CHAPTER 12 PRELIMINARY ENGINEERING DESIGN FOR HIGH PRIORITY PROJECTS

12.1 General

Supplemental field surveys was carried out along the high priority project roads selected in the previous chapter. On the basis of the data and information obtained through the supplementary field surveys, the preliminary engineering design was conducted using the existing topographical maps with a scale of 1/2,500.

12.2 Supplementary Field Surveys

The supplementary surveys conducted by the Study Team are the following:

- Topographical survey including preparation of Maps with a scale of 1/500 for junctions, cross section survey and right-of-way survey
- Utilities survey including water mains, telephone cables, electric wire and posts, and sewerage and sanitary drainage
- Traffic survey on area roads of Chang'ombe, Kariakoo, Mwinjuma and Central Areas
- Intersection traffic movement survey at major intersections of Morogoro, Upanga and New Bagamoyo Roads
- Pavement structural component survey including 24 nos. of sampling and laboratory tests
- Road inventory and drainage survey on all of the high priority project roads selected with a total length of 104.1 km
- 12.3 Preliminary Engineering Design

(1) Design Criteria

The function of proposed Morogoro and New Bagamoyo Roads are expected to be arterial roads focussing on the Central Area of the City with a high design standards. Design criteria to be applied for the project roads should be a high standard to meet the requirement of function as shown in Table S.12.1.

(2) Project Length by Improvement Measures

The project length by improvement measures was reviewed on the basis of field survey and the results are presented in Fig. S.12.1. through S.12.3 with minor correction of total length from 103.4 km to 104.1 km.

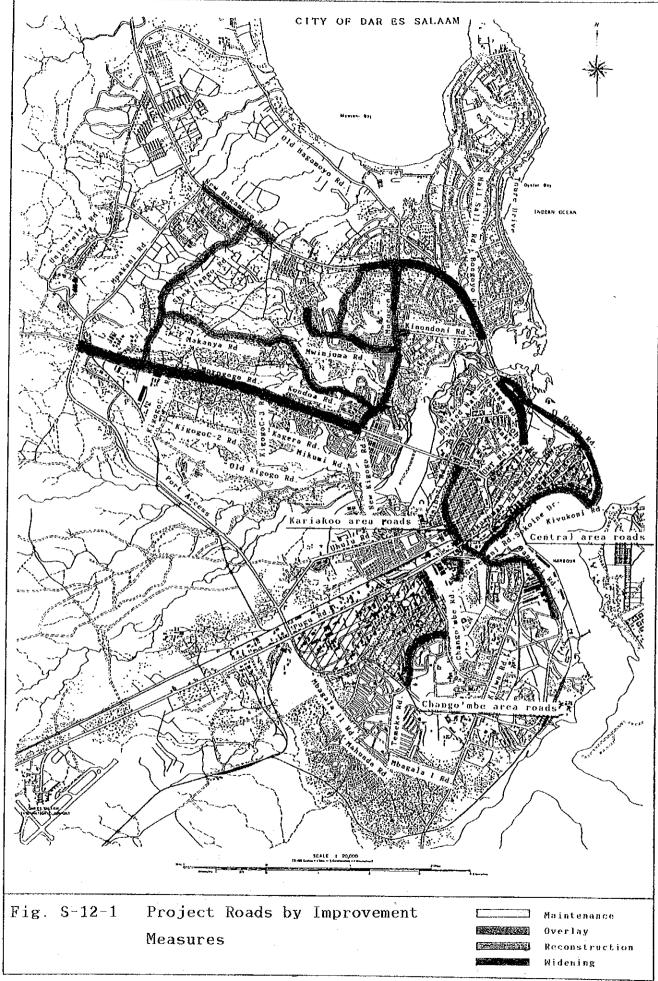
(3) Geometric Design

Since the Project aims at improvement of the existing roads. with overlay, reconstruction and widening, no major change of alignments were proposed in the Project. Typical cross sections to be applied for the project were presented in Fig. S.12.4

(4) Intersection Design

The analysis on traffic movement was carried out for the major junctions on the proposed roads. As the result, it was concluded that signal controlled facilities should be provided at the following junctions:

- 3 junctions on Morogoro Road
- 2 junctions on Upanga Road
- 5 junctions on New Bagamoyo Road
- (5) Bus Bay and On/Off Loading Bay for Goods at Manzese Bus service plays an important role in the public transport system in Dar es Salaam. As for Morogoro Road, special type of bus bay and on/ off loading bay were considered at Manzese area taking into account the large numbers of people as well as goods and products brought to the nearby market.


(6) Pedestrian Bridge

The proposed pedestrian bridge across Morogoro at Manzese is the first pedestrian bridge in Dar es Salaam. The main features of the bridge are as below:

- Type of Bridge : Prestressed Hollow Slab Concrete (PC)
- Bridge Length : 48 m
- Span Arrangement: 10.1 x 2012.25 x 10.1
- Bridge Width : 5 m

Design	Morogoro	Upanga	New Bagamoyo
	Road	Road	Road
Design Speed	80 km/hr	60 km/hr	80 km/hr
Minimum Radius	300 m	150 m	300 m
Maximum Gradient	5 %	6.%	5 %
Pavement Width	4 lanes	4 lanes	4 lanes
	(2x2x3.75m)	(2x2x3,50m)	(2x2x3.75m)
Shoulder	1.50-2.50m	0.50 m	1.50-2.50m
Median Strip	7.50 m	0.50 m	7.50-10.0m
Sidewalk	2x3.50 m	2x3.00 m	2x3.50 m
Minimum Sigth Distance	115 m	75 m	J15 m

Table S.12.1 Design Criteria for Widening Sections

ω. ω

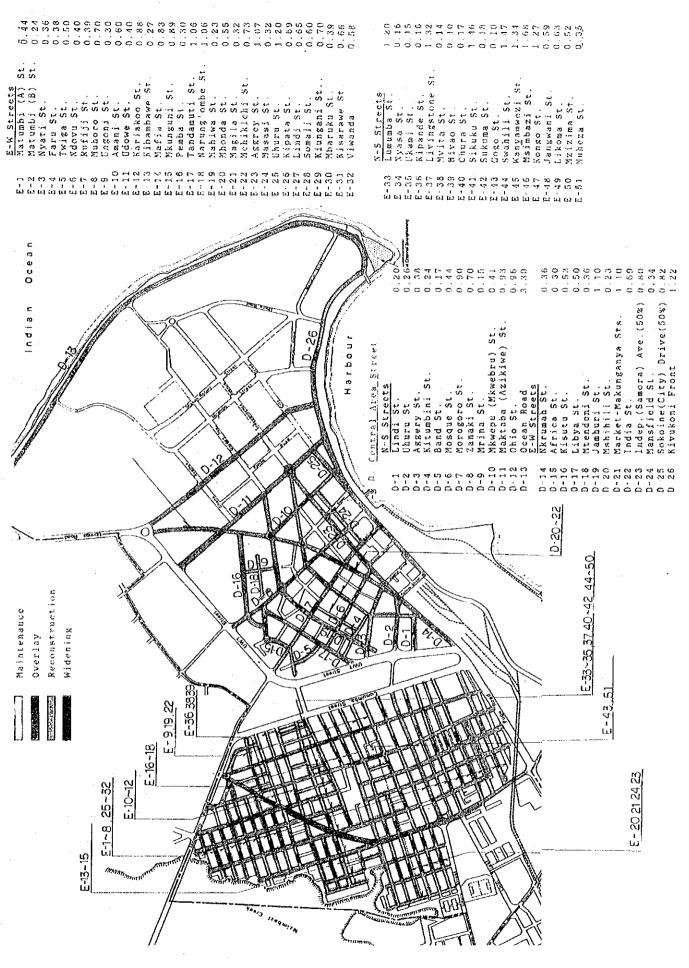
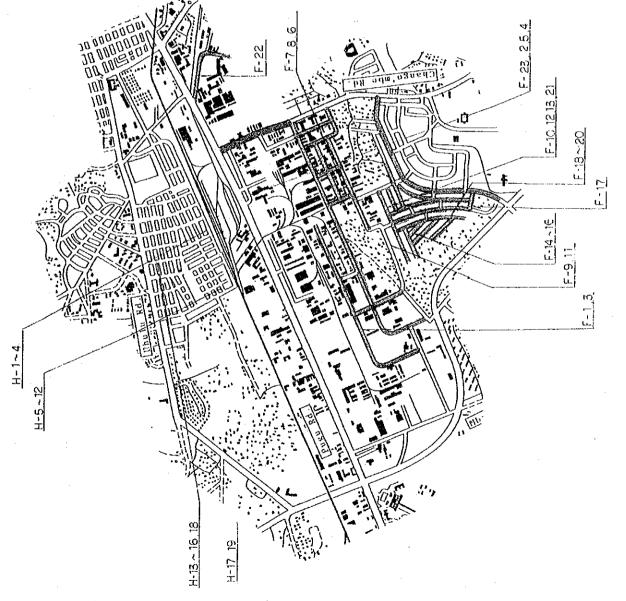
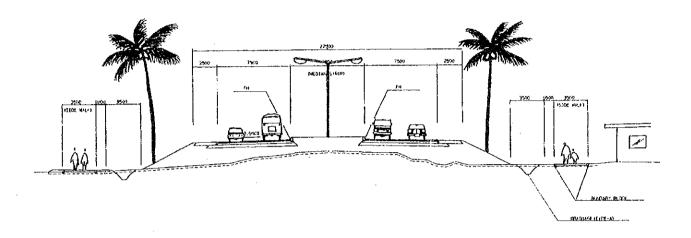



Fig. S-12-2

Area Roads by Improvement Measures (Central and Kariakoo Areas) S-58

.

Arca Street	1.5	0.20	2.20		0.49	0.54	0.20	0.40	1.20		0.25	0.21	0.30	0.14	0.28	0.38	0.78	0.40	0.61	0.66	0.27	0.80	012	
hang ombe Industrail	aza Road	igeyo Ko	bozi R	L Dakawa St.	5 Upper Volta St.	; Сћиња Коља	7 Rwanda Road	3 Uruwira Road) Wasambara Road	10 Manyara	il Msikiti	12 Ismailia	13 Rwegasore	14 Kimathi	15 Tagore	6 Ivory Coast	[7 Сћанкелуеме	18 Mzore Road	19 Ubens	20 Diwani	21 Bazaar	22 Mapinduzi St.	3 Monrovia R	
E.	⊢ - 44	5-2	က - -	4 1 11	ю - -	90 144	1	0) 1 10	6- <u>ц</u>	н - Д	н - ц	1.	ゴ ビュ 上	н 1 Ш	₽ 4	+- [4]			1 1 54	ч 1 Ц	с) 1 Ц.	へ) ト 山	() L	



Reconstruction Widening

Maintenance Overlay

Fig. S-12-3 Area Roads by Improvement Measures (Chang'ombe Area)

TYPICAL CROSS SECTION OF MOROGORO ROAD

MOROGORO ROAD

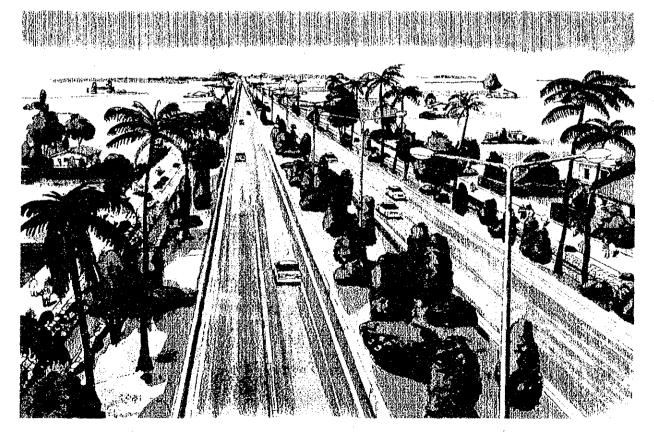
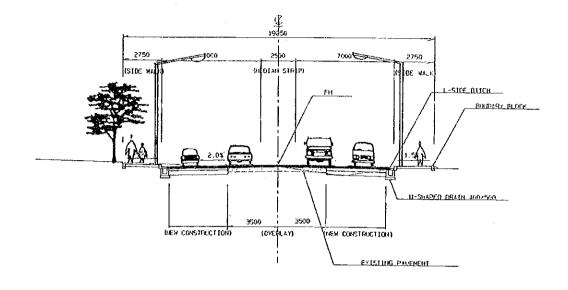
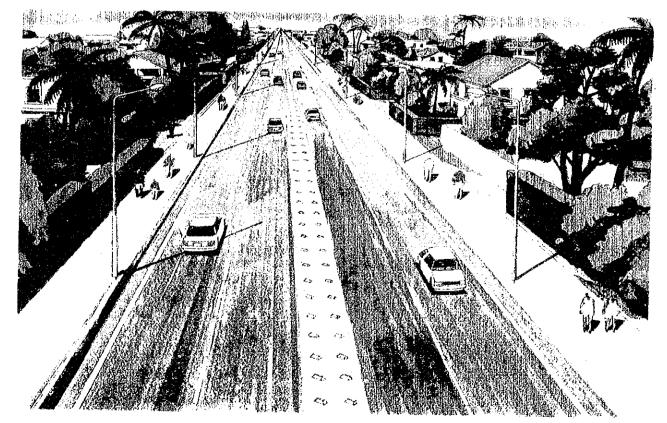
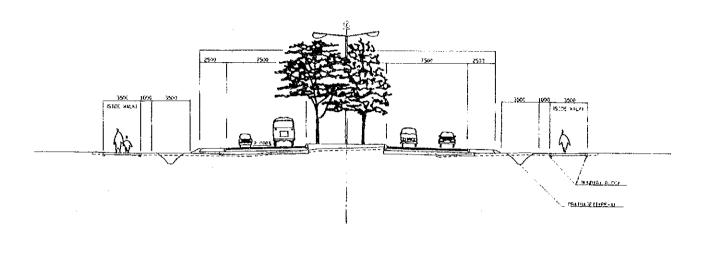
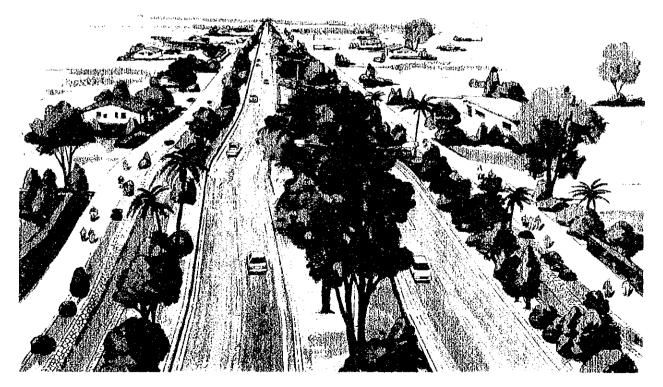




Fig. S.12.4 Typical Cross Sections of Proposed Roads



UPANGA ROAD


,

•

TYPICAL CROSS SECTION OF NEW BAGAMOYO ROAD

NEW BAGAMOYO ROAD

.

· · ·

CHAPTER 13 CONSTRUCTION PLAN AND COST ESTIMATE

13.1 Main Feature of the Project

The construction works consist of improvement of road structures, urgent repair of pot-holes and improvement of road maintenance system. The main features of the Project are summarized in Table S.13.1.

13.2 Construction Plan and Schedule

13.2.1 Construction Conditions

The annual workable days are varried from 216 to 252 days due to nature of construction conditions on each work.

13.2.2 Temporary Construction Facilities

After land compensation, temporary facilities shall be provided prior to commencement of construction works.

13.2.3 Construction Package

-Category A : Improvement of road structures LOT A-1 (9.8 Km) New Bagamoyo group LOT A-2 Morogoro road (5.7 Km) LOT A-3 Chang'ombe area group (19.2 Km) LOT A-4 Kariakoo area group (31.7 Km) LOT A-5 Mwinjuma area group (16.7 Km) LOT A-6 Central area group (21.0 Km) Category B(LOT B-1) Urgent repair of pot-holes : 206 km Category C : Improvement of road maintenance system LOT C-1 Construction of main depot LOT C-2 Provision of maintenance equipment -LOT C-2(1) Equipment for main depot -LOT C-2(2) Equipment for road maintenance LOT C-3 Guidance and training

13.2.4 Construction Plan and Schedule

Construct	ion p	period is	est	imated as	show	n below.
-Category	A :	1990.Dec.	-	1994.Mar.	(40 n	nonths)
-Category	В	1990.Dec.	-	1992.Mar.	(16)	nonths)
-Category	С	1990.Dec.	-	1994.Mar.	(40 r	nonths)

S - 63

13.3 Cost Estimate

13.3.1 Conditions for Cost Estimate

-Price level : October, 1989

-Exchange rates : US\$ 1.0 = TShs.144.0 = \$ 144.0

-Project Cost

A.Construction cost

B.Physical contingency

C.Engineering service cost

D.Relocation cost of public utilities

E.Government administration expense

F.Land Compensation cost

13.3.2 Unit Price

Unit prices for major work items were developed by the Study Team as shown in Table S.13.2. These unit prices shows the direct construction cost(A-2) excluding temporary works(A-1) and indirect expense(A-3).

13.3.3 Major Work Quantities

Majour work quantities are shown in Table S.13.3.

13.3.4 Estimated Project Cost

On the basis of unit prices and quantities, the project cost was estimated as shown in Table S.13.4 and summarized in Table S.13.5.

13.4 Implementation Agency

DCC will be responsible for the implementation of the Project and act as the execution agency for the Project in corporation with MOCW.

13.5 Implementation Programme

Total implementation period is estimated at 46 months. Whole implemented schedule is shown in Figure 5.13.1.

13.6 Annual Disbursement Schedule

Fiscal year for the disbursement schedule is assumed to start in April and end in March next year. The project cost is assumed to be disbursed as shown in Table S.13.6.

S -- 64

Table S.13.1 Project Principal Features

.

		Section				Category A				
NAME OF ROADS	Total	of Of	(1)	(2)	(3)	(4)	(2)	(9)	(1)	(8)
	Length	Maintenance	Overlay	Reconst-	Widening	Drainage	Bus bay	Inter-	Lightng	Signal
		level		ruction		Structure		section		
	(.km)	()km)	(km)	(km)	(km)	(km).	(nos.)	(nos.)	(nos.)	(nos.)
1. New bagamoyo	8 6	2.3	2.3	1.4	З. 9	0.2	6 1	4	16	7
1.1 Up to Morocco J.	з.5 С	1.0	0.0	010	2.5	0.1	ო	ო	25	4
1.1 Beyond Morocco J.	4.4	1.3	2.0	1.2	0.0	0.0	12	0	0	-+
1.13 Upanga	1-9	0.0	0.3	0.2		0.0	ላ	H	66	~
2. 1.4 Morogoro	5.7	0.0	0.0	0.0	5.7	0.2	16	N	86	m
(Up to Port Ac.J.)							·			
3. Chang'ombe Area Group	19.2	5.4	4.8	0.6	0.0	0.0	0	0	0	0
3.F Chang'ombe area	14.6	2.6	з.0	0.6	0.0	0.0	0	0	0	0
2.17 Chang'ombe	4.6	2.8	1.8	0*0	0.0	0.0	0	0	0	0
4. Kariakoo Area Group	31.7	э.з	3.7	24.7	0.0	0.0	0	0	0	0
3.E Kariakoo area	30.0	3.3	2.0	24.7	0.0	0.0	0	Ö	0	0
1.11 Msimbazi	1.7	0.0	1.7	0.0	0.0	0.0	0	0	0	0
5. Mwinjuma Area Group	16.7	0.4	7.0	9.4	0.0	0.0	12	c o	0	0
2.7 Mwinjuma	2.2	0.0	0.8	1.4	0.0	0.0	0	0	0	0
3.I Mwinjuma,L-1	ч. Ч	0.0	0.0	ר. ד.	0.0	•	0	0	0	0
1.2 Morocco	3.6	0.0	2.8	0.8	0.0	0.0	12	co	0	0
1.3 Kinondoni	0.7	0.4	0.0	0.4	0.0	0.0	0	0	0	0
2.5 Shekilango	з. в	0.0	2.0	1,8	0.0	0.0	0	0	0	0
2.8 Makanya	5.0	0.0	1.5	3.5	0.0	0.0	0	0	0	0
6. Central Area Group	21.0	0.2	17.1	3.7	0.0	0.0	0	0	0	ო
3.D Central area	9.6	0.0	6.1	3.7	0.0	0.0	0	0	0	0
1.8 Bandari	2.2	0.2	2.0	0.0	0.0	0.0	0	0	0	0
1.15.1 Nkrumah	0.4	0.0	0.4	0.0	0.0	0.0	0	0	0	0
1.15.3 Sokoine	0.8	0.0	0.8	0.0	0-0	0.0	0	0	0	0
1.15.4 Gerezani	1.4	0.0	1.4	0.0	0-0	0.0	0	0	0	0
I.15.5 Kivukoni	1.2	0.0	1.2	0.0	0.0	0.0	0	0	0	0
1.15.6 Maktaba	6.0	0.0	6.0	0.0	0.0	0-0	0	0	0	ო
1.15.7 Ohio	1.0	0-0	1.0	0.0	0.0	0.0	0	0	0	0
1.15.8 Ocean	а. з	0.0	е.е	0.0	0.0	0-0	0	0.	0	0
70ta]	104.1	11.5	34.9	48.1	9.6	0.4	47	14	189	ы Ц
							,		1	

•

S --65

Table S.13.2 Unit Price List for Major Work Items

Item			F/C	L/C	Total
No.	Work	Unit	Portion	Portion	
			(TShs.)	(TShs.)	(TShs.)
1.EART	'H WORKS				
E – 1	Clearing and removal of	sq.m	55	25	80
	unsuitable materials				
E – 2	Waste excavation,common	cu.m	335	135	470
E - 3	Waste excavation,rock	cu.m	530	200	730
E – 4	Embankment ,	cu.m	370	150	520
	borrowed material				
E - 5	Embankment ,	cu.m	230	60	290
·	excavated material				
E – 6	Removal of existing	cu.m	470	200	670
	pavement				
2. PAVE	MENT WORKS				
P – 2	Sub-base course pavement	cu.m	930	1,930	2,860
P - 3	Base course pavement	cu.m	1,630	2,400	4,030
P - 4	Shoulder pavement	cu.m	1,470	2,830	4,300
P-5	Prime coat	sq.m	65	5	70
P - 6 (F)Asphalt pavement,	ton	4,210	1,630	5,840
	t=50,100mm				
P - 7	Sidewalk	sq.m	390	460	850
P - 8	Kerb stone	lin.m	310	880	1,190
P - 9	Boundary block	lin.m	180	550	730
3. DRA I	NAGE WORKS				
D - 1	Side riprap drainage	sq.m	70	280	350
D - 2 (B)Side flume drainage,	lin.m	1,930	4,140	6,070
	400 x 500				
D – 3	L-shaped side ditch	lin.m	590	1,180	1,770
D - 6	Pipe culvert,type A,	lin.m	2,950	11,750	14,700
	diam.= 600mm				
D-7 (B)Pipe culvert,type B,	lin.m	1,130	8,300	9,430
	diam.= 600mm				
D - 8	Re-installation of	lin.m	780	380	1,160
	existing drainage				

S-66

Table S:13.3 Major Work Quantities

	-						Ouantity			
Item	Description		Unit	Total	LOT	LOI	LOT	TOT	LOT	FOI
No.					A-1	A-2	A-3	A-4	A-5	A-6
	1.Earth Works			 0						
E-1	Clearing and removal of unsuitable mate	insuitable materials	sq.m	301,000	95,000	206,000				
Z-⊒	Waste excavation	common	cu.m	145,000	19,000	51,000	13,000	37,000	20,000	5,000
က ။ မ	Waste excavation	rock	cu.m	10,700	10,700					
日 日 日	Embankment	borrowed material	cu.m	45,100	11,900	33,200			÷	
5-3	Embankment	excavated material	cu.m	30,400	9,700	20,700				
9 1 E	Removal of existing pavement	nent	cu.m	63, 800	4,300	9, 600	12,400	22, 600	7,400	7,500
	2. Pavement Works									
P-2	Sub-base course pavement		cu.m	121,000	21,000	32,000	13,000	33, 000	15,000	7,000
ъ-3	Base course pavement		cu.m	84,300	13, 600	20, 300	9,300	26, 600	10,400	4,100
P-4	Shoulder pavement		cu.m	9,100	2,000	7,100				
Р-5 -4	Prime coat		sq.m	441,000	75,000	95,000	51,000	136,000	57,000	27,000
ъ-6	Asphalt pavement		ton	114,000	20,000	22,000	12,000	22,000	19,000	19,000
2 P-7	Sidewalk		sq.m	68, 400	25, 800	40,400			2,200	
Р-8 	Kerb stone		m.nit	18,400	5,500	12,900				-6 - g
6-4 7	Boundary block		lin.m	45, 300	14,200	30,400			700	
	3.Drainage Works				-,+ <u></u> -					
D-1	Side riprap drainage		sq.m	10, 600	2,400	8,200				
D-2 (B)	Side flume drainage	400 x 500	lin.m	4,700	4,700					
D-3	L-shaped side ditch		lin.m	8, 900	6,200	2,000			700	
D-465	Catch pit and Man hole		nos.	240	140	80		. ,.	20	,
D-7 (A)	Pipe culvert	Diam.= 300 mm	m.nil	640		640				
D-6&7 (B)) Pipe culvert	Diam.= 600 mm	Lin.m	3,490	750	2,740				
D-7 (C)	Pipe culvert	Diam. = 1,000 mm	lín.m	360	180	180			<u></u>	
D-8	Re-installation of existi	existing drainage	lin.m	4,990		<u> </u>	1,750	2,500		740
	4.Others									
0-1	Road lighting pole	L type	. sou	66	66	<u> </u>				
0-2	Road lighting pole	Y type	nos.	123	25	98				
ю-0	Traffic signal		sec.	л т	8	m				
0-4	Pedestrian bridge		.ou	Ы		Ч				
0-5	Relocation of utilities	Telephone line	lin.m	11,000	5,300	5,700				
0-6	Relocation of utilities	Water supply valb	. sou	<u>ى</u>	ົດ					
07	Relocation of utilities	Power supply	m. nil	16,700	5,300	11,400			-	

S --67

Table S.13.4 Total Project Cost

.

E	Exchange Rate:	1.0US\$=TShs.14	4.0 = JYE 144.0
Description	F/C Portion	L/C Portion	Total
	(Mil.TShs)	(Mil.TShs)	(Mil.TShs)
A.Construction Cost			
A-1 Temporary Works	399.0	171.3	570.3
A-1-1 Direct Works	15.9	11.5	27.4
A-1-2 General Works	77.0	120.3	197.3
A-1-3 Transportation	306.1	39.5	345.6
A-2 Construction Works	1,588.6	1,150.6	2,739.2
A-2-1 Category A	1,299.1	970.2	2,269.3
1)LOT A-1 New Bagamoy	(320.4)	(217.2)	(537.6)
2)LOT A-2 Morogoro	(398.3)	(316.3)	(714.6)
3)LOT A-3 Chang'ombe	(104.4)	(79.4)	(183.8)
4)LOT A-4 Kariakoo	(223.5)	(193.7)	(417.2)
5)LOT A-5 Mwinjuma	(138.3)	(100.1)	(238.4)
6)LOT A-6 Central	(114.2)	(63.5)	(177.7)
A-2-2 Category B	102.7	87.3	190.0
A-2-3 Category C	186.8	93.1	279.9
1)LOT C-1 Main depot	(87.0)	(93.1)	(180.1)
2)LOT C-2 Equipment	(99.8)	(0.0)	(99.8)
3)LOT C-3 Guidance	(0.0)	(0.0)	(0.0)
A-3 Indirect Expense	368.0	86.1	454.1
A-3-1 Site Expense	197.3	17.1	214.4
A-3-2 Construction expert	75.4	0.0	75.4
A-3-3 General Expense	95.3	69.0	164.3
Total of A	2,355.6	1,408.0	3,763.6
B.Physical Contingency	220.9	135.5	356.4
C.Engineering Service	360.0	90.0	450.0
Total of A to C	2,936.5	1,633.5	4,570.0
D.Relocation Cost	70.0	50.0	120.0
E.Administration Cost	0.0	23.0	23.0
F.Land Compensation	0.0	30.0	30.0
Total of D to F	70.0	103.0	173.0
Grand Total (A to F)	3,006.5	1,736.5	4,743.0

		F/C	L/C	Total
	Items	(Mil.TShs.)	(Mil.TShs.)	(Mil.TShs.)
Α.	Construction Works	2,355.6	1,408.0	3,763.6
Β.	Physical Contingency	220,9	135.5	356.4
C.	Engineering Service	360.0	90.0	450.0
	sub-total (A to C)	2,936.5	1,633.5	4,570.0
D.	Relocation Cost	70.0	50.0	120.0
Ε.	Administration Cost	0.0	23.0	23.0
F.	Land Compensation	0.0	30.0	30.0
	Sub-total (D to F)	70.0	103.0	173.0
	Grand Total (A to F)	3,006.5	1,736.5	4,743.0

Table S.13.5 Summary of the Project Cost

Table S.13.6 Summary of Annual Disbursement Schedule

YEAR	FOREIGN PORTION	LOCAL PORTION	TOTAL
	(Mill.TShs.)	(Mill.TShs.)	(Mill.TShs.)
(1)Total Co	onstruction Works(1	[tem No.A to C)	
1990/91	874.9	495.1	1,370.0
1991/92	937.3	452.7	1,390.0
1992/93	830.8	529.2	1,360.0
1993/94	293.5	156.5	450.0
Total	2,936.5	1,633.5	4,570.0
(2)Compleme	entary Works(Item N	lo.D to F)	
1990/91	40.0	28.2	68.2
1991/92	30.0	65.4	95,4
1992/93	0.0	7.4	7.4
1993/94	0.0	2.0	2.0
Total	70.0	103.0	173.0

S - 69

Completion 4th Year 1993/94 Phase 4 LOT A-5 3rd Year 1992/93 LOT C-3 က LOT A-4 Phase A - 2 ТОТ LOT A-1 2nd Year À-3 1991/92 Phase 2 LOT A-6 8-1 1 LOT 2-C-C LOT C-1 LOT LOT Contract lst Year Phase 1 1990/91 ļ k n K к В Ч Е km K 21.0 km 16.7 km 206 km ROAD LENGTH 31.7 L.S. 104.1 9.8 5.7 L.S. L.S. L.S.J 19.2 C-2 Provision of Equipment A-3 Chang'ombe Area Group A-4 Kariakoo Area Group A-5 Mwinjuma Area Group A-6 Central Area Group A-1 New Bagamoyo Group PRE-CONSTRUCTION STAGE CONSTRUCTION STAGE Preparatory Works A-2 Morogoro Road Detailed design C-1 Main Depot DESCRIPTION CONTRACT PHASE C-3 Training Tendering KEY EVENTS Category B Category A Category C AND

Figure S.13.1 Implementation Schedule

S - 70

CHAPTER 14 ECONOMIC EVALUATION

14.1 General

High priority project roads proposed in the previous chapter are economically evaluated. First of all, the estimated project costs for each of the road improvement and rehabilitation projects are economically evaluated in relation with the expected benefits produced by each project so as to ascertain their economic feasibility from the view point of the national economy. Second, the socio-economic impacts of the project roads are analysed so as to clarify the role of project roads for the realization of better socio-economic conditions in the city of Dar es Salaam and its surrounding areas.

14.2 Results of Economic Evaluation

Project costs estimated in chapter 13 were evaluated in terms of economic costs through three indicators, i.e. Benefit-Cost Ratio (B/C), Net Present Value (NPV) and Internal Rate of Return (IRR). Preposition for the economic evaluation were set up as below;

-Projects to Be Evaluated A set of high priority projects contained in Category A and C of the short plan is defined as the base for the evaluation.

-Project Life

15 years of project life was assumed.

-Discount Rate

10% of discount rate was applied throughout the project life on the basis of estimated opportunity cost of capital in Tanzania.

The results are far beyond the benchmark values of these indicators and it could be concluded that the Projects are highly feasible. The calculated values of these indicators are shown below:

Table S.14.1 Result of Estimated Indicators

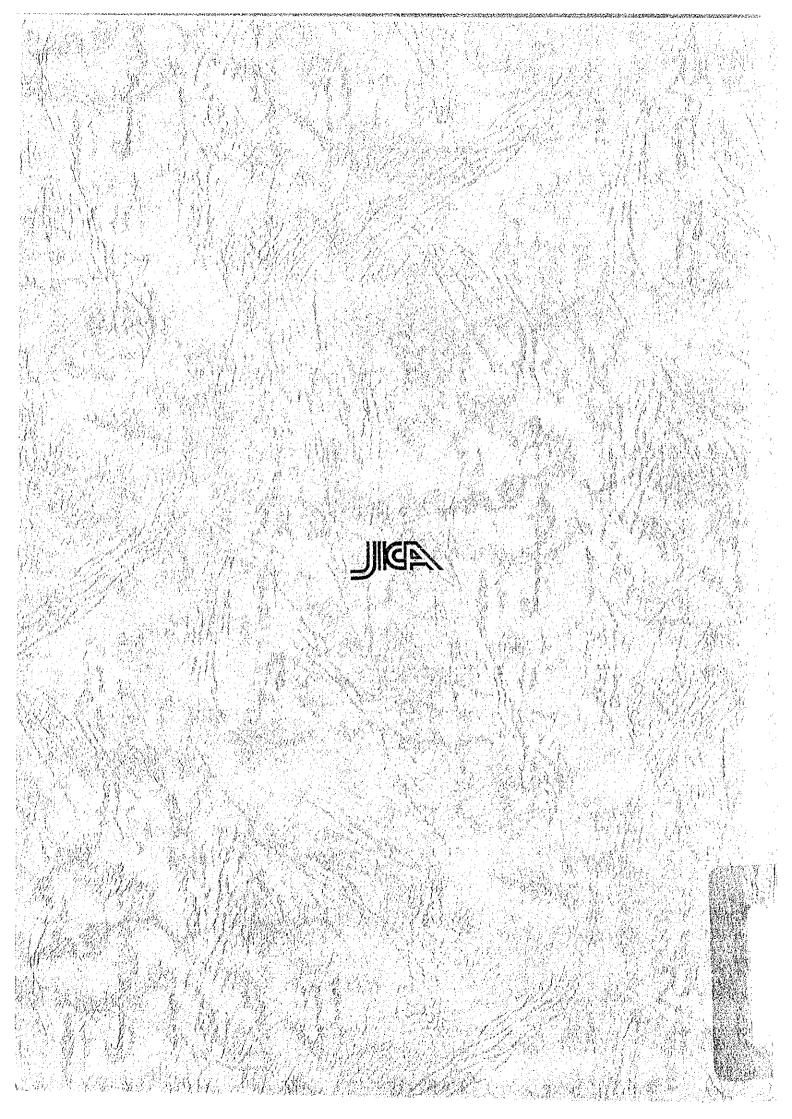
*	*	
B/C	NPV(M.Tsh.)	<u>IRR(%)</u>
2.46	4888.4	25.1

*10% of discount rate was assumed

14.3 Foreseeable Socio-economic Impact from the Project

Besides the above, it is easily expected that the Projects would come up with great amount of socio-economic impact to the surrounding areas. Some of the conceivable impacts are itemized below;

- Promotion of efficient land use plan


- Realization of functional hierarchy among roads

- Enhancement of urban amenities

- Stimulation of regional economy

- Incentive for the succeeding road developement

It is strongly recommended that these impacts be fostered and directed for future urban development in the city of Dar es Salaam.

