5.2 現地調査

5.2.1 グループ1 橋架

グループ1橋梁についてはフィリピン側建設橋梁であり測量、地質調査はフィリピン側が実施する。調査団は橋長その他を決定するために、次の事項を調査した。

- ・橋梁現況の確認
- ・架橋の位置
- 工事中の迂回路建設の難易の把握
- ・アクセス道路現況
- ・交通状況の把握
- · 地形 · 地質状況
- 河川条件(過去最大洪水水位、水深、等)
- その他

5.2.2 グループ2 橋架

(1) 現況調査

調査団は、河川水理解析、測量調査及び地質調査に先立ち、現況調査を実施した。これは要請橋梁の現況を確認し、調査方針等を確立するためであり、主として下記に述べる項目の調査を目的とするものであった。

- ・橋梁の現況の確認
- 地理的・地形的条件の確認
- ・橋梁建設位置に関する公共事業道路省(DPWH)の意向の確認と技術的 検討
- ・工事中の迂回道路の必要性の有無と利用可能な道路の確認
- ・建設用資機材の運搬に利用可能な道路、港湾等の諸施設の調査
- 現橋の撤去の必要性の有無
- ・乾期及び雨期
- 過去最大洪水水位
- ・障害物の有無
- その他特記事項

表 5.2-1に現況調査結果の概要を示す。

大道路現记 横	・ 良好 ・ マニラより道程 2015m ・ 電機の移転必要(電力会社による)	良好 マニラより道程 151km	より道程58㎞ ・水道管の移散必要	政研マニラより道程171年	・皮子 ・マニラより道程 16%a (3~5トン) 数橋あり ・マニラより道程 16%a (3~5トン) 数橋あり ・南路: 5月~11月	より道程 1516~ 南期;5月~11月	~ケンンは海上 より道程13年	・ココナッツの複去必要(下流域)ラより道程9位。・電線の移設必要(電力会社による)	回好 マニラーイジョンガン は海上権政 インョンガンスの道路 13首	・輪撲の物類必耐(亀力会社による)~とケイは第二・・ 語がの影響を収ける
アクセスシ	・良谷・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	・良好・マニラより	・良好・	・現代・マニケ・		· 良好 	のない。	・良年・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	・原子・マーラーカウイは
数 究 横 供	· 不必要	• 不必要	盛河。	・影響	・ 大必敗(敗権に)	・ 不必要 (現績なし)	• 必要	盛 次・	・必要	、不必敵
工事中还回路	・現権を迂回路として供用	・地橋を江回路として供用	・建設時期(拓英数)によっては必要	・戦権が沢回路とした 鉄用	・対床を迂回路として供用	・現権の下流向に必要	・現権の下流側に必要	、現構の下流側に必要	・契権の下流倒に必要	・斑疹(スパッケォイ) や沢回路とした釈照
計画稀架位置	・知義上第宮に計画	・現権上近倒に計画	・地構な際に半圏	・郑権位置に計画	・現道に合致させる	・野道に合致させる	・現な位置に計画	・斑猴位置に計画	・町線位置に計画	・敗権下流館に計画
备 联 恕 允	・発でレス仮施・物で確・表色を図りて、	・置トラス仮編 ・近右機 ・鏡荷型限2トン	・大橋 ・老行権 ・大型草両の通行は不可	• 大廠 - 初花籬	・悪魔なし	が発されています。	・数マルス肉類・幼花瓣・幼花瓣・独地面のホン	・離でルス皮液 ・ 地方施 ・ 今、 中 約 号 厄 の 少 風介 厄	・ 子蓋 ・ 拗む蓋 ・ 養抱些敵3~5 ァン	・スピンケィイ・困難には交換不能と
新兴 外 国	MAPHILINDO 488 Pangasinan	BACONG AN	SAN ROQUE ME Balacan	DOLORES AN	MANGEUTOG ME Neers Ecija	SULA in	CAMAGONG 488 Queron	PARAGUSAN AR	TAN-AGAN AM ROMBIOD	IRATUB AN MENTARE
海南 路 路 加 城	1 01. 02	83.03	3.02	4 to 4	55 03.13	51 12	4.0	8 04. 201	9, 919	10 04, 10b

(2) 河川水理解析

河川上の橋梁位置に於ける洪水時の流水量の算定及びその排出に必要な河川 面を決定するため、洪水時の河川水理解析を行なった。解析結果の資料を付属資料 料5に、その詳細な解析については別冊としてそれぞれ報告した。

1) 降雨強度

フィリピンでは、地域的な気候はその地域における降雨期間とその降雨量によって、支配的に特徴づけられる。したがって、その地域の属する気候タイプからその地域の降雨パターンが判明できる。フィリピン全国は4つの気候タイプに分かれている。グループ2橋梁10橋の属する気候タイプを表 5.2-2に示す

流出計算に必要なデータはその地域の降雨強度、即ち降雨継続時間-降雨度 度グラフである。それぞれの橋梁建設位置に適用した降雨データ、水文資料を 表 5.2-2に示す。

2) 設計降雨強度

単位流出図法は流域が大きい場合の最大流水量の算出に最適な方法である。 合成単位流出図法は、洪水到達時間を算出するのに修正シュナイダー公式を用いた方法である。その手法の概略を以下に示す。

$$L g = C \left(\frac{L \cdot L c}{\sqrt{S}} \right)^{n} \times 0.69667$$

ここに、 Lg: 洪水到着時間 (時間)

L: 橋梁地点から最上流地点までの河川延長(m)

Lc:橋架地点からその流域中心をとおる垂線までの河川延長(b)

S :本河川の平均勾配

C : 流域の粗度によって決まる到着時間係数(0.7~2,2)

n : 0.38 (定数)

合成単位流出図が得られると、降雨強度の増加、降雨の地下浸透ロス量、 過降雨強度のパラメータを参入した設計降雨強度を求め、さらに次式によって 設計最大出水量が決定される。

$$q t = \sum_{i=0}^{\infty} P i \left[U t - i + 1 \right]$$

ここに、qt:洪水最大流出量(㎡/sec)

Pi:降雨時間iにおける降雨強度(mm/8ec)

U:時間iにおける合成単位流出図の値

3) 流出量解析と計画高水位

本調査における洪水時河川解析の目的は計画高水位の決定であり、それは前述の洪水の流出量と橋梁位置での最小河川断面によって求めることができる。 洪水流出量算出に用いた確率年はフィリピン共和国の設計指針に拠って50年とした。

計画高水位は、下記のマニング公式によって決定される。

$$Q = \frac{1}{n} A R S$$

ここに、Q :流量 (元/sec)

n:マニングの粗度係数

A :流路断面積 (m)

 $R : 2 \times (R = \frac{A}{R}) \quad (m)$

S:河川勾配

P : 潤辺 (m)

洪水時河川水理解析の結果は、表 5.2-3に示す。

同表には、設計流水量、計画橋長、平均流速及び解析高水位を示した。なお、 現地でインタビューによって収集された過去最高洪水水位も示した。橋梁の計画 には、安全性、施工性、経済性、地形、地質など総合的に判断し最高高水位を決 定した。

Maphilindo橋 (橋梁番号01.02)とSan Roque 橋 (橋梁番号03.07)は河口付近で河川が数本に枝分かれしていて通常の方法による計画高水位の算出が困難である。したがって、この2橋についての計画高水位の算定は満潮水位を考慮した、統計確率の手法によるGumbelの公式を採用し算出する。

各橋梁地点に於ける河川条件を、地形・地質及び河川条件を表 5.3-1にまとめて報告した。

気 候 降 雨 強 度 単位流出図 タイプ (観測場所) データ	Cumbel Extreme Value Analysis	I iba, Zambates 田	Gumbel Extreme Value Analysis	I Sta. Cruz, Porac Pampanga リージョン 皿	I Gabaldon, Nueva Bcija 国 上	I HDA Luisita, Tariac, Tariac 同 上	II Alabat, Quezon リージョン IV	IV Baler, Quezon 同上	III Masbate, Masbate 同上	IV Calapan, Oriental Mindoro 同,上
権梁建設位置 気(プロビンス) タ	Pangasinan	Belasn	Bulacan	Pampanga	Nueva Ecija	181. 180	Quezon	Lagune	Romblon	Marinduque
秦	MAPRILINDO 橋	BACONG 橋	SAN ROQUE 🗥	DOLORES 橘	MANGKUYOG 格	SULA A稿	CAMAGONG 1866	PARAGUSAN 格	TAN-AGAN 格	IHATUB 橋
橋架番号	01.02	03.03	03.07	03. 10	03.13	03.17	04. 07a	04. 20a	04. 07b	04.105-2

表5.2-3 洪水時间川水理解析結果

接的来们	第の方	女子面赘	設計流出鐵	必要断面複	南欧	关	片	Just.	商 大 位	(m)
	ŧ	(Kal)	(m/s)	(m)	(E)	(H	(m/S)	解析值	インクビュー署査整	探 用 値
01.02	NAPHILINDO 稀	``	グランベルの式	4.7	164	5. 0		21.34	26.85	21. 34
03.03	BACONG 趣	119.6	2, 247, 47	258	53	5. 0	8.38	51.72	50.95	50.95
03.07	SAN ROQUE 極		グランベルの式		S 8	5. 5	1 · · ·	21.26	20. 79	20.79
03.10	DOLORES 稿	65. 21	598, 37	133	49	2.8	4, 51	18. 22	19. 28	18. 22
03. 13	MANGKUYOG 楯	8, 32	101, 254	25	85	3, 8	6.83	99, 51	99. 60	93.80
03. 17	SULA AR	51.79	534. 59	169	62	3. G	3, 79	22.17	21. 31	21. 31
04.07a	CAMAGONG A	10.56	393, 41	106	45	4.0	3. 81	21. 26	20.07	21.26
04. 20a	PARAGUSAN 45	161.9	2, 571, 47	न्यू ୧୯୦ ୧୯၁	4.7	13, 4	6.13	44.89	45, 70	45, 70
04. 075	TAN-AGAN KA	16. 22	422. 56	55	-	2.3	6. 05	10.	10.53	10.53
04, 10b-2	IRATUB A	4, 16	155. 72	21		2.0	2.86	2.40	2.11	2.40

(3) 測量調査

グループ2橋架の設計、その橋架取付道路および護岸工の設計を行なうのに必要な測量図を得る目的で測量調査を実施した。

測量を行なった項目・範囲及び測量の基準点とした水準基準点 (BM) のデータは付属資料-6に、また測量成果は別冊に、それぞれまとめて報告する。

1) 中心線測量

橋梁建設位置を含む道路中心線測量は、その中心線上に 100m以上、河川中心線測量は橋梁建設位置より上下流それぞれ50m以上の範囲にわたって実施した。水準基準点 (BM) とした標高は仮の標高である。仮の水準基準点はコンクリート杭 (20cm×20cm×60cm) を現地に設置して表示した。

2) 縦断測量

中心線上20㎝間隔の測定及び線形変化点の測定等の水準測量を実施した。

3) 横断测量

道路横断 : 10m間隔、幅50m

河川横断 : 20m間隔、幅60m

精 度: トラバース測量 1/10,000

水準測量 5 cm×3 cm√S

S=水準測量延長

4) 成 果

·橋梁位置図 : 1/50,000

・地 形 図 : 1/200

·縦 断 図 : 1/200, 1/100

・横 断 図 : 1/200

• 現場写真

・水準点 (BM) 設置データ

各橋梁地点の地形的特徴の概要を、地形・地質及び河川条件として、 表 5.3-1にまとめて報告した。

(4) 地質調査

グループ2構架の下部工詳細設計に必要な地質調査を10橋の全下部工位置で実施した。調査項目は下記に示すとおりである。

調査項目と成果の土質、柱状図は付属資料-1に、また調査データの詳細は別所 に報告する。

1) ボーリング

10橋の全下部工計画位置でボーリングを実施した。

2) 標準貫入試験

全ボーリング坑に於いて、1m毎及び地質の変化点において標準貫入試験を 実施した。

3) サンプリング

全ポーリング坑に於いて、不攪乱試料を1m毎及び地質変化点で採取した。

4) 土質室内試験

AASHTO示方書に準じて、下記の室内試験を実施した。

・自然含水比試験(全橋について)

San Roque 橋 (橋栗番号 03.07) は深い軟弱地盤であるので、圧密と盛土地面安定等の軟弱地盤解析の資料を得るため下記の試験を実施した。

- 一軸圧縮試験
- ・圧密試験
- ・比重

Maphilindo橋(橋梁番号 01.02)は、上部層が均質な砂層であるので、くい 軸直角方向の正確な計算資料を得るため、一軸圧縮試験を実施した。

各橋架に於ける地質的特徴の概要及び設計に必要な条件等を、地形・地質及び河川条件として表 5.3-1にまとめて報告した。

3 橋栗形式の決定

5.3.1 檔案形式決定条件の概要

提案された地点における最適な構築形式は、地形条件、地質条件、河川条件の みならず、施工条件、利用可能な建設資機材条件、経済的条件などを考慮して総 合的に決定される。

前節で述べたように、グループ1対象橋梁の橋梁形式の決定は、フィリピン共和国公共事業道路省 (DPWH) より与えられた基本データにより橋長、支間長などを決定した。

グループ2対象橋梁は、各橋ごとについて、河川条件、地質条件及び設計、施工上の留意点について述べる。表 5.3-1の地形・地質及び河川条件の概要をまとめて以下に報告する。

(1) 01,02 Maphilindo橋

河川条件

Basing川の河川幅は広く、流速が遅く水深は比較的深い。河川を横断する現 橋は、129mの鋼トラスタイプの橋梁である。川幅は 147mあり橋梁取付部付 近の堤防は養殖池の堤防と併用されている。降雨時には、この堤防をオーバー フローするが、河口であることと、養殖池が多いので、農作物に被害を与える ことはない。

河川水理計算にあたっては、河口であるためと河川が上流で他の支流と分岐しているため一般的な手法とこれを考慮したGumbelの手法により、最高高水位は標高 21.34mとした。

地形·地質条件

橋架計画地点は海岸に近い低地であり、沖積層堆積物が厚く発達している。 その上部は、均質な細砂 (N値; 7~26、層厚;17m)、下部はシルト層 (N値; 4~35、屬厚;35m) から構成されている。 支持層としては、下部のシルト層が期待できる。橋脚、橋合の基礎形式は い基礎となる。

施工条件

本橋は河口に近く、平水位時の流れは定流で流速はおそいが、水深は比較的深い、したがって橋脚の建設には、鋼矢板締切りが必要である。

(2) 03.03. Bacong橋

河川条件

Bacons川は河川幅46.4mで平均的な河川であるが、最近架橋地点から下流約1 mに農業用水のためのアースダムができたため平水位が調査時点の46.4mから49.3mに変更し、非常に高く、水深が深くなった。水理解析による最高高が位は標高 51.72mであるが、現地の状況、取付道路の盛土高さなど考慮して、インタビュー調査の値、 50.95を設計に採用した。

地形・地質条件

架橋地点の両岸には、低い段丘面が発達している。河川は集水面積が大き(流量が多く)下流 200m付近で大きく屈曲している。地層は砂礫層からなり上部は砂礫(N値;30以下、層厚;10m)、下部砂礫層(N値;50以上)から構成されている。

支持層としては下部砂礫層とし、くい基礎とする。

施工条件

平水位が高く、橋脚位置の水深は4~5mとなり、仮締切り工法では無理がある。従って橋脚の構造型式はパイルベント形式の採用が考えられる。橋台の施工はシートパイルを使用して施工し、これを永久構造物とした。

(3) 03.07 San-Roque 橋

河川条件

San Roque 川は平水位の川幅は約53mで、比較的水深は深く、流れも定流でおそい。架橋位置は河口に近く、人家が多いため堤防はなく、個人的にコンクリート壁などを作り防護している。人家のない場所は、粘土質の自然のスロープとなっている。

降雨時には水位が上がり取付道路までくるが、海水位の影響も大きい。河川水理計算にあたっては河口であるためと、河川が上流で他の支流と分岐しているため、一般的な手法と、これを考慮したGumbelの手法により、最高高水位21.26を算出した。しかし、インタビュー調査によると最高高水位は標高20.79であるので、架橋位置が人家密集地であり、取付道路が取り付けやすいことを考慮し、設計ではこの高さを採用した。

地形・地質条件

架橋位置は海岸低地で、河口に近く、付近には人家が密集している。土質は厚さ約10mの軟弱層でデルタを構成している。地層の上部は砂層(N値; 3~15、層厚4m)、中間層はシルト質粘土層(N値; 5~10、層厚;約30m)下部は砂混りシルト(N値;10~47、層厚;約10m)、と固結砂層(N値;50以上)から構成されている。

支持層としては、最下層の固結砂層とし、橋脚・橋台の基礎形式はくい基礎 を採用する。

施工条件

橋脚の下部工の施工には、水深が5mとなるため、二重締切り(山留工)かパイルベント形式の橋脚が必要となる。橋台の施工は築堤で仮締切工を行う施工法とする。

(4) 03, 10 Dolores 橋

河川条件

Dolores 川は中流河川で、屈曲が多く、流速が比較的速く、水深が浅い(3.73m)河川である。河岸はゆるい粘土で構成されているためくずれやすく水流は洪水時には現橋の桁下の高さまでくる。

最高高水位はインタビュー調査によれば、標高 19.28mであるが、取付道路の盛土高さ、工費の経済性などから考え計算値による標高 18.22mを設計に展用した。

地形·地質条件

橋梁計画地点の両岸は低い段丘面が発達している。地質は砂、砂礫層からなり、基岩は泥岩である。軟弱層は浅く約10mまでである。

基礎としては、洪積層までのくい基礎が適当である。

(5) 03.13 Mangkuyog 橋

河川条件

Mangkuyog 川はNueva Bcija のGavaldon山地を流れる小河川である。橋梁が流失したため、車両は乾期の間は浅瀬を通行している。道路と交差する付近は河川幅は比較的狭く、水深も浅い。しかし洪水時には瞬間的に土石流をともなった山水が流出する恐れがある。

本河川は、土石流を含む洪水氾濫地帯であり、橋長の決定は非常に困難である。洪水時に流水及び土石流幅が架橋幅以上になる場合を考え両側橋台の背面にスピルウェイ構造を安全のため設置することが望まれる。

地形・地質条件

橋梁計画地点は河道の荒れた渓流であり、土石流により形成された扇状地の 末端の状況を示している。

表層は巨礫等の礫と砂が複雑な分布を示している。

中間層はシルト質の粘土層 (N値; 20~30、層厚; 4 m)、下部は粘土混りの固結した砂層 (N値; 30以上、層厚 5 m以上)から構成されている。

支持層は、最下層の粘土混りの固結砂層とし、橋脚・橋台共にくい基礎を採用する。

(6) 03.17 Sula稿

河川条件

Sula川は平水位の河川幅が約40mで、比較的水深は浅く、流れも定流である。 ただし、洪水時には氾濫が予想される。

支間長20mの3径間の橋梁形式の場合、最高高水位は標高 22.17m、平均流速3.65m/秒であり、流速はかなり速い。しかし、インタビュー調査によると、最高高水位は標高 21.31と計算値よりも低い数値を示した。現地の状況、取付道路の盛土高さなど考慮して、インタビュー調査による 21.31mを採用した。

地形・地質条件

橋架計画地点は氾濫地帯で、沖積層の上部は砂礫層、玉石、巨礫が主体で、 N値は15、層厚は 3.0m程度である。下部は比較的均質な砂礫層でN値;50以 上、層厚は8m以上である。

支持層は下部の砂礫層とし、橋脚・橋台共にくい基礎とする。

施工条件

上部の巨石混りの砂礫層はくいの貫入が不可能であり、手掘り掘削等を含め た施工方法を検討し、慎重に工事をする必要がある。

(7) 04,07a Camagong 橋

河川条件

Comagong橋は、河口に位置しており、河川の両側はココナッツ畑となっている。橋梁取付部にはコンクリートの擁壁が設置されている。

河川は平水位の川幅は約15mで比較的水深は浅く、流れも定流である。ただ し海岸に近いため、潮位の変化がある。 河川が斜行しているので、斜橋となる。

地形・地質条件

橋梁計画地点は平坦地で、周囲はココナッツ畑である。

沖積層は、その上部は粘性土 (N値;10~20、層厚; 7.0m) であり、下部は固結した砂層 (N値;50以上、層厚;5 m以上) である。

支持層は下部の固結した砂層とし、橋台・橋脚共にくい基礎をする。

(8) 04.20a Paragusan橋

河川条件

本橋は丘陵地帯に位置しており、平水位時の流れは定流で、流速は比較的な そいが、水深は深い。河川幅は40mで平均的な河川であるが、河川の集水面 は広い。

水理解析に使用された橋梁は、支間長15m+30mの2径間橋梁である。この場合、最高高水位は、標高 44.89mであったが、平均流速は6.13m/秒と高い値を示した。電算によって算定された数値の方が、インタビュー調査によるものより低い数値を示した。したがって、設計に際しては、安全を考慮し高いがの数値、即ちインタビュー調査の数値、標高 45.70mを採用した。

地形·地質条件

桶架計画地点の地形は、段丘平坦面を形成している。上部の地層は砂混り粘土 (N値;15~28、層厚;3m)であり、下部は軟岩(凝灰岩)でN値;50以上、層厚;8m以上である。

基礎形式は橋脚・橋台で異り、橋台は軟岩までのくい基礎、橋脚は直接基礎が可能である。

(9) 04.07b Tan-Agan 橋

河川条件

Tan-AganJIIの河川幅は19mで、比較的水深は浅く、流れもおそい。ただし河口であるため、潮位の影響がある。

水理解析に使用された橋梁は、支間長18mの2径間の橋梁である。この場合、最高高水位は、標高 10.18m、平均流速は6.05m/秒と高い値であったが、インタビュー調査によるものより低い数値を示した。したがって、設計に際しては、安全を考慮し、高い方の数値、即ちインタビュー調査の数値、標高 10.53 mを採用した。

地形·地質条件

橋架計画地点は河口に近く、平坦地であり、周辺はマングローブの木が生い茂っている。地層は上部5mが粘土質の砂層でN値;10~15で、中間層は、やや固結した粘土質の砂層でN値;約20、層厚は約4である。下部は固結した砂湿りの粘土でN値は、50以上で層厚は6m以上である。

支持層は最下層の、固結した砂混りの粘土とし、橋脚・橋台共にくい基礎を 採用する。

(10) 04. 10b-2 Ihatub 橋

河川条件

lhatub川の河川幅は約30mで、水深は浅い。河川を横断する車道は、コンカリート構造物に直径 600mmの鉄筋コンクリートパイプ2本が埋設され、増水には越流するスピルウェイと呼ばれる構造である。

河川水理計算にあたっては、支間長23.0mの2径間概架を想定した。この場合、新橋架建設後に上記スピルウェイ構造物が撤去されるとすると、最高高が位の標高は2.40m、平均流速は2.86m/秒である。

地形・地質条件

橋架計画地点は海岸に近い低地であり、地層は上部が粘土質の砂層(N値;約20、層厚;20~30m)、下部は固結した粘土混りの砂層(N値;50以上、層厚;7m以上)である。

支持層としては、下部層の固結した粘土混りの砂層とし、橋脚・橋台共に、くい基礎を採用する。

橋梁番号	橋、梁 名	橋架架設位置	地質断面図	地形条件	地形条件	河川条件
01. 02	MAPHILINDO 稿	km. 220+900 Biec-Lomboy Road, Binmaley, Pangasinan	10 M 60 M-1-20 20 20 20 20 20 20 20 20 20 20 20 20 2	・橋梁架設地点は海岸に近く低地の 砂州を形成している。 ・河川は大きく蛇行している。 ・橋梁架設付近には多くの養飼池が 点在している。 ・洪水時には、しばしば越流する。	・三角州は沖積層であり、層厚は 50mである。 ・支持層は深さ40~50m付近である。	 ・護岸が必要。 ・河川の水深3~4mで潮位差は 1 m程度である。 ・干満の影響がある。
03. 03	BACONG 橋	km. 105+360 Luacan-Bacong Road, Bacong, Bataan	26 26 26 26 20 20 20 20 20 20 20	・橋梁架設地点は低い段丘が発達している。 ・河川は大きく蛇行している。 ・河川の両岸には低い堤防が設置されている。 ・洪水時には、堤防を越流する。	・橋梁架設地点付近は砂礫層からなる。	・過去に2回程度、洪水が発生している。
03. 07	SAN ROQUE 橋	km. 57+284 San Roque Barangay Road, Hagonoy, Bulacan	18 18 18 18 10 20 2-5-10 20 2-5-10 20 2-5-10 20 2-5-10 20 2-5-10 20 2-5-10 20 2-5-10 20 2-5-10 20 2-5-10	・橋梁架設地点は海岸に近く、低地 の砂州を形成している。 ・橋梁架設地点は海岸から上流 500 m付近である。 ・河川左岸は右岸より 0.5m低く なっている。 ・毎年洪水が発生。 ・現橋寄りの河床に多くの水路が ある。	・橋梁架設地点付近はシルト質粘土 の軟弱層である。 ・軟弱な沖積層は40mに達している。 ・支持層は深さ30~40m付近である。	・干満の影響がある。
03. 10	DOLORES 橋	km, 76+870 Dolores-Del Rosario Road, Dolores, Bacolor, Panpanga	24 24 24 24 24 24 24 24 24 24 24 24 24 2	・橋梁架設地点は低い段丘が発達している。 ・河川幅は橋梁架設地点で狭く、蛇行している。 ・河川の流量は少なく、流水は速い。	・橋梁架設地点付近の地質は砂、砂 礫層からなり、基岩は泥岩である。	・洪水はないが、集水面積が広い。

植梁番号	橋 架 名	構架架設位置	地質断面図	地形条件	地形条件	河川条件
03. 13	MANGKUYOG 橋	km. 169+000 Camachile- Bantug Road, Nueva Ecija	96 24 24 21 23 10 20 30 40	・橋梁架設地点は沖積層の荒廃渓流であり、土石流により形成された扇状地の末端部の状況を示している。 ・河床は広く、流れも非常に速い。 ・河川の流れが、常に変化している。 ・右岸には土石流による自然堤防が形成され、その上流にはその押し流されたこん跡がみられる。	・右岸は礫層の低い段丘が発達している。 ・土石流堆積土。	 ・土石流のこん跡がみうけられる。 ・激しい降雨時には、河床の変化がある。 ・洪水がしばしば発生。 ・強固な護岸が必要。 ・荒廃渓流。
03. 17	SULA 橋	km. 150+000 Tarlac-Sula Road Sula, Tarlac, Tralac	60 20 20 20 10 00000000000000000000000000	・橋梁架設地点は上流 200m付近で河川は大きく蛇行している。 ・河川両岸には自然堤防が形成されている。 ・流速が比較的速く、流量も多い。	砂、礫層からなり、玉石、巨礫が 散在している。	・上流付近で河川が大きく蛇行しているので、護岸が必要。 ・杭基礎の場合、玉石、巨礫層への貫入が困難と予想される。
04. 07a	CAMAGONG 橋	km. 23+700 Quezon-Alabat Perez Road, Alabat, Quezon	22 22 16 89 15 -20 10 9 10 20 50 50 50 50 50 50 50 50 50 50 50 50 50	橋架架設地点は海岸に近く、砂州を形成している。 ・橋梁架設地点の上流は低湿地帯を形成している。 ・洪水はしばしば発生し現橋を越流する場合がある。	堆積層である。 ・軟弱層は厚さは17~20mに達し、 その下に支持層がある。	 ・潮位差は1~2m程度である。 ・干満の影響がある。 ・干満の差が大きいため強固な護岸が必要。 ・斜橋
04. 202	PARAGUSAN 橋	km. 91+84 San Pablo-San Isidro, San Pablo City, Laguna	30 15 10 10 10 10 10 10 10 10 10 10 10 10 10	・橋梁架設地点は、段丘が発達している。 ・河川は直線の深い渓谷を形成している。 ・雨期には水量が多くなる。 ・段丘	・橋梁架設地点は段丘層である。 ・地層は0~2m;火山灰 2~4m;段丘礫層 4~7m;基岩(凝灰岩、 凝灰角礫岩) からなっている。	・流量が多いので護岸が必要。 ・橋脚の設計には流水圧に対する 検討が必要。

橋架番号	橋 梁 名	橋梁架設位置	地質断面図	地形条件	地 形 条 件	河川条件
04.076	TAN-AGAN 橋	km, 11+100 Odiongon-San Andres Road, Tan-Agan, San Andres, Rombion	36 18 18 10 Raigno #-10-50 20 6689 Rd. #>50	・橋梁架設地点は海岸段丘を形成している。 ・河川の流速は非常に遅い。	・橋梁架設地点は砂、砂礫層である。	・潮位差は1m程度である。 ・護岸が必要。 ・干満の影響がある。
04. 10b-2	IHATUB 橋	km. 116+832.85 Boac-Gasan Road Ihatub, Boac, Marinduque	10 x 10 x 23 x 2	・橋梁架設地点は海岸段丘を形成している。 ・河川は大きく蛇行している。 ・橘梁架設地点は海岸から上流 100 m付近である。	・橋架架設地点は砂礫層である。	・潮汐の影響を受けるので、護岸が 必要。 ・潮位差は1 m程度である。
			30			

5.3.2 橘長及び支間長の決定条件

(1) 橋長

i) グループ1橋架。

前節で述べたようにグループ1対象橋梁の基本設計については、フィリピン共和国公共事業道路省 (DPWH) より提出された調査データにより架設位置および橋長、支間長などを決定した。したがって調査データのM. F. L. (最高洪水位)、測量 (平面、河川横断、道路横断)、現況写真などから総合的に判断し橋長を決定した。

鋼材供与対象橋梁であり、架設時の取扱いの容易さ、経済性を考慮して、橋 長は50m以下で、2径間までとした。

グループ2橋架については、まず高水時の河川水理解析を行ない、その結果を基にして、下記に述べる方法により、橋長を決定することにした。尚、河川水理解析は、付属資料5として報告しており(その詳細は別冊を参照)、その結果を表 5.2-3に示した。

- ・ 流域面積を地形図上から決定し、50年確率の洪水時の河川流量を計算する。
- ・ 流量と現況河川断面とにより、高水位を計算する。その高水位と、現況調査 時に得られた過去の最高高水位のデータを比較して、計算の妥当性を検討し た。
- ・ 橋台は、原則として現況河川断面の現地盤と計画高水位との交点より後方に 設置する。
- ・ しかし、下記の橋梁は平坦な洪水地帯に計画されており、上記の方法による 橋長決定では、橘長が最大となり不経済である。したがって、この場合は、 上・下流の現況河川断面や地形条件を考慮して、洪水時河川断面上・下流の 断面より大きくなるよう、橘長を決定した。
 - -01.02 Maphilindo 稿
 - -03.07 San Roque 橋
 - -03.10 Dolores 橋
 - -- 03.17 Sula 橋

(2) 径間長

径間長は、河川の状況、地形の状況等を考慮し、洪水のみならず流下物の流下を妨げないよう決定すべきである。

1) グループ1 橋梁

日本における鋼桁製作とフィリピンでの施工方法を考慮し、最大径間長は m以下に決定した。径間長の決定条件は橋長決定方法と同様に公共事業道路 (DPWH) より提出された基本データ、および現地調査により河川線形、地形、 流下物等の河川条件のみならず、土質、地質条件、平水位条件及び、施工条 等を考慮して総合的判断により決定した。

2) グループ 2 橋梁

径間長の決定にあたり、日本の河川管理施設等構造例では、およそ次のよう に規定している。

Q≥ 500㎡/秒の場合; L=30+0.005 Q

Q≤ 500 m/秒の場合; L=20+0,005 Q

ここに、

Q;計画高水流量(n/sec)

L;径間長(m)

この式によると、計画高水位から決定される計算径間長は表 5.3-2に示けるりである。またこの表には計画径間長も示した。しかしこの計画径間長は対しも上記公式では決められていない。なぜなら河川管理が施こされてないフィリピンでは河川の流心方向、地形、地質条件など諸条件を考慮して決定すべきだからである。

	橋 梁 名	河川水理解析に	計算径間長	計画径間長及び
橋架番号	桶大口	よる計算橋長 (®)	(m)	計画橋長 (m)
01. 02	MAPHILINDO橋	164		32× 5スパン=160
03. 03	BACONG橋	53	41	26× 2スパン= 52
03. 07	SAN ROQUE 橋		-	18× 3スパン= 50
03. 10	DOLORES 橋	49	23	24× 2スパン= 4
03. 13	MANGKUYOG 橋	98	20	24× 4スパン= 9
03. 17	S U L A 橋	62	32	20× 3スパン= 6
04. 07a	CAMAGONG橋	45	22	22× 2スパン= 4
04. 20a	PARAGUSAN 橋	47	43	15+30= 45
04, 07b	TAN-AGAN橋	31	22	18× 2スパン= 3
04. 10b-2	INATUB橋	47	21	23× 2スパン= 4

5.3.3 上部工形式の決定

(1) 上部工形式の決定

前節で述べたようにグループ1橋梁では径間長を25m以下としグループ2橋梁では15mから32mの径間長を河川水理条件、地質条件、土質条件、平水位条件及び、施工条件等を考慮して決定した。

グループ1 橋梁、グループ2 橋梁の支間長ごとの支間数を表 5.3-3にそれぞれ 集計する。

表 5.3-3 支間長ごとの数量

'ループ1	·	÷	グループ2

(m) 数量	支間長		数量	支間長 (m)
5	32. 0	•	11	24. 0
1	30.0		8	23.0
2	26.0		4	22.0
1 Mary - 1 Mary 1 6 - 11 a	24.0		2	21.0
2	23.0		4	18.0
2 · · · · · · · · · · · · · · · · · · ·	22.0		9	15.0
3	20.0			
5 S	18.0		38径間	
1	15.0		(785m)	

27径间 641m)

上部工形式は下記のように決定した

1) 支間長 25m以下 H形鋼合成桁

2) 支間長 26m以上 鈑桁 (非合成溶接鋼桁)

上記の決定理由について以下に概説する

1) 支間長25m以下のH形鋼合成桁

支間長が25m以下の橋架で経済的な鋼橋としては、日本における経験から踏まえて、次の3形式が提案された。

- a) H形鋼合成桁
- b) 飯桁 (非合成溶接鋼桁)
- c) 合成鈑桁(合成溶接鋼桁)

フィリピン共和国に於けるコンクリートの強度、コンクリート打設施工、床版の維持管理を考慮して、床版コンクリートと鋼桁の合成構造作用を期待するのの合成飯桁は、フィリピン共和国では適当な形式ではないと判断された。これに対し、H形鋼は鋼桁断面に応力上の余裕があること、桁のたわみ制限の必要のあること等の理由により合成構造を適用することとした。したがって、表 5.3-4に示すH形鋼合成桁と飯桁(非合成溶接鋼桁)の比較から、前者を採用することに決定した。

表 5.3-4 H形鋼合成桁と鈑桁の比較 (支間長24m以下の橋架に対して)

評価項目	H形鋼合成桁	鈑 桁	評 価
適用支間	25m以下	40m以下	
桁 高	90㎝程度	130㎝程度	低い方が取付に有利
運搬・架設	容易	機困や中	H形鋼が有利
経済性	鋼重は大であるが、 製作単価が安い。 経済的	鋼重は小であるが、 製作単価が高い。 やや不経済	H形鋼が有利

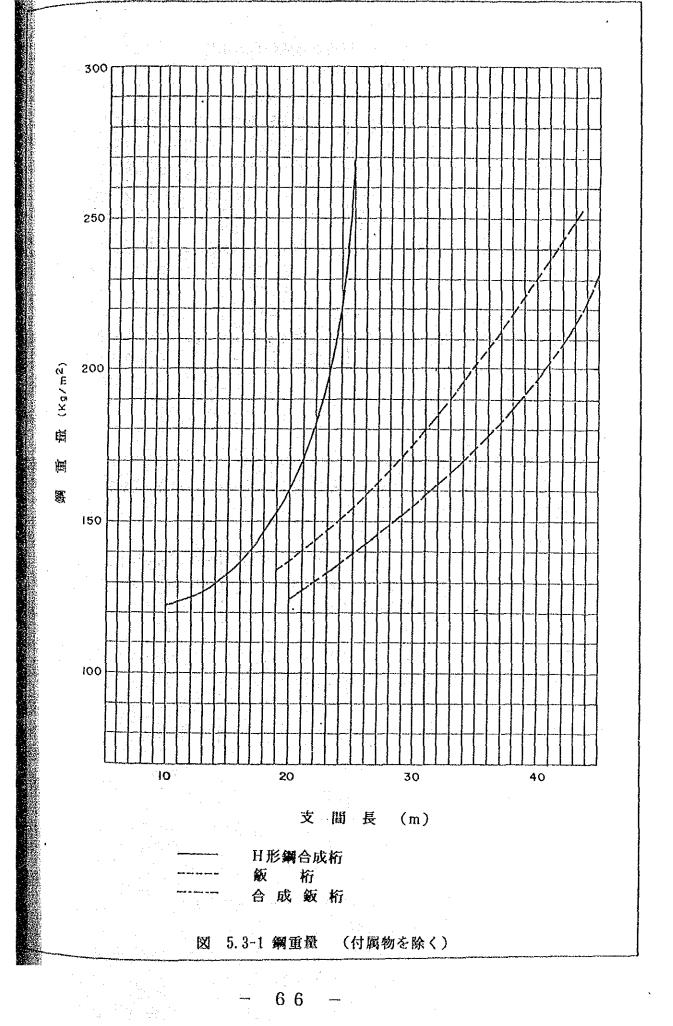
なお、H形鋼合成桁、鈑桁及び合成鈑桁の鋼重量(沓、伸縮ジョイント、高欄、 排水桝等の付属設備を除く)を図 5.3-1に示す。

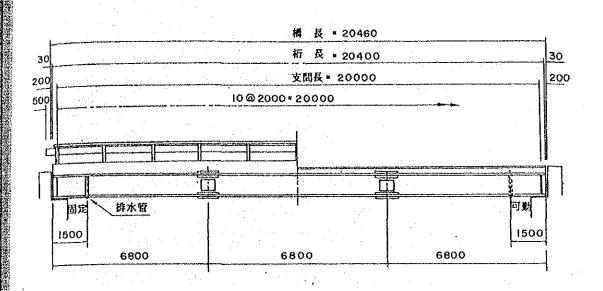
2) 支間長26m ~32mの非合成溶接鋼桁

支間長が26m~32m程度の橋梁で経済的な鋼橋形式としては、次の2形式が日本では広く利用されている。

- a) 飯 桁 (非合成溶接鋼桁)
- b) 合成飯桁(合成溶接飯桁)

前記したように、フィリピン共和国に於ては、合成構造は適当ではないと考えられる。表 5.3-5に示した両者の差異を考慮して、a)の鈑桁を採用することとした。




表 5,3-5 飯桁と合成飯桁の比較

評価項目	飯 桁	合成飯桁	評価
床版コンク リートの強度	低強度で可 σ ck=270kg/cml	高強度必要 σ ck=300kg/cm²	フィリピンでは σck=270kg/cd程度
桁高	高い	低い	低い方が取付に有利
たわみ	大	小	
維持管理	普通	床版コンクリートの 穴あきは不可	フィリピンでは床版 コンクリートの 穴あきが多発

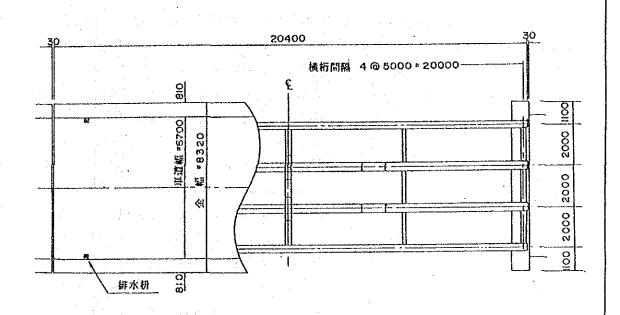
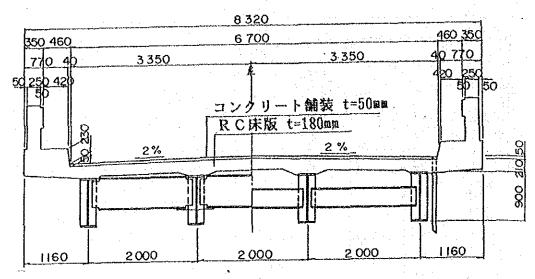

なお、鈑桁では桁高が高く、取付道路の盛土高が高くなるばかりではなく、動 付道路延長も長くなり、不経済となるので、主桁たわみが許容範囲となる最外 高を採用するようにした。

図 5.3-2(1/4), (2/4)に H形鋼合成桁(支間長15.18.20,21,22,23.24m)、図 5.3-2(3/4), (4/4) に非合成溶接鋼鈑桁(支間長26,30,32m)の上部工厂 一般図として示す。

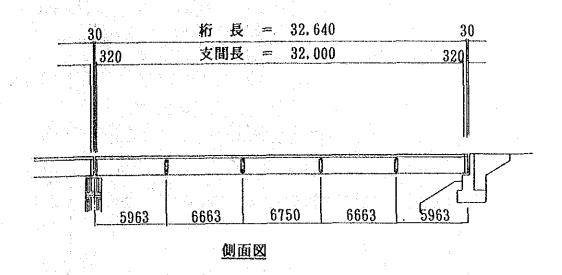
なお、日本からフィリピン共和国への輸送、フィリピン国内での内陸輸送、 架設等を考慮して、桁の最大部材長(現場添設位置)は 8.5 m とした。

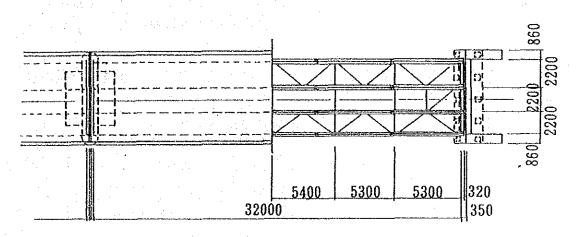


側面図

平面図 (支間長24mの例)

図 5.3-2 (1/4) H形網合成桁標準一般図

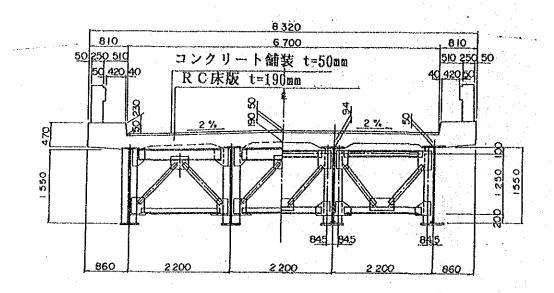



断面図 (支間長24mの場合)

支間長 15m, 20m, 21m, 22m, 23m, 24m の 場合の構造寸法

支間長 (m)	主桁数		主桁形状(㎜)	
15	1	700	700× 300×13×24	180
18	4	792	792× 300×14×22	180
20	4	890	890× 299×15×23	180
21	4	900	900× 300×16×18	180
22	4	900	900× 300×16×18	180
23	4	912	912× 302×18×24	180
2 4	5	900	900× 300×18×24	180

図 5.3-2 (2/4) 上部工標準断面図 (H形鋼合成桁)



図面平

(支間長32mの例)

図 5.3-2 (3/4) 非合成溶接鋼桁標準一般図

断面図 (支間長32mの例)

支間長26m、30m、32mの場合の構造寸法

支間長 (m)	主 桁 数	主桁高 (㎜)	主桁形状(㎜)	床版厚(㎜)
26	4	1400	1400×9	190
30	4	1500	1500×9	190
32	4	1550	1550×9	190

図 5.3-2 (4/4) 上部工標準断面図 (非合成溶接鋼桁)

(2) 幅員の決定

橋梁幅員は、車道幅員6.70m、全幅員8.32mとした。これはフェーズ I 橋梁、 及びフェーズ II 橋梁で採用した幅員構成である。今回の調査(フェーズ III)に 於ても、この幅員構成が公共事業道路省(DPWII)から要請された。調査団は、その 妥当性を下記の項目により再確認し、車道幅員6.70mを採用した。

- 」)公共事業道路省(DPWH)側の道路規格によると、道路舗装の最小幅は6.10mであり、側帯は 0.3mある。従って、車道幅員は6.70mとなる。又、地方道路の中級路面タイプの幅員構成は舗装幅6.10m、側帯 0.3mであり、車道幅員は6.70mとなる。なお、高欄部の幅員はオフセット(車両走行の安全幅0.46m)を設けることとなっている。
- 2) フィリピン共和国国家開発計画にうたわれている、地方道路の改修や新設に 重点を置く方針に基づき、公共事業道路省(DPWH)は地方道路を2車線道路に 改良や補修を推進している。この状況下に於いて、新設の橋梁も2車線の幅員 構成をもつ橋架の採用が適当である。
- 3) 諸外国の援助による地方道路の橋架幅員は全て2車線の幅員構成であり、ローカルファンドによる鉄筋コンクリート橋、プレストレス・コンクリート橋、及び鋼橋等、永久橋の新設も、幅員構成は2車線(6.70m)以上で実施されている。

詳細の幅員構成は図 5.3-2(2/4), (4/4)上部工標準断面図を参照のこと。

(3) 路面の決定

桁下高は公共事業道路省 (DPWH) 側の基準に拠り、計画高水位 (H. F. 1) に余裕高 1 mを加えた高さとし、これに桁高、床版厚、舗装厚等を加えて路面高を決定した。橋梁上は水平とした。

しかし、次の2橋(グループ2)については、下記の理由により、次のように 決定した。

· 03. 07 San-Roque 橋

住宅密集地であり、取付け道路をなるべく短くするために橋梁上に、縦断曲線 を設置した。この理由により桁下の余裕高は側径間は1m以下となる。

• 03.13 Mangkuyog 橋

土石流を含む洪水氾濫地帯であり、将来土石流が橋架下に堆積し、桁下空間が 小さくなる可能性がある。

この理由により、桁下余裕を 1.5mとした。

(4) 耐候性鋼材の使用

橋架建設位置を考慮して、表 5.3-6に示す橋梁に対し、耐候性鋼の使用を計画 した。これらの橋梁は、いずれも海岸の近くに位置している。

表 5.3-6 耐候性鋼材を使用する橋梁

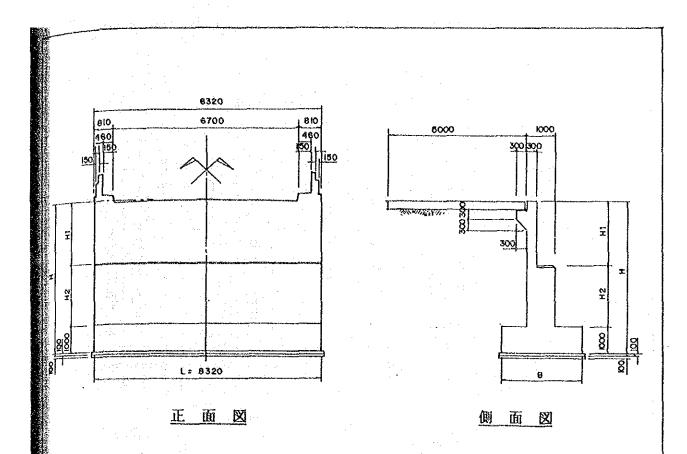
橋架番号	橋 梁 名	径 間 長 (m) グループ
01. 02	MAPHILINDO 橋	5032. 0=160. 0
03. 01	PANGULISANIN 橋	24.0
03.06	BALASING 橋	15, 0+23, 0=38, 0
03.11	PULO 橋	23. 0
03.18	SSINDOL 橋	2@15. 0=30. 0
04. 01a	SAN JUAN 橋	23. 0
04. 02a	TABON-BATONG 橋	22. 0
04. 04a	CAGLATE 橋	23. 0
04.06a	BUBNAVISTA 橋	24. 0
04. 07a	CAMAGONG 橋	2@24. 0=48. 0
04. 09a	ISABANG 橋	2@24. 0=48. 0
04. 10a	PANSIPIT 橋	2@22. 0=44. 0
04. 11a	SAN DIEGO 橋	2015. 0=30. 0
04. 16a	PINGIT 橋	2@21. 0=42. 0
04.17a	SALAY 橋	2015. 0=30. 0
04. 18a	MIJARES 橋	23. 0
04. 03b	MARUYUGON 橋	24. 0.
04. 04b	DAKOTON 橋	2018. 0=36. 0
04. 06b	MADALAG 橋	24.0
04, 07b	TAN-AGAN 橋	2@18. 0=36. 0
04. 08b	PANIQUE 橋	2@18. 0=36. 0
04.106-1	DAYKITIN 橋	24.0
04. 10b-2	IHATUB 橋	2@23. 0=46. 0

5.3.4 下部工形式の決定

グループ1及びグループ2橋梁で、採用される下部構造物の形式は逆工橋台及 び円柱式橋脚を採用した。橋脚を円柱式にした理由は、河川の流水方向が橋梁に 対し、斜方向である橋梁が多いこと(表 5.3-7参照)、架橋時はそれが橋梁に対 し、直角方向であっても堤防がないため、将来、流水方向が変わる可能性がある ためである。

基礎がくい基礎の逆T式橋台は、橋台の背後の盛土の洗堀及び傾きを避けるために、少なくとも2列の杭を設置することとした。

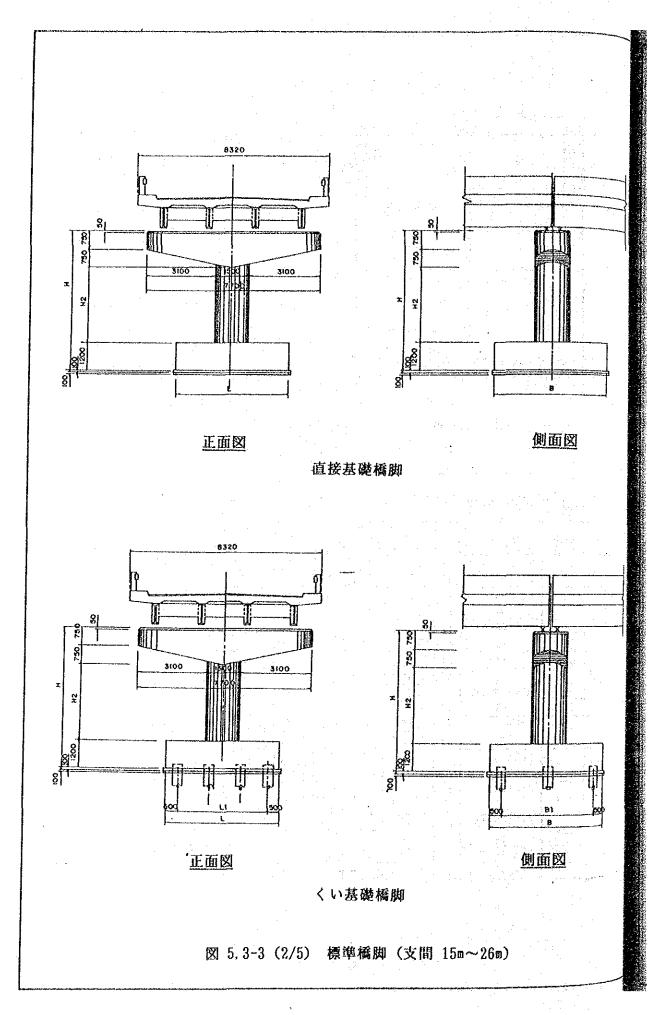
直接基礎及びくい基礎の場合の標準的橋台と橋脚は、それぞれ図5.3-3(1/4)-(4/4) に示すとおりである。ただし寸法表はグループ2橋梁を示す。

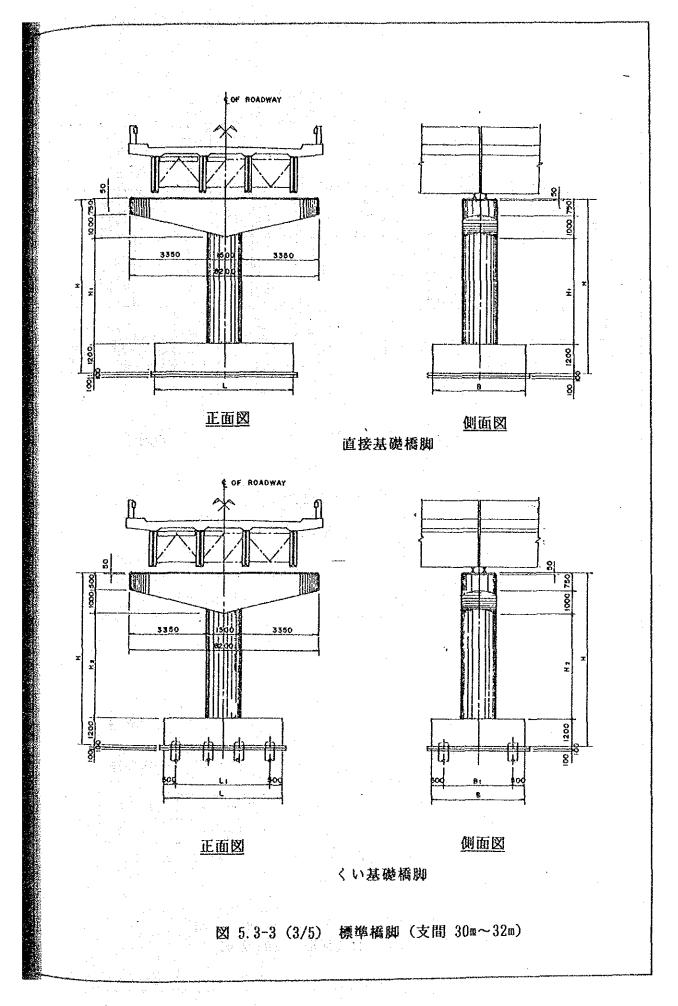

使用する基礎ぐいは、フィリピン国内で一般的に使用されている、40×40cmの 正方形の鉄筋コンクリートぐいを使用する。

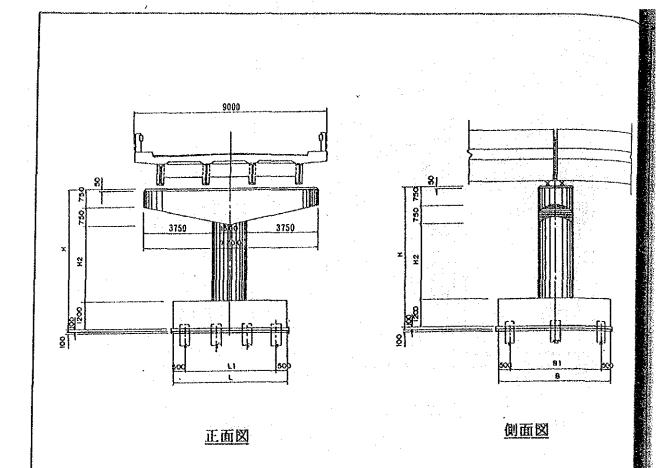
橋架番号03.03 Bacong橋及び橋架番号03.07 San Roque 橋は、平水位時で水深が4m以上あるため、橋脚の基礎の施工に対し仮設工事費が高価となる、両橋架の橋脚形式は、仮設工事費の経済比較をした結果パイルベント方式を採用することにした。その概略寸法は図5.3-3(5/5)に示す。

表 5.3-7 河川の流れの方向

橋梁番号	橋、梁、名	流れ方向*	備 。
01. 02	MAPHILINDO 橋	90°	5 @ 32. 0
03.03	BACONG 橋	80°	2 @ 26. 0
03. 07	SAN ROQUE 橋	90°	3@18.0
03.10	DOLORES 橋	90°	2 @ 24. 0
03.13	MANGKUYOG 橋	75°	4 @ 24. 0
03.17	SULA 橋	90°	3 @ 20. 0
04. 07 a	CAMAGONG 橋	60°	2 @ 22, 04 60°の斜橋
04. 20a	PARAGUSAN 橋	90°	15,0+30,0、標脚直接基礎
04. 07b	TAN-AGAN 橋	75°	2@18.0
04.10b-2	I II A T U B 格	65°	2@23.0

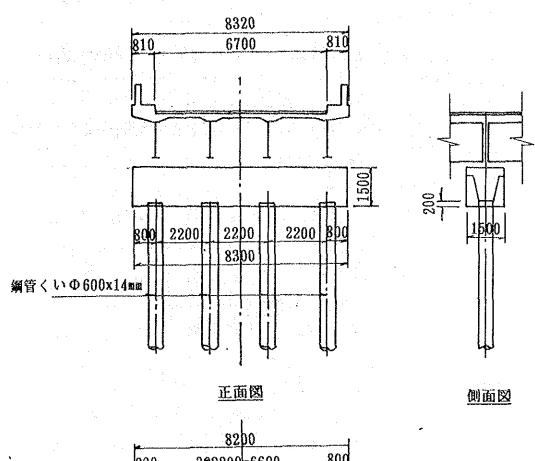

※ 橋梁に対する角度




橋台構造寸法一覧表

	4.5					· · · · · ·				
橋梁番号	橋 聚 名		ŧ	自台高	à	(m)	機台	音幅	(m)	くい
1 6 5 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1頭 決 1	3	H	H 1	H 2	Н,	В	В,	B 2	長さ (a) x本数
0.00	MAPHILINDO	41	5.00	2. 05	1, 75	1. 20	3. 00	1. 20	0.40	24. 0 × 12
01.02	橋	A 2	4.50	2.05	1. 25	1. 20	3.00	1. 20	0.40	21. 0 × 12
0.3 0.3	BACONG	Al	4.50	1.90	1.60	1.00	3.00	1. 20	0.40	24. 0 × 12
03, 03	橋	3.2	4.50	1.90	1.60	1.00	3, 00	1. 20	0.40	24. 0 × 12
03.02	SAN ROQUE	Al	3.50	1, 24	1. 25	1.00	2.50	1.00	0.30	24. 0 × 8
03. 07	楼	A2	3. 50	1. 24	1. 25	1.00	2, 50	1.00	0.30	24. 0 × 8
0.2.0	DOLORES	۸ì	5.00	1. 37	2. 65	1.00	3.00	1.00	0.30	12. 0 × 12
03, 10	橋	12	5.00	1. 37	2. 65	1.00	3. 00.	1.00	0.30	16.0×12
62.12	MANGKUYOG	. 4.1	5.00	1. 37	2. 65	1.00	3.00	1.00	0.3	8. 0 × 10
03.13	橋	1.2	5. 00	1. 37	2. 65	1.88	3.00	1.00	0.3	8. 0 × 10
03, 17	SULA	11	5. 50	1, 35	2. 65	1.00	3. 00	1.00	0.30	6. 0 × 10
03, 11	構	A 2	5. 50	1. 35	2. 65	1.00	3.00	1.00	0.30	6.0×10
61.07	SULA	Al	3, 50	1. 35	1. 14	1.00	2, 50	1.00	0.3	7. 0 × 10
04. 07	橋	12	3, 50	1. 35	1.04	1.00	2.50	1.00	0. 3	7. 0 × 10
04. 201	CAMAGONG	Al	3.50	1. 16	1. 34	1.00	2.50	1.00	0.30	5. 0 × 8
.04, 201	欘	A 3	4.00	3.00	1.00	1.00	2.50	1.20	0.40	5.0×10
04. 076	PARAGUSAN	Αl	3.50	1. 25	1, 25	1.00	2. 50	1.00	0.30	8. 0× 8
V4. 010	福	A 2	3.50	1. 25	1. 25	1.00	2.50	1.00	0.30	11.0× 8
04. 106-2	TAN-AGAN	Al	3, 50	1.37	1.13	1.00	2.50	1.00	0.3	7. 0 × 10
V1. 100-2	楓	12	3.50	1. 36	1. 13	1.00	2.50	1,00	0.3	5. 0 × 10

図 5.3-3 (1/5) 標 準 橋 台



くい基礎橋脚

図 5.3-3 (4/5) 斜橋橋脚 (支間 26m)

形状寸法

橋架番号	橋 架 名	橋 脚	くい本数 (本)	くい 長 (m)
03.03	BACONG 橋	Pi	4	16.0
03. 07	SANROGUE 橋	P 1, P 2	4	30.0

図 5.3-3 (5/5) パイルベント橋脚

5、3、5 計画橋梁形式

前記した橘梁形式の諸条件を総合的に解析・検討し、各橋梁計画地点に最適な 橋梁形式を提案した。

表 5.3-8, 表 5.3-9にグループ1、グループ2対象橋架の計画した橋梁形式を それぞれ示す。

			表 5.3-8 グループ	1.	橋梁の	D略図一覧	表
6号	橋架番号	橋 梁 名	概略構造図	番号	橘架番号	橋 梁 名	概略 構造 図
	03. 01	PANGULISANIN 橋	F \(^\text{L=24m}\) E	15.	04.16a	PINGIT 橋	L=21m L=21m F = E = F = E
	03.04	TIGBE 橋	F A E	16.	04.17a	SALAY 橘	L=15m L=15m F
١,	03.06	BALASING 橘	L=15m L=23m F E E E F	17.	04, 18a	MIJARES 橋	L=23m F A E
	03.08	PIAS 橋	L=23m L=23m F	18.	04. 19a	PALAYAN 橋	F <u>L=24m</u> <u>SKEW</u> Ø-60
•	03.11	PULO 橋	F 4 L = 23m A E	29.	04. 21a	TARAK 橋	L=24m F Δ E
•	03.18	SINDOL 稽	L=15m: L=15m F & E & F	20.	04.228	STO NINO 橋	L=23m, ∠ E
•	04. 01a	SAN JUAN 橘	<u>L=23m</u> Δ Ε	21.	04. 23a	DBL PILAR 橋	L=24m A E
•	04.02a	TABONG-BATONG 構	F △	22.	04. 03b	MARUYUGON 橋	FA L=24m A E
	04. 04a	CAGLATE 橋	FA L=23m A E	23.	04.046	DAKOTON 橋	L=18m L=18m F
١,	04.06a	BUENAYISTA 橋	F & L=24m. A E	24.	04.066	MADALAG 稿	F A L=24m
•	04. 09a	ISABANG 橋	L=24m L=24m F	25.	04. 085	PANIQUE 橋	L=18m L=18m F = E = AF
	04. 10a	PANSIPIT 橋	L=22m L=22m F	26.	04. 09b	WARANLIG 稿	L=15m L=15m
١.	04. 11a	SAN DIEGO 橋	L=15m, L=15m F A E A F	27.	04, 105-1	DAYKITIN 稿	L=24m F = = = E
١.	04.13a	BAGONG POOK 橋	L=24m F A E				
	<u> </u>						- 82 -

模架 番号	橋 架 名	概略構造図	上都工	下部工拖罗
01. 02	MAPHILINDO 橋	L=32m L=32m L=32m L=32m A2	溶接飯桁 L;32+32+32+32+ 32=160m	A: 橋台-RCくい基礎(400m× 400m×24,0m×12本) p: 橋脚-RCくい基礎(400m× 400m×22,0m×10本) p: 橋脚-RCくい基礎(400m× 400m×22,0m×10本) p: 橋脚-RCくい基礎(400m× 400m×22,0m×10本) p: 橋脚-RCくい基礎(400m× 400m×21,0m×12本) p: 橋脚-RCくい基礎(400m× 400m×21,0m×10本) A: 橋台-RCくい基礎(400m× 400m×24,0m×10本)
03. 03	BACONG 稿	L=26 m L=26 m	溶接飯桁 L;26+26=52m	A1 橋台-RCくい基礎(400m× 400m×24.0m×12本) P1 橋脚-バイルベント型式(4600, t=14mm, 16.0m× 4本) A2 橋台-RCくい基礎(400m× 400m×24.0m×12本)
03. 07	SAN ROQUE 橋	L=18m L=18m L=18m P ₁ P ₂ A ₂	H形鋼桁 L:18+18+18=54m	A1 橋台-RCくい基礎(400m× 400m×24.0m× 8本) p1 橋脚-パイルペント型式(4600, t=14mm, 30.0m× 4本) p2 橋脚-パイルペント型式(4600, t=14mm, 30.0m× 4本) A2 橋台-RCくい基礎(400m× 400mm×24.0m× 8本)
03. 10	DOLORES 橋	L = 24 m	H形鋼桁 L;24+24=48m	A ₁ 橋台-RCくい基礎(400m× 400m×12.0m×12本) p ₁ 橋脚-RCくい基礎(400m× 400m×16.0m× 8本) A ₂ 橋台-RCくい基礎(400m× 400m×16.0m×12本)
03. 13	MANGKUYOG 橋	L=24m L=24m L=24m	H形鋼桁 L;24+24+24+24= 96m	A、橋台-RCくい基礎(400m× 400m× 8.0m×10本) p. 橋脚-RCくい基礎(400m× 400m× 8.0m× 8本) p. 橋脚-RCくい基礎(400m× 400m× 8.0m× 8本) p. 橋脚-RCくい基礎(400m× 400m× 8.0m× 8本) A. 橋台-RCくい基礎(400m× 400m× 8.0m× 8本)
03. 17	SULA 橋	L=20m L=20m L=20m	H形鋼桁 L;20+20+20=60m	A. 橋台-RCくい基礎(400m× 400m× 6.0m×10本) p. 橋脚-RCくい基礎(400m× 400m× 6.0m× 8本) p. 橋脚-RCくい基礎(400m× 400m× 6.0m× 8本) A. 橋台-RCくい基礎(400m× 400m× 6.0m×10本)
04. 07 z	CAMAGONG 橋	L=22m L=22m A1 P1 A2	H形鋼桁 L;22+22=44m	A, 橋台-RCくい基礎(400m× 400m× 7.0m×10本) p, 橋脚-RCくい基礎(400m× 400m× 6.0m× 8本) 耐候性銀 A ₂ 橋台-RCくい基礎(400m× 400m× 7.0m×10本) 斜角 6 (
04. 202	PARAGUSAN 橋	L=15m L=30	H形鋼桁+溶接鈑桁 L;15+30=45m	A: 橋台-RCくい基礎(400m× 400m× 5.0m× 8本) p: 橋脚-直接基礎 A: 橋台-RCくい基礎(400m× 400m× 7.0m×10本)
04. 076	TAN-AGAN 橋	L= (8 m L= 18 m A2	H形鋼桁 L;18+18=36m	A. 橋台-RCくい基礎(400m× 400m× 8.0m× 8本) p. 橋脚-RCくい基礎(400m× 400m×12.0m× 8本) A.2 橋台-RCくい基礎(400m× 400m×11.0m× 8本)
04. 10b -2	IHATUB 橋	L=23m L=23m	H形鋼桁 L:23+23=46m	A ₁ 橋台-RCくい基礎(400mm× 400mm× 7.0m×10本) p ₁ 橋脚-RCくい基礎(400mm× 400mm× 5.0m× 8本) A ₂ 橋台-RCくい基礎(400mm× 400mm× 5.0m×10本)
				- 83 -

5.4.1 設計基準

上部工設計のために適用される設計基準は、次に示すとおりである。

·設計示方書 ; AASHTO Standard Specification for Highway

and Bridges (13th Edition, 1983) (アメリカ道路橋梁標準示方書) 日本道路協会、道路橋示方書1989

· 活荷重 ; AASHTO HS-20-44(MS 18) (車道)

2.873KN/m (歩道)

・気温変化の影響 ; 温度変化、±10℃

・コンクリート床版; (3 L + 11) × 1.05 L = 支間長

・最大部材長 ; 8.5 m (鋼材の最大長さ)

・主要使用鋼材の機械的性質 -

規	格	種類	記 号	降伏点 (kg/mm²)			引張強さ
	4. 1 A			t ≤ 16	16<1<40	40< t	(kg/mm²)
118. 6	3101	2種	\$\$41	25以上	24以上	22以上	41~52
118 6	3106	3種	SHSOY	37以上	36以上	34以上	50~62
118	3114	1種	SMA41	25以上	24以上	22以上	41~52
'''	, 4114	2種	SHASO	37以上	36以上	34以上	50~62

・コンクリート強度; 床版 f'c=300kg/cm

高欄 f'c=130kg/cd

·鉄筋; _ f y = 2100kg/cal

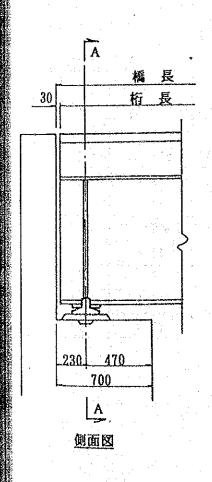
5.4.2 上部工の設計

全橋梁の設計計算結果を下表に示す。

- (1) 主桁サイズと応力度、グループ1 橋架 表 5.4-1
- (2) 主桁サイズと応力度、グループ2橋梁 表 5.4-2
- (3) 床版、桁、支承サイズ、グループ1, 2 橋架 表 5.4-3
- (4) 橋台反力、梁設計用反力、グループ1, 2橋梁 表 5.4-4

表 5.4-1 主桁サイズと応力度、グループ1橋梁

The state of the s							
支 間 (m)	15	18	20	21	22	23	24
車 道 幅 員 (m)	6. 7	6. 7	6. 7	6. 7	6, 7	6. 7	6. 7
形式	H-beam	H-beam	H-beam	H-beam	H-beam	H-beam	H-beam
桁高	H700x300	H792x300	H890x299	H900x300	H900x300	H912x302	H912x302
材質	SMA50	SMA50	SMA50	SMA50	SMA50	SMA50	SMA50
断面二次モーノント(cm ⁴)	201, 000	254, 000	345, 000	411. 000	411, 000	498, 000	498, 000
断面積(cni)	235, 5	243. 4	270. 9	309. 8	309. 8	364. 0	364. 0
断面係数(cn)	4, 980	6, 410	7, 760	9, 140	9, 140	10, 900	10, 900
作用荷重(t·m)	111. 2	153. 2	183. 8	199. 7	216. 6	233. 8	247. 3
発生応力度(kg/cai)	1, 610	1, 991	1, 999	1, 874	2, 030	1, 858	2, 029
許容応力度(kg/cml)	2, 100	2, 100	2, 100	2, 100	2, 100	2, 100	2. 100
作用荷重(t)	31. 7	35. 6	38. 3	39. 5	40. 7	42. 0	42. 6
発生応力度(kg/cm²)	374	340	201	293	301	276	280
許容応力度(kg/cal)	1, 200	1, 200	1, 200	1. 200	1, 200	1, 200	1, 200
発生たわみ	1 562	1 200	1 990	1 999	1 100	1 120	1 1, 053
許容たわみ	1		1	1	1	1	1 833
	車 道 幅 員 (m) 形 式 高 質 析 高 質 析 (cnf) 断面積 (cnf) 断面積 (cnf) 作用荷重 (t・m) 発生応力度 (kg/cnf) 作用荷重 (t) 発生応力度 (kg/cnf) 作用荷重 (t) 発生応力度 (kg/cnf) 許容応力度 (kg/cnf)	車道幅員(m) 6.7 形式 H-beam 桁高 H700x300 材質 SMA50 断面二次モノント(cm ⁴) 201,000 断面積(cm) 235,5 断面係数(cm) 4,980 作用荷重(t・m) 111.2 発生応力度(kg/cm) 1,610 許容応力度(kg/cm) 2,100 作用荷重(t) 31.7 発生応力度(kg/cm) 374 許容応力度(kg/cm) 1,200 発生たわみ 1,563	車道幅員(m) 6.7 6.7 形式 H-beam H-beam 桁高 H700x300 H792x300 材質 SMA50 SMA50 断面二次モーノント(cm ⁴) 201,000 254,000 断面係数(cm) 235,5 243,4 断面係数(cm) 4,980 6,410 作用荷重(t・m) 111.2 153.2 発生応力度(kg/cm) 1,610 1,991 許容応力度(kg/cm) 2,100 2,100 作用荷重(t) 31.7 35.6 発生応力度(kg/cm) 374 340 許容応力度(kg/cm) 1,200 1,200 発生たわみ 1 1,563 1,208 許容たわみ 1 1,563 1,208	車 道 幅 員 (m) 6.7 6.7 6.7 形 式 H-beam H-beam H-beam 桁 高 H700x300 H792x300 H890x299 材 質 SMA50 SMA50 SMA50 SMA50 断面二次モーノント (cm²) 201,000 254,000 345,000 断面積 (cd) 235,5 243,4 270.9 断面係数 (cd) 4,980 6,410 7,760 作用荷重 (t・m) 111.2 153.2 183.8 発生応力度 (kg/cd) 1,610 1,991 1.999 許容応力度 (kg/cd) 2,100 2,100 2,100 作用荷重 (t) 31.7 35.6 38.3 発生応力度 (kg/cd) 374 340 201 許容応力度 (kg/cd) 1,200 1,200 1,200 発生たわみ 1,563 1,208 1,220 許容たわみ 1 1563 1,208 1,220 計容たわみ 1 1 1 1	車道幅員(m) 6.7 6.7 6.7 6.7 形 式 H-beam H-beam H-beam H-beam H-beam H-beam H-beam H-beam H-beam 材 資 SMA50 SMA5	車 道 幅 員 (m) 6.7 6.7 6.7 6.7 6.7 6.7 形 式 H-beam H-beam H-beam H-beam H-beam H700x300 H792x300 H890x299 H900x300 H900x300 材 質 SMA50	車 道 幅 獎 (m) 6.7 6.7 6.1 6.7 6.7 6.7 6.7 形 式 H-beam Heal Hall Hall Hall Hall Hall Hall Hall


表 5.4-2 主桁サイズと応力度、グループ 2 橋梁

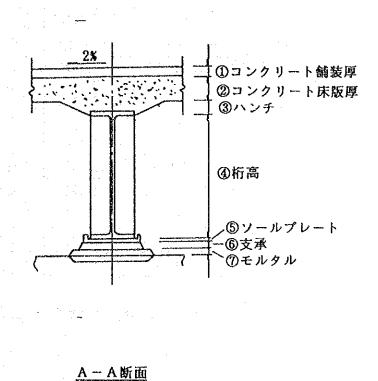

	支 間 (m)	18	20	22	23	24	26	30	1
1	車道幅員 (m)	6. 7	6. 7	6, 7	6. 7	6. 7	6. 7	6. 7	
	じ 式	H-beam	H-beam	H-beam	H-besm	H-beam	PI-Girder	PI-Girder	P1-6
ħ	行 高	H700x300	H792x300	H890x299	H900x300	H900x300	1, 400 (ウェブ高)	1,500 (ウェブ高)	1
 ŧ	才 質	SMA50	SHA50Y	SMA50Y	SMASO	SMASO	SWASOY	SMA50Y	SII.
断	輸工次モーメント (cm4)	254, 000	345, 000	411, 000	498, 000	498, 000	1184, 000	1619, 000	185)
面諸	断面積(cd)	243. 4	270. 9	309. 8	364. 0	364. 0	319. 6	a 370, O.	-
元	断面係数 (cm)	6, 410	7, 760	9, 140	10, 900	10, 900	16, 400	20, 900	#####
	作用荷重((۱・重)	153. 2	183. 8	216.6	233. 8	247. 3	328. 9	423. 5	-
曲応	発生応力度 (kg/d)	1, 991	1, 999	2, 030	1, 854	2, 029	2. 035	2, 047	
げカ	青客剪力度 (kg/al)	2, 100	2, 100	2, 100	2, 100	2, 100	2, 100	2, 100	
せ断	作用荷重(t)	35. 6	38. 3	40. 7	42. 0	42. 6	52. 4	58. 0	-
<u>ん力</u> せ応	発生成力度(kg/al)	340	201	301	276	280	416	430	
ん 断力	养容或力度 (kg/d)	1, 200	1, 200	1, 200	1, 200	1, 200	1, 200	1, 200	
た	発生たわみ	<u>1</u> 1, 208	1 1, 220	<u>1</u> 1, 100	1 1, 139	1, 053	<u>1</u> 783	<u>1</u> 675	
わみ	許容たわみ	<u>1</u> 1, 111	<u>1</u> 1, 000	<u>1</u> 909	870	<u>l</u> 833	<u>1</u> 769	<u>1</u> 667	_

表 5.4-3 上部工部材高 (床版厚、桁高、支承厚) (グループ1、2 構架)

آ	径間長	<i>a</i>	6	A		400	<i>A</i>		沓	構造高
	(m)	1	2	(3)	4	6	(6)	•	(t)	(mm)
-	15	50	180	70+ (20)	700	22	63	50	45	1, 155
-	18	50	180	70+(20)	792	22	63	50	45	1, 247
	20	50	180	70+(20)	890	22	63	50	45	1, 345
r	21	50	180	70+ (20)	900	22	63	50	45	1, 355
-	22	50	180	70+(20)	900	22	63	50	45	1. 355
	23	50	180	70+(20)	912	22	63	50	45	1, 367
	24	50	170	97	912	22	63	50	45	1. 352
	26	50	190	116	1400	25	75	44	75	1, 900
	30	50	190	116	1500	25	75	44	75	2, 000
	32	50	190	116	1550	25	75	44	75	2, 050

註 : 構造高は構架の中心の寸法を示す。

上部工部材高詳細

表 5.4-4 橘台反力、橋脚の梁設計用反力、グループ1、2橋梁

橘 台 反 力

							(单位;
	7	\$	時		地	護時	
支間長	鉛	直反	カ	橘軸	方向	橋軸水	平方向
(m)	死荷重	活荷重	計	鉛直	水平	鱼 险	水丰
15	56. 4	55. 0	111. 4	56. 4	13. 5	56, 4	
18	67, 6	57. 4	125. 0	67. 6	16. 2	67. 6	
20	75. 0	59. 0	134. 0	75. 0	18. 0	75. 0	
22	82. 4	60. 0	142. 4	82. 4	19. 8	82. 4	
23	86. 4	60. 4	146. 8	86. 4	20. 7	86. 4	11.
24	82. 7	83.0	145. 7	82. 7	19. 8	82. 7	1.1
26	104. 8	68. 3	173. 1	104. 8	25. 2	104.8	- 11
30	120. 9	77. 0	197. 9	120. 9	29. 0	120. 9	11.
32	129. 0	81. 3	210. 3	129. 0	31. 0	129.0	12.

橋脚の架設計用反力

支間長	活荷重	内桁/外桁-	衝擊係数	外桁	内桁
(m)	(t)	の比		(t)	(t)
15	55. 0	1, 197	0. 288	16, 1	19. 3
18	57. 4	1, 190	0. 272	16. 7	19. 8
20	59. 0	1, 187	0. 263	17. 1	20. 2
22	60. 0	1, 184	0. 254	17. 2	20. 4
23	60. 4	1, 182	0. 250	17. 3	20, 5
24	63. 0	1, 182	0. 246	17. 9	21. 3
26	68. 3	1, 325	0. 238	18. 2	24. 1
30	77. 0	1, 320	0. 224	20. 3	26. 8
32	81. 3	1, 318	0. 218	21. 3	28. 3

注 ; 外桁、内桁反力は衝撃を含む数値。

5.5.1 設計基準

下部工設計のために適用される設計基準は、次に示すとおりである。

・設計示方書 ; AASHTO Standard Specification for Highway

and Bridges (13th Edition, 1983) (アメリカ道路橋梁標準示方費)

地震時荷重 ; C=0.12 AASHTO規定を参考

・材令28日におけるコンクリート強度 ;

下部構造物 f C= 210kg/cm

· 鉄 筋 ; f y = 2100kg/cm

・鋼管ぐい ; f y = 2400kg/cm

5.5.2 下部工の設計

グループ2橋架は構造物設計を容易にするため、20橋台と、17橋脚は、形式別下部工として、表 5.5-1 ($1/4\sim4/4$) に示すとおり、橋台、橋脚ともに各々9 ケースに分類した。形状寸法は前節図 5.3-3 (1/5) $\sim (5/5)$ に示すとおりである。全橋台、橋脚の設計くい反力は、表 5.5-2 (1/2) (2/2) に示す。

グループ1橋梁についてはグループ2橋梁の形状寸法を、橋台、橋脚ともに準 用した。

表 5.5-1 形式別下部工、及びくい反力(権台) (1/4)

长年七	=	名飯耶 BB	10.4			ຕ ທາ ກ່ ໜ່	ن ن	7.9	10.9	ુ ક	10.9	9.9	9. 3	12.3	12.3		13.9														
松松			7.8	60 163			6.8	بن ش	8, 1	1.1	0.1	7, 4	1.1	9.2	9.2	e (;	10.6														
	へった		A	₩	*	K 4	A	Ą	Ą	A	A	Ą	Y	A	A	•	4														
7. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	くい関部N値		91	1/318 3	t		မ	7	12	t	, <u>, , , , , , , , , , , , , , , , , , </u>	8	. —	20	20	¢	3.0														
	(本)	H	10.1	7. 4	•	က က်			<u></u>						0 11	¢	16.5														
	力 地酸時 (1/本) ax Nmin H		10.0	14. 1	1) ii			دي چې			#.	.		1 35		ų . i														
及力	大 商 加 工		41. c.	33. 7	ء ا	7. 7.		r ,	23. 8				က ပြ		4 4 6		41.0														
5	(¥	щ	0	4.1	E				÷			c	ာ	•	⇒ 																
~	ポ (大本) 部 (H H H H H H H H H H H H H H H H H H		ა გ.	32. 4		89.		رين		ري		ري:		رخ		ري		46					23.6			r to		-	33. 6		6. 9.
	纯	Nmax	41.2	38.6		- Di		37.9			65		:		a.	۱ -	٠. پ	ç	4 %												
	· *		7 21	12	c	77			-60	***************************************		¢		c	2		0														
	<u> </u>		-	,					1								_														
和	~		3, 0	e.;		ว			2,					a ri			9.0														
和			5.0	1, 5		rs vi			بن ب				<u>ح</u> س	ဂ ဂ		,	9. 9														
1)		- 1	>< ∐ (*	EXP	210	٧	FIX	dX3	YIZ	EXP	KIX	XIA	EXP	FIX	d X a	KIR	EXP														
	旗		32.0	32.0	26.0	26.8	18.0	18.0	18.0	18.0	15.0	24.0	24. 0	24. 0	24.0	20.0	20.0														
	施心		A ₁	A2	A,	A2	A1	A2	Aı	A2	Aı	Aı	A2	A.1	A2	A1	\ A2														
	極聚器电		01.02	01.02		09. 09	03.07	03.07	04. 07b	04.07b	04.20a	01.80	03.10	03.13	03. 13	03.17	03.17														
	光			2	ç	ာ		·	4				LI	O			,														

	,						
人 不 子 子 七	٥	祖 知 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四	e -	• •	10.9	6	; ;
幹谷		新 配。	\$ 0	.	6. 1	C .	;
	くこを		•	t	Α	. ✓	4 7
が記述し、こと		即以	4.9	Đ đ	870 	5	3
	(本/1)	н	c	* 	9.1	c.	5
	地震時(1/	Nein	7 0	er S	4.0 37.8 13.9		J. 1.
4 5 反力	相關	Nmax	3 0 6	ີ ກໍ	37.8	. u))
۲۶	[H	£ U	 -si	4.0	¢	
>	時 (1/本)	Nmin	2 26	0 .07	34. 2	C C	e .u.s
-	第 Nmax		0.31	e	44. 2 34. 2	<u> </u>	อ วั
-		♦	C.		10	<	Λ 1
熬	糖 		3	ં	3. G	u c	٠ •
縮和			u	ਰੰ	4.0		ڻ. <i>ب</i>
	X 4 # F	₩ ‡	XIA	XI or	X I &	> -	4 11
	瀬城	10 10 11 11 11 11	0.22	22.0	30.0	6	6.0. U
	縮咖奶		A_1	A2	A2	Aı.	A2
	権緊縮。		04. 07a	04. 07a	04. 20a	9 181	04. 100-6
	光以		.		∞		מ

E) くい種 A; ゆ30-8本 B; ゆ25-8本

数 5.5-1 形式別下部工、及びへい反力(権関)

	本 (ま) (ま) (ま) (ま)		c c	÷. ⇒		ာ ခံ	9, 4	11.0	6.2	12. 2	8. 8 80		8 6				
	幹谷大		新 55	ŧ	e -:	**************************************	ન તું	5. 9	5-7 6-0	0.9	+ I 55	5.5		1.2			
		るこを		t	Ω	ŗ	a'	α	Д	В	B	щ	В	Œ			
	加速型(1)	音系	回 乙	t. Y	1 20		ب بن		1/3R =1/3x10	0	97	Ф	30	673	1	13	
		[E	4	o d•		o T		v-1		 7	بيسو د المورية		62			
		年 (三/本)	Nain		ન જ		10.6		12, 4		10.0	∞; 1		10.9			
	反力	(大文) (大文) (本文) (Wagh Nmax Nmin H Nmax Nmin Nmin Nmin Nmin Nmin Nmin Nmin Nmin					xo zi co		හ ශ්		5. 0	57. 2		41.2	×		
					ŀ		1		1		ı		ı	X [E :			
	~				o :		41.8		27. G		63 63 63	37. 1		31.8	Exp		
				44.5					41.0		65 65	48. 1		دع دع	ъэ ••		
			₩ ₩	10	97	0.7	16	æ	ÇĢ	©	∞	- 000	直接基金	ဆ			
	離	ig.	B (m)	4, 0	4.0	4.0	4.0	3.0	3, 6	3, 0	3.0	e0;	9.	3.0			
	五百四百四百四百四百四百四百四百四百四百四日	化極)	ബ	5.5	6. 5	6, 5	5.0	s. 0	.S. G	5.	69	11. 0	.c.	ゆ25-8本		
		支 条承 件				(II. (II. (II.		(5%) (5%)	ක අ.	(52) (62)	(E)	(F2)	မေ - -	1 1 5-3	m		
	充 医 施 城			32.0	32.0	32.0	32.0	24.0	24.0	23.0	20.0	22. 0	15.0+ 30.0	 0.0 1.00	◆30-8本		
			國			τΩ	Ω ²	្ត	ը ը ը		a. 6		ŗ.	Ω.	A :		
		桶深圈号		01.09	70 TO		77. nc	03.10	03. 13	04. 10b-2	93.17	04.073	04. 20a	04. 07b	(註) くい種		
		以以	:	***	ਜ	c	7		က		7	വ	9	.			

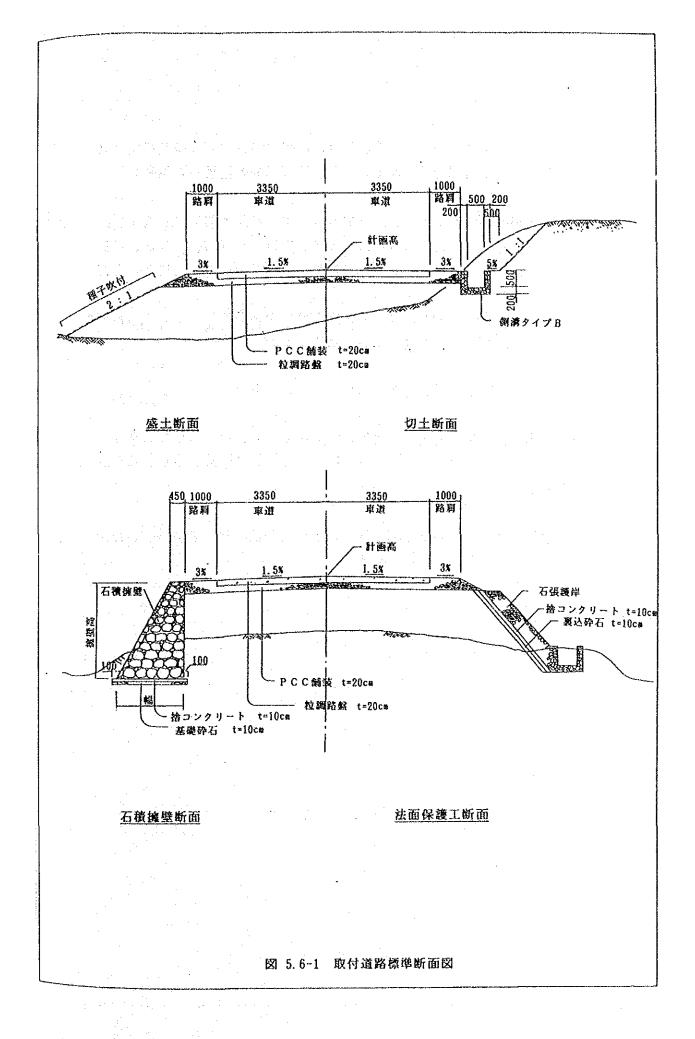
9 3

	•		•••••	1	が	題	極超	`			•			-	1 CHE 27		一字的字十	トトン
4.7	形式 橋祭魯品	藤 暂 的	施	MX X	<u> </u>	; H	1		梗	1 時 (1/本)	/本)	田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田	 	(j.	品联 地	難らく		=
 18. 				₹	<u>事</u>	E ((E) (A)	4	Nmax	Nmin	出	Nmax	Nmin	Ħ			作 配品	古 陳 『
1	ぐ、	ペイプベント権関 ゆ 500目、1=14目	権置。	Ø 500 mm.	, t=14	=										# F		
∞	03.03	ρί,	26.0	E3		7. 0		~~	i ≅		l .	99. 5	28.3	6. 63	15	2 =16.0m SP.P	Õs 1, 773	3 sa 1, 862
1	03.07	г Д. Д.	18.0	(#L		6.		***	io		-	70.0	75. 69	13	L O	2 =30.0m SP.P	L, 693	1, 852
1 5	(註) くい種	İ	A; \$30-8本		B; \$25-8本	3-8 **			C±3	- E3		H						

_ 94 -

A; \$30-8本 B; \$25-8本

-


5.6 取付道路設計

5. 6. 1 設計基準

道路設計に適用される設計基準は、フィリピン共和国の道路設計基準 (Highway-Design Guideline) で規定している2級国道の設計基準を適用した。 その主たる基準は表 5.6-1に示すとおりである。

表 5,6-1 道路幾何構造基準

			Y
地	形平地	起伏地	山岳地
項目	****		
1. 設計速度 (km/hr)	60	50	40
2. 舗装幅員 (m)	6. 70	6. 70	6. 70
3. 路肩幅員 (m)	1. 00	1.00	1,00
4. 平面最小曲線半径 (m)	120	80	50
5. 最大横断勾配(%)	8	8	8
6. 最大縦断勾配(%)	3	5	10
7. 最小縦断曲線長(m)	60	60	60
8. 最小縦断曲線半径(凸) (m	_1500	1200	1200
9. 最小縦断曲線半径(凹)(m) 1500	1000	800

5.6.3. 軟弱地盤解析

グループ2橋梁10橋のうち、Bulacan 州の San Roque橋 (橋梁番号 03.07)の 建設予定地は軟弱地盤であることが、地質調査の結果から判明した。

地質が軟弱地盤の場合に問題となるのは、橋架下部工の基礎工形式と、盛土0 沈下及びすべり防止である。基礎工としては、 ϕ 600m、長さ ℓ = 30mの鋼管 ℓ い (橋脚) と長さ ℓ 4mのフィリピン製コンクリートくい (橋台) を打ち込むこ ℓ によって対処する計画とした。

盛土の安定に対する対策は、急速施工の必要性があることから、特別の対策を計画した。以下にその対策について記述する。

(1) 土質性状常数及び計算盛土断面

軟弱地盤解析に必要な土質性状常数を得るために、単位体積重量、自然含水地のほかにコンシステンシィー(液性限界及び塑性限界)及び一軸圧縮試験を実施した。

計算のための道路断面図と地層ごとの土質性状常数を図 5.6-2に示した。 図中の記号は次の土質常数を示す。

q 。;一軸圧縮強度

w。;自然含水比

r,:単位体積重量

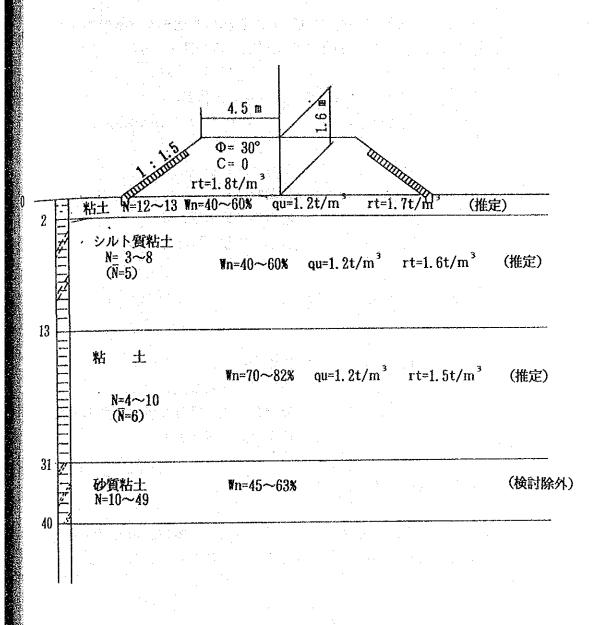


図 5.6-2 計算盛土断面

(2) 沈下解析

取付道路建設のために、新しく盛土したことによる盛土沈下量及びその沈下間算定は次式によって計算した。

$$S_{c} = \sum \frac{e_{0} - e_{1}}{e_{0} + 1} \times H$$

ここに、 St : 圧密沈下量 (cm)

eo: 初期間隙比

e: 圧密終了後の間隙比

H: 各層の軟弱層厚(cm)

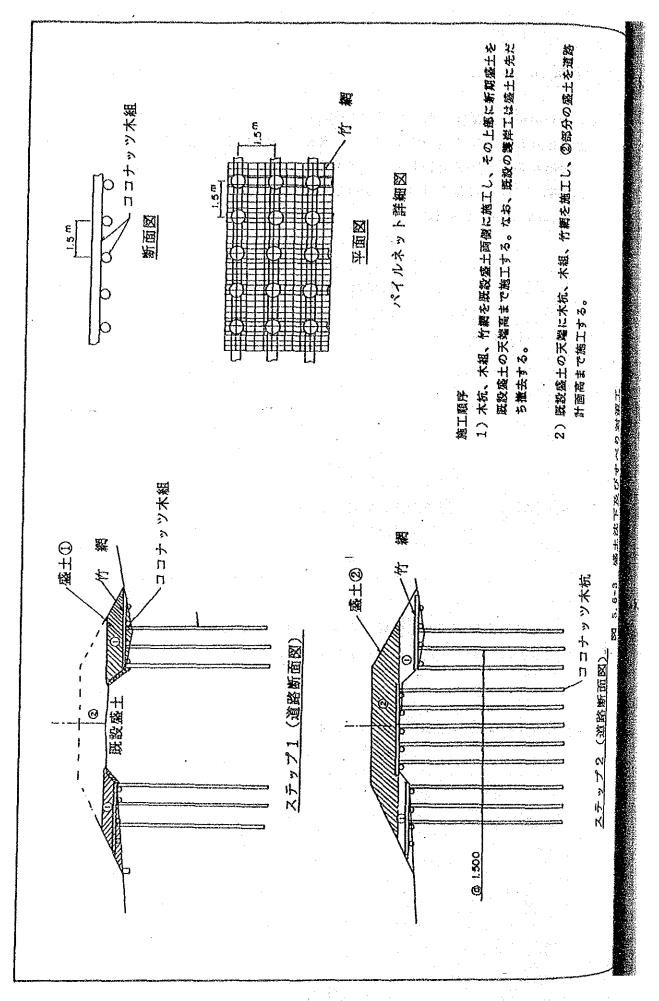
$$t = \frac{T d^2}{C_v}$$

ここに、 d : 排水距離 (m)

T: 時間係数(無次元)

t : 仮定した圧密度Uまでに要する時間(41)

C· : 圧密係数 (m/day)


沈下解析は付属資料-7に示した。

解析によると、最大沈下量は、中央部で28.1cm (既設盛土の重量を考慮)である。沈下時間は、1日に 5cm平均の盛土を施工するとして、80%の沈下が 2年以内に発生する。

上記の解析結果から、沈下による盛土破壊の可能性は少ないが、安全のために すべり対策と合せて、沈下対策を計画した。

工 策 恢 (8)

上記の解析結果に対して、予備盛土工法、シート工法、パイルネット工法等が 提案されたが、工期内の急速施工の必要性、コンクリート舗装、フィリピン国内 での材料の入手等を考慮して、パイルネット工法を採用した。ただし、ネットに は竹網、パイルには木杭(ココナッツの木)を使用することとした。 その概略図を図 5.6-3に示す。

舗装工設計

5.7.1. 設計基準

• 設計示方魯;

・ AASHTO Guide for Design of Pavement Structure 1986, AASHTO (アメリカ舗装設計示方書)

・コンクリート舗装の供用性;初期 4.5

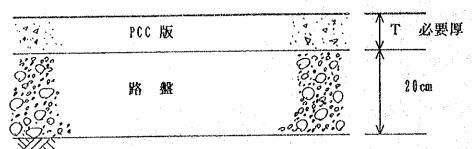
· [] · []

・各層の材料特性 ; 下層路盤の弾性係数 ; 8,000 Psi

- PCC床版の弾性係数; 328 × 10 ⁶ Psi

・コンクリート版の破壊係数; 580 Psi

•排水係数; 0.5


•荷重分担係数; 4

支持損失係数;1 -

1.2. 舗装形式

本プロジェクトで建設される道路長は短かく小工事であるので、アスファルト舗装のようにプラントの建設が必要となる形式は適当ではない。したがって図5.7-1 に示すような、セメントコンクリート舗装を採用した。

しかし、San Roque 橋 (橋梁番号 03.07) は、前節の解析によると最大沈下量は、28.1cmの沈下が予想される。したがって、図 5.7-2に示すような、アスファルト舗装を採用する。

路床

(路床が軟弱な場合は、フィルター層、または置換工法などの改良工法を行うこと。)

図 5.7-1 コンクリート舗装の標準断面

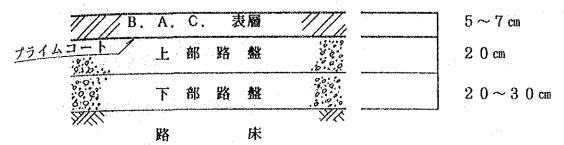

コンクリート舗装のコンクリート版厚は予想される交通量と輪荷重によって決定される。表 5.7-1は1987年9月にJICAが行なった the Feasibility Strip of the Road Improvement on the pan-philippine Highway (日比友好道路遊改善計画調査)の舗装厚さに関する研究結果であり、本プロジェクトにも、この版厚を採用することとした。

表 5.7-1 コンクリート版厚

PCC 床版厚

								· ·				I V V DINEXIT
軸重回数 (交通区分) (×	106)	CBR	2	3	4	5	6	8	10	15	20	計画耐用年数
	L-1	(0. 005)										
軽 軸 重	L-2	(0. 01)		if	小儿	Į	2	0 cm				25年以上
(低 交 通)	L - 3	(0. 03)		·.								
	A	(0.1)		7					23 c	m		
重 軸 重	В	(0. 2)		25 cr	n		11					
(重交通)	С	(0, 4)		28 cr	u				25 c	n		15 年
(選 久 畑)	D	(0.7)							28 c	on .		
	E	(1. 0)							30 c	m		
超 軸 重	F-d	(1. 5-		3	0 or	33	or 3	5	[注]		a ji ta sa	5-12 年
(超重交通)		3. 5)	·							· .		

注: 軸重 (交通区分) はESAL (18キップ等価単軸荷重) で表わされている。

(路床が軟弱な場合は、フィルター層、 または、置換工法などの改良工事を 行うこと)

表。 層;ビッミナスアスファルトコンクリート

上部路盤;粒 調 砕 石

下部路盤; 砕 石

図 5.1-2 アスファルトコンクリート舗装の標準断面

5,8 護岸工設計

5、8、1. 河川必要断面

洪水時の最大流量に対する必要な河川断面は、5.2.2 節 (2)で記述したともりである。

5.8,2. 護岸形式

フェーズ I, フェーズ II 橋架計画と同様に、水の流速が 3 m/砂以上あるいは、浸食、洗掘等が予想される橋台箇所には、護岸を設置することとした。

護岸の材料は当該地方で調達可能な材料を活用することが望ましいことを制 し、練石積工を計画した。練石積工は構造物の様に川岸を保護するものでないの で、勾配は、土の自重による破壊に対して充分に安定するように設置することと した。勾配は 1:1.5 とした。

練石積工の基礎は、河床、あるいは少なくとも洗掘が予想される河床より1m以上深くする構造とした。図 5.8-1は標準練石積工を示す。

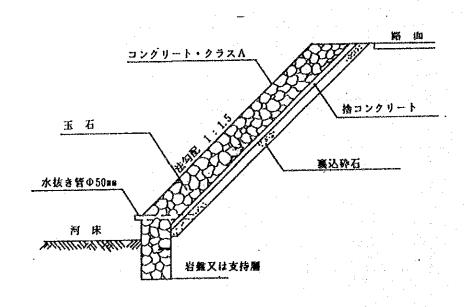


図 5.8-1 標準練石積工

9

、g 1 グループ I 橋架

(!) 鋼材輸送計画

供与鋼材輸送の日本側負担分としては、これらの鋼材の日本国側より公共事業 道路省 (DPWH) の指定した港までの輸送である。

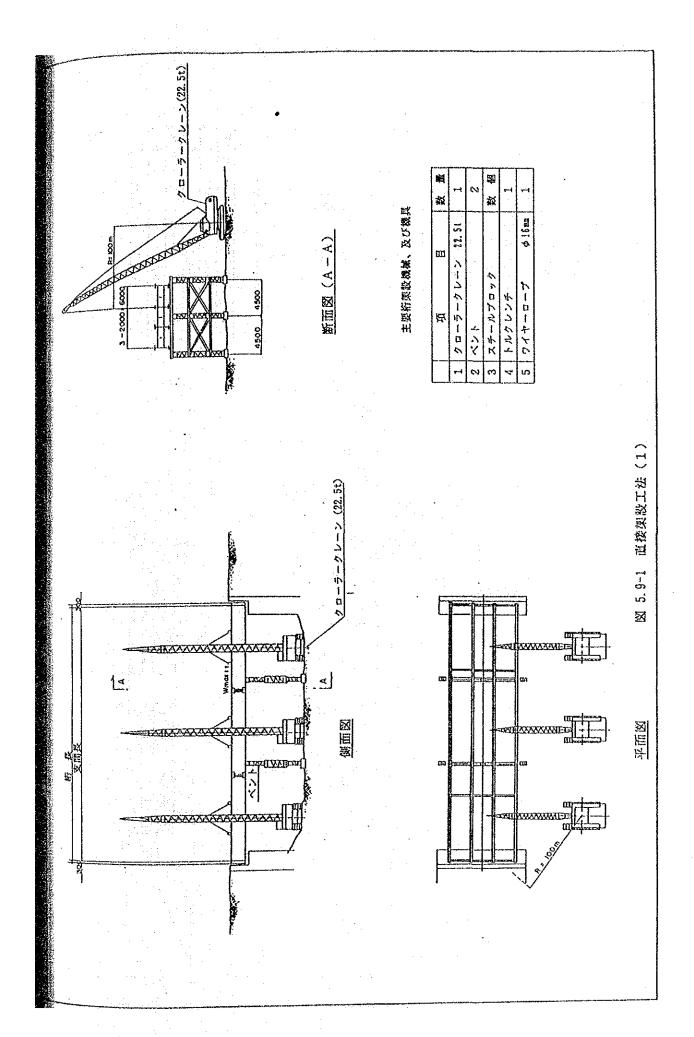
公共事業道路省 (DPWH) の指定している港は、Manila北港、Batangas港,及び Puerto Princesa 港の国際港 3港である。

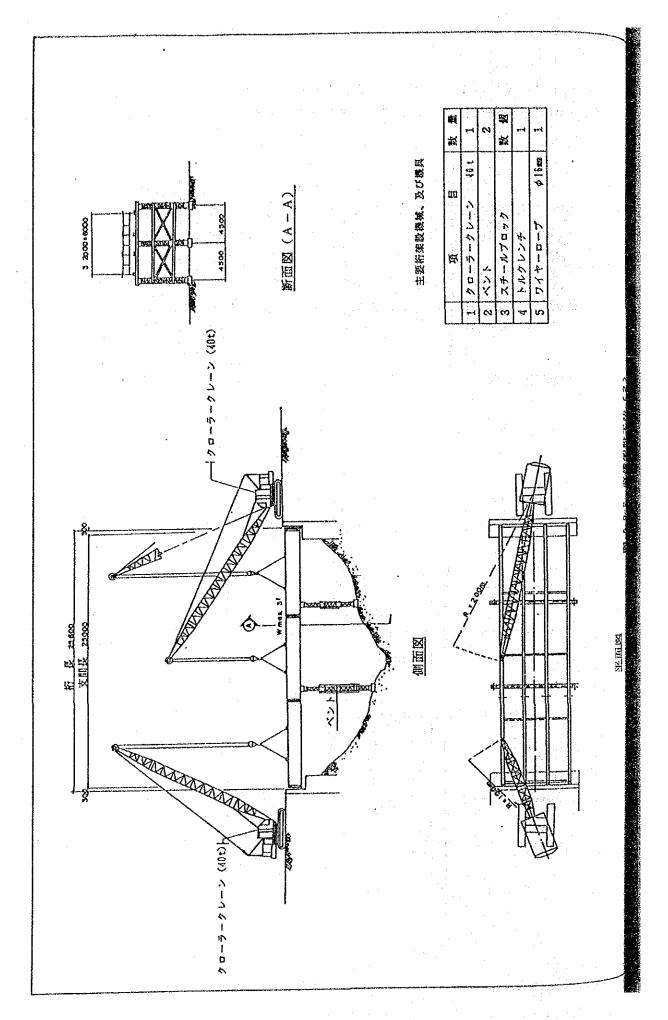
Batangas港, Puerto Princesa 港への輸送は現地調査の結果、Manila北港にて 一旦陸揚、通関し内貨品にした後、内航船で各港まで輸送される。

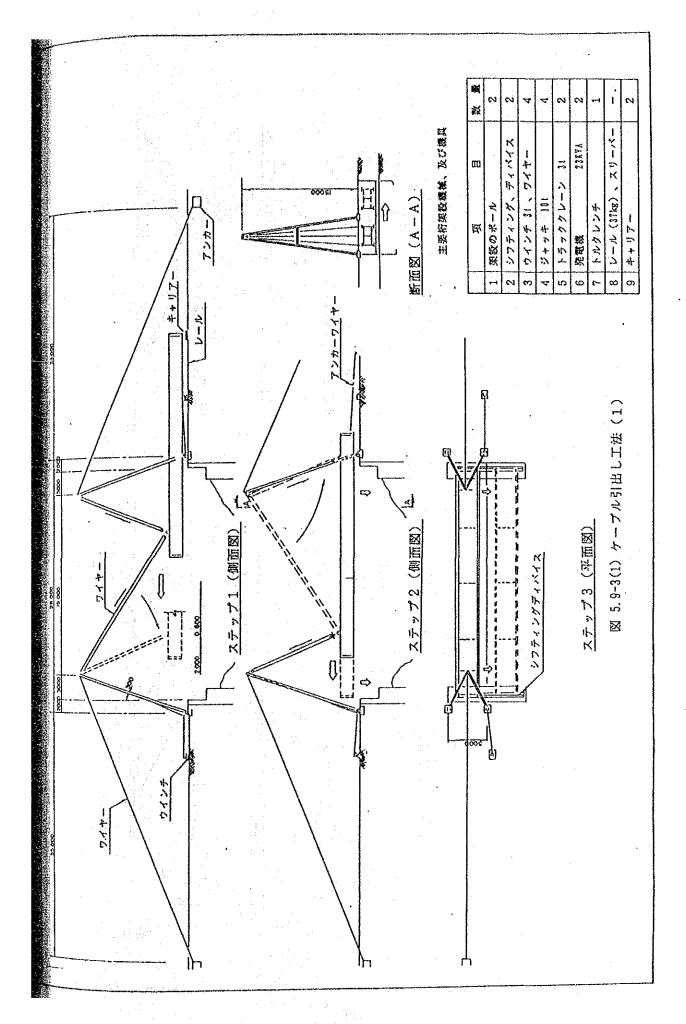
- ・外航貨物船で回航する条件は、最低800 F/T が必要で、Balangas (594.566 F/T) 、及び Puerto Princesa (136.566 F/T)への回航は、その条件を満たさないため、内航船への積み替えとなる。
- Manila~Batangas間の内航船は便数が非常に少ない。従って、 引渡しを保証するため、バージでの輸送となる。

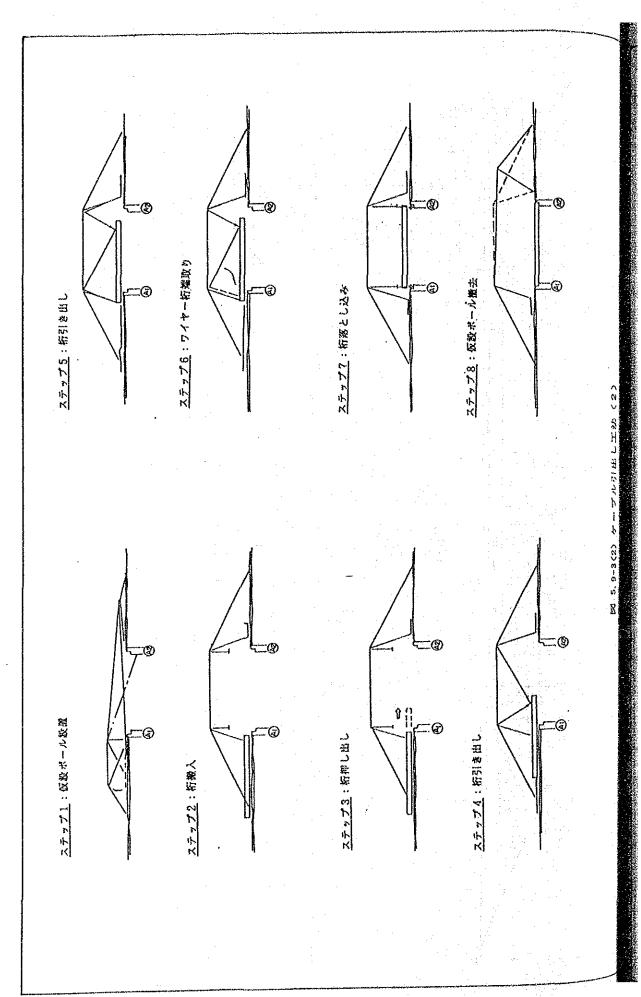
(2) 觸桁架設計画

公共事業道路省 (DPWH) 提供の資料に基づき、鋼桁の架設工法を検討した。鋼桁1本当りの最大重量は3トン、最大長は 8.5mと計画された。


図5.9-1 は、河床で22.5トンのクローラクレーンによる直接架設工法(1) を示す。この工法はクローラクレーンが河床まで進入ができる場合最も望ましい架設工法である。


図5.9-2 は道路上からの直接架設工法(2)を示す。この工法は40トンのクロ、ラクレーンが必要で、河床に進入できない現場での取付道路からの架設工法として採用するものである。


図5.9-3(1),(2)はケーブル引出し工法を示す。この工法は大型クローラクレンも支保工も使用する必要はないが、シフト装置、ジャッキ、レール、キャリャーなどが必要となる。したがって、工費が比較的高価な工法である。


図5.9-4 はフローチング工法を示す。この工法は、鋼製の架設ノーズが必要となり、工費が高価であるため、あまり望ましくない。直接架設工法が適切でない場合においてのみ使用されるものである。

各架設工法の特長を考慮して、表5.9-1(1)に示す架設工法を提案した。

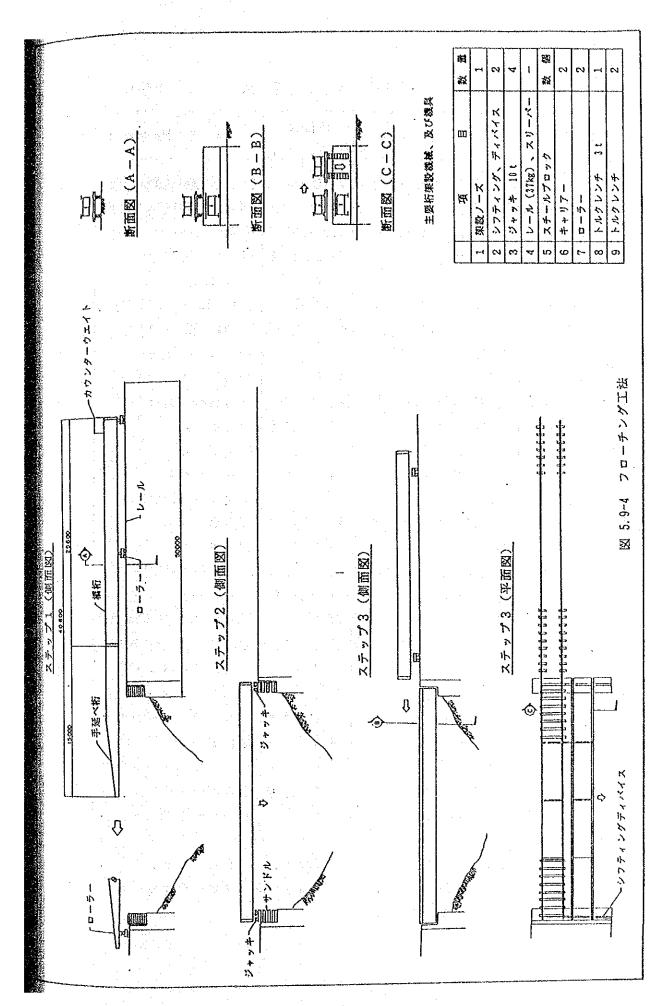
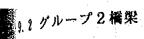


表5.9-1 架 設 工 法

橘架番号	橋 梁 名	支間長 (m)	架設機械	タイプ
1. 03.01	PANGULISANIN 橋	24. 0	クローラクレーソとベント	2
2. 03.04	TIGBE 橋	22. 0	クローラクレーンとベント	1
3. 03.06	BALASING 橋	15.0 + 23.0	架設ポール	2 013
4. 03.08	PIAS 橋	23,:0 + 23.0	クローラクレーンとベント	1
5. 03.11	PULO 橋	23. 0	クローラクレーソとベント	1
6. 03.18	SINDOL 橋	15.0 + 15.0	クローラクレーンのみ	2
7. 04.01a	SAN JUAN 橋	23. 0	クローラクレーンとベント	. 2
8. 04.02a	TABONG-BATONG 橋	22. 0	クローラクレーソとベント	1
9. 04.04a	CAGLATE 橋	23.0	クローラクレーンとベント	2
10. 04.06a	BUENAVISTA 橋	24. 0	クローラクレーンとベント	2
11. 04.09a	ISABANG 橋	24.0+24.0	架設ポール	3
12. 04.10a	PANSIPIT 橋	22.0+22.0	架設ポール	2 013
13. 04.11a	SAN DIBGO 橋	15.0+15.0	クローラクレーンのみ	2
14. 04.13a	BAGONG POOK 橋	24, 0	架設ポール	2 01 3
15. 04.16a	PINGIT 橋.	21.0+21.0	架設ポール	2 01 3
16. 04.17a	SALAY 橋	15.0+15.0	架設ポール	2 01 3
17. 04.18a	MIJARBS 橋	23. 0-	クローラクレーンとベント	2
18. 04.19a	PALAYAN 橋	24.0 SKEW	クローラクレーソとベント	2
29. 04.21a	TARAK 楯	24. 0	クローラクレーンとベント	2
20. 04.22a	STO NINO 橋	23. 0	架設ポール	3
21. 04.23a	DBL PILAR 橋	24. 0	クローラクレーソとベント	2
22. 04.03b	MARUYUGON 橋	24.0	クローラクレーンとベント	1
23. 04.04b	DAKOTON 橋	18.0+18.0	クローラクレーンのみ	1
24. 04.06b	MADALAG 檳	} ·	架設ポール	3
25. 04.08b	PANIQUE 橋	18.0+18.0	クローラクレーンのみ	1
26. 04.09b	MARANLIG 橋	15.0+15.0	架設ポール	2 01 3
27. 04.10b-1	DAYKITIN 橋	24.0	クローラクリーンとベント	1


[註] タイプ1:直接架設工法(!)

(22.5トン クローラクレーン)

タイプ2:直接架設工法(2)

(40.0トン クローラクレーン)

タイプ3:フローチング工法

(|) 鋼材輸送計画

日本の無償資金協力案件の一部として供与される鋼材は、日本からフィリピン 共和国の荷上港まで船積み輸送され、そこからさらに、橋梁建設地点まで内陸輸 送される。その輸送経路及びその現状は表5.8-2(1/2)-(2/2)に示すとおりである。

ミニッツに記載されているとおり、フィリピン共和国側は資機材の輸送路を通行可能な状態に維持する責任を有する。したがって、フィリピン共和国側には、特に下記の輸送路上にある橋架等を補修し、通行可能な状態にすることが望まれる。

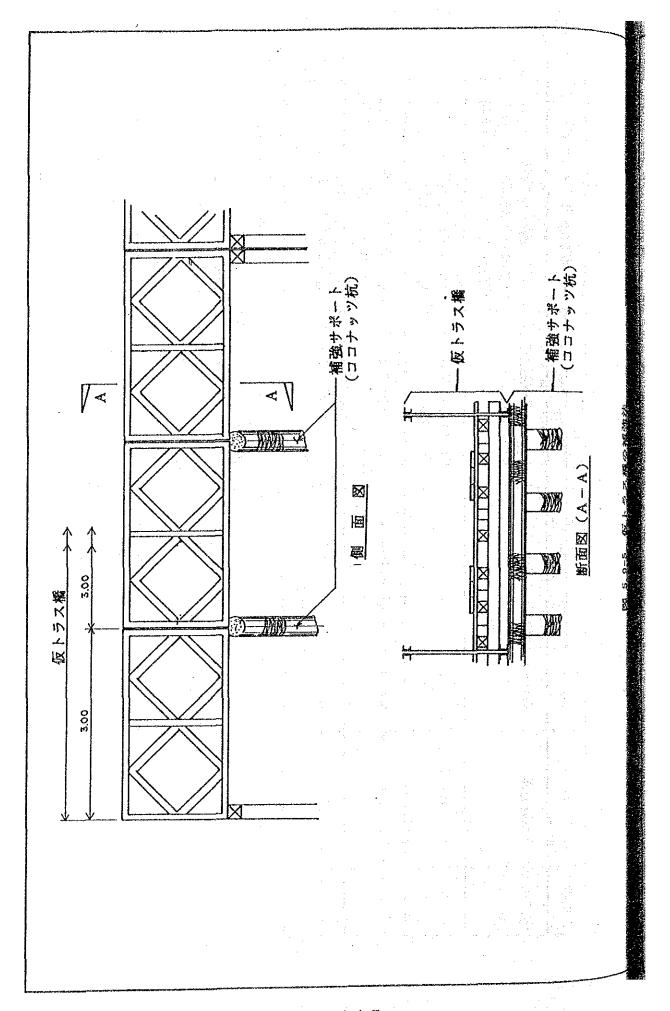
• 03.13 Mangkuyog 橋 : 老朽鋼トラス仮橋 ; 1 橋の 補強

老朽木橋 ; 2橋の補強

河床渡河ヶ所 ; 1ヶ所の整地

• 04.07a Canagong橋 : 老朽鋼トラス仮橋 ; 2橋の補強

老朽木橋 ; 6橋の補強


・04.07b Tan-Agan橋 : 老朽鯛トラス仮橋 ; 1橋の補強

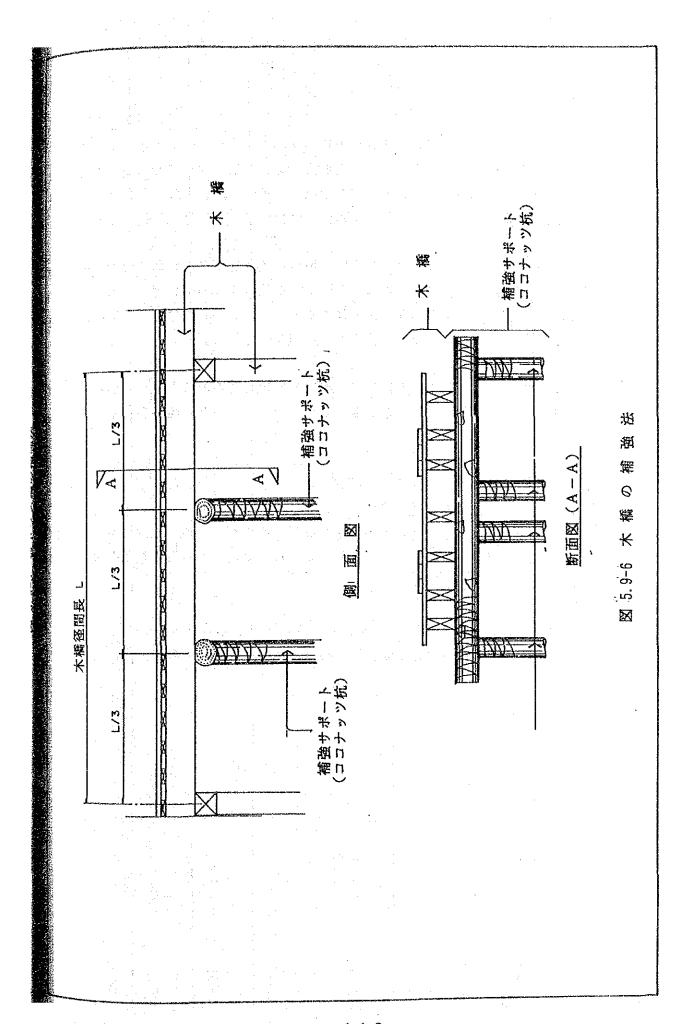

老朽橋の補強には、種々の方法が考えられるが、一例として、図5.9-5 に仮トラス橋の補強と、図5.9-6 に木橋の補強方法を示した。

表 5.9-2 輸送経路とその現状 (1/2)

10 th (1889)	ğ	共享	内 酪 盘	送	中
大田 日本 日本 日本 日本 日本 日本 日本 日	新	白窗色	海上輸送	路上整张	新一種材質智の現実
01.02	Maphilindo橋	Manila	₩ -)	·Manila港→建設地点 ·全長 2011~	•全線舗装道路,良好
03. 03	Bacong構	Manila	ない	・Manila港→建設地点 ・全長 115km	• 全線舗装道路,良好
03. 07	San Roque 橋	Manila	• Manila-Hagonoy • Barge 輸送	なし	ئد ال
03. 10	Dolores 🎏	Man i la	なっ	·Nanila港→建設地点 ·全長 77km	•全線舗装道路,良好
6. 	Mengkuyog 🛲	ख 		• Manila港→建設地点 • 全長 169㎞	 - Manila→ 126 ha地点 舗装道路, 良好 - 126 ha地点→建設地点 老朽鋼トラス板橋 1 桶 老朽木橋 2 桶 - 2 板 河床稀茂河(150m) 1ヶ所
93. 17	Sula	E 60 E	\$	•Manile港→建設地点 •全長 1511庙	 -Manila→ 129㎞地点 舗装道路,良好 -129㎞地点→建設地点 未舗装道路,良好

			次 路	* \$ \$	
桶聚番号	橋梁名	荷捌港		る 解 類	陸上輸送経路の現状
04. 07a	Canagong Me	Man la	· Manila-Quezon	・4 ueron港→建設地点 ・全長 19km	・未舗装道路、やや悪い・老朽鋼トラス仮橋・老朽本橋6 橋
04. 20a	Paragusan 🛲	Mani ia	า ฉ	• Manila港→建設地点 • 全長 94km	• 全線舗装道路,良好
04. 07b	Ten-Aganis	Man i 12	• ManilaOdiongan	•Odiongan港→建設地点 •全長 13km	全級舗装道路,良好・老朽鋼トラス仮機 1橋
04, 105-2	Ihatub權	Man i 1s	• ManilaCawit	• Carit 港→建設地点 • 全長 6 im	• 全線舗装道路,良好

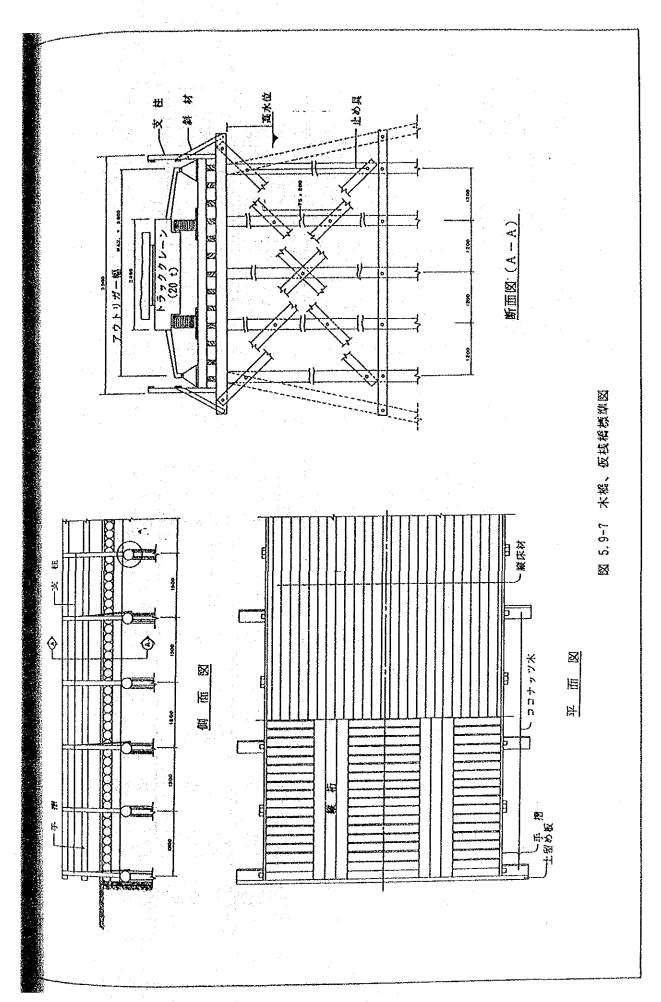
(2) 鋼桁架設計画

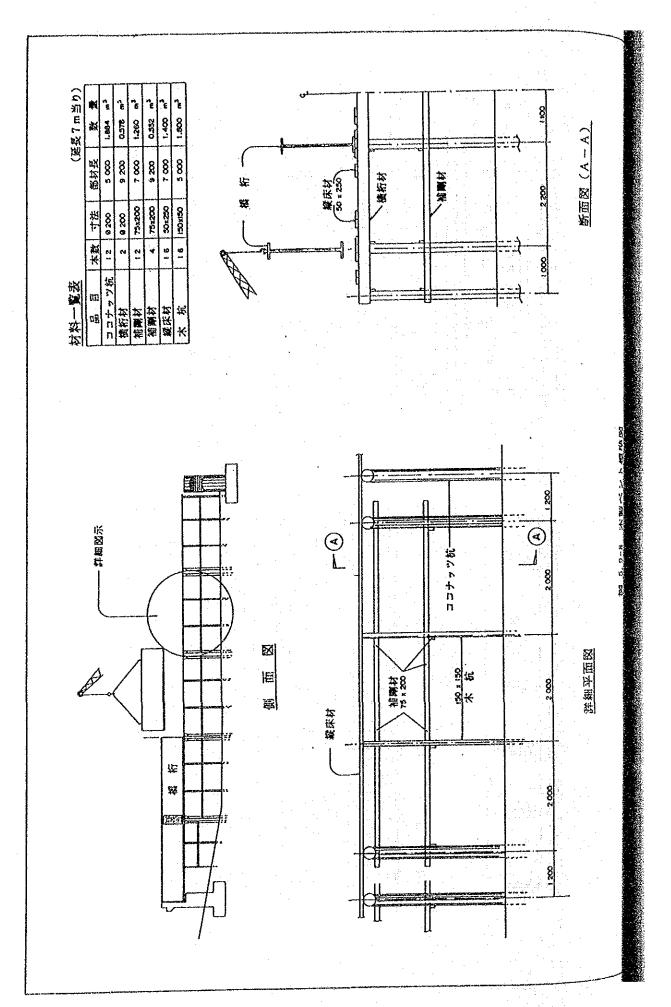
鋼桁架設工法としては、堤外地からのクローラクレーンによる直接架設工法、 道路上からのクローラクレーンによる直接架設工法、ケーブル引出し工法等が えられるが、建設規模、建設時点の状況等を考慮して、堤外地からクレーンに る直接架設工法を採用した。本工法の概念図は図5.9-1(1),(2)に示した。

本工法は、クローラクレーンを堤外地に侵入させる必要があるので、その工事用ヤードは基本的に築島式を採用し、平常水位の比較的高い場合、あるいは利用 相が広い場合は、工事用仮桟橋で建設することとした。築島、及び仮桟橋の高さは、雨期を考慮して、平常水位より1m程度高くした。

ただし、03.07 San Roque 橋は、河川流域が船舶の航路となっていること及び 仮桟橋取付部の用地の確保が困難であるので、クレーン台船を使用することとした。

また、本工法は一時的に鋼桁を支持するベントが必要となるが、鋼製ベントの使用を避け、現地で入手可能なココナツの木を利用することとした。雨期には 床からココナツの木のサンドルを組む事が困難であるため、乾期にココナツの版 を打設しておき、これをベントとして使用し、雨期にも桁架設施工が可能となる ように考慮した。


表5.9-3(1/2)-(2/2)に計画した鋼桁架設工法、及び工事用ヤードの計画を、 図5.9-7 に木製仮桟橋標準図、及び図 5.9-8に木製ベント標準図を示す。


桜 5.9-3 (1/2) 銭枯架設円部、及び工静用ケードの計画 (1/3)

		· · · · · · · · · · · · · · · · · · ·					
極祭梅中	縮稅的	댂	禁	就 所 所 形 形 形	スペイを選出	工事用ヤード型式	備考
01.02	Maphilindo#	鋼鈑桁 L=5@32m= 160m	15ヶ所	自走クレーン車による ベント工法	木製へい基礎ベント	木製仮桟橋+取付道路	
93 03	Bacong	劉 筱桁 L=2025m= 52m	4ヶ所	自走クレーン車による ベント工法	木製へい基礎ベント	現橋架補強十 木製仮桟橋	
03. 03	San Roque	H銀行 L=3918m= 54m	6ヶ頭	クレーン合船によるベント工法	木製へい地器ベント	クレーン合船	仮締切、くい打殺、堀 前、及び桁架設に クレーン台船を使用
03.10	Dolores A	H 编 桁 L=2@24m= 48m	4ヶ所	自走クレーン車による ベント工法	木製へい基礎ベント	斑節	
03. 13	Mangkuyog 🙉	H 纲桁 L=4@24m= 96m	8ヶ所	自走クレーン車による ベント工法	木製くい基礎ベント	河床整地	
03.17	Sulate	H 鄉 桁 L=3@20m= 60m	6ヶ所	自走クレーン車による ベント工法	木製へい基礎ベント	木製仮桟橋+取付道路	
04. 07a	Camagong補	H 鄉 桁 L=2022m= 44m	4ヶ所	自走クレーン車による ベント工法	木製へい基礎ベント	松	転流上が必要

表 2.9-3 (2/2) 鋼桁架設工法、及び工事用ヤードの計画 (2/2)

	Ş	金融				2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
桶采香亏	氟米化	私	禁	张贺 	ヘンで樹皮	工學用ヤード型式	離	<u></u>
04. 20a	Paragusan 🛪	H鋼桁、鋼板桁 L=15m+30m=45m	4ヶ所	自走クレーン車による ベント工法	木製へい基礎ベント+ ステージング	自走クレーン車による	() () () () () () () () () ()	,
04. 07b	Tan-AganA	H鋼桁 L=2@18m= 36m	4ヶ界	回走クワーン単による 大型へご基礎ペント スント上浴	木製へご基礎ペント	紙	転流土が必要	
04, 105-2	lhatub稀	H鋼桁 L=2@23m= 46m	4 単 元	自走クレーン車による イント工浴 イント工浴	木製へご基礎スント	現スピルウェイ使用		

(3) 仮締切工計画

下部工、及び護岸工工事は乾期に施工するよう計画した。これは単に工費の節減を計るばかりでなく、工事中の安全確保、品質管理に対して重要である。ただし、平常水位が高い橋梁地点、及び潮の干満差のある橋梁建設地点等には、下部工、及び護岸工のための仮締切工が必要である。

仮締切工のタイプとしては、基本的に築島式を作用し、平常水位の比較的高い場合、あるいは河川幅が広い場合は鋼矢板による仮締切工を計画した。 図5.9-9 及び図5.9-10に築島及び鋼矢板による仮締切工の概略図を示す。

仮締切工を必要とする下部工、及び護岸工の仮締切工の計画は、表5.9-4 に示す。

本表によると、仮締切工を必要とする橋梁の下部工、及び護岸工は次のとおりである。

築 島: 01.02 Maphilindo橋 (橋脚1基)

03.10 Bolores 橋 (橋台2基、橋脚1基、護岸2ヶ所)

03.17 Sula橋 (橋台2基、橋脚2基、護岸2ヶ所)

04.07a Camagong橋 (橋脚1基、護岸2ヶ所)

04.07b Tan-Agan 橋 (橋脚1基)

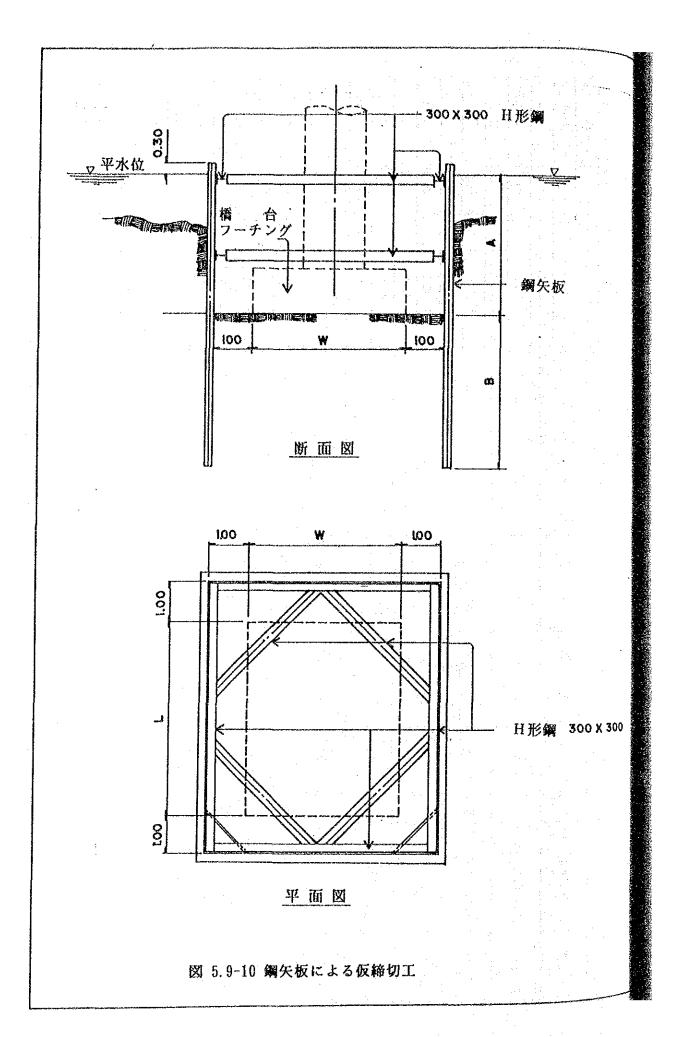
04.10b-2 lhatub 欄 (橋脚1基、護岸2ヶ所)

鋼矢板: 01.02 Maphilindo橋 (橋脚3基)

03.03 Bacong 概 (橋台2基、護岸2ヶ所は橋台締切兼用)

03.07 San Roque 橋 (橋台2基、護岸2ヶ所は橋台締切兼用)

圕 仮籍包工の計 被 5.9-4


2	瞅	数り	蒑	龃	瞅	剱	胡	脚	敝	日
護岸A ₂	К	(揮 殺 次	蜀矢	蹴	К	锹	斑	K	K	概
護岸A:	聚	鋼矢板(埋殺し)	磨 不 板	凝	宋殿	锹	凝	大	大	凝
橋助 P.4	爨 矢 板)					. 			
擺脚 b 3	纖 矢板	1		-	长殿					:
橋知 P 2	第 矢板		K W		长殿	锹				
P.	圝	瞅	ト	衄	敝	衈	衈	瞅	超	B
橋脚P,	緻	К	K	鉄	K	緻	锹	К	緻	緻
権台A ₂	长殿	護岸工仮緒切 と兼用	護岸工仮締切と兼用	湖	米數	翔	长	长殿	长	米
1.	腶枚	反締切	反締切	郵包	瞅		₩\	瞅	lex.	腳
楯台A,	К	護岸工仮締切 と兼用	護岸工仮締切 と兼用	黙	К	锹	К	K	K	K
橋 深 名	Maphilindo#	Bacong補	San Roque M	Dolores	Mangkuyog Affi	Sulam	CamagongA	Paragusan A	Tan-Agan稿	lhatnb#
橋梁番号	01. 02	03. 03	03.07	03.10	03. 13	03.17	04. 07a	04. 20a	04.075	04.105-2
				J	L 2 5	discuss	•			10. 13. 44. 11.概率

-	· · · · · · · · · · · · · · · · · · ·		a, est de la Tri	ومحجومة	242 T 1 (T) (**********	ang the great of the			organic projections,	* <u>* * * * *</u>	, come an a comp	· • • • • • • • • • • • • • • • • • • •		gyag Paragentin (s				، عمر شاعد او حواب		
日底の)	松井	(m . 3)	0	0.63	1. 78	0.95	1. 12	.3	1.50	1. 71	1.92	2.45	2.38	2.63	3. 15	3.71	4.31	8.	5.63	6.35	71	.7. 91	8. 75	9. 63
如女一鬼粉 (周眼1	士 筱	(==)	0.75	1.38	1.53	1.70	1.87	2. 10	2. 25	2.46	2.67	2.90	3. 13	3.38	3.90	4.46	5.06	5.70	6.38	7. 10	7.86	8.66	91.50	38
楽母の仮籍也效校一階数 (廃収1m当の)	紫霉属	(B B)	500	1,000	1, 100	1, 200	1, 300	1,400	1.500	1,600	1, 700	1,800	006,1	2,000	2, 200	2,400	2, 600	2,800	3,000	3,200	3,400	3,600	3,800	4 000
										<u>+</u>					玉		H			L				2007 7 10 60 62 1

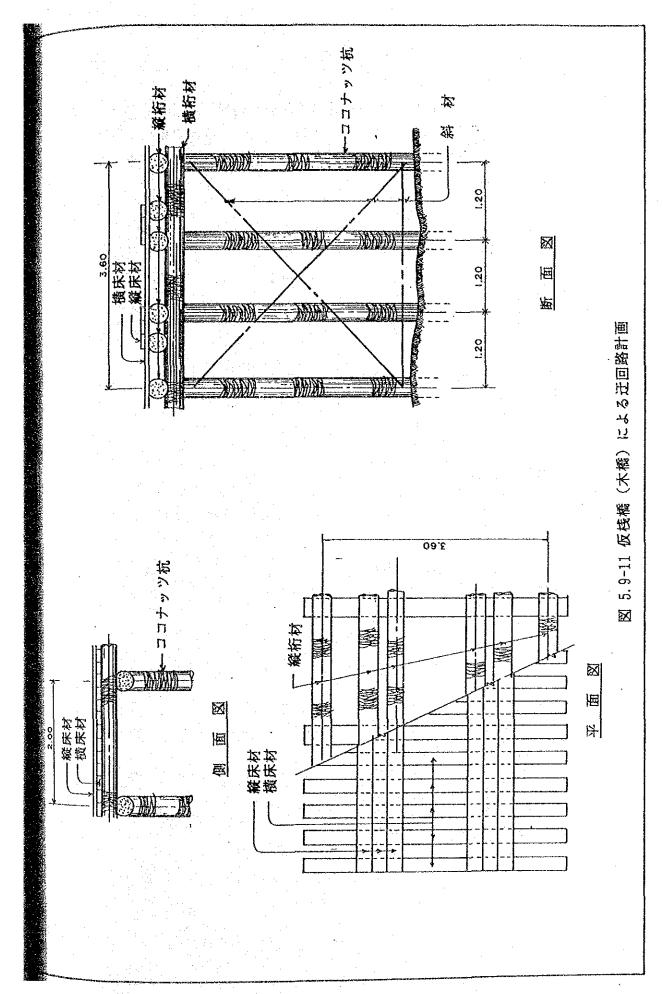
碫 8 在米河床 平水位 300 一 寧三原

5.9-9

X

(4) 工事中の交通確保

工事中も現構を利用できるもの以外について、建設期間中の交通を確保するために、以下のような迂回路を計画した。迂回路のサービス程度は、現状程度とし 現況道路機能を維持するものとする。表 5.9-5に迂回路、及び仮桟橋を示す。


本表によると、工事中迂回路は次のように分類される。

- 1) 現橋/スピルウェイを利用 (新橋梁を現橋位置から、ずらして建設するもの)
 - 01. 02 Maphilindo 稿
 - 03. 03 Bacong 橋
 - 03, 10 Dolores橋
 - 04. 10b-2 Thatub 橋
- 2) 河床を利用 (現橋なし)
 - 03.13 Mangkuyog橋
 - 03. 17 Sula 橋
- 3) 渡船を利用(車輌通行止)
 - 03. 07 San Roque橋
- 4) 仮桟橋を架設
 - ·04.07a Camagong 橋 (木橋)
 - · 04, 20a Paragusan橋 (木橋)-
 - · 04.07b Tan-Agan 橋 (木橋)

図5.9-11に木橋の仮桟橋による迂回路の計画を示す。

表 5.9-5 迂回路、及び仮桟橋

桶梁番号	橋黎名	現	记 路
01. 02	Maphilindo裕	網トラス仮橋	現権を利用
03. 03	Bacong裕	鍋トラス仮橋	現橋を利用
03.07	San Roque 桶	木	公共事業道路省(DPME)と協議の結果、工事期間中は 交通止
03, 10	Dolores 権	木 橋	現権を利用
03. 13	Mangkuyog 稀	橋梁なし。ただし、河床を使用して渡河	河床を利用した迂回路を建設
93.17	Sulas	稀緊なし。ただし、河床を使用して渡河	河床を利用した迂回路を建設
04. 07a	CamagongAA	響トラス仮構	下帝側に迂回路、及び仮桟橋(木橋)を建設
04. 20a	Paragusan A	網トラス仮橋	下流側に迂回路、及び仮桟橋(木橋)を建設
04, 0Tb	Tan-Agao栖	★ 充	下流倒に迂回路、及び仮桟橋(木橋)を建設
04.106-2	thatub An	トドンプス	製スピルウェイ法利用

(5) 現橋の撤去

現橋の撤去は、橋梁建設に障害となる場合は電気、水道管等の附帯設備の移動も含めてフィリピン共和国側の負担工事にて行う。橋梁の建設に障害とならない場合は、橋梁完成後、フィリピン共和国側の責任に於て撤去するものとする。その橋梁ごとの区分は次のとおりである。

1) 橋梁建設前に撤去

- 03. 07 San Roque 橋
- 04.07a Camagong橋
- 04. 20a Paragusan 橋
- 04.07b Tan-Agan橋

2) 橋梁建設後に撤去

- •01.02 Maphilindo橋
- 03.03 Bacong橋
- 03. 10 Dolores 橋
- 04. 10b-2 | lhalub橋

3) 現橋なし

- 03.13 Mangkuyog 繑
- 03.17 Sula橋