,357	4,886	14,243
4. Insurance and Ocean Freight	8,407	0	8,407	5, 166	0	5, 166	13,573	0	13,573
6. Land and Compensation	0	2,797	2,797	0	0	0	0	2,797	2,797
Total of Construction Cost	288,642	71,469	360,111	177,359	12,986	190,345	466,001	84,455	550, 456
7. Value Added Tax (VAT)	0	28,864	28,864	0	17,736	17,736	. 0	46,600	46,600
Total of Direct Cost	288,642	100, 333	388,975	177,359	30,722	208,081	466,001	131,055	597,056
Indirect Cost					•:		.:•]
1. Physical Contingency	14,432	10,033	24,465	8,868	3,072	11,940	23,300	13,105	36,405
2. Administration Cost	0	5,835	5,835	0	3, 121	. 3,121	0	8,956	8,956
3. Engineering Fée	9,724	0	9,724	5,202	0	5,202	14,926	0	14,920
Total of Indirect Cost	24.156	15.868	40,024	- 14,070	6, 193	20,263	38,226	22,061	(0,287
Interest During Construction	22,228	49,471	71,699	11,148	11,973	23, 121	33,376	61,444	94,820
Grand Total	335,026	165,672	500,698	202,577	48,838	251,465	537,603	214,560	752, 163

Table 9.3-1 Breakdown of Capital Cost

million Y

	U	nit No. 1		U	nit No. 2	:	Total			
I tem	F.C.	L.C.	Tota1	F.C.	L.C.	Total	F.C.	L.C.	Tolal	
Direct Cost										
Electrical & Mechanical Equipment a. Boiler and its accessory b. Turbine and its accessory c. Generator and its accessory d. Coal Handling Equipment	12,782 9,292 1,789 7,800	777 361 72 597	13,559 9,653 1,861 8,397	12,392 9,097 1,696 0	777 361 72 0	13, 169 9, 458 1, 768 0	25, 174 18, 389 3, 485 7,800	1,554 722 144 597	26,728 19,111 3,629 8,397	
Sub Total	31,663	1,807	33,470	23, 185	1,210	24,395	54,848	3,017	57,865	
Civil and Architectural Works a. Narbour Facilities b. Cooling Water Facilities c. Power Nouse and Stack d. Other Facilities	1,673 1,562 1,426 1,599	963 1.071 984 4,105	2,636 2,633 2,410 5,704	0 0 874 48	0 0 496 112	0 0 1,370 160	1,673 1,562 2,300 1,647	963 1,071 1,480 4,217	2.636 2.633 3.780 5.864	
Sub Total	6,260	7, 123	13,383	922	608	1,530	7,182	7.731	14,913	
3. Transmission Line	1.310	681	1,994	0	0	0	1.310	684	1.994	
4. Insurance and Ocean Freight	1,177	. 0	1,177	723	. 0	723	1,900	0	1,900	
6. Land and Compensation	0	392	392	0	0	0	0	392	392	
Total of Construction Cost	40,410	10,006	50,416	24,830	1,818	26,648	65,240	11,824	77,064	
7. Value Added Tax (VAT)	0	4,011	4,041	0	2,483	2,483	0	6,524	6,524	
Total of Direct Cost	40, 410	14,047	54,457	24,830	4,301	29, 131	65,240	18,348	83,588	
Indirect Cost			1							
1. Physical Contingency	2,021	1,405	3,426	1,242	430	1,672	3,263	1,835	5,098	
2. Administration Cost	0	817	817	0	437	437	0	1,254	1,254	
3. Engineering Fee	1,361	. 0	1,361	728	0	728	2,089	0	2,089	
Total of Indirect Cost	3,382	2.222	5,604	. 1,970	867	2,837	5,352	3,089	8,441	
Interest During Construction	3,112	6,926	10,038	1,561	1,676	3,237	4,673	8,602	13,275	
Grand Total	46,904	23, 195	70,099	28.361	6,844	35,205	75,265	30,039	105,304	

•	*					abic 7.2												
		1992			1993			1994			1995			1996		·	Total	
Item	F.C.	L.C.	Total	F.C.	L.C.	Total	F.C.	L.C.	Total	F.C.	L.C.	Total	F.C.	L.C.	Total	F.C.	L.C.	Total
1. Direct Cost																· ·		
a. Elecrical and Mechanical Equipment	58,766	3,232	61,998	0	0	0	236,008	13,843	249,851	57,820	2,320	60, 140	39, 177	2, 155	41,332	391,771	21,550	413,321
b. Civil and Architectural Works	7,695	8,283	15,978	0	0	0	38,475	41,417	79,892	0	0	0	5, 130	5,522	10,652	51,300	55,222	106,522
c. Transmission Line	1,404	733	2, 137	0	0	0	7,017	3,664	10,681	0	0	0	936	489	1,425	9,357	4,886	14,243
d. Land and Compensation	0	2,797	2,797	0	0	0	. 0	0	0	0	0	0	0	0	0	0	2,797	2,797
e. Insurance and Ocean Freight	0	0	0	. 0	0	0	11,260	0	11,260	2,313	0	2,313	0	0	0	13,573	0	13,573
f. Value Added Tax	0	0	0	0	0	. 0	. 0	38,659	38,659	0	7,941	7,941	0	0	0	0	46,600	46,600
Total of Direct Cost	67,865	15,045	82,910	0	0	0	292,760	97,583	390,343	60, 133	10,261	70,394	45,243	8, 166	53,409	466,001	131,055	597,056
2. Indirect Cost																		
a. Physical Contingency	0	0	0	0	0	0	0	0	0	0	0	0	23,300	13,105	36,405	23,300	13, 105	36,405
b. Administration Cost	0	600	600	0	2,400	2,400	0	2,402	2,402	0	2,384	2,384	0	1,170	1,170	0	8,956	8,956
c. Engineering Fee	999	0	999	3,995	0	3,995	3,984	0	3,984	3,984	0	3,984	1,964	0	1,964	14,926	0	14,926
Total of Indirect Cost	999	600	1,599	3,995	2,400	6,395	3,984	2,402	6,386	3,984	2,384	6,368	25,264	14,275	39,539	38,226	22,061	60,287
3. Interest during Construction	330	435	765	2,051	2,847	4,898	5,352	12,219	17,571	12,080	21,559	33,639	13,563	24,384	37,947	33,376	61,444	94,820
Grand Total	69, 194	16,080	85,274	6,046	5,247	11,293	302,096	112,204	414,300	76, 197	34,204	110,401	84,070	46,825	130,895	537,603	214,560	752, 163

·					
	:				
			a		

		1992			1993			1994			1995			1996	· ·		Total	
Item	F.C.	L.C.	Total	F.C.	L.C.	Total	F.C.	L.C.	Total	F.C.	L.C.	Total	F.C.	L.C.	Total	F.C.	L.C.	Total
1. Direct Cost								,						erranne e				!
a. Elecrical and Mechanical Equipment	8,227	453	8,680	0	0	0	33,041	1,937	34,978	8,095	325	8,420	5,485	302	5,787	54,848	3,017	57,865
b. Civil and Architectural Works	1,077	1, 159	2,236	0	0	0	5,387	5,799	11, 186	0	0	0	718	773	1,491	7, 182	7,731	14,913
c. Transmission Line	197	103	300	0	0	0	982	513	1,495	0	0	0	131	68	199	1,310	684	1,994
d. Land and Compensation	0	392	392	0	0	0	0	0	0	0	0	0	0	0	0	0	392	392
e. Insurance and Ocean Freight	0	0	0	0	0	.0	1,576	0	1,576	324	0	324	0	0	0	1,900	0	1.900
f. Value Added Tax	0	0	: 0	0	0	0	0	5,412	5,412	0	1,112	1,112	0	0	0	0	6,524	6,524
Total of Direct Cost	9,501	2, 107	11,608	0	0	0	40,986	13,661	54,647	8,419	1,437	9,856	6,334	1, 143	7,477	65,240	18,348	83,588
2. Indirect Cost							-											
a. Physical Contingency	0	0	0	0	0	0	0	0	0	0	0	0	3,263	1,835	5,098	3,263	1,835	5,098
b. Administration Cost	0	84	84	.0	336	336	0	338	338	0	336	336	0	160	160	0	1,254	1,254
c. Engineering Fee	144	0	144	569	0	569	564	0	564	548	0	548	264	0	264	2,089	0	2.089
Total of Indirect Cost	144	84	228	569	336	905	564	338	902	548	336	884	3,527	1,995	5,522	5,352	3,089	8,441
3. Interest during Construction	47	61	108	287	398	685	748	1,710	2,458	1,691	3,019	4,710	1,900	3,414	5,314	4,673	8,602	13,275
Grand Total	9,692	2,252	11,944	856	734	1,590	42,298	15,709	58,007	10,658	4,792	15, 450	11,761	6,552	18,313	75,265	30,039	105,304

第 10 章

経 済 評 価

第10章 経済評価

:			頁
10. 1	」 要	旨	10 - 1
10. 2	と 便益/	/費用比率および等価割引法による分析	10 - 2
	10, 2, 1	評 価 方 法	10 - 2
	10, 2, 2	適用した前提条件	10 - 2
	10. 2. 3	分 析 結 果	10-5
10. 3	3 篩分に	ナ曲線法による分析	10 - 6
	10.3.1	評 価 方 法	10 - 6
	10. 3. 2	適用した追加条件	10 - 7
	10, 3, 3	分析結果	10 - 8

List of Figures

Screening Curves (Time-Cost Curves) Fig 10.1 (1) Fig 10.1 (2) Optimum Power Source Structure (Target year:1997) Fig 10.2 (1) Screening Curves (Time-Cost Curves) Fig 10.2 (2) Optimum Power Source Structure (Target year:1997) Fig 10.3 (1) Screening Curves (Time-Cost Corves) Optimum Power Source Structure (Target year:1997) Fig 10.3 (2) Fig 10.4 (1) Screening Curves (Time-Cost Corves) Optimum Power Sours Structure (Target year:1997) Fig 10.4 (2)

List of Tables

Table 10.1 (1) Basic Data of Alternatives
Table 10.1 (2) Benefit/Cost Ratio & Equalizing Discount Rate
Table 10.1 (3) Benefit/Cost Ratio & Equalizing Discount Rate
Table 10.1 (4) Benefit/Cost Ratio & Equalizing Discount Rate
Table 10.2 (1) Basic Data of Alternatives
Table 10.2 (2) Benefit/Cost Ratio & Equalizing Discount Rate
Table 10.2 (3) Benefit/Cost Ratio & Equalizing Discount Rate
Table 10.2 (4) Benefit/Cost Ratio & Equalizing Discount Rate
Table 10.3 (1) Basic Data of Alternatives
Table 10.3 (2) Benefit/cost Ratio & Equalizing Discount Rate
Table 10.3 (3) Benefit/cost Ratio & Equalizing Discount Rate
Table 10.3 (4) Benefit/cost Ratio & Equalizing Discount Rate
Table 10.4 (1) Basic Data of Alternatives
Table 10.4 (2) Benefit/Cost Ratio & Equalizing Discount Rate
Table 10.4 (3) Benefit/Cost Ratio & Equalizing Discount Rate
Table 10.4 (4) Benefit/Cost Ratio & Equalizing Discount Rate

Table 10.5 (1) Generation Cost Per kWh (Sending-END)

Table 10.5 (2) Genertion Cost Per kWh (Sending-END)

Table 10.5 (3) Genertion Cost Per kWh (Sending-END)

Table 10.5 (4) Genertion Cost Per kWh (Sending-END)

A REPORT OF A SECTION OF SAME OF THE SAME

But the second of supervision and second

and the second of the second of the second s

and the second of the second of the second of the second of

and the control of th

The first of the first of the first first of

本プロジェクトの経済評価は、

- 1) 便益/費用比率法、
- 2) 等価割引率法、
 - 3) 篩分け曲線法

を用いて行った。

火力発電所開発計画の経済評価において支配的な影響を及ばすものは燃料である。本プロジェクトにおいては、Semirara炭と海外炭を50% ずつ混炭して使用する計画としている。本文に述べるように使用燃料の1989年における平均価格は47.68US\$/t (CIFベース) と算定される。これに対して石炭の平均硫黄分(0.55%) と等価な硫黄分(1.0%)の重油価格は137 US\$/k1と算定される。しかしながら、過去4 年間に重油価格は約60%程度変動しており、1985年頃の上記硫黄分1%の重油価格は207 US\$/k1であった。

石炭価格の変動が比較的小さいのに対して石油価格の変動は大きく、将来着実な価格 上昇が予想されている。この様な事情を考慮して、この経済評価においては次の2通り の重油価格を使用した。

	基準分析	感度分析
石炭価格(US\$/t)	47. 68	10% 価格上昇
重油価格(US\$/kl)	137	207

分析結果は以下の通りである。

- (1) 10.2項に示すように、本プロジェクトと、代替重油火力との間の等価割引率は、基準分析の場合は約11%、感度分析の場合は25.5%~27.3%となる。
- (2) 10.3項に示すように、石油火力に対する石炭火力の経済運転のための損益分岐点は、基準分析において 5,171時間/年 (59.0%) である。このことは、本石炭火力の利用率が70%で計画されているため、代替案である石油火力よりもはるかに経済的であるといえる。利用率70% における、本石炭火力計画の送電端での発電コストは5.30 Cents/kWhであり、利用率が65%に下った場合または石炭価格が10%上昇した場合に

は、5.53 Cents/kWhとなる。

(3) 基準分析における石炭火力の1997年時点の妥当な開発規模は 888MW である。 以上のことから設備出力600 MWの本プロジェクトはフィージブルな計画であるとの結 論が得られる。

10.2 便益/費用比率および等価割引率法による分析

10.2.1 評価方法

等価割引率法(所謂、経済的内部収益率法)は、当該プロジェクトとその代替プロジェクトのそれぞれについて、工事着手時点から運転開始後一定期間中に発生する総費用を想定し、双方の総費用の現在価値換算額が等しくなるような等価割引率(内部収益率)を算出する。このようにして算出された等価割引率が資本の機会費用を反映する社会的割引率よりも高ければ当該プロジェクトは経済的であると判断され、然らざれば経済的でないと判断される。

また、便益/費用比率法は、上記の社会的割引率を用いて現在価値換算された代替 プロジェクトの総費用 (便益) と当該プロジェクトの現在価値換算された総費用の比率を求めるものであり、この比率が1よりも高ければ当該プロジェクトは経済的であると判断され、然らざれば経済的でないと判断される。

以上2通りの評価方法は、いずれも社会的割引率を評価の基準とする点において、 本質的には同じものである。

10.2.2 適用した前提条件

この評価のために適用された前提条件は以下の通りである。

(1) 費用の見積り

本プロジェクトおよび代替プロジェクトの各費用 (建設費、運転維持費、燃料費) は全て1989年時点の価格を用いる。

(2) 感度分析

経済評価の原則に従い、基準としての評価は物価上昇を含めない現在の価格水準に基づいて行われるが、他方、価格上昇の影響を見るため、以下の条件で感度分析を行う。

・石炭価格が現在よりも10%上昇した場合

Programme and the second of the second

・設備利用率(70%を基準とする)が65%に低下した場合

(3) 代替プロジェクト

代替プロジェクトは、送電端において本石炭火力の発電所と同量の出力および電力量を供給する重油火力発電所とし、本プロジェクトと同一地点に建設されるものと仮定する。

(4) 建設費の年度展開

建設費(輸入税その他の公課を除く)の年度展開は、本プロジェクトについては 第9章に示した通りであり、代替プロジェクトについては各種事例より適当とされ る展開比率を用いる。

	_ 本プロジェクト	<u> 代替プロジェクト</u>
	(%) (1000 US\$)	(%)
1年目 (1992)	13. 8 (84. 509)	13
2年目(1993)	1, 0 (6, 395)	. 1
3年目 (1994)	58, 6 (358, 070)	60
4年目 (1995)	11.3 (68,821)	11
5年目 (1996)	15. 3 (92, 948)	15
合 計	100, 0 (610, 743)	100

(5) 代替プロジェクトの建設単価

代替重油火力発電所の建設単価は720US\$/kW と想定する。

(6) 燃料価格

燃料価格については、NAPOCOR から提示された1989年末の価格から諸税及び補助 金を除いたCIF価格を使用する事とした。但し、実際の評価には以下に示す補正 を行った数値を使用する。

(石炭価格)

国内炭としてはSemirara炭の価格 52.96 US\$/t、海外炭は 45.05 US\$/tとの平均価格とする。但しSemirara炭についてはNAPOCOR から受領した資料「Price Adjustments for Selectively-mined Coal」の中のMoisture(weight)Adjustmentの項によって水分補正を行った。この結果、石炭価格は 47.68 US\$/tとする。

海外炭の価格につていは、NAPOCOR より提示された数値を "Australian Coal Report" の統計値を用いて検証した。その結果、NAPOCOR の提示価格 (CIF Base) は概ね妥当であると考えられる。

(重油価格)

重油価格については幾つか留意すべき事項がある。

第1 の点は、重油 S分によって価格が異なる事である。環境上の問題を考慮すると設計に使用した石炭の S分(0.55%) と等価な S分(1.0%)を持つ重油の価格でなければならない。

第2 の点は石炭価格の変動は緩やかであるが、重油価格の変動は極めて激しい事である。具体的にはここ4~5 年の間に60% を越す価格変動がある。この為、過去の重油価格の変動を考慮し、最近において最も高い価格と推定されるデータと併せて検討する。

NAPOCOR から提示された重油価格は1985年が3,6278 P/I、1989年が2,6622 P/Iである。これをそれぞれの年の為替レートにより米ドルに換算し、更に東南アジアにおける価格動向を調査しS 分の補正を実施した。この結果1985年の重油価格は207 US\$/kI(S分補正率6%)、1989年のそれは137 US\$/kI(S分補正率13%)となる。この2つの重油価格を感度分析として使用する。

(7) その他パラメータ

		本プロジェクト	<u> 代替プロジェクト</u>
発電所々内ロス	;		
電力ロス		6.0 %	4.5 %
電力量ロス		7.5 %	6.0 %
熱 効 率		36.0 %	38.0 %
*		(2,389kca1/kWh)	(2, 263kcal/kWh)
発電所耐用年数		30 年	30 年
運転維持経費率	(対建設費)	4.5 %	4.5 %

設	備利	用	率	(基準)	70.0	96	70.0	%
事	故		率		8	%	7	%
点	検	停	止		40	日	40	日

(8) 社会的割引率

NAPOCOR は割引法を用いて行われる開発プロジェクトの分析結果の評価基準として、15%の割引率を用いている。従って、本プロジェクトを評価するための社会的割引率を15%とする。

10.2.3 分析結果

以上の前提条件に基づいて行った分析結果は次の諸表に示される。

・基準条件による分析

表 10.1.(1)~(4)

・感 度 分 析 :

重油価格が207US\$/k1 表 10.2.(1)~(4)

石炭価格が10%上昇 表10.3.(1)~(4)

設備利用率65%に下落 表 10.4.(1)~(4)

以上の分析結果を要約すると以下の通りである。

重油価格 (US\$/k1)	設備利用率 (%)	石炭価格 (US\$/t)	割引率15% の時のB/C	等価割引率 (%)_
・基準条件による	分析			
137	70	47. 68	0. 950	11.0
・感度分析				
207	70	47.68	1. 207	27.3
207	70	10%上昇	1. 166	25. 5
207	65	47. 68	1. 182	25.8

10.3 篩分け曲線法による分析

10.3.1 評価方法

kWh 当たりの発電原価は発電所の設備利用率、従って年間運転時間数に応じて変動する。電力系統の負荷形状に最もよく適合する最適発電所形式を選定するためには、所謂"篩分け曲線法"を用いるのが適当である。この方法は、各発電所形式についてグラフ上に設備利用率に応じて変化する送電端1kW当たりの費用曲線を画く。2曲線の交点は当該2発電所の経済運転のための損益分岐点を表すことになる。この損益分岐点を、年間負荷持続曲線(*)に投影することによって、電源開発における各種発電所の最適組合わせを決定することができる。経済運転のための損益分岐点は以下のようにして算出される。

(1) 各発電形式 (本件の石炭火力発電所と代替重油火力発電所) について、送電端 1 kW当たりの平準化された年間資本費と運転保守費用を合計した年間固定費、並びに 送電端 1 kWh 当たりの燃料費を算出する。平準化された年間資本費 "I" は次の式から求められる。

$$I = C \times R \times (1+R)^{N} / [(1+R)^{N} - 1]$$

ここで、

C: 建中利子を含めた総建設費

R: 金 利

N:耐用年数

- (2) 各発電所形式について、上記固定費および燃料費を用い、グラフ上に設備利用率に伴って変化する。 "篩分け曲線" (時間・費用曲線) を画く。
- (3) 2つの発電所の時間・費用曲線の交点は、これら両発電所の経済運転の限界点、 つまり損益分岐点を表す。いま、石炭火力発電所 "A" と代替重油火力発電所 "B" の間の損益分岐点に対応する年間運転時間数を "H" とすれば、 "H" は次の 式から求められる。

("A" のkW当り固定費) + ("A" の kWh当り燃料費) × "H"

= ("B" のkW当り固定費) + ("B" の kWh当り燃料費) × "H"

従って、

"H"=("A" "B"間のkW当り固定費の差)/("A" "B"間の kWh当り燃料費の差) (*)使用した年間負荷持続曲線は、利用率約70%の東南アジア諸国のもの から推定した。

10.3.2 適用した追加条件

前述の10.2.2項に示した前提条件に加えて、以下の条件を適用する。

(1) 本プロジェクトの運開翌年(1997)におけるルソン系統発電所の所要出力

計画停止や事故による発電所出力の減少、または需要の急増に対処するため確保 すべき予備力として、尖頭負荷の15%相当の出力を保有するものとする。本プロ ジェクトの運開翌年の1997年の尖頭負荷は、第3章において5,595 MWと想定されて いる。従って、同年におけるルソン系統発電所の総所要出力を次のように想定する。

 $5,595 \times (1+0.15) = 6,434 \text{ MW}$

(2) 本プロジェクト運開直前における既存のベースロード発電所の出力

系統のベースロードを供給するための発電所は、水力、地熱、石炭火力発電所で あり、石油火力(ガスタービン等を含む)は中間負荷および尖頭負荷供給用として 運転するのが経済的に得策である。本石炭火力発電所の運開直前におけるルソン系 統のベースロード発電所の出力を以下のように想定する。

・1989年現在におけるベースロード発電所

水力発電所		1,226 MW
地熱発電所		660 "
石炭火力発電所		300 "
	<u> </u>	2,186 MW

・本プロジェクト運開までに新設を予想される発電所

Mak-Ban	(地熱)	÷	55 MW
Small Luz	(地熱)		40 "
Bac-Man I	(地熱)		110 "
Bac-Man I	(地熱)		110 "
Calaca I	(石炭)	•	300 "
Coal III			300 "
		<u></u>	915 MW
		습 計	3. 101 MW

(3) 適用金利

節分け曲線法によるプロジェクトの評価は、送電端 1 kWを供給する電力量原価に基づいて行われるものである。

本プロジェクトにおいては一般商業ペースの金融機関(輸銀、ADB、都市銀行)の 適用金利よりやや高めの9%の金利を用いた。

10.3.3 分析結果

以上の前提条件に基づいて行った分析結果は次の諸表に示される。

- (1) 重油価格が137 US\$/k1の基準条件
 - ・金利 9 %の場合

表 10,5.(1)および図 10.1.(1)

- (2) 重油価格が207 US\$/kl、金利9%及び利用率70%の場合の感度分析
 - ・石炭価格は一定:

表 10.5.(2)および図 10.2.(1)~(2)

・石炭価格を10% 上昇:

表 10.5.(3)および図 10.3.(1)~(2)

- (3) 重油価格が 207 US\$/kl 、金利9%及び利用率65%の場合の感度分析
 - ・石炭価格は一定:

表 10.5.(4)および図 10.4.(1)~(2)

上記の分析結果を要約すれば以下の通りである。

金 利 <u>(%)</u>	利用率 (%)	重油価格 (US\$/kl)	石炭価格 <u>(US\$/t)</u> _	石 炭 火 力 送電端原価 (Cent/kWh)	損益分岐点 時間(利用率)	石炭火力 <u>妥当開発量</u> (1997年時点)
基準条件に	こよる分も	ዡ ፡				
9.0	70	137	47.68	5. 30	5. 171 (59. 0%)	888MW
感度分	析:					
9. 0	70	207	47. 68	5. 30	1, 989 (22, 7%)	1,885MW
9. 0	70	207	10 %上昇	5. 53	2, 166 (24. 7%)	1,821MW
9. 0	65	207	47.68	5, 53	1, 989 (22. 7%)	1,885MW

Table 10.1.(1) BASIC DATA OF ALTERNATIVES

Discount rate: 15.0%
Oil price: 137.0 US\$/kl
Price rise for coal: 0.0%
Plant factor: 70.0%

Here Item		Coal-fired	Oil-fired
Installed capacity (MW)		600.0	583.5
Annual generation (GWh)	# * *	3679.2	3620.5
Investment cost (1000 US\$)		610743	420092
0 & M cost (1000 US\$)		27483	18904
Fuel cost (1000 US\$)		79641	115133

Table 10.1.(2) BENEFIT/COST RATIO & EQUALIZING DISCOUNT RATE

Discount rate: 15.0%
Oil price: 137.0 US\$/kl
Price rise for coal: 0.0%

Plant factor: 70.0%

Item	Coal-fired	Oil-fired
PV-Investment cost (1000 US\$)	428222	293988
PV-0 & M cost (1000 US\$)	96212	66178
PV-Fuel cost (1000 US\$)	278801	403049
PV-Total cost (1000 US\$)	803235	763215
Surplus benefit (1000 US\$)	-40020	
Benefit/cost ratio	0.950	

Table 10.1.(3) BENEFIT/COST RATIO & EQUALIZING DISCOUNT RATE

Discount rate: 10.9%
Oil price: 137.0 US\$/kl
Price rise for coal: 0.0%
Plant factor: 70.0%

Item		Coal-fired	:	Oil-fired
PV-Investment cost (1000 PV-0 & M cost (1000 US\$)	US\$)	5 453453	1 1 1 3 a. 1	321797
PV-0 & M cost (1000 US\$)		151186		103991
PV-Fuel cost (1000 US\$)				633341
PV-Total cost (1000 US\$)	to the first section of	1057740	5.80	1059130
Surplus benefit (1000 US\$		1389	137.	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
Benefit/cost ratio		1.001	* .	

Table 10.1.(4) BENEFIT/COST RATIO & EQUALIZING DISCOUNT RATE

Discount rate: 11.0%
Oil price: 137.0 US\$/kl
Price rise for coal: 0.0%
Plant factor: 70.0%

I tem		Coal-fired		Oil-fired
PV-Investment cost (1000 US\$)		467400		321069
PV-0 & M cost (1000 US\$)	12	149392		102757
PV-Fuel cost (1000 US\$)		432903		625826
PV-Total cost (1000 US\$)		1049700		1049650
Surplus benefit (1000 US\$)		-42		
Benefit/cost ratio		1.000		

Table 10.2.(1) BASIC DATA OF ALTERNATIVES

Discount rate: 15.0% Oil price: 207.0 US\$/kl Price rise for coal: 0.0% Plant factor: 70.0%

Item	Coal-fired	Oil-fired
Installed capacity (MW)	600.0	583.5
Annual generation (GWh)	3679.2	3620.5
Investment cost (1000 US\$)	610743	420092
0 & M cost (1000 US\$)	27483	18904
Fuel cost (1000 US\$)	79641	173959

Table 10.2.(2) BENEFIT/COST RATIO & EQUALIZING DISCOUNT RATE

Discount rate: 15.0% Oil price: 207.0 US\$/kl Price rise for coal: 0.0% Plant factor: 70.0%

Item	Coal-fired	Oil-fired
PV-Investment cost (1000 US\$)	428222	293988
PV-0 & M cost (1000 US\$)	96212	66178
PV-Fuel cost (1000 US\$)	278801	608986
PV-Total cost (1000 US\$)	803235	969152
Surplus benefit (1000 US\$)	165917	
Benefit/cost ratio	1.207	•

Table 10.2.(3) BENEFIT/COST RATIO & EQUALIZING DISCOUNT RATE

Discount rate: 27.3%
Oil price: 207.0 US\$/kl
Price rise for coal: 0.0%
Plant factor: 70.0%

Item	Coal-fired	Oil-fired
PV-Investment cost (1000 US\$) PV-0 & M cost (1000 US\$) PV-Fuel cost (1000 US\$) PV-Total cost (1000 US\$) Surplus benefit (1000 US\$) Benefit/cost ratio	336129 33952 98386 468468 95 1.000	230304 23354 214905 468563

Table 10.2.(4) BENEFIT/COST RATIO & EQUALIZING DISCOUNT RATE

Discount rate: 27.4%
Oil price: 207.0 US\$/kl
Price rise for coal: 0.0%
Plant factor: 70.0%

Item	Coal-fired	Oil-fired
PV-Investment cost (1000 US\$)	335519	229882
PV-0 & M cost (1000 US\$)	33710	23187
PV-Fuel cost (1000 US\$)	97683	213369
PV-Total cost (1000 US\$)	466911	466437
Surplus benefit (1000 US\$)	-474	
Benefit/cost ratio	0.999	

BASIC DATA OF ALTERNATIVES

Discount rate: 15.0% Oil price: 207.0 US\$/kl Price rise for coal: 10.0% Plant factor: 70.0%

a en la Item	Coal-fired	Oil-fired
Installed capacity (MW)	600.0	583.5
Annual generation (GWh)	3679.2	3620.5
Investment cost (1000 US\$)	610743	420092
O & M cost (1000 US\$)	27483	18904
Fuel cost (1000 US\$)	87605	173959

Table 10.3.(2) BENEFIT/COST RATIO & EQUALIZING DISCOUNT RATE

Discount rate: 15.0% 0il price: 207.0 US\$/kl Price rise for coal: 10.0% Plant factor: 70.0%

Item	Coal-fired	Oil-fired
PV-Investment cost (1000 US\$)	428222	293988
PV-0 & M cost (1000 US\$)	96212	66178
PV-Fuel cost (1000 US\$)	306681	608986
PV-Total cost (1000 US\$)	831115	969152
Surplus benefit (1000 US\$)	138037	
Benefit/cost ratio	1.166	

Table 10.3.(3) BENEFIT/COST RATIO & EQUALIZING DISCOUNT RATE

Discount rate: 25.5% Oil price: 207.0 US\$/kl Price rise for coal: 10.0% Plant factor: 70.0%		
Item	Coal-fired	Oil-fired
PV-Total cost (1000 US\$)	347446 38740 123485 509670 315 1.001	238132 26647 245208 509986

BENEFIT/COST RATIO & EQUALIZING DISCOUNT RATE Table 10.3.(4)

Discount rate: 25.6% 0il price: 207.0 US\$/kl Price rise for coal: 10.0%

Plant factor: 70.0%

Item	Coal-fired	Oil-fired
PV-Investment cost (1000 US\$) PV-O & M cost (1000 US\$) PV-Fuel cost (1000 US\$) PV-Total cost (1000 US\$) Surplus benefit (1000 US\$) Benefit/cost ratio	346800 38451 122565 507817	237685 26448 243382 507516
penetit/cost latio	U • 2 3 3	·

Part of Table 10.4.(1) BASIC DATA OF ALTERNATIVES

Discount rate: 15.0%
Oil price: 207.0 US\$/kl
Price rise for coal: 0.0%
Plant factor: 65.0%

Coal-fired	Oil-fired
600.0	583.5
3416.4	3361.9
610743	420092
27483	18904
73952	161534
	600.0 3416.4 610743 27483

Table 10.4.(2) BENEFIT/COST RATIO & EQUALIZING DISCOUNT RATE

Discount rate: 15.0%
Oil price: 207.0 US\$/kl
Price rise for coal: 0.0%
Plant factor: 65.0%

Item	Coal-fired	Oil-fired
PV-Investment cost (1000 US\$)	428222	293988
PV-0 & M cost (1000 US\$)	96212	66178
PV-Fuel cost (1000 US\$)	25888 6	565487
PV-Total cost (1000 US\$)	783320	925653
Surplus benefit (1000 US\$)	142333	•
Benefit/cost ratio	1.182	

Table 10.4.(3) BENEFIT/COST RATIO & EQUALIZING DISCOUNT RATE

Discount rate: 25.8%
Oil price: 207.0 US\$/kl
Price rise for coal: 0.0%

Plant factor: 65.0%

Item	Coal-fired	Oil-fired
PV-Investment cost (1000 US\$)	345516	236797
PV-O & M cost (1000 US\$)	37883	26057
PV-Fuel cost (1000 US\$)	101935	222657
PV-Total cost (1000 US\$)	485334	485511
Surplus benefit (1000 US\$)	177	
Benefit/cost ratio	1.000	

Table 10.4.(4) BENEFIT/COST RATIO 8 EQUALIZING DISCOUNT RATE

Discount rate: 25.9%
Oil price: 207.0 US\$/kl
Price rise for coal: 0.0%
Plant factor: 65.0%

Item	Coal-fired	Oil-fired
PV-Investment cost (1000 US\$)	344876	236354
PV-O & M'cost (1000 US\$)	37603	25865
PV-Fuel cost (1000 US\$)	101181	221011
PV-Total cost (1000 US\$)	483661	483230
Surplus benefit (1000 US\$)	-431	
Benefit/cost ratio	0.999	and the Especial Experience

Table 10.5.(1) GENERATION COST PER KWH (SENDING-END)

Interest rate: 9.0% Oil price: US\$ 137/kl

Coal price increase: 0.0%

Plant factor: 70.0%

Type of P.Plant	Capital cost (US\$/kW)	O & M cost (US\$/kW)	Fuel cost (US\$/kW)	Total cost (US\$/kW)	Unit fuel cost (Cent/kWh)	Sending- end cost (Cent/kWh)
Coal-fired	122.11	45.81	132.73	300.65	2.16	5.30
Oil-fired	83.90	31.51	191.89	307.30	3.18	5.42
Crandayar-na	int for some	nomia anara	tion (Conl	0:13:	Ş	5171 hours

Crossover-point for economic operation (Coal/Oil):

5171 hours

Plant factor of the above: 59.0%

Fig. 10.1. (1) SCREENING CURVES (TIME-COST CURVES)

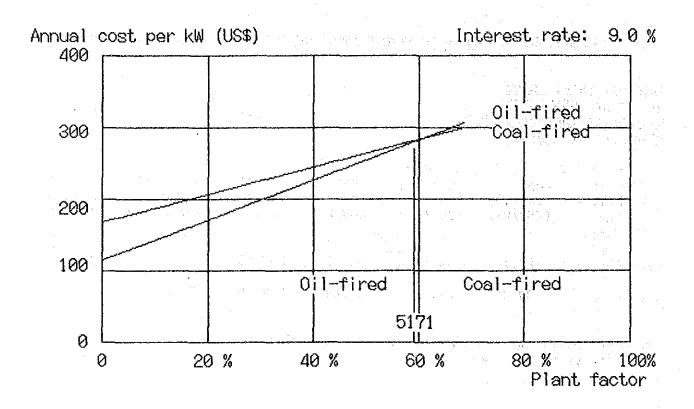
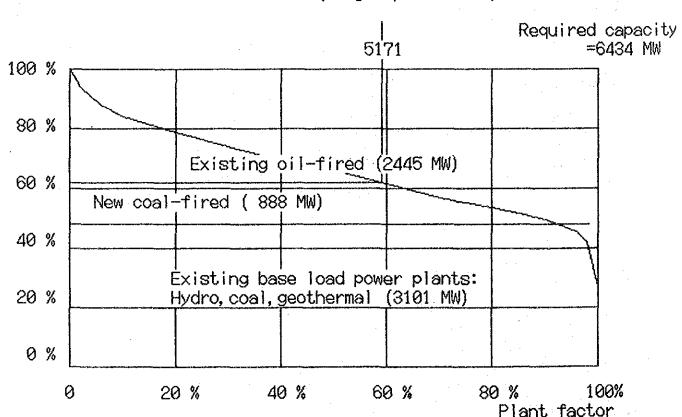



Fig. 10.1.(2) OPTIMUM POWER SOURCE STRUCTURE (Target year: 1997)

Table 10.5.(2) GENERATION COST PER KWH (SENDING-END)

Interest rate: 9.0% Oil price: US\$ 207/kl
Coal price increase: 0.0%
Plant factor: 70.0%

Type of P.Plant	Capital cost (US\$/kW)	O & M cost (US\$/kW)	Fuel cost (US\$/kW)	Total cost (US\$/kW)	Unit fuel cost (Cent/kWh)	Sending- end cost (Cent/kWh)
Coal-fired	122.11	45.81	132.73	300.65	2.16	5.30
Oil-fired	83.90	31.51	289.93	405.34	4.80	7.15

Crossover-point for economic operation (Coal/Oil): Plant factor of the above:

1989 hours 22.7%

Fig. 10.2. (1) SCREENING CURVES (TIME-COST CURVES)

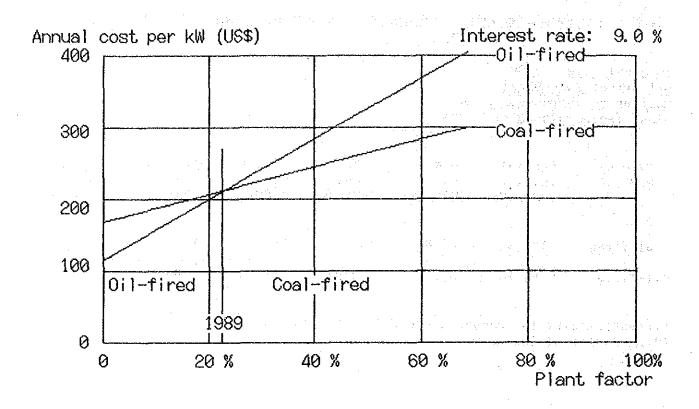
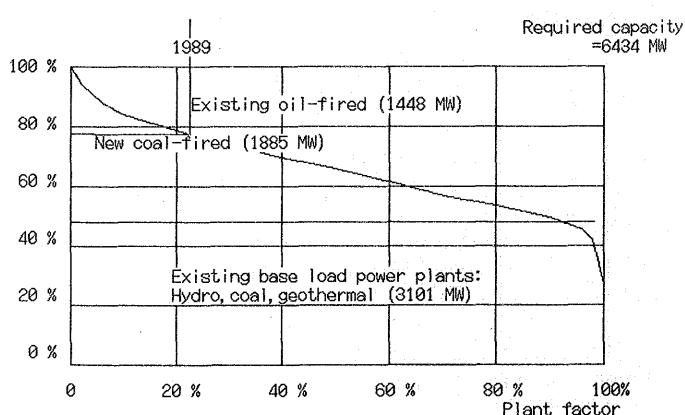



Fig. 10.2.(2) OPTIMUM POWER SOURCE STRUCTURE (Target year: 1997)

Table 10.5.(3) GENERATION COST PER KWH (SENDING-END)

Interest rate: 9.0% Oil price: US\$ 207/kl

Coal price increase: 10.0%

Plant factor: 70.0%

Type of P.Plant	Capital cost (US\$/kW)	O & M cost (US\$/kW)	Fuel cost (US\$/kW)	Total cost (US\$/kW)	Unit fuel cost (Cent/kWh)	Sending- end cost (Cent/kWh)
Coal-fired	122.11	45.81	146.01	313.92	2.38	5.53
Oil-fired	83.90	31.51	289.93	405.34	4.80	7.15

Crossover-point for economic operation (Coal/Oil): Plant factor of the above:

2166 hours 24.7%

Fig. 10.3. (1) SCREENING CURVES (TIME-COST CURVES)

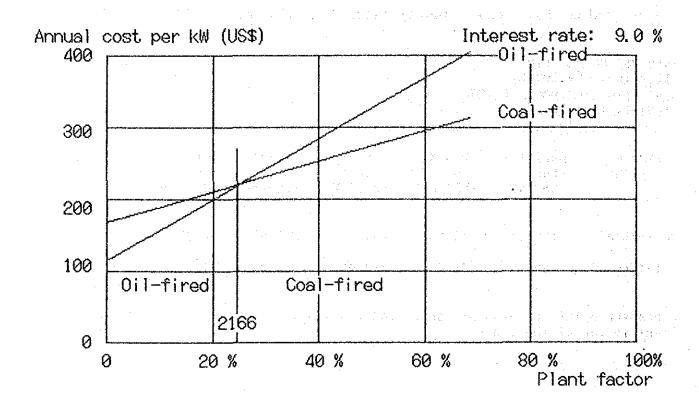


Fig. 10.3.(2) OPTIMUM POWER SOURCE STRUCTURE (Target year: 1997)

Table 10.5.(4) GENERATION COST PER KWH (SENDING-END)

Interest rate: 9.0% Oil price: US\$ 207/kl

Coal price increase: 0.0%

Plant factor: 65.0%

Type of P.Plant	Capital cost (US\$/kW)	O & M cost (US\$/kW)	Fuel cost (US\$/kW)	Total cost (US\$/kW)	Unit fuel cost (Cent/kWh)	Sending- end cost (Cent/kWh)
Coal-fired	122.11	45.81	123.25	291.17	2.16	5.53
Oil-fired	83.90	31.51	269.22	384.63	4.80	7.30

Crossover-point for economic operation (Coal/Oil): 1989 hours Plant factor of the above: 22.7%

Fig. 10.4. (1) SCREENING CURVES (TIME-COST CURVES)

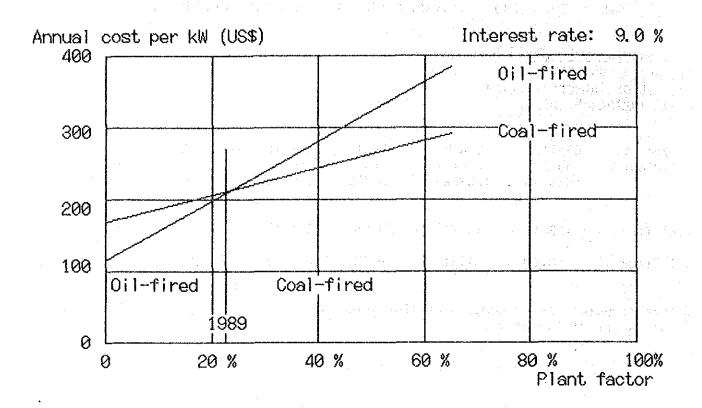
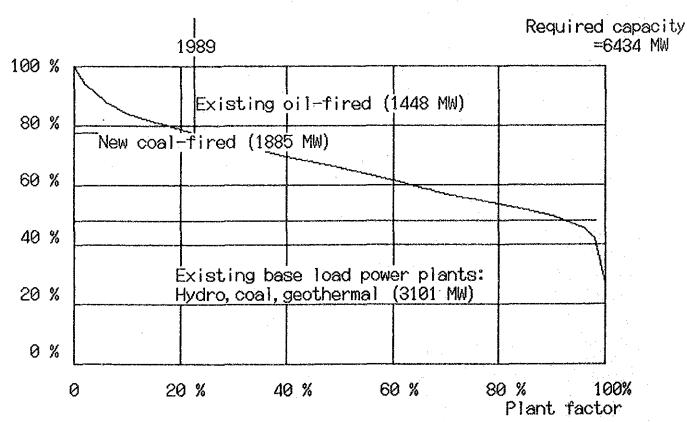



Fig. 10.4.(2) OPTIMUM POWER SOURCE STRUCTURE (Target year: 1997)

第 11 章

財 務 分 析

第11章 財務分析

	頁
11.1 要 旨	11-1
11.2 分析方法	11-1
11.3 前提条件	11 - 1
11.4 損益計算および収益率の算定	11 – 3
11.4.1 年度別工事費および建中利子	11 - 3
11.4.2 営業収益 (売電収入)	11-4
11.4.3 営業費用	11 - 4
11.4.4 借入金返済計画	11 – 5
11.4.5 プロジェクトの損益計算	11 - 5
11.4.6 プロジェクトの収益率	11 - 5
11.4.7 キャッシュフローおよび収支バランス	11-6
11.5 等価割引率 (財務的内部収益率) の算定	11 - 6
11.5.1 キャッシュフロー	11 - 6
11.5.2 財務的内部収益率 (FIRR)	11 6

List of Figures

Fig 11.5-1 Financial Internal Rate of Return (FIRR)

List of Tables

Tables	11.3-1	Procurement Fund and Amortization Schedule
Tables	11.3-2	Profit and Loss Statement
Tables	11.3-3	Cash Flow
Tables	11.3-4	Fixed Assetes in Operation and Rate of Return
//s-1-1-	44 4 4	Combiler for Coloulation of PIDD

第11章 財務分析

11.1 要 旨

本プロジェクトの財務分析結果は以下の通りである。

- (1) 収益率 (稼動固定資産に対する営業利益の比率) は、運開当初10年間で平均0.96%、 30年全期間平均で3.72%となる。
- (2) 年毎の収支バランスは借入金の支払と運転経費によって左右され、赤字と黒字を交 互に繰返している。
- (3) 財務的内部収益率は約3,37%である。

11.2 分析方法

財務分析は次の2通りの方法を用いて行う。

- (1) 損益計算および収益率の算定
 - ・適当と思われる資金調達条件を仮定し、借入金の返済計画表を作成する。
- ・プロジェクトの損益計算を行い、収益率 (稼動固定資産に対する営業利益の比率)を算定する。
 - ・キャッシュ・フロー・シートを作成し、資金の収支バランスを検討する。
 - (2) 財務的内部収益率 (FIRR) の算定
 - ・発電所の全運転期間を通じて、売電収入および総費用のそれぞれの現在価値換算 額が等しくなるような割引率を算定する。

11.3 前提条件

プロジェクトの財務分析に用いた前提条件は以下の通りである。

(1) 建設資金の調達条件

本プロジェクトでは資金調達条件を次のように仮定する。

外貨建て工事費 : 総合金利 2.9%

借款期間 30年(L/A 締結後)

返済猶予期間10年(")

返済期間 20年

内貨建て工事費 : 総合金利 17%

返済期間 10年(運転開始後)

(2) 為替レート

為替レートは下記の通りとした。

US\$ 1 = P 22.0

(3) その他費用および収益の価格

運開は1号機1996年5月、2号機1996年10月を見込んでいるが、営業収益、費用とも1997年から発生するものとし、価格は1989年時点のものとした。

i) 営業収益のベースとしての売電価格

ルソン電力系統における1989年の平均売電価格を1.08 P/kWhと推定した。

ii)燃料価格

- a. 1989年の石炭価格をペースとし国内炭についてはNapocor の「Price Adjust-ments for Selectively-Mined Coal」に従って水分補正を行った。
- b. 燃料は国内炭と海外炭をそれぞれ50Wt% ずつ使用する計画となっているため、 燃料価格は国内炭と海外炭の平均価格とする。

1988年における石炭価格

国内炭(水分補正前) 52.955 US\$/t

(水分補正後) 50.30 US\$/t

海外炭 60.00 US\$/t

平 均 55.15 US\$/t

iii) 運転維持費·管理費

a. 運転維持費

われわれの実績により、将来の設備劣化対策費、増・改良工事費を見込んで、 VAT を除く直接工事費に対する経費率を次つ通りとした。

医乳肿 化二二氯氯化基化氯二氯化

初年度 1.5%

b. 管理費

NAPOCOR の石炭火力発電所における1989年の実績とする。

(Generation Overhead) + (TL/SS/RO/HO Overhead)

- = (0.05155 + 0.008156)
- = 0.06 P/kWh

iv)減価償却費

減価償却費は建中利子を含む総工事費から算定される。

償却年数を30年とし、償却方法は Year's-Digits Method を用いた。

11.4 損益計算および収益率の算定

11.4.1 年度別工事費および建中利子

輸入税、VAT を含めた工事費、建中利子、総工事費の年度展開は次の通りである。

(単位:US\$×1000)

		工事費						建中利子				総工事費						
	外	貨	内	貨	合	計	外	貨	内	貨	合	計	外	貨	内	貨	合	計
1992	68, 8	64	15,	645	84,	509	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	330		435		765	69,	194	16,	080	85,	274
1993	3, 9	95	2,	400	6,	395	2,	051	2,	847	4,	898	6,	046	5,	247	11,	293
1994	296, 7	44	99,	985	396,	729	5,	352	12,	219	17,	571	302,	096	112,	204	414,	300
1995	64, 1	17	12,	645	76,	762	12,	080	21,	559	33,	639	76,	197	34,	204	110,	401
1996	70, 5	07	22,	441	92,	948	13,	563	24,	384	37,	947	84,	070	46,	825	130,	895
計	504, 2	27	153,	116	657,	343	33,	376	61,	444	94,	820	537,	603	214,	560	752,	163

11.4.2 営業収益(売電収入)

1989年の売電単価は1、08P/kWh である。

又、売電可能な年間電力量は所内率 7.5%、送電損失3%として、

発電端 600MW×8,760h×0.7 = 3.679,200 MWh/year

送電端 3,679,200× (1-0,075) = 3,403,260 MWh/year

受電端 3,403,260× (1-0,03) = 3,301,162 MWh/year

であるから、年間の売電収入は次のように見積もられる。

3, 301, $162 \times 10^3 \times 1$. 08P/kWh/22. 0P/US\$

 $= 162,057 \times 10^{3} \text{ US}$ \$\text{y}

11,4,3 営業費用

- (1) 運転維持費・管理費
 - a. 運転維持費は、VAT を除く直接工事費に対して次の式で計算した。

F = 0.2143 (n-1) + 1.5 %

ここに、F: 運転維持費の経費率

n:運開後の任意の年

b. 管理費は、年間の発電端発生電力量に管理費率0.06P/kWh を掛けたものである から

3, 679, 200×10^3 kWh/year $\times 0$, 06P/kWh/22P/US\$

 $= 10.034 \times 10^{3}$ US\$/year

となる。

c. 直接工事費(VATを除く)

 $551,451 \times 10^{8}$ US\$

従って、n年における運転維持費、管理費は、

 $551,451\times10^{3}$ US\$ {0.2143 (n-1)+1.5} $\times10^{-2}+10,034\times10^{3}$ US\$/year となる。

(2) 燃料費

11.3の(3)のii) に示したように、1989年における燃料単価は55.15US\$/tと見積ら れる。

年間の燃料消費量は、

$$\frac{600 \times 10^{3} \text{kW} \times 860 \text{ kcal/kWh} \times 8,760 \text{ h/y} \times 0.7}{5,262 \text{ kcal/kg} \times 0.36} \times 10^{-3}$$

= 1,670,315 t/year

であるから、年間の燃料費は、

1, 670, 315 t/year \times 55, 15US\$/t

 $=92,118\times10^{3}$ US\$/year

となる。

(3) 減価償却費

減価償却の対象となるのは建中利子を含めた総工事費の 753,680×10°US\$である。 減価償却の期間は30年、償却方法は Year's-Digits Method であり、各年の償却 率は次のように計算される。

初年度
$$\frac{n}{n\left(\frac{n+1}{2}\right)}$$
 $n:$ 償却年数

2年目以降は分母は変らず、分子が (n-1)、(n-2) 、(n-3) ··· (n-29) となる。

11.4.4 借入金返済計画

11.3 の(1)項の条件に基づく調達資金の返済計画は Table 11.3-1 に示す通りである。

11.4.5 プロジェクトの損益計算

以上の営業収益および営業費用、並びに Table 11.3-2 で算定された財務費用(支払利息)を基として、本プロジェクトの損益計算を行うと Table 11.3-2 に示す通りとなる。

11.4.6 プロジェクトの収益率

Table 11.3-2の損益計算書を基として、運転当初10年間および全運転期間30年の総合平均の収益率(稼動固定資産に対する営業利益の比率)および純利益率(稼動固定資産に対する対する純利益の比率)を求めると次の通りとなる。

a) 運転開始後10年間

一 稼動固定資産累計 US\$ 5,325,795.5 ×10°

一営業利益累計

US\$ 50, 922×10^{3}

一収益率

50, 922/5, 325, 795, 5=0, 96%

三、水原、烧牛水等。1. 水油。

b) 運転全期間30年

一 稼動固定資産累計

US\$ 7,646,975,5 \times 10°

一営業利益累計

US\$ 284, 144×10^{3}

一収益率

284, 144/7, 646, 975, 5 = 3, 72%

11.4.7 キャッシュ・フローおよび収支バランス

表 11.3-1 および表 11.3-2 を基として、プロジェクトの着手時点から運転期間30 年の終期に至るまでのキャッシュ・フローを作成すると表 11.3-3 に示す通りとなり、 次の結論が得られる。

一 年毎の収支バランスは運開後赤字と黒字を繰り返しているが、累計のバランスは 103,435.5 ×10°US\$の赤字となっている。

11.5 等価割引率 (財務的内部収益率) の算定

所謂"財務的内部収益率 (FIRR)"はプロジェクトの収益と、プロジェクトの開始か ら耐用年数の終期までに生ずる総費用のそれぞれの現在価値換算額が等しくなる割引率 を言い、このような等価割引率は以下の割引計算によって求められる。

11.5.1 キャッシュ・フロー

割引計算の場合には、金利及び原価償却費はキャッシュ・フローから除かなければ ならない。この目的のために用いられる本計画のキャッシュ・フローを11.4-1に示す。

運転開始後30年間の収益および費用の差額 (Balance)を求め、これをプロジェクト 着手年の初頭に現在価値換算した累積額が±0になる割引率を求めると約3.37%と なる。

<u></u>		Fund	Procurement					Amortization	Schedule			
No.	Year			_		Foreign C	urrency			Local Cur	rency	
		Foreign Currency	Local Currency	Total	Interest	Principal	Total	Outstanding Balance	Interest	Principal	Total	Outstanding Balance
	1992 1993 1994 1995 1996	68,864 3,995 296,744 64,117 70,507	2,400 99,985 12,645	6,395 396,729	2,051.0 5,352.0 12,080.0			68,864.0 72,859.0 369,603.0 433,720.0 504,227.0	2,847 12,219 21,559			15,645 18,045 118,030 130,675 153,116
10 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016				14,622.6 14,622.6 14,622.6 14,622.6 13,891.5 13,160.3 12,429.2 11,698.1 10,966.9 10,235.8 9,504.7 8,773.5 8,042.4 7,311.3 6,580.2 5,849.0 5,117.9 4,386.8 3,655.6 2,924.5 2,193.4 1,462.3 731.1	25,211.3 25,211.3 25,211.3 25,211.3 25,211.3 25,211.3 25,211.3 25,211.3 25,211.3 25,211.3 25,211.3 25,211.3 25,211.3 25,211.3 25,211.3	14,622.6 14,622.6 14,622.6 14,622.6 39,833.9 39,102.8 38,371.6 37,640.5 36,909.4 36,178.2 35,447.1 34,716.0 33,984.8 33,253.7 32,522.6 31,791.5 31,060.3 30,329.2 29,598.1 28,866.9 28,135.8 27,404.7 26,673.6 25,942.4	504,227.0 504,227.0 504,227.0 479,015.6 453,804.3 428,592.9 403,381.6 378,170.2 352,958.9 327,747.5 302,536.2 277,324.8 252,113.5 226,902.1 201,690.8 176,479.4 151,268.1 126,056.7 100,845.4 75,634.0 50,422.7	24,867 23,507 21,916 20,054 17,876 15,327 12,345 8,856 4,774	8,001 9,361 10,952 12,814 14,992 17,541 20,523	32, 868 32, 868 32, 868 32, 868 32, 868 32, 868 32, 868 32, 856	52,094 28,082
	Total	504,227	153,116	657,343	212,027.5	504, 227	716,254.5		175,552	153,116	328,668	

	·			
		·		

		0		Operating Ex	penses		Onematica	Financial Ex	rpenses	Net Inc	cone
No.	Year	Operating Revenue	O&M, Admi- nistration	Fuel Cost	Depreci- ation	Total	Operating Income	Interest during Const.	Interest	Yearly Amount	Accumlated Amount
	1992 1993 1994 1995 1996		10.001	02 110	40 527	159 036	2 121	765.0 4,898.0 17,571.0 33,639.0 37,947.0	40,652.6	-765.0 -4,898.0 -17,571.0 -33,639.0 -37,947.0	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026	162,057 162,057	18, 291 19, 470 20, 650 21, 830 23, 009 24, 189 25, 369 26, 548 27, 728 28, 907 30, 087 31, 267 32, 446 33, 626 34, 806 35, 985 37, 165 38, 345 39, 524 40, 704 41, 883 43, 063 44, 243 45, 422 46, 602 47, 782 48, 961 50, 141 51, 320 52, 500	92,118 92,118 92,118	48,527 46,909 45,292 43,674 42,056 40,439 38,821 37,204 35,586 33,969 32,351 30,734 29,116 27,498 25,881 24,263 22,646 21,028 19,411 17,793 16,176 14,558 12,940 11,323 9,705 8,088 6,470 4,853 3,235 1,617	158, 936 158, 497 158, 060 157, 622 157, 183 156, 746 156, 308 155, 870 155, 432 154, 994 154, 556 154, 119 153, 680 153, 242 152, 805 152, 366 151, 929 151, 491 151, 053 150, 615 150, 177 149, 739 149, 301 148, 863 148, 425 147, 988 147, 988 147, 112 146, 673 146, 673 146, 673	4,435 4,874 5,311 5,749 6,187 6,625 7,063 7,501 7,938 8,377 8,815 9,252 9,691 10,128 10,566 11,004 11,442 11,880 12,318 12,756 13,194 13,632 14,069 14,508 14,945 15,384		40,052.0 39,489.6 38,129.6 36,538.6 34,676.6 31,767.5 28,487.3 24,774.2 20,554.1 15,740.9 10,235.8 9,504.7 8,773.5 8,042.4 7,311.3 6,580.2 5,849.0 5,117.9 4,386.8 3,655.6 2,924.5 2,193.4 1,462.3 731.1	-37,931.0 -35,929.6 -34,132.6 -32,103.6 -29,802.6 -26,456.5 -22,738.3 -18,587.2 -13,929.1 -8,677.9 -2,734.8 -1,566.7 -396.5 772.6 1,940.7 3,110.8 4,279.0 5,448.1 6,617.2 7,786.4 8,955.5 10,124.6 11,293.7 12,462.9 13,632.0 14,069.0 14,508.0 15,384.0 15,822.0	-168,281.2 -202,413.8 -234,517.4 -264,320.0 -290,776.5 -313,514.8 -332,102.0 -346,031.1 -354,709.0 -357,443.8 -359,010.5 -359,407.0 -358,634.4 -356,693.7 -353,582.9 -349,303.9 -343,855.8 -337,238.6 -329,452.2 -320,496.7 -310,372.1 -299,078.4 -286,615.5 -272,983.5
<u>_</u>	'otal	4,861,710	1,061,863	2,763,540	752, 163	4,577,566	284, 144	94,820	387,579.5	-198,255.5	

Table 11.3-3 Cash Flow

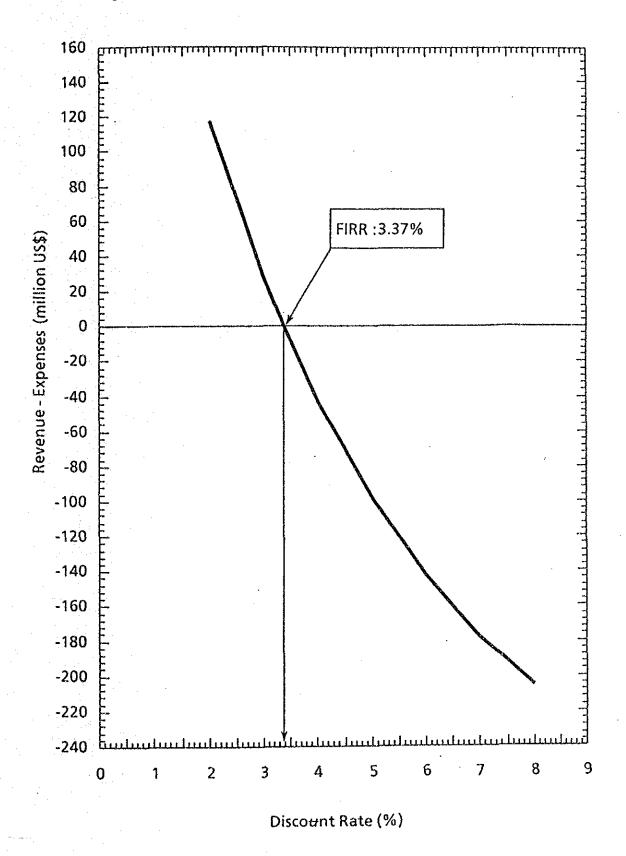

			Cash Infl	low			Cash Ou	tflow		Bal	ance
No.	Year	Fund	Net	Depreci-	M3 L 1		Repayment of	Principal		Yearly Amount	Acuumlated Amount
		Procurement	Income	ation	Total	Construc.	F.C.	L.C.	Total	ушкушто	/MC/GITO
	1992 1993 1994 1995 1996	84,509 6,395 396,729 76,762 92,948	-765.0 -4,898.0 -17,571.0 -33,639.0 -37,947.0		83,744.0 1,497.0 379,158.0 43,123.0 55,001.0	6,395.0 396,729.0 76,762.0			84,509.0 6,395.0 396,729.0 76,762.0 92,948.0	-765.0 -4,898.0 -17,571.0 -33,639.0 -37,947.0	-23,234.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025		-37,531.6 -35,929.6 -34,132.6 -32,103.6 -29,802.6 -26,456.5 -22,738.3 -18,587.2 -13,929.1 -8,677.9 -2,734.8 -1,566.7 -396.5 772.6 1,940.7 3,110.8 4,279.0 5,448.1 6,617.2 7,786.4 8,955.5 10,124.6 11,293.7 12,462.9 13,632.0 14,069.0 14,508.0 15,384.0 15,822.0	46,909 45,292 43,674 42,056 40,439 38,821 37,204 35,586 33,969 32,351 30,734 29,116 27,498 25,881 24,263 22,646 21,028 19,411 17,793 16,176 14,558 12,940 11,323 9,705 8,088 6,470 4,853 3,235	13, 982. 5 16, 082. 7 18, 616. 8 21, 656. 9 25, 291. 1 29, 616. 2 29, 167. 3 28, 719. 5 28, 270. 6 27, 821. 7 27, 373. 8 26, 925. 0 26, 476. 1 26, 028. 2 25, 579. 4 25, 131. 5 24, 682. 6 24, 233. 7		25,211.35 25,211.35 25,211.35 25,211.35 25,211.35 25,211.35 25,211.35 25,211.35 25,211.35 25,211.35 25,211.35 25,211.35 25,211.35 25,211.35 25,211.35 25,211.35 25,211.35 25,211.35 25,211.35	6,838 8,001 9,361 10,952 12,814 14,992 17,541 20,523 24,012 28,082	6,838.0 8,001.0 9,361.0 10,952.0 38,025.3 40,203.3 42,752.3 45,734.3 49,223.3 53,293.3 25,211.3 25,211.3 25,211.3 25,211.3 25,211.3 25,211.3 25,211.3 25,211.3 25,211.3 25,211.3 25,211.3 25,211.3 25,211.3	4, 157.4 2, 978.4 1, 798.4 618.4 -25, 771.9 -26, 220.8 -26, 669.6 -27, 117.5 -27, 566.4 -28, 002.2 4, 404.8 3, 955.9 3, 508.1 3, 059.2 2, 610.3 2, 162.4 1, 713.6 1, 264.7 816.8 368.0 -79.8 -528.7 -977.6 -1, 425.4 23, 337.0 22, 157.0 20, 978.0 19, 798.0 18, 619.0 17, 439.0	-85,885.8 -85,267.4 -111,039.3 -137,260.2 -163,929.8 -191,047.4 -218,613.8 -246,616.1 -242,211.2 -238,255.3 -234,747.1 -231,687.9 -229,077.5 -226,915.1 -225,201.4 -223,360.4 -223,360.4 -223,360.4 -224,338.0 -225,763.5 -202,426.5 -180,269.5 -159,291.5 -139,493.5 -120,874.5
	Total	657,343	-198,255.5	752, 163	1,211,250.5	657,343	504,227	153, 116	1,314,686	-103,435.5	

Table 11.3-4 Fixed Assetes in Operation and Rate of Return

Ni.			Fixed Assetes in Operation Operating Income						(B)/(A) 0.63 0.96
No.	Year	Balance of Bigining of Year		Balance of End of Year	Yearly Average	Yearly Average Acuumlated	Yearly Amount	Accumlated Amount	
	1992 1993 1994 1995 1996					(A)		(B)	(B)/(A)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 22 23 24 25 26 27 28 29 20 20 20 20 20 20 20 20 20 20 20 20 20	2000 2001 2002 2003 2004 2005 2006 2007 2008 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025	656,727 611,435 567,761 525,705 485,266 446,445 409,241 373,655 339,686 307,335 276,601 247,485 219,987 194,106 169,843 147,197 126,169 106,758 88,965 72,789 58,231 45,291 33,968 24,263 16,175 9,705 4,852	48,527 46,909 45,292 43,674 42,056 40,439 38,821 37,204 35,586 33,969 32,351 30,734 29,116 27,498 25,881 24,263 22,646 21,028 19,411 17,793 16,176 14,558 12,940 11,323 9,705 8,088 6,470 4,853 3,235 1,617	525,705 485,266 446,445 409,241 373,655 339,686 307,335 276,601 247,485 219,987 194,106 169,843 147,197 126,169 106,758 88,965 72,789 58,231 45,291 33,968 24,263 16,175 9,705 4,852	116, 463.5 97,861.5 80,877.0 65,510.0 51,761.0 39,629.5 29,115.5 20,219.0 12,940.0 7,278.5	1,408,081.0 2,042,162.0 2,631,760.0 3,178,493.0 3,683,978.5 4,149,834.0 4,577,677.0 4,969,125.0 5,325,795.5 5,649,306.0 5,941,274.0 6,203,317.0 6,437,053.0 6,437,053.0 6,437,053.0 6,826,074.0 6,826,074.0 7,121,277.0 7,237,740.5 7,335,602.0 7,416,479.0 7,481,989.0 7,573,379.5 7,602,495.0 7,635,654.0 7,642,932.5 7,646,167.0	3,997 4,435 4,874 5,311 5,749 6,187 6,625 7,063 7,501 7,938 8,377 8,815 9,252 9,691 10,128 10,566 11,004 11,442 11,880 12,318 12,756 13,194 13,632 14,069 14,508 14,945	10,678 15,113 19,987 25,298 31,047 37,234 43,859 50,922 58,423 66,361 74,738 83,553 92,805 102,496 112,624 123,190 134,194 145,636 157,516 169,834 182,590 195,784 209,416 223,485 237,993 252,938 268,322	0.63 0.96 1.4 1.99
	2026 Potal	1,617 8,023,057	1,011	7,270,894		1,010,713.3	284,144	ļ	

•					able 11.4-1	Cashiron	101 Calculat	1011 01 111111				
		Cash Inflow		Cash Outflow)				Net	Present Value		
No.	Year	Operating	 Construction	 O&M, Admi-	Fuel		Balance		Dis	count Rate (%)		
			Cost	nistration Cost	Cost	Total	 	2	3	3.36897014	4	5
1	1,992		84,509			84,509	-84,509	-82,851.96		-81,754.70	-81,258.65	-80, 484. 76
2	1,993		6,395			6,395	-6,395	-6,146.67		-5,984.94	-5,912.54	-5,800.45
	1,994		396,729		.	396,729	-396,729	-373,846.60	the second secon	-359, 189.29	-352,690.64	-342,709.43
	1,995		76,762			76,762	-76,762	-70,916.22		-67,233.46	-65,616.48	-63, 152, 29
	1,996		92,948		İ	92,948	-92,948	-84, 185, 87		-78,756.98	-76,396.48	-72,827.19
	1,997		at a	18,291	92, 118	110,409	51,648	45,861.95			40,818.16	38,540.53
	1,998			19,470		111,588	50,469	43,936.30			38,352.29	35,867.38
	1,999			20,650		112,768	49,289	42,067.69			36,014.99	33,360.74
	2,000			21,830		113,948	48, 109	40, 255. 46	_		33,800.75	31,011.49
	2,001			23,009		115, 127	46,930	38, 498, 95			31,704.23	28,810.95
11				24, 189		116,307	45,750	36,795.03			29,718.33	26,749.08
12				25,3691	92, 118	117, 487	44,570	35, 143, 14			27,838.29	24,818.24
	2,004			26,548		118,666		33,542.65	to the second se		26,059.51	23,011.17
	2,005			27,728		119,846	42,211	31,990.66			24,375.80	21,319.42
15				28,907		121,025	41,032	30,487.38		24,961.45	22,783.61	19,737.09
16				30,087		122, 205	39,852	29,030.02		23, 453, 46	21,277.31	18,256.66
-	2,008		. *	31,267		123, 385	38,672	27,618.09			19,853.17	16,872.47
	2,009			32,446		124,564	37,493				18,507.60	15,579.12
19				33,626	92,118	125,744	36,313	24,926.36			17,235.69	14,370.29
20				34,806	92, 118	126,924		23,643.50	·	·	16,034.24	13,241.26
21	2,012			35,985		128, 103		22, 402. 03			14,900.16	12, 187. 53
221				37, 165	92,118	129, 283		21, 199, 50		15,810.48	13,829.17	11,203.79
23				38,345	92, 118	130, 463		20,035.52			12,818.52	10,286.10
24				39,524		131,642	30,415	18,909.66			11,865.54	9,430.72
	2,016			40,704	92,118	132,822	29,235	17,819.63			10,966.54	8,633.18
	2,017			41,883	92, 118	134,001	28,056	16,765.68			10, 119, 50	7,890.49
27				43,063	92, 1181	135, 181	26,876	15,745.63			9,321.04	7, 198.69
28				44,243	92, 118	136,361	25,696	14,759.13			8,569.04	6,554.89
29	2,020			45, 422	92,118	137,540		13,805.82			7,861.41	5,956.31
30				46,602		138,720	23,337	12,883.68			7, 195.23	5,399.66
31	2,022			47,782		139,900		11,992.39			6,568.67	4,882.50
32	2,023			48,961		141,079	20,978	11,131.63			5,979.95	4,402.57
	2,024			50, 141		142,259	19,798	10,299.49			5,426.52	3,957.08
	2,025	i		51,320		143,438	18,619	9,496.21			4,907.08	3,544.22
35				52,500		144,618	17,439	8,719.98	6, 197. 53	5,468.45	4,419.31	3, 161.52
	otal	4,861,710	657,343	1,061,863	2,763,540	4,482,746	378,964.00	118,066.92	28, 124. 77	0.00	-42,753.14	-98,738.98

Fig. 11.5-1 Financial Internal Rate of Return (FIRR)

第 12 章

増設に関する留意事項

第12章 増設(3,4号機) に関する留意事項

将来、マシンロックサイトに3,4 号機を増設する構想を有するならば、本計画(1,2号機) の実施設計時点で以下の点に留意する必要がある。

- ① 楊炭設備については、5,000DWT程度の揚炭桟橋および海上ベルトコンペアを別途新設する必要がある。なお、60,000DWT バースを延長することは困難とおもわれる。
- ② 冷却水設備については、3,4 号機に関するすべての設備が新設となるので、これら設備のレイアウトおよびスペースについての配慮が必要となる。特に1,2 号機設備との干渉、温排水拡散等について特に配慮しなければならない。
- ③ 3,4号機で使用する工業用水量については、Masinloc Riverのみでは不足する可能性があるので別途水源を確保する必要がある。
- ④ 3.4 号機分の灰処理については、陸上灰捨場用地が不足すると思われるので海上灰捨場の新設も検討する必要がある。
- ⑤ DeSOx 設備は、発電所周辺地域の工業化が現在より進まなければ、新設の必要はないと考えられる。

主要参考文献

(主要参考文献)

- 1. フィリピン共和国石炭火力発電開発計画事前調査団報告書 (1988年12月;国際協力事業団)
 - 2. フィリピン共和国石炭鉱業技術開発マスタープラン調査報告書 (1988年 8月:国際協力事業団)
 - 3. 1988 ANNUAL REPORT

(1988; NAPOCOR)

- 4. Philippine Statistical Yearbook (1987; NEDA)
- 5. Living in the Philippines

(1988; The American Chamber of Commerce of the Philippines)

6. Power Development Program

(1988; NAPOCOR)

- Climatological normals / averages of the Philippines (1951-1985),
 National Insstitute of Climatology PAGASA
- Climatological extremes in the Philippines (Up to 1986)
 National Institute of Climatology PAGASA
- Tropical cyclone summaries from 1948 to 1978
 National Institute of Climatology PAGASA
- Surface observations in Iba (1981-1984)
 National Institute of Climatology PAGASA
- Geological surveying works at Masinloc site (Aug. 1989)
 JICA, Geotechnics Philippines, Inc.
- 12. Technical standards for port and harbour facilities in Japan 1980
- 13. Inventory of port facilities and services 1980
 Philippine ports authority
- 14. Check list of standard requirements for private port facility construction proposals

Philippine ports authority

- 15. National structural code of the Philippines volume 1 third edition (Sep. 1988)
- 16. Structural design data and specification sith edition A.B. Carrillo
- 17. 火力発電便覧;オーム社

- 18. 火力発電所;電気書院
- 19. 熱管理技術講義;丸 善
- 20. 火力発電所ボイラ・ポンプ設備;火力原子力技術協会
- 21. PSME Code; フィリピン機械学会
- 22. [Environmental Considerations in the Selection of the LCFTPP-III Site]
 (EIAD-EMD, Jan, 1989)

使用したプログラム

Analyzing program of waves (EPDC, KCC)
 Analyzing Program of Heated Effluent (EPDC, KCC)
 煙突排ガス拡散計算プログラム (短期) (産業公害防止協会)
 煙突排ガス拡散長期平均濃度計算プログラム (産業公害防止協会)
 騒音予測計算プログラム (産業公害防止協会)
 石炭火力発電所楊運炭シミュレーションプログラム (EPDC, KCC)