	SUPERSTR	ICTURE		PILE DET	ATLS		HE	ADSTOC	к
	SPAN (m)	WIDTH (m)	NXDXT	 L (m)	Ъ (m)	1(m)	L (в (т)	Н
Taiena	17.0	9.2	6/500 x 14	26.3	1.2	2 © 3.270	9.2	2.5	1.925
Agobino	20.0	9.2	6/500 x 14	19.2	1.2	2 & 3.270	9.2	2.5	1.925
Ungongo	20.0	9.2	6/500 x 14	28.5	1.2	2 @ 3.270	9.79	2.5	2.125 2.025
Miaru	3 x 30	5.3	6/600 x 14 4/800 x 12	26.0 38.8	1.5 2.0	2 @ 1.650 3.3			2.975
Kapuri	3 x 21.5	5.0	6/500 x 14 4/800 x 12	22.3 36.1	1.5 2.0	2 @ 1.650	5.3 5.3	3.0 3.5	2.125
Lakekamu	37 + 46 + 37	5.3	6/800 x 12	6 x 9.3 6 x 5.3	1,6	2@1.65	5.3	3.5	4.035
			4/1000 x 12		2,0	2.7	5.3	4.0	1.4
Tauri	37 + 46 + 37	5.3	6/800 x 12	6 x 5.4 6 x 6.9	1.6	2 @ 1.65			4.03
			4/1000 x 12	13.5	2.0	2.7	5.3	4.0	1.4
Makara	2 x 20	5.3	6/500 x 14	• • • •	1.5		5.3		2.12
· · · · · · · ·			4/800 x 12	34.6	2.0	3.3	5.3	3.5	1.4
Sappaharo	2 x 20	5.3	6/500 x 14	6 x 32.1 6 x 27.9	1.5	2 @ 1.650	5.3	3.0	2.53 3.76
			4/800 x 12	41.7	2.0	3.3	5.3	3.5	1.4

Table 7 - 1 GIRDER STRESS AND DEFLECTION

•

BRIDGE	M	(kN-m)	SECTION (GRADE	MAX STRESS	DEFL (LL + I) /
	NON COMP	COMP	350)	(MPa)	(mm)
TAIENA	574	1163	910 x 304 x 224 kg UB	182	16
AGOBINO	805	1436	927 x 308 x 289 kg UB	201	26
UNGONGO	805	1436	lt.	201	26
MIARU	1518	1400	350 x 16 1100 x 12 350 x 40	193	34
KAPURI	756	926	927 x 308 x 289 kg UB	164	19
LAKEKAMU	-3839 2078	-3473 2730	500 x 28/14 1800 x 14 600 x 36/16	182 166	53
TAURI	3839 2078	-3473 2730	11	182 166	53
MAKARA	756	926	927 x 308 x 289 kg UB	164	16
SAPPAHARO	756	926	u	164	16

APPENDIX 4

Page 1

•

Table 7 - 3	PILE LOADS	AND	STRESSES
-------------	------------	-----	----------

	P 1	LE SE	CTTON	مفصلت ما مصالها بوارس	TOTAL 1	OAD ON PIL	E GROUP	PIL	E LOADS (k	n. m)		PILE ULT	MAX PILE	PILE
	No.	Dia	T	L'	DEAD	(<u>kN</u>). DEAD+T44		DEAD + T44(V)		D + EQ V (TEHS)	M	capacity (MPa)	STRESS (MPa)	LAT DEFL (mm)
		(mm)	<u> </u>				······································	170	920	390	155	2.300	104	51
TAIENA	6	500	ļ	26.3	566	1008	1087							
AGOBINO	6	500	14	19.2	666	1121	1188	190	1140	570	168	2.850	122	65
UNGONGO	6	500	14	29.5	666	1121	1188	190	1140	570	168	2.850	122	65
MIARU	6	600	14	26.0	546	1017	1050	170	900	350	304	2,250	117	70
	4	800	12	38.8	1742	2389	800	600	1900	1020	1354	4.750	R.C	121
KAPURI	6	500	14	22.3	378	836	900	140	700	275	193	1,750	109	90
	4	800	12	36.1	1406	2113	710	530	1400	700	1004	3,500	R.C.	79
LAKEKAMU	6	800	12	9.3	2070	2540	1044	425	1500	710	154	3,750	R.C.	26
	4	1000	12	5.3 13.5	2850	3770	1760	950	4500	3000	3875	11,250	R.C.	145
TAURI	6	800	12	5.4	2070	2540	1044	425	1500	710	154	3,750	R.C.	26
	4	1000	12	13.5	2850	3770	1760	950	4500	3000	3875	11,250	R.C.	145
MAKARA	6	500	14	29.4	378	836	900	140	700	275	193	1,750	109	90
	4	800	12	34.6	1406	2113	710	530	1400	700	1004	3,500	R.C.	79
SAPPAHARO	6	500		32.1 27.9	378	836	900	140	700	275	193	1.750	109	90
	4	800	12	41.7	1406	2113	710	530	1400	700	1004	3,500	R.C.	79

Table 7-4 REACTION AND BEARING TYPE

			Reaction (k	N)		
		Dead Load	Live Load	Total	Bearing Type (kN)	Remarks
Taiena .	External	121	381	502	BP-B103 (Fix)	
Creek	Internal	132	357	489	BP-B104 (Mov)	
Agobino	External	147	393	540	n	
Creek	Internal	164	369	533	II	
Ungongo	External	147	393	540	11	
Creek	Internal	164	369	533	11	
Miaru	External	182	246	428	BP-8101 (Fix)	
Ríver	Internal	182	223	405	BP-8102 (Mov)	
Kapuri	External	126	234	360	¥	
River	Internal	126	212	338	п	
Lakekamu	Abutment	347	365	712	BP-B104 (Mov)	Mov on abutmer
River	Pier	1165	737	1902	BP-B117 (Fix)	Fix on pier
Tauri	Abutment	347	365	712	H	11
River	Pier	1165	737	1902	55	15
Makara	External	126	234	360	BP-B101 (Fix)	
River	Internal	126	212	338	BP-B101 (Mov)	
Sappaharo	External	126	234	360	u	19 <u> </u>
River	Internal	126	212	338	u	

APPENDIX 4 Page 2

	D	RIL	ΓÌ	NG	L	G				ION D EI				er 4.30 m		NO.B 6 H : 20.00	i m]		DRI	LLI	NG	LOG	*******			MIARU		ER 4.30 m		NO.B 7	Page
ALVI KIN	Ţ	ROLLANZIZ	rictores	LOG		ASSI- CATION	GWL	PEN		ATIC				JUDOM	ENT ON	LIQUEF	-	- ·	GALL DEPTH	NOLIN	CNESS	LOG	CLASSI-	GWL			<u>n tes</u>		T	·····	1 :40.00 LIQUEF	ACTION
m	-	H m	<u>m</u>	ŀ		p soil	<u>m</u>	N VAL	UE	N -	• VA • • • • • •	LUE 0 50	SAME	JEST DATA	Presign	FL	De		5 A m	an m	THICKNESS		FICATION	m	N VALUE	N - 10 20	VALUE	Tawes		PESION	FL	Dr
	0	<u>3.3'</u>	1.0		}	·	1.40		30 30				1.9 2.9	0.032		2.48	1.00	-	-			7	Top soil	0.2 57 0.7	3/30			1.0	A 120		1.19	1.0-
				Ź	1 s	andy silt	•	u i	/30	117	Ĺ		3.9	0.053	•••	1.70.		-				/ /	Silty sand		3/30 4/30			2,0	0.120 0.130 0.065		1.08. 1.13	<u>,</u>
			3.0 0.5	7 	<u>.</u>	Sand -			/30				4.0	0.06		1.68		-	<u>3.4</u> - - 4.5	0.9			Silty clay					4.0	0.009			
5- -					Ξ.	Sandi			30							1.69	4		3 -				Silty sand		6/30 7/30						1.22 1.28.	4 4
7.0	5	-2.7 -3.2	0,5	.0.0.0.0		gravel		13/	Γ							1.82	"		- - -						6/30			_		0,12.	1.20	ų
9.	0		0.5 1.0			nd Sand Sand	-	14/. 11/	ſ						0,10	1.86	\$								8/30 10/30		┼╌╎╸╎	-			1.31 1.41	к к
0	<u> </u>		0.5			Sand		12/	30							1.71	ı		 				Silty		11/30			-			1.44	3
-	.0	. 1.7	2.5					-	30 30	/						<u> </u>	5		-			- 	sand		7/30 3/30		┼┼┉┼	-			124. 0.99	4
		-				Sand	-	17/	1	Ņ						1.82	,					 			13/30						1.51	L
114.1	_	-9.7	-			Sand		19/ 26/	Γ	Î						1.94									14/30 9/30					-	1.36	5
							•	22/:	30	┼┦		·				2.05.			-						9/30	•					1.36	\$
						Sand		20/:	ſ			_				<u>1.95</u> 1.85	- 1 5						1		10/30 17/30		┤┤┤	_			1.4Z. 1.70.	5 5
								20/:	Γ							1.99	,						• • •		9/30	Ĭ	╅┽┥				1.3.9	,
70 20.	<u>o -</u>	15.7	5.5		:		· · ·	20/	30							2.00	"		10-			<i>f</i> 7	•		7/30 6/30	•	$\left\{ \right\}$	-			1.3 >	5
								ið.		11															18/30						,	
								200 423	ſ														Silty. Jand		10/30		┼┼┽	-				
								13	;.														•		7/30 4/30							
				-				-	ا ب بر	╢	<u></u>														5/30 "			-				
								:97	Γ														Silty sand		17/30 10/30		╋╣┙	1				
				·				•	"-	╢	+						•								10/30		┨┨	-				

.

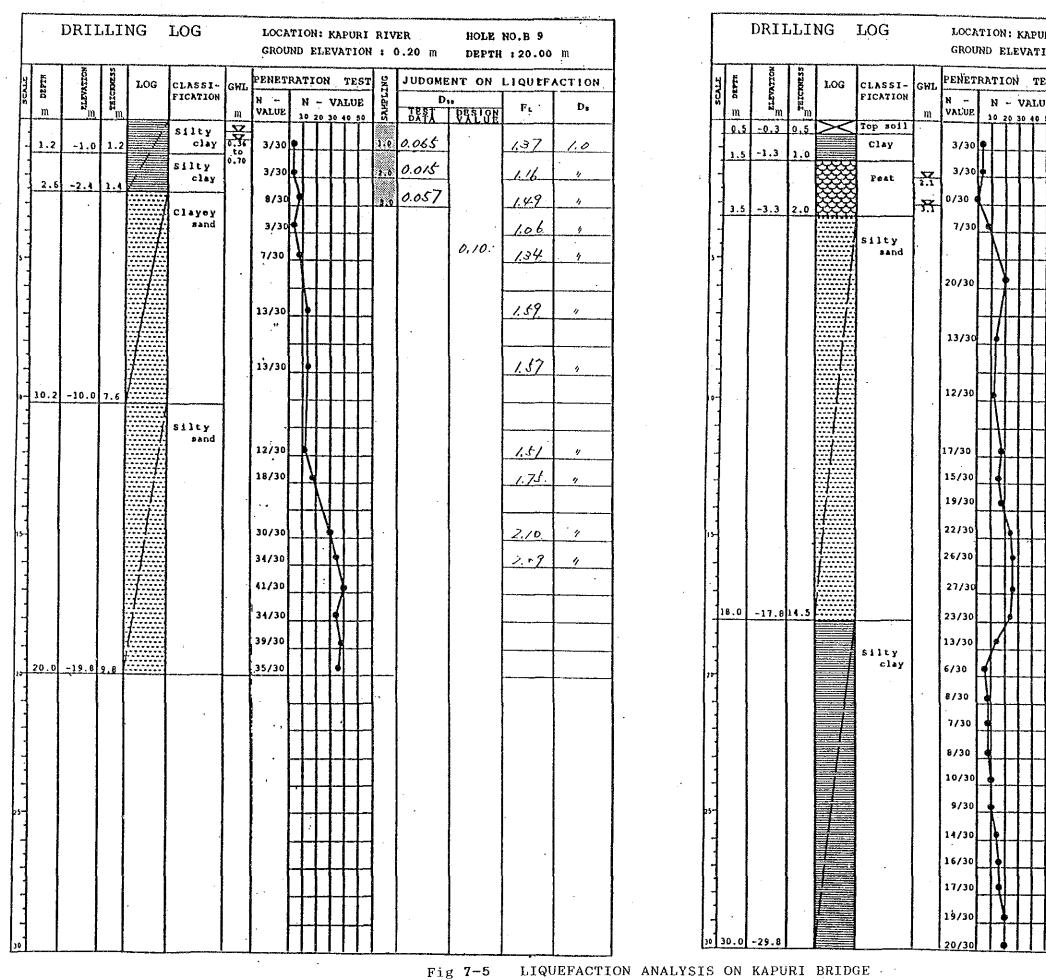

.

Fig 7-4 LIQUEFACTION ANALYSIS ON MIARU BRIDGE

APPENDIX 4

Page 3

.

APPENDIX 4

				•	Page 4
JRĨ	RIV	ER	NOT n		
).20 m	DEPTH	NO.B 10	m
EST	10				
UE	SAMPLING	D	NT ON		ACTION
50 50	SAM	LEST	PUSICN	۴ı.	D∎
				3.05	
1					1.0
┼╴				1.93	4
+-			,	0.99	2/3
╵	4.0			1.96	1.0
	5.0				
Τ				- > 4	· · · · ·
╈	6.0		,	Z.35	/, 0
╀	7.0	0.120	0.12		
1-	1.0	•		1.86	1.0
	1.0	0.031			
Τ				. 23	
┢				1.73	1.0
╉╾					·
Τ					
┢					
┼╌					
Ļ					
Τ					
┼╴					
-					
1					
┢					
╀╌					
				-	
Γ					
T					
╉╌					
ļ					
	d	······································			

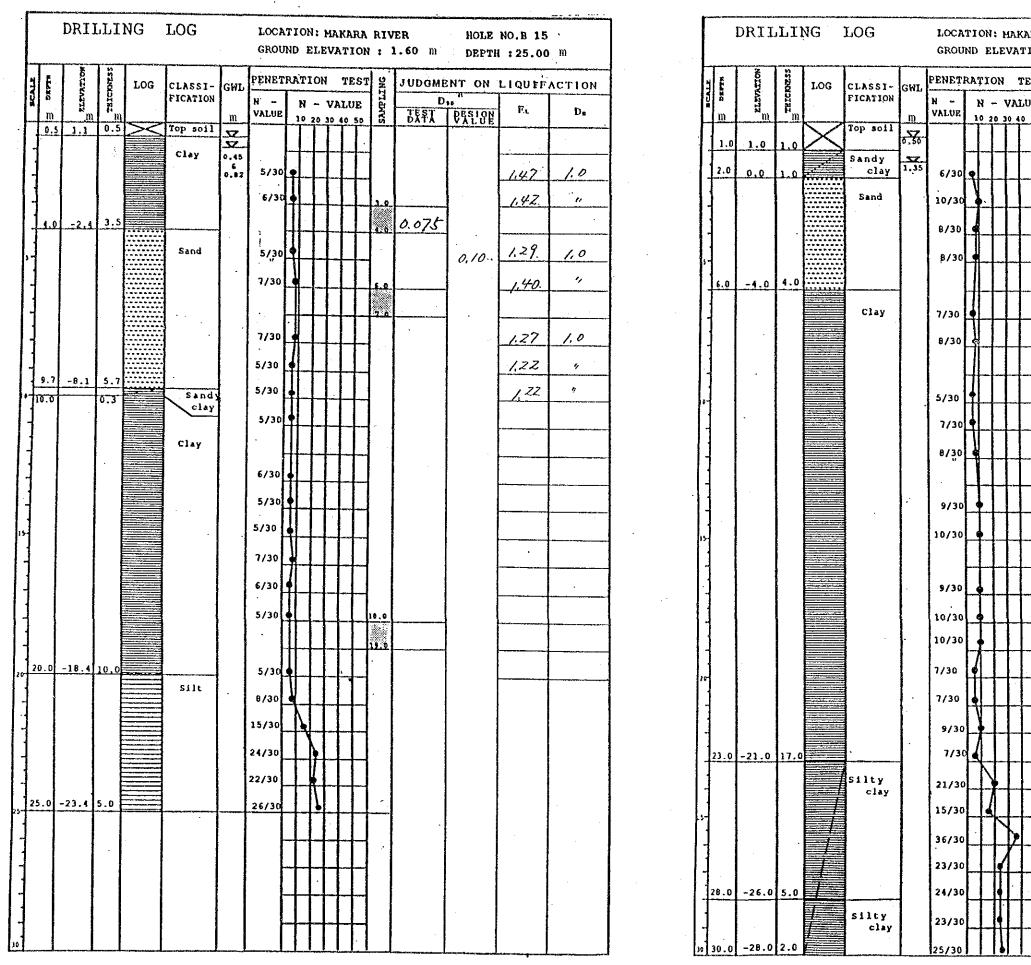
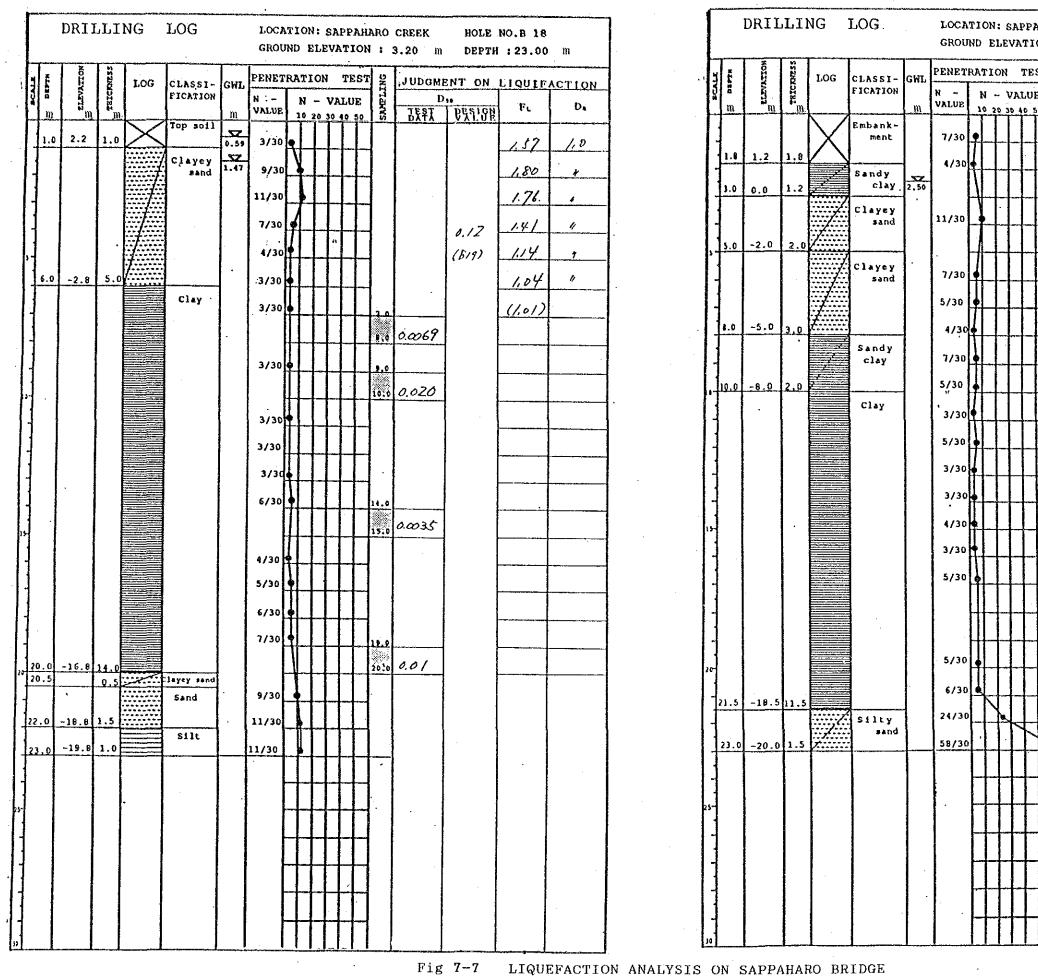



Fig 7-6 LIQUEFACTION ANALYSIS ON MAKARA BRIDGE

. .

APPENDIX 4

		-		ŀ	Page 5
	RIV		HOLE	NO.B 16	
101	: 2	2.00 m	DEPTH	:40.00	m
EST	DNI	And the second design of the s	NT ON	LIQUEFA	CTION
UE 50	SAMPLING		PESICE	FL	D.
Ĩ			TALUS		
╈					
+-				1.29	1.0
				1.45	<i>'.</i>
			0.19£	1.29 1.45 1.25 1.22	<i>»</i>
	5.0			1.22	4
	6.0	0.195			
				(1.10).	
	.0	-			
	. 2008. I	0.026			
- -	9.0	0.020			
┼╴					
+					
	17.0				
	13.0	0.008			·
_					
	15.0				
	16.0	0.015			
	1				
	1				
-	1				
	-				
	·				
_ _					
1-	1				
+-	1				
╉	1				
-	1				

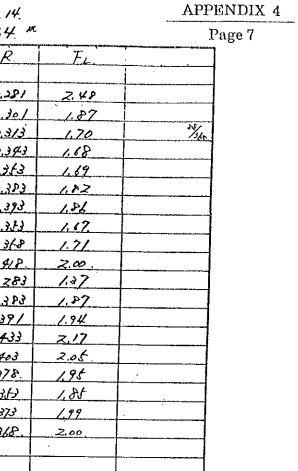
APPENDIX 4

Page 6

					Page 6
			Hole Depth	NO.B 19 :23.00	m
ST	2 K	JUDON	ENT ON	1. I QU EF A C	TION
E 50	SAMPLING	D. JEST	621.26	Fi	D
				4.49	1.0
	2,0	0.070		2.29	¥
	3.0	0.070			
	1.0			2,24	1.0
-	5.0	0.120	0,12		
-	•			1,66.	
┢				1.40.	
	ì			1.27	1
				(1,48)	
-					
╞╴					
_					
	<u>17.0</u>		4		
 	0.0	0.0023	-		
-	112.0		-		
-					
-					
$\left - \right $					
P					
╉	1				
┢	·				
\uparrow	1		1		
┢	1				
1	1				
T	1				
-	<u>.</u>				

Table 7-6		LIQUEF	PER (1		JATION	1	MARU	RIVER	NO. E	<u> </u>		1 .	= 0.14
	X (M)	NIA	Dto.	Ϋ́τ,	Ý _t ,	n.	rd	6 N	6r'	<u> </u>	Ŕ,	R₂.	Ŕ
	_1.0.	ઝ		1,7	1.8	0.9	0.985.	. 0. 166.	0.202	0.112	0,158	0,123	0.2
	2.0	4	0.035.				0.970	0.346	0,292	0.161	0,178	0.123	0.3
		<u> </u>	0.0.13	0,10			0.9.ft	0.121	0.382	0.184	0,19	0,123	0.3
	Eo	8.	D.o.b.				0.925.	0.886	0.562.	0.204	0.22	4	0.3
	<u> </u>				·		0.910.	1066.	0.652	0.208	0.23	<u> </u>	0.31
1	7.•						0.895	1.246.	0.742	0,210	0.26	"	<u>e.3</u>
. f	- S.e				·		0.88.	1.426	D.P37	0.211	0.27		0.37
ŀ	9.0			·····			0. Pht.	1.606	0.922	0.211	0.23	4	0.3
F	10.0	<u></u>					e.e.t.	1.786_	1.01Z	0.210	0234	1	0.31
	12.0	<u> </u>		.70			0. 83F.	1.964	1.10Z	0.208	0.295		0.41
F	13.0	17.					0.92	2.146	1.192	0.207	0.16		0.20
F	14.	19.					0.805.	2.326	1.282	0.204	0.26	11 1	0.3
F	15.0	26.					0.775	2.506	1.372.	0.202	0.268	9	0.39
Γ	16.0	z2.					0.76	Z.686 Z.866	1.46Z. 1.55Z	0.199	03/	!	0.43
	17.0	20.					0.745	3.046	1.642	0.196. 0.193	0.28	*	0.40
	18.0	17.					0.73	3.226	1.732	0,190	0.255.		0,370
	19.0	20.					0.715	3.406	1.822	0.187	0.25	"	0.35
	20.0	20.					0.70	3586	1.912	0.184	0.244	<u> </u>	<u>0.37</u> 3
										<u></u>	<u> </u>	¥	1.368
L		ا ن											

Table 7-6


.

LIQUEFACTION CALCULATION PAPER (2)

.

(ks = 0.14

· 7 1 / 1	N Lā	Dte	Ý.	· · ·	· · /	14.	· · ·				<u> </u>	= 0.2 "		
<u> </u>	<u></u>	1 1 50	rx.	172	<u>{+</u>	r.	. 0 m	<u> </u>	<u> </u>		: R ₂	<i>R</i>		
1.0	3		17	1.2	0.9	. n. 98+.	0.78	0.101	0,232		Aut	0.275		
2.0	3	0.15.	<u>}</u>	<u>، ا</u>		0.970.		6.126	0248	0.112	•		1.19	84/54/ 94/ 912
зъ	4	10.12.0.07	1012	1		1	: 0.538		0.2+2	0,10	<i>w</i>	0.267	1.08	
5.0	£.	0.09			·····	1	0.89A		0.250		F	0.285	1.13	er/4
6.0	7.	, , , , , , , , , , , , , , , , , , ,				1	1.078.	3	1	0.20		0.005	1.22	
7.0	6.					0.894		1	0.247	0.21		0.315	1.28.	
£o	P.		Ī				· · · · ·	-	0.244	6.122		0293	1.20	
9.0	1.0 .					0.88	1.438	1	0.241	021		0.315		
10.0					·····	0.865.	1.61P	0.826	6.237	0.228		0.333	1.41	
11.0	7	†		·		D. S.F.	1.798	0.916.	0.234	0.23		0.234.	1.44	
12.0	 	t			······	0.834.	1.978.	1.006.	0.230	0.18	•	0.285	1.24	
	<u> </u>	┼━━━━━┥	<u> </u>		· · · · · · · · · · · · · · · · · · ·	0.82	2.68	1.096	0.226	0.118		0.223	0.99	DE=1.0.
13.0						e. 80 F.	2.338	1.126	0.222	0.23	4 1	0.374.	1.51	
140			<u> </u>	-,		_0.790.	Z. 5/A	1.276	0.218	0.234	"	0.34-0.	456	
15.0	9					0.77 <u>5</u>	2.698	1.34	0.214	0.186	a	0.291	1.36	
16.0	<u> </u>	·		·		0.76	2.878	1.456	0.210	0.18	e	0.285.	1,36	
17.0	10					0.745	3.018	1.546	0,206.	0.189.	4	0.293	1.42 .	
18.0	_17					0.73	3,238	1.636	0.202	0.238	"	0.393	1.70	
19.0	<u> </u>					0.71t	3.418	1.726	0.198	0.17	4	0.275		+
20.0	_7!				•	0.70	3. 698	1.8/6.	0.194	0.15	4	0,215	1.39.	
								4. 5/19.	<u>,,,,,,</u>		. "	0,413.	1.22	•{}
			1		I		[•		

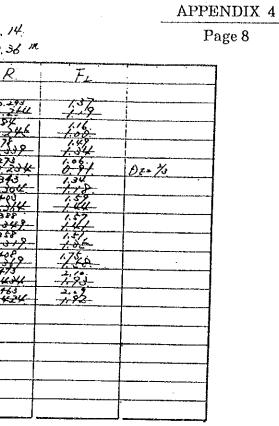


Table 7-6	5		FACTION	(3)	LATION		KAPURI	RIVER	No. J	<u>89</u>			= 0,1 = 0,3
	X (M)	NIÃ	D to	Yt.	Yr1	· rt.'	rd.	6 v	6 <u>~</u> ′	<u> </u>	R,	R2	Ŕ
2	1.0	3	0.065.	1.5	1.7	0.8	0.9Pt.	0.163	0.10.t	0.213	0.17	0.123	0.2
	2.0	3	0.015	(att)	1		0.97	0.333	0.185	0.244	0.161.		0.284
	3	8.	0.059	0.10			0.965	0. 603	0.265.	0.23	0.255.	*	0.378
	40	3		 			0.94	0.673	askt.	0.256	0.1t.	4	0.27
	<u>f.o</u>	2			1		0.925.	0. 843	0.42F.	0.257	0,22	•	0.34
	72	13.					0.89t.	1.183	0.685.	0.253	0.28		0.40
	9.0	13					0.86F.	1.523	0.7KF.	0.247	0.21t.		0.38
	12.0	12					0.82	Zais	0.98.t.	0.237	0.235.	4	0.25
	13,0	18					0.80F,	7,203	1.065.	0.231	0.2 Rt.	4	0.400 -0.30 -0.47 -0.40
-	15.0	<u>}.</u>					0.72.4	Z. 443.	1.22.F.	0,224	a 3.F.		0.41
ŀ	14.•	34					0.76	2.7/3	1.305. ·	0.22/	0.34	+	0.16
-	17.0	41.											
	. <u>,</u> P.	34						·					
ŀ				·····									
ŀ	20.0	- 35											
ŀ							···· .						• -
<u>ا</u> ـــ					(_								

Table 7-6

	PA:	PER	CALCULA			KAPURI	RIVER	No.	BID		ks	= 0,14 = z.1 #		
<u>X (M)</u>	N (I	Dto	Ϋ́t,	Y _{t1}	ľŧ.	ř.	6 Ar	Ór'	Ĺ	<i>R</i> ,		R		·
1.0	3		.8	1,9	1.0.	0.98t.	0.119	0268	1 0087		<u> </u>	0.26.5		
2.0	3	<u>!</u>		:		0.710	P. 357	0.368	D. 13Z	0.15.	0 70F	0.265	<u>3.05.</u> 1.93	
<u> </u>	0. 7					0. 7. ft.	0.549	0.448.	0.117	out.	4	0.1tt.	0.99	
6.0	20					0.940	0.739	0.588	1	0, 23		033t.	1.76	
0.0	13.	0.12	1==			e. PPe.	1.4.99	0.768	0.186	0.33 0.24		0.435	<u>z.3+.</u>	·
10.0	<u>12.</u> 17	0.31	/ (81)			e.850.	1.879	1.168	0.191	0.22+	\$	0,364	<u>1.96</u> 	
12.0	 5													
14.	19												•	
<u></u>	22.						· .						<u>.</u>	
<u> </u>	<u>_2/</u> 27												5	
/P.1	23											· · ·	4	
													÷	
19,0.	13.									·			ب ب	
	0													

. .

286

			PAPER	· · · ·	· · · · ·		АКАКА	<u>v Iv op</u>	No.	8/5		hu	= 0.14 = 0.45.14		
ł	<u>2 (m)</u>	NI	Dto	Ϋ́τ,	Yr. 1	ítə′	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<i>R</i> ,	R ₂	R.	FL	
ċ	7.0	£	· · · · · · · · · · · · · · · · · · ·	1.7	1.8	0.9	0.970.	0.356	0.216	0,204	0.205	0.123	0.320.	1.47	
c	30	6	0.075	+++0.1			0.9tt.	0.536		0.334	1		0. 223	1.42	į
	.t.o	<u> </u>			1		0,72t.	0.896	0.486	0,239	0.18F	<u>t</u>	0.318.	429	<u>.</u>
-	6.0			1			0. 710	1.076	0.576	0.238.	0.210	t	0.333	1.40	
Ļ	P.0		<u> </u>	 		i	a. DEa		0.756	0.234	0,17.4	"	0.298	1.27	
Ļ	9.0						0.884	1.611	0.246	0.22/	0.160	li	0.203	1.22	
C	10.0	<u> </u>	<u> </u>				aisto.	1.776	0.936	0.000	0.154.		0.072.	1.22	
c	11.0	<u>f.</u>												······	
CL	13.0	6.													
c	14.0	5												b	
0	15.0	£				-								<u> </u>	
c	16.0	7.	 											4	
c	17.0	6			-									\$	
c L	18.0	<u> </u>												4	
c	20.0	t												· •	

Table 7-6

LIQUEFACTION CALCULATION PAPER (G)

.

MAKARA RIVED

ks = 0.14

	ter	PAPER	(6)		MAKARA	RIVER	No. ±	316.			= 0.14. = 0.50 M		
LINi.	NIE	<u>D to</u>	<u>r</u> t.	γ_{r_2} γ_{r_3}	r.	6~-	6m'	4-	<i>R</i> ,	R <u>.</u>	R		······································
20	6	(+4)	1.7	1.8 0.9	0.970	0.3ft.	0,220	0.219	0.24.4.	0.059	0 224	129	
30	10 8			·	i 0.9.5t.	0. 67t.	0.210	1.20%	0.275	· •	0.334	1.45	•
5.0	<u>р</u> 2				0.924.	0.075			0.234.		0.294 0.289	1.2t. 1.22.	
7.0 8.0					0. 29.4.	1.2.ft. 1.43t.	0.670	0.235.	0.200		0.2.49	(1.10)	ļ
10.0	<u>+</u> 2				0. 850	1.7.8J	0.740.	0.007	0.1.4		0.269 	(1,15) (0.74)	
12.0	8	0.0=8											
14.0	<u>9.</u> 10.	0015.											
17.0	9.				<u>↓</u>							\$\$	
19.0	_/0											5	
20.0	_7												
						· · ·					·		

APPENDIX	4	
Page 9		

I		ACTION C PER		TION	5	<u>АРРАНА</u>	PO CPT	GEK NC	BIR		ks = hus =	0.14. = 0.59 m.		Page 10
X (m)	NIA	D 50.	Ϋ́τ.	Yr.	R.	r.	6~	6'n'	<u> </u>	R,	R,	Ŕ	FL.	
1.0.		(0,12)	1.7	1.8	0.9	0.984.	0.174	0.137	0,17.4.	0.17	0.10 4	0.27.4.	- 1.57	4
2.0	9					0.970. 0.9ft	0.314	0.317		0.274	"	0.380	1.00	!
3.0 4.0	7	- (314)			0.940	0.714		0.23/	0.290	- 9 	0.395-	1.76.	
5.0	<u> 4 </u> 3					0.92+	0.194	0.497 0.687	<u>૦. ત્રરેરે</u> ૦. ત્રેરેરે	0,160.		0,265	1.14	
<u> </u>	3	0.007		······································		0. PP.F	1.244	0.677	1	0.130	4 11	0.235	(1.34)	
9.0	3	0.02												
17.0	3	· · · · · · · · · · · · · · · · · · ·											4	
13.0	3	0.004								•			<u> </u>	
16.	<u>у</u>	·											\$\$	·
17.0	£	÷											4 7	
18.0	7.	0.01							2				7	

Table 7-6

LIQUEFACTION CALCULATION PAPER (8)

Table

SAPPAHARO CREEK

ks = 0.14 hus = 2.50 m

X (m)	N (i)	D 50	Ϋ́τ,	Ýr1	ïњ'	rd.	6~	6~	<u> </u>	<i>R</i> ,	Ř2	R.		·
1.0.	2	(0,12)	1,8	1.9	1.0	0.98.t	0,164	0.300.	0.079	0,235	0,10F		4. KJ.	
Z.	4	0.07,0.0	χ÷						0.121	0,170	4	0,275	a.29	İ
4.0.	11.	012	. jour		,,,,,,,,,,,,,	0.940	0.734	0.600	0111	0.24		0.360	2,24	
6.0	2						1.11.t.		0.178.	0.190	· · ·	0.295.	1.66.	ļ
8.0	£					e. PFe	1.47t.	1.000	0.124	0.1.12		0.257	1.40	
9,0	4.				<u></u>	0. 265-	1.6 24.	1.100.	0.186	061,6		0.13t.	1.27.	· · · · · · · · · · · · · · · · · · ·
10.0	2.					0.8to.	1. 875	1.200	0.186.			0.27.4	1,48.	
11.0	<u>.</u>													
12.0	3												Ŀ.	
130	<u>t.</u>												4	
140	3.					<u> </u>							<u> </u>	
15.0	3												<u> </u>	
16.0	4								-			<u></u>	4	
	ુ.	1.004				<u> </u>								<u> </u>
18.0	<u>f.</u>	·												
									1					
												<u> </u>		

NO B19.

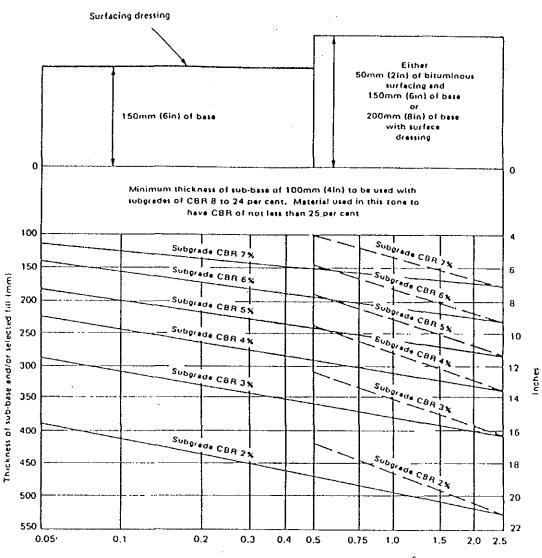

Location Soil Sieve Analysis ; Passing Percent Atterberg Limits Compaction CBR Туре 2.36 mm 0.425 0.151 0.075 LL PI MC % DD t/m³ Soaked % 343 clayey Silt 16.7 1.74 5.3 350 clayey Silt clay 358 clay 18.6 1.30 4.9 clayey silt clay 369 clay 20.1 1.60 7.0 371 clayey silt 373 clayey silt 19.5 1.69 3.4 376 clay 378 clayey silt clay clay 386 clay 19.8 1.60 9.0 clay clay 409 clay 22.3 1.28 1.8

Table 8-1 CBR OF EMBANKMENT MATERIAL FOR LOT I

Section of E for Pavement		Miaru River to Kapuri River	Kapuri River to Tauri River	Tauri River to Malalaua
Fill Materia and Soil Type	d Source	Palipala hill	llevala hill	Malalaua exist. Borrow pit
Soli ijpe		Clayey Silt	Silty Sand	Clayey Silt
	9.5 mm	·	· · · · · · · · · · · · · · · · · · ·	
Sieve	4.75 mm		100	100
Analysis	2.36 mm	100	74	99
Percent by	425 um	80	25	98
wl.passing	150 um	31	13	98
	75 um	25	10	45
Atterberg	LL	29	39	44
Limits	PL.	17	22	29
	PI	13	17	32
∦. Std Compactio	ວກ MDD (t/m ^ອ ງ) 1.743	1.770	1.20
	OMC %	16.7	15.8	36.0
Std Soaked Cl	BR ¥	3.3 6.8 9.4	8.2 5.3	3.7
>	۰ .	6.5	6.8	
s	•	3.0	2.1	
×	s	3.5	4.7	

APPENDIX 5 Page 1

Table 8-3 CBR OF EMBANKMENT MATERIALS FOR LOT II

Cumulative number of standard exles in one direction (x 10⁶)

If it is desired to provide at the time of construction a pavement capable of carrying more than 0.5 million standard axies, the designer may choose either a 150mm (5in) base with a 50mm (2in) bituminous surfacing or a 200mm (8in) base with a double surface drossing. For both of these alternatives, the recommended sub-base thickness is indicated by broken line. is indicated by the broken line,

Alternatively, a base 150mm (6in) thick with a double surface dratting may be faid initially and the thickness increased when 0.5 million standard axles have been carried The extra thickness may consist of 50mm (21n) of bituminous surfacing or at least 75mm (Jin) of crushed stone with a double surface dressing. The largest aggregate size in the crushed stone must not exceed 19min (Xin) and the old surface must be prepared by scarilying to a depth of 50mm [2in]. For this stage construction procedure, the recommended thickness of sub-base is indicated by the solid line.

Fig. 8-1

APPENDIX 5

Page 2

PAVEMENT DESIGN CHART (ROAD NOTE 31)

Table 8-2 SUMMARIZED TEST RESULTS OF SUBBASE FOR LOT I

.

(Subbase Material Test Results (Material : Pitrun Silty Sandy gravel from Inaipi hills) •

	n &		Siev	e Anal;	ysis	: Pe	rcent	РХ М	t. pass	ing	Atterbe	rg Limits	Soaked CB
e N	No.		75	37.5	19	9.5	4.75	2.36	0.425	0.075	LL	PI	%
	S 1	. <u></u>	100	87	66	49	39	32	13	6	49 [*]	31*	8*
	S_{2}		100	86	65	49	37	- 32	10	2	39*	21*	18*
	52 53		100	71	55	43	35	30	7	2	35*	4	-
	S 4		100	100	91 [*]	85*	74	62*	17	2	Non	Plastic	-
	5 4 S 5		100	76	61	48	40	34	12	3	34*	12*	50
	55 56		100	79	64	48	38	28	8	4	37*	10	-
	50 57		100	85	68	55*	44	37*	15	6	39*	14*	18^{*}
			100	98	94 [*]	82	68 [*]	53*	22	13*	35*	13*	20*
	S 8		100	30	54	02	00			10	00		_
	No.1		100		80	 57	43	37*	21	14*	37*	16*	35
			100	88	80	57 68*	55	46*	24*	15*	41*	22*	30
	No.2		100	82	69	55	42	36*	18	11	38*	20*	30
	No.3		100	91	80	60	44	36*	15	9	39*	14^{*}	15*
	No.4		100		82	59	44	34	17	, 9 , 9	40*	14*	15* 15*
	No.5		100	100 97	82 79	55 55	40	34	18	11	41*	15*	15*
:	No.6)	100	97	19	55	40	54	10	11	4 L	10	* 0
			100		73	56.	43	36	15		39*	16*	23*
	х		100		10	10	40	6	5	5	4	6	12
	S				10	10	9	0					<u></u>
۲ +	+ s		100	95	83	66	52	42	20	13	43	22	35
	- s			79	63	46	34	30	10	3	35	10	11
			100	100	80	60	45	35	22	12	≤30	<u><</u> 10	<u>></u> 25
				~60	~40	~30	~20	~15	~8	~ 3	~~~~		<u></u>
	ubbas								6.0	1.5		<10	<u>≥</u> 25
1 t	trea	ted)	100	100	85	70	55	45	23	15 -			
	ubbas			~70	~55	~40	~30	~20	~5	~3			<u>></u> 8
tre	eated)							<u></u>			بر	
tre) Ne	ar Ber isting	eina		~40	~30	~20	~5		~3	~3	~3

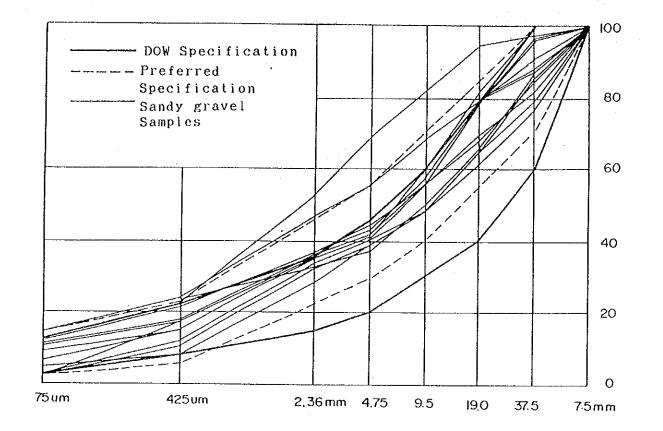
Sample	No.4, No.5, No.6	Near Babanongo
		existing borrow pit
S 4 is	excluded for comput	tation of x and s

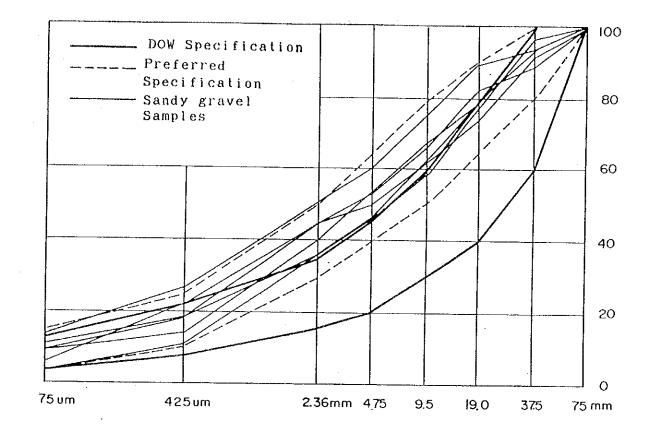
* out of DOW Specification limits

APPENDIX 5 Page 3

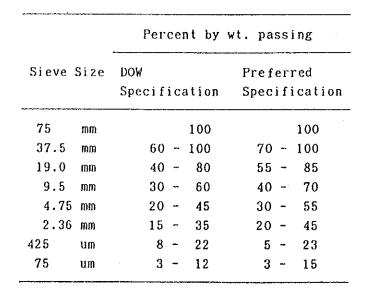
SUMMARIZED TEST RESULTS OF SUBBASE FOR LOT II Table 8-4

(Subbase Material Test Results Material : Pit-run Silty Sandy gravel from Malalaua hills)


	Locati Sample		Siev	e Anal	ysis	: Pe	rcent	by w	t. pass	ing	Atterber	g Limits	Soaked CBI
	5 d mp 1 e	NU	75	37.5	19	9.5	4.75	2.36	0.425	0.075	LL	PI	%
Cardono &	Inaipi	S 14	100	91	74	61*	50*	45*	22	6	24	4	35
Davies Report		S 15 S 16	100	100	76	58*	46*	36*	10	3	Ngn	Plastic	
neport		S 16 S 17	$\frac{100}{100}$	96 93	79	67* 62*	54*	40*		9	34*	4_	
		S 18	100	93 94	80 68	62 55	47* 45*	36* 37*	19	11 .	35*	11*	40
		5 10	100	94	08	ວວຸ	45	37	19	9	34*	10	25
JICA	Inaipi	No.7	100	89	82*	66*	53*	 45*	18	8	34*	11	 ეუკა
study		No.8	100	94	89*	75 [*]	60*	51*	26*	13*	28	7	23* 18 [*] ,15 [*]
Mean Value		X	100	93	79	64*	52*	 42*	20	9	32	7	28
Standard Devia	tion	S		2	7	8	5	6	4	2	4	4	28 10
		+ s	100	95	86	72	57	48	24	11	36	11	37
	X	- s		~91	~72	~56	~48	~36	~16	~7	28	3	18
DOW Specificai	ton		100	100	80	60	45	35	22	12		·	
Subbase		·		~60	~40	~30	~20	~15	~8	~3		<u><</u> 10	<u>></u> 25
	Upper S												
Preferred Specification	(Cement	treated)	100	100	90	80	65	50	25	15		<u><</u> 10	<u>≥</u> 25
	Lower S (Non tr			~80	~65	~50	~40	~30	~10	~ 3	алан тараран та		<u>></u> 8

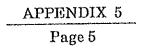

S 15 is excluded for computation of x and s

APPENDIX 5


1

Page 4

Preferred Grading Specification Range for the pitrun Sandy gravel subbase (Bereina ~ Miaru River Section)



PREFERRED GRADING OF SUBBASE FOR LOT I Fig. 8-3

subbase (Miaru River ~ Malalaua Section)

		Percent by	wt. passing
Sieve	Size	DOW	Preferred
		Specification	Specification
75	mm	100	100
37.5	mm	60 - 100	80 - 100
19.0	៣៣	40 - 80	65 - 90
9.5	mm	30 - 60	50 - 80
4.75	mm	20 - 45	40 - 65
2.36	mm	15 - 35	30 - 50
425	um	8 - 22	10 - 25
75	um	3 - 12	3 - 15

Fig. 8-5

Preferred Grading Specification Range for the pit-run Sandy gravel

PREFERRED GRADING OF SUBBASE FOR LOT II

293

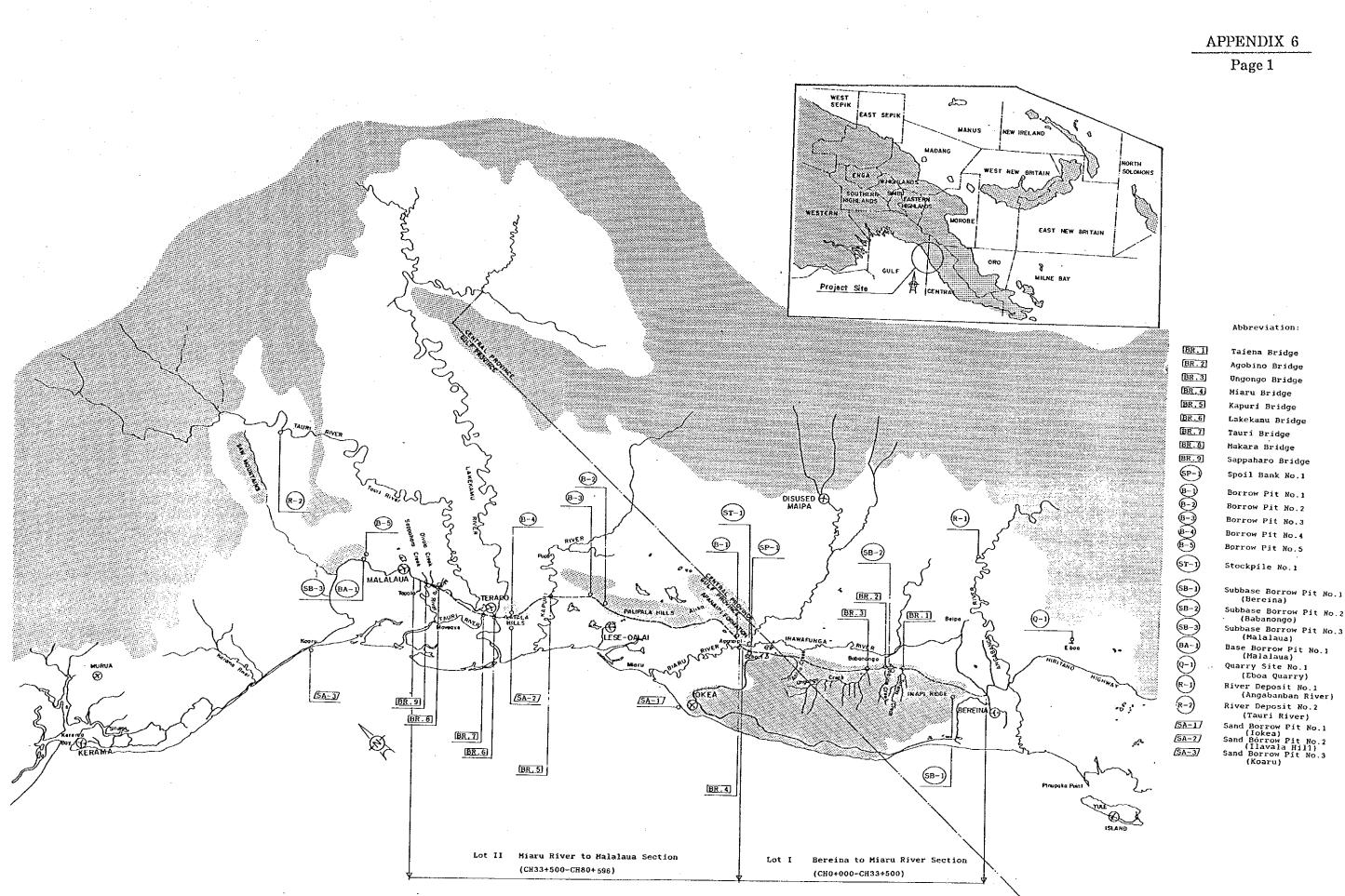


Fig.11-1 PROJECT LOCATION & MATERIAL SITE

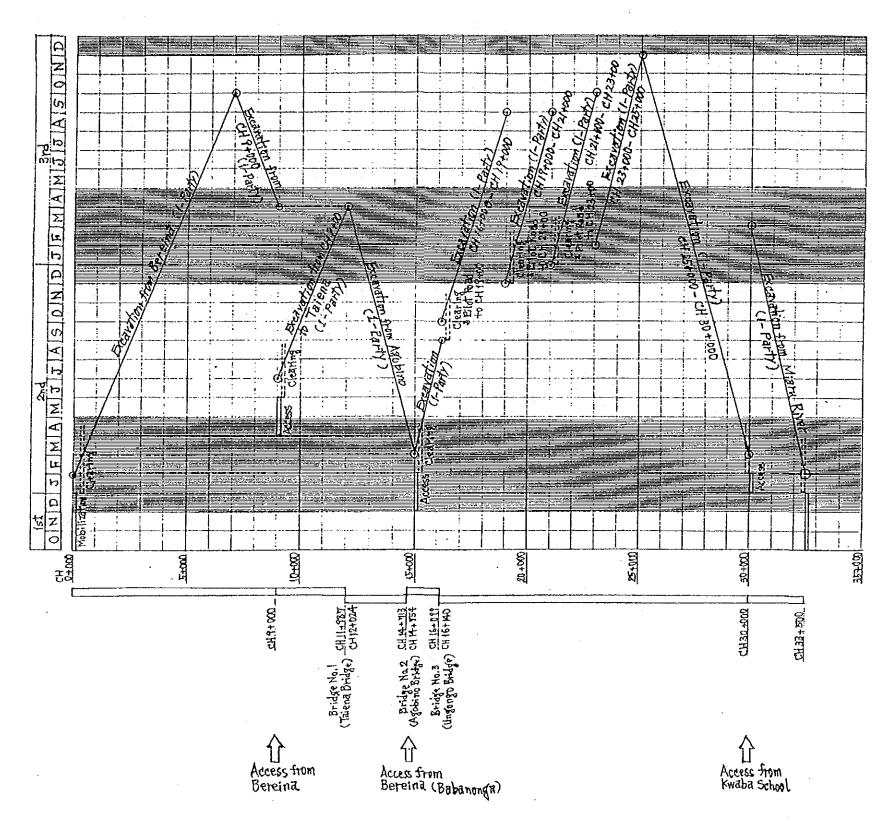


Fig 11-2 EARTHWORK ACCESS DIAGRAM FOR LOT I

APPENDIX 6

Page 2

Earthwork procedure and schedule are planned based on the following conditions:

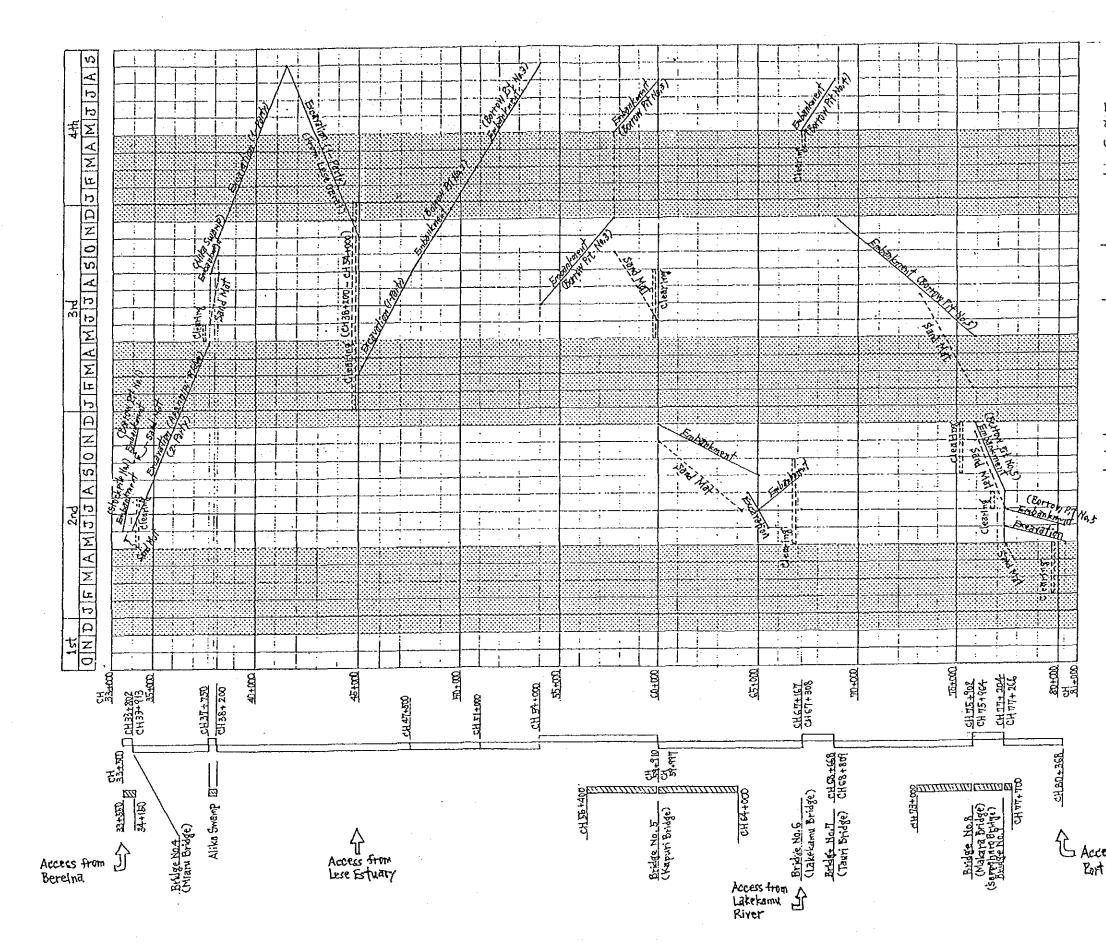
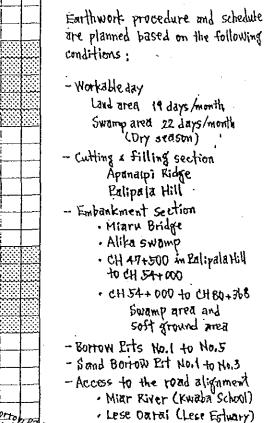
- Workable day 19 days/month " (in whole year)

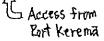
- Daily progress rade 340 m3/day

- To repeat the citing and filling work within 2.000 m road section from mass-curve plan.
- Morking width of road cutting section is narrow.
- CHI6+099 to CH23+000 In a view point of topographical conditions, the parallel work will be done after providing pilot road (temporary access).
- CH 23+000 to CH 30+000 Norking site is restricted by steep land.

- Access to the road alignment

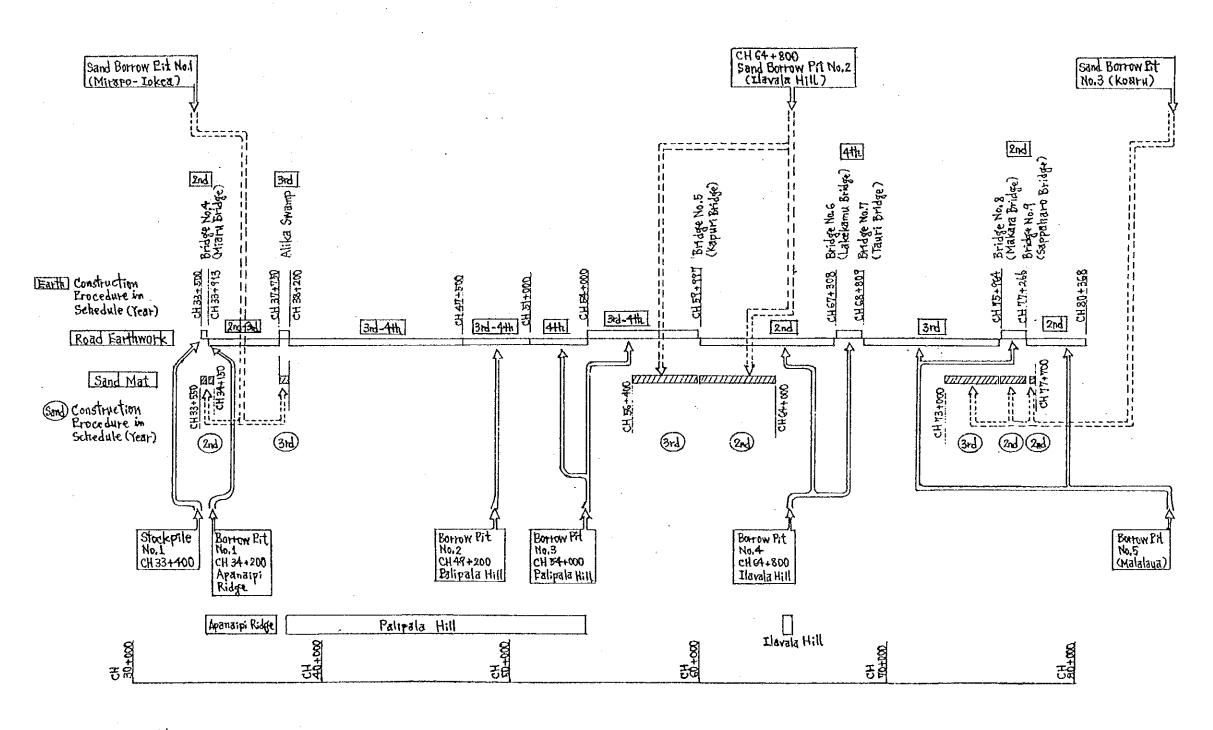
- Bereina
- CH 9+000
- Babanonga
- " CH 30+000
- · End point (Miark River.)


Fig.11-3 EARTHWORK ACCESS DIAGRAM FOR LOT II

APPENDIX 6

Page 3



- Lakekam Bridge Site (Lakekamu River)
- Malalaua (Firom Port Kerema)

SO TON

CH B0+368

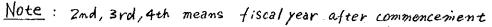


Fig.11-4 EARTH MATERIAL DISTRIBUTION PLAN FOR LOT II

Table 1 1-1 Major Con	struction Pla	nt and E	quipment, Lot I
Description	Sp	ec.	Required Number
1. Bulldozer w/ripper	21	ton	10
2. Bulldozer	11	ton	7
3. Tractor shovel	2.3	m^3	10
4. Wheel loader	2.0	m ³	1
5. Wheel loader	1.6	m^3	1
6. Backhoe	0.3	m^3	2
7. Crawler drill	10	m ³ /min	2
8. Air compressor	13.5	m³/min	2
9. Dump truck	11	ton	55
10. Dump truck	8	ton	4
11. Dump truck	4	ton	1
12. Crushing plant	60	ton/hr	1
13. Crushing plant	20	ton/hr	1
14. Motor grader	3.7	m	5
15. Vibrating roller	8	ton	7
16. Vibrating roller	4	ton	2
17. Road stabilizer	1.6	m	4
18. Aggregate spreader	3.5	m	1
19. Chip spreader	2.0	m	1
20. Tire roller	15	ton	10
21. Macadam roller	10	ton	5
22. Tandem roller	10	ton	2
23. Sprinkler	5	kl	3
24. Road sweeper			3
25. Asphalt kettle	6,000	litre	2
26. Asphalt distributor	4,000	litre	3
27. Engine sprayer	600	litre	2
28. Pre-coating spray			1
29. Diesel pile driver	2.5	ton	1
30. Truck crane	10	ton	3
31. Crawler crane	35	ton	1
32. Portable mixer		m ³	1
33. Concrete dumper	0.7	m ³	2

1.1

	Description	Sp	ec.	Required Number
1.	Bulldozer w/ripper	21	ton	7
2.	Bulldozer	21	ton	2
3.	Bulldozer	11	ton	4
4.	Bulldozer, low pressure type	10	ton	6
5.	Clamshell crane w/pontoon		m^3	1
6.			m^3	2
7.	Tractor shovel		m^3	9
8.	Backhoe	0.6	m ³	3
9.	Backhoe		m^3	1
10.	Wheel loader	2.0	m^3	1
11.	Wheel loader		m^3	1
12.	Wheel loader		m^3	1
	Dump truck	11	ton	80
	Dump truck	8	ton	3
	Dump truck	2	ton	ĩ
16.		100	ton/hr	î
	Crushing plant	20	ton/hr	1
	Cargo ship	10	m^3	8
	Motor grader	3.7	m	4
	Vibrating roller	8	ton	7
	Vibrating roller	4	ton	2
	Road stabilizer	1.6	m	2
	Chip spreader	2.0	m	2
	Tire roller	15	ton	11
	Macadam roller	10	ton	4
	Tandem roller	10	ton	2
	Sprinkler	5	kl	3
	Road sweeper	Ū	171	3
	Asphalt kettle	6,000	litre	2
	Asphalt distributor	4,000	litre	2
	Engine sprayer	4,000 600	litre	2
	Pre-coating spray	000	21010	1
	Diesel pile driver	2.5	top	1
	Diesel pile driver		ton	1
	Vibro hammer	60	kw	1
	Crawler crane	35	ton	$\frac{1}{2}$
	Crawler crane	40	ton	2
-	Truck crane	40 10	ton	4
	Bore boring machine	41	kw	4 1
	Suction pump	41	kw	1
	Sand pump	40 22	kw	1
	Portable mixer	0.6	nw m ³	1
	Concrete dumper	0.8		$\frac{1}{2}$
	Concrete bucket	0.7		2

298

1 ROAD CLASSIFICATION AND CROSS SECTION

1-1 PROJECTED TRAFFIC VOLUME

ADT in initial year --- 200 vehicles per day

ADT after 20 years --- 360^{*} vechicles per day * ADT (20) = ADT(initial year) x $(1 + i)^N$ $= 200 \times (1+0.03)^{20}$ $= 200 \times 1.806$ = 360 vehicles per day where: i= Traffic growth rate --- 3 % N= Design life ----- 20 years

1-2 TRAFFIC CATEGORY

Judging from the traffic volume, the traffic category is classified as"Medium"from Table2-2 DOW Design Manual,as shown below.

> TABLE 2-2 TRAFFIC CATEGORY AND CROSS SECTION DETAILS

Traffic Category	Volume Range (v.p.d)**	Terrain Type ***	Design Speed (kph)	Width of Pavement (m)	Width of Formatior (m)
Heavy	400	F/R H M	80 50 30	6.5 6.5 6.0	8.5 8.0 7.5
<u>Medium</u>	100-400	F/R H M	70 50 25	6.5 6.0 5.5	$\frac{7.5}{7.0}$ 6.5
Light	< 100	F/R H M	60 40 25	N/A N/A N/A	6.5 6.0 5.5

** The volume range is the anticipated traffic at the end of the design life, assumed to be the same as the pavement design life, of the road.

*** The terrain types are defined as: F/R Flat and Rolling - less than 10° cross slope H Hilly

Mountaiouns

М

ATTACHMENT-1

1. ROAD CLASSIFICATION AND CROSS SECTION

2. GEOMETRIC STANDARD

ATTACHMENT 1

Page 1

- 10° to 30° cross slope - greater than 30° cross slope

299

2 GEOMETRIC STANDARD

2-1 SIGHT DISTANCE

Stopping Distance ----- 90 m Intermediate Distance ---- 180 m Overtaking Distance ----- 350 m * * Intervals of 2 to 2.5 km are desired.

These values are adopted after refering to Table 4.7.1 in DOW Design Manual.

TABLE 4.7.1

SIGHT DISTANCE ON SEALED PAVEMENTS

Design Speed	f	Stopping Distance Ds	Intermediate Distance	Overtaking Distance
30	0.53	30	60	90
40	0.51	40	80	160
50	0.49	55	110	200
60	0.47	70	140	300
	0.45	90_	180	350
<u>-70</u> 80	0.43	115	230	480
100	0.39	170	340	800
Height o	feve	1.15	1.15	1.15
Height o	f object	0.2	1.15	1.15

2-2 HORIZONTAL CURVE

Desirable Radius	400
Minimum Radius	155
Minumum Length	120
Minimum Deflection Angle	
Superelevation is needed	4.0
Curve is needed	1.5
Minimum Radius of Horizontal Curve	Havi

*	٧×	70
R _{mtm} ,	e —— e	
	127(e + f)	127(-0.03
	= 964 🗧 1000m	
	where: $e = -0.03$	
	f = 0.07	
Note: f	= 0.07 is also	adopted
0	VERSEAS UNIT, TRAN	ISPORT AND

BERKSHIRE, UNITED KINGDOM"

1-3 DESIGN SPEED

The Disign Speed adopted is 70km/h considering Flat and Rolling terrain type, refering to the same Table.

1-4 CROSS SECTION

Formation width is amended from 7.5 m to 8.5 m as described in the minutes of meeting, 12 July 1988. The components of the cross section are as follows;

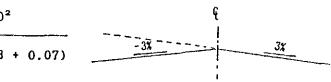
> Number of Lanes--- 2 Lane Width ----- 3.25 m Shoulder Width --- 1.00 m Crossfall (Refer to Table 3.5.2 in DOW Design Manual) Pavement --- 3 % shoulder --- 4 %

> > TABLE 3.5.2

MINIMUM CROSSFALL

Type of Pavement	Crossfall
Earth or Loan <u>Gravel (Shoulder)</u> Bitumen (Pavement	$5 \frac{4 \frac{1}{2}}{3 \frac{1}{2}}$

The typical cross section is shown below.


mĨ <u>8.5</u>00 6.500 1.000 1.000 3 25 3.25 4.0 30 3.0 4.0

ATTACHMENT 1

Page 2

Degree do ing Adverse Crossfall --- 1000 m

in "A GUIDE TO GEOMETRIC DESIGN " OF ROAD RESEARCH LABORATORY-CROWTHORNE.

2-3 SUPERELEVATION

Superelevations for each horizontal curve radius in the case of $V=70\,km/h$ are adopted from Fig.5.2.2. in DOW Design Manual.

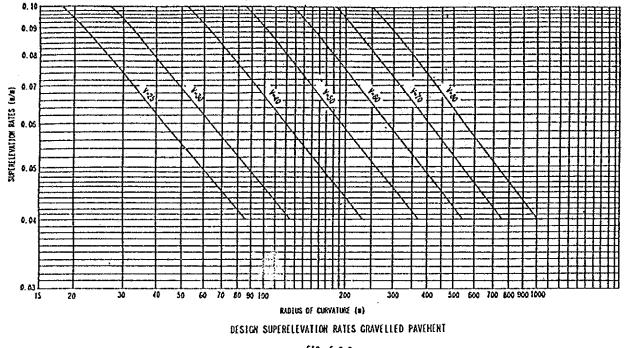


FIG. 5.2.2

2-4 SUPERELEVATION TRANSITION

For the maximum relative grade in the development of superelevation is adopted 0.55 from Table 5.7 in DOW Design Mannual.

TABLE 5.7

MAXIMUM RELATIVE GRADES IN DEVELOPMENT OF SUPERELEVATION

SPEED km.hr	MAXIMUM RELATIVE GRADE %
25	1.10
30	1.05
-40	0.90
50	0.75
60	0.65
<u>-70</u> 	0.55
80	0.55
100	0.45

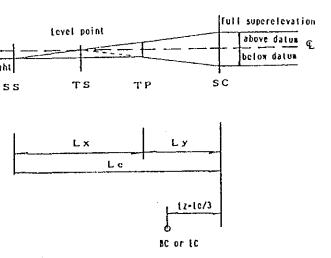
(1) STRAIGHT-CURVE-STRAIGHT Alignment.

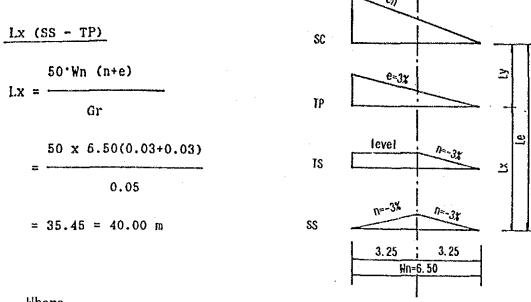
Considerling safe driving the beginning of the curve (B.C) is located between TP and SC (Lz = Le/3) as shown below.

The relations between the horizontal curve radius, the superelevations and the coofficient of side friction are shown in the table below.

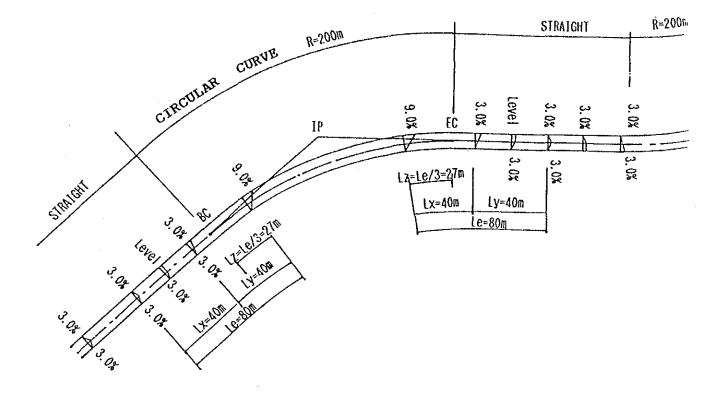
HORIZONTAL CURVE RADIUS(m)	SUPER- EVEVATION e (%)	SIDE FRICTION f	$R = \frac{\gamma^2}{127(e + f)}$
155 <u><</u> R<188	10	0.149~0.115	where:
180 <u><</u> R<220	9	0.124~0.085	R = Radius of Curve (m)
220 <u>≤</u> R<260	8	0.068~0.095	V = Speed of Vehicle 70 km/h
260 <u><</u> R<320	7	0.078~0.051	e = Superelevation
320 <u>≤</u> R<420	6	0.061~0.032	f = Coefficient of side
420 ≤ R<580	5	0.042~0.017	friction
580 <u><</u> R<880	4	0.027~0.004	Note: Absolute Minimum Curve
R≥880	3	0.014	Radius
			70 ²
			Rmin. = = 155

Crossfall on straight SAFELA




а.

127(0.10 + 0.149)


ATTACHMENT 1

Page 3

The development of superelevation in the case of a 200m radius curve is shown below for clarification.

Where

Lx = Length of Superelevation Transition(m)

Wn = Width of Two-lane pavement on Tangent(m)

n = Normal Crossfall ----- 3.0 %

Gr = Max. relative grade --- 0.55 %

en = Superelevation Crossfall(m/m)

	and the second					
LY - (TP - SC)	e _n (%)	LY (m)	Gr (%)			
50x6.50(en-0.03)	4 5	10 15	0.3250			
LY = 0.55	6 7	20 30	0.4875 0.4333			
	89	35 40	0.4643 0.4875			
	10	50,	0.455			

e~en (%)	Le (m)	Lx (m)	LY (m)	Ľe/3 (m)
-3-3- 4	50	40	10	· · · · · · · · · · · · · · · · · · ·
-3-3- 5	55	40	15	
-3~3~ 6	60	40	20	20
-3-3- 7	70	40	30	23
-3-3~ 8	75	40	35	25
-3-3- 9	80	40	40	27
-3-3-10	90	40	50	30

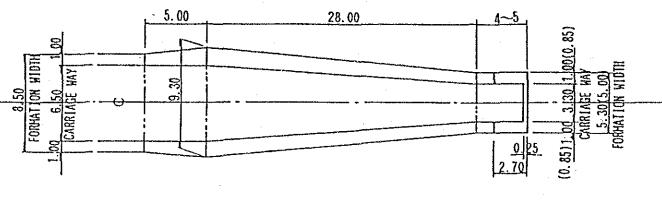
Le = Lx + LY

ATTACHMENT 1

Page 4

Fig Development of Superelevation in the case of a 200 m radius curve

(2) APPROACH SECTION OF SINGLE LANE BRIDGE


At the approach to single lane bridges, formation width is reduced as below.

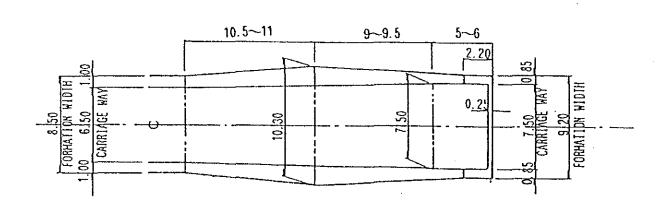
(4) APPROACH SECTION OF TWO WAY SKEWED BRIDGE

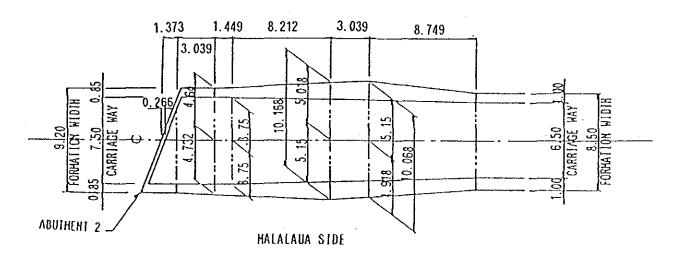
8.749

UNGONGO BRIDGE

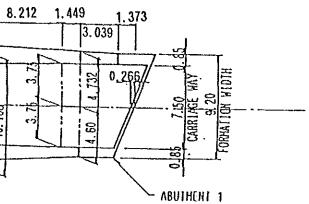
3.039

HIDIN \leq AGE 068 양동 FORHATT Ç CARR 013 0. BEREINA SIDE


2


-

Note: Figures in () are for KAPURI BRIDGE.


Single lane bridges where this is to be applied are Miaru, Kapuri, Lakekamu, Tauri, Makara, Sapaharo Bridges.

(3) APPROACH SECTION OF TWO WAY BRIDGE

Two Way Bridges where this is to be applied are Taiena, Agobino, Ungongo Bridges.

2-5 GRADIENT

General Maximum ----- 6 % Absolute Mäximum ----- 8 % L < 700 m

2-6 VERTICAL CURVES

(1) Minimum Radius of Crest Curve --- 1755 m

Length of crest curve

$$L = \frac{D^2 \times A}{200(\sqrt{h1} + \sqrt{h2})^2} = \frac{90^2 \times A}{200(\sqrt{1.15} + \sqrt{0.2})^2} = 17.55 \times A$$

Where: L = length of vertical curve (metres)

- D = sight distance (metres)
- A = algebraic difference in grades (%)
- h_1 = height of eye above road (metres) = 1.15 metres
- h₂ = height of object above road (metres)
 - = 1.15 if another vehicle
 - = 0.2 metres if an object on the ground

Therefore R =
$$\frac{100 \times L}{A}$$
 = $\frac{100 \times 17.55 \times A}{A}$ = 100 x 17.55 = 1755 m

(2) Minimum Radius of Sag Curve --- 1740 m

Length of sag curve

$$L = \frac{D^2 \times A}{150 + 3.5 \times D} = \frac{90^2 \times A}{150 + 3.5 \times 90} = 17.40 \times A$$

Therefore
$$R = \frac{100 \times L}{A} = \frac{100 \times 17.40 \times A}{A} = 100 \times 17.40 = 1740 \text{ m}$$

2-7 MAXIMUM COMBINED GRADIENT

Smax ----- 10.5 %

To avoid the combination of steep gradient and steep superelevation, maximum combined gradient is adopted refering to ROAD STRUCTURE ORDINANCE OF JAPAN.

$$S = \sqrt{e^2 + i^2}$$

Where:

S = Combined Gradient

e = Superelevation

i = Gradient

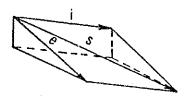
Relations between Superelevation and Gradient at Mazimum Combined Gradient are shown below.

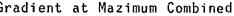
е	%	S	78	 i
10 9 8 7 6		10, 10, 10, 10, 10,	5555	3 5 6 7 8

2-8 TAKING OFFSET DISTANCE AT CUTTING SECTION

Minimum offset distance should be provided to obtain the stopping sight distance.

Therefor, the minimum offset distance is compared with the width carriageway and lateral clearance at the smallest horizontal curve in the cutting section.

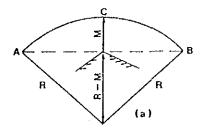

Minimum offset distance (R = 200 m)

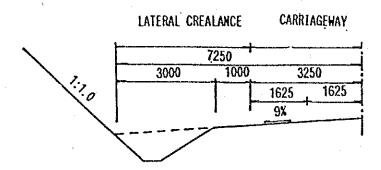

D ²	90 ²
M = + 1.625 = 8(R-1.625)	8(200-1.625)
= 5.1 + 1.625 = 6.725 m	< 7.250 m ¹⁾

Where D = stopping sight distance ---- 90 mR = horizontal curve radius ---- 200 m

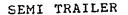
ATTACHMENT 1

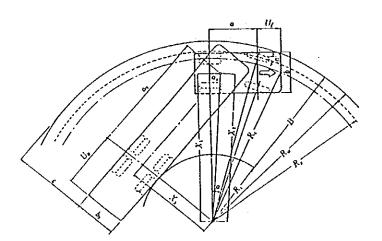
Page 6

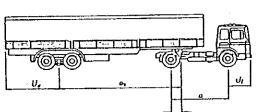




. 6

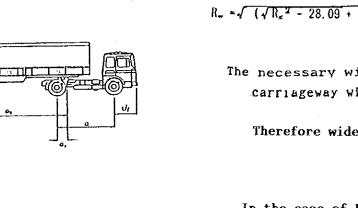



Note 1) As shown below, the width carriageway and lateral clearance is greater than the minimum off set distance.



2-9 WIDENING OF CARRIAGEWAY AT SMALL HORIZONTAL CURVE

The carriageway width is compared with the necessary width for the semi-Trailer at the smallest horizontal curve.



= Necessary Width R Rc = Radius of Center line Rw = Radius of Outer line Rs = Radius of Front Wheel

= 4.0 m $b = b_2 = 2.5 m$ $= b_2 = 2.5 m$ $a_2 = 9.0 \text{ m}$ $a_2 = 9.0 \text{ m}$ $a_{*} = 0 m$ Uf = 1.3 m $U_{\rm B} = 2.2 \, {\rm m}$

Derivation of Formula of Necessary Width on Curve The following equations are found from the figure: $B = R_{-} - R_{1}$ $(X_1 + b/2)^2 = R_w^2 - (a + U_f)^2$ $\chi_{2}^{2} = a^{2} + \chi_{1}^{2}$ $X_3^2 = X_2^2 - a_2^2 = X_1^2 + a_1^2 - a_2^2$ $B = R_{w} - X_{3} + b_{2}/2 = R_{w} + b_{2}/2 - \sqrt{(\sqrt{R_{w}^{2}} - (a+U_{r})^{2} - b/2)^{2} - a_{2}^{2} + a_{s}^{2}} \cdot \cdot \cdot (2)$ From equations (1) and (3), the following equation is derived: $R_{*} = \sqrt{\left\{\sqrt{R_{e}^{2} - (a+U_{f})^{2} + b/2}\right\}^{2} + (a+U_{f})^{2}}$ Combining equation (2) and adove, the following equation in derived:

 $B = \sqrt{\left(\sqrt{R_c^2 - (a+U_f)^2 + b/2}\right) + (a+U_f)^2} + \frac{b_2}{2} - \sqrt{R_c^2 - (a+U_f)^2 - a_2^2 + a_2^2}$

The dimensions of the semi trailer are:

a=4.0, b=b_2=2.5, U_1=1.3, a_2=9.0, a_=0 Substituting the dimensions of the semi trailer into the equation the following formula is obtained: $B = R_{-} + 1.25 - \sqrt{R_{c}^{2} - 109.09}$

Where,

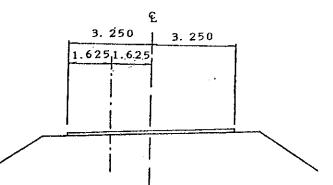
 $R_{-} = \sqrt{(\sqrt{R_{e}^{2}} - 28.09 + 1.25)^{2} + 28.09}$

The necessary width calculated by the above formula is smaller than the carriageway width.

Therefore widening is not necessary.

In the case of R=200

$$R_{\star} = 200 \text{ m}$$


$$B = R_{\star} + 1.25 - \sqrt{R_{a}^{2} - 109.09}$$

$$= 200 + 1.25 - \sqrt{198.375^{2} - 109.09}$$

$$= 3.15 \le 3.25 \text{ m}$$

ATTACHMENT 1

Page 7

