Geotechnical Investigation By Mechanical Boring

The following work has been completed by Eng. Geology and Geotechneques adminis.

- (1) Six bore holes were drilled along the bridge axis; 3 borings in river bed and the other 3 on land one on the Khartoum side and two on the Al Fittaihab side.
- (2) Total drilled depth in meters was 112 m consisting of:

- 57 m into sandy silt or sand layer, and - 55 m into Nubian sandstone layer.

- (3) Fourteen (14) standard penetration test were carried out.
- (4) Thirteen (13) undisturbed samples and fifty four (54) disturbed samples were collected for the following laboratory tests.
 - Sieve aanalysis
 - Index properties
 - Consolidation test
 - Shearing test.

Detailed discussions are made from next page.

CHAPTER (1)

1/1 Introduction

The purpose of this work t is a prefeasibility study for white Nile new Bridge foundation design .

The width of the river along the Bridge axis is 550 meters and depth to river bed ranges from few cms. to 1.5meters. The water gets deeper going from whartoom direction towards Omdurman where at the center line gets its max. depth 1.5m (Sounding cross section No1).

Along the river axis the Nile silts, clays and fine sands and gravel are found to have a thickness ranging between 8m-1-2m

This quaternery formation overlies the cretaceous Nubian sandstone formation which is mainly composed of consolutated clays ,sands , muds ,silts and the grains were cemented either by silica or ferrioxides on other hand . This formation act as the most important aquifer for fresh groundwater throguh out the Sudan.

This meport contains only the requested information by JIACA team but in the near future and after recieving the lab Data , consolidation test Parameters, shearing test factor and other data we are going to have a complete report with soil classification 'chart , plasticity chart and bearing cap. from both consolidation tests and standered penetration tests .

In appendix 3 the Geological map and the cross-section are compiled by Dr.E.M .Saeed (Hydrogeology of Khartoum province and Northern Gezira Area . March 1976) Bullitin NO 29. the cross: -section were presented here as to give alight on the Nubian formation that we penetrate by all six borings along the Bridge axis.

1/2 Site Location

The site is located about two km south of the old white Nile Bridge . The bridge axis crosses the river at the entrance of Sunut forest.

1/3 Method of Investigation

A team from the Geology Researches Authrotiy of the Sudan equiped with Adico 36, Adico 40 drilling rigs, four floating tank (GRAS) and a barge from the river tranp.coop.started the boring on site at thefirst of June 1989 and finished the work on 23 of July 1989.

1/4 Climate

Khartoum is situated at the northern part of savanna belt .

It has abot summer (April -October) with little rain fall and cold dry winter . The early summer weather is dry and unstable developing frequent **severe** dust storms known locally as (Habub) causing reduced visibility.'.

1/5 Geomorphology :-

1/5/1 Area West of the Nile

The Geomorphology of this area is some what different from the eastern one. The high relief lands forms developed through petrographic and finer structural control - the petrovariance of the relief are Merkhiyat jebels, (lat. 15⁰ 42N') long. 32⁰ 25'E made of clastic Nubian sandstone capped by arcsis .Ferruqinous sandstone Jebel El Toriya composed of basalt (before quarrying) mades acircular mound .

Abu Shaaf range , lat.15 $^{\circ}$ 32 N long 31 $^{\circ}$ 51E) stands also due to the resis. of its cap beds

which are highly ferruginous.co. 4

Sanddune ,the Qoz particularly well developed at the west, are **saif** -type alined in more or less N-S direction and extending up to 300 km with a width of about 7km c.g Qoz Abu dullu .

1/5/2 Area East of Niles

Geomorphic features noticed are attributed either to structural gontrol or rock structural one.

Examples of the reflection of faulting, fracturing and corresponding topographic high are Jebel Ubeid Essid (latit $16^{\circ}12$ 'N and long $33^{\circ}12$ 'E) and Jebel Habis docky range (lat $.16^{\circ}$ 02'N long. 33° 09 E) both features trending SSW to NNS.

They form elongated ridges extending up. to 12 km Jebel Surat e.g is a result of differential mechnial weathering which is a rock mass semi circular in shape composed of sandstone with acap of silicified sandstone.

Jebel sileitat on the other hand is of granitic composition standing conspicuous above the ground surface due to the relative deep weathering and erosion of the circum- adjacent rocks.

A--85

CHAPTER (2)

2.1 Geologic setting

With the exception of the granite gneiss complex to the north of Khartoum known as Sabaloka and the very out crops of basement at Jebel Awlia to the south of Khartoum and granitic outcrops at Jebel Silietat the region is covered by recent alluvium and Nubian formation .

2.2 The Alluvium

There are the white Nile and blue Nile deposits overlying the Nubian formation .They are formed of black clay and silt , occasionally containing calcareous concrelions .

2.3 The Nubian formation

Most of the Nubian sandstone outcrops, small hills and structural surfaces ,are on the western side of the Nile. The formation is characterized by cross-bedding sand sedimentation, ferruginous concretions lenses of koalinite of varied colours with a clear domination of red colour .When the rocks are stratified the beds are often horizontal , or slightly dipping and their thickness varies from some centimeters to several meters . The most common type of cross-bedding is the tabular plannar characterized by small inclined lamellae truncated by horizental surface (N.K.Omer 1975) in this detrital facies , four main sequences can be distinguished ; - the conglomerates and the gravels .

- the sandstones.
- the clays .
- 2.3.1 The conglomerates and Gravels

They are intraformational flat bedded or lenses -

polyegenic-

They often comented by arenaceous ferruginous material, their clasts are composed of rounded quarzitic gravets. The gravets are found sometime disseminated in the sand beds with out any proferential orientation.

2.3.2 The ferruginous concretions

These are found in the conglometrate beds ,or in the zone of contact between sandy and mudstone laydr. They are dark red rounded ferrugionous ones. They are believed to be framents coming from the disintegration of lat- critichorizons, and then transported and deposited in the new orelying bees.

2.3.3 The ferruginous crust

They occure in the field in different ways sometimes are realy rich in iron, the Feo represent 53%. These form famous crusts occure in three ways 2 (M.K.omer 1975).

a.At the foot of the sandstones oblique to them.

b.Between two strata in concordance with straligication, , but then wedge out very quickly. Such class correspond to ota soils contemporaneous with the sedimentation.

c. Somtimes the crust envelope completely alonse of sandscone. 2.3.4 The clays and Mudstone.

The clays occure in small beds but often in lenses of different thickness and of different horizontal extension. They may have adepth of only some meters-shubat bridge ,report 1007 or adepth of some hudred meters.

- Gedlogical Research's Authority of the Sddan open file courts Merikh clup borehole 1000ft, Omdrman Mosque borehole 1074. Inspite of the importance of vention extention of the clay lensses their horizental extention is rather limited ,and clay seem to be too important to be deposited in rivers and too deep to be deposited in small lakes.

- The more important lenses in Khartoum -Omdurman region acc localized in azone having approximatly adirection NW-SE, From this zone, northward and southward, the sediments generally become coarser, the gravels and conglomerator more abundanc

(for example Jebel Aulia in the south and Jebel Abu Walerdat in the morth of Khartoum M.K Omer 1975.

- The clay is a koalinitic clay contain in very fine crystallized quartz and geothite , and free of gravels and coarse sands .

2.3.5 Sandstones

The sandstones are generally of siliceous nature. They are composed of quartz grains and very few grains of other minerals. The cement is either cilicous or argillo- ferruginous In certain sandstones - Merkhiyathills - the cement is less a bundant and composed of silty material. In the different types, of the sandstones, the clay fraction was extracted and its mineralogical nature was determined by X-ray diffracture methods (M.K.Omer1975) It was found that a well crystallized Kaulinite is the unique clay mineral and some traces of **il**lite were detected in only one sample. Acomplete analysis was also carried out on representative samples of the different types of standstones of the Nubian formation using x-ray methods. The clay and standstone are essentially composed of the following:-

- Well crystallized quartz very abundant

- Geothite

- fraction inferior to 2 microns is composed of kaolinite only.

- traces of geothite -not alway present.

CHAPTER (3)

3. Geological Setting of Site under question

3.1 Boring NO1

This is located at 310m from the western bank of the white Nile towards the centre of giver the Jepth of boring is 30 meters.

The formation penetrated by the borehole is as follows- see appendix 2-

- silt, clays , sands ,gravels

- mudstones - sands stones

3.1.1 Silt and clays

These are plastic dark black containing miacateous matter also and caco₃ concretions .This deposit goes down to 9 meter and some times mixed with fine angular pure quarzitic sand e.g from 3.0m- 3,30m. The colour of the deposits changes between red to black and this due to iron solution concentration At 9m the formation changes for coarse sand and fine to medium grained gravels these sands and gravels are resulted from the disintegration and deep weathering of a Nubian formation , the grains are angular to subangular indicating that transportion distance is very short .

3.1.2 Mudstones andsandstones

This formation starts at 9m and up to 12.20m the mudstone is found rich in sand and with various colours reddish - dark brown, yellowish and Pinkish - Rianbow colours and mostly this due to iron solution and organic matter concentrations. The sandstone starts at depth 12.20 m with various colours - whitch, yellowish grey, yellowish and reddish and this due iron solution staining.

This formation goes friably and deeply weathered up 28m in depth and it becomes hard and sounding The grain size ranges between fine and medium angular to subangular.

3.2 Boring NO 2

This borehole is located on the western bank of river i.e 30cm from bank in water the depth to river bed is about 60cm boring depth is 19.0m - for logging see appendix 2-- silt ,clays ,sand

- mudstone and sandstones

3.2.1 silt clay and sands

The fine grained sands brown in colour starts from o uptto 1.70 ,then follows the silty clay dark in colour and plastic and up to 5.0 meters the clays becomes more sticky changes its colour to reddish due iron solations ,from 5 meters the clays start tohave sands at 7 meters the sand becomes very pure quarziti grains at 9m the mudstones starts in friable and highly weathered conditions.

3.2.2 Mudstones and sandstones:

This continues from 9-12,20 as usual pinkish madstone follow by yellowish then reddish ores due to from axides staining and patching the rock is plastic probably due presence of koalinite or illite groups also it shows

19.0m where at the first meters it yellwish highly we related then at - 17.m the colour changes to reddish and the c c.

amanner of hardness. The sandstones begins at 12.20m up to

is hard and sounding .

3.3 Boring NO 3

The borehole is located in the eastern bank of the white Nile the total depth is 15.0m the boreholes log is as follows :-- Clays , sands ,silts, gravels

- mudstone , sandstone.

3.3.1 Clays, silts, sands and gravels

From zero down to 6.0m we have alight yellowish silty clays these are typical river deposits and they contains little black mica and river shells from 6.0m down 8.0 we

struck alight brown fine sand .

3.3.2 Mudstones

From 8.0 down to 15.0m we penetrate a various colours mudstone yellowish ,brown ,pinkish and whitet. these muds contains little sands and they are hard and sticky when they are saturated with water.

3.4 Boring No'

This one is located at Omdurman side about 70m away from boring NO 2 which on shore .The formation penetrated by this boring is composed of.

- clay ,silt ,sand

- mudstones

3.4.1 clay silts and sands

These as previously stated they belong to quaternery deposits, they resemple the white deposits. From 0.00m in depth uptour5.0m in depth we penetrate a highly compact and sticky silty clay. The clays have iron oxides staining and batch's sometime they are dark black due to organic matter.

Also they contains shell fragment, and micacious flacks, from 5.0m the clay begin to have fine sands and are dominent and clays show alittle presence also the silts are dominent. 3.4.2 Mudstone

These start at 10.0 m in depth up to 17.30, at the first meters they have in sands ,but below 12.0m They are free of sands , they show variaty of colours ,

the dominent ones are yellowish , pinkish reddish and whitch due to organic matters , iron oxide solution and koalinite mineralization.

3.5 Boring NO 5

This borehole is located about 50m East ... boring NO.3 It lies an land Elmugran side . The total depth is 17.30 m.The soil penetrated by this boring is as follows:-

- Clay silts , sands

- Mudstones.

3.5.1 Clays ,silts and sands

These deposits started from o level down to 7,20 m they are brown silty sand with little micacious materials they show a matter elasticity some times the silts are dominent over the sand and Vica versa. From 2,20 m own to 7.0m we ponetrate avery plastic brown class where we took our undisturbed sample.

From 7.0 down 12.70m we met silty sands , puge fine sand and gravely sands there of coarse are disintegration product of Nubian formation.

3.5.2 Mudstones & sandstones

At depth 12.70 as andy yellowish very friable mudstones appear in the drilling water these muds goes down to 14m in depth , then we penetrade a very friable highly weathered yellowish sandstone as we fail to get core sample using core barrel except a five cm sample , the disturbed samples that we got were from water circulation all the above fact indicate that the tock is highly weathered this formation goes down to 17.30m in depth where we stop drilling according to a written note from JIACA team .

3.6 Boring NOG

This borehole is located at Omudurman side about 1.0 km away to the West of boring NU.4 .There is an aoutcrop of Nubian sandstone formation 25m to West of boring NU.6.

I the floading season the area of pring No.6 is total overed with water and the river reach the past mentioned outcoop (25m W.of B.H.NO.6). the soil penetrated by this boring is a follows .

- clays (koalinite ,) sands ,gravels.

- Mudstones sands stones and conglomenrates .

3.6.1 Clays , sands and gravels

From zero down to 6.0m we penetrate gravely sand formation the sands ranges from fine upt to coarse grained they are angular in shape the gravels are fine and angular in shape the formation contains rock fragment (sandstones, mudstone and ferrugonous crust).

There fragment are transported by the river and deposited. Down to 7.5m we have sandy gravely clays from 7.5m to 10.0 m we have fine to coarse gravely sands at 11.0m in depth we penetrate a lense of koalinite where we have been stucked the lense is about one meter thick.

From 10.0 m down to 14.0 we penctrate gravely and formation the sands ranges between fine and coarse some time we have pure sands from 14.0 down to 15.0 we stracka yellowish sandy mudstones.

1 .

12

3

7

8

4.Boring location and leveling

Referring to the mean sea level and from abolt or N.E sie of Omdurman bridge (Point NU 3732 of value 330.830). Nine points of equal distances 150m and running in N.S direction were been selected starting from the bolt. The values of

these points were tabulated as follow

P.1 P.2 P.3 P.4 P.5 P.6 P.7 P.3 P. 3/5.56 375.02 375.81 375.92 375.5 375.55 375.71 171.71						Contract and a second se		and the state of the second design of the second distance of t	
3, 5, 56 375, 02 375, 81 375, 92 375, 5 375, 55 375, 51 375, 71	P.1	P.2	P.3	Р. [%] і	P.5	P.6	P.7	e.3	1° . ·
	3, 5, 56	375.02	375.81	375.92	375.5	375.55	37- 71	3777	

From Point No.9 to B H No.5	
The direction of 150° 50' and distance of 175 were	N
been calculated . The level of this hore hole is found	
to be 375,18 the bearing from Dashole No.3 was 273 2	-
and it is 374.92m above sea level. The same modulinus	
carried for Omdurman side where .We have a benchmark	
No.9 of high 784.714.Ascries of points with b 100m	-
distance were considered starting from the Benchmark	
towards boring No.4 The bearing of these points from	+
the Benchmark is 286° 40 then the points were ploteo	
in NS direction as we see.	-

 • 1	P.2	P.3	P.4	P.5	Р.6	P.7	P.8 ·
37 .72	375.07	375.56	375.67	375.23	375.11	375.9.2	377.94

Benchmark NJ.9

334.714

Boring No.' is of 374.96

bearing in south direction from point No.8 boring No.2 is located at 251° 30' from point No.8 and its level is 374.8m abore mean sea level .Abearing of 250° 46 was read out from boring NQ .1 and It . level was found as 373.68. For boring No.6 The same is followed i.e the leveling starts from the benchmark as boringNo.1 = ; and 2 were located in fload area the level of boring No.6 was 375.74.

2860

 i_{0}

S

The direction from borehole No.6 towards boring No.5 was found to be 265⁰30[°] the distance was 667.6m.

Appendix 6.2(15)

HULE NO \$

RECORD OF S.P.T

, ,	L O	BLOW	Numper		- Total per j	N Value
овртн	G	1st 6"	2rd 6"	3rd 6"	- rotar por j	Ton. 15. 15.
Donation for the Party of Control of Co	-					affected affected affected and a state of the state of th
0_70		1	-		va	_
1_1.70		1	per .	-	-	-
2_2.70		28		_	~	-
3_3-30		8	11	-	19	15
3.30_3.60		3	5	_	8	5
4_5			Circulatio	n		
5_6						
6_7						
7_8						
8_9		Core	friable	circulation		
9_10.60						
10.60_12.1	0 0					
12.10_13.6	о					
13.60.15.1	5					
15.15_16.7	ο					
16.70.18.2	0					

Appendix 6.2(16)

RECORD OF S.P.T

.

•

HOLE NO.2

Depth	L	Blow	Number			N vatus
	ບ. ເຊື່	Ist 6	2nd 6	3rd 6	total per 18	-per 42y30cu

0-1		1	2	2	う	3
1 - 1.70		1	1	2	4	3
2 - 2.70		l _k	8	10	22	,
3- 3.70		-3	- 5	ş	1 6	1
4- 4.70		2	3	3	8	5
5- 5.30		2	4	_	6	4
50- 5.60		7	10	-	17	11
5.60-5.90		3	6	-	9	6
6.70		6	13	11	33	11
7.70		5	10	11	26	17
8 -8.70		9	10	12	31.	27
9.70 .70-11.45 1.45- 13		36	35	60	131	87
3- 15						
5- 16						
6- 17.55						
7-55-19						
				ļ	1	+ t

A-97

Appendix 6.2(17)

RECORD OFS.P.T

HOLE NO.3

n an		, menselekseksekseksiki Mingiasoon T			TAREXISTING IN CONTRACTOR IN THE OWNER	an sa an
epth	L	BLOW	NUML	ER	Total per	N Value
C 2 C C C	O G	1st 6"	2nd 6	[°] 3rd 6	180	per 12" 300
1 150		6	′4	5	15	10
2		l _t	3	3	10	7
33.50		1	3	2	6	······
5 5.30		: 3		-	3	1
66.70		2	2	11	15	10
77.30		3	7	30	⁷ tO	27
8 8.30						
99.60		58	-	-	58	3.9
9 6011.20						
1 .2012.45						1
10.4514.45						
14.45 15.10						
-						
ł		1				

Appendix 6.2(18)

<u>1101.11 NO 'I</u>

RECORD OF S.P.T

•

	Ĺ	มเง่พ พบเ	MBER		- tptal	N value
і Эртн	0 G	1st 6"	2rd 6"	3rd 6 ⁿ	per 13"	200 Dor15n:
ана стана стана Стана стана стан						and and an overlapping the first of the firs
0_1 1 70		7	13	18	38	25
1. 70	i i	1	l <u>i</u>	5	13	, Ľ
2_2.70	n N	1 .	2	? _E	ī	' 1
1_3.30		l _i	<i>1</i> ,	_	đ	5
1.60_3.90			-	-		
4.70		3	4	'i	11	2
_5.70		3	2	2	7	4
6_6.70		2	h .	7	13	<i>ر</i> ،
7_7.70		7	8	15	30	20
8_8.70		10	15	20	45	30
)9.70		1 1	20	33	67	í.
.0_10.30		39	Water c	rculation core		
10.30. 10.50						· ·
10.60_11.50						
11.50_13						

A-99

Appendix 6.2(19)

HULL NO 5

MECOND OF S.P.T

13.444.14	L Ú	BLOW	Number		Total per 18'	N value
:ртн 	G	1st 6"	2rd 6"	3rd 6#		per 12"=500
o_1.70		3	l _k	3	10	7
2_2.70		3	3	<i>t</i> 1	10	-
4.70		8	11	13	32	21
;_5.30		6	8	-	1'i	9
5_6.70		2	2	1	<u>'1</u>	3
7_7.30		5	6	-	11	7
7.30_7.60		2	3	1	5	3
3_8.70		3	· · · · · ·	. 7	11	9
)_9.70		2	2	1	5	3
.0_10,70		11	5	8	24	8
11_11.70		Water	circulatio	n sample		
.2_12.70		31	54		85	57
3_13.50						
13.50_14.50						
4.50_15.50						
.5.50_16.30						
16 <u>.</u> 30_17.30						

HULS THU 6

RECORD OF S.P.T

	L	BLOW	Number	, 	Total per 10	le value
3PTH (G	1#t 6#	2rd 6"	3rd 6"	autua por to	עטפֿ≈ייצ‡ לפע
0.50_0.95		3	10	23	36	<u>1</u> 1
0.95_1.45		14	18	33	65	1. 'iu
1.45_2.50			-	-		-
3_3.70		1 _E	3	. 7	11	9
3.70_5.70		5	7	16	28	19
15.70_6.70		11	22	50	83	ā, õ
6.70_7.70			-	• •	-	-
7.70_8.70		27	66		93	21
8.70_9.50		15	30	18	63	42
9,50_10		-	-	·		-
106 11		Core				
11_12						
12_13						
13_1 ¹						
14_15						
15.10						

4

Ţ

DRITT TOC

HOLE NO B. I

SHEET NO L OFI

)]	RILL	LO	G			<u> </u>	<u>101</u>	ĿE	NO. E	3 - 1		SHE	ET NO). <u> </u> 0]	51		
		ROJĘC	T						n of the l		ite Ni	le I	Bri	dqe	- · · ·	ертн		30 M	ELEVATION	1 3/3	.3	
A		SITE AGE	CORE RY	St	2.N		(in the 70%	river)	COORDINATE	: FROM	7 Jul	: TO	12	Jul		INATION ILLED		tical Yashin	DRILL RIG	╈╼╼╼╸	- 200	
-	<u>R</u> E]					СК ТҮРЕ	[1					 	DRE	<u>[ett.</u>	rasnun		IME,S.	. Ikedi	H
	ļ	DEPTH	ELEVATION		кo	OR	COLUMN		DESCRIPT	TION			4ETH	GROUNDWATER		OVERY		6 p.m	M (x -1)			РТН
D		DE	ELE		FØ	RMATION	SECTION		e.			BIT &	DIA		%	6	0		N - Valı 20 30		50	GG
					Т			0.0 -	4.0 Clay					÷			kf					
	1								ent river		sit.			GL+ 1.7m								1
	2					Clay	333	Hemo	geneous.					1.710			1					2
	Ē.								soft and	high	plas-						•	ð				
	- <u>3</u> 							ticit	у.													31
	4	4.0	369	3	-					. <u></u>				:				*				4
	E							4.0 -	6.0 Clay fraction				1) h				53
						Clay			htly soft									16				Ť.
	E 6 E	<u>6.0</u>	367.		ק א פ		<u>er se p</u> e					F							6			6
	7			ŀ	Ĭ				9,3 Sand geneous f		md											7
					TUT	Sand			geneous i grain si											50		31
								butio	n.											9.54 5		
	9	9.3	364.0	, F	H-			iteui	un densit	¥.		[₩.					>50	9
	10			1	\uparrow			9.3 -	30.0 San	dstone		1										0
								Basa	l rock la	yer.												-
	5 <u>11</u> E						//		ists of m	edium	grain											1
	12							sands	ially, mu	deton	into-											1 2
	E E1 3		1					rlaid			z Ince-											13
									hered and	ferri	fi-											
	E14 E							cated Mode	rately so	lidifi	ed.											4
	<u>15</u>					Cand			f enough		5 A.											15
	È					stone		found	ation.						H							16
							• • • • •															l and
	17																					12
	- 18																					18
		:				Inter laid		9.3 t	o 13.0 m.													10
						Mud		Deca	mposed an	d 100s	sened.											
	20				011	stone					:					┥┟						201
	E. 21				L.I.C			15 to) 16 m.													21
				. 5	0				ily ferri		æd,											22
	4		-		L B	:		and v	ery hard.													- 31.
	23				no.																	23
	24			ľ	1																	24
												[
	25							25 to	5 30 m.													솈
	- 26								lually sou	ind and	l hard.											26
	1								2													nul -
	27																					4
	28							•														28
	<u>–</u>				1																	- 299
																						nul I
	BC	:0.Q	340	<u>î</u>	L			<u> </u>				Ļ					UNITED					3C _

*R.Q.D is Rock Quality Designation, R.Q.D= (Total length of cylindric cores longer than 10 cm)/(Total core length) × 100% #LUGEON VALUE in 1/min/m under injection water pressure of 10kg/cm³ #DEPTH and ELEVATION are in meter #DIAMETER is in millimeter

LOG FORM--B

,

DRILL LOG

HOLE NO. B - 2 SHEET NO. 1 OF 1

					RILL LOG HOLE NO. B - 2 SHEET NO. 1 OF 1									-		
		OJEC.	r						New White Ni	le Br	idge	DEPTH	19 M	ELEVATION		
ÂVI		ITE GE (CORE	Lei	Et Bank (i		ater)	COORDINATE DATE	L'DOM-	:		INCLENATIO:		DRILL RIG		
-	REC	OVE	CORE RY	1		58		DATE	FROM21 Jun			DRILLE	Mr. Zuheil	LOCGED	Mr.S.1ke	<u>1</u>
щ	į	H	ELEVATION	R	OCK TYPE	COLUMN		: DECONIDT	14187	BIT & DIAMETER	CROUNDWATER	CORE RECOVERY	с. р. ш.			E
DAT		DEPTH	LEV	F	OR ORMATION	SECTION		DESCRIPT	IUN	IT NAM	INDO			N ~ Valu 20 30	40 50	DEI
-	-		ы 	+-								°o cm ∭∭				╓┼╍┫
E.	1							6.0 Clay			ू जू GL + 50cm		С.,			
1									10 to 15%.							
E.	2.				Clay			geneous.					××.			믬
	3				· ·		-	plastici	-					15		3
							ncy.	um narú i	n consiste-				*			
- Land	4			Ч												14
1	5			ауе									15			5
L.	-		•	L												
	6 (6.0	368.3	Та,												10
Ē	7			luv				- 9.C San						1613		5
		.		AI	Sand			e to Mediu distribu	um in grain tion					8		
	B															읙
- the		9.0	365.3				Uni	form, hora	Jeneous.							9
							9.0	- 13.0 Mux	dstone.							
1	Q						Str	atified.								Ħ
Ē	1				Mud		Dec	cniposed a	nd weathered							þф
	-				stone			tially in	on oxide							
E	2			L.			-	eres. kly consol	lidatod							Ľ
1	31	3.0	361.3	유			mea									μ 1
				окта	Loose	16	13.0	<u>-</u> 15.0Lo	ose Sandsto-							
Ē	.4			F01	Sand	1.42	Dec	annosed a	ne nd l <i>o</i> osened.							
E1	51	5.0	359,3	an	stone	1.1	Frag									归
Ē				iduN			15.0	- 19.0 S	andstone.							16
	1			N	Cand.			ium grain								
þ	7				stone				nd weathered							
E	-						Sli lida	ghtly wead tion.	k in conso-		_					18
1	Ĭ	· .					11.000									
1	91	9.0	355.3	4				· · ·								19
- Lu	-			l												
أعسدك																-
	1															
E	-															
	-			1												
- Line																
- Line	-															
L.	1															
	-															
	1			Ì												
E	1				· · ·											\parallel
. 6	-															
- Land					•					·						
E H		l		ļ						ļļ	.					
E	- {															

#RQD is Rock Quality Designation, RQD=(Total length of cylindric cores longer than 10 cm)/(Total core length) × 100% RLUGEON VALUE is 1/min/m under injection water pressure of 10kg/cm² #DEPTH and ELEVATION are in meter #DIAMETER is in millimeter

LOG FORM-B

DRILL LOG

HOLE NO. B.3 SHEET NO. I OFI

enter.000					RILL						NO.			<u>ET NO</u>				
	PROJI							T	New white 1	lile E	ridge	DEPTH		15.0 M	ELEVATION	374.1		
AVI	SIT		1	Rigl	ht Bank (River)	COORDINATE	: FROM 7 Jun	: 	Tur	INCLINATIO DRILLE		rtical	DRILL RIG	LNB - 20		
	ECO	E COR VERY		<u>r</u>		70%	· 	DATE	FROM / Our			DRILLE	<u>0 Mr.</u> T	Zuhail	LOGGED	Mr.S.Iked		
ы	H		ELEVATION	RC	OCK TYPE	COLUMN				BIT & DIAMETER	CROUNDWATER	CORE					E	
DAT	DEPTH	1	EVA	1	OR	SECTION		DESCRIPT	10N	AMA -	LEVEL	RECOVERY	1	S.P.T.			DEP	
		_	넙	F	ORMATION				·	BIT DIA	<u>s</u> <u>v</u>	"a cm	0	10 2	20 30	40 50		
							0.0 -	7.0 Clay		1	GL +							
	L						Silt	fraction	10 to 15%.		50cm			5NHG			1	
Ē	2				61		Hana	geneous.									2	
					Clay		High	plastici	ty.					òб				
	3		•					htly soft		{							3	
	1													4			-	
	-													9.80.00 BI				·
Ē	ž			Ъ.													-5	÷
				λ										\$6			16	
	1													N ici				
	2-0		<u>6</u>].1			1997 S. A. A.	7.0 -	9.6 Sand		1							2	
-	,			11	Sand		Very	fine and	luniform					<u>}</u>			1	
	2			지	Baik		in gr	ain size.										
	9.1	6 30	4.5				Medi	una densit	у.								9	
ي ال	1	-]							1	
	0			Ę			9.6 -	15.0 Bas	e Rock.								19	
5	1								alternation								11	
				E				Mudstone.			*							
1	2			Ц Ц Ц	Sand-				l decomposed									
	3			F	stone				tight for								13	
1				я Д				dation.	2									
	4			Nub													<u>n4</u>	
	515.	0 35	59.1														13	
1																		
	-																	
1																		
1	-		:															
E		ł																
				l	I		ĺ			1								
1111	-																\vdash	
																	L	đ
1.1	1																	Ş
undu:																		1
ւսես																		Ś
عبال ا				Į –														,
<u></u>	-																	
·																	Ц	. 1
1																		1
	-{	ļ		Į													H	
Ē																	1	
t E	1																[]^	• •
Ē	1			1													H	
ļ₽	1																	
Ę.		<u></u>		L		l	L		un 10 cm)/(Total co			attinild.						

#R.Q.D is Rock Quality Designation, H.Q.D= (Total length of cylindric cores tonger than 10 cm)/(Total core length) x 100% #LUCEON VALUE is 1/min/m under injection water pressure of 10kg/cm³ #DEPTH and ELEVATION are in motif #DIAMETER is in millimeter

LOC FORM-B

Appendix 3 (4)

			· .		·					Appe	ndix	6.2(24)
f	photec	· .		RILL				NO.B	·	SHEET NO	. I OF	375.7
PROJECT The F/S on the Construction of SITE Left Bank Abatment COO						COORDINATE :	······································			VERTICAL	DRILL RIG	ENB - 200
AVERAGE CORE RECOVERY 80%						DATE FROM 24 Ju	DATE FROM 24 Junto 30 Jun			Mr. Yasin	LOGGED	Mr.S.Ikeda
HE ROCK TYPE COLUMN			DESCRIPTION LIG DISWEIG LIS			CORE RECOVERY		N - Value 20. 30.	A			
երանչում սու հու չևու վերակում սու վերջինում և ու դերույի, որ դու հայ	$ \begin{array}{c} 1 \\ 2 \\ 2 \\ 3 \\ 3 \\ 5 \\ 5 \\ 5 \\ 7 \\ 8 \\ 9 \\ 9 \\ 9 \\ 0 \\ 10.0 \\ 1 \\ 2 \\ 2 \\ 5 \\ 5 \\ 7 \\ 8 \\ 9 \\ 9 \\ 0 \\ 10.0 \\ 1 \\ 2 \\ 2 \\ 5 \\ 5 \\ 7 \\ 8 \\ 9 \\ 9 \\ 9 \\ 1 \\ 2 \\ 2 \\ 5 \\ 7 \\ 8 \\ 9 \\ 9 \\ 9 \\ 7 \\ 8 \\ 7 \\ 8 \\ 9 \\ 9 \\ 9 \\ 7 \\ 7 \\ 8 \\ 7 \\ 8 \\ 9 \\ 9 \\ 9 \\ 7 \\ 7 \\ 8 \\ 9 \\ 9 \\ 9 \\ 7 \\ 7 \\ 8 \\ 7 \\ 8 \\ 9 \\ 9 \\ 9 \\ 7 \\ 7 \\ 8 \\ 7 \\ 8 \\ 7 \\ 7 \\ 8 \\ 7 \\ 7 \\ 8 \\ 7 \\ 7 \\ 8 \\ 7 \\ 7 \\ 7 \\ 8 \\ 7 $	<u> </u>	Nubian Formation Alluvial Layer	Clay		 0.0 - 6.5 Clay. Silt fraction a little. Homogeneous. High plasticity. Fairly well consolidated due to desiccation. Medium to hard in consistency. c.5 - 16.0 Sand. Fine to mediua grain. Homogeneous. High density. 10.6 - 15.0 Audistone. Base rock layers. Interbedded with sandstone. Weathered and decomposed. Partially hematite, iron oxide. 		41 22 CL - 6.5M				
م معمل بين من الم يعمل معمل معمل معمل معمل معمل معمل مع				-								

#R.Q.D is Rock Quality Designation, R.Q.D=(Total length of cyliadric cores longer than 10 cm)/(Total core length) \times 100% XLUGEON VALUE is *Umin/co* under injection water pressure of 10kg/cm² #DEPTH and ELEVATION are in motor #DIAMETER is in millimeter

LOG FORM-B

•

Appendix 6.2(25)

DRILL LOG

SHEET NO. 1 HOLE NO.8-5 OF I

DRILL LOG <u>HOLE NO. B - 5 SHEET NO. 1 OF I</u>											
PROJECT		••	truction of the I		le Br	idge	DEPTH	17 m	ELEVATION		
SITE AVERAGE COR	Right Bank						INCLINATIO				
AVERAGE COR RECOVERY		758	DATE	I FROM 18 JU			DRILLEI	Mr. Yasin	LOGGED	Mr.S.Ike	da
ын	KOCK TYL OR GORMATIC	'E COLUMN		DICINI	BIT & DIAMETER	GROUNDWATER LEVEL	CORE RECOVERY				TH
DATE DEPTH	S OR FORMATIC	N SECTION	DESCRIP	100	TAM T	TEN			N - Val	40 50	DEF
<u> </u> -}}		<u> </u>				5			20 30 10101010		
			0.0 - 9.5 Clay								
			Silt fraction	a little.				50			
2			Homogeneous.								2
3			High Plastici Up to 5 m,	ty.							3
	Clay		Hard consis	toneu duo				No.			-
2.4			to desiccati								4
5		[]						2Xî			15
- b			From 5 m to 9 Saturated.	• J _	1	_ ▽					
	Ja .		Soft consis	tency.		GL-		No.			
	a l	.]}		*****J I		5.7 m					11 2
8	5							Ŷ			18
	ŢĂŢ							1 /6			
<u>9</u> 9.5 36	6.9										<u>8</u> 9
10	+^]		9.5 - 12.0 Sa	nd	1			29			to
			Fine to medi		1			6			
11	Sand		size.								
1212.0 30	4.4		Hompgeneous,	· · · · · · · · · · · · · · · · · · ·	1			200 P. 1			12
13	J Sand	13-1	12.0 - 14.5 S						20		13
	е Ц &	175	Heavily deco						ľ.	<u>}</u> }2₿0	
<u>14</u>	o Grav	el	ian sandstone	•							
= 14.5 30	1 . 9		14.5 - 17.0 S		{						
	Sanc	- [223]	Alternated w								
F16	f sto		Slightly frag								#16
17 17.0 3	9.4										17
		l' '									-
					}						H
the state of the s			- ·	÷							HULE
											NG
											ڊ ا
		ļ	+								
					1						
	Í										
]								
					1						
	[l								
					1						
			<u>L</u>		<u> </u>	l					

#RQD in Rock Quality Designation, RQD={Total length of cylindric cores longer than 10 cm}/{Total core length) x 100% #LUCEON VALUE in l/min/m under injection water pressure of 10kg/cm³ #DEPTH and ELEVATION are in meter #DIAMETER is in millimater

LOC FORM-B

WHITE NILE BRIDGE INVESTIGATION BORE HOLE BORE HOLE NO.6

.

DEPTH (M)

WATER LEVEL

Depth M)		DESCRIPTION
1		Notium to coarse sand and some fragment andstone
2		Yellowish mudstone
3	· · · · · · · · · · · · · · · · · · ·	Sand with flakes of mica
'n		Coarse mand and medium gravel
5		Weathered sandstone
6		Yellowish sandy clay and fragment mudation.
7		Reddish sand -yellowish clay with some fine gravel
8		Fine to medium yellowish sand
9		Medium to coarse sand with fine to medium graves
10		Yellowish -highty weathered sandstone
11		Koaline -very sticky with hard compact sandstone
12		Yellowish sand (river deposit)
13		Medium to coarse sand and medium gravelk
11		Fine sand
. 15		Conlomerate with some coarse gravel
16		
17		
18 19		
19		

Laboratory Test

INTRODUCTION:

This report describes the laboratory soil investigation undertaken by the Building and Road Research Institute, (BRRI) of Khartoum University (Faculty of Eng.) on behalf of JICA of Japan.

The aim of the investigation, is to provide geotechnical data required for the feasibility of the New White Nile Bridge.

The soil samples were sampled and collected by the Geological Department of the Ministry of Engergy and Minig and transported to the BRRI laboratory in disturbed and undisturbed forms.

The testing procedures followed were in general conformance with those recommended in British Standard BS1377:1975, Institute of Civil Engineers, London. A description of each test is given below :-

Atterburg Limits:

The method used in the determination of the liquid limit (LL) is by using the casagrande apparatus.

The plastic limit (PL) is also determined according to BS 1377:(1975) .

The LL and PL values are given in table 1.

Specific Grabity GS.

This was determined according to BS 1377:1975 (bottle) method. The Gs values are given in table 1.

Linear Shrinkage

Linear shrinkage (L.S.) is measured by using a mould 15cm long and IXI cm cross-section. The mould was first filled by a soil paste mixed at a moisture equal to the plastic limit. The paste was oven dried and its length was measured. The L.S. was then computed as the eduction in length expressed as a percentage of the original length.

Natural Moisture Content (NMC) and Dry Density

The moisture content and dry density of the undisturbed samples were determined following BS 1377:1975 methods. They are given in table(1)

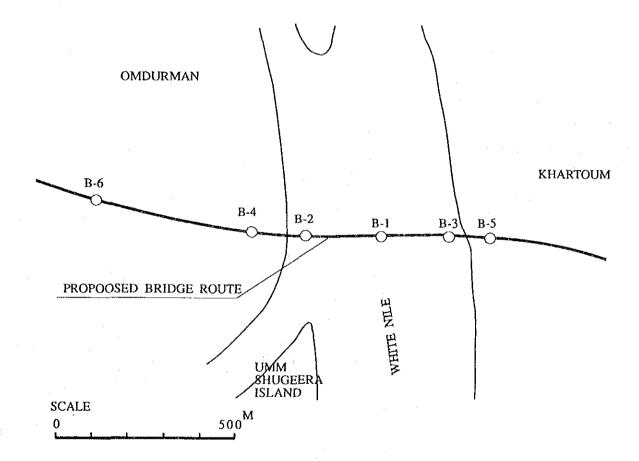
Uncontined Compressive Strength UCS.

This was determined in the trianial machine according to BS 1377:1975. Seven UCS tests were carried out, five tests for undisturbed samples and two for yemoulded samples compacted to 90% OMC. The results are shown in Appendix B.

Appendix 6.3(3)

Shear Strength

Unconsolidated - undrained (UU) triaxial tests were performed on seven samples to determine the shear strength parameters C (Cohesion) and ϕ (angle of internal friction). Five samples were tested at field placement conditions (i.e NWC and filed density) and two compacted at 90% OWC. For each sample, three 38mm diameter specimens were tested after being subjected to contining pressures approximately ranging between 70-200 KN/m².


The Mohr circles and shear failure envelopes were plotted and the values of c and Ø were determined for each soil sample as shown in Appendix C.

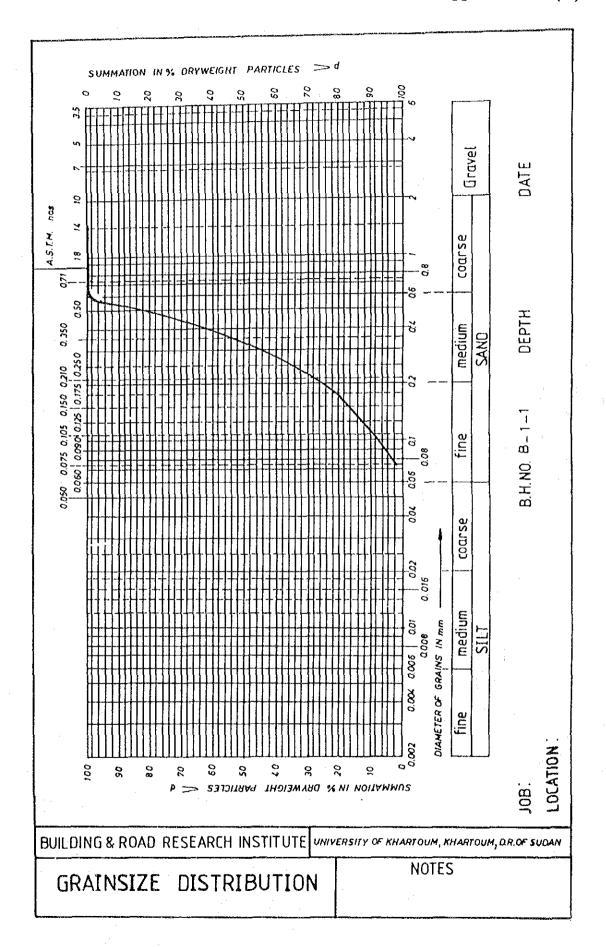
Compaction and California Bearing Ratio (CBR) Tests:

These were conducted for two samples, according to BS 1377:1975. (2.5 kg yammer dynamic compaction and normal CBR test). The two compaction are illustrated in Appendix D and the CBR results are given in table 2.

Consolidation Test

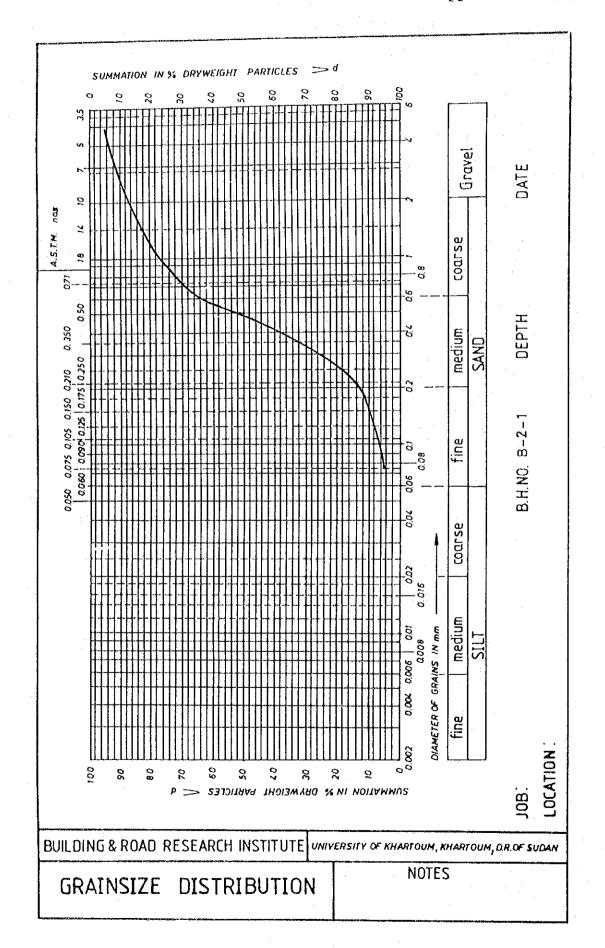
Consolidation tests were made on 7 soil samples, five at natural moisture content and dry density and two compacted at 90% OMC. The change in sample thickness was plotted against the applied pressure to obtain the consolidation curves shown in Appendix D.

PLAN

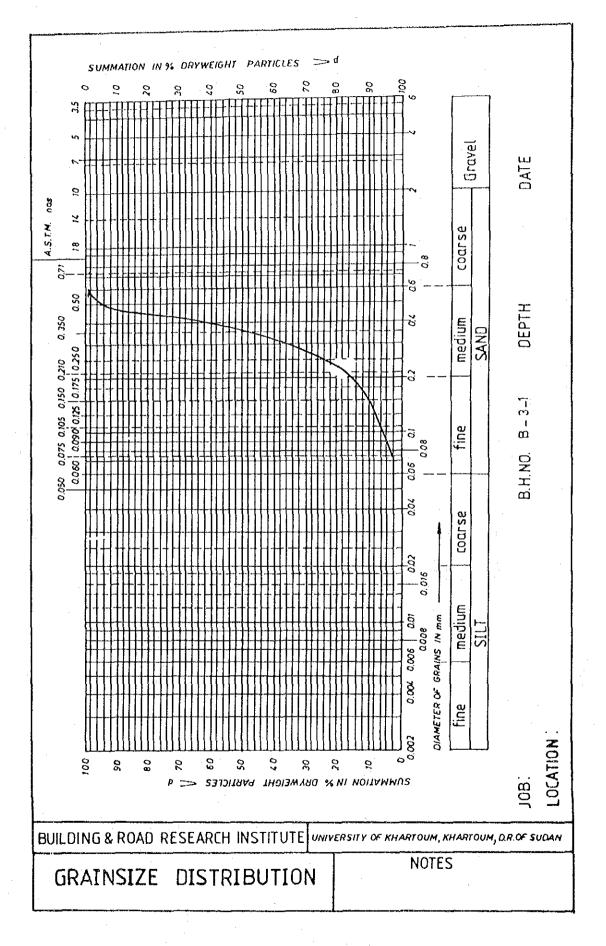

A-111

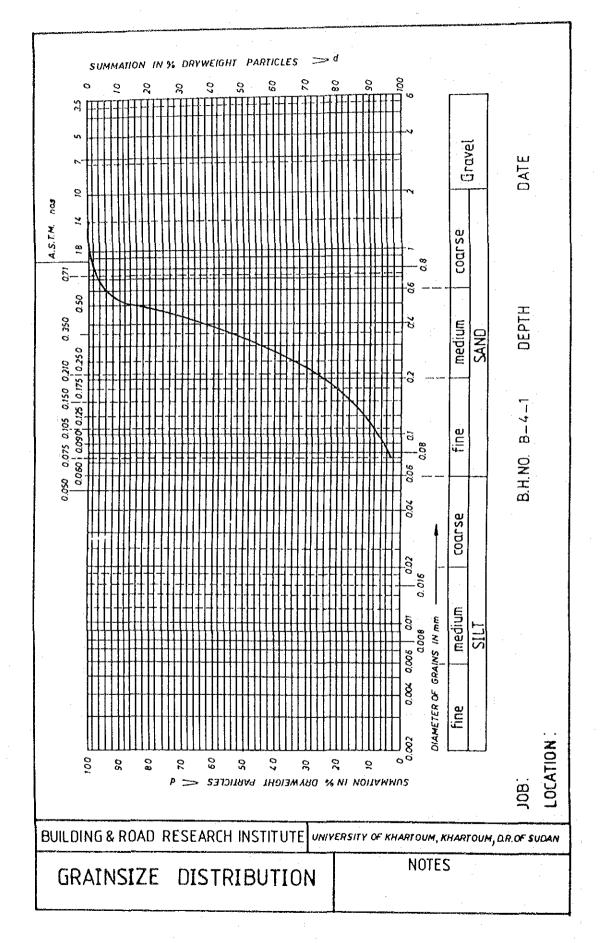
2

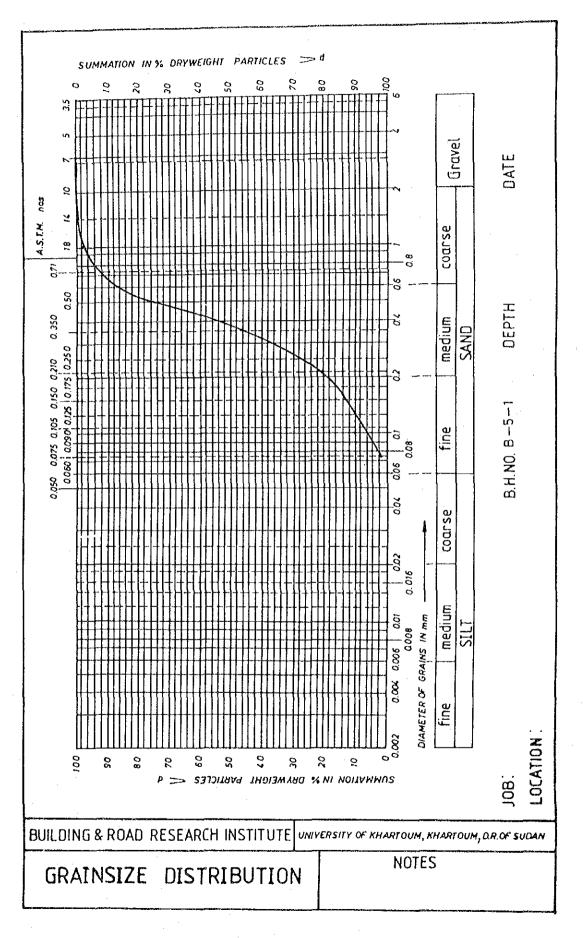
Appendix 6.3(5)


APPENDIX " A "

PARTICLE SIZE DISTRIBUTION CURVES

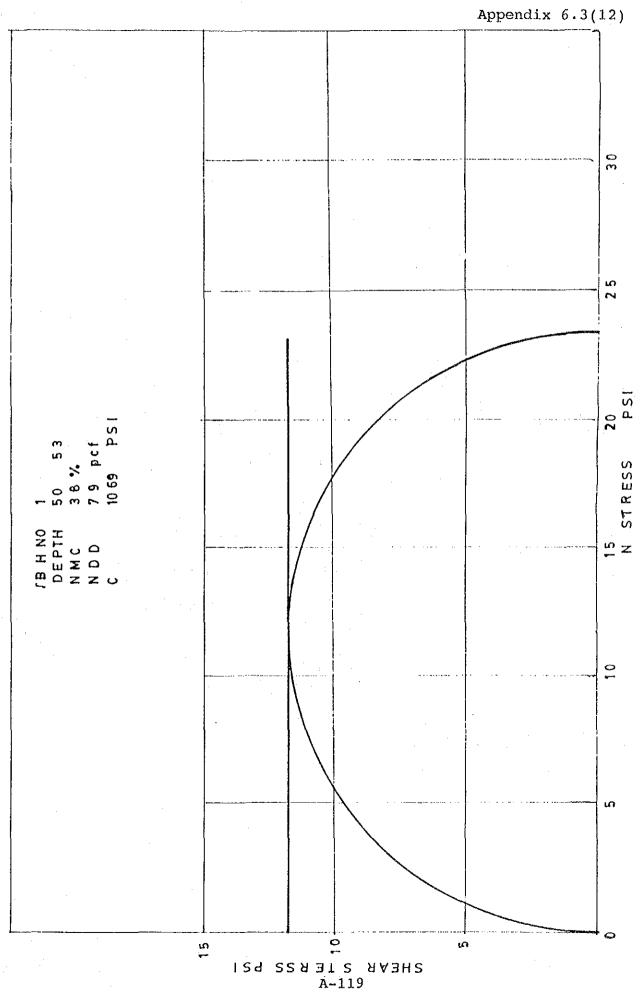

Appendix 6.3(6)


A-113

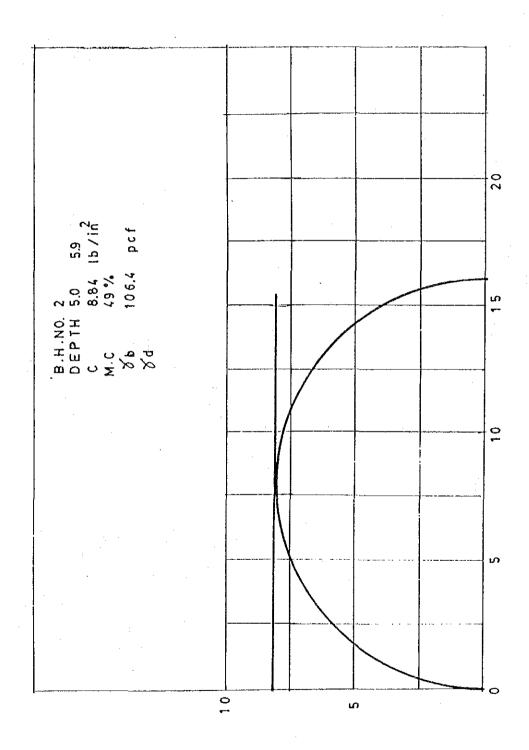

Appendix 6.3(7)

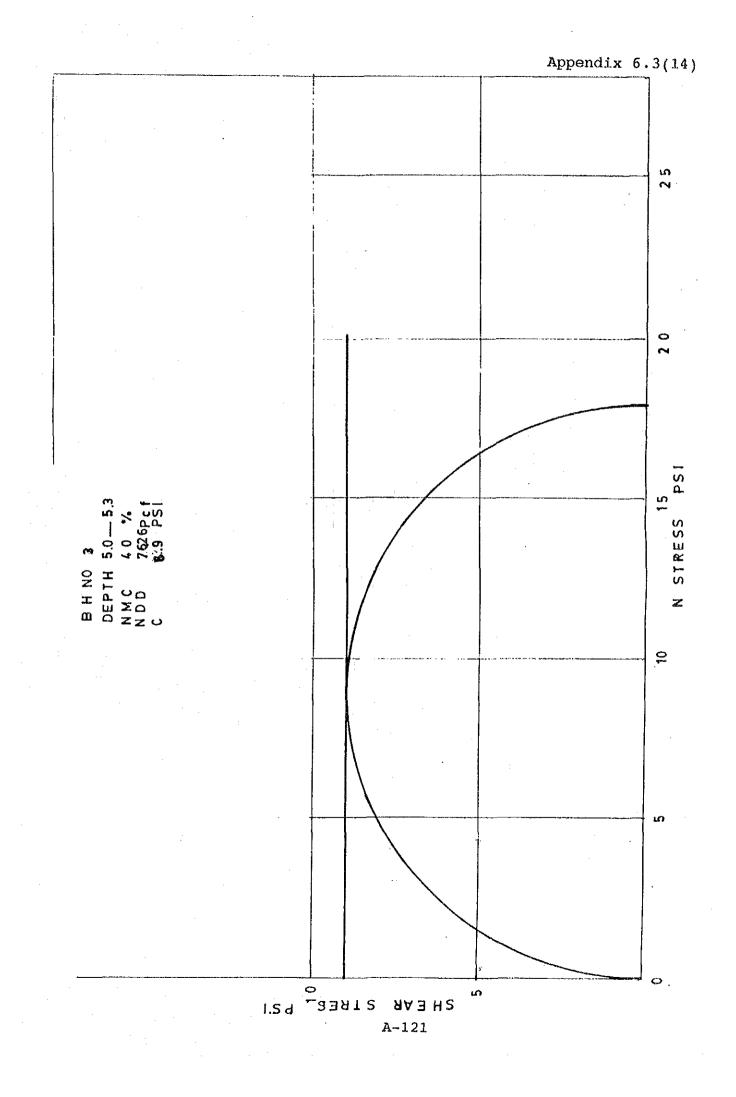
A-114

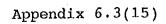
Appendix 6.3(9)

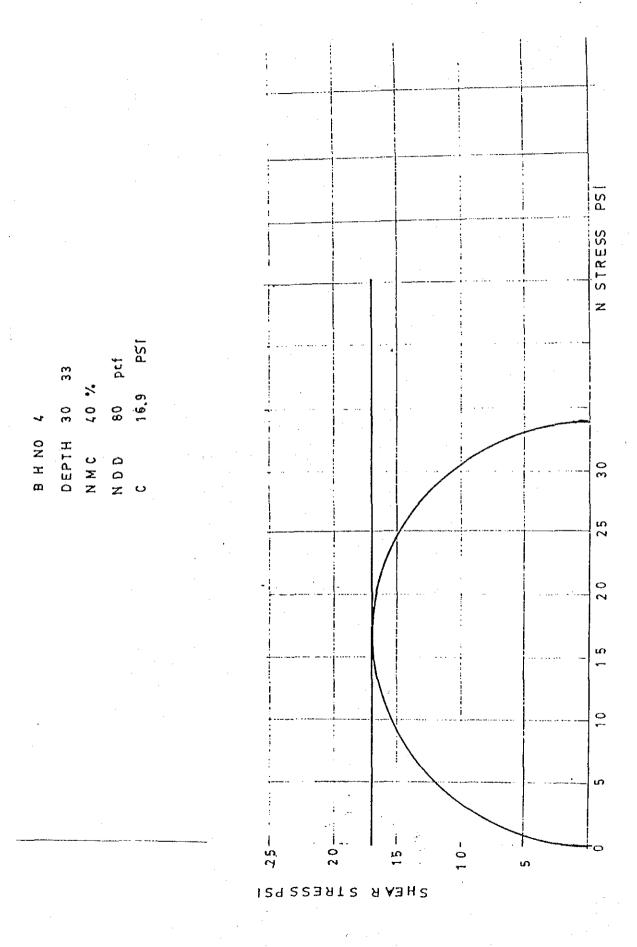


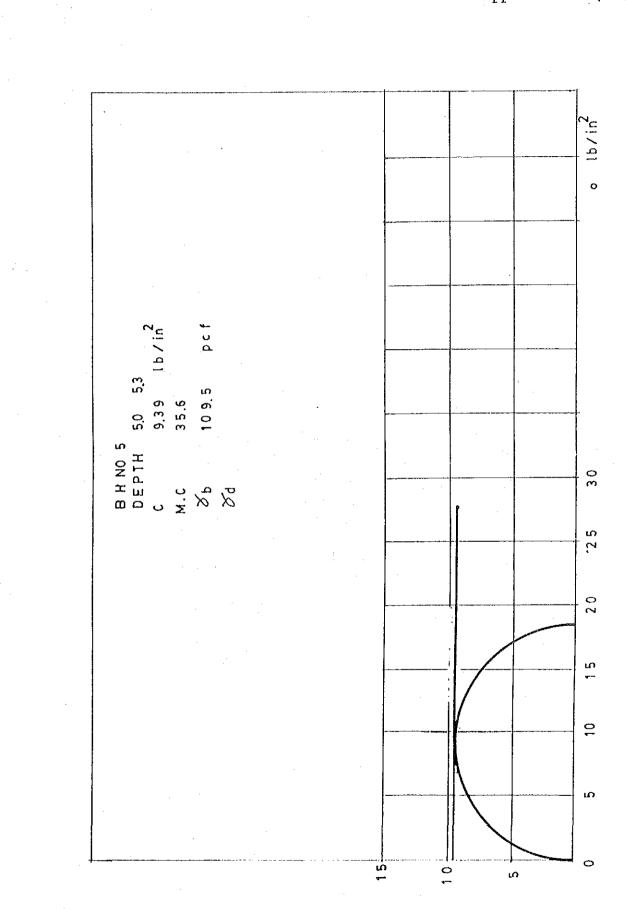
A-117

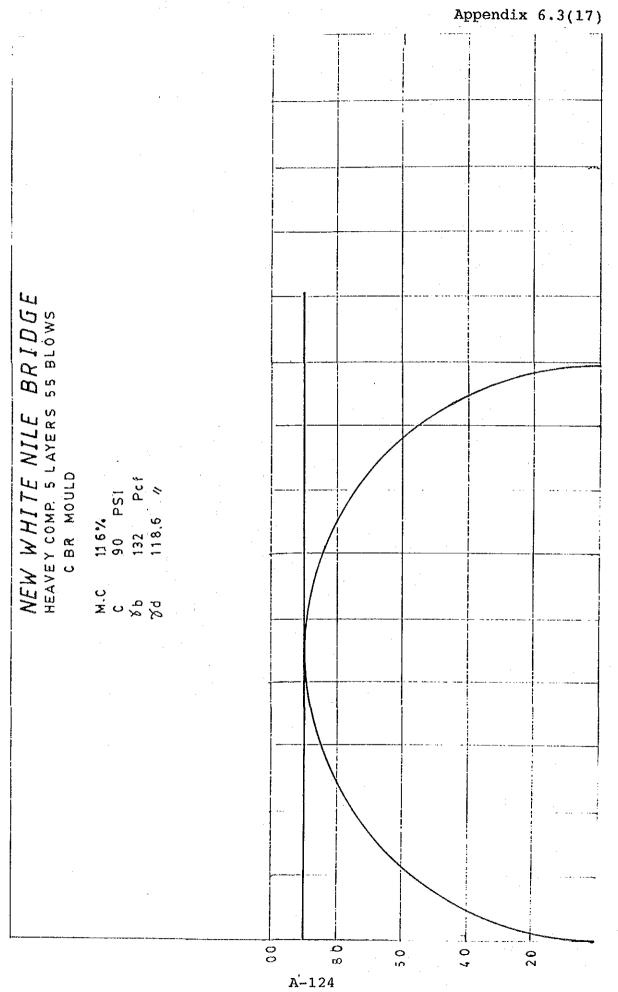

Appendix 6.3(11)

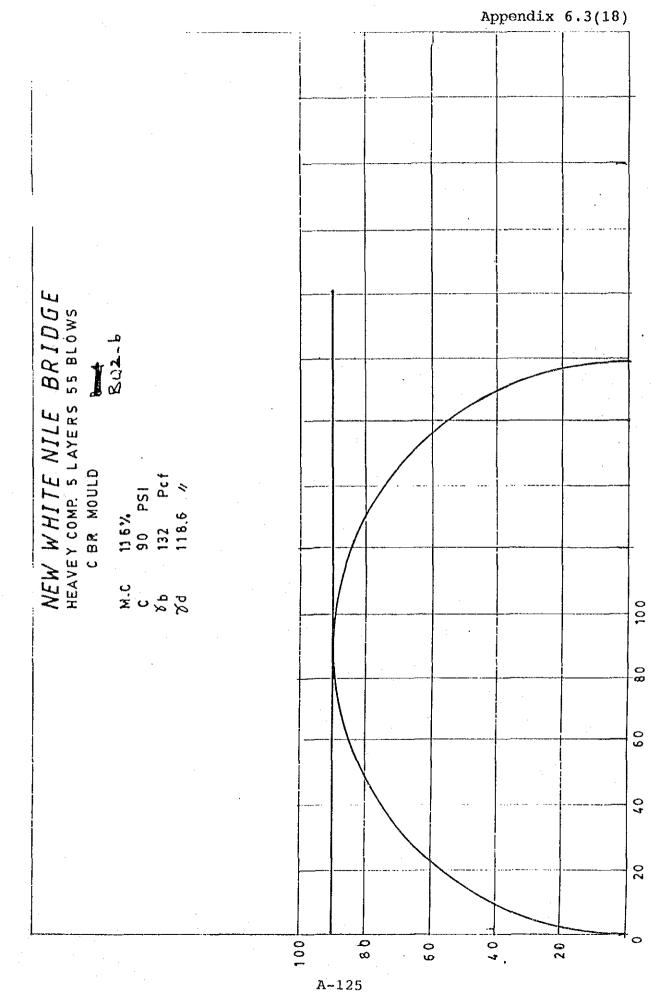

APPENDIX "B "


UNCONFINED COMPRESSIVE STRENGTH GRAPHS

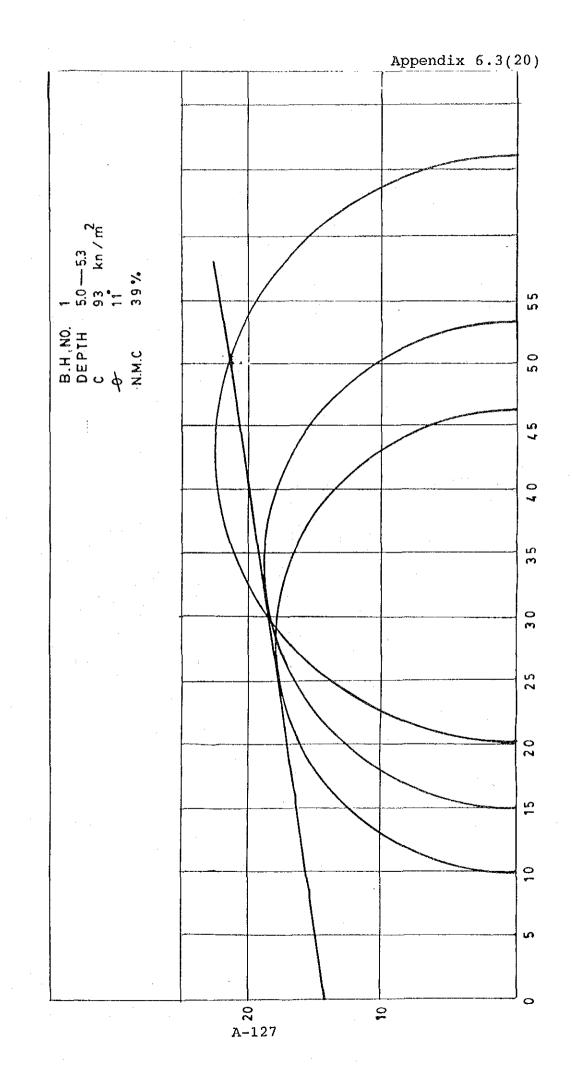


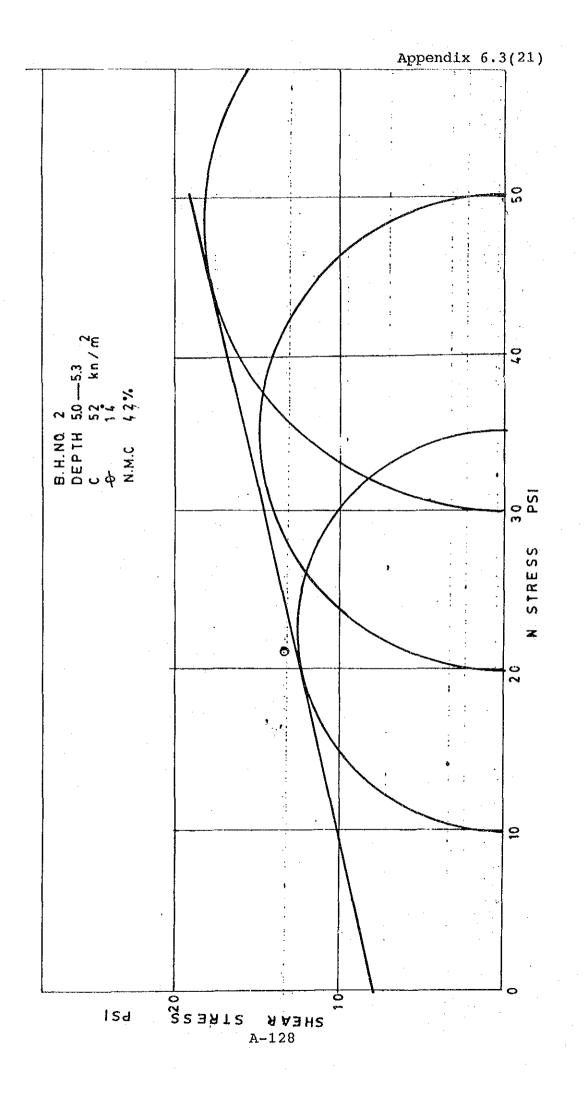

Appendix 6.3(13)

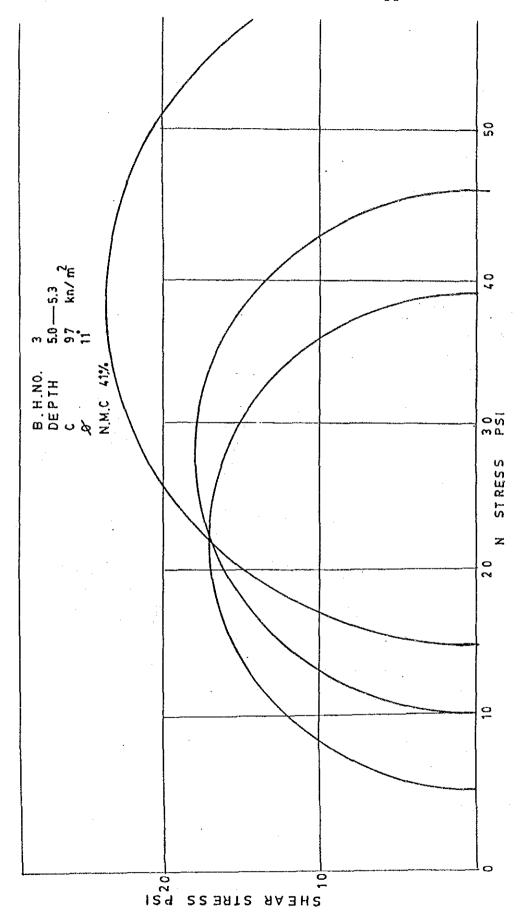




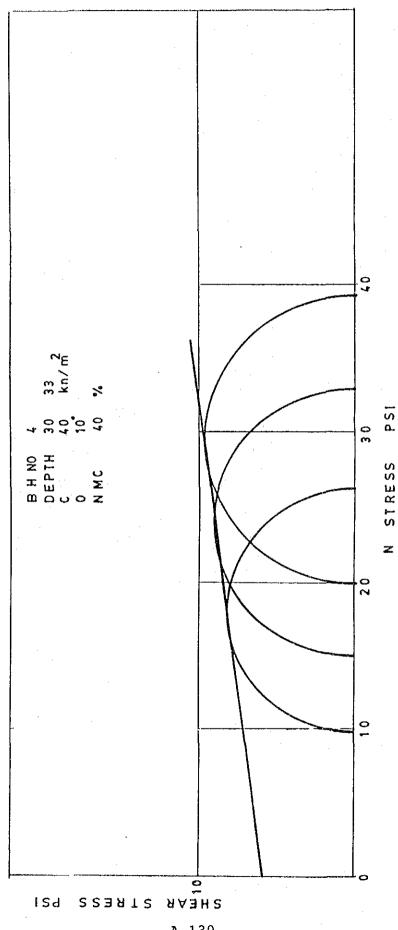
Appendix 6.3(16)

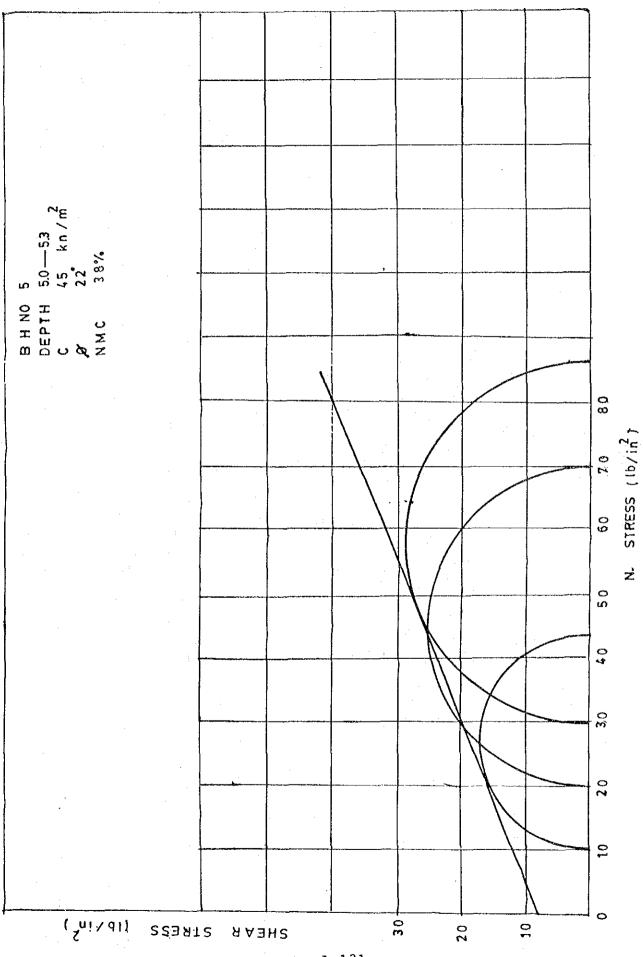


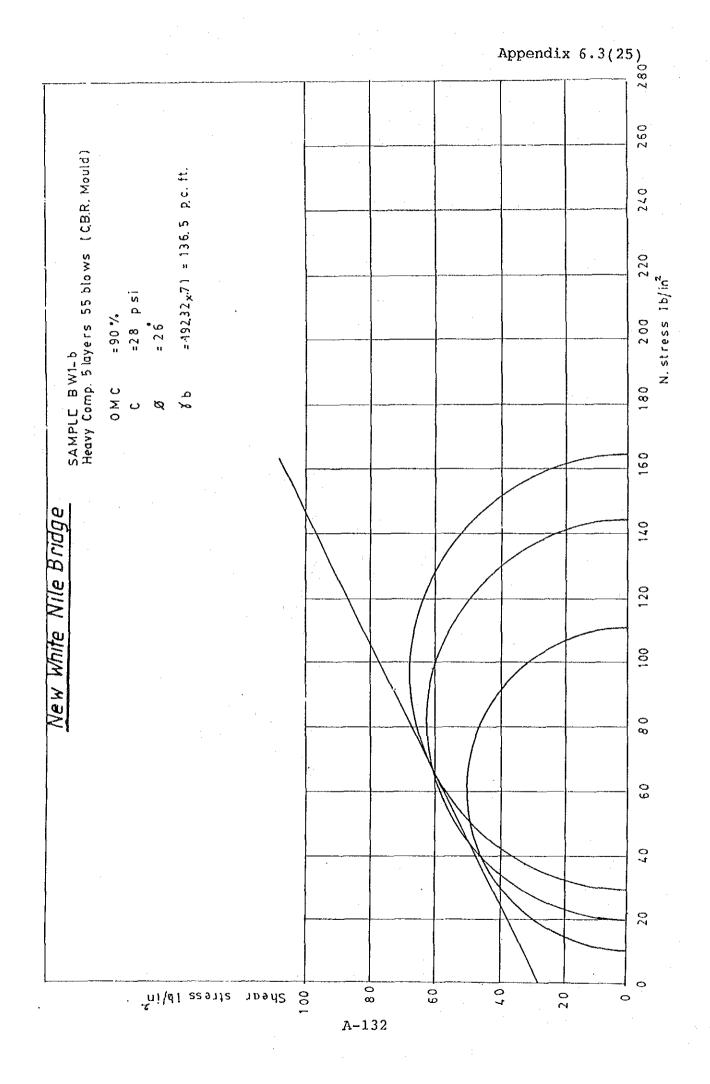

Appendix 6.3(19)

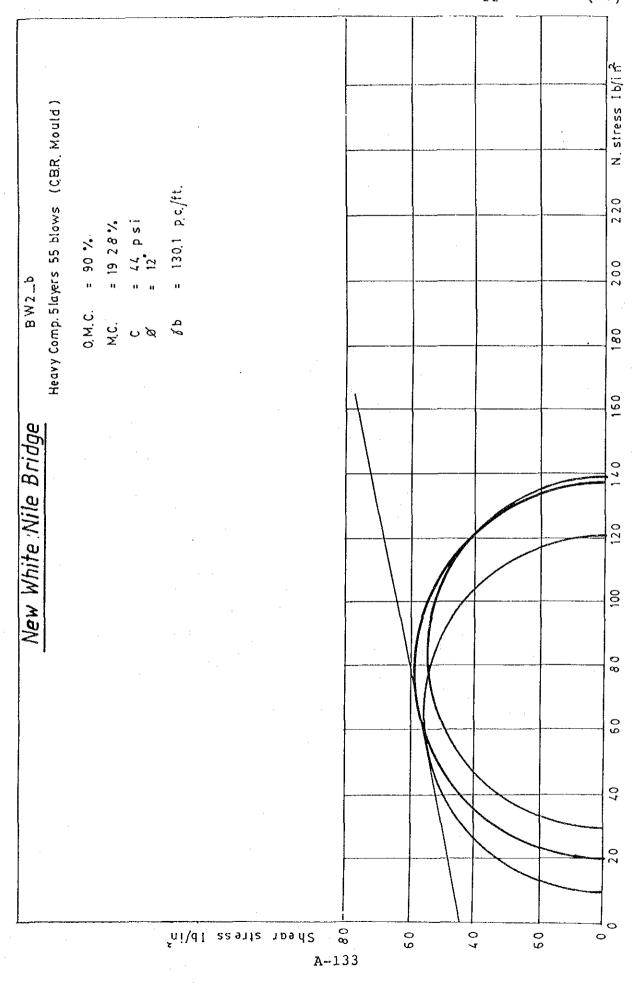

.

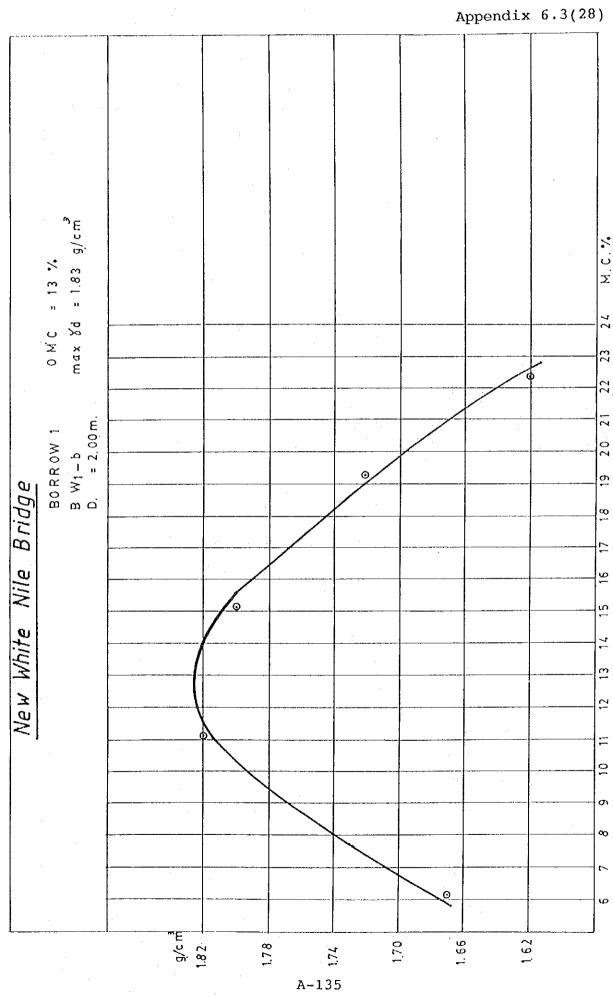
APPENDIX "C "

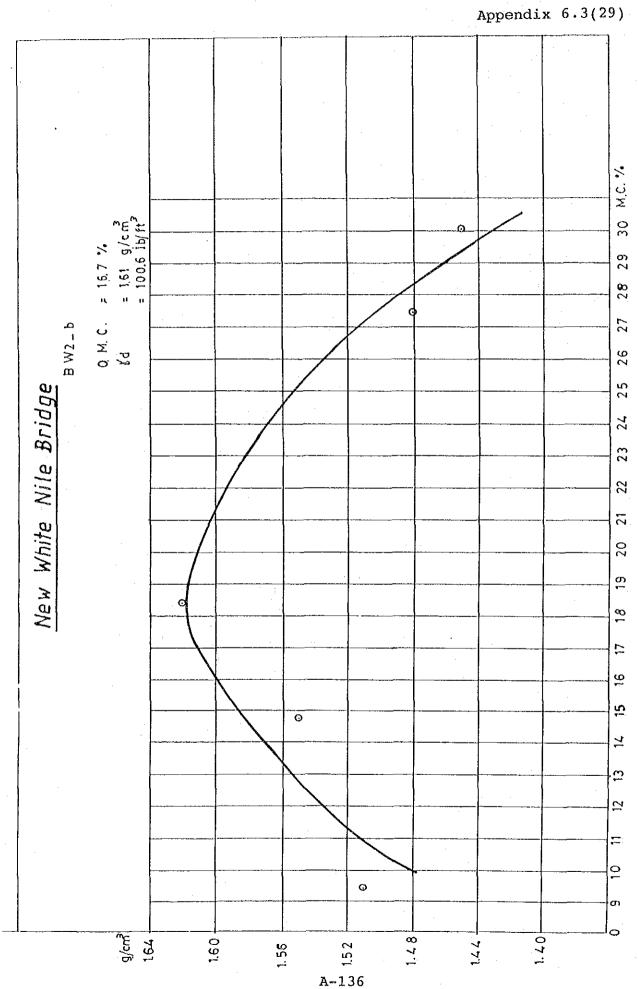

UU TRIAXIAL SHEAR STRENGTH TESTS GRAPHS




A-129

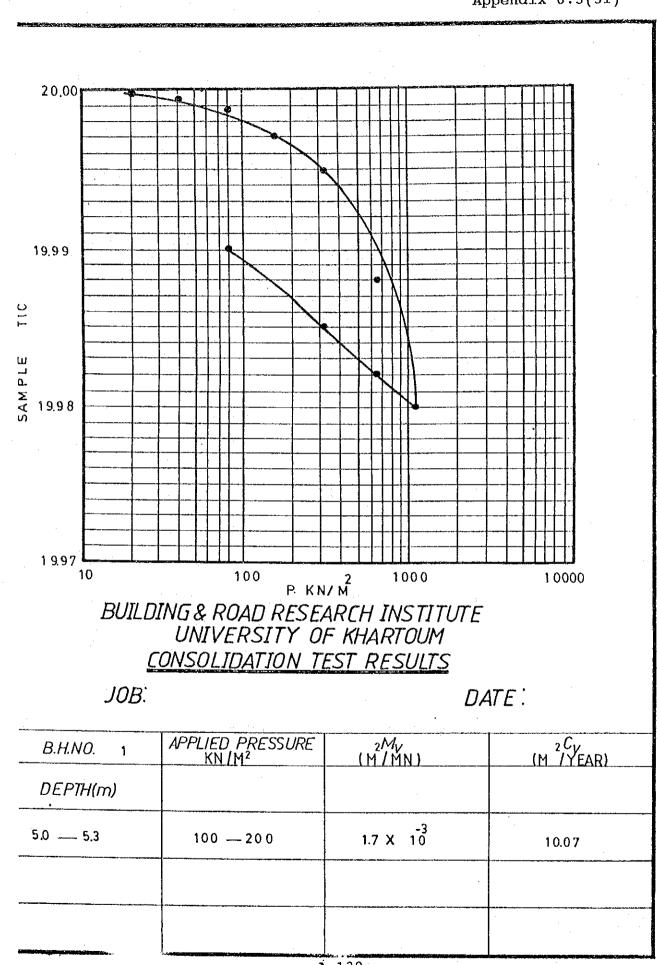



Appendix 6.3(24)



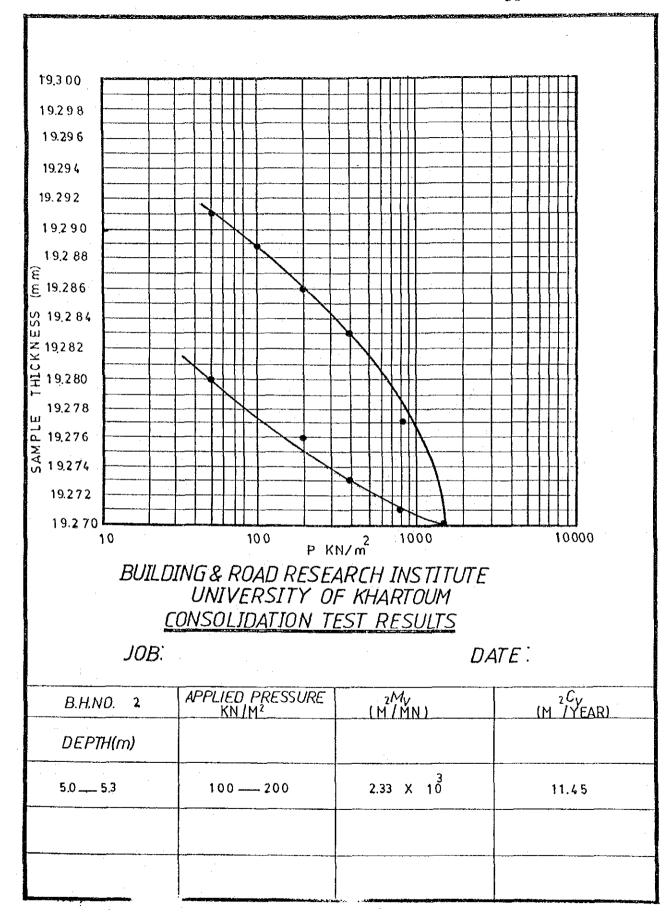
APPENDIX "D"

COMPACTION CURVES

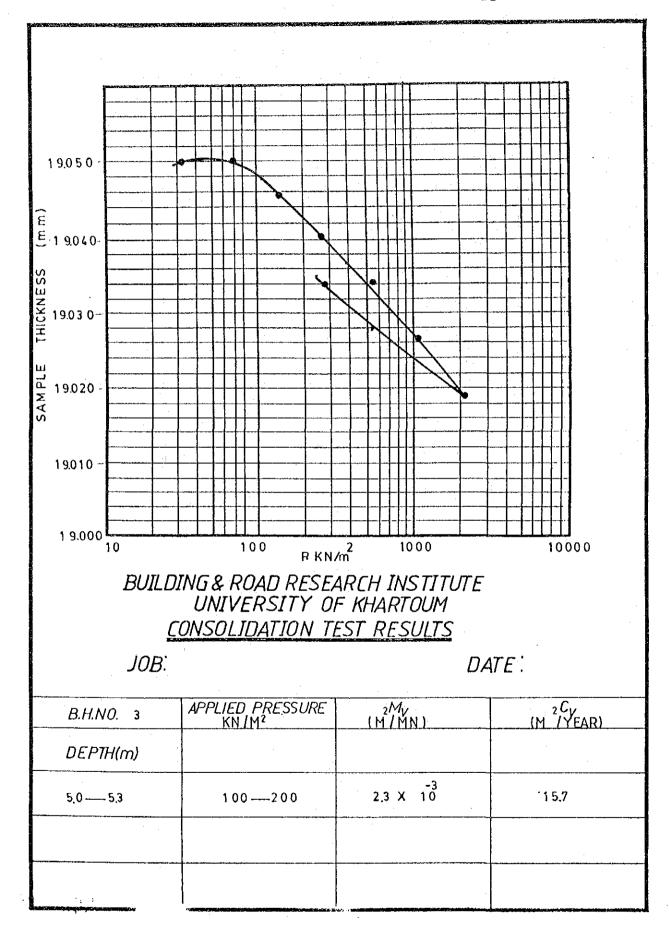

. .

50

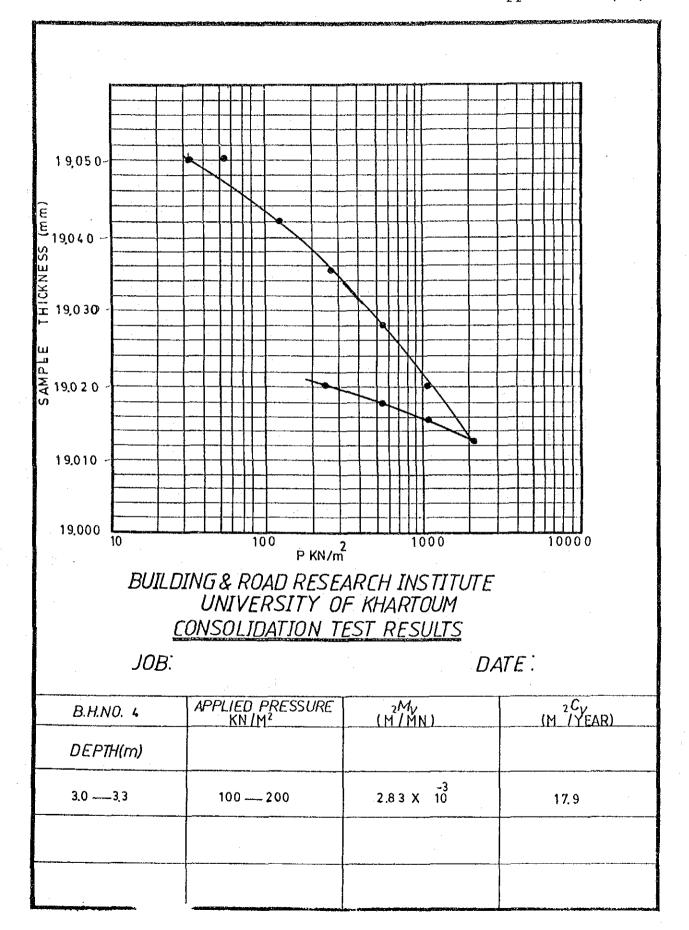
APPENDIX "E"


CONSOLIDATION CURVES

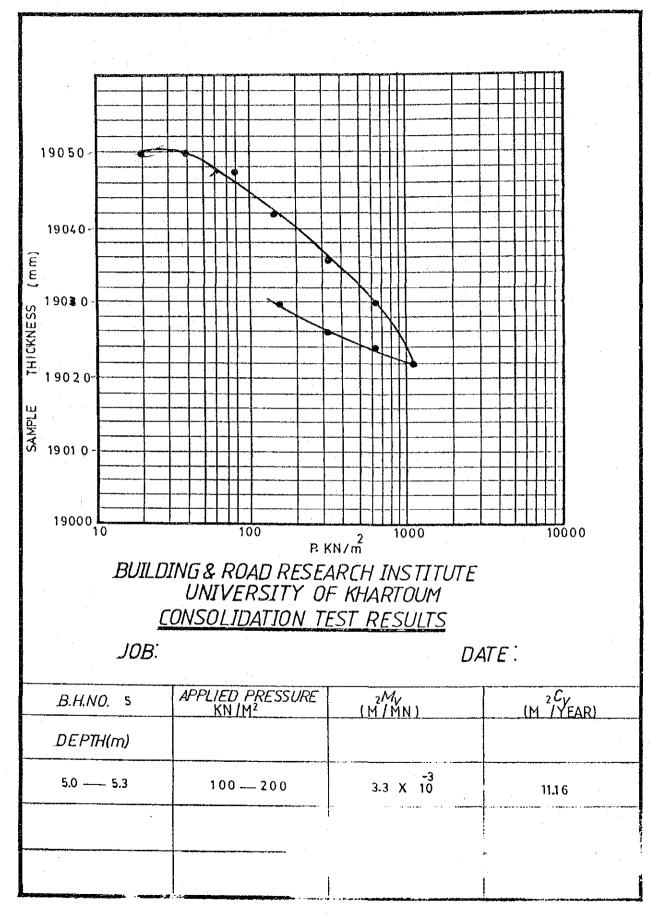
·

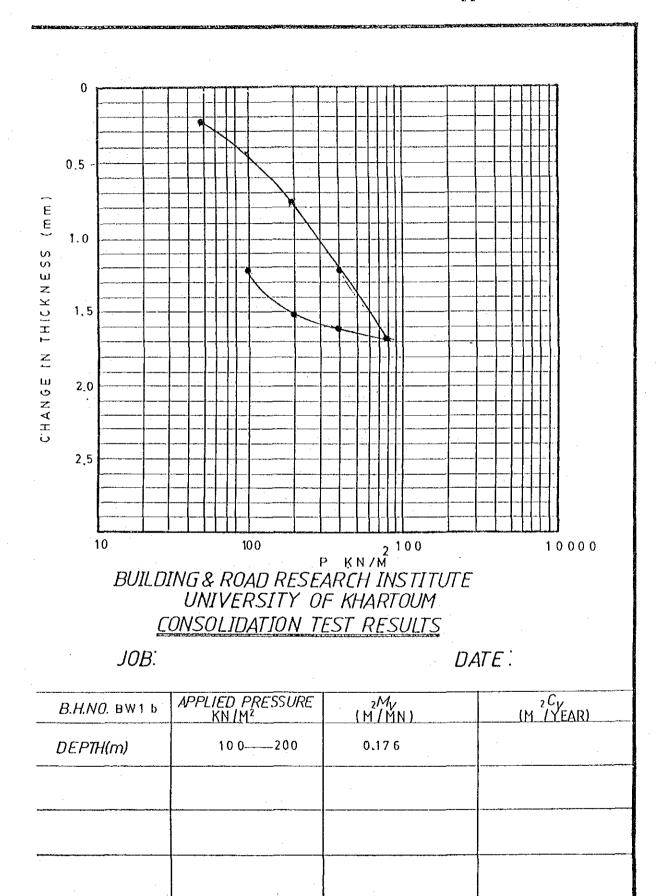

Á-138

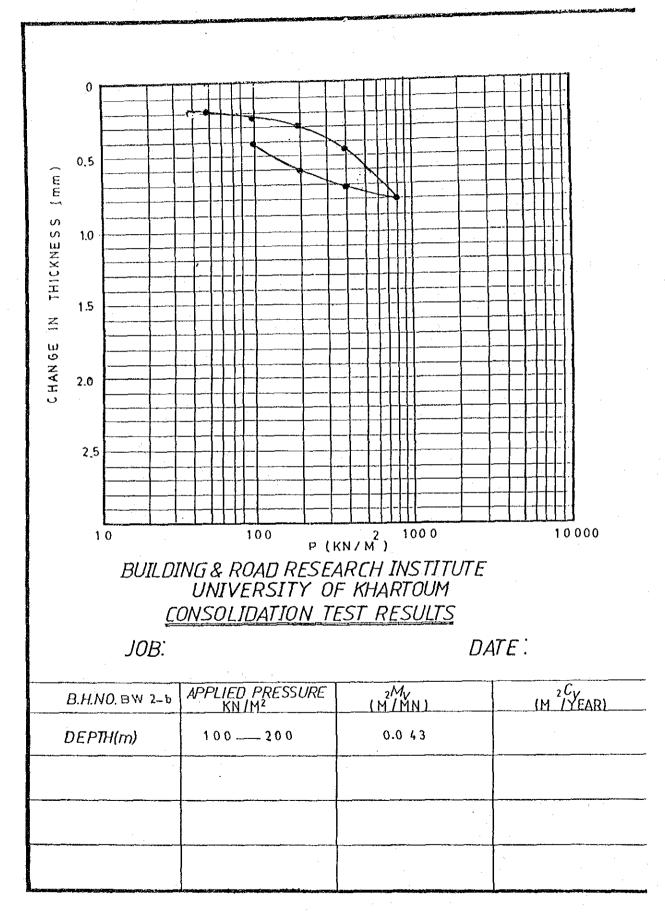
Appendix 6.3(31)



Appendix 6.3(32)


Appendix 6.3(33)


Appendix 6.3(34)


Appendix 6.3(35)

Appendix 6.3(36)

Appendix 6.3(37)

Table (1)

a) Undistarbed Sample Basic Engineering Properties

Sample	Depth	ԼԼ	P.I.	Gs	NMC	NDD PCf	
<u> </u>		%	%	<u> </u>	1 %		
Į				1			
в – 1	5.0 - 5.3	36	14	2.63	39	79.06	
8-2	5.0 - 5.30	43	16	2.59	42	71.17	
B - 3	5.0 - 5.3	38	15	2.64	41	76.26	
8 - 4	3.0 - 3.3	61	37	2.61	40	80.00	
8 - 5	5.0 - 5.3	55	24	2.63	38	80.74	
	11			l			

b) Linear Shrinkage

Sample	Depth m	L.S. %
1	1	
B - 1	5 - 5 3	10
8 - 2	5 - 5.3	12
B - 3	5 - 5.3	12
В-4	5 - 5.3	19
8 ~ 5	5 - 5 3	16
		l I

Table (2)

CBR values for Sample Compacted at 90% OMC and Soaked for four days.

Sample	OMC %	MDD gn/cm	CBR %		
8W1 - b	13	1.83	2.8		
B₩1 - b	19	1,62	2.3		
1	1				

Embankment Study

A high embankment is planned for part of the road section where the subsoil consists of soft clay. Therefore, a study on the embankment is made below to examine settlement and slip failure.

(1) Consolidation Settlement

According to the boring results, it is judged that the layer from ground surface to 4 meters deep is liable to settlement by consolidation.

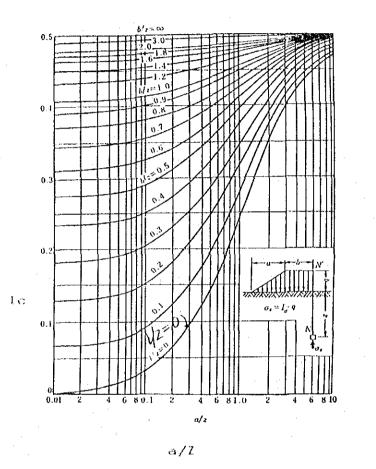
Settlement is estimated for the position of embankment center (roadway center) with various embankment heights h = 6 m, 8 m, 10 m and 12m by means of the following formula:

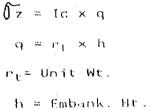
				Cc	Po + dP
S	=	Η	х	x log ₁₀ ()
				1 + eo	Po

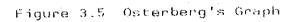
where, S : Amount of consolidation settlement

H : Thickness of settlement layer

Cc: Compression index


eo: Void ratio


- Po: Initial pressure
- dP: Increment stress caused by embankment, which is given by the Osterberg's graph as to the stress of embankment weight as shown in the following figure.


Those values related to calculation of settlement are empirically decided as follows taking into consideration the results of mechanical borings and soil tests.

H = 4 m Cc = 0.3 eo = 0.4Po = 5 t/m2

The increment stress dP is obtained by the Osterberg's graph on the premise that unit weight of embankment is 1.8 t/m3. The values are tabulated in the following table.

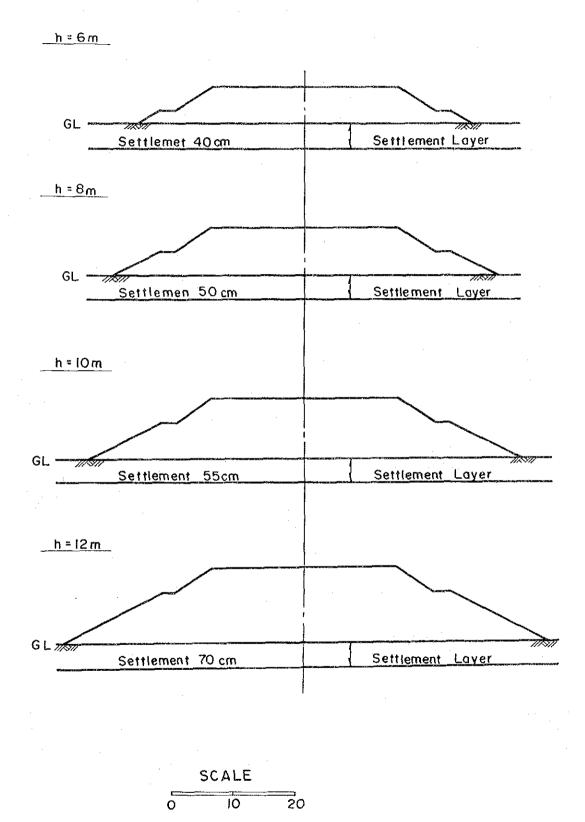
Appendix 6.4(3)

Embankment Height	dP
m	t/m2
6	11.0
8	14.0
10	18.0
12	23.0

Increment Stresses

The settlement amount is obtained as shown in the following table and figure.

Consolidation Settlement By Embankment Heights


Embankment Height	Settlement				
6 m	40 cm				
8 m	50 cm				
10 m	55 cm				
12 m	70 cm				

On the other hand, time in relation to settlement is calculated by the following formula:

$$t = \frac{Tv \times H'^2}{Cv}$$

where, t : Required time for the final settlement Tv : Time factor (theory of consolidation) H' : Thickness of stratum related to drain

Cv : Coefficient of consolidation.

.

Appendix 6.4(5)

In case of 80 % settlement, Tv = 0.567, H' = 4 m and Cv = 200 cm2/day, required time t is obtained as follows:

 0.567×400^2 t = ----- = 450 days 200

(2) Slip Failure (Circular Slip Failure)

If the subsoil is composed of homogeneous, circular slip safety can be calculated by the following formula:

 $Fs = \frac{C}{t \times h}$

where, Fs : Safety factor

C : Cohesive strength of subsoil

t : Unit weight of embankment

h : Embankment height

n : Coefficient of stability

n is decided by the parameters with regard to embankment such as trapezoid of embankment (a,b) and depth of slip surface (z) shown in the next page.

As a result of iteration, the following is obtained when $C = 3 t/m^2$, $t = 1.8 t/m^3$:

Safety Factor By Embankment Height (Without Any Countermeasure)

Embankment Height	Safety Factor of Circular Slip
	1.3
10 m	1.01
12 m	0.93
· .	the second s

Consequently, it is concluded that the maximum height of embankment without improvement be 8.0 meters.

Counter weight embankment is often employed as a countermeasure against slip in order to increase the value of safety factor. Detailed calculation is required, when embankment height more than 8 meters is planned with counter weight embankment, by dividing the circular section into appropriate strips (division method) as shown in the following figure.

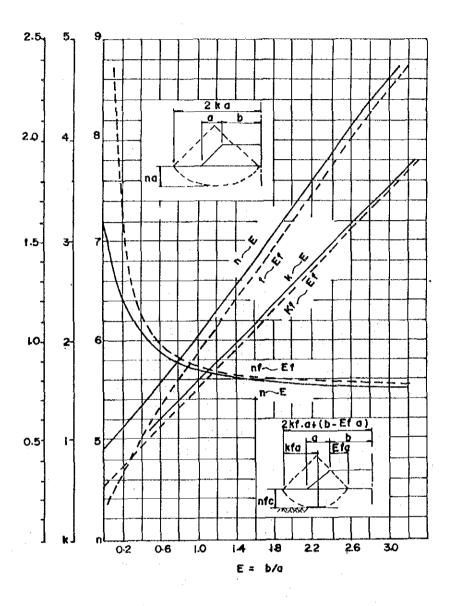
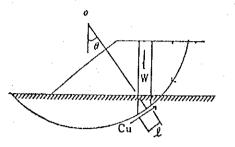



Figure 3.7

Graph for Deciding the Coefficient of Stability of Circular Slip Safety

Appendix 6.4(7)

Calculation of Circular Slip Safety by Division Method

Where,

- Fs : Safety factor, on the premise of long time stability Fs > 1.2
 - Cu : Cohesive strength in slip surface
 - Ø : Internal angle
 - : Weight of section W
 - w' : Weight of section reduced by buoyancy
 - 1 : Length of slip surface of each section : Counter weight WC

As a result of calculation, counter-weights of 30 and 60 t/m2 are required for embankment heights of h = 10 m and 12 m respectively as shown in the next page.

Embankment Height to be recommended (3)

Based on the discussions above in (1) and (2), the following is concluded as the recommendation for maximum embankment heights for the proposed road.

If no countermeasure against circular slips

Maximum Embankment Height = 8.0 m

If counter weight embankment

Maximum Embankment Height = 10.0 m

Although the embankment height might be theoretically possible up to 12 meters or more if the counter-weight is increased, such a high embankment is impractical since consolidation settlement of more than 70 cm settlement would occur in two (2) years.

	3 4 5 6 7 8 ∑	15 15 15 18 12 16 133	0 0 0 0 1.4 12 2.4 1354	<u>7</u> 11 25 35 43 40 139 139	<u>u x 1 + W cos Q x tan ø u) Wc</u> ≧ 1.2 ∑ sin Q	unter weight	- Wc ≧ 1.2 .: Wc ≧ 30 59	· · ·	3 4 5 6 7 8 9 ∑	5 15 15 15 16.5 12 12 16 125	0 0 0 25 1.8 0.8 51 130	84 2.4 15.4 30 48 50 27 156 156	Cu×1 + W cos ⊖ × tan øu}+ Wc ≥ 1.2 ∑ sin ⊖ 130+ Wc ≥ 1.2 ∴ Wc≥ 57 = 60 156
E	-	1 27. 15	0 0 0	5.9 6.9	Fs = <u>S(Cux1</u>	where Wc : Counter weight	135.4+ Wc 139	Ε	~	1 12 115	0 0 0 0 0	e <u>3</u> 1 7.2	Fs = <u>2 (cu x 1</u> 130+ 156
h = 10 m		Cu x 1 Cu X	W cos Q xtan ø u	W sin		M				Cu × 1	W cos O x tan øu	W sin O	
		· · ·			Wc 3 4				m 21 = r			2 	wc 3 4

Appendix 6.4(8)

Further Work Program for Detailed Design

1 Bridge Foundation

As a result of the present boring, the depth to the basal rock layer (Nubian formation) was nearly 15m. Since interval of boring is about 250m in the river, this is insufficient to confirm its correct depth at every pier position. Therefore, check borings will be required for the detailed design.

2 Subsoil Investigation In The Rainy Season

Present subsoil investigation has been carried out late in the dry season. During this time, the stronger conditions have been tested. Normally, as the embankment site is covered with flood, the natural subsoil condition should be examined in the rainy season. Therefore investigation should be repeated with more comprehensive examination by test boring, Duch cone sounding, undisturbed sampling, and soil tests late in the rainy season, when the soils are in their weakest condition. In case of soil test, the consolidation factor and shearing properties of C.D condition (Consolidated and Drained) should be carefully examined.

3 Basalt Quarry

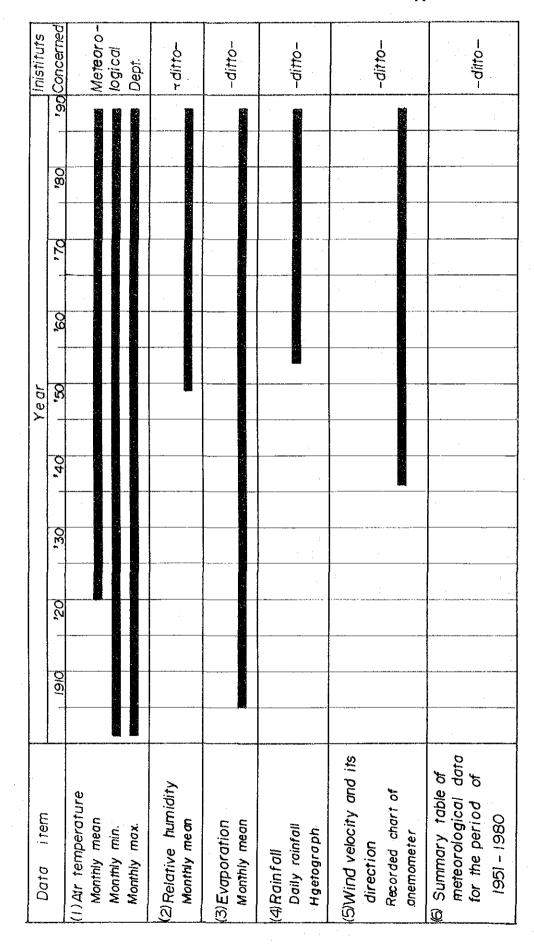
The basalt is a promising rock material in quality. Considering the present condition of quarry site, the outcrop hill appears small, therefore, check boring is required to confirm the estimated amount of it.

4 Embankment Material

From the viewpoint of compaction in construction, the water content of material is a key factor. In particular, the natural water content in the rainy season is very important for studying the engineering properties in relation to the optimum conditions for compaction. Consequently, the following tests are required:

- Sampling and soil tests of the natural conditions in rainy season
- Compaction tests
- Mechanical tests on the condition of probable optimum compaction (Consolidation, Unconfined compressive strength, Shearing and C.B.R).pa

5 Survey of Desert Sand

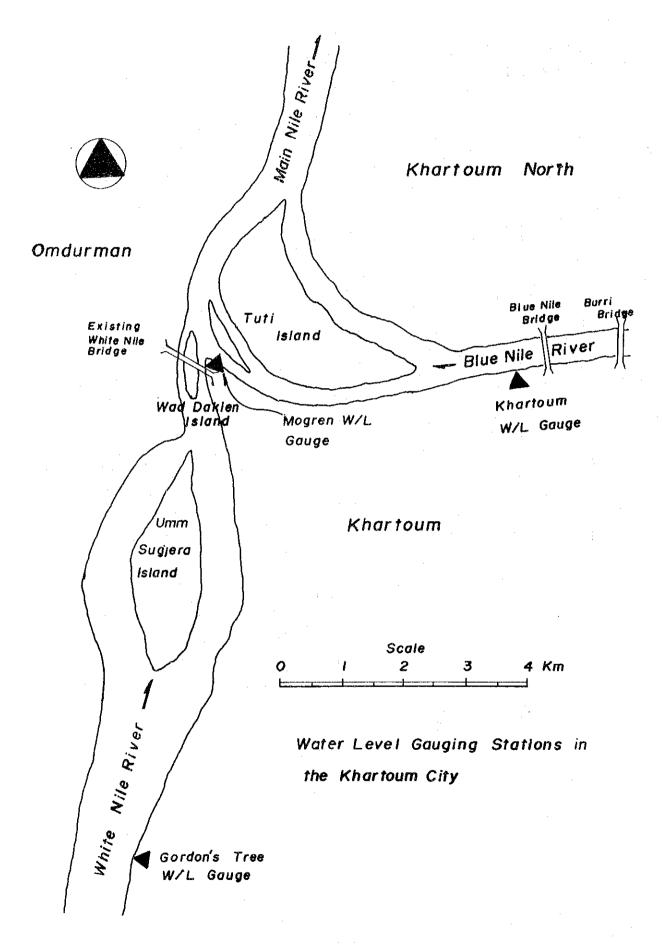

The estimated amount of the desert sand, which is used for sand material of concrete, shall be confirmed by the test pitting and sieving in a large area.

3.4.6 Concrete Test

The following items shall be examined for concrete:

- (1) Tests of mixtures using desert sand as the fine aggregate
- (2) Finding out the most suitable additives
- (3) Curing in the hot and dry condition (60 deg.C in temperature and 50 % in humidity in the wind flow)

Inventory of Meteorological Data Collected


A-156

Appendix 6.6

			Inventory	of Hydrological Data	1	Collected		
Nome vof Station	River	0161	VC &	ρε, ρε,	Year	120 120		Institute Concerned
Tamoniat	Blue Nile (1912)							
Khartoum	Blue Nile (1904)							- ditto -
Mogrèn	WhiteNile (1915)							- ditto -
Gordon's Tree	White Nile (1913-)							- ditto -
Gabel Aulia Dam	White Nile (1935)							ditto
Legend Water Level Daily mear Ten day me Annual mu	gend Iter Level Daily mean Ten day mean Annual max.		Dischcarge Daily mean Ten-day mean Discharge Measurement	~	Note Figures in of station	Figures in parenthis mean the of station	the installed year	

Appendix 6.7(1)

Appendix 6.7(2)

Meteorological Records at Khartoum Chservatory

M o r t h June July Aug. Sep. Oct. Nov. Dec. Mean/Totel Jan. Feb. Mar. Apr. May

(1) Air temperature (°C)

		•							Арр	endix 6.	.8
	1921-1988 1902-1988 1902-1988		1949-1958		1951-1986 1901-1988		1906-1988		1971-1960	0961-1261	1938-1988
	89 10 10 10 10 10 10 10 10 10 10 10 10 10		90		321		بہ (۲) میں		I	۰. ۴	ı
	24 24 26 20 20 20 20 20 20 20 20 20 20 20 20 20		30		66		13.4		Z	4 .0	13.4
	0.00 0.00 0.00		27		O		15.7		7.	••	6. Cit
	-1 24 00 + 10		23		st≉ •≓		15.5		2	с. С	22.3
	0 - 4 - 6 6 - 0 6		4 0		с 0 4		60 11		SSS	ແ ຫຼ	25.5
	3000 1000 1000 1000 1000 1000 1000 1000		52.		71				S	3.6	34.9
	0 0 0 0 		ተ ታ		ে। ব	·	14.7		MSS	4.0	22.8
	C 00 C C 00 C C 01 4		53		ю (V		18.6		SS	0. 4	25.5
	0.21 4 4 4 5 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7		0		খা ন্		5. 51		NSS	() ()	51.0
	(7 m d) (7 m d) (7 m d) (7 m d) (7 m d)		17		00		0.15		z	4.0	20.6
	24.2 27.9 6.9 9.3 45.3 45.2		. 10		00		19.3		2	4	ርጉ
	24 26 20 20 20 20 20 20 20 20 20 20 20 20 20		20		00		13.5 16.2	(10	2	4.5	15.6
) ~ ;	n 23.2 6.0 40.1	åi ty	22		00		13.6	(u (u)	7	τy .5	004ty 13.4
	- Monthly mean - Minimum - Maximum	Relative humidity	(*)	(3) Wonthly Rainfall	- Mean (mm) - Rainy days	Evaporation	(mm. d ay)	Wind Velocity	- Prevailing direction	- Mean Velocity (m/s)	 Maximum velocity (m/s) 13.
-		(3)		(3)		(7)		(E)			

Source : Meteorological Department, Ministry of Defence

Order	Year	Date		Gauge	Water	Exceedance
OLUET.	ICal	Month	Day	Reading	Level	Probability
		Monten	Day	(m)	(R1.m)	(Weible Plot)
				(m)	V IV I – IN J	(MEIDIE LIOC)
1	1946	Sep.	2	17.26	379.96	1%(75-year)
2	1988	Aug.	28	17.05	379.75	3%(30-year)
3	1917	Sep.	17	17.00	379.70	4%
4	1954	Aug.	31	16.80	379.50	5%(20-year)
5	1975	Sep.	20	16.78	379.48	7%
6	1961	Sep.	4	16.74	379.44	8%
7	1964	Aug.		16.74	379.44	9%(10-year)
8	1958	Sep.	1	16.70	379.40	11%
9	1959	Sep.	3	16.65	379.35	12%
10	1963	Aug.	3	16.57	379.27	13%
11	1970	Aug.	30	16.48	379.18	15%
12	1938	Sep.		16.45	379.15	16%
13	1955	Sep.	4	16.44	379.14	17%
14	1916	Sep.		16.43	379.13	19%
15	1985	Sep.	9	16.32	379.02	20%(5-year)
16	1957	Aug.	29	16 30	379.00	21%
17	1929	Sep.		16.27	378.97	23%
18	1934	Sep.		16.26	378.96	24%
19	1969	Aug.	26	16.24	378.94	25%
20	1953	Aug.	3.0	16.23	378.93	27%
21	1960	Aug.	27	16.18	378.88	28%
22	1971	Aug.	25	16.18	378.88	29%
23	1956	Aug.	14	16.18	378.88	31%
24	1974	Aug.	22	16.17	378.87	32%
25	1935	Aug.		16.12	378.82	33%
26	1947	Sep.		16.12	378.82	35%
27	1977	Aug.	17	16 12	378.82	36%
28	1952	Aug.	26	16.10	378.80	37%
29	1936	Sep.		16.09	378.79	39%
30	1967	Aug.	29	16.08	378.78	40%
31	1937	Aug.		16.08	378.78	41%
32	1942	Aug.		16.06	378.76	43%
33	1966	Sep.	19	16.00	378.70	44%
34	1962	Aug.	29	15.97	378.67	45%
35	1923	Aug.	20	15.94	378.64	47%
36	1924	Sep.		15.92	378.62	48%
37	1922	Sep.		15.91	378.61	49%(2-year)
38	1928	Sep.		15.90	378.60	51%
39	1933	Sep.		15.90	378.60	52%
40	1926	Aug.		15.85	378.55	53%
4 1	1919	Sep.		15.84	378.54	55%
42	1973	Aug.	26	15.78	378.48	56%
43	1932	Sep.		15.76	378.46	57%
44	1945	Sep.		15.76	378.46	59%
45	1951	Sep.	2	15.74	378.44	60%
		<u>.</u>	~	+ 4 1 1 7		

Annual Highest Water Level at Mogran (1/2)

Order	Year	Date	2	Gauge	Water	Exceedance
		Month	Day	Reading	Level	Probability
			-	(m)	(Rl.m)	(Weible Plot)
					:	
46	1943	Sep.		15.71	378.41	61%
47	1950	Aug.	14	15.70	378.40	63%
48	1949	Sep.		15.66	378.36	64%
49	1931	Sep.		15.65	378.35	65%
50	1983	Sep.	. 7	15.65	378.35	67%
51	1978	Aug.	22	15 60	378.30	68%
52	1981	Sep.	3	15.58	378.28	69%
53	1921	Sep.		15.55	378.25	71%
54	1927	Aug.		15.53	378.23	72%
55	1980	Aug.	20	15.50	378.20	73%
56	1968	Aug.	16	15.48	378.18	75%
57	1918	Sep.		15.46	378.16	76%
58	1948	Aug.		15.45	378.15	77%
59	1965	Aug.	23	15.38	378.08	79%
60	1930	Aug.		15.38	378.08	80%
61	1976	Aug.	26	15.33	378.03	81%
62	1939	Aug.		15.29	377.99	83%
63	1944	Aug.		15.28	377 98	84%
64	1920	Aug.		15.26	377.96	85%
65	1915	Sep.		15.24	377.94	87%
66	1940	Aug.		15.21	377.91	88%
67	1925	Aug.		15.20	377.90	89%
68	1979	Aug.	23	15.14	377.84	91%
69	1987	Aug.	29	15.10	377.80	92%
70	1982	Aug.	27	15.00	377.70	93%
71	1941	Sep.		14.87	377.57	95%
72	1986	Sep.	3	14.68	377.38	96%
73	1972	Aug.	31	14.39	377.09	97%
74	1984	Aug.	26	13 46	376.16	99%
• •	****	mag .				
Note	: The a	ibove are	based o	on ten-day	and dat	ily mean

Annual Highest Water Level at Mogran (2/2)

Note : The above are based on ten-day and daily mean data.

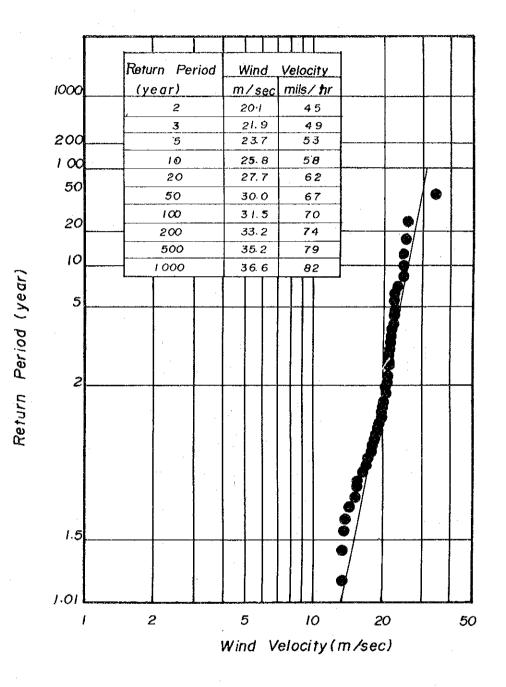
Source : Ministry of Irrigation

Annual	Lowest	Water	Leve!	at	Mogren
--------	--------	-------	-------	----	--------

Ondon	Voon	Date		Gaurdo	Waton
Order	Year	Month	Day	Gauge Reading	Water Level
		1011011	DO Y	.(m)	(R].m)
1 2	1945	May	. *	9.92	372.62
3	$1987 \\ 1946$	Mař. May	'6 29	$10.00 \\ 10.08$	372.70
3 4	1951	May	x. a	10.10	372.78 372.80
5 6	$1940 \\ 1988$	May Feb.	2.4	$\begin{array}{c} 10.13 \\ 10.14 \end{array}$	372.83 372.84
7	1943	Mav	7	10.19	372.89
8 9	1944	May Feb.	26	10.20	372.90
10	$\frac{1985}{1986}$	June.	26 15	10.20 10.20	372.90 372.90
$\frac{11}{12}$	1938 1942	May May		$10.22 \\ 10.23$	372.92 372.93
13	1942	Mav		10.23	373100
14	1952	May	-	10.32	373.02
15 16	$\begin{array}{c}1983\\1984\end{array}$	Mar. June	7 6	$10.36 \\ 10.39$	373.06 373.09
17 18	$1954 \\ 1961$	May June		$10.42 \\ 10.44$	373.12 373.14
19	1948	May		10.45	373.15
20 21	1973 1978	Mar. Mar.		10.45 10.45	373.15 373.15
.2.2	1980	Mar.		10.48	373.18
23 24	$1958 \\ 1949$	May May		$10.49 \\ 10.54$	373.19 373.24
25	1979	Feb.	11	10.54	373.24
26 27	$1966 \\ 1974$	Mar. Feb.		10.60 10.62	373.30 373.32
28	1982	Mar.	7	10.62	373.32
29 30	- 1939 1970	Mar. Apr.		$10.63 \\ 10.63$	373.33 373.33
31	1975	June		10.65	373.35
82 33	$\frac{1981}{1976}$	∀eb. Mar:		10.66 10.68	373,36 373,38
34	1960	May		10.70	373.40
35 36	$1950 \\ 1959$	June May		10.73 10.75	373.43 373.45
37	1977	Mar.	, . ,	10.82	373.52
38 39	1969 1972	June Mar.	,	10.84 10.84	373.54
40	1968	Mar.		10.87	373.57
41 42	$1971 \\ 1963$	Mar. Mar.		$10.91 \\ 10.93$	373.61 375.63
43	1964	Mar.		10.95	373.65
44	1967 1955 -	Apr. June		11.05 11.07	373.75 373. 77
46	1947	May		11.08	373.78
47 48	$1957 \\ 1965$	Feb. Apr.		$11.13 \\ 11.30$	373.83 374.00
49	1962	May		11.38	374.08
50 51	$\begin{array}{c} 1918 \\ 1956 \end{array}$	Маў Мау		$11.40\\11.44$	374.10 374.14
Note	: The	-	based of	n Ten-day	and daily

Note : The above are based on Ten-day and daily mean data. Source : Ministry of Irrigation

		Disc	harge
Year	Month	mil.m ³	m ³ /sec
1 CITAL	morren	/day	10 7 0 0 0
		/uay	
1948	Oct.	91.9	1,064
1949	Oct.	96.1	1 112
1950	Nov.	89.9	1,041
1951	Jan.	86.7	1,003
1952	Feb.	80.0	926
1953	Mar.	84.4	977
1954	Nov.	94.7	1,096
1955	Jan.	84.7	.980
1956	Nov.	89.5	1,036
1957	May	90.2	1,044
1958	Mar.	84.9	983
1959	Sep.	86.5	1,001
1960	Apr.	80.1	927
1961	Nov.	94.9	1,098
1962	May.	95.1	1,101
1963		-	
1964		-	_
1965			
1966			
1967	_	·	. →
1963	Jan.	110.0	1,273
1969	Apr.	120.0	1,389
1970		120.0	1,389
1970	Apr.	120.0	1,389
	Apr.	120.0	1,389
1972 1973	Apr. Oct.	109.0	1,262
1973	Oct. Oct.	108.0	1.250
1974		126.0	1,458
1976	Nov. May	123.0	1,424
	-	108.0	1,250
1977	Sep.	105.0	1,215
1978	Oct.	120.0	1,389
$\frac{1979}{1980}$	Apr. Mou	112.0	1.296
	May	112.0	1,273
1981 1982	Oct.	101.0	1,169
	Dec.		1,215
1983	Mar.	$105.0 \\ 119.0$	1,377
1984	Jan.	125.0	1.447
1985	Dec.	125.0	1,227
1986	Oct.	85.0	984
1987	Apr. Doc	131.0	1.516
1988	Dec.	1.1.1.0	1 010
Maximum			1,516


Annual Maximum Discharges at Downstream of Gebel Aulia Dam

Source : Ministry of Irrigation

Year	Dat	ė	Direc- tion	Wind Velocity (m/sec)	Year	Dat	te	Direc- tion	Wind Velocity (m/sec)
1938	Aug.	22	E	17.4	1971	Sep.	7	S	20.1
	Apr.	5	SSW	16.5	1972	Aug.	25	NE	22.8
	Aug.	20	EES	20.1	1973	July	30	S	25.0
	June	25	S	21.9	1974	Sep.	15	S	20.6
	Aug.	30	SE	13.4	1975	Sep.	21	SSW	26.4
	Aug.	23	S	13.9	1976	Sep.	6	S	21.0
	Jun.	16	SE	17.9	1977	Aug.	20	E	23.7
1945	Sep.	16	E	15.6	1978	July	12	SE	14.7
	Jul.	10	E	13.4	1979	June	15	ESE	20.1
	Aug.	2	W	13.9	1980	June	3	NE	17.9
	Aug.	9	E	15.2	1981	July	29		22.3
	Aug.	24	EES	22.3		Aug.	18	Ē	20.6
	Aug.	20	E	24.6		July	9	S	17.0
	Aug.	30	E	22.8		July	23	S	15.6
	Aug.	25	NE	22.8	1985	Aug.	10	ESE	22.3
	Sep.	6	Е	22.8	1986	- 0			
	Sep.	6	~ .	21.0		Sep.	16	SSE	19.0
	Jul.	16	E	21.9		Sep.	1	SEE	18.0
	Sep.	2	NE	21.9	Mean	-			20.5
	Aug.	12	E	34.9					
	Jul.	25	Е	22.3					
	Aug.	10	E	19.2					
	Jun.	20	S	19.7					
1961	Jul.	24	E	22.3		1. 			
	Jun.	19	E	25.0					
	Jul.	10	Е	22.8					
1964	Jul.	20	E	21.5					
1965		з	E	25.5					
1966		9	EES	22.8		÷			
1967	May	9	S	21.0					
	-	2	Е	21.9					
1969	-	26	Ε	21.5					
	Sep.	5	ত্র	18.8					
	-								

Annual Maximum Wind Velocity at Khartoum

Source : Meteorological Department, Ministry of Defence

Frequency Curve Annual Maximum Wind Velocity

Source : The Study Team

Estimation of Wind Current Wave

1. Estimation Condition

According to Bretschneider's method, wind velocity, average water depth and fetch characterize wind current wave. In the study, the following figures are set for estimation of wave height (H):

- W	lind velocity	(U)	31.5	m/sec
- W	later depth	(h)	6	m
- F	'etch	(F)	11,000	m
- G	ravitational	acceleration (g)	9.8	m/sec ²

2. Calculation

(1) Wave Height

Bretschneider prepared the relation between wave height, wind velocity, fetch and water depth as shown in Figure 1. According to this figure, it is easy to derive wave height by calculating (gF/U^2) and (gF/U^2) and reading (gH/U^2) from the figure.

Results are as below:

 $ah/U^2 = 9.8 \times 6.0 / 31.5^2 = 6 \times 10^{-2}$

 $qF/U^2 = 9.8 \times 11,000 / 31.5^2 = 109$

From the figure, gH/U^2 is read at 2 x 10^{-2} and wave height are calculated as follow:

 $H = U^{2} \times 2 \times 10^{-2} / g$ = 31.5² × 2 × 10⁻² / 9.8 = 2.02

H calculated is rounded up to 2.1 m of wave height.

(2) Wave Length

Firstly, wave period is needed to estimate wave length. Bretschneider proposed the following procedures:

- Assuming H equivalent wave height of deep water wave, fetch (F) is read at 8,000 m from wind velocity (U) and wave height (H), based on Figure 2.
- Inputting this fetch to the following equation for estimation of period (T), prepared in S.M.B. Method:

 $gT/2/3.14/U = 1.37 (1-(1+0.008(gF/U^2)^{1/3})^{-5})$ $= 1.37 (1-(1+0.008(9.8x8000/31.5^2)^{1/3})^{-5})$ = 0.21

 $T = 0.21 \times 2 \times 3.14 \times 31.5 / 9.8$ = 4.3 second

Wave length (L) is calculated based on the following equation, prepared on the basis of Small Amplitude Wave Theory:

 $L = (g/2/3.14) \times T^{2}$ = (9.8/2/3.14) x 4.3² = 29.1 m

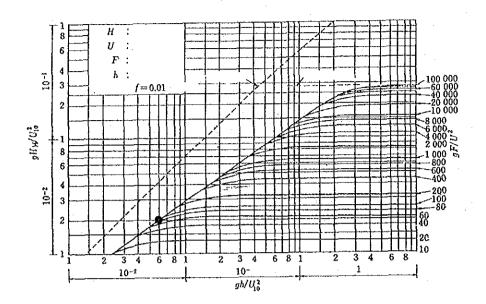
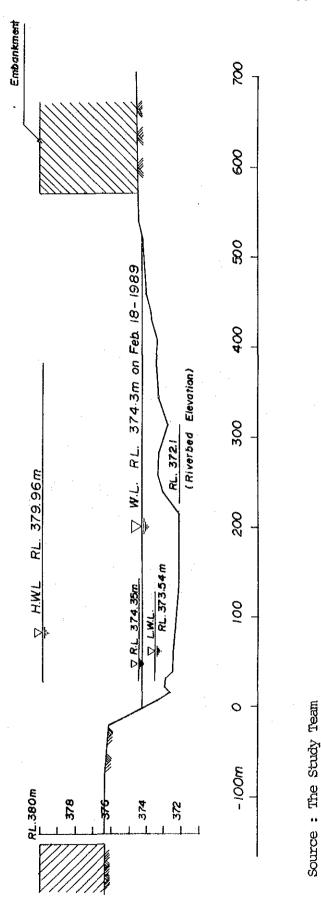
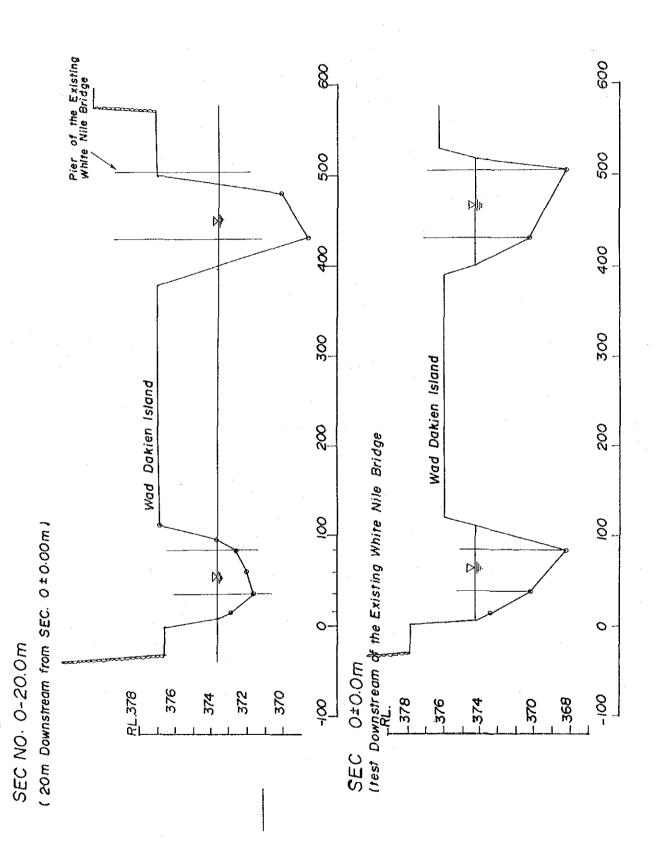
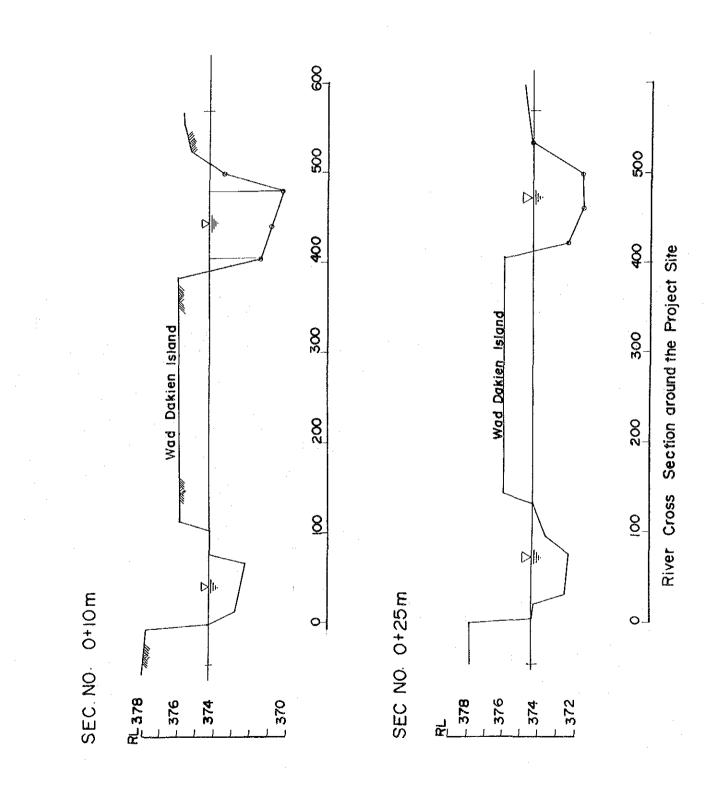



Figure 1

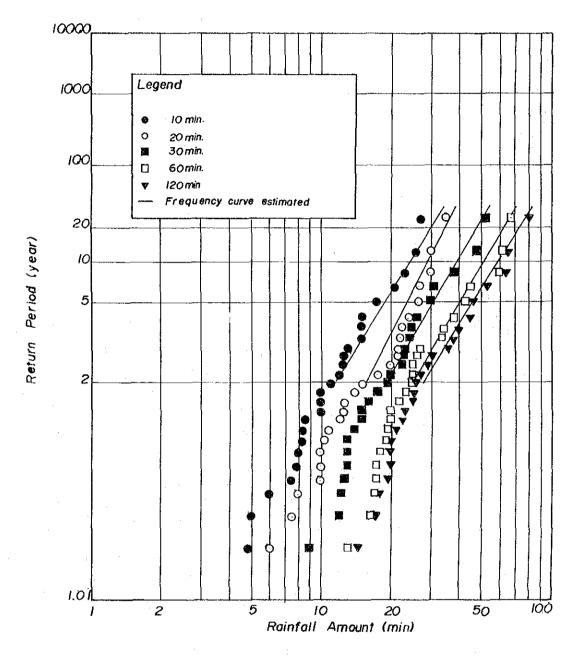


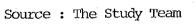


A-169

Appendix 6.15(1)

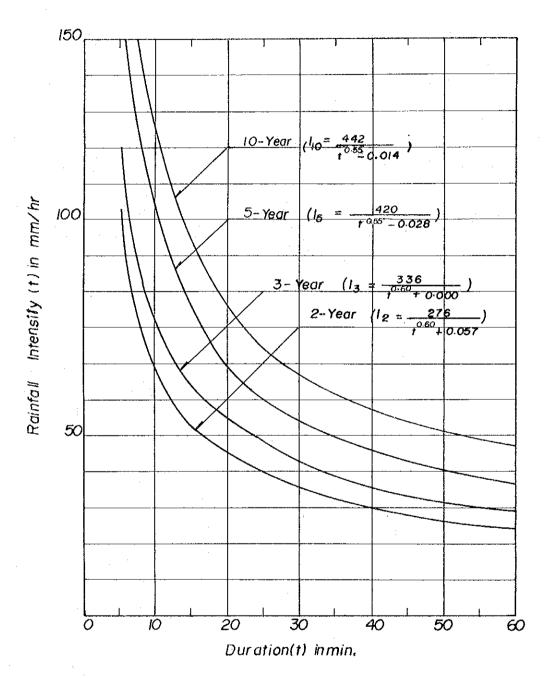
Appendix 6.15(2)

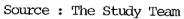



A~171

Annual Maximum Rainfall Amount and Its Duration

				fall A Durati			
Year	Date	10	20		•	120	180
1951	Aug.19	4.9		8.6	16.6	17.6	17.6
1952		_		·			-
1953	Aug. 27	15.0		25.5	26.8	27.0	27.0
1954		-	. –		-		
1955	<u> </u>		÷		-		- 1
1956	Sep.30,Aug.11		12.5		27.0	29.5	30.5
1957	Aug.10	11.0	15.0	13.0	34.3	35.5	36.2
1958	Aug.14	6.0	10.0	15.0	18.0	20.0	20.0
1959	Sep. 5	13.0	21.8	23.1	25.1	26.1	27.1
1960	Aug. 3	8.0	12.0	15.0	19.5	19.5	19.5
1961	July 8	12.5	30.0	37.5	67.5	79.0	79.0
1962	Sep. 3	26.3	27.0	31.0	34.0	40.0	46.0
1963	Aug.10,Sep.24	7.9	8.0	13.0	25.0	25.2	25.2
1964	Aug.14	8.5	10.0	.13.0	19.0	22.5	24.3
1965	Aug.24	15.0	22.5	23.0	23.5	28.9	32.5
1966	Aug. 1	5.0	7.5	12.5	17.5	20.8	28.3
1967	Aug.15	27.5	35.0	52.5		64.8	68.7
1968	Aug.14	8.3	13.8	17.5	21.7	38.3	44.9
1969	Aug.17	10.0	.12.5	12.7	13.0	14.3	1.4.3
1970	-		. ·		-	~	-
1971	Aug.13	10.0	10.2				17.1
1972	Aug.25	23.2	30.0		62.5		64.0
1973	Aug. 2	12.0	24.0	25.1	25.5	25.5	25.5
1974	· · · · · · · · · · · · · · · · · · ·		-	. 🛏	-		-
1975	Aug. 3	7.5	10.0				22.0
1976	Aug:31	12.5	20.0	22.5	37.5	52.5	55.0
1977	Aug. 20	17.1	22.1		42.5	45.5	49.2
1978	July19	15.0	17.5		20.0	20.0	20.0
1979	Aug.15	8.2	10.6	14.0	50.0	23.0	25.0
1980	E Law				· -	-	-
1981	Aug.29	23.3	27.0	30.0	44.5	44.5	44.5


Source : Meteorological Department, Ministry of Defence



Frequency Curve of Annual Maximum Rainfall at Khartoum

Appendix 6.18

Relation between Probable Rainfall Intensity and Duration

Estimation of Wave-Run-Up Height

Wave-run-up height is estimated according to the Saville's equivalent slope method below:

1. Determination of Wave Breaking Point

Wave height coming wave to bank slope and wave breaking facility and its length estimated in Appendix V- are as below:

•	Wave	height	(H)	2.1	m
-	Wave	length	(L)	29.1	m

From the above values, H/L is worked out at 0.07. According to Figure 1 and 0.07 of H/L, hb/H (hb : wave breaking depth) is read at 1.3 and hb is calculated at 2.7 m.

2. Wave-Run-Up Height

As shown in Figure 2, the wave-run-up height is assumed firstly. Secondarily, cot a and H/L are calculated and R/H (R : wave-run-up height) is read from Figure 3. Finally, R is calculated. This procedure will be repeated until the assumed and calculated values indicate same value.

In this study, wave-run-up height is worked out at 2 m based on the following values:

_	Assumed	wave-run-up	height	2.0	m
-	cot a			3.8	
_	H/L			0.73	
-	R/H			0.9	
_	R			2.0	

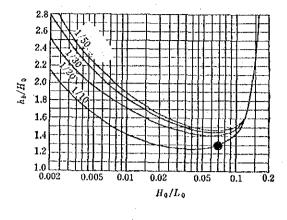


Figure 1

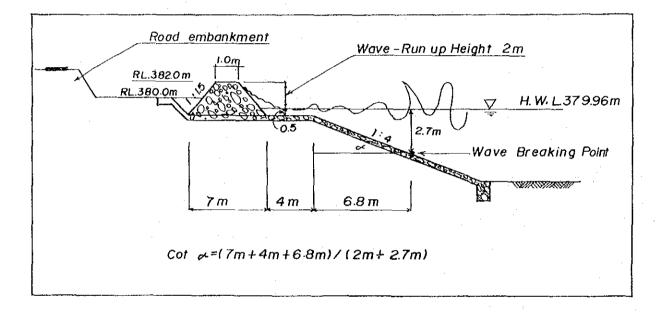


Figure 2

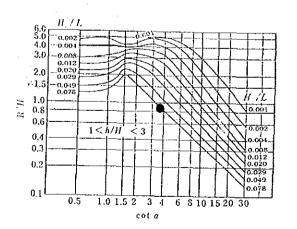
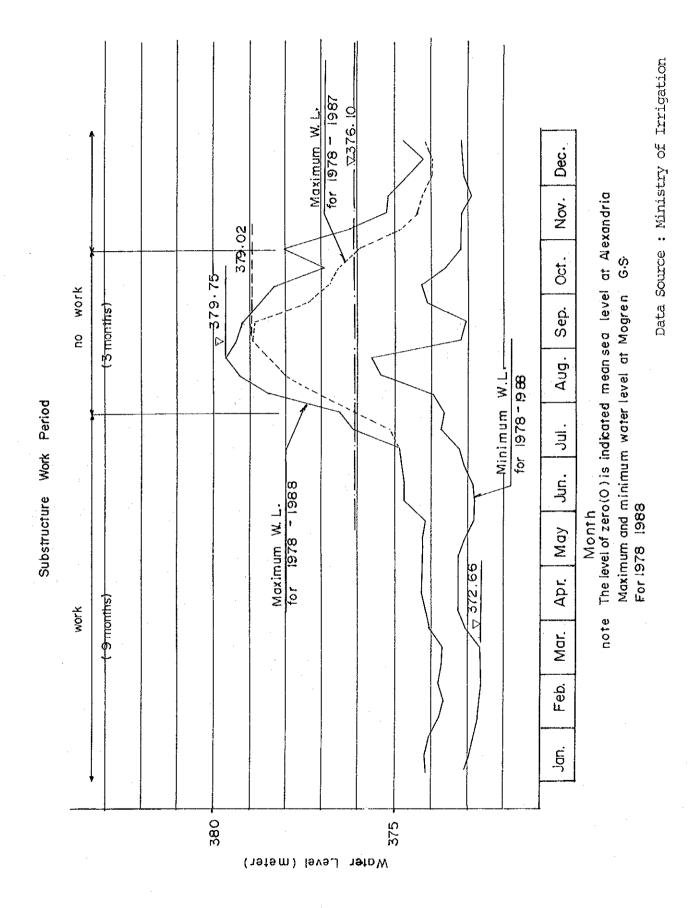



Figure 3

Appendix 6.20

Preliminary Bridge Engineering

Table of Contents

			Page
7.1		Distribution Function of Overloaded Axels	A-179
7.2		Total Weight Distribution Function of Surveyed Convoys (Khartoum-Wad Madani Section)	A-180
7.3		Comparative Table of Loads Indicated in International Standards	A-181
7.4	(1)	Steel Box Girder and Steel Plate Girder	A-182
7.4	(2)	P.C. Box Girder (T-Type Pier) and P.C T-Girder	A-183
7.4	(3)	P.C Box Girder (V-Type Pier) and P.C T-Girder	A-184
7.4	(4)	Steel Lohse and Steel Plate Girder	A-185
7.4	(5)	P.C Cable-Stayed and P.C T-Girder	A-186
7.4	(6)	Steel Truss Girder and Steel Plate Girder	A-187
7.5		Structural Layout of P.C Box Girder with V-Leg Pier	A-188
7.6		Results of Structural Calculation of Prestressed Concrete Box Girder with V-Leg Pier	A-190
7.7		Structural Studies on P.C Box Girder	A-203
7.8		Structural Studies on P.C-I Girder for Side Span	A-207
7.9	·	Results of Stress Calculation	A-209
7.10)	Stability Calculation of Pile Foundation	A-213

.

DISTRIBUTION FUNCTION of OVERLOADED AXELS KHARTOUM - WAD MADANI Section

Axel Load	Number	PERCENT	AGES	CUMUL	
(ton)	of	RBPC	HOIS	RBPC	HOIS
•	Survey	1988	1986	1988	1986
> - <=	AXELS	prelimi		prelimi	
10 - 11	194	29.39	15.97	29.39	15.97
11 - 12	162	24.55	18.47	53.94	34.44
12 - 13	127	19.24	15.18	73.18	49.62
13 - 14	80	12.12	13.11	85,30	62.73
14 - 15	49	7.42	11.42	92.72	74.15
15 - 16	21	3.18	9.35	95.90	83.50
16 - 17	16	2.42	7.79	98.32	91.29
17 - 18	5	0.76	4.64	99.08	95.93
18 - 19	1	0.15	1.94	99.23	97.87
19 - 20	4	0.61	0.95	99.84	98,82
20 - 21	. 1	0.15	0.46	99.99	99.28
21 - 22	0	0.00	0.46	99.99	99.70
22 - 23	0	0.00	0.23	99 . 99	99.93
23 - 24	0	0.00	0.04	99.99	99.97
24 - 25	0	0.00	0.00	99.99	99.97
25 - 26	0	0.00	0.03	99.99	100.00
26 - 27	0	0.00	0.00	99,99	100.00
27 - 28	0	0.00	0.00	99.99	100.00
28 - 29	0	0.00	0.00	99.99	100.00
29 - 30	0	0.00	0.00	99,99	100,00
*** Total ***	660	99.99	100.00		

Note: HOIS is shown " HIGHWAY ORGANIZATION AND INVESTMENT STUDY. Ministry of Finance and Economic Planning.

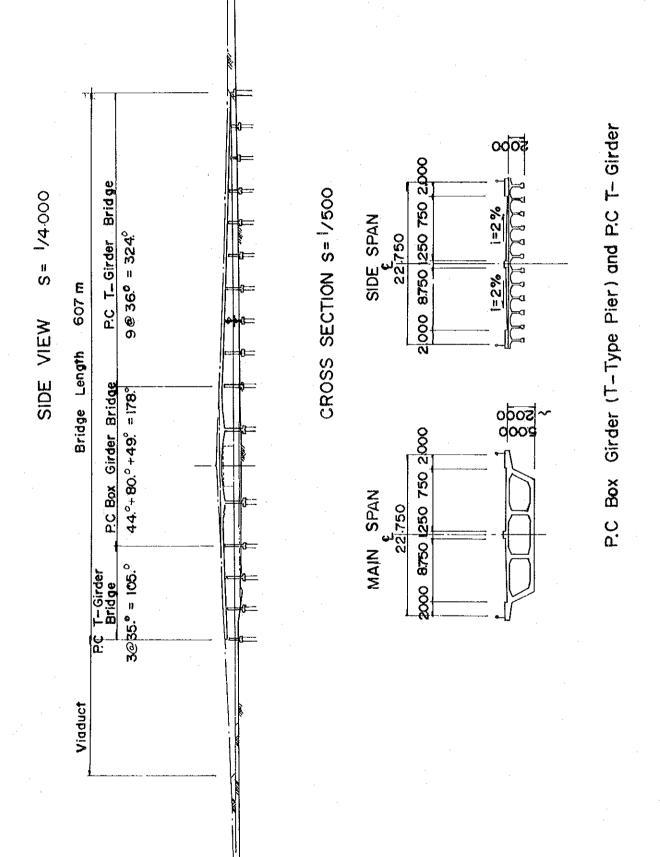
(source : AXLE LOAD CONTROL SYSTEM axel load survey ROADS and BRIDGES PUBLIC CORPORATION October 1988).

	•	IOTAL WEIGHT	DISTRIBUTION		UN	
		KHARIOUM -				
Total	Number	Average	PERCENTA	GE	CUMUL	
Weight	of	Weight	per	per	percentage	
(ton)	survey	Classe	Convoys	Weight	Convoys	Weight
> - <=	convoys	(ton)	(೪)	(원)	(%)	(%)
10 - 13	0	0.00	0.00			0.00
13 - 16	1	14.20	0.36	0.10	0.36	0.10
16 - 19	. 1 .	18.00	0.36	0.13	0.72	0.23
19 - 22	2	19.50	0.72	0.28	1.44	0.51
22 - 25	1	22.80	0.36	0.16	1.80	0.67
25 - 28	0	0.00	0.00	0.00	1.80	0.67
28 - 31	4	29.75	1.45	0.86	3.25	1.53
31 - 34	18	33.04	6.52	4.29	9,77	5.82
34 - 37	20	35.87	7.25	5.17	17.02	10.99
37 - 40	33	38.54	11.96		28,98	20.16
40 - 43	30	41.91	10.87			29.23
43 - 46	18	44.51	6.52	5.78		35.01
	12	47.77	4.35	4.13		39.14
	20	50.46	7.25	7.28	57.97	46.42
	19	53.68	6.88	7.36	64.85	53.78
55 - 58	25	56.46	9.06	10.18	73.91	62.96
58 - 61	13	59.97	4,71	5.62	78,62	69.58
61 - 64	14	62.50	5.07	6.31	83.69	75.89
64 - 67	10	65.64	3.62	4.73	87.31	80.62
67 - 70	11	68.65	3.99	5.45	91.30	86.07
70 - 73	9	71.51	3.26	4.64	94.56	90.71
73 - 76	3	75.00	1.09	1.62	95.65	92.33
76 - 79	1	76.60	0.36	0.55	96.01	92.88
79 - 82	2	80.70	0.72	1.16	96.73	94.04
82 - 85	2	83.90	0.72	1.21		95.25
85 - 88	1	86.00	0.36			95.87
88 - 91	4	90.25	1.45	2.60		98.47
91 - 94	1	93.60	0.36	0.68	99.62	99.15
94 - 97	Ó	0.00	0.00	0.00	99.62	99.15
97 - 100	Ő	0.00	0.00	0.00	99.62	99.15
100 - 103	Õ	0.00	0.00	0.00	99.62	99.15
108 - 106	0 0	0.00	0.00	0.00	99.62	99.15
1060- 109	0	0.00	0.00	0.00	99.62	99.15
1005- 109	0	0.00	0.00	0.00	99.62	99.15
112 - 112	1	114.40	0.36	0.83	99.98	99.98
112 - 113	0	0.00	0.00	0.00	99.98	99.98
118 - 121	0	0.00	0.00	0.00	99.98	99.98
121 -	0	0.00	0.00	0.00	99.98	99.98
Total	276		99.98	99.98		

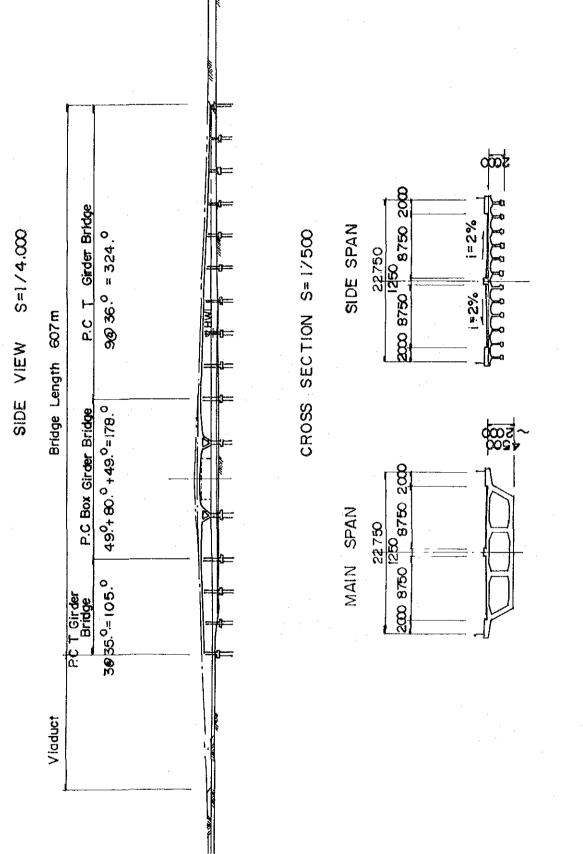
TOTAL WEIGHT DISTRIBUTION FUNCTION

,

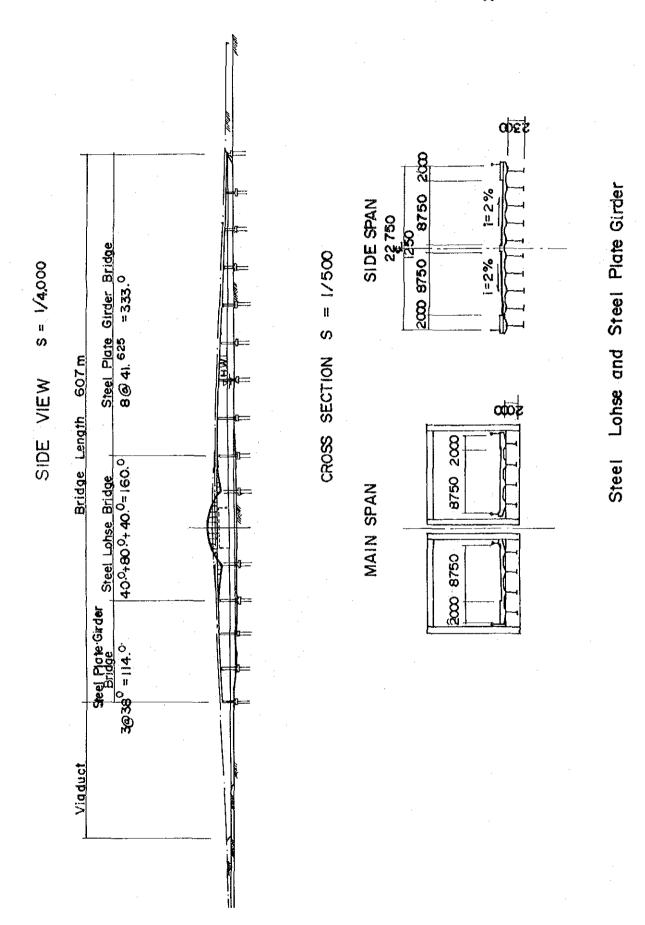
Note: HOIS is shown "HIGHWAY CORGANIZATION AND INVESTMENT STUDY. Ministry of Finance and Economic Planning".


(source: AXLE LOAD CONTROL SYSTEM axle load survey ROADS and BRIDGES PUBLIC CORPORATION october 1988).

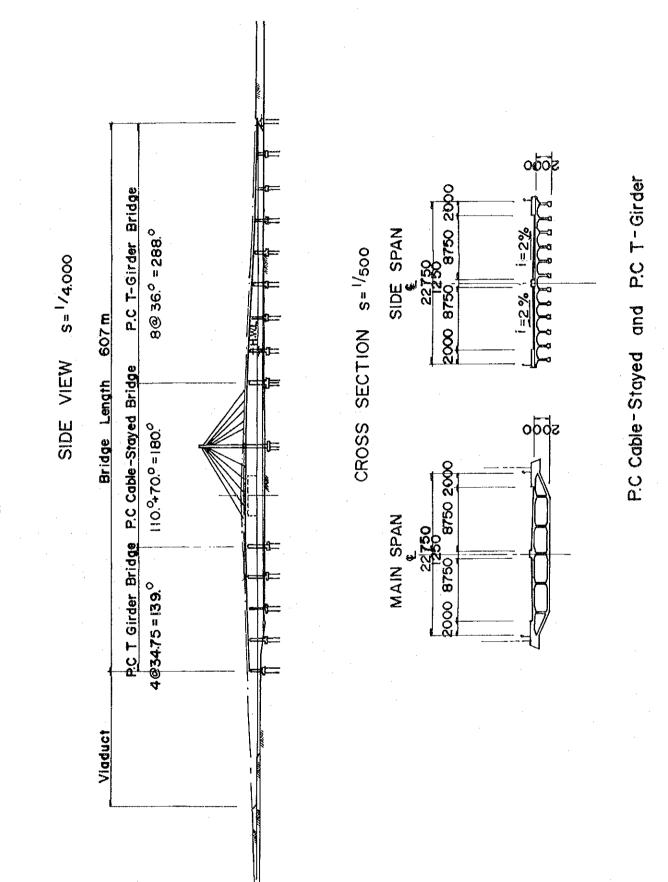
Kind of load	Jopan Road Association Standards (J.R.A.)	AASHOT	õ	British	Standards	B.S.
	Materials weights in tons per cubic meters					
	Moterials	J. R. A.	ΑΑSΗσΤ	ō B	l S.	
)Dead Load	Steel or cast-steel	7.85	7.85			
	Cast iron	7.25	7.21			
	Concrete Plain	2,35	2.40	no statement 2.40		
	Reinforced	2:,50	·			
	Asphalt pavement	2.30	2.40	L		
	T-20 (Total weight 20 [†])	<u>H 20-44 (1</u>	<u>W= 18</u> .1+)	HA		
2)Live Logd	axie weight in tons Length in meters 4.07 16.07					
	<u>$1.7 \ 43 \ (TW = 43^{4})$</u>			<u>.HB 25-45 (TW = 102 = 184[†])</u>		
	6.01 13.01 3.25 7.80 ^m 155 ^m	361 H.51 4.27 ^m 4.2		1.8 60	<u>↓</u> <u>∽ 26.0^m ↓.8</u>	= 28.5+ 45.91
3)Sidewalk Load	400BS	JRA	0.4 0.3	JRA	Mt	
4)Impact	AASHoTo 200 (width of sldewolk Gre orsumed 2m		mpact fraction 8 10 20	Sj Impact is inclu	METAL Br - AASHO CO. C. Br C. Br	
	2 {are assum 40 60 80 10	·- 0 [in 10 20 30	đ 	60 70	
		10 120 140		Impact		ω <i>ι</i> υ


Comparative table of loads indicated in international standards

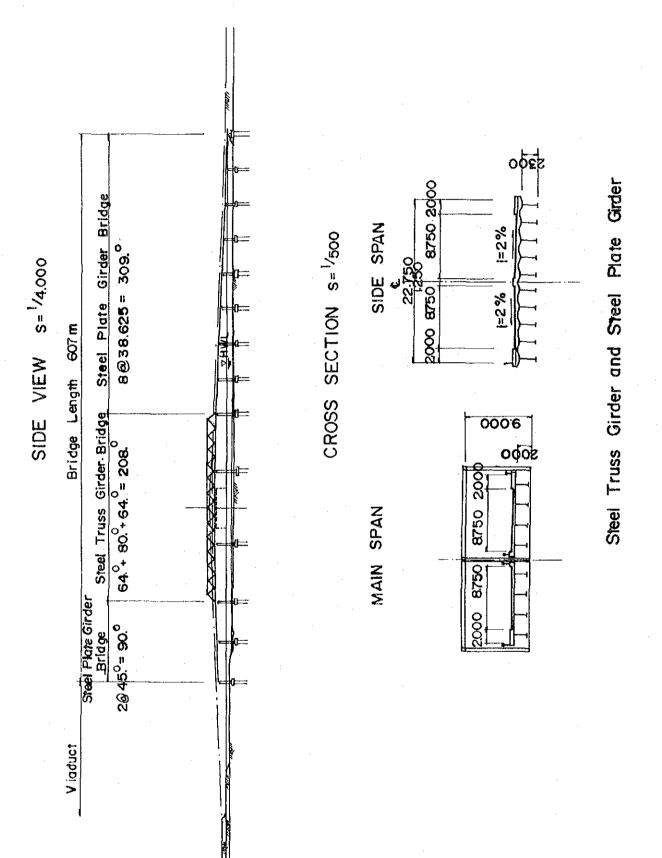
Steel Box Girder and Steel Plate Girder



Appendix 7.4(2)


RC Box Girder (V-Type Pier) and RC T-Girder

A-184



Appendix 7.4(4)

A-185

A-186

Appendix 7.4(6)

A-187

Structural Layout of PC Box Girder with V-leg Pier

1. Structural Layout of Box Girder

The structural layouts for the main span were examined based on the following conditions:

- a) The bending moment according to variation of structural layouts is to be minimized
- b) The displacement or restriction of the girder due to temperature fluctuation, drying shrinkage and creep is to be minimized.
- c) The bridge surface is to be continuous in a direction of the bridge axis
- d) The forces transmitted to the foundations is to be minimized
- e) The structural layout is to be superior from the aesthetic viewpoint.

Variation of the structural layouts are shown as follows:

(1) Rigid Frame without Hinge

(2) Rigid Frame with Hinge at the V-Type Pier

(3) Rigid Frame with Center Hinge

Layouts of Rigid Frame for Main Span

(1) Rigid Frame without Hinge

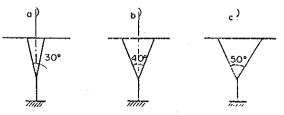
The superstructure is a continuous girder type for the V-type pier and the bottoms of its pier are firmly fixed in the river bed. Therefore, the forces occur by dead and live loadings and fluctuation of temperature is

Appendix 7.5(2)

relatively larger than other rigid frame types. Driving condition is also comfortable. The overall view is attractive by the features of the static indeterminate structural type. Lastly the lesser expansion joint is also an advantage of this type.

(2) Rigid Frame with Hinge at the V-Type Pier

The superstructure is the same as the above type (1), however, two hinges are provided below the V-type pier. The bottoms of the piers are also firmly fixed in the river bed. Since the upper portion of this structure is hinged at the bottom of V-legs, bending moment at the midspan of the superstructure is larger by about 20 % in comparison with the above type (1). Driving condition is also comfortable. The disadvantage is costly maintenance of bearing shoes and poorer aesthetics.


(3) Rigid Frame with Center Hinge

The superstructure is the rigid frame with a center hinge. The bottoms of the V-type piers are also firmly fixed in the river bed. The bending moment is comparatively greater than type (1) and (2) around the connected points between the superstructure and the top of the V-legs. The disadvantageous point is high maintenance cost for the center hinge. The edge of cantilevered girder must be carefully constructed because the defection frequently occurs at the center hinge as the Shambat Bridge.

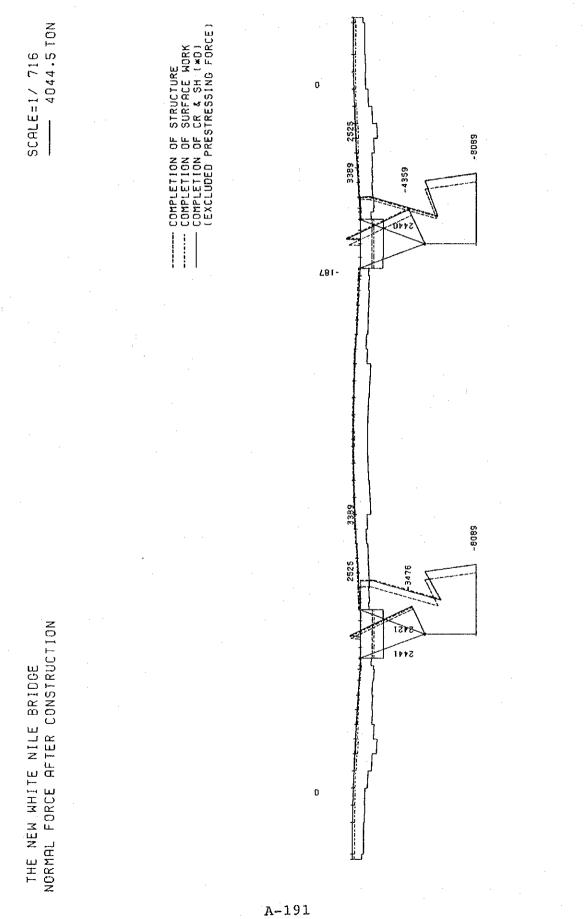
Consequently, type (1) rigid frame without hinge is recommended. The reasons are less displacement, comfortable driving and less maintenance cost.

2 Variation of V-Legs

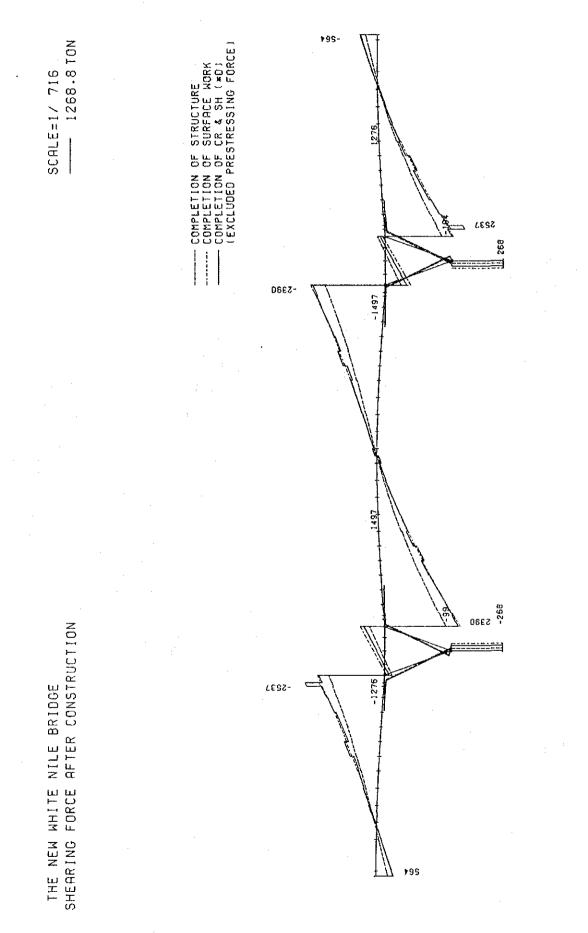
In this study three kinds of variation are examined for Vlegs shown in the following figure. The wider the angle at the bottom of V-leg is, the greater the sectorial forces in the Vleg becomes when transmitted by the dead and live loadings. In addition, The wider V-legs not only reduce the girder depth but also improve the aesthetics. Regarding to the construction, it makes little difference during construction among these three types. Therefore, Type (b) is recommended.

Variation of V-Legs

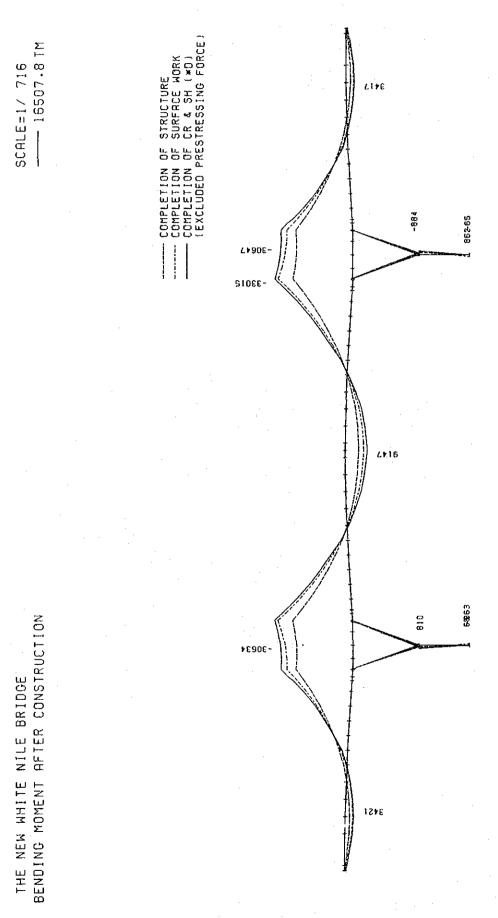
Appendix 7.6(1)

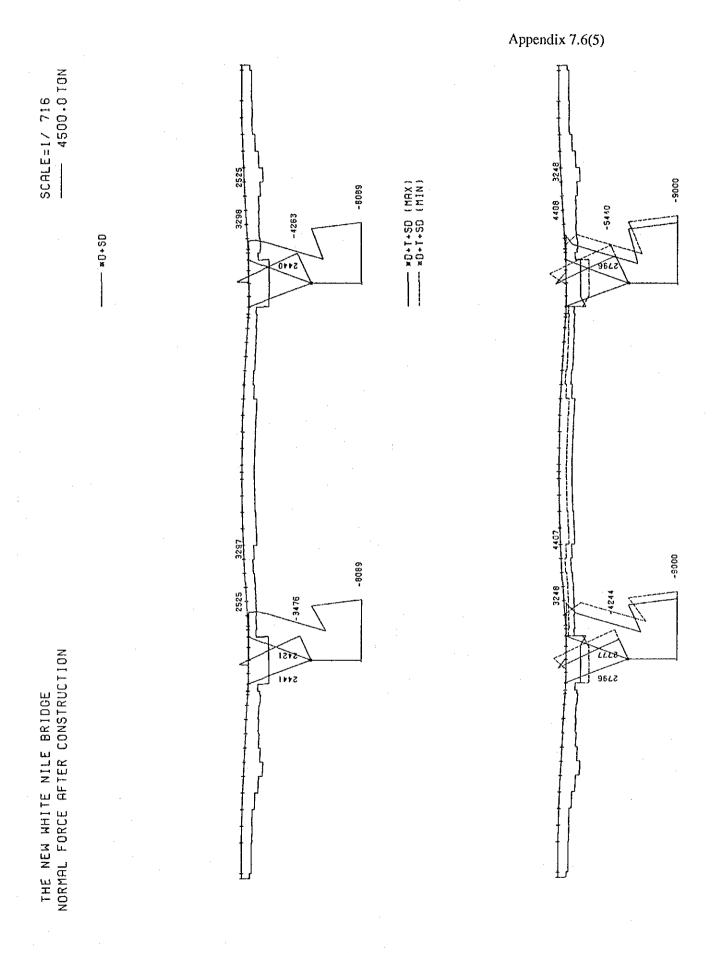

Results of Structural Calculation of Prestressed Concrete Box Girder with V-leg Pier

Calculation was conducted based on the design criteria as discussed in Main Report.


Results are shown in diagrams of axial forces, bending moments, shearing forces from next page.

These results attached hereinafter are prepared only for reference purposes for further steps of detailed design.

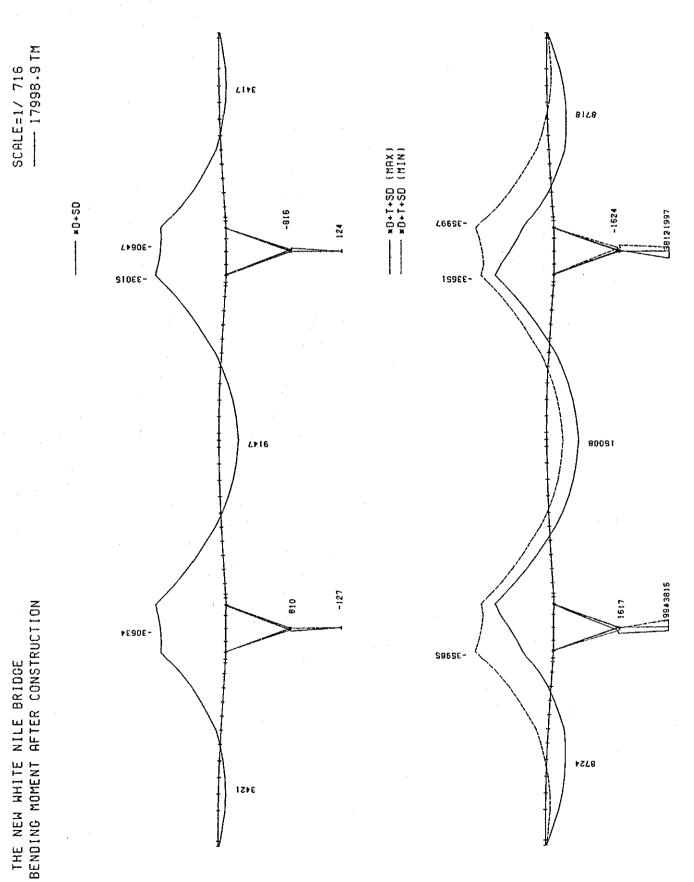

Appendix 7.6(2)

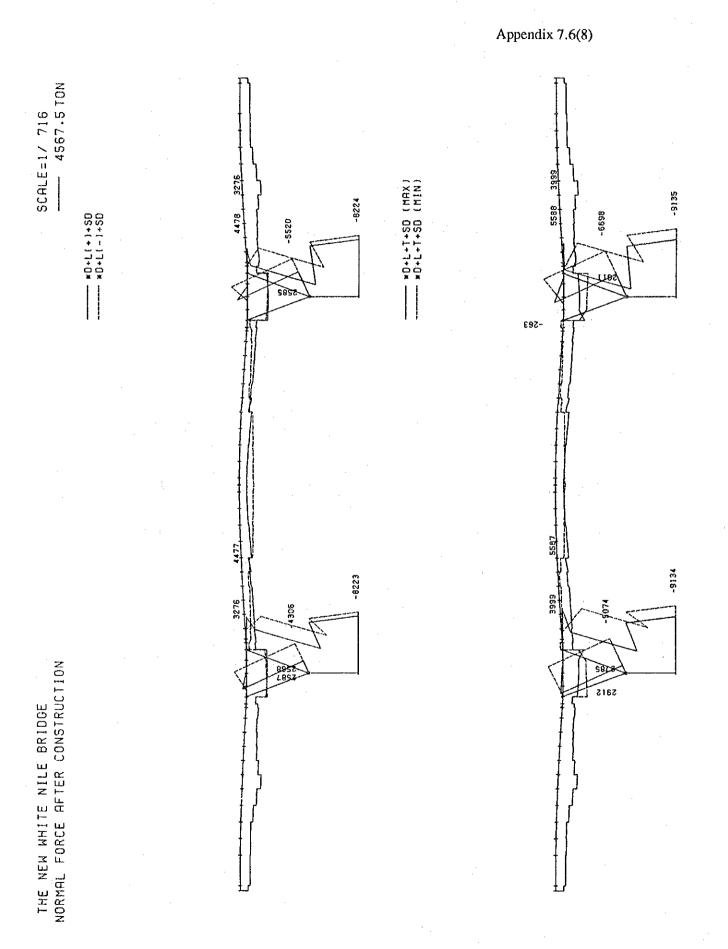


Appendix 7.6(3)

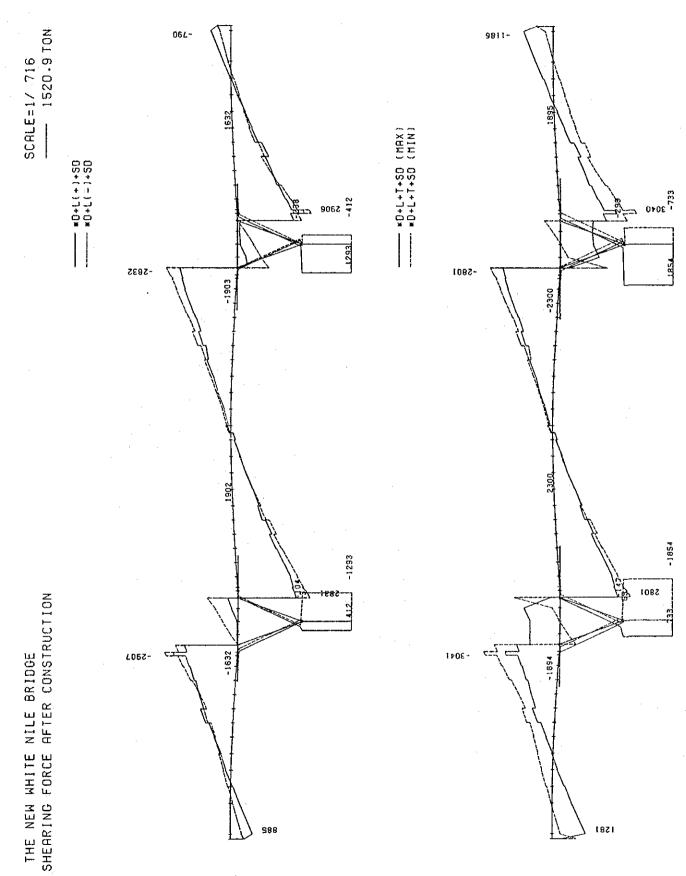
Appendix 7.6(4)

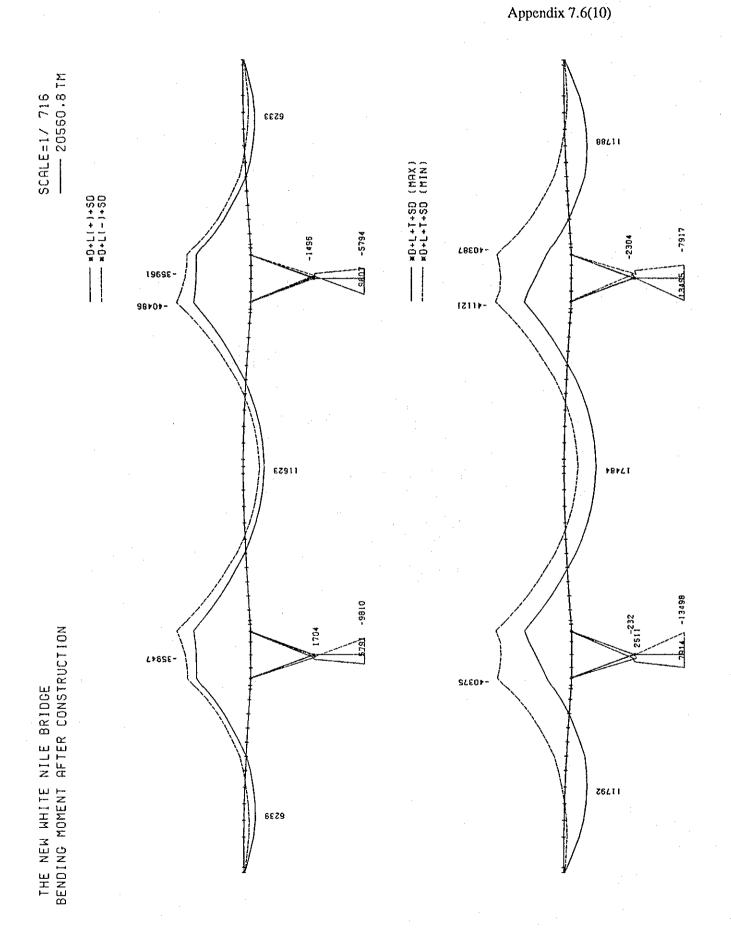
Appendix 7.6(6) 975-SCALE=1/ 716 1336.1 TON L68~ 1276 (NIN) 05+1+0× ------- ×0+S0 7537 **1**88 1662--5336 -1464 -1862 862 1464 -188 <u>يم</u> 5330 THE NEW WHITE NILE BRIDGE SHEARING FORCE AFTER CONSTRUCTION -1276 -1539 2692c 17671 c 9¥S 845

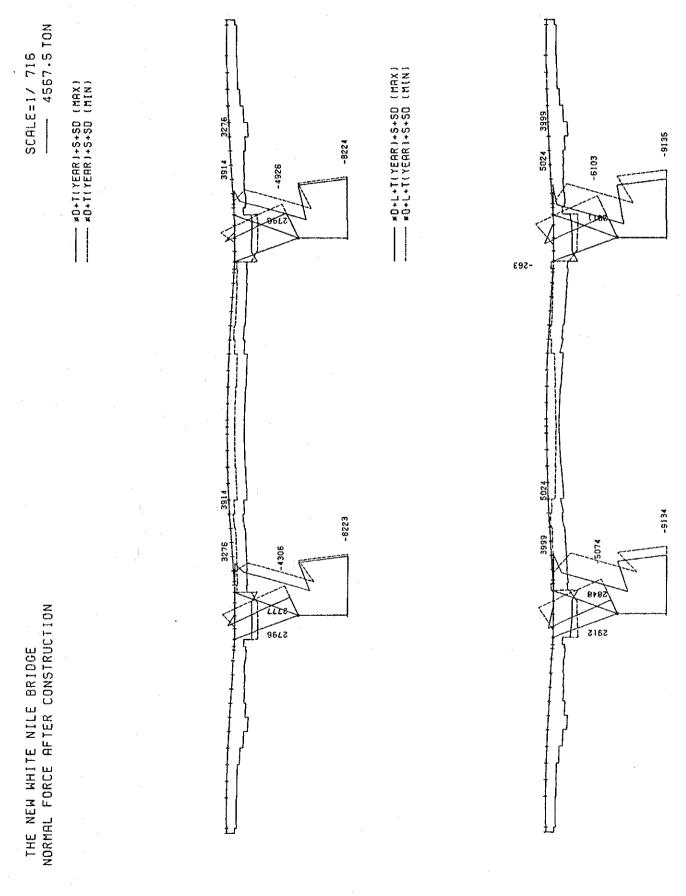

82812 7


-749

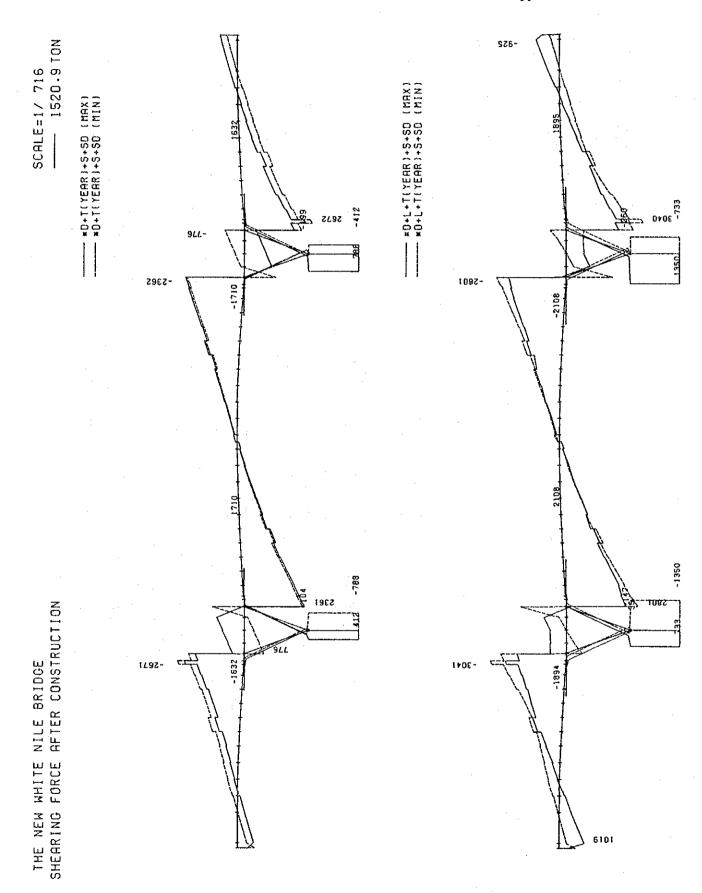
ŝ

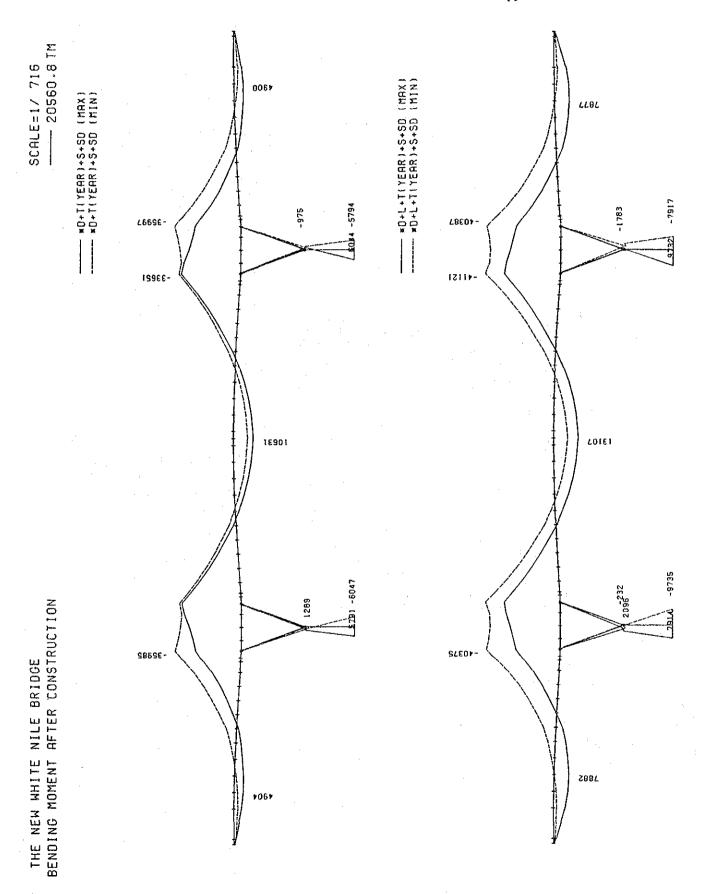

5552


Appendix 7.6(7)



Appendix 7.6(9)




Appendix 7.6(11)

Appendix 7.6(12)

Appendix 7.6(13)

Structural Studies on PC Box Girder

1 Thickness of Sectional Components of Box Girder

(1) Top Slab

The top slab width is determined by the interval of supporting points of the deck slab. The width and thickness of the top slab of the box girder usually gives a sufficient area for the compressive and tensile sections of the positive and negative moments in the box girder. Therefore, the top slab thickness is determined by the minimum requirements of the size of the prestressing steel (tendons, sheaths) arrangement and their anchoring.

(2) Web

The web thickness normally makes almost no contribution to the rigidity of the box section. Therefore, the web thickness is determined by such requirements as space for the prestressing steel arrangement and its anchoring and the sectional area to withstand the bending and shearing force.

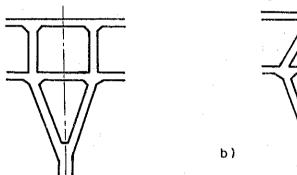
(3) Bottom Slab

The bottom slab thickness is determined by such requirements as the required area for the compressive and tensile sections of the positive and negative moments in the box girder, the size of prestressing steel arrangement and its anchoring.


(2) Diaphragms

Diaphragms with special forming works in the box girder greatly influence the construction period and costs. As with the single box girder with sufficient rigidity, it is desirable to minimize its members. The types of diaphragm have many variations as described below:

- At the end point


The diaphragm provided at the end point of the box girder should transmit the reaction from the superstructure to the bearings as shown in the following figure.

- At the intermediate support

The diaphragm provided on the intermediate support should transmit the shear force smoothly to the substructure shown in the following figure.

Intermediate Support Diaphragm

Theoretically, type (b) with two diagonal diaphragm would be effective in transmit the shear force, but type (a) is recommended from construction considerations.

- In a Span

a)

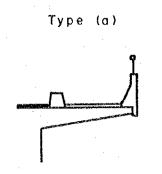
Since the diaphragm in a span is normally cast in place after completion of the box girder, Type (b) is more convenient than Type (a) as the forms can be removed to the outside of the girder. Type (a) and Type (b) are shown as follows:

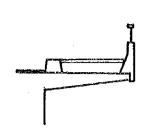
Type (a)

Type (b)

Diaphragm in a Span

- Open Space

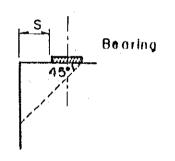

The open space of a diaphragm is for the removal of forms from the completed box girder whether temporary or permanent space. To avoid damage from stress concentration, it is desirable to make the open space as small as possible.


- Arrangement of Diaphragm

The diaphragm should be provided not only over the supports but within the spans. Where a diaphragm is provided in the span, it is effective to arrange it at the middle of the span. However, if the span is long, it is recommended that additional intermediate diaphragm be arranged at intervals of about 40 m. For single box girder and multi-box girder bridges, diaphragms should be provided over each support and within each span.

(3) Type of Side Walk

The width of the sidewalk depends on the number of persons crossing the proposed bridge on foot or by bicycle. Moreover, whether the sidewalk is to be provided on both sides or on one or other side of the bridge has to be determined by consideration of the bridge's location in relation to the urban center. From the viewpoint of the structure, the moment force due to the self-weight of the sidewalk should not have much influence on the main In addition, the sidewalk plays a role in girder. protecting the structure the vehicle collision. It is desirable to be instalalation of also utility appurtenances. Therefore Type (b) shown in Fig. 5.18 was adopted from the viewpoint of safety, maintenance, construction cost, and aesthetics.



Type (b)

Type of Sidewalk

(4) Bearing Seat

In the direction of the bridge axis, the bearing seat guarantees sufficient space for the bearings to be installed with the gaps (S) between the girders or the end of the girders and the parapet wall of the abutment. The bearing bed, which is transmitting the force from the superstructure to the substructure, should contribute to avoiding stress concentration. The following figure and the formulas below give guidelines to the width (S) from the edge of bearing to the front of substructure.

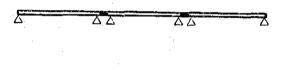
Bearing Seat

S = 20 + 0.5 x Lin case of L<100 m
S = 30 + 0.4 x Lin case of L>100 m
Where, L : Span length (m)

Structural Studies on PC-I Girder for Side Span

1 Structural Layout

The structural layouts for the side span are examined based on the following conditions:


- a) reduction of number of expansion joints due to a large number of queued piers with short span length
- b) cost minimum of maintenance
- c) easier construction

Three type variations for the layouts are depicted in the following figure.

(1) Simple Span Girder

(2) Connecting Girder

(3) Continuous Girder

Layouts of I-Girder for Side Span

(1) Simple Span Girder

Appendix 7.8(2)

The simple span girders are placed on two bearings. Expansion joints connect the girders each other, which requires many expansion joints. Therefore, the simple span girder results in discomfort driving and also requires a lot of maintenance.

(2) Connecting Girder

Girders are placed on two bearings like the single girder, however, rebars connect adjacent girders and concrete fills the space between girders. The structure of the connecting girder is comparatively complex, but the number of expansion joints can be reduced.

(3) Continuous Girder

The continuous type girder has no joints and gives comfortable driving. However, this structure is complex and costly because the prestressing cables are provided in the upper portion of the girders at the pier.

In consequence, type (2) is recommended mainly from the viewpoints of reducing expansion joints and lowering the maintenance cost.

(2) Girder Depth

The girder depth of PC - I girder is usually computed by ratio depth and span length from 1/18 to 1/20 on condition that 1 is 20m to 40m. In this study, the designed side span length is to be 36m and the girder depth is to be 1.8m to 2.0m. However, 2.1m is adopted for the girder depth from the view point of HA and HB loadings and concrete strength, considering the availability at the bridge site.

Appendix 7.9(1)

Results of Stress Culculation

Stresses in the specific sections shown in the following figure were culculated and summarizes from next page.

5	Substructure			A1 Ab	Abutment			A2 AD	A2 Abutment	
Section for Checking	Checking Stresses		A-A	B-B	0	0-0	A-A	ц Ц Ц	0 -0 -0	Q-0
	Bending Moment M(+m)		3.0	81.8	499.8	1,175.3	9.2	33.1	351.7	277.0
Sectional	Axial Force N(+)		ŝ	44.7			i	50.4	Ĩ	1
Force	Shearing Force S ⁽⁺⁾		4.0	25.6	2,236.9	828.9	6.3	14.0	2,743.4	178.0
Width of Se	Section B(cm)		100	100	2,775	2,775	100	100	2,775	2,775
Thickness o	of Section H ^(")		50	150	150	150	50	150	150	150
Concrete Cover	ver d ^(")		40	140	135	140	40	140	135	140
	Dia. (mm) - Pitch (mm)	9	D16ctc250	D22ctc125	D16ctc125	D19ctc125	D19ctc125	D16ctc250	D16ctc250	D16ctc250
Arrangement of	Nos. of Row of R-bar		1	-1	Ч	1		ŕŤ		•••
Main R-bar	Amount (cm2)	, ÀS	7.94	30.97	436.92	633.17	22.92	7.94	7.94	7.94
(kg/cm2)	Compression of Concrete,	Э Щ	18.9	41.2	12.3	23.4	38.5	19.7	1.7	8.7
Stresses	Tension of R-bar	ט ביו	1,028	1,404	898	1,420	1,135	462	1.244	936
	Shearing of Concrete ,	EI L	1.0	1.8	8	1.9	1.6	1.0	्र ज	4.0
(kg/cm2)	ਸਟਾਰ		30	1	08	J	80	1	08	
Allowable	ESa		1,800	1	1,600	I	1,800	1	1,600	
STRESSES	Ē		- c - c		a r	-	c		ł	- -

Note: 1. Position of Section

Abutment റ ല്ല ני ר ח ₫ ز⊵ رە م

A-210

RESULTS OF STRESSES CALCULATION (1)

Appendix 7.9(2)

6.4

(1) 1 ·

ł.

б. С

6.4

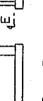
7.8

ł

с. С

رم ۲۰

IS	Substructure	P1 Pier	P9 Pier		P10 Pier			P13 Pier	
Section for	for Checking Stresses	떠 - - -	ម - ម	ອ - ອ	R-H	ы Ч Ц	9-9 9	Н-Н	I-I
	Bending Moment M ^(+m)	250	453	793.5	491.6	625.6	1148.5	623.3	486.9
Sectional	Axial Force N ⁽⁺⁾	1,479	1,451	1	2,306,5	1	1	3,404.1	1
Force	Shearing Force S ⁽⁺⁾	18.3	30.6	202.8	32.5	1,223.2	214.C	30.6	1,811.9
Width of Sec	Section B(cm)	1,175	1,275	200	1,010	1,550	250	1,185	1,550
Thickness of	Section	160	120	389	200	150	424	250	150
Concrete Cover	ver d ^(")	10	10	14	0 11	51	14	10	15
Arrangement	Dia.(mm) - Pitch(mm)	D16ctc250	D16ctc250	D32ctc125 D32ctc250	D16c1c250	D19ctc125	D32ctc125 D32ctc250	D16ctc250	D16ctc125
o f	Nos. of Row of R-bar			2	ų.	1	8	त्न	
Main R-bar	Amount (cm2), P	As 91.36	99.30	182.67	105.25	352.40	230.52	95.33	244.28
(kg/cm2)	Compression of Concrete, I	۱ ۲	25	25.9	14.2	22.3	25.9	16.3	13.1
Stresses	Tension of R-bar , F	г FS	88	1,271	21	1,358	1,329	103	1,133
	Shearing of Concrete , T	1	0.2	2.7	••	с	2.0	0.1	6.1
(kg/cm2)	Fca	I	100	80	100	30	80	100	80
Allowable	ਸੂਨਕ	1	2,250	1,800	2,250	1,600	1,800	2,250	1,600
SCIESSES	ы Ц	I	6. 4	6.8	ही) भ	00) ••	ອ	9.8	7.8
						Ľ		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	f 96.0-4
						9 	[r		

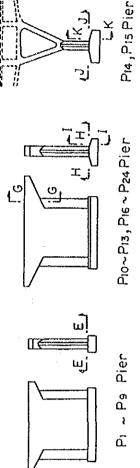

RESULTS OF STRESSES CALCULATION (2)

Appendix 7.9(3)

Π

P10~P13, P16~P24 Pier თ, رت آ I€ ωj P1 ~ P9 Pier

P14, P15 Pier



sul sul	Substructure		P14	Pier		P17 Pier	
Section for (Checking Stresses		K-K	1-1	9 - 9	H-H	H H H
	Bending Moment M (+m)		9,958.0	801.33	1,207.3	937.5	848.3
Sectional .	Axial Force N ⁽⁺⁾		8,430.0	1	1	3,131.2	ŀ
- -	Shearing Force S (+)		1,287.0	1	356.0	50.0	1,628.1
Width of Sec	Section B(cm)		1,455	100	200	1,310	1,550
Thickness of	Section		250	300	389	200	150
Concrete Cover	er d(")		15	15	15	10	15
Arrangement	Dia.(mm) - Pitch(mm)	нч	D32ctc125 D32ctc250	D38ctc125 D38ctc125	D32ctc125 D32ctc125	D16ctc250	D22ctc125
	Nos. of Row of R-bar		2	2	2	r	⊷+
Main R-bar	Amount (cm2),	As	1,373.97	182.40	238.26	105.26	476.13
(kg/cm2)	Compression of Concrete,	о Ч	86.2	67.3	35.7	22.2	28.4
Stresses	Tension of R-bar	S Fri	1,145	1,814	1,513	36	1,429
	Shearing of Concrete ,	(H	3.8	1	4.8	0.2	7.3
(kg/cm2)	ы Т С С А		- 92	92	80	100	08
Allowable	Fsa		2,070	2,070	1,800	2,250	1,500
	щa		4.5	E	6.8	7.6	5 B

RESULTS OF STRESSES CALCULATION (3)

Appendix 7.9(4)

.

Stability Calculation of Pile Foundation

Stability calculation of piles are shown on the subsequent pages along with induced stresses in pile sections.

Notation of the summary table are as indicated below:

RESULTS IF STABILITY CALCULATION OF PILE FOUNDATION (1)

Su	Substructure	AL Abut	Abutment	A2 Abi	Abutment	L 4	Pier	P9 Pier	1er		P10 Pier	er
Direction of Examination	mination	4	L-L	ļ	L-L	ن ا	L-L	1-1	ม	1-1 1	Ļ	R-R
Examination Case		х	μ	N	B	m	æ	N	8	N	m	N
Acting Bound	Horizontal Force Ho (t)	602	821	483	508	0	18	0	31	0	33	26
Acture for at at at a	Moment Mo (tr	1,053	1,223	572	711	0	278	0	499	35	541	75
ATTA TO COT	Vertical Force Vo (t.	3.746	3,746	3,407	3,407	1,722	1,722	1,703	=	2,727	#	2,736
Nos. of File Row	N	N	=	N	Ŧ	1	Ξ	H.	÷	0		4
Nos. of Pile	u	16	=.	12	÷	ъ	<u>г</u>	ம	=	8	#	=
Korizontal Deflection	ction d (cm)	1.2	1.3	1.0	1.1	0	9.6	0	0.8 0	0.0	0.2	0.0
of Pile Top	Allowable da	1.5	-	1.5	=	1.5	=	1.5	=	1.5	Ŧ	=
	R max. (t)	330	337	358	366	334	Ŧ	332	=	343	375	347
Reaction of Pile	R min. (")	138	132	210	202	ł	4	I	 	339	307	337
	Allowable Ra	414	517	414	517 -	414	517	414	517	414	517	414
trond for Monort	Mt (tm)	83	82	68	68	3	56	F	100	1.5	15	9.2
	(") MM	106	108	78	82.	1	57	1	103	Ξ	20	7.0
2773 TO	18 (B)	5.4	5.4	4.7	4.7	,	1.1	1	1.0	0	2.6	5.2
Main Rebar	Dia (mm) - pitch (mm)	141-25C.	=	D22-177	τ	D22-283	5	D22-236	=	D22-283	z	=
of	Nos. of Row of Rebar	1.5	-	2	-	м	τ	ы	z	н	E	=
Pile	Amount As (cm2)	238.3	×	61.94	÷	38.71	=	46.45	z	38.71	=	±
Compr Compr	Compression of Concrete Fc ^(kg/cm2)	67	81	72	74	1	63	1	100	J	42	1
	Tension of Rebar Fs ^{(°})	878	868	914	948	1	781	I	1,170	ł	595	ł
	Shearing of Concrete T (e	9	ß	с	1	ы		8	1	0.6	1
Allowable	Fca (kg/cm2)	80	100	80	100		100		100	I	100	1
Stress	Fsa (")	1,600	2,250	1,600	2,250	I	2,250	ł	2,250	I	2,250	1
of Pile	Ta ('')	17	21	17	21	1	7.4	1	7.4	. 1	7.4	1
	Direction	R R R Direction of Examination		Acting Force	1 <u>- Top of Pils</u> Nrow Nrow		Settertion of Pile	m	Min - 2 <u>100 of Pile</u> Min : Mas in the Ground	Sround		

Appendix 7.10(2)

RESULTS OF STABILITY CALCULATION OF FILE FOUNDATION (2)

	Substructure			Ω,	P13 Pier			P14 Pier			P17 Pier	Ju Ju	
Direction	of Examination			L-L		R-R		L-L		1-1 1	ų	R- R	
Examination Case	n Case		N	ß	н	z	N	H	υ	×	a	N	
	Horizontal Forc	al Force Ho (t)	0	31	0	138	693	1,287	824	0	50	55	
Acting Force at	ce Moment	Mo (tm)	22	685	22	442	5,473	12,532	6,177	n	1,013	149	
TOD OF F11e	Je Vertical Force	Force Vo (t)	3,926	=	Ŧ	3,953	11,186	11,053	11,186	3,552	=	3,563	
Nos. of Pi	Pile Row	N	2	4	=	ę	5	-	¥	64	=	S	
Nos. of P1	P1le	A	12	-	Ŧ	=	35	5	z	01	=	:	
Horizontal	Horizontal Deflection	d (cm)	0.*0	0.2	0.0	0.1	0.3	0.5	0.3	0.0	0.4	0.1	
of Pile	, Top	Allowable da	1.5	Ŧ	E	=	1.5	Ŧ	2.5	1.5	÷	=	
		R max. (t)	328	355	328	352 -	382	452	391	530 530	409	366	1
Reaction of Pile	f Pile	R min. (")	326	299	326	307	257	180	248	ı	302	346	
		Allowable Ra	414	517	476	414	414	476	621	424	517	414	
		Mt (tm)	0.6	13	0.6	32	33	55	41	1	19	18	
Bending Moment	ment	Mm (")	Ξ	6T.	=	93	45	83	53	1	66	19	
of File		д <mark>и (</mark> п.)	0	Э О Е	0	4.5	4.3	Ŧ	F	1	4.1	5.1	
Main Rebar	(mm) sto	m) - pitch (mm)	D22-283	=	E	=	D22-141	Ŧ	=	D22-283	=	=	
of	Nos. of Row	R	1	=	=	Ξ	-	: <u>-</u>			÷	Ŧ	
Pile	Amount		38.71	=	=	-	77.42	=	5	38.71	5	-	
	Compression of Concre	Concrete Fc [kg/cm2]	-			¢		80	I .	•	53	i	
	Tension of Rebar	ar Fs ⁽ ")	1	1		653		1,037	1	1	127	ł	
01 Y14	Shearing of Co	of Concrete T (")	-	T	1	1.4	1	4.3		I	0.6	1	.
Allowable	В Ц	(kg/cm2)	ł	r	,	80	, 1	92			100	•	
Stress	0 0 14	(n)	l	ı	1	1,600	,	2,070			2.250	1	
of Pile	Ta		1		I	ы. 9	r	4.5 5	1	1	6.4	T	
		4 +		ł	ı		*[Mt Top of Pile	F Pile			
·				<u>s</u> #(ġ	<u></u>] 	Mm : Max in the Ground	he Ground			
		173					-						

Appendix 7.10(3)

Moment of Pile

g Deflection of Pite

Acting Force

), Rection of Examination

MOUT

	Substructure		ц,	P24 Pier	
irection of	Direction of Examination		1-1		R-R
Examination Case	Case		Z	р	N
	Horizontal	Force	0	50	55
Acting Force at man is nile	Moment	Mo (th)	0	463	149
arta io doi	Vertical	Force Vo (t)	2,831	7	2,842
Nos. of Pile Row		N	8	=	4
Nos. of Pile		ď	æ	z	
Horizontal Deflection	Deflection	d. (cB)	0	0.3	0.1
of Pile Top	Top	Allowable da	1.5	r	
		R max. (t)	354	387	366
Reaction of Pile	Pile	R min. (")	ł	321	345
		Allowable Ra	414	517	414
		Mt (tm)		1	20
bending Moment	ent	Mm (")	1	18	15
airy lo		1m (m)		4.2	5.2.
Main Rebar	Dia (mm)	- pitch (mm)	D22-283	=	
of	Nos. of	Row of Rebar	-1	=	
P11e	Amount	As (cm2)	38.71	-	
	Compression of C	Concrete Fc (Kg/cm2)	4. •	42	
	Tension of Rebar	Ês (")	ţ	565	1
	Shearing of Conc	ncrete T (")	•	0.7	
Allowable	Fca	(kg/cm2)	1	100	
Stress	řsa (u)	F	2,250	
or Pile		4 11			

RESULTS OF STABILITY CALCULATION OF FILE FOUNDATION (3)

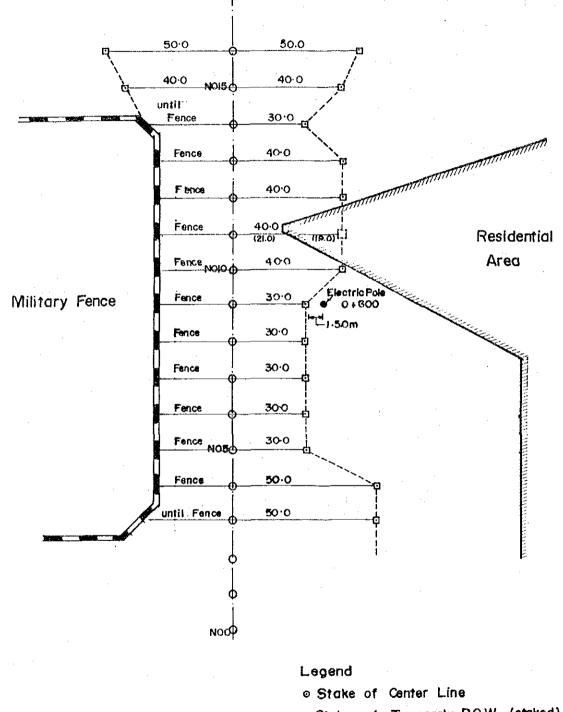
Appendix 7.10(4)

Mt - Top of Pile

Momen's of Pile

Deflection of Pile

Acting Force


Direction of Examination

œ.

Preliminary Road Engineering

Table of Contents

		Page
8.1	Location of Temporary Right of Way	A-218
8.2	Calculation of Saturation Rate	A-219

E Stake of Temporaly R.O.W. (staked)

Location of Temporary Right of Way