APPENDIX 9 AVAILABLE ADDITIONAL SEWAGE

APPENDIX 9 AVAILABLE ADDITIONAL SEWAGE

1. Colectors Vitarte and No.21

Additional sewage through a new interceptor mentioned in Subsection 5-3-2 is obtained from the Colectors Vitarte and No.21 which is located upstream of Colector Surco (refer to FIGURE A9-1). Available sewage quantity is estimated as follows:

Domestic sewage

District	COVE	RED POPULATI	ON
an an an Araba an Araba. An an Araba an Araba an Araba	D/S.H	D/S.L	ID
ATE (80%)	37,760	57,150	7,140
EL AGUSTINO (20%)	3,630	21,510	2,790
TOTAL	41,390	78,660	9,930
UNIT Q(1pcd)	210	180	110
Q'ty (m ³ /sec)	0.101	0.164	0.013

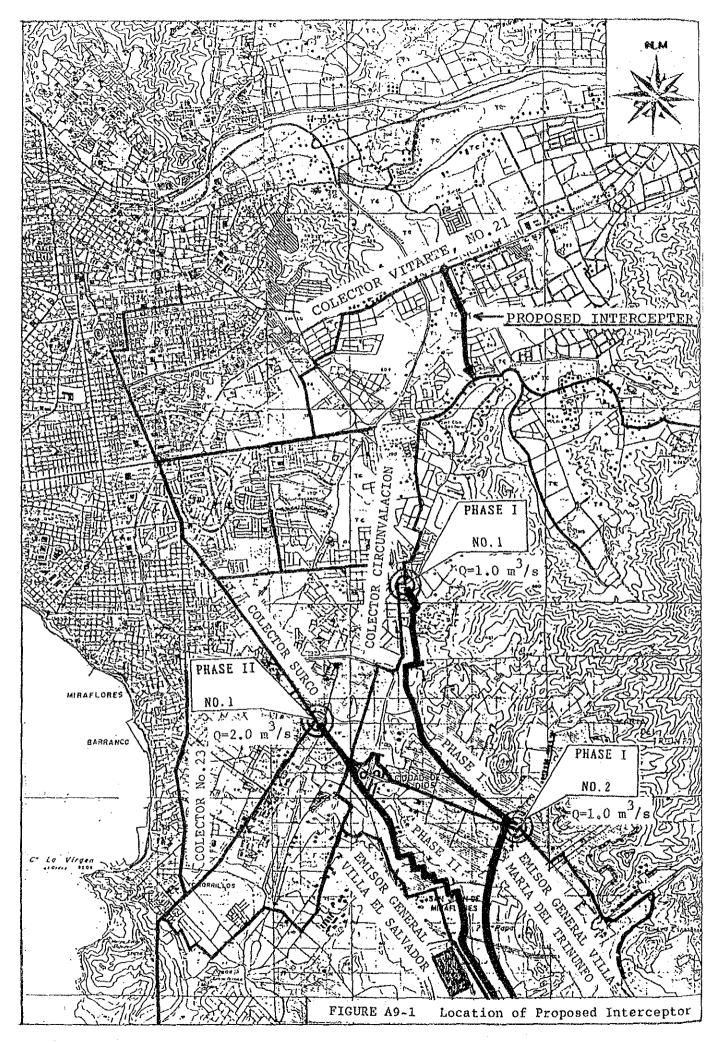
Total Domestic Sewage Quantity : 0.278 m3/sec

Industrial Wastewater

30 % of Colector Surco 0.264 x 0.3 = 0.079 m³/sec

Other Wastewater

Same ratio as total of domestic and industrial. Q'ty of Vitarte & 21 (D+I) / Q'ty of Surco (D+I) = (0.278 + 0.079) / (1.932 + 0.264) = 0.163 then, 0.172 x 0.163 = 0.028³/sec


therefore, Total Available Sewage Quantity is: 0.278 + 0.079 + 0.028 = 0.385 m³/sec

Emisor General Villa El Salvador

2.

The sewage flow from Villa El Salvador is estimated as follows:

Therefore, around 0.4 m³/sec is estimated to be available for the Phase I project.

APPENDIX 10

WATER QUALITY STANDARDS AND GUIDELINES

APPENDIX 10 WATER QUALITY STANDARDS AND GUIDELINES

A10.1 General

Water pollution control standards in Peru are set according to the classification of water bodies by their uses. The control of the quality of industrial wastewater discharged into sewers is also included in these standards.

A10.2 Environmental Water Quality Standards

The Ley General de Aguas (General Law of Water, Decreto Ley No. 17752) classified the various water bodies by their general uses. The law was amended on February 11, 1983 through Decreto Supremo No. 007-83-SA which contains the following provisions.

Article 81.

The effects of application of the present regulation, the quality of Peru's water bodies in general, be they inland or marine are classified according to their uses in the following manner:

I. Water for domestic supply, simply disinfected

- II. Water for domestic supply, treated equivalent to combined processes of mixture and coagulation, sedimentation, filtration, and chlorination, approved by the Ministry of Health.
- III. Water for irrigation of vegetables to be eaten raw and for watering animals
- IV. Water for recreational area of primary contact (Baths and the like).
 - V. Water for fishing zones for bivalves.
- VI. Water for zones to preserve aquatic fauna and recreational or commercial fishing.

I. BACTERIOLOGICAL LIMITS

(Maximum value of 80% of 5 or more monthly samples)

•.•	· ·			Value	s in ME	N/100ml
			USES		· · · · ·	· · · · ·
:	I	II	111	IV	V	VI
Total		••••••••••••••••••••••••••••••••••••••))
Coliforms	8.8	20,000	5,000	5,000	1,000	20,000
Fecal					•	
Coliforms	0	4,000	1,000	1,000	200	4,000

II. LIMITS OF BIOCHEMICAL OXYGEN DEMAND (BOD at 5 days, 20°C) AND OF DISSOLVED OXYGEN (DO)

				Yaza		51-1
			US	ES	······································	· · ·
	I	II	III	IV	V	VI
BOD	5	5	15	10	10	10
DO	3	3	3	3	5	4
			······	<u> </u>		

Values in mg/1.

III. LIMITS OF THE PHYSICAL-CHEMICAL PARAMETERS WHICH INCLUDE POTENTIALLY

DANGEROUS SUBSTANCES

4 . · · ·					Values	in mg/1.
<u></u>			USE	S		
Parameter	I	II	111	1V	v	VI
Aluminum				1(b)	1(b)	~
Arsenic	0.1	0.1	0.2	1	0.01	0.05
Barium	0.1(Ъ)	0.1(b)	-	0.5	0.5(b)	-
Cadmium	0.01	0.01	0.05	-	0.0002	0.004
Cyanide (CN)	0.2	0.2	(c)	**	0.005	0.005
Cobalt	-	-	0.20(d)	0.2	0.2(b)	-
Copper	1	1	0.5	3	0.01	LC50x0.1
Color (unit)(b)	0	10	20	30	30	-
	5	5(d)				
Hexav. Chromium	0.05	0.050	1	5	0.050	0.050
Sthylene Esters	0.0003	0.0003	0.0003	- 1	0.0003	0.0003
Phenols	0.0005	0.001	(c)		0.001	0,1
Iron	0.03(b)	0.03(b)	0.001(Ъ)	-	-	-
Fluoride	. *	1.5(Ъ)	1.5(b)	2.0(Ъ)	. = .	-
Lithium		-	5(a)	5.0	5.O(b)	-
Magnesium	_	-	150(b)	-	-	-
		-	-(d)	-	-	· •
Manganese	0.010(Ъ)	0.010(b)	0.050	~	85	-
0	_	-	~(d)	-	-	-
Mercury	0.002	0.002	0.01	-	0.0001	0.0002
Nitrates	0.01(a)	0.01(a)	0.1(a)	*	-	.
		-	0.01(d)	-	-	-
Nickel	0.002	0.002	(c)	0.5	0.002	LC50x0.0
рН (b)	5-9	5-9	5-9	5-9	5-9	5-9
	6-9(d)	6-9(đ)	6-9(d)	6-8.5(d)	6-8,5(d)	-
Silver	0.05(b)	0.05(b)	0.05(b)	. .	-	-
		-(d)		-	-9	-
Lead	0.05	0.05	0.1	- -	0.01	0.03
P.C.B.	0.001	0.001	(c)	-	0.002	0.002
Selenium	0.01	0.01	0,05	0.05	0.005	0.01
oozomten.					0.05(d)	
Floating Solids	0.00(b)	0.00(5)	0.00(b)	invisible	moderate	· •
Sulfates	-		400(b)	-	-	
U4114100			-(d)			
Sulfure	0.001	0.002	-(u) (c)	-	0,002	0.002
Sullure Zine	5	5	25		0.02	LC50x0.0

OBSERVATIONS:

(a) There seems to be an error in the unit applied in the amendment to the law. Value should be multiplied by 1000.

(b) Information obtained from the Direccion Tecnica de Salud. Ambiental (Technical Department of Environmental Health) of the Ministry of Health.

(c) If presence of paramera is suspected, apply the values in column V.

(d) If the dumping is into sea water. The values come from (b).

Pesticides - In each use, the limit will be the water quality criteria established by the Environmental Protection Agency of the United States of America.

IV. LIMITS OF POTENTIALLY HARMFUL SUBSTANCES OR PARAMETERS

	US	ES	
Parameter	I and II	III	IV
- Material extractable in			
Hexane	1.5	0.5	0.2
- Active substances of			
blue Methylene	0.0	1.0	0.5
- Extraction of active		· .	
Carbon column by alcohol	1.5	5.0	5.0
- Extraction of active			
Carbon column by Chloroform	0.3	1.0	1.0

A10.3 Effluent Standard

On November 29, 1960 the Industrial Discharge Regulation was approved through D.S.28/60 which set the permissible limits for domestic sewage discharged to a public sewer system and basically states:

All industrial wastewater which enters the public sewer network must comply without exception with the following standards:

A10-4

- a) Temperature must not exceed 35°C.
- b) Vapors must be condensed to enter the drainage.
- c) Liquid grease that enter the sewer must have a concentration less than 0.1 g/1. in weight.
- d) Flammable substances that enter the drain must have an ignition point higher than 90°C and a concentration less than 1 g/l.
- e) The pH must be between 5 and 8.5. Industries that evacuate mineral acids or strongly alkaline substances must have tanks with sufficient capacity where they are neutralized.
- f) The BOD (Biological Oxygen Demand) may not exceed 1,000 ppm.

g) Sedimentable solids must have a concentration higher than 8.5 ml/l/hour.

COMPARISON AND EVALUATION OF THE PROPOSED SITE

APPENDIX 11 COMPARISON AND EVALUATION OF THE PROPOSED SITE

The following 6 sites were judged as possible location of treatment plant for this Project, based on a field survey and in consideration of the various plans for land use and the Project's alternative sewer pipe routes.

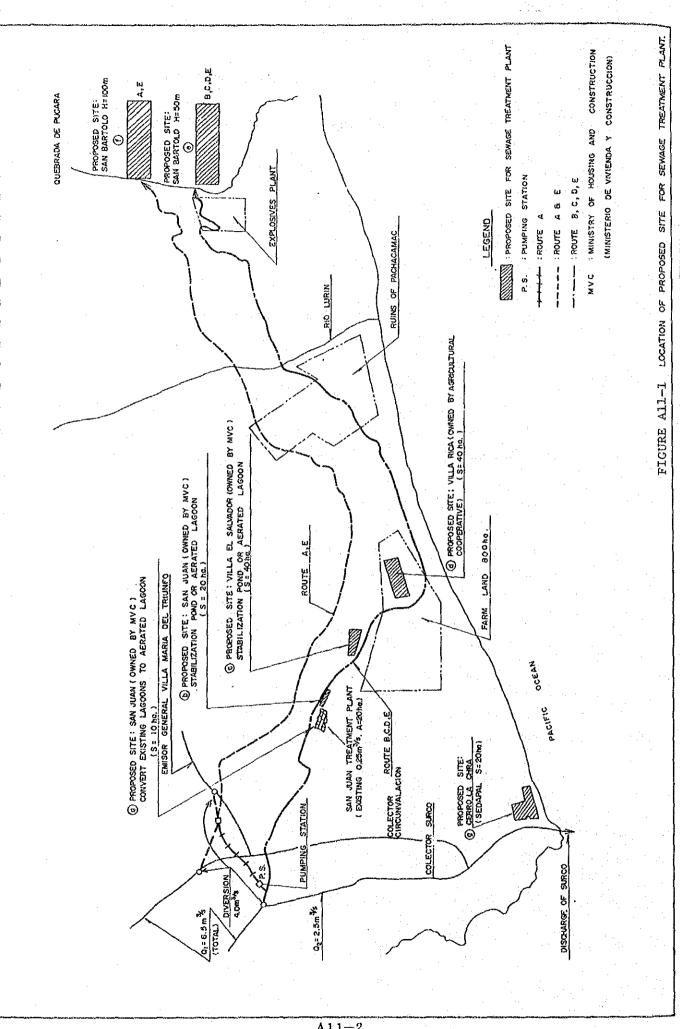
a).

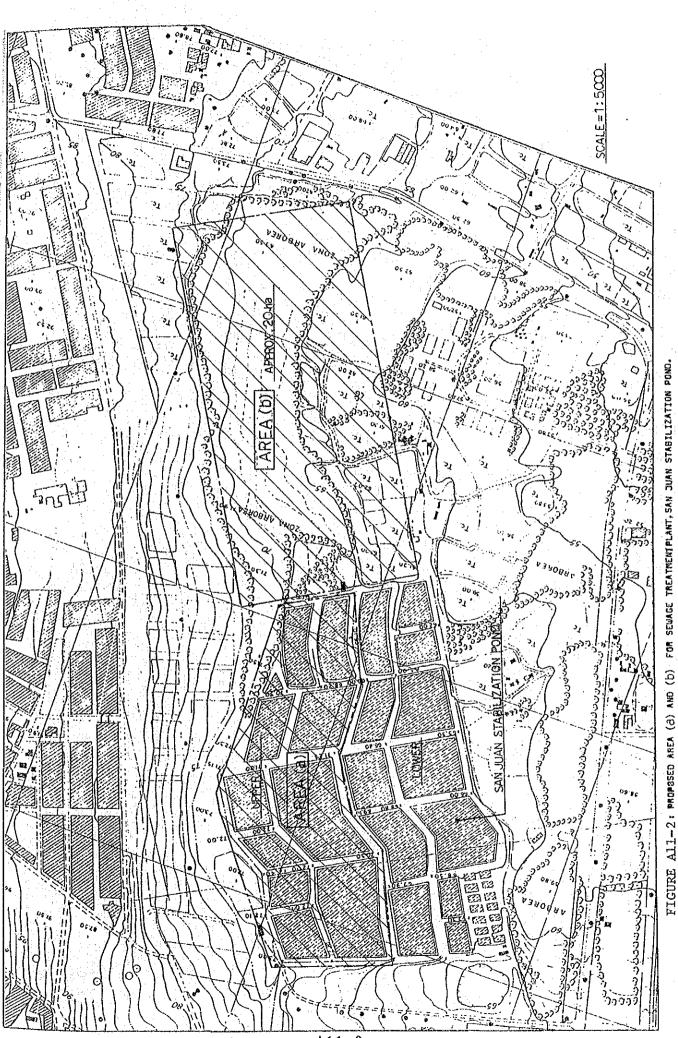
g)

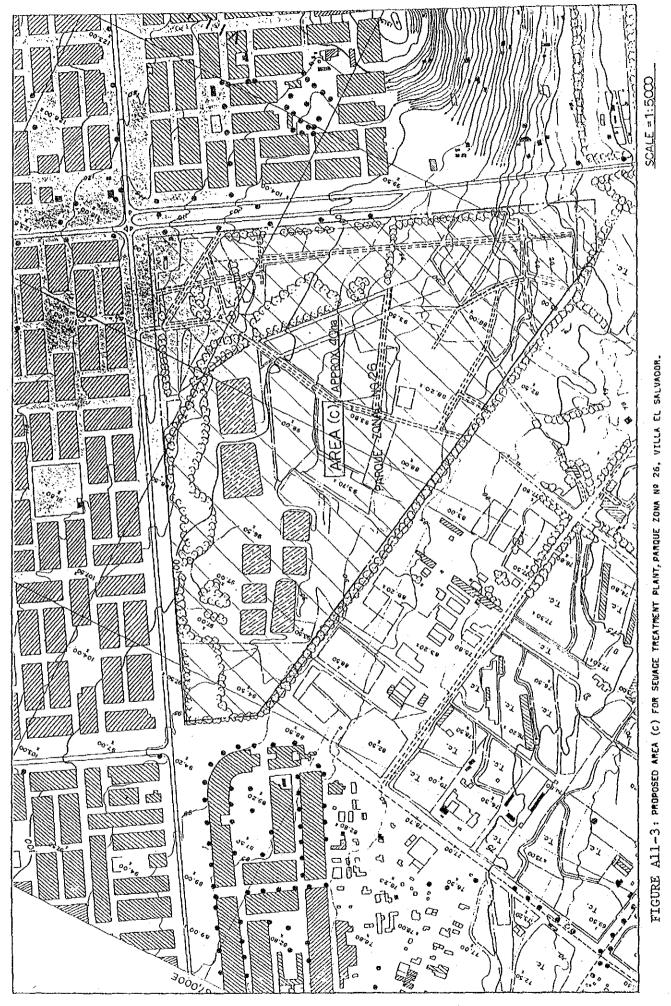
Existing upper battery ponds in the San Juan Stabilization Pond (falls under the jurisdiction of the Ministerio de Vivienda y Construccion, Ecology Department.)

 b) Southern Zone of San Juan Stabilization Pond (falls under the jurisdiction of the Ministerio de Vivienda y Construccion, Ecology Department)

 c) Villa El Salvador - Parque Zonal No. 26 (falls under the jurisdiction of the Ministerio de Vivienda y Construccion, Ecology Department)


d) Villa Rica (belongs to an agricultural production cooperative)


e & f) Pampas de San Bartolo (falls under the jurisdiction of the Ministerio de Vivienda y Construccion)


> Cello de Chillon at the south of the outfall of the Colector Surco (belongs to SEDAPAL)

Topographical plans of these prospective treatment plant sites are shown in FIGURES All-1 through All-5. TABLES All-1 and All-2 gives the descriptions, possibilities for adoption, and relative suitability of each of the sites.

As one of the purposes of this Project is to utilize sewage for irrigation of cultivated fields in the future, proposal (g) was not taken into account in the study.

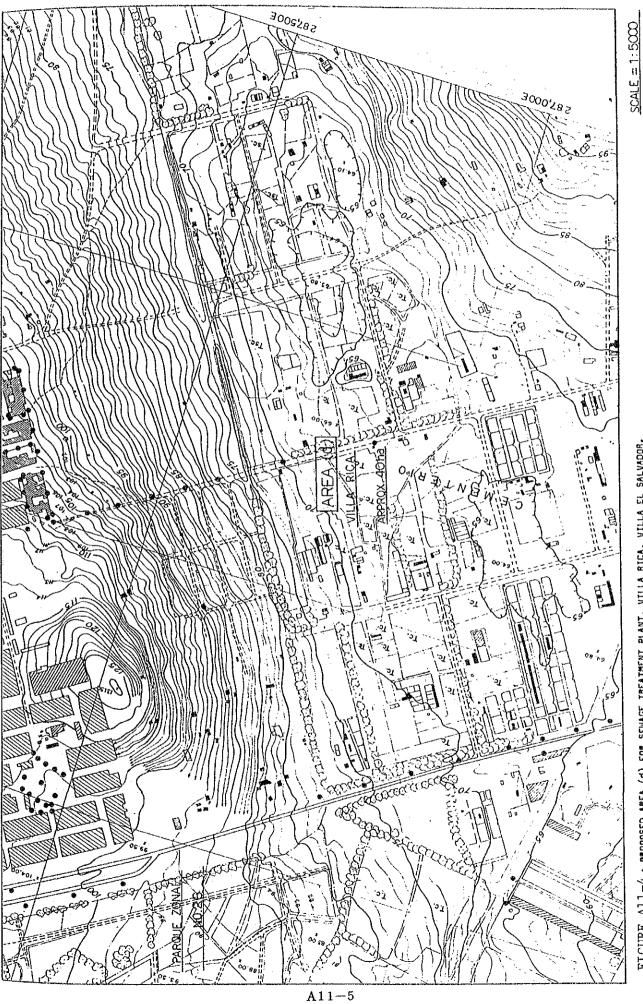


FIGURE All-4 : proposed area (d) for sevage treatment plant, villa rica, villa el salvador.

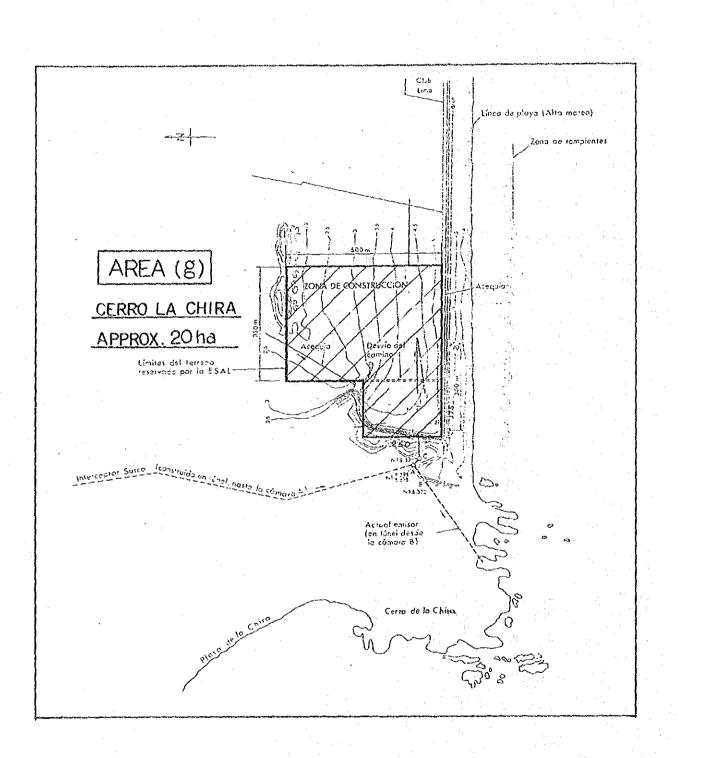


FIGURE AL1-5: PROPOSED AREA (g) FOR SEWAGE TREATMENT PLANT, CERRO LA CHIRA.

(e & f) San Bartolo	Specific plant site is not decided, however, it is possible to construct anywhere.	8-plants (stabilization pond, approx.55ha and 0.5 m ³ /s /piant) be constructed in the San Bartolo irrigation area.					
(d) VILLA RICA		Construct in the agricultural 8- co-operative's area. Facility ag must be constructed at least /p 100m away from house on the th eastern area of site as a measure against bad odor.	I7.3 ha	0.19 m³/s			
(c) PARQUE ZONAL NO.26	MET NICE NO	Construct in Parque, similar to (b), removal of trees and supplying treated water to the concerned farmers is required.	I7.0 ha	0.19 m²/s	11.2 ha	0.33 m²/s	
(b) San Juan	11 10 10 10 10 10 10 10 10 10 10 10 10 1	Construct in the southern wooded area of the San Juan STP. Some trees need to be moved.	17.3 ha	s/=n 81.0	14.6 ha	1.0 m²/s	
(a) EXISTING SAN JUAN STP	IN ET 700 10 12 M 1 1 10 20 M 1	In order to increase the capacity, re-excavate to provide 1.5 m of water depth and equip aerator in the existing up per battery (10ha).			10.3 ha	0.63 #3/s	
PROPOSED SITE	construction let and	ω	Effective water surface area	Possible 1/ capacity	Effective water surface rea	Possible capacity	
FROP	<pre>1 Proposed site for construction (area, altitude, inlet and outlet direction)</pre>	2 Outline of the site	In case of	nond brod yt io	Capa In case of	lagoon	:

TABLE All-2 Comparison and Evaluation of the Proposed Site

	LANGORD STIE	(a)			(1)	
	SELECTION FACTOR	EXISTING SAN JUAN STP	SAN JUAN	PARQUE ZONAL NO. 26	VILLA RICA	SAN BARTOLO
	Facilities of collecting sewage from adjacent drainage area	A tis possible to connect using siphon on the way from intake points to San Bartolo.	ß Same as (a).	C Less quantity near area, it is necessary to convey it from far Colector Surco.	C Due to high altitude, it is required to take from Colector Surco at high elevation.	B It is possible to convey to the high elevation level, but siphon is much long.
	Proximity to drainage area	A Very good. Distance is miniaal(Gkm).	B Located next to (a). It is the second nearest.	C Located at high land. A long line is necessary.	D Must take sewage from far distance.	D Very far (30km).
	Benetits to the discharge area	A fn the vicinity there are agricultural area, where raw sewage is being utilized due to lack of water at present.	Most adequate. Same as (a).	A Located at high land. Wide agricultural area in lower lands.	C Very far from the planned cullivated fields. No benefit.	A The plant is located within the planned cultivated fields.
	Facility of discharge during low demand season	C bathing There is public bathing beach nearby. Requirement of authorization from the Ministry of Health.	C Same as (a).	C (a). Seme as (a).	B Samc as (a).	B (a).
	Availability of sufficient land and facility of right-of-way acquisite	D This plant is a center for land recovery studies, Not authorized. (Ministerio de Vivienda)	B Feasible if trees are moved. Ministerio de Vivienda)	8 Require moving at existing trees, ponds and school (Ministerio de Vivienda)	B Should acquire the land from the agricultural co-operative. Costly.	B Besert. No problem with the land.
	Acceptability to neighboring houses/estabiishments	B Adaquate machanization allows forced agration. Bad odors are reduced.	B There are houses at the west. It can be feasible if trees are planted to that area.	B The system must emit no odor. Moving trees and school is required.	In the vicinity, ponds are abandoned due to bad odors.	B The neighbors are ranches. There is no problem.
F	Favorability of hydrogeological conditions (soil permeability and groundwater)	A There is a plenty of geological information.	B Adequate for construction.	B There are 4 stabilization ponds at prescht.	Reasible cultivated fields. Feasible.	C Sand dune. The soil condi- lion is similar to San Juan in surface layer. But in deeper layer, high permea- bility.

(P	
(Cont'	
Si te	
Proposed	
of the I	
٥ſ	
on and Evaluation o	
Comparison a	
TABLE ALL-2	

PROPOSED SITE	(a)	(¢)	(©)	(p)	(6 % f)	
SELECTION FACTOR	EXISTING SAN JUAN STP	SAN JUAN	PARQUE ZONAL NO. 26	VILLA RICA	SAN BARTOLO	-
8 Susceptibility to floads, high tide of landslides.	B Located on level ground, far from the sea. No rain. Not affected.	B Same as (a).	8 Same as (a).	C There are dunes in back. Sand accumulation is a possi- ble problem.	C Precautions against the sand accumulation are required.	
Adequacy for construction of the pond.	A The ground is slightly inclined in the direction of sewage flow. Construction is economical.	Construction is more costly as the ground slopes is in the opposite direction of the sewage flow.	C The ground is sloped in the opposite direction and very undulating. Cannot be utilized in an optimum manner.	C Located in a valley. As the outlet piping comes from at the lower end, it is necessaty to go around the road at eleva- tion 75m.	B The land is ample. Adequate area can be selected.	
					· · · ·	
Remarks			In this site, stabilization ponds are under construction by the Ministry of Agriculture based on the sewage reuse program. At present 4 ponds are in present 4 ponds are in present 4 ponds are in this site is used for the Project, adjustment with that program shall be done.			
			· .			

A11--9

 $= 105 \text{ m x } 31 \text{ m x } 3 \text{ x } 6 = 58,590 > 19,296 \text{ x } 3 = 57,880 \text{ m}^2$ = 58,590 x 3.0 = 176,880 m³ > 57,888 x 3 = 173,664 m³ Therefore, the system is able to treat 1.0 m³/s of flow. Total Water Surface Area: = $105 \times 46 \times 12 = 57,960 \text{ m}^2 > 57,600 \text{ m}^2 (=1.0 \text{ m}^3/\text{s})$ W 105 m x L 31 m x D 3.0 m x 3 cells x 6 series $= 105 \times 46 \times 3.0 \times 6 = 86,940 \text{ m}^3 > 86,400 \text{ m}^3$ Aerated Lagoon Total Volume: = 57,960 x 3.0 = 173,880 m³ > 172,800 m³ W 105 m x L 46 m x D 3.0 m x 12 basins W 105 m x L 46 m x D 3.0 m x 6 basins Complete Mixing Aerated Lagoon -Partial Mixing Aerated Lagoon • • Total Water Surface Area: ㅋ Case-Sedimentation Tank Total Volume: Total Volume: Dimension: Dimension: Dimension: Q1 < Q2, therefore, the system is able to treat $0.19 \text{ m}^3/\text{s}$ of flow. Waste Stabilization Pond Possible Treatment Capacity: 02 = 67,200/324,000 x 1.0 m³/s = 0.21 m³/s Possible Treatment Capacity: Q1 = 105,600/565,445 x 1.0 m³/s = 0.19 m³ Dimension of Pond: W 100 m x L 48 m x D 1.5 m x 14 basins W 100 m x L 48 m x D 1.5 m x 22 basins Total Water Surface Area: = 100 x 48 x 22 = 105,600 m² Total Water Surface Area: = $100 \times 48 \times 14 = 67,200 \text{ m}^2$ Secondary Facultative Pond -Primaty Facultative Pond •• Dimension of Pond: Case-(b) San Juan Proposed Area

TABLE A6-3 Possible Treatment Capacity in Proposed Area (b), San Juan Experimental Area

W 71 m x L 46 m x D 3.0 m x 3 cells x 5 series Total Volume: = 48,300 m² x 3.0 m = 144,900 m³ Possible Sewage Treatment Capacity: 01 = 144,900/172,800 x 1.0 m³/s = 0.84 m³/s Possible Sewage Treatment Capacity: $0.2 = 146, 970/173, 664 \times 1.0 \text{ m}^3/\text{s} = 0.84 \text{ m}^3/\text{s}$ Possible Sewage Treatment Capacity: $0.3 = 72,450/86,400 \times 1.0 \text{ m}^3/\text{s} = 0.84 \text{ m}^3/\text{s}$ Aerated Lagoon W 105 m x L 46 m x D 3.0 m x 10 basins Therefore, possible capacity is 0.84 m³/s W 105 m x L 46 m x D 3.0 m x 5 basins Total Water Surface Area: = 71 m x 46 m x 3.0 x 5 = 48,990 m² $= 105 \times 46 \times 3.0 \times 5 = 72,450 \text{ m}^3$ Total Volume: = 48,990 x 3.0 = 146,970 m² -Complete Mixing Aerated Lagoon $= 105 \times 46 \times 10 = 48,300 \text{ m}^2$ •• Facultative Aerated Lagoon Total Water Surface Area: ㅂ Case-Sedimentation Pond Total Volume: Dimension: Dimension: Dimension: therefore, the system is able to treat $0.19 \text{ m}^3/\text{s}$ = 109 x 54 x 18 = 105,948 m²
Possible Sewage Treatment Capacity:
01 = 105,948/565,445 x 1.0 m³/s = 0.19 m³/s : Waste Stabilization Pond $u2 = 70, 632/324,000 \times 1.0 m^3/s = 0.22 m^3/s$ W 109 m x L 54 m x D 1.5 m x 18 basins Total Water Surface Area: W 109 m x L 54 m x D 1.5 m x 12 basins Total Water Surface Area: = 109 x 54 x 12 = 70,632 m² Possible Sewage Treatment Capacity: Secondary Facultative Pond -Primaty Facultative Pond Dimension of Pond: Case- I Dimension: < 02, flow. of Proposed Area Zonal No. 26 (c) Parque

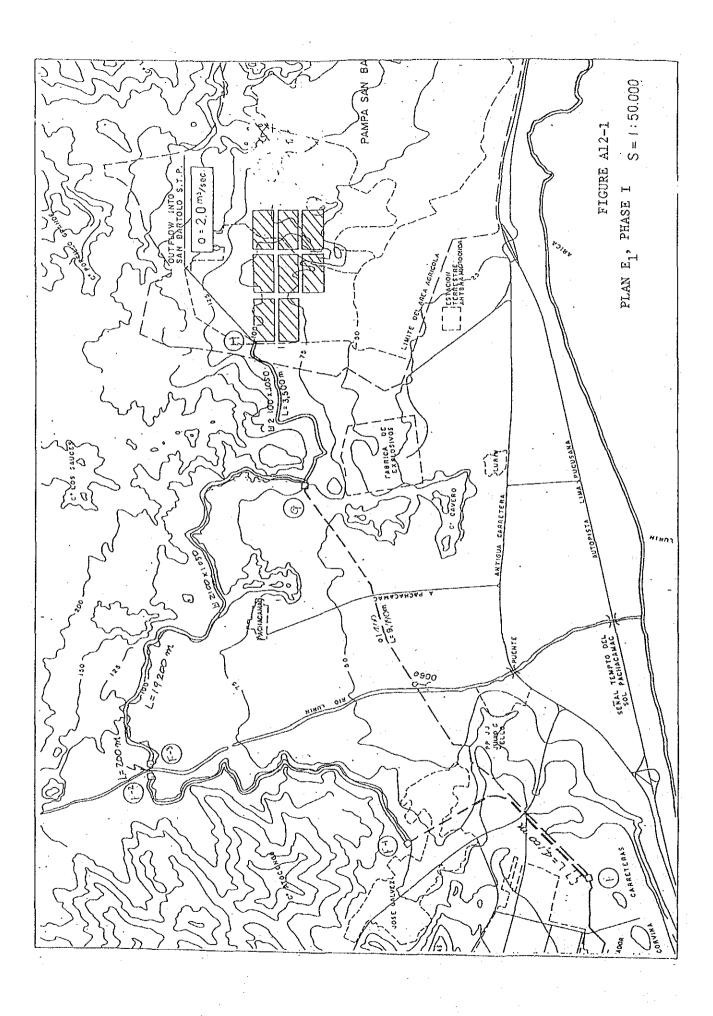
TABLE A6-4 Possible Treatment Capacity in Proposed Area (c), Parque Zonal No. 26, Villa El Salvador

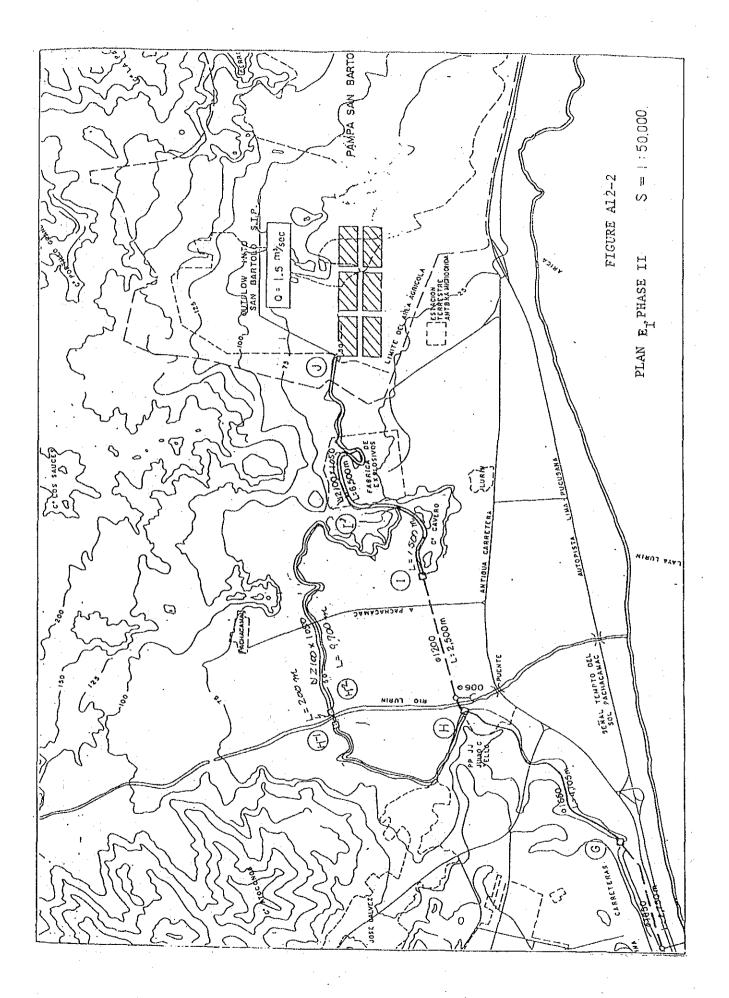
A11--11

APPENDIX 12

COMPARISON BETWEEN OPEN CHANNEL AND INVERTED SIPHON

APPENDIX 12 COMPARISON BETWEEN OPEN CHANNEL AND INVERTED SIPHON


The transmission line that will cross the Lurin river can be planned to pass through the following two routes:


- 1) A straight line with an inverted siphon structure.
- A circuitous line along the mountain foot following the Elesvatio 100 m contour with an open channel structure.

Since all of the alternative plans involve transmission lines traversing the Lurin river, a comparison of both routes was executed on the two alternative lines of plan E1 (refer to FIGURES A12-1 and A12-2).

The examination was conducted on the aspects of workability, influence on environment, operation and maintenance, and construction cost (refer to TABLE A12-1).

As a result of comparison, routes with inverted siphon structure were judged as superior.

NOHdIS AND INVERTED OPEN CHANNEL BETWEEN COMPARISON ---| TABLE A12

Evaluation 0 0 Construction Cost 10 13 (¥1,313,646,159-) \$ 18,318,556.53 (¥2,564,597,900-) (¥1,781,115,140-) (¥1,627,934,280-) \$ 9,383,186. 11,628,102-\$ 12,722,251-(% 001) (124%) Excluding TAX Including TAX ncluding TAX Excluding TAX •? 0 Garbage and rubbish is apt to be dumped in. Fence and other facilities for safely is necessary in residential area. **Operation & Maintenance** Facilities for environmen-tal preservation is not necessary. Maintenance work for equipment such as blow-off valves and air valves . Illegal diversion is expected. Security of planned water amount is uncertain, Watching over the channel is necessary. But use of vehicle is impossible. Blow-off work at regular intervals is necessary. Direct maintenance and repair of channel from outside is possible. Deposit of sand in the channel will occur. Dumping of garbage and rubbish is impossible. Maintenance work from outside is hard. Easy maintenance work. Regular maintenance. is necessary Disadvantage Disadvantage Advan tage Advantage 0 . Give an unpleasant feeling to inhabitants due to bad odor enmission and flowing of filth in raw sewage. Hazardous to inhabitants because of exposure to pathogenic bacteria. Influence on Environment . Planting and development of green zone along the channel is possible. . Blow-off of raw sewage to the Lurin River at regular intervals is necessary for mainten-ance. Utilization of channel site for other purposes is not possible. . Utilization of pipeline site for other purposes is possible. No bad odor. Disadvantage Disadvantage Advan tage Advan tage 0 Easy construction work because of its simple structure. Hard work due to sandy soil and base rock at mountain foot. Complicated alignment along the contour line. Hard construction work on slope. Moving of construction equipment in desert is hard. Complicated structure Good pipe material durable for inner pressure is required, Good workability due to use of pre-cast products. Much materials and labor are necessary due to long construction work. for river crossing. Short construction period Long construction period. Workability Disadvantage Disadvantage Advantage Advantage L = 23,500 m Æ = **9,**790 Length н С 0 | 4 \$ Ē Inverted Siphon (Inner Pressure Pipe) Open Channel × 1050 ¢ 1400 mm Condui t 2100 2100 I sssdq . Jan Er

A12-4

COMPARISON BETWEEN OPEN CHANNEL AND INVERTED SIPHON (CONT' D)

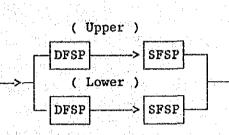
TABLE A12-1

Conduit	Length	Workability	Influence on Environment	t Operation & Maintenance	tenance	Construction Cost	Evaluation
						Including TAX	
Open Channel	I I H				•	\$ 5,345,187- (¥ 748,325,180-)	
RC	<i>2</i> = 9,700 m	Same as Phase I	Same as Phase I	Same as Phase I	0	- 621	
7100 × 1001						(¥ 687,505,980-)	
· · · · · · · · · · · · · · · · · · ·						(178 %)	
						Including TAX	
Inverted Siphon	& = 2,500 m _	č			· · · ·	(¥ 529,995,200-)	(
(Inner Fressure Pipe)	open channel	Same as ruase 1	C Same as ruase 1	O Same as ruase t		Excluding TAX	
¢ 1200 mm	(+ 1,500 m)					(¥ 22,752,478-) (¥ 285,346,920-)	
		-			,	(100%)	

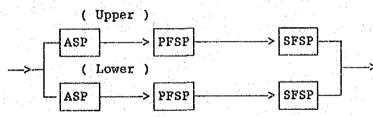
A12-5

APPENDIX 13

POSSIBLE TREATMENT CAPACITY IN SAN JUAN STP WITH RECONSTRUCTION

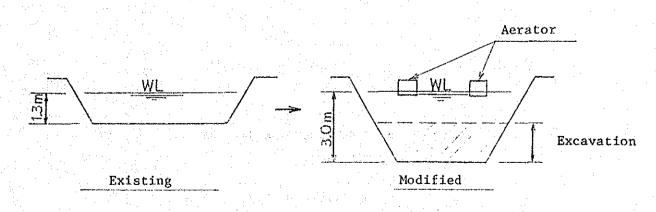

APPENDIX 13 POSSIBLE TREATMENT CAPACITY IN SAN JUAN STP WITH RECONSTRUCTION

- In case of adoption for Anaerobic Stabilization Pond -


A13.1 Basic Concept for Reconstruction

 Treatment method of PFSP-SFSP System of existing ponds shall be changed to ASP-PFSP-SFSP System in order to increase treatment capacity.

Existing Flow Diagram



Modified Flow Diagram

Remarks: ASP-Anaerobic Stabilization Pond PFSP-Primary Facultative Stabilization Pond SFSP-Secondary Facultative Stabilization Pond

2) Effective water depth in some Primary Ponds shall be modified by excavation from 1.3 m to 3.0 m.

A13.2 Upper Battery

1) Volume and water surface area of ponds after reconstruction

Existing Primary Ponds P1 and P2 are changed to ASP.

	Water Surface (ha)(Depth 1.3		SP	PFSP	SFSP	Total Volume and Water Surface Area
 P1	0.75		*			Total Volume of ASP
P2	0.51		*			(Depth 3.0 m)
P3	0.51			*		= 18,606 + 11,682
P4	0.81			*		= 30,288 m ³
P5	0,85				*	Total Area of PFSP
P6	0.68				*	(Depth 1.3 m)
S1	2.00			*		= 5.55 ha
S2	2.23			*	÷	Total Area of SFSP
\$3	0.99				*	(Depth 1.3 ha)
S4	0.92				*	= 3.44 ha
 Total	10.25	1.2	 26	5.55	3,44	، سبع بوی بری بین زمین می بود بین می بین است این این این می بین می بین می بین این این این این این این

2) Study for Possible Treatment Capacity

a. Design Condition

- Influent BOD = 250 mg/l

b. ASP

- BOD Volumetric Load : Lv = 0.1 to 0.15 kg-BOD/m3/day

(at average temp. in coldest month, 15°C)

- Possible Treatment Capacity : Q1

$$Q_1 = \frac{30,288 \times (0.1 \text{ to } 0.15)}{250 \times 10^{-3}} = 12,115 \text{ to } 18,173 \text{ m}^3/\text{day}$$

- BOD Removal Rate in ASP : Approx.50 %

- Effluent BOD : 250 to (1 - 0.5) = 125 mg/l

c. PFSP

- BOD Surface Load : Ls = 380 kg-BOD/ha/day

- ---

- Possible Treatment Capacity : Q2

- - -

$$Q_2 = \frac{380 \times 5.55}{125 \times 10^{-3}} = 16,872 \text{ m}^3/\text{day}$$

According to the value of Q1 and Q2, possible treatment capacity is $16,872 \text{ m}^3/\text{day}$.

d. SFSP

- Influent BOD :

 $L = 16,872m^3/day \ge 125 mg/l \ge (1 - 0.6) \ge 10^{-3}$

= 844 kg-BOD/day

- BOD Surface Load :

Ls = 844 / 3.44 = 245 kg-BOD/day -----ok

e. Possible Treatment Capacity in Upper Battery From the result of above calculation, possible treatment capacity in Upper Battery is 16,872 m³/day.

f. Check

- Detention Time :

ASP : 30,288 x 1/16,872 = 1.8 days PFSP : 55,500 x 1.3 x 1/16,872 = 4.3 days SFSP : 34,400 x 1.3 x 1/16,872 = 2.7 days

A13.3 Lower Battery

 Volume and Water Surface Area in Pond after reconstruction of the Existing Pond P8 be changed to ASP. P7 and P5 are excluded in this plan since these are used for Experimental Fishculture Project.

No. of Ponds	Water Surface Area (ha)(Depth 1.3 m)	ASP	PFSP	SFSP	Total Volume and Water Surface Area
P8	1.10	*			Volume of ASP
P9	0.88		*		(Depth 3.0 m)
P10	0.69		*		$= 27,590 \text{ m}^3$
P11	0.89			*	Surface Area of PFSP
S6	1.49		*		(Depth 1.3 m)
S7	1.32		*		= 4.98 ha
S8	1.80(divide)		*	*	Surface Area of SFSP
S9	0.49			*	(Depth 1.3 m)
S10	0.53			*	= 3.11 ha
Total	9,19	1.1	4.98	3.11	

2) Study for Possible Treatment Capacity

```
a. Design Condition
  - Influent BOD = 250 mg/l
b. ASP
  - BOD Volumetric Load : Ly = 0.1 to 0.15 kg-BOD/m<sup>3</sup>/day
                              (at average temp. in coldest month, 15°C)
  - Possible Treatment Capacity : Q1
                27,590 x (0.1 to 0.15)
                                         - = 11,036 to 16,554 m<sup>3</sup>/day
          Q1 = ----
                        250 \times 10^{-3}
  - BOD Removal Rate in ASP = Approx. 50%
  - Effluent BOD = 250 \times (1 - 0.5) = 125 \text{ mg}/1
c. PFSP
  - BOD Surface Load : Ls = 380 kg-BOD/ha/day
  - Possible Treatment Capacity : Q2
                 380 x 4.98
                               - = 15,139 \text{ m}^3/\text{day}
          Q_2 = --
                 125 x 10-3
    According to the value of Q1 and Q2, possible treatment capacity is
    15,139 \text{ m}^3/\text{day}.
    SFSP
d.
    - Inlet BOD
            L = 15,139 \text{ m}^3/\text{day} \times 125 \text{ mg}/1 \times (1 - 0.6) \times 10^{-3}
              = 757 \text{ kg-BOD/day}
    - BOD Surface Load :
           Ls = 757 \text{ kg}-BOD/day
                                          ---- ok
    Possible treatment Capacity:
е.
           From the result of above calculation, possible treatment capaci-
    ty in Lower Battery after reconstruction is 15,139 m<sup>3</sup>/day.
f. Check
   - Detention Time :
```

ASP : 27,590 x 1/15,139 = 1.8 days PFSP : 49,800 x 1.3 x 1/15,139 = 4.3 days SFSP : 31,100 x 1.3 x 1/15,139 = 2.7 days

A13.4 Total Possible Treatment Capacity

.

freatment Capacity	Present	After reconst.	B/A
Upper Battery	10,800 m ³ /day	16,872 m ³ /day	1.56
Lower Battery	10,800 m ³ /day	15,139 m ³ /day	1.40
Total	21,600 m ³ /day	32,011 m ³ /day	1.48
	(0.25 m ³ /s)	(0.37 m ³ /s)	

.

APPENDIX 14

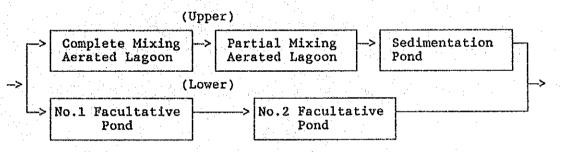
CAPACITY CALCULATION OF STP

 $\langle \cdot \rangle$

 (i_{i})

APPENDIX 14 CAPACITY CALCULATION OF STP

A14.1 Possible Treatment Capacity in Proposed Site (a) San Juan WSP


(1.) Basic Concept for Reconstruction

Out of the two-series treatment consisting of Upper and Lower Battery facultative ponds, treatment method of Upper Battery will be changed to Aerated Lagoon system in order to increase treatment capacity.

Existing Flow Diagram

Modified Flow Diagram

Effective water depth in Upper Battery Pond will be modified by excavation from 1.3 m to 3.0 m.

(2) Treatment Capacity after Reconstruction

Reconstruction plan and effective pond volume are shown in FIGURE A14-1 and TABLE A14-1.

Capacity calculation for Aerated Lagoon System in modified Upper Battery based on standard detention time and effective volume is shown in TABLE A14-2. From the result of calculation, possible treatment capacity is 0.63 m³/s. (3) Total treatment capacity in San Juan Treatment Plant after reconstruction

	Treatment Method	Possible Treatment Capacity	Total Treatment Capacity
Upper Battery	Aerated Lagoon	0.63 m ³ /s	0.75 m ³ /s
Lower Battery	Facultative Pond	21,600 m ³ /day x 1/2 = 10,800 m ³ /day = approx. $0.12m^3/s$	(64,800 m ³ /day)

(4)

Capacity Calculation for Aerated Lagoon on Upper Battery

a. Design Criteria

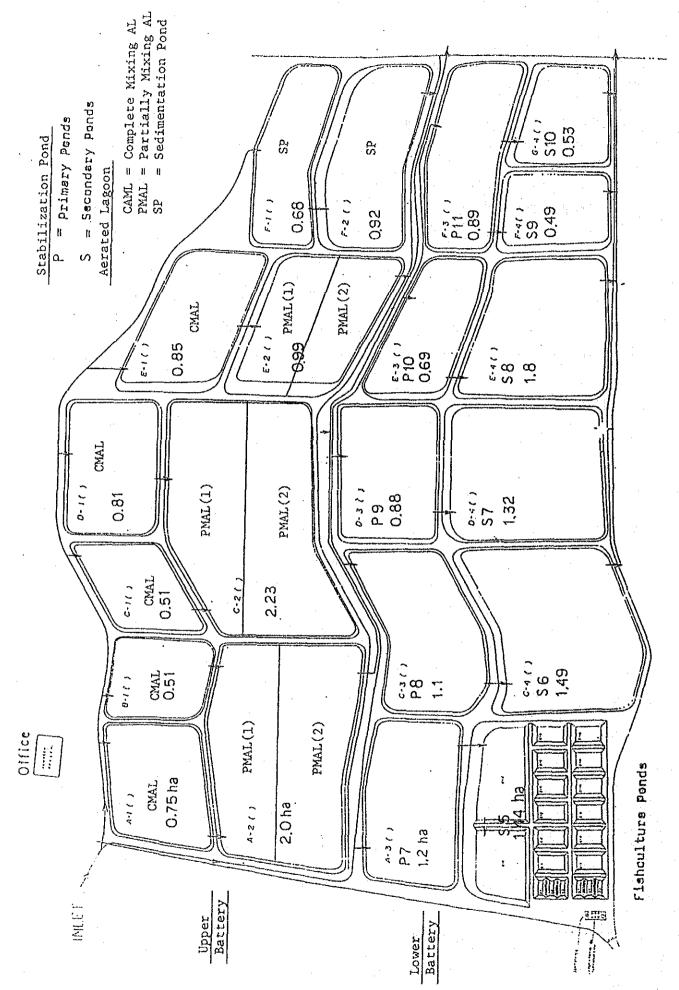
- Design Flowrate	Qd av 🚥	$0.63 \text{ m}^3/\text{s} = \text{approx}.$	54,400 m3/day
- Influent BOD5	Li =	250 mg/1	· · ·
- Influent SS	Si =	250 mg/1	

b. Complete Mixing Aerated Lagoon

-	
- Detention Time	$t*c = 1.5 \sim 2.0 \text{ days}$
- Volume	$Vc = 54,400 \times (1.5 \sim 2.0)$
	= 81,600 ~ 108,800 m ³
- Depth	Dc ≈ 3.0 m
- Water Surface Area	Ac = Vc/Dc
(mid-depth)	≈ (81,600 ~ 108,800)/3.0
	$= 27,200 \sim 36,600 \text{ m}^2$
- Dimension	P1, P2, P3, P4, P5, - Total (Refer to P)
	27,473 m ² x 3.0 m ^D x 82,419 m ³
	check
	t* c = 82,419/54,400 = 1.52 days ok
- Oxygen Requirement	$0r = 6.24 \times 10^{-5} \times 54,400 \times 250$
	= 849 kg-02/hr
- Power Requirement	
a. as for Or	$P_1 = 849 \times 1/2.0 = 425 \text{ kW}$
b. as for C.M.P.	$P_2 = 82,419 \times 6 \times 1/1,000 = 459 \text{ kW}$
	$P_1 < P_2$
- Aerator-I	4 sets per 1 basin
	Aerator-I
	$Pa = 495 \times 1.1 = 545 \text{ kW}$
· .	therefore:
	37 kW x 4 sets 7
	30 kw x 8 sets ⊣> (564kW)
	22 kW x 8 sets ¹

A14-2

c. Partial Mixing Aerated Lagoon


· · · · · · · · · · · · · · · · · · ·	u
- Detention Time	t*p = 1.5 ~ 3.0 days
- Volume	$Vp = 54,400 \times (1.5 \sim 3.0)$
	81,600 ~ 163,200 m ³
- Depth	Dp = 3.0 m
- Water Surface Area	$Ap = (81,600 \sim 163,200)/3.0$
(mid-depth)	$= 27,200 \sim 54,400 \text{ m}^2$
- Dimension	S1, S2, S3 - Total
	45,404 m ² x 3.0 m ^D x 136,212 m ³
	check
	t*p = 136,212/54,400 = 2.5 daysok
- Power Requirement	Pr >= 1 W/m3
for Mixing	P >= 136,212 x 1.0 = 136 kW
- Aerator-II	4 sets per 1 basin
	$Pa = 136 \times 1.1$
	= 150 kW
	therefore:
	7.5 kW x 4 1
	15 kw x 4 ⊣> (164kW)
	18.5 kW x 4 1

d. Chlorinator

- Chlorine Feeding Rate 3 ppm
- Total Inflow of Upper
 - and Lower Battery
- Capacity

 $65,200 \text{ m}^3/\text{day}$ $q = 65,200 \text{ m}^3/\text{day} \times 3 \text{ ppm } \times 10^{-3}$ = 195.6 kg-cl/day = 8.2 kg-cl/hrtherefore, chlorinator will be:

10 kg-cl/hr x 2 sets (1 set-standby)

A14-4

FIGURE A14-1 MODIFIED PLAN OF SAN JUAN S.T.P.

EFFECTIVE VOLUME OF MODIFIED SAN JUAN STP (UPPER BATTERY, DEPTH 3m) TABLE A14-1

Pond No.	Existing Water Surface Area (m ³)	Equivalent Square Length (m)	<pre>① Middle Depth Equivalent Length (m)</pre>	(m)	①×② Effective Volume (m)
с. Т	7,500	86.6	3.77	3.0	18, 606
°,	5,100	4. 1	62.4	3.0	11,682
Č,	5,100	71.4	62.4	3.0	11,682
đ *	8,100	90.0	81.0	3.0	19,683
5 5	8,500	92.2	83.2	3.0	20,766
ъ ¢	6,800	82.5	73.5	3.0	16,206
s.	20,000	141.4	132.4	3.0	52,590
Sz	22,300	149.3	140.3	3.0	59,052
s,	6, 900	99.5	90.5	3.0	24,570
S,	9,200	95.9	86.9	3.0	22, 656
					(257,493)

•••

A14-5

4

Process	Ponđ No.	Total Pond Volume	Standard Detention Time	Possible Treatment Capacity
Completely Mixing Aerated Lagoon	P1 P2		1.5	82,419× 1/1.5 = 54,946m³/day
Dugoon	P 3	82.419	1.5	= 0.636 m²∕day
	P 4 P 5			
Partially Mixing Aerated Lagoon	S 1 S 2	136.212	3 - Cell 1.5	136,212× 1/2.5 = 54,485m³/day = 0.631m³/s
	S 3		3.0 ↓ 2.5	- 0.031 m / S
Sedimentation Pond	P 6 P 4	38,862	1.0	38,862× 1/1.0 = 38,862㎡∕day
				= 0.45m³∕s

POSSIBLE TREATMENT CAPACITY FOR ABRATED LAGOON IN UPPER BATTERY

A14--6

A14.2 Capacity Calculation for Aerated Lagoon in Proposed Site (b) and (c)

(1) Design Criteria

Design Flow Rate: 0.5 m³/s, 0.83 m³/s, 1.0 m³/s Influent BOD5 : 250 mg/l Influent SS : 250 mg/l

(2) Estimate Treated Water Quality

	BOD	\$S
Removal Rate	882	76%
Water Quality	30 mg/1	60 mg/l

(3) Flow Diagram

Flow diagram is shown in FIGURE A14-2.

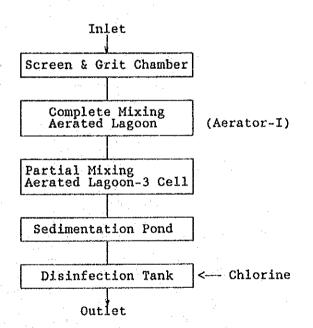


FIGURE A14-2 Flow Diagram for Aerated Lagoon (Dual Power) System (4) Capacity Calculation

Capacity calculation for each proposed site are shown in TABLE A14-3.

TABLE Al4-3 Capacity Calculation for Aerated Lagoon at Each Design Flow

	<u></u>		<u>ann an an Stair (an Stair Sta</u>	۵۰٬۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰
. 0 m²∕s	Qd av = 1.0m ² /s = 86,400m ² /day Li = 250mg/l Si = 250mg/l	и њ ¹ . С	<pre>bc = 3.0m Ac = (129.600~172.800)/3.0 = 43.200~57.600m² 100m x 48m x 3.0m^p x 14.400m³ x 12basins check</pre>	Total Volume Vc = 14.400 × 12 = 172.800m ² t *c = 172.800/86.400 = 2.0 daysok 0T = $6.24 \times 10^{-5} \times 86.400 \times 250$ = 1.348 kg-0z/hr P1 = 1.348 x 1/2.0 = 674kW P2 = 172.800 × 6 × 1/1.000 = 1.037kW P1 < P2 d sets per 1 basin Aerator - I Pa = 1.037kH × 1.1 = 1.141kW P3 = 1.037kW × 24 sets P4 = 1.141kW
0.83m²/s	dd av = 0.83m ³ /s ⇒ 71,700m ² /day Li = 250mg/l Si = 250mg/l	$t^{*}c = 1.5 \sim 2.0 days$ Vc = 71,700 x (1.5 ~ 2.0) = 107.550 ~ 143,400 m ³	uc = 0.0m Ac = (107.550~143.400)/3.0 = 35.850~47.800m ² 105m x 45m x 3.0m ⁶ x 14,490m ³ x 10basins check	Total Volume VC = 14.450 x 10 = 144.900m ² t * c = 144.900/71.700 = 2.0 daysok Or = $6.24 \times 10^{-5} \times 71.700 \times 250$ = 1.119 kg-0z/hr P ₁ = 1.119 x 1/2 = $560kW$ P ₂ = 144.900 x 5 x 1/1.000 = 870 kW P ₂ * 144.900 x 5 x 1/1.000 = 870 kW P ₁ < P ₂ d sets per 1 basin Aerator-II Pa = $870kW \times 1.1 = 957kW$ $\cdot 30kW \times 20 sets$ 18.5kW x 20 sets 18.5kW x 20 sets
0. 5 m² / s	dd av = 0.5m ² /s m 13,200m ⁴ /day Li = 250mg/l Si = 250mg/l	1 * c = 1.5~2.0 days Vc = 43,200 × (1.5~2.0) = 64,800~86,400m ²	тр Хлки С.С.С.	Total Volume Vc = 14,400 x 6 a 86,400m ³ t *c = 86,400/43,200 = 2.0 daysok 0r = $6.24 \times 10^{-5} \times 43,200 \times 250$ = $674 \times 1/2.0 = 337kH$ P; = $674 \times 1/2.0 = 337kH$ P; = $86,400 \times 6 \times 1/1,000 = 519kH$ P: < P2 d sets per I basin Aerator-I Pa = $519kH \times 1.1 = 571kW$ $\therefore 30kH \times 12 sets$ 18.5kW x12 sets (532kH)
Design Flow Item	1. Design Criteria - Design Flowrate - Influent 80Ds - Influent SS	 Complete Mixing Acated Lagoon Detention Time Volume 	- Mater Surface Area (mid-depth) - Dimension	- Oxygen Requirement - Power Requirement a. as for Or b. an for C.M.P. - Aerator - I

A14-8

TABLE A14-3 Capacity Calculation for Aerated Lagoon on Each Design Flow (cont'd)

1.0 m³/s	t "p = 1.5~3.0 days, 3-cells Vp = 86.400 x (1.5~3.0) = 129.600~259.200m ³ Dp = 3.0m Ap = (129.600~259.200)/3 = 43.200~86.400m ² x [Bbasins (3 cells x 6 Series) check Total Volume Vp = 9,900 x 18 = 178.200m ⁵ t "p = 178.200 x 1.0 = 178kW P = 178.200 x 1.0 = 178kW P = 178 x 1.1 = 196 kW $\therefore 5.5kW x 36 sets (196kW)$	<pre>q = 86.400 m//day x 3 ppm x 10 -3 = 259.2 kg-cl/day = 10.8 kg-cl/hr : chlorinator by) I5 kg-cl/hr x 2 sets (1 set-standby)</pre>
0.83m²⁄s	t "p = $1.5 \sim 3.0$ days, 3-cells Vp = $71.700 \times (1.5 \sim 3.0)$ = $107,550 \sim 215,100$ Dp = $3.0m$ Ap = $(107.550 \sim 215,100)/3$ = $3.850 \sim 71,700m^2$ 71m x 46m x $3.0m^2$ x $9,798$ x 15 basins (3 cells x 5 Series) check Total Volume Vp = $9,798 \times 15 = 146,970m^3$ t "p = $146,970 \times 1.0 = 147kw$ P = $146,970 \times 1.0 = 147kw$ 2 sets per 1 cell Pa = 147×1.1 = $162 kW$: $5.5kW \times 30$ sets (165kW)	<pre>q = 71.700m/day x 3 ppm x 10 -3 = 215.1 kg-c1/day = 9.0 kg-c1/hr chlorinator 10 kg-c1/hr x 2 sets (1 set-standby)</pre>
0. 5 m³⁄s	<pre>t *p = 1.5~3.0 days, 3-cells Vp = 43.200 x (1.5~3.0) = 64.800~129,600m³ Dp = 3.0m Dp = 3.0m dp = (64.800~129,600m³ x 9basins = 21,600~43,200m³ x 9basins (3 cells x 3 series) check Total Volume V r = 9,900 x 9 = 89,100m³ t *p = 89,100/43,200 = 2.1 daysok Pr 2: 14/m³ Pr 2: 14/m³</pre>	 Chlorine Feeding Rate : 3 ppm Capacity Capacity Capacity a 43,200 m/day x 3 ppm x 10 ^{-s} a 43,200 m/day x 3 ppm x 10 ^{-s} a 129.6 kg-cl/day a 129.6 kg-cl/hr chlorinator 10 kg-cl/hr x 2 sets (1 set-standby)
Design Flow Item	 3. Partial Mixing Aerated Lagoon Aerated Lagoon Depth Volume <	4. Chlorinator

A14-9

A.14.3

Capacity Calculation for Stabilization Pond (Facultative Pond) in Proposed Site (e) and (f).

(1) Design Criteria

Design flowrate : Q = 0.5 to $3.5 \text{ m}^3/\text{s}$ Influent BOD5 : 250 mg/lInfluent SS : 250 mg/lInfluent BOD5 Load : Li1 = $Q \ge 250 \text{ mg/l} \ge 10^{-3} \text{ (kg-BOD/day)}$

(2) Estimate Treatment Water Quality

BOD5 removal rate : 80% Effluent BOD5 : 49 mg/l

(3) Flow Chart

(Facultative Ponds System)

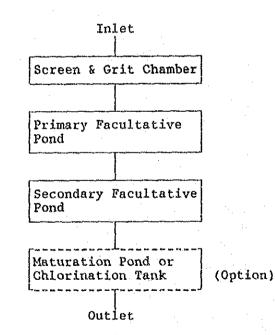


FIGURE A14-3 Flow Diagram for Stabilization Pond System

Capacity Calculation

(1)

Primary Fucultative PondBOD5 water surface load:Li1 = 382 (kg-BOD/ha/day)Water surface area: Ap = Q x 250 x $10^{-3} x1/382$ (ha)(mid-depth)Water depth: Dp = 1.5 mVolume: Vp = Ap x Dp (m³)Detention time: t*p = Vp/Q (days)Effluent BOD5: Le1 = 250 x (1 - 0.7) = 75 mg/1

(ii)

Secondary Fucultative Pond

BOD5 water surface	load:	Li2 = 200 (kg-BOD/ha.day)
Water surface area	: 1	
(mid-depth)	:	$As = Q \times 75 \times 10^{-3} \times 1/200$ (ha)
Water Depth	:	Dp = 1.5 m
Volume	;	$Vp = As \times Dp (m^3)$
Detention Time	. :	$t^*S = Vp/Q$ (days)
Effluent BOD5	:	$Le_2 = 250 \times (1 - 0.35)$
		= 49mg/1

Results of capacity calculation are shown in TABLE A14-4.

CAPACITY CALCULATION FOR FACULTATIVE POND

TABLE A14-4

lesign Flow	Flow	n (m/S)	0.5	1.5	1.7	2.0	2.2	5.5	2.67	3.0	3.5
θVİ	Lil	(kg-BOD/day)	10,800	32,400	36, 720	43, 200	47,520	54,000	57, 672	64, 800	75,600
tst [i	Аp	(ha)	28.3	84.8	36.1	113.1	124.4	141.4	151.0	169.6	197.9
าวตร	Dp	(m)	1.5	<u>с</u>	1.5	1.5	1.5	1.5	5	LO 	10)
id imary	Vp	(m)	424,500	1, 272, 000	1,442,000	1,697,000	1,866,000	2,121,000	2,265,000	2,544,000	2, 969, 000
Poi Poi	يتا لا دىد	(days)	8.0	9.8	6 .	8. 8.	9.8	9.8	80 50	80 55	9.8
97131	As	(Fri)	16.2	48.6	55.1	64.8	71.3	81.0	86.5	31.2	113.4
acul te	D s	E)	1.2	1.5	1.5	1.5	1.5	2	1.5	1.5	ы Ч
ary fi	V s	(w)	243,000	729,000	826.500	972.000	1,070,000	1,215,000	1,238,000	1,458,000	1,701,000
Pond Secondi	ہ 4 دب	(days)	5.6	5.6	5.6	5.6	5.6	5.6	5.6	5.6	ີ ເດັ່
Total M Area:	id-Depth Ap +A	Total Mid-Depth Water Surface Area: Ap + A s (ha)	44.5	133.4	151.2	177.9	195.7	222.4	237.5	326.8	311.3
Total D	Total Detention Time: t*p + t*s	n Time: t*s (days)	15.4	15.4	15.4	15.4	15.4	15.4	15.4	15.4	121
•••••	•.										

A14-12

APPENDIX 15

DAILY FLOW VARIATION AND INTAKE AMOUNT

				· · ·
TABLEANS -	PLANNED	INTAKE	AMOUN	r
		· · · · · · · · · · · · · · · · · · ·		

IEASURING TIME	May 31-	June 1		178 170 646 1 04 546 646 646			*** *** *** *** *** *** ***
hh:mm	CIRCUN.	RATE	CIRCUN.	RATE	2 DATA	FLOW	
n ann ann ann ann ann ann ann ann ann	M3/S	n his du die hie hie hie nie du die	10/0	100 C		M2/C	M2/C
10:00	1.358	1.197	1.562	1.350	$1.274 \\ 1.281 \\ 1.265$	1.294	1.170
		4 4 4 4 4	1.578	1.364	1,281	1.301	1.170
10 . 30	1.454	1.282	1.443	1.247	1.265	1.285	1.170
10 • 45	1 345	1.186	1.462	1.263	1.225	1.245	1.170
11 . 00	1 382	1 218	1 457	1.259	1,239	1.259	1.170
11 : 00	1 2 2 1	1 364	1 440	1 245	1 205	1.224	1,170
11 : 13	1 260	1 110	1 200	1 102	1 156	1 1 7 1	1.170
11 : 30	1.209	1 110	1 370	1 106	1.281 1.265 1.225 1.239 1.205 1.156 1.153	1 1 7 7 1	1.170
11.1.45	1.209	1.110	1.012	T*T00	L I L J J		
12:00	1.338	1.1/9	1.380	1.192	1.186	1.205	
12:15	1.294	1.140	1.365	1.180	1.160 1.151 1.143 1.127	1.179	
12:30	1.276	1.125	1.360	1.175	1.151	1.169	1.169
12:45	1.276	1.125	1.343	1.161	1.143	1.161	1.161
13:00	1.251	1.103	1.331	1.150	1.127	1.145	1.145
13 : 15	1.251	1.103	1.321	1.141	1.123	1.141	1.141
13 : 30	1.246	1.099	1.303	1.126	1.113	1.131	1.131
13 . 45	1 271	1 120	1.289	1.114	1.118	1.135	1.135
14 • 00	1 219	1 074	1.276	1,103	1.127 1.123 1.113 1.118 1.089 1.099 1.114 1.091 1.084	1.107	1.107
14 . 15	1 710	1 074	1 200	1 122	1.099	1,116	1.116
14 : 10	1.413	1 077	1 221	1 150	1 114	1.132	1.132
14:30	1.222	1.077	1,001	1.100	1 001	1 300	1.109
14:45	1.227	1.081	1.274	1.101	1.091	1 109	1 101
	1.227	1.081	1.256	1.086	1.084	1.101	1.101 1.109
15 : 15	1.246	1.099	1.254	1.084	1.092	1.109	T.10a
15 : 30	1.246	1.099	1.234 1.202	1.066	1.091 1.084 1.092 1.083 1.080 1.075 1.044	1.100	1.100
15:45	1.271	1.120	1.202	1.038	1.080	1.097	1.097
16 : 00	1.271	1.120	1.189	1.028	1.075	1.092	1.092
	1.214	1.070	1.177	1.017	1.044	1.061	1.061
16 : 30	1.214	1.070	1.169	1.010	1.041	1.057	
16 45	1 209	1.066	1.179	1.019	$1.041 \\ 1.043 \\ 1.040 \\ 1.031 \\ 1.038 \\ 1.044 \\ 1.043$	1.059	1.059
17 • 00	1 200	1 066	1.172	1.012	1.040	1.056	
17:00	1 1 7 /	1 035	1 1.87	1.025	1.031	1.047	
17 3 10	1 170	1 020	1 100	1 036	1 038	1.055	
17 1 30	1.000	1 050	1 1 0 0	1 020	1 044	1.061	
1/:45	1.202	1.059	1.107	1 035	1 012	1.059	
20 2 00	1.4444	1.059	1.187 1.182	1.025	1.043 1.066	1.083	1.083
18:15	1.259	1.110	1.182	1.021	1.000	1.005	1.055
18:30	1.259		1.119	0.967		1.055	1.000
18:45	1.174	1.035	1.132	0.978	1.007	1.023	1.023
19:00	1.174	1.035	1.149	0.993	1.014	1.031	
19:15	1.129	0.995	1.147	0.991	0.994	1.009	1.009
19:30	1.129		1.137	0.982	0.989	1.005	1.005
19:45	1.134	1.000	1.092	0.943	0.972	0.988	0.988
20:00	1.147	1.011	1.104	0.954	0.983	0.999	0.999
20 : 15	1.149	1.013		0.950	0.982	0.998	0.998
20 : 15	1.149	the second se	1.109	0.959	0.986	1.002	1.002
		1.000	1.104	0.954	0.977	0.993	0.993
20:45	1.134				0.968	0.983	0.983
21:00	1.134	1.000	1.082	0.935			0.989
21 : 15	1.139	1.004	1.089	0.941	0.973	0.989	
21:30	1.142	1.006	1.092	0.943	0.975	0.991	0.991

.

TABLE A/5-1 PLANNED INTAKE AMOUNT

May 31-	June 1	October	19-20	AVERAGE	AMOUNT F	OR 1 M3/S
CIRCUN.	RATE	CIRCUN.		2 DATA	FLOW	INTAKE
$\begin{array}{c} M3/S\\ 1.137\\ 1.137\\ 1.112\\ 1.114\\ 1.087\\ 1.089\\ 0.923\\ 0.911\\ 1.034\\ 1.027\\ 1.034\\ 1.027\\ 1.030\\ 0.865\\ 0.868\\ 0.906\\ 0.909\\ 0.911\\ 0.911\\ 0.909\\ 0.911\\ 0.911\\ 0.911\\ 0.911\\ 0.911\\ 0.911\\ 0.911\\ 0.911\\ 0.911\\ 0.911\\ 0.911\\ 0.911\\ 0.911\\ 0.911\\ 0.921\\ 0.921\\ 0.921\\ 0.921\\ 0.941\\ 1.005\\ 1.097\\ 1.092\\ 1.236\\ 1.239\\ 1.271\\ 1.345\\ 1.353\end{array}$	$\begin{array}{c} 1.002\\ 1.002\\ 0.980\\ 0.982\\ 0.958\\ 0.960\\ 0.814\\ 0.803\\ 0.912\\ 0.905\\ 0.907\\ 0.762\\ 0.764\\ 0.799\\ 0.801\\ 0.803\\ 0.$	$\begin{array}{c} M3/S\\ 1.077\\ 1.072\\ 1.062\\ 1.054\\ 1.015\\ 1.027\\ 1.012\\ 0.965\\ 0.938\\ 0.946\\ 0.919\\ 0.921\\ 0.921\\ 0.916\\ 0.950\\ 0.938\\ 0.955\\ 0.978\\ 0.985\\ 0.987\\ 1.000\\ 0.995\\ 0.987\\ 1.000\\ 0.995\\ 0.987\\ 1.000\\ 0.995\\ 0.987\\ 1.000\\ 0.995\\ 0.844\\ 0.844\\ 0.844\\ 0.844\\ 0.844\\ 0.844\\ 0.844\\ 0.844\\ 0.844\\ 0.844\\ 0.844\\ 0.844\\ 0.844\\ 0.844\\ 0.844\\ 0.844\\ 0.845\\ 0.877\\ 0.872\\ 0.904\\ 0.911\\ 0.990\\ 1.005\\ 1.097\\ 1.132\\ 1.194\\ 1.259\\ 1.316\\ 1.353\\ 1.411\\ 1.474 \end{array}$	0.930 0.926 0.918 0.911 0.877 0.875 0.875 0.834 0.817 0.794 0.792 0.821 0.825 0.845 0.851 0.853 0.864 0.862 0.773 0.727 0.727 0.731 0.727 0.731 0.727 0.756 0.758 0.758 0.758 0.758 0.758 0.758 0.754 0.758 0.948 0.978 0.754 0.754 0.754 0.754 0.758 0.948 0.978 0.754 0.754 0.754 0.754 0.758 0.948 0.978 1.032 1.038 1.137 1.169 1.220 1.274	2 DATA 0.967 0.964 0.949 0.947 0.918 0.924 0.845 0.819 0.862 0.865 0.850 0.852 0.777 0.793 0.805 0.814 0.824 0.828 0.828 0.833 0.815 0.790 0.770 0.770 0.770 0.770 0.775 0.768 0.733 0.755 0.769 0.776 0.755 0.769 0.770 0.768 0.755 0.769 0.775 0.769 0.770 0.768 0.755 0.769 0.775 0.769 0.770 0.769 0.770 0.768 0.755 0.769 0.775 0.769 0.770 0.769 0.770 0.768 0.755 0.769 0.770 0.769 0.770 0.769 0.770 0.769 0.770 0.769 0.770 0.769 0.770 0.769 0.798 0.801 0.843 0.843 0.849 0.917 0.998 1.089 1.115 1.145 1.203 1.233	$\begin{array}{c} M3/S\\ 0.982\\ 0.980\\ 0.962\\ 0.962\\ 0.932\\ 0.939\\ 0.858\\ 0.832\\ 0.875\\ 0.879\\ 0.863\\ 0.866\\ 0.790\\ 0.866\\ 0.841\\ 0.846\\ 0.827\\ 0.838\\ 0.841\\ 0.846\\ 0.846\\ 0.828\\ 0.803\\ 0.782\\ 0.782\\ 0.782\\ 0.782\\ 0.782\\ 0.781\\ 0.745\\ 0.748\\ 0.745\\ 0.748\\ 0.745\\ 0.748\\ 0.767\\ 0.781\\ 0.745\\ 0.748\\ 0.767\\ 0.781\\ 0.783\\ 0.781\\ 0.783\\ 0.781\\ 0.811\\ 0.814\\ 0.856\\ 0.863\\ 0.932\\ 0.988\\ 1.014\\ 1.107\\ 1.133\\ 1.164\\ 1.222\\ 1.253\\ \end{array}$	M3/S 0.982 0.980 0.964 0.962 0.932 0.939 0.858 0.832 0.875 0.879 0.863 0.866 0.790 0.866 0.790 0.866 0.827 0.838 0.841 0.841 0.846 0.828 0.828 0.803 0.782 0.782 0.782 0.781 0.745 0.781 0.745 0.781 0.745 0.781 0.781 0.783 0.781 0.782 0.988 1.014 1.170 1.170
1.454	1.282	1.581	1.366	1.325 1.296	1.346 1.316	1.170 1.170 1.170
	May 31- CIRCUN. M3/S 1.137 1.137 1.112 1.114 1.087 1.089 0.923 0.911 1.034 1.039 0.911 0.911 0.911 0.916 0.921 0.914 0.916 0.914 0.839 0.887 0.887 0.887 0.887 0.887 0.923 0.925	May 31-June 1 CIRCUN. RATE M3/S 1.137 1.002 1.137 1.002 1.112 0.980 1.114 0.982 1.087 0.958 1.089 0.960 0.923 0.814 0.911 0.803 1.034 0.912 1.027 0.905 1.030 0.907 0.865 0.762 0.868 0.764 0.906 0.799 0.909 0.801 0.911 0.803 0.911 0.803 0.914 0.805 0.839 0.739 0.839 0.739 0.839 0.739 0.887 0.782 0.887 0.782 0.885 1.097 0.967 1.092 0.962 1.236 1.090 1.239 1.092 1.271 1.120 1.345 1.186 1.353 1.192 1.387 1.222 1.454 1.282	May 31-June 1 October CIRCUN. RATE CIRCUN. M3/S 1.137 1.002 1.077 1.137 1.002 1.072 1.112 0.980 1.062 1.114 0.982 1.054 1.087 0.958 1.015 1.089 0.960 1.027 0.911 0.803 0.965 1.034 0.912 0.938 1.034 0.912 0.938 1.034 0.912 0.946 1.027 0.905 0.919 1.030 0.907 0.921 0.865 0.762 0.916 0.868 0.764 0.955 0.911 0.803 0.985 0.909 0.801 0.987 0.909 0.801 0.987 0.909 0.801 0.987 0.909 0.801 0.987 0.909 0.801 0.987 0.911 0.803 0.997	May 31-June 1 October 19-20 CIRCUN. RATE CIRCUN. RATE M3/S M3/S 1.137 1.002 1.077 0.930 1.137 1.002 1.072 0.926 1.112 0.980 1.062 0.918 1.087 0.958 1.015 0.877 1.089 0.960 1.027 0.887 0.923 0.814 1.012 0.875 0.911 0.803 0.965 0.834 1.034 0.912 0.938 0.811 1.030 0.907 0.921 0.796 0.865 0.762 0.916 0.792 0.868 0.764 0.955 0.825 0.911 0.803 0.978 0.845 0.909 0.801 0.987 0.862 0.911 0.803 0.997 0.862 0.911 0.803 0.997 0.862 0.911 0.803 0.997 0.862 0.911 <td>May 31-June 1 October 19-20 AVERAGE RATE OF CIRCUN. RATE CIRCUN. RATE 2 DATA M3/S 1.137 1.002 1.077 0.930 0.967 1.137 1.002 1.072 0.926 0.964 1.112 0.980 1.062 0.918 0.949 1.114 0.982 1.054 0.911 0.947 1.087 0.958 1.015 0.877 0.918 1.089 0.960 1.027 0.887 0.924 0.923 0.814 1.012 0.875 0.845 0.911 0.803 0.965 0.834 0.819 1.034 0.912 0.938 0.811 0.862 1.030 0.907 0.921 0.796 0.852 0.865 0.764 0.950 0.821 0.777 0.868 0.764 0.950 0.821 0.793 0.909 0.801 0.987 0.852 0.814 0.911<td>ArryDiscreteCRATECIRCUN.RATECIRCUN.RATECIACUPAC$CTRCUN.$RATECIRCUN.RATE2DATAFLOW$M3/S$</td></td>	May 31-June 1 October 19-20 AVERAGE RATE OF CIRCUN. RATE CIRCUN. RATE 2 DATA M3/S 1.137 1.002 1.077 0.930 0.967 1.137 1.002 1.072 0.926 0.964 1.112 0.980 1.062 0.918 0.949 1.114 0.982 1.054 0.911 0.947 1.087 0.958 1.015 0.877 0.918 1.089 0.960 1.027 0.887 0.924 0.923 0.814 1.012 0.875 0.845 0.911 0.803 0.965 0.834 0.819 1.034 0.912 0.938 0.811 0.862 1.030 0.907 0.921 0.796 0.852 0.865 0.764 0.950 0.821 0.777 0.868 0.764 0.950 0.821 0.793 0.909 0.801 0.987 0.852 0.814 0.911 <td>ArryDiscreteCRATECIRCUN.RATECIRCUN.RATECIACUPAC$CTRCUN.$RATECIRCUN.RATE2DATAFLOW$M3/S$</td>	ArryDiscreteCRATECIRCUN.RATECIRCUN.RATECIACUPAC $CTRCUN.$ RATECIRCUN.RATE2DATAFLOW $M3/S$

TABLE AS- | PLANNED INTAKE AMOUNT

MEASURING TIME hh : mm	May 31- CIRCUN.	June 1 RATE	October CIRCUN.	19-20 RATE	AVERAGE RATE OF 2 DATA	AMOUNT F	OR 1 M3/S INTAKE
9:30 9:45 10:00	M3/S 1.384 1.392 1.358	1.220 1.227 1.197	M3/S 1.608 1.612 1.562	1.389 1.393 1.350	1.305 1.310 1.274	M3/S 1.326 1.331 1.294	M3/S 1.170 1.170 1.170
MAXIMUM Qm AVERAGE Qa MINIMUM Qm	v 1.134	1.282 1 0.739	1.612 1.157 0.841	1.393 1 0.727	1.325 1.000 0.733	1.346 1.016 0.745	1.170 1.000 0.745

Location of Measuring Point, and Measuring Date and Time

Circun.: Colector Circunvalacion, Diameter 1.31 meters Av. Julio Calero 140, Surguillo 1st: from 10:30, May 31 to 10:30, June 1, 1989 2nd: from 8:45, October 19 to 8:30, October 20, 1989

A15-3

TABLE	(Intal	W RATE VAR ke Point No	.3 : Surd	:0)	- - -
atal may boy the same off two types whit this the	6/06-07	10/24-25		AMOUNT F	OR 2 M3/
TIME	Measured		FLOW	FLOW	
hh : mm	Data	Data	RATE	(M3/S)	
10:00	1.152	1.205	1.179	2.815	2.061
10:15	1.182	1.201	1.191	2.845	2.061
10:30	1,212	$1.201 \\ 1.205$	1.206 1.203	2.881	2.061 2.061
10 : 45 11 : 00	$1.201 \\ 1.122$	1.205	1.163		
11 : 15	1.122	1.159	1.140		2.061
11 : 30	1.160	1.140	1.150	2.746	2.061
11:45	1.160		1.171	2.796	2.061
12:00	1.162	1.211	1.186		2.061
12:15	1.175	1.201		2.837	
12:30	1.150	1.182		2.785	
12:45	1.184	1.180	1.182		2.061
13:00	1.147	1.153	1.150		2.061 2.061
13 : 15 13 : 30	1.186	$\begin{array}{r} 1.161 \\ 1.180 \end{array}$	1.174 1.163		
13 : 30 13 : 45	1.175	1.192	1.184		
14:00	1.147	1.197	1.172	2.798	2.061
14 : 15	1.143	1.167	1.155	2.759	2.061
14 : 30	1.137	1.167	1.152	2.752	2.061
14 : 45	1.139	1.172	1.155	2.759	2.061
15 : 00	1.160	1.159	1.160		
15 : 15	1.143	1.167	1.155	2.759	2.061
15:30	1.133	1.201	1.167	2.787 2.695	2.061 2.061
15 : 45 16 : 00	$1.079 \\ 1.102$	$1.178 \\ 1.149$	1.128 1.126	2.695	2.061
16:15	1.112	1.144	1.128	2.694	2.061
16:30	1.044	1.149	1.096		2.061
16:45	1.004	1.147	1.075	2.568	
17:00	1.063		1.106	2.641	2.061
17:15	1.112	1.125	1.119		2.061
17 : 30	1.126	1.066			2.061
17:45	1.114	1.064	1.089	2.600	2.061
18:00	1.100	1.062	1.081	2.581	2.061
18 : 15 18 : 30	1.099 1.085	1.053 1.047	1.076	$2.569 \\ 2.545$	2.061 2.061
18 : 30 18 : 45	1.089	1.047	1.076	2.570	2.061
19:00	1.004	1.106	1.055	2.520	2.061
19:15	1.004	1.096	1.050	2.507	2.061
19 : 30	1.030	1.064	1.047	2.500	2.061
19:45	1.030	1.044	1.037	2.477	2.061
20:00	1.028	1.049	1.038	2.479	2.061
20 : 15	1.050	1.036	1.043	2.490	2.061
20 : 30 20 : 45	1.050 1.018	0.965	1.007 0.995	2.405	2.061
20 : 45	1.018	0.975	0.995	$2.375 \\ 2.375$	2.061 2.061
21 : 15	1.004	0.969	0.987	2.356	2.061
21 : 30	1.004	0.984	0.994	2.374	2.061

TABLE A15-2FLOW RATE VARIATION(Intake Point No.3 : Surco)

.

. .

TIM	F	6/06-07	10/24-25	AVERAGE	AMOUNT F	OR 2 M3
hh :		Measured Data	Measured Data	FLOW RATE	FLOW (M3/S)	INTAKE (M3/S)
	45	0.982	0.975	0.979	2.337	2.061
22 :	00	0.980	0.965	0.972	2.322	2.061
22 :		1.002	0.978	0.990	2.364	2.061
	30	1.000	0.904	0.952	2.274	2.061
22:		0.980	0.859	0.920	2.196	2.061
23 :		0.984	0.865	0.925	2.208	2.061
23 :		1.004	0.891	0.948	2.263	2.061
	30	0.982	0.883	0.932	2.226	2.061
	45	0.944	0.934	0.939	2.243	2.061
0 :		0.944	0.941	0.942	2.251	2.061
0:		0.940	0.889	0.915	2.184	2.061
0:		0.920	0.835	0.878	2.096	2.061
0::	-	0.890	0.829		2.052	2.052
1 :	+ +	0.872	0.853	0.862	2.059	2.059
1:		0.843	0.861	0.852	2.035	2.035
1 :	2	0.843	0.846	0.845	2.017	2,017
1:		0.849	0.859	0.854	2.040	2.040
2:		0.799	0.863	0,831	1.985	1.985
2:		0.803	0.874	0.839	2.003	2.003
2:		0.785	0,881	0.833	1.989	1.989
	4	0.779	0.868	0.823	1.966	1.966
3:		0.785	0.816	0.801	1.912	1.912
3::	15	0.759	0.698	0.729	1.740	1.740
3:		0.763	0.665	0.714	1.705	1.705
3:		0.763	0.588	0.676	1.613	1.613
4 :		0.554	0.594	0.574		1.370
4 :		0.550	0.612	0.581	1.387	1.387
4 :		0.591	0.622	0.607	1.449	1.449
	45	0.779	0.648	0.714	1.705	1.705
5:	1	0.755	0.663	0.709		1.693
5 : 5 :		0.763	0.685	0.724	1.730	1.730
		0.779	0.673	0.720	1.813	1.813
5:		0.793		0.733		1.855
6:		0.793	0.761	0.784	1.873	1.873
6:		0.799	0.769	0.819	1.955	1.955
6 :		0.815	0.823	0.819	1.972	1.972
6:		0.829	0.823 0.868	0.862	2.057	2.057
7:	00	0.855	0.952	0.942	2.249	2.061
7:	15	0.932			2.375	2.061
7:	30	0.964	1.025 1.057	0.995	2.509	2.061
7:	45	1.044	1.096	1.030	2.587	2.061
8:		1.071	1.153	1.133	2.707	2.061
8.:	15	1.114	1.159	1.165	2.782	2.061
8:		1.171		1.174	2.802	2.061
8 : 9 :	45 00	$1.171 \\ 1.173$	$1.176 \\ 1.217$	1.195	2.854	2.061
9:	15	1.175	1.209	1.192	2.847	2.063

TABLE A15-2 FLOW RATE VARIATION (Intake Point No.3 : Surco)

A15--5

aich man fans anns an		(IIILAK	e Point No	·D : DULC		
TIN	4E	6/06-07	10/24-25	AVERAGE	AMOUNT F	OR 2 M3/
hh :		Measured Data	Measured Data	FLOW RATE	FLOW (M3/S)	INTAKE (M3/S)
	30 45 00	1.167 1.160 1.152	$1.215 \\ 1.213 \\ 1.205$	1.191 1.187 1.179	2.845 2.833 2.815	2.061 2.061 2.061
MAXIM AVERA MINIM	GE Qav	g 1.000	1.217 1.000 0.588	1.206 1.000 0.574	2.881 2.388 1.370	2.061 2.000 1.370

TABLE A15-2 FLOW RATE VARIATION (Intake Point No.3 : Surco)

,

APPENDIX 16

SELECTION OF PIPE MATERIALS FOR INVERTED SIPHON

APPENDIX 16 SELECTION OF PIPE MATERIALS FOR INVERTED SIPHON

A16.1 General

The use of inverted siphon structure is cannot be avoided for the transmission of sewage to San Bartolo fully using elevation potential at the intake points due to the topographical feature along the proposed transmission line. However, adoption of such structure in the Project, presents several problems which need to be studied like the long span of inverted siphon section, inner pressure, and difference of elevation between the highest and lowest points. In this Study, optimum materials for pipes are selected taking these problems into consideration.

A16.2 Conditions for Study

Following conditions are set for the Study.

(1) Longitudinal Section

In the case of Plan E1, the profile of longest inverted siphon will be as illustrated below:

PHASE I ¢ 1,350 mm

F		×+100.0		·		3 +101.64
		+30.30			+50.00	
	3560	1565	4130		530	

PHASE II ϕ 1,200 mm

D

 +77.40)		G	+65.45
+4.87			±4.30	
3600		2250	2750	-
		8600		

A16-1

- (2) Pipe Materials
 - (a) Pre-stressed Reinforced Concrete Pipe (PCP)

In Peru, PCP have been installed for transmission main pipe of many water supply systems. Highest inner pressure is 18 kg/cm².

(b) Fiber-glass Reinforced Plastic Mortar Pipe (FRPM)

Import from foreign country

(c) Ductile cast Iron Pipe (DCIP)

Import from foreign country.

(3) Soil Condition

- (a) Phase I (near Lurin river)
 - Total thickness of top soil and alluvial soil is 0.5 m and strata have loose density.
 - 2) The layer between GL-2.5 and 3.0 m, which will be the foundation of pipeline consists of gravelly soil. Silty fine sand and medium gravel fine sand strata exist in places. Strata are relatively dense.
 - The strata to be excavated consist of gravelly soil with medium density.
 - Groundwater exists near Lurin River at elevation 50 m or less. Water level is at 1.0 m below ground level.
 - 5) Contents of salinity and sulfate is below the level of concrete structure.

A16-2

5)	Permeabilit	ty of foun	dation	stratum	is:
	K = 1	7.6 cm/s	- -	· .	
			. . . [.]		

It can be judged as high permeability

7) Based on the soil test, mechanical properties of fine sand stratum in this area is judged to be:

> Internal friction Angle 30° Cohesion 0 kg/cm²

(b) Phase II (along coast line)

 Total thickness of top soil and alluvial soil is 0.5 m and strata have loose density.

2) The layer between, GL-2.5 and 3.0 m, which will be the foundation of pipeline consists of medium density fine sand with slight silt contents in place.

 The strata to be excavated consist of medium density fine sand.

4) Groundwater exists below elevation 20 m in the south area of the Cerro de Lomo de Corvina. Water level is at 1 m below ground level.

5) Concentrations of salinity and sulfate in the soil exceed the durable level for concrete structures from Villa Rica to Lurin River along the Pacific Ocean coast.

6) Permeability of foundation strata is:

 $k = 7.8 \times 10^{-3} \text{ cm/s}$

It is considered normal value for fine sand.

7) Based on the soil test, mechanical properties of fine sand strata in this area is judged to be: Internal friction Angle 30° Cohesion 0 kg/cm²

(4) Items to be considered

Following items will be considered for selection of materials: Characteristics and Strength, Anti-corrosion and durability, Joint performance, Workability, and Economy

A16.3 Comparison of Pipe Materials

TABLE A16-1 shows the comparison of characteristics of back pipe materials.

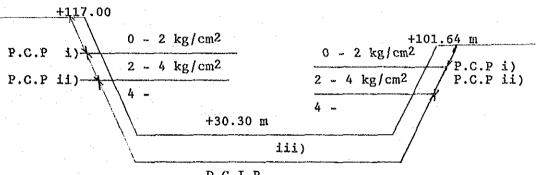
iss Reinforced Plastic Mortar Pipe Ductile Cast I ron Pipe (FR.P.M) (D.C.I.P)	Both rigidity and flexural strength is large. Strength for external pressure is 150% (more than δ for external pressure is greater than ϕ 450 mm) and 200% (less than ϕ 450 mm) of that that of FRPM.	1, 800~2, 000 125, 000~135, 000 1.650, 000	Relatively weak against impact. At the time of Superior against inpact. But too large impact backfilling, rapid soil dumping shall be avoided. Breaks away inner wortar lining.	Durable against 10.5kgf ∕m' for type II, ¢1350 burable against 30kgf ∕m for type II¢1350 to to ¢1500	() n = 0.013	c = 130	Durable against acid. Is not affected by No problem for normal soil. corrosive and acidic soil. No problem on electric corrosion. No problem on electric corrosion.	Experiences for several years. In Peru, it was Much experience used in Chosica Semerage Project. Life is estimated about 60 years.
Prestressed Reinforced Concrete Pipe Fiber-glass (PCP)	Structure is designed to bear inner pressure by Both rig PC steel bars. Therefore strongth against inner Strength I pressure is large, but rigidity, flexural ϕ 450 mm strength and strength for external pressure is of PCP. small.	90~100 200,000	External surface is made of mortar shotcreting. Relative Crack on surface and breaking away of mortar will backfilli sometimes occur.	Durable against 6kgf∕m for ¢1350 to ¢1500 to ¢1500 to ¢1500	n = 0.013 n = 0.010	C = 130	Meak for acid. Corrosion by hydrogen sulfide generating from sewage and electric corrison on corrosive reinforcing bar sometimes occur.	Nuch experience in Mater Works in Peru. Experien Life is 20 years for rubber rings and more for used in C
	Strength for External Pressure	Flexual Strength Durable Bending Stress	ics and Stre	Ma ter - ti gh tness	ट ट Roughness त्या (Manning's)	Hority Coofficient (Alazen-Willams)	γjilidaruß bna Ant ti: corros corros corros corros	Durability

TABLE A16-1 COMPARISON OF PIPE MATERIALS - 2

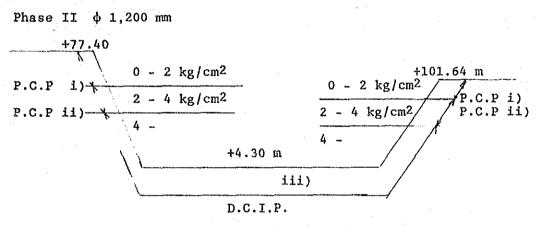
DCIP	Na report		Combined type rubber ring durable bendine and lone insert	length. Superior water-tightness. 1.30 ~ 5 -00	Easy joint work. But skillful labor is necessary for bolt wrenching of mechanical joint due to necessity of securing equalized specifed torque.	
FRPM	No report			length. Good water-tightness. length. $3 \cdot 00^{\circ} \sim 6 \cdot 00^{\circ}$ 1 $\cdot 30^{\circ}$	Easy joint work due to light weight and utiliza- Easy juice of puller. Experience in Chosica project proves no leakage.	
PCP	Break down due to to high inner pressure with 15 kgf/m on \$500 to \$900mm - 2 cases in Lima southern district Break down due to to corrosion with a pressure of 6 to 7 kgf/m on \$600 to \$800mm - 2 cases in Lima southern district (refer to APPENDIX 1) (past 3 years)		Round type rubber ring Round type rubber ring	length. Less water-tightness. less than 3 ° 00'	Attention should be paid to centering of pipes and twist of rubber rings.	
	Accident	Structure of Joint	Quater tinhtarco	na ter ti gu these Durable Bending Angie	Morkability	
/	yilidsruß bas noisorros-iinh	loint Pertoraance				

DCIP	673.3 kg/m (2602)	803.7 kg/m (250%)		No specific foundation works.	<pre>Mork speed 20.8 m/day Pipe Fitter 2.07 person iabor 2.71 person (1.00 person/m) Jib Crane 15 t</pre>	<pre>Mork speed 19.2 m/day Pipe Fitter 2.70 person Labor 3.58 person (0.62 person/m) Jib Crane 15 t</pre>
FRPM	275.5 kg/m (100%)	320.0 kg/m (100%)	1	Sand in general.	Work speed 50.0 m/day Pipe Fitter 0.40 person Labor 0.80 person 0.12 person/m) Jib Crane 4.8 t	Work speed
d D d	1,312.8 kg/m (5102)	1.592.6 kg/m (5002)	ß	Sand or Concrete in accordance with loading condition.	Work speed 21.3 m/day Pipe Fitter 3.15 person per 10 m Labor 6.84 person (1.00 person/m) Jib Crane 15 t	Work speed 19.2 m/day Pipe Fitter 4.03 person per 10 m Labor 8.87 person (1.29 person/m) Jib Crane 15 t
	¢ 1350 mm	14ліей Ф.1500 Ш	Meight Ratic (FRPM = 1)	ViilldeyioW Connation Connation	ф 1350 лин Ф 1350 лин	900 BBB

TABLE A16-1 COMPARISON OF PIPE MATERIALS - 3


TABLE A16-1 COMPARISON OF PIPE MATERIALS - 4

	[]	%						×	*				%						
	RATIO	× 5	(120)					ж 5 (315)	(138)				(162)		30 kg/m	00 ¥/m 23 ¥/m	123 ¥∕m		1
DCIP	\$SU	- - - -	1,036.59		1,144.91		327.11	2, 508. 73	1,256.08		1,387.34	396.51	3, 039- 33		Strength for Inner Pressure 30 kg/m	Pipe (FOB Yokohama) 103,000 Freight, Insurance 42,123	145,123	PCP × 100 %	
	¥	*4	145,123	COST × 110.45 %	160,238	(COST + Lmp. TAX)	45,811	351, 222	175,851	COST × 110.45 %	194,227	(COST + 1mp. TAX) x 15 % 55, 511	425, 589	※4 Type匠	Strength fo	Pipe (F08 Freight,		ж Х	
	RATIO	% % %	(164)					× 3 (322) ×	(152) %				% (362)		kg/m	80 ¥/m 35 ¥/m	35 ¥∕m		
FRPM	US \$		1,133.82		1,095.84		334.45	2,564.11	1, 378.50		1, 332.32	406.62	3, 117.44		Strength for Inner Pressure 8 kg/m	Pipe (F0B Yokohama) 92, 900 Freight, Insurance 65, 835	158,735	FRPM x 100 %	• •
	*	% 2	158, 735	COST × 96.65 %	153, 417	(COST + Imp. TAX)	46,823	358, 975	192, 990	005T x 96.65 %	186,525	(COST + Imp. TAX) x 15 X 56,927	436, 442	₩ 2 Type II	Strength for	Pipe (FOB Freight,		е К Ж	
	RATIO	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	(1001)					% (001)	(100)			 	% (001) %		e 8 kg/m	= 1 /. 5,805.69	T 140.00		
РСР	US \$		632.60				103.89	796. 49	908.21			136.23	1,044.44		Strength for r Inner Pressure 8 kg/m	1.00	r.8	· ·	
	SITNI	× 1	4,021,000			cost × 15 %	603, 150	4, 624, 150	5, 2/3, 000			190,950	6, 063, 950	- *	Strength fo	Rate : US \$ \$	÷		:
	ŝ	COST		IMPORT TRY	114 494 1111	CONSIMED TAP		TOTAL	ISOD	TUDATT PAV	TRUKT THY	CONSUMER TAX	TOTAL			Remarks			
	Currency				41 DEC						<u>.</u>	00e-1				2			
م رو مد ف مط _{الع} و رو مط											10 UO		and a summer for the second	77-76-15-1		adden (anior-maps/ 10)		and the second second second	


•

Conclusion A16.4

- Based on the comparison in A16.3, materials of pipes are selected as (1) follows:
 - Phase I φ 1,350 mm

i) :	Inner Pressure 0 - 2 kg /cm ² : P.C.P.
•	(Durable Inner Pressure 4 kg/cm ²)
ii)	Inner Pressure 2 - 4 kg /cm ² : P.C.P.
	(Durable Inner Pressure 6 kg/cm ²)
iii)	Inner Pressure above 4 kg /cm ² : P.C.I.P.

(2) Inner Pressure in Inverted Siphon Section (Plan E1)

Phase I	· .		·	· . ·	· ·		· · · ·		
Section	Planned	Grou	nd Elevat	ion	Max. Static	Pipe	Pipe	Length by Pres	sura
	Quantity	Upper End	Bottom	Lower End	Water Pressure	Length		2 - 4 kg/cm ²	more than 4 kg/en
B ~ C	1.0 t/s	146.10	112.00	136.60	34.1	4,047	2,247	1,800	
D ~ E	2.0	137.00	100.00	129.00	37.0	5,145	3,995	1,150	
F - G	2.0	117.00	30.30	101.64	86.7	9,785	3,685	600	5,500
Phase II									
Section	Planned	Groun	d Elevat	ion	Max. Static	Pipe	Pipa	Length by Pres	sure
	Quantity	Upper	Bottom	Lower	Water	Length	less than		more than
		End		End	Pressure	·.	2 kg/cm ²	$2 - 4 \text{ kg/cm}^2$	4 kg/cm ²
8 - B	2.0 t/s	92.39	76.00	85.73	16.4	3,350	3,350	· · · · · · · · · · · · · · · · · · ·	
D - E	1.5	77.40		4.87	2	3,600	1,000	800	1,800
2 - R	1.5	4.87	4.30	4.30	73.1	2,250	1.1		2,250
F - G	1.5	4.30	· ·	65.45		2,750	400	200	2,150
1 - 1	1.5	57.60	19.00	53.34	38.6	2,500	1,000	1,000	500

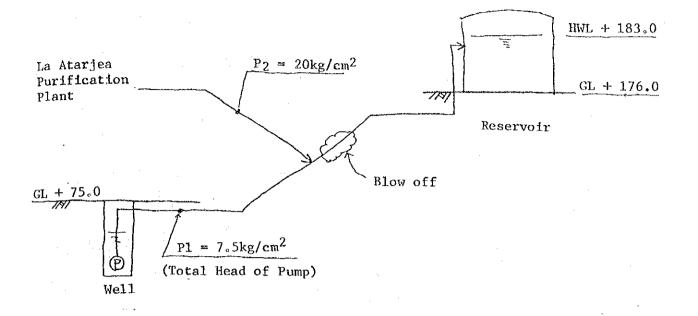
APPENDIX 17

ACCIDENT OF PRESTRESSED CONCRETE PIPE

 $\mathbb{W}_{1, 1}$

APPENDIX 17 ACCIDENT OF PRESTRESSED CONCRETE PIPE

SEDAPAL has been installing prestressed concrete pipes for innerpressure pipeline, for water supply networks. Past records of installation and repair of pipeline using prestressed concrete pipes are summed up by SEDAPAL as shown in TABLE A17-1.


According to the table, the total length of installed prestressed concrete pipes is 63,100 meters. Out of those a length of 125 meters had been replaced due to breakage suspected to be caused by corrosion, electrical corrosion and excessive pressure. The replaced length is about 0.2 % of the total length.

Brea	kdown of	E broken pipes by cause is as fol	lows:	
	Total	length of installed pipes 6	53,100	m
	Total	length of repaired pipes	125	m (6 cases)
	Cause	: Corrosion	100	m (3 cases)
		Electrical Corrosion	10	m (1 case)
· · · ·	· · · · · · ·	Excessive Pressure	15	m (2 cases)

Breakages of prestressed concrte pipes had been occurring at high rate even at present. Such broken pipes were installed with no corrosion protection measure nor were they provided with such protection after they had been installed. Pipelines provided with corrosion protection measure have not been damaged by corrosion. According to the staff of SEDAPAL, it has become a common practice to provide corrosion protection measure at the same time the pipe is installed. FIGURES A17-1 to A17-3 show typical breakage cases.

			INSTALACION	TNSTALLAT	loN				REPAI	REPARACIONES	REPAIR	
	ม ม	C H A DATE	12	ESPECIFICACIONES	ES STEC.	Fabriconte	Presión		Fecho		Presión	
Ubicación Location	1	S.	1.	Long (mt)	Breston den)	Tote los Tucerios _{MKER}		NO ILYOOT	Reportoc.	LAT DAD	bl mant.de	observaciones Observationes
Atarjea - Rímac	82 - 04	82 - 04	64" - 14"	12,600	" Pesign Press. 6- 17. Atri	Super-Concret.	Work!-	P Pressure Abril (Hasta la fecha,	ningura	otura)	Atm.	:
Atarjea- Son Juan de Mirnflores(Pmreres)	. 75 - 08	1	72" - 36"	14,000	3-15	Super-Concret.	-14	*	•	•	Breakage	
- Proceres - WillorS.	80 - 07	84 - 01	24"	2,500	17- 20	Super-Concret.	8-12-0	Pog.Zanal Huayna	[]] rotur.	20 9	ŭ	Corros. Avanz.
Proceres - 034	80 - 03	84 ÷ 01	24"	6,000	, 17- 28	Super-Concret. 2-6-0	*	Capac-S.J.M. ration	Del 83-86	 9 9	~	Corros. Avanz. se modif. proyecto
									• .	۱.		5 abn.
C24 - Villa Solvod.	85 - 02	85 - 02	5 0″	1,500	15-10 *	Super-Concret.	۰۰ ۵0	VIII.El Salvodor	83 -03	с [,] с	15	Sob. presión Erective Presión
Villa Salvador (cir- cuito)	1 . t	1	24"	5, 100	15	Super-Concret:	4-8	2	87 -05	10 æ.	5	Corroc.Avonz Corresion
Proceres-Reser 2000	72 - 09	Í	24" - 20"	4,500	18 - 07 *	Super-Concret.	140 *	Sr.J.de Miraflor.	. < 1980 2 roturas	10 m	8	Sobr "presión Excessive l'ensure
Anganos - Surquillo	80 - 09	80 - 09	36" - 20"	2,000	0	Super-Concret.	4-6	(Hosta la fecha,	ninguno	rotura)		
Buenos Aires-Colloo	75 - 05	75 - 05	24"	1,000	0	Super-Concret. 4-5	4-5	*	2	*		
Zarote –C. Grande	83 - 07	82 - 01:	32"	3, 900	15	" Super-Concret.	0-5	Av.Proc.de Indep.	- 16 meurs.	40 m.	\$	Corros. Avionz.
					·							·- •
		A Contraction of the second se				almus o					SCTUBRE	31, 1989.
		V		· .		and the second s	8:51	$\sum_{r=1}^{n}$				
						- T						

A17-2

Change of main transmission line from the existing well pump line (P1) to the line from Atarjea (P2) caused breakage due to excessive pressure.

FIGURE A17-1 BREAKAGE BY EXCESSIVE PRESSURE (Proceres - Reser 2000)

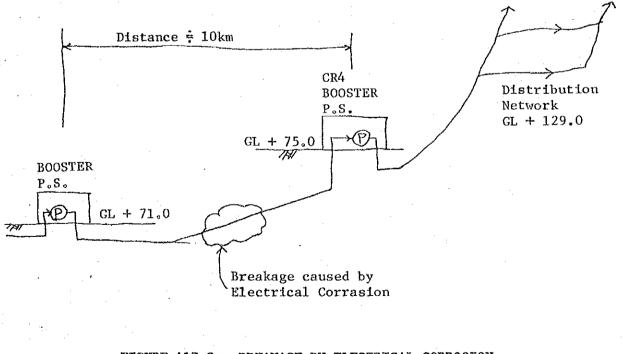
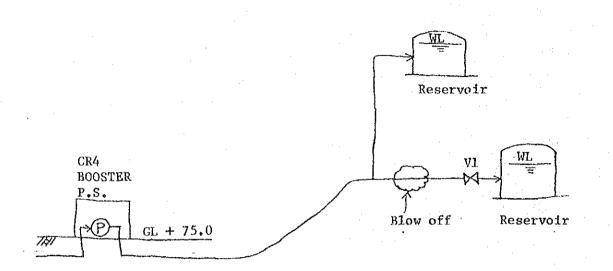



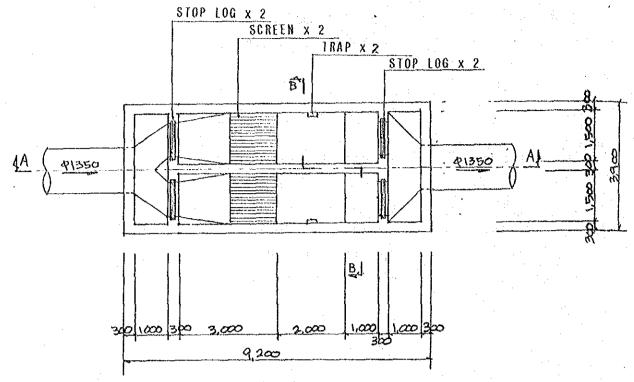
FIGURE A17-2 BREAKAGE BY ELECTRICAL CORROSION

(Proceres - CR4)

When the booster pump was started at the time that the inlet valve of reservoir closed, increase of inner pressure broke the pipe.

FIGURE A17-3 BREAKAGE BY EXCESSIVE PRESSURE (CR4 - Villa El Salvador)

APPENDIX 18


FITTINGS AND SMALL STRUCTURES FOR TRANSMISSION LINE

APPENDIX 18 FITTINGS AND SMALL STRUCTURES FOR TRANSMISSION LINE

Various small structures are necessary in pipeline construction. The following typical drawings show the concept of such structures.

FIGURE A18-1	Inlet Chamber for Inverted Siphon
FIGURE A18-2	Standard Type of Manhole
FIGURE A18-3	Air Valve Box
FIGURE A18-4	Inspection Manhole (Pressure Manhole)
FIGURE A18-5	Plan of Drain (Blow Off Valve)
FIGURE A18-6	Rio Lurin Underpass (Phase I)

A18-1

PLAN

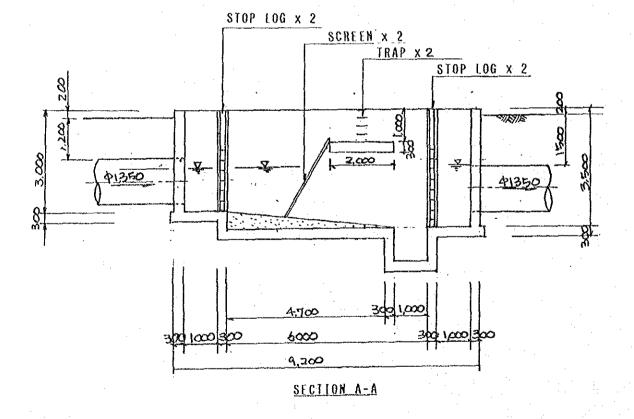
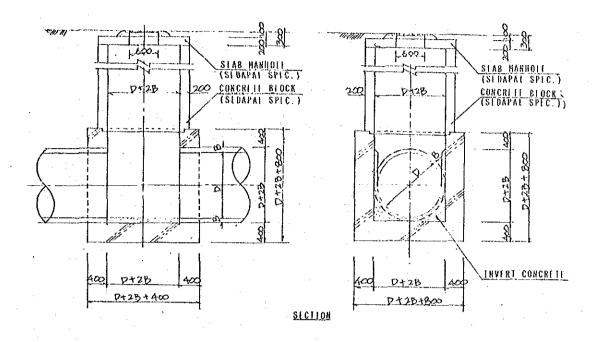
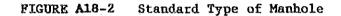
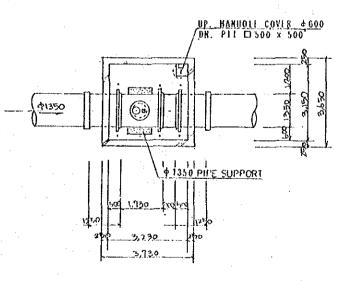
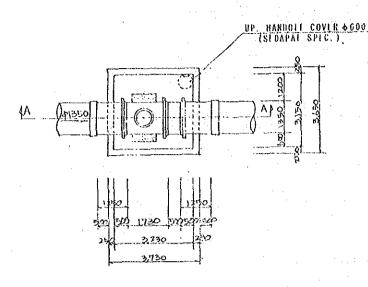





FIGURE A18-1 Inlet Chamber for Inverted Siphon



PIAN

PIAN

FIGURE A18-4

Inspection Manhole (Pressure Manhole)

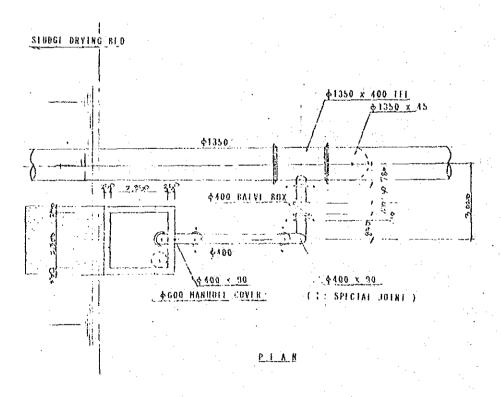
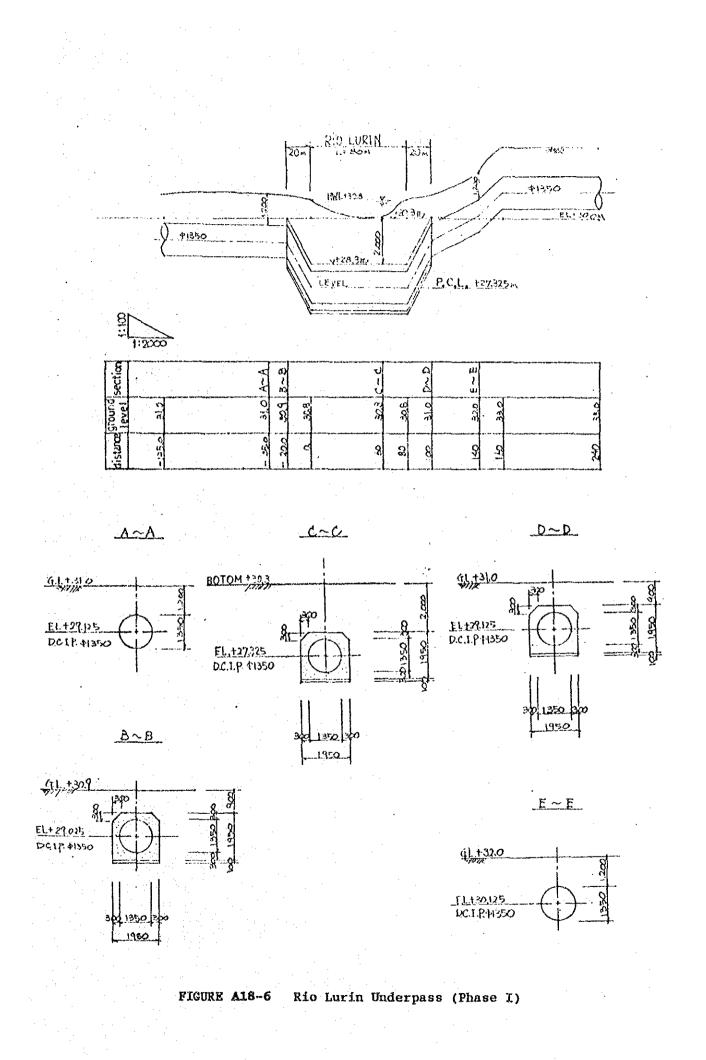



FIGURE A18-5 Plan of Drain (Blow Off Valve)

A18-5