REPUBLIC OF PERU SERVICIO DE AGUA POTABLE Y ALCANTARILLADO DE LIMA (SEDAPAL)

THE FEASIBILITY STUDY
ON
THE IMPROVEMENT OF SEWERAGE SYSTEM
IN
SOUTHERN PART OF LIMA

FINAL REPORT

VOLUME I SUMMARY

MARCH, 1990

JAPAN INTERNATIONAL COOPERATION AGENCY

JIMA LIBRARY

REPUBLIC OF PERU SERVICIO DE AGUA POTABLE Y ALCANTARILLADO DE LIMA (SEDAPAL)

THE FEASIBILITY STUDY
ON
THE IMPROVEMENT OF SEWERAGE SYSTEM
IN
SOUTHERN PART OF LIMA

FINAL REPORT

VOLUME I SUMMARY

MARCH, 1990

JAPAN INTERNATIONAL COOPERATION AGENCY

PREFACE

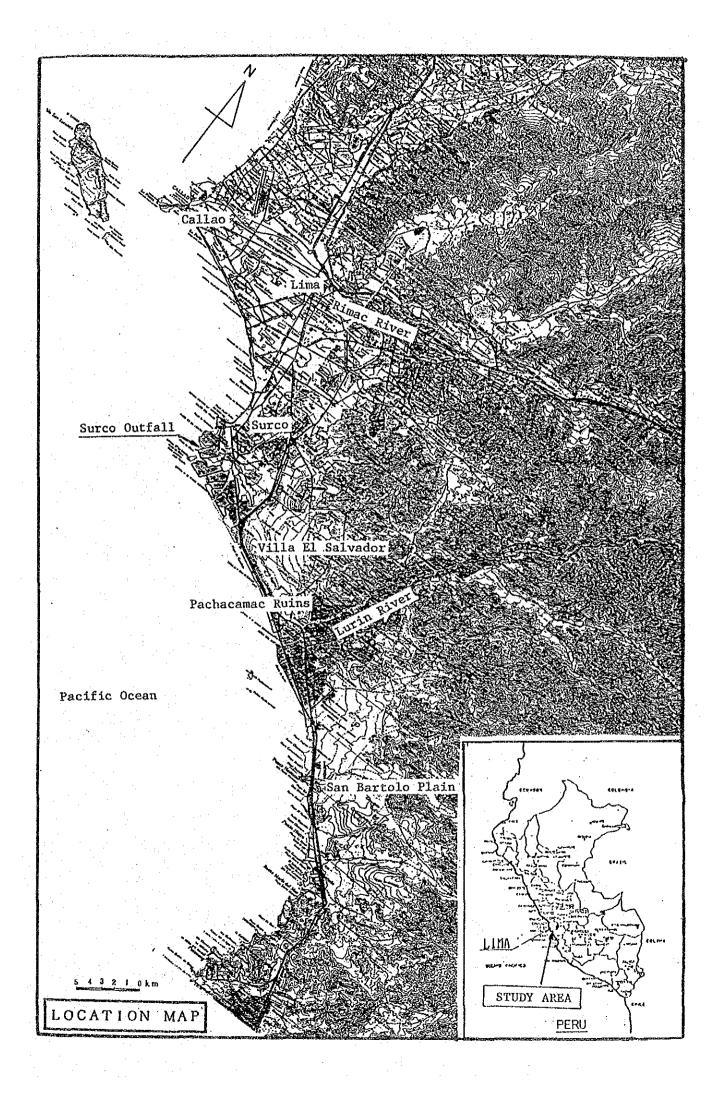
In response to a request from the Government of the Republic of Peru, the Japanese Government decided to conduct a Feasibility Study on the Improvement of the Sewerage System in the Southern Part of Lima and entrusted the study to the Japan International Cooperation Agency (JICA).

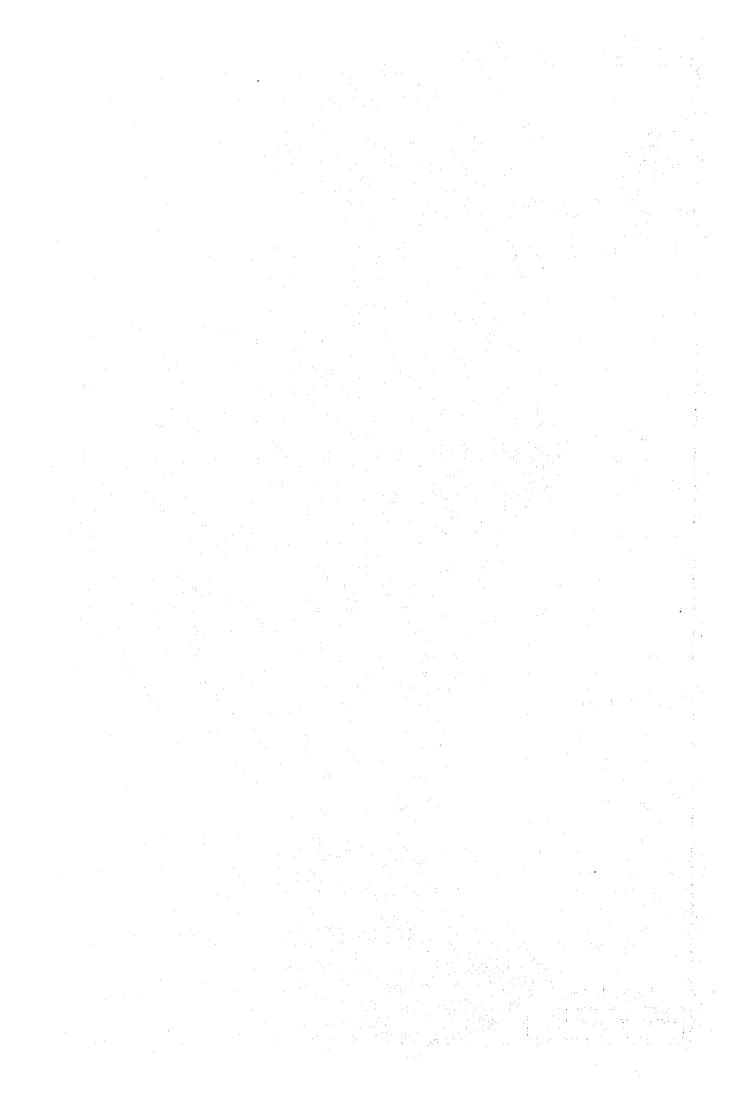
JICA sent to Peru a survey team headed by Mr. Hiroshi Irie, Nippon Jogesuido Sekkei Co., Ltd., from April to June, 1989, and from October to November, 1989.

The team held discussions with concerned officials of the Government of Peru, and conducted field surveys. After the team returned to Japan, further studies were made and the present report was prepared.

I hope that this report will contribute to the promotion of the project and to the enhancement of friendly relations between our two countries.

I wish to express my sincere appreciation to the officials concerned of the Government of Peru for their close cooperation extended to the team.


Kensinka


March, 1990

Kensuke Yanagiya

President

Japan International Cooperation Agency

FEASIBILITY STUDY ON IMPROVEMENT OF SEWERAGE SYSTEM IN SOUTHERN PART OF LIMA

ORGANIZATION OF REPORTS

Volume No.	Title			
I.,	Summary			
II	Main Report			
III	Appendices			

VOLUME I - SUMMARY

	PAGE
LIST OF TABL	TENTS i ES v RES v ABBREVIATIONS vi
;	
CHAPTER S.1	INTRODUCTION
S.1.1	Background of the Study S-1
S.1.2	Objectives of the Study S-1
8.1.3	Scope of the Study S-2
CHAPTER S.2	DESCRIPTION OF THE STUDY AREA
S.2.1	Brief History of Metropolitan Lima S-3
S.2.2	Natural Conditions S-3
S.2.3	Economy S-4
S.2.4	Public Health Condition S-4
s.2.5	Energy Supply Condition S-5
5.2.6	Water Supply System in Metropolitan Lima S-6
\$.2.7	Other Infrastructures S-6

	<u>.</u>	PAGE
CHAPTER S.3	EXISTING SEWERAGE SYSTEM	
8.3.1	Master Plan of Sewerage System	S-7
S.3.2	Sewer Systems	
8.3.3	Sewage Pumping Stations	S-10
8.3.4	Sewage Treatment Plants	S-11
CHAPTER S.4	POPULATION	
8.4.1	Past Demographic Trends	
S.4.2	Projection of the Future Population	
S.4.3	Projected Population Within Surco Drainage Area	S-15
CHAPTER S.5	SEWAGE QUANTITY AND QUALITY	
S.5.1	Present Sewage Quantity	S-19
8.5.2	Future Sewage Quantity	S-22
\$.5.3	Present Sewage Quality	S-24
S.5.4	Projected Sewage Quality	S-25
CHAPTER S.6	ALTERNATIVES	
S.6.1	Principle for Planning	S-27
S.6.2	Outline of Alternatives	S-30 S-31
	S.6.2.4 Alternative D	
S.6.3	Summary of Planned Sewage Quantity	S-31
	-ii-	

CHAPTER S.7	
	PRELIMINARY ENGINEERING DESIGN OF ALTERNATIVES
s.7.1	Intake Facility S-39
S.7.2	Transmission Facility S-42
\$ 7.3	Grit Chamber and Pumping Facility S-45
0.1.5	8.7.3.1 Grit Chambers
	S.7.3.2 Pumping Facility S-46
•	biffield tamping tactured artificial transfer of the
s.7.4	Sewage Treatment Plant S-46
s 7.5	Evaluation of Alternatives S-48
	S.7.5.1 Construction Cost S-48
	S.7.5.2 Operation and Maintenance Cost S-48
	S.7.5.3 Technical Evaluation
	S.7.5.4 Selection of Optimum Plans S-50
	3.7.3.4 Derection of Obtimum rights 9-30
•	
CHADEED C O	POLLUTION ANALYSIS FOR THE COAST OF CHILA
COMPLEK D.8	LOWDSTON WANTING LOW THE CONDI OF CUITTY
0 0 1	Introduction 8-53
5.8.1	THELOURCEION 8-55
	Descent One Material Dellar to Conditat
8.8.2	Present Sea Water Pollution Condition S-53
•	S.8.2.1 Bacteria S-53
	S.8.2.2 Heavy Metals S-56
8.8.3	Computer Simulation and Results S-57
5.8.4	Conclusion \$-57
,,,,,,	
CHAPTER 5.9	PROJECT EVALUATION
8.9.1	Implementation Program S-61
	S.9.1.1 Implementation Plan
2.3.2	
	S.9.1.2 Capital Investment Schedule S-61
8.9.2	S.9.1.2 Capital Investment Schedule S-61
8.9.2	S.9.1.2 Capital Investment Schedule S-61 Organization and Managerial Aspect S-63
	S.9.1.2 Capital Investment Schedule S-61 Organization and Managerial Aspect S-63 Financial Analysis S-63
S.9.2	S.9.1.2 Capital Investment Schedule S-61 Organization and Managerial Aspect S-63 Financial Analysis S-63 S.9.3.1 Present Financial Situation S-63
8.9.2	S.9.1.2 Capital Investment Schedule S-61 Organization and Managerial Aspect S-63 Financial Analysis S-63 S.9.3.1 Present Financial Situation S-63 S.9.3.2 Funding Arrangements S-63
8.9.2	S.9.1.2 Capital Investment Schedule S-61 Organization and Managerial Aspect S-63 Financial Analysis S-63 S.9.3.1 Present Financial Situation S-63 S.9.3.2 Funding Arrangements S-63 S.9.3.3 Alternative Financing Plan S-63
S.9.2	S.9.1.2 Capital Investment Schedule S-61 Organization and Managerial Aspect S-63 Financial Analysis S-63 S.9.3.1 Present Financial Situation S-63 S.9.3.2 Funding Arrangements S-63 S.9.3.3 Alternative Financing Plan S-63 S.9.3.4 Revenue Plan S-65
S.9.2	S.9.1.2 Capital Investment Schedule S-61 Organization and Managerial Aspect S-63 Financial Analysis S-63 S.9.3.1 Present Financial Situation S-63 S.9.3.2 Funding Arrangements S-63 S.9.3.3 Alternative Financing Plan S-63 S.9.3.4 Revenue Plan S-65 S.9.3.5 Administrative Expenses of
S.9.2	S.9.1.2 Capital Investment Schedule S-61 Organization and Managerial Aspect S-63 Financial Analysis S-63 S.9.3.1 Present Financial Situation S-63 S.9.3.2 Funding Arrangements S-63 S.9.3.3 Alternative Financing Plan S-63 S.9.3.4 Revenue Plan S-65 S.9.3.5 Administrative Expenses of the Project S-66
8.9.2	S.9.1.2 Capital Investment Schedule S-61 Organization and Managerial Aspect S-63 Financial Analysis S-63 S.9.3.1 Present Financial Situation S-63 S.9.3.2 Funding Arrangements S-63 S.9.3.3 Alternative Financing Plan S-63 S.9.3.4 Revenue Plan S-65 S.9.3.5 Administrative Expenses of
\$.9.2 \$.9.3	S.9.1.2 Capital Investment Schedule
S.9.2 S.9.3	S.9.1.2 Capital Investment Schedule S-61 Organization and Managerial Aspect S-63 Financial Analysis S-63 S.9.3.1 Present Financial Situation S-63 S.9.3.2 Funding Arrangements S-63 S.9.3.3 Alternative Financing Plan S-63 S.9.3.4 Revenue Plan S-65 S.9.3.5 Administrative Expenses of the Project S-66 S.9.3.6 Cash Flow Statement S-66 Economic Analysis S-66
\$.9.2 \$.9.3	S.9.1.2 Capital Investment Schedule S-61 Organization and Managerial Aspect S-63 Financial Analysis S-63 S.9.3.1 Present Financial Situation S-63 S.9.3.2 Funding Arrangements S-63 S.9.3.3 Alternative Financing Plan S-63 S.9.3.4 Revenue Plan S-65 S.9.3.5 Administrative Expenses of the Project S-66 S.9.3.6 Cash Flow Statement S-66 S.9.3.6 Economic Analysis S-66 S.9.4.1 Economic Benefits of the Project S-66
S.9.2 S.9.3	S.9.1.2 Capital Investment Schedule S-61 Organization and Managerial Aspect S-63 Financial Analysis S-63 S.9.3.1 Present Financial Situation S-63 S.9.3.2 Funding Arrangements S-63 S.9.3.3 Alternative Financing Plan S-63 S.9.3.4 Revenue Plan S-65 S.9.3.5 Administrative Expenses of the Project S-66 S.9.3.6 Cash Flow Statement S-66 S.9.3.6 Economic Analysis S-66 S.9.4.1 Economic Benefits of the Project S-66 S.9.4.2 Economic Costs of the Project S-68
S.9.2 S.9.3	S.9.1.2 Capital Investment Schedule S-61 Organization and Managerial Aspect S-63 Financial Analysis S-63 S.9.3.1 Present Financial Situation S-63 S.9.3.2 Funding Arrangements S-63 S.9.3.3 Alternative Financing Plan S-63 S.9.3.4 Revenue Plan S-65 S.9.3.5 Administrative Expenses of the Project S-66 S.9.3.6 Cash Flow Statement S-66 S.9.3.6 Economic Analysis S-66 S.9.4.1 Economic Benefits of the Project S-66
S.9.2 S.9.3	S.9.1.2 Capital Investment Schedule S-61 Organization and Managerial Aspect S-63 Financial Analysis S-63 S.9.3.1 Present Financial Situation S-63 S.9.3.2 Funding Arrangements S-63 S.9.3.3 Alternative Financing Plan S-63 S.9.3.4 Revenue Plan S-65 S.9.3.5 Administrative Expenses of the Project S-66 S.9.3.6 Cash Flow Statement S-66 S.9.4.1 Economic Benefits of the Project S-66 S.9.4.2 Economic Costs of the Project S-68
S.9.2 S.9.3	S.9.1.2 Capital Investment Schedule
S.9.2 S.9.3	S.9.1.2 Capital Investment Schedule S-61 Organization and Managerial Aspect S-63 Financial Analysis S-63 S.9.3.1 Present Financial Situation S-63 S.9.3.2 Funding Arrangements S-63 S.9.3.3 Alternative Financing Plan S-63 S.9.3.4 Revenue Plan S-65 S.9.3.5 Administrative Expenses of the Project S-66 S.9.3.6 Cash Flow Statement S-66 Economic Analysis S-66 S.9.4.1 Economic Benefits of the Project S-66 S.9.4.2 Economic Costs of the Project S-68 S.9.4.3 Economic Analysis S-68
S.9.2 S.9.3	S.9.1.2 Capital Investment Schedule S-61 Organization and Managerial Aspect S-63 Financial Analysis S-63 S.9.3.1 Present Financial Situation S-63 S.9.3.2 Funding Arrangements S-63 S.9.3.3 Alternative Financing Plan S-63 S.9.3.4 Revenue Plan S-65 S.9.3.5 Administrative Expenses of the Project S-66 S.9.3.6 Cash Flow Statement S-66 S.9.4.1 Economic Benefits of the Project S-66 S.9.4.2 Economic Costs of the Project S-68 S.9.4.3 Economic Analysis S-68 Sensitivity Analysis S-68
S.9.2 S.9.3	S.9.1.2 Capital Investment Schedule

	<u>PAGE</u>
8.9.6	Justification of the Project S-70
CHAPTER S.10	CONCLUSION AND RECOMMENDATION
	Conclusion S-71
S.10.2	Recommendation S-74

LIST OF TABLES

TABLE		PAGE
S-1	Pertinent Data on Drainage Area	S-8
S-2	Pertinent Data on Sewage Pumping Station	
S-3	Estimated Population by District	S-14
5-4	Projected Population (Surco Drainage Area)	S-16
S-5	Distribution of Population by District	S-17
S-6	Results of Sewage Flow Measurement	
	at Surco Outfall	S-19
S-7	Domestic Sewage Quantity	S-21
S-8	Results of Sewage Flow Measurement	S-22
S-9	Domestic Sewage Quantity	
S-10	Available Sewage Quantity at Each Intake Point	S-23
S-11	Present Sewage Quality	S-24
S-12	Present Sewage Quality in Main Sewers	
S-13	Heavy Metals of Raw Sewage In Main Sewers	
S-14	Summary of Planned Sewage Quantity	
S-15	Planned Intake Amount	
S-16	Design Flow of Sewage Treatment Plant	
0-20	in Each Proposed Site	S-47
S-17	Design Criteria of Waste Stabilization Pond	5-47
S-18	Decian Criteria for Aerated Lagron	
3-10	(Dual Power Aeration System)	S-48
S-19	Comparison of Construction Cost	S-49
S-20	Comparison of Operation and Maintenance Cost	5-49
S-21	Comparison of Technical Evaluation	S51
S-22	Comparison of Evaluation	S-51
S-23	Quality of Sea Water	
S-24	Coliform Number and Sewage Flow	
S-25	Project Sewage Discharge Quantity	
S-26	Summary of Project Cost	S-61
S-27	Disbursement Schedule of Optimum Plan	
S-28	Income from Sewerage Charge	
S-29	Summary of Economic Benefits	
0-25	bunning of Beoffmax Benefit Bostonia	J . U ,
	LIST OF FIGURES	
	MIDI OF PAGURES	
FIGURI	2.	PAGE
S-1	Existing Sewerage System	
S-2	Location of Sewage Flowrate Measuring Points	6 30
S-2 S-3	Schematic Plans of Alternatives	
S-4	Layout Plan of Alternatives	
S-5	Alternative-A (Pumping & Gravity)	
S-6	Alternative-B (Gravity)	
S-7	Alternative-C (Gravity + Pumping)	637
S-8	Alternative-D (Gravity + Pumping)	5-36
S-9	Alternative-E (Gravity)	C 27
5-9 S-10	Location of Intake Facilities	
S-10	Intake Facility	
S-11 S-12	Alternative-E (Plan E1-Layout Plan &	0-41
5-14	Longitudinal Section)	942
S-13	Outline of Grit Chamber Structure	0 7 4 2
S-14	Location of Sampling Points	p = ⊅4
S-15	Simulated Contour Line of Fecal Coliform	
S-16	Implementation Plan	5-0Z

ABBREVIATIONS AND ACRONYMS

UNIT

CFU: colony formed unit

cu.m/s: cubic meter per second

ha: hectare

I/.: Peruvian intis

kg/cm2: kilogram per square centimeter

kW: kilowatt

kWH: kilowatt-hour

1/capita/day: liter per capita per day

lpcd: liter per capita per day

m: meter

m²: square meter m³: cubic meter

m3/m2/day: cubic meter per square meter per day

m3/min: cubic meter per minute

m³/s: cubic meter per second

m³/sec: cubic meter per second

m3/year: cubic meter per year

μg/kg: microgram per kilogram

mg/kg: miligram per kilogram

μg/1: microgram per liter

mg/1: miligram per liter

mm: milimeter

MPN/100ml: most probable number per 100 mililiter

m/s: meter per second

μS/cm: micro-siemens per centimeter

MW: megawatt

7: percentage

ppb: parts per bilion

ppm: parts per milion

sec.: second

ton/m²: ton (metric) per square meter ton/m³: ton (metric) per cubic meter

US\$: United States dollar

Yen: Japanese yen

ORGANIZATION

CEPIS: Centro Panamericano de Ingenieria Sanitaria y Ciencias

del Ambiente

(Pan American Center for Sanitary Engineering and

Environmental Sciences)

DITESA: Direccion Tecnica de Salud Ambienta, Ministerio

de Salud

(Environmental Health Technical Office, Ministry of

Health)

GOJ: Government of Japan

GOP: Government of Peru

IMARPE: Instituto del Mar del Peru

(Peruvian Institute of the Sea)

INE: Instituto Nacional de Estadistica

(National Institute of Statistics)

JICA: Japan International Cooperation Agency

SEDAPAL: Servicio de Agua Potable y Alcantarillado de Lima

(Lima Water Supply and Sewerage Service)

SEDTACNA: Servicio de Agua Potable y Alcantarillado de Tacna

(Tacna Water Supply and Sewerage Service)

SENAPA: Servicio Nacional de Abastecimiento de Agua Potable y

Alcantarillado

(National Water Supply and Sewerage Service)

UNI: Universidad Nacional de Ingeneiria

(National University of Engineering)

OTHERS

AL: Aerated Lagoon System

ASP: Activated Sludge Processing System

BOD: Biological Oxigen Demand

BOD5: Biological Oxigen Demand in 5 days

COD: Chemical Oxigen Demand

D/S.H: Direct Water Supply High Consumption

D/S.L: Direct Water Supply Low Consumption

EAP: Exrended Aeration Processing System

EIRR: Economic Internal Rate of Return

FIRR: Financial Internal Rate of Return

FIRR: Financial Internal Rate of Return

GDP: Gross Domestic Product

G.F.: Grabity Flow

GL: Ground Level

GNP: Gross National Product

HWL: High Water Level

I.D: Indirect Water Supply

IRR: Internal Rate of Return

I.S.: Inverted Siphon

LWL: Low Water Level

MUC: Mercado Unico de Cambios (Sole Market Exchange Rate)

OD: Oxidation Ditch System

SS: Suspended Solid

STP or S.T.P.: Sewage Treatment Plant

TF: Trickling Filter System

WSP: Waste Stabilization Pond System

SUMMARY

CHAPTER 1

INTRODUCTION

SUMMARY

CHAPTER S.1 INTRODUCTION

S.1.1 Background of the Study

The existing sewerage system of Metropolitan Lima consists principally of 6,000 kilometers sanitary sewers, around 30 sewage relay pumping stations, and two major treatment plants with a combined capacity of 0.4 m³/sec. However, a study conducted in 1985 indicated that the city generated the amount of domestic sewage and industrial wastewater equivalent to 16 m³/sec, thus the bulk of the remaining sewage is discharged without any form of treatment directly to the sea. As a result, the coastal area and beaches of Lima have become severely contaminated, creating a serious social problem which the Peruvian government decided must be addressed urgently.

Treated water is utilized for agricultural and silviculture irrigation, and has been considered in a recent experiment for use in aquiculture. Although prohibited, the reuse of raw sewage for food crop cultivation is practiced in some areas. In parks in the urbanized area of Lima, watering of lawns and trees are sometimes done by plugging the sewers. The contribution of the park greenery to the environment is a positive aspect and is a strong argument for the reuse of sewage for irrigation. As raw sewage constitutes a potential health hazard to farmers as well as to people who consume agricultural crops irrigated with it, prior treatment to a desired level is required before sewage is used for irrigation.

Taking into account the current situation then, the Government of Peru in August 1986, conducted initial inquiries on the possibility of implementing a sewerage system improvement project with the assistance of the Japanese Government. In September 1988, the Government of Peru presented an official request together with a Terms of Reference for the improvement of the sewerage system of southern Lima with the end view of upgrading environmental conditions.

In response to the request, the Japanese Government decided to carry out a feasibility study of the proposal and dispatched a preliminary Survey Team through the Japan International Cooperation Agency (JICA) between the end of November and the beginning of December 1988. Investigation on the problem of the existing sewerage system was made in coordination with the Servicio de Agua Potable y Alcantarillado de Lima (SEDAPAL) which is the counterpart agency for the Study. The Scope of Work for this Study was agreed between the JICA Survey Team and SEDAPAL in Lima on December 7, 1988.

S.1.2 Objectives of the Study

Based on the contents of the request of the Government of Peru, the objectives of the Study are: i) to carry out a feasibility study relative to the improvement of the existing sewerage system in the southern part of Lima and, subsequently, to carry out the feasibility study relative to the plan for construction of a Treatment Plant, and ii) to transfer relevant technology applied in the Study to Peru through activities of the Study Team.

S.1.3 Scope of the Study

The Study Area covers the southern part of Lima, specifically extending from an intake point to be constructed at the middle point of the Colector Surco and/or the main sewers on the north, to the Quebrada Pucara northern boundary of the San Bartolo plain on the south. Target year for the Project in this Study is year 2000.

The Study which consisted of field work in Peru and home office work in Japan, covered several tasks items in pursuit of the objectives and in accordance with the Agreement and the Minutes of Meeting prepared by the JICA Study Team on December 7, 1988. These tasks are: data collection and review; field survey work consisting of measurement of sewage quantity and quality, and topographic survey and soil investigation; preparation of alternatives; identification of the optimum plan which includes facilities planning, implementation planning, and organization, operation and management planning; and evaluation of the proposed system.

CHAPTER 2

DESCRIPTION OF THE STUDY AREA

CHAPTER S.2 DESCRIPTION OF THE STUDY AREA

S.2.1 Brief History of Metropolitan Lima

Metropolitan Lima, which now comprise the Province of Lima and the Constitutional Province of Callao, started in 1535 as a principal part of Lima province and expanded with the annexation of the neighboring constitutional province of Callao during the Second World War. From its population of 64,000 inhabitants as Lima province in 1820, the population of Metropolitan Lima has grown to more than 6 million in 1989. The city is experiencing rapid development in recent years especially in the southern part where migrants have built new settlements called "Pueblos Jóvenes" in wide area.

S.2.2 Natural Condition

The Study Area encompasses 16 of the 41 districts which make up the province of Lima. It occupies 122 square kilometers of the 2,800 square kilometers area of the province of Lima and includes 1.8 million of its 6 million inhabitants. The Study especially covers the "Pueblos Jóvenes" because they are in immediate need of water supply and sewerage services.

Lima is situated in the coast of a fan-shaped valley formed by the Rimac, Chillon and Lurin rivers, and lies at an altitude of 40 to 200 meters above sea level. The Study Area falls between the Rimac and Lurin rivers. Except for low-lying river valleys, the area was desert previously with cliffs rising abruptly from the sea shore. Ground surface gradient in river valleys is less than 5 percent while it is around 5 percent sloping towards the sea in the deserts.

A formation consisting of Tertiary strata base and overlying sands from the Quarternary era characterizes the geology of the Study Area. These sands originated from river depositions, fluvial terraces, and dunes formed by aeolian deposits.

Metropolitan Lima is traversed by three rivers: the Chillon river which runs in the northern part, the Rimac river which cuts through the heart of the city, and the Lurin river which traverses the Study Area. Chillon river is mainly used for irrigation and is being eyed as a possible source of domestic supply in the year 2000. Rimac river is the principal source of water supply for Metropolitan Lima and is also used for irrigation. Sole use of the Lurin river at present is for irrigation.

The sea fronting Peru is subject to ocean currents called the Humboldt, South Equatorial and Equatorial Counter currents, which combined action either creates rare heavy rainfalls along the coasts or spawn great volumes of plankton. Thus, the marine area of Peru has a strong and varied influence on the fishing and on the coastal agro-industry.

Earthquake is the only probable natural disaster of significant proportion that could occur in Peru. The Andes area is considered to be most earthquake-prone but this is far from Lima. Except in the San Bartolo plain where many traces of debris flow are found, the Study Area does not experience landslide or debris flow.

Lima falls under a desert type climate. Because of the influence of

the cold Humboldt ocean current, humidity is high and temperature is lower than in an area in Brazil of the same latitude. Annual average relative humidity is more than 80 percent while the average monthly minimum and maximum relative humidity ranges from 60 to 95 percent. Monthly average temperature ranges from 12.7 to 28.9 degrees Centigrade with an average annual value of 18 degrees Centigrade.

In Metropolitan Lima, precipitation is very minimal to practically nil, storms and seasonal winds do not occur, and atmospheric pressures and winds are stable at any time of the year. Average annual evaporation is in the order of 1,470 mm with monthly averages ranging from 70 to 170 mm.

Solar exposure is greatest during the month of April at 58-60 percent and is least during the month of August at 14-16 percent.

S.2.3 Economy

The Gross Domestic Product (GDP) of Peru, which registered increases of 9.5 and 7.8 percent in 1986 and 1987, respectively, ended up in 1988 with a decrease of 8.4 percent. The economic growth in 1986 and 1987 adversely resulted to the reduction of foreign currency reserves and to the economic plunge in 1988. Because of the increased money supply, the inflation rate went up to 62.9, 114.5 and 1,722.3 percent in 1986, 1987, 1988, respectively. In 1988, only the agriculture and fishing sectors gained in GDP, the latter owing to the favorable ocean currents which increased the fish catch.

Peru's main products are derived from agriculture and mining. The agriculture - forestry, fishery and mining industries accounted for 10.9, 0.8 and 10.1 percent, respectively, of the GDP in 1987. Except for a slight increase in the manufacturing sector, no major change had taken place in the industrial structure of Peru since 1985.

Tourism is a principal foreign currency earning industry in Peru. In 1987, about 1,890,000 tourists consisting of 250,000 foreigners and 1,640,000 Peruvian nationals visited Metropolitan Lima, earning for the tourism industry the amount of US\$ 393 million. Major tourist spots in Lima include several beach resorts along the Pacific coast. Another beach resort in the coast of Chira is being planned for the promotion of tourism but a raw sewage outfall locally known as Colector Surco has polluted the sea water in the area and is causing major environmental problems.

As for the trade balance of Peru, there was a surplus of US\$ 1,172 million in 1985 and but has since then incurred deficits, the biggest being US\$ 463 million in 1987.

S.2.4 Public Health Condition

Sanitary and health conditions in Peru are generally still considered unsatisfactory as infectious diseases continue to affect and claim lives of many Peruvians every year. Although a number of water-borne diseases have been kept almost at the same level through the 9-year period from 1980 to 1988, incidence rates of other infectious diseases had been on the steady rise since 1982. Infectious water-borne diseases in Peru are definitely serious problems caused by insanitary water and inadequate sewage treat-

ment. Infantile mortality is very much higher compared to other age groups at a ratio of more than 9:1. High infantile mortality, as expected, occurs in departments where there are few hospitals, beds, doctors and nurses. Medical condition in Peru which is presently insufficient, will be worsen due to lack of medicine caused by current economic regression of Peru.

Although infantile mortality is lower in Lima than in other departments and nourishment conditions are quite better in comparison to other areas, incidence rates of infectious diseases including water-borne diseases during the last 4 years from 1985 to 1988 are high, some even higher than the nationwide figure. Typhoid and Paratyphoid, Virus-Hepatitis, and Gastroenteritis had the highest rates of incidence among the water-borne and infectious diseases. These diseases particularly occur in high number of cases in children younger than 4 years old.

Results of separate questionnaire surveys conducted recently by the SEDAPAL and the Villareal University epidemiology class indicated an interrelation between the incidence of skin rash and allied diseases in bathers of the coasts near the Surco Outfall, to the pollution of seawater in the marine recreational areas.

Residents of Lima obtain their supply of water from various sources like the systems of the SEDAPAL groundwater from wells, communal faucets, water vendors, etc. Of these, water bought from tank trucks which are stored in cisterns for several days and water taken from some private wells are most likely subject to contamination by causative agents of infectious diseases. As before mentioned, some of the raw sewage is reused for irrigation including vegetable cultivation, a practice which results to the transmittal of infectious water-borne diseases.

S.2.5 Energy Supply Condition

ELECTROPERU is the national agency responsible for policy decisions on plans for the development of sources, generation and supply of power. It distributes power to local agencies, among them ELECTROLIMA, which supplies electricity to the Study Area.

As of 1986, only 41 percent of the country was electrified. Completion of a power supply network that would cover practically the entire country is expected by the year 2000.

Due to the reduction of the equipment capacity caused by various factors, the effective output of power generating facilities is now only about three-fourths of the installed capacity. Occasional planned power cuts occur in the Study Area but there had been no instance when power supply totally stopped over the whole area.

Based on 1987 and 1988 statistics, the SEDAPAL consumed electricity equivalent to approximately 1.5 percent of the total maximum demand on the North-Central grid, the largest in Peru. A sewage treatment plant employing aerated lagoon system with 1.0 m³/sec capacity would roughly contribute an additional 8 percent to the total consumption of SEDAPAL. Expenditure on electric charges represents 1.6 percent of the total expenses of SEDAPAL, if reserve costs like depreciation is included; otherwise the proportion would be 3.5 percent.

With the apparent power supply shortage in Metropolitan Lima, any planning for pumping stations and treatment facilities must be made in consultation with ELECTROLIMA and that provisions must be made for power outages.

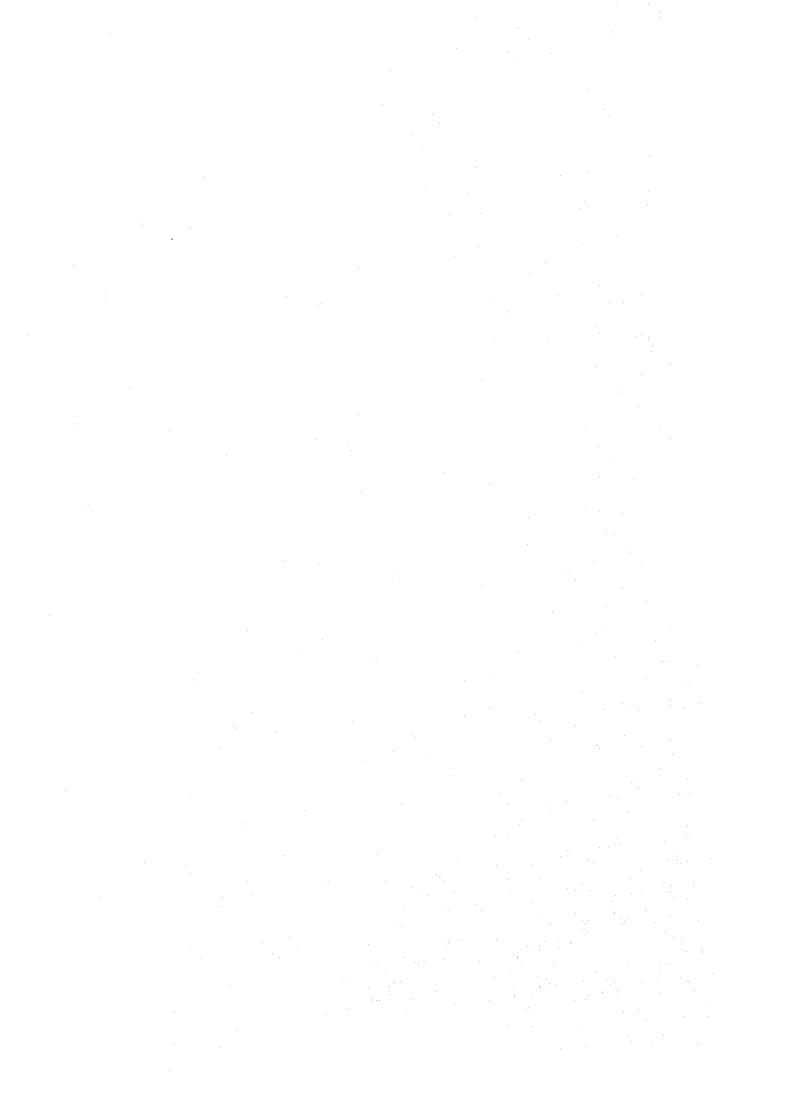
S.2.6 Water Supply System in Metropolitan Lima

The sources of potable water supply for Metropolitan Lima are the Rimac river and wells. Water from the Rimac river is treated at the Atarjea Treatment Plant while groundwater from wells is treated by chlorination in accordance with SEDAPAL standards. Based on records of the SEDAPAL, the combined production of the sources between January 1988 and February 1989 averaged about 20.5 m³/sec/day.

The SEDAPAL system currently supplies water to about 5 million of the 6.5 million inhabitants of Metropolitan Lima, indicating a service coverage of 77 percent. Average per capita consumption based on the total population and water actually consumed is 244 1/day. Unaccounted for water is approximately 13.5 percent of the total volume supplied.

In particular, the water supply to the Surco drainage area which also comprises the Study Area is under the responsibility of SEDAPAL. Amount of water supplied to the drainage area in 1989 was 5.1 m³/sec.

S.2.7 Other Infrastructures


Networks of air, overland and maritime transportation centered around Lima link the major Peruvian cities. Air transport routes radiate from the Jorge Chavez International Airport in Lima. A railroad line used mainly for cargo transport passes through a central station in Lima. The construction is underway for an urban railway, principally for the carriage of passengers connecting the southern part of Lima to the central area. Most important highway networks in the country are the Pan-americana along the coast and the Central Highway which crosses the Andes from Lima and branches inland. In maritime transportation, the largest terminal for domestic and overseas maritime transport in Peru is the port of Callao in Lima.

The around 2,200 km Peruvian coastline has numerous fishing harbors and ports, 15 of which are classified as principal ports. Port of Callao, being the principal port of entry, handles the bulk of the import and export cargoes. Establishments dependent on the fishing industry also abounds in the said port. Chorillos, a port near the Study Area unloads tons of fresh fish mainly for the consumption of Lima. The largest petroleum refinery in Peru, which supplies the fuel requirements of the port of Callao and the Jorge Chavez International Airport, is located in Ventanilla which is located north of Callao.

In the Study Area, patches of the surrounding desert are being developed through conversion to agricultural lands or green areas. Works are in progress by a relevant government agency to provide several large public parks with ample green areas.

CHAPTER 3

EXISTING SEWERAGE SYSTEM

CHAPTER S.3 EXISTING SEWERAGE SYSTEM

S.3.1 Master Plan of Sewerage System

The master plan for the sewerage system of Lima, first developed in 1945, had undergone changes on many occasions. Most recent of these revisions is the total restructuring of the master plan for the water supply and sewerage system of Lima done in 1981 through the financial assistance of the International Bank for Reconstruction and Development (IBRD). A related project, the feasibility study for recycling sewage to irrigate part of the arid zone south of Lima, was carried out in 1985. Results of these currently in force master plan and feasibility study formed the bases for studies under this Project.

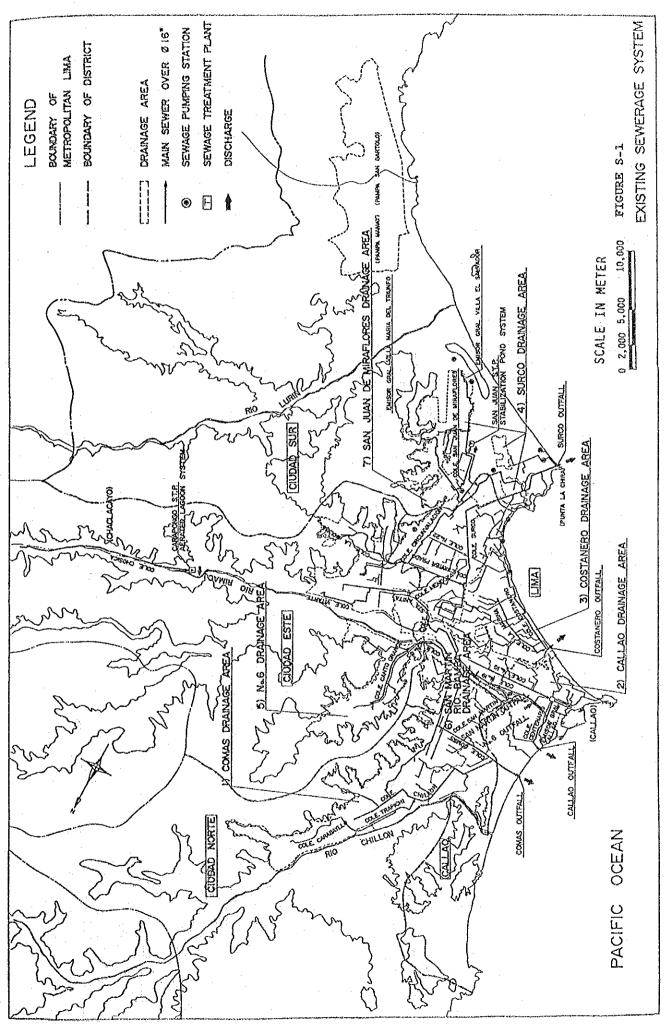
The 1981 water supply and sewerage system master plan study including an investigation into the recycling of treated waste water, which was prepared by the Engineering Science Inc., covers 580 square kilometers of Metropolitan Lima. Planning period extends 30 years from 1981 to 2010, within which span of time the population in the planning area was projected to grow from 5.0 million in 1980 to 15.2 million in 2010. Average sewage quantity was estimated to increase from 13.8 m3/sec in 1980 to 31.3 m3/sec (if special control is adopted) or 36.8 m3/sec (if there is no special control). Maximum daily sewage flow was taken as 110 percent of the aver-Important features of the master plan are: i) the flow direction of the Surco sewer system is maintained but all sewage discharge to rivers and sea will be intercepted, ii) by the year 2000, 11.2 m3/sec of sewage will be recycled as groundwater recharge, and for agriculture and parks irrigation. iii) remaining unrecycled sewage will be discharged to the sea through submerged pipes after primary treatment, iv) sewage not connected to the public sewerage system, which is estimated to reach 1.8 m3/sec in the year 2000, will be treated in an oxidation Lagoon and emptied into nearby canals, v) considerable length of pipes with diameter greater than 350 mm are planned to be installed, and vi) the construction of a 4 m^3/sec or 5 m3/sec capacity treatment plant together with a conveyance system for the transport of sewage for irrigation.

The feasibility study for recycling sewage for irrigation purposes was undertaken by the TAHAL Consulting Engineers Inc. with financial assistance from the Inter American Development Bank. the project involves treatment and conveyance of sewage from the Surco main sewer for the irrigation of around 5,000 hectares of desert in the San Bartolo plain. After a study of several alternatives. The scheme found to be most attractive is a system with, i) a capacity of 2.4 m³/sec, ii) combined gravity and pumped transmission line from the intake point at San Juan primary treatment facility to San Bartolo plain consisting of buried steel pipe and open channel, and iii) primary treatment through sedimentation in nearby open lands and park, and secondary treatment by aeration lagoon in San Bartolo. Except for the intake amount and transmission route, this present Study and that of the TAHAL study are fundamentally the same.

S.3.2 Sewer Systems

The existing sewerage system of Metropolitan Lima is able to serve the entire urban areas of Lima and Callao but the sewer network in other parts is insufficient. In old sections of the city, particularly, sewer lines are so deteriorated by antiquity that breaks often occur. Frequent street flooding also occurs due to the insufficiency of the drainage capacity of sewers caused by the increase in sewage discharge. Parts of the sewer network, notably that on the northern and southern outskirts of the city, are currently being expanded.

The public sewerage system which is shown in FIGURE S-1, consists of 7 drainage areas, namely: Comas, Callao, Costanero, Surco, Area No.6, San Martin/Rio Bamba, and San Juan Miraflores. In areas where such public facility is not available, large establishments like factories and commercial centers have their own sewerage system. Operation of the system is mostly by gravity except in some low-lying areas where pumps are employed. Pertinent data on the drainage areas are outlined in TABLE S-1. Surco drainage area, which is the largest in the system and subject of the Study, has about 30 sewer lines flowing into the Colector Surco, the drainage area's trunk sewer. Colector Surco empties to the sea in the vicinity of "Punta la Chira".


TABLE S-1 Pertinent Data on Drainage Area

name	DRAIN.AREA	MAIN SEWER	DIA.	LENGTH (m)	CAPACITY (103/sec)	DISCHARGE (1988 daily avg.(m3/a	
Comas	4,000	Colector	1,200	64,452	4.00	1.700	
		Comas	- 350			(1.70)	
Callao	5,100	Colector	1,300	61,050	6.27	3.016	
	·	Cantenario	- 350			(3.70)	
Costaner	to 4,000	Colector	1,300	63,350	4.34	3.038	
		Costanaro	- 350		÷	(3.30)	
Surco	11,900	Colector	2,100	144,091	10.77	4.770	Disc. 5.359
		Surco	- 350			(5.70)	(1989)
No.6	2,300	Colector	1,500	34,221	4,60	1.530	
		No.6	- 350				
San Mart	in 700	Colector	900	11,106	0.32	0.280	2 outfalls
Rio Bami		Conde Villa	- 350			0.210	•
		Zarumilla					
San Juar	800	Colector	700	5,730	0.38	-	Disc. 0.275
		San Juan	- 350			ta in a sa	(1989)
TOTAL	28,800		****	384,000			

Source: SEDAPAL Measuring Date: 9/23/1988, June/1989

It is estimated that half of the water produced from the private wells are discharged into the public sewerage system. Based on the results of the latest investigation conducted by the SEDAPAL, the Surco drainage area absorbs 0.32 m³/sec of industrial wastewater from 249 factories.

^{*} Values in parenthesis are estimated.

5.3.3 Sewage Pumping Stations

There are around 30 sewage pumping stations installed at some low-lying branch sewer lines where sewage cannot be conveyed to the mains by gravity flow. Pertinent data on these pumping stations are outlined in TABLE S-2. Several other sewage pumping facilities are under construction. Submersible sewage pumps are normally used for smaller facilities while vertical shaft centrifugal pumps are used for medium and large facilities. In principle, automatic operation is adopted but due to breakdowns, pumps are often operated manually. There are no facilities for measurement of flow, hence discharge is calculated from the duration of pump operation. All pumping stations are operated using commercial power supply, although a few of them are equipped with emergency units for use during periods of outages. Most of the stations using vertical pumps are provided with manual rakes for screens but none of them have grit chambers.

TABLE S-2 Pertinent Data on Sewage Pumping Station

No	. Наша	District	Design Flow Rat	i.e	of	ŧу		Total etrical	Installed Year	Remarks
			(1/s)	F	(4) ,amb		Ca	(kW)		
1	M. de la Marina	Miraflores	300	200 x			2sets 1set	113	1983	operation
2	B. Baños de Barranco	Barranco	50	100 ×	25	1/s	3sets	54	1983	operation
3	Domosola	Miraflores						3		
4	Malecon Armendariz	Miraflores						75		
5	Malecon Iglesias	Chorrillos	40	125 >	40	1/s	2sets	18	1985	operation
6	Matellini	Chorrillos	25	100 >	25	1/s	2sets	22		operation
7	C.C. La Laguna 1	La Molina		80 ×	٤	1/s	iset	24		operation
				100 >	ς,	1/s	lset			
8	Los Alamos	Surco								
9	San J. de Miraflores	Sn.J.de Mi	caf.					150		
0	Canto Grande	Canto Gran	de							
		Parque El I	Bosque							
1	Pro	Sn.M.da Po	rras							
2	Cocharcas	Chorrilles		100 x		1/s	2sets	90		operation
3	Sta. Leonor	Chorrillos		80 ·s	ι	1/s	2sets	. 8		operation
4	Laguna de la Molina	La Molina		80 >	\$	1/s	2sets	3		operation
5	Jose Olaya	Surco		80 x	2	1/s	lset	2		operation
6	Marbella	Magdalena								
	del Mar	- .	50	100 ×	25	1/8	2sets	45		operation
7	Cedros de Villa	Chorrillos	270	200 >	90	1./ s	3sets	111	1986	operation
8	S. Ignacio de Loyela	Sn.J.de Mi	raf.	80 x	:	1/s	2sets	4		operation
9	Cawara Unica								·	1
	del Callao	Callao	948	.300 x	316	1/s	4sets	450.	1954	operation
0	Camara No.2	V.EL Salva	dor 30	100 x	. 15	1/s	3sets	41	1983	operation
1	Camara No.3	Lurin	15	160 x	15	1/8	last	9	: :	operation
2	Camara No.4,	* **								
	Pachacamac	V.El Salva	dor100	150 x	: 50	1/s	3sets	165	1984	operation
4	Camara No.5 Vir	gen de Lour	dea 12	100 x	. 12	110	2sets	18		operation

Source: SEDAPAL

S.3.4 Sewage Treatment Plants

Sewage treatment facilities in Metropolitan Lima consists of the San Juan Sewage Treatment Plant, Carapongo Sewage Treatment Plant, and several waste stabilization ponds.

San Juan STP, located in the southern part of Lima within the Study Area, operates as a facultative pond with the treated water being reused for irrigation. It is the center in South America for studies and experiments conducted on subjects concerning sewage treatment. The plant consists of 2-cell facultative ponds having a total area of 22.1 ha (8.9 primary and 13.2 secondary). Numerous reports have been made on the San Juan STP by the Pan-America Center for Sanitary Engineering and Environmental Sciences (CEPIS) and useful data and information have been provided with regard to items like design methods and removal of parasites and bacteria. For example, one such report recommended an areal BOD loading of under 400 kg-BOD/ha/day on primary pond from the climate condition in Peru, as a result of long-term research done in the San Juan STP. In comparison, high areal BOD loads are experienced in its operation, resulting to the emission of strong odor from the primary ponds particularly in winter when the temperature is low. Deposited sludge in the primary ponds is removed once every 5 years and once every 7 years in secondary ponds.

Carapongo STP treats sewage from the districts of Chosica and Chaclacayo which are located 20 km from Lima upstream of the Rimac river. Design capacity of this plant is 24,000 m³/day, of which facilities to take care of half this design capacity have been completed. Method of treatment being employed in these existing facilities is the aerated lagoon system; the use of oxidation ditch process is being considered for its future expansion. The STP is composed of a grit chamber, facultative aerated lagoon, sedimentation pond, and chlorination tank. Design influent water quality is 200 mg/l for both BOD5 and SS. Except for the abnormal generation of algae during the early days in operation, and the much accumulation of sludge especially in the upstreammost lagoon, the treatment plant is in generally good operational condition.

Apart from the San Juan STP, there are three other existing waste stabilization ponds in the southern part of Lima while treated water are all utilized for irrigation. Additionally, one other such treatment facility is under construction while another is still in the planning stage.

POPULATION

CHAPTER S.4 POPULATION

S.4.1 Past Demographic Trends

Population of Peru and Metropolitan Lima for the years 1940, 1961, 1972 and 1981 as adjusted and interpolated from official census records of the Institute Nacional de Estadistica (INE) are shown in TABLE S-3. As indicated, the population of Peru for said years were around 7.08 million, 10.22 million, 13.95 million, and 17.75 million, compared to that of Metropolitan Lima which were about 0.65 million, 2.36 million, 3.42 million and 4.84 million, respectively.

TABLE S-3 also significantly shows a large influx of people from the rural areas to Lima from 1940 to 1961, which trend still continues to this time but at a diminished rate except in the fringe areas of the city and in "Pueblo Jóvenes".

S.4.2 Projection of the Future Population

Various entities including the SEDAPAL, INE, Engineering-Science Inc., and TAHAL Consulting Engineers Inc., have developed population projections for Metropolitan Lima. The bases of all these projections were the past census records, the latest of which was that for 1981. Although it is believed that these population studies may have been valid at the time they were prepared, such projections seem unreliable under current conditions, considering the length of time since the last census was taken and the apparent abnormal increase in population between 1981 and the present. Thus, the Survey Team attempted to calculate the future population of the Study Area based on the data of the last three census years employing different mathematical methods, namely: Logistic Curve, Exponential Curve, and Geometrical Methods.

Results of the analyses were compared with each other as well as with the projection of INE and consequently the mean values for each district obtained from the three calculation methods were adopted for the planning of this Project. However, for those districts where the calculated growth rates are absurd, values obtained from other formulas which are regarded as appropriate are adopted instead. The projected population of Metropolitan Lima based on this manner of calculation is as follows:

Year	<u>Population</u>
1989	5,993,400
1990	6,145,200
1995	6,899,300
2000	7,661,400

The above figure for 1990 as well as that which concerns solely the population for the 16 districts of Surco drainage area agree closely with the INE projection.

Estimated Population by District TABLE S-3

DISTRICT	1940	1961 1/	1972	1981 2/
				390,513
LIMA	276,734	262,400	366,501	8,865
ncon	1,428	4,000	5,792 63,235	138,746
ATE	11,061	80,900 43,700	50,746	48,907
BARRANCO	19,162	102 000	116 031	118,271
BRENA	10 017	102,800	116,031	55,558
CARABAYLLO	12,317	43,500	28,981	22,270
CHACLACAYO	1,160 7,244	9,600 33,300	22,195	33,243
CHORRILLOS	7,244	33,300	94,088	149,294
IENEGUILLA	-	1,300	2,628 179,819	4,783
COMAS	-	97,400	1/9.819	297,870
EL AGUSTINO	-	77,100	121,445	176,537
NDEPENDENCIA		85,100	113,827	144,918
ESUS MARIA	-	86,600	86,991	87,525
A MOLINA		2,100	6,218	29.786
A VICTORIA	56,947	201,800	274,735	284,922
INCE	26,443	84,800	85,878	84,660
URIGANCHO-CHOSICA	7,731	33,500	53,220	68,542
LURIN	3,817	6,400	13,259	18,104
IAGDALENA DEL MAR	16,574	57,400	58,816	58,437
UEBLO LIBRE	6,184	70,600	80,864	88,374
	46,757	91,100	103,235	108,859
ITRAFLORES	40,737	12 100	4,705	7,134
ACHACAMAC	3,711	12,100	4,705 2,941	4,319
UCUSANA	2,625	1,800 8,600	10 616	25 604
UENTE PIEDRA	2,625	0,000	19,616	35,694
UNTA HERMOSA	-	300	940	1,063
UNTA NEGRA		400		
IMAC	58,841	148,600	178,538	194,123
AN BARTOLO	-	1,000	1,518	3,067
AN BORJA 3/		53,600	68,862	59,270
AN ISIDRO	9,082	39,000	65,513	72,706
J. DE LURIGANCHO		23,300	90,393	272,943
J. DE MIRAFLORES		64,000	110.833	174.426
AN LUIS	•••	8,600	25.0/2	53,306
AN MARTIN DE PORRE	is -	99,900	239.973	426.010
AN MIGUEL	4.115	23,900	65.559	104,405
ANTA MARIA DEL MAR		100	65,559 46	101
ANTA ROSA		100		518
ANTIAGO DE SURCO	7,397	46,600		147,105
MULTICO DE BORGO	1,321	23,500	29,792	98,269
URQUILLO				142 567
ILLA EL SALVADOR 4	-	94,800	100 116	142,567 187,878
.M. DEL TRIUNFO	-	94,800	188,115	107,070
ub Total (PROV. LI	MA) 579,330	2,125,600	3,091,731	4,382,200
ALLAO	72,441	124,600	205,631	270,499
ELLAVISTA	8,580	44,300	41,239	
ARMEN DE LA LEGUA	0,000	18,300	26,977	39,498
A PERLA	·	22,000	34,627	48,362
A PUNTA	3,686	6,100	6,916	6,416
	3,000	17,200	17,341	20,177
ENTANILLA		~~~~		
ub Total (PROV.CAI		232,500	332,731	454,100
OTAL (METRO. LIMA)	664,037	2,358,100	3,424,462	4,836,300
PERU 2/	7,080,000	10,217,500	13,954,700	17,754,800
roportion of Metro	. Lima 9.38%	23.08%	24.54%	27.24%
warea Ameria Crar	th Rate of L	ima 6.39%	3.46%	3.95
VELYAND BUILDER OF COM		VIU//		
verage Annual Grow			3,312	3.374
~ do ~	C	allao 4.93%		3.523 3.913
	C M		3.45%	3.917 2.717

^{1/} SEDAPAL (Adjusted the influence of independence of new districts)
2/ Proyecciones de Poblacion por Años Calendarios
(Boletin Especial No.10), Dec.1986, INE
3/ Summation of a part of Santiago de Surco and Surquillo in
proportion to belonging area before independence
4/ Adjusted with V. M. del Triunfo

S.4.3 Projected Population Within Surco Drainage Area

The population projection for the Surco drainage area based on the correlation of the area and population of related districts and that of the area of the Surco drainage area itself is given in TABLE S-4. As indicated, the estimated population is 1,732,500 for 1989 and 2,687,100 for the year 2000, an increase of 55.1 percent in 11 years or an average annual growth rate of 4.1 percent. This growth rate is high compared to that of the rest of Metropolitan Lima, owing to the presence of the "Pueblos Jóvenes."

The projected population of the Surco drainage area is further broken down into three categories in accordance with the type of water supply and water consumption amount defined in the report for the Master plan of Lima Sewerage System as follows:

Direct Service High Consumption Group - D/S.H Direct Service Low Consumption Group - D/S.L Indirect Service Group - ID

The population data corresponding to each category and district for the same periods are listed in TABLE S-5.

TABLE S-4 PROJECTED POPULATION (SURCO DRAINAGE AREA)

THE COLOR AND ADDRESS OF THE COLOR AND ADDRESS OF THE COLOR ADDRESS OF T	THEORY (ARA) AREA (ARA)		TOTAL	SURCO D. (71 (%	POP. R.	1 %	1		t 	 	[]] } !		
Column C	THE STATE OF THE S	STRICT	AREA (ha)	1989	2000	1989	2000	1989	1990	1991	1992	266 T	F861	133
Column C	Color	15 11 11 11 11 11 12 12 13 14 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16	2,121	II II II II II II II II II II	II II (2) III II	 (3) 	11 12 13 14 15 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	8,100	8,200	8,200	######################################	11 00 12 13 13 13 13 13 13 13 13 13 13 13 13 13	######################################	11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Charle Charles Charl	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	ATE	82	ω	က က			1,00	5,40	3,90	4,60	9,40	4,20	3,10
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	BARRANCO	2	0	100	0	0	48,10	48,00	47,90	47,90	7,80	47,70	7,30
STATE 1836 19 21 21 21 22 23 24 24 24 24 24 24	THE COLOR 1 188 19 21 19	CHORRILLOS	89		တ			59,10	51,80	64,40	66,70	68,90	71,00	72,80
100	10 10 10 10 10 10 10 10		ω. ω.					02,60	06,10	09'60	13, 10	16,60	20,00	23,40
THE STATE OF THE S	DEFINATION STATES NO. 1046 105 106 106 107 107 107 107 107 107 107 107 107 107	MOLINA	5					66,40	74,90	84,20	94,30	05,30	17,30	30,10
DEFINITION OF THE PARTY OF THE	NRJA 1,046 100 100 100 100 100 100 56,700 56,500 56,500 56,500 56,200 56,100 56,200 56,100 56	VICTORI	\circ					70,90	71,60	72,10	72,80	73,30	73,90	74,40
TREAT 1,007 27 27 27 27 27 27 27 27 27 27 27 27 27	NEWARTH 1,046 100 100 100 100 21,100 21,200 21,500 21,500 21,700 21,500 21,500 21,700 21,500 21,700 21,500 21,700 21,500 21,700 21,500 21,700 21,700 21,500 21,700 21,700 21,500 21,7	A FLORE	(0,90	1,10	1,30	1,60	7,80	2,00	2,20
ELECTRICATES 1,007	ELECTRINGS 2,381 40 86 41 85 100,700 211,00 21,500 21,400 21,500		Q.			0		08,9	6,70	6,50	6,30	6,20	6,10	00'9
DEMANECORES (856) (86) (100, 100 114, 100 114, 100 114, 100 114, 100 115, 1	DE TRINECORES (186) (186	ISIDRO	00,					21,00	1,10	1,20	1,40	1,50	1,70	1,80
15. SALVADOR 3.56 (10.6) (36.6) (36.6) (37.6) (37.00) (34.200) (37.400) (100,100) (100	JULY STP) 3 (85) (185) (186) (186) (187) (186) (187) (. DE MIRAFLORE	35					00,70	14,60	29,30	44,70	61,00	78,00	35,90
SALVANDR 196 100 100 100 196,000	Carry Carr	JUAN STP)	S				ო	91,00	94,20	97,40	00,60	03,80	00,70	10,10
ELSALVADOR 3,368 128 77 91 95 100 101,200 1201,900 1201,000 1202,100 1202,100 1202,0	LLOS SURCO DE SURCO 3,493 77 91 95 100 101,200 201,000 201,100 221,700 222,700 222,000 102,400 102,500 102,500 102,700 102,100 102,400 102,400 102,500 102,700 102,100 102,400 102,500 102,700 102,400 102,500 102,700 102,400 102,400 102,400 102,500 102,700 102,400 102,400 102,500 102,400	SAN LUIS	w				0	64,10	5,00	5,80	6,50	7.20	67,70	68,20
EL SALVADOR 3,338 100 100 100 100 101,200 251,500 261,000 102,400 102,500 102,	EL SALVADRA 3.568	DE SURC	, 49				0	91,00	06,00	11,20	21,70	32,60	13,70	55,10
EL SALVADOR 3,386 28 78 90 95 225,900 201,500 205,000 21,500 316,700 319,200 310,700 1,900,000 226,300 316,700 319,300	EL XALVADOR 7,136 18 39 90 95 225,700 221,200 309,000 257,600 305,700 305,700 305,700 17,100	SURQUILLO	-			0	Ф	01,20	01,60	01,90	02,10	02.40	02,50	02,70
TRICK TATE TO THE TO THE TO THE TOTAL TOT	TRICT 1996 1997 1996 1997 1998 1999	EL S	3			ф	O	25,90	41,50	57,60	74,10	91,00	08,20	25,80
TUTAL TU	TOTAL TO	7 JEC	اب ا					75,70	92,20	00,00	26,30	43,80	61,70	79,80
STRICT 1996	STRICT 1996 1997 1998 1999 2000 3,500 3,500 3,500 3,500 3,500 47,500	namenamenamena TOTAL	42,906	11 14 14 11 11 11	16 16 11 11 11 1	ii H H H H H H H	ii	823,500	.900,70	. 980,10	.062,300	1147,10	====== ,234,00	,323,30
Sydo	S 400 8 400 8 500 500 500 500 500 500 500 500 500 500 500 500	1	1 11 1 11 1 11 1 11 1 11 1 11		ii ii 11 11 11 11 11 11		1 11 1 11 1 11 1 11 1 11 1 11		 - - 	. 	t t t t t) 	
A 8,400 8,400 124,700 130,100 135,600 114,200 156,600 177,500	A 8 400 8,400 124,700 130,100 135,600 174,600 175,600 175,600 175,600 175,600 175,600 175,600 175,600 175,600 175,600 175,600 175,600 175,600 175,000 175,900 136,000	STRI	g G	o,	7	ტ ტ	6	0						
A 8,400 8,400 124,700 126,700 135,600 135,600 135,600 177,400 177,900 179,400 180,900 177,600 177,900 179,400 180,900 177,400 177,900 177,900 179,400 180,900 175,500 176,300 177,900 179,400 180,900 175,000 180,900 175,000 180,900 175,000 180,900 175,000 180,000 180,700	A 114,200 119,400 24,700 130,100 135,500 47,500 47,500 47,500 47,500 47,500 47,500 47,500 47,500 47,500 47,500 47,500 47,500 47,500 47,500 47,500 130,100 130,100 130,100 130,100 130,000 130,100 130,000 130,		0 0 10 0 17 11 11 11	11 11 11 11 11	11 11 11 11	11 11 11 11	11 11 11 11	11 11 11 11 11 11	H					
ACCOUNTIONS 114,200 119,400 17,500 47,500 47,400 AT,500 47,500 47,400 AT,500 47,500 47,400 AT,500 179,400 139,700 139,700 130,000 139,700 130,000	114,200 119,400 124,700 130,100 135,600 47,400 47,500 47,500 47,500 47,500 47,500 47,500 47,500 47,500 47,500 47,500 179,400 139,700 126,700 136,000 139,700 139,700 126,700 127,900 175,300 136,600 139,700 277,100 275,000 275,000 275,000 276,000 277,100 22,200 22,300 53,200 53,200 53,200 55,500 55,500 55,500 55,500 52,800 53,000 22,400 22,400 22,100 22,100 22,100 27,500 276,500 57,500 277,100 22,100 22,100 22,300 22,300 53,500 55,500	-	40	Ą.	0	4.	8,50	3,5	00					
RAILLOS 17,500 47,500 47,500 47,500 47,400 RAILLOS 17,500 179,400 180,900 133,700 139,700 139,700 139,700 139,700 139,700 144,100 159,200 175,300 192,700 211,300 AGUSTINO 144,100 159,200 175,300 192,700 211,300 AGUSTINO 144,100 159,200 175,600 276,100 277,100 AGUSTINO 159,200 275,600 276,100 276,500 277,100 ESP,500 22,400 22,200 22,300 22,400 ESP,500 22,100 22,100 22,400 22,400 ESP,500 234,200 254,800 276,200 298,500 AN JUAN STP) 3/ 113,300 (116,500) (119,700) (122,900) (126,100) BE MIRAFLORES 214,500 234,200 254,800 276,200 298,500 AN JUAN STP) 3/ 113,300 (116,500) (119,700) (122,900) (126,100) BE MIRAFLORES 214,500 278,700 290,900 303,300 315,900 AN JUAN STP) 3/ 113,300 (102,900 102,900 103,000 103,100 103,100 102,900 103,000 103,100 103,100 102,900 103,000 103,100 103,	ARNICO A7,600 47,500 47,500 47,400 T79,400 T70,400 T70	ATE	14,20	0	•-1		30,10	5,6	00					
ACCUSTINO 126,700 176,300 177,900 179,400 180,900 126,700 130,000 133,300 136,600 139,700 126,700 159,200 175,300 132,300 276,100 217,100 151,300 175,300 175,300 177,100 277,	AND STATE ST	BARRANCO	7,50	9		رب دن	7,50	7,4	. 00			• :	-	
AGUSTINO 126,700 130,000 133,300 136,600 139,700 211,300	AGUSTINO 126,700 133,300 136,600 139,700 MOLINA 14,100 159,200 175,300 192,700 211,300 VICTORIA 275,000 275,600 276,100 277,100 VICTORIA 275,000 275,600 277,100 VICTORIA 275,000 275,600 27,300 22,300 22,300 BOBJA 21,900 22,100 22,200 22,300 22,400 ESIBRO 21,900 234,200 25,600 55,600 55,600 BOBJA 113,300) (116,500) (122,900) (122,900) (126,100) NOTE: I/Area collected by Surco Interceptor in each distinct Surco Solution collected by the Colector Surco Solution Collected by the Collecter Surco Solution Collecter Surco		74,60	76,3		<i>ي</i> س	79,40	80,9	00					
MOLINA 144,100 159,200 175,300 192,700 211,300 VICTORIA 275,000 275,600 276,100 277,100 53,200 53,200 53,200 53,200 55,600 55,600 55,600 180RJA 144,100 275,600 276,100 277,100 53,200 22,400 151RAFLORES 14,600 234,200 254,800 276,200 298,500 AN JUAN STP) 3/ (113,300) (116,500) (119,700) (122,900) (126,100) 105 80 68,500 69,300 69,800 278,700 290,900 103,100 107,800 107,900 103,000 103,100 102,800 102,900 103,000 103,000 103,100 102,800 380,700 399,600 475,300 EABL SALVADOR 343,700 436,200 455,600 475,300 PARTHUNFO. 29,500 2,500,900 2,709,500 2,813,200 PARTHUNFO. 2,415,600 2,510,900 2,709,700 2,709,500 2,813,200	MOLINA 144,100 159,200 175,300 192,700 211,300 VICTORIA 275,000 275,600 276,100 276,100 277,100 AFLORES 52,400 52,600 55,600 55,600 55,600 10,100 22,100 22,200 22,300 22,400 ENIBATIONES 21,900 224,200 225,200 22,300 29,500 AN JUAN STP) 3/ (116,500) (119,700) (126,100) AN JUAN STP) 3/ (118,500) (116,500) (119,700) (126,100) AN JUAN STP) 3/ (113,300) (116,500) (119,700) (126,100) AN JUAN STP) 3/ (113,300) (116,500) (119,700) (126,100) AN JUAN STP) 3/ (113,300) (116,500) (129,900) (126,100) AN JUAN STP) 3/ (113,300) (116,500) (126,100) (126,100) AN JUAN STP) 3/ (113,200) (116,5	EL AGUSTINO	26,70	30,0	e~t	ຜູ້	36,60	39,7	00					
VICTORIA 275,000 276,100 276,600 277,100 53,200 53,200 53,200 52,400 52,800 52,800 55,600 55,600 55,600 55,600 55,600 55,600 55,600 55,600 55,600 55,600 55,600 55,600 55,600 55,600 55,600 55,600 55,600 22,100 22,100 22,100 22,100 22,400 22,400 22,400 22,100 22,100 22,100 22,400 22,400 22,400 22,400 22,400 22,400 22,400 22,400 22,400 22,400 25,800 276,200 69,800 69,800 69,800 69,800 69,800 69,800 69,800 103,900 103,900 103,900 103,100 103,100 103,100 103,100 103,100 103,100 362,100 380,700 399,600 419,000 3/ Values for S.J. de Miraflores includes those of existing San Juan STP. Those are presented in Parenthesis. TOTAL 2,415,600 2,510,900 2,608,700 2,709,500 2,813,200	VICTORIA 275,000 275,600 276,100 277,100 53,200 53,200 53,200 53,200 53,200 52,400 52,600 52,800 53,000 53,200 52,400 52,600 52,600 52,500 22,300 22,300 22,400 22,400 22,100 22,200 22,300 22,400 22,400 234,200 234,200 234,200 234,200 234,200 234,200 234,200 234,200 234,200 234,200 234,200 234,200 234,200 234,200 276,200 298,500 69,800 278,700 290,900 303,300 315,900 in each district. Ratios from 1990 to 1999 are ITAGO DE SURCO 266,800 278,700 290,900 303,300 315,900 in each district. Ratios from 1990 to 1999 are ITAGO DE SURCO 266,800 278,700 290,900 303,300 315,900 interpolated. LUIS 68,600 278,700 290,900 303,300 315,900 interpolated. LUIS 7,100 362,100 380,700 436,500 415,300 existing San Juan STP. Those are presented in each district and supplied are presented in each district and supplied are parenthesis.		44,10	59,2	,~ 4	r. Li	92,70	5.4	00	•				
AFLORES 52,400 52,800 53,000 53,200 BORJA 55,800 55,600 55,600 55,500 22,100 22,200 22,300 22,400 22,100 22,100 22,300 22,400 22,100 234,200 254,800 276,200 298,500 AN JUAN STP) 3/ (113,300) (116,500) (129,900) (126,100) Note: 1/ Area collected by Euro Interceptor in each disciplantion collected by the Colector Sulface of E8,900 69,300 303,300 315,900 interpolated. LAGO DE SURCO 266,800 278,700 309,000 103,000 103,100 3/ Values for S.J. de Miraflores includes those of existing San Juan STP. Those are presented in parenthesis. LDE TRIUNFO. 284,400 417,200 436,200 475,300 parenthesis. TOTAL 2,415,600 2,510,900 2,608,700 2,813,200	AFLORES 52,400 52,800 53,800 53,200 55,500 55,500 55,500 55,500 55,500 55,500 55,500 55,500 55,500 55,500 55,500 55,500 55,500 55,500 52,100 22,100 22,100 22,100 22,100 22,100 22,100 22,100 22,100 22,100 22,100 22,100 22,100 22,100 22,100 22,100 22,100 234,200 276,200 276,200 296,500 (115,500) (115,500) (119,700) (122,900) (122,900) (122,900) (123,100) (123,900) (123,100) (133,100) (VICTOR	75,00	75,6	Ø	6	76,60	77,1	00					
DORJA 25,800 55,800 22,100 22,200 22,300 22,400 22,400 22,400 22,500 22,500 22,400 22,500 22,500 22,400 28,500 AN JUAN STP) 3/ (113,300) (116,500) (119,700) (122,900) (126,100) AN JUAN STP) 3/ (113,300) (116,500) (119,700) (122,900) (122,900) (126,100) BOULS 58,600 58,600 59,500 59,500 59,800 59,800 59,800 59,800 50,800	BORJA BO		2,40	2,6		2,8	53,00	3,2	00					
ISIDRO 21,900 22,100 22,300 22,400 AN JUAN STP) 3/ (113,300) (116,500) (119,700) (122,900) (126,100) AN JUAN STP) 3/ (113,300) (116,500) (119,700) (122,900) (126,100) LUIS 68,600 68,900 69,300 69,800 TIAGO DE SURCO 266,800 278,700 290,900 303,300 315,900 INCOMPTION 102,800 102,900 103,000 103,100 AN JUAN STP) 3/ A Ratio of population collected by the Colector Surco Interceptor in each district. Ratios from 1930 to 1999 are interpolated. AN JUAN STP) 3/ (113,300) 103,900 315,900 interpolated. AN JUAN STP) 3/ (116,500 1999 are interpolated.) AN JUAN STP) 3/ (116,500 1999 are interpolated.) AN JUAN STP 3/ (116,500 1999 are interpolated.) AN JUAN STP 3/ (116,500 Interpolated.)	ISIDRO 21,900 22,100 22,300 22,400 DE MIRAFLORES 214,600 234,200 254,800 276,200 298,500 AN JUAN STP) 3/ (113,300) (116,500) (119,700) (122,900) (126,100) Note: 1/ Area collected by the Colector Su	SAN BORJA	5,80	5.7		5	5,60	5,5	. 00	-				
AN JUAN STP) 3/ (113,300) (116,500) (119,700) (122,900) (126,100) Note: 1/ Area collected by Surco Interceptor in each discression of 68,900 69,300 69,800 27/ Ratio of population collected by the Colector Su 5/ Ratio of population collected by the Colector Su 68,900 69,300 315,900 in each district. Ratios from 1930 to 1999 are interpolated. Ratios from 1930 to 1999 are presented in parenthesis.	AN JUAN STP) 3/ (113,300) (116,500) (119,700) (122,900) (126,100) AN JUAN STP) 3/ (113,300) (116,500) (119,700) (122,900) (126,100) LUIS 68,600 68,900 69,300 69,500 69,800 TIAGO DE SURCO 266,800 278,700 290,900 303,300 315,900 LA EL SALVADOR 343,700 362,100 380,700 399,600 419,000 LA EL SALVADOR 343,700 362,100 380,700 455,600 475,300 CEL TRIUNFO 398,400 417,200 436,200 455,600 2,813,200 TOTAL 2,415,600 2,510,900 2,608,700 2,709,500 2,813,200 COTAL 2,415,600 2,510,900 2,608,700 2,709,500 2,813,200	SAN ISIDRO	1,90	2.		2,2	2,30	2,4	00					
LUIS 68,500 68,900 69,300 69,800 2/ Ratio of population collected by Unc Colector Su	AN JUAN STP) 3/ (113,300) (116,500) (119,700) (122,900) (126,100) LUIS 68,600 68,900 69,300 69,800 LOUS FIAGO DE SURCO 266,800 278,700 290,900 303,300 315,900 INTERPOLACIÓN STRICE. Ratios from 1930 to 1939 are interpolated. AN JUAN STP) 3/ (113,300 69,300 69,800 69,800 103,900 103,100 103,100 103,100 103,100 103,100 103,000 103,000 103,000 103,100 10	DE MIRAFLORE	14,60	34,2	87	8,	76,20	98,5	00					
LUIS 68,600 68,900 69,300 69,800 2/ Ratio of population collected by the Colector Sulface Sul	LUIS 68,600 68,900 69,300 69,800 2/ Ratio of population collected by the Colector Sulface Sul	(SAN JUAN STP)	13,30	16.5	<u></u>	9.7	122,90	26,1	0 Not	Area	Jectod by	1 to 2 to 2 to 2 to 3 to 3 to 3 to 3 to 3	! !	
INGO DE SURCO 266,800 278,700 290,900 303,300 315,900 in each district. Ratios from 1990 to 1999 are interpolated. LA EL SALVADOR 343,700 362,100 380,700 399,600 419,000 3/ Values for S.J. de Miraflores includes those of existing San Juan STP. Those are presented in parenthesis. TOTAL. 2,415,600 2,510,900 2,709,500 2,709,500 2,813,200	INGO DE SURCO 266,800 278,700 290,900 303,300 315,900 in each district. Ratios from 1930 to 1993 are interpolated. 2011LO 102,800 102,900 103,000 103,100 3/ Values for S.J. de Miraflores includes those of existing San Juan STP. Those are presented in parenthesis. 102,800 413,000 426,200 425,600 419,000 cxisting San Juan STP. Those are presented in parenthesis. 102,800 2,510,900 2,608,700 2,709,500 2,813,200 cxisting san Juan STP. Those are presented in parenthesis.	LUIS	8,60	8,90		9,30	69,50	69,8	0	/ Ratio	populati	Manager of F	A CLOT AN O	ທຸ
102,800 102,900 103,000 103,100 interpolated. SALVADOR 343,700 362,100 380,700 399,600 419,000 3/ Values for S.J. de Miraflores includes those TRIUNFO. 398,400 417,200 436,200 455,600 475,300 existing San Juan STP. Those are presented in parenthesis. L. 2,415,600 2,510,900 2,608,700 2,709,500 2,813,200	SALVADOR 343,700 102,900 103,000 103,100 interpolated. SALVADOR 343,700 362,100 380,700 399,600 419,000 3/ Values for S.J. de Miraflores Includes those existing San Juan STP. Those are presented in parenthesis. L. 2,415,600 2,510,900 2,608,700 2,709,500 2,813,200	TIAGO: DE	66,80	78,70	.∾	06,0	03,30	15,9	00	in each	district.	tios from 1	990 EQ 19	
EL SALVADOR 343,700 362,100 380,700 399,600 419,000 3/ Values for S.J. de Miraflores includes those DEL TRIUNFO 398,400 417,200 436,200 455,600 475,300 existing San Juan STP. Those are presented in parenthesis. TOTAL 2,415,600 2,510,900 2,608,700 2,709,500 2,813,200	EL SALVADOR 343,700 362,100 380,700 399,600 419,000 3/ Values for S.J. de Miraflores includes those DEL TRIUNFO. 398,400 417,200 436,200 455,600 475,300 existing San Juan STP. Those are presented in parenthesis. TOTAL 2,415,600 2,510,900 2,608,700 2,709,500 2,813,200		02,80	05,80	end.	3,00	03,00	03,1	00	interpol	tr o			J •
DEL TRIUNFO. 398,400 417,200 436,200 455,600 475,300 existing San Juan STP. Those are presented in parenthesis. TOTAL 2,415,600 2,510,900 2,608,700 2,709,500 2,813,200	DEL TRIUNFO. 398,400 417,200 436,200 455,600 475,300 existing San Juan STP. Those are presented in parenthesis. TOTAL 2,415,600 2,510,900 2,608,700 2,709,500 2,813,200	EL SALVADO	43,70	62,10	ന	0,70	99,86	19.0	.00	/ Values	or S. J. de		, , , , , , , , , , , , , , , , , , , ,	
	resentanted de la company de l	DEL	98,40	7,20	. 4 r	6,20	455,60	75,3	00	xistin	San Juan S	P. Those a	e presented	ຍ ຕ
TOTAL 2,415,600 2,510,900 2,608,700 2,709,500 2,813,20	TOTAL 2,415,600 2,510,900 2,608,700 2,709,500 2,813,200		H H H H H H H H H H H H H H H H H H H	10 to	13	13 11 + 11 + 13 + 13 +	11 (11 (11 (11 (11 (arenth	Š			
		TOTAL	,415,60	,510,90	2,0	8,700	708,50	813,		•				

TABLE S-5 DISTRIBUTION OF POPULATION BY DISTRICT

DN DS/H DS/L ID 5,240 2,140 720 29,960 45,440 5,600 26,960 14,450 6,690 31,720 73,130 54,250 13,480 48,370 40,750 59,760 6,640 0 197,810 46,170 26,920 39,640 11,260 0 29,540 23,290 3,970 17,010 3,990 0 15,110 77,560 8,030 15,110 77,560 8,030 29,540 23,290 3,970 29,540 23,290 3,970 29,540 23,290 3,970 29,540 23,290 3,970 29,540 23,290 3,970 29,540 23,290 3,970 29,540 23,290 3,970 29,540 23,290 3,970 8,380 237,150 30,170 8,380 237,150 30,170		(4)	0002		ocs.	म । स्य
5,240 2,140 720 29,960 45,440 5,600 26,960 14,450 6,690 31,720 73,130 54,250 13,480 48,370 40,750 59,760 6,640 0 197,810 46,170 26,920 39,640 11,260 0 29,540 23,290 3,970 17,010 3,990 0 15,110 77,560 8,030 15,110 77,560 8,030 29,540 23,290 3,970 29,540 23,290 3,970 29,540 23,290 3,970 29,540 23,290 3,970 29,540 23,290 3,970 29,540 23,290 3,970 29,540 23,290 3,970 29,540 23,290 3,970 8,380 237,150 30,170 8,380 237,150 30,170	LEVEL	(8) PROJECTED	S	SERVICE LEVE		CREASE
5,240 2,140 720 29,960 45,440 5,600 26,960 14,450 6,690 31,720 73,130 54,250 13,480 48,370 40,750 59,760 6,640 0 197,810 46,170 26,920 39,640 11,260 0 29,540 23,290 3,970 17,010 3,990 0 15,110 77,560 8,030 15,110 77,560 8,030 15,110 77,560 8,030 29,540 23,290 3,970 29,540 23,290 3,970 29,540 23,290 3,970 29,540 23,290 3,970 29,540 23,290 3,970 8,280 80,170 93,610 17,220 61,750 33,330 6,120 2,370 169,370 54,160 8,380 237,150 30,170	αI	POPULATION	DS/	S	CI CI	(B/A)
29,960 45,440 5,600 26,960 14,450 6,690 31,720 73,130 54,250 13,480 48,370 40,750 59,760 6,640 0 197,810 46,170 26,920 39,640 11,260 0 29,540 23,290 3,970 17,010 3,990 0 15,110 77,560 8,030 15,110 77,560 8,280 80,170 93,610 17,220 81,750 21,070 8,280 80,170 93,610 17,220 81,380 237,150 30,170 8,380 237,150 30,170	140	8,500	5,500	2,250	750	1.05
26,960 14,450 6,690 31,720 73,130 54,250 13,480 48,370 40,750 59,760 6,640 0 197,810 46,170 26,920 39,640 11,260 0 29,540 23,290 3,970 17,010 3,990 0 15,110 77,560 8,030 15,110 77,560 8,280 80,170 93,610 17,220 61,750 33,330 6,120 2,370 169,370 54,160 8,380 237,150 30,170	່ຕ	135,600	50,180	75,950	9,470	1.67
31,720 73,130 54,250 13,480 48,370 40,750 59,760 6,640 0 197,810 46,170 26,920 39,640 11,260 0 29,540 23,290 3,970 17,010 3,990 0 15,110 77,560 8,030 15,110 77,560 8,280 80,170 93,610 17,220 81,750 21,070 8,280 80,170 93,610 17,220 81,380 237,150 30,170 8,380 237,150 30,170		47,400	26,560	16,150	4,690	0.99
13,480 48,370 40,750 59,760 6,640 0 197,810 46,170 26,920 39,640 11,260 0 29,540 23,290 3,970 17,010 3,990 0 15,110 77,560 8,030 15,110 77,560 8,280 80,170 93,610 17,220 61,750 33,330 6,120 2,370 169,370 54,160 8,380 237,150 30,170	130	180,900	36,200	126,530	18,070	1.14
59,760 6,640 0 197,810 46,170 26,920 39,640 11,260 0 29,540 23,290 3,970 17,010 3,990 0 15,110 77,560 8,030 (13,600) (70,120) (7,280) (34,750 21,070 8,280 80,170 93,610 17,220 61,750 33,330 6,120 2,370 169,370 54,160 8,380 237,150 30,170	40,7	139,700	18,330	107,430	13,940	1.36
197,810 46,170 26,920 39,640 11,260 0 29,540 23,290 3,970 17,010 3,990 0 15,110 77,560 8,030 (13,600) (70,120) (7,280) (34,750 21,070 8,280 80,170 93,610 17,220 61,750 33,330 6,120 2,370 169,370 54,160 8,380 237,150 30,170		211,300	190,200	21,100	0	3.18
39,640 11,260 0 29,540 23,290 3,970 17,010 3,990 0 15,110 77,560 8,030 (13,600) (70,120) (7,280) (34,750 21,070 8,280 80,170 93,610 17,220 61,750 33,330 6,120 2,370 169,370 54,160 8,380 237,150 30,170		277,100	202,330	47,220	27,550	1.02
56,800 29,540 23,290 3,970 21,000 17,010 3,990 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	٠.	53,200	41,440	11,760	0	1.05
17,010 3,990 0 15,110 77,560 8,030 (13,600) (70,120) (7,280) (34,750 21,070 8,280 80,170 93,610 17,220 61,750 33,330 6,120 2,370 169,370 54,160 8,380 237,150 30,170	က	55,500	28,860	22,760	3,880	0.98
15,110 77,560 8,030 (13,600) (70,120) (7,280) (34,750 21,070 8,280 80,170 93,610 17,220 61,750 33,330 6,120 2,370 169,370 54,160 8,380 237,150 30,170 653,650 906,970 262,880 2,	9,990 0	22,400	18,150	4,250	0	1.07
(13,600) (70,120) (7,280) (34,750 21,070 8,280 80,170 93,610 17,220 61,750 33,330 6,120 2,370 169,370 54,160 8,380 237,150 30,170 653,650 906,970 262,880 2,		298,500	44,800	229,810	23,890	2.96
34,750 21,070 8,280 6 80,170 93,610 17,220 31 61,750 33,330 6,120 1C 2,370 169,370 54,160 41 8,380 237,150 30,170 47	_	(126,100)	(18,840)	(97,170)	(10,090)	(1.39)
80,170 93,610 17,220 31 61,750 33,330 6,120 10 2,370 169,370 54,160 41 8,380 237,150 30,170 47 653,650 906,970 262,880 2,81		69,800	37,840	25,100	6,860	1.09
61,750 33,330 6,120 2,370 169,370 54,160 8,380 237,150 30,170 653,650 906,970 262,880		315,900	132,680	154,830	28,390	1.65
2,370 169,370 54,160 8,380 237,150 30,170 653,650 906,970 262,880		103,100	62,900	33,950	6,250	1.02
8,380 237,150 30,170 653,650 906,970 262,880	0	419,000	8,450	335,260	75,290	1.85
1,823,500 653,650 906,970 262,880	,150 30,	475,300	14,330	413,490	47,480	1.72
	,970 262,880	2,813,200	918,750 1	,637,940	258,510	1.55
Ratio (%) 100 36 50 14	50 14	100	33	28	တ	

CHAPTER 5
SEWAGE QUANTITY AND QUALITY

CHAPTER S.5 SEWERAGE QUANTITY AND QUALITY

Sewerage flow measurements on the Surco outfall and three planned intake points were conducted during the Study to determine the present sewage discharge amount which would serve as basis, together with the data on population projection, for estimating the amount of sewage discharge in year 2000. Measurements were made under two conditions: one is with the intake from the Rimac river to the Surco river open, and the other with the intake close.

Simultaneous with the flow measurements, sewage water quality analyses were carried out to determine the required capacity of sewage treatment plant. Analyses on Heavy Metals were also performed taking into consideration the possibility of irrigation use.

S.5.1 Present Sewage Quantity

S.5.1.1 Flow Measurements on the Surco Outfall

Sewage flow measurements were conducted two times each at the points shown in FIGURE S-2. It is assumed that the flow of Surco outfall is the sum of the flows of three main sewers, namely: Colector Surco, Colector Circunvalacion and Colector Balnearios del Sur. On the second measurement, the intake gates of the Surco river were closed in order to discount the possible influence of the "acequia" on the sewage flow. Results of these measurements are summarized in TABLE S-6.

TABLE S-6 Results of Sewage Flow Measurement at Surco Outfall

		May 31 -	June 1,	1989	elek j		October	19 - 20,	1989	
	Surco	Circun.	B.Sur	Total Q	Rate	Surco	Circun.	B.Sur	Total Q	Rate
Maximum Quax	4.929	1.454	0.305	6,569	1.223	4.477	1.612	0.296	6.324	1.274
Average Qavg	4.058	1.134	0.178	5.370	i	3.625	1.157	181.0	4.963	I
Minimum Qmin	2.769	0.839	0.082	3.756	0.699	2.313	0.841	0.076	3.240	0.652

Location of Measuring Point, and Measuring Date and Time

1. Surco: Colector Surco, Diameter 1.54 meters

Av. Jr Mexico 270, Surquillo

1st: from 10:00, May 31 10:00, June 1, 1989

2nd: from 8:45, October 19 to 8:30, October 20, 1989

 Circun.: Colector Circunvalacion, Diameter 1.31 meters Av. Julio Calero 140, Surguillo

1st: from 10:30, May 31 to 10:30, June 1, 1989

2nd: from 8:45, October 19 to 8:30, October 20, 1989

3. B. Sur: Colector Balnearios del Sur, Diameter 0.75 meters Av. Daniel Portocarrero 264, Surquillo

1st: from 10:30, May 31 to 10:30, June 1, 1989

2nd: from 8:45, October 19 to 8:30, October 20, 1989

As can be seen from the TABLE S-6, there was a difference of about 0.41 m³/sec (5.370 m³/sec in the first as against 4.963 m³/sec in the second) between the two measured average flows. This difference is attributed to the reduction of sewage discharge due to the decrease in water consumption, and the prevention of intrusion flow from the Surco river. About 0.13 m³/sec of this is supposed to have been due to lower water consumption as deduced from a comparison of records of amount supplied by the Atarjea Treatment Plant during same period, the balance of 0.28 m³/sec is attributed to the stoppage of intrusion flow from the Surco river.

The present (1989) average flow was assumed at 5.0 m³/sec, which is roughly the mean of the first measurement done in this Study (5.37 m³/sec) and the measurement performed by the SEDAPAL in 1988 (4.77 m³/sec). Due to obvious reasons, the result of the second measurement made in this Study was disregarded in the reckoning of the average flow.

With reference to the design standard of SEDAPAL, the estimated actual water supply amount, the results of sewage flow measurements, and the guidelines adopted in Japan, the per capita domestic sewage quantity for different service groups is projected as follows:

Service Group	Per Capita Sewage Discharge (1pcd)
Direct Service High Water Consumption	210
Direct Service Low Water Consumption	180
Indirect Service Group	110

Based on the above assumptions and on an estimate of population falling under the respective service category, the estimated domestic sewage quantity for 1989 was $3.62~\text{m}^3/\text{sec}$.

TABLE S-7 Domestic Sewage Quantity (1989)

		Categorie	\$	
	D/S.H	D/S.L	ID	TOTAL
Population	639,660	829,320	263,520	1,732,500
Sewage Discharge (1pcd)	210	180	110	
Sewage Quantity (m3/sec)	1.555	1.728	0.336	3.619

As before mentioned, industrial wastewater and intrusion water were estimated at 0.32 and 0.28 $\rm m^3/sec$, respectively. Miscellaneous wastewater comprises the 0.78 $\rm m^3/sec$ to complete sewage flow balance of the estimated 5.0 $\rm m^3/sec$ average sewage quantity.

S.5.1.2 Flow Measurements on the Intake Points

Results of flow measurements on three intake points of the Surco outfall given in TABLE S-8, show no unexplainable difference between the

two measurements carried out on intake point No. 1 and intake point No. 3. The variances obtained are regarded as normal fluctuations in daily sewage discharge. On the other hand, the very large difference in measurement results for intake point No. 2 can be explained by a sudden decrease in sewage flow due to the shifting of the distribution of water supply to another drainage area.

TABLE S-8 Results of Sewage Flow Measurement unit: m3/s

			oint No.			ake Poi Villa M	nt No.2 aria				Point N urco	lo.3
	6/0	6-07	10/2	4-25	6/00	5-07	10/24	-25	6/06-	07	10/24-	25
	Flow	Rate	Flow	Rate	Flow	Rate	Flow	Rete	Flow	Rate	Flow	Rate
Maximum Qmax	0.6071	1.67	0.6693	1.57	0.2222	1.83	0.0827	1.70	3.3469	1.21	3.1344	1.21
Average Qavg	0.3632	1	0.4243	1	0.1209	1	0.0486	1 :	2.7611	1	2.5751	1
Minimum Qwin	0.1501	0.41	0.2006	0.47	0.0936	0.77	0.0222	0.45	1.5189	0.55	1.5138	0.58

Location of Measuring Point, and Measuring Date and Time

- 1. Intake Pt. No.1: Colector Circunvalacion, Diameter 1.3 meters
 - Parque Fundadores, Av. J. de Aliaga, Santiago de Surco
 - 1st: from 10:45, June 6 to 10:30, June 7, 1989
 - 2nd: from 9:45, October 24 to 9:30, October 25, 1989
- 2. Intake Pt. No.2: Emisor General Villa Maria del Triunfo
 - 1st: Av. Pachacutec 828, Diameter 1.2 meters

from 11:15, June 6 to 11:00, June 7, 1989

2nd: Av. Pachacutec/Jose Carlos Mariategui, Dia. 0.632 meters
from 9:30, October 24 to 9:15, October 25, 1989

3. Intake Pt. No.3: Colector Surco, Diameter 1.25 meters

Av. Nueva Tomas Marsano/Jorge Chavez CDA 38

1st: from 11:00, June 6 to 10:45, June 7, 1989

(Data at 9:30, 9:45 and 10:15 are interpolated.)

2nd: from 9:15, October 24 to 9:00, October 25, 1989

S.5.2 Future Sewage Quantity

S.5.2.1 Surco Outfall

Based on the same per capita sewage discharge according to service group adopted for 1989, the sewage quantity in year 2000 is estimated to reach $5.68~\rm{m}^3/\rm{sec}$.

TABLE S-9 Domestic Sewage Quantity (2000)

	D/S.H	Categories D/S.L	ID	TOTAL
Population	899,290	1,507,860	279,950	2,687,100
Sewage Discharge (1pcd)	210	1.80	110	
Sewage Quantity (m3/s)	2.186	3.141	0.356	5.683

Industrial wastewater is expected to increase by 10 percent from the 1989 figure to 0.36 $\rm m^3/sec$. Intrusion flow which was suspected to have come from the Surco river is eliminated. Quantity of miscellaneous wastewater is projected to decrease to 60 percent of its present level or to 0.47 $\rm m^3/sec$. The predicted total sewage flow in the year 2000 is therefore 6.51 $\rm m^3/sec$.

S.5.2.2 Intake Points

Projected available sewage flows at the intake points in the year 2000 are summarized by category in TABLE S-10. Sewage flows are 0.74 m^3 /sec at intake point No. 1, 0.92 m^3 /sec at intake point No. 2, 2.39 m^3 /sec at intake point No. 3, and 2.46 m^3 /sec at remaining main sewers.

TABLE S-10 Available Sewage Quantity at Each Intake Point

	•	NTITY BY CLA		(m ³ /s)
INTAKE POINT, NAME OF MAIN SEWER		INDUSTRIAL		TOTAL
No.1, Colector Circunvalacion	· ·	0.036	0.053	0.740
No.2, Emisor General Villa Maria del Triunfo	0.857	0.000	0.066	0.923
No.3, Colector Surco	1.932	0.264	0.172	2.388
Remaining	2.244	0.035	0.176	2.455
Total Sewage Quantity	5.684	0.355	0.467	6.506

The sewage quantities planned to be taken at the intake point as called for in the selected optimum alternative are 1.0 m³/sec each at intake point No. 1 and intake point No. 2 in Phase I, and 2.0 m³/sec at intake point No. 3 in Phase II. This shows that, i) there will be enough sewage flow at intake point No. 3 in the year 2000, ii) available sewage flow at intake point No. 2 will be almost the same as the planned intake amount, and iii) intake point No. 1 will have insufficient flow. It may be possible to secure additional sewage flow for intake point No. 1 through interception of flows from other areas, and if the efficiency of the water supply system is improved. However, due to many unpredictable factors, it is advisable to consider these measures after assessment of actual conditions when the Project is completed. Additionally, if the planned intake quantity cannot be obtained by any of the above measures, pumping sewage from the Colector Surco would be another possible alternative solution.

S.5.3 Present Sewage Quality

S.5.3.1 Biochemical Oxigen Demand (BOD5) and Suspended Solid (SS)

Summary of past records of the SEDAPAL and results obtained in this Study with regard to the water quality analyses at existing sewage facilities, namely: the main sewers, San Juan STP and Carapongo STP, are as follows:

TABLE S-11 Present Sewage Quality

(unit: mg/1)

	BOI	D5	Suspended	Solid (SS)
Facility	Range	Average	Range	Average
Main Sewers	146-333	227	152-289	239
San Juan STP Carapongo STP	214-300 130-280	252 187	88-306 171-590	221 298

BOD5 concentration in the Carapongo STP is lower than in other facilities possibly because of the influence of water intrusion from the "acequia".

Colector Surco and Colector Circunvalacion, which raw sewage will be diverted for irrigation reuse in this Project, have the following water quality values:

TABLE S-12 Present Sewage Quality in Main Sewers (unit: mg/1)

Name of Main Sewer	BOD5	(mg/1)	SS (n	ig/1)
	Range	Average	Range	Average
Colector Surco	231-333	269	241-300	270
Colector Circunvalacion	146-233	185	152-278	228

S.5.3.2 Heavy Metals

Since it is highly possible that treated sewage will be reused for irrigation under this Project, it is important to consider the presence and concentration of heavy metals in sewage. In this regard, Class III of Water Quality Standards is applied for irrigation based on the General Law of Water in Peru.

Results of past analyses (TABLE S-13), including those obtained in this Study, on the raw sewage from Colector Surco and Circunvalacion indicated that except for Lead and Iron, concentrations of all other items were below the limit of the standards. However, it is expected that the

Lead and Iron concentrations in raw sewage will decrease to permissible levels once treated in stabilization ponds. In addition, there has been no reported harm done by heavy metals so far, even though raw sewage is being used for irrigation in many places in Lima.

TABLE S-13 Heavy Metals of Raw Sewage in Main Sewers

Items -		Past Record	Analyses Result in this Study	Water Quality Standard *		
		Colector Surco	Colector Surco and Circunvalacion	Class - III		
		Nov.,1984	Oct.& Nov.,1989	¥**		
Mercury	Hg μg/1	· •• •• •• •• •• •• •• •• •• •• •• •• ••	0.3 - 1.3	10		
Cadmium	Cd mg/l	0.01 - 0.03	0.005 - 0.02	0.05		
Lead	Pb mg/l	0.15 - 0.35	0.02 - 0.27	0.1		
Chromium	Cr mg/1	-	0.00	1.0		
Iron	Fe mg/l	3.2 - 6.25	1.2 - 1.44	1.0		
Manganese	Mn mg/l	0.05 - 0.12	0.06 - 0.08	0.5		
Copper	Cu mg/1	0.1 - 0.55	0.06 - 0.22	0.5		
Zinc	Zn mg/l	0.16 - 0.34	0.32 - 0.53	25		
Arsenic	As mg/l	0.02 - 0.04	-	0.2		

^{*:} Ley General de Aguas, Decreto Ley No.17752, Nov., 1983, Government of Peru. This law is based on the Standards of EPA, United States.

It may appear from the above analyses that heavy metals in irrigation is not a problem in the planned reuse of treated water for irrigation but considering their long-term effect, it is recommendable that, i) standards for receiving of industrial wastewater be consolidated, and ii) a control system for industrial wastewater quality be established.

S.5.4 Projected Sewage Quality

Projection of sewage quality for the design of sewage treatment plant was investigated and decided in consideration of the present sewage quality in existing facilities and per capita pollutant loading.

Ranges and averages of BOD5 and SS concentrations in existing facilities are given in Subsection S.5.3.1. In determining the pollutant loading per capita, references used were the World Bank Technical Paper and the actual planning values adopted in Japan. Results of calculation for BOD5 concentration of raw sewage are 225 mg/l in 1989 and 240 mg/l in year 2000.

Taking into account the above-mentioned data and considering such other factors as the ratio of flow between the two main sewers under study, the present sewage quality, and the need to provide for a slightly higher value to take care of load fluctuations, the adopted design sewage quality is 250 mg/l for both the BOD5 and SS.

CHAPTER 6

ALTERNATIVES

CHAPTER S.6 ALTERNATIVES

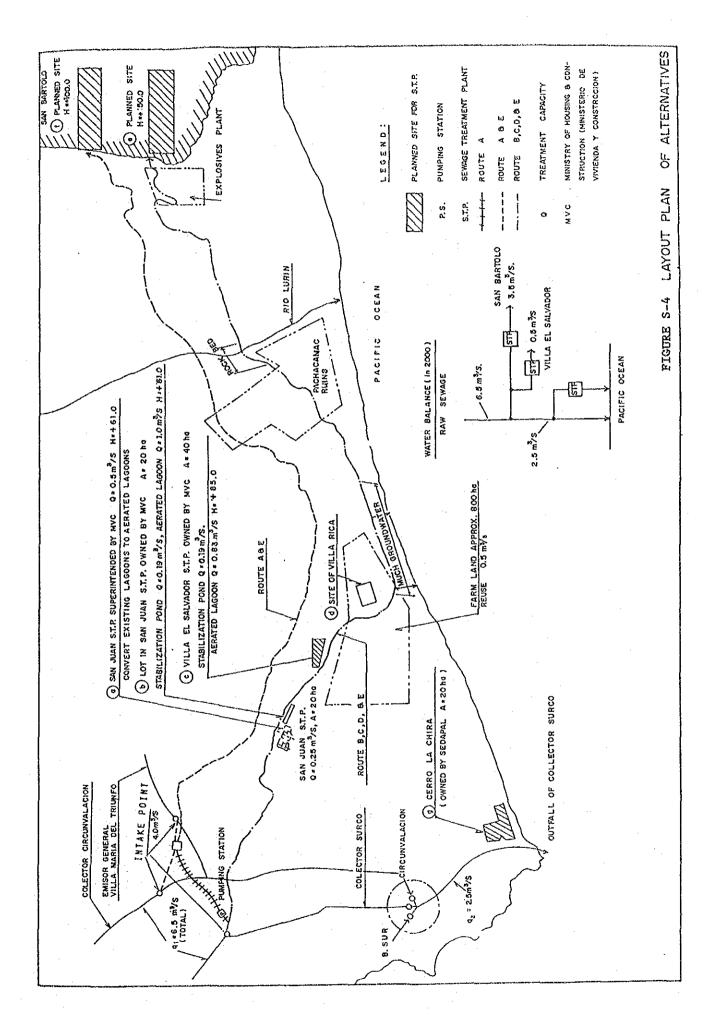
Five alternatives have been studied to establish an appropriate plan for the Project both for improvement of sewerage system and construction of sewage treatment plant. These are further subdivided into subalternatives in accordance with the phased implementation plan. Major differences in the alternatives involve transmission route, existence of pumping station, sewage intake points and sewage amount.

Schematic plan and layout of the different alternatives are drawn in FIGURES S-3 and S-4.

S.6.1 Principle for Planning

The total amount of raw sewage discharged from the Surco Outfall shall be treated.

The total outflow was estimated to be 6.5 m³/sec average in the year 2000. Of this, 4.0 m³/sec shall be treated in San Bartolo or along the way to San Bartolo to the extent of available land area for treatment facilities (about 0.5 m³/sec of the treated sewage shall be used to irrigate areas in Villa El Salvador) and the remaining 2.5 m³/sec shall be treated by optimum treatment method at the Cerro La Chira site owned by SEDAPAL. Raw sewage transmission at San Bartolo shall either be at elevation 100 m or elevation 50 m.


The aerated lagoon method is adopted for the northern area of Rio Lurin (right bank) considering the difficulty of land acquisition with sufficient area, and the stabilization pond method for the southern area (left bank) where land acquisition is easy.

Screen and grit chambers shall be provided at sewage intake facilities to avoid clogging and provisions shall be made at inverted siphon section to remove sand and silt deposits.

Reinforced concrete pipe shall be used for gravity flowing sections; ductile cast iron pipe for inverted siphon sections with pressure over 4 kg/cm²; prestressed concrete pipe for inverted siphon sections with pressure less than 4 kg/cm²; fiberglass reinforced plastic mortar pipe for places with high salinity. Concrete lined open channels shall be used for gravity flowing sections located within sparsely populated areas.

FIGURE S-3 . Schematic Plans of Alternatives

그 쇼	P.L.AN	(1, ty m ³ /s	PHASE I unit: m ³ /s	u, ty m³/s	PHASE U unit: m3/s	LEGEND
	A,	4.0	0.90050 2.6000	į		
₹,	Az	2.0	050 (a) (A) (b) (c)	2.0	0.90	Stabilization Pond
·	A ₃	1.0	0.50050	3.0	3.00-6	M Herated Lagoon
	B,	4.0	2.6 \$\frac{1}{2.6} \frac{1}{2.6} \frac{1}{2.6	1		O intake facility
<u></u>	ъ 2	2.0	3.1 \$\times 1.5	2.0	2.0 0	(e) Fumping Facility
	B3	0.1	0.50	3.0	3.00	
	Ċ	2.33	1.50-1-1 0-1-0-0-33 0.5 全器 法 0.5 医 0.33	1.67	1.670	
ζ	C ₂	85.	1.00 0.50 0.33 0.5 6 1.33	2.17	2.170	
<u>ک</u>	^{్ప}	0.83	0.50	3.17	3.170	
·	ري .	1.0	0.5 \$\int \chi \chi \chi \chi \chi \chi \chi \chi	3.0	3.00 (180 0.5	
-	ĽQ.	5.1	0;1 () () () () () () () () () (2.5	250	
)	Dz	1.0	1.00—7 	3.0	3.0 ○	
ji.	E.	2.0	1.00-1.00-1 5.1 *- \(\infty\) -00.1 -00.1	2.0	2.00	
2)	E3	1.0	0,1 🗲 🛛 — — — — — — — — — — — — — — — — — —	3.0	3.00	

Prospective sites (Refer to FIGURE S-4 for location) for the treatment plant are as follows:

LOCATION	AREA (ha)	REQUIREMENT FOR ACQUISITION
Existing San Juan	STP** 10	Approval of Ministry of Housing & Construction
San Juan	35	Moving of plantation
Villa El Salvador	40	Moving of plantation and school, Existing lagoon
Villa Rica *	40	Large outlay for land acquisition
San Bartolo (Elevation 100 m)	60 x 7	Easy to acquire
San Bartolo (Elevation 50 m)	60 x 7	Easy to acquire
Cerro La Chira **	20	Planned site for future project of SEDAPAL

^{*} Shelved in the meantime because of difficulty in raising necessary funds.

The maximum sewage treatment capacity of each proposed site is as follows:

	TREATMENT CAPA	CITY (m3/sec)
LOCATION	STABILIZATION POND	AERATED LAGOON
San Juan S.T.P.		0.5
San Juan	0.19	1.0
Villa El Salvador	0.19	1.0
San Bartolo (Elev.	100 m) 0.5 x 7	- · · ·
San Bartolo (Elev.	50 m) 0.5 x 7	

S.6.2 Outline of Alternatives

S.6.2.1 Alternative A (Pumping and Gravity Flow)

Sewage shall be conveyed from the southern part of Lima to San Bartolo at elevation 100 m. This is accomplished by pumping from the diversion points then by gravity through inverted siphons and open channels. Treated water is supplied to the irrigation areas. FIGURE S-5 shows the schematic diagrams of three plans for this alternative.

Sewage treatment plants shall consist of aerated lagoons at Villa El Salvador and stabilization ponds at San Bartolo.

^{**} Reserved for future project of SEDAPAL

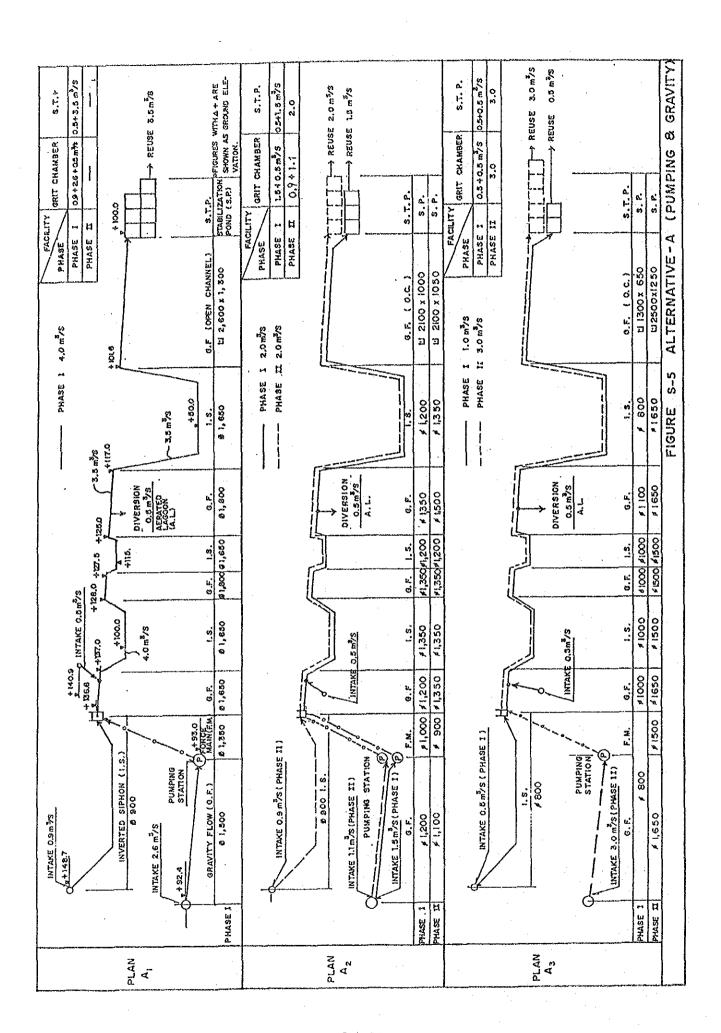
S.6.2.2 Alternative B (Gravity Flow)

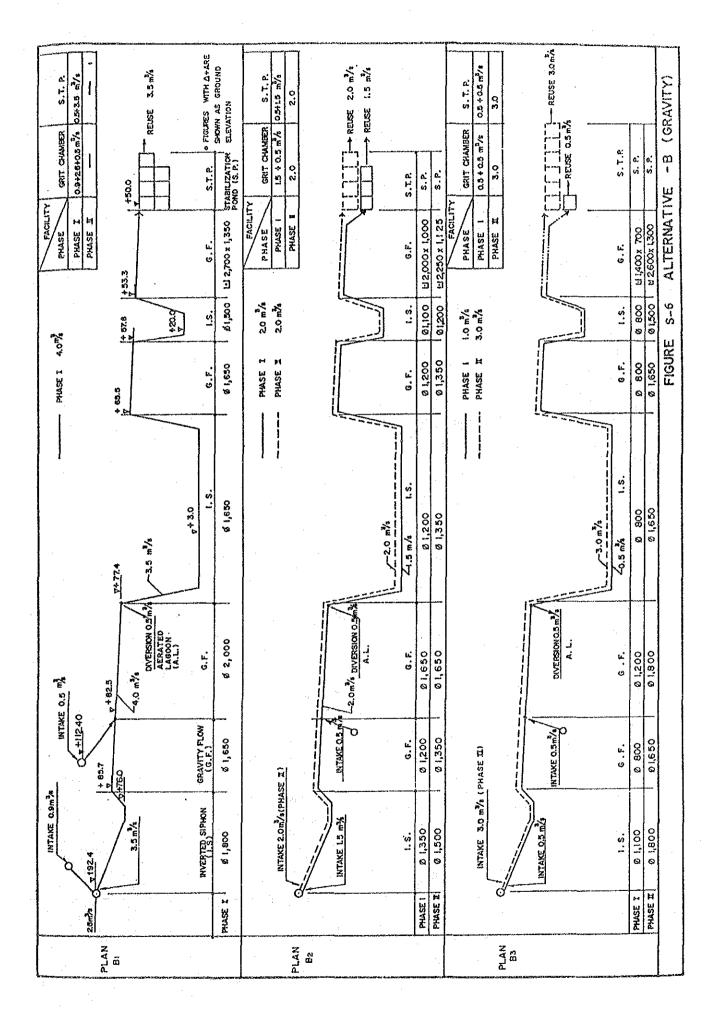
Sewage shall be conveyed from the southern part of Lima to San Bartolo at elevation 50 m. Sewage is transmitted by gravity from San Juan via
Villa El Salvador, Lomo de Corvina Beach and Pachacamac up to San Bartolo
where it will be treated and reused for irrigation. Schematic diagram of
this alternative is illustrated in FIGURE S-6. Sewage treatment plants
shall be of the same methods as in Alternative A. Approval for passage
through the Pachacamac Ruins and the Explosives Plant has not been obtained. However, it will be possible after settling of several problems.

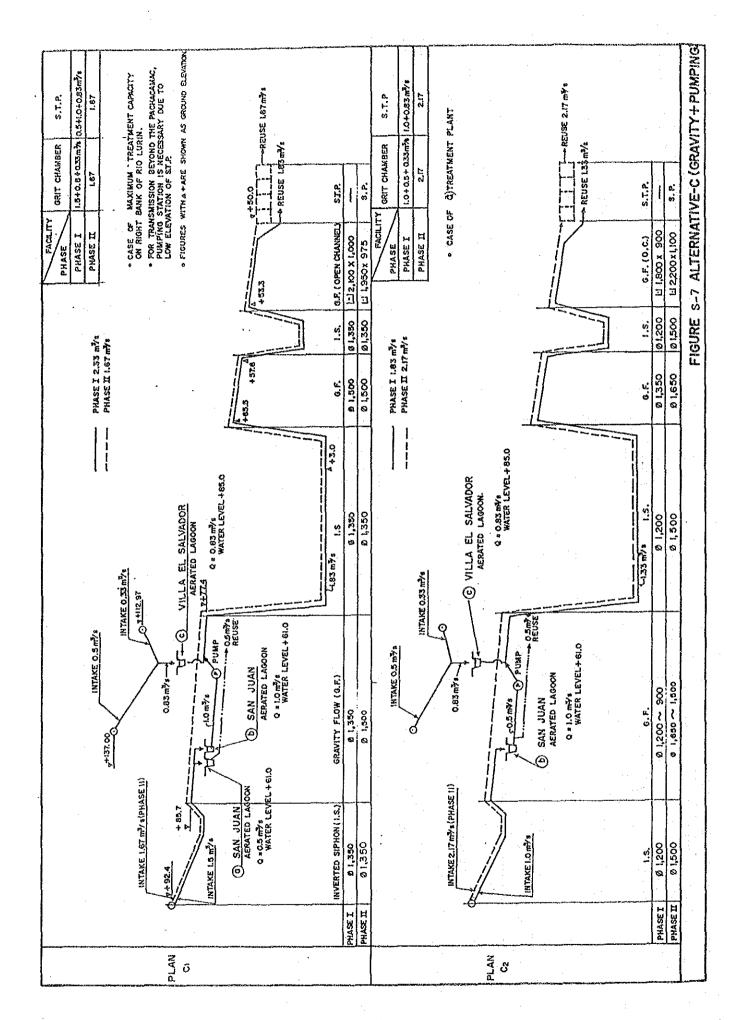
S.6.2.3 Alternative C (Gravity Flow and Pumping)

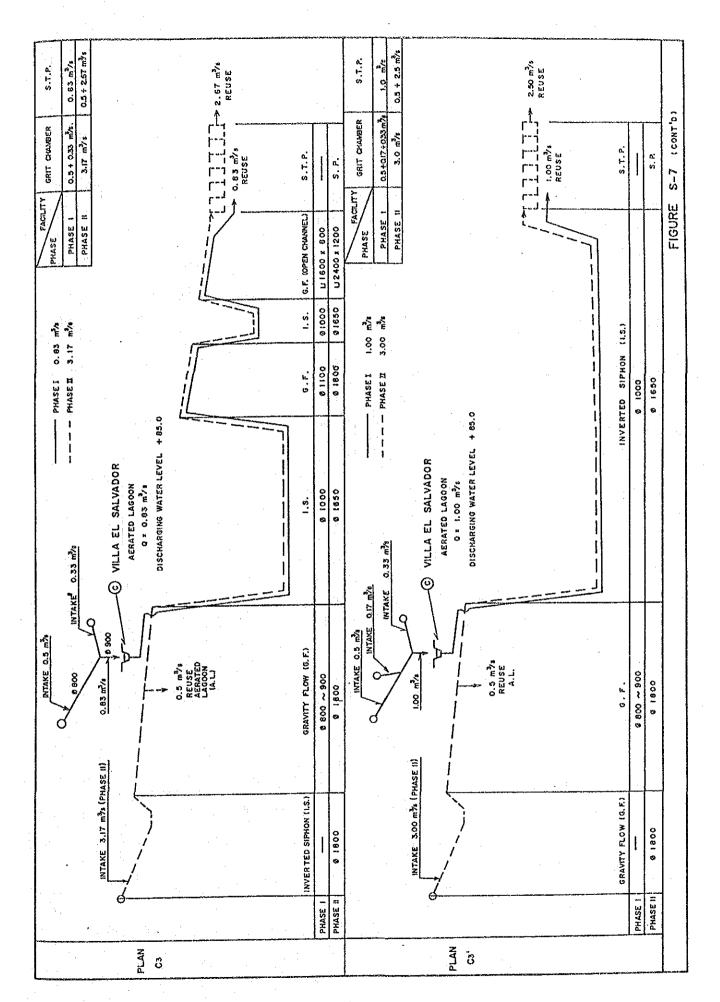
Sewage from the southern part of Lima is first treated at the right bank of the Rio Lurin to the extent facilities for water treatment will allow, then conveyed to San Bartolo at elevation 50 m (Phase I). Treatment plants shall be erected in San Bartolo like in Alternate B to take care of the remaining sewage water (Phase II). FIGURE S-7 shows the schematic arrangement under several plans or subalternatives.

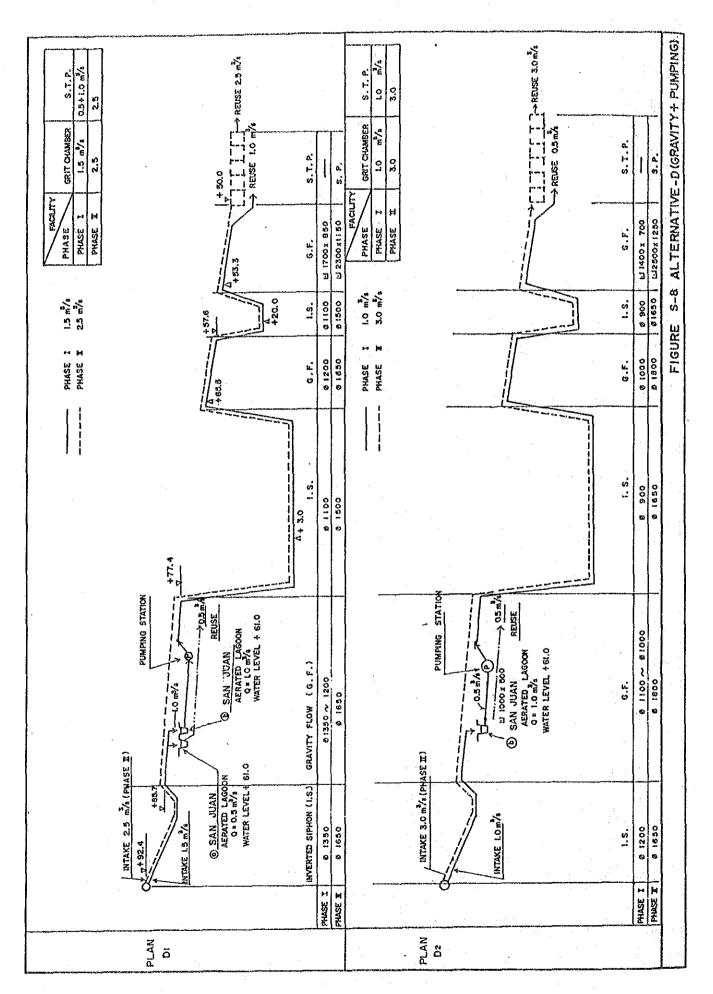
S.6.2.4 Alternative D (Gravity Flow and Pumping)


Alternative D is basically the same as Alternate C except the location of the treatment plant. FIGURE S-8 shows the schematic diagram of the proposed system.


S.6.2.5 Alternative E (Gravity Flow)


Sewage from the southern part of Lima is transmitted to San Bartolo, treated, and supplied for irrigation. In Phase I, the target elevation at San Bartolo is 100 m whereas in Phase II, Elevation 50 m (FIGURE S-9). This alternative was made considering the advantages of alternative A and B.


S.6.3 Summary of Planned Sewage Quantity


The sewage quantity for each alternative is summarized in TABLE S-14.

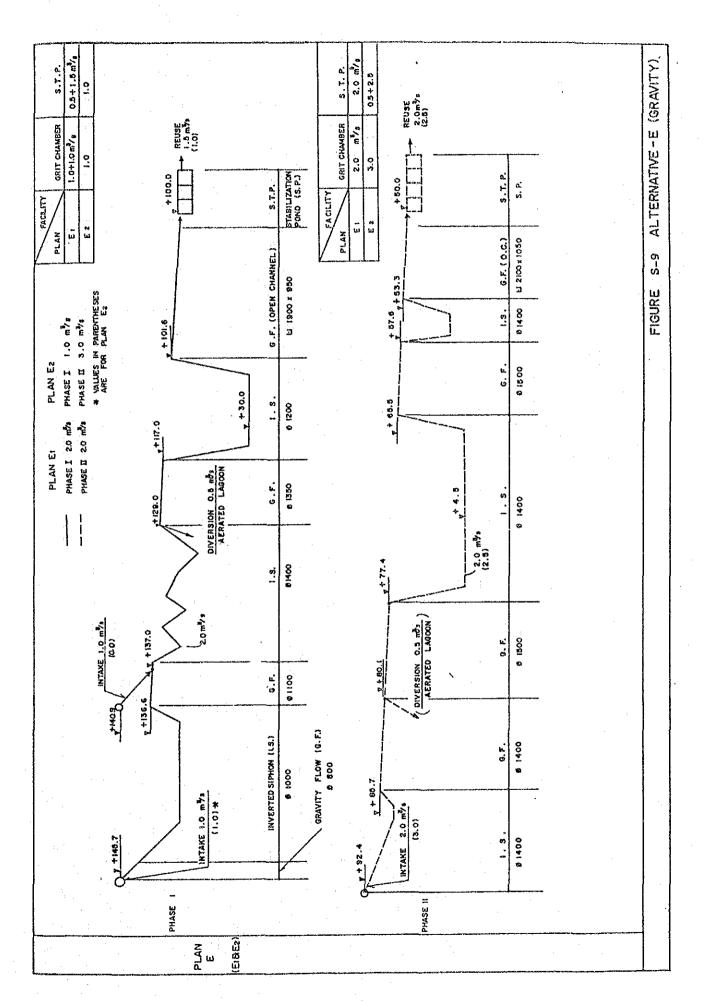


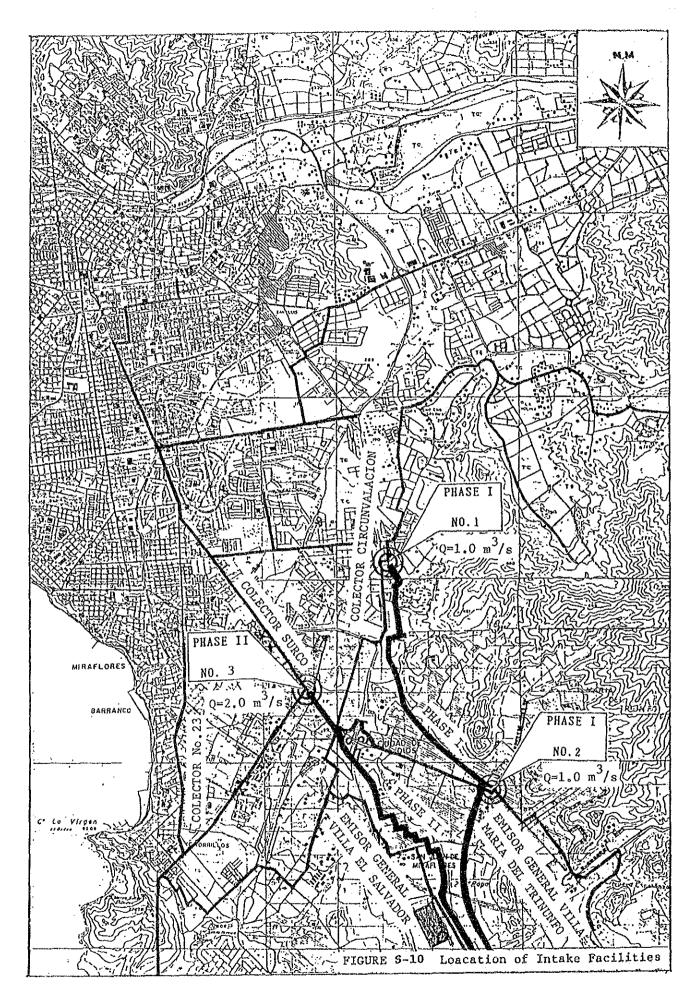
TABLE S-14 Summary of Planned Sewage Quantity

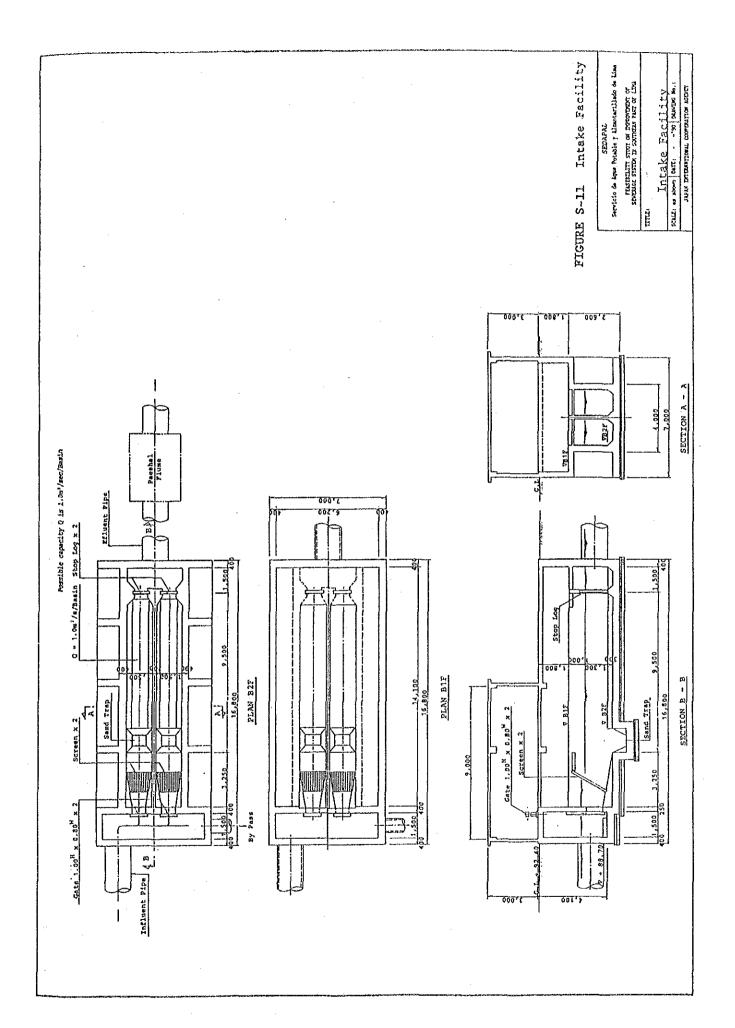
		go, eSuperio Andre	REMARKS										as relay pumping station is				*A relay pumping station is	necessary		
			7	Total				2.0 m3/s	3.0		2.0 m ³ /s	3.0	1.67	2.17	3.17	3.00	2.5 m ³ /s	3.0	2.0 m3/s	3.0
	П	Œ	SAN	BARTOLO	Stabilization	Ponď		2.0 42/5	3.0											
	PHASE	(e)	SAN	BARTOLO	Stabil	Ро					2.0 13/3	3.0	1.67 "3/5	2.17	2.67	2.50	2.5 43/5	3.0	2.0 "3/\$	2.5
T O E	H-	(3)	VILLA EL	SALVADOR	2 C C C C C C C C C C C C C C C C C C C	Lagoon														
O J E		(9)	SAN JUAN		50 0 0 0 0 W	131 B 138					·				0.5 m³/s	0.5	:			0.5 m³/s
PR				Total			4.0 M3/S	2.0	1.0	4.0 m ³ /s	2.0	1.0	2.33	1.83	0.83	1.00	1.5 m³/s	1.0	2.0 33/8	1.0
AL		(t)	SAN	BARTOLO	Stabilization	ກດ	3.5 *3/8	1.5	0.5											
TOT] B	(e)	SAN	BARTOLO	Stabil	Pond				3.5 #3/2	1.5	0.5							1.5 83/5	1.0
	PHAS	(c)	VILLA EL	SALVADOR		O KE	0.5 #3/5	0.5	0.5				0.83	0.83	0.83	1.00			0.5 43/5	
		(p)	SAN JUAN		4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	nerated Lagoon				5/E# 3.0	0.5	0.5	1.0 m ³ /s	1.0 *			1.0 #3/\$	1.0		
		(a)	SAN JUAN	STP		2						•	0.5 #3/8				0.5 #3/\$:
	Plan Creation of STP Treatment		eatment	ethod	A IOH	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	610 A 	18	B2	Вз	່້ບ	Ü	[] bəz	C	D D	û	wo 可	[귀 표		
			ž	Ho[1	∠ hesinu	Press	JOH.	m ————————————————————————————————————	310			wolf v		0	٦	- 43 i	g Grav			

CHAPTER S.7 PRELIMINARY ENGINEERING DESIGN OF ALTERNATIVES

Preliminary engineering design based on the concepts developed in Chapter S.6 was undertaken to provide a basic data for cost estimation. Major facilities necessary to be constructed for the project are: intake facility, transmission facility, pumping facility, and sewage treatment facility.

S.7.1 Intake Facility

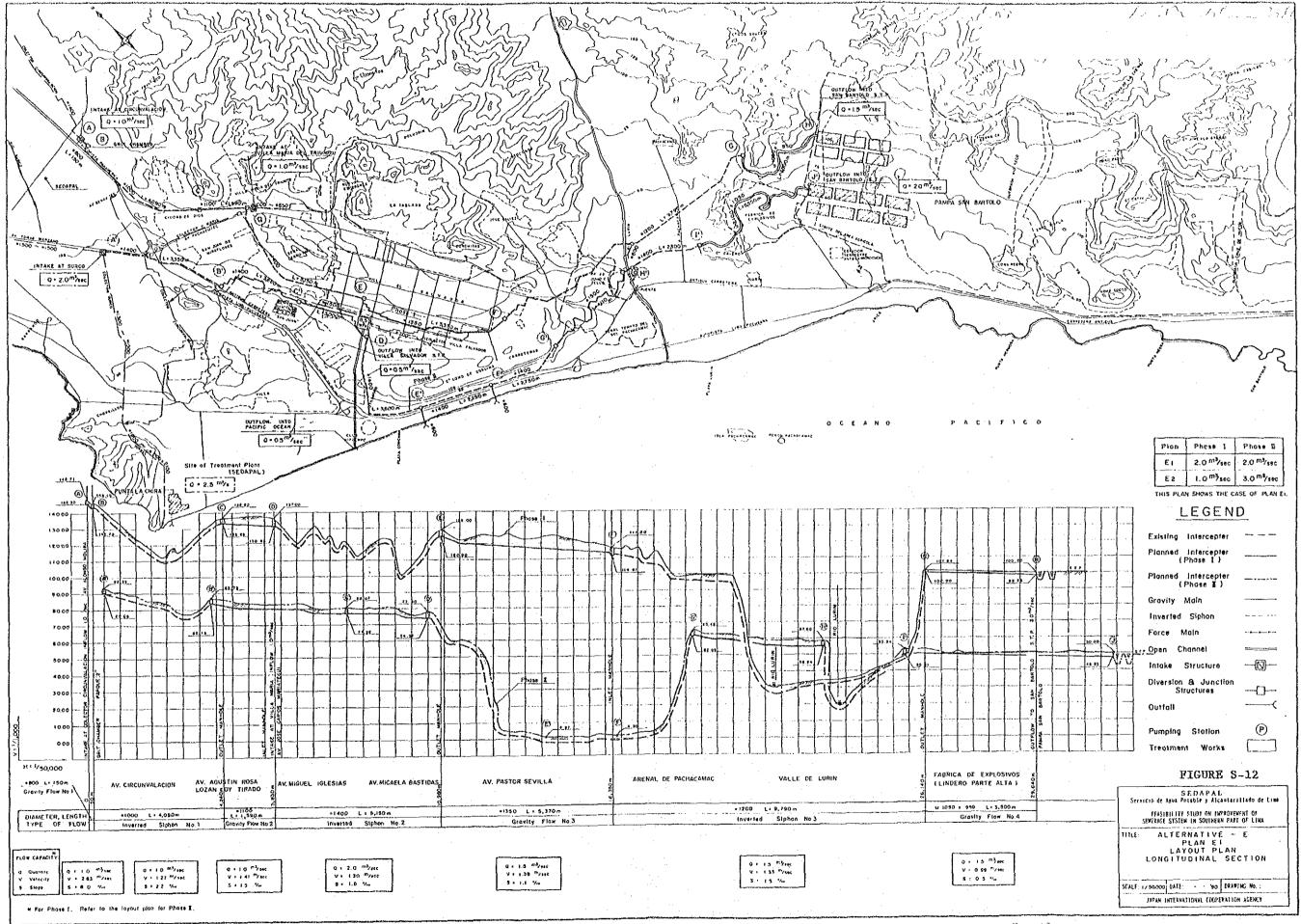

Sewage intake shall be located at a point on the Colector Surco, the Colector Circunvalacion, the Colector Villa Maria del Triunfo and the Colector Villa El Salvador as shown in FIGURE S-10. TABLE S-15 shows the allocation of sewage intake corresponding to the alternatives outlined in the previous section.


TABLE S-15 Planned Intake Amount

Main	Sewer	Colector Circunvalacion	Emisor General Villa Maria Del Triunfo	Colector Surco	Emisor General Villa El Salvador
	Aı	0.9	0.5	2.6	
A	A2	0.9 (II)	0.5 (1)	1.5 (I) 1.1 (II)	
	A3	0.5 (I)	0.5 (I)	3.0 (II)	
	B <u>1</u>	0.9	0.5	2.6	
В	B ₂	0.9 (II)	0.5 (1)	1.5 (I) 1.1 (II)	
	Вз	0.9 (II)	0.5 (1)	0.5 (I) 2.1 (II)	
	C1	n ann ann ann ann ann ann ann ann ann a	0.5 (1)	1.5 (I) 1.67(II)	0.33 (I)
C	C2		0.5 (I)	1.0 (I) 2.17(II)	0.33 (1)
	C ₃	•	0.5 (1)	3.17(II)	0.33 (I)
	C3'		0.5 (I)	3.00(11)	0.33 (I) 0.17 (I)*
40 45 40 M	D1	4 and 600 cap yes have up by the DA 60 40 Am Em Am Tan 60 Am E 100	g and since you have been duty that you have the since the first that the since the si	1.5 (I) 2.5 (II)	
D	D ₂			1.0 (I) 3.0 (II)	
	E ₁	1.0 (I)	1.0 (1)	2.0 (II)	5 CD 40 CD 4
E	E2	1.0 (I)		3.0 (II)	

^{* :} Branch Sewer of Emisor General Villa El Salvador.

Sluice gate type intake facility such as that shown in FIGURE S-11 shall be used.


S.7.2 Transmission Facility

Conduit capacity is decided based on planned intake amount and its daily fluctuation. Manning's formula is applied for gravity flow with free water surface while the Hazen - Williams formula is adopted for sections of pressure flow.

Pipe materials planned for the alternatives are: reinforced concrete pipe for gravity flow section, ii) ductile cast iron pipe for pumping flow section, iii) prestressed concrete pipe and ductile cast iron pipe for inverted siphon, and iv) concrete lining for open channel.

The inverted siphons will be made up with inlet chamber with screen and grit chambers. Manhole will be installed in location where there are changes in pipe diameter, unevenness of invert level, pipe intersections, and where required for maintenance. Blow-off valves will be installed at appropriate intervals of inverted siphons. Drain pipes to be connected to nearest sewers except for those along the Lurin River where they shall be connected to sludge drying basins to prevent water pollution.

For illustration, layout plan and longitudinal section of transmission line for Alternative Plan E1 are presented in FIGURE S-12.

