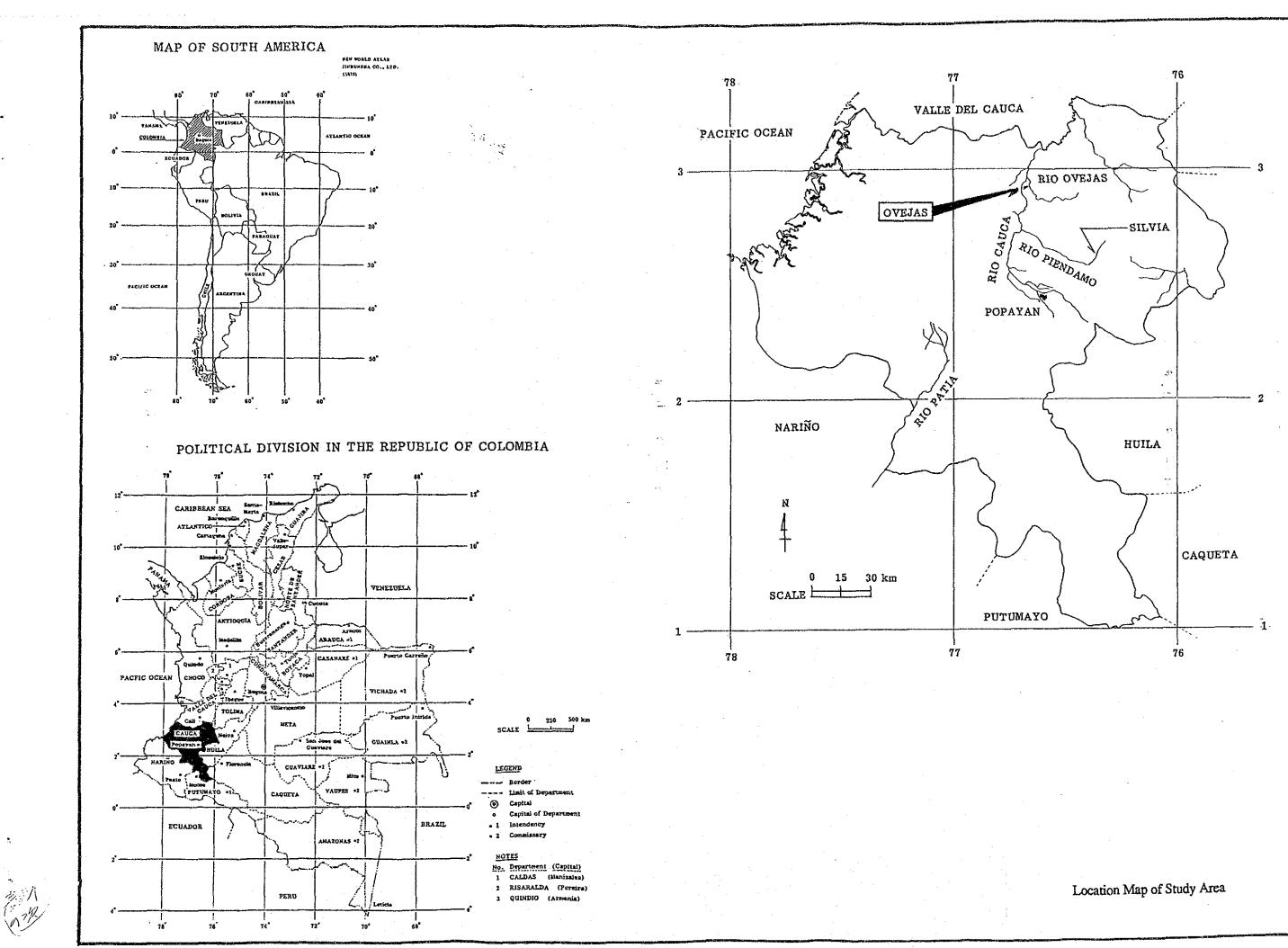
FEASIBILITY STUDY

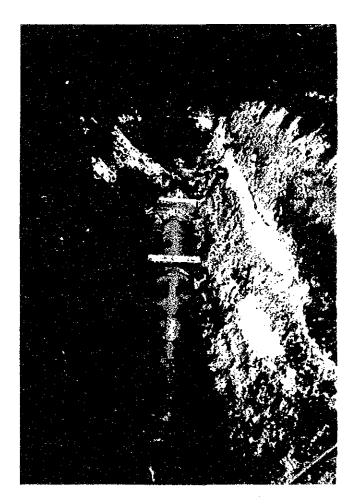
ON

SMALL-SCALE POWER PLANTS REHABILITATION PROJECT

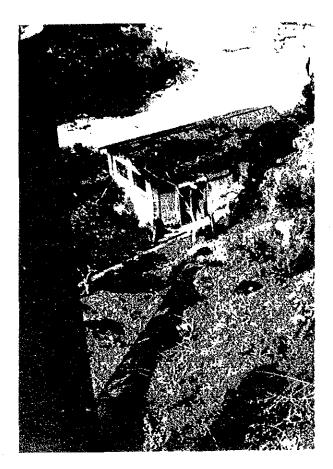

IN

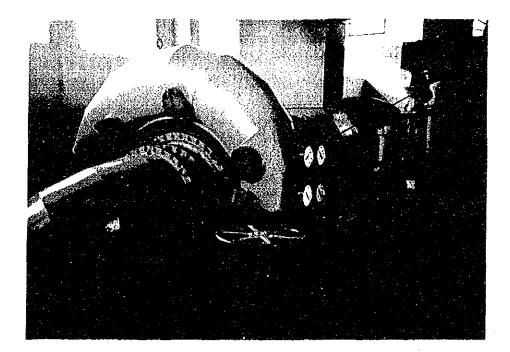

THE REPUBLIC OF COLOMBIA

OVEJAS HYDROELECTRIC POWER PLANT


MARCH 1990

Japan International Cooperation Agency




Rio Ovejas and Intake

Conduction channel

Powerhouse

Francis turbine

	CONTENTS	
		Page
	and a state of the state of th	
CHAPTER 1	INTRODUCTION	1-1
CHAPTER 2	SUMMARY OF STUDY RESULTS	2-1
CHAPTER 3	STUDY PLAN	3-1
3.1	Organization of Study Team	3-1
3.2	Study Items and Study Schedule	3-2
3.3	Detail of Field Survey Work	3-6
CHAPTER 4	PRESENT CONDITION OF THE STUDY AREA	4-1
4.1	Power Conditions in the Power Sector	4-1
4.2	Operation Record of the Existing Power Plant	4-5
4.3	General Condition of Generating Equipment and Civil	
· · · ·	Structures	4-7
CHAPTER 5	BASIC DATA COLLECTION	5-1
5.1	Topographic Maps	5-1
5.2	Geological Survey Data	5-2
5.3	Hydrometeorological Data	5-2
5.4	Other Related Data	5-4
CHAPTER 6	PRESENT CONDITION OF TOPOGRAPHY AND	
	GEOLOGY	6-1
6.1	Topography and Geology in the Area	6-1
6.2	Geology in the Project Site	6-2
6.3	Distribution of Concrete Aggregates	6-3
6.4	Geological Evaluation	6-3
6.5	Topograhical and Geological Problems	6-3
	$= \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] + \frac{1}{2} \left[\frac{1}{2} \right] \right]$	

CHAPTER 7	HYDROLOGICAL ANALYSIS
7.1	General Meteorology in the Planned Area
7.2	Discharge Analysis
7.3	Flood Runoff Analysis
7.4	Sediment Analysis 7-19
7.5	Water Quality Analysis
· · · · · · · ·	
CHAPTER 8	GENERATION PLAN 8-1
8.1	Study of the Alternative Plans
8.2	Generated Output
8.3	Annual Potential Generated Energy
CHAPTER 9	REHABILITATION PLAN
9.1	Formulation of Rehabilitation Plans
9.2	Estimated Rehabilitation Construction Costs
9.3	Comparison of Economic Indices
9.3	Comparison of Economic Indices

and a second second

- ii -

Drawings Attached Data

CHAPTER 1 INTRODUCTION

The feasibility study (hereinafter referred to as the FS) for the rehabilitation plan of Ovejas run-of-river type hydroelectric power plant (the rated output: 0.65 MW) was conducted following the pre-FS that was carried out for eight months from November, 1987 to June, 1988. This report is prepared to summarize the results of the above FS.

This FS was performed in accordance with the Scope of Work (S/W) agreed and signed in July 1988 between Japan International Cooperation Agency (JICA) and Instituto Colombiano de Energia-Electrica (ICEL). The study was conducted for 17 months from November, 1988 to March 1990.

From among 62 small-scale hydroelectric power plants operated by ICEL that were nominated for the study of the rehabilitation plan, Ovejas hydroelectric power plant (hereinafter referred to as Ovejas P/P) was selected as a candidate for the FS for the following reasons:

- 1) Basic data relating to river discharge etc., are comparatively well organized.
- 2) There is no possibility of environmental destruction, and water rights for power generation have already been acquired.
- 3)
- The 1,230-meter-long steel conduit pipes ($\phi = 1,800$ mm) were laid 50 years ago, and have corroded or deformed, frequently leaking.

From this FS, post-rehabilitation generating scale for Ovejas P/P, for which JICA Study Team proposes as an optimum rehabilitation plan, is as follows:

-	Maximum output	:	3.1 MW
-	Annual potential generated power	:	26.2 GWh
	Facility utilization factor	:	94%

CHAPTER 2 SUMMARY OF STUDY RESULTS

The power plant, owned by CEDELCA, is the run-of-river type (the rated output: 900 kW), and is located along the Ovejas River in Cauca Department. It began operation 51 years ago in 1939. In July 1989 the maximum output was 650 kW and the annual generation output in 1988 was recorded as 3,747 MWh.

(1) Present condition of generating facilities and their problems

This power plant was built with a headrace 1,490 m long, with 1,800 mm diameter steel conduit pipes. The steel pipes were laid 50 years ago in 1939. Horizontal and vertical displacement, which has been discovered in many locations, has caused deformation and leaks frequently occur. The steel pipe which was originally 8 mm thick is now half as thick, 4 mm, and has reached the tolerance thickness.

The existing diversion weir, constructed of coarse aggregate concrete, is filled with sediment up to crest level and it is difficult to secure the required water intake quantity.

As for the power generating equipment, the horizontal Francis turbine, manufactured in 1939, was still working up until recently, but generating output has reduced to approximately 72% of the rated output, 650 kW. A 500 kW difference between theoretically calculated generated output and the existing equipment capacity has been found and it has reached minimum capacity.

(2) Alternative rehabilitation plans

The main problem in the rehabilitation plans for Ovejas hydroelectric P/P is judging the remaining life span of the 50 year-old 1,200-meter-long steel pipes (diameter: 1,800 mm).

This study, from consideration of safety priorities, is based on the premise that the full length of steel pipes which have corroded or deformed will be initially removed and replaced. The idea of removing and replacing only sections which have considerably corroded or deformed from the existing steel pipeline will not be used for the following reasons.

100 5740 220 $\begin{array}{cccc}1&1&1\\1&1&1\\1&1&1\\1&1&1\end{array}$.38.4 25.8 о. б 97.4 .8.4 29.4 .15.5 VOLUME OF DISCHARGE (M3/S) 95 06 40 - PLENTY VATER 015C.(95 DAYS) - 015C.(185 DAYS) D15C.(185 DAYS) - LOV VATER D15C.(275 DAYS) - DROUGHTY VATER D15C.(355 DAYS) LATITUDE: LONGITUDE: ELEVATION: MUMIXAM HININUH -80 MEAN I I E ì STAO 275 853.8 က 50 OVEJAS INTAKE RIVER NAME: CATCHMENT AREA(KM2): TIME 60 AT 0 Г DURATION CURVE PERCENTAGE 20 -9740-28 40 30 FLOW OVEJAS SYAO 26 TYPICAL 202 •• REH-1,2 ALT-2 ALT-1 ς. ۵ Fig-2.1 2 0 10.01 0.0 70.01 60.0 50.05 30.0 20.0 15.0 2 40.0 80.0r 01 95 OISCHARGE (M3/S)

2-2

· .

- ① Enormous site investigations are necessary to investigate the degree of corrosion, deformation and safety factors in the steel pipes, and could not be completed in the duration or with the study team members.
- The results of the reconnaissance survey showed that a major portion of the steel pipeline required replacement.

From the river flow-duration curve at the intake site, as shown in Fig. 2.1, it is understood that the present plan's maximum available discharge, $Q = 7 \text{ m}^3$ /sec, is uneconomical in view of the water utilization ratio. It is necessary to close the gap between the theoretically calculated generating output (1,300 kW) and the existing equipment installed capacity (900 kW).

Therefore, in the rehabilitation plan which assumes removal of existing steel conduit pipes, comparative studies shall be made for the generation-optimizing plan, as well as the rehabilitation plan of the existing generating facilities.

page the contact of the first

Table 2.1 shows contents of alternative rehabilitation plans.

a service a service

2-3

an early a star and the start of a start of

		Alter	native	······		
Item	Steel conduit	pipeline plan	Concrete culvert			
	REH-1	REH-2	ALT-1	ALT-2		
Discharge, Q (m ³ /s)	7.0	7.0	10.0	15.0		
Maximum output, P (kW)	1,000	1,000	2,100	3,100		
Facility utilization factor (%)	100	100	99.5	94		
Rehabilitation and improvement j	olan:		е при страни страни 	· ·		
Diversion weir	To be altered because the damage is severe, and sandstrap will be constructed (common to all alternatives					
Intake	To be reconstructed corresponding to the alteration of the diversion weir and the design discharge					
Desilting basin	To be newly constructed corresponding to the design discharge (currently not existing)					
Conduction channel	Its adequate cross section will be determined and the channels will be newly constructed					
Head tank	To be expande	ed at its present	position			
Penstocks	Existing penstock and New penstock will be additional new one installed					
Generating equipment	The existing equipment New, two-unit system and additional new one					
Powerhouse building	A new building will be constructed on the downstream side to accomodate new generating equipment					

Table 2.1 Comparison of Alternative Rehabilitation Plans for Ovejas Power Plant

(3) Selection of optimum plan

ALT-2, where the available discharge will be increased from 7.0 m³/s to 15 m³/s, and the steel conduit pipes will be reconstructed with reinforced conrete culvert, is considereed to be the more advantageous rehabilitation plan. (Refer to Table 2.2 for details) However, for the implementation of the rehabilitation, topographic surveying, land price and compensation cost investigations will be carried out along a new culvert type headrace route, and recalculation of the headrace construction costs will be required.

						parison of R	Rehabilitatio	on Plan for	the Ovejas		wer Plant		• <u>••</u>	~		
	1) Specifications for Existing Generating Facilities						(2) Rehai	bilitation Plan				3 Recovered	d or Increased	Energy		
Alternative	0	0	0	I Prese	nt facility	20	2)	@	29	09	3		20	10		9)
Plan	Max. available discharge	Ner, head	Rated output	(i) Output	(3) Generated energy	Max. available discharge	Standard net head	Theoretical output =9.8x@	Resultant efficiency	Output ≃@x@	Annual progenerated e		Facility utilization factor	Output = 23 - (1)	generate 3	probable d energy - (3)
	Qo (m ^J /s)	Ho (m)	Po (kW)	Pe (kW)	Ee (GWh)	Q1 (m ³ /s)	H1 (m)	x (2) (kW)	η	Pt (kW)	El (GWh)		Ę (%)	Δ Ρ (kW)		\E }Wh)
New	0	0	0	0	0	3.5	26.0	891	0.830	700	6.5	and the second se	100	700		.5
) [Old	7.0	24.5	900	650	2.97	3.5	26.0	892	0.340	300	2.6		100	-350	0	.4
H H Total	7.0	24.5	900	650	2.97	7.0	26.0	1,783		1,000	9.1		100	350	6	.1
ALT-1		· · · · · · · · · · · · · · · · · · ·	· · ·		<u></u>	10.0	26.0	2,548	0.830	2,100	18.4		99.5	1,450	15	.4
ALT-2		· · · · · · · · · · · · · · · · · · ·				15.0	26.0	3,822	0.830	3,100	26.2		94	2,450	23.	.2
	5	· · · · · · · · · · · · · · · · · · ·	.	<u> </u>	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		· · ·		······································		· · · · · · · · · · · · · · · · · · ·			
	(4) Rehabilitation Work Cost (US\$1000)				(i) Construction Cost oer kW (US\$/kW) (i) Total of Annual Cost at Generating Terminal (US\$100			US\$1000)	() Average	e Generating Cost h (mills/kWh)	8 Cost/ Benefit	9				
1	@ Gen	crating Equip	ment Cost	<u>(4</u>)	69	<u> </u>	() ()	· @	(i) Princi	pal repayment amo uction cost (25-yea	ount for	69	<u>.</u>	(1)	Oencin	
Alternative	(I) (I)	• 49	(4)	Civil	4)+44	Cost per	Cost per	Operation	Foreign Currency portion	Local (6) currency	6	@+@	per Ei	per∆E		Priority
Plan	Foreign currency portion	Local currency	41+42	work cost		∆ P =⊛/@	P1 = (1)/(2)	and maintenance costs	<u>portion</u> 2.610 x (1) ÷ 25	<u> </u>	@+@		=63/29 ÷- 0.95	=63/69 ÷ 0.95	С/В	order
		portion	C ₁	C ₂	C.	С/Д Р	C/Pi	AOM		÷ 25						
REH-1	1,000	400	1,400	5,150	6,550	18,800	6,500	4.0	106	447	553	557	65	96	6.19	4
REH2	1,000	400	1,400	2,900	4,300	12,400	4,300	4.0	106	266	372	376	44	65	3.98	. 3
ALT-1	2,200	900	3,100	3,650	2,650	4,700	3,200	8.4	231	366	597	605	35	41	2.84	2
АІЛ-2	2,650	1,050	3,700	4,300	8,000	3,300	2,600	12.4	277	433	710	722	29	33	2,63	1
	•															
(Notes) 🕦 :	For the exist the pre-FS r		g equipment s	pecifications.	refer to the fac	ility register re	cord attached	1 10	(i): E	El(Energia Media)			м 			
(7):	Generating		of annual ave Il average sup		nerating termi nower	nal			છે: ક	= <u>Annual water a</u>	unount for turb Q1 x 365 x 24	nine (m ³ /s·hr) x 100(%)			
(3) (3) (3)		ued according	to the average	e annual opera	cording to the ation record for			88 •	6): [The annual AOM is interest is calculate conditions.			-	r 'sW. I amounts under the	e foilowing	

.

CHAPTER 3 STUDY PLAN

3.1 Organization of Study Team

3.1.1 JICA FS Study Team

JICA FS Study Team, listed below, includes the team leader and two members who participated in the pre-FS, engineers, geologists, a hydrologist and an economist.

Name	Position	Assignment
Masami Ono	Team leader	Total coordinator (civil engineer)
Murao Toyama	Team member	Power generation planner (civil engineer)
Susumu Nonaka	. H	Hydrologist
Yoshio Kawasaki	11	Generating equipment planner (civil engineer)
Akira Takahashi	n South Letter (1997)	Generating equipment planner (mechanical engineer)
Masayuki Tamai	bt	Generating equipment planner (electrical engineer)
Nobuhiko Uchiseto	n Norman N	Geologist
Takashi Inoue	. 0	Geologist
Masaaki Ueda	11 11	Economist

3-1

3.1.2 Counterpart Engineers from ICEL

Engineers who were engaged in this study as counterparts to the JICA FS Study Team are as follows:

Name	Field	Position
Juvenal Peñaloza Rosas	Civil Engineering	Head of Central Eng. Div.
Jairo E. Gonzalez Morales	Civil Engineering	Central Eng. Div.
Mario Gutierrez Ospina	Civil Engineering	Central Eng. Div.
Rafael Torres Mariño	Civil Engineering	Central Eng. Div.
Rafael Gomez Florez	Civil Engineering	Central Eng. Div.
Jorge E. Hurtado Muños	Civil Engineering	Central Eng. Div.

3.1.3 Supporting Technical Staff from CEDELCA

JICA FS Study Team obtained cooperation and support from the technical staff as listed below:

Staff	Position
Fernando Iragorri Cajiao	President
Jose Morales M.	Vice President
Larry Guzman M.	Civil Engineer

3.2 Study Items and Study Schedule

The FS was conducted for 17 months from November, 1988 to March, 1990 in accordance with S/W agreed and signed in July, 1988 between JICA and ICEL.

3.2.1 Study Items

Study items for the FS as described in the S/W are as follows:

- (1) Review of the existing data
- (2) Site reconnaissance
- (3) Field work

- 1) Topographic survey
- 2) Photogrammetric mapping
- 3) Geological investigation
- 4) Data collection
- (4) Power survey
- (5) Optimum plan
- (6) Feasibility design
- (7) Stability and safety analyses
- (8) Construction method
- (9) Cost estimation
- (10) Economic and financial analyses
- (11) Maintenance manual

3.2.2 Study Schedule

Table 3.1 shows the overall study schedule as indicated in the S/W.

17 Ċ 1990 91 ⊲ 2 Report submission 4 2 **P**-4 **⊘**⊘ 5 4 ព ្ក 12 4 6 JICA operation in Japan σ 01 ω 5 1 1989 B Ŋ ò ∞ ľ ŝ 5 Q 9 4 ICEL field H ł v m 4 4 2 Θ (* 12 3 1988 4 11 JICA field Year Month 10. Economic and financial analyses Project month (4) Photogrammetric mapping (5) Geological investigation (2) Procurement procedure 7. Stability & safety analyses 1. Review of existing data 8. Construction method 11. Maintenance manual (6) Data collection Site reconnaissance (3) Ground survey (1) Programming Feasibility design 4. Draft final report 1. Inception report 2. Progress report 9. Cost estimation 5. Optimum plan 3. Interim report 4. Power survey 5. Final report Legend: Field works ം Ś Report Working item

operation

operation

Time Schedule of FS Table 3.1

- retir

3-4

Two field surveys were conducted at Ovejas P/P, as shown in Table 3.2.

In the first site reconnaissance, two civil engineers responsible for hydroelectric power generating planning conducted the present-condition survey of the existing facilities (mainly civil structures) and collected necessary data.

In the second field survey, three members including team leader, a geologist and hydroelectric power generation planner gathered data relating to the geological survey.

Table 3.2	Field Survey	Schedule
-----------	--------------	----------

The first site reconnaissance

Date	Sahadala	Detail of Studie Inc.	Member			
Date Schedule		Detail of Study Item	ICEL JICA			
Jan. 31	Pasto → Popayan	Discussion at CEDELCA, and data collection	J. Gonzalez	Murao Toyama Yoshio Kawasaki		
Feb. 1		Field survey at Silvia P/P				
Feb. 2	•	Field survey at Ovejas P/P	· · ·			
Feb. 3	ana Na sana ng pana ka	Discussion at CEDELCA	e de la composition de			
Feb. 4	Popayan → Bogota	Traveling		at an t		
			· · · · ·	<u> </u>		

The second field survey

Date	Schedule	Detail of Study Item	Member			
Date		Detail of Study Leni	ICEL	JICA		
July 12	Bogota → Popoyan	Discussion at CEDELCA, field survey at Silvia P/P	- - -	Masami Ono Yoshio Kawasaki Takashi Inoue		
July 13		Field survey at Ovejas P/P		Takashi hioue		
July 14	an a	Same as above				
July 15	Popoyan → Bogota	Travel				

3-5

3.3 Detail of Field Survey Work

The field survey work planned in consultations between the JICA Study Team and ICEL counterpart staff and according to the results of the site reconnaissance, included topographic surveying and boring survey as described below, but did not include photogrammetric mapping.

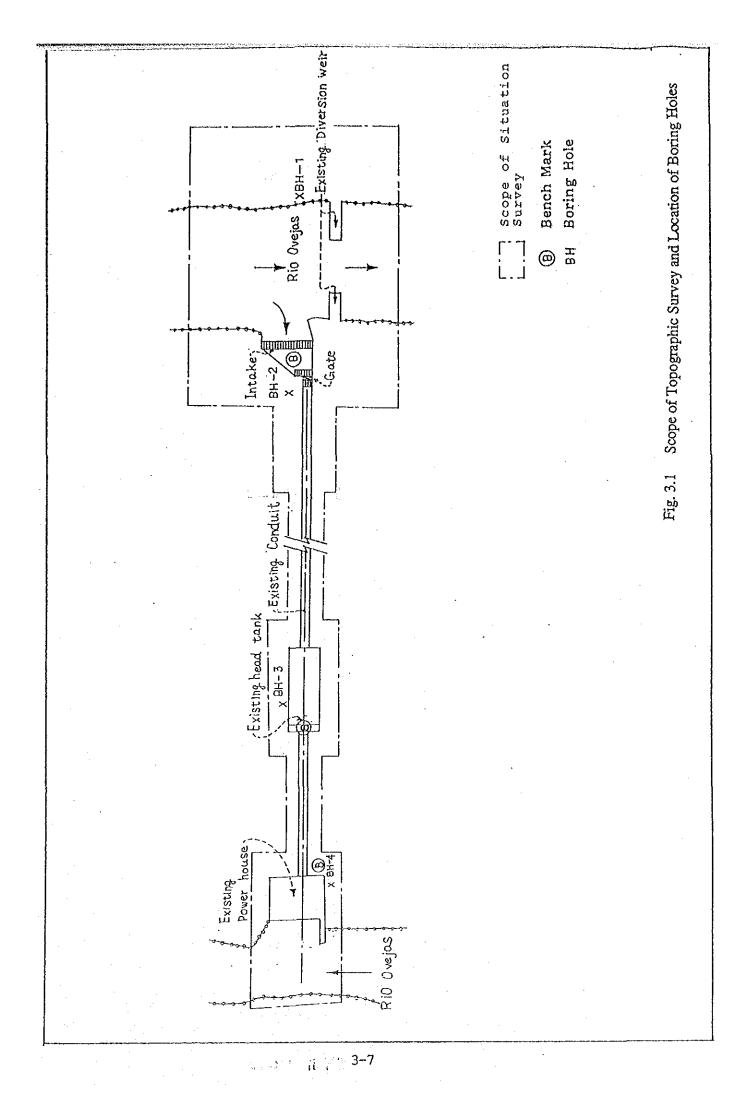
3.3.1 Scope of Topographic Surveying

The scope of the topographic surveying is shown in Fig. 3.1. The scales for the topographic maps are as follows:

(1) The existing diversion weir, intake, desilting basin, head tank and powerhouse building were drawn on a scale of 1/200 with contour lines of 2 m. Main structures for the existing facilities and position of bench marks and boring were indicated in the above drawings.

(2) Penstock

The longitudinal section of the existing penstock was drawn on a scale of 1/1000 (plan) and 1/100 (section). This section was also drawn on a scale of 1/100, and with 20 m width and 50 m pitch.


(3) Bench mark

The bench marks shall be set up at the three locations.

3.3.2 Boring Survey Work Plan

The boring survey shall be conducted as follows:

No.	Location	Depth	Note
BH-1	The right side of the diversion weir	10 m	The location of boring holes is shown in Fig. 3.1.
BH-2	Starting point of conduction channels	10 m	
BH-3	Head tank	10 m	
BH-4	Powerhouse building	10 m.	

CHAPTER 4 PRESENT CONDITION OF THE STUDY AREA

4.1 Power Conditions in the Power Sector

Power conditions in the public electric power company operated power plant under study for rehabilitation (hereinafter called public electric power company), are described below.

4.1.1 Balance of Power Supply and Demand

Table 4.1 shows the figures for power supply and demand in the past five years from 1983 to 1987. In 1987, peak demand was 76 MW, while installed capacity was 33 MW (43%). In 1987, electric power was 204 GWh, while supplied power was 114 GWh, which was about 56% of total electric power. The public electric power company bought electricity equivalent to 211 GWh from an other electric power company.

The breakdown of power demand in 1987 indicates that power demand for residential, commercial, industrial and other uses was 73%, 6%, 9% and 12% respectively. The power demand for residential use was high, while that for commercial use was low.

The annual average rate of increase in power demand from 1983 to 1987 was 5.1%. The annual average rate of increase in generated energy has decreased to -3.4%, the rate of buying electricity has increased.

					· · ·	Annual
Item	1983	1984	1985	1986	1987	Average Increase Rate(%)
						1440(70
DEMAND						en la sua
1. Peak Demand (MW)	50	56	69	68	76	11.0
2. Electric Power (GWh)						
1) Residential	125	144	142	144	148	4.3
2) Commercial	11	12	12	12	12	2.2
3) Industrial	9	15	13	17	18	18.9
4) Miscellaneous	22	21	18	17	26	4.3
Total	167	192	185	190	204	5.1
			: 19		н.	
SUPPLY						1
1. Installed Capacity (MW)	33	33	33	33	33	0
2. Generated Energy (GWh)	131	121	120	127	114	-3.4
3. Power Loss (GWh)	60	66	94	114	121	19.2

Table 4.1Power Supply and Demand(1983-1987)

(Source: INFORME ESTADISTICO: RESUMEN 1983-1987)

4.1.2 Present Conditions of Generating Facilities

(1) Generating facilities

Table 4.2 shows the installed capacity of the public electric power company. The generating system of facilities owned by the public electric power company is hydroelectric power generation and diesel power generation.

4-2

Item sector		1984	1985	1986	1987	Annual Average Increase Rate (%)
Total Installed Capac (MW)	ity			· · ·		
1. Diesel	0.6	0.6	0.6	0.6	0.6	0
2. Hydroelectric	32.8	328	32.8	32,8	32.8	0
3. Others	0		0 · · · ·	0	0	0
Total	33.4	33.4	33.4	33.4	33.4	0

 Table 4.2
 Total Installed Capacity of the Public Electric Power Company

(Source: INFORME ESTADISTICO: RESUMEN 1983-87)

Table 4.3 shows condition of power plants for which the FS was conducted.

- 		
Table 4.3	Conditions of Ovejas Power Plant	

(1984-1988)

Item	1984	1985	1986	1987	1988
1) Installed capacity (kW)	900	900	900	900	900
2) Generated energy (MWh)	4,126	4,065	2,288	622.5	3,747
3) Facility utilization factor (%)	52	52	29	8	48
4) Operating time (%)	97	99	58	22	98

(Source: Data compiled from CEDELCA)

(2) Transmission facilities

and the second second

1

The public electric power company provides 115 kV transmission lines to its transmission and substation facilities at Ovejas P/P. Voltage to be transmitted to Ovejas P/P is 13.2 kV.

4.1.3 Generating Cost and Electric Charges

 \sim

Table 4.4 indicates the changes in generating cost and electric charges in the past five years from 1983 to 1987.

			1.1			
Item	1983	1984	1985	1986	1987	Annual Average Increase Rate(%
Generating Cost (COL\$/kWh)	3.30	4.36	6.41	8.18	10.40	33.2
Electric Charge (Average): (COL\$/kWh)	· ` :				·	
1. Residential	2.63	3.33	4.44	5.68	7.05	28.0
2. Commercial	4.09	5.29	6.64	8.77	11.85	30.5
3. Industrial	5.21	5.71	7.21	9.27	13.46	26.8
4. Public use	2.98	3.80	5.45	7.39	9.85	34.8
5. Average	2.89	3.65	4,53	6.26	7.96	28.8
Breakdown of Power Demand by customer				· · ·		
1. Residential	47,936	54,389	59,719	64,565	70,953	10.3
2. Commercial	1,573	1,542	1,690	1,695	1,776	3.1
3. Industrial	246	251	268	287	310	6.0
4. Others	941	993	974	987	1,013	1.9
5. Total	50,696	57,175	62,651	67,534	74,052	9.9
Diffusion of Electricity		* . X			e de la composición Al	
1. Overall (1000 households)	759	777	796	814	833	2.4
 Power demand (1000 households) 	213	241	265	287	315	10.3
3. Electrification rate (%)	28	31	33	35	38	7.9

 Table 4.4
 Generating Cost and Electric Charges

(Source: INFORME ESTADISTICO: RESUMEN 1983-87)

4.1.4 Forecast of Power Supply and Demand

CEDELCA forecast of the power supply and demand until the year 2000 is shown in the following table

Year		Electric Power (GWh)		Peak Demand (MW)		
I ear	Generated Energy	Electricity- buying	Total	Generated Energy	Electricity- buying	Total
1988	118.51	232.62	351,13	28.7	55.00	83.70
1989	118.51	255.01	423.48	28.7	70.48	99.18
1990	118.51	415.64	534.15	28.7	92,14	120.84
1991	118.51	466.47	584.98	28.7	105.18	133.88
1992	118.51	522.81	641.32	28.7	119.74	148.44
1993	118.51	520.45	703.76	28.7	136.02	164.72
1994	118.51	654.45	772.96	28.7	154.22	182.92
1995	118.51	731.15	849.66	28.7	174.55	203.25
1996	118.51	816.15	934.66	28.7	197.27	225.97
1997	118.51	910.36	1,028.87	28.7	222.67	251.37
1998	448.51	684.77	1,133.28	113.7	166.05	279.75
1999	448.51	800.49	1,249.00	113.7	197.77	311.47
2000	448.51	863.95	1,312.46	113.7	233.21	346.91

4.2 Operation Record of the Existing Power Plant

4.2.1 Generated Energy

The records of generated energy and operating time at the Ovejas P/P during the five years from 1984 to 1988 are shown in Table 4.5. The operating ratio in 1988 was 98% with continuous, no-break operation but the facility utilization factor, at 48%, was low.

	en en estas		ing to a second seco		
Year	Output inscribed on the name plate	Generated energy	Operating time	Equipment util. ratio	Opeating ratio
	(MW)	(MWh)	(hr)	(%)	(%)
1984	0.9	4,126	8,494	52	97
1985	0.9	4,065	8,647	52	99
1886	0.9	2,288	5,111	29	58
1987.	0.9	622.5	1,912	8111	22
1888	0.9	3,747	8,614	48	98
			<u> </u>	<u>, 11</u>	

Table 4.5 Records of Generated Energy and Operating Time

Remarks:

19 T.Y.

1. The generated energy (MWh) is gross unit

2. The equipment utilization ratio (%) = $\frac{\text{Generated energy (MWh)}}{8760 (hr) \text{ x output on the name plate}} \times 100$

3. The operating ratio (%) = $\frac{\text{Operating time (hr)}}{8760 (hr)} \times 200$

4.2.2 Operation and Maintenance Costs

The records of this power plants operation and maintenance costs for five years from 1984 to 1988 are shown in Table 4.6. Operation and maintenance costs fluctuate but the average is 2,546 pesos/MWh.

Year	Generated Energy (MWh)	Operation and Maintenance Costs (Pesos)	<u>Peso</u> MWh
1984	4,126	4,559,239	1,105
1985	4,065	6,906,408	1,699
1986	2,288	7,523,205	3,288
1987	622.5	6,967,500	11,193
1988	3,747	11,850,013	3,162
Total	14,848.5	37,806,365	2,546
	n de la caracter de l		

Table 4.6 Record of Operation and Maintenance Costs

- 4.3 General Condition of Generating Equipment and Civil Structures
- 4.3.1 General Condition of Generating Equipment

The present condition of the generating equipment is summarized below:

(1) Generating equipment

The manufacturing years of the turbine and the generator which are inscribed on the name plates are 1938 and 1940 respectively. The existing equipment is already 51-year-old and maximum output is now 650 kW (the output inscribed on the name plate is 900 kW).

As shown in Table 4.5, the operating ratio is close to 100% but equipment utilization ratio is about 50%, a low value. The reason for this is that the generating equipment function has dropped.

Tables 4.7 and 4.8 show the defects in water turbines and generators according to a CEDELCA survey.

Equipment	Major Defect	e de la companya de l Nota de la companya de
Casing	Inside of casing has been worn out by sand	· · · · · · · · · · · · · · · · · · ·
Runner	Runner has been worn out by sand	
Guide vane	 Operation of this vane is difficult Vane cannot be thoroughly closed off; in clo enters runner from casing 	sed condition water
Bearing	Bearing surface is not sufficiently lubricated	
Inlet valve	Operation of this valve is difficult	
Governor	Accuracy is not high since it is belt-driven	ung di sana ang banasa
Hydraulic equipment	Oil leaks occur	

Table 4.7 Major Defects in Water Turbines and Auxiliary Equipment

 Table 4.8
 Major Defects in Generators and Auxiliary Equipment

and the second second

Equipment	Major Defect				
Rotor	The coil surface overheats and discolors				
Stator	The insulation resistance is low				
Bearings	 The bearing surface is deformed The bearing is not sufficiently lubricated The bearing overheats 				
Turbine, Generator Control Panel	 Inaccurate measuring equipment and protection relays Skill is required because of manual operation for synchronizing 				

(2) Transformer

There is no voltage transformer since the existing generator voltage is 12.5 kV and this power plant is directly connected to the 12.5 kV distribution lines.

(3) Switchgear

The switchgear for connecting to 12.5 kV power transmission lines is installed in the powerhouse. According to a CEDELCA survey this switchgear is 49 years old and insulation resistance is low. Furthermore it is reported that it is of an old type with exposed charging parts and it is therefore dangerous.

(4) Distribution line

There are existing 12.5 kV power transmission lines connected to the power plant. These distribution lines are also connected to the Asnazu hydroelectric power plant (440 kW) and these plants supply to consumers in the surrounding area. In addition to 12.5 kV distribution lines there are also 13.2 kV distribution lines. The 12.5 kV and 13.2 kV distribution lines separate at El Hato. In future CEDELCA intends to use only the 13.2 kV voltage.

4.3.2 General Conditions of Civil Structures

(1) Intake facilities

The diversion weir, of which crest is 24.0 meter long and 2.5 meter high, was equipped with a wooden stop log in the center of the weir to regulate a water level. At present, the central portion of it is damaged, and the level of the intake dam is lowered because of the damage. The intake is located on the right bank of the river, arranged about 45° in the direction of the flow, and equipped with a manually regulating gate, which is 2.0 m wide and 2.0 m high.

(2) Headrace channel

The 1.2 km-long steel conduit pipes (diameter 1.80 m) are laid on the narrow flat area along the Ovejas River. Presently, the majority part of the channel is filled up with the soil to top of the pipes. They are severely worn out to cause water leakage from aging and deformation by earth pressure.

Assumed construction ctual ground Rio Ovejas

Pressure pipes are used for the channel to suit the topographic conditions. Some 30 m portion of it in access to the reservoir was ruptured by negative pressure and earth pressure, and was repaired.

(3) Desilting basin

A Desilting basin is not installed.

(4) Head tank

The head tank, 5.2 m wide, 22.5 m long and 3.2 m deep, is in a good condition but the size is not large enough.

(5) Steel pressure pipes

There is no problem in the 65-meter-long steel pressure pipes (diameter: 1.6 m) except painting. However, the inner wall may be worn out by aging.

当节书:

(6) Powerhouse

The reinforced concrete powerhouse (8.0 mW x 14.0 mL x 5.0 mH) which accommodates one generator, has solidity and enough space.

(7) Gates and valves

Steel gates installed at the intake and the head tank are still functioning, though they have deteriorated.

CHAPTER 5 BASIC DATA COLLECTION

The pre-FS was conducted from November, 1987 to July, 1988. In succession, the FS was carried out in November, 1988 to collect topographical, geological, hydrometeorological and other related data as detailed below:

5.1 Topographic Maps

Ovejas P/P, built along the Ovejas River of the Cauca River system, is located about 10 km upstream of the confluence of the Ovejas River and the Cauca River, which join the Cauca River.

JICA Study Team collected the following topographic data.

- Topographic maps (scale: 1/25,000 1/400,000) published by IGAC
- Topographic survey maps that were actually measured by CEDELCA for the study of this power plant
- (1) Topographic maps published by IGAC

· · · · · · · · · · · · · · · · · · ·		
Scale	Drawing No.	Description
1/400,000	-	the whole area of Cauca Department
1/ 25,000	320-II-C,D	
	320-IV-A,B,D	Power plant and upstream area are
and a sub-state of the second seco	321-III-C	covered.
	342-II-B	
and the second		

(2) Topographic maps actually measured by CEDELCA

Topographic survey maps actually measured by CEDELCA from March to June, 1989 for the study of this power plant are as follows:

5 - 1

Topographic Survey Map	Scale
Plan of the whole area and profile	1/500
Plan of diversion weir and vicinity	1/200
Plan of head tank, power plant and vicinity	1/200

5.2 Geological Survey Data

The geological survey data that was collected for this project is as follows:

- Mapa Geologico de Colombia: 1988, INGEOMINAS

- Aerial photographs of the power plant and vicinity

- Informe de Resultados de Perforaciones y Ensayos de Suelos para las Pequenas Centrales, Hidroelectrica de Silvia y Ovejas, 1989, Estudio de Suelos Ltda

5.3 Hydrometeorological Data

Since Ovejas P/P does not have the facilities for monitoring precipitation levels and discharge, the JICA Study Team gathered HIMAT and CVC hydrometeorological data in conducting this survey.

The precipitation observations for the Ovejas River were recorded at the HIMAT gauging station. The discharge observations were recorded at three CVC stations; Los Combulos, Abajo Tarabita and Pte Carretera, the last of which is on the Mondomo River. The collated data is as follows:

Table 5.2 List of Collected Hydrometeorology Data

(1) Precipitation observation record

A state of the second seco

Meteorol	ogical station	Classes11ag	Loc	ation	Altitude	Observation	
No.	Name	Controller -	Latitude	Longitude	(EL. m)	period	
		10.10.10		n an		· · · · · · · · · · · · · · · · · · ·	
2602-002	Silvia Pta Electri	HIMAT	0237	7622	2650	1970-87	
260-2-003	Piendamo	HIMAT	0241	7632	1840	1970-87	
2602-010	Buenos Aires	HIMAT	0301	7634	1050	1977-87	
2602-016	Catalina La	HIMAT	0257	7639	1373	1972-87	
2602-020	Amparo El	HIMAT	0253	7629	1850	1971-87	
2602-022	Morales	HIMAT	0245	7638	1360	1971-87	
2602-039	Ovezes Abayo Alert	HIMAŤ	0252	7636	1263	1979-87	
2603-504	Salvajina La	HIMAT	0258	7642	1100	1972-85	

(2) Discharge observation record

Hydrological gauging station		River	Controller	Establish-	Lo	cation	Altitude	Catchment area	Observa- tion	
No.	Name			ment	Latitude Longitude		(El, m)	(km ²)	period	
2602-703	Pte Carretera	Mondoms	• CVC	1974-07	0252	7632	1305		1954-70	
	Ahajo Tarabita					7636	1263	607	1964-87	
2602-728	Los Cambulos	Ovejas	CVC	1980-07	0251	7639	1143	1	1982-86	

(3) Water quality data

The observation of water quality was recorded at the Ovejas P/P as shown below.

Observation period:	June 1962 - June 1975
	CO3, HCO3, Ca, Cl, Ca, Mg, conductivity, turbidity
	(ppm) May 1989 - June 1989
	pH, SO ₄ , Cl, CaCO ₃ , conductivity

(4) Sediment data

The sediment data recorded at the Los Cambulos gauging station is shown below:

Observation period: Observation items: Observation period: Observation items: Mach 1982 - April 1982 Sediment grain-size distribution July 1981 - February 1983 Turbidity (ppm)

5.4 Other Related Data

5.4.1 Construction Prices Data

Construction prices for civil works in Colombia are based on "Catalogo de Precios de Materiales de Construccion (Catalog of Construction Material Prices)" monthly published by CAMACOL (Camera Colombiana de la Construccion) in Cauca Department. However, the above publication is not published in all departments of Colombia. To coordinate the data of the power plant sites where the FS was conducted, construction prices used for this study are based on price data used within CEDELCA (refer to Table 5.2).

5.4.2 Power Condition Data

(1) The following data was collected for the purpose of examining CEDELCA's power condition.

1) CEDELCA's demand forecast from 1970 to 2000

2) CEDELCA's power schematic diagram

(2) The following data was gathered relating to Ovejas P/P.

1) One line diagram

2) Residual value

3) Operation and maintenance personnel

Table 5.2 UNIT PRICE LIST 表-5.2 建設工事单価表

ELECTROLIMA 2,800 t 9,000 17,900 215,000 I I 25,000 MAY/89 1,100 480,000 650,000 50,000 9,000 19,600 420,000 2,500 ŧ I 8,000 1 I 1 i. 15,600 320,000 1,100,000 1,100,000 1,000,000 [1,000,000]1,000,000 815,000 1,260,000 8,000 50,000 APR./89 ESSA 066 1,900 1 300,000 ī 50,000 ï T 1 ł I I. 20,500 CEDENAR JUN./89 2,950 1,100,000 T ţ I I. 26,800 447,500 I. ł I t 24,000 50,000 MAR./89 E.CHOCO 800 ι ı 1 360,000 1,310,000 1,420,000 874,125 I 20,000 I 40,000 1,000,000 1,000,000 1,250,000 1,250,000 55,000 20,000 I.7250,000 OVEJAS JUN./89 CEDELCA 1 8,800 ł. 700 804,195 17,000 1 I 34,000 350,000 I 47,000 I7,000 SILVIA JUN./89 27,625 ī 1 2,925 3,965 500,000 I ı 14,000 I 454,000 5,00,000 10,000 40,000 14,000 FEB./89 CHEC 1,682,000 354,000 1,682,000 I 2,400 3 I. ł I. 1 Т • Т 26,300 13,000 NOV./88 EADE ຕ ແ ຊ . p/m³ p/m3 ۳/۳² p/m3 ъ/т² р/³ £_m3 . Б/ш³ TINU ъ/ш³ . พ ผ /ส ₽/t ה ה/ג թ/t թ/t p/t ₽/t (NEW CONST.) CONCRETE WORK (STRUCTURAL) CONCRETE WORK (MASS CON.) (REPAIR) (EARTH) (ROCK) DEMOLITION CONCRETE CYCLOPEAN CONCRETE TUNNEL EXCAVATION TUNNEL CONCRETE BAR REINFORCING POWER HOUSE POWER HOUSE STEEL PIPE EARTH WORK EARTH WORK PENSTOCK GABION SCREEN GATE 16. чо. 11. 12. . ເກີ 7. . თ ц. . H 3 . ო 4 14 14 . ω . س ം

CHAPTER 6 PRESENT CONDITION OF TOPOGRAPHY AND GEOLOGY

6.1 Topography and Geology in the Area

6.1.1 Topography

The source of the Ovejas River is at the western slope of the Central Cordillera, about 40 km north-northwest of Popayan, from which the Ovejas River flows northwest to join the Rio Cauca near Suarez.

The project site is situated on the downstream side of the Ovejas River and the topography around the project site is formed by gentle hills.

6.1.2 Geology

The bedrock consists of shale formed in the Mesozoic era (or the Palaeozoic era). The shale in a natural condition is black and hard, on which thick gravel covers. The surface layer of gravel is laterized. The quarternary riverbed, tabus, terrace deposits cover the gravel. The stratigraphy in the vicinity of the project site is shown in Table 6.1.

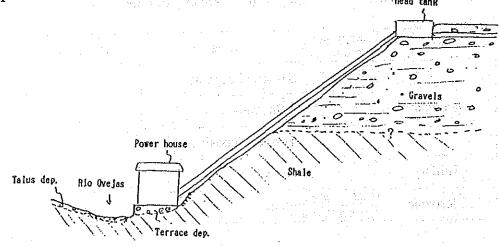
Table 6.1Stratigraphy in the Vicinity of Project Site

Era	Schematic column	Strata	Remarks
	0.000	Riverbed deposit	
Quartenary		Talus deposit	
	0 0 0 0 0	Terrace deposit	н. Т
Tertiary	0,00.	Gravel	an a
Mesozoic		Shale	

6.1.3 Geological Structure

The bedding plane constituting the bedrock strikes N2°W~20°E 75~90. The structure of the boundary surface between the bedrock and the upper thick gravel is not clear.

6.2 Geology in the Project Site


The general conditions for the various structural foundations of the power plant are outlined below. (Refer to Drawing No. OV-G-01)

(Power plant)

Terrace deposits cover the mesozoic shale in the vicinity of the powerhouse. Most of the powerhouse buildings have foundations on the mesozoic shale. The boring survey carried out on the upstream end of the power plant revealed that the plant site lies on the bedrock at a depth of 2.2 m and the rock surface level is the same level as the existing riverbed.

(Head tank, water channels and intake)

The head tank, water channels and diversion weir are located on the thick gravel and do not lie on the bedrock. The boring survey carried out on the left and right banks of the diversion weir revealed that the gravels overlay up to a depth of 10 meters with no presence of shale.

Fig. 6.1 Schematic Geological Profile

6.3 Distribution of Concrete Aggregates

The aggregate for concrete etc., can be produced from riverbed deposits.

6.4 Geological Evaluation

- 1) Mesozoic shale, constituting the bedrock in the project site, is very hard and dense in the natural condition, and has sufficient bearing capacity and impermeability for the foundations of the various structures.
- 2) The thick gravel overlying mesozoic shale has sufficient bearing capacity as a structural foundation. However, collapse or landslide have occurred in several areas of the slopes and so there is a problem with slope stability.
- 3) The steel conduit pipe route runs under the nick point along a gentle slope. The steel conduit pipes have deformed, leaking due to landslide and collapse.

Condit pipe Gτ · Talus dep. Talus dep. Rio Ovejas

Fig. 6.2 Schematic Geological Profile Near the Conduit Pipe

· · · · ·

6.5 Topograhical and Geological Problems

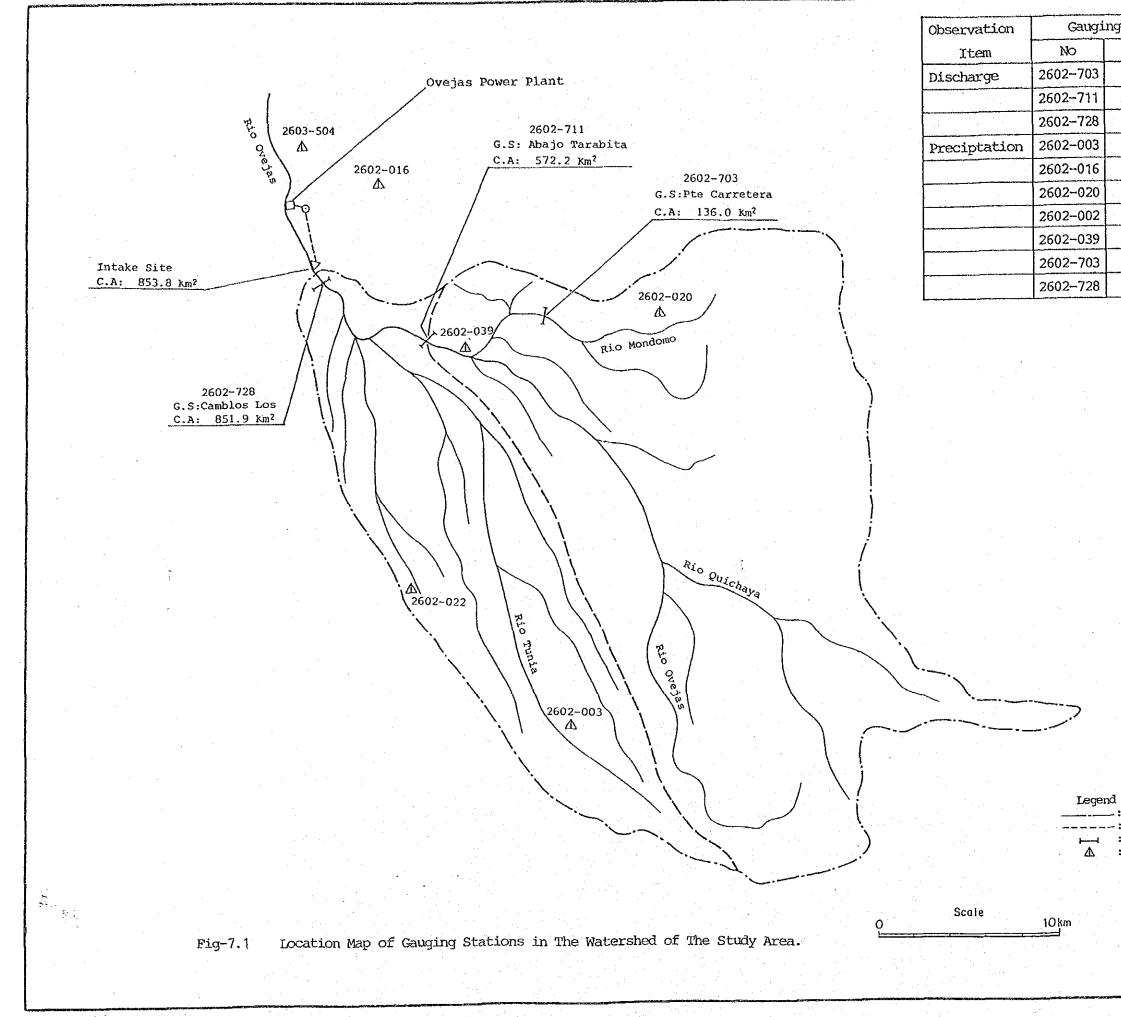
and the second

There are no geological problems in the intake, the head tank and the power plant. However, the rock surface is deep below the water channel, and there is evidence of landslides in several places along the pipe route. Therefore, proper measures to prevent landsliding must be taken.

CHAPTER 7 HYDROLOGICAL ANALYSIS

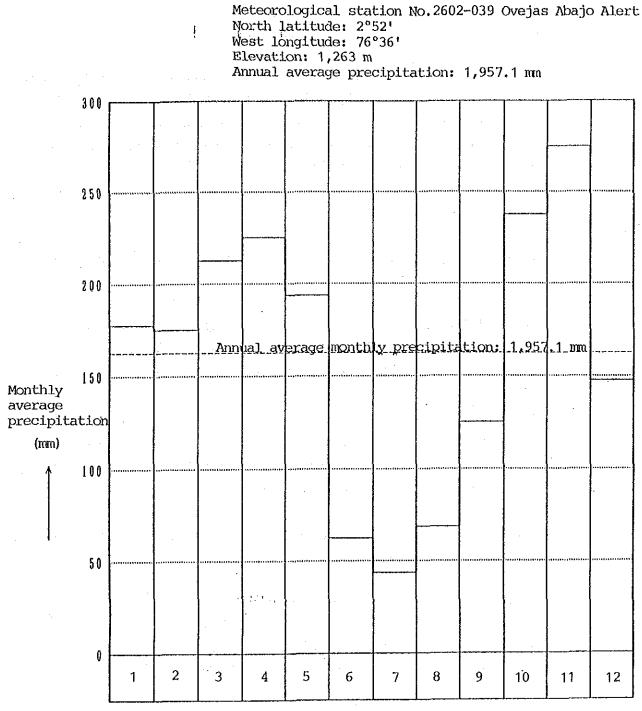
Fig. 7.1 shows the location of the existing gauging stations for monitoring precipitation and discharge in the watershed of the project site.

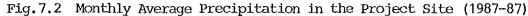
7.1 General Meteorology in the Planned Area


Cauca Department, in the southwest part of Columbia, lies at 1°00' to 3°20' north latitude, near the equator.

Generally the lowland areas enjoy a tropical climate and have a hot and very humid rainy season. The lowland areas have an average temperature of 24°C, while the highland areas (at an elevation of 1,800 to 2,800 m) range from 12 to 18°C.

Popayan, the capital, lying at an elevation of about 1,500 m, has an average temperature of 15°C. This temperature level remains constant from year to year.


The annual maximum precipitation in the highlands is 1,000 - 2,000 mm, while precipitation is low for the lowland areas. On the west slope of the West Andes Mountain Range the annual maximum precipitation exceeds 6,000 mm.


The project site, at an elevation of about 1,200 m above sea level, is situated to the north of Popayan and lies in the Central Andes Range. The annual precipitation in the project site is typically relatively large, though it fluctuates from year to year. The rainy and dry seasons are clear (refer to Fig. 7.2).

7.1.7	Tongitado
latitude	Longitude
0252	7632
0252	7636
0252	7639
0241	7632
0257	7639
0253	7629
0245	7638
0252	7636
0252	7632
0252	7639
	0252 0252 0241 0257 0253 0245 0252 0252

Legent Boundary of Watershed (Intake) Boundary of Watershed (Gauging Station) Gauging Station (Discharge) Δ :Gauging Station (Preciptation)

7.2 Discharge Analysis

The discharge and flow duration curves in the project site were compiled by comparing the records of Los Cambulos, Abajo Tarabita and Pte Carretera. Five-year observations recorded at Los Cambulos gauging station, where is closest to the planned power plant's intake site, were used as the basic data, after adjustment of the river basin. (Refer to Drawing OV-H-01(04))

7.2.1 Collation of Discharge Data

The observation periods for the discharge data collected by the JICA Study Team is as follows:

Los Cambulos	1982 - 1986	5 years	(Established in Jul. 1980)
Abajo Tarabita	1964 - 1987	24 years	(Established in Sept. 1964)
Pte Carretera	1954 - 1970	17 years	(Established in Jul. 1954)

The gauging station which was closest to the location of the intake of the project site is Los Cambulos, 1 km upstream, but it has only 5-year observation records. Furthermore, observations were recorded continuously for 24 years at Abajo Tarabita gauging station, 9 km upstream from the water intake.

The collected discharge records included non-observed dates. Years that observations were completely recorded are as follows:

Los Cambulos	1982 - 1986	5 years	
Abajo Tarabita	1965 - 1987	23 years	
Pte Carretera	1954 - 1963 1966 - 1968	10 years 3 years }	13 years

(1) Collation of Catchment Area

Since there are no records of catchment area for Los Cambulos and Pte Carretera, the JICA Study Team measured this from the map on a scale of 1/400,000 issued by IGAC. Since there was a big difference between the recorded values for Abajo Tarabita catchment area according to HIMAT (913 km²) and CVC (607 km²) it was decided to use the similarly collated CVC value. Thus, the catchment area for each station, as used in the flow analysis, is as follows:

Gauging Station	Catchment	Area
Los Cambulos	851.9	km ²
Abajo Tarabita	607	km ²
Pte Carretera	136	km^2

(2) Collation of Unit Flow Duration Curve per 100 km²

The observation records for each of the Los Cambulos, Abajo Tarabita and Pte Carretera are as shown on the same time scale diagram below:

Years Name of	1 9 5	1 9 6	1 9 7	1 9 8	1 9 9
Gauging Station	0123456	789012345	567890123	45678901234	<u>567890</u>
Los Cambulos			• :	B2	86 2223
Abajo Tarabita		65 L			87 2221_J
Pte Carretera	55	63 6 >	6 68 2777772	of Same Period	<u>e</u>

D Los Cambulos and Abajo Tarabita have records for the same five year period 1982-86.

② Abajo Tarabita and Pte Carretera have records for the same three year period 1966-68.

A comparison of observed discharge records for respective gauging stations recorded at the same time, and converted to average unit flow-duration curves, is shown in Fig. 7.3. The discharge pattern for Los Cambulos and Abajo Tarabita is very similar.

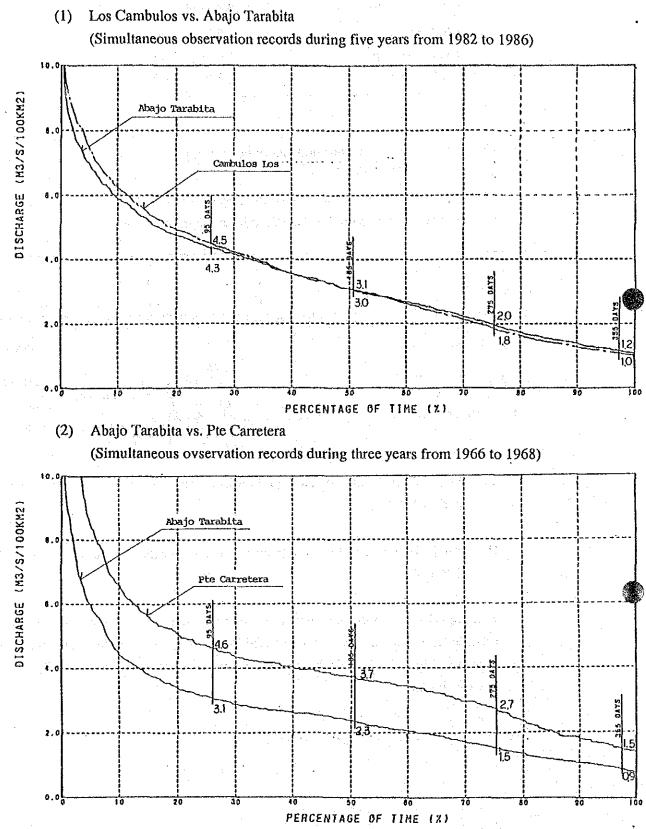
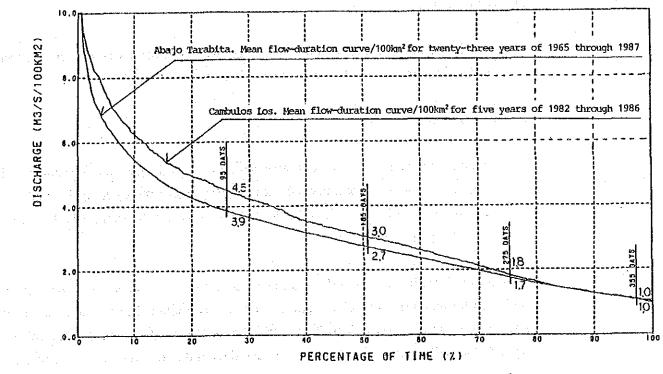
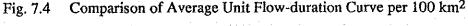




Fig. 7.3 Comparison of Average Unit Flow Duration Curves per 100 km²

However, although there was only five years of records for Los Cambulos gauging station, which is closest to the intake, it was judged that the records were reliable. It may additionally be noted that if the average unit flow duration curve per 100 km^2 for Abajo Tarabita for 23 years from 1965 to 1987 is compared to Los Cambulos, excluding flood seasons, they are almost similar.

- 7.2.2 Typical Flow-Duration Curve Form
 - a and a second and a second data second
 - Year-to-year fluctuations of the river flow-duration curve occur at the same site. In drawing a typical flow-duration curve at a certain site, the following methods are considered:
 - (a) Parallel Method

Daily average discharge for 365 days is arranged in descending order, the flowduration curves in each year are drawn and averaged.

(b) Standard year method

Flow-duration curves in each year are drawn. Out of these curves, the flowduration curve that is deemed to be average is selected, and this curve is used as the flow-duration curve in the standard year.

(c) Series method

This is the method in which daily average discharge for 5 years is arranged in descending order and only the Y axis is corrected as the one-year curve.

(d) Curve insertion method

Average values of 355-day flow, nine-month flow, ordinary water discharge and three-month flow for long periods (at least 10 years or more) are calculated and plotted from a discharge handbook, and the flow-duration curve is drawn by connecting a proper curve.

Typical flow-duration curves at the gauging stations have been drawn using the widely used parallel method. Non-observation years are not included in the preparation of these flow-duration curves. The X axis and Y axis of these flow-duration curves are expressed as daily average discharge (m^3/s) and the number of days (%) respectively.

7.2.3 Typical Flow-duration Curve at Los Cambulos Gauging Station

Discharge data at the Los Cambulos gauging station, located about 1 km upstream from the Ovejas Hydroelectric Power Plant intake site are arranged using 5-year data, as shown in Table 7.1.

In calculating monthly average discharge in Fig. 7.1, the months in which observed data was recorded for less than 10 days are excluded from the calculation. The threemonth flow period cannot be distinguished from drought periods in the graphic representation of the monthly average discharge shown in (1) of Drawing OV-H-01.

However, the five months from June to October, and seven months from November to May are designated as the drought periods. The parallel method typcial flow-duration curves calculated from 1983 to 1986 are shown in (3) of Drawing OV-H-01. Periods of three-month flow, ordinary flow, nine-month flow and 355-day flow in the flow-duration curves are indicated by numerical values, as shown in Table 7.2.

The maximum discharge recorded at Los Cambulos gauging station for six years from 1981 to 1986 is shown in Table 7.3.

		(UNIT: M3/S	DEC ANNUA TOTAL	0 1 00.	000
ļ	.'	(UNI)	DEC	37.	ee
SITE	ros		NON	33.2	000
6.5.	2602-728 CAMBLOS LOS		סכו	41.4	17 5
TA WO	-728 C	1S	SEP	14.2	9
EFLC		OVEJAS	AUG	11.8	6
VERAG	GAUGING ST.:	RIVER NAME:	าทะ		5
AILY P	GAUGI	RIVER	NUC	46.3	000
OF DA			MAY	17.7	50 3
FLOW TABLE OF DAILY AVERAGE FLOW AT G.S.			APR	78.8 88.9	SE OF SO S
- LOW -			MAR	78.8	2 2 2
MONTHLY I			FEB	75.0	6
MON			JAN	100.9	- u
		•	ТҮРЕ	MAX	2×27
Table-7.1			GAUGING TYPE .		

						1					÷	:	2		Ĵ			1						•	
M3/S)	ANNUAL	100.9	32.4	7.8	100.9	24.2	6.5	93.0	36.8	11.5	100.0	26.8	8.9	91.2	27.2	7.1	100.9	29.4	6.5	- · ·				1	
CUNIT: M3/S	DEC	37.0	30.4	20.1	53.6	22.9	11.2	58.0	41.2	31.1	54.4	26.9	19.4	40.6	23.2	16.9	58.0	28.9	11.2		•••		•		
2	NON	33.2	23.0	15.9	21.3	11.5	8.5	93.0	52.1	30.1	70.7	35.6	17.3	51.1	30.4	21.4	93.0	30.5	8.5						
	0C.T	41.4	17.5	8.9	17.7	9.3	6.5	75.7	31.5	16.5	52.0	18.0	10.1	44.6	22.9	9.8	75.7	19.8	6.5						
	SEP	14.2	9.6	7.8	8.7	7.8	6.9	31.1	17.8	11.5	18.1	10.2	8.9	19.4	9.3	7.1	31.1	10.9	6.9						
OVEJAS	AUG	11.8	9.7	8.2	9.01	9.2	8.2	23.9	14.9	12.1	18.1	11.6	8.9	11.2	9.2	1.9	23.9	11.0	1.9						
NAME:	ากเ	20.1	15.7	11.8	17.3	13.2	10.6	38.1	21.6	15.8	16.9	13.4	12.1	17.9	13.0	10.3	38.1	15.4	10.3						
RIVER NI	NUC	48.3	30.2	20.1	42.2	25.7	18.9	70.7	40.4	25.0	48.3	23.4	16.1	23.5	18.9	16.1	70.7	27.7	16.1						
	MAY	77.7	50.3	41.6	57.0	39.3	29.2	81.6	63.6	47.7	57.9	36.4	26.2	38.9	27.4	19.9	81.6	\$3.4	19.9						
	APR	88.9	52.4	44.2	82.8	59.2	32.5	78.4	43.2	30.4	67.3	29.1	19.4	46.5	33.0	16.4	86.9	43.4	16.4						
	MAR	78.8	55.2				18.6	•	· •	. •	• 51	0	18.2	69.4	•	33.9		•	18.2						
i	F EB	75.0	42.7	27.4	6.001	35.4	17.7	51.3	38.6	27.9	57.0	33.5	21.9	91.2	46.5	28.0	100.9	39.3	17.7						
:	JAN	100.9	51.9	29.8	35.2	24.1	16.5	59.6	39.1	27.4	100.0	57.4	29.8	72.4	38.7	21.4	100.9	42.2	16.5						
	ТҮРЕ	MAX.	NEAN	HIN.	MAX.	MEAN	HIN.	MAX.	MEAN	MIN.	NAX -	MEAN	HIN.	NAX.	MEAN	MIN.	MAX.	MEAN	NIN.						
	GAUGING YEAR		1982			1983			1984			1985			1986			TOTAL			•				

.

FLOW DURATION TABLE AT GAUGING STATION SITE Table-7.2

								<u> </u>				
	(UNIT: M3/S)	MEAN	32.3	24.1	36.6	26.5	27.1		m			29.3
S LOS	INN)	MIN. (LAST DAY)	7.8	6.5	11.5	8.9	7.1				-	8.4
8 CAMBLOS LOS		LOV. DROUGHTY MIN. (275 DAY) (355 DAY) (LAST DAY)	8.2	6 9	12.8	·9.2	7.6					58.9
2602-728	OVEJAS	LOV.	14.4	10.1	23.9	13.5	15.2					15.4
GAUGING ST.:	RIVER NAME:	PLENTY ORDINARY (95 DAY) (185 DAY)	29.8	19.0	34.5	21.9	23.4				-	25.7
GAU	RIV	PLENTY (95 DAY)	46.6	31.8	46.0	33.2	33.9			-		38.3
	•	MAX. (1ST DAY)	100.9	100 9	93.0	100.0	91.2					97.2
		GAUGING YEAR	1982	1983	1984	.1985	1986					MEAN
)+ 3		۱, ۲,	••	,			•••

7–11

ß- :

SITE MONTHLY ABSOLUTE MAXIMUM FLOW TABLE AT G.S. Table-7.3

						~	
(S/SW = IIN)	ANNUAL	244.8	186.9	233.3	138.4	187.2	244.8
CUNIT:	DEC	77 1	121.7	76.7	94.3	71.6	121.7
LOS	NGV	68.6	21.9	226.8	80.1 111.6	81.8	226.8
2602728 CAMBULOS Ovejas	0CT	41.4	31.8 21.9 121.7	64.7 233.3 226.8		69.9	233.3
2602728 0vejas	SEP	11.8 31.8 41.4	10.4	64.7	41.4	24.9 44.6	64.7
S ST.: VAME:	AUG	11.8	11.8	54.4	2B.6	24.9	54.4
GAUGING ST.: RIVER NAME:	JUL	26.5	68.2 19.9	63.0	30.4	19.3	63.0
	NUC	75 0		84.3	81.8	0.04	54.8 146.1 155.3 84.3 63.0 54.4 64.7 233.3 226.8 121.7
	MAY	33.2 144.2 155.3 75.0	0.99.0	90.5 142.3 132.5	119.6	80.1	155.3
	APR	144.2	54.8 146.1	142.3	86.9	84,1	1.46.1
	MAR	133.2	154.8	90 5	101.8	100.6	154.8
	FEB	216.1	186.9	120.0	60.4	187.2	216.1
	JAN	244.8	86.0	134.5	138.4	111.6	244.8
-	GAUGING YEAR	1982	1983	1984	1985	1986.	TOTAL

14

10²

7.2.4 Discharge and Flow-Duration Curves at the Intake Site

Since numerical values for the catchment area size are not officially approved the value 853.8 km^2 , recorded by the project team, is adopted. Thus the ratio of catchment areas between Ovejas P/P's intake site and Los Cambulos gauging station is set to 853.8/851.9 = 1.002.

Discharge and flow-duration curves at the intake site, adjusted according to catchment area ratio, are shown in Drawing OV-H-01, and representative values of monthly and daily average discharge and of three-month flow, ordinary flow, nine-month flow, ordinary flow, nine-month flow and 355-day flow are indicated in Table 7.4.

Item							Month						
······································	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Annual
Max. average discharge (m ³ /s)	57.5	46.6	55.3	59.3	63.7	40.5	21.6	14.9	17.6	31.6	52.2	41.3	36.7
Daily average discharge (m ³ /s)	42.2	39.4	40.0	43.5	43.5	27.8	15.4	11.0	11.0	19.8	30.6	29.0	29.5
Min, average discharge (m ³ /s)	24.1	33.6	23.0	29.2	27.5	18.9	13.0	9.2	7.8	9.3	11.5	22.9	24.2

1) Monthly average discharge

2) Typical discharge of flow-duration curve

Three-month flow	Ordinary water discharge	Nine-month flow	355-day flow
(95-day flow)	(185-day flow)	(275-day flow)	
38.4 m ³ /s	25.8 m ³ /s	15.5 m ³ /s	9.0 m ³ /s

River utilization factor of a certain available discharge to typical flow-duration curves at the intake site (a ratio of total available discharge and total river discharge flowing into the intake site) and facility utilization factor (a ratio of total discharge for which water can be taken in to the available discharge throughout the year and total water amount in the event that available discharge is secured throughout the year are represented graphically in (5) of Drawing OV-H-01.

7.3 Flood Runoff Analysis

The flood discharge is an important factor in the maintenance of existing facilities and repaired sections. The design flood discharge is obtained from the observation records of the discharge at Los Cambulos and Abajo Tarabita gauging stations. The former, which is close to the planned area, has only six years of records, while the latter, which is further upstream, has records for 22 years. In this analysis the data from Abajo Tarabita is statistically processed and is then adjusted using the catchment area ratio.

Year of Observation	Maximum Yearly Discharge (m ³ /sec)	Year of Observation	Maximum Yearly Discharge (m ³ /sec)
1964	115.4	1976	135.9
1965	99.3	1977	64.6
1966	122.2	1978	90.5
1967	108.1	1979	99.1
1968	83.5	1980	101.4
1969	145.2	1981	67.8
1970	100.1	1982	103.7
1971	144.5	1983	•
1972	134.0	1984	129.7
1973	87.8	1985	86.8
1974	148.9	1986	125.5
1975	135.9		

Table 7.5Annual Flood Discharge (Ovejas)

22 years of observation data, a relatively short period for such comparative studies, was available. Several methods are available to obtain flood distribution probability, and in this case three methods are examined:

- 1. Logarithm normal distribution method (slade method)
- 2. Order probability method
- 3. Gumbel method

For the order probability method and Gumbel method, both the Thomas plot and Hazen plot are studied.

Figs. 7.5 and 7.6 show that maximum yearly discharge is plotted on the X-axis and that percentage of excess probability calculated is plotted on the Y-axis by using the extreme probability paper. Table 7.6 shows the probable flood discharge for major years of return period obtained from the probability curve shown in the figure.

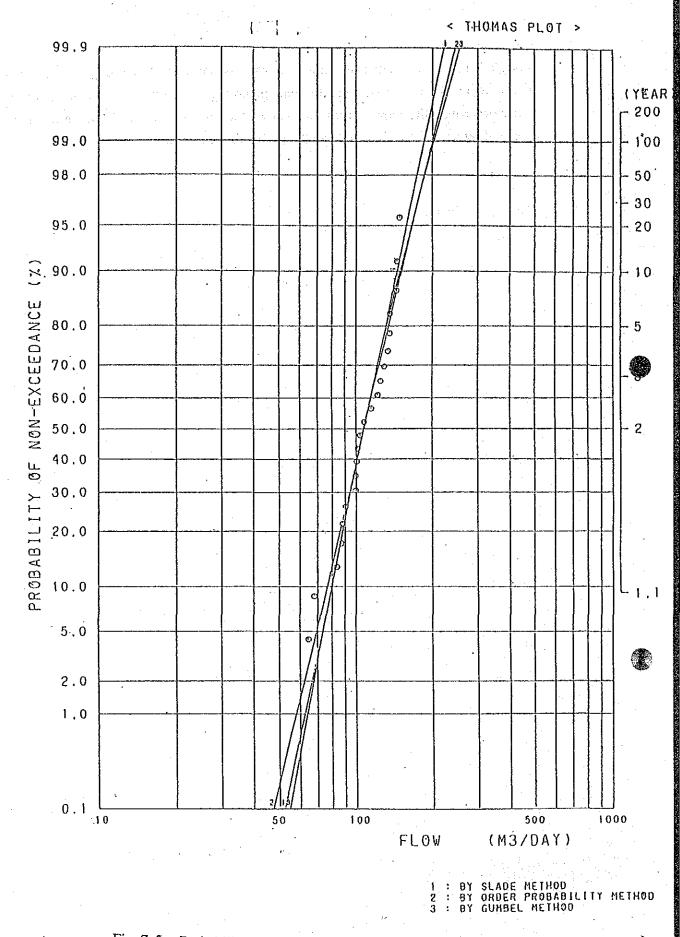
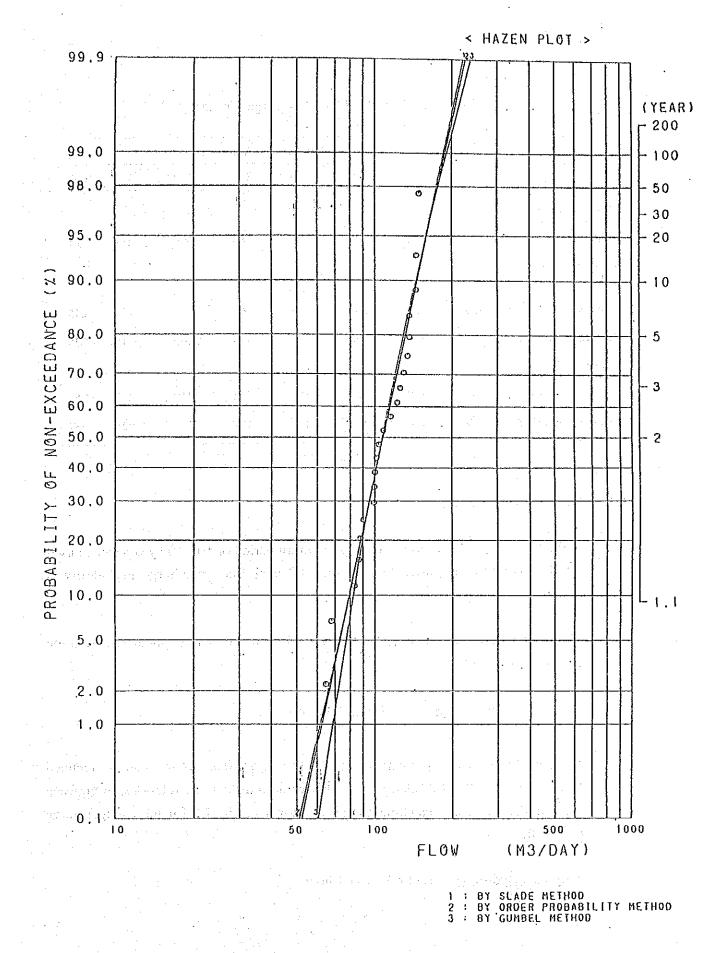
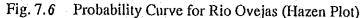




Fig. 7.5 Probability Curve for Rio Ovejas (Thomas Plot)

7–17

			R	eturn Perio	d in Years		<i>r</i> 1	
Method	5	10	20	50	100	200	500	1000
Logarithm normal distribution								·
method (m ³ /s)	131	145	185	174	185	196	211	221
Order probability method:					· · ·		· · ·	19 ¹
Thomas plot (m ³ /s)	135	151	167	186	3200	214	231	245
Hazen plot (m ³ /s)	132	146	160	176	188	2300	215	226
Gumbel method:				•	•	: : :	~ `	
Thomas plot (m ³ /s)	133	150	166	187	203	219	239	255
Hazen plot (m ³ /s)	129	144	159	177	191	205	224	237

Table 7.6 Probable Flood Discharge (Ovejas)

7.3.2 Design Flood Discharge

In the case where danger to life is small, a return period of 50 - 100 years can be used for design flood discharge*, where the 100 year flood discharge probability is preferred.

The design flood discharge, Q for the water intake site can be calculated from the catchment area ratio.

$$Q = 165 \times \frac{853.8}{607} = 286 \dots 300 \text{ m}^3/\text{s}$$

The specific discharge per catchment area (km²), $q = 0.35 \text{ m}^3$ /sec, can be obtained from the design flood discharge, Q. This value indicates the relationship between specific discharge and catchment area, as shown in Fig. 7.7 for the Creager curve C = 5.0.

* <u>Applied Hydrology</u> Editor Ven Te Chow

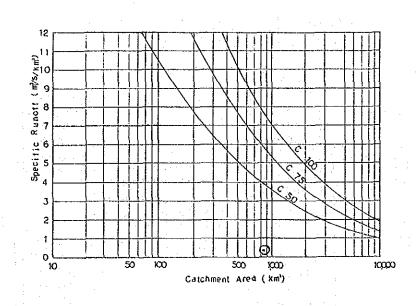


Fig. 7.7 Design Flood Discharge and Creager Curve

7.4 Sediment Analysis

Debris produced from mountainous catchment areas reaches the water intake site, flowing downstream via channel and river. The steps involved in this debris flow are shown in the flow diagram (Fig. 7.8), and from this run-off debris volume can be examined.

. ·

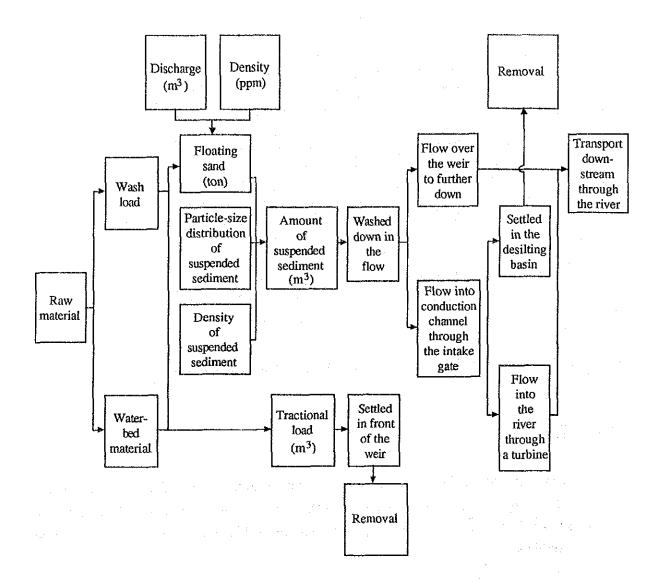


Fig. 7.8 Mechanism of Debris Flow and Calculation Flow of Debris Volume

7.4.1 The Stage of the Run-off Debris

The Rio Ovejas catchment area is formed by relatively steep ravines. Vegetation in the catchment area is abundant. The run-off debris from the upper catchment areas is mainly debris generated by riverbed erosion, riverbank erosion, slope failure and galley erosion etc.

The basic form of the sediment rating curves for Los Cambulos gauging station were used to produce the suspended sediment curves as shown in Fig. 7.9. The sediment volume (ton/year) at the observation station is shown below:

	Catchment	River Discharge Rate				Suspended	
River	Area (km ²)	Total 10 ³ m ³ /year	Max. (m ³ /s)	Min (m ³ /s)	Max, (ppm)	Min. (ppm)	Sediment Rate 10 ³ tons/year
Ovejas	851.9	918,200	148.9	3.5	616	9	92
	:					· · ·	

Suspended sediments, which have been transported to the water intake site, amounts to 108 ton/km² (classified in relation to catchment area) with the average suspended load concentration in the Rio Ovejas being 100 ppm.

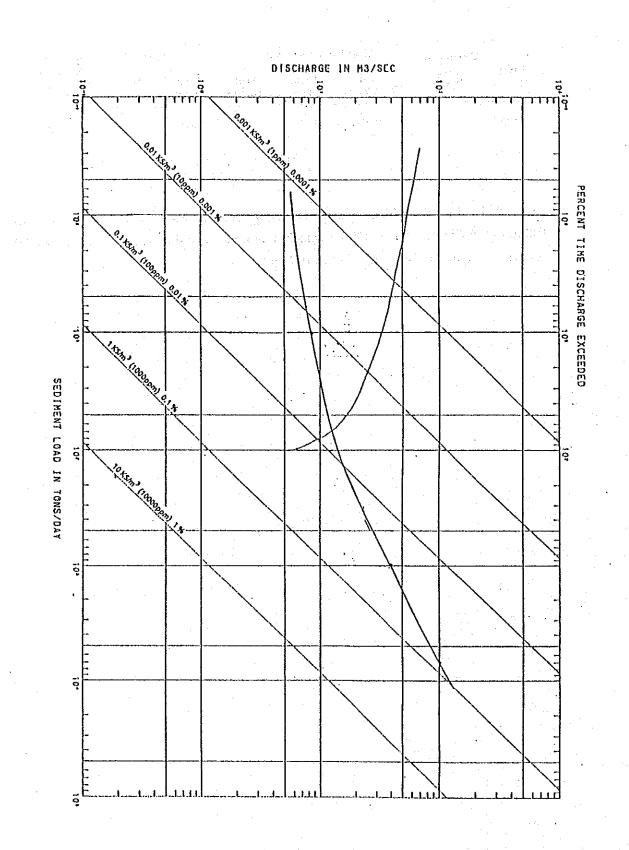


Fig. 7. 9 Sediment Rating Curve

7.4.2 Assumption of Sediment Rate

(1) Major physical properties

(a) Grain size distribution

The grain size distribution of bed load was observed, and its average grain distribution is shown in Fig. 7.10. The grain size constitution is as follows:

Gravel = 70% Sand = 25% Silt = 5%

The JICA Study Team studied the distribution of the suspended sediment and settling sediment but no data was collected. Reference was made to data on reservoir sediment and this grading distribution was assumed, as shown in Fig. 7.11. The composition of the grading was as follows:

Sand = 10% Silt = 60% Clay = 30%

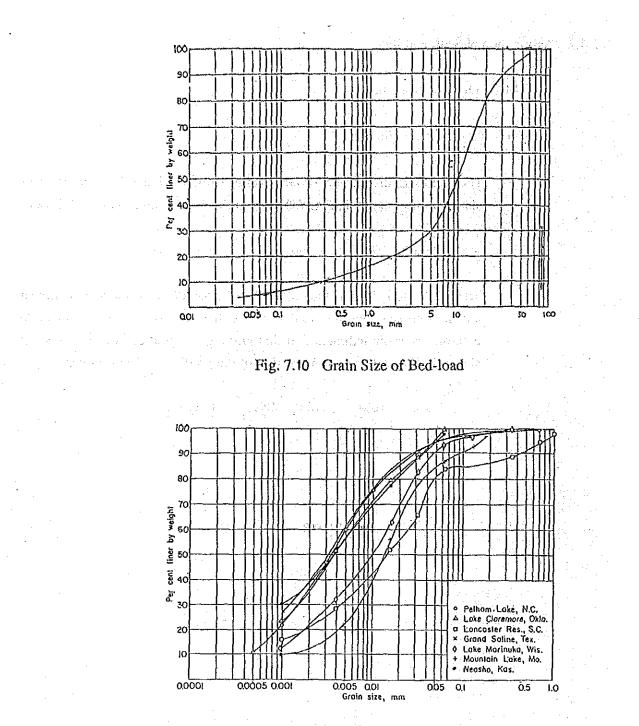


Fig. 7.11 Grain Size Constitution of Suspended Sediment *

* Handbook of Applied Hydrology (17-16)

(b) Unit volume weight

Since data on the sediment unit weight could not be collected, values were decided by referring to the relevant literature. The unit weight of sand and gravel is affected by consolidation loads although consolidation is complete after a relatively short period. However, clay, colloids and other fine grained material require a long period for full consolidation. from previous examples such as grading compositions derived from reservoir sediment under loaded conditions (below and above water surface) a range of unit weights is as shown in Table 7.7.

Table 7.7 Range of Unit Volume Weight*

(units:	ton/m ³)
(uuuo.	

<u> Maria di panganta kana ang sa</u>	a a shi ka markinga ka ka shi ta ta sh				
Grain	Almost submerged	Above water			
Clay	0.64 - 0.96	0.96 - 1.28			
Silt	0.88 - 1.20	1.20 - 1.36			
Mix of clay and silt (equal volume)	0.64 - 1.04	1.04 - 1.36			
Mix of sand and silt (equal volume)	1.20 - 1.52	1.52 - 1.76			
Mix of clay, silt and sand (equal volume)	0.80 - 1.28	1.28 - 1.60			
Sand	1.36 - 1.60	1.36 - 1.60			
Gravel	1.36 - 2.00	1.36 - 2.00			
Sand and gravel	1.52 - 2.08	1.52 - 2.08			

* Handbook of Applied Hydrology

(2) Discharge rate of sediment

In studying the volume of run-off sediment at the water intake site, both suspended load and traction load (bed-load) need to be considered. The suspended load can be estimated from the sediment record (concentration measurement) and discharge records.

The traction loads generally account for 10% - 50% of the total sediment rate. In the case of the Colorado River, USA, the traction load accounted for 12% - 50% of the total rate. A study team from the World Bank estimated that at the Tarubera

7-25

推动相关的,这个

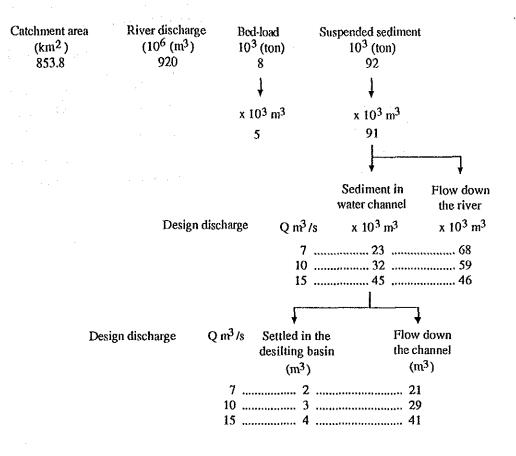
THE HALLANDARD

Dam (Pakistan) on the River Indus the traction load was 5% of the suspended load.

(3) Yearly flowing sediment rate

The sediment flow at the intake per year at the water intake site can be obtained by adjusting the values at the gauging station by the catchment area ratio.

Catchment	River	Suspended	Flown Sand	Sediment
Area	Discharge Rate	Sediment Rate	Rate	Rate
(km ²)	(10 ⁶ m ³)	(10 ³ ton)	(10 ³ ton)	(10 ³ ton)
853.8	920	92	8	100


Average grain size of the flowing sediment is calculated from the unit weight by average grain size constitution and each grain diameter as follows.

	Flown Sand					
• • • •	Gravel	Sand	Silt	Total		
Grain size constitution(%)	70	25	5	100		
Unit volume weight (ton/m ³)	1,68	1.48	1.04			
Unit weight per grain size (ton/m ³)	1.176	0.37	0.052	1.598 1.60		

	Suspended Sediment					
·	Sand	Silt	Clay	Total		
Grain size constitution(%)	10	60	30	100		
Unit volume weight (ton/m ³)	1.48	1.04	0.80			
Unit weight per grain size (ton/m ³)	0.148	0.624	0.240	1.01		
	Sector Area and					

All of the traction load is deposited at the diversion weir and in front of the water intake point, and does not enter the power station's water channel system.

At or below design discharge ranges suspended load will flow through the water wheel and flowing into the water channels. Coarse grained particles in the suspended load entering the water channels will settle in the settling basins while the remainder of the suspended material, together with discharging water, flows through the water wheel and is flushed back into the river. For river discharge which is above the design discharge suspended load and gravel within the discharge flows over the weir and down the river.

It is assumed from results of the above analysis that annual average sediment in front of the diversion weir will be about 14 m³/day and sediment settled in the desilting basin will be 8 m³/day (if available discharge is 10 m^3 /s). A counterplan for removal of this sediment will be carefully considered.

7.5 Water Quality Analysis

The acidity, specific resistance etc., which can affect water quality are studied.

7.5.1 Criteria of Judgement

(1) Acidity, etc.

To judge the effects of acidity, reference is made to the standards shown in Table 7.8 and the summarized examples of Table 7.9.

Item -		Grade of Erosion	a an a charactaí a	
	Weak Erosion	Strong Erosion	Very Strong Erosio	
pH	6.5 - 5.5	5.5 - 4.5	Less than 4.5	
CO ₂ mg/1	15 - 30	30 - 60	More than 60	
NH [‡] mg/1	15 - 30	30 - 60	More than 60	
Mg ²⁺ mg/l	100 - 300	300 - 1500	More than 1500	
SQ mg/l	200 - 600	600 - 3000	More than 3000	

. •

Table 7.8Judgement Criteria of Erosion of Water (DIN 4030)

a secondaria da secondario de la secondaria de secondaria de la companya de la secondaria de la secondaria de l Secondaria de la secondaria Secondaria de la secondaria Secondaria de la secondaria

.

. 7–28

Table 7.9Damage Example of Concrete in ErosiveEnvironment of Water

Item	Water Characteristics	Damage Status
Groundwater	pH : 2.3 - 6.7	Tunnel concrete
	(1993) - Santa Santa Galeria Grand Constanting Constant Anna Santa Santa Santa Magana Santa Santa Santa	Indication of leakage is observed 4 years after construction. Peeling of mortar and cracks in concrete are noted after 7 years.
River water (Azuma River)	pH : 3.1 - 2.7 Mg ²⁺ : 13.5 ppm SO ²⁻ : 316.8 ppm C ²⁻ : 101.8 ppm	Dipping test concrete specimen (ø15cm)
	CL: 101.8 ppm	When unit cement volume
	• •	320 kg/m ³ , W/C=35.1% and 3-
· · ·	• 	month old material was placed into
		the river, the diameter reduced to
		14.6 cm after 15 months. About 2 mm of the surface was dissolved, and another 2-3 mm was weakened.

(2) Specific resistance

In water, with a small value of resistivity, much corrosion occurs because there are many types of salt solution included in the water which promote the corrosion of steel. The investigation results from an American standards institute (NBS), as shown in Table 7.10, have clarified understanding of the effects of specific resistivity corrosion damage. However, exceptions are known to exist and judging corrosion effects on the basis of specific resistivity methods alone is not recommended.

Campaning	Degree	of acidity	Specific	Maximum hole	
Corrosive – nature	pH	Total acidity	resistance $\Omega \bullet cm$	corrosion depth for 12 years (mm)	
Weak	7.8	3.0	1770	0,74	
	4.5	4.6	11200	1.19	
and the second sec	7.3	2.6	2980	0.99	
	5.9	12.8	45000	1.02	
Strong	7.6	alkaline	350	3.02	
U U	7.4	10 A.	263	.3,48	
$(1, \dots, 1) \in \mathbb{R}^{n} \to \mathbb{R}^{n}$	9.4	n a star	278	4,39	
	6.8	36.0	800	2.62	

Table 7.10 Specific Resistance and Corrosive Nature

7.5.2 Water Quality Evaluation

The results of water quality testing are as follows:

Observation Year	рН	Specific resistance (microohms)	SO4 mg/1	Cl mg/l	CaCO3 (total)	Na	Fe mg/l
1964	-	104 - 56	-	0.3 - 0.05	<u>a entre a</u>	allar a State	
1965		154 - 56		0 - 0.05		0/3 - 0,08	sters -
1966	-	80 - 67		0.02 - 0.05		0.3	
1969	-	53	0.22	0.30		1777 <u>- 1</u> 777 - 1788	•
1970 - 75	n r aina an t	56	0.31	0.3 - 0.4		0 - 0.05	
1989	7.28 - 6.54	135 - 114	5 - 18	1.5 - 3.5	20		0.65 - 0.15

the particulation of the

From the pH value, corrosive nature by acidity is not considered. The nature of specific resistance is low, but the content of chloride is also low. The degree of corrosion is not clear.

CHAPTER 8 GENERATION PLAN

The generation plan is made based on the maximum discharge of 7.0 m³/s at the existing plant.

For realizing an adequate power plan in respect of technological and economical aspects, the power outputs together with annual output are to be calculated from various maximum discharges using the typical discharge-duration curves at the intake site provided that the facility utilization factor for any of the maximum discharges is not less than 50%.

8.1 Study of the Alternative Plans

In rehabilitating the power generating facilities at this site, all facilities located from the intake to the head tank must be reconstructed or newly constructed. In addition, a gap between the theoretical power output and the rated output of the existing power generating equipment must be solved. The present water utilization is low in respect of the river discharge, and there is possibility of power output increase. Therefore, comparative studies will be made for the generation-optimizing plan, as well as the rehabilitation plan of the existing generating facilities.

(1) Maximum available discharge

The existing water channels for the planned area are steel pipes. The results of hydrological analyses indicate that the existing steel pipes can discharge up to 7.0 m³/s and so plans for steel pipes and for concrete culverts have been compared.

To compare the maximum discharge, four rehabilitation plans of $Q = 7.0 \text{ m}^3/\text{s}$ (REH-1, REH-2), $Q = 10.0 \text{ m}^3/\text{s}$ (ALT-1) and $Q = 15 \text{ m}^3/\text{s}$ (ALT-2) were set up. The representative generating output and annual generated power were calculated, as shown in Fig. 8.1.

100 322 8110 38.4 25.8 15.5 97.4 8.4 29.4 1 1 1 0.6 VOLUME OF DISCHARGE (M3/S) ŝ 06 0 - PLENTY VATER DISC.(95 DAYS) - ORDINARY VATER DISC.(185 DAYS) - LOV VATER DISC. (275 DAYS) - DROUGHTY VATER DISC. (355 DAYS) LATITUDE: LONGITUDE: ELEVATION: MUMIXAM MUMINIM 80 MEAN ī SYA0 512 ł ш 1---____ ഗ 853.8 0,0 OVEJAS INTAKE RIVER NAME: CATCHMENT AREA(KM2): PERCENTAGE OF TIME 60 РТ CURVE 50 -981 87A0 DURATION 9 30 FLOW OVEDAS <u>SYAO</u> <u>9</u>6 TYPICAL 8 R P.S.: REH-1,2 ALT-1 ALT-2 Fig-8.1 20 11111111111 ---10.01 30.0 20.01 15.01 20.7 50.01 80.0r 70.0 40.0 60.0 0f 95 (S/EW) DISCHARGE ,

(2) Standard net head

Assuming that the net head for determining the turbine output and calculating annual generated energy is constant, the standard net head calculated under the following standard is used.

The net head (He) is calculated by subtracting the loss of head, obtained from the following formula, using gross head measurements of the water level at the intake and tailrace.

He = Hg - $\Sigma \Delta H$ $\Sigma \Delta H$ = $\Delta H_1 + \Delta H_2 + \Delta H_3$

where:

Hg = total loss of head

이 같은 것은 이 것을 수 없을 것이 한다.

1,140.0 m (intake water level) - 1,111.0 m (discharge level)

- = 29.0 m
- $\Sigma \Delta H = \text{total loss of head (m)}$

 ΔH_1 = head loss at the intake (m)

 ΔH_2 = head loss at the headrace (m)

 ΔH_3 = head loss at the penstock (m)

$$\Delta H_1 = \frac{\nabla^2}{2g} \times (1 + f_1) + \Delta h_1$$

 $\frac{\tilde{V}^2}{2g}$ = velocity head (m)

 f_1 = coefficient of inflow loss, 0.1

 $\Delta h = margin(m)$

Table 8.1	Head Loss	at the Intake
1 auto 0.1	1100017000	at my many

Plan	Q (m ³ /s)	V (m/s)	V/2g (m)	V ² /2g(1+0.1) (m)	∆hj (m)	ΔH ₁ (m)
REH-1,2	ر 7.0				- <u>4'-</u> ,'L"- <u>-</u> ,'L <u>4</u> -L,4	
ALT-1	10.0	1.30	0.086	0.095	0.025	0.120
ALT-2	15.0 J					

$L = length$ $= 1230 I$ $\Delta h_2 = margin$ Head loss is ind $\Delta H_2 = 1/140$ $= 0.90 I$ $\Delta H_3 = V^2/2g (1 + f_2 + I_3)$ where $V^2/2g = veloci$ $f_2 = coeffi$	pendent of discharge, Q (m ³ /s)
where i = gradie = $1/1400$ L = length = 1230 Δh_2 = margin Head loss is ind ΔH_2 = $1/140$ = 0.90 r ΔH_3 = $V^2/2g (1 + f_2 + f_2)$ where $V^2/2g$ = velocit f_2 = coeffi	of the headrace
$L = length$ $= 1230 I$ $\Delta h_2 = margin$ Head loss is ind $\Delta H_2 = 1/140$ $= 0.90 I$ $\Delta H_3 = V^2/2g (1 + f_2 + V^2/2g = veloci)$ $f_2 = coeffi$	of the headrace the contract of the second s
L = length = 1230 f Δh_2 = margin Head loss is ind ΔH_2 = 1/140 = 0.90 f ΔH_3 = V ² /2g (1 + f ₂ + where V ² /2g = velocid f ₂ = coeffi	of the headrace n (m) pendent of discharge, Q (m ³ /s)
L = length = 1230 f Δh_2 = margin Head loss is ind ΔH_2 = 1/140 = 0.90 f ΔH_3 = V ² /2g (1 + f ₂ + where V ² /2g = velocid f ₂ = coeffi	of the headrace n (m) pendent of discharge, Q (m ³ /s)
$= 1230 \text{ I}$ $\Delta h_2 = \text{margin}$ Head loss is ind $\Delta H_2 = 1/140$ $= 0.90 \text{ I}$ $\Delta H_3 = V^2/2g (1 + f_2 + \text{where} V^2/2g = \text{veloci}$ $f_2 = \text{coeffin}$	n (m) (m) pendent of discharge, Q (m ³ /s)
Head loss is ind $\Delta H_2 = 1/140$ $= 0.90 \text{ r}$ $\Delta H_3 = V^2/2g (1 + f_2 + where V^2/2g = veloci$ $f_2 = coeffi$	pendent of discharge, Q (m ³ /s)
Head loss is ind $\Delta H_2 = 1/140$ $= 0.90 \text{ r}$ $\Delta H_3 = V^2/2g (1 + f_2 + where V^2/2g = veloci$ $f_2 = coeffi$	pendent of discharge, Q (m ³ /s)
$\Delta H_2 = 1/140$ = 0.90 r $\Delta H_3 = V^2/2g (1 + f_2 + v_2)/2g = v_2 v_1 v_2$ where $V^2/2g = v_2 v_1 v_2$ $f_2 = coefficients$	
$= 0.90 \text{ fm}$ $\Delta H_3 = V^2/2g (1 + f_2 + V^2/2g = \text{veloci})$ $f_2 = \text{coefficients}$	1230 ± 0.02
$\Delta H_3 = V^2/2g (1 + f_2 + V^2/2g = veloci$ where $V^2/2g = veloci$ $f_2 = coeffi$	1 A 49400 1 0.04
where $V^2/2g = veloci$ $f_2 = coeffi$	L .
where $V^2/2g = veloci$ $f_2 = coeffi$	
$f_2 = coeffi$	$_{3}L/D + fm) + \Delta h = V^{2}/2g (1.85 + f_{3}L/D) + \Delta h$
	y head (m)
$f_3 = coeffi$	ient of inflow loss; 0.1
	ient of frictional loss; 124.6 n ² /D ^{1/3}
L = pensto	ck length (m)
D = pensto	ck diameter (m)
fm = loss c	
Δh = margi	efficient at the branched part; 0.75

Table 8.2	Head Los	s at the	Penstock

				a de la servició de l				
			Table 8	2 Head L	oss at the Pen	stock		
Plan	D (m)	L (m)	V (m/s)	$\frac{V^2}{2g}$ (m)	$f_3 = \frac{124.6xn^2xL}{D^{4/3}}$ n = 0.012	$\frac{v^2}{2g}$ (f3+1.85) (m)	∆h3 (m)	ΔH3 (m)
REH-1	1.6	65.0	3.48	0.618	0.623	1.528	0,5	2,03
ALT-1	2.0	u 11	3.35	0.573	0.463	1,325	0.5	1.83
ALT-2	2.4	83	3.32	0.561	0.363	1.241	0.5	1.74
:. ¹ .				· · · · · · · · · · · · · · · · · · ·	1997 - 19		·····	
				· · ·				
· :			· · · · ·		$(1)_{ij}$		e ^t	К. С. 199
					•		-	
			-			a page de la companya	19 - 11 1	1997 - 1997 -

	Q (m ³ /s)	. Hg (m)	ΔH1 (m)	ΔH2 (m)	. †	ΔH3 (m)	<u>Σ</u> ΔН (m)	He (m)
REH-1,2	7.0	(29.0	ι			2.03	3.05	25.95
ALT-1	10.0	29.0 }	0.12	0.90		1.83	2.85	26.15
ALT-2	15.0	29.0			•	1.74	2.76	26.24

C4(-11-)

Table 8.3 Calculation Result of Effective Head

He = 26.0 m

ម្នា សំរួម

8.2 Generated Output

Theoretical output obtained from available discharge (Q) and the standard net head (He) is multiplied by the resultant efficiency coefficient of the equipment, and the generated output is calculated by the following formula.

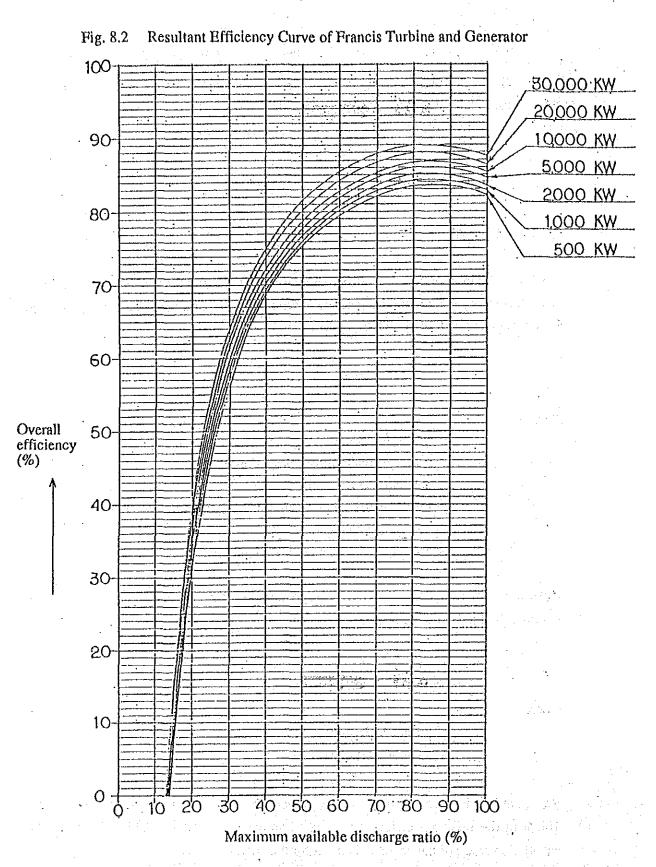
$$P = 9.8 x Q x He x \eta$$

where:

1.11			
Ρ	· =	generated output (kW)	
Q	E	arbitrary available discharge (m ³ /s)	
He	=	standard net head (m)	
η		resultant efficiency of turbine and generator (resultant eff	ficiency of
	-	the single unit capacity)	
9.8	. =	constant (acceleration of gravity, m/s ²)	

Resultant efficiency (η) is the value representing total efficiency, and this value is obtained by the following formula.

$$\eta = \eta t x \eta g$$


γ

where:

 ηt = turbine efficiency

 $\eta g = generator efficiency$

Resultant efficiency corresponds to the value of the maximum available discharge ratio 100% in the resultant efficiency curve as shown in Fig. 8.2. Table 8.3 shows the calculation result of the generated output for the alternative plans.

(Source: The above curve is drawn according to the study standard for formulation of hydroelectric development plan (March, 1981).

	1	Ø	3	4	6
Item Alternative plan	Available discharge Q (m ³ /s)	Standard net head H _e (m)	9.8x0x@ Theoretical output (kW)	Resultant efficiency Ŋ	⁽³⁾ x ⁽³⁾ Generated output ρ (kW)
REH-1 Headrace pipeline route plan REH-2 RC culvert plan	7.0	26.0	1,783	-	1,000
ALT-1 RC culvert plan	10.0	26.0	2,548	0.830	2,100
ALT-2 RC culvert plan	15.0	26.0	3,822	0.830	3,100

Table 8.3 Calculation of Generated Output

8.3 Annual Potential Generated Energy

t

Generated energy is calculated by the following formula.

$$E = P x t (kWh)$$

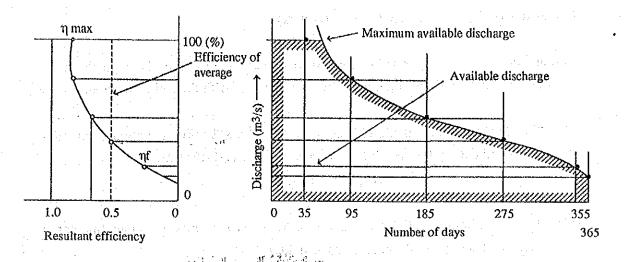
= 9.8 x Q x He x η x t

where:

P = generated output (kW)

= operation time (hour)

Assuming that the power plant operation is not interrupted by accident during the nor suspended for maintenance, inspection and repair purposes during the year, the annual potential generated energy is calculated by the following methods.


(1) Using daily discharge in discharge data plus net head and resultant efficiency at that daily discharge

- (2) Combining hydrological regime and resultant efficiency from the flow-duration curve
- (3) Using the generating output-to-available discharge ratio

For the calculation of the annual potential generated energy at Ovejas P/P, item (2) as mentioned above is used for the following reasons.

- Instead of recorded observations at the intake site of this power plant, converted data from the Los Cambulos gauging station owned by CVC is used as discharge data.
- ② Since there are no recorded observations at the Los Cambulos gauging station and the intake site, discharge data is converted according to the catchment area ratio at the above gauging station and intake site.
- ③ The average generating output-to-available discharge ratio of (3) and flowduration curve are used for the calculation. However, this method is not as accurate as method (2).

By combining the resultant efficiency and flow duration, taken from the flow duration curve, a rough estimate of annual potential generated energy can be made. The flow duration-efficiency method of calculation is shown below.

Max. available discharge = m^3/s Net head = m

()	0	3		6	6	Ø	8
Day	Number of days	Available discharge (m ³ /s)	Burden ratio Available discharge Max. available discharge	Resultant efficiency ໗	Generating power (kW)	Average power (kW)	Generated energy (kWh)
Max.							
95	95-			1			
185	185-95 = 90						
275	275-185 = 90						
355	355-275 =80						
365	365-355 = 10			• •	· · ·		
Total	365			and set to the		()	

D Possible intake-water days of maximum available discharge are inserted for the day order D.

② Represents the difference of the day order of calculation stage and right above stage. This example employed hydrological regime representative days as a matter of convenience.

③ The discharge of the day order topped out by maximum available discharge shall be an available discharge.

Available discharge divided by maximum available discharge shall be input load factor, and the resultant efficiency S shall be read and entered.

© 9.8 x Q x He x n

D Mean value of generated output of calculation stage and right above stage.

(a) \bigcirc x \oslash x 24 is the generated energy for calculated days, and the total value becomes yearly possible generated energy.

Fig. 8.3 Calculation of Annual Potential Generated Energy According to the Hydrological Regime-Efficiency Method 8.3.1 Calculation of Annual Potential Generated Energy

The annual potential generated energy for respective alternative plans is calculated according to the hydrological regime-efficiency method, with the following results.

 For a maximum available discharge of 3.5 m³/s x 2 units, the annual potential generated energy for the rehbilitation plan REH-1 and REH-2 are

9.1 GWh (100%)

(2) For a maximum available discharge of 5.0 m³/s x 2 units, the annual potential generated energy for the alternative plan ALT-1 is

18.4 GWh (99.5%)

(3) For a maximum available discharge of 7.5 m³/s x 2 units, the annual potential generated energy for the alternative plan ALT-2 is

26.2 GWh (94.0%)

Table 8.4 Calculation of Annual Potential Generated Energy

(1) Rehabilitation plan of existing facilities (REH-1 and REH-2)

Max. available discharge $Q = 3.5 \text{ m}^3/\text{s} \times 2$ units Standard net head He = 26.0m Turbine type: Francis turbine

Unit No.	(D) Day		③ Available discharge (m3/s)	(a) Burden ratio <u>Available discharge</u> Max. available - discharge	ש Resultant efficiency η	6 Generating power (kW)	Ø Average power (kW)	(MWh)	Remarks
No. 1	365	365	3.5	1.0	0.830	739	739	6,474	New
No. 2	365	365	3.5	1.0	0.840	300	300	2,628	Existing
Total	-	~	7.0	1.0	-	1,039	1,039	9,102	

(2) Alternative plan 1 (ALT-1)

.

Max. available discharge: $Q = 5.0 \text{ m}^{3}/\text{s} \times 2 \text{ units}$ Standard net head He: 26.0 m Turbine type: Francis turbine

Day	Number of days	Available discharge (m ³ /s)	Burden ratio Available discharge Max. available discharge	Resultant efficiency ŋ	Generating power (kW)	Average power (kW)	Generated energy (MWh)
Max.	338	10.0	1.0	0.83	2114	2114	17,148
340	2	9.9	0.99	0.832	2098	2106	101
345	5	9.6	0.96	0.836	2044	2071	248
350	5	9.3	0.93	0.839	1988	2016	241
355	5	9.0	0.90	0.84	1926	1957	234
360	5	8.6	0.86	0.843	1847	1886	226
365	5	8.4	0.84	0.843	1804	1925	219
Total	365	-	-	*	· -	(1996)	18,417

(3) Alternative plan 2 (ALT-2)

Max. available discharge: $Q = 7.5 \text{ m}^3/\text{s} \times 2 \text{ units}$ Standard net head He: 26.0 m Turbine type: Francis turbine

					ومنافر المالي	المراجع والمرجع	
Day	Number of days	Available discharge (m ³ /s)	Burden ratio Available discharge Max. available discharge	Resultant efficiency η	Generating power (kW)	Average powcr (kW)	Generated energy (MWh)
Max.	278	15.0	1.0	0.83	3172	3162	21,163
280	2	14.9	0.993	0.832	3158	3165	151
295	5	14.4	0.960	0.836	3067	3112	373
290	5	14.1	0.940	0.838	3010	3038	364
295	s. • <u>5</u>	13.2	0.880	0.842	2831	2920	350
300	5	12.9	0.860	0.843	2770	2800	336
305	5	12.4	0.826	0.842	2660	2715	325
310	. 5	12.0	0.800	0.841	2571	2615	313
315	5	11.6	0.773	0.839	2479	2525	303
320	5	11.4	0.76	0.837	2431	2455	294
325	5	10.9	0.726	0.832	2310	-2370	284
330	5	10.6	0.706	0.830	2241	2275	273
335	5	10.2	0.68	0.824	2141	2191	262
340	5	9.9	0.66	0.819	2065	2103	252
345	5	9.6	0.64	0.814	2028	2028	243
350	5	9.3	0.62	0.808	1919	1852	234
355	5	9.0	0.600	0.802	1839	1876	225
360	5	8.6	0.573	0.792	1735	1786	214
365	5	8.4	0.560	0.788	1686	1710	205
Total	5	-			-	(2463)	26,164

CHAPTER 9 REHABILITATION PLAN

Since the present facilities-rehabilitating and output increase plans are not based on scrap and build methods, the power-generating capacity will be recovered or improved by making maximum use of existing facilities. The rehabilitation plan will be formulated according to standards published by ISA (Interconexion Electrica SA) in June, 1987.

9.1 Formulation of Rehabilitation Plans

As stated in 4.3, it is necessary to newly construct the intake facilities, the desilting basin and the waterways, and to alter the head tank. The existing penstocks and generating equipment will be utilized, but a new transformer should be procured and replaced with the existing one.

The rehabilitation plan for this plant focusses on the following:

a gap between the theoretical output and the rated output will be resolved,

the current low water utilization will be improved to an adequate level. Following three cases of different maximum discharges, shown on Table 9.1, will be examined as comparative alternatives in this rehabilitation plan.

 $Q = 7.00 \text{ m}^{3}\text{/s}$ $Q = 10.00 \text{ m}^{3}\text{/s}$ $Q = 15.00 \text{ m}^{3}\text{/s}$

For each rehabilitation plan, the total costs including construction costs per kW output and generating costs are calculated and compared. The optimum rehabilitation plan is then chosen.

	an Al An Al An An Alasha Barrasa	Álter	native	n an
Item	Steel Pipes		Concrete culver	Regionales e
e e su servera l'in second d'ante di	REH-1	REH-2	ALT-1	ALT-2
Discharge, Q (m ³ /s)	7.0	7.0	10.0	15.0
Maximum output, P (kW)	1,000	1,000	2,100	3,100
Facility utilization factor (%)	100	100	99.5	94.0
Rehabilitation and improvement p	Jan:			
Diversion weir			nage is severe, a (common to all	
Intake		ructed correspon- r and the design	nding to the alte	ration of the
Desilting basin		constructed corr rently not exist	esponding to thing)	e design
Conduction channel		ross section wil be newly const	l be determined ructed	and the
Head tank	To be expande	ed at its present	position	
Penstocks	Existing penst additional new	ock and vone	New penstock installed	will be
Generating equipment	The existing e and additional	quipment new one	New, two-uni	t system
Powerhouse building			ructed on the do rating equipmen	

Table 9.1 Comparison of Alternative Rehabilitation Plans for Ovejas Power Plant

9.2 Estimated Rehabilitation Construction Costs

The construction costs can be divided into the estimate for generating equipment and the civil construction cost and calculated. This can then be divided into foreign currency and local currency apportionments and calculated at the present exchange rates (September 1989) based on the U.S. dollar.

9.2.1 Estimated Generating Equipment Costs

According to the ISA valuation standard, CIF cost of generating equipment are calculated based on the FOB from Japan. The generating equipment specifications and FOB costs are as shown in Table 9.2.

The CIF/FOB ratio for CIF costs is 1.12, as shown in Table 9.3.

.÷₽°

	Teoine		and a second second second Alternative of the second second second second second second second second second se					
	Item	REH-1	REH-2	ALT-1	ALT-2			
1.	Specifications				en e			
	Design discharge (m ³ /s)	3.5	3.5	5.0	7.5			
	Net head (m)	26.0	26.0	26.0	26.0			
	Theoretical output (kW)	891	981	1,274	1,911			
	Turbine type	H.F.*	H.F.*	H.F.*	H.F.*			
	Turbine output (kW)	780	780	1,120	1,670			
	Generator power factor	0.9	0.9	0.9	0.9			
	Generator output (kVA)	830	830	1,200	1,800			
	Main transformer capacity (kVA)	830	830	2,400	3,600			
2.	FOB costs (US\$1,000)							
	Generating equipment			·				
	(1) Turbine etc.	376.4	376.4	443.55	546.45			
	(2) Generator etc.	212.9	212.9	242.85	285.7			
	(3) = (1)+(2) Sub-total:	589.3	589.3	686.4	832.15			
	(4) Number of units	1	. 1	2	2			
	(5) = (3)x(4) Subtotal:	589.3	589.3	1,372.8	1,664.3			
	(6) 4.16 kV switchgea etc.	r 61.4	61.4	97.9	97.9			
	(7) Transformer and switchgear	59.3	59.3	69.3	85.7			
	(8) = (5)+(6)+(7) Total:	710	710	1,540	1,847.9			

 Table 9.2
 Generating Equipment Specifications and FOB Costs

*H.F.: Horizontal Francis

						A 1+4	ernative		(units: US	·····
	Item		RE	H-1	RE		AL	T-1	AL	T-2
	14 g		A	В	Α	В	A	В	A	В
1)	FOB cost		710		710	÷	1,540		1,847.9	
2)	Transportation c	osts, insurance	•	•		•	· · ·			•
*.	n an an Araba An Araba An Araba	1) x 0.12	85.2		85.2	-	184.8		221.7	
3)	Tax	1) x 0.223	· -	158.3	-	158.3	-	343.4	-	412.1
4)	Value-added tax	1) x 0.134		95.1	-	95.1	-	206.4	•	247.6
5)	Others	1) x 0.22	-	156.2		156.2	-	338.8		406.5
6)	Subtotal	· · · ·	795.2	409.6	795.2	409.6	1,724.8	888.6	2,069.6	1,066.2
7)	Contingency	1) x 0.17	120.7	-	120.7	-	261.8	-	314.1	-
8)	Eng. Fee	1) x 0.149	105.8		105.8	. -	229.5	-	275.3	- -
9)	Total	6) + 7) + 8)	1,021.7	409.6	1,021.7	409.6	2,216.1	888.6	2,659	1,066.2
0)	Grand Total		1,43	51.3	1,43	31.3	3,1(04.7	3,7	25.2

Table 9.3 Implementation Cost of Generating Equipment

Note: A = foreign currency portion B = local currency portion

9.2.2 Estimation of Civil Construction Cost

The work volume for the main structures rehabilitation or improvement were multiplied by the unit costs (refer to Table 5.2) as decided by CEDELCA and the civil construction costs are calculated in the local currency base.

The totals for each rehabilitation plan are calculated and the civil construction costs are compared as shown in Table 9.4.

			(unit: 10	⁶ pesos)
		Altern	ative	
Item	Steel pipes	C	oncrete culv	ert
	REH-1	REH-2	ALT-1	ALT-2
Diversion weir and intake construction	101.8	101.8	118.6	157.2
Desilting basin construction	76.7	76.7	96.8	134.9
Conduction channel construction	896.5	242.8	271.7	319.8
Head tank construction	104.9	104.9	136.8	169.6
Penstock construction	6.0	6.0	63.2	84.8
Foundation of equipment construction	26.5	26.5	66.6	78.4
Powerhouse building construction	15.7	15.7	30.2	30.2
Temporary facilities construction	271.7	271.7	271.7	271.7
Other construction	0	0	3.4	3.4
① Subtotal	1,499.8	846.1	1,059.0	1,250.0
② Contingency (① x 0.15)	225.0	126.9	158.8	187.5
③ Engineering fees ((① + ②) x 0.10)	172.5	97.3	121.8	143.8
④ Total (① + ② + ③)	1,897.3	1,070.3	1,339.6	1,581.3
Output Loss	0	0	10.5	10.5
6 Grand Total 4 + 6	1,897.3	1,070.3	1,350.1	1,591.8

Table 9.4 Estimation of Civil and Building Construction Costs

9.3 Comparison of Economic Indices

From a comparison of the two economic indices, of the construction cost per kW and the generating cost per kW, the basic conditions common to all alternative plans are as follows:

(1) Exchange rate for September, 1989, is adopted as follows.

US\$ $1 = \frac{140}{1}$ US\$ 1 = 369.4 pesos 1 peso = $\frac{1000}{1000}$

- (2) The design life of new generating equipment and the repaired and reconstructed structures is 25 years.
- (3) The interest rate is divided between the foreign currency portion and the local currency portion under the following conditions.

O Part Press

- The foreign currency portion is based on an annual interest rate of 10% (unredeemable for four years) with a repayment of the principal in equal annual amounts over 25 years.
- The local currency portion is based on an annual interest rate of 21% (unredeemable for one year) with a repayment of the principal in equal annual amounts over 8 years.
- (4) The management, maintenance and operating costs of hydroelectric power plants per year is US\$4 per kW of installed capacity.

9.3.1 Comparison of Construction Cost per kW

.

A comparison of the construction cost per kW is shown in Table 9.5. ALT-2 plan is US\$ 3,300/kW per increase in power output and this is lowest costs.

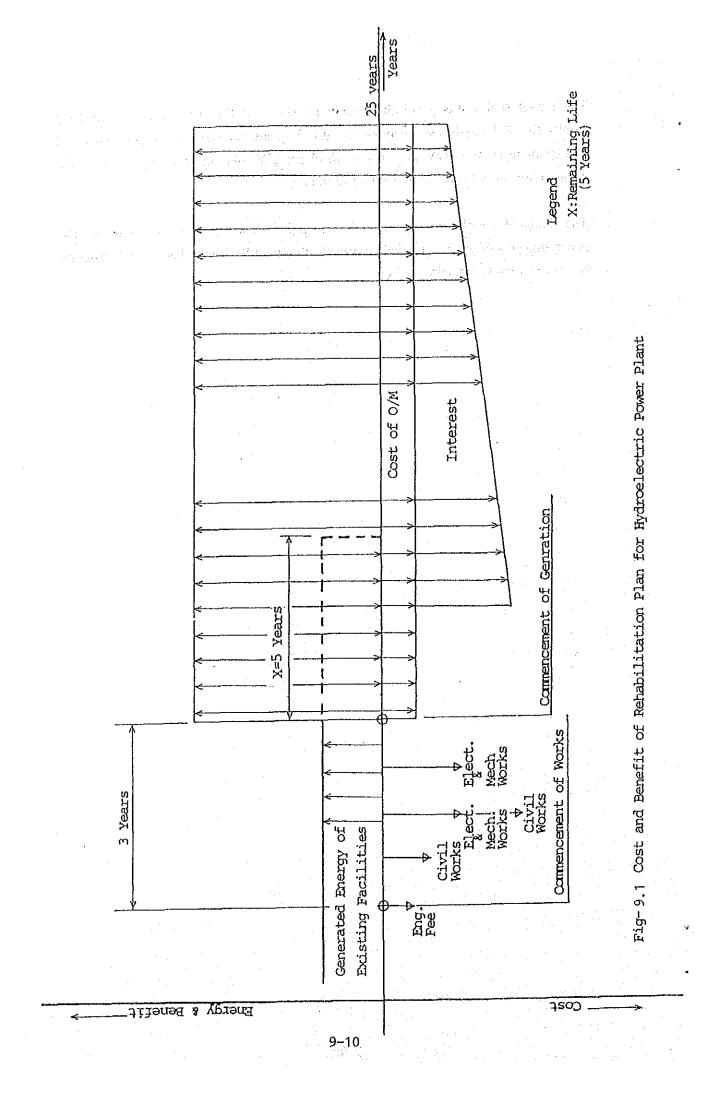
		Alter	native	
Item	REH-1	REH-2	ALT-1	ALT-2
Existing equipment output (kW)				
Rated output Po Available output Pe	900 650	900 650	900 650	900 650
Post-rehabilitation output P1 (kW)	1,000	1,000	2,100	3,100
Recovered/increased output $\Delta P = p_1 - Pe (kW)$	350	350	1,450	2,450
Rehabilitation work cost (US\$1,0			ан 1917 - Албар (1917) 1917 - Албар (1917)	
Foreign currency portion Cf	1,000	1,000	2,200	2,650
Local currency portion Cl	5,550	3,300	4,550	5,350
Total $C = Cf + Cl$	6,550	4,300	6,750	8,000
Construction cost per kW (US\$/kV	W)	and the second		
C/P ₁	6,500	4,300	3,200	2,600
С/ДР	18,800	12,400	4,700	3,300

Table 9.5 Comparison of Construction Costs per kW

9.3.2 Comparison of Generating Cost per kWh

The generating cost per kWh is calculated from the following equation:

Generating cost = $\frac{\text{Total cost at generating terminal}}{\text{Supplied output per year}}$


where

the supplied output per year = annual potential generated energy (E) x utilization factor

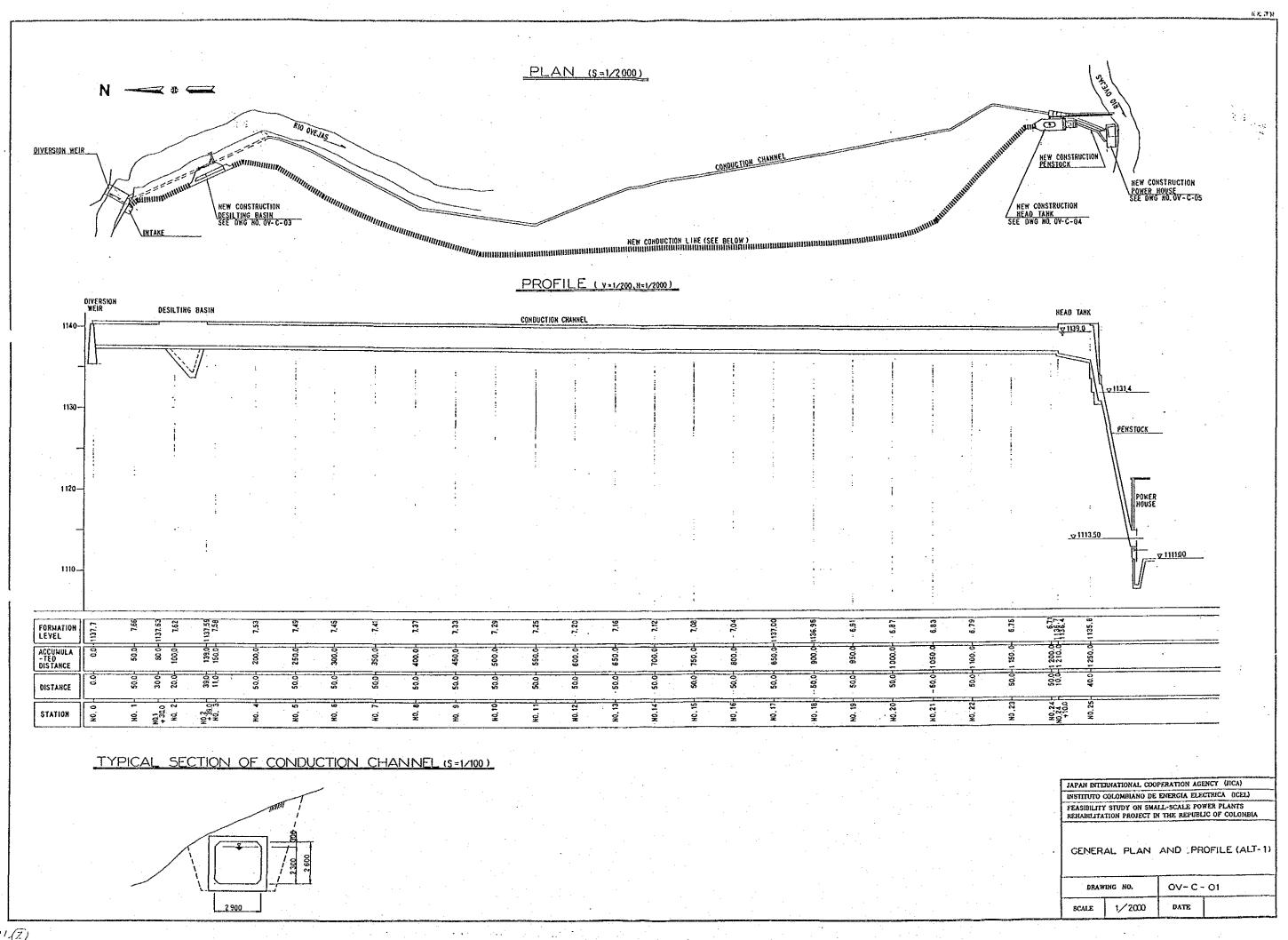
= 0.95 E

The annual total cost at generating terminal is shown in Fig. 9.1. Since the estimated service life of the hydroelectric power plant is 25 years, the operation, maintenance and management costs (AOM per year = US\$4 per kW) plus interest payments for the construction are totaled and divided by 25 years.

The results of calculation of generating costs per kWh are as shown in Table 9.6. The generating cost of power supplied per year is 29 mills/kWh according to ALT-2 and the respective lowest costs are as shown.

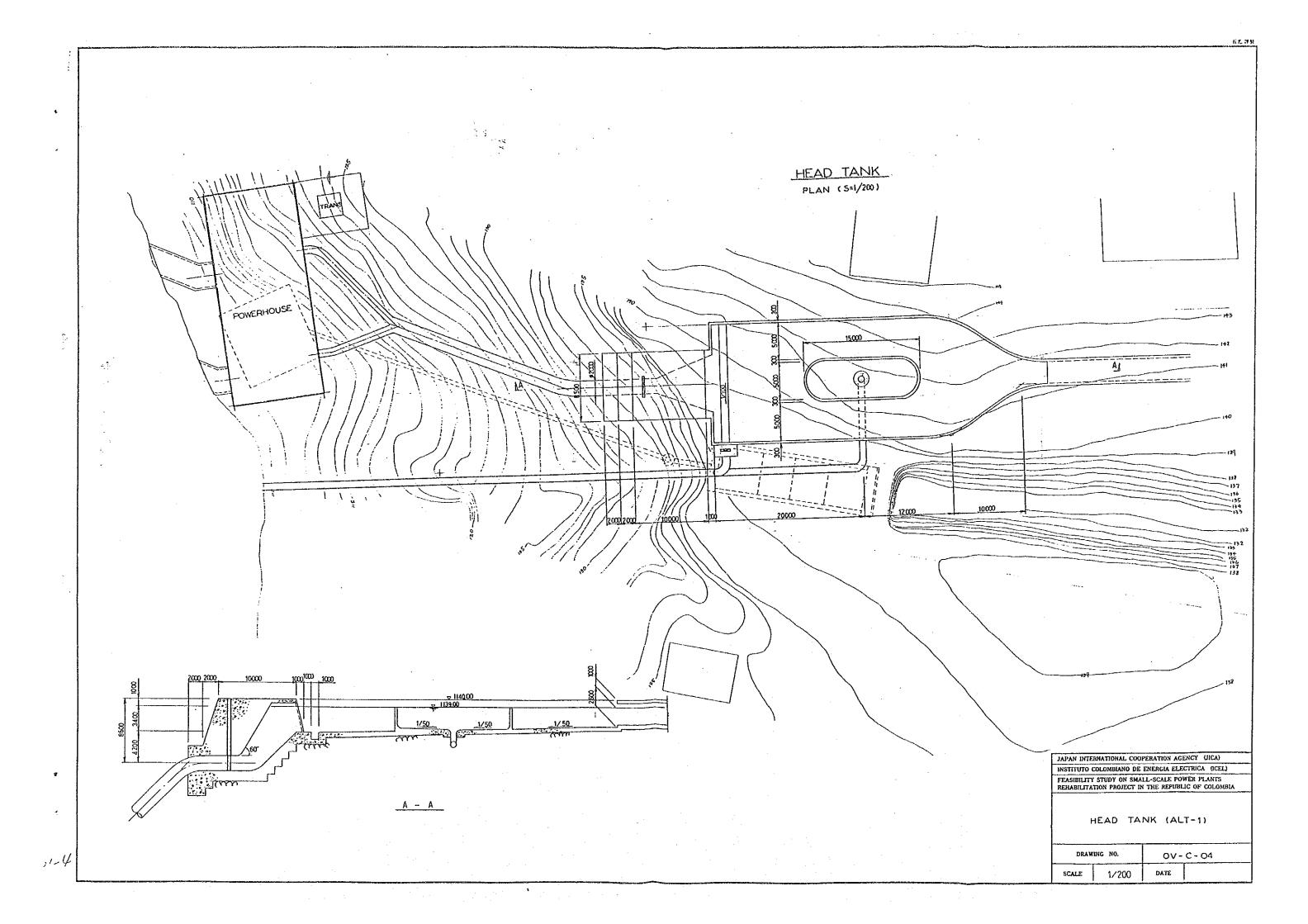
Table 9.6

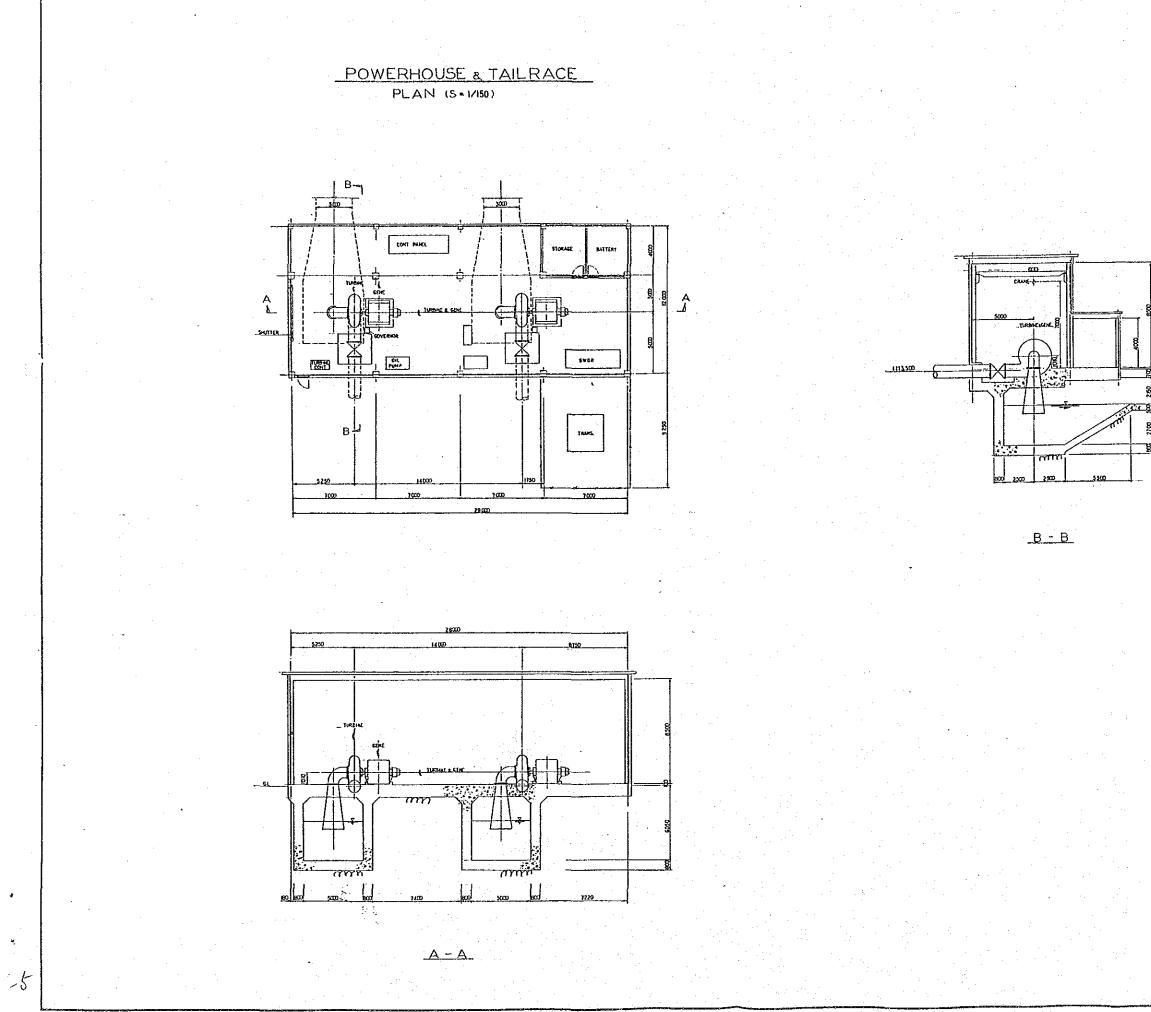
	Thomas				Altern	ative	
	Item	· . ·		REH-1	REH-2	ALT-1	ALT-2
Existing e	quipment capacity:				· · ·		
	Power output Energy	•	Pe (kW) Ee (GWh)	650 2.97	650 2.97	650 2.97	650 2.97
Rehabilita	ation plan:	•		· .	•		
	Power output Total (Ef + Es)	· · · ·	P ₁ (kW) E ₁ (GWh)	1,000 9.1	1,000 9.1	2,100 18.4	3,100 26,2
Rece	overed/increased powe	r .					
	Output Energy		1 - Pe (kW) 1 - Ee (GWh)	350 6.1	350 6.1	1,450 15.4	2,450 23.2
Total of e	xpenses at generating	terminal:	(US\$1,000)				
Con	struction work cost					×.	
	Foreign currency por Local currency port			1,000 5,550	1,000 3,300	2,200 4,550	2,650 5,350
	Construction cost to	otal C ₁ =	$Cf_1 + Cl_1$	6,550	4,300	6,750	8,000
Inte	rest payment C ₂						
	Foreign currency por Local currency port			1,610 5,588	1,610 3,352.8	3,542 4,622.8	4,266.5 5,435.6
	Total $C_2 = Cf_2 + C$	l2		7,198	4,962.8	8,164.8	9,702.1
AO	M C3 = US\$4 x Pl x	25 years	·	100	100	210	310
Tot	al $\Sigma Ci = C_1 + C_2 + C_2$	C3	a provident a second	13,848	9,362.8	15,124.8	18,012.1
Ave	rage annual cost C =)	ΣCi/25		554	375	605	720
Generatin	g cost per annually su	pplied en	ergy (mills/kWh)				
Per		E ₁ x 0.95) AE x 0.95)		65 96	44 65	35 41	29 33


9.3.3 Overall Evaluation

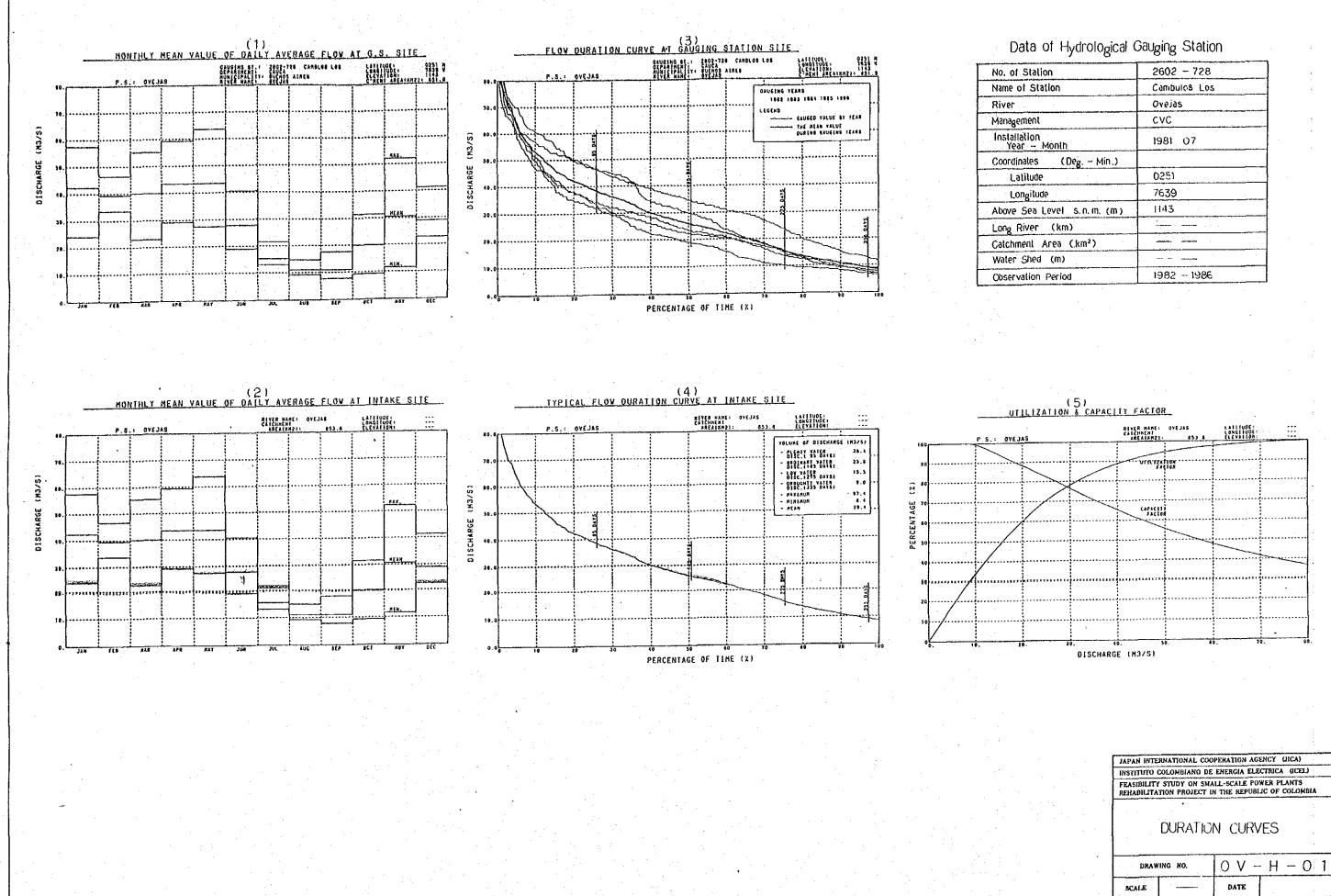
ALT-2 is selected as the optimum plan since it has the lowest construction cost per kW and generating costs per kWh amongst the alternatives.

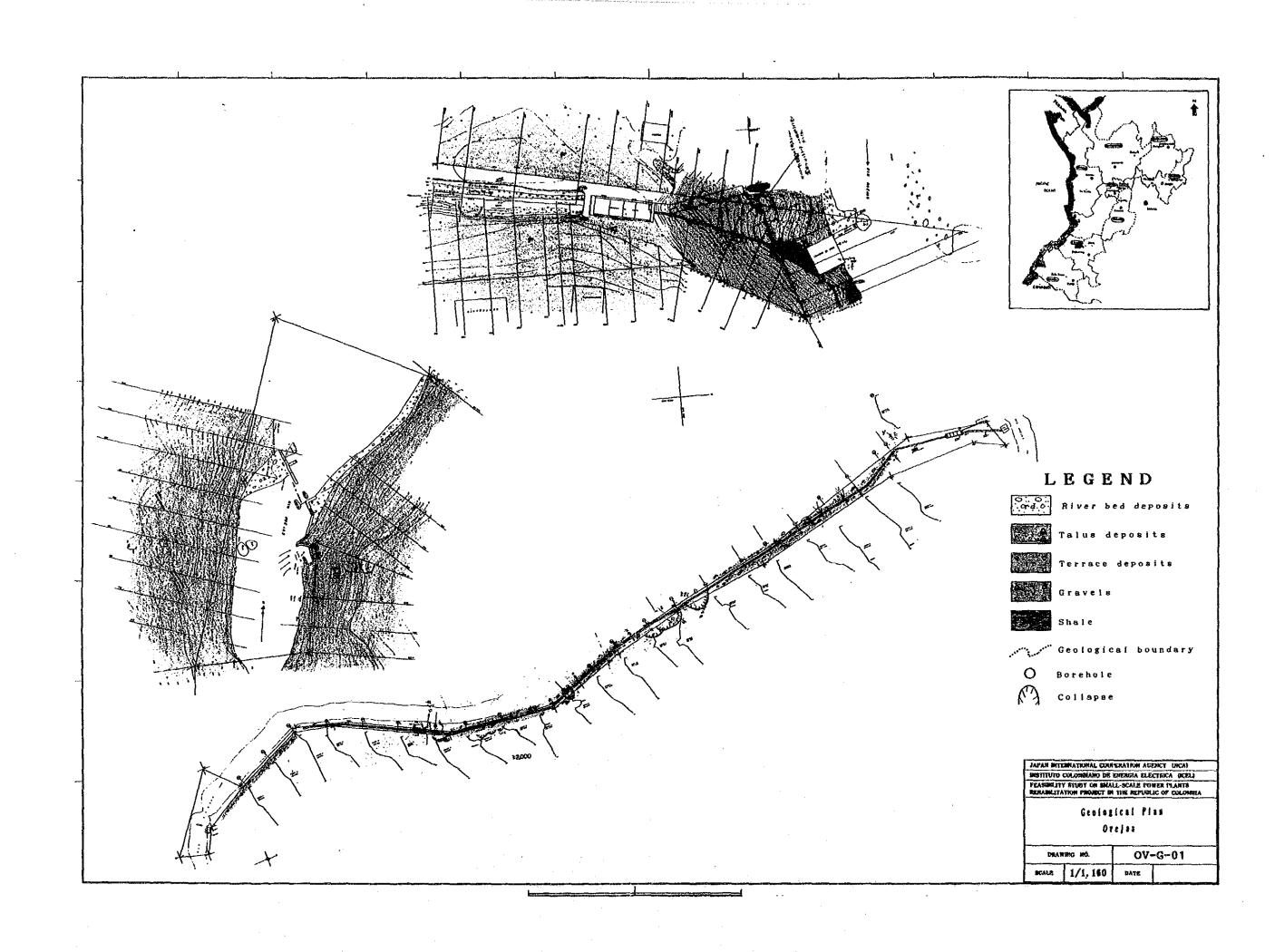

Drawings


Title	Drawing No.
General Plan and Profile (ALT-1)	OV-C-01
Diversion Weir & Intake,Desilting Basin (ALT-1)	OV-C-03
Head Tank (ALT-1)	ov-c-04
Powerhouse and Tailrace (ALT-1)	OV-C-05
Duration Curves	OV-H-01
Geological Plan	OV-G-01


q1 (J)

2




البرار ليعترج ليجاجب

فبالد فالعرب باجريت إسترجي معرفات المالة					EL UN
	· .				
		•			
	•				
			-		
•					
	•				
· · · ·	JAPAN INTE	RNATIONAL COO	PERATION AG	ENCY UICA)
	INSTITUTO (COLOMBIANO DE	ENERGIA ELE	CTRICA (IC	EL)
	INSTITUTO (RNATIONAL COO COLOMBIANO DE Y STUDY ON SM/ TION PROJECT I	ENERGIA ELE	CTRICA (IC WER PLANT	EL.) S
	INSTITUTO (COLOMBIANO DE	ENERGIA ELE	CTRICA (IC WER PLANT	EL.) S
	INSTITUTO (FEASIBILITY REHABILITA	COLOMBIANO DE Y STUDY ON SMJ TION PROJECT I	ENERGIA ELE MLL-SCALE PO N THE REPUBL	CTRICA (IC WER PLANT JC OF COLO	EL) S IMBIA
	INSTITUTO (FEASIBILITY REHABILITA	COLOMBIANO DE	ENERGIA ELE MLL-SCALE PO N THE REPUBL	CTRICA (IC WER PLANT JC OF COLO	EL) S IMBIA
	INSTITUTO (FEASIBILITY REHABILITA POWER	COLOMBIANO DE Y STUDY ON SMA TION PROJECT I RHOUSE AI	ENERGIA ELE MLL-SCALE PO N THE REPUBL	CTRICA (IC WER PLANT JC OF COLO	EL) S IMBIA
	INSTITUTO (FEASIBILITY REHABILITA POWER	COLOMBIANO DE Y STUDY ON SMJ TION PROJECT I	ENERGIA ELE NLL-SCATE PO N THE REPUBL	CTRICA (IC WER PLANT JC OF COLO	EL) S IMBIA
	INSTITUTO (FEASIBILITY REHABILITA POWER	COLOMBIANO DE Y STUDY ON SMA TION PROJECT I RHOUSE AI	ENERGIA ELE NLL-SCATE PO N THE REPUBL	ETRICA (IC WER PLANT JC OF COLC	EL) S IMBIA

q1-b

Station	2602 - 728
Station	Cambulos Los
······································	Oveias
ient	CVC
ion Monih	1981_07
tes (Deg. – Min.)	·
lude	0251
gitude	7639
sea Level s.n.m. (m)	1143
ver (km)	
nt Area (km²)	
ihed (m)	
lion Period	1982 - 1986

Attached Data

1. Facility Register for the Existing Power Plant

.

.

.

2. Survey Record

÷

.

Facility Register for the Existing Power Plant

•

Ovejas
CEDELCA
Monte Redondo/Cauca
Ovejas
Run-of-River
1939
1939
900 kW
650 kW

2

	Civil	۵
	Item	Data
	1. Dam 1) Type	Concrete Gravity
'	2) Height (m)	2.5
	3) Grest length (m)	24.0
	4) Height of overflowing crest (m)	1,138.0
· · · · · · · · · · · · · · · · · · ·	5) Width of overflowing crest (m)	24.0
	6) Depth of overflowing crest (m)	no data available
	2. Intake Gate 1) Type	
	2) Number of gates	Steel Slide
	3) Dimensions (W x H)(m)	1
	 3. Intake 1) Intake sill height (m) 	2.0 x 2.0 1,136.8
	2) Number of intake	1
<u> </u>	3) Dimensions (W x H)(m)	2.0 × 1.3
1	 4. Desilting Basin 1) Dimensions (W x L x H)(m) 	N/A
Ę	5. Sand Trap Gate	
	1) Type	N/A
·	2) Number of gates	N/A
	3) Dimensions (W x H)(m)	N/A
6	5. Headrace 1) Type	steel pipe
	2) Dimensions (W x H)(m)	\$ 1.8 m
	3) Length (m)	1,230

		•		
<u></u>			۲۰۰۰٬۵۰۹ ^{(۲} ۰۰۰٬۵۰۰) - ۲۰۰٬۵۰۰ ۲۰۰٬۵۰۰ ۲۰۰٬۵۰۰ (۲۰۰۰٬۲۰۰۰)	
		Civil		•
	Item		Data	
7	. Reservoir Tank 1) Dimensions (W x L x H	I)(m)	5.2 × 22.5 × 3.2	
. 8	. Forebay 1) Dimensions (W x H)(m)		5.5 × 4.0	
9	en die en een de de eerste de de eerste de de eerste de de eerste de	an a		
السنة حسد عروم	2) Penstock diameter (d)	(m)	1.60	
	3) Penstock length (L)(m	1)	65.0	
10	. Tailrace 1) Dimensions (W x H)(m)		no data availabl	e
		era Statistics Statistics Statistics Statistics Statistics	an a	
				· .

			Equipment	
			Item	Data
	1,	Wa	ter Turbine	
		1)	Manufacturer's name	Dominion Engineering
	· · · ·	2)	Year manufactured	1940
	·	3)	Type	Francis
		4)	Output (kW)	1,250 HP
		5)	Revolution (rpm)	400
		6)	Ancillary equipment	
		÷ .	a) Type of governor b) Inlet valve	Woodward tipo LRRST - 6700
			- Type - Diameter (mm)	
	2.	Ge	nerator and Exciter	
•		1)	Manufacturer's name	Westinghouse
• •		2)	Year manufactured	1938
-		3)	Type	Synchro.
•		4)	Capacity (kVA)	1,125
•	-	5)	Power factor (%)	80
		6)	Voltage (Ý)	12,500
	<u> </u>	7)	Frequency (Hź)	60
		8)	Revolution (rpm)	400
· · ·		<u>م</u>	Method of neutral earthing	no data available

10) Type of exciter

· · · · · · · · · · · · · · · · · · ·	Equipme	nt			
	Item		Data		
	ansformer Manufacturer's name	· · · · · · · · ·	N/A		
2)	Year manufactured		لىم راديا كلة لميارجين بها علم علياً		· • • • • • • • • • • • • • • • • • • •
3)	Туре	 	, 		,
4)	Capacity (kVA)				2 8949 8983 944 944
5)	Primary voltage (kV)				-
6)	Secondary voltage (kV)			a an	
7)	Number of unit	ہے ہے کہ پہنے ایک	, <u></u>	, mana dané pina gana ang ana kany ana pina ara, an 1	
8)	Vector-group symbol	199 Weil and 199 Weil Weil 199 Weil and 199 Weil		, han had had had hid dit of a sing som og	
9)	Impedance (%)) yan aya yan yan yan yan yan yan yan yan
10)	Purpose for use				
	rcuit Breaker Manufacturer's name		№/А	ی میں ایک 1917ء میں میں میں میں	
2)	Year manufactured				
.3)	Туре				• -
4)	Voltage (kV)				
5)	Rated current (A)				
	Rupturing capacity (kA)	•			
	Purpose for use				· ·
	ansmission Line Destination			vailable	
-	Length (m)				
	Voltage (kV)				······
4)	Number of circuit				· •
5)	Number of pylons				· · · · · · · · · · · · · · · · · · ·
6)	Size of conductors	· .			
	Materials of conductors				

	,	· · · · · · · · · · · · · · · · · · ·								
\$1	Equipment									
	Item	Data								
б.	Battery	no data available								
	1) Manufacturer's name									
	2) Year manufactured									
•••• ••• ••• •	3) Capacity (AH/HR)	· · ·								
	4) DC voltage (V)	میں ہیں ہوتی ہیں گی گی ہے۔ 								
	5) Type									
7.	Battery Charger	1								
	1) Manufacturer's name									
	2) Year manufactured	-								
••••••••	3) Capacity									
***	4) Incoming voltage (V)									
8.	Overhead Crane	;								
	1) Weight (ton)									
	2) Method of operation									

Survey Records Ovejas Hydroelectric Power Plant

I. RECORDS BY VISUAL INSPECTION AND HEARING SURVEY

Unit No.: ///
Type of Turbine: Francis

.

				•	•							
Results	1) 2) ×	3)	1) 2) ×	1)	1) X	2)	1) X 2) 3)	4)	5)			
Check item by visual inspection and hearing	 Existence of corrosion Wear in thickness 	3) Presence of vibration	 Existence of corrosion Occurrence of porosity by sand pitting 	. 1) Shaking of shaft axis	1) Oil shortage on bearing surface	2) Lack of oil viscosity	r 1) Control by belt-driven type 2) Speed detection device 3) Speed regulation system	4) Installation of load limiter	5) Acouracy of governor speed regulation	-		
Generating Facilities	Casing		Runner	Shaft	Bearing		Governor control				-	
			snidı	nr si	tons	त्रम						· .

Results	L) X 2) Manual 3) XX 2) X 2) X 2) X 2) X 2) X 2) X 2) X	
Check item by visual inspection and hearing	 Existence of oil leakage Application of oil pressure pumping system Operation method Locking condition Smoothness of pressurized oil operation Smoothness of control Smoothness of control Smoothness of control Smoothness of control Smoothness of strom casing when guide Sufficiency of shear pins Sufficiency of packing for shaft seal Sufficiency of packing for shaft seal 	
Generating Facilities	Oil pressure equipment rnlet valve Sealing device	
	θητάτυΓ είσπειξ	

			-		an a				· · · ·		 		
												•	
	SJINSAY				· .						- - -		
t F			: 	• .		•••		rear	o,3 sec.				
		х Г	3) 3)	1	× 3 3 5 1 1	ч Х	3 3 3 3 3 3	5) 5) 7)	1) 2) 0,		•	•	
	bur											·	
1	and nearing	surface due to heat	لىد	ายาลา		on metal surface		orn out	ator load				-
	TUSPECCION		: core r and shaf	no elduor	resistance		ure rise	brushes w e brush	voltage regulator detection for load	·			
	T TPNSTA	Discoloration of winding	of erosion for core between rotor and shaft	Rrequency of burning fromble or repair	Reduction of insulation resistance Rust and erosion of core	Occurrence of deformation	Lack of oil lubrication Occurrence of temperature	frequency of brushes worn stock of spare brush	method of voltage regulator of voltage detection for load				
	TCEN DY VISUAL	scoloration	Existence of Fitness of be	to variatioe	sduction of ist and ero	currence c	Lack of oil lubrication Occurrence of tempers	Exchange fre Sufficient st	Operation me Response of variation				
	ຍ		3) EEX 33)	ц Ц Ц		500	2) La 3) Oc	2) Bx 2) Su	2) 05 2) 70 2) 70 70 70 70 70				
enerating	Facilities	Rotor		1 1 1 1 1 1	winding	Bearing	•	Exciter	Voltage regulator	•	•		
U L					* **	τοτ	enera	ອ					· . ·

Results		ic = over current				• •
Re	1) X 2) 3)	L) 2) Automati	I) – 2) – 3) Малиаl	т)		
Check item by visual inspection and hearing		 1) Lack of relays to be installed 2) Operation method in case of accident in transmission lines 	 Control method for turbine and generator operation Control method for voltage and speed control Operation method of synchronized switching 	1) Power supply voltage (kV) after rehabilitation work		
Generating Facilities	Metering equipment	rrorection equipment	Remote control equipment	Power system		

		•			·
		. · · · · . · · · · · · · · · · · · · ·		•	
Results	т) 3) х 3	1) X 2) Regular 3) Manual			
Check item by visual inspection and hearing	 Sufficiency of insulation level Unification of insulation level Reduction of insulation registance 	 Accessibility to high voltage devices Sufficiency of protection for high voltage cable terminals Method and reliability of operation for synchronizing circuit breaker 			
Generating Facilities	Insulation level	Accessi- bility and Safety			
υщ	I	or Switchgea	opul		 · .

Results			Automatic and manual Acceptable		Insufficient	 	
	ิิิล	7 5	1) Au 2) Ac	R F	T 11		
Check item by visual inspection and hearing	L) Presence of over load operation	 Situation of tripfor outgoing feeder breaker in case of accident on transmission line Pitness of maintenance in case of oil circuit breaker 	 Operation method Reliability of operation 	 Presence of damage and dusts Occurence of erosion due to rust Presence of injury 	1) Existence of adequate protection relays to connect to RED		
Generating Facilities	Transformer	Circuit breaker	Line switch	Insulator Structural Steel	Line protection		
		ຐຆໟຆຩ	dinpā a	οορηπο			

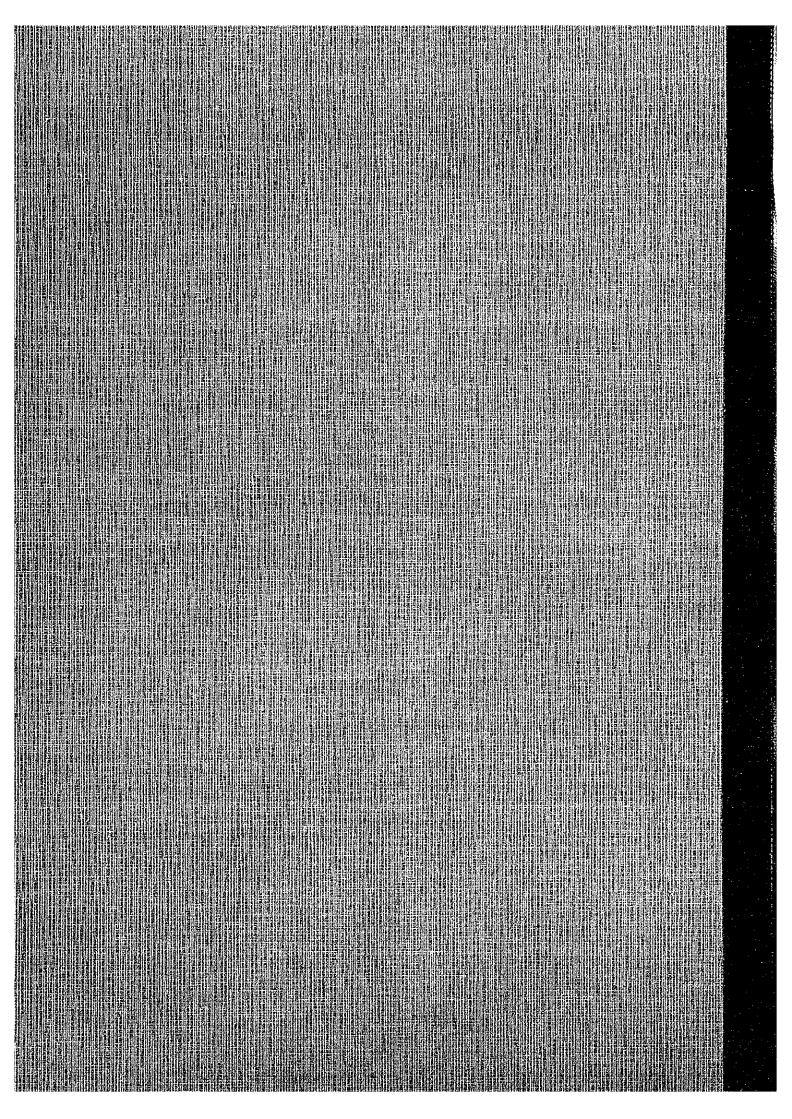
REMARKS												
ANNUAL TOTAL			4126	3,494	4,065	3,647	2,283	5,111	622.5	1,912	3.747	3.614
DEC			357	740	323	739	0	0	326	732	322	141
AON			351	715	-282	654	0	0	66	\$36	297	016
OCT			344	737	330	740	0	0	197.5	744	309	737
SEP			309	713	337	217	0	0	0	0	311	216
AUG			£/£.	534	372	742	30	. 2.6	0	0	326	733
JUL			263	743	342	736	525	742.	0	.0	317	743
NUL			322	703	336	218	321	716	0	0	296	707
MAY			406	240	354	742	337	239	0	0	297	742
APR			364	716	330	217	320	217	0	0	322	216
MAR			400	726	355	230	337	146	0	0	2.5.5	743
요 [고 [고			350	690	1.5.6	670	279	623	0	0	315	وحوك
JAN			5 C	737	365	742	334	742	0	0	5 5 2	643
	НММ	OPE. TIME	НММ	OPE. TIME	HMM	OPE. TIME	HMM	OPE. TIME	HMM	OPE. TIME	НММ	OPE. TIME
YEAR	7983 7683			1784 1		CBYL		7 2 Q T		ла / Т ла	(((,	2 7 7

(Note) I. MWH : Gross 2. OFE. TIME : HOUT

:

Installed Capacity of Generator: ____

II. ACTUAL GENERATED ENERGY AND OPERATION TIME


_ KVA

Type of Turbine:

Unit No.: ____

	The past recor shall be obtain generating fac 1) Repaired 1 2) Causes for 3) Duration o stoppage 4) Repaired b b) manufac c) other c) other c) other c) other c) other c) other c) repairing		m C	of repairing and power supply scroll casing. by;	staff in Power Plant de lant de lant. manufacturer	co st	on life after the completion of work
--	---	--	-----	---	---	-------	--------------------------------------

	ß	• • •		
	informations			
Results	Without available i			
	Without a			
	s litY			
	spare parts intainabili			
ãy Item	ı of stock spare evaluate maintai :ies.			
Stuđy	tuation action facilitie			
	ਂ ਦੇ ਦੇ			
	on the si- l be obtair enerating		· · · · · · · · · · · · · · · · · · ·	
	Data on the situation of shall be obtained to eva of generating facilities			

