4.2.3 Phasing of Bridges

The 37 BRidges are composed of 27 bridges as Group 1 and 10 bridges as Group 2.

(1) Phasing Criteria

The criteria employed in phasing bridges are as follows:

- a) Criteria for Group 1 Bridges
- . The Government of the Philippines can design the substructure and erect the steel girder easily.
 - No difficulty in construction, especially erection of steel girders and construction of substructures, is anticipated.
- b) Criteria for Group 2 Bridges
- Erection of steel girders may be difficult because of deep valleys or long spans.
 - Cofferdams may be recommended to be used for the constructions of piers inside rivers.
- Geological surveys are required to decide the types of foundations.
- Detailed topographic surveys are required because of complicated terrain.

(2) Phasing of Bridges

In accordance with the criteria established, all selected bridges were classified into Groups 1 and 2.

The result of the technical study, especially those on design and construction requirements for the bridges, are presented in Table 4.2-2.

Table 4.2-3 summarizes the number of bridges and their length proposed for Group 1 and 2 by Region and Province. Table 4.2-4 also summarizes the type and number of bridges.

Table 4.2-5 and 4.2-6 show the list for Group 1 and 2, respectively.

28 -

TABLE 4. 2-2 SELECTION AND GROUPING OF PROPOSED BRIDGES (1/6)

				Traffic	8	xisting Bridge		Proposed	Bridge	Design and Construction Requirements	Group
No.		idge No.	Name of Bridge	Volume (ADT)	Length (m)	Type and Condition	Load Limit (tons)	Length (m)	Туре	besign and construction requirements	
1	01.	. 02	Maphilindo Bridge Pangasinan	4741	128.35	Bailey ODeteriorated lumber and bailey panels OConc. Pier	5	32+32+32+32+32 =160	o Steel Plate Girder o Pile Pounda- tion	O Detailed topographic survey and geological investigation is required O Hydrological analysis is required O Colferdam for pier construction is required O Working temporary bridge may be needed. O Ordinary water (3m)	2
2	03.	. 01	Pangulisanin Bridge Bataan	200	21.65	Bailey O Fair Steel	6	24. 0	oH-Beam oPile Founda- tion	oNo difficulty in construction oOrdinary water (1,0m)	1
2	03.	. 03*	Bacong Bridge Bataan	50	46.00	Bailey O Deterioreated Lumber and Bailey Panels	2	26+26=52	o Steel Plate Girder o Pile Founda- tion	oDetailed topographic survey and geological investigation is required. oHydrological analysis is required.	2
	03.	. 04	Tigbe Bridge Bulacan	345	18.90	Bailey O Delapi-dated Timber Trestle	5	22.0	oH-Beam oPile Founda- tion	o No difficulty in construction	1
5	03.	. 06*	Balasing Bridge Bulacan	200	31.20	Bailey O Seriously Dilapidated	2	1 5 + 2 3 = 3 8	o H-Beam o Pile Founda- tion	o No Difficulty in construction o No water at position of the pier for construction	1
ß	03.	. 07	San Roque Bridge Bulacan	200	63.60	Timber o Seriously Dilapidated o Unpassable		18+18+18=54	OH-Beam OPile Pounda- Lion	O Topographic survey and geological investigation is required O Cofferdam for pier construction is required O Deep water (2.0m) O Many houses will be affected O Right-of-Way shall be acquired	2
7	03.		Pias Bridge Pampanga		8.00	Bailey (Collapsed)		23+23=46	o H-Beam o Pile Founda- tion	oNo difficulty in construction	1

* Revised Request

- 29 --

TABLE 4. 2-2 SELECTION AND GROUPING OF PROPOSED BRIDGES (2/6)

			Traffic	E	xisting Bridge		Proposed	Bridge		Group
80.	Bridge No.	Name of Bridge	Volume (ADT)	Length (m)	Type and Condition	Load Limit (tons)	Length (m)	Туре	Design and Construction Requirements	0 (0 0)
8	03.10*	Dolores Bridge Pampanga	95	24.65	o Washed out	5	24+24≈48	oH-Beam oPile founda− tion	O Topographic survey and geological investigation is required. O Cofferdam for pair construction is required. O Deep water (2m)	2
9	03.11	Pulo Bridge Pampanga	35	11.85	Timber O Dilapidated Timber Trestle	3	23.0	oH-Beam oPile Founda- tion	ONO difficulty in construction. OHouses will be affected OSta. Catalina Bridge leading to bridge site shall be required	1
0	03.13	Mangkuyog Bridge Nueva Ecija	300	h	to Existing Bridg	e	24+24+24+24=96	Oll-Beam OPile Founda tion	O Topographic survey and geological investigation is required O Hydrological analysis shall be conducted to decide bridge length	2
1	03.17	Sula Bridge Tarlac	70	ł	o Existing Bridg	ge	20+20+20=60	Oll-Beam OPile Founda- tion	O Topographic survey and geological investigation is required O Hydrological analysis is required	2
2	03.18	Sindol Bridge Zambales	53	24.10	Timber o Seriously Dilapidated o Unpassable		1 5 + 1 5 = 3 Q	OH-Beam OPile Founda- tion	ONO difficulty in construction ONear fish pond	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	04. 01a	San Juan Bridge Cavite	200	19.20	Bailey o Collapsed o Unpassable		23.0	oH-Beam oPile Founda- tion	ONO difficulty in construction ORight-of Way shall be acquired ODaang Bakal Bridge leading to bridge site shall be reinforced	
4	04. 028	Tabon-Batong Br. Cavite	200	13.80	Bailey O Dilapidated Timber Trestle	3	22: 0	0H-Beam 0Pile Founda- tion	ONO difficulty in construction OHouses will be affected ONear fishpond OTabon-Gahak Bridge leading to bridge site shall be reinforced	

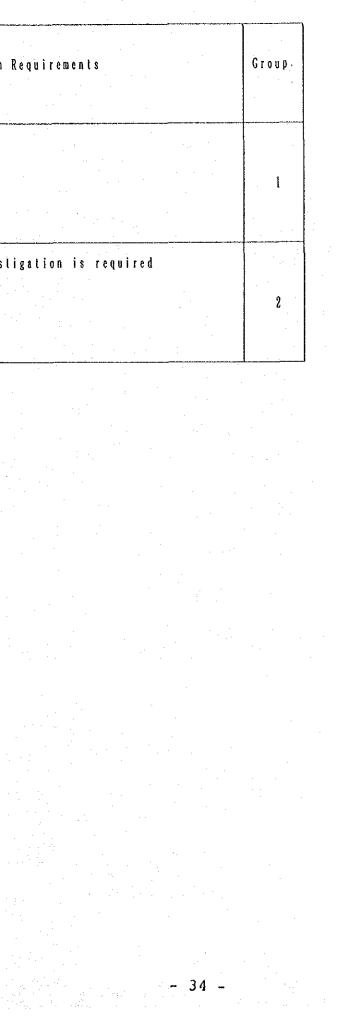
#### TABLE 4. 2-2 SELECTION AND GROUPING OF PROPOSED BRIDGES (3/6)

			Traffic	8	xisting Bridge		Proposed	Bridge	Design and Construction Requirements	Group
No,	Bridge No.	Name of Bridge	Yolume (ADT)	Length (m)	Type and Condition	Load Limit (tons)	Length (m)	Туре	pesign and construction requirements	
15	04. 04a	Caglate Bridge Quezon	100	18.42	Bailey ODilapidated Lumber and Bailey Panels	5	23. 0	o H-Beam o Pile Founda- lion	ONO difficulty in construction O12 bridges leading to construction site shall be repaired	1
16	04. 06a	Buenavista Bridge Quezon	95	17.26	- do -	3	24. 0	OH-Beam OPile Founda- tion	ONO difficulty in construction O4 dilapidated bridges shall be repaired	1
17	04. 07a	Camagong Bridge Quezon	100	15.36	- do -	3	22+22=44	oH−Beam oPile Pounda tion	O Topographic survey and geological investigation is required O Hydrological analysis is required O 8 dilapidated bridge shall be repaired O River protection is required	2
18	04. 09a	lsabang Bridge Quezon	150	15.00	Spillway	5	24+24=48	oH-Beam oPile Pounda- lion	o No difficulty in construction	1
19	04. 10a	Pansipit Bridge Batangas	_	ł	o Existing Bridg	e	22+22=44	OH-Beam OPile Founda- tion	oNo difficulty in construction oCofferdam for pier construction may be required	1
20	04. 11a	Sán Diego Bridge Batangas	200	18.60	Bailey O Deteriorated Lumber and Bailey Panels	5	15+15=30	OH-Beam OPile Founda- tion	ONO difficulty in construction OCofferdam for pier construction may be required OWater (1.0m)	. 1
21	04. 13a	Bagong-Pook Bridge Balangas	120	26.80	Timber O Dilapidated Timber O Concrete Pier	5	24	oH-Beam oPile Pounda- tion	ONO difficulty in construction OPalico Bridge (30m) leading to bridge site shall be repaired	1

#### TABLE 4. 2-2 SELECTION AND GROUPING OF PROPOSED BRIDGES (4/6)

			Traffic	E .	xisting Bridge		Proposed	Bridge	Basian and Canatawatian Brantamania	Group ·
X o.	8ridge No,	Name of Bridge	Yolume (ADT)	Length (m)	Type and Condition	Load Limit (tons)	Length (m)	Туре	Design and Construction Requirements	31009
22	04. 16a	1	3 0	N	o Existing Bridg	e	21+21=42	оH-Beam oPile Rounda- tion	ONO difficulty in construction OCofferdam for pier construction may be required OWater (1.5m)	1
		Aurora								
23	04.17a	Salay Bridge Aurora	90	23.42	Timber ODilapidated Lumber OConc, Pier	1	15+15=30	oH-Beam oPile Founda- tion	ONO difficulty in construction OPalayan II Bridge is dilapidated	1
24	04. 18a	Mijares Bridge Aurora	100		Timber O Overflow when Flood Water O Deteriorated Lumber	1	23.0	oH-Beam oPile Founda- lion	oNo difficulty in construction	l
25	04. 19a	Palayan Bridge Laguna	63	18.40	Bailey O Deteriorated Lumber and Bailey Panels	3	24. 0	OH-Beam (Skewed 60) OPile Pounda- tion	o No difficulty in construction	1
26	04. 20a	Paragusan Bridge Laguna	100	40.00	Bailey O Deteriorated Lumber Bailey Panels O Unsuitable Lumber Trestl		15+30=45	oH-Beam oPile Rounda- tion	o Topographic survey and geological investigation is required o Construction of high pier (14m) o Study on detour road during construction	2
7	D4. 21a	Tarak Bridge Laguna	100	22.00	Bailey	3	24	oH-Beam oPile Founda− tion	oNo difficulty in construction	.1
28	04. 22a	Sto, Nino Bridge Rizal	50	18.00	Bailey O Deteriorated Lumber and Bailey Panels	3	23	OH-Beam OPile Founda- tion	oNo difficulty in construction	1

## TABLE 4. 2-2 SELECTION AND GROUPING OF PROPOSED BRIDGES (5/6)


			Traffic	8	xisting Bridge		Proposed	Bridge	Design and Construction Requirements	Group
No.	Bridge No.	Name•ol Bridge	Volume (ADT)	Length (m)	Type and Condition	Load Limit (tons)	Length (m)	Туре	Design and construction requirements	
29	04. 23a	Del Pilar Bridge Rizal	50	18.50	Bailey © Deteriorated Lumber and Bailey Panels	3	24	oH-Beam oPile Founda→ tion	ONO difficulty in construction ORight-of-Way shall be acquired	1
30	04. 03b	Maruyagon Bridge Palawan	88	18.00	Timber Dilapidated Timber Trestle	2	24	OH-Beam OPile Founda- tion	0 No dilliculty in construction 07 bridges leading to bridge site are dilapidated	1
	04. 04b	Dakoton Bridge Palawan	88	30.00	Bailey ODilapidated Timber Trestle ODeteriorated Lumber and Bailey Panels		18+18=36	OH-Beam OPile Founda- tion	ONO difficulty in construction OSmall cofferdam is required OOrdinary water depth (0.5m) Oll bridges leading to bridge site are dilapidated	1
32	04. 06b	Madalag Bridge Romblon	310	19.00	Bailey o Deteriorated		24	o H-Beam o Pile Founda- tion	o No difficulty in construction	1
33	04. 075	Tan-Agan Bridge Romblon	485	19.00	- do -	5	18+18=36	oH-Beam oPile Founda- tion	O Topographic survey and geological investigation is required O Cofferdam for pier construction is required O Ordinary water depth (3.0m) O 3 bridges leading to bridge site are dilapidated	2
34	04. O8b	Panique Bridge Rombion	490	21.34	Bailey ODeteriorated Lumber and Bailey Panels OConc. Pier	5	18+18=36	o H-Beam o Pile Founda- tion	oNo difficulty in construction oCofferdam for pier construction may be required oOrdinary water depth (1.0m)	1
35	04. 09b	Maralig Bridge Marinduque	30	18.86	Bailey O Deteriorated Lumber and Bailey Panel	4	15+15=30	o H-Beam o Pile Founda- lion	oNo difficulty in construction oOrdinary water depth (0.5m)	1

- 33 -

			Traffic	B	xisting Bridge		Proposed	Bridge	
No.	Bridge No.	Name of Bridge	Yołume (ADT)	Length (m)	Type and Condition	Load Limit (tons)	Length (m)	Турс	Design and Construction R
36	04. 10b¥ -1	Daykilin Bridge Marinduque	110	17.00	Spillway	5	24	OH-Beam OPile Founda- tion	o No difficulty in construction
37	04, 105* -2	lhatub Bridge Marinduque	160	19.65	Spillway	5	23+23=46	oH-Beam oPile Founda- tion	o Topographic survey and geological invest o Hydrological analysis is required

#### TABLE 4, 2-2 SELECTION AND GROUPING OF PROPOSED BRIDGES (6/6)

≱ Revised Request



			Gro	up-1			Groit	u p - 2			ΤΟ	TAL	· .
giọn	Province	Number o	l Bridge	Bridge L	ength (m)	Number o	l Bridge	8ridge 1	ength (m)	Number	ol Bridge	Bridge L	ength (
		Request	Selected	Request	Selected	Request	Selected	Request	Selected	Reques	t Selecter	Request	Select
	Pangasinan	( 0)	O	()	0	(2)	1	( 245)	160	(	2) 1	( 245)	16
111	Balaan	(2)	1	( 48)	24	(1)	1	( 46)	52	(	3) 2	( 94)	
	Bulacan	( 2)	2	( 39)	60	( 2)	l	( 116)	51	(	4) 3	(155)	· 1
	Pimpanga	(2)	2	( 30)	69	(2)	1	( 210)	48	(	1) 3	( 210)	ł
	Nueva Ecija	(2)		( 48)	0	(0)	1	. ( ¹	96	(	2) 1	( 48)	
	Tarlac	( 0)	0	(	0	( 1)	1	( 447)	60	(	4) 1	( 447)	
	Zambales	( 0)	1	( 0)	30	(2)	0	( 94)	. 0	(	2) 1	( 94)	
Y-A	Carile	(2)	2	( 43)	45	( 1)	0	( 66)	0	(	3) 2	( 109)	
	Quezon	(5)	3	( 95)	95	( 1)	··· -	(- 50)	. 44	) (	6) 4	( 145)	1
	Balangas	( 1)	3	( 20)	98	( 4)	0	( 206)	0	-(	5) 3	( 226)	
	Aurora	(2)	3	( 40)	95	(2)	0	( 140)	0	(	4) 3	( 180)	
	Laquna	(2)	2	( 12)	48	(1)	а. на с . на 	( 44)	45		3) 3	( 86)	
	Rizal	(2)	2	( 40)	47	( 0)	0	- ( 0)	0	(	2) 2	( - 40)	
Y - B	Palawan	( 3)	2	( 60)	60	( 1)	0	( 35)	Ů Ů	(	4) 2	( 95)	
-	Remblon	(3)	2	( 65)	60	(1)	1	( 30)	36	(	4) 3	( 95)	
1	Narinduque	(4)	2	( 38)	54	( 0)		( 0)	4.6	Υ	4) 3	( 38)	
	Orientst Mindoro		0	( 0)		( 1)	0	( 60)	Ū	(	1) 0	( 60)	
i	TOTAL	( 32)	27	( 608)		( 25)	10	(1. 789)	641	1 9	1) 31	(2, 397)	1. 4

# TABLE 4.2-3 SUNMARY OF SELECTED BRIDGES

35 -

# TABLE 4. 2-4 TYPE OF SELECTED BRIDGES

0	Single	Span (H	I-Beam)		No, of	Bridge	S	Aggregat	e Length	(m)
-		24				9			216	2
		23	- -	the second	х. 	5			115	
•		22	•		al const	2			44	
							ali yaka kuta Vite	ang di sang kat Mang di sang kat		
Ó	Two So	ans (H-B	l'e am)			e l'autoria. Anti-				 
•	2 ×	24 = 48			41 1	1			48	
	$2 \times$	23=46	•			1			46	
	2 ×	22 = 44	: •	•	· · · ·	1			44	
	15+	23 = 38		· ·		1			38	фу.
	2 ×	21 = 42				1			42	
	$2 \times$	18 = 36	· .			2			12	
	2 ×	15=30				4			120	
	ſ	otal				27			785	• •
		1 A.	·							
roup	2				· · ·					•
					· · ·	1999 - 1999 1997 - 1999 1997 - 1999				1
o	Contin	jous spa	in (H-Bea	m)			$= e_{\lambda} \frac{1}{2} e_{\lambda}^{2}$			7 - 1 - 2
		24 = 96				1	9 1. j 1. i		96	
		24= 48				1			48	
. •		23== 46				1			46	۶.
		22= 44		• •		1			44	
		20 = 60				1			60	÷.
		18 = 36				1			36	
		18== 54				1			54	
	- -						· ·			
0	Continu	เด่มร รอส	n (Build	-uo Ser	tions)		ta A			1.1.1 •
Ť		32 = 160				1			160	a q
		26 = 52				1			52	
	2		· · · · ·							
0	Continu		n (Hand	81111-1	in Ream	1				
•		30 = 45	•		.,	์ 1			45	;
		•••••••••••••••••••••••••••••••••••••••			•					
	T	otal				10		· · · ·	641	
	•									
					:		,			
N	OTE :		•		$(1,2) \in \mathcal{A}$					
	010 -	Phase I	: 24	hridaeı	with	735m	· .			ţ.
		Phase I			s with				ante da la composición de la composición Na composición de la c	
		10426 1	т т ТУ	שנועצפ	17 T L 11	AT I M	n n n Strangt			
		1				· ·	· ·	a sentration pointer		

# TABLE 4. 2-5 LIST OF BRIDGES FOR GROUP 1 (1/3)

NO	BRIDGE NO	NAME OF BRIDGE	LOCATION
1	03.01	Pangulisanin Bridge	Km. 149 + 910 Cabacaban Road Cabcaben, Mariveles, Bata
2 	03.04	Tigbe Bridge	Km. 77 + 520 Tigbe Barangay Road Norzagaray, Bulacan
	03.06	Balasing Bridge	Km. 39 + 850 Balasing-Tigbe Brgy. Road Bulacan
4	03.08	Pias Bridge	Km. 90 + 470 Porac-Pias-Ebos Road Porać, Pampanga
5	03.11	Pulo Bridge	Km. 85 + 925 Sta. Catalina-Pulong Bayu Road Lubao, Pampanga
6	03.18	Sindol Bridge	Km. 172 + 350 Barangay-Sindol Road San Felipe, Zambales
7	04.01a	San Juan Bridge	Km. 25 + 500 Cavite-Zapote Road San Juan, Cavite
8	04.02a	Tabon-Batong Bridge	Km. 22 + 500 Cavite-Zapote Road Kawit, Cavite
9	04.04a	Caglate Bridge	Km. 027 + 180 Quezon-Alabat Perez Road Alabat, Quezon
10	04.06a	Buenavista Bridge	Km. 016 + 250 Quezon-Alabat-Perez Road Alabat, Quezon
11	04.09a	Isabang Bridge	Km. 127 + 399 MSR-Isabang-Rocohan-Domoit Lucena Diversion Road Lucena City, Quezon

37 -

•

NO	BRIDGE NO	NAME OF BRIDGE	LOCATION
12	04.10a	Pansipit Bridge	Km, 131 + 140 San Nicolas-Agoncillo an Vice Versa
			Brgy, Pansipit, Batangas
1.2	04.11a	San Diego Bridge	Km. 103 + 109.75
13	04,114		Nasugbu-Tagaytay Road Lian, Batangas
14	04.13a	Bagong Pook Bridge	Km, 95 + 90
1.1	01120		Nasugbu-Tagaytay Road Bagong Pook, Lian
			Batangas
15	04.16a	Pingit Bridge	Km. 234 + 809
10	011200		Baler-Baler Port Road Baler, Aurora
	· · · · ·		Baller, nulvia
16	04.17a	Salay Bridge	Km. 238 + 108
			Dipaculao-Aurora Road Brgy. Salay, Dipaculao
			Aurora
17	04.18a	Nijares Bridge	Km. 247 + 435
	·		Baler-Casiguran Road Brgy. Mijares, Dipaculac
			Aurora
18	04.19a	Palayan Bridge	Km. 89 + 700
10	04.128	1 4 1 4 7 6 1 6 7 1 6 9 6	Calauan-Nagcarlan Road
	·		Nagcarlan, Laguna
19	04.21a	Tarak Bridge	Km. 85 + 144
			San Pablo-Sta. Monica- Sta. Veronica Road
			Sta. Veronica,
	:		San Pablo City, Laguna
20	04.22a	Sto. Nino Bridge	Km. 0 + 550
			Jct, City Road - Pinagbatan Road
	-		Brgy. Sto. Nino,
			Cainta, Rizal
21	04.23a	Del Pilar Bridge	Km, 0 + 100
		in the second	Jct. Sumulong Highway -
			Del Pilar Jct. Road Del Pilar Ext.,
			Antipolo, Rizal

## TABLE 4. 2-5 LIST OF BRIDGES FOR GROUP 1 (2/3)

						ant. A sa ant						
•		T	A R L E	4 2-	- 5 1	LIST O	F BRIDGES	FOR	GROUP	1	(3/3)	
												c++-++

NO	BRIDGB NO	NAME OF BRIDGE	LOCATION
22	04.03b	Maruyugon Bridge	Km. 50 + 320.50 Puerto Princesa North Road Brgy. Maruyugan, Puerto Princesa City, Palawan
23	04.04b	Dakoton Bridge	Km. 62 + 761.50 Puerto Princesa North Road Brgy. Babuyan, Puerto Princesa City, Palawan
24	04.06b	Madalag Bridge	Km. 34 + 900 Looc-Alcantara Road Madalag, Alcantara, Romblom
25	04.08b	Panique Bridge	Km. 8 + 000 San Andres-Odiongan Road Panique, Odiongan, Romblon
26	04 <b>.</b> 09b	Naranlig Bridge	Km. 56 + 637.80 Torrijos-Sibuyao Road Maranlig-Torrijos, Marinduque
1997 - 1997 1 <b>27</b> 1997 - 1997 1997 - 1997 1997 - 1997 1997 - 1997	04 <b>.1</b> 0b-1	Daykitin Bridge	Km. 94 + 233 Buenavista-Gasan Road Daykitin, Buenavista Marinduque

- 39 -

NO	•	BRIDGE NO	NAME OF BRIDGE	LOCATION
	1	01.02	Maphilindo Bridge	Km. 220 + 900 Biec-Lomboy Road Binmaley, Pangasinan
4	2	03.03	Bacong Bridge	Km. 105 + 360 Luacan-Bacong Road Bacong, Bataan
	3	03.07	San Roque Bridge	Km. 57 + 284 San Roque Barangay Road Hagonoy, Bulacan
. (	1	03.10	Dolores Bridge	Km. 076 + 870 Dolores-Del Rosario Road Dolores, Bacolor, Pampanga
ŗ	5	03.13	Mangkuyog Bridge	Km. 169 + 000 Camachile-Bantug Road Nueva Ecija
ŧ	5	03.17	Sula Bridge	Km. 150 + 000 Tarlac-Sula Road Sula, Tarlac, Tarlac
ī	7	04.07a	Camagong Bridge	Km. 023 + 700 Quezon-Alabat Perez Road Alabat, Quezon
Ę	3	04.20a	Paragusan Bridge	LOCATION Km. 220 + 900 Biec-Lomboy Road Binmaley, Pangasinan Km. 105 + 360 Luacan-Bacong Road Bacong, Bataan Km. 57 + 284 San Roque Barangay Road Hagonoy, Bulacan Km. 076 + 870 Dolores-Del Rosario Road Dolores, Bacolor, Pampanga Km. 169 + 000 Camachile-Bantug Road Nueva Ecija Km. 150 + 000 Tarlac-Sula Road Sula, Tarlac, Tarlac Km. 023 + 700 Quezon-Alabat Perez Road Alabat, Quezon Km. 91 + 084 San Pablo-San Isidro Road San Isidro, San Pablo City Laguna
	9	04.07Ь	Tan-Agan Brdige	Km. 11 + 100 Odiongan-San Andres Road Tan-Agan, San Andres Romblon
1	10	04.105-2	Ihatub Bridge	Km. 116 + 832.85 Boac-Gasan Road Ihatub, Boac, Marinduque

TABLE 4. 2-6 LIST OF BRIDGES FOR GROUP 2 (1/1)

### 4.3 Scope of Japan's Grant Aid

The scope of Japan's Grant Aid for the Project covers the following:

#### 4.3.1 For Group 1 Bridges (27 Bridges)

Steel materials supply

- 1) Steel Girders
- 2) Cross Beams
- 3) Shoes
- 4) Drainage Boxes
- 5) Torque Wrenches
- 6) Steel Railings and Posts for Bridge Approaches

Delivery of steel materials from Japan to designated ports of entry in the Philippines.

#### 4.3.2 For Group 2 Bridges (10 Bridges)

- 1) Construction of Superstructures and Substructures
- 2) Construction of Approach Roads
- 3) Construction of Bank River Protection

Detailed descriptions and estimated quantities of major construction work for Group 2 Bridges are discribed in Chapter 5.

CHAPTER 5

BASIC DESIGN

#### CHAPTER 5

#### BASIC DESIGN

#### 5.1 Design Policy

The selected bridges of Phase III are divided into two groups: Groups 1 and 2. The basic planning of Group 1 Bridges was conducted based on data furnished by the DPWH of the Government of the Philippines. On the other hand Group 2 Bridges were planned based on the data collected from field investigation and topographic and geotechnical surveys conducted by the Study Team.

The flow chart of implementation schedule of the Basic design study is shown in Table 5.1-1.

The general views of these bridges were prepared as shown in the separate volume of the Basic Design Study (Phase III).

#### 5.1.1 Group 1 Bridges

In preparing the general views, the following design policies were adopted:

- 1) Maximum utilization of steel materials for superstructures.
- Maximum utilization of local materials for substructures.
- 3) Labor intensive construction method to be employed whenever applicable.
- 4) River protection to be provided in order to avoid damage to abutments due to river flow.
- 5) Footing of piers to be embedded below riverbed.
- 6) Steel girders to be fabricated in sizes and lengths for safe and convenient transport.

The detailed design of substructures, bridge approaches and other structures necessary to complete the Project is

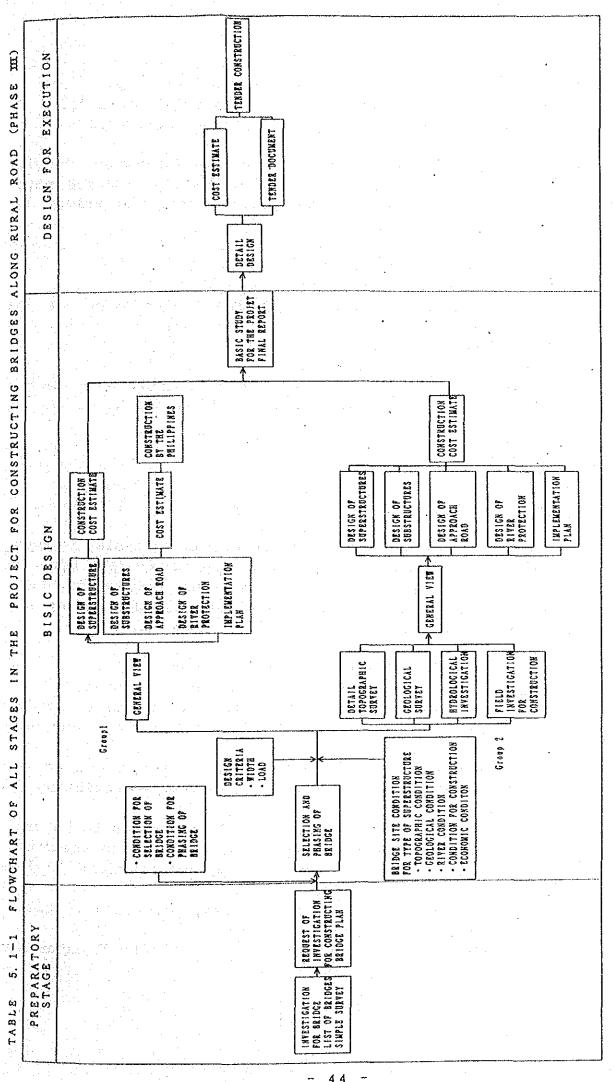
#### the responsibility of the DPWH.

Both designs are in accordance with the design criteria established between the DPWH and the Study Team as discussed in this chapter.

#### 5.1.2 Group 2 Bridges

In preparing the general views, the following design policies were adopted:

- 1) Location of proposed ten a(10) bridges to be execute to site investigation, study of technical examination by Study Team and then discussed with DPWH.
- Maximum utilization of steel materials for superstructures.


Steel girders to be fabricated in sizes and lengths for safe and convenient transport.

 Maximum utilization of local materials for substructures.

Footings of abutments to be embedded below existing ground and of piers below riverbeds. Steel sheet piles to be employed as cofferdams while constructing substructures in the river necessary.

- 4) Adoption of concrete pavement or asphalt concrete pavement considering soil conditions of foundation.
- 5) River protection toe provided in order to avoid damage to abutments by river flows.
- 6) Detour roads shall be provided during construction as required.

The detailed design of the structures described above will be conducted by the Japanese consultant. Designs will be drawn in accordance with the design criteria adopted for the Phase II Bridges (Preceding Project) established between the DPWH and the Study Team as discussed in the chapter.



#### 5.2 Site Survey

#### 5.2.1 Group 1 Bridges

The measurement survey and the soil investigation will be carried out by DPWH. The Study Team will investigate the following items in order to determine the bridge length and others factors:

- . Examining present condition of bridge.
- . Site location of bridges
- . Determining whether detour roads are required during bridge construction
- . Condition of access roads
- . Grasp of traffic condition
- . Condition of gological profile and topographical condition
- . Hydrological condition (M.F.L., water depth, etc.)
- . Others

#### 5.2.2 Group 2 Bridges

#### (1) Field Investigation

Prior to implementing the hydrological analysis, topographic survey and geotechnical survey, the Study Team conducted a field investigation for the purpose of ascertaining existing conditions at the sites and of establishing survey procedures. The items investigated were as follows:

- . Examining present condition of bridges.
- . Confirming topographic and geographic features.
- . Ascertaining DPWH views concerning locations of bridges to be replaced and discussing locations from engineering point of view.
- . Determining whether detour roads are required during bridge construction and whether there are existing detour roads.
- . Investigating conditions of roads and ports to be utilized to transport equipment and materials for construction.
- . Determining whether any existing houses close to bridges need to be demolished.
- . Collecting climatic data of sites, particularly timing of dry and rainy seasons.
- . Conducting interviews to determine highest water levels when flooded at bridge sites.

45 -

Investigating existence of any obstacles which may obstruct construction.

Investigating other special factors.

The basic information of the field investigation is shown in Table 5.2-1.

		1Abi	IABLE 3.2-1 BASIL INFURMATION ON PRUPUSEU BRIDGES (1/2)		GES (1/2)	و و و و و و و و و و و و و و و و و و و	
No.	BRIDGE NAME & LOCATTION No. OF BRIDGE	PRESENT CONDITION	PROPOSED LOCATION OF NEW BRIDGE	DETOUR DURING CONSTRUCTION	DEMOLITION OF EXISTING BRIDGE	CONDITION OF ACCESS ROAD	REMARKS
01.02	02 MAPHILINDO BRIDGE .Km.220+900 Biec-Lomboy Road Binmaley. Pangasinan. .Region. I	. Deteriorated trestle .Load limit 5 tons	. Upstream	.Existing bridge can be used	Not necessary.	.Good Condition .221 km from Manila	Relocation of Electric power line by Electric Company
03.03	03 BACONG BRIDGE .Km.105+360 Lucan-Bacong Road, Bacong, Bataan .Region, III	.Deteriorated trestle .Load limit 2 tons	.Upstream because of Power line and water line	.Existing bridge can be used	Not necessary	.Good Condition .151 km from Manila	
03.07	07 SAN ROQUE BRIDGE .km.57+284 San Roque Barangay Road. Hogonoy. Bulacan .Region.III	.Deteriorated trestle .Passable to tricyles y only	.Same location of Existing Bridge because of road alignment	.fordcrossing because of Stream but temporary bridge is required for erection	.Necessary before Construction of New Bridge	.Good Condition .58 km from Manila	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
03.10	<ul> <li>10 DOLORES BRIDGE</li> <li>. Km. 76+870</li> <li>. Km. 76+870</li> <li>. Bolores-Del Rosario</li> <li>Road, Dolores,</li> <li>Radolor,</li> <li>Pampanga</li> <li>. Region, III</li> </ul>	. Deteriorated timber	.Same Location of Existing bridge because of road alignment	.Existing bridge can be used	.Not necessary	.Good Condition .77 from Manila	
03.13	MANGKUYOG BRIDGE .Km. 169+000 Camachile-Bantug Nueva Ecija .Resion. 111	.No Existing Bridge Road	.Along-the existing .Fordcrossing road	. Fordcrossing for Detour	.Not necessary (No existing bridge)	.Good Condition .169 km from Manila	Several Weak Bridges (Load limit 3-5 tons) are located leading to the bridge site.

No. OF BRIDGE	OF BRIDGE		UP NEW BKIUGE				
6. 03. 17	SULA BRIDGE Km 150+000 Tarlac-Sula Road Sula Tarlac Tarlac Tarlac Region, 111	.No existing bridge	.Along the existing road	.Detour is required at downstream	.Not necessary (No existing bridge)	Good condition 151 km from Manila	.Rainy season; May to November
7. 04.07a	CAMAGONG BRIDGE .Km 23+700 Quezon-Alabat Perez Road,Alabat, Quezon .Region, IV-A	.Deteriorated trestle .Load limit 5 tons	.Same location of Existing bridge because of road alignment	.Detour is required at down stream	.Necessary before Construction of New bridge	.Good Condition .19 km from Quezon	
8. 04.20a	PARAGUSAN BRIDGE km g1+84 San Pable-San Isidro Road, San Isidro, San Pablo City, Laguna Region, IV-A	.Deteriorated trestle Passable to light and medium vehicle	.Same locatión of Existing bridge because of road alignment	.Detour is required at downstream	.Necessary before Construction of New bridge	.Good Condition .94 km from Manila	.Removal of Several Coconut trees are required .Relocation of Electric power line by Electric Company
9. 04.07b	TAN-AGAN BRIDGE .km 11+100 Odiongan-San Andres Road, Tan-Agan, San Andres Romblon .Region, IV-b	.Detriorated timber s .Load limit 3- 5 tons	.Same location of Existing bridge because of road alignment	.Detour is required at downstream	.Necessary before Construction of New bridge	.Good Condition .13 km from Odiongan	1
10.04.10b-2	10.04.10b-2 IHATUB BRIDGE .km 116+832.85 Boac-Gasan Road Ihatub, Boac .Marinduque .Region,IV-B	.Spillway .Impassable during rany season because of overflow	.Downstream because of	.Existing Spillway can be used	.Not necessary	.Good Condition .	.Relocation of Electric powerline by Electric Company

#### (2) Hydrological Analysis

The hydrological analysis was conducted to estimate the magnitude of design discharge and to decide the area of river openings required for discharge during flooding. The output of the analysis is presented in Appendix 5 and the detailed analysis is compiled in a separate report.

#### 1) Rainfall Intensity

In the Philippines, the climate in a particular area depends on the distribution of rainfall in time and topography. Thus, the rainfall pattern traditionally dictates the climatic classification of an area. The different provinces throughout the country fall under any of four types of climate. The ten bridges are located in various provinces and fall under one of the climatic classifications indicated in Table 5.2-1.

The most important version of rainfall useful in run-off estimation is the rainfall intensity or the rainfall depth at different durations. Thus, for each of the bridge sites, appropriate data were adopted. Refer to Table 5.2-2.

2) Design Storm

The Unit Hydrograph Method is one of the most accepted methods in discharge computation for large catchment areas, particularly bridge river basins. The derivation of the Synthetic Unit Hydrograph is accomplished by using the Modified Snyder Formula for lag time as follows:

$$Lg = C(\frac{L^{Lc}}{S})^n \times 0.69667$$

where: Lg = lag time in hours

- L = total length of waterway from bridge
   point to furthest water source, in km
- Lc = distance along stream from bridge point to perpendicular line passing through basin centroid, in km

49 -

= equivalent slope of main stream

= lag time coefficient ranging from 0.70
to 2.2 depending on basic
characteristics

n = 0.38

S

С

After the Synthetic Unit Hydrograph has been derived, the design storm is determined by incorporating rainfall increment, infiltration loss and excess rainfall. The design storm is then computed into storm discharge by the process of convolution given by the following equation:

$$q_t = \sum_{i=0}^{\infty} Pi [U_t - i + 1]$$

where: q_t = storm of flood discharge at increment (m³/sec)

Pi = ordinate of design storm at ith time
 (mm/sec)

U = ordinate of computed Synthetic Unit Hydrograph

3) Hydrological Analysis on Waterway Opening

The hydrological design component of this Study is concerned with the determination of the flood level that might occur in the river due to a given flood and of the minimum waterway opening under the bridges. A storm frequency of 1 to 50 years was adopted in accordance with the Design Guideline of the Philippines.

The flood level is determined by the Rating Curve Computation, which is based on the Manning Formula, as follows:

$$Q = \frac{1}{n} AR^{2/3} S^{1/2}$$

where:  $Q = discharge, m^3/S$ 

n = Manning's roughness coefficient

50 -

A = cross sectional area,  $m^2$ 

R = hydraulic radius

(equals

cross sectional area

wetted perimeter

S = hydrographic gradient

The results of the hydrographic analysis are given in Table 5.2-3.

The Maximan Flood water Level were finally decided based not only on Manning Formula but also on other factors such as by interview, safety, construction conditions, topographical conditions, economical conditions geological conditions. etc.

For the hydrological analysis, M.F.L. of Maphilindo Bridge (Number of Bridge 01.02) and San Roque Bridge (Number of Bridge 03.07) are decided elevation by mean of "Gumbel Formula" in addition to the conventional method as the river located in an estuary and river branches off in the upperstream.

The hydrological condition of each bridge is given in Table 5.3-1.

Bridge No.	Bridge Name	Location (Province)	Type of Climate	Rainfall Intensity. Data Reference	Source of Dimensionless U.H.	Peak Flow Frequency Reference
01.02	Maphilindo	Pangasînan		(Gumb	(Gumbel Extreme Value Analysis)	ysis)
03.03	Bacong	Bataan	T	Iba, Zambales	DUH for Central Luzon	Curve of Region III
03.07	San Roque	Bulacan	н	(Gumb	(Gumbel Extreme Value Ana	Analysis)
03.10	Dolores	Pampanga	щ	Śta. Cruz, Porac Pampanga	DUH for Central Luzon	Curve of Region III
03.13	Mangkuyog	Nueva Ecîja		Gabaldon, Nueva Ecija	DUH for Central Luzon	Curve of Region III
03.17	Sula	Tarlac	<b></b>	HDA Luisita, Tarlac, Tarlac	DUH for Central Luzon	Curve of Region III
03.19	Laoag	Zambales	<b></b> 1	Iba, Zambales	DUH for Central Luzon	Curve of Region III
04.07a	Camagong	Quezon	11	Alabat, Quezon	DUH for Region IV	Curve of Region IV
04.20a	Paragusan	San Pablo City	IV	Baler, Quezon	DUH for Region IV	Curve of Region IV
04.07b	Tan-Agan	Romblon	III	Masbate, Masbate	DUH for Region IV	Curve of Region IV
04.10b -2	Ihatub	Marinduque	١٧	Calapan, Oriental Mindoro	DUH for Region IV	Curve of Region IV

TABLE 5. 2-3 THE RESULTS OF THE HYDROGRAPHIC ANALYSIS

45.70 21.26 10.53 2.40 18.22 99.60 21.31 20.79 un S 21.34 DESIGN (EI7.) 50. E 10.53 20.07 45 70 2.11 INTERVIEW 19.28 8 21. 31 20.85 20.79 က် တ (E17.) ŝ 66 M. F. L 10. 18 COMPUTED 44.89 40 22.17 21.34 22 5 26 2 2.6 (EIv.) 21. 39. \$ 21. ŝ 5 AVERAGE Velocity (S/E) 6.82 3. 79 6 13 6.05 2.86 8. 30 4.51 51 ł ľ ~5 4.0 2.0 2.8 2 8 13. 4 ഹ Ś WATER Depth 0 0 E ഹ് -----ລໍ urs. BRIDGE LENGTH 5 -20 40 80 23 ----E 164 က် REQUIRED OPENING ĥ Gumbel Extreme Valve Analysis Gumbel Extreme Valre Analysis 133 169 258 106 384 ŝ ທີ ເກ t----ι⇔ 101.254 598.37 422.66 2. 247. 47 (m³/S) с С DISCHARGE 2, 571, 47 12 303 534. DESIGN 155. 12 35 0) [---15.22 9 50 119.6 181.9 DRAINAGE 65. ц С ~ 10. -(F) AREA MAPHILINDO BRIDGE ٠. MANGKUYOG BRIDGE PARAGUSAN BRIDGE SAN ROQUEBRIDGE NAME OF BRIDGE BRIDGE CAMAGONGBRIDGE TAN-AGANBRIDGE DOLORES RIDGE BACONGBRIDGE SULA BRIDGE IHATUB. 04.10b-2 BRIDGE 04.07a 04.20a 04.076 03. 13 **B3. 1**7 02 03 10 NO. j 3 03. 03.

-53-

#### (3) Topographic Survey

The topographic survey was conducted to obtain the topographic data necessary for the detailed design of the bridges, access roads and river bank protection, comprising the following works.

The survey quantity list and the description of bench marks (BM) are presented in Appendix 6, while the detailed survey results are compiled separately.

1) Centerline Survey

All bench marks (BM) were established with an assumed elevation, properly monumented with concrete monuments (20 cm x 20 cm x 60 cm).

The length of centerline survey was more than 100 m along roads and 50 m along rivers, in front of and behind the bridges.

2) Profile Survey

The elevation at every 20 meters and at changeable inclination points on the proposed centerline were surveyed.

3) Cross Section Survey

```
Along roads : 10 meter intervals, 50 meters in width
Along rivers: 20 meter intervals, 60 meters in width
Accuracy : Traversing 1/10,000
Leveling 5 cm + 3 cm S
```

veling 5 cm + 3 cm S S = level route

4) Reporting

1/50,000
1/200
1/200, 1/100
1/200

. Field Survey Notes

. Photographs

. BM Point Survey Description

The topographical condition of each bridge site are given in Table 5.3-1.

- 54 -

#### (4) Geotechnical Survey

The geotechnical survey was performed to confirm the geological condition of foundations of all 10 bridges for the detailed design, consisting of the following works.

The survey quantity list, boring profile and the description are presented in Appendix 7, while the detailed survey results are reported separately.

1) Drilling

A bore hole was drilled on the proposed location of each foundation of all bridges.

- Standard Penetration Test This test was conducted at intervals of one meter and at the change of soil strata.
- 3) Sampling

The undisturbed samples were collected for the corresponding laboratory tests.

4) Laboratory Test

The following laboratory tests were conducted for soil layer samples, according to the AASHTO Test:

natural water content test (for all bridges)

For the San Roque Bridge, the following additional tests were conducted to analyze settlement and embankment failure because of the deep soft ground:

- . PL (plastic limit test)
- . CU (unconfined compression test)
- . UW (unit weight)

For the Maphilindo Bridge, the unconfined compression test was conducted to analyze for piles for horizontal in sand because of the fine sand in the upper layer of the river bed.

The geological profile and geological condition are given in table 5.3-1.

#### 5.3 Types of Bridges

김 사이지는 것 같아요. 동안 문제 문제를 했다.

#### 5.3.1 Description on Bridge Site Condition

The most appropriate type of bridge at a proposed site is decided by taking into consideration the topographical, geological and hydrological conditions as well as the construction condition, available materials and equipment, and the economic condition.

The determination of the bridges type and length, etc. for the Group 1 Bridges was based on the Basic Data of Bridges which was submitted by the DPWH.

For Group 2 Bridges, the hydrological and geological conditions of each bridge were discussed to determine the most appropriate type of bridge. Table 5.3-1 summarizes a brief description of those conditions.

(1) 01.02 Maphilindo Bridge

Hydorological Condition

The Basing River is a wide, low velocity and relatively shallow waterway. The existing structure crossing the river is a type of bailey with 129 meter in length. The river widens 147 meter width and the bank of bridge approach serves also as the embankment for fishing pond.

In the rainy season, the water offenly overflows the bank but does not damage the agricultural products in the area where is located in an estuary and with a plenty of fishing ponds.

> For the hydrological analysis, M.F.L. is decided 21.34 meter in elevation by mean of "Gumbel" in addition to the conventional method as the river located in an estuary and the river branches of in the upperstream.

#### Topographical and Geological Condition

The proposed area is a low land near the sea, where the sediment of diluvial formation has been

- 56 -

developped. The surface is covered with homogenous sand (N: 7-26, thickness: 17 meter), and lower part consists of Silt (N: 4-35, thickness: 35 meter)

The silt in lower part is expected for bearing stratum, and the pile foundation system is recommended for pier and abutment foundation.

#### Construction Condition

The lyang river, located in an estuary, is smooth and well defined channel causing uniform, steady flow, but steel sheet piles are required for the construction of pier inside the river because of deep water.

(2) 03.03 Bacong Bridge

#### Hydrological Condition

The Bacong River has an intermediate width of about 46 m and a deep riverbed. The ordinary water level was changed from 46.4 m (when site investigation) to 49.3 m (present condition), because of new earth dam has been constructed for the purpose of water for irrigation, after site investigation by study team.

#### Topographical and Geological Condition

The proposed bridge is located in the flood plain composed on its bank of impaired terrace deposits previously associated with the old beds and layers of alluvial deposits on river bed consists of clayey sand to silty sand with depth, but was eroded and transported or filled into other areas.

Bed rock is sandstone, however pockets of clay and silt would still be encountered but will decrease with depth.

Pile foundation is recommended to penetrate into sand stone of the lower layer.

#### Construction Condition

The pile bent type was adopted for the substructure the river is deep water (more than 4 m) river. Construction of the abutments were adopted to steel sheet piles, and this steel sheet piles become permanent structure.

#### (3) 03.07 San-Roque Bridge

#### Hydrological Condition

The San-Roque River has an intermediate width of about 53 m and deep riverbed, the lyang river, located estuary and human havitation. This river is smooth and well defined channel causing uniform, steady flow.

For the hydrological analysis, M.F.L. is decided 21.26 m in elevation by mean of "Gumbel" in addition to the conventional method as the river located in an estuary and the river branches off in the upperstream. However M.F.L. (interview) of EL: 20.79 m, which is lower than that computed, was thus adopted for the final design, because the bridge is located at human havitation, given the magnitude of construction of the bridge approach and other conditions.

#### Topographical and Geological Condition

The proposed bridge site is situated along the San Roque Community by which the riverbed is layered by Sand to Clay. Clay becomes dominant with depth until it becomes compacted particularly at -23 elevations.

Shell fragments are evident predominantly on Clayey formation (except on compacted clay were SPT shows refusal) which shows that the area was previously affected by seawater or sometime had been a shoreline until alluvium had been deposited as alluvial fans.

Pile foundation is recommended, however the tip of the pile should be carried down to the dense layer.

- 58 -

#### Construction Condition

The pile bent type was adopted for the substructure because the river is deep water (more than 4 m) river. Construction of the abutment were adopted to steel sheet piles and this steel sheet piles become parmanent structure.

(4) 03.10 Dolores Bridge

#### Hydrological Condition

The Dolores River has an intermediate width, a shallow riverbed and winding The M.F.L. (interview) of EL: 19.28 m, which is higher than that computed, was thus adopted for the final design, because of given the magnitude of economical construction for the bridge approach and other conditions.

Flood plain ranges wide in almost all areas, however during low flood the main stream traverses on the previously discussed river bed.

#### Topographical and Geological Condition

The proposed bridge site is situated on a wide alluvial fan deposit of sandy silt with increasing clay content at depth and becoming very dense at depth.

However the present river bed is compose mainly of another series of deposited sand and gravel which is dense with the first alluvial bed.

Pile foundation is recommended to penetrate into diluvial deposit.

(5) 03.13 Mangkuyog Bridge

#### Hydorological Condition

The Mangkuyog River is a small waterway on the downslope of the Gavaldon Ridge towards Nueva Ecija. Since there is no existing structure, vehicles cross the river by fording during the flood season, causing cutting of the approaches and widening of the channel across the existing roadway.

This river is only 15 m in width during dry season, but its waterway width during flood with debris is difficult to estimate because of a flood and debris area, therefore the approaches of bridge is expect to construction of the spillway taking into consideration safety and above conditions.

#### Topographical and geological Condition

The proposed bridge is situated on the alluvial deposit by debris flow of clay and silt which constitutes the present riverbed. The river banks are of paired terraces of sand and clay and shows that the river had been constructed thru the formation of channels by stream erosion. Stream bed erosion would still be active within the following years since the river gradient is about 20%.

Bed rock is at about Elevation 88 as evident from drilling and is presumably of conglomerate, overlain by sand/gravel formation as diluvial deposit.

### (6) 03.17 Sula Bridge

## Hydrological Condition

The Sula River is a shallow and well defined waterway with about 40 m in width, but floods are anticipated during the rainy season.

A proposal of 3-spans bridge with span length of 20 m was used in the hydraulic computation and the result shows M.F.L. of EL 22.17 m and V of 3.65 m/s. M.F.L. (interview) of EL 21.31 m, which is lower than that computed, was thus 21.31 adopted for the final design Because of given the magnitude of economical construction for the bridge approach and other conditions.

- 60 -

# Topographical and Geological Condition

The proposed bridge site is on hard rock formation presumably overlain by sand and gravel peneplain with small sand bars and underlain by conglomerates as bed rock and is reachable at about 3 meters below present surface.

Pile foundation is recommended to penetrate into sand and gravel of the lower layer.

(7) 04.07a Camagong Bridge

## Hydrological Condition

The Camagong River, located in a estuary, is bounded by concrete retaining walls on both riverbanks, and both side of river is coconut plantation.

During ordinary conditions, the water flows through a small and narrow channel. The river is a shallow and well defined waterway with about 15 m in width, but be affected by tide.

Because of an angle of river flow direction, an skew bridge is recommended.

#### Topographical and Geological Condition

The bridge site is located on a wide flood plain extending thru the coconut trees (on level floors). The river bank is terraced pairly by sandy clay with coral fragments. This layer is presumably a flat lowland submerged on sea water and later emerge (on sea water decline) creating a channel within the riverbed exposing silty clay that extends flatly after bank and presumably thru out the level floors of the flood plain. The stream has been deposited with alluvial fan before the channel was constructed. The first layers were soft, however it becomes hard with depth, thus pile foundation is recommended until the hard strata to be spread footed.

and a second specific devices of the second seco

(8) 04.20a Paragusan Bridge

#### Hydrological Condition

The Paragusan Bridge, located in hilly country, is smooth and well defined channel causing uniform, steady flow, with about 40 m in width, but the rainfall catchment area of the river is so wide.

A proposal of 2-Spans bridge with a span length of 15 m + 30 m is used in the hydraulic computation and the result shows M.F.L. of EL 44.89 m and V of 6.13 m/s. M.F.L. (interview) of EL 45.70 m, which is greater than that computed, is thus adopted for the final design.

#### Topographical and Geological Condition

The proposed site for the bridge is located on a strata of alluvial plain of layered clay and sand (almost flat) which shows impaired stream terraces with abundance of tuffaceons materials. The strata becomes dense to very dense with depth as shown by the SPT values (N-30-Refusal).

> Hard formation is already at about 3 meters at depth and bed rock is not so deep, bed rock is sandstone as evident even on the river base.

Spread footing foundation is recommended for the pier. However pile foundation is recommended to penetrate into soft lock for the abutments.

(9) 04.07b Tan-Agan Bridge

# Hydorological Condition

Tan-Agan River is a shallow estuary and well defined waterway with 19 m in width, but be effected by tide.

- 62 -

As 2-span bridge with span length of 18 m is proposed after comparison of several schemes, which became the basis of the hydrological analysis. The result shows M.F.L. of EL 10.18 m and V of 6.05 m/sec. These results are both permissible, since M.F.L. (computed) is less than M.F.L. (interview) and the velocity is excessive. For design safety, however, the higher flood level 10.53 m (interview) was finally adopted.

## Topographical and Geological Condition

The proposed bridge site is located on a wide flood plain of alluvial deposits consisting mainlu of sand which varies from silty clayey with depth and very dense with depth.

BH-3 shows predominantly the present (time river deposit while BH-1 and BH-2 formation shows previous riverbed Sandy Silt to silty sand where just deposited as alluvial fan on the area. On due process of stream erosion (maybe due to Hydraulic plocking or abrasion), a channel was constructed up to the hard strata, and further several strea, transport, a sandy silty clay is evident thru SPT values (channel fill is about N=11, while its bed is of refusal).

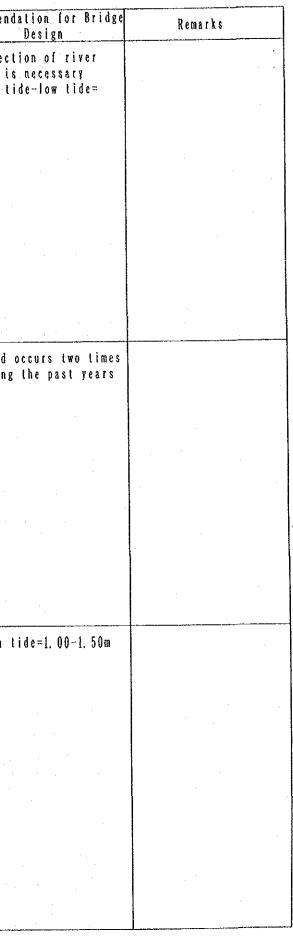
(10) 04.10b-2 Thatub Bridge

#### Hydorological Condition

The Ihatub River is a narrow and relatively shallow waterway. An existing 2-600 mm $\phi$  RCPC overflow structure serves as the main carriageway across the channel. The existing structure which is called a spillway is often inundated by floodwater causing traffic cut-off during the wet season, sometimes even during the dry season.

As 2 spans bridge with 23 m span length is proposed for the hydrological analysis. Analysis shows that, when there is complete replacement of the existing structure, the maximum flood level (M.F.L.) equals EL 2.40 m with an average velocity (v) of 2.86 m/s.

### Topographical and Geological Condition


The proposed bridge site is located on a thick alluvial deposit of sand and sometimes associated with gravel and shell fragments becoming hard with depth (10 meters below, floor elevation) and overlying on bed rock of conglomerate.

River gradient is inconsistent thru out the length. Road profile should be elevated that the present set up and be checked with flood level and to follow the bridge flow elevation.

Approaches should be protected as well as the road profile.

Pile foundation is recommended before reaching the hard strata, by where spread footing would be undertaken. TABLE 5. 3-1 TOPOGRAPHIC & GEOLOGICAL CONDITIONS (1/3)

Bridge No.	Bridge Name	Location of Bridge Site	Geological Profile (Approximation)	Topographical Feature	Geological Feature	Recommend
01. 02	MAPHILINDO Bridge	km, 220+900 Biec-Lomboy Road, Binmaley, Pangasinan	160       32     32       32     32       32     32       32     32       32     32       32     32       32     32       32     32       30	O Bridge site is in the form of a delta (coastal lowland) O River is a large scale meander O There are many fish pond and swampy area in the bridge site O Runing water over flows during the paste floods O Bridge site is nearly the sea shore	O Thickness of alluvial delta deposite is 50m, O Bearing bed of bridge foundation existance at the 40 ~50m.	o Protect side is o High ti 100m
			50 50 FINE SAND STONE N>50	Tidal river		
03. 03	BACONG	km. 105+360 Luacan-Bacong Road.	52	oBridge site is in the form of a terrace oRiver is a large scale meander oThere is levee at	OGeology of bridge site consist of gravel and sand	oflood during
	Bridge	Bacong, Balaan	26 26 10 26 26 26 26 26 26 26 26 26 26	both sides of river ORuning waler over flows the levee during the past floods		
			30 FINE SAND N>50			
03. 07	SAN ROQUE Bridge	km. 57+284 San Roque Barangay Road, Hagonoy, Bulacan	54 18 18 18 10 54 18 18 18 18 18 18 18 18 18 18	O Bridge site is in the forms of a delta (coastal lowland) O Situation of bridge is 500m from sea shore O Left side of riber is 0.5m lower than right side	o Geology of nearly bridge site consist of five grain soil o Thickness of alluvial soft soil is 40m o Depth of bearing bed (bridge foundation is 30 ~40m)	oHigh t
			20         SILT CLAY           N=5~10           30	O Bvery year during the flood O There are many waler ways on channels at the nearly bridge side		
				Tidal reiver		



-65-

TABLE 5, 3-1 TOPOGRAPHIC & GEOLOGICAL CONDITIONS (2/3)

Bridge No.	Bridge Name	Location of Bridge Site	Geological Profile (Approximation)	Topographical Peature	Geological Feature	Recommendation for Bridge Design	Remarks
03.10	DOLORES Bridge	km, 76+870 Dolores-Del Rosario Road, Dolores, Bacolor, Panpanga	48 24 24 24 24 24 24 24 20 30 20 30 30 40	O Bridge site is in the formed of terrace O River meandering is so large and narrowed at the bridge site O Running water is rapid at bit stream	o Geology of bridge site consist of sand	ONo, flood but large catchment area	
03. 13	MANGKUYOG Bridge	km. 169+000 Camachile- Bantug Road, Nueva Ecija	96 24 24 24 24 10 000 000 000 000 000 000 000 000 000	o Bridge site is an alluvial flood plain o River bed is so wide and running water is ver fast o River stream usually change course o There is levee at the right side of river and debris flow trace uptream Ruin river	o Geology of bridge site is consist of gravel and sand including boulders (Flood Deposit) o Right side of river is lower terrace with grevel Flood deposit	O There are many traces of debris flowing from SIDOG to bridge site on the access road O River bed usually Changes during heavy rains O River have a large flood area O It is necessary to protect the levee	
03.17	SULA Bridge	km. 150+000 Tarlac-Sula Road Sula, Tarlac, Tralac	60           20         20         20           10         0.00000000000000000000000000000000000	ORiver is curved at the upstream 200m from bridge site OThere is levee at both sides of river ORUNNING water is very fast and large in volume Rapid river	o Geology of bridge site consist of lerrace deposits which is gravel and sand (including brecia 30m) There are boulders and cobble gravel	o There are some narrow access roads leading to the bridge site o Excavation of bridge of foundaton is very difficult due to running water and gravel	
04. 07a	CAMAGONG Bridge	km. 23+700 Quezon-Alabal Perez Road, Alabal, Quezon	44       22     22       10     SAND     H=15~20       10     SAND     H=20~50       20     SAND     N>50       30     YERY POORLY GRADED WITH CORAL       40	O Bridge site is in the form of a delta (coastal lowland) O Swampy area is at up stream of river and river meandering O Flood is often occurs and over flows the existing bridge	o Geology of bridge side consist of soft ground which is coastal lowland (soft ground m) o Thickness of soft ground is 17-20m There are bearing bed at 17-20m (depth) for bridge foundation	oHigh tide-low tide= 2.00m olt is necessary to protect the levee	

-66-

TABLE 5. 3-1 TOPOGRAPHIC & GEOLOGICAL CONDITIONS (3/3)

Bridge No.	Bridge Name	Location of Bridge Site	Geological Prolile (Approximation)	Topographical Feature	Geological Peature	Recommendation for Bridge Design	Remarks
04. 20a	PARAGUSAN Bridge	km, 91+84 San Pablo-San Isidro, San Pablo City, Laguna	45 30 15 CLAY (LOAM) CLAY (L	O Bridge site is in the form of a terrace (Terrace) ORiver is formed muldental valley and straight arrangement ORUNNING water is very large volume at the heavy river Terrace form	o Geology of bridge site consist of terrace deposit o Geology of out of view 0-2m (loam) ash 2-4m graval mixed clay (terrace deposit) 4-7m tuff on tuff brecia	Olt is necessary to consider the running water pressure in	
04. 075	TAN-AGAN Bridge	km. 11+100 Odiongon-San Andres Road, Tan-Agan, San Andres, Rombion	36 18 18 18 18 18 18 18 18 18 18	OBridge site is in the lorm of a coastal terrace ORiver water is very slow stream	OGeology of bridge site consist of terrace deposits (sand and gravel)	Olligh tide-low tide= 1.00-1.50m Oll is necessary to protect the levee	
			30 SAND WITH GRAVEL N>50	Tidal river			
04. 10b-2	IHATUB Bridge	km, 116+832.85 Boac-Gasan Road Ihatub, Boac, Marinduque	46 23 23 10 5AND GRAVEL	O Bridge site is in the form of a coastal terrace O River is large scale meander O Distance from coastal (sea shore) to bridge site is 100m	O Geology of bridge site consist of terrace deposits which is sand gravel	oExisting bridge is a spillway oHigh tide-low tide= 100m	
			<u>30</u>				
							-67-

# 5.3.2 Bridge Length and Span Length

1) Bridge length

1) Group 1 Bridges

The determination of bridges type and length, etc. for the Group 1 Bridges was based on the Basic Data of Bridge which were submitted by DPWH.

Consequently, bridge lengths were decided based on M.F.L. (maximum floods level), topographic survey (topographic map, river cross section, road cross section) and photographs, etc., taking into consideration the physical conditions described above.

Taking into consideration the fabrication of steel girders in Japan and the construction method in the Philippines, the maximum Bridge Length and number of Spans was decided to be less than 50 m and two spans.

2) Group 2 Bridges

In principle, abutments which control bridge length are planned to be located behind the intersection point of the river bank slope and the maximum flow level.

Therefore, in this Study, the hydrological analysis was conducted initially, and the bridge lengths were decided based on the results of the hydrological analysis described below. (The results of the hydrographic analysis are given in Table 5.2-3.) The outline of the hydrological analysis was described earlier in Section 5.2.2. The hydrological data for the analysis is shown in Appendix 5.

To determine the drainage basin of the river and to compute its design discharge at a frequency of once every 50 years.

To compute the maximum flow level by incorporating design discharge and present water opening, and to examine the possibility of the maximum flow level, compared to the maximum flow level determined during field investigation.

- 68 -

Abutments are planned to be located behind  $t_{he}$  intersection point of the design maximum flow level  $a_{hd}$  the slope of river bank.

However, since the four (4) bridges listed below are planned in areas of flat topography where floods easily occur, the bridge length computed by this method is unreasonably long. For that reason, the design bridge length was determined based on the size of the required water opening, given the existing cross-sectional topography of the river and the topographical conditions on both sides of the bridges.

- 01.02 Maphilindo Bridge
- 03.07 San Roque Bridge
- 03.10 Dolores Bridge
- 03.17 Sula Bridge

(2) Span length

Span length was determined on the basis that piers should not obstruct flood water and streaming floats, considering the conditions of water flow and topography.

1) Group 1 Bridges

Taking into consideration the fabrication of steel girders in Japan and the construction method in the Philippine, the maximum span length of bridges was decided to be less than 25 m.

The determination of span length were based on the Basic Data of Bridges, similar to the determination method of bridge length.

2) Group 2 Bridges

The Japanese Design Guideline specifies the approximate span length as follows:

 $Q \ge 500 \text{ m}^3/\text{sec}$  L = 30 + 0.005 Q Q  $\le 500 \text{ m}^3/\text{sec}$  L = 20 + 0.005 Q

where:

Q = design flood discharge, m³/secL = span length, m

- 69 -

The span length of the bridges computed by the formula of the specification are shown in Table 5.3-2.

The design span length is also shown in Table 5.3-2. Design span lengths were finally decided based not only on river conditions such as river alignment, topography and floats, but also on other factors such as geological and construction conditions.

TABLE 5.3-2 DETERMINATION OF DESIGN SPAN LENGTH AND BRIDGE LENGTH

Bridge No.	Bridge Name		ridge Len Hydrolog Analysi (m)	ical	Design (m)	span
01.02	MAPHILINDO BRIDGE		164	32 x 5	5 span=1	60
03.03	BACONG BRIDGE	41	53	26 x 2	2 span=	52
03.07	SAN ROQUE BRIDGE		56	18 x 3	3 span=	54
03.10	DOLORES BRIDGE	23	49	24 x 2	2 span=	48
03.13	MANGKUYOG BRIDGE	20	98	24 x 4	1 span=	96
03.17	SULA BRIDGE	32	62	20 x 3	3 span=	60
04.07a	CAMAGONG BRIDGE	22	45	22 x 2	2 span=	44
04.20a	PARAGUSAN BRIDGE	43	47	15 +30	) span=	45
04.07b	TAN-AGAN BRIDGE	22	37	18 x 2	2 span=	36
04.10b	IHATUB BRIDGE	21	47	23 x 2	? span=	46

70 -

#### 5.3.3 Types of Superstructures

#### (1) Types of Superstructures

The span lengths for the bridges are proposed based on the hydrological controls taking into consideration topographical, geological and construction conditions, and the span lengths are divided into the following two (2) cases:

Case 1 : Span length is less than 25 m Case 2 : Span length is more than 26 m

The number of spans by span length is summarized for each Group in Table 5.3-3.

TABLE 5.3-3 NUMBER OF SPANS

Group 1

## Group 2

Span Length	No. of	Span	Span Length	No. of Spar
24.0	11	<del></del>	32.0	5
23.0	8		30.0	and the second
22.0	4		26.0	2
21.0	2		24.0	a≃ n i sin <b>6</b> i sin
18.0	4		23.0	2
15.0	9	· · · · · · · ·	22.0	2
	-		20.0	3
Total	38	spans	18.0	5
(Total length:			15.0	1 1

Total 27 spans (Total length: 641 m)

The type of superstructures was adopted as follows:

Span length less than 25 m H-beam girder
 Span length more than 26 m Plate girder

The reasons for the selection of superstructure type can be explained as follows:

1) Case 1 : H-beam girder for less than 25 m

For bridges with span lengths less than 25 m, the following three (3) types were judged to be more economical for steel bridges based on experience in Japan:

a) H-beam composite girder

b) Plate girder (non-composite build-up girder)

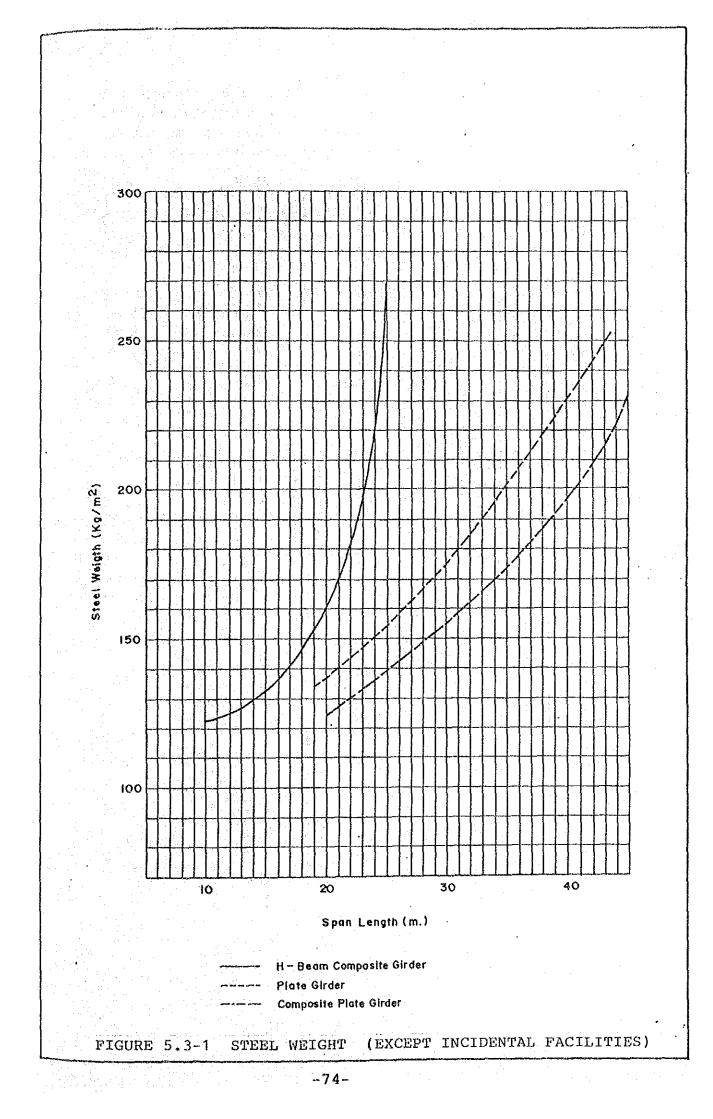
c) Composite plate girder (composite build-up girder)

Composite plate girder, in which slab concrete is utilized to take part of the resistant capacity of the girder based on the structural synthesis of slab concrete and plate girder, was determined as an unsuitable superstructure type for the Philippines because of problems in concrete quality, handling manner and maintenance. On the other hand, the composite structure type was adopted for H-beam girder because it has some allowance in its sectional stress but less in its deflection. As a result of the comparison between H-beam girder and plate girder (non-composite) in Table 5.3-4, the former was adopted.

TABLE 5.3-4 COMPARISON OF H-BEAM GIRDER AND PLATE GIRDER (for less than 25 m bridge span length)

Evaluation Item	H-Beam Girder	Plate Girder	Evaluation (advantage)
Adoptable Span	Less than 25 m	Less than 40 m	
Girder Depth	Approx. 90 cm	Approx. 130 m	H-beam
Difficulty of Transportation Erection	Easy	Little difficulty	H-beam
Erection Cost	Lower (more material, cheaper fabrica- tion cost)	Higher (less material, higher fabrica- tion cost)	H-beam

Figure 5.3-1 shows a comparison of steel weights, except for accessories such as shoes, expansion joints, handrails and drainage boxes.


2) Case 2: Plate girder (non-composite) for more than 26 m span bridge

For bridges with span length of 35 m, the following two (2) types are widely used as more economical steel bridges based on experience in Japan:

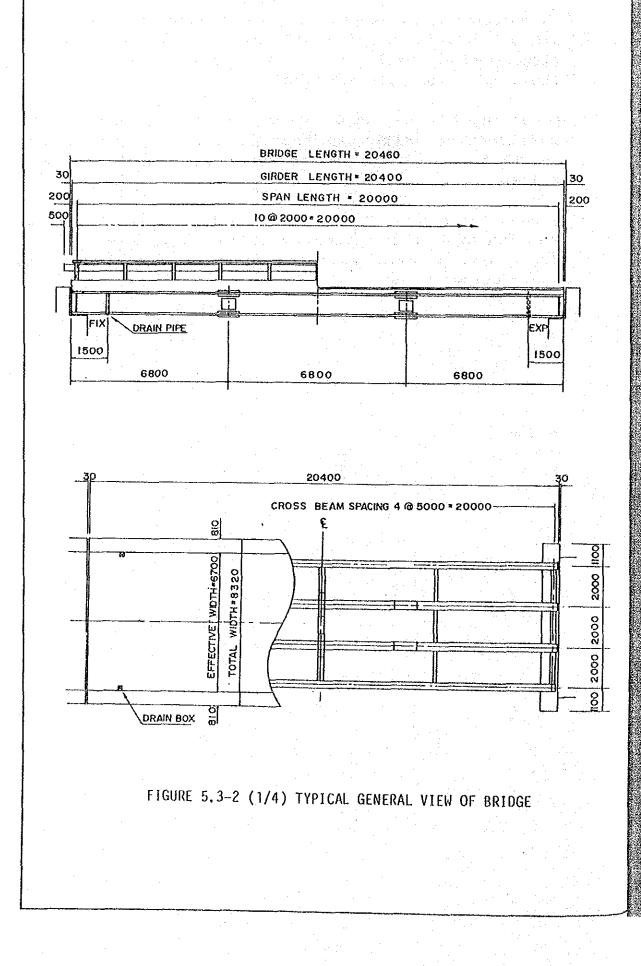
- 72 -

- a) Plate girder (non-composite build-up plate girder)
- b) Composite plate girder (composite build-up plate girder)

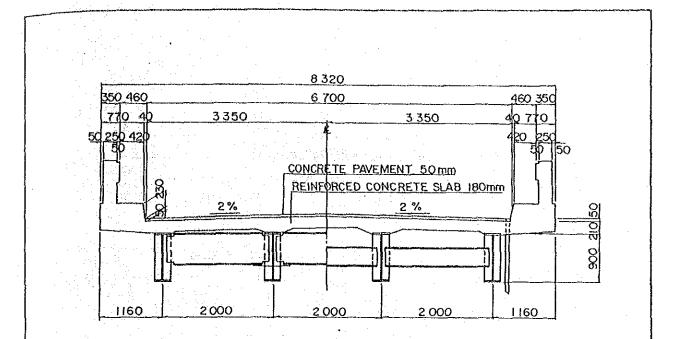
As described above, since the composite type is regarded as an unsuitable structure for the Philippines, the plate girder type was adopted despite its being relatively uneconomical. A comparison between plate girder and composite plate girder is presented in Table 5.3-5.



COMPARISON OF PLATE GIRDER AND COMPOSITE PLATE GIRDER 5.3-5 TABLE


Evaluation Item	Plate Girder	Composite Plate Girder	Evaluation (advantage)
Slab Concrete	Required quality k = 270 kg/cm ²	Reguired guality k = 300 kg/cm ²	Plate girder k = $270 \text{kg/cm}^2$ is common in R.P.
Girder Depth	Over 180 cm	Approx. 180 cm	Composite pl. girder
Deflection	More	Less	Composite pl. girder
Maintenance	Easier to repair	More difficult to repair	Plate girder
Cost	Higher	Lower	Composite pl. girder

--75-


The girder depth adopted for the design was reduced to its deflectional limit of 160 cm, because the lower the girder depth, the lower the approach road embankment and the shorter the approach road.

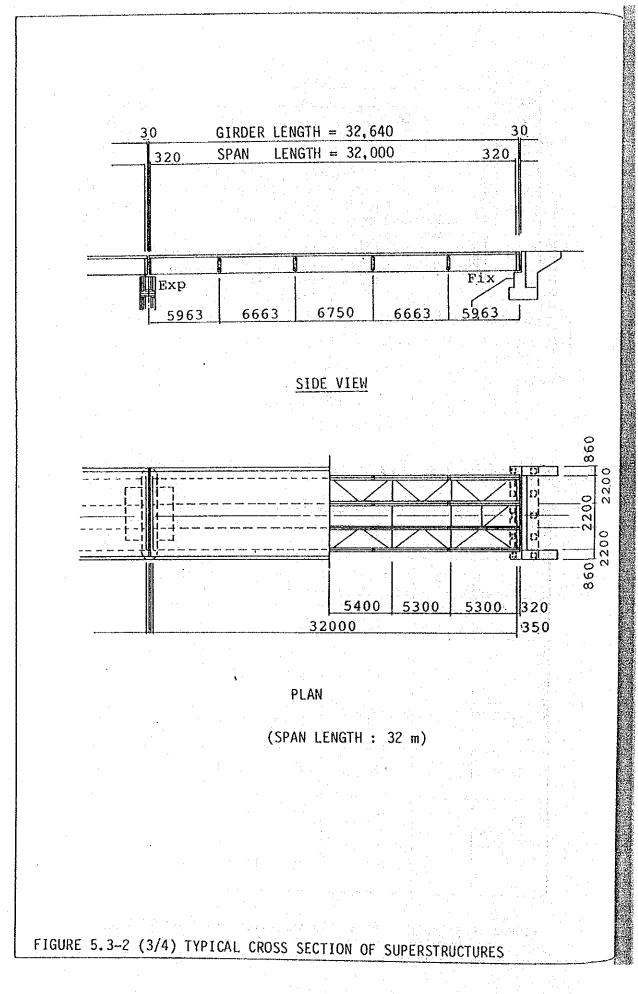
Given the fabrication of steel girders in Japan and the construction method in the Philippines, the maximum length of the girder members was decided to be less than 8.5 m.

Figure 5.3-2 (1/4, 2/4) shows a general view and typical section of H-beam composite girder, also Figure 5.3-2 (3/4, 4/4) shows a general view and typical section of Plate girder.



-77-




CROSS SECTION (SPAN LENGTH : 24m )

H-BEAM COMPOSITE GIRDER (SPAN: 15m, 18m, 20m, 21m, 22m, 23m, 24m)

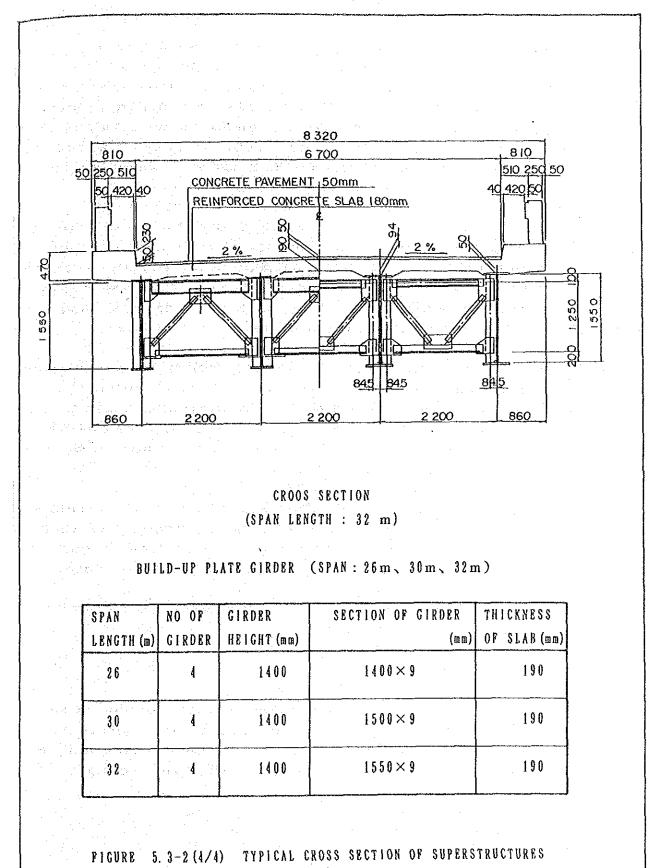

	SPAN	NO OF	GIRDER	SECTION OF GIRDER	THICKNESS
v	LENGTH (m)		HEIGHT (mm)	(a m)	OF SLAB (mm
	15	4	700	700× 300×13×24	180
	18	4	792	792× 300×14×22	180
	20	1997 <b>- 1</b> 997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	890	890× 299×15×23	180
	21	4	900	900× 300×15×18	180
	22	4	900	900× 300×16×18	180
	23	4	912	912× 302×18×24	180
	24	5	900	900× 300×18×24	180

FIGURE 5. 3-2 (2/4) TYPICAL CROSS SECTION OF SUPERSTRUCTURES

-78-



-79-



(BUILD-UP PLATE GIRDER)

-80-

#### (2) Determination of Bridge Width

As adopted for Phase I and II bridges, the carriageway width of 8.32 m were proposed for Phase III bridges in compliance with the request of the Department of Public Works and Highways (DPWH). The Study Team finally adopted the proposed bridge with through the technical verification on its requirements based on the following reasons.

- 1) The highway specification of the DPWH calls for the minimum carriageway width of 6.1 m with shoulders of 0.3 m at both sides, the total width of 6.7 m. For the average type of roads in rural areas, the same width is usually applied. The clear zone of 0.46 m in width is provided inside hailrail section.
- 2) In line with the emphasis in the Medium-Term Philippine Development Plan that improvement of rural roads shall be given the precedence, the DPWH decided adoption of 2-lane roads for improvement and rehabilitation of rural roads. In accordance with this policy, 2-lane bridges is preferable for the project.
- 3) All bridges constructed under assistance of international lending institutions and with local resources such as reinforced concrete bridges, pre-stressed concrete bridges and steel bridges have 2-lane width or more.

Refer to Figure 5.3-2 (4/4), Standard Cross-Section of Superstructu for details.

#### (3) Road Surface Height

Providing H.W.L + 1 m with allowance under bridge based on the DPWH standard, the road face height was determined by adding span height, slab thickness, pavement thickness, etc. to above size. Bridge top face is required to make level after construction.

03.07 San Roque Bridge

The proposed bridge site is located the San Roque community which is human havitation.

providing H.W.L + less than one meter with allowance under bridge for side spans and also adopted viertical curve for the road alignment, because it given the magnitude of construction of the bridge approach and other conditions.

03.13 Mangkuyog Bridge

The proposed bridge is located on the alluvial deposit by debris flow of clay and silt.

Based on DPWH standard, above in case to be providing H.W.L + 1.5 m with allowance under bridge.

This bridge is adopted to H.W.L + 1.5 m for the allowance.

(4) Bridges for Weathering Steel

Considering the location of bridges, weathering steel which provides atomospheric corrosion resistance was planned to be used for the following bridges. These bridges are located near the sea.

RIDGE NUMBER	NAME OF BRIDGE	SPAN LENGTH (m)	GROUP
			*****
01.02	MAPHILINDO BRIDGE	$5 \times 32.0 = 160.0$	2
03.01	PANGULISANIN BRIDGE		1
03.06	BALASING BRIDGE	15.0 + 23.0 = 38.0	1
03.11	PULO BRIDGE	2 <b>3.0</b> 4 des une é déce	1
03.18	SHINDOL BRIDGE	$2 \times 15.0 = 30.0$	- <b>1</b>
04.01a	SAN JUAN BRIDGE	$\mathrm{d}(2,3)(0) \stackrel{\mathrm{def}}{=} \mathrm{d}(1,0) \stackrel{\mathrm{def}}{=} \mathrm{d}(1,0) \stackrel{\mathrm{def}}{=} \mathrm{d}(1,0)$	- <b>1</b> . *
04.02a	TABON-BATONG BRIDGE	22.0 m	1
04.04a	CAGLATE BRIDGE	23.0	1
04.06a	BUENAVISTA BRIDGE	2 <b>4.0</b>	1
04.07a	CAMAGONG BRIDGE	$2 \times 24.0 = 48.0$	2
04.09a	ISABANG BRIDGE	$2 \times 24.0 = 48.0$	1
04.10a	PANSIPIT BRIDGE	$2 \times 22.0 = 44.0$	1
04.11a	SAN DIEGO BRIDGE	$2 \times 15.0 = 30.0$	a na <b>l</b> a nal
04.16a	PINGIT BRIDGE	$2 \times 21.0 = 42.0$	1
04.17a	SALAY BRIDGE	$2 \times 15.0 = 30.0$	2 <b>1</b> 1
04.18a	MIJARES BRIDGE	23.0	ra 1
04.03b	MARUYUGON BRIDGE	24.0	1
04.04b	DAKOTON BRIDGE	$2 \times 18.0 = 36.0$	dea <b>l</b> e
04.06b	MADALAG BRIDGE	24.0.1.1.1.	1
04.07b	TAN-AGAN BRIDGE	$2 \times 18.0 = 36.0$	2
04.08b	PANIQUE BRIDGE	$2 \times 18.0 = 36.0$	1
04.10b-1	DAYKITIN BRIDGE	24.0	1
04.10b-2	IHATUB BRIDGE	$2 \times 23.0 = 46.0$	2

TABLE 5.3-6 BRIDGES FOR WEATHERING STEEL

# 5.3.4 Types of Substructures

The types of substructures adopted for the Phase III Bridges are T-type abutments and column type piers.

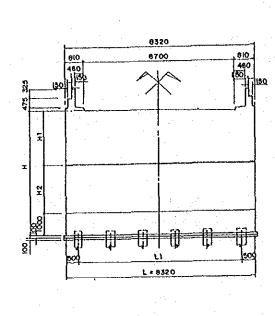
The reason for selecting column type piers was since the rivers cross the bridges at oblique angles, column piers were adopted to avoid disturbing the stream lines. Refer to Table 5.3-7.

T-type abutments on pile foundations are strongly recommended to have at least two (2) lines of piles in order to avoid tilting of the abutments and scouring of the embankments behind the abutments.

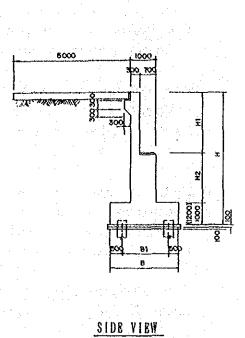
The recommended standard types of abutments and piers, both for spread footings and pile foundations, are shown in Figures 5.3-3 (1/5) - (4/5).

Rectangular R.C. piles of  $400 \times 400$  were adopted for the pile foundations.

However, the pile bent type was adopted for the Bacong and San Roque Bridges, because both rivers are deep water (more than 4 m) rivers.


Pile bent type is shown in Figure 5.3-3 (5/5).

BRIDGE		STREAM	
NO. NI	AME OF BRIDGE	ANGLE*	REMARKS
01.02	MAPHILINDO BRIDGE	90 ⁰	5 x 32.0
03.03	BACONG BRIDGE	80 ⁰	2 x 26.0
03.07	SAN ROQUE BRIDGE	90 ⁰	3 x 18.0
03.10	DOLORES BRIDGE	900	2 x 24.0
03.13	MANGKUYOG BRIDGE	75 ⁰	$4 \times 24.0$
03.17	SULA BRIDGE	90 ⁰	3 x 20.0
04.07a	CAMAGONG BRIDGE	60 ⁰	2 x 22.0, 60 ⁰ Skew
04.20z	PARAGUSAN BRIDGE	90 ⁰	15.0+30.0, Spread
			Foundation
04.07b	TAN-AGAN BRIDGE	75 ⁰	2 x 18.0
04.10b-2	IHATUB BRIDGE	65 ⁰	2 x 23.0

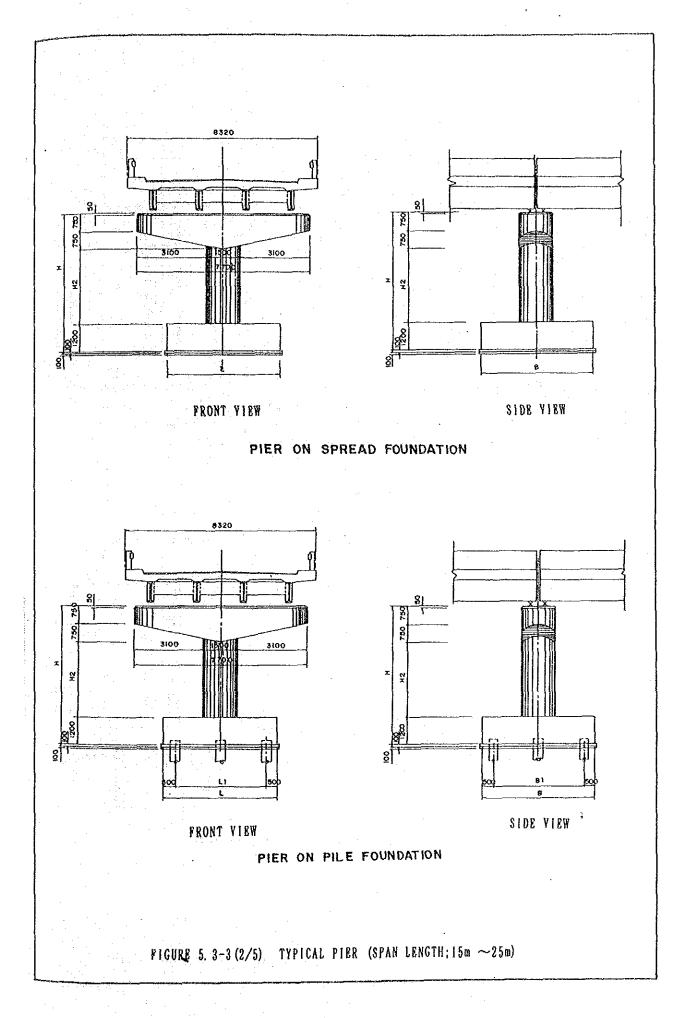

TABLE 5.3-7 STREAM ANGLE

Note: * Oblique angle between stream line and bridge

- 84 -



FRONT VIEW




ABUTMENT ON PILE FOUNDATION

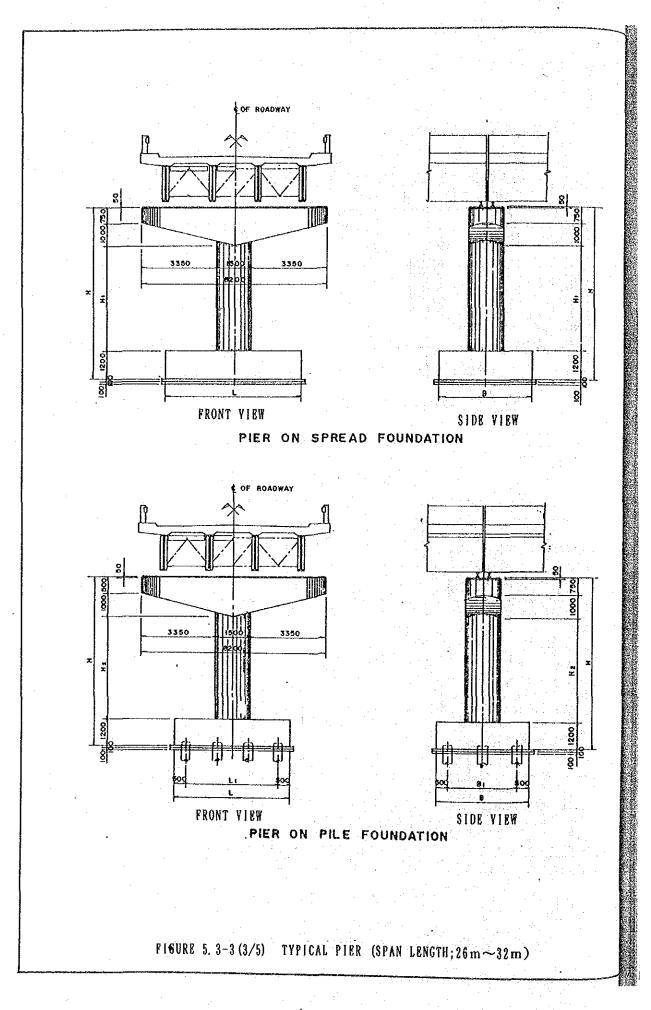
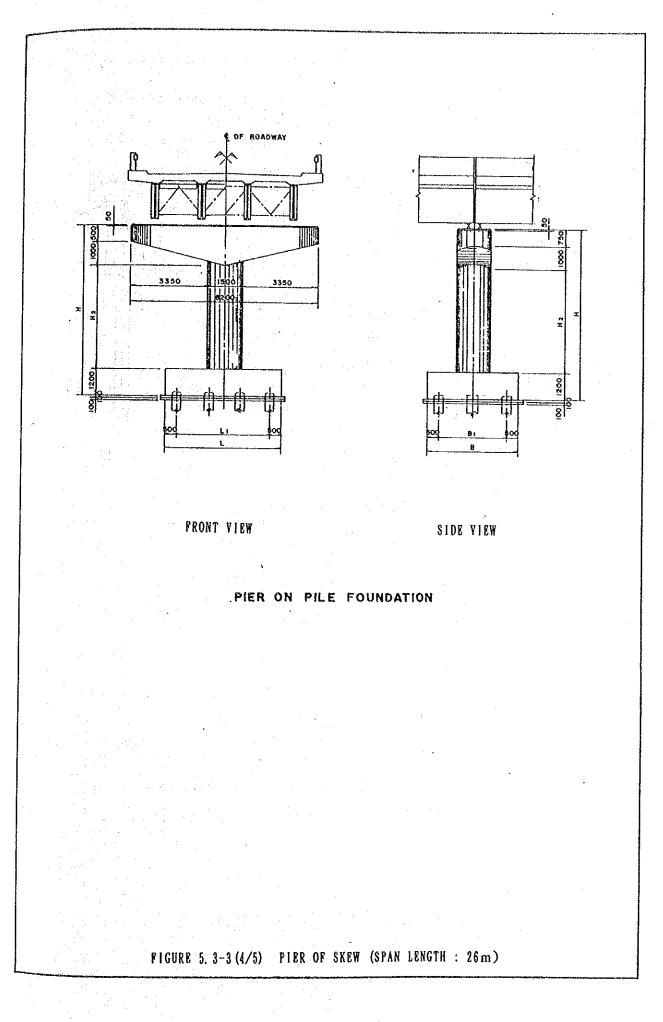

		· · ·	1944 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 -	ter de la composition				Ang s	· . ·	
BRIDGE NO.	NAME OF BRI	DÇE	H H	EIGE H	î (г Н ₂	n) H3	B ∎	DTH B ₁	(m) B ₂	PILE LENGTH (a) 1No.
	MAPEILINDO	A 1	5.00	2. 05	1.75	1. 20	3.00	1, 20	0.40	24. 0 × 12
01:02	BRIDGE	12,		2.05	1.25	1.20	3.00	1.20	0.40	21. 0 × 12
03.03	BACONG BRIDGE	<u>1</u>	4.50	1.90	1.60	1.00	3.00	1.20	0.40	$\frac{24.0 \times 12}{24.0 \times 12}$
	SAN ROQUE	<u>       </u>	3, 50	1. 24	1. 25	1.00	2. 50	1. 20	0.30	$\frac{24.0\times12}{24.0\times8}$
03.07	BRIDGE	12	3.50	1. 24	1.25	1.00	2. 50	1.00	0.30	24.0×8
03.10	DOLORES	11	5.00	1.37	2.65	1.00	3.00	1.00	0.30	12. 0 × 12
	BRIDGE	<u> </u>	5.00	1.37	2.65	1.00	3.00	1.00	0.30	16. 0 × 12
03.13	MANGKUYOG Bridge	A1 A2	5.00	1.37	2.65	1.00 1.00	3.00	1.00 1.00	0.3	8.0×10 8.0×10
03.17	SULA	11	5.50	1.35	2.65	1.00	3. 00	1.00	0.30	6. 0 × 10
	BRIDGE	12	5.50	1.35	2.65	1.00	3.00	1.00	0.30	6.0×10
04.07*	SUBRIDGE	<u>  1  </u>	3, 50	1.35	1.14	1.00	2. 50	1.00	0.3	7. 0 × 10
	BRIDGE	12	3.50	1.35	1.04	1.00	2.50	1.00	0.3	7. 0 × 10
04.20+	CAHAGONG BRIDGE	11	3, 50	1.16	1.34	1.00	2.50	1.00	0.30	5, 0 × 8
	PARAGUSAN	<u>k2</u>	4.00	2.00	1.00	1.00	2.50	1. 20	0.40	5. 0 × 10
04.075	BRIDGE	12	3.50	1. 25	1.25	1.00 1.00	2.50 2.50	1.00	0.30	8.0×8 11.0×8
04.105-2	TAN-AGAN	11	3.50	1. 37	1.13	1.00	2.50	1.00	0.3	7. 0 × 10
U4. (80-2	BRIDGE	12	3.50	1.36	1.13	1.00	2.50	1.00	0.3	5. 0 × 10

FIGURE 5. 3-3 (1/5) TYPICAL ABUTMENT

-85--




-86-



-87-

-



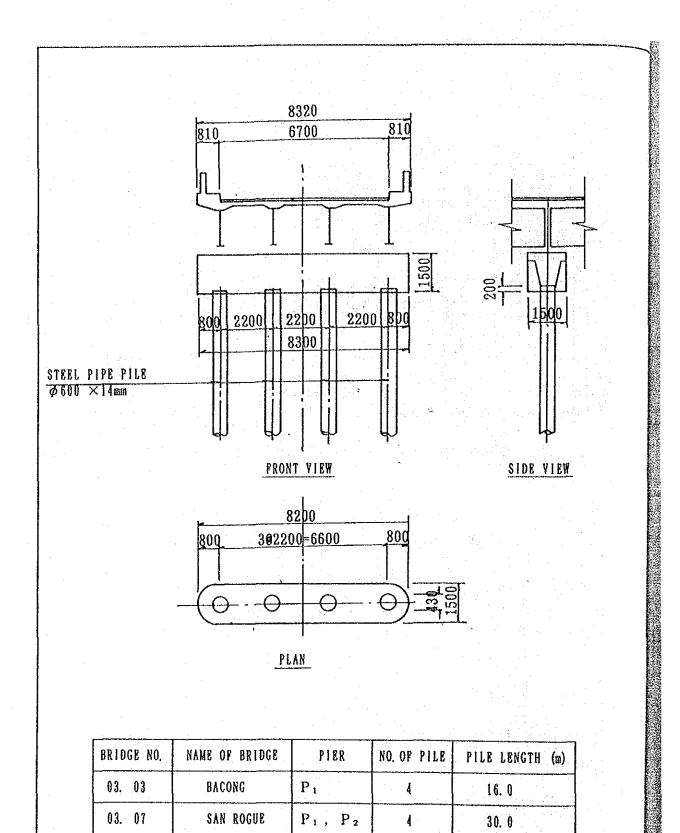



FIGURE 5. 3-3 (5/5) PILE OF PILE BENT

-89-

# 5.3.5 Proposed Bridge Types

The most appropriate type of bridge for each proposed site was finally selected as shown in Table 5.3-8 for Group 1 Bridges and 5.3-9 for Group 2 Bridges.

90

 BRIDCES	1	GROUP	0 B	SUMMARY OF GROUP 1	ABLE 5.3-8	83

2. 2.	BKIDGE No.	NAME OF BRIDGE	TYPE OF BRIDGE	No.	BRIDGE No.	NAME OF BRIDGE	TYPE OF BRIDGE
	03.01	PAMGULISANIN BRIDGE	۶ <del>۵ د 24</del> m ۵ E	15.	04.16a	PINGIT BRIDGE	<u> τ×21m</u> L=21m F G E D F
	03.04	TIGBE BRIDGE	لية المراجع ال المراجع المراجع	16.	04.17a	SALAY BRIDGE	L=15m L=15m F Δ E Δ E
m n	03.06	SALASING BRIDGE	L=15m L=23m F A E E E	17	04. 18a	MIJARES BRIDGE	لــــــــــــــــــــــــــــــــــــ
4	03.08	PIAS BRIDGE	L=23m L=23m F ^A E ^A F L=23m	18.	04.19a	PALAYAN BRIDGE	F <u>~ L=24m</u> ESKEWØ-60
	11.50	PULO BRIDGE	F. A. L=23m A. E	19.	04.21a	TARAK BRIDGE	Γ <del>α [=24m</del> 2 Ε
2	03. 78	SINDOL BRIDGE	L=15m L=15m F A E E E A F	°N S	04.22a	STO. NINO BRIDGE	L=23m, ⊾ E
- -	04.01a	SAN JUAN BRIDGE	F & L=23m & E	21.	04.23a	DEL PILAR BRIDGE	<u>E</u> ∡24m ⊃ E
8	04.02¤	TABON BATONG BRIDGE	F A L=22m A E	22.	04.03b	MARUYUGON BRIDGE	F 5 - L=24m E
0	04 <b>.</b> 04a	CAGLATE BRIDGE	F <u>A</u> L=23m <u>A</u> E	23.	04.04b	DAKOTON BRIDGE	F Δ = 18m L=18m F Δ = E ^Δ E Δ F
10.	04. D6a	BUENAVISTA BRIDGE	F 4 L=24m 2 E	24.	04.06b	MADALAG BRIDGE	<u>t=24m</u> 2 E
11.	04.09a	ISABANG BRIDGE	F <u>L=24m</u> <u>L=24m</u> E	25,	04. 08b	PANIQUE BRIDGE	L=18m [L=18m F
2	04.10a	PANSIPIT BRIDGE	L=22m L=22m F G EGF DE	26.	04.09b	MARANLIG BRIDGE	L=15m L=15m For ErE AF
13.	04.114	SAN DIEGO BRIDGE	L=15m L=15m F A EAE P F	27.	04.106-1	DAYKITIN BRIDGE	27. 04.10b-1 DAYKITIN BRIDGE

# TABLE 5. 3-9 SUMMARY OF GROUP 2 BRIDGES

BRIDGE NO.	NAME OF BRIDGE	TYPE OF BRIDGE	SUPERSTRUCTURE	SUBSTRUCTURE	REMARKS
01. 02	MAPHILINDO BRIDGE	L = 32m $L = 32m$ $L =$	BUILD-UP BEAM L; $32+32+32+32+32+32=160$ m	A 1 Abut-RC Pile ( $400 \text{mm} \times 400 \text{mm} \times 24.0 \text{m} \times 12 \text{Piles}$ ) p 1 Pier-RC Pile ( $400 \text{mm} \times 400 \text{mm} \times 22.0 \text{m} \times 10 \text{Piles}$ ) p 2 Pier-RC Pile ( $400 \text{mm} \times 400 \text{mm} \times 22.0 \text{m} \times 10 \text{Piles}$ ) p 3 Pier-RC Pile ( $400 \text{mm} \times 400 \text{mm} \times 21.0 \text{m} \times 10 \text{Piles}$ ) p 4 Pier-RC Pile ( $400 \text{mm} \times 400 \text{mm} \times 21.0 \text{m} \times 10 \text{Piles}$ ) A 2 Abut-RC Pile ( $400 \text{mm} \times 400 \text{mm} \times 24.0 \text{m} \times 10 \text{Piles}$ )	WEATHERING Stbel Bridge
03. 03	B A C O N G B R I D G E	$L \approx 26 \text{ m}$ $L \approx 26 \text{ m}$ $A_1$ $P_1 H$ $A_2$	BUILD-UP BEAM L; $26 + 26 = 52 \text{ m}$	A ₁ Abut—RC Pile (400mm× 400mm×24.0m×12Piles) p ₁ Pier—Pile Bent (4600, t=14mm, 16.0m× 4Piles) A ₂ Abut—RC Pile (400mm× 400mm×24.0m×12Piles)	
03. 07	S A N R O Q U E B R I D G E	$\begin{array}{c c} L = 18 m \\ L $	H-BEAM L; 18+18+18=54 m	A ₁ Abut—RC Pile (400mm× 400mm×24.0m× 8Piles) p ₁ Pier—Pile Bent (\$600, t=14nm, 30.0m× 4Piles) p ₂ Pier—Pile Bent (\$600, t=14nm, 30.0m× 4Piles) A ₂ Abut—RC Pile (400mm× 400mm×24.0m× 8Piles)	_
03.10	DOLORES BRIDGE	$L = 24 m$ $L = 24 m$ $A_1$ $P_1$ $A_2$	H - B E A M L; 24 + 24 = 48 m	A ₁ Abut-RC Pile (400mm× 400mm×12.0m×12Piles) p ₁ Pier-RC Pile (400mm× 400mm×16.0m× 8Piles) A ₂ Abut-RC Pile (400mm× 400mm×16.0m×12Piles)	_
03.13	MANGKUYOG BRIDGE	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H - B E A M L; 24+24+24+24 = 96 m	A 1 Abut-RC Pile ( $400 \text{ mm} \times 400 \text{ mm} \times 8.0 \text{ m} \times 10\text{Piles}$ ) p 1 Piet-RC Pile ( $400 \text{ mm} \times 400 \text{ mm} \times 8.0 \text{ m} \times 8\text{Piles}$ ) p 2 Piet-RC Pile ( $400 \text{ mm} \times 400 \text{ mm} \times 8.0 \text{ m} \times 8\text{Piles}$ ) p 3 Piet-RC Pile ( $400 \text{ mm} \times 400 \text{ mm} \times 8.0 \text{ m} \times 8\text{Piles}$ ) A 2 Abut-RC-Pile ( $400 \text{ mm} \times 400 \text{ mm} \times 8.0 \text{ m} \times 10\text{Piles}$ )	-
03. 17	SULA BRIDGE	L = 20  m $L = 20  m$	H-BEAM L; 20+20+20=60m	A the Abut-RC Pile (400 mm $\times$ 400 mm $\times$ 6.0 m $\times$ 10Piles) p the pier-RC Pile (400 mm $\times$ 400 mm $\times$ 6.0 m $\times$ 8Piles) p Pier-RC Pile (400 mm $\times$ 400 mm $\times$ 6.0 m $\times$ 8Piles) A the Abut-RC-Pile (400 mm $\times$ 400 mm $\times$ 6.0 m $\times$ 10Piles)	
04. 07a	C A M A G O N G B R I D G E	$L = 22m$ $L = 22m$ $A_1$ $P_1$ $A_2$	H-B E A M L; 22+22=44m	A ₁ Abut—RC Pile (400mm× 400mm× 7.0m×10Piles) p ₁ Pier—RC Pile (400mm× 400mm× 6.0m× 8Piles) A ₂ Abut—RC Pile (400mm× 400mm× 7.0m×10Piles)	WEATHERING STEEL BRIDGE SKEW Ø 60°
04. 20a	P A R A G U S A N B R I D G E	$L = 15 \text{ m}$ $L = 30 \text{ m}$ $A_1 P_1 A_2$	H-88AM+BUILD-UP BEAM L ; 1 5 + 3 0 = 4 5 m	A ₁ Abut—RC Pile (400mm× 400mm× 5.0m× 8Piles) p ₁ Pier—Spread foundation A ₂ Abut—RC Pile (400mm× 400mm× 7.0m×10Piles)	
04. 076	TAN – AGAN BRIDGE	$L = 18 \text{ m}$ $L = 18 \text{ m}$ $A_1$ $P_1$ $A_2$	H - B E A M L ; 1 8 + 1 8 = 3 6 m	A ₁ Abul-RC Pile (400mm× 400mm× 8.0m× 8Piles) p ₁ Pier-RC Pile (400mm× 400mm×12.0m× 8Piles) A ₂ Abut-RC Pile (400mm× 400mm×11.0m× 8Piles)	WEATHERING STBEL BRIDGE
04. LOb -2	I H A T U B B R I D G E	$L \stackrel{\text{c}}{=} 23m$ $L \stackrel{\text{c}}{=} 23m$ $A_1$ $P_1$ $A_2$	H - B E A M L; 23+23=46 m	A 1 Abut-RC Pile (400mm× 400mm× 7.0m×10Piles) p 1 Pier-RC Pile (400mm× 400mm× 5.0m× 8Piles) A 2 Abut-RC Pile (400mm× 400mm× 5.0m×10Piles)	WEATHBRING Steel Bridge

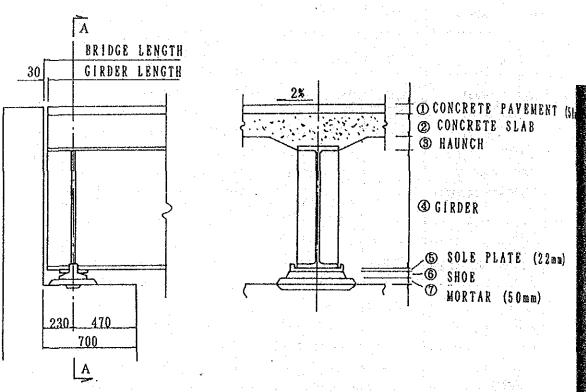
5.4 Design of Superstructures

5.4.1	Design Criteria				
	The design criteria for superstructures, as adopted for the Phase I Bridges, are as follows:				
•	Design Specification : AASHTO Standard Specifications for Highway Bridges (13rd Edition, 1983)				
	: Specification for Highway Bridges, Japan Road Association, 1980				
•	Live Load : AASHTO HS-20-44 (MS18) for Roadways				
· · ·	: 2.873 KN/M2 for Sidewalks				
	, Temperature Change : rise + 10°, fall - 10°				
,	. Concrete Slab : $(3L + 11) \times 1.05$ , L = span Length				
	Max. Length of Member : 8.5 m				
	Concrete Strength : Slab $fc = 300 \text{ kg/cm}^2$ Railing $fc = 130 \text{ kg/cm}^2$				
	. Reinforcing : $fy = 2,400 \text{ kg/cm}^2$				
· · · ·	an de la Reine de la Colombia de la La côme de la colombia				

5.4.2 Design of Superstructures

The result of the analysis are given in the following tables:

- (1) Size and Stress Intensity of Girders for Group 1 Bridges Table 5.4-1
- (2) Size and Stress Intensity of Girders for Group 2 Bridges Table 5.4-2
- (3) Size of Slabs, Girders and Shoes for Groups 1 and Group 2 Bridges Table 5.4-3
- (4) Reaction for Abutments and Pier BeamsTable 5.4-4


	· · · · · · · · · · · · · · · · · · ·			•		1111 	çah she F	·
SPA	n Length (m)	15	1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 10000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1	20	21	22	23	1
CARRIAG	EWAY (m)	6. 7	6. 7	6. 7	6. 7	6, 7	6. 7	1
TYPE		ll-beam	ll-beam	ll-beam	H-beam	H-beam	11-beam	H-bu
GIRER I	EIGHT (mm)	11700x300	H792x300	11890x299	H900x300	H900x300	H912x302	11911:
TYPE OF	STEEL MATERIALS	SMA 5 0	SMA 5 0	SMA 5 0	SMA50	SMA50	SHA50	SHASE
	PRINCIPAL (cm.ª) NOMENT OF INTERTIA	201.000	254. 000	345. 000	411.000	411.000	498. 000	198.1
SECTION	SECTION AREA (cm?)	235. 5	243. 4	270. 9	309.8	309.8	364. 0	361
	SECTION MODULUS ( <i>cm</i> )	4, 980	6, 410	7, 760	9, 140	9. 140	10. 900	10.1
BENDING Noment	LOADING (t • m)	111. 2	153. 2	183. 8	199. 7	216.6	233. 8	un
BENDING	STRESS (kg/cm²)	1, 610	1, 991	1, 999	1, 874	2, 030	l. 858	21
STLESS	ALLOWABLE (kg/cm) STLESS	2. IDO	2. 100	2, 100	2. 100	2. 100	2. 100	1,1
SHEARING	LOADING (t)	31. 7	35.6	38. 3	39. 5	40. 7	42. 0	11
SHEARING	STLESS (kg∕cnł)	374	340	201	293	301	276	-
STRESS	ALLOWABLE (kg/cm) STLESS	1, 200	1, 200	1. 200	1. 200	1. 200	1, 200	,
	DEFLECTION	<u> </u>	<u> </u>	<u> </u>	<u>l</u> 1, 228	<u> </u>	<u> </u>	 ]. [8]
DEFLECTION	ALLOWABLE DEFLECTION	<u>1, 300</u> <u>1</u> 1, 333	<u>1, 200</u> <u>1</u> ], 111	<u> </u>	<u> </u>	<u> </u>	<u>1</u> 870	

### TABLE 5. 4-1 SIZE AND STRESS INTENSITY OF THE GIRDER FOR GROUPI BRIDGES

94-

SPA	n length (m)	18	20	22	23	24	26	30	32
CARRIAG	EWAY (m)	6. 7	6. 7	6. 7	6. 1	6. 7	6. 7	6. 7	6. 7
3991		ll-beam	11-beam	11-beam	ll-beam	ll-beam	Pl~Girder	Pl-Girder	PI- Girde
çırer II	EIGIIT (mm)	H700x300	11792x300	11890x299	11900x300	11900x300	1, 400	1. 500	1. 550
TYPE OF	STEEL MATERIALS	SNA50	SMASOY	SMA50Y	SHA50	SHA 5 0	SNA50Y	SMA 5 O Y	SNASO
	PRINCITAL (cm ¹ ) NOMENT OF INTERTIA	254. 000	345. 000	411.000	498. 000	498. 000	1184.000	1619.000	1883, 000
ECTION	SECTION AREA (cm?)	243. 4	270. 9	309. 8	364. 0	364. 0	319.6	370. 0	397. 1
	SECTION NODULUS (cm)	6, 410	7. 760	9, 140	10. 900	LO. 900	16, 400	20. 900	23, 400
ENDING IIKENT	LOADING (t • m)	153. 2	183.8	216.6	233.8	247.3	328. 9	423. 5	474. 1
XDINC	STRESS (kg/cnl)	1, 991	1, 999	2. 030	1. 854	2, 029	2, 035	2, 047	2. 048
LESS	ALLOWBABLE (kg/cml) STLESS	2, 100	2. 100	2. 100	2, 100	2, 100	2, 100	2. 100	2. 100
EARING	LOADING (t)	35. 6	38.3	40. 7	42. 0	42.6	52. 4	58.0	60. 7
EARING	STLESS (kg/cnł)	340	201	301	276	280	416	430	43
1	ALLOWABLE (kg/cml) STLESS	1. 200	1. 200	1, 200	1, 200	1. 200	1. 200	1. 200	1, 20
	DEFLECTION	1		<u> </u>	1	1	1		
LECTION		1. 208	1, 220	1. 100	<u>1, 139</u>	1, 053	1	675	<u>630</u>
- -	ALLOWABLE	<u> </u>	1.000	909	870	833	769	667	625

# TABLE 5. 4-2 SIZE AND STRESS INTENSITY OF THE GIRDER FOR GROUP2 BRIDGES



## TABLE 5.4-3 SIZE OF SLABS, GIRDERS AND SHOES FOR GROUP 1 AND GROUP 2 BRIDGES

SIDE VIEW

A-A SECTION

				•		1			and the second second second
SPAN LENGTH (m)	٩	0	3	۲	6	6	Ø	SHOB	TOTAL (m)
15	50	180	70+ (20)	700	22	63	50	45	1, 155
18	50	180	70+ (20)	792	22	63	50	45	1. 247
20	50	180	70+ (20)	890	22	63	50	45	1, 345
21	50	180	70+(20)	900	22	63	50	45	1, 355
22	50	180	70+(20)	900	22	63	50	45	1, 355
23	50	180	70+ (20)	912	22	63	50	45	1, 367
24	50			912	22	63	50	45	1, 352
26	50	190	116	1400	25	75	44	75	1, 900
30	50	190	116	1500	25	75	44	75	2,000
32	50	190	116	1550	25	75	44	75	2, 050

NOTE : TOTAL HIGHT (MM) SHOWS HIGHTS OF BRIDGE CENTER

TABLE 5. 4-4 REACTION AND DESIGN REACTION OF ABUTMENTS FOR GROUP 1 & 2 BRIDGES

(Unit ; Ton) NORMAL CONDITION SEISMIC CONDITION SPAN VERTICAL REACTION LONGITUDINAL LATERAL Total Vertical Vertical Live L. Horizontal Horizontal Dead L. (m) 55.0 111, 4 56.4 13.5 56.4 6.8 56.4 15 57.4 125.0 67.6 16.2 67.6 8.1 67.6 18 59.0 134.0 75.0 18.0 75.0 9. 0 20 75.0 142.4 60.0 82.4 19.8 82.4 9.9 82.4 22 146.8 86.4 20.7 86.4 10.4 60.4 86. 4 23 63.0 145.7 82, 7 19.8 82.7 9.9 24 82.7 12.6 104.8 25. 2 104.8 68. 3 173.1 26 104.8 14.5 120.9 11.0 197.9 120.9 29.0 120.9 30 210.3 15.5 81. 3 129.0 31. 0 129.0 32 129.0

SPAN	LIVE LOAD	RATIO OF INTER	IMPACT	G 1	G 2
(m)	(t)	GIRDER/OUT GIRDER		(t)	(t)
15	55.0	1, 197	0. 288	16.1	19.3
18	57.4	, 1, 190	0. 272	16. 7	19.8
20	59.0	1, 187	0. 263	17.1	20. 2
22	60.0	1, 184	0. 254	17. 2	20.4
23	60.4	1, 182	0, 250	17. 3	20. 5
24	63. 0	1. 182	0. 246	17. 9	21.3
26	68.3	1, 325	0. 238	18.2	24.1
30	77. 0	1. 320	0. 224	20.3	26.8
32	81.3	1, 318	0. 218	21. 3	28.3

Note ; Reaction of G1 & G2 includes Impact

-97-

#### 5.5 Design of Substructures

#### 5.5.1 Design Criteria

The design criteria for substructures, as adopted for the Phase I Bridges, are as follows:

- Design Specification : AASHTO Standard Specifications for Highway Bridges (13rd Edition, 1983)
- . Earthquake Load : C = 0.12 with Reference to Relevant AASHTO Provisions

. Concrete Strength at 28 days:

		fc = 210 kc	g/cm ²
Reinforcing	Steel	: $fy = 2,100$	kg/cm ²
Steel Pile		fv = 2.400	kg/cm ²

#### 5.5.2 Design of Substructures

For the convenience of structural design, 20 abutments and 17 piers were grouped into nine (9) cases for Group 2 Bridges, as shown in Table 5.5-1 (1/4 - 4/4), also typical section of abutment and pier as shown in Table 5.3-3 (1/5 - 5/5).

The dimensions of abutments and piers of Group 2 Bridges were applied Group 2 Bridges.

The reaction of the piles for the abutments and piers are shown in Table 5.5-1 (1/4 - 4/4).

4 V D C	BRIDGE	ADUTWONT	BRIDGE	JNIGTOU	ABURMENT	ABURMENTABUTMENT NO.	No. OF	NORMAL	L CONDITION		SEI SMIC	CONDITION	TION	ALL	ALLUWADLE HUN	HUKILUMIAL FUKUE	(t)
3 4 	No.	1 Martinov	LENGTH	5%1¥¥90	(HEIGHT)	(WIDTH)		1 1 1	- <b>-</b>		1 7 7			N-VALUE	PLLE 90 JAYT	CONDITION Ha	SEISMIC CONDITION Ha
	01.02	A.	32.0	X13	5.0	3. 0	12	41.2	33. 9	5.0	41. 5	10.0	10. 1	10	A	8 .1	.10.4
2	01.02	A2	32.0	EXP	دی ج	3.0	12	38.6	32.4		33. 7	14.1	F 4	l/3x9 3	A	5.8	1
c	60 GU	Aı	26.0	0 I C	<b>2</b> -		c			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	c		1				
o.	0a .0a	A2	26.0	V   J	<b>.</b> .	3 *0	21	ж С	o .0 2	4. j	n '''	1 N.	۔۔۔۔ ہ	(	< ≪		ກ ເດ ກໍ ວ່າ
	03.07	A.	18.0	FIX										9	A	6. 8	9.1
	03.07	A2	18.0	EXP	r		· ·					· .			A	5. 8	7.9
4	04.07b	Υ ¹ Υ	18.0	FIX	3.5	2.5	æ	47.6	23. 6	4. 0	29.8	13. 4	6.2	12	A		10. 9
	04.07b	A2	18. 0	EXP	1				· · ·				L	1	Y	7.1	9. 5
	04.20a	A 1	15.0	FIX	r					:	;			13	A	8. 1	10.9
	03.10	A 1	24.0	FIX					t 5					83	A	7. 4	9.9
U	03.10	A ₂	24.0	EXP			7	0.		n.	, .	e -	_	L	A	1.1	9.5
о С	03.13	A 1	24.0	R I X		о С	. u		6		-			20	A	9. 2	12. 3
	03.13	A2	24.0	EXP			7	ಗ ಕ ಕ	00. 4		44° 0		г т о	20	A	9.2	12.3
u	03.17	Aı	20.0	FIX	یں بر 	5 	10	19 0	7 5 6	-	0 4	-	u e	30	٩	6 0	4 
þ	03.17	A²	20.0	EXP				·	- <b>-</b> -	-4	.:	>				5	5

TABLE 5.5-1 SUBSTRUCTURE TYPES AND REACTION OF PILE (ABUTMENT) (2/4)

						. <u>.</u>			÷.			
RCE	(t)	SEISHIC	CONDITION Ha	0	۲۵. ع ۲	10.9	< 4 •	16. 3				
ZONTAL FOR		NOKMAL SEISMIC	CONDITION Ha	0	-1 0	8. 1	G	y. 2				
ALLOWABLE HORIZONTAL FORCE		TYPP OF	PILE	<	۲	A	-	۷				
			N-VALUE	¢	64	13	Q	<b>Λ</b> 7				
	ITION	(t/Pile)	Н	10	ан С	. I 1.	د د	o o				
643	COND	(t/P.		G L Y U L Y O	+ •	13.9		11. 0				
REACTION OF PILE	SEI SMI	-	max min	u		37. 8	<u>،</u> د د	3. 6 20. 0 11. 3 0. 6				
TION	NOIJ	CONDITION S (t/Pile) in H m		Ŀ	n	4.0		3. 6				
REAC	COND 1	(t/b	min	u u	0.0	34. 2						
	NORMAL CONDITION SEISMIC CONDITION		m a x	0 31	40. 3 60. 0	44. 2	<pre>&lt;</pre>	4 U 2 2 . 3				
	ABUTMENT BRIDGE BEARING (HEIGHT) (WIDTH) No. OF No.		<u> </u>		D 1	10 44.2 34.2 4.0 37.8 13.9 9.1	. c					
			u c	¢. v	3. 0	 u	6.2					
				4,	4.0	- 1. 1. 	y. y					
					) )	100 T 100	FIX	F I X	FIX	> - -	V .	•
				22.0	22.0	30.0	V ¢V	40. U				
				Aı	A ₂	A2	A1.	A 2				
	BKIUUE	Vo.		04.07a	04.07a	04.202	0 10, 10	U4. 200-6				
	TYPE			Ŀ	<u>.</u>	ω	 C	{				

NOTE : TYPE OF PILE A : \$30-8 STEEL BARS B : \$25-8 STEEL BARS

-100-

(Nata)

SODSTRUCT DKE THEES WAND FEE

NOTE ; TYPE OF PILE A ; φ30-8 STEEL BARS B ; φ25-8 STEEL BARS

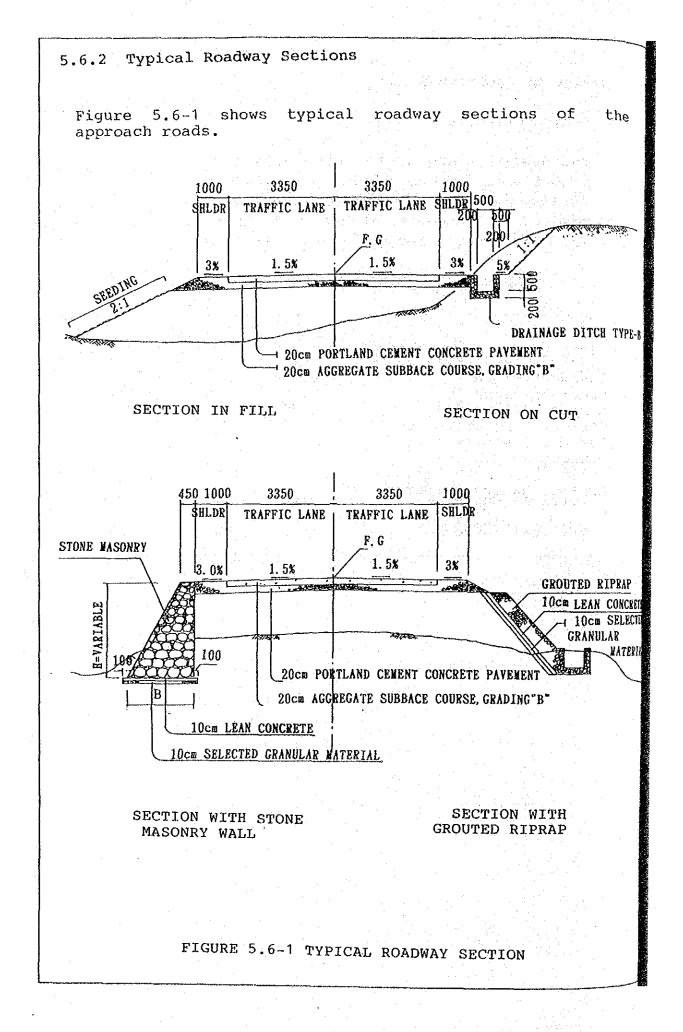
F : Fix

-101-

TABLE 5.5-1 SUBSTRUCTURE TYPES AND REACTION OF PILE (PIER) (4/4)

	BRIDGE	·	BRIDGE	1	P ER	PIER	Na OF		REAC	TION O	REACTION OF PILE			LOWABLE HOI	ALLOWABLE HORIZONTAL FORCE	RCE
τγpε		PIER	1 9 11 20 1	BEARING	(4101010)	5		NUKMAI	, CUNULI	l UN SI	CI SMIC	NUKMAL CUNUTIUN SEISMIC CUNUTIUN (t/Pile) [ (t/Pile) ]				(I) SEISMIC
	o.		L CNG L		(1 m ) (1 m 1 m	2 1	1 1 1 1 1 1	П а х	8 I 8	н Н	max min	н ц	N-VALUE	PILE		CONDITION CONDITION Ha Ha
	Pil	Pile Beat PIER & 600mm t=14mm	ER \$\$ 60	[] 重四] [ = ] {	t mu											
œ	03.03	с. С.	26.0	હો ! હો	1.0		-	81.0	1	1	99. 5 28.	28.3 6.63	12	e =16.0m SP. P	5 s 1, 773	<u> </u>
° a	03 07	P,	C 6	یم ا دع	C Q		-	5			- - 	70 0 15 2 E 19	·	e = 30. 0m	t EAD	\$ 0C4
0		ы Ч	5 6 1		5		<del>ت</del> . ر				•• 1 ••	0 9. TO	<b>~</b>	6- 6- 5		7, 604
								E ; Ero	61	II S S						
×	NOTE ; TYPE	TYPE OF FILE A ; Ø30-8 STEEL BARS	A: Ø3	0-8 STEE!	L BARS	9 • •	Ø25-8 STEEL BARS	L BARS			ana Sinta Sinta	1. 1			 	
· · · .								• • • • •			• .	- - 	· · ·			

-102-


## 5.6 Design of Approach Roads

5.6.1 Design Criteria

The design standard for secondary class national roads specified in the Highway Design Guideline of the Philippines was adopted for the design of the approach roads. Its geometric standard is shown in Table 5.6-1 and was also adopted for the Phase I Bridges.

		a e la companya de la	and the second second
	Flat	Rolling	Mountainous
1. Design Speed (km/hr)	60	50	40
2. Pavement Width (m)	6,70	6.70	6.70
3. Shoulder Width (m)	1.00	1.00	1.00
4. Minimum Radius (m)	120	80	50
5. Maximum Superelevation (%)	· · 8	8	8
6. Maximum Grade (%)	3	5	10
7. Minimum Length of Vertical Curve (m)	60	60	60
8. Minimum Radius for Crest Vertical Curve (m)	1500	1200	1000
9. Minimum Radius for Sag Vertical Curve (m)	1500	1000	800

TABLE 5.6-1 MINIMUM GEOMETRIC STANDARD



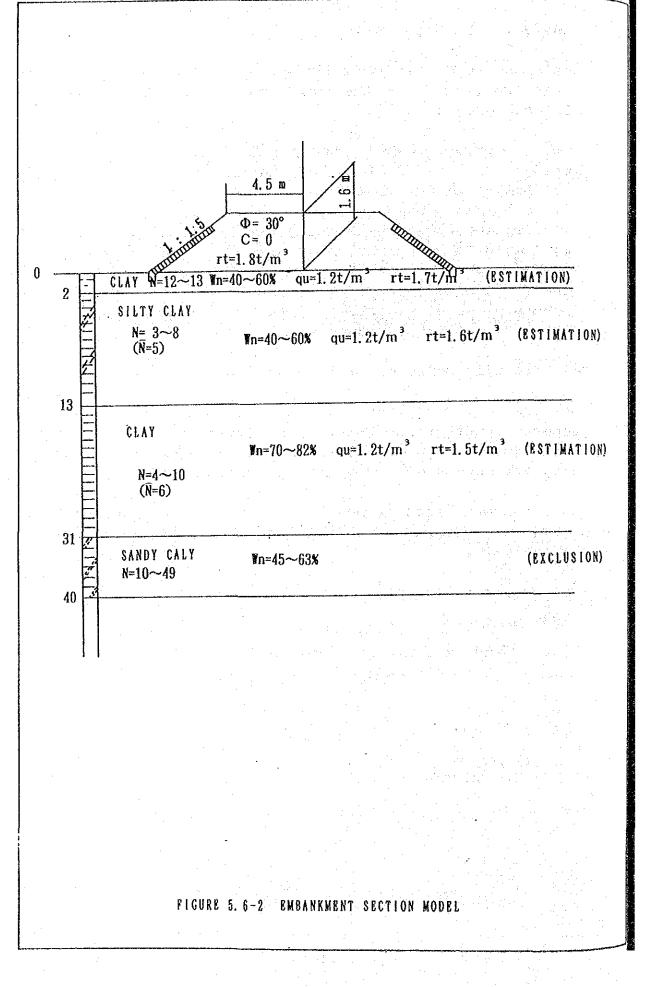
## 5.6.3 Analysis of Soft Ground

As a result of the geotechnical survey, it was ascertained that the subsoil of the San Roque Bridge site in Bulacan is soft ground.

The problems of soft ground for the construction of bridges are insufficient bearing capacity of the subsoil, settlement of embankments due to consolidation and slope failure of embankments. As a countermeasure for insufficient bearing capacity, steel piles ( $\phi$ 600 m, 1=30 m) for piers and reinforced concrete piles with a length of 24 m which are made in Philippines are planned to be used. To stabilize the embankment, the following special countermeasures are planned because of the short period in which the embankment must be implemented.

(1) Soil Property Constants and Embankment Section Model

Laboratory tests were conducted to determine such soil property constants as unit weight, moisture content, liquid limit, plastic limit and uncon-fined compressive strength, which are required to analyze soft ground stability.


The embankment section model and soil property constants of each layer are shown, in Figure 5.6-2. These were used in the analysis.

The symbols in the figure mean the following:

qu : unconfined compressive strength

105 -

- Wn : natural water contents
- rt : unit weight



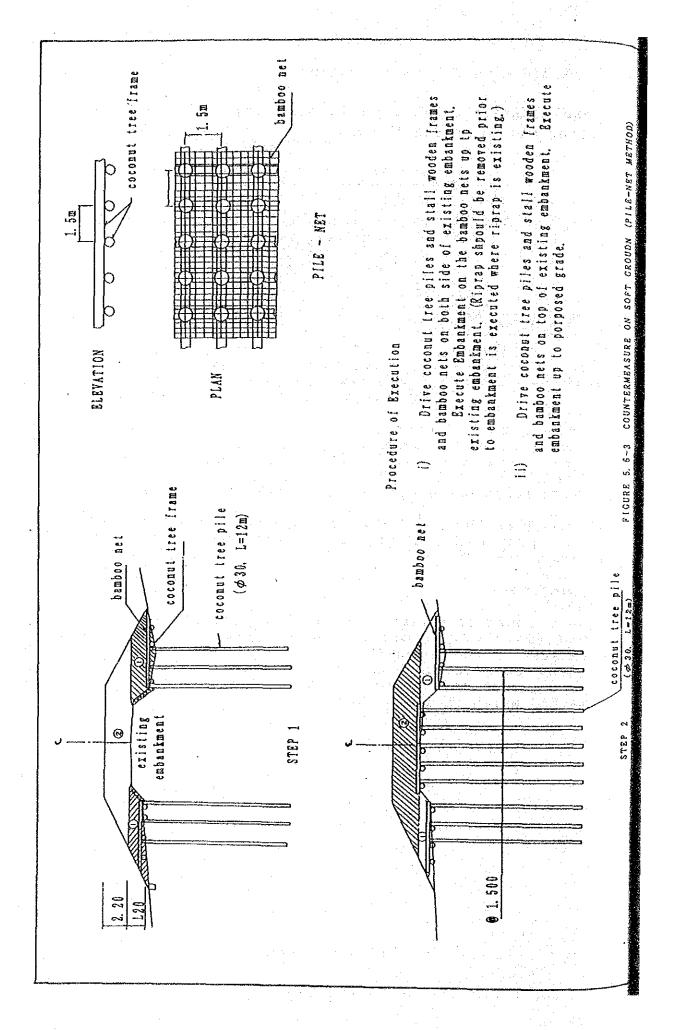
-106-

#### (2) Consolidation Settlement Analysis

Consolidation settlement and settlement time can be computed using the following formulas:

> $S_{c} = \Sigma \frac{E_{0} - E_{1}}{E_{0} + 1} \times H$ where: Sce = consolidation settlement (cm) E0 = initial void ratio E1 = consolidated void ratio H = depth of each soft layer (cm)  $\frac{T \cdot d^{2}}{C_{v}}$

> where: t = settlement time T = coefficient of time d = drain distance Cv = coefficient of consolidation


The consolidation settlement analysis is presented in Appendix 7. The analysis resulted in a complete settlement of 28.1 cm at road center. Assuming a thickness of 5 cm of embankment is executed daily, 80% of complete settlement will be completed in 2 years.

Based on the results of the analysis, a countermeasure may be provided against settlement, although this is not severely critical.

#### (3) Countermeasure

As a countermeasure, the preloading, sheet and pile-net methods were proposed. The pile-net method was adopted because of the necessity of speedy execution, procurement of local material and concrete pavement on the embankment. Bamboo nets and coconut trees will be used for the pile-net method which is illustrated in Figure 5.6-3.

107 -



-108-