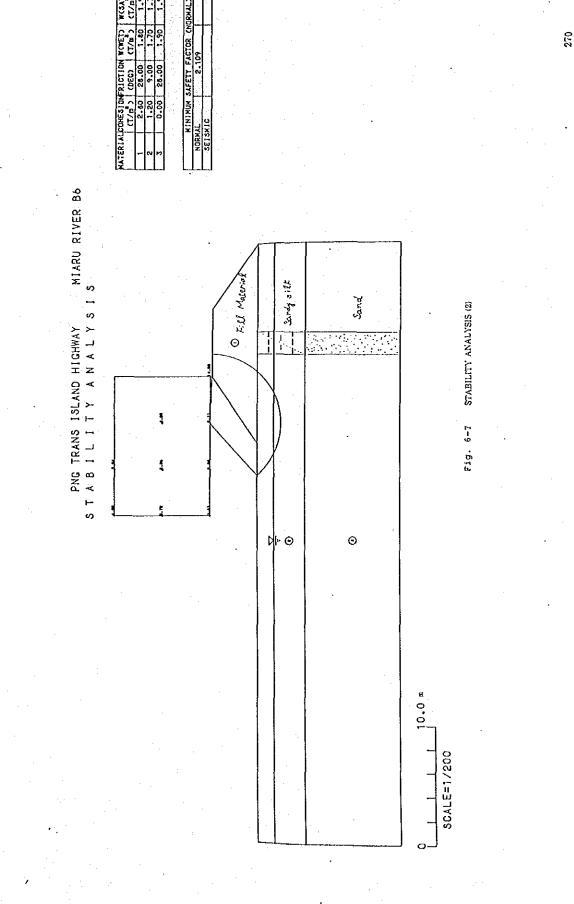
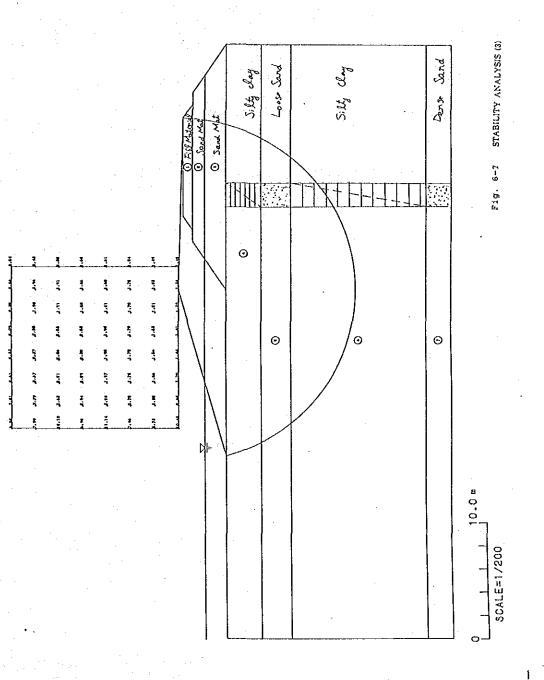
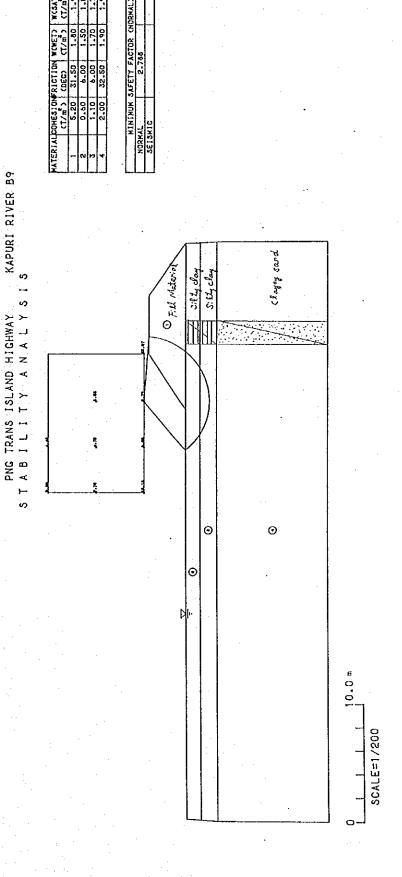

APPENDIX	Page 13 Page 1	$\left \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $		
• .		0) 3000 4000 5000		TIME-SETTLEMENT CURVE (11)
		of file work	from the first in	9-9 9-9
		100 00 00 00 00 00 00 00 00 00 00 00 00	S 40 1	


- 214 -**214** —

•

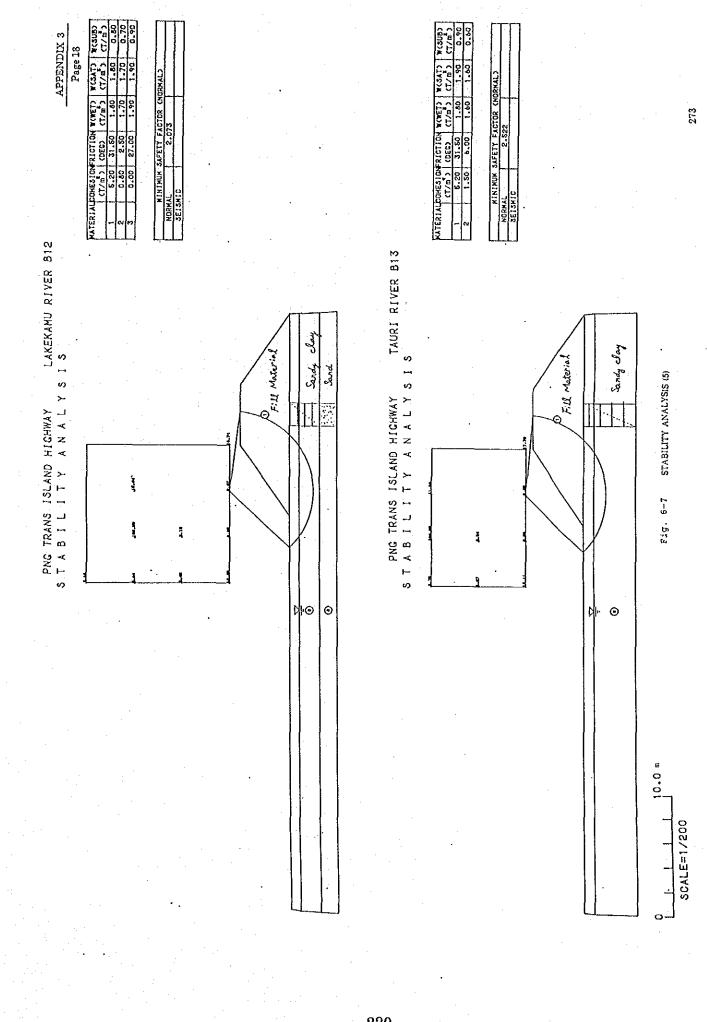
APPENDIX 3 Page 13	(1)		
	Statistics Statistics		
			SETUCION DATA
		tt	F19.
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	State State <td< td=""><td></td></td<>	
	Recent contract of the second se		

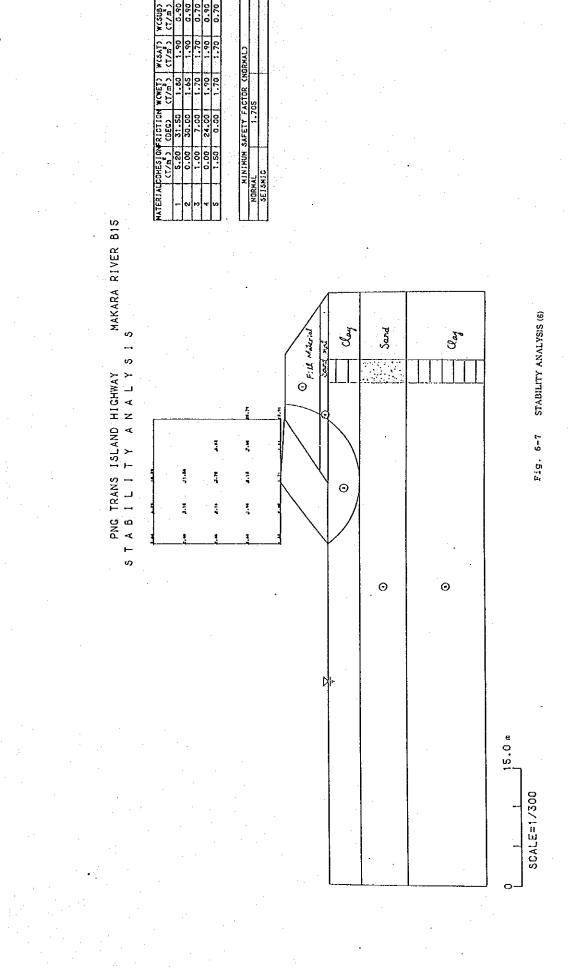

- 215 -


- 217 -

				: 7	1	1	÷	2.5	1.11			
Kcsuby	0-40	0.70	0.70	0.75	0 52	0.75	06.0	8			2	[
V (SAT)	1.90	1.70	1.70	1.75	1.62	1.75	1.90	0-100		CNORMALS		
W CWETD	1.30	1.05	1.65	1.75	1 52	1.75	1-90	JAKE		FACTOR CN	54	r.
FRICTION	26.00	30.00	27.00	00.00	27.00	00*0	27.00	EARTHOUAKE		SAFETY FJ	1.364	200.0
AATERIALCOHESIONERICTION WCWETS	2.30	0.00	0.00	2.00	0.00	3.50	00*0	ACCELERATION OF		HUHINIM	۲ ۲	110.1
ATERIAL		5	17) 	4	S	9	7	ACCELEI	۰ ۲.		NORMAL	STIRNI22

PNG TRANS ISLAND HIGHWAY ALIKA SWAMP S T A B I L I T Y A N A L Y S I S


- 218 --


219

0.70

Fig. 6-7 STABILITY ANALYSIS (4)

- 220

274

221 -

SAPPAHARD RIVER B18 PNG TRANS ISLAND HIGHWAY SAP S T A B I L I T Y A N A L Y S I S - 90

24.00 88 ACTOR CHORMALS

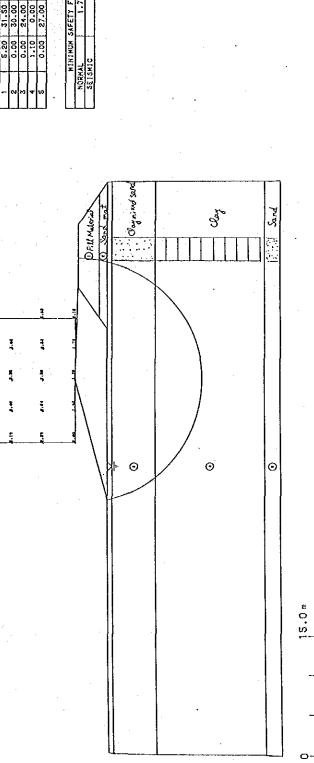
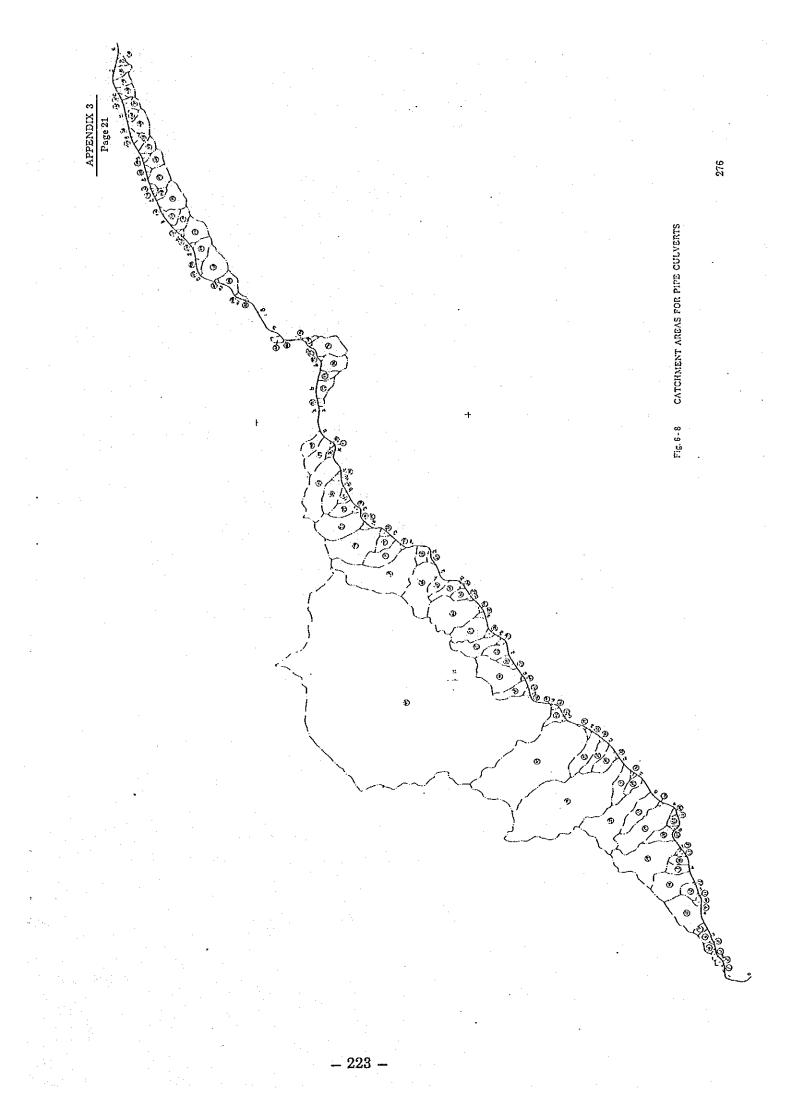
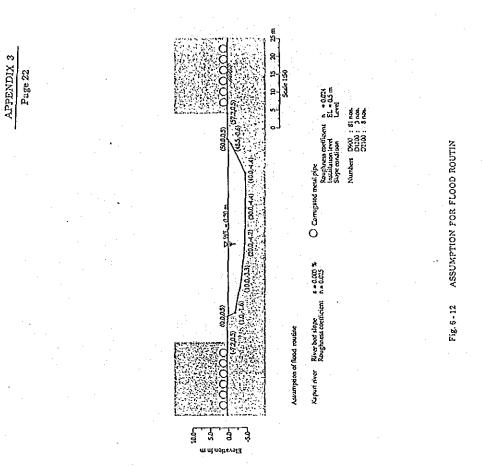
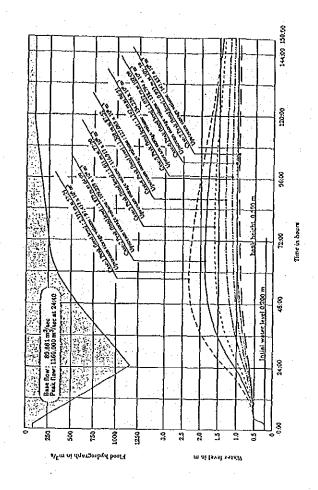




Fig. 6-6 STABILITY ANALYSIS (7)

SCALE=1/300

275



- 224

277

.

. . .

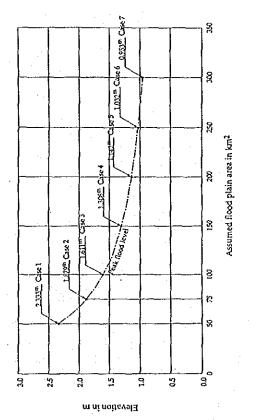


Fig. 6 - 13

Fig. 8 - 14

TRACE OF WATER LEVEL AT KAPURI RIVER BRIDGE SITE

278

- 225 --

Table 7 - 2 PRINCIPAL FEATURES OF SUBSTRUCTURE

SUPERSTRUCTURE PERS

	SUPERST	SUPERSTRUCTURE		PILE DETAILS	LAILS	-	57	KEADSTOCK	
	SPAN (n)	(a) H101X	N × O × T	r (a)	(E) A	1 (a)		е (ш)	×
Taiena	17.0	9.2	6/500 × 1¢	26.3	1.2	2 4 3.270	9.2	2.5	1.925 1.825
Agebino	20.0	5.2	6/500 × 14	15.2	1.2	2 0 3.270	5-6	2.5	1.925
obuosul	20.0	9.2	6/500 × 14	58.5	1.2	2 ¢ 3.270	67-6	2.5	2.125 2.025
Hiaru	3 × 30	5.3	6/600 x 14 4/800 x 12	26.0 28.8	1.5	2 0 1.650 3.3	5.3	3.5	2.975
Kapuri	3 * 21.5	5.0	6/500 × 14 4/800 × 12	22.3	1.5 2.0	2 0 1.650 3.3	3.3	3.0	2.125
Lakokamu	1E + 97 + 1E	£.2 7	6/600 x 12 4/1000 x 12	6 x 9.2 6 x 5.3 13.5	1.6 2.0	2 0 1.65	5.3 4	3.5	550.2
146 T	16 • 35 • 16	7 5.3	6/830 x 12 4/1000 x 12	6 x 5,4 6 x 6,9 13,5	1.6 2.0	2 ¢ 1.65 2.7	5.3 2	3,5 4	4.035
Mekara	Z × 20	£.3	6/500 × 14 4/800 × 14	29.4 34.6	1.5 2.0	2 0 1.65 3.3	5.3 J	3.5 1	2.125 1.4
Seppanero	2 ¥ 20	. 13	6/500 x 14 4/800 x 12	6 × 22.1 6 × 27.9 41.7	1.5 2.0	2 0 1.650 3.3	6.3 3.0 5.3 3.5		2.53 3.76 1.4

(ור + 1) חבור (m m) 16 **%** 26 ž 5 53 53 16 16 (MPa) HAX STRESS 182 201 201 193 164 182 166 182 166 164 164 SECTION (GRADE 910 × 304 × 224 kg UB 927 x 308 x 289 kg UB 927 x 308 x 269 kg UB 500 x 28/14 1800 x 14 600 x 36/16 927 × 308 × 289 kg UB . 350 × 16 1100 × 12 350 × 40 350) .= 2 н (кN-т) COMP 1163 1436 1436 1400 -3473 2730 926 926 -3473 2730 926 NON COHP -3839 2078 3839 2078 756 . 574 1518 805 805 756 756 SAPPAHARO LAKEKAMU AGOBINO TAIENA UNCONGO MKARF BRIDGE KAPURI HIARU TAURI

Table 7 -1 GIRDER STRESS AND DEFLECTION

279

- 226 -

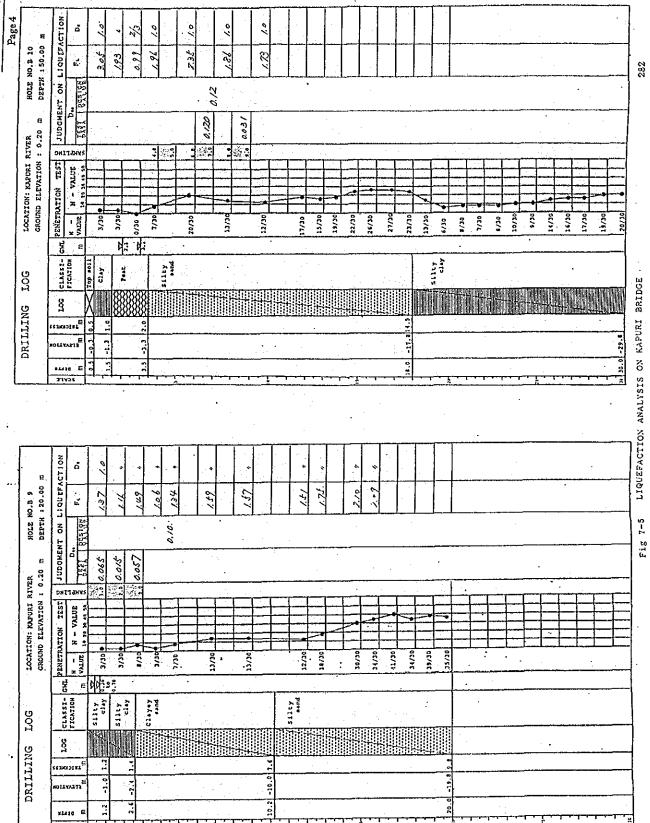
Table 7 - 4 REACTION AND BEARING TYPE

	Rendriks	1 - b uma ana					Mov on abutment Fix on pier			
	Bearing Type (kw)	82-5103 (Fix) 89-5104 (Mav)	•		82-8101 (F1x) 82-3102 (M3v)	• •	88-8104 (Mav) 88-8117 {F1x}	• •	(VON) 1018-48 (X13) 1018-48	* •
(KN)	15201	202	233 533	075	428	360 338	712 1502	712 1902	360 338	360
Reaction (Live Load	381 357	383 383	193 195	246 223	234 212	355 737	365	234	212 212
	Dead Load	121	147 164	147 164	182 132 132	126 126	347 1165	347 1165	126 126	126 126
•		External Internal	Externa) Internal	External Internal	External Internal	Extern21 Intern21	Abutment Pier	Acutaent	External Internal	External Internal
		Tèiena Creck	Agebino Creek	Unganga Creek	Hiaru River	Kapuri River	Lakek <i>z</i> mu River	Tauri River	Hakara River	Seperharo River

PILE ULT MAX PILE PILE		((12) (mail)		104 S1	104	104 122 122	104 122 122 117	104 122 122 117 8.C	104 122 122 117 8.5 117 109	104 122 122 117 8.C 109 8.C	104 122 122 117 117 8.C 8.C	104 122 122 122 117 117 8.c 8.c. 1 8.c.	104 122 122 122 122 122 122 122 122 122 12	104 122 122 122 122 8.C 109 8.C 109 8.C 109 8.C	104 122 122 122 117 117 8.C. 109 8.C. 109 109	104 122 122 122 127 117 127 8.C. 109 8.C. 109 8.C. 109 8.C. 109	104 122 122 122 122 8.C 117 8.C 109 8.C 109 109 109 109
	CAPACITY	M (MP4)		155 2,300						··· · · · · · · · · · · · · · · · · ·							
	UEAU + EQ	V (TENS)	1 00E					н						H H Ń Ñ		н н ю й д 	ਸ ਜ ਲੈ ਲੋ ਜੋ
_		T44(V) V (COHP)	170 920		0511 051		•	•	•								
DEAD		EO	1087 170	100 100													
		EAD IDEAD+T44	566 1008	666 1121		000											
	_	oral (m) loevo	26.3	19.2	29.5		26.0	26.0 38.8 1	26.0 38.8 22.3	26.0 38.8 36.1 36.1	26.0 38.8 2 36.1 1 36.1 1	25 0 25 0 25 0 25 0 25 0 25 0 25 0 25 0	0 9 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	26.0 27.1 27.1 27.1 27.1 27.1 27.1 27.1 27.1	26.0 28.5 28.3 28.5 28.5 28.5 29.5 29.5 29.5 29.5 29.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20	26.0 22.3 26.0 25.5 26.1 15.5 25.5 25.5 25.5 25.5 25.5 25.5 25
PILE SELLIN		(mm) (mm)	500 14	500 14	500 14		600 14:										- A set of the set
-	, C Y	-~~	2	о Ф	20 10		9 9							<u></u>	<u> </u>		• • • • • • • • • • • • • • • • • • •
			TAIEKA	AGOBINO	UNGONGO	MIARU			KAPURI	KAPURI	KAPURI LAXEXANU	KAPURI	KAPURI LAKEKUNU TAURI	KAPURI LAKEKANU TAURI	KAPURI LAKEKANU TAURI TAURI	KAPURI LAKEKANU TAURI FAKRA	KAPUKI LAKEKAN PAURI SAPPANARO

227

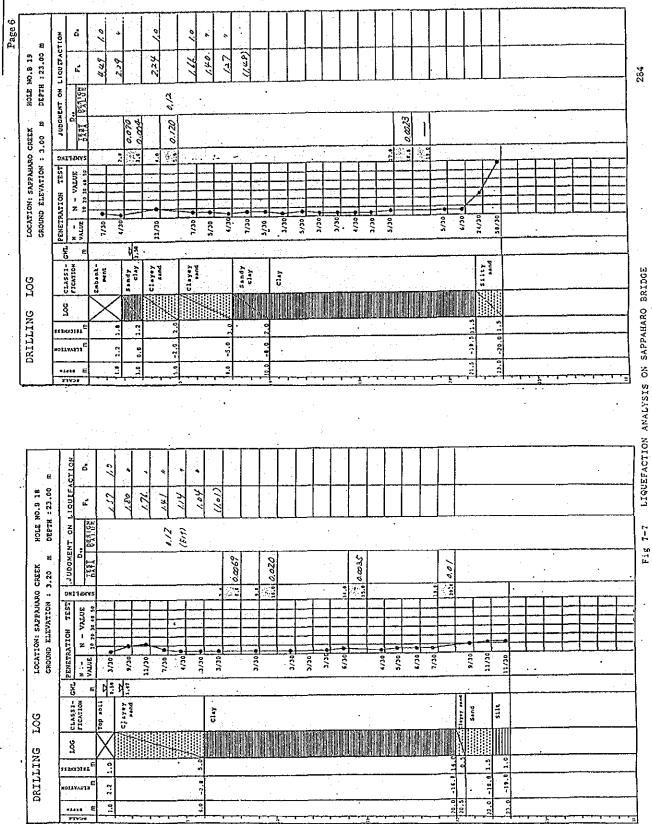
Table 7 - 3 PILE LOADS AND STRESSES


APPENDIX 4 Page 3 JUDGMENT ON LIQUIFACTION ő 9 HOLE NO.B 7 DEFTH :40.00 m 1.3 8 1.70. .80% 2.97 3 142 130 611 3 :36 5281 | 842-92 1.22 22 Ч Ч ? 20 • 0.12 10 0.20 10 0.20 10 0.005 10 0.005 LOCATION: MIARU RIVER GROUND ELEVATION : 4.30 H PENETRATION TEST 2 J 1 H - VALUE 10/30 1/30 10/30 17/30 10/30 00/01 \$730 00/0 4/30 6/30 7/30 6/30 11/30 3/30 96/61 11/30 01/6 9/30 10/30 06/12 97.30 02/2 6730 11/30 1/30 128 0C/C 900 7/30 Ę E \$11cy 3112 Silty sand CLASSI-FICATION silty clay silty Siltr sand tios de rog g DRILLING *********** 1 -25.7 -0.2 . . LTTAYALON 0.00 1.5 H1430 E -----2 JUDGMENT ON LIQUEFACTION 8 6 HOLE NO.B 6 DEFTH : 20.00 P (67 661 2 & 23. 50 23 30. 25 3 2.42 66 8 217 کی ج 187 :20. 28 89 2 0.0 0.032 3.0.053 GROUND ELEVATION 4.30 m 0.06 LOCATION: HIARU RIVER . PENETRATION TEST 20.TVA - N 10 20 30 40 50 3/30 e 12/30 06/11 . \$ AALUE 9/30 13/30 14/30 20/30 02/12 19/30 26/30 12/30 0E/02 00/17 20/30 20/30 7 . 2 21.7 7 -1 5/30 0/30 1.30 • 1. GHL • E CLASSI-FICATION 1 and 1 and 2 Sandy alle op soll 5And Sand Sand Sand 54nd Sand 2450 Sand DOL . M ğ DRILLING 2 2.5 22 112003111 -15.7 -2.7 - 1 -9.7 -3 86410 30373 취귀 2

281

LIQUEFACTION ANALYSIS ON MIARU BRIDGE

Fig 7-4


APPENDIX 4

APPENDIX 4 PENETRATION TEST 9 JUDGNENT ON LIQUEACTION Page 5 * * HOLE HO.B 16 DEFTH 240.00 m 22 (110) 60% 1.45 125 283 36:378 I 1439 0.194 1:0.0.5 0:008 .. 0.026 0.195 LOCATION: MAJORA RIVER GROUND ELEVATION : 2.00 II 2 10 20 30 49 50 96/01 05/52 8°.'# 10/30 5/30 10/30 7/30 9/30 2:10 21/30 15/30 06/30 23/30 24/30 \$/30 10/30 97.30 /10 6/30 \$/30 7/30 120 9/30 06/1 5/30 • Þ. 1 L L L Е t surer chay 511ty clay CLASSI-Sandy clay 1100 do CIAY LIQUEFACTION ANALYSIS ON MAKARA BRIDGE Sand р СО Г 8 DRILLING ٩ -28.0 2.0 • 152003182 -26.0 -21.0 0.5 0.0 ILLANLIG о. Г 0.0 0.82 2 *#430 T1728 2 JUDGMENT ON LIQUIFACTION 0% Å 0% 10 è ٠ • HOLE NO.B 15 . DEPTH : 25.00 II 22 122 122 277 1.29. 0.7 1.42 Ľ Fig 7-6 JELSE D. * 0.10. • 0.075 LOCATION: MAJORA RIVER GROUND ELEVATION : 1.60 M ŝ 20 SAUTING PENETRATION TEST W - N - VALUE 5/30 5/30 1/30 \$/30 6/30 5,2 32/30 5/30 00/0 \$/30 15/30 24/20 26/30 20 5/30 ŝ 3/30 06/5 5/30 . 663-3 CH1 e Sandy FICATION Top soll 3112 ςiγ 5 Sand 10G ğ DRILLING 2 111003161 -23.4 1.8+ -----25.0 ç. REALS REALS ź

- 230 -

APPENDIX 4

NDIX 4 age 7

- Z	Pag													÷					•							
APPEN				-		Nr.											÷									
			•	2.4.8	1.47	1.70	1.18	1.69	1.22	201	1.17	1.71	2,00.	1.27	1.27	1.94	2.17	205	195 195	1.25	179	2.00				
4	40 - 14 x	8		1000	1010	0.3/3	1260	0.263 -	60	\$22.0	0.313	0.360	0 518	0.283	595.0	0321	0.433	2.403	1378°	0.24	5.2.2	9780				
1 60	2.3	<i>\$</i>		5 410	0.123	0.123		•	*		•	*	*	2	~	•	4		•			•				
		, <i>A</i> ,		0160	0.178	9.19	0,27	0.23	24.2	027	623	0236	0.295	0 16	026	26A	031	028	0 255 .	0.23	025	0.245				
	26	7		0.112	0.161	7.110	7.20	902.0	0.20	0.211	110.0	010	807.0	7420	2.2.4		0.09	0.91	0.193	0.190	127	-		-	-	
	No BE	ў. G		0.202	2/2	5450	142	2.652	2020	0.237	\vdash	2012	1102	1.192	1.282	1.372	142	1 42	1162	1732	1 222					
•	RIVER	Ś		0.925. 0.166	20 0.346	0.9.64 . 0.426	0.924- 0.824	1061	124	1.526	- 1.601	1224		214	. 2321	2 501	7692	2 P(f	3.4	144.6	105.6	3.62	1			
	MIARU RIVER	ί.	•	0.921	0.97	0.26	0.92	0.910.	2.29	0.85.	0. P.C.	0.20	0,23,4.	6.52	0 205.	0.790	0.774	1.76	0.745	1 2.73	0 71F	0.70				
		ન		1 0.9	•••			-	1					-						-			-			
11.ATIO		1. 17.	-	1 1.5		-	· [· ·	-								· ·		:								
N CALC	1)	, <u>'</u> ,	-	1 2.7	<u>. 1</u>	T \ 0.12	J.		-		-			_			_	•		-						
TTOUEFACTION CALCULATION	PAPER (1	D 4.			1 0:035	1.0	0.06										_			·		•	-			
11011		() N 60	-	<u>у</u>	*	يە	4	0	51	74	12.	21	20	9	- 17	, o	75	22	20.	17.	97	20				
		2 (21)		07	02	30	2	٩X	2.0	£.0	<u>ه</u> .	10.0	11.0	, <u>,</u> ,	13.0	. 41	ر د ه	16.0	170	12.0	. 6.	200				

Table 7-6

Table 7-6

- 232 -

285

120 3 2 3

لحذه 452.0 107-0

352.0 . م

2020

1636 1.44

2 279

2.76 No. ž

1.721

3.075

0.71E

5

PPENDIX 4 Page 8

ц. а				-					<u> </u>	ľ	Ţ,	Γ	ŀ	ľ	ŀ	Γ	Γ		Г) '			:																			
			1			0 - 75									:												•															
	nì	l	4.4	- <u>1,1</u>	-telle	1.1.6		121	777	121	4.27	1.51																														
19.9.	8	•	27.0	Juch	-2675-	3452	5.5		0.075		9.40								-		•	1	.[Ť	1-	ľ	<u> </u>	T	Ţ				<u> </u>	- T		- T		-	T	7-	Ţ	7
×	ä		0.124 C	•		4	•	 -		-				•									•	• • 								·	-									
•	, i R, i	-	0 .7	0.161	24	0.16	0, 22	9.0	4750	2120	1960	26.0	0.34					-		• •			li.			2.9.2	550	1 26	.76.5	1 24 1	23			-†		-+	+			+~		•
0	7		8/5.0	0.244	0.254	250	0.242	0.243	2742	2120	1231	402.0	14.								,	X	Q	-	0 26						0.330		- -	-	-	-	╉	+	-			-
40.29	,. G	•••	10.4	0124.	0264	1750	0 424.	404 .	0 74E	706 4	1014.	1001	1.4.61			:						×1 - ~ / ×	2		0 - 101 - 0		· 0.	160 .	20	0	6.9	-	-		+	+		+	. -	_	╎	
KAPURI PINER	ۍ مې		0 13	1.0.2	0 503	1 623 0	. 26	1.18	1.623	\$C. 7	7 2.53	2 443	612 6					-					¢		0 110	<u>7</u>	ه د ا	0, 23	1 (00	e. 25		-			-		+	-	+-			
EAPURI	ž		. 0.924	0 17	0 944	760	426 0	16 V	<i>*</i> 8€	. 20.	240 .	422 2	14.0										7		00210	2210	e.12 0		~		<u>c. 191 a</u>	┦	+	+	-	_		-			ŀ	
1	ć	÷	9.5											:								No BID	5.	•	626 i C	a.362 a	046 0			_	2/10 0	-	+		+			<u> </u>	· 	-		
PAPER (3)	j. J.		61					-														RIVER	D.		2 272	a 220 a	0.5×9 0	229 C		14.29 0.	2 623 V			-			+	-				
.	*		71	حنهم	0.10															 . .		KAPUPI PI	7.7	•	0 .252.0	2.970	241	0 2 - 0	29/0	2.200	1-277	-	-			ł		-	+			
APER	2		0.065.	و و و ح	5-0-0												•					KA1	1	•	10.00]	-			4			_		-	╀	╀	╀			┝	
e.	- E		'n	0	a 	~	~	1?	2	5	* *			. /7	1	44					NON		, Ţ	-		[-	+					
	14/2		07	20	2	°7								-]	T.CULAT	() ()	, L		a											╎	╏		+			
· aroar		:	ы)																• .	•	TTON CA	2 2 2 2	ъ.							0.12	0-1/1		-		- -	+	╞	+-	+	╞		
4																	-				TOUFFAC	PAPER (4)	N (, 8		- - 	- m	-	~	٩	~	~		- - -	•	22	7	77	2		~		
										•						•						1 I	(X) Z		10%	2.0	-	20	6.6	02		120	2						9.0	0.02		
																					Q	. .	لمما		-					I.	L,	J.,			-4-	<u> </u>	İ	<u> </u>	<u>س</u> لہ	13		

286

Table 7-6

· •

- 233 -

											Ċ,			<u> </u>		· ·		-	7
					·														
•										1:									
	L.		7.47	3	1.29	140	c		イヤン				۲	v	1		*		
											-	:				•			
ks = 0.14 hu = 0.65. m	à		455.0	6400	2.5.0	£65	96-0	دهد.	6.070								·		
k. h.	ä		0.123	•	•		"	"						•					
	е,		-244.0		2510	0.210	· • 7.5	. 160.	0.144.	1.									
	4	••	121,0 -342,0 - 246,0 - 246,0 - 246,0 - 246,0		222 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		241 0.356 0.75°		.455.0	••••• •	-				~			•	
118 SIL			1/2 0	201.0	e.426 :	966 0 123.0	0.750	0. PHC	1.776 0.9.6		 				- : · ·			-	
02/10	6	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	776.0	0.434 : 0.206	e 281 :	1026	0. PF0 . 1. 436	0. XE 1616 0. PH	1.726					 	-				
MAKAPA PINED	r. 6.		e. 976	e 14	C. 72.4	c 110	0.850	0.754	0.15	_			•	1. 1.					•
MA	, J		c 9										•	-				_	
ATION	۲		1 2 3	•••					·	- -						:			•
LIQUEFACTION CALCULATION PAPER (5)	D to	•••	1,7		• • • • •									<u>.</u>				<u> </u>	-
EFACTION PAPER	0 fe			Se 25 5.		 	·										 -		
LIQUEF PA	NIG		4,	7	• •`	6	- ~	- 1	7	 ,		L.	- -	~	~	 			
	V 121 N 10		2.0	 °	1.01	107		.0	 !		1	- 72 V	7.	10%	17.	, ,	Ř		
7-6	۰	1	1.,	5		-	!	1	<u> </u>) 、	 ,	ـــــــــــــــــــــــــــــــــــــ	ـــــــــــــــــــــــــــــــــــــ	<u>با</u>		 ۱.۹	ل. رئ		
Table 7-6	•															۳			•
		•																	

Table 7-6

,	KC = 0./4	y ay " y	
		MAKAPA KIVON Nº 311	
LIQUEFACTION CALCULATION	DADER (C)		

		ļ		ľ	ļ		[[[Γ		ſ	T	ŀ		ľ	- 	Γ	T
			121		.26		1 1.10 1	1441	10741				-		-		-		
4. 4.0.4	- 8		425.0	2394	240	946.0	67.0	0.26	5170									 .	
4 C .	R, 1 R.		2550 9920 - 200 - 200 - 000 - 2960 - 2960 - 290	•		•	\$	•				_		-					
	<i>8</i> ,		0	25-0	0.27-	0.00	0.244		1.4									-	
×- =	7		، ويحري	· · · · · · · · · · · · · · · · · · ·	224 0 714 040 0 394 0 234	0540 7640 4920	0.296 1.266 0.670 0.026	120 ELLA .710 2121 1 10 0	210 6000									•	-
n L	0.1		042.0	مالا م	. 4 m.	0.69.0	2.670	0.710	0.746.										-
NOALY HARAN	Ċ		214	- 42	e 715	etal a AF	12.4	- 78 M	2774 I				-					•	
47034	Z		. 0.970	- 11	0.240	. 754	0 P.	. 24	2.540							-	_		
4	لم. ' تور'																		
	تر		a v			.		•			-		•						
	÷ عر		1.7				-						-			_			
	D t-		i			_	_				0.0-8		0 . 1						
	7 10% N 1.2	-	~2	67	<i>دت</i> ر 	a 	-	6.	7	5	2	6	0'	5.	, a.	. 0/	2		
	7 10		ۍ 2	<u>,</u>	ţ,	ţ.e	2.0	2	c /0:0	c 1/0	c 7.	c 14.	c / c	1.70	0 11 2	c / 19.	2		

10 II			· · · · · ·						: :											
APPENDIX 4 Page 10																				
	11		. 2.5.1	100	1.76.	141	1 717	1 20%	1			*	•	,		,	•	,		
kc = 0.14 -24 = 0.69 m	à		0.11- 0.276.	2100	1-296.0	22	240	6.2.23	1.00	· · ·					_					
kc =	à		0.11	*	-	*	*		•						i -		_			
[ð		2.0	المحجم ا	1.200 }	المعرزي	0.16	60.00	1.10				•			i I				
218 3	. 7		0.127 0.174	0.3th 0.327 0.42.	- 57 0 avr	160 a 100 a 212	C 74 0,497 0,433	1074 0 687 0 033	420 -	1					- - -				_	
SAPDAHAPD CREEK WE BID	3			245-2	C 0. 317	1 c. 107	1 0.472	1 0 627	1 2.22	• • •					. 4	-		_	-	
APO CI	ę.		0.224 0.174		1 - 1										•	-				
HADAH	1×1			6.970	1 e. 9 ter 5	0.940	1 246 0	0.710	495.2	,					-					
	ζ.	 	- 6 °																	
)LATION	ک		dV ;			- - 						· · ·	_							
N CALCU	برج		1 27	-	_	- - - - - - - - - - - - - - - - - - -			7 1	~	-	•		K		v .			•	
LIQUEFACTION CALCULATION PAPER (7)	A D to	•-•	(~ 1 (o, 1) 5	6			4		12.00	0.02				0.00K				001		
LIQL	Y (M) N 1.4		101	2.0		40	-		2.6				- - -		× ×		·~ ·	6. 7		

LIQUEFACTION CALCULATION PAPER (8) Teble 7-5

- 235 -

ks = 0.14. her = 2.40.4

SAPPAHADO 25=74 Nº BIO

		i						
IL	2	45	9.49	2.24	1.11.	1 40	1.27	1.4.2.
8		03/20	0.474	22K = 23K = 0.00 - 21K = 0.310 - 22K	0 410 1 1.15 1 0.20 1 0.172 0.20 4 1 0.292 1.66	and a set a set a set	7412 - 461,0 1, 661,0 1410 ,0012 4411 - 440	· 24 1. 274 1.210 0.136 0.12. 9 0.276 1.40
Å,	Ì	0,10 1						*
8		222.0	0.120	420	0.2	0.162	01/	0.7.
٦	-	0.079	10/0	11/10	0.172	2.100	1410	0.176
 0		1.000.0	1.400	0 600	8	1 200		1100
ۍ و		. 1/1	×1.0	1 714 .	1.11	1076	111	724.1
77		1260	826 .		. 9 . 0	- 20	0 0.4	24.0
è		101						
٢		. 6.1						
۲.								
:		(21.0)	2.2.4			•	-	
N 1.7		6	1		,			3 0
(11)						0		
T T (2) 1 N 1/2 1 D 4. YT. YT. T. N. R. R. L R. R. R. R.		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			<u> </u>			

1.274

2. 2 to

000

J υ J

5	•		10 4		-	1
0	.,	~				
. 3	. 2 .	ر س				
J		2				} ;
			Der K			<u>۲</u>

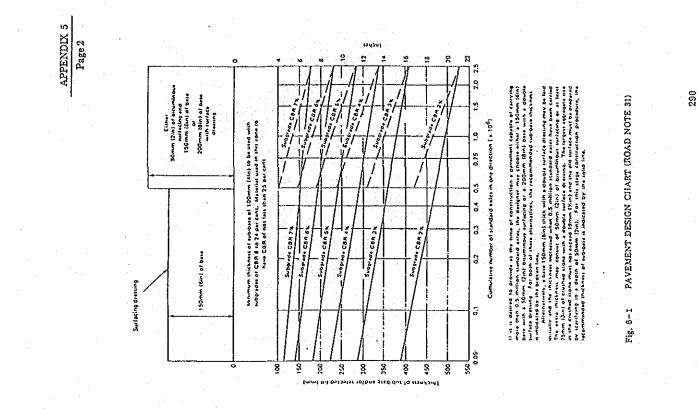

7 - 1

Table 3-3 CBR OF EMBANKMENT MATERIALS FOR LOT II

Section of Anute for Pavement Design	ute Design	Miaru River to Kapuri River	Kapuri River to Tauri River	Touri River to Halalaua
	Source	Palipala hill	llårafa hill	Malalaua exist. Borrov pit.
2011 1105		Clayer Silt	Silty Sand	Clayer Silt
	9.5 mm			•.
Sieve	4.75 Run		100	100
Analysis	2.36 Ea	100	74	65
Percent by	425 UM	80	25	86
vt.passing	150 tra	н Б	5	86
1	75 Um	25	0	Ş
Alterberg	Ę	29	£	\$
Lioits	J.	- 21	22	29
	١٩	5 ET	11	5
4. Sid Conpaction	Compaction HDD (1/m ⁵).	1.743	1.770	1.20
5	OMC X	16.7	15.8	36.0
Sid Saaked CDN	N	3.3 6,8 9.4	8.2 5.3	7-5
×	•	6,5	6,8	
- 14		3,0	2.1	
t X	5	3,5	4.7	

Location	Soil	Sieve An	Sieve Analysis ; Passing Percent	Passing	Percent	Atterberg Limits	Lini ts	Com	Compaction	CBR
• •	1 ype	2.36 88	0.425	131.0	0.075	3	Id	х Уч	- m/1 00	Soaked X
343	clayer SLIt		66	63	48	28	12 .	16.7	1.74	5.3
350	clayey Silt	- 14 	18	19	53	35	16			
355	ciay		38	12	60	42	23			
358	clay		55	82	74	52	. te	18.6	1.30	4
366	clayey silt		- 91	67	57	32	13			
367	clay	56	- 25	20	59	58	19			
- 369 -	clay		89	67	61	37	15	20.1	1.60	7.0
371	clayey silt	66	65	60	38	31	15 -			
373	clayey silt		35	5.2	53	25	11	19.5	1.69	3.4
376	clay		55	70	60 5	43	26			
378	clayer silt		89	69	63	4	12			
080	clar.		92	6.8	- 19	44	26			
383	ctay.		66	. 81	12	37	18			
386	clay		95	78	65 .	40	22	19.8	1.60	0.6
682	clay		98	16 .	84 .	56	19			
165	clay		98	75	63	37	19			
409	clay		76	79	38	76	49	22.3	1 78	8.1

236 ----

237 -

Table 9-2 SUMMARIZED TEST RESULTS OF SUBBASE FOR LOT I

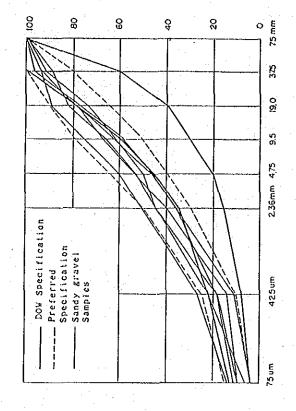
(Subbase Material Test Results (Material : Pitrun Silty Sandy gravel from Inaipi hills)

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Location &	Siev	c Analysis	vsis	: Per	Percent	by wt	passing	ing	Atterberg	rg Limits	Soaked CBR
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				1-	19		7	- 36	. 42	- 07	긢	1 d	24
Value 100 71 55 43 35 30, 7 2 35 100 55 43 17 2 35 100 55 54 55 43 35 100 55 54 55 54 55 56 55 56 55 56 55 56 55 56 55 56 55 56 55 46 57 15 55 56 55 56 56 55 46 57 15 55 56 56 56 56 56 57 15 57 15	0	ທທ	100	87 85	່ວທ	4 4 0 0	34 37	32 32	5. 101	90	4 C 8 0 0 * *	31	
S 4 100 75 61 85 74 53 17 2 NON 124 10 S 5 100 75 64 48 74 53 12 3 3 12 10 S 6 100 75 64 48 74 53 12 3 3 12 10 12 10	Report		100	Ľ	1D		32	000		0	30. 10	4	1
Xai X			•	001	н,	58	47	61	17	61	Non	Plasti	•
7 100 55 64 57 15 6 55 14 15 5 14 15 5 13 15 14 15				0`0 ≁ {	4 1 9 4	8 8 8 8	46	7 0 17 0	CI 9	(n) ×	* *	~	0
S 8 100 58 53* 53			1001	n 10 - 40	r 00	* 0 in 7 in	0 4 7 7	* 0 [~ 0 [~	0 in	* vc	* • •) म 1 म	i "co
Inaipi Inaipi No.1 100 87 80 57 43 37* 21 14* 33* 16* 35 36 35 36 35 36 35 36 35 36 35 36 35 36 35 36 35 36 35 36 3			100	60 Un	• 7	83	* 900	* 0 0	22		***		0
Inatpi No.1 100 87 80 57 43 21 14* 37* 16* 33 No.2 1000 88 80 68 55 55 55 15 31 22* 30 No.4 100 91 80 68 55 54 15 11 41* 27* 16* 23 No.5 100 91 80 55 41 34 17 9 40* 14* 15 No.5 100 87 73 56 43 35 15 8 36* 16 23 Value x 100 87 73 56 43 35 13 40* 14* 15 Provid x x 100 87 73 56 43 36 13 40* 16* 23 B 75 63 46 34 30 10 35 10 35 36 10 36 12 37 36 12													1
No.2 100 85 55 46* 24* 15* 41* 22* 30 No.3 100 82 55 44 35* 12 34* 15 35	JICA	DN.	100	50	80	5	19 17	1		4	37.*	16*	10 C
No.3 100 82 69 55 42 36* 18 11 38* 20* 33 No.4 100 81 73 56 44 36* 15 9 33* 15* 15 No.5 100 87 73 55 41 35 13 14* 15* No.6 100 87 73 55 43 35 15 9 33* 16* 13 Value x s 100 87 73 55 43 35 14 15 Value x s 100 8 10 35 35 34 33 35 37 35 36 10 25 </td <td>Study</td> <td>ž</td> <td>100</td> <td>88</td> <td>80</td> <td>683</td> <td>ເດ ເດ</td> <td>ω</td> <td>77</td> <td>in</td> <td>4 1 7</td> <td>22*</td> <td>30</td>	Study	ž	100	88	80	6 83	ເດ ເດ	ω	77	in	4 1 7	22*	30
No.4 100 91 80 60 44 35 15 9 33 14 15 Value No.5 100 97 73 55 41 34 17 9 40* 14 15 Value No.5 100 87 73 55 43 35 15 9 35* 16 23' ard Deviation x x 100 87 73 55 43 35 16 12 23' x + s 100 9 55 83 56 53 45 34 35 16 11 pecification 100 100 56 53 45 35 20 410 11 11 11 11 14 14 15 15 15 15 15 12 23' 15 12 12 12 12 12 11 16 12 25 15 </td <td></td> <td>No.3</td> <td>100</td> <td>82</td> <td>69</td> <td>າກ ເກ</td> <td>42</td> <td>Q</td> <td>18</td> <td></td> <td>38 </td> <td>20<u>*</u></td> <td>0</td>		No.3	100	82	69	າກ ເກ	42	Q	18		38 	20 <u>*</u>	0
No.5 100 82 59 41 34 17 9 40* 14* 15 Value x x 100 87 79 55 40 34 18 11 41 15* 15 Value x s 100 67 73 56 43 36 15 8 39* 16* 12* 12* value x s 100 67 73 56 43 36 15 8 39* 16* 12* 12* 12* 12* 12* 12* 12* 12* 12* 13* 11* 11* 15* 11* 12* 12* 13* 13* 13* 13* 13* 13* 13* 13* 13* 13* 13* 10* 10* 10* 10* 10* 10* 15* 3* 13* 13* 13* 13* 13* 13* 10* 10* 10* 10* 10* 10* 10* 10* 10* 10* 10* 1		No 4	100	16	80	60	44	Q	5 1	თ	н Сі Сі	14	ທ
No.6 IO0 57 79 55 40 34 18 11 41* 15* 15 value x s 100 67 73 56 43 36 15 8 39* 16* 23 value x s 100 67 73 56 43 36 15 8 39* 16* 12 pecification x s 100 95 83 66 52 42 20 13 43 22 35 11 pecification 100 100 80 60 45 35 23 24 20 <t< td=""><td></td><td>No.5</td><td></td><td>100</td><td>82</td><td>с сл</td><td>41</td><td>34</td><td>17</td><td>თ</td><td>40*</td><td>14*</td><td>in</td></t<>		No.5		100	82	с сл	41	34	17	თ	40*	14*	in
Value ard Deviationx100677356433615839*16*2x + sx + s1005553565242201343223x + sx - s1009553565242201343223pecificationx - s10010080604535221223212pecificationx - s10010080604535221223212predUpper Subbase10010085705545231553051022ficationLower Subbasex705545231553051022mple No.1.No.2.No.3v20v30v20v5v302022mple No.4.No.5.No.6existing borrow pitnv30v30v30v302022mple No.4.No.5.No.6existing borrow pitv40v30v20v5v30v1022mple No.4.No.5.No.6existing borrow pitvan savan savan savan savan saficationcomputation of x and svan savan savan savan savan savan savan saficationtesterinavan savan savan savan savan savan sa		No.6	0	5	19	ະ ເດ ເວ	40	34	8	11	41*	10*	in.
Valuex10087735643361583916*2ard Deviationxxs1009563465242201343223 $x + s$ x1009563465242201343223 $y (75 mm)$ x1001008050453522122020 $B (75 mm)$ 1001008050453522122020 $B (75 mm)$ 1001008050453522122020 $B (75 mm)$ 10010080507023231323021022 $B (75 mm)$ $D eer Subbase-40-30-20-15-28-32323202022f i CattionLover Subbase-70-55-40-30-20-5-3-202221022f i CattionLover Subbase-70-55-40-30-20-5-3-20-3-20-20-5-3-40-20-20-5-3-40-20-5-3-40-30-20-5-3-40-30-20-5-3-40-20-5-3-20-$													
ard Deviations101096555461 $x + s$ $x + s$ 100 95 83 56 52 42 20 13 43 22 3 B (75 mm) $x - s$ 100 100 80 60 45 35 35 20 13 43 22 35 B (75 mm) 100 100 100 80 60 45 35 22 12 22 $redUpper Subbase10010080-30-20-15-82321022redUpper Subbase10010010085705545231521022redCower Subbase\sqrt{70}55452315\sqrt{10}22ficationLower Subbase\sqrt{70}554620202122mple No.1. No.2. No.3Near Bercina\sqrt{70}55\sqrt{10}55-322mple No.4. No.5. No.6Near Bercinample No.4. No.5. No.6existing borrow pit4s and s22s ccoluded for computation of x and ss and s5555522$	Valu		0	87	73	ម ភេ		36	15	80	39 *	ΰo	23*
x + s 100 55 63 46 52 42 20 13 43 22 3 Becification x - s 100 100 100 80 60 45 35 23 23 20 13 43 22 3 Becification 100 100 100 80 60 45 35 22 12 33 210 20 12 22 3 35 10 22 21 2 21 2 21 2 21 2 21 2 <td>ard</td> <td></td> <td></td> <td>8</td> <td>10</td> <td>10</td> <td>6</td> <td>. 6</td> <td>5</td> <td>2</td> <td>4</td> <td>9</td> <td>12</td>	ard			8	10	10	6	. 6	5	2	4	9	12
x - s 75 63 46 34 30 10 35 10 1 pecification 100 100 80 60 45 35 22 12 x_{30} x_{10} x_{20} x_{10} x_{20} x_{10} x_{20}	-*	+	0	က ဘ	83	66		42	20		43	22	35
pecification 100 100 80 60 45 35 22 12 530 510 20 22 rred Upper Subbase -60 -40 -30 -20 15 -3 530 510 22 rred Upper Subbase 100 100 100 85 70 55 45 23 15 510 22 fication Lower Subbase -70 -55 -40 -30 -20 -5 -3 23 mple No.1. <no.2.<no.3< td=""> Near Bereina -70 -55 -40 -30 -20 -5 -3 2 mple No.4.<no.5.<no.6< td=""> Near Bereina -40 -30 -20 -5 -3 2 a is excluded for computation of x and s -40 -30 -20 -5 -3 2</no.5.<no.6<></no.2.<no.3<>		•		1. 1.	63	46		30	10	с 1	35	10	11
Upper Subbase 100 100 85 70 55 45 23 15 <u>4</u> <u>2</u> Lower Subbase ~70 55 ~40 30 -20 ~5 ~3 <u>2</u> Lower Subbase ~70 55 ~40 ~30 ~20 ~5 ~3 <u>2</u> 1. No.2. No.3 Near Bereina <u>4</u> No.5. No.6 Kear Babanongo <u>2</u> <u>2</u> 4. No.5. No.6 Kaar Babanongo <u>1</u>	DOW Specific Type B (75 m	aiton m)	0	00	4 00	001		35 ~15	22 - 8	12 ~3	≤30	Δ10	C1 1
Lower Subbase ~70 ~55 ~40 ~30 ~20 ~5 ~3 2 (Non treated) 1. No.2. No.3 Near Bereina 4. No.5. No.6 Near Babanogo existing borrow pit luded for computation of x and s	Preferred	Upper Subbasc (Cement treated	1	100	8.5	70		ਯ ਸ	23	13		≤10	225
ample No.1, No.2, No.3 Near Bereina existing borrow p ample No.4, No.5, No.6 Near Babanongo existing borrow p 4 is excluded for computation of x and s	Specialcatio	Lower Subbas (Non treated		02-	LO LO	` 1'	3	2		5 - 2			
ample No.4, No.5, No.6 Construction of a laboration of a labor	Sample No	No.3		tina borro	. r								
4 is excluded for computation of x and s	Sample No	No.6		02404	. .								
		computa	7 T.	bre y	L .								

291

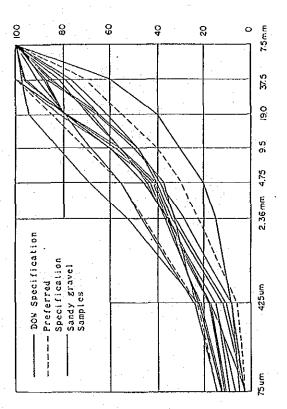
* out of DOW Specification limits

Table 8-4 SUMMARIZED TEST RESULTS OF SUBBASE FOR LOT II


Cubbase Material Test Results Material : Pit-run Silty Sandy gravel from Malalaua hills

	Location &	Sieve	Sieve Analysis	1515	Percen	cent	by wt.	. passing	ing	Atterbei	Atterberg Limits	Soaked CBR
	Sample No.	75	37.5	19	10 10	4 75	2 36 (0.425	0.075	T	Γ	×
Cardono & Davies		100	100	74 76	** ~~ ແ ເບີຍກ	50* 46*	45 45 45	22 10	ა ი	24 Non	Plactic	35
Report	19 19 17	100	96	64 67	* * 0 4	* * יויי ויי	4 0 %		0 F	* * ~~~		40
	4 6-4	100	46	0 0 0 0	מו (מו (4 10	* • • •	101 1-1	י ס י	#) ਖਾ) 17	01	5 1
JICA	Inaipi No.7	100	. 68		66 *	53. *	45*	18	80	34*	II.	23*
study	No.8	100	0 4	* 00	75*	60*	51 *	2 E *	* 	28	~	18*,15*
Mean Value Standard Deviation	ation s	100	6 7 7	-62 7	ი გი *	ده د ۲۵	42 42 8	20 4	51 61	32	7.4	28 10
	+	100	95	86	72	57	48	24	11	36		37
	а ю - 1 - X		~91	~72	~56	~48	~35	~16		69 (9 19 (9	: (7)	18
DOW Specificaiton Subbase	iton	100	100 ~60	-40 -40	200 720	45 -20	~15 ~15	23 ~ 8: 8:	132	· · .	012	225
Preferred	Upper Subbase (Cement treated)	100	100	06	80	- 10 10	50	5 2 3	ŝ		<u> </u>	225
Speci II cation	Lover Subbase (Non treated)	I	-80	~63	* 50	~40	~30	~10	ະ ເ			2 8

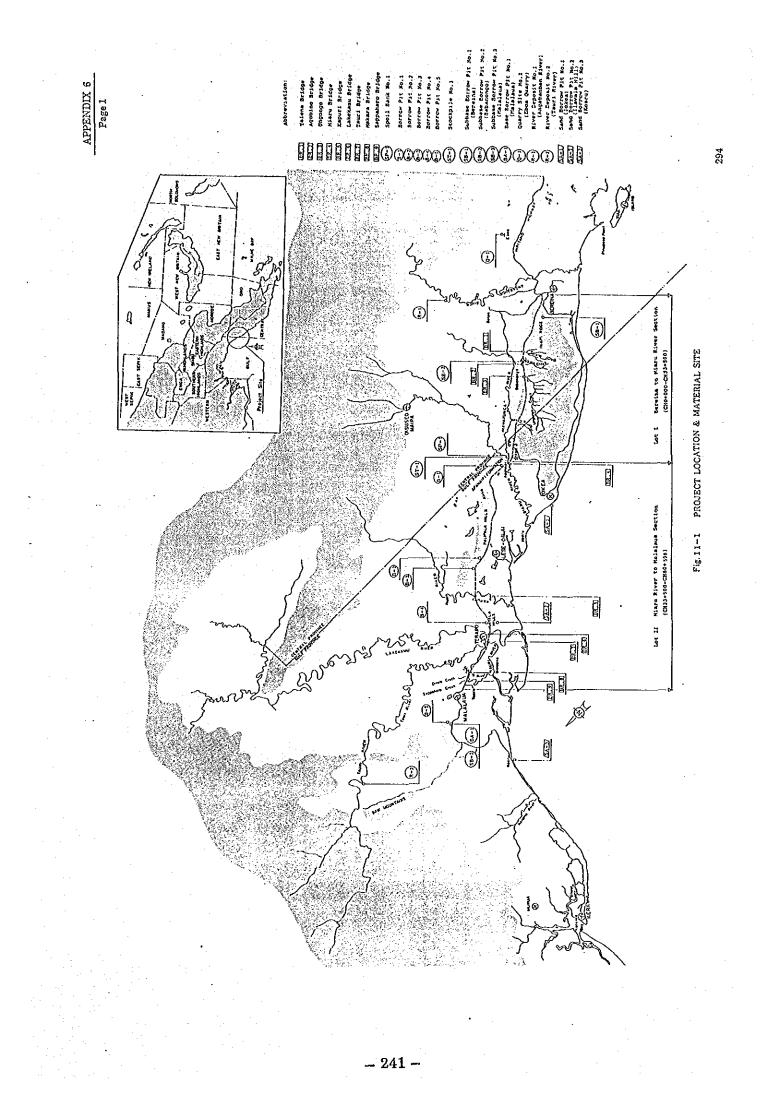
S 15 is excluded for computation of x and s

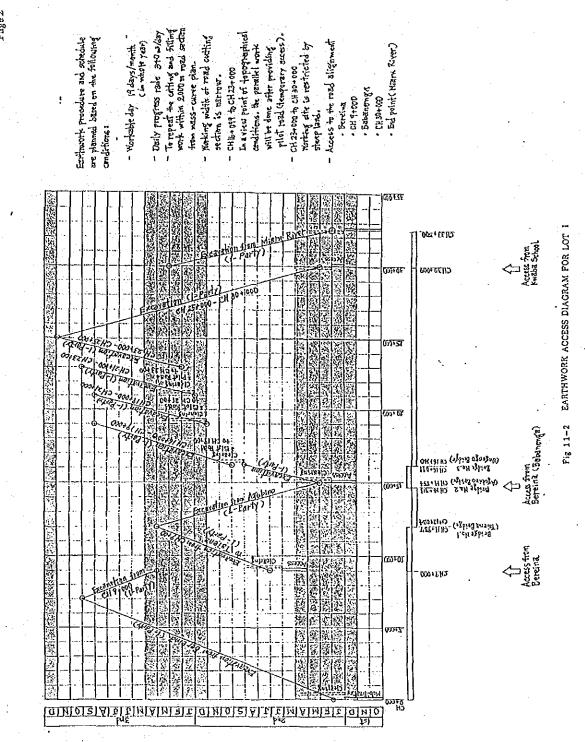

292

- 239 --

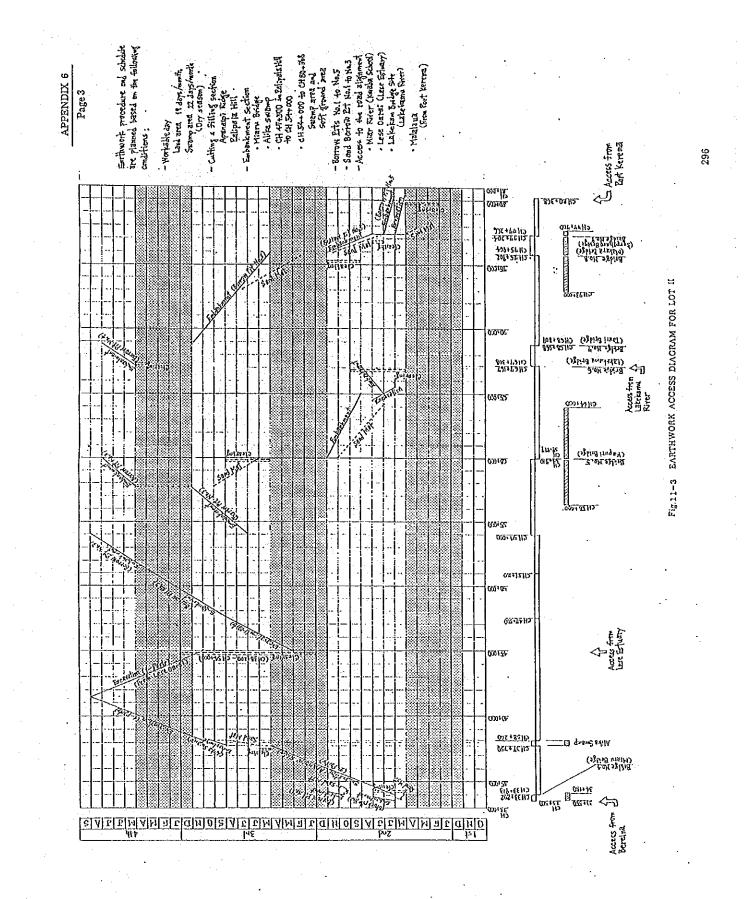
Preferred Grading Specification Range for the pit-run Sandy gravel subbase (Miaru River ~ Malalaua Section)

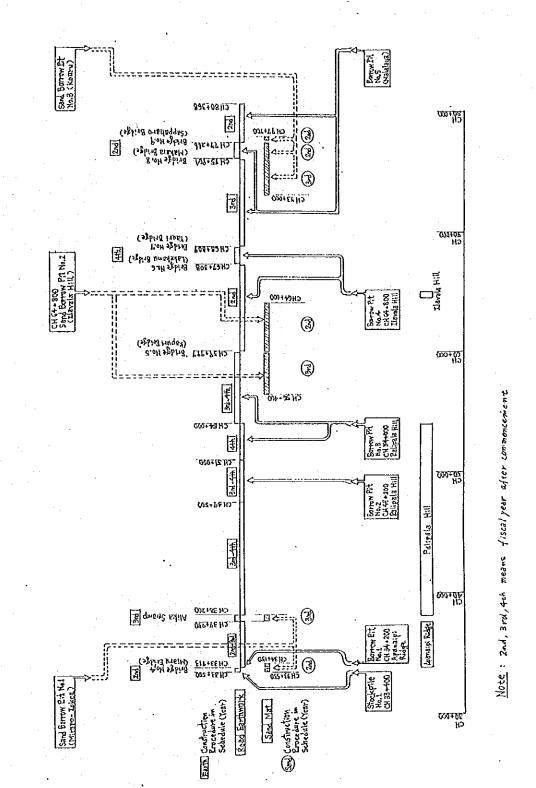
eve	Sieve Size	DOW Specification	Preferred Specification
75	Ę	100	100
37.5	伯属	60 - 100	80 - 100
0.91	88	40 - 80	65 - 90
9.5	tata tata	30 - 60	50 - 80
4.75		20 - 45	40 - 65
2.36 mm		15 - 35	30 + 50
425	#5	8 - 22	10 - 25
75	ព្រ	3 - 12	. 3 - 15




Preferred Grading Specification Range for the pikrun Sandy gravel subbase (Bereina - Miaru River Section)

Sieve Sizc	5 i 2C	bOW Specification	Preferred Specification
75	E	100	100
37.5	Ë	60 - 100	70 - 100
19.0	Ë	40 - 80	55 - 85
9.5	ŧ	30 - 60	40 - 70
4.75		20 - 45	30 - 55
2.36	Ē	15 - 35	20 - 45
425	E	8 + 22	5 - 23
75	80	3 - 12	3 - 15


293


- 240 -

м й 11

244 -

APPENDIX 6 Page 4

Fig.11-4 EARTH MATERIAL DISTRIBUTION PLAN FOR LOT II

6 ,4	Porto trype Porto trype Porto trype 221 221 221 221 221 221 221 22	bont type bont type bont type bont type contour	
	55 5 3 3 2 2 60000 5 10 15 2 1 4 8 8 8 10 2 10 2 10 10 10 10 10 10 10 10 10 10 10 10 10	Port to the second seco	Porte transformer and the second seco
	r Vipontoout Be	w/ripper w/ripper larane w/pontoou us backhoe tovel der ck ck ck ck ck ck ck ck ck ck	ulidozer w/ripper ulidozer ulidozer ulidozer iamsheli crane wyontooi mphibious backhoe actor shovel ackhoe actor shovel ackhoe beel loader heel loader heel loader heel loader heel loader in plant ump truck ump truck ump truck ump truck ump truck ump truck ump truck ump truck ump truck in plant in plant rushing roller brating roller brating roller brating roller brating roller brating spray eesel pile driver eesel pile driver bro hammer eesel pile driver eesel pile driver bro hammer eesel pile driver bro hammer

uioment. Lot I	Required Number	10	-	10	-	T	5	61	7	10	4	-1	~	••	ŝ	7	67	4	1	7	9	ŝ	63	ю ·	3	2	м	2	-4	ч	en	ч	7	2
uction Plant and Eq	Spec.	21 ton	11 ton	2.3 m ³	2.0 m ³	1.6 m ³	0.3 B ³	10 m ³ /min	13.5 m ³ /min	11 ton	8 ton	4 ton	60 ton/hr	20 ton/br	3.7 H	8 ton	4 ton	1.6 т	3.5 m	2.0 m	15 ton	10. ton	-	5 kl				600 litre		2.5 ton	10 ton			0.7 m ³
Table 1 1-1 Major Construction Plant and Equipment, Lot 1	Description	1. Bulldozer wiripper	2. Bulldozer	3. Tractor shovel	4. Wheel loader	5. Wheel loader	6. Backhoe	7. Crawler drill	8. Air compressor	9. Dump truck	10. Dump truck	11. Dump truck	12. Crushing plant	13. Crushing plant	14. Motor grader	15. Vibrating roller	16. Vibrating roller	17. Road stabilizer	18. Aggregate spreader	 Chip spreader 	20. Tire roller	21. Macadam roller	22. Tandem roller	23. Sprinkler	24. Road sweeper	1	26. Asphalt distributor	27. Engine sprayer	Γ,	29. Diesel pile driver	30. Truck crane	31. Crawler crane	32. Portable mixer	33. Concrete dumper

- 245 -

ATTACHMENT 1	· ·	1 ROAD CLASSIFICATTON AND CROSS SECTION	1-1 PROJECTED TRAFFIC YOLUME	ADT in initial year 200 vehicles per day	ADT after 20 years 360 [*] vechicles per day	* ADT (20) = ADT(initial year) x (1 + 1) ^N = 200 x (1+0.03) ²⁰	NE DESIGN IISE		1-2 TAAFFIC CATEGORY	Judging from the traffic volume,the traffic category is classified as "Medium"from Table2-2 DOM Design Manual,as		TABLE 2-2 TRAFFIC CATECORY AND CROSS SECTION DETAILS	Traffic Volume Terrain Design Width of Width of Category Range Type Speed Pavement Formation (v.p.d)++ +++ (kph) (m) (m)	Heavy 400 F/R 80 6.5 8.5 H 50 6.5 8.0 N 30 6.0 7.5	<u>Medium 100-400 F/R 70 6.5 7.5</u> H 50 6.0 7.0 H 25 5.5 6.5	Light < 100 F/R 60 N/A 6-5 H 40 N/A 5-0 N 25 N/A 5-5	** The volume range is the anticipated traffic at the end of the design life, assumed to be the same as the pavement design life, of the road. ** The terraintypes are defined as: F/R Fiel and Nolling - less than 10 cross slope H Hilly - 10° to 30° cross slope M Mountalouns - greater than 30° cross slope	239
· · ·		•		·	-	·										·	· · ·	
• .	•				-			NOIT			·						•	
								S B C B C B C B C B C B C B C B C B C B		•		• •						
					- - -	L	•	D CROSS					·					
					TNENT			CON AND		с Д				•				
			-	•	аттасникит	6		CLASSIFICATION	,	STANDARD								
					4	•		CLASSI										
								ROAD		GEOMETRIC								
								H	÷.	ю.			÷.					
		· .	• .				-						· · ·					
			.'	: •			•											

ATTACHMENT Page 2

2-1 SIGHT DISTANCE

2 GEOMETRIC STANDARD

1-3 DESIGN SPEED

The Disign Speed adopted is 70km/h considering Flat and Rolling terrain type, refering to the same Table.

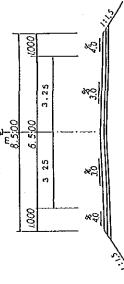
1-4 CROSS SECTION

Formation vidth is amended from 7.5 m to 8.6 m as described in the minutes of meeting. 12 July 1988. The components of the cross section are as follows;

Crossfall (Refer to Table 3.5.2 in DON Design Manual) Lane Vidth ----- 3.25 m Shoulder Width --- 1.00 m Pavement --- 3 z shoulder --- 4 % Number of Lanes--- 2

TABLE 3.5.2

247 -


MINIMUM CROSSFALL

Crossfall

Type of Pavement

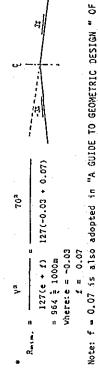
ж ж ж м т си The typical cross section is shown below. Earth or Loan Gravel (Shoulder) Bitumen (Pavement

8.5:00

Stopping Distance ------

в 06 !

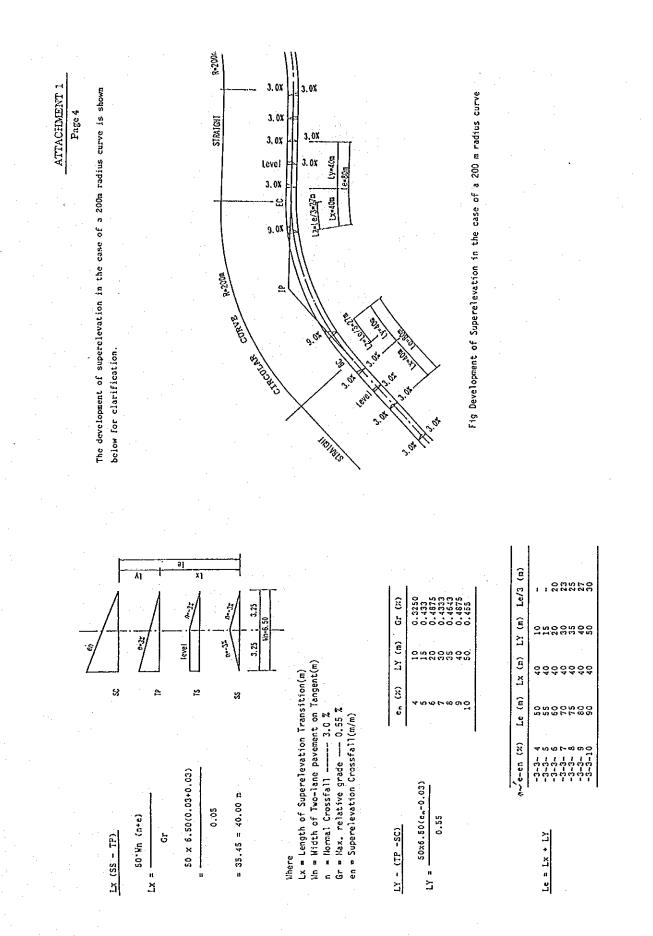
* Intervals of 2 to 2.5 km are desired. Overtaking Distance ----- 350 m * Intermediate Distance ---- 180 m

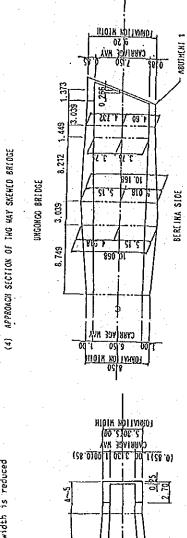

These values are adopted after refering to Table 4.7.1 in DOW Design Manual.

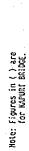
SIGHT DISTANCE ON SEALED PAVEMENTS

	Overtaking Distance	88808888 88898888 888988888888888888888	1.15 1.15	
	Intermediate	32000000000000000000000000000000000000	1.15	
	Stopping Distance Ds	0.928 0.9280 0.92800 0.92800 0.92800 0.92800 0.92800 0.92800000000000000000000000000000000000	1.15 0.2	
	ł	0.53 0.49 0.44 0.45 0.33 0.33	of eye of object	
ļ	Vesign Speed	00000000000000000000000000000000000000	Height o Height o	

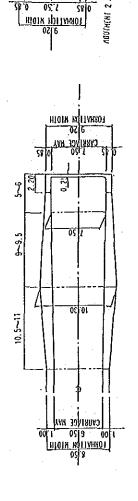
2-2 HORIZONTAL CURVE


Minimum Radius of Horizontal Curve Having Adverse Crossfall --- 1000 m Superelevation is needed ---- 4.0 Degree I.5 do 120 a 400 155 ж Curve is needed [------Minimum Radius Minimum Deflection Angle ----ł Desirable Radius NInumum Length


OVERSEAS UNIT, TRANSPORT AND ROAD RESEARCH LABORATORY-CROWTHORNE. BERKSHIRE, UNITED KINGDON"


2-4 SUPERELEVATION TRANSITION Page 3 For the maximum relative grade in the development of superelevation is adopted 0.55 from Table 5.7 in DOM Design Mannual.	TABLE 5.7MAXIHUM RELATIVE GRADES IN DEVELOPMENT OF SUPERFLEVATIONSPEED km.hrMAXIMUV RELATIVESPEED km.hrSPEED driving the beginning of the curve (B.C) is located between TP and SC (Lz = Le/3) as shown below.	Image: state of the state o
2-3 SUPERELEVATION Superelevations for each horizontal curve radius in the case of V=70km/h are edopted from Fig.5.2.2. in DOW Design Kanual.	In the second	The relations between the horizontal curve radius, the superelevations and the coofficient of side friction are shown in the table below. Honizontal SUPER- SIDE FRICTION $\frac{1}{2}$ $\frac{1}{127(c+1)}$ $\frac{1}{127(c+1)}$ $\frac{1}{127(c+1)}$ $\frac{1}{1}$ 1

- 248 -



топи иртинат остания иртинатичной иртинатичной

2120

890.0

HALALAUA SIDE

SE

291 0

0 82 5.20 0 5 100001101 1011 200001101 1011

8.749

3.039

8.212

1,449

3.039 1.373

303

250 -

(2) APPROACH SECTION OF SINGLE LANE BRIDGE

At the approach to single lane bridges, formation width is reduced as below.

28.00

. 5, 00

00

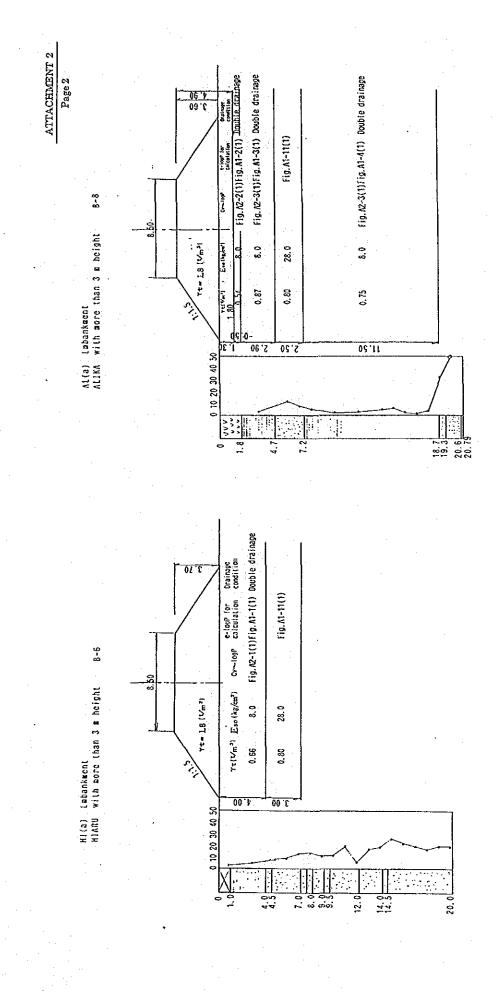
0£

105 8 20

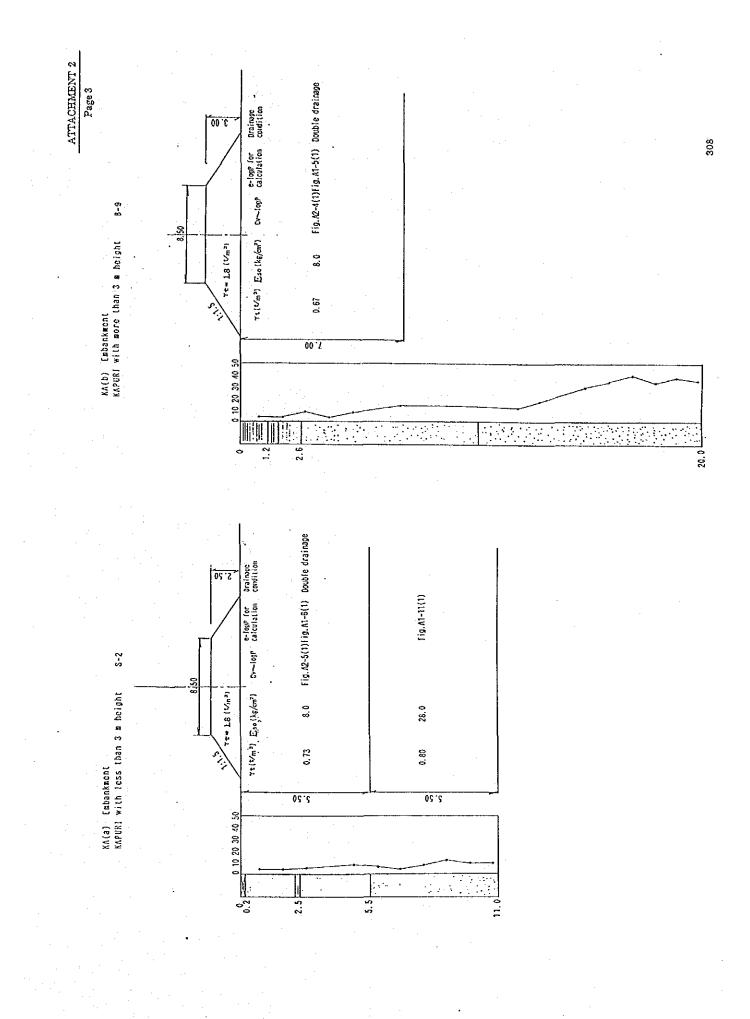
	ATTACHNENT 1
	Page 6
	2-7 MAXTANIM CONMETNED GRADIFERT
2-5 GRADIEVT	
General Mavimin 6 X	Smax 10.5 %
	To avoid the combination of steep gradient and steep superelevation.
	maximum combined gradient is adopted refering to ROAD STRUCTURE ORDIMANCE OF JAPAN.
2-6 VERTICAL CURVES	· · · ·
① Minimus Radius of Crest Curve 1755 m	
Length of crest curve	Milere:
2 1	e = Jupererevation 1 = Gradient
$2004/h1 + (h2)^{3}$ $200(/1.15 + (70.2)^{3})$	Dilation in the second for the second for the second second second second second second second second second s
Where,L = length of vertical curve (metres)	kelations between Superelevation and Gradient at Mazimum Combined Gradient are shown below.
= sight distance (metres)	
A = algebraic difference in grades (%) h: = height of eve above road (metres) = 1.15 metres	e Z 5 Z i Z
= height of abject above ro	10.5 10.5
E 1.15 11 another vehicle F 0.9 methed is an akier on the roomed	
	10.5
100 × L 100 × 17.55 × A	0_8 TAVTHG DEFSET DISTANCE 5T FULTING SECTION
Therefore R = = = 100 × 17.55 = 1755 =	C-0 INVITED ALLACT ATOMACE AT ANTITAR SCATTOR
c c	Minimum offset distance should be provided to obtain the stopping sight distance.
2 Minimum Radius of Sag Curve 1740 m	Therefor, the minimum offset distance is compared with the width carriadeway and literal claserance at the smallest borkrontal turve in
Length of sig curve	
	Minimum offset distance (R = 200 m)
A X 800 A X 50 A X 50	
150 + 3.5 × D 150 + 3.5 × 90	625) + 1.625 = 8(200
	= 5.1 + 1.625 = 6.725 = 7.250 = 1)
$100 \times 1 100 \times 17.40 \times A$ Therefore R = = = 100 \times 17.40 = 1740 m A A A A	Where D = stopping sight distance 90 m R = horizontal curve radius 200 m

- 251 -

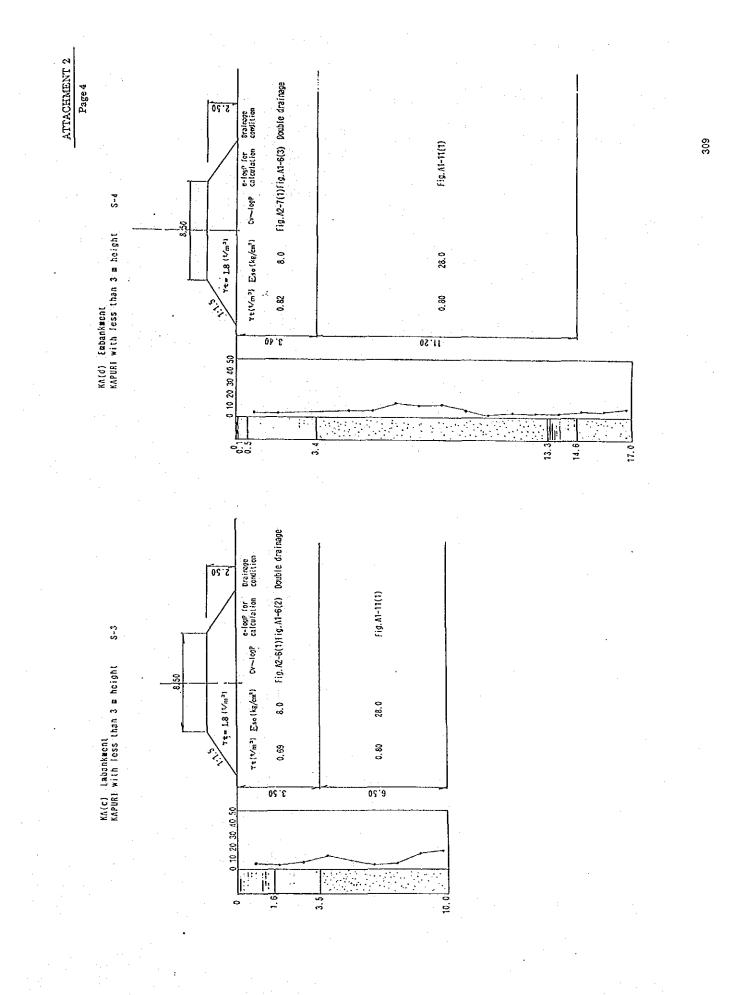
ATTACHMENT 1 Page 7	Derivation of Formula of Necessary Width on Carve The following constions are found from the firmes.		- (a + h,)=	X, ^z + a, ^z - c, a + z, X	$R_{a} + b_{a}/2 - \sqrt{(4/R_{a}^{2} - (2+U_{c})^{2} - b/2)^{2} - 2_{a}^{2} + 3_{a}^{2}} + \dots$	Ai ⁺ * (a + U ₁) ⁻ Ku ⁺ · · · · · · · · · · · · · · · · · · ·		<pre>pmbining equation (2) and adove the following eqution in derived:</pre> $B = \sqrt{14k^{2} - (2^{4}b_{1})^{2} + b_{2}^{2}} + (2^{4}b_{1})^{2} + b_{2}/2 - \sqrt{R_{1}^{2} - (2^{4}b_{1})^{2} - 2_{2}^{2} + 2_{2}^{2}}$	The dimensions of the semi trailer are:	a-4.0, b-b ₃ -2.5. U ₁ -1.3. a ₃ -9.0, a0 Substituting the dimensions of the semi trailer into the equation the following formula is obtained: 8 - R. + 1.25 - 4 ^{-Ra² - 109.09}		50.05 + 2(2) + 2 50.05 -	The necessary width calculated by the above formula is smaller than the carriagevey width.	Therefore widening is not necessary.		3. 250 3. 250 1.6251.625	- \R_a = 109.	$= 200 + 1.25 - 198.375^{2} - 109.09$ $= 3.15 < 3.25 \text{ m}$	
	Derivation of Formula The following countion	B = R 8,	$(X_1 + b/2)^2 = R_2^2 - (a + U_1)^2$	x3 = X3 + 93 + X1 ² + 8, ² X3 ² = X3 + 93 ² + X1 ² + 8, ²	a	From equations (1) and	R. ~ 4 (4 Ke ² - (3+Ue) ³	Combining equation (2) B = $\sqrt{{{{{{ {{4k}^{2}} - {{{({3 + {U}_{t}})}^{2}} + }}}}}$	The dimensions of the	a-4.0, b-b ₂ -2.5, U,-1.3. Substituting the dimensio formula is obtained: B = R. + 1.25 - 4R ₄ ^{2-109.00}	5 92 / /	. ור - א (אולי - 20,03 • 1.	The necessary width carriegevey width.	Therefore widen	<u>In the case of R=200</u>	R. = 200 m	B = Rc + 1.25 -	= 200 + 1.25 - = 3.15 < 3.25 _b	
		· · · .						-]				6 1 3	

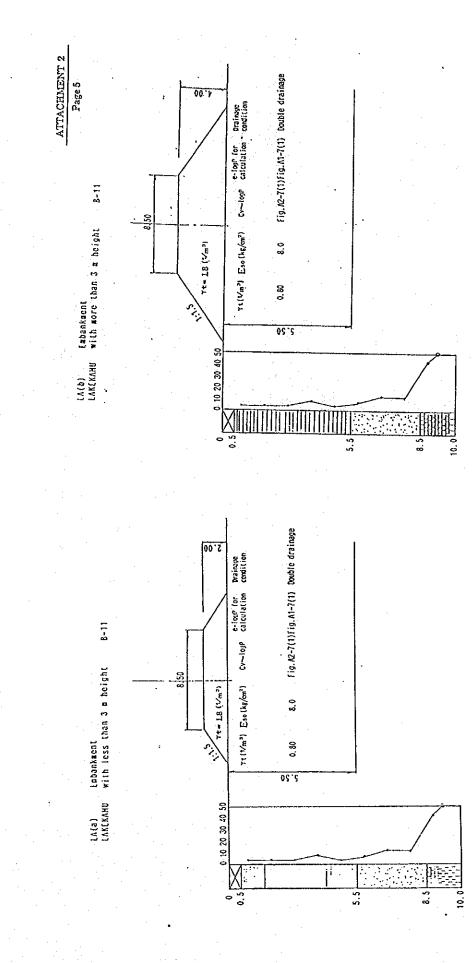


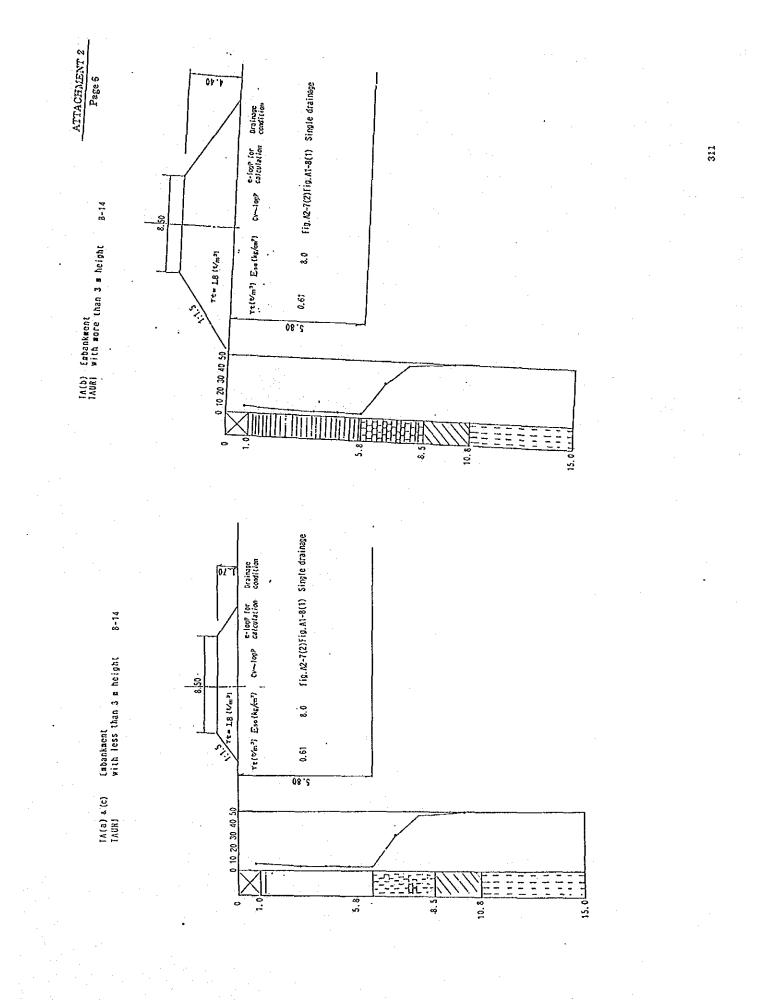
ATTACHMENT-2

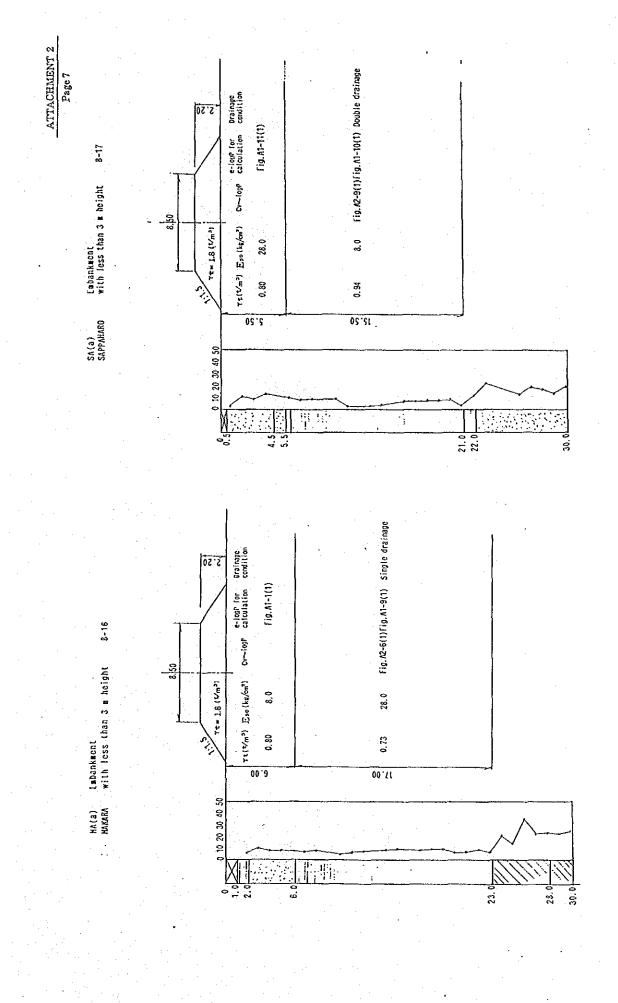

Cross Section and Soil Properties applied to calculation for selllement and stability of embankment

306


- 253 -

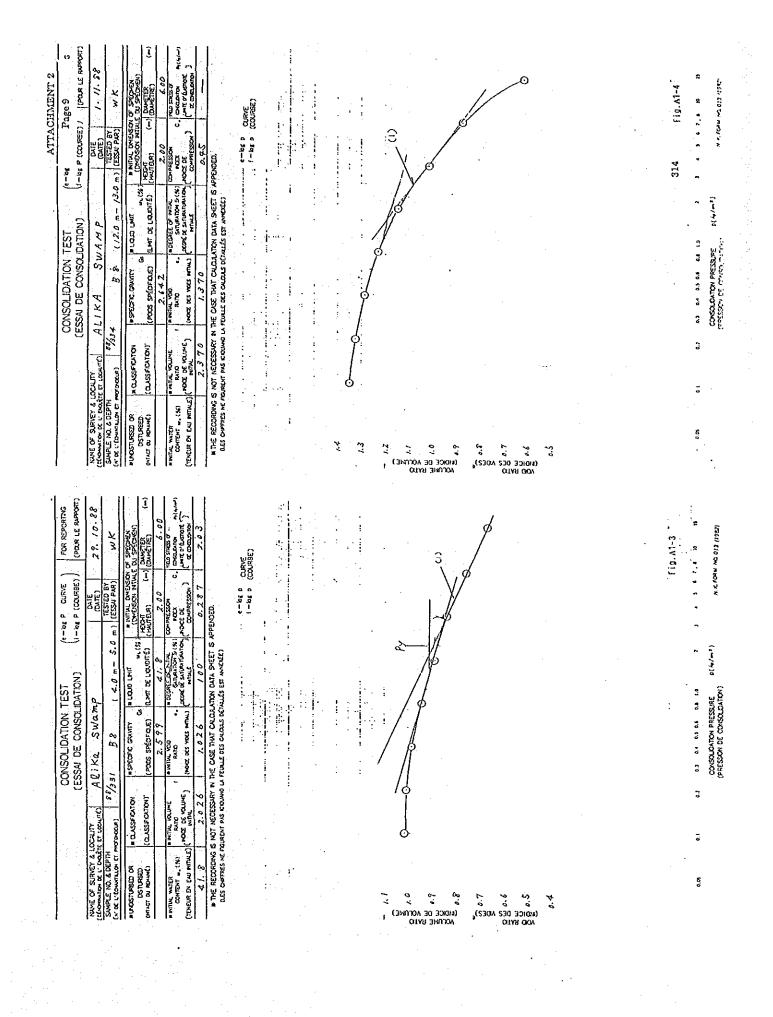

- 254 -


- 255 --

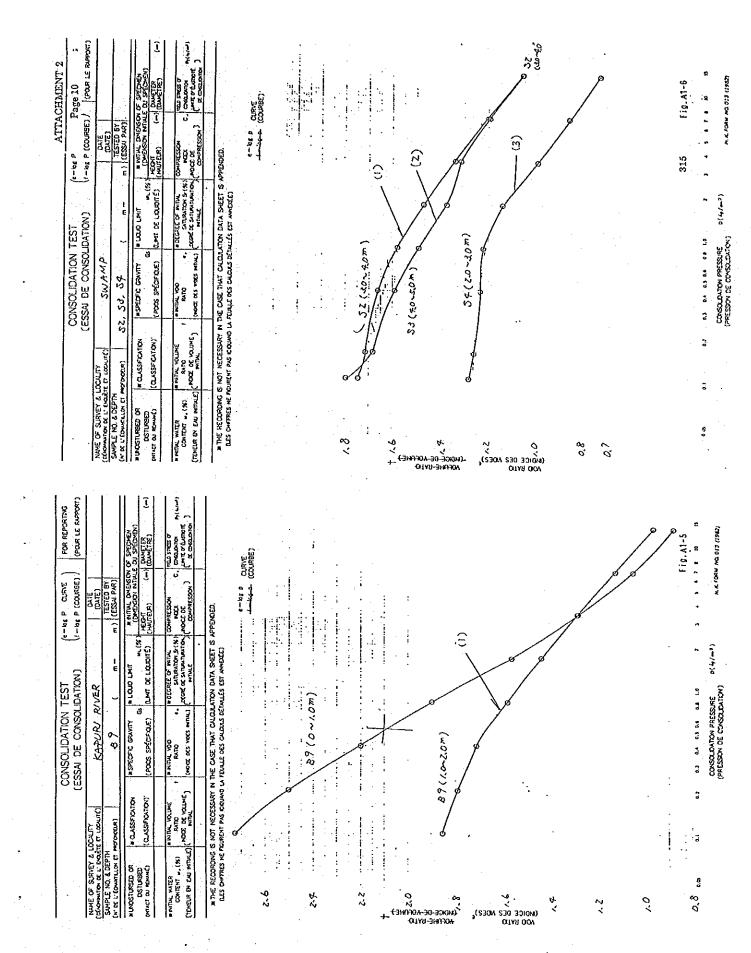

- 256 -

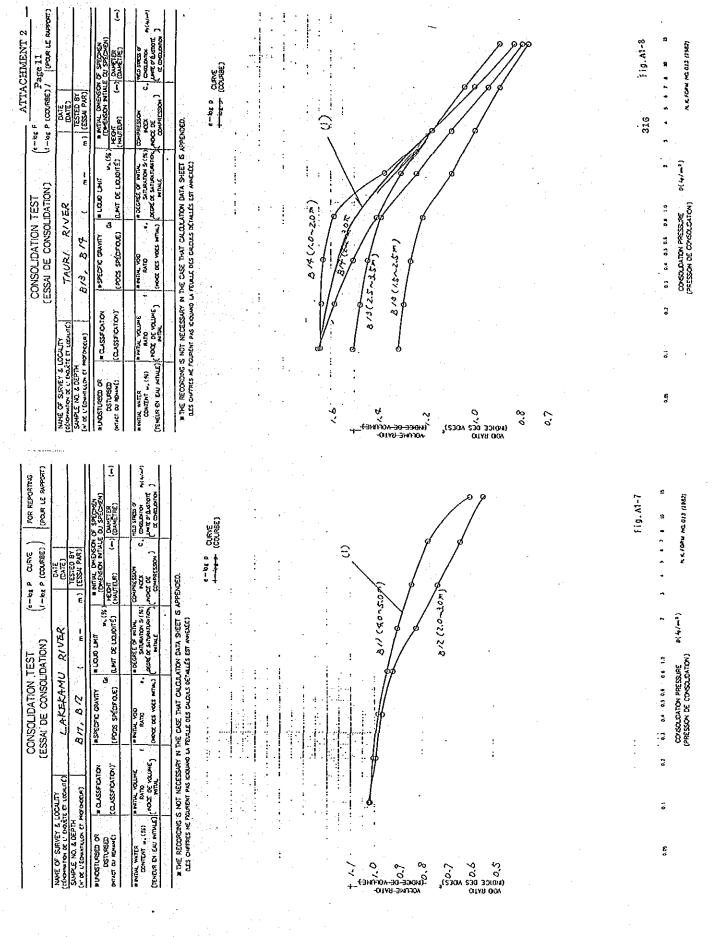
- 257 -

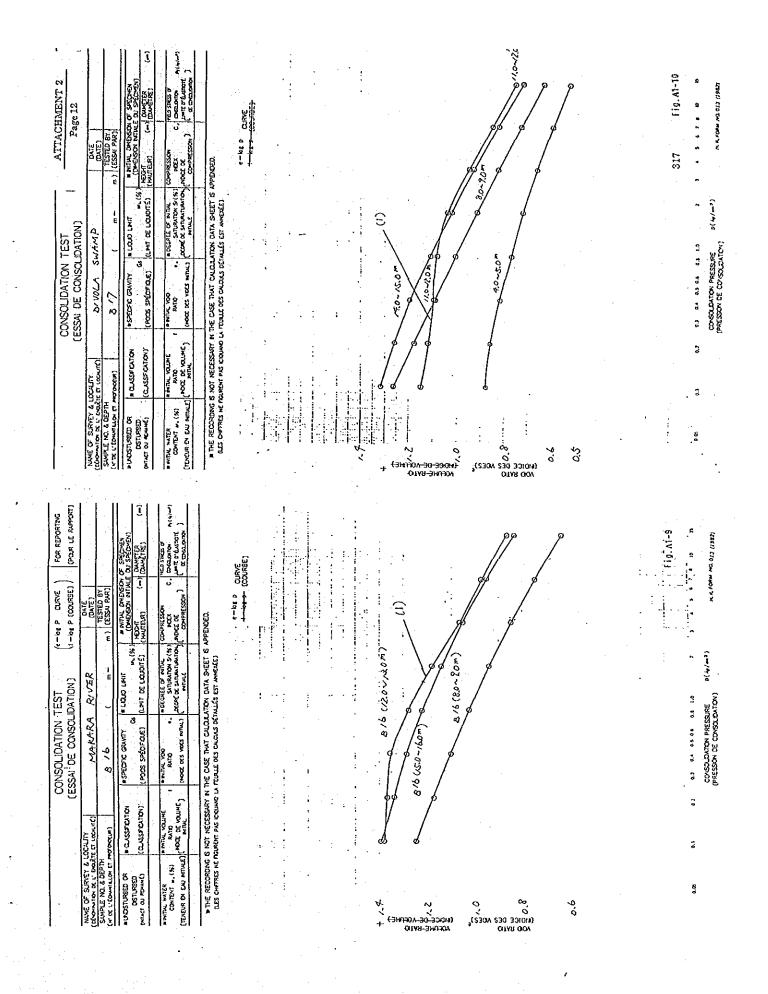
- 258 -



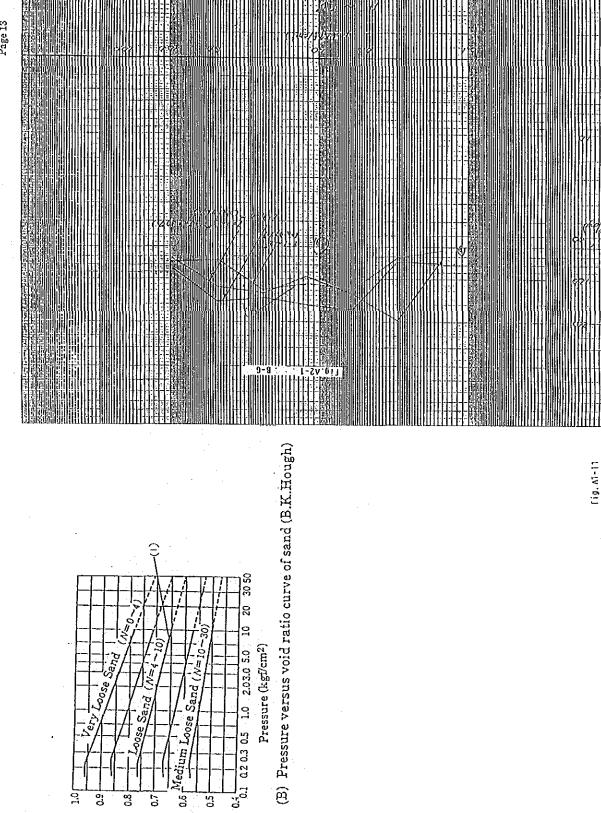
- 259 --


ATTACHMENT 2 Page 8			 9	313
CONSOLIDATION TEST (*-** (ESSAI DE CONSOLIDATION) (1-**	(THE RECORDING & NOT NEECKS THAT CULULITON DATA SPEET & APPENDED. LES CHATES NE PLOUED OF CULULITON DATA SPEET & APPENDED. LE CHATES NE PLOUED OF CULULITON DATA SPEET & APPENDED.		0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.


- 260 -


.

261 -



- 264 -

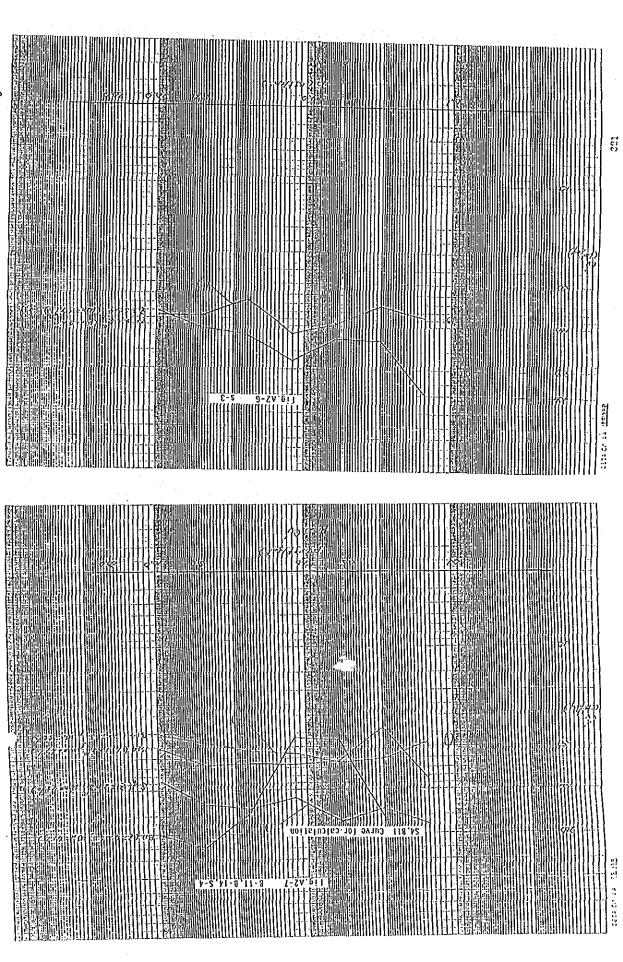
.

318

E

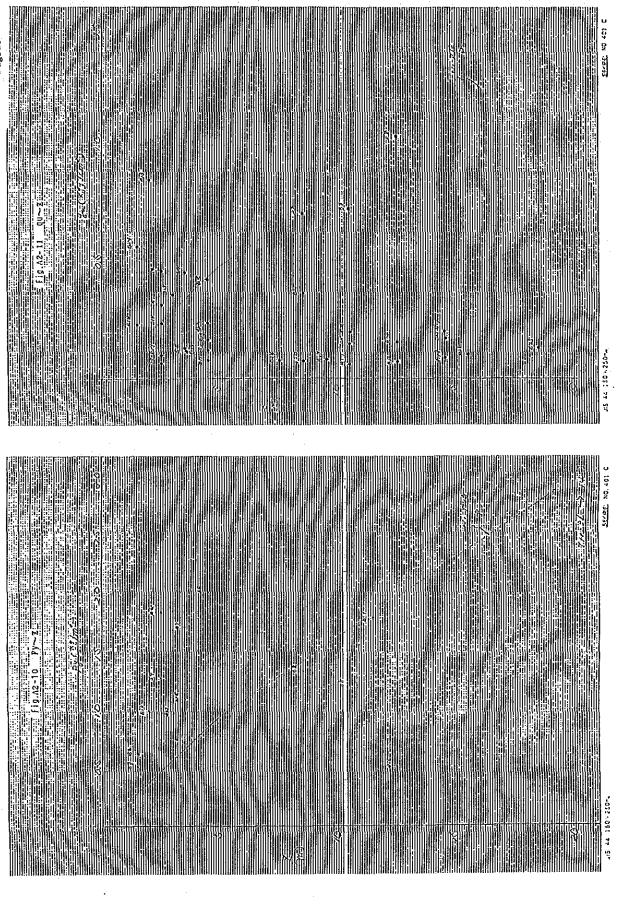
, oitaß bioV 2 웅 웅 기호[]

99

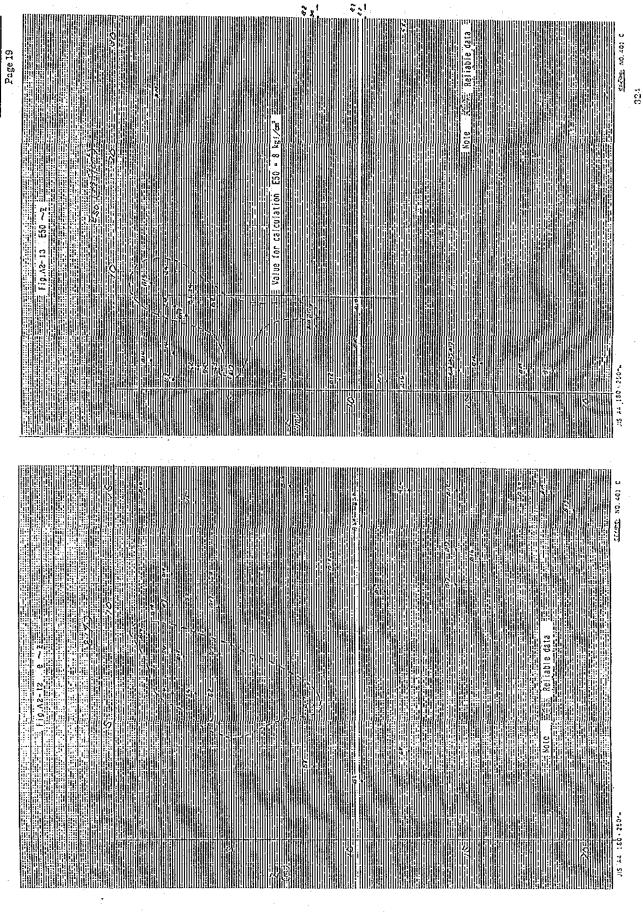

2

0.8

$ \begin{array}{c} \begin{array}{c} & & & \\ & & & \\ & & \\ \end{array} \end{array} \\ \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \\ \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \\ \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \\ \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \\ \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \\ \begin{array}{c} & & \\ & & \\ \end{array} \\ \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \\ \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \\ \begin{array}{c} & & \\ & & \\ \end{array} \\ \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \\ \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \\ \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \\ \begin{array}{c} & & \\ & & \\ \end{array} \\ \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \\ \begin{array}{c} & & \\ & & \\ \end{array} \\ \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \\ \begin{array}{c} & & \\ & & \\ \end{array} \\ \begin{array}{c} & & \\ & & \\ \end{array} \\ \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \\ \begin{array}{c} & & \\ & & \\ \end{array} \\ \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \\ \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \\ \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \\ \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \\ \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \\ \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \\ \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \\ \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \\ \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \\ \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \\ \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \\ \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \\ \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \\ \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \\ \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \\ \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \\ \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \\ \begin{array}{c} & & \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} $ \\ \begin{array}{c} & & \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} & & \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} & & \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} & & \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array}	


- 266 -

320 . 2307 00, 77 (10,702) SECTION LA BEISEC



ATTACHMENT 2 Page 17		

.

ATTACHMENT 2

ATTACHMENT 3 Page 1 METHOD OF QUANTITY CALCULATION	The whole Project area was divided into two lots for contracting.	The total quantities were summarized as for Lot-I and Lot-II. LOT-I Bereina TO Miaru River Length CH. 0+000 CH.33+500 33.500 km LOT-II Miaru River TO Malalaua 47,096 km	The calculation area was divided into road work and bridge work for both lots.	For the purpose of calculating quantities on items of 1(Group-J) Clearing and Grubbing. 2(Group-4) Earthworks and 4(Group-7) Drainage, the bridge work includes the earth work within ten (10) metres from both abutnents. And Lot-II was subdivided by the type of embankment structures such as borrow embankment and embankment with settlement, sand mat and sand bag. Lot-I and Lot-II were divided into 34 sections in total.	<u>Sectioning</u> LOT-I : 7 sections LOT-II : 27 sections	Other items of 3-1(Group-5) Base and Subbase. 3-2(Group-6) Bituminous surfacing and 5(Group-7) Road Furniture and Marking were divided into road work and bridge work except ten (10) metres of earthwork behind the abutments.	
		ATTACHMENT-3	OF QUANTITY CALCULATIONS	(ROAD WORKS)	· ·	· · · · · · · · · · · · · · · · · · ·	
			METHOD O	- 272			

Sections in LOT-II

Sections in LOT-I

BRIDGE N TO' ROAD XLON Ο 0 С 11+996 TO 12+01S 14+722 TO 14+744 TERRAIN TYPE 12+025 TO 14+712 ROLLING/HILLY ROLLING/HILLY ROLLING/HILLY AGOBINO Br. TAIENA Br. 11+986 TO 12+025 14+712 TO 14+755 0+000 TO 11+986 14+755 TO 16+098 CHAINAGE SECTION NO. OF

0

ı

0 0 Ο 16+109 TO 16+130 ROLLING/HILLY 16+098 TO 16+141 UNGOUNGO Br. 16+141 TO 33+500

1

SAND BAG 1.1 Ι. 1 0 1:01 O l 1 Т Т Ì 1 L 11 O(1.0m) O(0.5m) O(0.5m) O(0.5m) (m2.9)O - (m0.1) (1.0m) (1.0m) MENT (THICKNESS) (#5.1)O O(1.0m) Õ(1, 0m) BRIDGE FORESEEN SAND SETTLE- MAT TOTI Т 11 1 1 -L 00 ΟL 0 ł 00100 1 1000 00 0100 00 01 WORK 10 ł l 1 1 10 110 10 1110 10 1 1 ROAD WORK ΟÌ 0000000000 0000 ΟI 000 1 Q 00 KAPURI SWAMP/W KAPURI SWAMP/W FLAT/EXISTING R. 33+810 - 33+904 59+919 - 59+988 FLAT/ILAVALA H. 67+176 - 67+298 68+677 - 68+799 75+911 - 75+955 77+214 - 77+257 KAPURI SWAMP/W KAPURI SWAMP/W ROLLING/HILLY ROLLING/BILLY ALIKA SWAPA SAPPAHARO Br. FLAT/ROLLING LAKEFAMU Br. KUPURI Br. terrain Type MAYJARA Br. MIARU Br. TAURI Br. ROLLING FLAT FLAT FLAT FLAT FLAT FLAT FLAT FLAT 71.17 FLAT 20 68+809 TO 69+000 21 65+000 TO 73+000 22 73+000 TO 75+901 23 75+901 TO 75+965 1 33+500 TO 33+800 2 33+800 TO 33+914 33+914 TO 34+150 34+150 TO 37+750 37+750 TO 38+200 38+200 TO 47+500 54+000 TO 57+100 57+100 TO 58+600 58+600 TO 59+908 59+998 TO 63+500 63+500 TO 64+000 64+000 TO 67+100 67+100 TO 67+166 67+308 70 68+667 68+667 70 68+809 24 75+965 TO 77+204 25 77+204 TO 77+265 47+500 TO 51+200 S1+200 TO 54+000 26 77+265 TO 77+700 27 77+700 TO 80+595 67+166 TO 67+308 CHAINAGE SECTION NO.OF 17 81 51 20 : 2 77 15 1 16

×						·
ATTACIMENT 3 Page 3 (Group-3)	Clearing The area calculated covers an area within 20 metres of the centre line on both sides, and extends to 5 metres outside the top of cutting slope when it exceeds 20 metres. The	subject area was classified by vegetations, light, verse and grass, and also by land with and without water. The swamp area is herewith defined as land with water. Grubbing	An area 2 metres beyond the toe of embankment or the top of cutting slope by is covered. For sections where geotextile fabrications are applied, a further 2 metres is included on both sides.	The limit of the clearing and grubbing area, and the classification with map symbols are shown in figures A3-2, A3-3 and A3-4.		327
-	T	2 1 1				
· ·	· · ·					
· · ·						
		н. 				
	· · ·					
			. *			
			- 			
				-		
		. · · · ·		- 274 -		
			:	- 214 -		

ATTACHAIENT 3 Page 4 (GROUP-4)	ii. <u>Settlement</u> for LOT-II only The settlement was analysed on the soft ground sections listed in Table A3-1. The settlement area of each	embankment cross section was calculated employing the cross sectional settlement diagram shown in Figure A3-1. The settlement earth volume of each section was obtained by multiplying the ratio of the settlement area by embankment area of the cross section.	<pre>iii. Extra Fill for LOT-II only In Lakekamu and Turi sections, due to residual settlement of the soft ground during 20 years after opening for traffic, the grade level would settle below the specified level which is 30 cm higher than flood water level Q50. Extra fill with height of 10 cm is planned as a countermeasure. Extra fill volume is calculated below.</pre>	a) Lakekamu section 67+500 - 68+200 (Lm700m) 9.67m * 700.0m * 0.1m = 676.9 m ³ b) Tauri section 68+200 - 68+500 (Lm300m) 9.67m * 300.0m * 0.1m m 290.1 m ³	0.250 0.250 0.250	F19ure A3-1 SECTIONAL SETTLEHENE DIAGRAH
(GROUP-4)	00M Design Standard vere	geological data. Depth from ground level	Deeper than 13m 1m — 13m Om — 1m Om — 1m	ulated by the average end in Figure A3-5.	ulated by the average end alified from cutting earth owing conversion factors.	0.85 0.95 1.05
EARTHHORKS	1	adopted for cutting pased on the geologica TYPE Depth fro ground le	A (Solid Rock) B (Ripping Soils) C (Concrete pier in Sappaharo river M. side) D (Common Soil)	 Summed as solid cut volume calculated by the average area method. Typical cross sections are shown in Figure A3-5. Embankment 	 <u>Embankment</u> Summed as compacted volume calculated by the average end area method. The compacted fill volume is qualified from cutting earth volume by multiplying by the following conversion factors. 	Type D (Common Soil) Type B (Ripping Soil) Type A (Solid Rock)
2				٢	· · · · · · · · · · · · · · · · · · ·	

. '

•

•

¢

Z EARTHMORKS TABLE A3-1 SOFT GROUND SECTI LOCATION TABLE A3-1 SOFT GROUND SECTI MIARU 334550 - 344150 506 MIARU 334550 - 344150 506 ALIKA 377750 - 344150 506 MIARU 334550 - 344150 506 MIARU 377750 - 344150 506 ALIKA 37750 - 344150 506 MARU 574100 - 644000 231 G64100 - 644000 231 607 LAKEKANU 677100 - 644000 2300 KAPURI 594800 - 644000 231 G64200 - 644000 2300 664000 MAKARIU 677400 - 644000 1600 MAKARA 73400 - 700 350 MAKARA 734000 - 764300 356	8 월 6	-4)	ATTACHMENT 3 Page 5
EARTHMORKS TABLE A3-1 CCATION CHAINAGE CCATION CHAINAGE CCATION 334550 - 3441 MIARU 337750 - 3441 ALIKA 37750 - 3441 ALIKA 37750 - 644 CA100 - 674 CA400 - 644 6446 CA400 - 644 6446 CA400 - 644 684850 - 684 MAKARA 73-000 - 764	015 MBANKI 15 16HT 3. 50 2. 50		
TABLE A3-1 TABLE A3-1 CHAILIAGE 33+550 - 34+1 37+750 - 34+2 37+750 - 34+3 37+750 - 64+6 60+100 - 62+4 61+100 - 62+4 67+100 - 64+6 68+500 - 68+6 68+550 - 68+6 68+550 - 68+6 68+550 - 68+6 68+550 - 68+6 68+550 - 68+6 68+550 - 68+6 68+550 - 68+6 68+550 - 68+6	<u>MD SECTIONS</u> 1GTH EMBANKMENT (m) HEIGHT (m) 506 3.70 150 3.60 700 2.50		FARTHMORKS
CHAILHAGE CHAILHAGE 33+550 - 34+150 37+750 - 34+150 57+100 - 59+800 59+800 - 60+100 60+100 - 62+400 60+100 - 67+500 61+100 - 67+500 61+500 - 68+550 68+550 - 68+650 73+000 - 76+300		4 1	Cut in borrow for Lot-II only
33+550 - 34+150 37+750 - 34+150 57+100 - 59+800 59+800 - 60+100 60+100 - 62+400 62+400 - 64+000 67+100 - 67+500 67+100 - 64+600 68+200 - 68+850 68+550 - 68+850 68+550 - 68+850 68+550 - 68+850 68+550 - 69+000		BORLING NO.	Calculated quantity of borrow to meet fill requirement is based on volume Type-D & B excavation.
37+750 - 38+200 $57+100 - 59+800$ $59+800 - 60+100$ $60+100 - 62+400$ $62+400 - 62+400$ $67+100 - 62+400$ $67+500 - 62+200$ $68+200 - 68+550$ $68+550 - 68+850$ $68+850 - 69+000$ $73+000 - 76+300$		1	Borrow Fits 15 were provided accordingly as analyzed mass curve.
59+800 - 60+100 60+100 - 62+400 62+400 - 62+400 67+100 - 67+500 67+500 - 67+500 68+250 - 68+550 68+550 - 68+850 68+850 - 69+900 73+000 - 76+300		8-8 - 2	I DOATTON OF ROPPON PITS
62+400 - 64+000 62+400 - 64+000 67+100 - 67+500 68+200 - 68+550 68+550 - 68+850 68+850 - 69+000 68+850 - 69+000 73+000 - 76+300	231 3.00 3.00 2.50	5 г г	
67+100 - 67+500 67+500 - 63+200 68+200 - 68+550 68+550 - 68+850 68+850 - 69+850 68+850 - 59+300 73+000 - 76+300		1 1 1	borrow rits Unainage Stoe Location
67+500 - 68+200 68+200 - 68+550 68+550 - 68+850 68+850 - 69+000 73+000 - 76+300		8-11	·
04+00 - 68+850 68+850 - 68+850 68+850 - 68+850 73+000 - 76+300	700 2.00 350 1 70	8-11 8-14	34+200 RHS
68+850 - 69+000 73+000 - 76+300 3	•	4 - L	B -2 494-200 KHS Palipala H111 B -3 544000 RHS Palipala H111
73+000 - 76+300		B-14	64+750 RHS
-	3256 2.20	8-16	-5 Over the Project
SAPPAHARO 76+300 ~ 77+700 13	1357 2.20	B-17	årea
TOTAL 140	14056		
-3 Surplus material for lot-II only	[only	-5	s Unsuitable Material
			i. Land (Roadway)
- Roadway			
Soil volume 10,000 m ³ was planned to be reserved Missue Piver Reserved side in the stock wile No.1	anned to be reserved the stock mile No.1	be reserved for Lot-II k nile No.1 16.000 m ³	Estimates only. Estimated area is as same as grubbing area.
actually resulted in.			•
- <u>Intersections</u> 11,000 m ³ was Surplus-Soils at Intersection CH.1+450 and	at Intersection C	H.1+450 and	•
spoiled to spoil bank No.1. It was		not used for the roadway.	

•

- 276 -

	ATTACHMENT 3 Page 6	-4)		LOT-II only	d below 7m r test pit		3m. After ard and 3	350,000 m ² id and must	-					tas for the	the pipe	of gabion			The calculated volume is based on foundation levels and dimensions				nt to the ng slabs.	•	c
		(GROUP-4)		14. <u>. ang (pase borrow rit No « Suppase borrow rit no. 3)</u> LOT-II only	Suitable material for base and subbase is located below 7m from the ground surface, which was analysed by test pit		The assessed thickness of the layer is only 2 to 3m.	removing rith material, there is still approx. 350,000 m ^o which is located below the fill materials collected and must			цо			Volume was calculated by taking account of the areas for the	gabions installed at the inlet and outlet of the pipe	Calculated at 60% of gabion	·		foundation leve				ine calculated volume is based on the requirement to the existing surface level from the top of the relfeving slabs. The volume includes back fill materials.		330
				0000C % 1 *021 2	r base and su face, which y		ss of the laye	ial. there is ow the fill ma			Excavation for Structural Foundation			d by taking ac	at the inlet				e is based on	as shown on the drawings. The volume includes river training.	l Foundations	•	ine calculated volume is based on the existing surface level from the top of t The volume includes back fill materials.		
• •	•	ßKS	c	ase corrow r1	ie material fo he ground sur	•	tessed thickne	ig fill mater	iled.	i	tion for Struc	يد. ع		was calculate	s installed	culverts and of the depth.	cubic contents.	work	iculated volum	as shown on the drawings. The volume includes river	Filling to Structural Foundations	Bridge section only.	iculated volun ig surface lev ume includes 1		
		EARTHWORKS		1V. Lang (D	Suitab] from t	data.	The ass	removin which i	be spoiled.			1. Road work		Volume	gabion	culver	cubic o	it. <u>Bridge work</u>	The cal	as show The vol		Bridge	ine ca existin The vol		
	· .	0	I.								የ				÷						-				
•			•		E				ىر				Ē	•											
		(GROUP-4)			Estimates only. Calculated volume is the area of borrow pit times each assessed thickness as below.				.*Analysed from test pit	•			t ground in Alika swamp	section in Figure A3-6 (b).	A layer of peat from the surface to 1.3m below the ground.	wrises roots and decayed	vegetation. was displaced. Calculated volume f unsuitable material is the product of	the area which was computed (including additional 2m width	lied) and the depth of					·	
				Sive IT-INT TT	lume is the area of less as below.			No.1 t=U.Uom No.24 t=0.10m	t=1 00m .			111. Swamp (AIIXa Swamp) LUI-11 ORIY	The embankment structure for the soft ground i	shown in the typical cross secti	t from the surface to	which continues up to 1.8 m and comprises root	s displaced. ume f unsuitable mater	was computed (includi	sand mat and sand bag are applied) and						
		EARTHWORKS		11. Land (Borrow Pit)	Estimates only. Calculated volume is the a assessed thickness as below.		:	Borrow pit Rorrow pit	Borrow pit	Sand borrow pit		Swamp AITKA St	The embankment	is shown in th	A layer of pea	which continue	vegetation. was displaced. Calculated volume f unsuit	the area which	where sand mat 1.3m.	- - -					
	·	N		-		•						r.													
•			· · ·	·			•	·										·	·						
		,		•	·																				
				:			·		•			÷		•			÷.	•							
														27	7 -									÷	

•

 2 EARTHHORKS (6000-4) 3 Sand Hat Material for LOT-II only 1. <u>Sand Het</u> 1. <u>Sand Het</u> 3. Sand Het Material for LOT-II only 1. <u>Sand Het</u> 3. Calculated by the average end area mechod. Sand mat with 1.00m or 0.50m thickness with varying width depending on the experiment to fill to the elevition 3.20m, which is the usual vater level in the dry season. 3. 20m. The width of the top is 1.0m with an outer slope of 1 in 1.5 and an inner slope of 1 in 1.5 the bags are placed on both sides as shown in figure AJ-5 (b). 3. Sand Bac in X sourt Swamp 3. Sand Bac in Alika Swamp 3. 20m. The usual vater level in the trequired elevation of 3.0m. which is the bags are placed on both sides as shown in figure AJ-5 (b). 3. Sand Bac in X sourt Swamp 3. Sand Bac in A sourd Peel VI ha sound Peel VI ha ha ha to vert store as -5.111 above. 3. Sand Bac in A solare as -5.111 above. 3. Sand Bac in A solare is based on settlement calculations. 	ATTACHMENT 3	Page 7	2 EARTHWORKS (GROUP-4)	-9 Geotextile for Lot-II only	i. <u>Lype A</u>	conversion of the second s		required elevation of 4.20, which is flood water level	Q100. This goes lm into thembankment and extends 2m	beyond the toe of the slope.		D) Kapuri swamp The calculated volume is based on the assembtion that	geotextile is placed on the surface of 1.00m thick sand	mat layer and extended 2m from the toe of slope.		ii. <u>Type B</u>	The sylvulated volume to bread of the recurrents the	energy of the source of the source for the source for the source of the	extended 2m from the toe of the slope.	The layout of geotextile is shown in Figure A3-8.		-10 Subsoil Drain		SUDSOIL GRAINS WICH UPVU PIPE WERE PROVIDED IN THE SAND MAE	to increased permeability.	The calculated volume is based on each cross sectional	length times an area of 0.5m x 0.5m at 20m intervals.	•			331
α					1. Sand Met	f.l	Calculated by the average end area method. Sand mut with 1.00m or 0.50m thickness with varying width	depending on the embankment height is measured from the	cross sections concerned. Volume in Alika swamp is based on	the requirement to fill to the elevation $3.20m$, which is the	usual water level in the dry season.	ii Sand Baa in Alika Swamp		The calculated volume is based on the required elevation of	3.20m. The width of the top is 1.0m with an outer slope of 1	in 1.5 and an inner slope of 1 in 1: the bags are placed on	both sides as snown in Figure Al-o (u).	iii. Sand Bac in K apuri Swamp		The calculated volume is based on the required elevation of	0.30m. which is the usual water level in the dry season and	is measured from the existing ground level with installation	on a slope of 1 in 1.5 shown in Figure A3-6 (b).		1V. Replacement in Altra Swanp	Calculated the same as -5.111 above.		v. <u>Settlement</u>	The calculated volume is based on settlement calculations.		
- 278			2	 °						•			•••••••••••••••••••••••••••••••••••••••	-	2	278										-					

ATTACHMENT 3 Page 8 (GROUP-4)	for Lot-II only	The calculated volume of settlement plate is based on the installation at 250m intervals at the centre and both edges of the road in the settlement area.	Displacement Peg for Lot-II only The calculated volume of displacement peg is based on the installation at 250m intervals on both sides at the same	late late	Excavation for Intersections for Lot-F only The sum of 3 major intersections as solid cut volume calculated by average end area method. Type D only was				332
2 EARTHMORKS	-13 Settlement plate	The calculated installation a edges of the roa	-14 Displacement Peg The calculated v installation at		-15 Excavation for Intersections The sum of 3 major inters calculated by average end	assessed.			
EARTINORKS (GROUP-4)	Reno Nattress	i. <u>Type A for pipe</u> The calculated volume ibased on the required slope area depending on the culvert barrels times 0.15m thick at the	inlet and outlet of the pipe. 11. <u>Type A for Alika</u> for Lot-II only	The calculated volume is based on the slope up to the required elevation of 4.10m, which is flood water level Q100 and is from the toe of the sand mat. The area of the pipe mouth is deducted.	The thickness of the Reno Nattress is 0.15m. iii. <u>Type B</u>	The calculated volume is based on the required level from the top of the gabions at TAEMA, AGOBINO and UNGONGO Bridges and at MIARU River Malalaua side for river protection. The thickness of the Reno Mattress is 0.23m.	The Reno Hattress in Alika swamp is shown in Figure A3–9. Gabion	The calculated volume of Gabions is the required area at the inlet and outlet depending on the culvert barrels times 0.50m thickness (excluding Alika swamp), and also at TAIENA, AGOBINO and UNGONGO Bridges for abutment protection.	

- 279 -

ATTACHMENT 3 Page 9	(croup-s)		rse layer is based on the	the construction line minus the length of Sections of bridge approach winding for two lanes	in Lot-11 were adjusted, sulated by the average end		the same area as 3-1-1 above. calculated by the average end	rress.	same area as 3-1-1 above. Nated by the average end	Ress.		
	T BASE AND SUBBASE	ROADWAY	BASE COURSE The calculated volume of base course layer is based on the	length of the construction line minus the length of bridging. Sections of bridge approach winding for two lanes	in Lot-1 and reducing into single in Lot-11 were adjusted. The volume of base course is calculated by the average end area method using 0.15m thickness.		The calculated volume is the same area as 3-1-1 above. Summed as base course calculated by the average en	area method using 0.10m thickness. (b) Lower subbase		area method using 0.14m thickness.		
	2	l	Υ			,	•					
. ·	(GROUP-4)		, minor intersection. illows;	MINOR	CH.14+200 (R)	CH.33+530 (L/R) CH.34+160 (R)	CH.49+400 (L) CH.54+100 (R)	CH.67+625 (L) CH.67+665 (R) CH.68+500 (L)	CH. 78+186 (L) CH. 79+433 (L)	CH.79+780 (L) CH.80+318 (L) CH.80+368 (R)	CH. 80+446 (R) CH. 80+532 (L) CH. 80+545 (R) CH 80+545 (L)	
	Earthworks	Embankment for Intersections	Nominal volume of 125.6 m ³ at each minor intersection. Calculated intersections are as follows:	MAJOR	CH. 0+200 (R) .0+260 (L) LOT-I CH. 1+450 (L) CH.33+425 (L)				L0T~II -			
· · ·	N			· · ·								
								- 28	30 —			

ATTACHMENT 3 Page 10	(ccoup-e)		coat is the total area of	course surface and upper subbase surface and includes 3 maior intercertions at an unliterator of	· an application fate of		curfaro arase of been and			lated volume of residual bitumen is the length of ruction line excluding the bridge length which is δ by 7.10m standard width on the main road first an application rate of 1.45 litte/m ² . and is d by 6.50m width on the carriage way second seal at	.ac. rsections.	sned bridge approaches when single lane, and also	The list of tapered points is shown in LOT-I and figure A3-13 for LOT-II.			
	3-2 BITUMINOUS SURFACING	i. Prime Coat	The calculated volume of prime coat is the total area of	base course surface and upper subbase surface and includes the 3 maior interestions at a monitor task of	0.6 litre/m2.	ii. <u>Blotter Material</u>	The calculated area is the total curfare arease of have not	upper subbase courses.	iii. <u>Residual Bitumen</u> class 170	The calculated volume of residual bitumen is the length of the construction line excluding the bridge length which is multiplied by 7.10m standard width on the main road first seal at an application rate of 1.45 litre/m ² , and is multiplied by 6.50m width on the carriage way second seal at	an application rate of <u>0.80 litre/m</u> Calculation includes 3 major intersections.	The width is adjusted in the widened bridge approaches when double lanes are reduced to single lane, and also	intersections. The list of tapered points is i figure A3-12 for LOT-I and figure A3-13 for LOT-II.	· · · · · · · · · · · · · · · · · · ·		
									·							
	(GROUP-5)		. *	ourse laver is based on the	-	roaching existing road, and).15m thickness at 3 major	ed by the average end area	1 .		Upper subbase The calculated volume of upper subbase is based on the length of construction line minus cutting areas. Summed as upper subbase calculated by the average end area method using 0.10m thickness.	Lower subbase The eiteritated volume of lower subbase is based on the	length of construction line minus cutting areas. Summed as lower subbase calculated by the average end	kness.			
	BASE AIID SUBBASE	INTERSECTIONS	BASE COURSE	The calculated volume of base course	length of construction line up to the	stope of the main road from approaching extraing road. the road width required with 0.15m thickness at 3 m	intersections. Summed as base course calculated by	method.	SUBBASE COURSE	 Upper subbase The calculated volume of upper sultength of construction line minus Summed as upper subbase calculate area method using 0.10m thickness. 	(b) Lower subbase The calculated wolume of lo	length of construction line minus Summed as lower subbase calculate	are method using 0.14m thickness.			
•	3~1	-	ዋ						4							
	• .															
		· .	. •													
	· · ·				•		· ·		- 2	.81 —	•			-		

ATTACHMENT 3

Page 11

(GROUP-6)

BITURINOUS SURFACING

3-2

AREAS CALCULATED

3-2 BITUMINOUS SURFACING

(GROUP-6)

•

iv. <u>Adhesive Agent</u>

Calculated as 1% of iii. above.

v. 19.0mm cover aggregate

The volume is based on the area of bitumen as calculated under iii. first seal above at a spread rate of $\frac{75 \text{ m}^2/\text{m}^3}{3}$.

226,799 330,247 210,935 302,297 284,361 395,611

~_~_~

Lot-II

1. 1. 1.

Unit

No. Area

299,401 416,574

۲н

A-3 PRIME COAT ON BASE COURSE

A-2 SECOND SEAL

A-1 FIRST SEAL

ROADUAY

A-4 PRIME COAT ON SUBBASE

1

3,970 1,162

B-3 PRIME COAT ON BASE COURSE

8-2 SECOND SEAL

INTERSECTIONS B-1 FIRST SEAL B-4 PRIME COAT ON SUBBASE

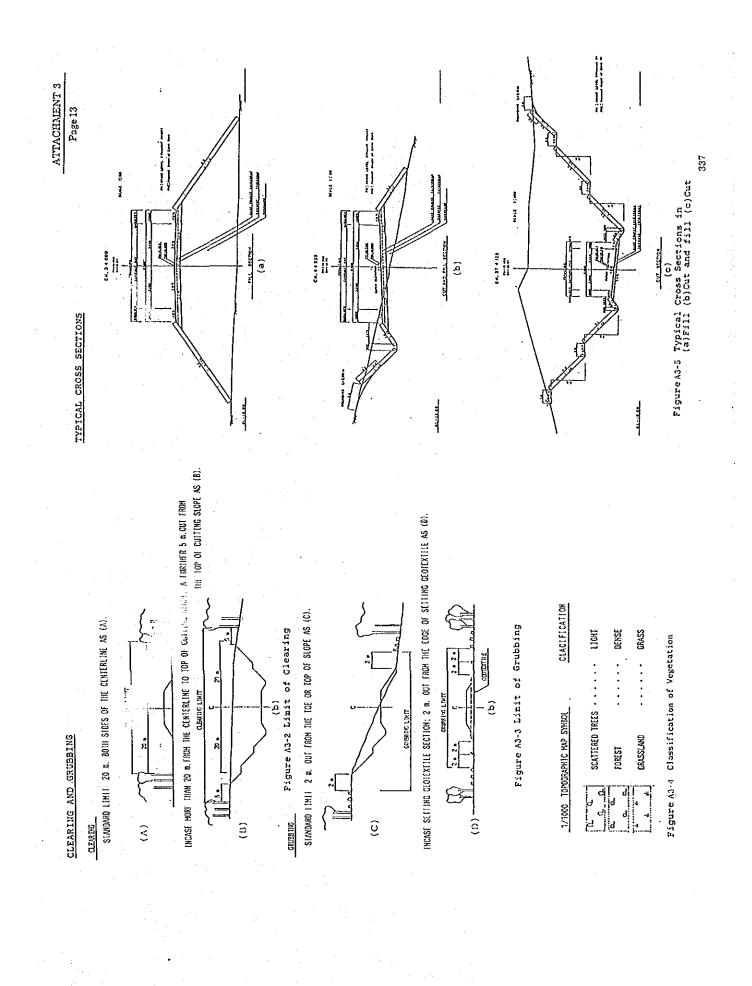
1, 171

1,131

vi. 9.5mm cover aggregate

The volume is based on the area of bitumen as calculated under 111. second seal above at a spread rate of 117.5 m²/m³.

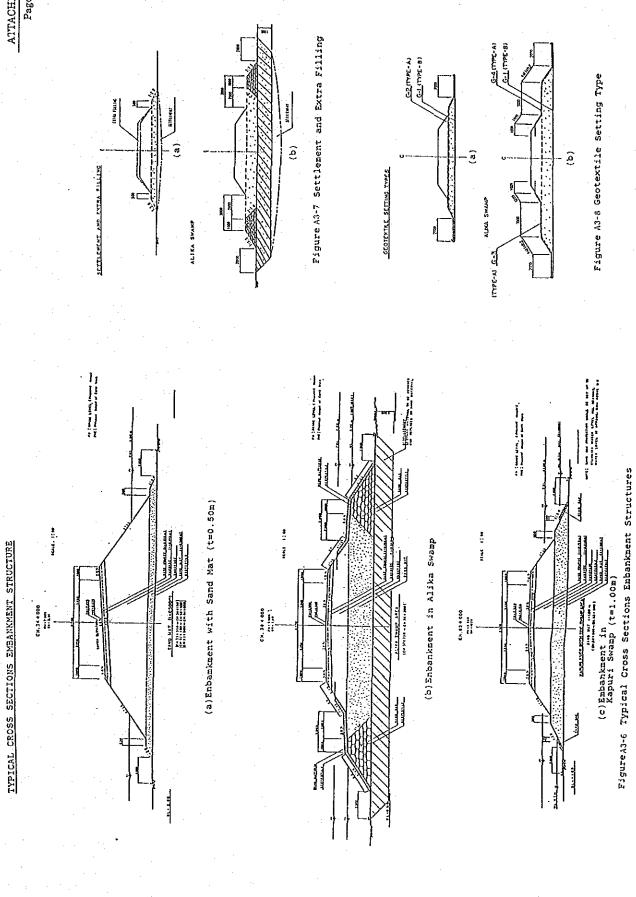
vii Precoating material

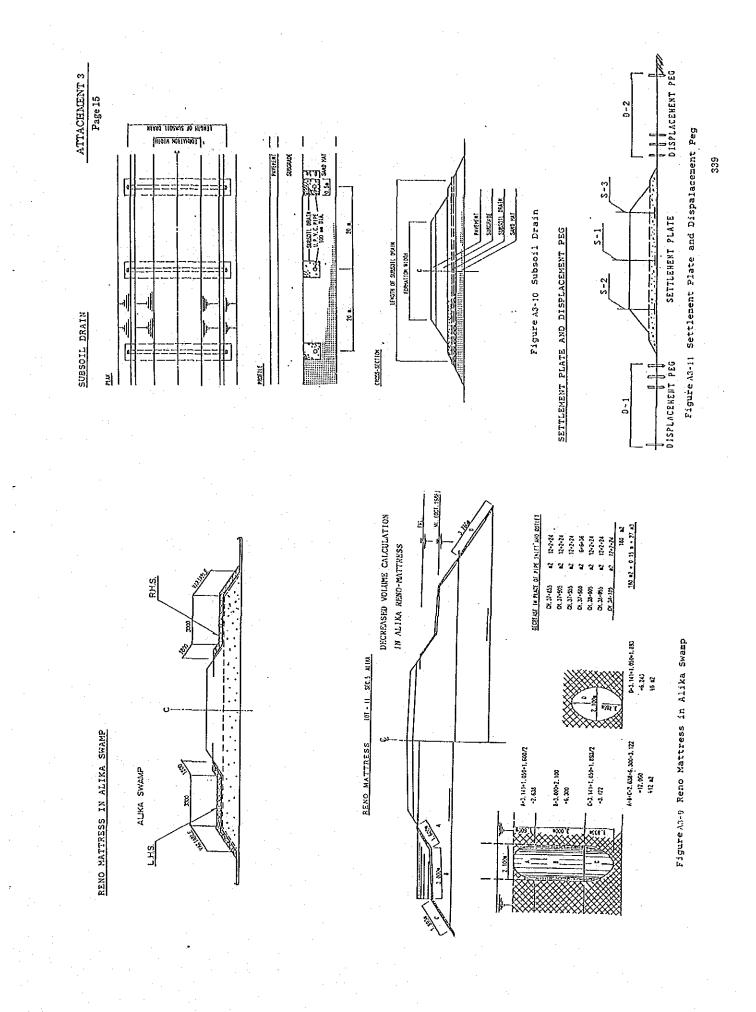

282 ---

The calculated volume of precoating material for sealing aggregate is the volume as calculated in v.vi. above at a rate of <u>9 litre/m³</u>.

viii. Area calculations

The areas for items i-vi above were calculated.


ATTACHMENT 3 Page 12	5 ROAD FURNITURE AND MARKING (GROUP-7)	-i Road signs	Calculated from the number of road signs shown on the schedule.	lypes of road signs are shown in figure AJ-ib. -2 Road edge guide posts	Calculated as the number of road edge guide posts as shown	on the schedule. Layout for road edge guide posts is shown in Figure A3-16.		quantified on the assumptions that a two lane bridge approach is at 12m and a single lane bridge approach is at 28m on both sides.	Quantity composed of (1) 4m length of guardrail (2) End section (3) Poset	<pre>(4) Fender post for single lane bridge in Lot-II only</pre>	Quantities of guardrails per bridge are shown in Table A3-2.	-4 Marking	Calculated as the linear metre of marking as shown on the schedule.	336
	(GROUP-7)		the information on the tail drawings.			the slope areas required and a 0.15m thickness at		the required area at the f the area required for	structure foundation		lation is shown in figure			
	DRAINAGE	Corrugated steel pipe culvert	The quantity was determined from the information on the schedule of culverts and culvert detail drawings.	Reno Mattress	<u>Type A</u>	The calculated volume is based on the slope areas required depending on the culvert barrels and a 0.15m thickness at the inlet and outlet pipe.	Gabion	The calculated volume of gabions is the required area at the inlet and outlet taking account of the area required for barrels of 0.50m thickness.	Excavation and backfill of drainage structure foundation	Calculated at 60% of 4-3 above.	Sectional length of pipe for calculation A3-14.			
	4	7		-2			۳ ۲		4-					
				· · .				- 283 -	•					


- 284

- 207

- 285 -

- 286 -

DAVENEN' SECTION FOIL LOT-IL

(a/Sa (2)-00 ext.8:301003100 - 3000 IA IAS (2000) fa (0, 1, 0, 1, 0, 0, 0) (1, 0, 0, 0) (1, 0, 0, 0) (1, 0, 0, 0) fa (0, 1, 0, 1, 0, 0) (1, 0, 0, 0) (1, 0, 0, 0) (1, 0, 0, 0) (1, 0,

S. 129.2

1.0.7

การ เกิด เกิด

10 10

> LINDER KNN

SCALE SCOLLON SCALE SCOLLON

NO DE MINI

RIGHA ROTTINGET

(לאיפה לאיון) אוס = לסאלווס גיבוער (ונאיג גיבוער)

terman trevito por consti 120 m co-uterto por censel

NINE COVI FOR PLUER 2RST2E1

LISTING ISVE NOT FIND SHERE

(CENTRE) INTVIENT 20004 CHARTER 100 M COLORGENO 2015276 (INVERT 2018F72E)

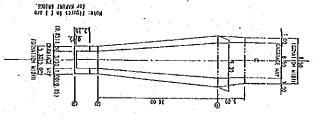
Sev 1 9.0-5.0 crossifi Apediate 14 1400 PHIM ------

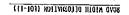
Set 1 1.0-3.0 (noted)14 Abeding - 14 (300 Jetal

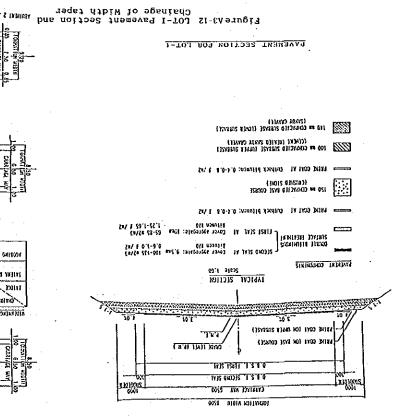
340

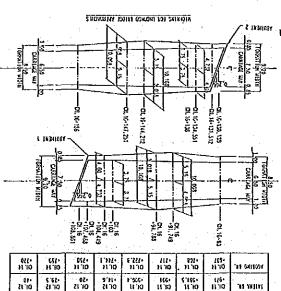
91119

STREES CHECKLINE

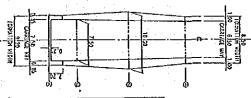

io

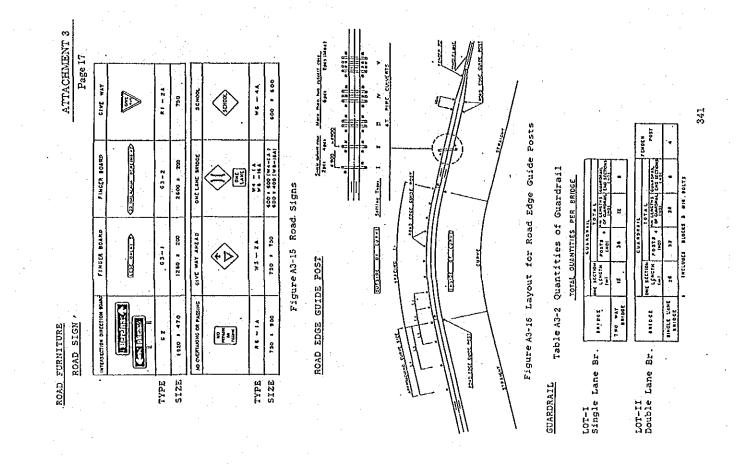

LNNO COL State in

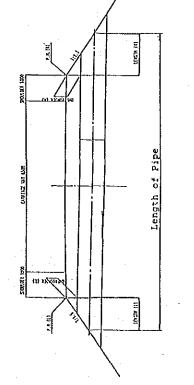

1	1. J	1.00		÷.,	a de la composición d			
"at contrary	115 11 10	012+ 11 10	11110	587952+ 22 HD	192+ CH' 13	685+ 11.10		
'et mane	618+- 51/10	+305 01" 12	8' LI C 52' 10	1224' 12 GC 12	316 · 51 10	115+ 51 10		
181 18091	412 CH 14	613, 01.63	89'10 89'10	8.80%	643+ (43-	108+ 89-10		
THE REALIZED BY	111+ 15 10	211 · 01 61	11971) 1971)	197162+ 19710	• 705 Cli (e)	•779 01°61		
int (advice)	511- 511-	+312 01'28	- 213 f	201° 20	+205 CI'73	63 ID		
XIYEO EF	+11+ 01-23	• K C CIT 73	10,33 01,33	(303° 12 01° 37	106 11 71	916+ 11 10		
100111	n	ø	.0	0	.¢	.0		
onima		I IXMINIY		2 INDUNEY				


ATTACHMENT 3 Page 16

STOLINE ROL STRENGERIE

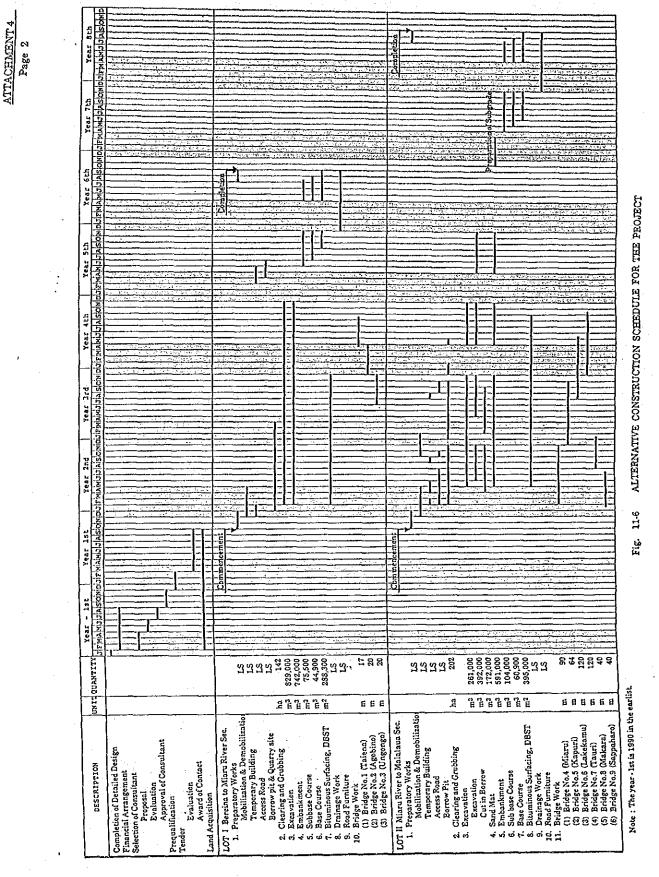


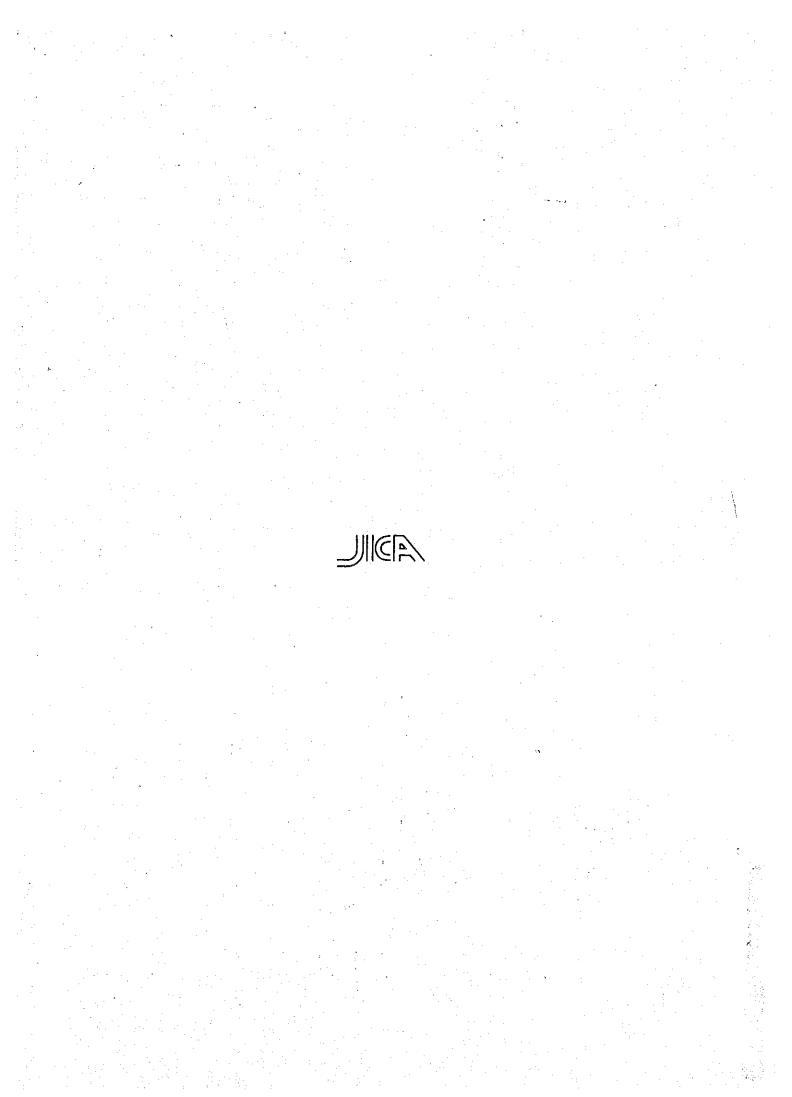

5'62-21 10 •50 21 10 9'H+ 21'10 11506) 11710 166+ 11 10 11160-11110 11:10 11 101101 Ø 0 φ, **,**0 ø ø Ø . Dulut Z INBOATY I DOMANY mino POPIAR NOT DELATION SECONDEN


.0

- 287 --

(1-101) KULIVIEDI IO HIOIK QYUU -





- 288

ATTACHMENT 4 Page 1 Proposal on Alternative Construction Schedule	Based on the comments expressed by the letter (13-5-2) dated 27 December, 1989 from the OIDA of PNG Government, the JICA study team proposed an alternative construction schedule only from the view point to minimize the annual local currency for the Froject. 1. <u>Pre-construction period</u>	No modification is considered for the pre-construction period of the Project. 2. <u>Lot I construction period</u>	The commencement of the Froject is October of the year 1st as same as the basic schedule, however, the year of completion is to be extended two years (from the total 36 months to the 60 months). The works of Bzcavation and Embankment are to be extended one year, and the commencement of Pavement works are to be delayed two years.	 Lot II construction period The commencement of the Project is October of the year 1st as same as the basic schedule, however, the year of completion is to be extended three years (from the total 48 months to the total 84 months). The works of Excavation including cut in borrow and Embankment is to be extended to be presented as the provided to be presented to be present	extended one year, and the commencement of ravement works are to be delayed three years. The year 6th will have no works in the site accordingly. The above alternative schedule is outlined in the Fig. 11-6. The disbursement for the alternative schedule is discussed in <u>the Cost Estimate Report</u> .	342
				•	· ·	
	аттаснмеит- 4	Altomotion Cohedule	Froposal on Alternanye Consulución Scuedule	•		
	ATTA	F	Froposal on J			

- 290 -

