

APPENDIX C WATER QUALITY

APPENDIX C. WATER QUALITY

		Table of Contents	
			Page
	C.1.	Objectives	C = 1
	C.2	Existing Condition	C - 1
		C.2.1 Collected Data	C - 1
		C.2.2 Field Survey and Analysis	C - 1
		C.2.3 Assessment	C - 2
	C.3	Projection	C - 4
	•	C.3.1 General Description	C - 4
		C.3.2 Case Study	C - 4
		C.3.2.1 Condition	C - 4
ŧ		C.3.2.2 Calculation of Future Water Quality	C - 5
		C.3.3 Recommendation of Optimal Water Quality Conservation Measure	C - 6

List of Tables

		Page
Table C.1	Content of Existing Water Quality Analysis	CT - 1
Table C.2	Mckong at Vicntiane, Lao P.D.R. Surface Water Quality (Kaolieo: L.W.Q.A.)	CT - 2
Table C.3	Existing Water Quality Data (Mean Maximum Minimum) Location: Kaolico (L.W.Q.A.)	CT - 3
Table C.4	Water Quality at Kaolico (Nam Papa Lao) in Year 1988	CT - 4
Table C.5	Water Quality at Chinaimo (Nam Papa Lao) in Year 1988	CT - 7
Table C.6	Thatluang Swamp at Nong Nieng, Lao P.D.R. Surface Water Quality	CT - 13
Table C.7	Existing Water Quality Data (Mean Maximum Minimum) Location: Nong Nieng	CT - 14
Table C.8	Thatluang Swamp at Hong Xeng, Lao P.D.R. Surface Water Quality	CT - 15
Table C.9	Existing Water Quality Data (Mean Maximum Minimum) Location: Hong Xeng	CT - 16
Table C.10	Thatluang Swamp at Houa Khoua, Lao P.D.R. Surface Water Quality	CT - 17
Table C.11	Existing Water Quality (Mean Maximum Minimum) Location: Houa Khoua	CT - 18
Table C.12	Thatluang Swamp at Hong Kc, Lao P.D.R. Surface Water Quality	CT - 19
Table C.13	Existing Water Quality (Mean Maximum Minimum) Location: Hong Ke	CT - 20
Table C.14	Thatluang Swamp at Salakham, Lao P.D.R. Surface Water Quality	CT - 21
Table C.15	Existing Water Quality Data (Mean Maximum Minimum) Location: Salakham	
Table C.16	Content of Water Quality Survey and Analysis	CT - 23
Table C.17	Result of Water Quality Survey and Analysis (First Time) in Phase I	CT - 24
Table C.18	Result of Water Quality Survey and Analysis (Second Time) in Phase I	CT - 25
Table C.19	Result of Water Quality Survey and Analysis (Daily Change of Water Quality (No. 7,9) in Phase II.	CT - 26
Table C.20	Result of Water Survey and Analysis in Phase II	CT - 27
Table C.21	List of Fish, Water Plant and Water Use	CT - 28
Table C.22	Pollutant Load	CT - 29
Table C.23	Assessment of Water Quality	CT - 30

		Page
Table C.24	Land Use in the Study Area	CT - 31
Table C.25	Projection of Future Pollution in the Study Area	CT - 31
Table C.26	Projection of GRDP in the Study Area	CT - 31
Table C.27 (1)	Pollution Load Factor of Domestic Waste Water (BOD).	СТ - 32
Table C.27 (2)	Pollution Load Factor of Natural Run-off Water (BOD)	CT - 32
Table C.28	Estimation of Pollutant Load and Concentration (BOD): Present Condition	CT - 33
Table C.29	Estimation of Pollutant Load and Concentration (BOD): Future Condition	CT - 34
Table C.30	Estimation of Discharge and Concentration (BOD) in Future	CT - 34
Table C.31	Comparison of Concentration (COD) between Present and Future	CT - 35
	List of Figures	
		Page
Fig. C.1	Location Map of Water Sampling Site	CF - 1
Fig. C.2	Monthly Change of Water Quality at Kaolieo (L.W.Q.A.) between 1987 and 1989	CF - 2
Fig. C.3	Daily Change of Water Quality at Kaolieo	CF - 7
Fig. C.4 (1)	Monthly Change of Water Quality (TSS)	CF - 9
Fig. C.4 (2)	Monthly Change of Water Quality (COD)	CF - 10
Fig. C.4 (3)	Monthly Change of Water Quality (DO)	CF - 11
Fig. C.4 (4)	Monthly Change of Water Quality (T-P)	CF - 12
Fig. C.5	Distribution Map of Water Quality (TSS)	CF - 13
Fig. C.6	Distribution Map of Water Quality (COD Mn)	CF - 14
Fig. C.7	Distribution Map of Water Quality (DO)	CF - 15
Fig. C.8	Hourly Change of Water Quality (No. 7)	CF - 16
Fig. C.9	Hourly Change of Water Quality (No. 9)	CF - 17
Fig. C.10	Annual Change of Dissolved Oxygen (DO)	CF - 18
Fig. C.11	Annual Change of Total Suspended solid (TSS)	CF - 19
Fig. C.12	Annual Change of Water Quality (KMnO4 consumed).	CF - 20
Fig. C.13	Spatial Distribution of Water Quality	CF - 21
anderson in de la companya de la co La companya de la co		

C.1. Objectives

The objectives of the water quality survey are summarized as below;

- to collect the existing water quality data
- to survey the river water quality in the Study area
- to assess the existing river water quality in the Study area
- to designate the future river water quality in the priority project area
- to recommend an optimum water quality conservation measure.

C.2 Existing Condition

C.2.1 Collected Data

The analysis of the existing river water quality in the Study area are shown in Table C.1. Fig. C.1 shows the location of monitoring station.

Laboratory of Water Quality Analysis, Department of Irrigation, Ministry of Agriculture and Forestry has conducted the regular monitoring works of water quality for the Mekong river system since 1987. The monitoring has been done by sampling water at various stations once every month. The data at the following stations located in and around the study area were collected, Kaolieo (Mekong), Hong Xeng, Hong Ke, Nong Nieng, Salakham and Houa Khoua. The testing items are comprehensive and useful for the study.

NAM PAPA LAO (Water Supply corporation), Ministry of construction has carried out the surveys for pollutant source of river water. The survey is to identify the contribution of industry and livestock to the water pollution.

The contents of collected data are shown in Table C.2 - C.15 and Fig. C.2 - C.4.

C.2.2 Field Survey and Analysis

The field survey and analysis of water quality were carried out as shown in Table C.16.

The JICA carried out water sampling and analysis during the Study. The sampling and analysis were conducted twice, at the end of dry season (May) and at the end of the rainy season (September). The sample size is about 80. the sampling sites are distributed in the Study area and tallies 20 sites as shown in Fig. C.1.

The result of survey and analysis of water quality shown in Table C.17 - C.20, Fig. C.5. - C.9.

In addition, the existing fauna and flora and the water surface utilization were surveyed to assess the water quality. The surveyed results are listed in Table C.21.

C.2.3 Assessment

In general, the results of the test indicate that the water quality in terms of COD in the rainy season is improved as compared with that in the dry season. Dilution by rainfall and the consequent increase in run-off might be the reason for the better water quality. As can be seen in Table C.22 the pollutant loads have increased but the increase in run-off exceeded that in the loads.

On the contrary, the relative concentrations of TSS and turbidity were increased in the rainy season. The load which was once silted in the dry season might be transported by the traction force of high flow and be discharged in the run-off.

The concentrations of DO at the sampling sites No. 6,8 and 9 which are located in the urbanized area were improved but that of No. 3 (The Hong Ke) and No. 13 (The Nam Pasak right branch) become worse.

All the samples in the survey of Phase II attested the contamination of coliform. Especially the water sampled at No. 8 and 9 sites showed the infinitive coliform contamination. The poor sanitary condition should be remedied.

The results of water quality test are illustrated in Figs. C.10, C.11 and C.12 together with those average monthly data of the Mekong. The quality of drainage water is poor as compared with that of the Mekong in terms of COD.

However TSS of the Mekong is higher than the drainage water. This proved that the correlation between the qualities of both water has not changed since the dry season.

The result of assessment of water quality is shown in Table C.23 and it is distributed as shown in Fig. C.13.

This table and figure enunciate that the upstream reach of the river in the most urbanized areas is significantly polluted in the Study area. Therefor some measures should be taken to control the water quality.

C.3 Projection

C.3.1 General Description

The river water quality in the Study area is affected by the amount of pollutant load generated from domestic and industrial activity and natural load.

The future land use in the Study are is predicted as shown in table C.24. It shows that the ratio or urbanized land use increases more than present due to the increase of population and development of industrial activity, and about one half of the Study area is for residential use.

The population in the Study area, as shown in Table C.25, is over 150,000 in 1988 and is predicted to exceed 300,000 in 2020, in other words, the growth in the said period is twice.

GRDP (Gross Regional Domestic Product), which indicates the index of industrial activity is shown in Table C.26. It indicates that the value of GRDP is 13,543 million Kip in 1988 and is predicted 160,000 million kip in 2020, which is 11 times as much as present.

As mentioned above, the increase of population and development of industry are going on in future causing the increase of domestic waste water, which is the main source of pollutant load in the Study area.

Consequently, in case of lack in execution of some measure, the water quality which is bad even at present, will become worse than present.

C.3.2 Case Study

C.3.2.1 Condition

The future river water quality at the Location No. 3 (Hong Ke) and No. 13 (Nam Pasak) in the Study area, is described as below;

(1) The sources of pollutant load consist of domestic, industrial, institutional, commercial waste water and natural run-off, but in this case they deal with domestic waste water and natural run-off by the following reason;

- (a) The main source of pollutant load in the case study area is domestic waste water.
- (b) The pollutant load factor and waste water amount are described in the report "THE DISPOSAL OF DOMESTIC WASTE WATER IN URBAN VIENTIANE, S. Sandanam, 1988"
- (2) Run-off ratio of pollutant load is same as present.
- (3) The target year is 2020 when the goal of "IMPROVEMENT OF DRAINAGE SYSTEM IN VIENTIANE" is complete.

C.3.2.2 Calculation of Future Water Quality

(1) Generated Pollutant Load and Run-off Ratio of Pollutant Load

Table C.27 shows generated pollutant load at present and in future. The run-off ratio of pollutant load was calculated based on the population, catchment area and measurement of run-off load. The result of calculation is shown in Table C.28.

(2) Generated Pollutant Load and Run-off Pollutant Load in Future

The generated pollutant load and run-off pollutant load in future were calculated based on the population, pollutant load factor and run-off ratio of pollutant load. The result of calculation is shown in Table C.29.

(3) Future Discharge and Water Quality

The future water quality was calculated based on the future discharge and run-off pollutant load. The result of calculation is shown in Table C.30.

The future water quality was predicted becoming worse in comparison with present water quality as shown in Table C.31.

C.3.3 Recommendation of Optimal Water Quality Conservation Measure

The establishment of sewage system needs essentially a temporary measure of water quality conservation, which should be taken until the establishment of sewage system.

This paper recommends some suitable measures for water quality conservation which can be adopted in the river course.

The recommended measures are as follows;

(1) Measures adopted by the Feasibility Study

- (a) Purification pack: Screening of suspended solid in the small ditch
- (b) Submerged filter: Biofilm process in the secondary canal
- (c) Sedimentation box: Removal of sediment in the main canal
- (d) Lagoon: Sedimentation and purification in the lagoon "Nong Chanh"

(2) Measure recommended by This Feasibility Study

(a) Intake of water for purification

Moreover, as the existence of natural river bed and cultivation of water plant and fish contributes to the purification of water quality, it should be considered to preserve the function of purification harmonizing with the function of food control.

TABLES

Location	Item	Duration of Collected Date	of	Organi- zation
Kaolico	Water temperature, electric conductivity, TSS, Ca, Mg, Na, K, Alkalinity, Cl, SO ₄ , T-Fe, [NO ₃ - ₂] - NH ₄ -N, PO ₄ -P, T-P, Si, DO, CODmn, pH	1987-1989 N	Once a month	L.W.Q.A.
Kaolieo	Air and Water temperature, color, odor, Taste, Turbidity, Alkalinity, Ammonia Hydrogen, Nitrite nitrogen, Nitrate nitrogen, pH	1988	Generally everyday	
Chinaimo	Ditto and, electric conductivity, NH ₄ -N, KMnO ₄ consumed.	1988	Generally everyday	Ditto
Nong Nieng	The same as the item of Kaolieo (L.W.Q.A) and T-N	1986-1989	Once a month	L.W.Q.A
Hong Xeng	Ditto	Ditto	Ditto	Ditto
Houa Khoua	Ditto	Ditto	Ditto	Ditto
Hong Ke	Ditto	Ditto	Ditto	Ditto
Salakham	Ditto	Ditto	Ditto	Ditto
L.W.Q.A	: Laboratory of Water Quality A Agriculture, Forestry, Irrigation Department of Irrigation			

LAO PEOPLE'S DEMOCRATIC REPUBLIC
FEASIBILITY STUDY ON IMPROVEMENT
OF DRAINAGE SYSTEM IN VIENTIANE

JAPAN INTERNATIONAL COOPERATION AGENCY

									}	; !	≀ I	· · ·						
	Cond	ي ي	₽ .	æ,		ج : :	A1k.	: ت	. SQ4	Total-Fe	(¥93-2)-¥	<u>マーヤで</u>	Tota]-*	P04-P	Total-P	 S.	05.	302-100 200-100
	[B/28]	[red/1]	ineq/13	(wed/i)	1000/17	[mg/ 1]	[1/536]	[Req/1]	[1/684]	[1/66]	[1/6m]	[1/64]	[uð/1]	[#d/1]	[89/1]	[æg/1]		12/72
_	21.1	1,216	. 507	357	.052	-	1,706	109	425	169	124	.062		014	.016	4.700	7. 900	6
0	24.3	1,494	593	396	.041		1.932	235	138	890	100.	910		002	800	7,400	599	
o.	25.4	1,479	.638	400	.047		1,904	630	.652		343			9	,005	7,300	7.469	1 H2
	30.1	1.650	.810	670	970'		2,154	385	.625	.023	990.	.018		.025	920.	008-9	7.000	2.1
	28.7	1.592	633	735	.051		1.943	420	679	.021	1964	.016		.087	643.	6.200	6.820	4, 64
	26.2	1.700	345	609.	050.		1,787	.327	546	.334	.311	.632		.098	,129	6.300	6.446	~1
	23.3	1.350	S	127	.051		1.713	193	. 532	440	.290	.025		.121	.104	5,700	6.842	4.
	19.3	1.360	361	.244	102		1,618	.120	386	.123	313	500.		150	147.	\$ 580	6,850	
0.250	B. 61	306.	.780	234	.053		1,549	560	.33	.033	197	00		.045	\$80	2,600	6.370	1.8
520.0	19.3	1.060	888.	. 244	040		1.867	.075	.390	.024	140	600.		350	.092	7,100	6.960	ru
,272.0	20.3	1.060	.510	1000	() \$ §		1,716	127	\$04	940	7	,025		.020	.190	5.830	7.290	C
258.0	24.1	1.620	, 42 4	.365	038		1.936	163	061	.927	.235	¥00°		.039	.085	6,550	9.290	0
		1		1		1		•		,			1 1 1 1	1			-	1
110.0	24.7	080 	1.907	346	037		1.962	.250	.425	.002	861.	.005		.029	.031		8.500	V-4 V-1
36.0	27.3	7.603	.672	. 488	.040		2,089	.241	. 533	.040	084			.017	044		7.840	÷
68.0	27.3	1.718	. 591	482	.056	٠.	2,088	. 188	.641		197	900.		.024	.027		5,520	v-1
360.0	30.2	1.520	1.023	. 550	.055		2,116	.340	099-	101	.678	.01B		820.	.071	5.900	7.440	61
468.0	23.4	1.424	694.	380	.052		1.662	.326	.444	044	395	.034		970.	.081	5.700	9.790	
260.0	20.8	1.402	445	.749	100.		1.867	.175	.326	029	235	1034		032	.025	5,300	8.670	1.7
.716.0	17.7			295	040		1.470	.117	309	144	239	790		.080	.168	5.400	7.800	•0
:											1							6
,074.0	17.0			185	920.		1,508	.061	. 233	090	.122	.033		150	156	900.9	6.670	·4.
754.0	19.5	1.186	374	.200	.032		1.470	4/0.	. 209	067	13	920	-	520	620.	9.600	6.700	(-)
988.0	18.0	1.194	359	.240	944		1.521	. 092	342	1 977	232	500		035	951	6,300	6.600	۰۰ ن
260.0	18.6	1.403	.517	305	0.20		1.791	135	448	227	737	.018		.039	940	6.600	7.850	œ
104.0	22 0	1.814	.275	262	.035	. :	1.921	.127	809*	į	172	.024		175	.076	7.400	9,400	7:1
72.0	23.3	2.030	.117	470	,012		1.995	.213	.540	174	917	.023		041	140	7,000	10,200	1/2
25.0	25.7	616	298	165	.022		1.968	. 252	.465	235	123	910,		020	030	6,976	62.8	o,
0	29.1	2.130	253	009	(83)		1,930	.271	669.	127	050	.046		740	010	9.500	10.200	1.2
1.0	30.4	2,114	306	98	.056		1,955	.357	,706	970	, 903	619		.025	.032	7.300	:	٠.
70.0	24.8	1.502	,515	V 22	250,		1.736	.384	.623	275	.267	,035		1,105	. 019	0.300	8.474	2.0
										:					٠.			
												•	-	. i				
٠, .	٠												350	LAO PEOPLE'S FEASIBILITY S' OF DAKINAGE '	E'S DEMOC Y STUDY (GF SYSTEN	S DEMOCRATIC REPUBLIC STUDY ON IMPROVEMENT SYSTEM IN VIENTIANE	UBLIC EMENT	
							-											

MEKONG AT VIENTIANE, LAG POR SURFACE MATER QUALITY (KAOLIEO:L, W, Q, A)

Table C.2

Location, KAOLIEO (L, W, Q, A)

Year Item													Total	(NO3	NH4	Total	P04 T	Total Si	Šį	25	
		mp P	H TS	S C	puo	ඵ	Mg	N.	14	Alk	ゔ	Temp PH TSS Cond Ca Mg Na K Alk Cl SO4 Fe	E E	-5)-N	Z.	q	C)	съ ,			-MIN
	ပ		Ħ	80	S/Mn	3eq/11	neg/1	neq/11	meq/11	meq/1	meq/1	meq/1	mg/1	mg/l	mg/1	mg/1 r	mg/1 mg/1 mg/1 mg/1 mg/1	g/1 n	ng/1	mg/1 mg/1	mg/1
Mean 2	an 2	5,6 7	.8 20	3.5	23.5	а 26.6 7.8 203.5 23.5 1.400 0	0.626	0.409		1.818	0.190	0.190 0.488 0.119 0	0.119	.166	0.019		0.080	093	6.194	6.650	₩.
1987 Mz	X3	2.0 8	2 127	2.0	30.1	1.700	0.910	0.735	0.053	2.154	0.420	0.679	0.440	.313	0.062		0.350 0.	0.247	7.400	9.290	6.6
Mi	in. 2	1.2 7	7	2.0	19.3	0.900	0.349	0.234		1,549	0.073	0.337	0.021	.00	0.004	•	0.003 0.	005	4.700	0.669	6.6
Mean	san 2	5.9 8	25.9 8.0 220.2 2	20.2	22.2	22.2 1.434	5.631	0.337	0.042	1.788	0.177	0.438	0.264	0.213	0.027				5.133	7.607	™
1988 Mz	3x. 2	9.6	1.4 571	0.9	30.2		1.023	0.550	0.056	2.116	0.340	0.660	1.922	0.395	0.062	ر _ه .			7.400	9 000	2.6
W	in. 2	1.8	λοί (L)	36.0	17.0		0.275	0.200	0.030	1.470	0.061	0.233 0.002	0.002	0.780 0.005	0.005		0.017 0.	0.025	5.300	5.620	0.0
×	ean 2	6.6	4	5.4	26.7	1.939	0.301	0.523	0.035	1.917	0.295	0.607	0.182	1.122	0.028	ų.	0.250 0.	028 7	7.414	9.326	6.9
1989 M	ax. 2	9.0	~	72.0	30.4		0.516	0.600	0.056	1.995	0.384	0.706	0.296	1.267	0.046			041	9.506	10.200	2.0
Min. 21.8 8	in. 2	80	0	1.0	23.3		0.117	0.445	0.012	1.736	0.213	0.213 0.465 0.078 0	0.078	.003	0.016			0.019	6.300	8.430	0.0
Mean 25.7 7.9 648.8 22.7 1.286	ean 2	5.7.7	6.7	90 90	22.7	1.285	0.412	0.412 0.345	0.042		0.178	0.178 0.432 0.166 0.134 0.022	0 166	0.134	0.022	-	.071 0.	890	4.808	7.231	₩.
TOTAL MA	ax. 3	2.0 %	3.4.571	16.0	30.4	2.130	1.023	0.735	0.070	2.219	0.420	1.020	1.922	0.395 0.062	0.062	tord	1.105 0.	0.247	9.500	10.200	6.6
M	in. 2	1.2	<u>. </u>	1.0	17.0	0.800	0.117	0, 200	0.012		0.061	0, 233	0.002	0,001	0.004), 003 0 ,1	005	4.700	0.669	0.0

* 1989: from Jan. to May

Table C.4 (1) Water Quality at Kaolieo (Nam papa Lao) in year 1988 (1)

Jan. Almosphere temperature Mater temperature Turbidity Alkalinity Aesidual chlorine pH Color		19 17 15 76 73 72 90 78 120 0 0 0 0 7, 4 7, 3 7, 5	6 7 8 20 19 16 19 17 15 119 97 89 87 80 100 0 0 0 7.4 7.4 7.5 3 2 5	22 19 18 19 17 16 67 67 69 90 80 100 0 0 0	12
16	19 20 21 19 18 20 17 16 19 46 68 59 80 100 90 0 0 0 1.3 7.5 7.4 7	22 23 24 2 20 18 21 20 17 16 20 1 49 41 37 3 80 95 85 8 0 0 0 0 3 3 7.5 7.4 7.	18 25 23 7 16 24 21 7 35 1 34 2 80 85 94 1 0 0.1 0	29 30 31 m 21 18 21 17 17 20 30 35 38 84 90 90 6 0 0 7.3 7.5 7.4 2 3 4	Ran max. min. 20 25 15 18 25 13 65 318 1 90 120 76 0.0 0.1 0 7.4 7.6 7.3 5 18 0
teb. Simosphere temperatur Kaler temperature Furbidity Alkalinity Residual chlorine pH Color	ррм 39 40 ррм 100 87 ррм 0 0 ррм 0 7.6 7.4	22 20 26 17 18 24 44 35 30 80 90 98 0 0 0 7.3 7.5 7.4 2 4 4	6 7 8 22 20 22 17 21 21 22 24 31 82 100 100 0 0 0 7.3 7.5 7.4 2 3 5	22 23 20 17 21 21 18 1 19 80 80 120 0 0.01 0.01 7.3 7.3 7.5 7. 2 0 3	4 2 3 4
17 24 17 19 18 15 82 85 78 1 0 0 0	20 18 21 18 21 17 17 11 19 20 91 28 1	22	24 23 23 25 17 21 31 19 15 94 80 100 0 0 0	29 30 31 ae 27 26 24 95 0 7. 3 5	an max. min. 22 28 17 20 25 17 22 44 1 93 180 28 1.00 0.01 0 7.4 7.6 7.3 3 5 0
Mar. Atmosphere temperature Furbidity Alkalinity Alkalinity Alkalinity Olorine	e C 22 23	24 19 21 22 17 20 16 12 16 98 84 100 0 0 0	6 7 8 21 18 20 23 17 18 27 10 14 95 82 105 0 0 0 7.3 7.3 7.5 3 2 4	20 21 21 22 17 20 21 18 14 94 80 100 0 0 0	12
8 13 11 80 120 99 0 0 0	24 25 28 19 24 27 7 13 10 80 100 80 0 0 0	22	28 27 27 26 26 20 10 11 9 100 85 82 0 0 0 1 7.6 7.3 7.3	29 30 31 ac 32 27 26 30 26 20 10 14 9 100 90 82 0 0 0 7.5 7.3 7.3 3 4 2	an Pax. Bin. 24 32 18 22 30 17 13 27 1 89 120 52 0 0 0 7.4 7.6 7.2 3 5 0
Apl. Atmosphere temperature Mater temperature Ifurbidity Alkalinity Mesidual chlorine pll Color	re C 31 2 pps 13 1 pps 100 9 pps 0 7.5 7. pps 3	7 20 28 28 6 11 14 19 8 80 100 95 0 0 0 0 3 7.3 7.6 7.3 6 2 4 4	6 7 8 25 32 27 20 29 25 9 12 117 80 100 100 0 0 0 7.3 7.5 7.6 2 3 10	22 38 28 17 28 26 151 145 54 82 100 98 0 0 0 7.4 7.5 7.5 7 4 8 10	12
120 89 80 1	30 27 25 28 26 20 54 44 50 00 91 80 1	5 7.5 7.5	7 27 30 25 0 20 24 20 6 68 45 35	29 30 31 a 22 27 21 22 30 30 80 80 0 0 7.4 7.3 2 2	281

Table C.4 (2) Water Quality at Kaolieo (Nam papa Lao) in year 1988 (2)

	24 25 28 29 26 27 27 28 250 234 245 283 2 84 86 0 0 0 0 7.4 7.2 7.2 7.3 7.	1 2 3 27 26 26 27 26 26 37 53 47 89 80 82 0 0 0 0 7.5 7.3 7.4 5 2 2 20 21 22 23 30 30 31 32 29 29 28 27 100 228 206 155 100 101 0 0 0 7.5 7.6 7.3 7.6 7.3 17 17 17 17 17 17 17 17 17 17 17 17 17 1	1 30 1 31 1 32	26 32 29 2 28 29 28 2 108 89 95 10	2 174 140 283 35 90 180 80 0 0 0 0 0 0 0 0
	une itmosphere temperature C ster temperature C urbidity oppm lkalinity oppm lesidual chlorine oppm	1 2 3 27 26 25 28 28 26 229 223 150 0 0 0 7.2 7.2 7.2 57 49 23	4 5 6 28 25 26 28 27 27 159 326 323 0 0 0 7.3 7.3 7.1 43 24 24	7 8 9 10 27 28 27 30 27 27 27 27 27 320 330 297 160 0 0 0 0 7.2 7.1 7.3 7.2 43 45 27 34	11 12 13 14 15 30 30 28 25 27 27 29 27 27 27 119 145 134 140 128 98 0 0 0 0 7, 3 7, 6 7, 2 7, 2 7, 2 24 20 26 17 9
	28 29 23 23 2	0 0 0 0	24 25 26 30 29 28 28 27 27 100 84 80 0 0 0 7.2 7.2 7.2 20 31 13	27 28 29 3 29 30 29 2 28 27 27 2 79 90 170 18 0 0 0 7.2 7.3 7.2 7. 14 12 23 3	7 27 30 22 7 27 29 26 150 330 78 99 100 98 0 0 0 0 2 7.2 7.6 7.1
1	Altaosphore temperature Covater temperature Covater temperature ppm of the covate ppm of the covate ppm of the color ppm of t	1 2 3 26 26 29 27 27 27 220 305 530 0 0 0 7.2 7.2 7.6 13 35 24	4 5 5 5 25 25 25 27 27 598 590 600 0 0 0 7.3 7.3 7.3 42 45 63	7 8 9 10 26 30 30 30 27 27 27 27 585 500 589 870 0 0 0 0 7.4 7.3 7.3 7.3 40 46 14 24	11 12 13 14 15 28 29 27 27 27 27 27 27 27 27 27 27 27 27 1030 1040 525 353 354 0 0 0 0 0 0 7.4 7.4 7.4 7.3 7.2 7.3 20 107 15 14 17
	24 25 30 3 27 27 28 2 328 308 335 31 0 0 0 0 0 7.3 7.2 7.2 7.	0 0 0 0	24 25 26 30 28 25 27 27 300 353 354 36 0 0 0 7.6 7.2 7.3 13 50 74	27 28 29 3 20 30 28 2 27 27 27 2 418 518 750 78 0 0 0 7.2 7.2 7.2 7. 47 18 18 2	9 29 27 30 20 0 26 27 29 25 0 800 515 1040 220 98 100 96 0 12 0 12 0 3 7.1 7.3 7.6 7.1
	twosphere temperature C ater temperature C whidity ppm [kailnity ppm ppm]	29 26 26 27 27 27 885 868 675 0 0 0 0 7.3 7.2 7.3 14 17 16	29 28 28 28 27 27 365 1044 998 0 0 0 7.2 7.4 7.4 10 160 92	7 8 9 10 26 25 28 26 25 26 27 27 680 887 900 755 100 0 0 0 0 7.5 7.3 7.2 7.2 18 50 258 21	11 12 13 14 15 28 27 30 30 24 27 26 27 28 27 881 985 1042 940 932 0 0 0 0 0 7.2 7.3 7.4 7.6 7.2 19 22 120 90 100
	16 17 18 19 21 26 24 21 23 2 27 27 27 27 27 2 972 843 970 974 85 0 0 0 0 0 7.3 7.3 7.2 7.2 7. 120 100 110 140 10	25 24 26 7 22 27 27 2 120 560 474 0 0 0 0 3 7.2 7.2 7.3	24 25 26 28 25 27 27 27 27 544 505 515 0 0 0 7.2 7.4 7.2 98 29 57	27 28 29 31 29 25 25 25 24 27 26 27 26 471 480 533 476 100 0 0 7.2 7.5 7.3 7.2 20 18 63 36	24 26 30 21 27 27 28 22 466 748 1044 120 100 100 100 0 0 0 0 7.3 7.3 7.6 7.2

Table C.4(3) Water Quality at Kaolieo (Nam papa Lao) in year 1988(3)

Sept. Almosphere temperature C Mater temperature C Turbidity ppm Alkalinity ppm Alesidual chlorine ppm pll Color ppm	1 2 3 4 5 6 27 28 29 32 24 27 27 27 27 27 29 27 27 644 706 1017 701 583 449 0 0 0 0 0 0 0 7,3 7,3 7,4 7,6 7,3 7,2 99 49 130 90 139 57	7 8 9 10 11 12 13 14 15 24 27 29 29 31 26 29 26 28 27 27 27 27 27 28 27 27 27 27 27 335 298 298 354 350 407 296 287 562 0 0 0 0 0 0 0 64 44 0 0 0 7.3 7.2 7.3 7.2 7.0 7.3 7.2 7.2 7.3 62 33 19 29 28 21 31 13 15
16	6 29 28 26 28 27 26 7 27 <td> 27 28 29 30 31 hean hax, fain, 27 25 29 29 28 32 24 27 27 27 27 27 27 2</td>	27 28 29 30 31 hean hax, fain, 27 25 29 29 28 32 24 27 27 27 27 27 27 2
Oct. Atmosphere temperature C Water temperature C Turbidity ppm Alkalinity opm Residual chlorine ppm pH Color ppm	1 2 3 4 5 8 29 28 26 28 26 26 27 27 27 27 27 27 27 319 250 238 303 618 620 68 66 68 64 68 62 0 0 0 0 0 0 0 7.3 7.3 7.3 7.3 7.4 7.3 8 4 3 5 6 5	7 8 9 10 11 12 13 14 15 24 28 26 26 26 24 25 24 24 27 27 27 27 27 27 27 27 27 27 27 27 600 560 578 360 720 332 620 461 476 72 68 180 72 68 68 64 66 64 0 0 0 0 0 0 0 0 0 0 0 7.4 7.4 7.5 7.3 7.3 7.4 7.4 7.4 7.3 6 6 6 19 5 7 7 51 26 13
7.5 7.3 7.3 7.4 7.	7 28 27 28 24 25 28 6 27 26 24 27 27 27 27 0 805 337 250 198 192 190 6 68 68 64 62 72 68 0 0 0 0 0 0 0 0	27
Nov. Atmosphere temperature C Mater temperature C furbidity opm Alkalinity opm Residual chlorine opm pll Color opm	62 64 66 68 62 0	7 8 9 10 11 12 13 14 15 20 20 19 19 19 19 20 19 20 21 21 21 22 21 21 22 22 22 156 133 124 115 104 93 30 80 79 68 62 66 64 66 64 62 62 64 0 0 0 0 0 0 0 0 0 0 0 7.3 7.3 7.2 7.3 7.3 7.2 7.2 7.2 7.3 20 14 9 7 7 6 5 5 5
16	1 18 20 20 22 22 22 22 20 20 22 23 23 24 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25	27 28 29 30 31 sean sex. sin.
Dec. Atmosphere temperature C Hater temperature C Iurbidity opm Alkalinity opm Residual chlorine opm DII Color opm	1 2 3 4 5 6 19 16 19 19 22 22 14 22 22 23 54 72 50 63 50 68 100 70 64 66 0 0 0 0 0 7.3 7.5 7.5 7.4 7.4 4 11 5 5 5	7 8 9 10 11 12 13 14 15 22 21 22 19 15 19 18 19 19 24 23 23 20 16 20 20 20 20 62 53 52 45 58 44 50 54 45 64 66 72 64 80 66 68 64 66 0 0 0 0 0 0 0 0 0 0 0 7.4 7.3 7.5 7.5 7.6 7.4 7.4 7.4 7.4 6 6 6 5 5 12 3 2 5 4
15 17 18 19 20 18 20 17 19 19 29 22 20 20 22 45 44 50 43 44 64 64 48 66 0 0 0 0 0 0 7.5 7.5 7.5 7.5 7.5 7.4 5 5 8 2	21 20 20 19 20 22 21 21 20 21 20 21 39 41 50 43 40 64 66 60 64 62 0 0 0 0 0 0 0 7.5 7.4 7.5 7.5 7.5	27 28 29 30 31

Table C.5 (1) Water Quality at Chinaimo (Nam papa Lao) in year 1988 (1)

	OCATION: CHINAINO	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.1.1													
	au.		11.5	31	4	5	67	-77	81	T &	101	77	121	131	14	157
. N	laosphere temperature	C			24	24	24	24	24	24	25	25	24	25	24	23
	ater temperature	C		í	22	22	21	ži	22	žil	23	23	22	žž	22	22
: Fe	arhidity	ope		: J.	50	80	90	80	70	100	100	80	80	80	80	90
		ppm	- 1 1	1	3	3	ă	×5	13	100	100	34	90	00	00	30
100	dor .			hr	one no	~ 1	ne no	ne h	one no	one Inc	L	4 [.	ا ' ۔ ۔ ،	[· ·	"
l Tr	aste	1														поле
- 101	n		- 1 - 1	["	7.5	7,5	7. 5	7.5	7.5							none
		ppa			92	92	88			7.6	7.6	7.4	7.4	7.4	7.4	7.5
		ppn	i [١.,				90	100	151	154	152	150	150	108	120
		ppm	!!	4												поле
			i l	2									one i	one i	ione	none
		PPM											one jn	ione i	ione	none
		p p in	1 1	1				δ. 7	6.9	7.0	7. 2	7.1	7.0	7.1	7.2	7.0
		us\pao	1 1	1	265	279	273	271	270	284	285	285	282	280	280	282
٠.		מקס	1 1	- 1		- 1		İ			- 1	1		1		
- Mir		PPM	i i	n and	one no	ne ho	ne: no	ne Inc	one Inc	one Inc	one ho	one in	one in	one	one !	поле
Į lį	B	000	-	no	one no	ne no	กะ กอ									none
																1.02.0
	16 17 18 1		21 22		24	25	26	27	28	29	T 30	31	nean	max.	ain.	
	24 25 24 2		24 23	23	24	24	24	24	24	24	24.5	1 24				3
- 1	23 22 23 2	3 22	22 21		23	23	23			23						
	60 70 60 8							I 7.1	1 73		1 73 5	7.3	1 22	1 23		1 1
	60 70 60 8	D 60	60 50					23	23		23.5	23				1
ı		0 60	60 50		50	50	50	50 3	40	50	50	50	22.			0
l ne	3 3 3	3 3	60 50 4 3	50 3	50 3.	50 4	50 3	50 3	40	50 3	50 3	50				
	3 3 3 3 one none none	none i	60 50 4 3 none none	50 3 none	50 3. none	50 4 none	50 3 none	50 none	40 2 none	50 3 none	50 3 none	50 none				0
no	3 3 3 one none none none one none none none	none n	60 50 4 3 none none none none	50 3 none none	50 3. none	50 4 none none	50 3 none none	50 none none	40 2 none none	50 none none	50 none none	50 none none	66	10	0 4	0 2
no	3 3 3 3 000 000 000 000 000 000 000 000	none none 1	60 50 4 3 none none none none 7,4 7,6	50 3 none none 7. 6	50 none none 7.4	50 A none none 7. 45	50 3 none none 7, 4	50 3 none none 7.4	40 2 none none 7, 5	50 3 none none 6.8	50 3 none none 6, 9	50 none none 6.8	7.4	10	0 4 5 6 6.	0 2 8
ne	3 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 3 1 3 1 none 1 none 1 7 4 1 92	60 50 4 3 none none none none 7,4 7,6 87 94	50 3 none 10ne 7.6 94	50 3 none none 7.4 92	50 4 none none 7.45 93	50 3 none none 7, 4 92	50 3 none none 7.4 90	40 2 none none 7, 5 96	50 3 none none 6.8 95	50 3 none none 6, 9	50 3 none none 6.8 95	66	10	0 4 5 6 6.	0 2
no no	3 J J one none none none one none none none 7.4 7.3 7.4 7. 91 95 91 9 one none none none	3 3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	60 50 4 3 none none none none 7, 4 7, 6 87 94 none none	50 3 none none 7. 6 94	50 3 none none 7.4 92 none	58 none none 7.45 93 none	50 3 none none 7, 4 92 none	50 3 none none 7.4 90 none	40 2 none none 7,5 96 none	50 3 none none 6.8 95 none	50 3 none none 6, 9 96 none	50 none none 6.8 95 none	7.4	10	0 4 5 6 6.	0 2 8
no no	one none none none none none none none	none none none none none none none none	60 50 4 3 none none 7.4 7.6 87 94 none none	50 3 none none 7. 6 94 none	none none 7.4 92 none	none none 7, 45 93 none	50 3 none none 7, 4 92 none none	50 3 none none 7,4 90 none none	40 2 none none 7,5 96 none	50 none none 6.8 95 none	50 none none 6,9 none none	50 none none 6.8 95 none	7.4	10	0 4 5 6 6.	0 2 8
no no	one none none none none none none none	none none none none none none none none	none none 7, 4 7, 6 87 94 none none none none none none	50 3 none none 7. 6 94 none none	none none 7.4 92 none none	58 4 none none 7, 45 93 none none	50 3 none none 7, 4 92 none none	50 none none 7, 4 90 none none	40 2 none none 7,5 96 none none	50 none none 6,8 95 none none	50 3 none none 6.9 96 none none	none none 6.8 95 none none	7.4	7.15	0 4 5 G. 4 8	8 7
nc nc nc	one none hone hone none none hone hone h	none none none none none none none none	60 50 4 7 4 7 60 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	50 3 none 7.6 94 none none 5.8	none none 7.4 92 none sone none 7.0	50 4 none none 7, 45 93 none none none	50 3 none none 7, 4 92 none none none 7, 2	50 3 none none 7, 4 90 none none none	40 2 none none 7, 5 96 none none none	none none 6, 8 95 none none none	50 3 none none 6, 9 96 none none none	50 3 none none 6.8 95 none none none	7. 4 104. 7	7 15	0 4 5 G. 4 8	8 7 9
nc nc nc	one none none none none none none none	none none none none none none none none	none none 7, 4 7, 6 87 94 none none none none none none	50 3 none none 7. 6 94 none none	none none 7.4 92 none none	58 4 none none 7, 45 93 none none	50 3 none none 7, 4 92 none none	50 none none 7, 4 90 none none	40 2 none none 7,5 96 none none	50 none none 6,8 95 none none	50 3 none none 6.9 96 none none	none none 6.8 95 none none	7.4	7 15	0 4 5 G. 4 8	8 7 9
ne ne ne	one	3 3 3 10 none 10 10 10 10 10 10 10 10 10 10 10 10 10	60 50 4 3 none none 7,4 7,6 87 94 none none none none 6,8 6,9 275 278	50 3 none none 7.6 94 none none 5.8 268	50 3 none none 7.4 92 none none 7.0 258	58 4 none none 7, 45 93 none none 7, 1 270	50 3 none none 7, 4 92 none none 7, 2 269	50 3 none none 7, 4 90 none none 7, 1 268	40 2 none none 7,5 96 none none 269	50 3 none 10ne 6, 8 95 none none 7, 0 290	50 3 none none 6, 9 96 none none 7, 4 292	none none 6.8 95 none none 7.3 289	7. 4 104. 7	7 15	0 4 5 G. 4 8	8 7 9
no no no	3 3 3 3 3 3 3 3 3 3	3 3 3 3 10 10 10 10 10 10 10 10 10 10 10 10 10	60 30 none none 7.4 87 94 none none none none none none none non	none none 7. 6 94 none none 5. 8 268	none none 7.4 92 none none 7.0 268	none none 7. 45 93 none none 7. 1 270	50 3 none none 7, 4 92 none none 7, 2 269	50 3 none none 7, 4 90 none none 7, 1 268	A0 2 none none none none 269	50 3 none 6, 8 95 none none 7, 0 290	50 3 none hone 6, 9 96 none none 7, 4 292	none none 6.8 95 none none 7.3 289	7. 4 104. 7	7 15	0 4 5 G. 4 8	8 7 9
no no no	one	3 3 3 3 10 10 10 10 10 10 10 10 10 10 10 10 10	60 50 4 3 none none 7,4 7,6 87 94 none none none none 6,8 6,9 275 278	none none 7. 6 94 none none 5. 8 268	none none 7.4 92 none none 7.0 268	none none 7. 45 93 none none 7. 1 270	50 3 none none 7, 4 92 none none 7, 2 269	50 3 none none 7, 4 90 none none 7, 1 268	A0 2 none none none none 269	50 3 none 10ne 6, 8 95 none none 7, 0 290	50 3 none none 6, 9 96 none none 7, 4 292	none none 6.8 95 none none 7.3 289	7. 4 104. 7	7 15	0 4 5 G. 4 8	8 7 9

LOCATION: CHINAIMO																
t cb.		T T	7 2	3	1	1 5	1 .6	T 7	1 8	9	T 10	1 11	T 12	1 13	1 14	1 15
Almosphere lemperature	4, C	26	27	30	28	27	28	28	28	27	27	28	27	28	29	29
Mater temperature	ŗc	24	25	26	26	25	26	26	26	26	25	26	26	26	27	27
furbidity	рρя	40	10	40	40	30	30	10	30	30	30] 3ŏ	30	30	25	25
Color	рря	3	3	5	4	3	1. 4	5	5	i i	1 4	1 3	5	1 4	2	1 3
· Odor ·	100	none	none	none	none	none	none	hone -	none	none	none	none	none	none "	none	hone
faste		ione	none	none	none	none	none	none	1.	none	none	none	f	none	none	none .
foll l	•	7.5	7.4	7.6	7.45	7.6	7.55	7.8	7.6	8.9	7.6	7.5	7.6	7.6	7.5	7.6
	рра	96	93	94	93	98	92	91	. 92	92	94	95	97	95	100	95
Ammonia nitrogen	ppn	ione	none	none	none	none	none	none:	none	none	none	none	none	none	none	hone
Nitrite nitrogen	pre	ORC	none	none	none :	none	none	none	none	hone	none	none	none	none	none	none
Nittate nitrogen	рож	попе	none	none	none	none	none	none	none	none	none	hone	none	none	none	none
KMnO4	ррв .	6.9	7.0	7.5	8.0	7.4	7.9	7.4	7, 1	8. 2	7.9	7.5	7.4	7.3	7.6	7. 5
	¦as/hac	284	290	296	290	283	285	286	286	292	290	283	278	283	283	283
F c	թթա		ĺ		l	Į	1		ľ.	1	l			l		
	r R CL Cl	поле	none	none	none	none	none	none	none	none	none	none	none	none	none	hone
ilg	poli	none	none	none	none	none	none	none	none	none	none	none	none	none	none	none

	16	17	18	19	20	21	22	23	24	25	26	27	_ 28	29	30	31		max.	min.
	29	27	27	28	28	29	28	28	29	27	29			28			27.9	30	26
	27	26	25	26	26	27	26	27	27	26	28			27		j	26. 1	28	24
	-30	30	25	50	60	[80	60	40	50	40	40			50			39	80	25
٠,	- 4	5	4	5	6	3	6	3	2]	4			3			. 4	6	2
	10ne	попс	ione :	hone	none	none	none	none -	none	none	none]		none)	1	}))
		none	none	none	none	none	none	none	none	hone	none			none					
i	7. 55	7.8	7. û	7.6	7.6	7. G	7. 6	7.6	7.5	7.6	. 7. 6			7.6	,		7.5	. 7. 6	6.9
	92	98	90	100	96	96	96	100	97	96	98	i '		90		}	95	100	90
	none	none	none	none	none	none-	none	none	none	none	none			none				1	1 1
	none	none	ione	none	none .	none	попе	tone	none	none	none			none		i		1	
	none	none	none	none	none	none	none	none	ทอกต	none	none.	1		none		}	1	1	1.
	7.5	8.0	8.1	8. 2	7.9	7.5	7. 9	7.5	7.8	7.3	7.4			7.6		1, 1	7.6	8. 2	6.9
	275	280	285	292	273	282	273	282	278	290	300			285		l	285	300	273
	- 1				1	ļ.	i		1	ļ				ļ	Ì	•		ţ	}
	none	none	none	none	none	none	none	none	none	none	none			none	ŀ		!	İ	
	one	none	none	none	none	nonc	none	none	HONG	none	none	[none	L <u></u> -		<u> </u>	ــــــــــــــــــــــــــــــــــــــ	لــــــــــــــــــــــــــــــــــــــ
1.					4 4 4											-			

Table C.5 (2) Water Quality at Chinaimo (Nam papa Lao) in year 1988 (2)

ð1'.			. 2	1 3	1 1	1 5	6	1	8	. 9	10	111	12	13	14	L_1:
Imosphere temperature	C	29"	29	27	27	26	26	26	26	26	27	29	28	29		21
aler lemperature :	C	26	20	25	25	24	24	24	24	24	25	27	26	27		27
	ppn	40	40	30	30	40	40	40	40	40	40	40	40	40		20
olor	ppa:	5	: 4:	3	3	[3	3	2	3	3	4] 1	4	3		
dor		none	none	hone	none	none	none	hone	none	none	none	none	none	none	[none
aste		none	ione	hone	none	none	none	hone	none	none	none	hone	none	none		hone
lt l		7.5		7.3	7.4	7.5	7.5	7. 6	7.6	7.6	7.5	7.5	7.4	7.4	!	7.
lkalinity	o p en	1	1		1.			l				l				1
mmonia nitrogen	pp#s	hone	none	none :	none	none	none	none	none	hone :	none	none	none	hone		hone
itrite nitrogen	opa	none	uone	none	none	hone	none	hone	none	hone	none	none	none	none		none
itlate nitrogen	ក្រុង	none	none	none	none	none	none	hone	none	none	none	none	none	none		hone
MnO4	p P 50	9.8	9.2	9.0	9.7	10.1	10.0] 10. 9	10.5	11.0	10.9	9.9	8.9	8.6		8.
€.	ns/hao	290	295	300	305	300	310	292	282	310	300	295	289	296		29
e l	ppna		Į	İ	i	j			1	1		1	i			1
n j	ppa	none	none	none	none	hone	none	hone	hone	none	none	hone .	hone	hone		hone
		ione	поле	none -	none	none	none	hone -	none	hone	none	none	none	none	10.00	none

27 28 28 28 28 27 28 28 28 28 27 28 28 28 28 28 28 28 28 27 27 27 26.5 28 24 20 20 20 20 20 20 20 20 20 30 30 30 30 20 20 20 29 40 20 20 20 20 20 20 20 20 20 30 30 30 30 20 20 20 29 40 20 20 20 20 20 20 20 20 20 20 20 20 20		76	177	18	بواليا	7 20	21	22	23	24	25	26	_27	28	29	30	31	aean		ain.	Į
20 20 20 20 20 20 20 20 20 20 20 20 20 2		29	29	29	30	29	29													26	ı
2 2 3 3 3 4 4 3 3 3 3 5 2 none none none none none none none no			28	28	28		2.7						ļ								ţ
None None		20	20	20	20	20	20	20	20	20	20		Ī	30	30	20	20:	29	40	20	ı
None None		2	2	3	3	4	4	3	3	1 3	4	5		5	4] 3	3] 3	5	Z	L
7. 7 7. 6 7. 5 7. 45 7. 5 7. 35 7. 5 7. 5 7. 5 7. 5 7. 5 7.	1	nene	none	none :	uone	hone	none .	none	none	none	none	none		none	none	none	none				(
None None		none	none	none	none	none	none	none :	none	none				none					1		L
None None	-	7.7	7. 6	7.5	7. 45	7.5	7.35	7.5	7.5	7.5	7, 55	7.5		7.6	7.5	7.5	7.5	7.5	7.7	7.3	Ĺ
None None	i		ł	Į.	Į.	į	ļ .	ļ		l			l		ţ		ļ	Į.	Į	Į.	l
none none none none none none none none		none	none	none	попе	none	none	none	none	none	none	hone		none	none	none	none	j			۱
9.0 9.3 9.2 9.1 9.3 8.7 8.5 8.5 8.3 8.4 8.9 9.0 8.9 8.8 8.9 9.3 11.0 8.3 280 290 285 280 290 280 295 280 280 280 280 290 280 280 280 280 280 280 280 280 280 28		none	none	hone	none	hone	none	none	none	none	none	none		·				1		ĺ	ŀ
301 292 300 290 285 280 290 280 295 280 283 283 290 295 299 293 310 280		none	none	10116	none	none	none		none	none			l						۱	l	Į.
none none none none none none none none		9.0	9.3	9. 2	9.1	9.3	8. 7														ı
pond from from from from the transfer that the transfer t		301	292	300	290	285	280	290	280	295	280	283	ļ	283	290	295	299	293	310	280	ı
pond from from from from the transfer that the transfer t	- 1			Į			l		1	l	l		l		i		l	i		1	l
hone hone hone hone hone hone hone hone		none	none	none	none	none	none	none				none	l		1.7	100			l .	: :	ļ
house house		none	ione	none	none	tione	none	ноне	none	none	none	hone	<u> </u>	none	ione	none	none		<u></u>	ــــــــــــــــــــــــــــــــــــــ	,

LOCATION: CHINAINO																
Apl.			2	3	4	5	δ	7	8	y	10	TTT	12	13	1 14	T 15
Almosphere temperature	C				29	28	29	30	27	28	31	29	30	1	30	29
Mater temperature	C		ļ	İ	27	26	26	29	26	26	27	28	28	1 4 4	28	27
	ppp		1	1	40] 30	20	30	40	50	60	70	30		50	50
	pps			Ì	6	3	2	4	3	2	1	2	3	1	6	5
Ddor					none	none	none	none	none	none	none	none	none		none	none
[faste		· i			hone	none	none	none	none	none	none	none	none	i	none	none
):ii				١.	7.4	7. 2	7.3	7.4	7. 3	7. 6	7.5	7. 2	7. 2	1	7. 6	7. 5
Alkalinity	pps				86	94	100	89	89	96	94	96	98		98	70
	ope -				hone .	none	none	none	none	none	none	none -	none		none	none
	при .				none -	none	none	none	none	none	none	none	попе	1	none	none
	D pa				none	none	none -	hone	none	none	none	hone	none	i .	none	none
KMn04	pps				10.0	9.6	12.3	5. 2	7.4	10.0	13.0	14.7	6.0		7.4	
)E. C.	ns/hac	. 1			285	276	270	280	300	290	280	348	290	1	280	283
) Fe	ppn l		:		0.2	0.3	0.5	0.1	0. 2	0.3	0.4	0.6	0. 2		0. 2	0.31
Mn j	рра	ı			i		1			Ì	1			1		1 1
tie	ppa				none	none	none	none	none	none	none_	none	none		none :	none

															1, 1	2 (1)		
1.	b 17	18	19	20	21	72	23	24	25	25	27	28	29	30	31		⊌ax,	ain.
3	0 32	30	31	31	33	31	32	30		30	31	72	34			30.3	34	27
1 2	9 29	28	28	29	29	30	29	28		29	29	28	29			28.0	30	26
1 4	0) 30	20	50	60	60	50.	10	30		30	40	20	30	·		.40	70	20
ì	7 6	2	3	5	. 8	3	4	δ :		6	9	7	8			5	9	1
hone	tione	hone	none	lione	попе	none	поле	none		none	none	none	none				ľ	
none	поле	none	lione	none	none	none	none	none	· ·	none	none	none	none	'		1	1	١
7.	4 7.0	7.1	7.5	7.6	7.4	7.6	7.4	7.5	ł	7.3	7.3	7.4	7.5			7.4	7.8	7.0
10	0 100	92	96	107	98	90	88	86		102	89	100	96		11	1	1	
попе	none	none	none	none	none	91001	ทอกต	none		none.	none	none	none	· '		1	1 .	1
hone	none	none	none	hone	юпе	none	none	none)rone	none	none	none					l
lone	none	none	роле	none	hone	hone	none	none		none		none	none	l :		1		١
5.	2 14.7	3.1	12.3	10.0	7.3	8.1	7.3	6.9	100	6.4	15.3	3.1	4.7	1	1	9.0	16.4	3.1
28	5 285	290	296	290	310	345	295	295		290	315	292	290	1		294	348	270
0.	4 0.3	0.3	0.2	0.1	0.2	0.2	0.3	0.5		0.2	0.3	0.3	0.3			0.3	0.6	0.1
1	1	1	1	1	i .	}	Ì	1 '		i .	}			1	1	1.	1	1
hone	lione	none	none	none	none	none	none	none	L	none	none	none	none	ــــــــــــــــــــــــــــــــــــــ	ــــــــــــــــــــــــــــــــــــــ	1	J	ـــــا

Table C.5 (3) Water Quality at Chinaimo (Nam papa Lao) in year 1988 (3)

	LOCATION; CHINAIMO																	
	Nay			2	3	4		P	7	8.	1 1	10		12	13	14	151	ŀ
	Almosphere temperature	C		- 28 ⁻	29	28	29	30	31	29	28	1 30	ļ	30	29	30	29	ì
	Mater temperature	rc I		26	27	26	27	28	28	28	26	27		žš	27	28	27	İ
	furbidity	рры		70	80	70	70	80	10	70	80	90	l	100	80	70	60	
		ppn i		6	6	5	1 3	ا آهُ	2	ž	l š	1 4	[1 7	هُ ا	1 51	l
	Odor Taste			none	none	none	none	none	none	none	none	none		none	none	none	none	
٠.	laste			none	none	none :	поле	none			none	none	i i	none	none	none	none	
	pll .			7,7	7.6	7.4	7.3	7. 6	7.7	7, 6	7.3	7.5		7. 2	7.3	7.4	7.7	į
	Mikalinity	ppm	ĺ	75	92	93	96	94	92	80	78	79	ì	80	94	100	120	Ì
٠.	Ammonia nitrogen	рря		none	none:	none	0.01	none	none	none	none	none	[none	1		none	1
	Nitrite nitrogen	рря		none	none.	none		none	поле	none	none	none		none	none	none	none	į
	Nittale nitrogen	20 bir		none				none	none		none	none	ļ	none		none	none	į
	KMn04	ррп		1	1		ł	ŀ					ŀ		1			i
	E. C.	es/bao		265	280	280	295	270	270	- 280	300	295		. 297	280	250	260	1
	Fe	рря		0.2	0.3	0.4	0.5	0.3	0.2	0. 2	0.2	0.1		0. 2	0.3	0.5	0.5	i
	N in	рра	l i		1	}	1	ì	1		1	1	1		1	1	1	1
	ilg	рра		none	none	none	none	none	none	none	none	none		none	none	none	none	ĺ
																		· ·

٠.	16	77	18	19	20	71	22	73	24	25	26	77	28	29	30	71	rean	bax.	min.
	30	31	29	30	30	 -		32	32	30	30	30		28	- 3 Ŭ		29.7	32	28
	29	28	27	28	28	t	l	29	29	28	28.	28		27	27		27. 6	29	26
	50	60	80	90	100			100	120	100	90	80		60	70		77	120	10
	4	3	2	3	4	1	Ì	- 5	б	3	2	1 4		3	3		4	7	2
	none	none	none	none	none	l		none	none	none	поле .	none		попе	none			ľ	
1			none	hone	none	1	Ĭ	none	none:	hone	none	hone		none	hone			Ì	1. 1
: }	7.6	7.5	7.4	7.3	7.2			7.6	7.4	7.5	.7.4	7.6	· ·	7.4	7.5		7.5	7.7	7.2
	100	80	90	90	190			85	82	80	80	78		55	77		87	120	65
1	none	none	none	none	none			pose	none	none	none	none		none	snon	'		1	\
-	none	none	none	none	none			none	none	none	none	none		none	none				
	none	none	none	none	none			none	none	none	none	none		none	none			ا م	
						1		222	225	200	200	000		000			DIV/O		0.0
	280	280	275	259	275			273	275 0.4	280 0.3	280	263 0.05		269	280	· .	277	300	260
	0.3	0.2	0. 1	0.1	0.2			0.3	0.4	0.3	U. Z	0.03		0. 2	0.2		0.3	0.6	0.1
1	none	none	none	none	none			none	none	none	none	none		none	none				L

LOCATION:	CHINAIHO		-														
June		1	1	2	3	4	5	5	7.	8	- 9	10		12	13	14	15
Alaosphei	e lemperature	i C	27	. 28	27	26	26	27	25	26	25	25	24	- "-	26	27	28
Mater tea	crature	t c	25	. 25	26	24	24	25	23	25	23	23	22		24	25	26
furbidity		рра	240	300	160	180	240	240	220	220	180	150	140		140	160	140
Color		ррп	3	4	δ	7	3	5	. 5	6	3	2	3		4	5	8
Odor		Γ	none	hone	none	hone	none	none	none	none :	none	none	none		none	none	none
laste		1	none	none	none	none	none	none	none	none		none	none	'	none		none
p!i		1	7.3	7.4	7.5	7.6	7.4	7.2	7, 2	7.2	7.2	7.2	7.3		7.5	7.6	7.6
Alkalinit	y	5 pa	80	65	92	96	96	100	94	100	73	70	85		97	85	94
Ammonia n	trogen	ppn .	none	none	none	none	none	tione	none	none	nane	none	none		none	none	none
Nitrite n		рра	none	hone	none	none	none	none	none	none	none	none	none		none	попе	none
Nittate n		орв	none	none	попе	none	none	hone	none	none	none	none	none		none	กอกะ	none
KHn04		DOM:	12.3	6.9.	9.6	6.3	7.4	3.1	7.4	12. 3	10.0	13.0	14.7		12.3	6.0	9.6
E. C.		as/had	280	300	240	265	292	275	283	265	280	220	225	}	230	238	245
Fe		ppn	0.1	0.2	0.3	0.4	0.05	0.2	0.1	0.2	0.4	0.5	0.3	!	0.3	0.4	0.2
- Mn		ppm		I	ļ	ĺ		1	l	1	1	l		•	1	ł	
filg		D P S	none	none	none	none	none	none	none	pone	saon	none	none	<u> </u>	none	попе	none

15 27 25 180	25	18	19 24 22 160	20 26 24 200	21 26 24 240	22 26 24 180	23 27 23 220 8	24 24 22 180	25 25 23 200 4	26 27 25 140 3	27 26 24 180 6	28 24 22 240 5	29 26 24 240 2	30 26 24 220 6	31	25. 9 23. 9 197 4	28 26 300 8	24 22 140 2
none none 7.5 8(+ 1 + 1 + 1 + 1 + 1	none none 7.3 85	none none 7.4 80	none none 7, 3 93	none none 7, 3 92 none	nonc none 7.3 86 none	none none 7. 5 92 none	none none 7.5 85 none	none none 7. 4 8) none	none none 7. 6 84 none	none none 7, 3 87 none	none sione 7, 4 94 none	none none 7, 6 96 none none		7. 4 88	7. 6 100	7. 2 65
none none 7. 225	none none 5. 2 275	 	none none 15. 6 250 0. 3	none none 14. 7 280 0. 2	none none 7: 4 245 0: 1	none none 5. 2 255 0. 3	none none 3: 1 240 0: 3	none none 4. 7 230 0. 2	none nonc 7, 4 240 0, 4	none none 10, 0 245 0, 3	none 10.0 255 0.2	none 7, 3 258 0, 1	none 9. 6 235 0. 3	none 9. 0 255 0. 3		8. 8 255 0. 3	15. 6 300 0. 5	3. 1 220 0. 05
hone			none	none	none	none	none	none	none	none	none	none	none	none	<u> </u>	Ь_	L	لـــــــــــــــــــــــــــــــــــــ

Table C.5 (4) Water Quality at Chinaimo (Nam papa Lao) in year 1988 (4)

LOCATION CHINAINO					•					· 	* * * * * * * * * * * * * * * * * * *			-روسؤس-مــــ		175
Cotor Odor faste oll Alkalinity Ammonia nitrogen	ober ober ober ober	27 25 180 3 none none 7, 1 90	26 24 180 4 none none 7, 4 78	snon			7.5	7 26 24 240 7 none none 7, 4 93 none	26 24 240 3 none 100e 100 none	27 25 200 4 none none 7.5 92 none	7.5 100 none	none 7. b 90 none none	7.4 79 none none	7. 8 100 none none	none 7. 6 95 none none	15 26 24 480 4 none none 7. 6 96 none none
Nittate nitrogen KMn04 E. C. Fe	ppm ppm ppm иs/lumo ppm	1	none 10ne 12, 3 260	none 9.6 265	none 8.9 325	7.3 300	none 6.3 255	none 5. 2 325 none	none 7, 4 290 none	none 13. 2 266 none	15. 6 310	10ne 9. 6 270 none	none 14. 7 280 none	none 13.0 270 none	none 10.0 285 none	none 9. (275 none
F	pps pps	none	none	none	none	none	none	none	none				none	none	none	none

										· ·								
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	tean		hin.
26	27	24	25	23	26	26	27	24	25	25	27	1	26		27	25, 4	27	23
25	25	22	23	22	24	24	25	23	23	24	25		24		25	23.6	25	22
250	270	460	460	500	540	540	460	560	360	360	400	1 1	360		360	379	600	180
5	2	3	4	6	8] 7	5	5	. 4	3	2	1 1	2		- 3	- 4	8	2
none	none	none	none	none	hone.	none	none	none	none	none.	none		one		none.] -		1
none		none	none	none	none	none	none	none	none	none	none	լ իս	one		none	٠	١	١,,
8.0	7.8	7.7	7.9	7, 7	7.9	7.9	7.9	7.6	7.8	7.5	8.0	1 1	7. 6		7.6	7.6		7.1
75	30	85	81	86	86	89	89	87	92	19	80	1 1	85		- 78	89	100	75
none	none	none	none	none	none :	pone	none	none	none	none	none	n	one		none			
none	none	none	hone	none	none	none	none	none	элопе	none .	none	, ,	one		none	.:	ļ	
none	none	попе	поле	none	none.	none	none	none	none	none	none		one		none		1	
10.0	12.1	14.7	15.6	12.1	6.9	7.4	5.2	12.1	15.6	14.7	12.1	.	16.3	100	10.0	[1][1	16.3	5.2
255	270	275	214	265	240	243	252	. 275	296	232	232	1 1	292		270	272	325	232
1		1				1	({	Í	1	ļ					1	1	1
none	none	none	none	none	hone	none	none	none	pione	none	none	į įn	one	f	none	1	1 .	1
4	nonė	none	none.	none	ออกอ	none	none	none	попе	none	none	<u> </u>	one	l	none	L		

Aug.	LOCATION: CHINAINO																·
Altaosphere lemperature C 24 23 24 72 24 22 20 21 23 22 20 20 20 20 20 20				7	7	4	5	b	7	8	3	10	11	12	11	17	
State Color Colo		C	24						22				27		22	23	
Turbidity			22							21							
Page Color Page Color Page Color Page Color Page Color Page Page Color Page P		ppm	400	500	560	560	540	610	640	580	400	ลอกั	120	090	040	020	1 400
Dolor Hone		pps	6	3	4	1 5	1	1 4	2	3	4	,	[L		,,,,,	hona"
Name Name			none	none	none	none		ľ			4 -						
1	ffaste	,	SHOR	none													
Mikalinity Name N																	
Namonia nitrogen None No	Mikalinity	aqq	87	30	87			1	3 ' "	1	1						1 771
Nitrite nitrogen ppm none	Ammonia nitrogen	PPE	none	hone	none			1	f ·	1	t .	1			1		
Nittate nitrogen ppm fone none Mitrite nitrogen	ppm	one	3000	none	hone												
Nun04 pps	Nittate nitrogen	рра															
E. C. 230 229 264 300 220	kWnD4	₽ D TB															
Mn pps none none none none none none none non	£. C.	pas/heo															
No long hone none none none hone hone hone none n	Fc	рра	0.2	1 0.1	0.3	1	1 ' '	1 .		•	1	£	1	1	1	1	
	Mn	ppa	none	none	none	,	1	•				•				4 T T T T	
Ils post from from from the first fr	N8	рра	none	none	none	none	31000	none	none	none	none	mone	Haite	Tions	HOTE	110110	1,01,0

16	17	18	19	20	21-	22	23	24	25	26	27	28	29]]0	31		maX.	min.
23	22	25	28	24	25	22	23	22	25	26	24	22	23	23		23. 5	36	22
21	20	23	24	2.2	23	20	23	20	23	24	22	.20	21	20		21.6	24	20
720	560	520	560	520	560	900	840	550	560	320.	100	328	360	400	i i	583	960	320
2	7	3	6	5	G	3	4	5	2	3	5	3	4	5		4	8	2
gione	none	none :	none	none	nonc	nonc	none	none	none	none	snon	none	none	none		ì]
hone	gone	none	none	none	none	none	none	none	none	none	none	none	none	none			1	
7.5	7.6	7.5	7.4	7.5	7. 5	7. 7	7.2	7.6	7.6	7.4	7.3	7.5	7.4	7.3		7.6	8.0	7.2
30	76	97	94	93	86	77	72	92	94	90	70	92	96	78		84	98	62
none	none	none	none	0.02	none	none	none		none	0.01	0. 002	none	none	none			Ĭ .]
hone	none	none.	ione		none	none	none		none			none	none	none			[[1
hone	none	none	none	0.001		none	none	0.003	none	none		none	none	попе				
8.4	15.4	12.3	9.0	10.0	12.3	11.2	5.2	7.2	5. Z	7.6	12.3	7.2	8.3	15.4		9.3	15.4	5.2
200	200	210	220	230	225	200	248	235	220	225	235	280	240	230		230	300	200
0.4	0.5	0.1	0.2	[0.3	0.4	0.3	0.2	0.3	0.2	[0.1	[0,2	0.4	0.3	0.2		0.3	0.5	0. 10
none	none	none	none	none	none	none	none	none	none	none	F .	none	none	none	ĺ		1	
r	none	none_	none	pone	none	none	none	none	попе	none	none	hone	none	none		L	l	

Table C.5 (5) Water Quality at Chinaimo (Nam papa Lao) in year 1988 (5)

			. •													
LOCATION: CHINAIMO																
Spt.			7	J	4	5	[B	9		1. 11	12	13	14	15
Almosphere lemperatur	ci C	21		23	24	23	25			24		20	23	23		22
Water temperature	Ç	22	1 1	21	23	22	23			22	21	19	20	21		21
furbidity	bha	600	l .	720	900	720	680	! !		560	500	560	560	500	1	640
Color	b but	7	ļ	ļ	5	3	5	[(3	4	1 3	6	?	ţ	ļ 6 ļ
Odor	1	none	,	none	none	none	none] :		none	none	none	none	none	ĺ	none [
faste	ı	none	·	none	none		none	[.		none	inone 🕆	none	none	none		none
- lp II	1	7.0	ļ :	7.2	7.5	7.4	7.6	, ,		7.8	7.5	7.6	7.6	7.5	ļ	7.5
Alkalinity	bbar	75	İ	93	78	74	64	Ì		78	- 77	78	80	74	i	90
Ammonia nitrogen	b ba	none		none	none	none	nonc			none	none	none	none	none		none
Nitrite mitrogen	(១០៣-	none		none	0.02	none	0.01	! !		none	none	none	none.	none .		none
Nittate nitrogen	DDW.	none	* *	none	none	none	0.02			none	none -	none	попе	none	ĺ	поле
KMn04	pp#i	9.6		10.0	9.6	7.6	12.1	i i		10.0	5.2	6.3	7.4	6.9		13.2
E. C	ms/hmc		[235	245	235	230	(180	210	220	225	240	ļ	210
ře	obu	0.2		0.2	0.3	0.2	0.1	[i		0.4	0.2	0.4	0.3	0.2	l	0.3
Mn	ppm	none		none	none :	none .	none			none	попе	none	none	none		попе
lig	ope	none	l	ione	none	none	none			none	none	rione	none	none	<u>. </u>	none

															1.	4.00		
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	nean	dax.	sin.
. 24	22	23		20	21	20	23	21	20	21	23	24	24	21	20	22. 3	25	20
22	20	21		19	- 20] 19	2.2	20	19	20	21	22	23	20	19	20.8	23	19
620	800	560	1	480	500	480	520	500	640	500	580	620	680	620	700	605	900	480
7	3	4	l .	2	3	4	. 4	3	: 4	3	5	6	: 3	2	- 4	- 4	7	2
none :	none	none		none	none	поле	none	none	none	none	none	none	none	none	none	1	1	1
none	none	поле	1	none -	none	none	none	none	none	none	попе	none	none	none	none	1	1	1 1
7.4	7.5	7.6	l .	7.1	7.4	7.8	7.8	7. 3	7, 2	7.4	7.6	7.3	7.0	6.9	7.3	7.4	7.8	6.9
89	80	80		82	76	96	79	80	85	93	90	100	94	86	78	83	100	64
none	none	hone)	none	none	none	none		none	none	none	hone	попе	0.01	none	1	1	1 1
none	none	none	ł	0.02	none	0.01	none	0.02	none	hone	none	none	none	none	none			i i
none	none	none	l	none	none	none	none	none	0.05	none	0.02	none	none.	0.01	none	l	j	
15.6	10.0	9.6	1	14.7	13:0	10.0	9. 5	7.4	6.9	10.0	12.1	14.7	15.6	9.6	10.0	10.3	15.6	5.2
220	253	225		230	210	220	. 235	220	233	250	265	245	220	210	220	228	265	180
0.4	0.3	0.5		0.3	0.2	0.1	0.3	0.2	0.1	0.4	0.3	0.2	0.3	0.2	0.1	0.3	0, 5	0.10
 none	none	none		none	none	none	none	none	none	none	none	none	none	none	none	1	1	1
none	none	none		hone	none	none	none	none	попе	none	none	none	none	none	none	L	<u> </u>	

	LOCATION: CHINAINO																
	De L.	T	1.	2	3	4	5	5	L. 71	8	. 9	10	11	12	13	14_	15
	Atmosphere temperature	C		2.4	.25		. 24	24	23		24	23	24	24	25		21 23
	Mater temperature	t l		22	23	1	2.2	23	21		22	21	22	22	23		
		рря	i	640	600		520	620	640		620	600	580	600	540		480
	Color	рра		4	3		6	7	5		3	5	4	3	6		3
	Ddor	۱ ۱	1	none	none		none	none	none		элоя	none			none		none
	Taste				none	1. 1	none	none	none		none	none	F · · · - ·		none		none
. :	pil			7.4	7.6		7.5	7.3	7.6		7.3	7.2	7.4	7.6	7.4		7.3
	Mikalinity	opm i	ľ	92	100	ì	94	88	30	\	87	80	86	92	88		
		opu.		0.03	none		none	none	none	ł .	none	none	none	···	hone		none 0.02
i		рра		none	none :		none.	none .	none	7.54	none :	none	none		0.001		
	Nittate nitrogen	ppm		none	none	İ	none	none	none	}	none	hone	none		none :		none 7.5
	KMn04	ppm [9.0	9.3		8.4	10.0	11.2		9.6	10.0	12.3	6. 9 280	291		285
	E. C.	ms/limo		272	283	1	300	297	293	l	295	284		0.2	0.4		0.3
:	e	ppm		0.2	0.3	1	0.2	0.3	8.4	1	0.3	0.2	0.1		1	ì	
	Mn	рри		none	none :		none	none	hone	i .	none	none:	none	none	none		none
	lig	ора			none		none	none	none	L	none	none	none	none	none	L	none

								1.5										
16	1 17	18	19	20	21	77	23	24	25	26	27	28	29	30	31			ain.
27	25		23	24	22	23	25	23	24	23	25	24	23		24	23.8	25	22
	23	23	22	21	20	Ži	-24	21	22	21	23	22	21		22	21. 9	24	20
22		480	ร์ก็จ	400	380	120	320	280	200	220	400	400	280		240	461	640	200
500	520	400	300	100	306		\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	å	5	4	6	3	4		3	4	7	3
1	1 3	0		, and	none	nonc	none	none	none	none	none	none	none		none			1 [
hone	none	none	none	none	1	none	none	none:		none	none	none	none		none	1		
none	none	none	none	none	none 7, 6	7.4	7. 3.	7.3		7.2	6.8	6.9	7.0		7. 2	7.3	7.6	6.8
7.2	7.3	7.5	1.3	7.4	90	94	86	8Ď	82	83	84	86	85		87	88	100	79
87	85	100	92	1	1	none	none	none	none	none	none	none	none		none	{	1	1 1
none	none	none -	none	попе	hone		none	none	none	none	none	none	none		none	ł		i !
none	0.01	none	none -	none	none	none	none	none	none	none		none	none		none	1	1	j }
houd	none	nonc	none	none	none	none	1 10.0	12.3	6.9	8.6	10.0	7.3	6.9	, ,	10.0	8.7	12.3	5.2
7.2		8, 3	11.0	6. 9	7.0	290	275	250	270	273	242	235	250		250	276	300	235
283	270	275	283	290	273	0.3	1 613	0.2	0.3	0. 2	0. 2	0.1	0.3		0.1	0.2	0.4	0.10
0.2	0.3	0.2	0.3	0.1	0.2	1	1 0.1	none	none	none	none	none	none	l	none	1	}	} 1
none	none	none	none	none	none:	none	hone		ione	none	none	tione	none		none	1		
none	nonc_	none	none	none	hone	fiund	none	ponc	Pione.	1.0.10		*::::::::::::::::::::::::::::::::::::::						

Table C.5 (6) Water Quality at Chinaimo (Nam papa Lao) in year 1988 (6)

LOCATION: CHINAIMO												4					
Nov.		11-	7	1 3	1 4	5	6	7	8	9	1 171	177	1 19	777	T 17	1	٦.
Alsosphere temperature	C	26	25	25	26	24	25	26	24	28	28	+	1 - 15	26		25	-
Maler temperature	° C	24	23	23	24	22	24	24	22	24	24	25	25	24	23		1
	ppa.	200	240	240	240	240	240	240	200	260	320	220	120	120	100	23 140	ı
	ppa .	3	2	3	6	4	3	4	3	l "ĭ	3	8		126	10%	140	Г
Odor		none	none	none	none	hone	none	none	none	none	none	none	hone	noné	none	hana"	L
Taste		none	none	none	none	none	none	none	none		none	1 1	none	none		none	!
joli j		7.0	7.0	7.3	7. 2	7.2	7.6	7, 6	7.4	7.3	7.3	6.9	7 1	7.5	none. 7, 2	none 7.6	ı
	o pen	82	87	90	85	85	83	85	76	90	88	84	90	82	82	70	ł
Ammonia nitrogen	≽pn	none	none	none	none	none	none	none	none	none	none		none	none	none		ı
Nitrite nitrogen p)pag	none	none	none	none	none	none	none	none	hone	none	none	none	none	none	none	ı
	ра	none	none	none	none	Bone	none	эпопе			none		none	none	none	none	l
KMn04 h	nrcje	9. 3	:7, 4	6.0	3. 1	6.9	6.9	7.1	12.0	6.8	6.6	8.4	6.2	6.0	6.4	7.0	l.
_{E, C. }	ıs/ha⊲	270	240	275	250	255	221	253	215	250	215	270	270	260	275	270	ĺ
	pa i	0. 2	1.0	0.2	0.3	0.4	0.2	0.2	0.1	0. 2	0.4	l õ. ï	l õ. ž	0.3	l ñ'ï	0.2	ĺ
	թթա)	none	none	none	none	none	none	none	hone	none	hone	none	none	none	none	none	L
fig	Pts 1	none	none	none	none	none	none	none	1	1 :	none				100	none	1

15	17	18	19	20	21	: 22	23	24	25	<u> </u>	27	78	29 30	31	nean	max.	lain.
23	24 22	24	25 23	24	21	22	24	20 19	20 19			20	20 19		24.1	27 25	20 19
100	200	100	60	70	180	180	120	200	200			200	100		179	320	60
none	none	none	hous	2	4	1 5	4	5	4.			3	7	ţ] 4	. 8	1
none	none	none	none	none none	none	none	10	none none	none			none none	поле попе		1 .		
7.4	7.1	7.4	7.5	7.5	7, 4	7.4	7, 2	7.2	7.5			7.3	7.4	1	7.3	7.6	6.9
none 80	78 none	none	85	75	94	94	100	88	89) }		88	86	1	85	100	70
1		none	none	ł	none	1	none	none	none			none	none	14.7.1			1
none	nanc	none	none	попе	none	none	none	none	none		į.	none	none	1	•		1
280	280	280	7. 5 280	6, 8 275	7. 2 280	7. 2	6. δ 290	7.2	8.9 290		٠	7.0	7.4		7.1	12.0	3.1
0.2	0.2	0.2	0.5	0.4	0, 1	0.1	0.1	0.5	0.2		: ;	280 G. I	270		267	290	0.10
			í		ione	none	none	none	none			none	none		"-	"	1
none	none	none	none	none	none	none	none	none	none	<u> </u>		none	none		<u> </u>	L	<u> </u>

)ec.	<u> </u>	1!	2	3	4	5	6	$\Gamma = T$	8	9	10	Γ	12	13	14	T^{-1}
leosphere lemperature	()	21	1		i	22	21	2	23	23	24		23	22	22	7
later temperature	լն	20) 1		}	21	28	20	21	21	22	ì	21	20	20	19
	ppa	100	[]			100	100	80	100	60	100		1 80	50	120	
	PPE	4	! !		i] 3	5	5	1 3	8	4		1 1	. 4	1 5	ľ
ldor		311011			į	none	none	none	none	none	none	1	none	none	none:	none
aste		none			[none	none	none	none	none	none	Į.	none	none	none	none
11		7. 6	ì l		i	6.9	7.6	7.6	7.8	7, 5	7.3	1	7.3	7. 2	7. 2	7.
	ខ្មែរ	86				78.	88	85	78	85	33		85	85	1 76	B
mmonia nitrogen	рря	none			1	none	hone	none	none	none	none		none	none	none	none
itrite nitrogen	ppa	none				none	none	none	none	none	none		none		none	none
	≨ D⊉	none	1			none			none	поле	none		поле		none	none
	рры	7, 3	1	')	9. 6	6.0	8, 6	7.8	7. 3	7.1		7. 6	7. 2	6.9	8.1
	es/hec					290	280	280	290	290	290		290	260	260	26
	pps	0. 2			·	õ. i	100	0. 2	Ô. i	1 679	0.1		0.1	0.2	200	ő.
	pps	none				none	none	none	попе	none					L	
		none	[ľ	r '		í	ı	none none				none none	none

	167	17	18	19	20	21	22	23	74	25	26	27	28	29	30	31	Re 811	MAX.	ain.
]	55	21		22	22	20	21	22	23	21	22	22	20	22	22	21	21.8	24	20
	21	50		20	50	19	19	50	22	19	20	20	19	20	20	19	20. 1.	22	19
]]	26 [100		80	100	100	80	100	90	90	100	80	80	80	80	80	90	120	50
i	6	3		2	4	G	4	4	5	3)	6	3	3	3	4	4	8	2
non	c 🕽	ione		tone	none	sione	none	none	hone	none	none	none	none	poue	none	none			\ \
hon	e f	none		pone	none	none	none	none	none	none	none	none .	none	none	none	none			
	. 2	7.3		7.2	72	7.4	7.1	7.2	7.3	7.4	7.4	7.3	7.0	7.0	7.0	7.2	7.3	7.8	6,9
- (!	90 [100		87	[87	87	85	83	70	82	89	87	70	71	70	75	83	100	70
non	e }	tone		none	none	none	none	none	tione	none .	none	none	none	none	none	none		1	1
non	e þ	tone		hone	none	hone	none	none	none	none	поле	none	none	none	none	none			: '
non	e jr	ione		hone	none	none	กอยต	none	none .	none	none	none	none	none	none	none	10.0		
į δ.	. 9 [5.8		8.7	6.9	7.1	7.2	6.9	6.8	10.0	7.4	8.0	8.4	6.8	9.5	7.5	7.6	10.0	6.01
2	60	270		280	240	260	260	290	270	275	270	270	270	270	270	275	273	290	240
. 0.	. 1 [0		0.15	0.2	0.3	0.05	0.2	0.1	0.2	0.2	0.3	0.1	0.1	0.2	0.2	0.2	0.3	0,00
non	e þ	one		none	none	none .	none	none	none	none	none	none	none	none	none	none		1	\
hon:	e j	ione		none	none	none	none	none	rione	none	none	none	none	none	none :	none			لــــــا

LAO PEOPLE'S DEMOCRATIC REPUBLIC	
FEASIBILITY STUDY ON IMPROVEMENT OF DRAINAGE SYSTEM IN VIENTIAME	
JAPAN INTERNATIONAL COOPERATION AGENCY	AGENCY

	C09-HK (HG/L)	;	: :		2 2			\$.2	4.0	69 69	6.2	Ë	*	:	3.7	3.7	 	=	5.1		6.00	7.7	<u>م</u>			7	=	2.7	*	8	=	-	. 6		100 00	61
	55 [40/1]	186		7/17	į	976		2.063	3.396	3.865	2,700	1.770	3.060	1.321	4.039		2.3%	2.4.50	1.970		2.58	3,438	2.15	2.360	25.7 1	100	2.139	2,40	8.5	1.210	.710	9	520	2.20	55.	- GF
	5i [•9/1]	2 080	5	3 5	5	8.5		6,670	₹87¢	ŝ		6.70	0.0.	27.73	3.020	2,400	2,400	93.7			7.100	3	6,200	907.8	30.	3,406	2.600	8	2.800	2.300	2.300	98.7	909	5.65	3.5	7
•	Total-P [so/13	919	3		, e	450			307	69	. 013	=	.081	 9	.145	\$	S.	411.	617		Ę	뚕	Si :			548	.059	620	670	5	.150	.072	520	ş	589	474
•	PGC-P (re:1]	3	į			010		8	169.	í.	10.	600	946	ŭ	.096	.031	86	121	.037	-	8	6	77	77	8	965	93	720	452	590	82	.03	z	630	.142	365
	Total-W [aq/1]					٠.				•															199	!	115	142								
	HH(-H [ag/1]	i i	8	\$: S	ñ	1	Ē.		8	670	.216	.065	52.	620	¥.	8	. 187	2.044		ş	8	<u> </u>) (1) (1) (1) (1) (1) (1) (1) (1		ž	152	7	698	ř	.524	þ	2	4	S	1
· .·	(MO3-2)-X [aq/1]	701	6	Ž	3	. 649.		Ę	Ħ	7	21.	25.	.128	.437	89 7.	.043	•100	.231	1.524		E	8 8	.98	2 5	8	3	B	.047	133	800	.118	- F	694	-982	3	
	lotal-fe ([sg/1] [85	.576	90	4	27.		92	19	92	77	22	2.7	2.548	.123	ģ	ş	3	. 128		168	ź.	Ş.	7 5	779	228	163	382	.916	209	200	.574	59:	502	585	702
LAO PDR	504 T (seq/1) [, ,	Ξ	Ę	=	1.908		ž	240	909	ě	7:	8	113	27.	5/0.	:06:	£,	.115		Ť	Š,	£ .	5	27	222	1	3.	2 .	. 518	1.055	1.552	3.509	S.	.467	446
	[1666/1]		548	805	290	2.842		229	1.006	616.	ŝ	3.75	940	1.106	<u>-</u> :	.512	Ę,	2.037	7,684			98.	31.163	E	F)	3,48	88	3	ş	1.018	4.043	1.427	1.589	1.484	1.31	- 26
THATLUAGE SHARP AT KONG MIENG SHENG SHENG SHAFACE WATER BUALITY	1)k meq/1]	.77.	600	*	2	1.136		CI6'1	2.155	1.402		1.639	.647	1.135	503	5	.709	ž.	1.57)		2.075	2.97	6.50	22.5	8	1,168	.942	74.	.616	<u>6</u>	1.292	1.248	1.672	2.114	Ø.	:00
S SEANULANTE S	61 [ne/1]						B		•																											
ં. ઉ	K [*ed/1]	.645	¥3.	.047	8	22.		ģ	ŝ	=	8	1.183	93	6	876	8	ŧ	9	230		17:	Si i	38.5	6	95	50	96	ž	.078	80.	(47	193	790.	.019	8	ź
Table (Na [ceq/1]		.372	÷.	\$65	2,040		2.680	5	*	1.125	. 383	410	1.260	88	.662	2	1.83	2 , 1 0		3	1.72		9	55	1.20	820	£.	.421	8	3,520	1.685	1.125	25	2,000	656
.	70 [aeg/1]	034	39	.E	731	,		•	869		163		.211	*	8	.027	290	624	594		2	1.315	70.55	190	S	3		8	.195	8	S	690"	112:	374	Ě	65
	Cs								1.519		. 78		₹.	980	:₹	919.	?	99.	1.620		1.660	. 470		2	626	877		7	22	99	75°	2.200	1.962	1.933	7.829	977
•	Cond [#/Se]	•	•			9.99		-C	e G		S,	8	17	25.9	-é	6.01	7.7	2	7		7.5	9		17.5	18.5	21.7	19.8	13.3	12.4	17.6	9.0	8.8	40.6	41.0	13.2	25.2
· : ·	185 [17/1]	0.19	47.0	0.34	3.045	248.4	1	S	37.0	6					15.3	54.0	3	00	132.0		3.02.0	•	0.611	0.84	~;	,¥4.0	218.0	85 63 83	0.4 25.0	98.0	248.0	56.0	110.0	9.0	2	0.79
	= 1	-40	-		4	.	•				rų.	٠.	÷.				•	e,	r.	, ·		-			7		•					12				
	81	-0	•	•	9.8	7		•						36. 4.6			• •	6.9	7.	1 :	3		9 6		_						21.0		7	1	9	-1 21
	2 3	25	98 98	22	33	22	1 1	~ i -		- C	ė: :::	₩ ₩	٠٠ ا		···	F)		~ ·	2		ġ	28	8 8	2 55	*	8	82	88	22	8	88	85	6	85	~·`	2
		- 1	- 225	, Prt .	, M	JEC.		ž		7 181	. Apr	8 1147	٠ س	15 Jel.	5 364	Sep.	, F	14 Roy.	ž.						14 Jun	15 Jul.	16 840,	14 Sep,	18 Oct,	15 %04,	19 Dec.	17 Jan,		15 12.	19 Apr.	16 Kay.
		=	=	=;		۳.		-		-	C.I				-	~	-			_	•		• -			-	-	-		-		_	-			_

• • :

Location; NONG NIENG

Year Item											Tot	is S	33 NE	4 Tota	Š	f Total	Si	23	ධ්
	Temo PH	Hd	TSS	Cond	ප්	Mg	Na	М	AIK	೮	SO4 Fe -2)-N -N -n -p -p	(2	Y- N-	đ	뀨	다			-MN
	ပ		S E	mS/M	meq/1;	meq/11	meq/1	aeq/1 a	aeq/l z	neq/11	mg mS/Mmeq/1meq/1meq/1meq/1meq/1meq/1meq/1mg/1mg/1mg/1mg/1mg/1mg/1mg/1mg/1	/1 mg	/1 mg	/1 mg/	1 mg/	1 mg/1	mg/1	mg/l mg/l mg/l	mg/1
* Mean 1986 Max.	30.7	7.0	~~ (\)		23.7 0.518 56.6 0.756	0.211	2.040	0.087	1.136	0.939	0.481 0.485 (1.908 0.709 (35 0.2 09 0.7	0.235 0.060 0.709 0.239	39	6.000	0 0.053	5.800	2.710	0 0 V
Min. Mean 1987 Max. Min.	Min. 22.4 5.4 Mean 28.6 7.1 2 Max. 32.4 7.5 8 Min. 20.2 6.1	7.7	246.4 892.0 15.3	32.7 38.6 0.6	32.7 0.898 88.6 1.700 0.6 0.241	0.358 0.698 0.027	3.440 0.088		1,227 2,155 0,509	1.317 3.68 0.148	7 0.384 0.496 1 0.915 2.548 3 0.061 0.025	3 8 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.368 0.373 1.526 2.004 0.019 0.006	5 4.3 86 4.8	0.052	2 0.069 12 0.145 11 0.006			1, 10 % W
Mean 1988 Max. Min.		0 1. 0 0 10 4	108.2 2044.0 0.1	28.7 60.0 11.2	27.5 6.9 108.2 28.7 1.096 32.7 7.3 2044.0 60.0 2.400 21.0 6.4 0.1 11.2 0.422	0.471 1.315 0.160	1.139 1.720 0.160		1.408 3.287 0.616	1.146 4.043 0.337	0.393 0.399 0.214 0.254 0.248 0.077 0.101 1.055 1.209 0.665 1.347 0.461 0.225 0.248 0.135 0.035 0.008 0.028 0.142 0.022 0.039	35 0.0 0.0 0.0	214 0.2 565 1.3 308 0.0	54 0.24 47 0.46 28 0.14	82.00	7 0.101 5 0.248 22 0.039	4.383 8.100 2.500	2.392 3.500 0.710	L. 0. 4.
% Mean 1989 Max. Min.		26.9 7.1 30.8 7.3 23.6 6.7	69.2 110.0 37.0	37.8 43.2 25.2	1.738 2.200 0.640	0.340 0.592 0.069	1.202 2.000 0.250	0.073 0.195 0.019	2.330 0.982	1.390 1.589 1.129	1.390 1.369 0.456 0.398 0.159 1.589 3.509 0.851 0.629 0.329 1.129 0.460 0.205 0.082 0.023	52.50 99.90	398 0.1 529 0.3 382 0.0	33 32	8 0 0	0.074 0.058 0.142 0.085 0.039 0.030	5.746	1.898 4.600 0.073	C 80 L
Mean TOTAI Max. Min.	Mean 27.8 6.9 257.1 30.7 0.909 Max. 32.7 7.5 2044.0 88.6 2.400 Min. 20.2 6.1 0.1 0.6 0.216	6.9	257.1 2044.0 0.1	30.7 0.6 0.6	0.909 2.400 0.216	0.322 1.315 0.027	1.143 3.520 0.088	0.156 1.185 0.019	1.300 3.287 0.509	4.043 0.148	0.156 1.300 1.212 0.454 0.298 0.243 0.022 1.185 3.287 4.043 2.548 1.526 2.044 0.461 0.019 0.509 0.148 0.034 0.025 0.008 0.006	26 2.6 25 2.6 25 0.	0.243 0.022 2.044 0.461 0.008 0.008	22 61 06	0 0 0	59 0.076 25 0.248 01 0.006	0.059 0.076 4.144 0.225 0.248 8.100 0.001 0.006 0.950	2.178 4.600 0.073	72 122 3.7

* 1986; from Aug. to Dec.

1989: from Jan. to May

	COD	[X6/L]	3.6	'n	3.4	1.7	80	1.2	-	5.4	5.1	9:5	60	5.0	3.7	2.7	60		6 7	1.8	3.7	u5	-6	5.5	6.3	2.0	7.3	4.	.0	2.2	3.7	2.3	2.4	4.5	5.6
	മ	[80/3]	2.772	4.507	1.556	799	6.232	5.3.5	3,083	5.1.5	2.500	:370	2,300	1.910	3,250	2,385		2,750	6,720	6.900	2,770	2,756	1.544	2.530	4,309	069	3.613	4.970	3.400	2.880	4.390	090*	5.F30	1,590	3,651
	K	[R0/1]	2.400	16.	3,349	3.030	5.700	97817	6,529	6.160	5.809	7.100	4.200	6.660	3.100	3,100	3.100	5.600	3,500	5.400	5.500	965.4	6.112	3.706	5.40	3,500	3.100	3.530	2.600	4.300	4.863	6.003	8,890	5.700	2.400
	E-i Ou	{45/J}	181.	900	8	69	927	5	909	810.	960	101.	250.	690	. 247	.020	025	.043	053	.042	040	.132	.054	028	0.42	.135	.055	.027	,064	210.	.097	.061	027	023	.027
	8. 80 0.	[20:]	539	8	976	3	23	.026	100	.013	.016	639	.058	.093	203	510	.010	035	637	,022	.034	220.	550,	0.0	629	.052	.049	670.	.043	.039	9.078	.037	.043	.027	95
	Joe i-K	[1/56]																									.095	.095							
	* 12	(T/0#)	,020	.065	.012	860	.078	640			.021	115	.055	. 280	.053	.025	790.	910.	.083	.002	.056	1117	.162	.033	.048	.225	.161	760.	160	.166	.586	.063	060	.016	329
	(NO3-2)-N	mq/1]	.222	087	.550	000	.237	.156	.107	.031	.424	116	121	472	920	101	. 027	152	.318	. 28/	.067	.324	13	. 140	. 068	. 162	-06	.143	.077	.482	457	,152	.123	.056	.786
		[Ing/1]	.353	. 258	.130	.067	020	.137	.025	. 005	930	980.	1.382	.755	.123	.155	1.424	750.	051	640			. 55.	÷53	.275	::11	961	.215	.790	874	- 200	971.	.172	139	.164
46 P39	594	[1/Daw]	050	21.	.377	.163	67	679	717	:83	*** 64 ***	.387	8	70	061	.151	un V	+33	.463	.445	835	. 430	208	.179	. 154	.423	.147	.122	.157	.287	,539	.107	.620	295	56
•	:3	[sec/1]	694.	.221	149.	¥08°	625	.253	.547	.739	1.9.	675	305	1.057		S.	139	1,197	.503	. 475	917.	901.	761	1960	505	. 655	127	. 296	.35.	603	.619	.667	185	.785	-918
THATLUSING SHAMP AT HONGYENG SURFACE HATER GUALITY	7	[360:]]	917.	55,	934	512	1.83	1.943	2.070	1.877	1.350	2,040	.653	1.463	93.0	1/9	.89	1.214	1.590	2.179	2,116	2,137	2.400	573	1,150	.961	.942	.641	. 299	96	2.370	2,188	2.267	2.250	1.573
Syde Jedah Syde Jedah		(1/04)																																	•
C.8	3 2	[1607]	190.	183	\$90.	(83)	3	.072	.037	8	.052	<u>~</u>	900.	021	102	.027	0.75	.027	110	.072	.032	.048	090	.047	5	.045	.042	.062	. 056	070	.130	040.	938	920	.027
Table	ž.	(sec/1)	154.	515.	.502	659	. 626	.485	.627	929	.930	1.215	575.	1.205	.422	0+4	.630	1.130	780	286	926	708	936	782	909.	1.230	.760	.338	.405	.820	.950	.825	009.	1.200	. 008,
	£	[[/684]]	,024	7	.243	.768			.593		. 559		.063	.289	340	210	123		964	. 656	787	.810	1.032	166	286	.411		.124	.179	. 289	.708	.259	216	321	, 687
	ي ع	[884/]]	700	.462	,554	760			1.499		1,250		616.	1.130	986	967	. 720	679.	1.470	1.340	1,545	1.515	1.740	380	743	, ė62		. 492	.418	.714	1.539	2,026	2,190	1,858	. 967
	Cond	[#/S=]	12.4	9.4	16,4	22.4	28.5	36.5	38.3	2; 2;	27.5	27.4	11.3	23.6		14,0	 	27.3	22.0	23.4	33.0	38.2	32.5	7.37	30	7	13.0	16.7	9 77	17.6	20.0	33.7	30.1	35.0	33.6
	195	[1/06]	122.0	5.0	144,0	284.0	0.61	0.8	6.0	75.0			-			200.0	40.0	184.0	8'0	2,0	9,0	9.01	184.0	35.0	40.0	312.0	0.083		48.0	148.0	16.0	20.0	0.4		50.0
	E CH	121						1 1			. :																					5.7 7.3			28.9 7.0
	•=		Hug. 36	Sep, 86	28	9c. 4c	Dec. Ro	Jan. 87	Feb. 87	Mar, 87	Apr. 87	fay, 87	Jun, 87	Jul. 87	Aug. 87	72	Oct. 87	Nov. 87	Dec. 87	Jan, 88	Feb. 88	88	Apr. 88	Hay 88	Jun. 88	Jul 88	Aug, 38	Sep, 88	Oct, 88	Nov. BB	Dec. 88	8	60	. &	16 May, 89 2

Table C.9 Existing Water Quality Data(Mean Maximum Minimum)

Location; HONG XENG

* 1986: from Aug. to Dec.

1989: from Jan. to May

	(:			,		
2				٠		-		
Lable	?		MORE CAND STORY	0	Š	VICE	AN DRO	_
			1000	7	5	į	5	
		•	SUSPACE MATER DUALITY	S	R DU	LITY		

				_			_																													
	\$-000 \$-	[NS/L]	α	, n	8.	111	9.7	0	8.2	=======================================	8	Ξ	5.3	124	7.2	9.5	600	o.	œi '	ထ	77	**	6		700	7.0	111	à	7.5	:	##	4.7	::	111	77	5.5
	8	[/53]		474	.974	391	9.795	7,64	5:351	1.126	4.590	1.630			1,740		•	5.750	4.410	2.610	2.129	2.115	Ê		ડેંડ	1.279	1.35	1.75	2,46.	7.5	4,130	5,300	55	1.500	1, 560	1.22
		[aq/1]	eor -	569	.956	1.710	4.810	5.590	2.861	4.900	5.000	5,400	5,800	3.530	3.970	2,300	3,160	2.700	3,650	7.100	3,700	3,800	5.500	3.600	3.900	3,000	2 000	3,700	5,200	2,300	3,700	38	3.800	8.800	7.800	3,700
	Total-P	[a5/1]	247	612	+20.	00.	720.	012	800	,034	.033	171.	101.	170.	.169	+10.	.025	710.	.155	.091	.296	\$91.	Ei.	920.	. 042	091.	.042	101	.165	.109	.299	9.	150.	.037	.133	.037
	4-10d	[40/1]	290	.007	.691	800.	.016	.003	.001	.021	.032	.137	.077	111,	.130	110.	010,	.028	.025	.082	.321	.334	150	700.	.028	029	.031	949	.124	.061	.313	.028	.071	.051	204	148
	[atal-¥	[1/64]																									5				į					
43	÷	[1/0/1]		. 20	280.	.031	151.	} šį		.215	.031	.548	.618	136	.201	.623	.062	306	7	090	115.	.279	010	.029	181	170	95.	.038	167	.302	679	060	235	228	710.	37
	H03-21-H	713	101	. 912	839	710.	.165	0.0																												
	· _	ا ٽ																	;																	
,		[] (Ag/I]				1.																												-		
	204	[bau]	,	18	.21	197	55	169	349	747.	.629	. 280	. 302	5.	.303	171	48	.27	.540	.446	.598	.135	550	.137	.142	.322	.162	156	.620	.656	.867	1,232	1,375	20	. 267	1.000
	ប	[960/]]	9.4	7.42	747	. 069	1.091	1.595	523	1.231	1.402	1.630	979	1,610	.653	479	380	,566	1.029	1.064	784	315	6	. 587	558	119	.672	471	786	1.002	1.530	1.051	1.022	. 4B5	191	1.033
	A1k	[eeg/]]	193	169	250	65	1.954	1.440	2,269	1.788	2,170	1.680	1.421	1.024	1.323	.851	689	1,179	1.735	2.075	2.184	2.330	2.137	.847	.843	1.149	72	980	1.495	949.	088.7	1,419	1.940	2,360	2.260	1.1//
•		[[/64]]																	:			:										,				
	¥	[ceq/]]		570	.632	660	244	193	(71	:45	.230	. 185	.150	(80	.T.	.032	.035	916	. 190	.215	.175	.085	.125	980	.186	.656	.027	.075	5.1	655	. T\$0	.120	052	.032	926	.055
	28	(reg/1)		p g	\$ S	2	. 554	1.041	3	.826	1.565	1.450	656	.18∪	728	.552	. 630	.63	1,350	1.100	1.179	,335	1.100	994	<u>2</u>	356	633	550	9 8	880	1.550	1.335	1.025	1.250	1.650	1.000
	9. 9.	[1/ba#]		3 2		33	555	ţ	816		542		ci m	:35	.262	246	.339	. 56	.314	. 186	₹9.	718	.351	.254	.246	1:122		.266	383	.77é	.625	590	755	.321	345	31.
	3	[1/daw]		779	652	902	1,250		1.411		1,550		1,000	900	.980	009.	,320	956	1,300	1.660	1.428	1,523	1,320	596	. 286	.786		. 658	1.140	594	.719	2,054	1.829	929	2.064	γ. •• ••
	Cond	[#/ S#]			7	0	34.6	38.5	35.1	37.6	12.9	45.9	24.0	74.4	. 22.6	15.4	11.6	20.0	32.6	35.2	33.5	Z,	35.1	16.4	16.	20.7	17.0	8 91	29.0	16.7	ა ეგე	33.9	H.7	22.	27.7	5.40
	SS	[1/8]		2 0	> .	0	24.0	0.49	32.0	72.0						72.0	40.0	52.0	70.0	520.0	0.342	216.0	512.0		30.0	220.0	0.89	٠ ج	0.6	0.092	0,895	52.0	10.0	28.0	2 6	÷
	了. 老						. '													~																
		. (3)						10	76.	74.4	36.0	32.0	0.02	£ (2)	27.4	28.4	29.8	38.B	20.2	23.2	24.2	28.6	30.2	 	(2) (2)	29.2	30.2	2.0	27.4	23.6	21.8	22.2	73.4	26.8	8.6	0 0 77
			;	8 3	3 3	3 6	: ::	Jan. 87	Feb. 97	Nac 97	87	Hay. B7	Jun, 97	3677 87	Aug, 87	ò	9ct. 87	6	Dec. 87	.an, 88	쫎	. ar. 68	Apr. 95	¥ay, 88⁻	Jun, 98	Jul. 98	fui. 89	器	P	8	83	17 Jan. 89	è.	ž.	19 Apr. 39	16 May, 89

Location; HONG KEDUA KHOA

* 1985: from Aug. to Dec.

1989: from Jan. to May

6.7 6.7 6.7 9.8

	2	.≊. ∷	1	·	-			İ			I	- 0	u w		, p-1	4		ψ	V)													· ['				
	2	I. (#g/1)		2	20.21) + O	4,700		6.8%	5.860	7 5	1 240	65	3,010	2,029	5.063	7.500	2.390	3.790	11,909	2.470	2.479	2,940	1.516	1.550	1,240	CIS.7	4-300	7.80m		. S.		F. 5	A	1,100	1,587
	, j	[kg/l]		90.77	\$60.00 \$1	0.00	2 6		4. 580	200	(1)	8.460	9	7.700	3.510	9.600	6,300	9.400	÷,500.	6.100	6,200	5.690	8.110	E.236	7.200	5.400	002	202	000	900	200	1 2	2 6	8	.700	300
	4- (5)5;] [40/1]		1 0	700	7.3	3		9.	620		356	245	.178	.579	.083	160	.127	.123	.038	.116	.140	661	.062	039	475.	761	112	176	150	360		110	150	782 10	150 5
· ·	4-55	[1/2]		6	1 8	100	6	;	509	203	2 -	266	310	111	340	1:4	975	107	(62	044	960	187	124		÷ 7	100	<u>د</u> ر ;	. 5		99	99	 3		6	8	
*	- 14 - 14 - 14	(40.1)	•			-		-					7.		-	•	•	•	- 1	•		-	-	Ϋ.	•				? -:	Ģ.		; <	. 0.	ė	ώ	-9
							: '	-											;								3									
	K-47%	[196/]	772	159	910	100	7,397	1	3 6	117	027	183	1.760	1.659	360	.01	836	1.3%	2/2	.005	1.978	1.716	1,347	1.196	2 0	1.133	870	1.759	.839	800	989*	420	1.485	.235	.021	2.587
	(NO3-2)-H	[eo/H]																														139				
	otal-Fe	[4 0/1]																																		
े क्ष्म चे च		[[[[[[[[[[[[[[[[[[[[•											i																	
OMBLET. LA		[460/]																																		
E TR GRA																																				
HATLUAKS SPAN		[] [ec/]		1	-X-	0	64	57.3	2.6	2.59	2.93	3.02	7:01	7.87	1.21		7.7.6	6		1.997	201.6	7 287	27.	1,723	2,073	1.937	1.470	1.709	2.014	2.565	2,438	2.024	3,145	3.319	799.7	1,070
		[[#d/]																													1	-				
C.12	j.	[/58.]	.158	551.	.173	680	187	57.5	650	.218	230	17.	961.	ė,	.1	200	037	150		140.	6 5	, J.	6	83	90	1,160	145	140	0+1	6	041	,120	.062	1032	21.	3
Table	2	[8ec/1]	879.	.646	.742	655	¥28.	.405	829	.874	1.36	ĝ,	261.	1,075	140	775	1,100	1,460		98.	3 7.10	1.555	.925	1.350	1,500	1.175	1.275	. 970	1.140	SP.	004.1	.535	1.250	2.100	R50	:
•		[aeq/.]]																-		1.136												.057				
	S	[460/[]	1.575	553	1.400	.760	1.825	1,116	1,762	1.600	2.000								•												. 1				•	
	Cond																																			
							'										_			•			-	•	-			-,	,	,	* (. ~			**	
· · · · · ·	<u>8</u>	1762	12.0	0.06	0.60	o it	68 0	108.0	24.0	98.0	.:				56.0	112.0	136.0	38.0	. 5	9776	20,0	0.040	0.89	28.0	352.0	9,4	144.0	180.0	0,	0.04	29,0	54.0	0.5	58.0	0,3	
	15	:	į.,	e-i		7	ن. ارکرا	,,	17	7		٠ -																				0.0				
: ,	928	31	9 (g)	e 1 125	٠	es:	2	8,	5.0	د د		- c		7.7		5.4	8	8.1			7 7	7.8	1.2 6	2 2		9.0.6	2.0 .7	7.	5.5	` '	0.7	80 (00 1			
			ur,	05	0.0	ii.	di di	8	87 2	63 i	n i	o io ii ii	6	7	· 6	25	87. 28	97 2.	i } ?	38 58 23 52	, 23 123	'8'	33	88 28	88 25	88 . 30	:3 : :33 :	23 1 23 1	83 63 83 63	2	27 28	8	is to	2 2	5	:
		,	38 kg.	.8 590.	15 Ct.	17	15 GEC.	16 (88)	17 Feb.	17 Har.	26.	15 PM 21	15	17 600	14 Sec.	16 Oct.	14 150	17 Sec.		23 Feb.	15 Kar	11 for.	23 May.	14 340	15 Jul.	15 Aug.	14 580	39.65	15 Mov.	104 /1	19 Dec.	17 Jan, 89	15 Feb. 15	10 per 8	16 Kav. 5	
					- 1		. :																													

(7/9k]

Location; HONG KE

Year Item	Temp PH C	田	TSS	Cond mS/M	TSS Cond Ca mg mS/Mmeq/ln	Mg meq/l	Na meq/1	K meq/1	AIk meg/11	CI meq/I	SO4 I	otal (Fe - <u>8/1 n</u>	Total (NO3 NH4 Total PO4 Total Cond Ca Mg Na K Alk C1 SO4 Fe -2)-N -N -n -P -P -P mS/Mmeq/1meq/1meq/1meq/1meq/1meq/1mg/1mg/1mg/1mg/1mg/1mg/1mg/1mg/1mg/1mg	Total PC -n mg/1 mg)4 Total P -P !/1 mg/1	Si mg/l	02 mg/1	H AN
* 1986 Max. Min.	28.2 7.1 31.0 7.6 24.8 6.2	7.1	114.4 284.0 22.0	33.3 38.6 22.4	114.4 33.3 1.303 0.553 284.0 38.6 1.825 0.763 22.0 22.4 0.760 0.168	0.553 0.763 0.168	0.719 0.874 0.649	0.153 0.187 0.088	1.878 2.767 0.912	0.799 0.887 0.728	0.514 1.268 0.072	0.098 2.062 0.145 9.413 0.057 0.066	2.062 2.044 9.413 7.397 0.066 0.016	0.0	0.046 0.071 0.096 0.154 0.002 0.004	5.926 1.7.700 1.3.030	5.380 11.500 0.799	4 0 W 0 W Q
Mean 2 1987 Max. 3 Min. 2	29.5 7.1 35.6 7.4 21.8 6.2	1.7 4.7 5.2	77.5 136.0 24.0	36.3 48.7 2.2	1 77.5 36.3 1.475 0.4 136.0 48.7 2.000 1.2 24.0 2.2 0.600 0.0	0.685 1.048 0.496	1.133 1.695 0.405	0.173 0.280 0.037	2.377 3.023 1.219	0.779 1.259 0.132	0.622 0.107 1.748 0.359 0.115 0.019	.359 019	1.202 0.583 3.234 1.700 0.055 0.011		0.137 0.185 0.340 0.579 0.002 0.010	6.245 8.400 3.810	4.966 12.000 1.260	N & H
Mean 46.8 7.2 89.9 3 1988 Max. 32.0 7.9 1060.0 5 Min. 22.0 6.6 4.0 10	46.8 32.0 22.0	7.7	89.9 1060.0 4.0	36.9 32.0 16.3	36.9 1.661 (52.0 2.400 16.3 0.850 (0.699 1.136 0.509	1.182 1.555 0.360	0.153 0.200 0.041	2.277 3.287 1.470		0.718 0 1.416 0 0.306 0	.146 .746 .033	0.787 0.718 0.146 0.763 0.943 0.608 0.131 0.148 1.329 1.416 0.746 1.800 1.978 0.608 0.358 0.316 0.119 0.306 0.033 0.140 0.005 0.608 0.032 0.038	0.608 0.1 0.608 0.3 0.608 0.0	31 0.148 58 0.316 32 0.038	6.593 8.200 5.300	4.026 11.900 0.900	₹. 6. 6. 6. 6.
Mean 25.5 7.3 49.6 43.1 2.216 0.914 1989 Max. 29.2 8.0 105.0 61.9 2.629 3.460 Min. 20.8 6.9 6.0 25.2 1.391 0.057	25.5 29.2 20.8	7.3 8.0 6.9	49.6 105.0 6.0	43.1 61.9 25.2	2.216 2.629 1.391	0.914 3.460 0.057	1.387 2.200 0.535	0.072 0.120 0.032	2.636 3.319 1.808	0.61 1.17 0.17	2 2.256 0.243 7 0.557 0.089	243 243 089	0.643 0.931 1.222 2.687 0.041 0.021	000	0.326 0.246 0.800 0.782 0.040 0.039	0.246 7.460 0.782 10.700 0.039 5.300	2.824 8.500 0.110	5.5
Mean 27.9 7.1 100.0 36.3 1.440 0.624 1.128 TOTAL Max. 35.6 8.0 1060.0 61.9 2.620 3.460 2.200 Min. 20.8 6.2 4:0 2.2 0.600 0.057 0.360	27.9 35.6 20.8	7.1 8.0 6.2	100.0 1060.0 4.0	36.3 61.9 2.2	1.440 2.620 0.600	0.624 3.460 0.057	1.128 2.200 0.360	0.148 0.280 0.032	2.305 3.319 0.912	0.761 1.329 0.119	0.734 0 2.256 0 0.072 0	745 019	0.148 2.305 0.761 0.734 0.116 1.082 0.975 0.034 0.148 0.163 6.323 4.289 0.280 3.319 1.329 2.256 0.745 9.413 7.397 0.608 0.800 0.782 10.700 12.000 0.032 0.912 0.119 0.072 0.019 0.041 0.005 0.000 0.002 0.004 3.030 0.110	0.034 0.1 0.608 0.8 0.000 0.0	48 0.163 00 0.782 02 0.004	6.323 10.700	4.289 12.000 0.110	5.2 9.8 6.6

* 1986: from Aug. to Dec.

1989: from Jan. to May

* # # 5 #

1.284

	::																									-		•				
	Si [mg/1]	9.5		7.5	2.5	2,790	10.520	4.200	Š	302	9	i.630	5	S 5	3.	8	7.400	8.500	5,510	1.18	2.1%	ŝ	3 3	2 2	400	14,360		15.900	15.600	17.200	15.00	200
	Total-P [mg/l]	-016	.026	66	8	.022	034	.024	0.55	3 -	8	145	5	2 5	174	1 20	176	969.	52	Ş.	ģ.	193	Š	3 5	262	797		.521	207	445	£ 1	Ę
	1764) (1/64)	8	롡	3 8	8	89,	8	3	16. 16.	515	ફે	560	8	3 8	1/0	ş	2 2	2	95	5	3.	5	5	77.	20	K	į	91.	8	070	3	.
	Teta]-W [eg/!]	-																			.602	į	6	2			į					
	4-11-N (00/1)	36	553	9.5	ž	2:425	1:731	5	1.074	/4T	120	. 110.	. 067	5 5	m.	975	193	727	.328	.039	-119	.073	63	97.	37.	350		967	284	3	.020	/gr
	(NO3-2)-# [+4/1]	_	020			.176			. •									\$ <u>.</u>								045	•	_	•	_	.027	-
٠	Total-Fe [Ag/1]	7.66	ŧ	\$2. 7.	2.14	\$67	111.	65	<u> </u>		98.1	. E.	1.07	- 57.	.187	. 492. 7	49,	=	. 121	Ē	.3BI	£13	1.051	70.	5 5	95		¥:-	.623	88	.248	525
LAG PGR	504 [Aet/1]						•									•	:			•							i	3,768	779	iš.	S. (8
BALAKHAM .	C1 [seq/1]	.202	£2.	77.	159.	136	4.774	3.656	2,209	2,703	Į	.523	3	265	2.678	1 36 6	57.7	582.	3,004	ŧ	144.	Ę.	E	3 3	570	797		3.677	. 22	591	55.7	5.0 8
THATLUNG SURMP AT SALACHAM SURFACE HATER DUALITY	A12 (aeu/1)	\$£.	512	121 26	1 2	1:081	36.	1.365	3.	3 2	3	.319	.271	<u>ن</u> ع	718		74.	620	1.474	.272	. 27	33	62	į	3 9 7	1.574		2,665	777 6	2,570	2.681	2
ల క	æ 🕶	•				•									•	:					•						ı		-		•	
ran Taki S	A1 [+q/1]					·																										
en ustu	A1 240/1] [140/1]		\$.	.022	116	.242	.231	212	280	027	610.	.043	500.	E	25		002	270	. 220	.071	,01¢	. 015	600.	. 620	070	3.70		.255	oto	600	.076	æ.
C.14 เพาแพ	[[sec/]]	560.															:											3.995 .255		٠.	920 076	
en ustu	Ns F (sec'l) [sec/l]	. 451	ដូរ	អ៊ុន				3.299	92.	. e	55.	.403	.576	ş; ş	2.205		2.560		2.300	.430	505	.700	.275	232	7/4	100		3.995	940	3.850		2.600
C.14 เพาแพ	No No F Factil [Sec/1]	.020451 .005	22. 22.	65. 121.	.577		3.170	3.299	92.	1,485	.263 .955	.403	.135 .576	257 460	505 2,205	1000		.696 3,630	767 2.300	.630	. 157	178 .700	:278	. 232	7/4" (47)	444 4.100			77.	238 3.850	1.950	.383 2.600
C.14 เพาแพ	Ns F (sec'l) [sec/l]	.428 .020 .451 .005	.124 .132 .223	25. 121. 657.	.577	716.	1,254 ,813 3,170	2.29	750 . 157 1.700	1,485	. 350 . 263 . 955	.220 .193 .403	.250 .135 .576	257 460	670 .505 2.205	1000	204 . 274 . 3 GAA	.696 3,630	1.546 ,787 2.300	. 295 , 690 , 430	.302157500	.245 .178 .700	.275	. 256 . 176 . 255	7/4" (57) 600	2. Ush 444 4. 100		.024 3.995	762 119 5	1,554 .238 3,850	354 1.950	1.128 .383 2.600
C.14 เพาแพ	Cand Ca No Na F F 1 (65/N) (65/N) (65/N) (65/N)	.428 .020 .451 .005	124 ,125 ,132 ,223	11 4 789 121 250 120 120 120 120 120 120 120 120 120 12	5.51 5.52	718.	64.7. 1.254 .813 3.170	3.299	750 . 157 1.700	1,485	. 350 . 263 . 955	.220 .193 .403	11.9 .250 .135 .576	10.7 .140 .257 .460	38.8 .670 .505 2.205		0.00 TTA 0.00 0.00 0.00 0.00 0.00 0.00 0	52.9 5.11. 5.53	\$6.4 1.546 ,767 2.300	19.4 .295 .690 .430	11.4 .302157500	10.1 ,245 ,178 ,700	275	7.0 .236 .176 .235	2/4, 663, 800, 5,41	000 000 170 VI V		69.8 2.234 ,024 3.995		70.8 1.754 .238 3.830	52.4 2.216 .354 1.950	41.6 1.128 .383 2.600
C.14 เพาแพ	[64 Ng N3 F	.428 .020 .451 .005	124 ,125 ,132 ,223	25. 121. 657.	5.51 5.52	716.	64.7. 1.254 .813 3.170	3.299	750 . 157 1.700	1,485	. 350 . 263 . 955	.220 .193 .403	11.9 .250 .135 .576	10.7 .140 .257 .460	670 .505 2.205		0.00 TTA 0.00 0.00 0.00 0.00 0.00 0.00 0	11.1	\$6.4 1.546 ,767 2.300	19.4 .295 .640 .430	11.4 .302157500	10.1 ,245 ,178 ,700	275	7.0 .236 .176 .235	2/4, 663, 800, 5,41	000 000 170 VI V		2,234 ,024 3,995		70.8 1.754 .238 3.830	2.216 354 1.950	41.6 1.128 .383 2.600
C.14 เพาแพ	Cand Ca No Na F F 1 (65/N) (65/N) (65/N) (65/N)	.428 .020 .451 .005	124 ,125 ,132 ,223	11 4 789 121 250 120 120 120 120 120 120 120 120 120 12	5.51 5.52	71.8	64.7. 1.254 .813 3.170	3.299	750 . 157 1.700	1,485	. 350 . 263 . 955	.220 .193 .403	11.9 .250 .135 .576	5.4. 24.0 10.7 140 257 450	6,8 366.0 36.8 ,670 ,505 2,205	**************************************	7.5 45.4 47.4 47.4 1.67.0 1.67.	7.2 25.0 52.9 1.114 .676 3.630	7.7 156.0 \$6.4 1.510 ,767 2.300	7.2 40.6 19.4 ,295 ,690 ,430	6.0 132.9 11.4 302157 .500	6.3 340.0 10.1 ,245 ,178 ,700	5.7 146.0 8.8	7.0 12.0 7.0 .236 .176 .235 .	. 7/L" (C)' GAC' 5'T ('7) ('7) ('7)	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50		7.2 60.0 69.8 2.234 ,024 3.995		70.8 1.754 .238 3.830	52.4 2.216 .354 1.950	41.6 1.128 .383 2.600
C.14 เพาแพ	Cand Ca No Na F F 1 (65/N) (65/N) (65/N) (65/N)	31.4 6.4 16.0 11.6 .428 .020 .451 .005	31.2: 7.3 5.0 5.4 .124 .132 .223	28.8 6.1 165.0 5.2 .243 .121 .255 .253 .253 .255 .255 .255 .255 .255	26.8 7.3 280.0 15.3	21.8 6.9 2.146.0 37.5917	24.4 6.8 340.0 64.7 1.254 .513 3.170	3.299	750 . 157 1.700	32.0 6.4 35.8 35.8	30. 4.2 [8.7 .350 .263 .955	30.4. 7.5 9.3 .220 .193 .403	29.8. 6.1 116.0 11.9 .250 .135 .578	29.0 6.4 24.0 10.7 140 257 460	23.8 6.8 368.0 36.8 6.70 505 2.205	**************************************	24.4 (.5 62.4 37.4 170 175 1.570	2.54 7.7 25.0 52.9 1.11. 3.630	31,8 7,7 156.0 56.4 1,510 ,757 2,300	33,2 7,2 40,6 10,4 ,295 ,690 ,430	6.0 132.0 11.4 .302 .157 .300	30.1 6.3 340.0 10.1 ,245 ,178 ,700	31.2 5.7 146.0 8.8	7.0 12.0 7.0 .236 .176 .235 .	. 7/L" (C)' GAC' 5'T ('7) ('7) ('7)	000 000 170 VI V		7.2 60.0 69.8 2.234 ,024 3.995	000 1 7C4	70.8 1.754 .238 3.830	30.4 7.0 2.0 52.4 2.216 .354 1.850	41.6 1.128 .383 2.600
C.14 เพาแพ	Cand Ca No Na F F 1 (65/N) (65/N) (65/N) (65/N)	.428 .020 .451 .005	31.2: 7.3 5.0 5.4 .124 .132 .223	28.8 6.1 165.0 5.2 .243 .121 .255 .253 .253 .255 .255 .255 .255 .255	26.8 7.3 280.0 15.3	71.8	97 24.4 6.8 540.0 64.7 1.254 .513 3.170	Mar, 87 33.2 7.4 656.0 58.8 3.299	55.8 ,759 ,447 1,700	22.0 6.4 35.8 1.485	30. 4.2 [8.7 .350 .263 .955	87 30.4 7.5 9.3 .220 .193 .403	37 29.8 6.1 116.0 11.9 280 135 578	0ct, 87 29.0 6.4 24.0 10.7 .140 .257 .460	6,8 366.0 36.8 ,670 ,505 2,205	TABLE TO THE TABLE	00 24 7 1 148 0 57 505 57 570 1.050 1.050	Mar. 88 -28.4 7.2 28.0 52.9 1.114 .676 3.630	hor, 88 31,8 7,7 156.0 \$6.4 1.510 ,757 2,300	May, 88 33.2 7.2 40.0 10.4 .295 , 040 ,430	BB 29.8 6.0 132.9 11.4 .302157 .500	Jul, 88 30.1 6.3 340.0 10.1 ,245 ,178 ,700	88 31.2 5.7 148.0 8.8	88 31.8 7.0 12.0 7.0 .256 .176 .255 .	7/L CC2' GCC' 2'T	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50		89 24.6 7.2 60.0 69.8 2.634 .024 3.995	000 1 7CL 2505 - 1 CC - 0 502 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	69 27 4 9.5 142.0 70.8 1.54 .238 3.830	30.4 7.0 2.0 52.4 2.216 .354 1.850	89 28.8 7.0 45.0 41.6 1.128 .383 2.600

DO (18471) (1869) (1.639) (1.639) (1.639) (1.236) (1.236) (1.236) (1.237) (1.365)

Table C.15 Existing Water Quality Data(Mean Maximum Minimum)

Location; SALAKHAM

Year Item	tem	Temp PH	PH	TSS	Cond	TSS Cond Ca	Mg	Na	24	Alk	ರ	Total SO4 Fe	Total (NO3 NH4 Total PO4 Fe -2)-N -N -n -P	H4 To	tal PO4 Total	LI Si	05	COD
		ပ		800	mS/M	meq/1	meq/1	meq/1	meq/1	meq/1	meq/1	meq/1 mg/1	mg/1 m	g/1 mg	mg mS/Mmeq/1 meq/1 meq/1 meq/1 meq/1 meq/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	1 mg/1	mg/1	mg/l
* Mean 1986 Max. Min.	dean dax. din.	28.8 31.4 26.2	& V. & & N. ±i	114.6 280.0 5.0	4.01 4.07 4.04	Mean 28.8 6.8 114.6 10.4 0.296 0.101 Max. 31.4 7.5 280.0 15.3 0.428 0.132 Min. 26.2 6.1 5.0 5.4 0.124 0.020	0.101 0.132 0.020	0.411 0.577 0.223	0.044 0.116 0.005	0.332 0.527 0.121	0.355 0.657 0.203	0.263 0.732 0.451 2.149 0.028 0.094	0.123 0.173 0.391 0.351 0.020 0.022	173 351 022	4.600 0.015 0.008 0.026 0.001 0.005	5 1.461 6 3.000 5 0.543	2.844 6.191 0.921	00 4 √ ω ∞
Mean 1987 Max. Min.	Mean Max. Min.		6.6 7.5 6.1	549.0 2148.0 24.0	28.7 64.7 9.3	29.0 6.6 549.0 28.7 0.460 37.4 7.5 2148.0 64.7 1.254 21.8 6.1 24.0 9.3 0.080	0.296 0.813 0.009	1.321 3.290 0.300	0.124 0.242 0.005	0.546 1.365 0.277	1.603 4.774 0.036	0.287 0.842 0.842 2.577 0.032 0.055	0.145 0.777 0.591 4.731 0.007 0.006	777 731 006	0.035 0.062 3.012 0.115 0.179 10.520 0.003 0.011 0.400	2 3.012 9 10.520 1 0.400	2.766 9.900 0.180	2.65 2.05 2.05 2.05 2.05 2.05 2.05 2.05 2.0
Mean 1988 Max. Min.	Mean Max. Min.	28.3 6.8 33.2 7.7 22.6 5.7		159.7 704.0 12.0	29.4 68.0 7.0	7 29.4 0.770 68.0 2.300 7.0 0.236	0.360 0.767 0.090	1.511 4.100 0.255	0.146 0.330 0.014	0.825 3.576 0.271	1.444 4.285 0.236	1.444 0.670 0.870 (4.285 3.918 4.750 (0.236 0.080 0.121 (0.236 0.080 0.080 0.121 (0.236 0.080 0.080 0.121 (0.236 0.080 0.080 0.080 (0.236 0.080 0.080 0.080 (0.236 0.080 0.080 0.080 (0.236 0.080 0.080 0.080 (0.236 0.080 0.080 0.080 (0.236 0.080 0.080 0.080 (0.236 0.080 0.080 0.080 (0.236 0.080 0.080 0.080 0.080 (0.236 0.080 0.080 0.080 0.080 (0.236 0.080 0.080 0.080 0.080 (0.236 0.080 0.080 0.080 0.080 (0.236 0.080 0.080 0.080 0.080 (0.236 0.080 0.080 0.080 0.080 0.080 (0.236 0.080 0.080 0.080 0.080 0.080 (0.236 0.080 0.080 0.080 0.080 0.080 (0.236 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 (0.236 0.080	0.160 0. 0.401 1. 0.015 0.	345 0.2 740 0.6 017 0.1	0.160 0.345 0.292 0.159 0.272 4.601 0.401 1.740 0.602 0.425 0.761 14.300 0.015 0.017 0.137 0.012 0.022 1.100	2 4.601 1 14.300 2 1.100	3.186 1.12.400 0.400	7.5 9.5 2.6
Mean *1989 Max. Min.	Mean Max. Min.	27. 0 30.6 23. 4	7.0 7.0	129.0 395.0 2.0	6°.0 72.3 41.6	27. 0 7. 6 129.0 67.0 2.004 30.6 9.5 395.0 72.3 2.634 23. 4 7. 0 2.0 41.6 1.128	0.255 0.383 0.024	3.23	9 0.086 2.373 3.199 5 0.255 2.763 4.169 0 0.009 1.188 1.959	2.373 2.763 1.188	3.199 4.169 1.959	1.157 0.327 3.788 0.823 0.176 0.141	1.440 6.040 0.027	0.996 1.967 0.020	0.142 0.407 13.400 0.319 0.521 17.200 0.070 0.207 3.300	7 13.400 1 17.200 7 3.300	3.697 9.600 0.207	8 0 0 8 0 0
Mean TOTAL Max. Min.	fean fax. fin.	28.2 37. 4 21.8	6.8 9.5 1	175.1 1320.0 2.0	32.1 72.3 5.4	0.756 2.634 0.080	0.238 0.813 0.009	Mean 28.2 6.8 175.1 32.1 0.756 0.238 1.606 0.118 0.932 Max. 37.4 9.5 1320.0 72.3 2.634 0.813 4.100 0.330 3.576 Min. 21.8 5.7 2.0 5.4 0.080 0.009 0.223 0.005 0.121	0.118 0.330 0.005		1.657 4.774 0.036	0.634 0.742 3.918 4.750 0.028 0.055	0.318 0.45 6.040 4.5	507 0.0; 731 0.6(306 0.00	0.634 0.742 0.318 0.607 0.025 0.096 0.189 5.059 3.918 4.750 6.040 4.731 0.602 0.425 0.761 17.200 0.028 0.055 0.007 0.006 0.000 0.001 0.005 0.400	9 5.059 1 17.200 5 0.400	2.880 12.400	6. Q. C

* 1986: from Aug. to Dec.

1989: from Jan. to May

JAPAN INTERNATIONAL COOPERATION AGENCY

. •	Analysis
	and
	Survey
:	Chality
	water
	Content of
710	
Toble	1 91

		The number of											i				
SHASE	PHASE . Date	line for Analysis	Location	O	Ocor	Color	f. G		 2	2	,	· · •					
	24-25/5/89	-	1×20	1.	((מאיזט י הספ	5	T.P.	E N. F	SS	Turbidity	Y Coliform C	orm Col
•	20, 0, 00, 00)	.)))	 O	O	O	O	C	 C	C		
	50/0/05-67	2	7.9	()	C	(((. 1				ì
•	91/5-27/6/89	1	V 0 - 1			,) - 		Э	Э	 O	O	-: ()	C		
	0/0/5-0/0	-	2.7 1	 ()	O	O		 (((.1		,		
	08/6/2		١.				1	,))	 Э		 	C		
) "	1	1	1	C		(-)	-	
==	11/9/89	-	644.C	()))	- 2		Ó		C
;			77.0)	ı	I	1	0		C	C	(,	(,
	14/9/89		Ditto	C				(ı)))	-	 O	Э,		Ó
)))	1	O _	C	C	-	-			
)	-	-	_)		(:

LAO PEOPLE'S DEMOCRATIC REPUBLIC
FEASIBILITY STUDY ON IMPROVEMENT
OF DRAINAGE SYSTEM IN VIENTIANE
JAPAN INTERNATIONAL COOPERATION AGENCY

Table C.17 Result Of Water Quality Survey and Analysis(First time) in PHASE I

24-25/05/89	Purbidity	(H K/1)	39) +1 †		. 65) •==) ;==	19	, 1	n vc) - -	, e	2.1	. ≪	9 4	٧	v	· vo	• ∞	65	15
Date: 2	T. SS		99	8 8	200	28 28	108	27	3	; ∞	12	.9	37	. 23	82	ব	တ	12	0.1	22	127	16
	T. P.	1 11 2 11	1 705	0.037	0.978	0.408	1.127	0.337	1.042	1.513	1.810	1.705	0.225	0.190	0.712	1.134	0,669	0.831	0,139	0.074	0.120	0.063
	N.F.	VIII. B. (1.7)	0.011	0.003	0.025	0.000	0.030	0.004	0.015	0.034	0.035	0.033	0.005	0.004	0.021	0.031	0.025	0.026	0.004	0.002	0.002	0.002
	Cl (me/l)	7175	43,60	28.96	43.67	23.47	46.20	35.10	19.99	1.03	52.96	26.23	46.50	53,28	45.52	1.06	1.60	1.99	3.55	9.15	46.70	8.76
	COO Min	7. /0	51.7	65.8	47.5	9.46	8.55	9.44	9.79	10.23	21.36	12.55	10.7	6.46	7.11	9.06	7.47	10.53	71.6	6.64	8.02	3.69
	BOD (n:g/l)	7,18	27.25	5.98	7.66	11.95	13.01	5.54	32.63	10.55	30.45	23.20	6.71	3.69	5.35	10.60	14.15	11.50	4.25	4.72	5.75	6.50
	DO m g/E)		776.0	5.630	4.250	1.540	5.830	0.180	5.880	0000	0.860	4.670	1.850	4.670	4.430	0.720	1.130	0.910	3.750	10.170	1.960	4.100
)][d		6.9	7.0	7.5	7.2	7.2	7.1	7.3	7.4	7.3	7.3	6.9	7.1	7.3	7.3	7.3	7.3	7.3	7.4	7.1	7.1
	Temp °C		30.0	36.0	30.8	29.5	35.2	28.2	29.4	29.8	31.0	34.6	30.6	31.4	32.2	30.0	30.4	30.8	34.2	31.8	30.0	31.8
	Color		yellow	Š	2	=	ŧ:	ż	z .	ı	ı	ž	2	Z	ξ	3 .	E .	ŧ.	.	x		r.
	Odor		Ohj	ຊຶ	±	•		= ,	O	=	=	u D	2	Obj.	z			-	2		z .	* 1.1 F
	Q m3/s			0.0146	0.0526	0.0000	0.0462		0.0003		0.0168		0.2948	0.0419	0.0173	0.0030	0.0570	0.0145	0.0206		0.070.0	* : : : : : : : : : : : : : : : : : : :
	Location		—	7	ന	77	'n,	9	7	02	o,	10	,e	12		*1 ##	72	. 16	17	18	19	50

OBJ - Objectionable UN - Unobjectionable GY - Greenish Yellow

	<u> </u>	1	Ę) v	٠ ر	‡ v	י כ	7 7	۲ ج	, v	י ר	0	۰ ۰	ء ج	o v	, r	1 1	v) (1 ~	t r	۰ (۰
7. 41.	(me/l																-					
- 33L	(H/2)		17.7	36	2 6	7 V	7. V) c	258	4	0.0	, 4 , 7	2.8	1 20	· -] =		9 0	٠ ٧	7 7	-
s E	(m) (1/am)		968 0	0.000	0.220	0305	0.772	0.363	0.487	1.268	2.034	1.837	0.154	0.284	1 02.1	0.828	1.078	1.324	0.238	0.058	0.106	0.047
N E	(m g/l)		0.005	0.003	0.015	0.005	0.015	9000	0.022	0.027	0.037	0.022	0.004	0.003	0.017	0.028	0.019	0.027	0.003	0.001	0.002	0.031
Ü	(n)g/l)		3.520	22.160	30.080	23,870	37.140	35.870	0.044	1.484	0.786	6.781	39.230	37.140	33.880	0.349	0.184	0.171	27.590	7.561	38.870	7.193
COD Mn	(m3/I)		13.230	6.970	7.734	8.660	8.050	10.000	9,633	8.110	10.730	12.850	6.061	5.363	7.650	12.050	6.200	10,160	9.130	4.790	4.992	4,330
BOD	(mg/l)		12,640	3.085	9.160	8.435	0.110	9.115	28.275	12.600	32.120	31.200	7.170	4.550	15.220	9.370	13.570	17.430	8.720	11.220	6.475	6.970
00	(mg/l)		6.616	7.474	4.292	2.789	1.969	2.093	3.480	0.532	0.394	2.319	2.853	3.353	3.258	0.816	1.460	0.932	2,128	7.295	3.162	2,616
рH	; ;		6.8	7.7	7.3	7.1	7.3	6.9	7.6	7.3	7.2	6.9	7.2	7.1	7.4	. 7.1	7.3	7.2	7.1	7.7	7.1	6.8
Temp	ပွ		29.2	37.0	30.2	28.4	30.6	29.4	30.2	29.2	29.6	32.0	27.4	27.9	30,4	30.6	28.2	28.8	31.0	29.5	28.0	29.6
Color		•	ζλ	#	•	• .			= .	=	=	=	E		z	ż	*	Ł	r	=	=	2
Odor			Obj:	u O	=	= .	=	E :		Ŧ	•	ຕູ້	.	E	± .	±	ı	=	r	=	=	£
0	m3/s			0.0670	0.4469	6.0755	0.3301	1	0.0012	•	0.0170		2, 5336	1.8916	0.0310	0.0187	0.0740	0.0180	0.1700		1. 4518	
ocation				7	m	4	'n	9	7	00	0	10	<u></u>	12	13	4.	15	16	17	18	19	20

OBJ - Objectionable UN - Unobjectionable GY - Greenish Yellow

OBJ - Objectionable UN - Unobjectionable GY - Greenish Yellow

Change of Water Quality (No. 7, 9)) 1D PHASE 1 Date: 29-30/05/89	D CODMn T.P T.N	0.706	13.60 0.929	12.61 1.612	11.73 1.959.	11.65 1.823	11.30 1.606	11.53 1.559	11.69 2.088	11.03 1.329	12.05 4.747	12.09 4.770		8 65 2 000	21.32 29.25 1.118 0.027	11.32 4.641	10.09 4.541	10.68 4.700	10.62 4.694	8.26 2.011	7.59 1.471	7.48 1.306	7.88 4.806	11.56 4.794	10.88 4.818	
Quality	BOD (mg/l)					3.43					٠			59	0.55	54	39	21	13	7.1	33	45	36	4	11	
Water	DO (mg/l)	4	m	ຕີ.	ઌ૽	m ⁱ	κń	ന്	ะตั	લ	ന്	eri	ຕໍ	O	o	0	Ö	<u>o</u>	o.	o'	Ö	o	0	C	0	
jo, oduci	T:SS (mg/l)	236	248	31	18	. 20	28	18	16	20	32	72	47		23				7	3		vo '		-		
(Daily Ci	Cl (m n/1)	29.55	36.37	40.02	41.31	41.86	39.80	38.53	39.64	37.34	40.28	32.51	30.65	36.63	27.28	105.40	44.30	38.10	33.46	30.45	27.24	25.72	27.04	32.78	31.32	
Quality Survey and Analysis (Daily	Turbidity (mg/l)	206	130	22	0.1	∞	7	•	60	7	6	22	10	00	7	∞	7	m	භ	S	7	-		2	-	
Survey	Color	GY	= :	.	£	z :	z		-	£	=	5	.	čŠ	*	2	2	=	£	£	x	8	B .	* .	E	
	Odor	Obj.	= :	=	± ·	S	Ŧ	r		=	ŧ	S	5	(QO	, r	=	.	=	=	ž	ε,	r.	=	.	¥	:
ali of Water	pli	7.2	7.2	7:3	7.4	7.5	4	7.5	7.5	9.2	7.5	7.6	7.7	7.1	7.1	7.1		7.2	7.1	7.2	7.2	7.2	7.	r. G	7.2	
Result (Temp °C	28:6	28.8	28.4	28.0	27.6	27.2	27.2	27.0	27.2	27.6	28.4	29.8	29.8	29.6	28.8	28.6	28.4	28.2	28.0	28.0	28.0	28.4	29.3	30.4	
le C.19	Q m 3/s	0.0024	0.0019	0.0012	0.0012	0.001	0.0010	0.0000	0.0008	0.0008	0.0008	0.0011	0.0011	0.0470	0.0290	0.0266	0.0240	0.0280	0.0250	0.0170	0.0190	0.0190	0.0210	0.0190	0.0110	The state of the s
Table	Time	14 50				22 50						10 40	'		16 30											
	No.	end	7	'n	4	v)	9	7	∞	a	10	 -	12		7	'n	4.	Ś	9	7	ø	ر م	10	-	12	
	Loca-						~				•								<u>د</u>							

Table C.20 Result Of Water Quality Survey and Analysis in PHASE II

116	D	0	PH	DO	COD Mn	CL	T.P	TSS	Turbidity	Coliform
NO	Date	m3/s		mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	Co1/100 mi
3	25/5/89	0. 0526	7.5	4.250	7.740	43.67	0.987	20	1-	
3	2/6/89	0. 4469	7.3	4.292	7.734	30.08	0.730	29		
3	7/9/89	0.4432	7.2	3.142	5.013	16.55	0.176	124		Inf
3	11/9/89	0 1714	7.4	2.765	5 977	28.61	0 454	46		20,200
3	14/9/89	1.4367	7.1	2 121	5 186	16.87	0.383	28		18.200
5	24/5/89	_	7.1	0 180	9 440	35.10	0.337	27	11-	
6	31/5/89	-	6.9	2.093	10.000	35.87	0.363	0		- -
6	7/9/89	٠ -	71	1.986	7 319	22.16	0.163	20	•	11,000
6	11/9/89	•	7.0	2 000	7.062	24.25	0.713	20	5	7.600
5	14/9/89	•	7 0	2.229	5.748	16.98	0.582	8	ź	11,200
\$	24/5/89	•	7.4	0.000	10 230	1.03	1.513	8	5-	
S	31/5/89		7.3	0.532	\$.110	1.48	1.268	14	5-	
8	7/9/89	0.4496	7.0	0.831	5.981	21.87	0.377	96	26+	Inf.
5	11/9/89	0.0942	7.1	1.141	5.056	21.24	1.004	22	5.	lnf
8	14/9/89	0.1957	7.1	1.949	7.630	10.10	0.825	36	14.	Inf.
9	24/5/89	0.0163	7.3	0.860	21.360	52.96	1.810	12	6-	
9	31/5/89	0.0170	7.2	0.394	10.730	0.79	2.034	39	6-	-
q.	7/9/89	0.0425	7.2	1.569	5.867	52.29	1.072	22	6	Inf.
9	11/9/89	0.0942	7.1	0.394	10.360	23.15	1.374	24	3+	Inf.
9	14/9/89	0.0295	7.2	0.750	9.149	19.18	1.074	18	16+	Inf.
3 :	24/5/89	0.0173	7.3	4.430	7.110	45.52	0.712	18	8-	
	31/5/89	0.0310	7.4	3.258	7.650	33.88	1.021	17	Š	-
	7/9/89	0.3648	7.0	1.922	5.175	20.56	0.402	120	40+	Inf.
	11/9/89		7.6	0.425	6.339	38.85	0.865	20	6	16,800
	14/9/89	0.1137	7.1	0.397	6 331	2.30	0.568	24	14	37,200

Remarks:

-: No data
Inf.: Infinitive

LAO PEOPLE'S DEMOCRATIC REPUBLIC FEASIBILITY STUDY ON IMPROVEMENT OF DRAINAGE SYSTEM IN VIENTIANE

Table C.21 List of Fish Water Plant and Water Use

Date: 26/9/1989

Location No.	Fish		Water Plant		Water Use	- -
 1	A,B,C,D,G,H		B,C,E,I		A	
2	A,B,C,D,E,F,G,H,U,Z		B.C.E		A 1. 1.	
3	A,B,C,D,G,H,J,Q		_		AA.B	
4	A,B,C,D,F,H				Α .	
5	A,B,C,D,E,F,G,H		A,B,C,D,E		A,B	1.5
6	A,B,E,F,M		A,B,C		С	
7	Н					
8	A,D,M		В		- A	3
9	Н	4			-	
10	Unknown		<u> </u>		<u></u> .	
. 11	A.C.G.I.J.K.L		B.C.F		AA	
12	A,B,D,E,F,K,R	• "	_		AA,B	
13	A,B,C,D,H		A.B.F		A,D	
14	A,E,F,M		G		A,C	
15	A,E,F,M		A,B,G		A,C	
16	H,P,Q				_	
17	C,E,H,M		B,C		AA,B,E	
18	A,B,C,G,H,N		B,C,E,H		·A	
19	A.B.C.D.J.K.L.Q.R.S.t.U.V.	W X Y Z	B.C.F	2.0	AAE	
20	A,B,C,D,E,F,G,H,K,L,O,	,,	B,C,E		AA	
Name of F	ish	Name of Fi	sh		Kind of Wate	
A;Pa Ko		T.Pa Soua			AA Fishing(ACLIVE)
B:Pa Douk		U:Pa sathor V:Pa It	ng	:	A:Fishing	
C:Pa Keng	.•	W;Pa Kiana			B;Irregation C;Cultivation	
D:Pa Kadot E:Pa Ninh(X:PaTiok			D:Washing	
	ommon Carp)	Y,P khap k	hong		E:Bathing	•
f Fa Natio G Pa Khao		Z:Pa Sieu A			r.pomme	* *
H:P Sieu	Mong	E,Fa Jico A	.0			
I:Pa Ka						
J:Pa Lot		Name of W	atar Diant			:
J.Pa.Lot K:Pa.Kot			ng(Ipomoea)		•	
L:Pa Kagn	a. .		(Eichhornia)			
	611	C.Phak Cho				
M:Pa Salit	•	D;Ne(Hydri				•
N;Yen						
0:Pa Pak		E:Ne(Cerau				*
P.Pa Kat			g(Nelumbo)			
Q.Pa Mat			(Colocasia)		:	
R:Pa Sou		H;Chok Noi				
S:Pa Meo		I:Luak nea	en(Jussiaea)		1	

Table C.22 Pollutant Load

No	Date	Q	CODmn	TP	TSS
		m³/s	kg/day	kg/day	kg/day
	25/5/89	0.0526	35. 2	4.45	91
	2/6/89	0.4470	298.7	28.19	1120
3	7/9/89	0.4432	192.0	6.74	4748
	11/9/89	0.1714	88.5	6.72	681
	14/9/89	1.4367	643.7	47.54	3476
	24/5/89	<u>.</u>			
	31/5/89	-			
8	7/9/89	0.4496	232.3	14.65	3729
	11/9/89	0.0942	49.3	8.17	179
٠	14/9/89	0.1957	129.0	13.95	609
	24/5/89	0.0168	31.0	2. 63	17
	31/5/89	0.0170	15.8	2.99	57
: g	7/9/89	0.0425	21.5	3.94	81
	11/9/89	0.0250	22.4	2. 97	52
	14/9/89	0.0295	23.3	2.74	46
	24/5/89	0.0173	10.6	1.06	27
	31/5/89	0.0310	20.5	2.74	46
13	7/9/89	0.3648	163.1	12.67	3782
	11/9/89	:			
	14/9/89	0.1137	62.2	5.58	236
					· · · · · · · · · · · · · · · · · · ·

Table C.23 Assessment Of Water Quality

Sampling	Class	Fauna species	Water and Water surface	Note
Point			Utilization	
	-X:			
	E	6	Fishing	
2	С	10	Fishing	the way May
3	C(D)	S	Fishing(Active), Irrigation	Hong Ke
. 4	D	6	Fishing	
5	. · · · D	8	Fishing, Irrigation	
6	F.	5	Cultivation	
7	D	i	+	
8	E	3	Fishing	
9	E	1		
10	E	1	in t an a single of the singl	
11	E(C)	7	Fishing(Active)	Nong Nieng
12	C(C)	7.	Fishing (Active), Irrigation	Hong Xeng
13	С	5	Fishing. Washing	*
14	E	4	Fishing, Cultivation	
15	D	4	Fishing, Cultivation	
16	E	3		•
17	D	4	Fishing(Active), Irrigation, Bath	ing
18	C	6	Fishing	*
19	D	17	Fishing(Active), Bathing	
20	Č	11	Fishing(Active)	4
loua Khoua	. D	-		•
alakham	Ī)	_	-	
Kaotieo	Ä	-	<u>-</u>	

* (-)	:Ex	is	ti	ng	data
-----	----	-----	----	----	----	------

Class	A	good	COD less than 3 mg/l.	DO more than 6 mg/l
	В	fair	COD 3 mg/1-3 mg/1,	DO more than 4 mg/l
	C	poor	COD 8 mg/i-5 mg/l.	DO more than 2 mg/l
	D	to be improved	COD 8 mg/l-10 mg/l.	DO less than 2 mg/l
	E	worst	COD more than 10 mg/l.	DO less than 1 mg/i

Table C.24 Land Use in the Study Area

Un	ī	1	h	a

Year	Central	Residential	Public & Commercial	lndustrial	Water	Green	Other	Total
1988	0.0	2. 164. 4	400.6	38. 2	166.7	2, 499. 3	349.4	5,618.6
2020	230. 2	2, 658. 3	344. 9	107.4	116.5	1, 772. 2	389. 1	5,618.6

Table C.25 Projection of Future Population in the Study Area

]	opulation			Popul	ation de	ensity(pe	erson/km²)	Growth Rate
1988	2000	2010	2020	1988	2000	2010	2020	1988-2020
157, 653	201,000	251,000	305,000	2,806	3, 577	4, 467	5, 428	2.08%

Table C.26 Projection of GRDP in the Study Area

GRDP Growth rate p. a

1988 1990 2000 2010 2020 1988-2020

13,543 15,800 32,700 71,100 160,000 8.0%

LAO PEOPLE'S DEMOCRATIC REPUBLIC FEASIBILITY STUDY ON IMPROVEMENT OF DRAINAGE SYSTEM IN VIENTIANE

Unit:million Kip

Table C.27 (1) Pollutant Load Factor of Domestic WasteWater (BOD)

l tem	Present	Future	
Wastewater(lit/person	day) 105	140	
Pollutant load(g/perso	n·day) 45	60	

Table C.27 (2) Pollutant Load Factor of Natural Run Off Water (BOD)

ltem	Present	Future
Run Off(m³/s·km²)	Deducts Domestic Wastewater	Same as left
	from Observation Value	
Pollutant load(g/day·km²)	1.0	1.0

Table C.28 Estimation of Pollutant Load and Concentration (BOD); Present Condition

Location	Catchment	Population		Gene	cated Poll	utant Load		Run off Polluant Load * Run off		
	area		Specific Domestic Waste Water Load (g/		Specific Natural Load (kg/day	Load	Sum	24/5/-25/5 1989		Ratio of Pollutant Load
	(km2) (1)	(person) (2)	person day	(kg/day) (4)-(2)*(3)	km2)		(kg/day) (7)-(4)†(6)	(kg/day) (8)	(kg/day) (9)	(10)= {(8)-(9)}/2/(7)
3	8.18	51,891	15	2,335	1.00	8.18	2,343	34.5	353.7	0.08
13	1,99	6,835	45	308	1.00	1.99	310	8.0	40.8	0.08

Run Off Pollutant Load (BOD)

	24/	/5/-25/5/198	39	31/5-	2/6/1989	1989		
Location No.	Discharge	Concer- tration	Pollutant Load	Discharge	Concen- tration	Pollutant Load		
	(m³ /sec)	(mg/lil) (2)	(kg/day) (3)=(1)*(2)	(m³ /sec) (4)	(mg/lit) (5)	(kg/day) (6)=(4)+(5)		
3	0.0526	7.66	34. 5	0.4469	9.160	353.7		
13	0.0173	5.35	8.0	0.0310	15. 220	40.8		

Table C.29 Estimation of Pollutant Load and Concentration (BOD): Future Condition

	Catchment	Population		nerated	РоЦи		Load	Run off	Run off
No.	area			Load	Specific Natural Load (kg/day	Load	Sum	Ratio of Pollutant Load	Pollutant load
	(km2) (i)	(person) (2)		(kg/day) (4)-(2)*(3)		(kg/day) (6)-(1)*(5)		(8)	(kg/day) (9)=(7)=(8)
3	9. 53	85,875	60	5, 153	1.00	9.53	5, 163	0.08	413
13	1:99	12, 982	60	779	1.00	1.99	781	0.08	. 62

Table C.30 Estimation of Discharge and Concentration (BOD) in Future

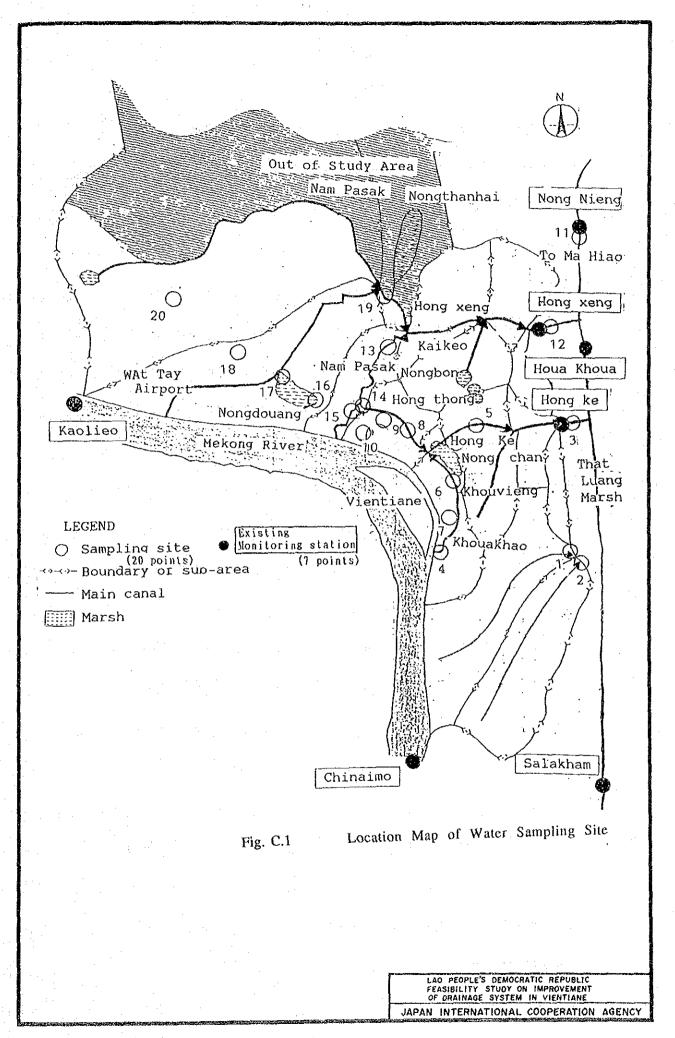
Date: 24/5 - 25/5/1989

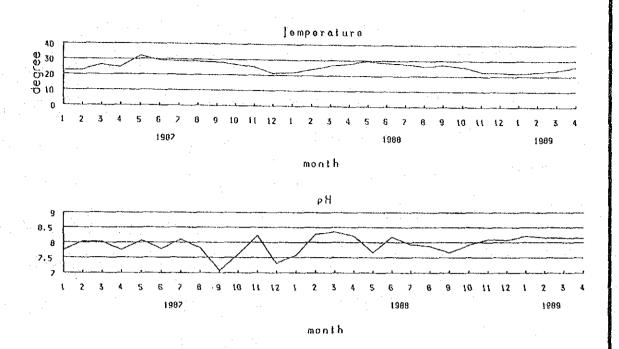
Location	Population	Population	Run	off Dischar	ge	Run off	Concen-
No.	at Present	in Future	Existing Run-off Discharge	Aditional Run-off Discharge	Sum	Pollutant load	tration
	(person)	(person) (2)	(m3/sec) (3)	(m3/sec) (4)	(m3/sec) (5)=(3)+(4)	(kg/day) (6)	(mg/l) (7)=(6)/(5)
3	51.891	85,875	0.0526	0.0761	0.1287	413	37
13	6,835	12,982	0.0173	0.0127	0.0300	62	24

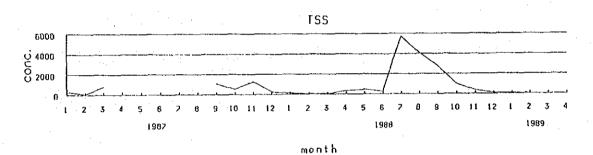
Remark Aditional Run off Discharge -Existing Population*351/person
+ Incresing Population*1401/person

LAO PEOPLE'S DEMOCRATIC REPUBLIC FEASIBILITY STUDY ON IMPROVEMENT OF DRAINAGE SYSTEM IN VIENTIANE

Table C.31 Comparison of Concentration(COD) between Present and Future


Location NO.		Concentration	n (mg/	(lit)	
	Pres	ent	F	uture(2020)	:
* .	24/5-25/5/1989	31/5-2/6/1989	BOD	Conversion Ratio*	COD
3	7. 7	7. 7	37	0.99	37
13	7. 1	7.7	24	0.99	COD 37 24


* Conversion Ratio between 800 and CODMn


Date	BOD	CODMn	CODMn	Date	BOD	CODMn	CODMn
	(mg/lit)	(mg/lit)	/BOD		(mg/lit)	(mg/lit)	/BOD
	27. 25	51.70	1.90		12.640	13, 230	1.05
	5. 98	8.99	1.50		3.085	6.970	2. 26
}	7.66	7.74	1.01		9, 160	7.734	0.84
1 1	11.95	9.46	0.79	. [8. 435	8.660	1.03
	13.01	8.56	0.66		0.110	8.050	* 73-18
ļ	5.54	9.44	1.70		9.115	10.000	1, 10
İ	32.63	9.79	0.30		28. 275	9.633	0.34
24/5	10, 55	10.23	0.97		12.600	8.110	0.64
-25/5	30.45	21.36	0.70		32.120	10.730	0.33
1989	23. 20	12.55	0.54	31/5	31.200	12.850	0.41
	6.71	10.70	1.59	~2/6	7.170	6.061	0.85
. (3.69	6.46	1.75	1989	4.550	5.363	1.18
	5.35	7.11	1.33		15. 220	7.650	0.50
.]	10.60	9.06	0.85		9.370	12.050	1.29
	14. 15	7.47	0.53	[[13.570	6.200	0.46
[11.50	10.53	0.92		17.430	10.160	0.58
-	4.25	9.77	2. 30		8.720	9.130	1.05
	4.72	6.64	1.41		11.220	4.790	0.43
•]	5.75	8.02	1.39		6.475	4.992	0.77
	6.50	3.69	0.57		6.970	4.330	0.62
			!	Avrage			0.99

^{*:} Exclude from Average Calculation

FIGURES

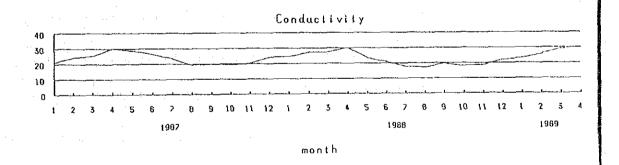
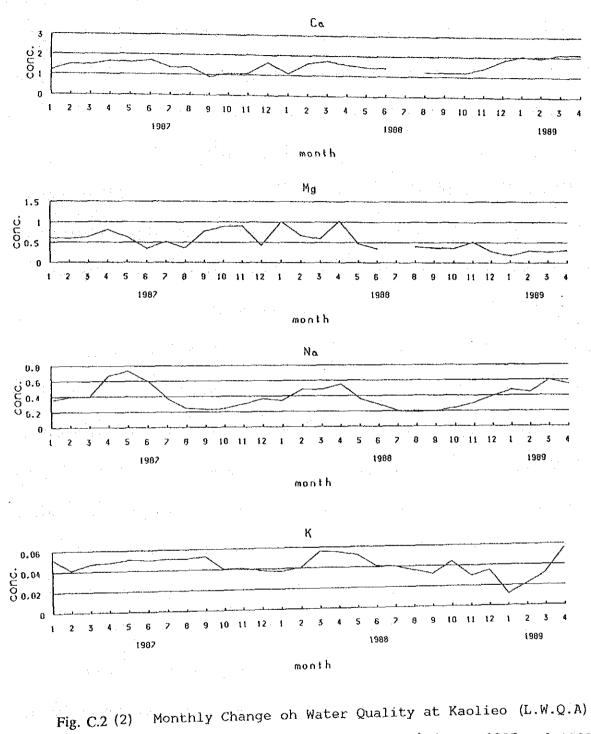



Fig. C.2 (1) Monthly Change oh Water Quality at Kaolieo (L.W.Q.A) between 1987 and 1989(1)

between 1987 and 1989 (2)

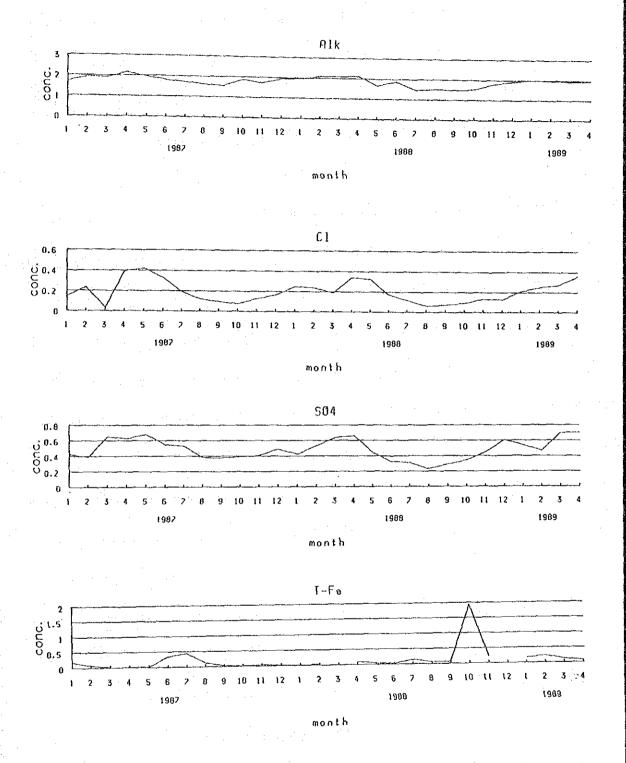


Fig. C.2(3) Monthly Change on Water Quality at Kaolieo (L.W.Q.A) between 1987 and 1989 (3)

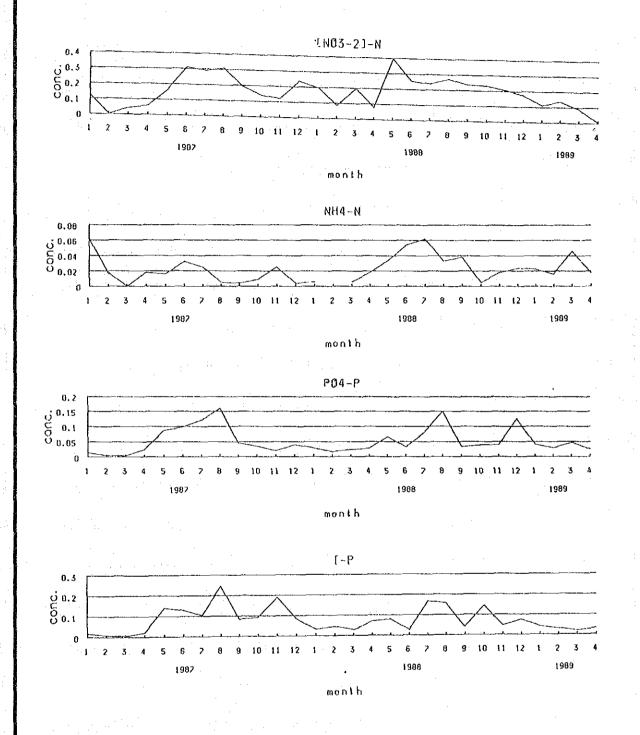
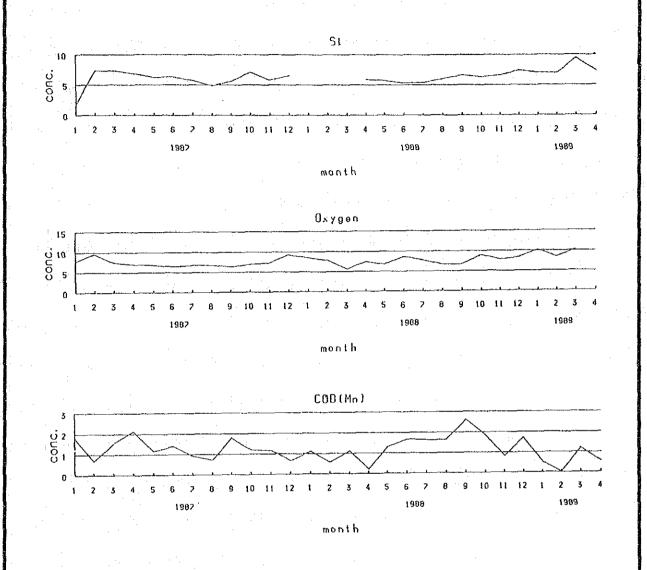
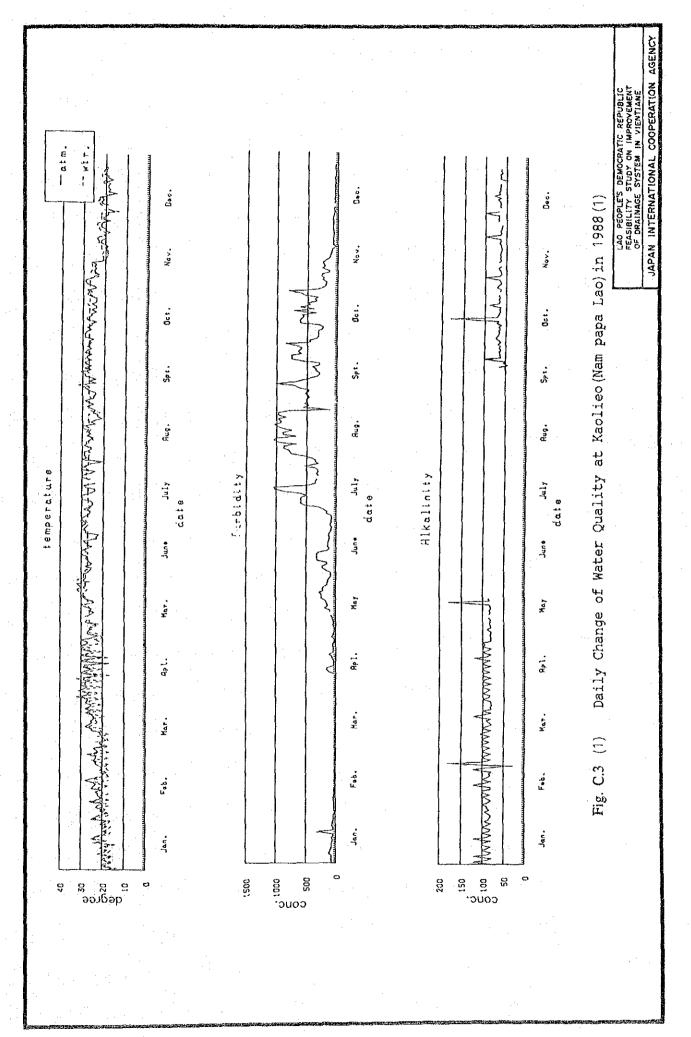
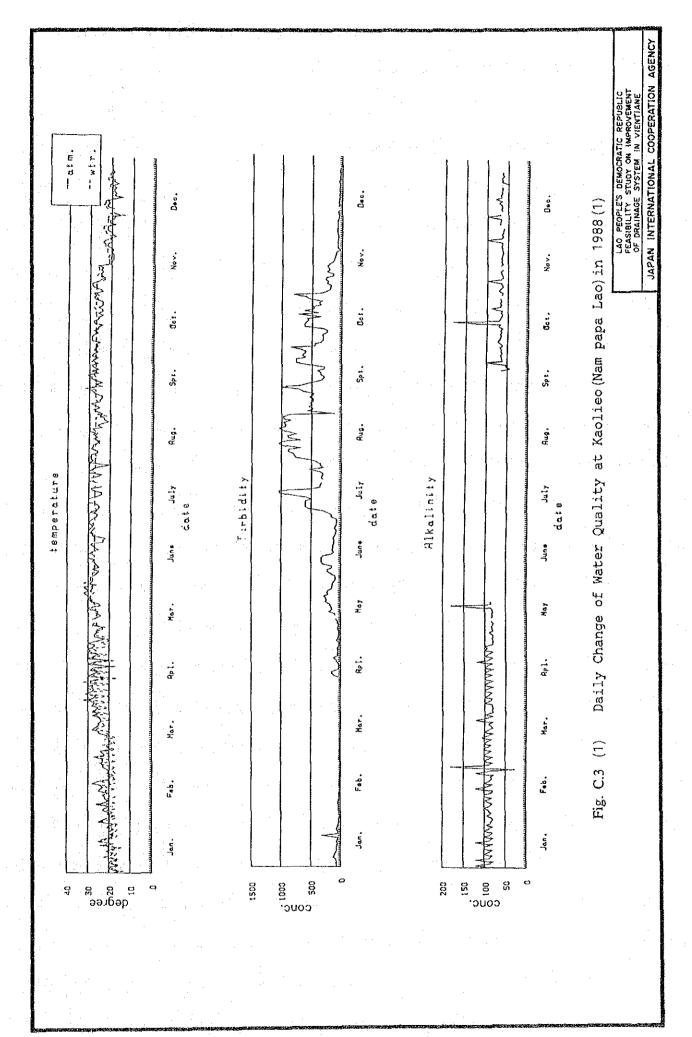
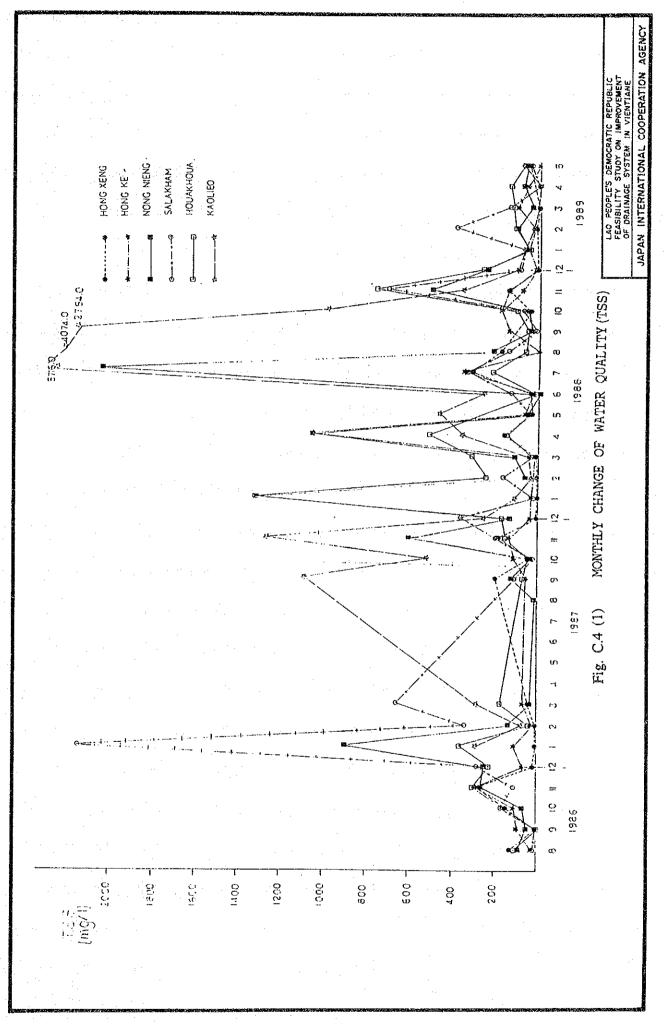
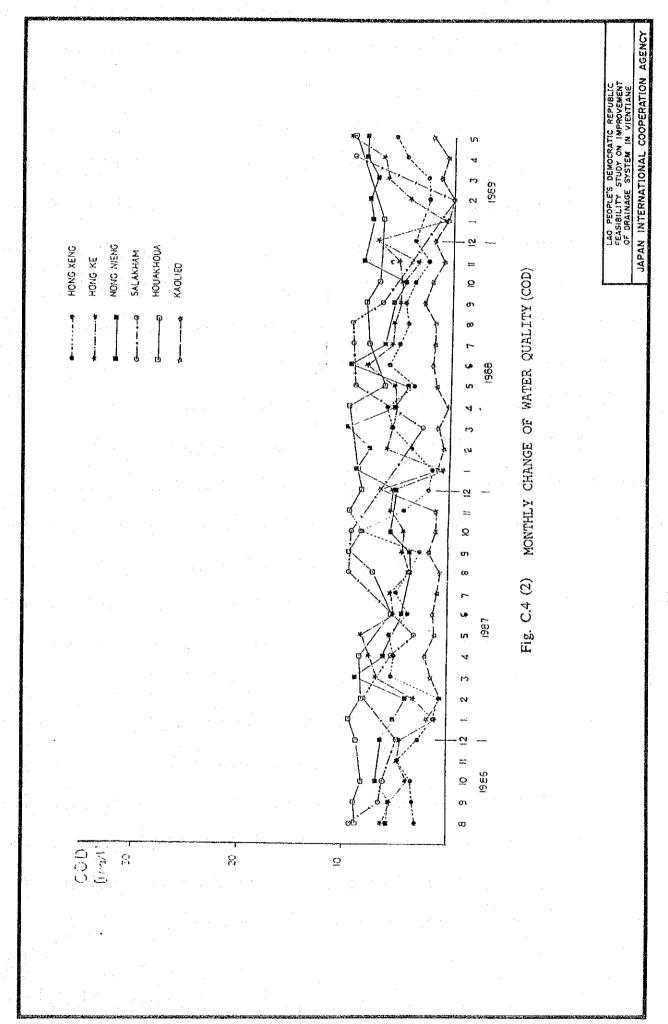
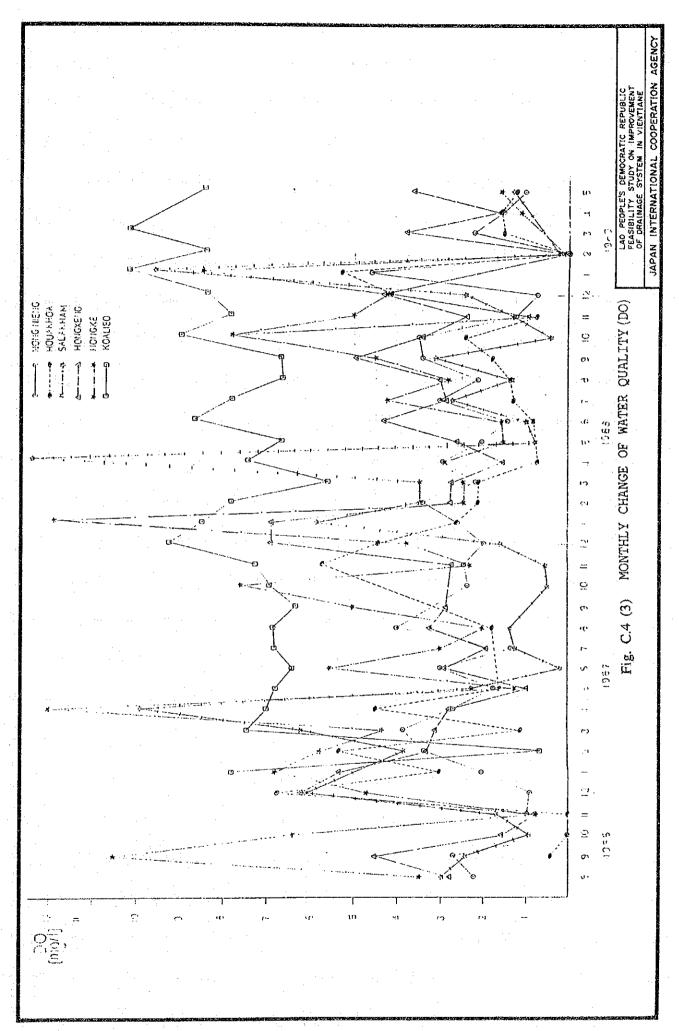
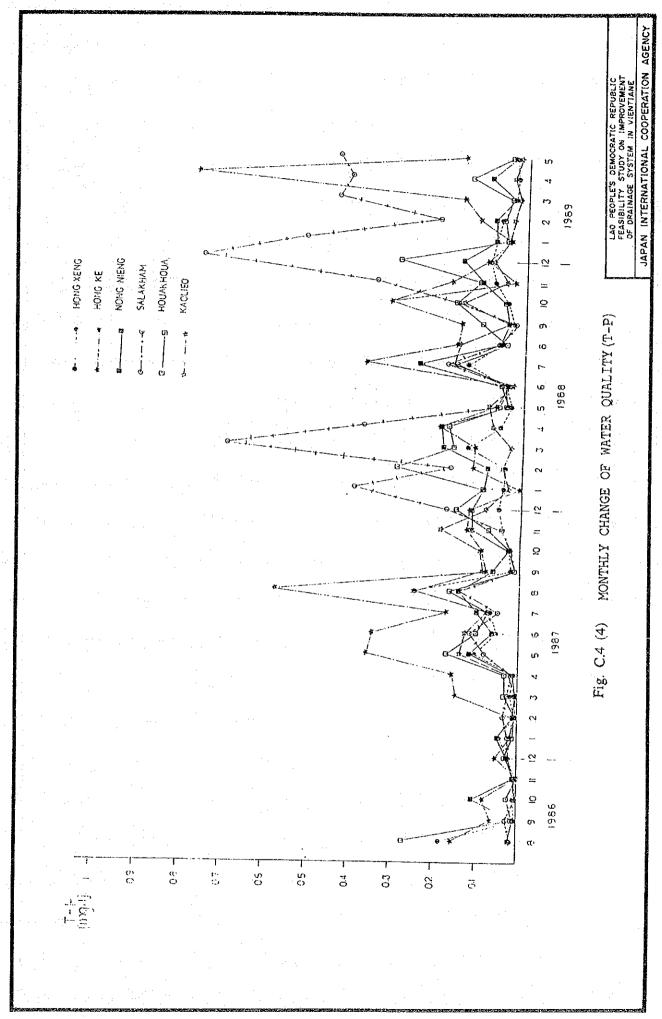


Fig. C.2 (4) Monthly Change oh Water Quality at Kaolieo (L.W.Q.A) between 1987 and 1989(4)


Fig. C.2 (5) Monthly Change oh Water Quality at Kaolieo (L.W.Q.A) between 1987 and 1989 (5)





					LAO PEOPLE'S DEMOCRATIC REPUBLIC FEASIBILITY STUDY ON IMPROVEMENT OF DRAIMAGE SYSTEM IN VIEWTIANE N INTERNATIONAL COOPERATION AGENCY
	Nov. Doc.		mm.mm.mm.mm.mm.mm.mm. Nov. Dec.	3 (2)	LAO PEOPLE'S DEMOGRATIC REPUBLIC FEASIBILITY STUDY ON IMPROVEMENT OF DRAINAGE SYSTEM IN VIENTIANE JAPAN INTERNATIONAL COOPERATION
	Spire Geire		Spi. Gei.	papa Lao) in 1988 (2	
# °	A IN UNV Tham I had	Color	date Aug.	y at Kaolieo (Nam papa Lao) in	
	Wylor A June War June 491. Hay June		Hay June	of Water Quality	
	Fob. Har.	á	Andreamentation and a state of Feb. Nat. A	Daily Change	
× × × × × × × × × × × × × × × × × × ×	in 2.2	onc. %8	C 100 Department	Fig. C.3 (2)	
		CF - 8			

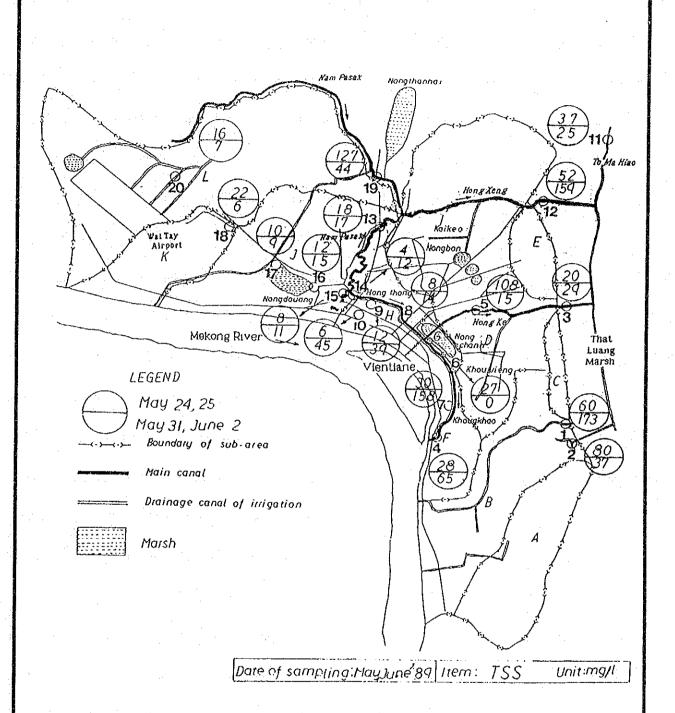


Fig. C.5 Distribution Map of Water Quality (TSS)



Fig. C.6 Distribution Map of Water Quality (COD Mn)

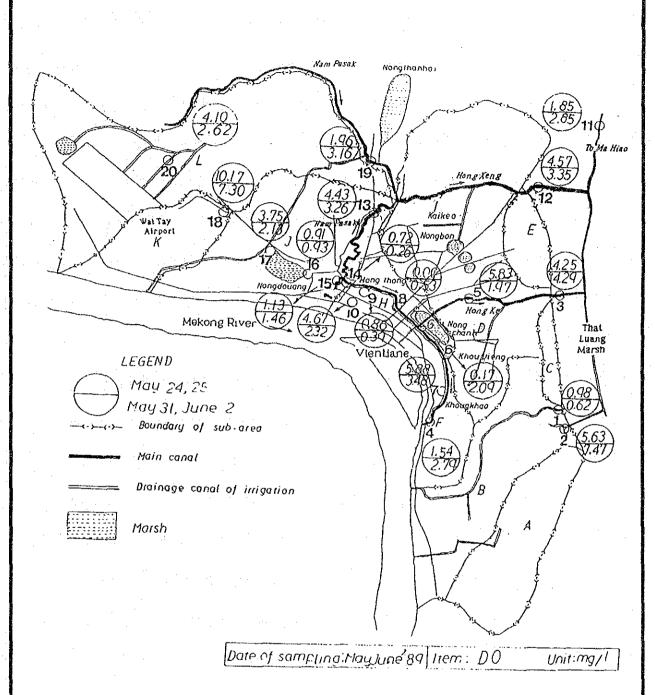
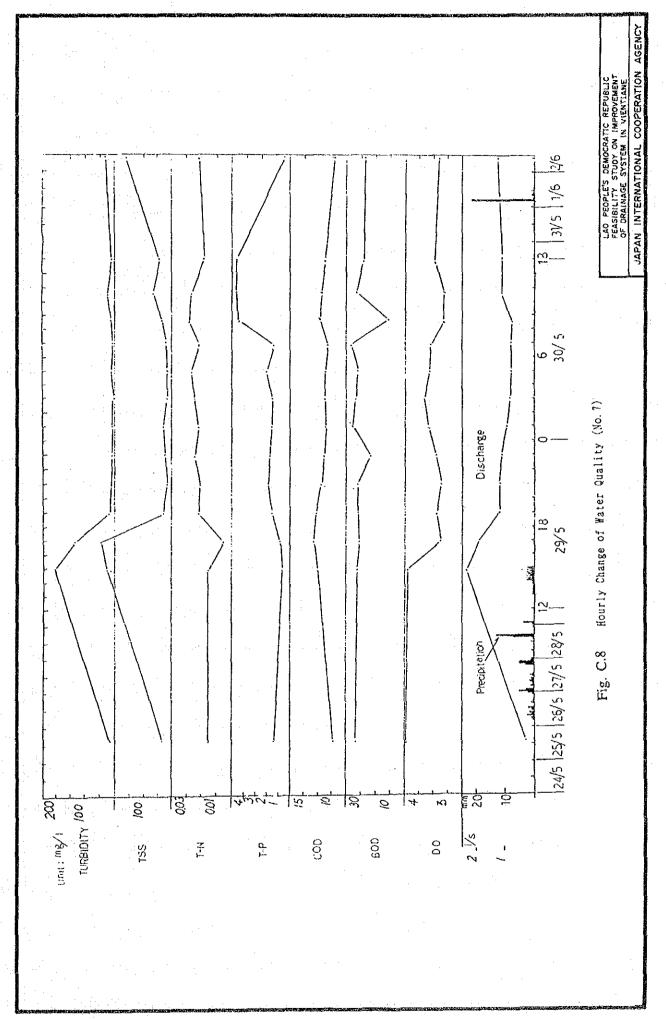
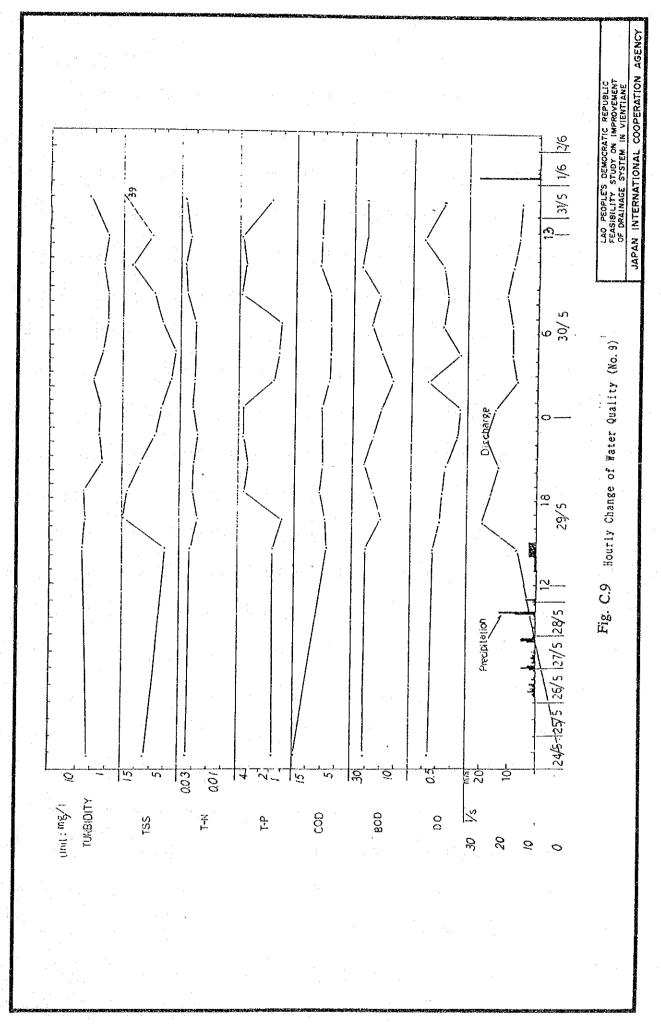
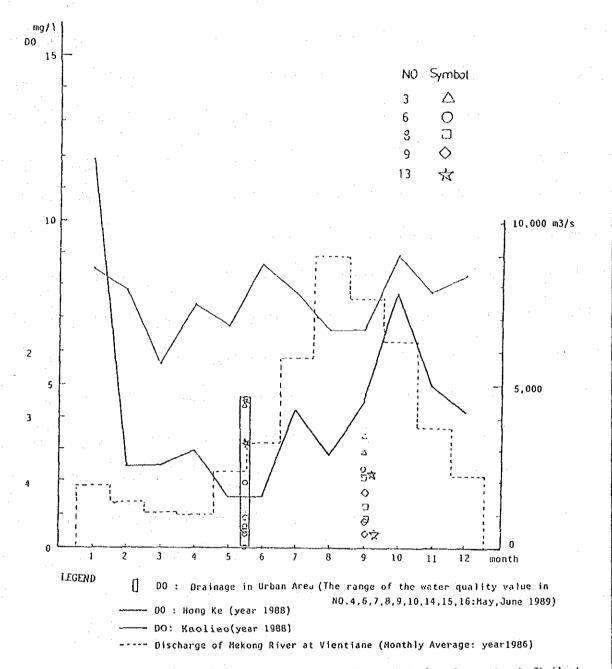





Fig. C.7 Distribution Map of Water Quality (DO)

2, 3, 4 Classification of water quality environmental standard of surface water in Thailand

Fig. C.10 Annual Changes of Dissolved Oxygen (DO)

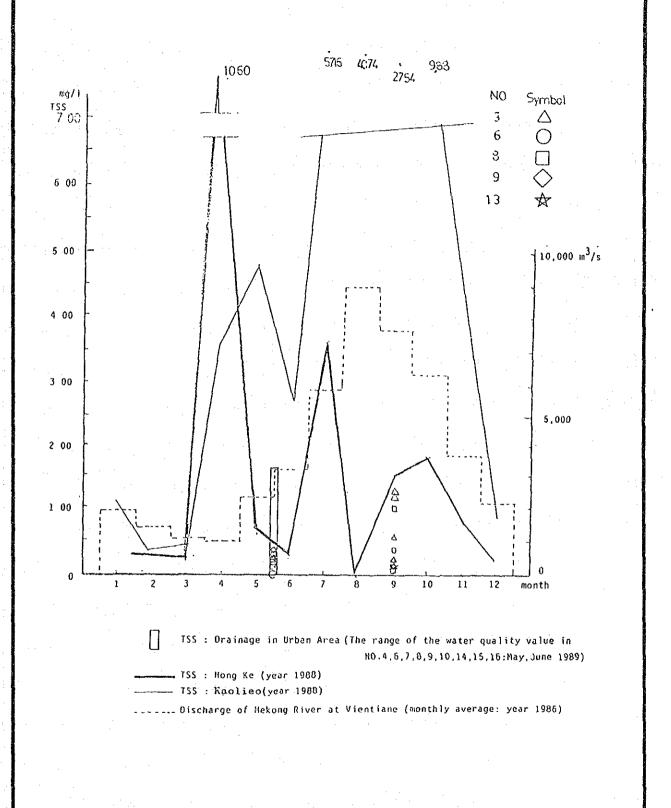


Fig. C.11 Annual Changes of Total Suspended Solid (TSS)

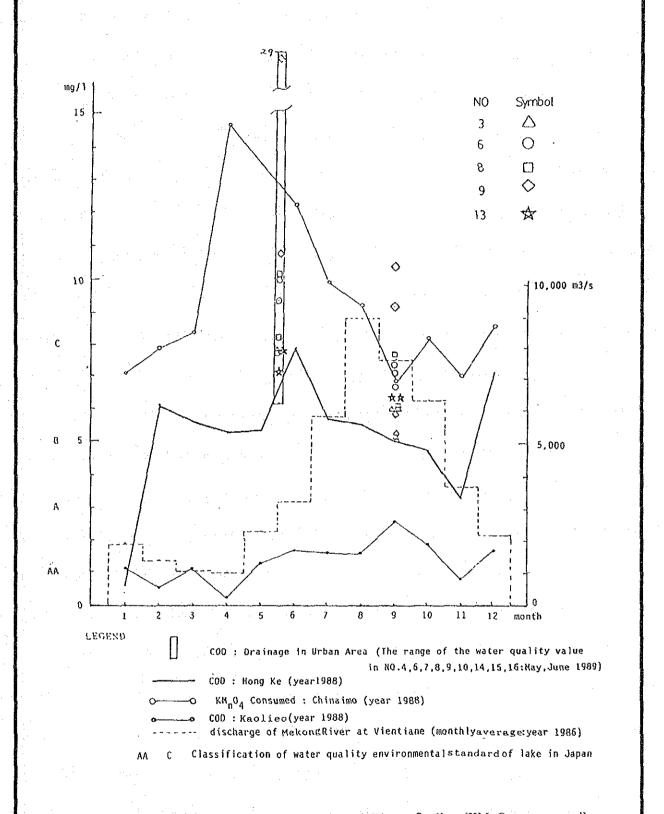
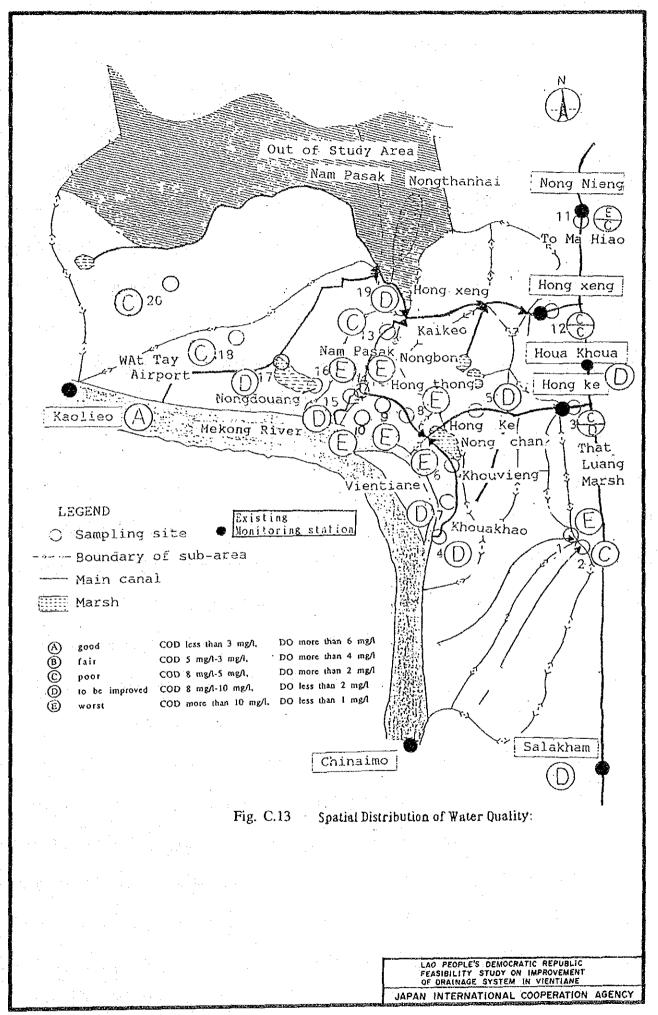



Fig. C.12 Annual Changes of Water Quality (KMnO4 consumed)

