

FEASIBILITY STUDY
ON
SMALL-SCALE-POWER PLANTS REHABILITATION PROJECT

IN - IN THE REPUBLIC TO COLOMBIA

JAPAN (NTERNATIONAL COOPERATION AGENCE

FEASIBILITY STUDY ON SMALL-SCALE POWER PLANTS REHABILITATION PROJECT IN THE REPUBLIC OF COLOMBIA

TERMOPAIPA THERMAL POWER PLANT

20952

MARCH 1990

Japan International Cooperation Agency

国際協力事業団 20952

CONTENTS

		Page
1.	INTRODUCTION	.1
2.	SUMMARY OF THE FEASIBILITY STUDY RESULTS	2
	2.1 Power Output Increase Plan for Unit No. 2	
	(from 66 MW to 74 MW)	2
	2.2 Modification Plan for Unit No. 2's Instrumentation Method	2
	2.3 Cooling System Modification Plan	2
	2.4 Recommendations on operation and Maintenance	4
	2.5 Project Implementation Recommendations	6
3.	OUTLINE OF TERMOPAIPA THERMAL POWER PLANT	8
	0 1 Dawn Gandidian	
	3.1 Power Conditions	. 8
	3.2 Present Features of the Termopaipa Power Plant	13
4.	CONTENTS OF THE STUDY	14
	4.1 Objectives of the Study	14
	4.2 Formation of the Study Team	15
	4.3 Study Schedule	16
5.	REHABILITATION AND IMPROVEMENT PLAN	20
	5.1 Rehabilitation and Improvement Plan	20
	5.2 Basic Conditions of the Rehabilitation Plan	21
	5.3 Study Procedure	24
6.	NO. 2 UNIT TURBINE OUTPUT INCREASE PLAN	28
	6.1 Design	28
	6.2 Implementation Plan	28
	6.3 Construction Cost Estimate	30
	6.4 Economic Effects	30
	0.4 Economic Bricots	30
7.	NO. 2 UNIT INSTRUMENTATION SYSTEM IMPROVEMENT PLAN	34
	7.1 Design	34
	7.2 Implementation Plan	35
	7.3 Cost Estimate	36
	7.4 Economic Effects	39
8.	COOLING METHOD IMPROVEMENT METHOD	40
	8.1 Data Analysis of Existing Cooling Water System	40
	8.2 Layout Plan	41
	8.3 Design	43
	8.4 Implementation Plan for Cooling Method Improvement Work	52
	8.5 Cost Estimate	54
1	8.6 Economic Effects	54

ANNEX - 1 FACILITY REGISTER

ANNEX -II PLANT DATA

ANNEX -III DATA OF POWER-UP FOR #2 TURBINE

ANNEX -IV DATA OF INSTRUMENTATION FOR GENERATING FACILITY

ANNEX -V DATA OF COOLING WATER SYSTEM

1. INTRODUCTION

In February of 1987, the Republic of Colombia, in line with its policies, requested the Government of Japan to conduct a study for establishing a rehabilitation and feasibility study plan for the 82 power stations (3 thermal, 62 hydroelectric, and 17 diesel engine power plants) that are owned by the 13 public electric companies that are under the jurisdiction of the Institute of Colombiana de Enegergia Electrica (hereinafter referred to as ICEL).

In response to the request, the Government of Japan decided to conduct a pre-feasibility study (hereinafter referred to as Pre-F/S) and a feasibility study (hereinafter referred to as F/S) in two steps. The thermal power pre-feasibility study was conducted for Termopaipa in Boyaca Department, Termopalenque (in Santander Department), and Termobarranca (in Santander Department) plants over a period of eight months (November 1987 through June 1988). Based on the pre-feasibility study, the Termopaipa plant was selected as the site for the feasibility study and, in July of 1988, the Scope of Work for the study was agreed upon and signed by JICA and ICEL.

graphic production of the particle for the first of the f

This is the Final Report of the feasibility study.

ang pentak arang perantah pentah kal

2. SUMMARY OF THE FEASIBILITY STUDY RESULTS

Detailed examination results for the improvement plan made based on information and data obtained during pre-feasibility and feasibility study periods and on data confirmed by the field study are described in Chapters 6 through 8. An outline of each improvement item is described hereunder:

en gragorie translaties planet allebraie det habitatie de et allebraie de la company de la company de la compa

2.1 Power Output Increase Plan for Unit No. 2 (from 66 MW to 74 MW)

The turbine output is increased from 66 MW to 74 MW by replacing existing turbine units parts (turbine rotator, blades, nozzles, and diaphragms) and feedwater heaters (No. 1 LP, No. 2 LP, and No. 4 HP) with new units.

The estimated rehabilitation cost is US\$ 6.3 million based on the exchange rate of 140 Yen/US\$. The modification cost per 1 kW is estimated to be US\$ 790 and the generating cost is estimated to be US\$ 20 mills/kWh.

and a programme of the second sec

2.2 Modification Plan for Unit No. 2's Instrumentation System

The purpose of the modification plan is to convert some of the air type instrument units into electronically operated types in order to increase their reliability by facilitating operations and maintenance work, and for introducing a computerized system.

encountry against the property and the Alice Manager And Andreas

The estimated modification cost is US\$ 5.8 million. By assuming that the future operation cost will be the same as the present value, an additional US\$1.9 mill/kWh will be required to the generating cost.

2.3 Cooling System Modification Plan

The existing cooling system's efficiency will be increased by installing cooling towers and changing it into the type where water circulates through the towers.

Design conditions for the circulating cooling water system are as follows:

- Cooling Tower Capacities:

No. 1 Unit: 7.000 m³/H

No. 2 Unit:

13,000 m³/H

No. 3 Unit:

13,000 m³/H

- Cooling Water Temperatures:

At cooling tower inlet: 35°C

At cooling tower outlet: 27°C

- Air Temperature (wet bulb temperature): 13°C

- Rough Features of Cooling Water Booster Pumps:

(Lift)

No. 1 Unit:

7,000 m³/H x 20 m

No. 2 Unit:

13,000 m³/H x 20 m

No. 3 Unit: 13,000 m³/H x 20 m

- Chemical injection units will be installed to improve the quality of the circulating cooling water.

The estimated costs for the cooling system modification are as follows:

Total modification costs: US\$ 14.8 million, and an additional US\$ 4.9 mill/kWh to the generating cost will be required.

2.4 Recommendations on operation and Maintenance

(1) Introduction of a Computer System

During the field survey period, examination of adoption of a computer system was requested. In this report, introduction of a general type computer was examined. However, the adoption of central control system including data logger was considered based on the ICEL's long-term plan, including the No. 4 Unit that is presently in the planning stage.

(2) Improvement of Preventive Maintenance Technology

It is evident from the data obtained during the field surveys. That frequent emergency shutdowns occur in this power plant. When items as the prevention of the frequent emergency shutdown, a stable power supply, overall economic improvement, and the deterioration of power supply equipment are considered together, it can be expected that preventive maintenance technology will become a very important issue. Since preventive maintenance is expected to be very effective in prolonging the service life of equipment by preventing possible accidents and improving maintenance effects, it is advisable to stress that preventive maintenance be included in the improvement plan.

(3) Environmental Effects

The adverse environmental effects that are presently caused by the power plant are soot problems (no soot treatment unit is installed for No.1 unit) and ash inflow problems into the Chicamocha River.

Since the ash inflow causes serious problems in the downstream cities, overall measures for the problems including the construction of retaining wall for the ash disposal yard and a new ash disposal yard should be urgently established.

Without solving these environmental problems, it will be impossible to install the #4 Turbine generator unit in the future. The following measures can be considered for solving the problems:

Capped river a law consists of the first transfer

1) Anti-soot Measures

Since the #1 unit is not equipped with an electrostatic precipitator, one should be installed. To install the electrostatic precipitator, however, the following additional work would be required:

- (i) The space between the existing boiler and stack is very small. Furthermore, in the vicinity there are such facilities as a coal conveyor, boiler water treatment unit, etc. that are commonly used by units #1, #2, and #3. To install a new electrostatic precipitator for the #1 unit, extensive work, such as demolishing the existing stack and constructing a new stack, would be necessary.
 - (ii) For the installation of an electrostatic precipitator, it would be necessary to increase the boost pressure of the forced draft fan thereby necessitating the replacement of the existing forced draft fan with a new one. It would also be necessary to install a new air duct through the forced draft fan, boiler, electostatic precipitator, and stack.

2) Ash Flow Preventive Measures

radiant communication and the second of the second of the second of the second

(i) Ash flow preventive walls should be built on both banks of the Chicamocha River.

to Allendary Committee Com

- (ii) A filteration chamber and a settling chamber should be built for the ash disposal yard. Rainwater in the ash disposal yard should be treated in the filtaration chamber and the settling chamber before it is discharged into the Chicamocha River.
- (iii) In order to handle the storm water coming from the mountain, a drainage channel should be constructed along the boundary between unit No.2's ash disposal yard and the mountain.
- (iv) To prevent ashes from being scattered by the wind, ash deposits should be covered by dirt or sand on which a lawn and trees should be planted.
- 2.5 Project Implementation Recommendations
 - (1) For Unit #2 turbine Output Increase:
 - 1) For the improvement of unit #2, E. Boyaca and the turbine manufacturer, should maintain very close communications in order to ensure that the improvement plan is based on up-to-data turbine unit records, such as operations and maintenance data.
 - 2) The steam generating capacity of the existing #2 boiler unit is 300 tons/hr at peak operation and 284 tons/hr during continuous maximum operation.

14: 27 Til

It will require 285.85 tons/hr of steam to increase the output of the #2 turbine unit an additional 8 MW. The existing #2 boiler unit can therefore supply the required amount of steam within the limits of its peak capacity. Under continuous maximum operating conditions, however, the steam output will be 1.85 tons/hr short.

To solve the steam shortage problem prior to commencing the turbine unit modification work, E. Boyaca must consult with the boiler

manufacturer showing all the up-to-date operation and maintenance records of the boiler unit and its associated facilities.

(2) Conversion of Instrumentation Method

- 1) For selecting a manufacturer for the #2 unit instrumentation units, it is necessary to consider whether the same manufacturer for #3 unit instrumentation unitis should be selected or not by taking into account the of their spare parts, reliablitites, and operation and maintenance methods.
 - 2) For #2 units, it is necessary to develop and keep an instrumentation system gaging position diagram, in its vicinity, clearly indicating each.

(3) Conversion of Cooling System

- 1) The cooling tower installation site is located in a vicinity close to the Chicamocha River. It is not known whether the ground has a sufficient bearing capacity to support the construction of a cooling tower. For this reason, a detailed geological survey, a boring survey, should be conducted to confirm the ground condition.
- 2) The existence of underground wiring and pipes should be investigated and, if found, their locations should be confirmed prior to commencing cooling tower construction work. Any existing wiring or piping that would interfere with the construction should be rerouted either by making appropriate modifications or by replacement with a new installation.

3. OUTLINE OF TERMOPALPA THERMAL POWER PLANT

The Termopaipa Thermal Power Plant, owned by E. Boyaca Public Electric Company, is located approximately 6 km west of Paipa City, Boyaca Department. It is a coal fired power station that produces 173 MW of electricity. The plant consists of the 33 MW capacity No. 1 unit that was installed in 1958, the 66 MW capacity No. 2 unit that was installed in 1974, and the 74 MW capacity No. 3 unit that was installed in 1983. The No. 3 unit is owned by ICEL.

Adaptification and the control of the same of the control of the c

ISA uses this thermal power plant to supply electricity nationwide.

engagina kaluksa seri sebuah kecamatan di Kabupatèn Kibu.

standing contraction is not and creative

and the state of t

na Maringa Palabasa

3.1 Power Conditions of the end of the standing absence (A) attends of all

The power plants owned by E.Boyaca Public Electric Company consists of Termopaipa Thermal Power Plant and the small scale hydroelectric plants.

The electric power demand and supply balance is classified in accordance with the present power condition and the power plant equipment as follows:

and the property of the facilities of the first

3.1.1 Present Condition of Power Demand and Supply

The power demand and supply balance during the five year period from 1983 through 1987 is as shown in Table 3.1.1. As for the power demand and supply balance of 1987, the maximum power demand was 161 MW while the installed capacity was 173 MW (108% of the maximum demand). The total power demand was 617 GWh while the total generated energy was 693 GWh (about 112% of the total power demand). The surplus electricity was transmitted to the nearby departments.

The 1987 power demand breakdown shows 24% for domestic use, 3% for commercial use, 53% for industrial use, and 20% for other sector use -- the percentage for industrial use was high while it was low for commercial use.

The annual increase rate of domestic, commercial, and industrial power use was 7%, a very high value.

and the could be guide as the property of the first term

2000年(1915年) - 第5章 600 cm - 1

The average annual increase rate of the power demand during the period from 1983 through 1987 was 3.3%. Conversely, the generated energy during the same period decreased by 9.0% annually.

Table 3.1.1 Power Demand and Supply Condition (1983 - 1987)

Year	1983	1984	1985	1986	1987	Average Annual Increase Rate (%)
	1 4 17 17	1.1	- 11			1. 1. 1. 1. 1.
Demand		1 4 4				
1. Maximum Power Demand (MW)	120	128	128	148	161	7.6
2. Power Demand (GWh)		405, 300	The State	15 75.61	18.00	
1) Domestic Use	107	122	134	140	145	7.9
2) Commercial Use	15	17	18	19	20	7.5
3) Industrial Use	236	246	246	268	327	8.5
4) Others	184	265	156	165	125	-9.2
TOTAL	542	650	554	592	617	3.3
Supply (including ICEL)		. :				
1. Installed Capacity (MW)	173	173	173	173	173	0
2. Generated Energy (GWh)	1,010	1,134	989	757	693	-9.0
3. Loss	88	65	114	125	167	17.4

(SOURCE: INFORME ESTADISTICO: RESUMEN 1983-1987)

gregionalis, parti al grego de la collega gregione de la collega de destina de la lace de la collega de la col

3.1.2 Existing Power Facility Conditions

(1) Power Plants

The total installed capacity of the E. Boyaca Public Electric Company is shown in Table 3.1.2. Most of the capacity is generated by thermal power plants.

Table 3.1.2 Power Plant Conditions (1983 through 1987)

(Unit in MW) Average Year 1983 1984 1985 1986 1987 Annual | Increase Item Rate (%) Total Installed Capacity 1. Thermal Power 99 99 99 Hydropower 1.6 1.6 1.6 1.6 1.6 TOTAL 100.6 100.6 100.6 100.6 100.6

(SOURCE: INFORME ESTADISTICO: RESUMEN 1983-1987)

The conditions of Termopaipa Power Plant, the concerned power plant for the Feasibility Study, is as shown in Table 3.1.3.

Table 3.1.3 Condition of Termopaipa Power Plan (1983 through 1988)

Item	Year	1983	1984	1985	1986	1987	1988
Installed Capacity (MW) Present Output (MW) Generated Energy (GWh)	٠.	173 170	173 170	173 170	173 170	173 170	173 170
1) No. 1 & No. 2 Units 2) No. 3 Unit		549 361	708 426	584 405	492 265	452 240	371 390
TOTAL	.	1,100	1,134	989	757	693	761

(SOURCE: E. BOYACA PUBLIC ELECTRIC COMPANY)

A future expansion plan has been made for installing Termopaipa No. 4 Unit (150 MW), Cooling tower type.

(2) Transmission Facilities

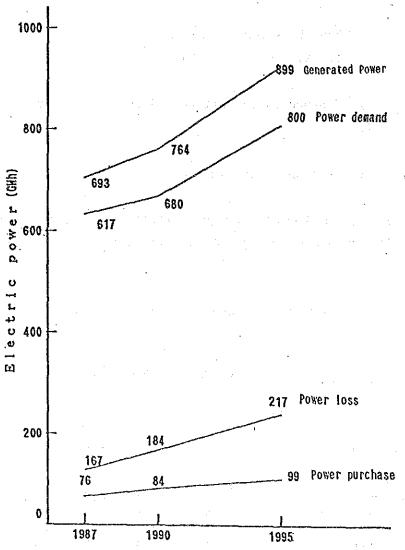
The existing transmission facilities have 230 kV (maximum) transmission line. The lines connected to the Termopaipa Power Plant are as follows:

- 230 kV system: 3 lines- 115 kV system: 3 lines

It is planned to install two additional 115 kV lines in the future.

3.1.3 Generating Cost and Electric Fee

Changes in the annual average generating cost and electric fee during the five years period of 1983 through 1987 are as shown in Table 3.1.4.


Table 3.1.4 Generating Cost and Tariff

(Unit: Col\$) Average Year 1983 19841985 1986 1987 Annual Increase Item Rate (%) 2.84 2.95Generating Cost 4.16 6.9725.2 5.32Electric Fee 1. Domestic Use 2.703.293.635.32 7.7530.1 Commercial Use 5.00 5.81 6.85 9.4512.5025.6 3. Industrial Use 4.44 4.96 6.31 8.49 10.41 20.6 4. Public Use 3.133.85 4.96 6.99 9.01 30.2 Total Average 3.233.51 4.78 6.55 8.94 29.0 Diffusion of Electric Use 1. Number of Households 323 396 (x1,000)434 493 533 13.3 2. Total Users (x1,000) 1,080 1,080 1,098 1,107 1,116 0.8 3. Diffusion Rate (%) 30 36 39 45 12.5

(SOURCE: INFORME ESTADISTICO: RESUMEN 1983-1987)

3.1.4 Power Demand Forecast

Estimating the average annual increase rate as 3.3%, based on the figures in Table 3.1.1 the power demand and supply balance for 1990 and 1995 was forecasted to be as shown in Fig. 3.1.1.

NOTES: 1. An average annual increase rate of 3.3% (the same as the power demand average annual increase rate) was used for power purchase, power loss, and generated power forecasting.

2. In accordance with the Proyecciones De Demanda 1986-2006 prepared by ISA, the average annual increase rate was forecasted as 5.9%. The average annual increase rate of the ICEL group was forecasted 6.6%.

Fig. 3.1.1 Forecasted Power Demand and Supply Balance

3.2 Present Features of the Termopaipa Power Plant

The survey results of the Termopaipa Power Plant were classified into the following groups: mechanical, electrical, and other facilities (see Appendix I). An outline of the units is as follows:

Unit No.	Installation Year	Installed Turbine	Capacity (MW) Generator	Present Output (MW)	Rehabilitation or Improvement Plan
No.1	1958	33	33	30	1) Improvement of cooling method
No.2	1974	66	74	66	 Improvement of cooling method Increase of turbine output Modification of instrumentation
No.3	1982	74	74	74	method 1) Improvement of cooling

Steam Condition

			Boiler			At Turb	ine Inlet
Unit	*1	Volume of Evaporator (Max. t/h)	Steam Pressure (Max.kg/cm2)	At outlet of Press. kg/cm2	Superheater Temp. °C	Press. kg/cm2	Temp.
#1	234	136	79	68	505	65	505
#2	220	284	107	92	510	88	510
#3	220	300	107	93	515	88	510

^{*1} Feed water temperature at outlet of Economizer.

4. CONTENTS OF THE STUDY

- 4.1 Objectives of the Study
- 4.1.1 Increase of Turbine Output

The mechanical specifications of the existing No. 2 Unit boiler, generator, and transformer are 74 MW; however, the turbine output is 66 MW. To effectively utilize the existing facilities, the turbine will be modified to have an output of 74 MW.

4.1.2 Modification of the Instrumentation System

- (1) The instruments and automatic control units are either insufficient or are not functioning. Improvements should be made to the instrumentation system.
- (2) Some of the instruments are obsolete and the manufacturers no longer produce the same types. Due to the difficulty of obtaining parts, the instrumentation system should be modified.

4.1.3 Modification of the Cooling System

(1) Water cooling the condensers and the bearings of auxiliary equipment is discharged at the upstream point of the cooling water intake in the Chicamocha River. For this reason, cooling efficiency is poor and weather conditions affect the system. Furthermore, the system fosters the growth of such water grass as buchon in the cooling pond. This grass interferes with the water flow and, as a result, causes insufficient water quantity.

These problems, including water grass removal work, should be solved.

(2) In addition to solving the above problems, the existing cooling pond may be utilized as an ash disposal yard.

This yard may also be utilized by the presently planned No. 4 unit.

Thus, the problem of land acquisition will be solved.

4.2 Formation of the Study Team

4.2.1 Members of the JICA Feasibility Study Team

same in the contract of the first of the contract of the con-

JICA's feasibility study team was made up of the team leader and members who were engaged in the pre-feasibility study. The members are listed below:

<u> </u>		
Duty	Field	Name
Team Leader	General (Civil Engineer)	Masami Ono
Member	Thermal Power Plant Facilities (Mechanical Engineer)	Eiji Shimomura
Member	Thermal Power Plant Facilities (Electrical Engineer)	Hirohito Seto

ICEL was the counterpart agency of JICA for the feasibility study team.

Participating ICEL members were as follows:

	Name	Major	Division
	Juvenal Penaloza Rosas	Ing. Civil	Jefe Div. De Centrales
	Mario Guiterrez Ospina	Ing. Civil	Ing. Div. Centrales
* * * * ;	Augusto Sanabira Diaz	Ing. Mecanico	Ing. Div. Centrales
	Ramiro Velasco	er er egen William	Div. Centrales

Contract the contract of the state of the

4.2.3 Supporting Engineering Staff Members from E. Boyaca Public Electric Company

The E. Boyaca Public Electric Company provided the following engineering personnel to assist the JICA study team with the Termopaipa Power Plant field survey and data collection:

Name	Division
Edgar Duarte Ryes	Gerente
Francisco Duque	Subgerente
Enuck Guerrero	Jefe Div. De Planeacion
Hector Pulido	Jefe Planta Termopaipa
Jorge Hernan Ramirez S.	Jefe Depto. Serv. Tecnico
Pedro Lesmez	Ing. Depto. Serv. Tecnico
Avelno Cely	Ing. Depto. Serv. Tecnico
Ferndo Cruz F.	Jefe Mant. Electrico
Jose Cardenas	Ing. Mant. Electrico
Aluaro Delgado O.	Ing. Production
Fabio Abril G.	Ing. Mecanico
Reinaldo Avelia	Ing. Operation

4.3 Study Schedule

The contents and schedule of the Study are as shown in Table 4.3.1. As of September 1989 the Study was conducted in the following three steps:

- (1) Examination and Analysis of Previous Data
- (2) Field Reconnaissance -- field surveys of the following items:
 - 1) Operations of existing power plant facilities
 - 2) Confirmation of each facility's specifications and the possibility of using existing facilities
 - Preparation of Rehabilitation Plan and Basic Design,
 Construction Cost Estimate, and Economic Analysis in Japan

The field surveys were conducted as follows:

First Field Survey: November 26 through December 23, 1988
Second Field Survey: January 14 through February 25, 1989
Interim Reporting: September 16 through October 1, 1989

Field survey schedules are shown in Table 4.3.2.

Table 4.3.1 Tentative Time Schedule of F.S.

Legend: _______ JICA Field Work ______ ICEL Field Work ______ JICA Work in Japan _____ A Report Submission

Table 4.3.2 Itinerary of Field Reconnaissance

PARTICIPANT	Gerente: Dr. Edgar Duarte Reyes Subgerente: Dr. Francisco Duque Jefe Planta Termopaipa: Hector Pulido Jefe Depto. Serv. Tecnico : Jorge Hernan Ramirez S Jefe MTO. Electrico: Fernando Cruz F	Producion :Ing.Aluaro Delgado O. MTO.Mecanico :Ing. Fabio Abril G.	Head office E. boyaca Subgerente :Francisco Duque Jefe Div. de planeacion :Enuck Guerrero Jefe PLANTA Termopaipa :Hector Pulido Jefe Depto. Serv. Tecnico :Jorge Hernan Ramirez S. :Pedro Lesmes :Avelino Cely Jefe Mant. Electrico :Jose Cardenas Operacion :Reinaldo Avelia
ISIT MEMBER	ICEL:Juvenal Penaloza JICA:E. Shimomura :(I.Sato) ICEL:Mario Gutierrezo	JICA:E.Shimomura :(I.Sato)	ICEL:Ramiro Velasco JICA:H.Seto :(N.Nakamura)
TISIA	Head office of E. Boyaca Termopaipa P/S Termopaipa P/S Termopaipa P/S	Termopaipa P/S Termopaipa P/S Head office of E.Boyaca	Head office of E. Boyaca Termopaipa P/S Termopaipa P/S Termopaipa P/S Head office of E. Boyaca
R O U T	Bogata ↓ Tunja ← Paipa	Paipa→Tunja →Bogota	Bogota →Tunja → Paipa Paipa →Tunja → Bogota
DATE	1988 Dec. 5 6.	ထဲ တဲ	1989 Feb. 7 10
	Field Survey	J81 4	Second Field Survey

5. REHABILITATION AND IMPROVEMENT PLAN

5.1 Rehabilitation and Improvement Items

Among the various rehabilitation and improvement items pointed out during the pre-feasibility study period, the following three were selected as the Feasibility Study Items by the JICA Study Team in agreement with ICEL:

(1) Increase of No. 2 Turbine Output:

The generator output capacity is 74 MW, but the turbine output capacity is only 66 MW -- an 8 MW capacity gap. By replacing the turbine, turbine output shall be increased.

(2) Replacement of No. 2 Unit's Instrumentation System:

Obtaining spare parts for the existing air type instrumentation system is difficult. Furthermore, the supervisory meters and the automatic control units are either inadequate or inoperative. The existing system should be replaced with one similar to that for unit No. 3.

(3) Replacement of Cooling System:

The possibility of replacing the present pond cooling system with a circulating type using a cooling tower should be studied.

5.2 Basic Conditions of the Rehabilitation Plan

and the second of the second section of the participation of the second of the second

For the preparation of the rehabilitation plan, each rehabilitation or improvement item will be examined separately. For the plan's basic conditions, the following should be taken into consideration:

- (1) Easy operation and maintenance
- (2) Compatibility of parts
- (3) Justification of supporting operation and maintenance

For preparing the rehabilitation plan's feasibility study, the following basic conditions should be established.

(1) Basic Conditions of the Plan

 $\{(x,y)\in \mathcal{F}_{1}(y) \subseteq \mathcal{F}_{2}(y) \text{ for } y \in Y\}$

- 1) Except for the turbine unit, all existing No. 2 Unit facilities can be utilized in their present state even after increasing the turbine's output to 74 MW.
- 2) The soil data obtained for No. 3 installation will be utilized in the preparation of the rehabilitation plan.
- 3) The remaining service life of power plant units are as follows:

Unit No.	Installed Capacity (MW)	Installation Year	Remaining Service Life (years)
No. 1	33	1958	12 (by year 2001)
No. 2	66	1975	22 (by year 2011)
No. 3	74	1982	25 (by year 2014)

in a regular contract of the first

4) The future installation of the No. 4 Unit should be taken into consideration when determining the scale of the cooling system improvement work. Additionally, consideration should be given to solving the problems related to the insufficient capacity of the existing ash disposal yard.

5) Governor Unit Improvement in the state of the state of

The importance of the power plant will increase as a result of the increased output of the No.2 unit. As the power plant must be highly reliable, the existing governor unit should be converted to an electrical type unit.

latera, es controlar avanció de la con-

(2) Construction Work Conditions

The Feasibility Study is related to rehabilitation or improvement work; thus, there are no special problems involved concerning equipment and material transportation, and construction work.

The principal conditions for the construction work are as follows:

1) Local contractors will be used for work related to civil engineering and equipment.

1. 4 x 1. 4 x 1. 4 x 1. 4 x 1. 2 x 1. 4 x 1

- 2) It may be possible to proceed simultaneously with No. 2
 Unit's turbine output increase work and the instrumentation improvement work in order to minimize the shutdown period.

 In the Feasibility Study, however plans were made to implement these two tasks independently.
- 3) The manufacturers will provide instructors for the new equipment.

(3) Basic Conditions for Preparing Cost Estimates

Cost estimate items are classified based on ISA's standard-ization data as follows:

1) Portion to be Covered by Foreign Currency (US\$):

		Ratio to FOB Price (%)	Ratio to Civil Engineering Work Cost (%)
a)	Machinery and Material Cost	100	
b)	Shipping and Insurance Fee	12	
c)	Contingencies for Mechanical Facilities	17	•••

2) Portion to be Covered by Domestic Currency (Col \$):

		Ratio to FOB Price (%)	Ratio to Civil Engineering Work Cost (%)
a)	Tax	3.5	-
b)	Value Added Tax	13.4	-
c)	Law 68	2.2	-
d)	Law 50	8.8	 -
e)	Proexpo	5.5	-
f)	Nationalization	2.2	-
g)	Inland Transportation and Insurance Fee	6	-
h)	Installation and Testing	16	-
i)	Civil Engineering Work	-	100
j)	Contingencies for Civil Engineering Work	. -	15
k)	Engineering Fee - Civil Engineering Work - Mechanical Facilities	- 15	11.5

3) Exchange Rate:

US\$ = 369.4 Col \$ = \$140

4) Generating Cost (same figure of 1987): 6.97 Col \$/k\/h

5.3 Study Procedure of the second of the sec

For conducting the rehabilitation plan's Feasibility Study, the major work contents and items to be examined were indicated in flow charts Figs. 5.3.1 thru 5.3.3.

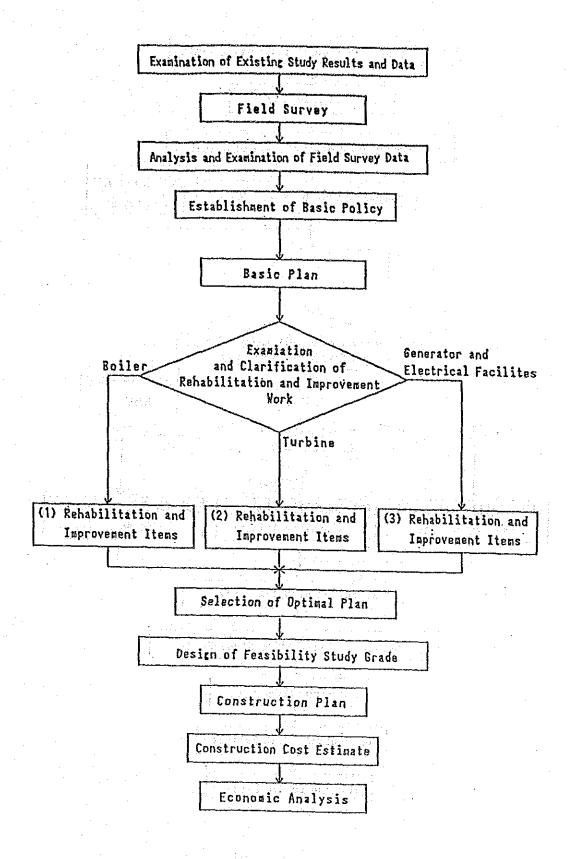


Fig. 5.3.1 Work Procedure Flow Chart for No. 2 Unit Turbine Output Increase Plan

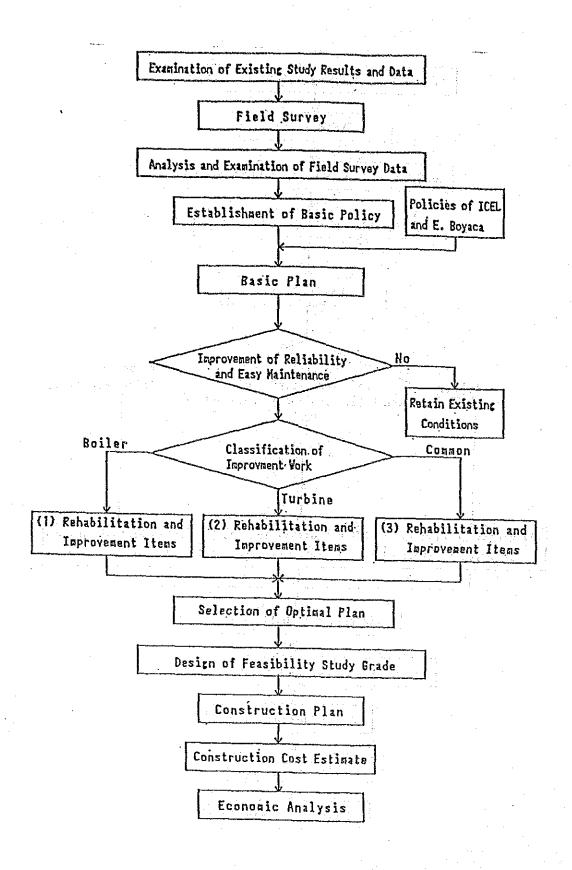


Fig. 5.3.2 Work Procedure Flow Chart for Instrumentation System Modification Plan

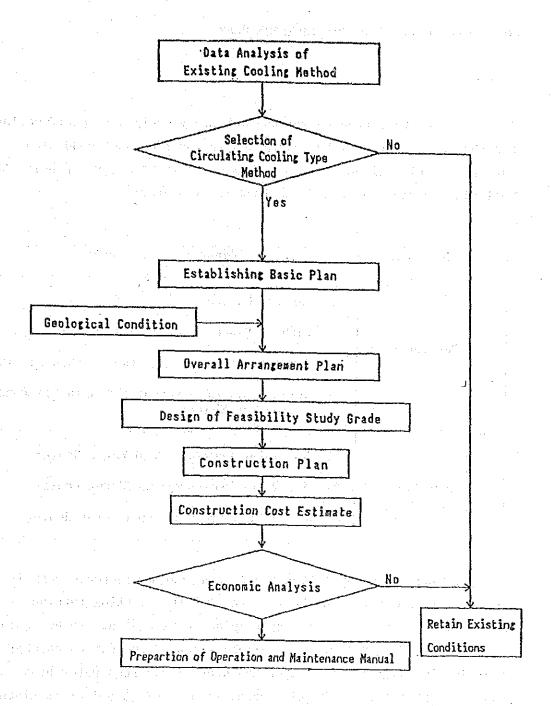


Fig. 5.3.3 Work Procedure Flow Chart for Cooling System Modification Plan

6. NO. 2 UNIT TURBINE OUTPUT INCREASE PLAN

6.1 Design

Boiler, generator, transformer and auxiliary equipment specifications for the No. 2 Unit will be maintained in their present conditions. Turbine output will be increased from 66 MW to 74 MW by replacing the following turbine parts and the feed water heater:

No.	Unit Name	Parts to be Replaced
1	Turbine Unit	 Turbine Rotator Turbine Blades (No. 1 thru No. 16) Nozzles and Diaphragms (No. 1 thru No. 16) Drive Shaft of Governor and Main Oil Pump (Extension Shaft)
2	Feed Water Heater	 No. 1 Low Pressure Feed Water Heater No. 2 Low Pressure Feed Water Heater No. 4 High Pressure Feed Water Heater

Heat balance after completing the turbine output increase work is shown in Fig. 6.1.1. The heat balance of the existing turbine is shown in ANNEX-III.1. Existing turbine parts that are to be replaced are shown in Fig. 6.1.2. A detailed sketch of the extension shaft is included in ANNEX-III.2. Major features of the feed water heater are shown in ANNEX-III.3. Detail technical data of #2 boiler is given in ANNEX-III.5.

6.2 Implementation Plan

1) Work Plan

For implementing turbine output improvement work, a thorough examination of replacement work procedures for each unit is essential. This is especially true for the replacement of the feed water heater because of space limitations. Other data related to the output increase plan are listed in ANNEX-III.4.

(1) Optimal Capital Investment

The No. 2 Unit's power generating facilities have 22 service life years remaining. Even after completing the turbine output increase work, the capacities of the boiler, generator, and other related facilities will be fully utilized without any modifications.

Considering that the effective use of power generating facilities are related to the nation's power condition, it is desirable that the turbine output increase work be implemented as soon as possible.

(2) Construction Time

No. 2's shutdown period for the turbine output increase work is approximately two months; thus, if there is a power shortage during this period, it will be necessary to purchase electricity from ISA to meet the demand.

2) Construction Schedule (Tentative Plan)

Since this plan is for the rehabilitation work of the existing power plant, the work should be undertaken by the original plant installation contractor. The contractor may take approximately 14 months for the manufacture of machinery and about 2 months to accomplish the installation work. The construction schedule was prepared as shown in Table 6.2.1.

6.3 Construction Cost Estimate

The construction cost is estimated to be US\$ 6.3 million. The cost breakdown follows:

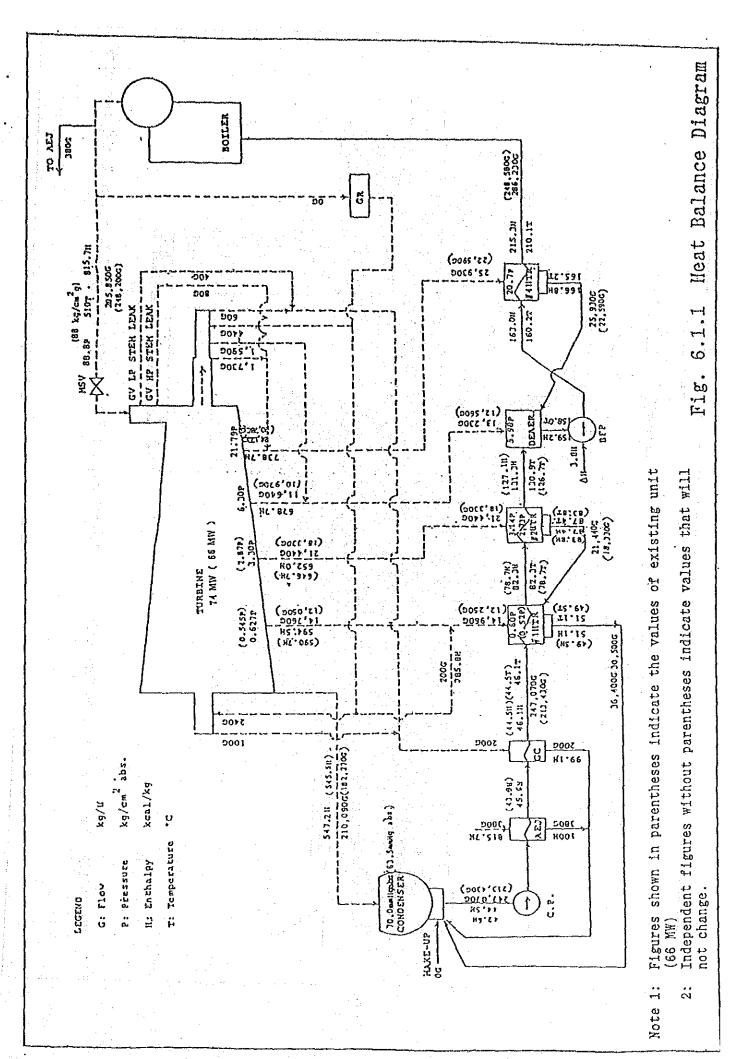
and the second of the commence of the second of the company of the second of the secon

 $(s, t_{1}, t_{2}, t_{3}, t_{3}, \dots, t_{n}, t_{n},$

(1)	Portion	to	be	Covered	bу	Foreign	Currency:	(million	US\$)
-----	---------	----	----	---------	----	---------	-----------	----------	-------

a)	Machinery and material cost 3	.14
b)	Shipping and insurance fees 0	.38
c)	Contingencies for mechanical facilities 0	.54
	SUBTOTAL 4	.06

(2) Portion to be Covered by Domestic Currency


	Tax 0.11
b)	Value added tax 0.42
c)	Law 68 0.07
d)	Law 50 0.28
e)	Proexpo 0.17
f)	Nationalization 0.07
g)	Inland transportation and insurance fee 0.19
h)	Installation and testing 0.50
<u>i)</u>	Engineering fees (Mechanical facilities) 0.47
	SUBTOTAL 2.28

TOTAL

6.34

6.4 Economic Effects

The estimated unit construction cost is US\$ 793/kW. By assuming the plant operation rate as being 52% (the 1988 value) and having the present number of personnel, the generating cost per unit electricity will be US\$ 20 mill/kWh.

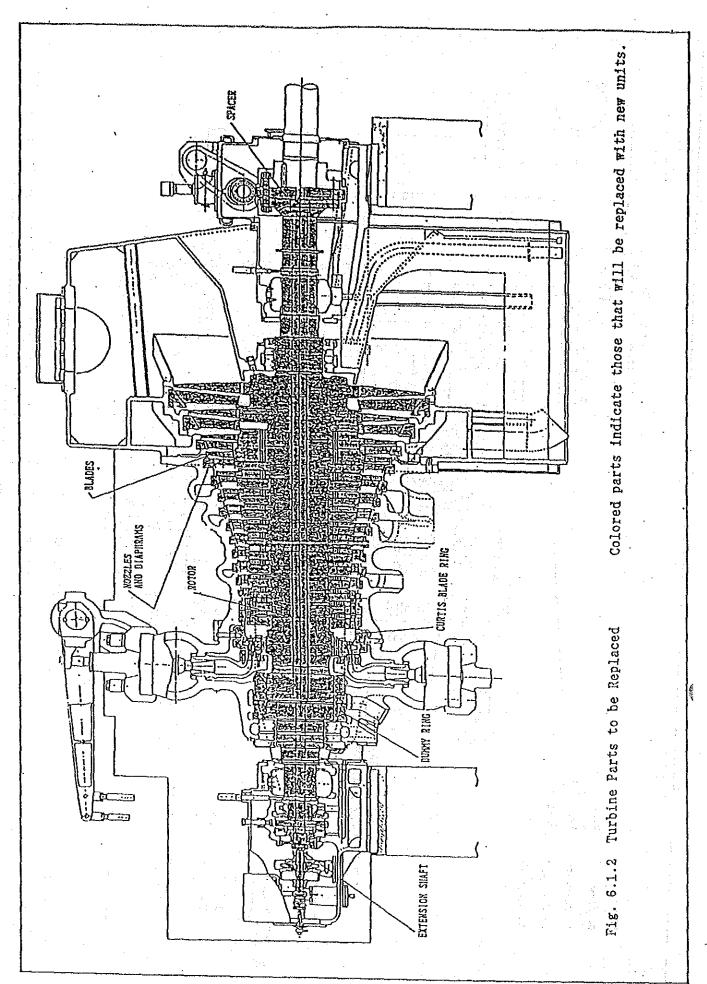


Fig. 6.2.1 TENTATIVE IMPLEMENTATION SCHEDULE

(1) Detailed survey (3) Tender specification (4) Wegotiation (6) Cocan/Inland Transportation (7) Installation						-		-	-		-					ŀ			-	ľ
	7	3 4		~		 				 		2	• • • - • • • • •	********	52	••••••				23
										 		a a the sage							<u> </u>	
	<u>l</u>		+ + + + + + + + + + + + + + + + + + +		••••••	 										•••••	••••			
	······································			······································	***********	 	••••••			 ·						•••••	•••••	•••••		
Contract			.#1 E 1		••••••	 ••••••				 		17							·	
			·	• •	Contrac	 •	*************			 		······································	************	••••••		**********		************		
										 			***************************************	•••••	*********	•••••	•••••	•••••		
		: :	· :	······································		••••••••••••••••••••••••••••••••••••	••••••	••••••		 •-•				********				************	******	
						 	••••••			 		l		I		••••••	••••	••••		
			· .			 			·	 						••••••	• • • • • • • • • • • • • • • • • • • •			THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS O

7. NO. 2 UNIT INSTRUMENTATION SYSTEM IMPROVEMENT PLAN

7.1 Design

The existing air type instrumentation system will be modified to an electric type in order to improve reliability, secure accurate operations, and provide easy maintenance.

The supervisory meters and control units at the central control board are to be modified. The major items are listed below:

No.	Control Unit	Planned Work
1	Boiler Unit:	
	1) Automatic Boiler Control	To replace with a Digital automatic boiler control unit (DBC)
	2) Automatic Boiler Master Control	To feed back the coal feeder speed as a coal flow
	3) Heavy Oil Control	To set up a new boiler master circuit in DBC by installing a heavy oil flow meter
	4) Main Steam Pressure Control	To set up a new outlet steam temperature cascade control in DBC
	5) Starting Feed Water Control	To install a DBC control circuit for allowing the starting feed water control valve to control drum level at starting time.
2	Turbine Unit:	
	1) Mechanical Governor	To convert to a digital electric/hydraulic governor control unit in order to automate the acceleration, frequency, stress, valve opening and closing, self run back, load, governor controls
	2) Condenser and Evaporator Level Control	To convert to a remote control system by DBC

For replacing the existing boiler control unit with a digital automatic boiler control unit (DDC), it is necessary to modify the existing feed water flow control system. An example of the modified feed water flow control diagram is shown in Fig. 7.1.1.

In order to conduct overall plant instrumentation and control operations, the existing instrumentation and control systems should be replaced by the following computer operated systems:

- (1) Digital Automatic Boiler Control System
- (2) Digital Electric/Hydraulic Governor Control System
- (3) Data Acquisition System

The installation of these systems will have the following effects:

	Planned System	Effects
1.	Digital Automatic Boiler Control	- More reliable control - Easy maintenance - Higher performance
2.	Digital Electric/ Hydraulic Governor	- Automatic load control - Frequency control - Automatic starting and stopping
3.	Data Acquisition System	- Easy instrumentation - Various data collection

7.2 Implementation Plan

(1) Work Plan

It is necessary to prepare the instrumentation improvement work plan that will make plant shutdown as short as possible.

Plant shutdown will last about 3 months. The effects of the plant shutdown can be minimized by scheduling it to coincide with No. 2 Unit's turbine output increase work.

An outline of improvement work specifications is shown in ANNEX-IV.1, and the data related to the existing instrumentation units are shown in ANNEX IV.3.

(2) Implementation Schedule

It is considered that it will take approximately 12 months to manufacture the machinery units and procure materials. About 3 months will be needed for constructing the facilities and installing the machinery. The improvement work implementation schedule was prepared as shown in Table 7.2.1.

7.3 Cost Estimate

The estimated cost for the improvement work is US\$ 5.8 million. A breakdown of the estimated costs are as follows:

	•	
(1)	Portion to be covered by Foreign Currency: (m	million US\$)
	a) Machinery and Materials	2.85
	b) Shipping and Insurance Fees	0.34
	c) Contingencies for Mechanical Facilities	0.49
-	SUBTOTAL	3.68
(2)	Portion to be Covered by Domestic Currency	
	a) Tax	0.10
	b) Value added tax	0.38
	c) Law 68	0.06
	d) Law 50	0.25
	e) Proexpo	0.16
	f) Nationalization	0.06
	g) Inland transportation and insurance fee	0.17
	h) Installation and testing	0.46
	i) Engineering fees (Mechanical facilities)	0.43
	SUBTOTAL	2.07
	TOTAL PROPERTY OF THE PROPERTY	5.75

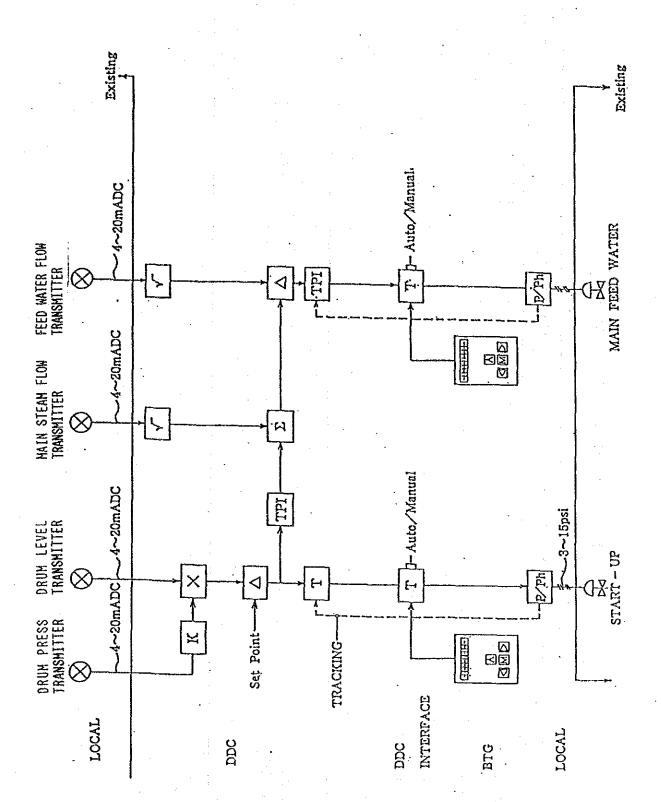


Fig. 7.1.1 Feed water control system

Fig. 7.2.1 TENTATIVE IMPLEMENTATION SCHEDULE

331										
30		• • • • • • • • • • • • • • • • • • • •			********	••••••	•••••			*****
8 29		*********				********	**********		•••••	*****
7 28	***********	•••••	•••••							
3 27	••••••				••••••			•••••••		
97	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·								
52			*****			•••••		I		
3 24	••••••			•••••						
23		·····	· · · · · · · · · · · · · · · · · · ·	•••••				I		
22		· · · · · · · · · · · · · · · · · · ·			······				•••••	
21		- 		·						
82					• • • • • • • • • • • • • • • • • • • •					
13				•	·········]	·			
∞			•••••						••••	
17	·									
19						\perp				
15			*****							
13 14			******				•••••			
52					ည္က					
12					Contract					
11					>					
5										
6			**							••••
∞		• • • • • • • • • • • • • • • • • • • •				********				
2	······································	• • • • • • • • • • • • • • • • • • • •				**		••••••	•••••	· • • • •
ဖ										
25										
4			•••••••••••••••••••••••••••••••••••••••	••••••		***,******	**********	. <u></u>		
8			••••••				•••••••		•••••	
- 7					·········		•••••			
	1	t			**********					
 	1	6		E			·			
ENOR /	×.	cati		Evaluation				<u>8</u>	- ;	
	MUKE	ž	ංජ •ජ	Ya ∷	Ę	ing.	nd	ırtat	ç	5
	28	Spe	ing	فبلب	atic	ctur	Inla	Transportation	4	20.
	tail	nder	nder		goti	nufa	ean/	Tra	etal	ora:
/ <u>e</u>	(1)Detailed survey	(2)Tender specification	(3)Tendering &		(4)Negotiation	(5)Manufacturing	(6)Ocean/Inland		(7) Installation	= C
ا	_	ت	ت		ت	ಲ	=			ت

7.4 Economic Effects

As a result of the introduction of the automatic instrumentation and control systems, plant operation work during starting and shutdown times will be greatly reduced making planned maintenance work possible, thereby minimizing overall plant work.

The estimated cost per unit installed capacity is US\$ 87/kW. By assuming the operating cost to be the same as the present value, an additional US\$ 1.9 mill/kWh to the generating cost will be required.

.

8. COOLING METHOD IMPROVEMENT PLAN

8.1 Data Analysis of Existing Cooling Water System

(1) Present Condition of the Cooling Water System

As shown in Drawing No. TP-C1, the pumps for condenser cooling water and the shaft bearing cooling water for the auxiliary units are installed in the same water tank.

The warm water from the condenser and auxiliary units is discharged into the Chicamocha River through the same duct. The discharged water mixes with the river water then flows into the cooling water pond. After the water in the pond is cooled by the ambient temperature, it is pumped to the condenser and auxiliary units.

(2) Weather Data

No weather data (temperature and humidity) is kept. During the field survey periods, the Study Team were unable to obtain recorded weather data.

(3) Present Problems

Warm water from the condenser and auxiliary units is discharged at the upstream point of the cooling water intake in the Chicamocha River, therefore, the following problems exist:

- 1) A large cooling water pond is required.
- 2) Since the intake water temperature is higher than the original river water's and it must be cooled by ambient temperature in the cooling pond, the cooling efficiency of the existing system is low.

As a result of No. 2 turbine's output increase work, the discharged cooling water temperature will be higher than at present and the cooling efficiency will decrease even further.

- 3) Since intake water is cooled by ambient temperature, the cooling efficiency is completely controlled by weather conditions.
- 4) Warm water flowing into the cooling water pond fosters the growth of such water grass as Buchon which interfere with the water flow. Furthermore, labor work is required for grass removal.

8.2 Layout Plan

The existing cooling water system will be modified into the type equipped with cooling towers. Based on data collected by the field survey and the pre-feasibility study, the data analysis for the existing cooling water system was conducted. Analysis results are as follows:

8.2.1 Selection of Cooling Method

There are several types of cooling methods as shown in Table 8.2.1. After comparing their overall features, the forced draft cooling tower method was selected for the Project based on the following reasons.

- 1. Available space for the cooling facility installation is limited.
- 2. Effects caused by weather conditions are negligible.
- 3. Stable performance.

parallel and a control of the first

Table 8.2.1 Cooling Method Comparison

	Cooling Method	Installation Space	Effects by Weather	Cooling Efficiency	Power	Economy	Perfor- mance	Remarks
	Cooling Pond	Large	Large	Low	Not required	Poor	Unstable	
	Spray Pond	Large	Large	Low	Not required	Poor	Unstable	·
Cooling Tower	Spray Type	Small	Small	Medium	Not required	Good	Stable	Only applicable when large water temperature difference is availab
Coc	Natural Venti- lation Type	Medium	Medium	Medium	Not required	Fair	Slightly unstable	
	Forced Draft Type	Small	Small	High	Required (large)	Good	Stable	

The existing cooling pond method should be changed to the forced draft cooling tower method.

Based on data obtained during the filed survey period and from the information described in the pre-feasibility study report, the exsiting cooling system was analyzed. The results of the analysis are described below:

8.2.2 Cooling Water System

The existing warm water discharge route is mainly provided by an open channel. Water pressure cannot be applied to the underground culvert sections. It is not sufficient to only replace the existing condenser units' circulating water pumps; therefore, they will be retained in their present conditions and booster pumps will be installed to pump the discharged warm water into new cooling towers before the discharged warm water flows in the Chicamocha River. This cooling water system is shown in Drawing No. TP-C1.

8.2.3 Cooling Tower Layout Plan

The installation of the Termopaipa No. 4 Unit is presently in the planning stage. The circulating water cooling method with a cooling tower will be adopted for the No. 4 Unit. The cooling tower layout plan is shown in Drawing No. TP-C2.

It is assumed that the ground at No. 1, 2 and 3 Units' cooling tower sites along the Chicamocha River is soft; thus, cooling tower foundations are to be designed as piled foundation types.

For the detailed design, it is necessary to analyze and examine the geological data.

8.3 Design

8.3.1 Cooling Tower (Forced Draft Type)

(1) Capacity

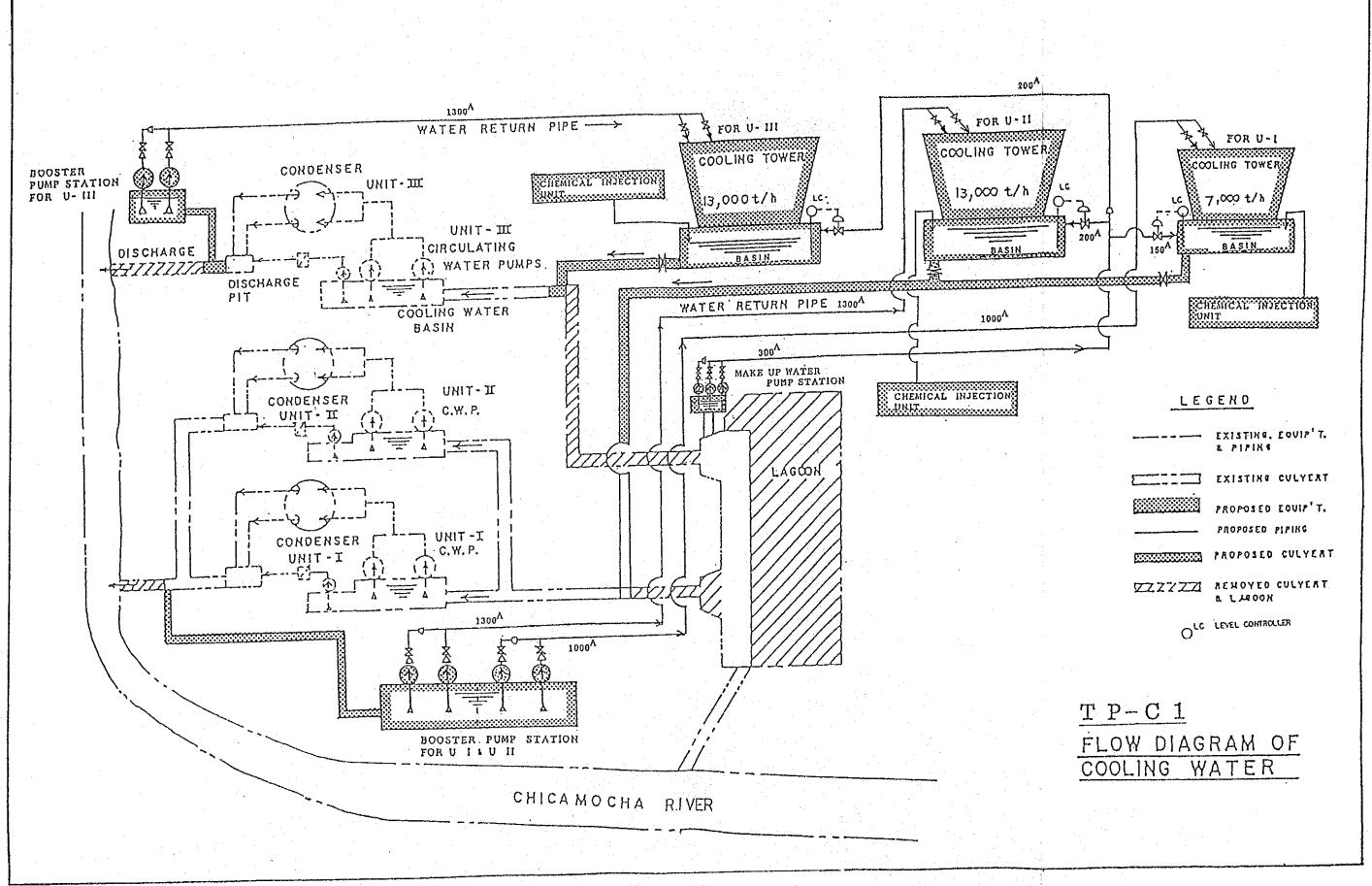
The cooling tower capacity should be decided based on the cooling water quantity necessary for the condensers and for the cooling of the auxiliary machinery shaft bearings.

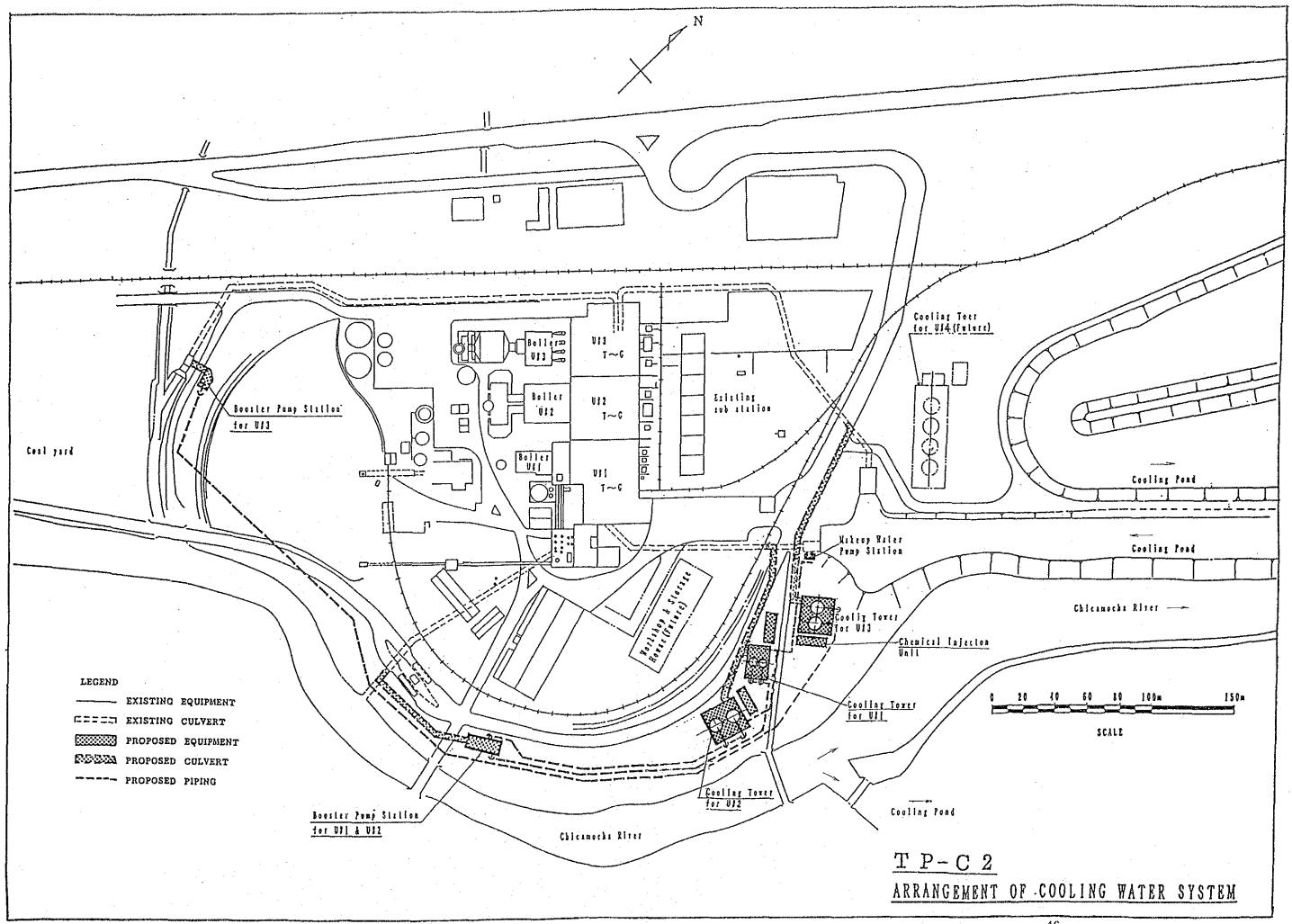
Table 8.3.1 Cooling Tower Capacities

Unit: m³/Hr Unit No. No. 1 No. 2 No. 3 Remarks Item a) Condenser Cooling 6,500 11,600 12,200 Required Cooling b) Shaft Bearing Cooling 114 60 Water c) Subtotal 6,500 11,714 12,260 a) + bCooling Tower Capacity 7,000 13,000 13,000 c) x 5-10%

(2) Number of Cooling Tower Units

No. 1 and No. 2 Units presently share a single cooling water system. No. 3 Unit uses one independent cooling water system.


The No. 1 Unit has been in operation for 31 years; No. 2 for 15 years.


A single cooling tower may be able to handle units No. 1 and 2, but to achieve that, a large capacity tower will be required.

As the remaining service life of the No. 1 Unit is very short in comparison to No. 2's, it can be concluded that it would be uneconomical to install one cooling tower for the two units. Also, there is the problem of locating a large cooling tower in the power station. With this reasoning in mind, it was planned to install one small capacity cooling tower for each unit.

(3) Cooling Tower Data Sheet

The data sheet for the cooling towers is attached in ANNEX-V.1.

8.3.2 Booster Pump for Circulating Water

A new pump station will be built along the warm water discharge channels to pump water to the cooling towers.

(1) Number of Pumps and their Capacities

Booster pump capacities should be sufficient for cooling off the existing condensers and shaft bearings of auxiliary machinery. It was planned to install the same number of booster pump units as there are existing cooling water circulating pumps (one for normal use and one for standby use at each plant unit).

Booster pump specifications are as follows:

Unit	Capacity x Lift		
No.	(m ³ /hr) x (m)	(kW)	Number of Pumps
No.1	7,000 x 20	520	2 (one for normal use and one for standby)
No.2	13,000 x 20	950	2 (one for normal use and one for standby)
No.3	13,000 x 20	950	2 (one for normal use and one for standby)

(2) Selection of Pump Type

There are horizontal axis and vertical axis type pumps. Both types were examined and the vertical axis type was selected for the following reasons:

- 1) The available pump installation area is small due to the arrangement of the existing power plant
- 2) Automatic operations can be easily conducted
- 3) Motors can be easily protected during a flood

Table 8.3.2 Pump Type Comparison List

		Horizontal Axis Type	Vertical Axis Type
	(1)	Since most of the pump body is in air, the pump doesn't suffer severe corrosion.	(1) A small area is required for pump installation
	(2)	Maintenance and inspection of major pump parts is easy to perform.	(2) No cavitation problems exist because the pump impeller is submerged.
MERITS	(3)	Disassembling and assembling work is easy. It is not necessary to remove the motor for disassembling the pump unit of a horizontal split-casing pump.	(3) Pump starting is easy. This type of pump is suitable for automatic operations. No priming is required a vacuum pump is not required.
	(4)	Easy to connect to a horizontal shaft motor. Common standard type motors can be used.	(4) The motor can be mounted at any elevation and can therefore be kept safe during a flood.
	(5)	In general, this type of pump is quite inexpensive.	(5) It is easy to provide this type of pump with watertight protection. It is suitable for outdoor installation.
	(1)	Large installation space is required.	(1) Since most part of the pump body is submerged, it is subject to corrosion.
	(2)	Pump suction height is limited. If the pump is installed too high, cavitation may result.	(2) Inspection work of the pump's major parts is difficult.
DE- MERITS	(3)	Priming is required for starting the pump. Pump operations are complex. A vacuum or air-tight pump is required. Automatic pump operations are complicated.	(3) Pump disassembling and repair work is quite difficult. It is necessary to remove the motor and reduction gear in order to disassemble the pump.
	(4)	Motor protection should be provided for protection against flood waters.	(4) In general, the price for this type of pump is expensive.

8.3.3 Makeup Water Pump

A new makeup water pump station will be built near the existing cooling water pond in order to pump makeup water into the cooling towers.

(1) Makeup Water Quantity

Water loss in the cooling towers due to evaporation, spillage, and boiler blowdown operations must be replenished by adding water to the cooling water system. The detailed breakdown of the required water quantity to be replenished is shown in the data sheet in ANNEX-V.1. A summary of the required water replenishment quantity for each plant unit is as follows:

1)	No.	1 Unit:	117.6	m^3/hr
2)	No.	2 Unit:	218.4	m ³ /hr
<u>3)</u>	No.	3 Unit:	218.4	m ³ /hr
		TOTAL	554.4	m ³ /hr

(2) Number of Pumps and their Capacities

If one makeup water pump has to be provided for each cooling tower, a large pump installation space would be required. Also, if a number of pumps need to be installed, the required construction and operating costs would be high. For these reasons, it was planned to install three makeup water pumps for the three cooling towers (two units for normal operations and one for standby use).

Pump capacities should be 554.4/2 = 277.2, say $280 \text{ m}^3/\text{hr}$. Pump lift: 10 m.

Motor Output: 11 kW.

(3) Selection of Pump Type

For the same reasons the circulating water booster pumps were selected, the vertical type pumps were selected by taking into account installation space limitations and automatic operation requirements.

8.3.4 Cooling Water Piping System

The warm water booster pumps and cooling towers will be connected by piping systems (these systems are shown in Drawing No. TP-C2). In order not to interfere with existing ground structures, the pipes will be installed underground.

(1) Pipe Sizes

Main pipe sizes should be as follows:

For No. 1 Unit: Diameter = 1,000 mm

(1,016 mm O.D. x 10.3 mm thick)

For No. 2 Unit: Diameter = 1,300 mm

(1,320 mm O.D. x 11.1 mm thick)

For No. 3 Unit: Diameter = 1,300 mm

(1,320 mm 0.D. x 11.1 mm thick)

(2) Pipe Material

Pipe material should be carbon steel (STPY 41, JIS G3457, or ASTM A139, GR A equivalent). The pipes should be coated on the outside with polyethylene.

(3) Corrosion Protection Measures

The piping systems will be buried underground and therefore should be provided with cathodic protection to prevent them from electrolytic corrosion (pipe wall boring) caused by electric current leakage into ground.

Cathodic protection methods:

- 1) Current Anode Protection Method
- 2) External Electrical Power Source Method
- 3) Enforced Current Removal Method

A comparison of these three methods are shown in Table 8.3.3.

Method	Galvanic Anode Method	External Electric Power Source method	
Item			
Power Source	Not required	Required	Required
Power Source Voltage	Influenced mainly by earth resist- ance of electrode	Influenced mainly by earth resist- ance of electrode	Influenced mainly by earth resist- ance of electrode
Electrode	Required	Required	Not required
Current Adjustment	Impossible	Possible	Possible
Cost	Inexpensive	Expensive	Medium
Effect on Other Underground Pipes:			
- Cathode Action - Anode Action	Yes No	Yes No	Yes No

As a result of the above comparison, the current anode protection method was selected for economical reasons. The specifications for cathodic protection of piping system facilities using the current anode protection method are shown in ANNEX-V.2.

8.3.5 Chemical Injection Unit

The water cooled in cooling towers gradually becomes concentrated when it circulates through the system and thereby changes the water quality. The concentrated water may corrode the circulation system's equipment and piping. To prevent possible damage, the cooling water quality should be maintained within a certain level by chemical injection.

Features of the chemical injection unit are summarized in ANNEX-V.3.

8.4 Implementation Plan for Cooling Method Improvement Work

For the preparation of the implementation plan for cooling method improvement work, no special problems are expected to be encountered when transporting and installing the machinery units. However, the following aspects were taken into consideration for the plan's preparation:

- (1) For the cooling tower foundation work, no geological data of the site has been forthcoming; thus, the foundations were planned as pile type having pile depth of 10 m.
- (2) It was assumed that an approximately 10 month period would be required to manufacture the cooling towers and 2 months time to ship them.
- (3) Implementation of the cooling method improvement work should take place without considering the possibility of using the existing cooling water pond for an ash disposal yard.

The tentative implementation schedule is shown in Table 8.4.1.

Fig. 8.4.1 TENTATIVE IMPLEMENTATION SCHEDULE

8.5 Cost Estimate

The estimated cost of the improvement work is US\$ 14.8 million.

A breakdown of the estimated cost is as follows:

(1) Portion to be Covered by Foreign Currency: (million US\$)

a)	Machinery and Materials	6.79
b)	Shipping and Insurance Fees	0.81
<u>c)</u>	Contingencies for Mechanical Facilities	1.16_
	SUBTOTAL	8.76

(2) Portion to be Covered by Domestic Currency

a)	Tax	0.24
b)	Value added tax	0.91
c)	Law 68	0.15
d)	Law 50	0.60
e)	Proexpo	0.37
f)	Nationalization	0.15
g)	Inland transportation and insurance fee	0.41
h)	Installation and testing	1.09
i)	Civil engineering work	0.91
j)	Contingencies for civil engineering work	0.14
k)	Engineering fees:	
	- Civil engineering work	0.12
	- Mechanical facilities	1.02
<u></u>	SUBTOTAL	6.11
	TOTAL	14.87

8.6 Economic Effects

The estimated improvement work cost per unit installed capacity is US\$85.7/kW. An additional US\$ 4.9 mill/kWh to the generating cost will be required.

ANNEX-I FACILITY REGISTER

CONTENTS

1. Mechanical equipment

	1.	1	Turbine		I - 1
	1.	2	Condensing equipment		I - 1
	1.	3	Boiler	•	I - 1
	1.	4	Soot blower		I - 2
	1.	5	Automatic boiler control		I - 2
	1.	6	Fuel combustion equipment		I - 2
	1.	7	Boiler feedwater pump		1-4
	1.	8	Boiler feedwater heating equipment		I - 4
	1.	9	Draft fan & stack		I - 5
	1.	10	Dust collector		I - 6
	1.	11	Ash handling equipment		I-6
	1.	12	Coal storage area		I - 6
	1.	13	Coal handling equipment		I - 6
	1.	14	Oil storage tank		I - 7
	1.	15	Oil transportation equipment		I - 7
	1.	16	Ash disposal		I - 7
	1.	17	Aux. cooling water pump for bearing		I - 7
2.	Ele	ecti	rical equipment		
	2.	1	Generating equipment	·	I - 8
	2.	2	Transformers		I - 8
	2.	3	Substation		I - 9
3.	0tl	her	facilities	·	
	3.	1	Overhead travelling crane		I -11
	3.	2	Emergency generating equipment		I -11
	3.	3	Water treatment equipment		I-11
	3.	4	Chemical injection equipment		I -12
	વ	5	Air compressor		T19

ο.	Description	Unit	#1	#11	#[]]
	0				
1	Turbine				 ndanalna
	(1) Type		umpuise-sin turbine	gle flow-co	nuensing
	(0) Dadad and make	kW	30,000	66,000	74,000
	(2) Rated output (at generator terminal)	K II	30,000	00,000	14,000
		kg/cm2	65	88	8 8
	(3) Steam pressure (4) Steam temperature (at	квусыс	00	0.0	00
·	inlet of main stop valve)	· • c	505	510	510
	(5) Vacuum	mmllg	300	63.5	63.5
	(6) Revolving speed	rpm	3,600	3,600	3,600
•	(7) Quantity of extracted steam	тЪм	5,000	1 4	3,000
	(8) Pressure of extracted steam	kg/cm2	1778	23, 7. 2, 2. 3	34,14.6,
	(6) Fressure of extracted steam	abs	1.6, -0.4	-0.35	$\begin{bmatrix} 34, 14, 0, \\ 1, 2, -0, 4 \end{bmatrix}$
	(9) Manufacturer	aus	ALSTHOM	MHI	MHI
٠	(2) Manaracturer		WPOLUAM .	i in u	BIH I
			 		<u> </u>
2	Condensing equipment				
6	2-1 Condenser	·			
	(1) Type		Surface co	ndense, hori	l Zontal
	(1) 1300		two water		zontai,
	(2) Condenser surface and	m 2	2,300	4,100	4,683
	Q'ty	្រ មេ ៤	2,000	4,100	4,000
	(3) Volume of steam	t/h	125	260	285
	(4) Material of condenser tube	ι , 11	1 ""	200	. 200
	(5) Rated temp. of cooling water	·c	20-32	20-32	20-32
	(6) Manufacturer		ALSTHOM	мні	МНІ
L ·	2-2 Cooling water pump		1		
	(1) Type		Vertical, m	ixed flow	
	(2) Rated capacity and Q'ty	m 2	6,500x2	11,600x2	12,200x2
	(3) Discharge head	m m	920	1200	1220
	(4) Design temperature	· c	26	28	28
	(5) Manufacturer	·	SULZER	EBARA	MHI
	(6) Motor 1) Type		NYP86/52	MKB-R	FZKB-R
	2) Capacity and Q'ty	kΨ	258 x 2	390 x 2	420x2
	3) Manufacturer		ALSTHOM	MHI	мні
	2-3 Air ejector		1		
	(1) Type		Jet steam		
	(2) Steam volume and Q'ty	kg/h	1 .	380.1	380.1
	(3) Steam pressure	kg/cm2	50	20	20
	(4) Steam temperature	, C	505	510	510
٠.	(5) Manufacturer		ALSTHOM	MHI	MHI
	2-4 Condensate pump				1
	(1) Type			Centrifugal	
				verti	•
2.0	(2) Rated capacity and Q'ty	t/h	160x2	300 x 2	285x2
	(3) Manufacturer		ALSTHOM	EBARA	MHI
	(4) Motor 1) Type		NP747	MKB-V	SB-FV
	2) Capacity and Q'ty	k₩	70 x 2	210 x 2	420x2
	3) Manufacturer		ALSTHOM	нм	[
•					
	Boiler				
	3-1 The true form				١
	(1) Type			2-drums,	
					[natural
				circulation	

1. Mechanical equipment (2/7)

lo,	Description	Unit	#1	#11	#111
	(2) Stoom process				
	(2) Steam pressure	1			
	1) Maximum allowable working	kg/cm2	79	107	107
	2) At outlet of superheater	kg/cm2	68	92	93
	3) Reheater		-	• -	_
	(3) Steam temparature				
	1) At outlet of superheater	l · c	505	510	515
		l ·č	300	110	210
	2) At outlet of reheater	U	-		- · · · · -
	(4) Volume of evaporator			* -	
	1) Maximum rating	t/h	136	284	300
	2) Economical rating	t/h	122	264	280
	(5) Heating surface area				
l	1) Radiation	m 2		826	872
	2) Touch	m 2		2,889	2,836
1	3) Total	m 2		3,715	3,708
l •	I a second	1112		9,110	3,100
]	(6) Super heater]	DD35	n mun i iim	0.0000.000
	1) Type	1	PENDANT	PENDANT	PENDANT
	2) Surface area	m2		1,333	2,274
	(7) Economizer				
	1) Surface area	m2	1,254	2,889	2,836
-	2) Temp. of feed water	· c	170/234	220	220
	(at inlet/outlet)				
	(8) Furnace				
	1) Volume	m 2		1,430	1 110
		111.6	17		
	2) Wall structure (type)			tical, Pend	
	(9) Manufacturer	1	ALSTHOM	DISTRAL	DISTRAL
	3-2 Air heater	ļ			
	(1) Type		TUBES	TUBES	
l	(2) Surface area	m 2	5,200	25,709	13,088
	(3) Air temp. (inlet/outlet)	l ·c	77/271	27/325	27/376
i	(4) Manufacturer		STAIN &		JUNSTROM
			ROURAIX	2.00	
		1			
4	Soot blower				
	(1) Type		Steam jet,	rotative an	revroctable
1	(2) Manufacturer		1	DIAMOND	POWER
,				. *	
5	Automatic boiler control	1		the second	
1	(1) Combustion	1			. :
	1) Type	1	Pneumatic	Pneu	matic
	2) Manufacturer		BAILEY-	BAILEY	
1			FRANCE		
	(2) Temperature	1			
1	1) Type		Pneumatic	Pneu	matia
l	2) Manufacturer		1 .		
ŀ	6/ Manuracturer		BAILEY-	BAILEY	- USA
	(2) Pood water		FRANCE		
	(3) Feed water			· <u>-</u>	
	1) Type	1	Pneumatic	Рлеи	
	2) Manufacturer		BAILEY~	BAILEY	- USA
			FRANCE		
6	Fuel combustion equipment				1 1
	6-1 Coal bunker	-			\$ 1
	(1) Structure				
1	(2) Capacity and Q'ty	ton	270x3	304x3	304x3
	uzi wanacily and o rv				

1. Mechanical equipment (3/7)

No.	:	Description	Unit	#1	#11	#111
						:
		Pulverized coal combustion equ	ipment		·	:
		Coal scale 1) Type				
		2)Capacity and Q ty	t/h		1 1	-
		3) Manufacturer	t/ 11	_		 .
	(2)	Coal feeder				
1		1) Type		Rotative	Belt-	Belt
1		n de la companya de La companya de la co			Conveyor	
		2) Capacity and Q'ty3) Manufacturer	t/h	10 x 3	24×4	24x4
		4) Motor				;
	1	a. Type		•		
		b. Capacity and Q'ty	k₩ ·	3 x 3	1.7x4	1.2x4
		c. Manufacturer		ALSTHOM	FOAI2	ALLIS
1		Mill				
1 .		1) type		Bowl-mill 613	EL-76 (vert)	EL-76 (vert)
		2) Capacity and Q'ty	t/h	12x3	(vert) 15x4	(Vert) 15x4
		3) Manufacturer	',"	RAYMOND	BABCO	
		4) Motor				
		a. Type		NP7'87	P	P
		b. Capacity and Q'ty	k₩	225 x 3	149x4	186x4
	as	c. Manufacturer Mill exhauster		ALSTHOM	RELIANCE	RELIANCE
	(4)	1) Type		Exhauster	Prima	rv AF
				fan		
		2) Capacity and Q'ty	m3/min	0.3x3	0.53x4	0.53x4
i		3) Manufacturer		RAYMOND	B&₩	B&₩
	٠	4) Motor		STAIN&ROUB		
		a. Type		-	P/AP	P/BF
	1	b. Capacity and Q'ty	kW	-	298x4	298x4
		c. Manufacturer		-	İ	
	(5)	Burner 1) Type			Fro	
		2) Capacity and Q ty	kg/h	Tangential 2500x12	550	
		3) Manufacturer	"6/"	2000112		
1			1			
1		Oil combustion equipment		1		
ļ .	(1)	Heavy oil service tank 1) Type				
l		2) Capacity and Q'ty	k l	50x1		50 x 1
		3) Manufacturer				
		Heavy oil burner				
		1) Type				
		2) Capacity and Q'ty	kg/h	190x4		2x12
ļ.		3) Manufacturer Light oil torch		STAIN&ROUB	PEA	BODY
		1) Type		Air atmi	zing	
1		2) Capacity and Q'ty	kg/h	146x4	165	x 1 2
	, , ,	3) Manufacturer		STAIN&ROUB	PEA	BODY
	(4)	Heavy oil pump		110000		AV. 105
		1) Type2) Pressure(inlet/outlet)	kg/cm2	H323D	3	AK-195
	''	3) Capacity and Q ty	t/h	x 2	x 2	x 2
		4) Manufacturer	• • • •	IMO SCAM	ROPER	VIKING
<u></u>						

1. Mechanical equipment (4/7)

۱o,	Description	Unit	#1	#11	#111
	5) Motor a. Type b. Capacity and Q'ty c. Manufacturer (5) Light oil pump	k₩	VWH1006 2.2x2 ALSTHOM	RELI	;
. ,	1) Type 2) Pressure 3) Capacity and Q'ty 4) Manufacturer 5) Motor	kg/cm2 t/h	H153D 5x2 SCAMIMO	3 5 x 2 ROPER	AK 4 1 9 5 5 x 2 V I K I N G
	a. Type	1 11	R075BTPS	1LA277-6 -AA/P	P
	b. Capacity and Q'ty c. Manufacturer (6) Heavy oil heater	k₩	O.36x2 ALSTHOM	4.92x2 RELIANCE	7.46x2 RELIANCE
1	1) Type2) Capacity and Q'ty3) Manufacturer	t/h	Surface (steam) Tubesx1 STAIN&ROUB	Surf (ste Tub DIS	am) esx2
7	Boiler feed water pump				
	(1) Type(2) Capacity and Q'ty(3) Discharge head(4) Revolving speed	t/h m rpm	70 x 3 80 3550	HBD6x10 175x3 110 3560	HBD 175x3 110 3560
	 (5) Manufacturer (6) Motor 1) Type 2) Capacity and Q'ty 3) Manufacturer 	k₩	NTP93 662x2 ALSTHOM	FKB-H 1100x3 MHI	MHI F2KB-H2 880x3 MHI
8	Boiler feed water heating equipmen 8-1 Feed water heater (1) No.1 L.P.heater	t			
	1) Type 2) Heating surface area	m 2	Surface tubes U 135	tub	face es U 60
	3) Material of heater tube		Cooper	Cu-Ni	Cu-Ni
	4) Temperature of F/water (inlet/outlet) (2) No. 2 L.P. heater	, c	42/	44/78	44/82
	1) Type		Surface tubes U	tub	face es U
	2) Heating surface area3) Material of heater tube	m 2	150 Cooper	Cu-Ni 78/126	00 Cu-Ni 82/116
	4) Temparature of F/water (inlet/outlet) (3) No. 4 H.P.heater	. c			
	1) Type 2) Heating surface area 3) Material of heater tube	m 2	Surface-	260	370
	4) Temperature of F/water (inlet/outlet)	С	Steel	Cu-Ni 160/210	Cu-Ni 158/187

1. Mechanical equipment (5/7)

Vo.	Description	Unit	#1	#11	#[[[
	(4) No. 5 H. P. heater				
•	1) Type		Surface		Surface
	2) Heating surface area		tubes U		tubes V 270
9.5	3) Material of heater tube			_	Cu-Ni
	4) Temperature of F/water				187/230
	(inlet/outlet)				1017200
	(5) Manufacturer		ALSTHOM	 .	MHI
	8-2 Deaerator	• • • • • • • • • • • • • • • • • • • •			***************************************
	(1) Type		- Conventi	onal count	er flow,
1 1			sheets		
	(2) Capacity of disposal feed	t/h	140	290	295
	water	_			
	(3) Allowable volume of oxygen	cc/l	0.005	0.005	0.005
l		kg/cm2G	4	5	7
ł	chamber		AT OTHOU	3/1/1	3277 7 .
	(5) Manufacturer		ALSTHOM	MHI	MHI
 					
9	Draft fan & stack		ľ	·	
1	9-1 Forced draft fan	}		1	
	(1) Type			Centrifugal	
	(2) Rated capacity and Q'ty	m3/min	912 x 2		4245 x 2
	(3) Pressure	mmAg	280	460	324
	(4) Revolving speed	Lbu	1200	1200	1161
`	(5) Manufacturer				
	(6) Motor		NDIOOD		D.
	1) Type 2) Capacity and Q'ty	k₩	NR400B 147 x 2	522	y 9
	2) Capacity and Q ty 3) Manufacturer	КП	ALSTHOM	i e	ANCE
1	9-2 Induced draft fan	ļ	WESTING.	Veri	A N C B
ł	(1) Type			ı Centrifügal	
	(2) Rated capacity and Q'ty	m3/min	2408 x 1	8411 x 2	6262 x 2
	(3) Pressure	mmAg	250	447	400
	(4) Revoluving speed	rpm	890	890	900
	(5) Manufacturer		SOCIETE	BAFFALO	CHICAGO
	(6) Motor				
* .	1) Type	, ,,,,	105	Р	P/BY
	2) Capacity and Q'ty	k₩	425 x 420	932 x 2	932 x 2
	3) Manufacturer		ASEA/ ALSTHOM	RELIANCE	RELIANCE
	9-3 Stack	<u> </u>	1 4 P O I II O M		
	(1) Kind of structure	ļ	Concrete	Steel	Steel
	(2) Diameter of top	m	3.35	4.29	4.25
	(3) Height	m	50	50	75
]	(4) Quantity		1	1	1
1	(5) Manufacturer		ALSTHOM	DISTRAL	DISTRAL
<u> </u>					
10	Dust collector]		
E	10-1 Mechanical				
	(1) Type		Cyclone		
			separator		
	(2) Capacity (gas volume) and Q'ty	Nm3/h	175	_	_
	(3) Manufacturer		;		-
L		<u> </u>		<u> </u>	<u> </u>

1. Mechanical equipment (6/7)

Vo.	Description	Unit	#1	#11	#111
	10 9 Plantsiani				
	10-2 Electrical (1) Type		Non	Cold elect	rostatic
				precipit	
•	(2) Capacity (gas volume) and Q'ty	Nm3/h	Non		273700x1
<u> </u>	(3) Manufacturer		Non	MHI	MHI
11	Ash handling equipment			1	
	11-1 Clinker			e e Se promo en se	·
	(1) Type		Drag link		
	(2) Capacity and Q'ty (3) Manufacturer	t/h	~ 5 STAIN&ROUB.	~10	U. C. C.
	11-2 Pyrite			DISIKAL	
	(1) Type		Non	Non	Non
	(2) Capacity and Q'ty	t/h	1 1 1 1 1		
	(3) Manufacturer 11-3 Fly ash			<i></i>	
	(1) Type	ļ.			
	(2) Capacity	t/h	~ 50	~120	~120
	(3) Q'ty (4) Manufacturer	set	F. U. M.	U. C. C.	U.C.C.
	(4) manulacturor	l.	Leuausis	0.0.0.	0.0.0.
	11-4 Ash disposal (pump)				
	(1) Type(2) Capacity, (discharge head)	t/h.(m)		·	G.T.E. 1500G.P.M.
	(3) Q'ty	set			2
	(4) Manufacturer				
	(5) Motor 1) Type		N		D
	2) Capacity	k₩	Non Non	_	P 149
	3) Q'ty	set			3
	4) Manufacturer		Non	-	RELIANCE
12	Coal storage area (1) Area	m 2	l coal yard	 =10 000	1
	(2) Storage capacity	t	120,000		
13	Coal handling equipment 13-1 Coal unloader				į
	(1) Type		Non	Non	Non
	(2) Capacity and Q'ty	t/h			i
	(3) Manufacturer 13-2 Truck hopper				
	(1) Capacity	t	120		
	(2) Q'ty	set	1		·
	13-3 Main belt conveyer		D. L.		
	(1) Type (2) Capacity	t/h	Belt con	veyer (roll	s) 90
	(2) Capacity and Q'ty	,,,,	-		3.0
	(3) Manufacturer		DISTRAL		DISTRAL
	13-4 Bulldozer (1) Type		D85A18		;
	(2) Weight of equipment	t	25x1	<u>.</u>	
	(3) Q ty	-	<u> </u>		
	(4) Maximum tractive force	t no	4.73	·	
	(5) Horsepower of prime mover and Q'ty	ĦР	220	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	(6) Manufacturer		KOMATSU		
L					

1. Mechanical equipment (7/7)

۷o.	Description	Unit	#1	#11	#111
	13-5 Scraper (1) Type (2) Capacity (3) Q'ty (4) Horsepower of prime mover and Q'ty (5) Manufacturer	m3 set HP	Non		
	Dil storage tank 14-1 Heavy oil (1) Capacity (2) Q'ty (3) Manufacturer	kι			
	14-2 Light oil (1) Capacity	Gι	22,740		
	(2) Q'ty (3) Manufacturer		DISTRAL		
	Oil transportation equipment 15-1 heavy oil transp. pump (1) Type (2) Capacity (3) Q'ty (4) Manufacturer (5) Motor	t/h	Non		
	1) Type 2) Capacity 3) Q'ty 4) Manufacturer	k₩			
	15-2 Pipeline (nominal diameter)	mm			
	Ash disposal (1) Method of type (2) Place of ash disposal (3) Volume of disposal area	m 3	Conveyer Ash yard 3,000,000	Conveyer Ash yard	Ash yard
	Aux. cooling water pump for bearin (1) Capacity (2) Discharge head (3) Q'ty (4) Design temperature (5) Design temperature of cooling water 1) at condenser inlet	g coolin m3/h m set C	50 3 26	114 50 2 28	60 45 3 28
	2) at condenser outlet		41	41	. 41

2. Electrical equipment (1/3)

10.	Description		Unit	#1	#11	#111
1	Generating equipment		 			
	1-1 Generator		ļ		l same	
	(1) Type			T188-210	MBH	МВН
				ALSTHOM		MITSUBISHI
	(2) Rated capacity		k V A	41,250	87,836	87,836
	(3) Power factor	**	%	80	85	85
	(4) Voltage		Ϋ́	13,800	13,800	13,800
	(5) Frequency:		Нz	60	60	60
	(6) Revolving speed		rpm	3,600	3,600	3,600
	(7) Cooling method		```	H2	Н2	H2
	(8) Pressure of hydrogen		kg/cm2	1.9	2.11	2.11
	(9) Winding method		""	Ϋ́	Ŷ	Ϋ́
	(10) Exciting method			AMPLIGING		•
	(11) Short circuit ratio	1		The state of the s	0.48	0.48
	(12) Manufacturer			ALSTHOM	M. H. I.	м. н. і.
	1-2 Exciter (main)					
	(1) Type			RT 17 5/27	Brushless	Brushless
	(2) Capacity		k\	130	470	370
	(3) Voltage		i	215	250	250
	(4) Revolving speed		rpm	3,600	3,600	
	(5) Exciting method		1 P III	AMPLIDINS:	IMANES PERM	
	(6) Quantity		}	1	imanes ferm	ANDNIES
	(7) Kind of driving machine			Manual	_	c voltage
	(1) Wind of dilating machine			Manual		
	(8) Manufacturer			MOUTSIA	regulat MHl	
	1-3 Sub exciter			ALSTHOM	mn i	MH 1
	ı			DT2 25/6 0		
	(1) Type		kŸ	ET7, 25/6.8		
	(2) Capacity		γ	3		:
	(3) Voltage	•	1	115		
	(4) Revolving speed		rpm	3,600		
	(5) Exciting method					
	(6) Quantity			1		
	(7) Kind of driving machine			Manual		
	(8) Manufacturer			ALSTHOM		
2	Transformers	:				
6	2-1 Main transformer		-			
	(1) Type			MHGE	NUCLEO/CUB	NUCLEO/CUB
	(2) Capacity		kVA	13,800	88,000	1 7:
	(3) Primary voltage		V			88,000
			Y	13,800	13,200 115,000	13,200
			1 Y			115,000
	(4) Secondary voltage		· ·			
	(5) Phase	÷		1	3	3
	(5) Phase (6) Winding method			1 Y/D	3 Y/D	3 Y/D
	(5) Phase(6) Winding method(7) Cooling method			Y/D	3 Y/D 0 i 1	3 Y/D 0il
	(5) Phase(6) Winding method(7) Cooling method(8) Quantity				3 Y/D 0il 1	3 Y/D 0 i l 1
	(5) Phase(6) Winding method(7) Cooling method(8) Quantity(9) Manufacturer		,	Y/D	3 Y/D 0 i 1	3 Y/D 0il
	(5) Phase(6) Winding method(7) Cooling method(8) Quantity(9) Manufacturer2-2 Other (if any)			Y/D	3 Y/D 0il 1	3 Y/D 0 i l 1
	 (5) Phase (6) Winding method (7) Cooling method (8) Quantity (9) Manufacturer 2-2 Other (if any) auto-ransformer 			Y/D 3	3 Y/D Oil 1 MHI	3 Y/D Oil 1 MHI
	(5) Phase(6) Winding method(7) Cooling method(8) Quantity(9) Manufacturer2-2 Other (if any)			Y/D 3 TH6E	3 Y/D Oil 1 MHI	3 Y/D Oil 1 MHI Nucleo/
	 (5) Phase (6) Winding method (7) Cooling method (8) Quantity (9) Manufacturer 2-2 Other (if any) auto-ransformer (1) Type 			Y/D 3 TH6E 170/11000	3 Y/D Oil 1 MHI	3 Y/D Oil 1 MHI Mucleo/ cub-mrm
	 (5) Phase (6) Winding method (7) Cooling method (8) Quantity (9) Manufacturer 2-2 Other (if any)		kVA	Y/D 3 TH6E 170/11000 30,000	3 Y/D Oil I MHI	3 Y/D Oil 1 MHI Mucleo/ cub-mrm 90,000
	 (5) Phase (6) Winding method (7) Cooling method (8) Quantity (9) Manufacturer 2-2 Other (if any) auto-ransformer (1) Type (2) Capacity (3) Primary voltage 		k V A	Y/D 3 TH6E 170/11000 30,000 125,000	3 Y/D Oil 1 MHI 90,000 220,000	3 Y/D Oil 1 MHI Nucleo/ cub-mrm 90,000 220,000
	 (5) Phase (6) Winding method (7) Cooling method (8) Quantity (9) Manufacturer 2-2 Other (if any)		kVA	Y/D 3 TH6E 170/11000 30.000 125,000 69000/	3 Y/D Oil 1 MHI 90,000 220,000 115000/	3 Y/D Oil 1 MHI Nucleo/ cub-mrm 90,000 220,000 115000/
	 (5) Phase (6) Winding method (7) Cooling method (8) Quantity (9) Manufacturer 2-2 Other (if any) auto-ransformer (1) Type (2) Capacity (3) Primary voltage 		k V A	Y/D 3 TH6E 170/11000 30,000 125,000	3 Y/D Oil 1 MHI 90,000 220,000	3 Y/D Oil 1 MHI Nucleo/ cub-mrm 90,000 220,000

2. Electrical equipment (2/3)

۱O.	Description	Unit	#1	#11	#111
1	(A) 10.				,
i	(6) Winding method	1	ADAD	0040	An . n
	(7) Cooling method		OFAF	OFAF	OFAF
	(8) Quantity		1	T T I I I I I I I I I I I I I I I I I I	1
	(9) Manufacturer			HAWKER	НИ
			•		
1 -	2-3 Station transformer				
	(1) Capacity	kVA	3,500	10000/	12.000
	(2) Primary voltage	V	13,800	12000	13,800
	(3) Secondary voltage	V	4, 160	4,160	4, 160
	(4) Phase	'	3	3	3
	(5) Winding method	1	J	, v	3
	(6) Cooling method		Forced oil	Forced oil	forced oil
	(7) Quantity	İ	1	orced orr	1
	(8) Manufacturer		ALSTHOM	ини	MĤI
1	2-4 Starting transformer			1	10 555
	(1) Capacity	k V A	Non	12,000	12.000
	(2) Primary voltage	Ä	Non	13,800	13,800
	(3) Secondary voltage	V	Non	4,160	4,160
	(4) Phase		Non	3	3
· ·	(5) Winding method		Non	D/D	D/D
	(6) Cooling method		Non	h .	forced oil
	(7) Quantity	Į.	Non	1 1	1
	(8) Manufacturer			. MHI	MHI
	2-5 Low voltage transformer				
	(1) Capacity	kVA	400	1,200	2,000
	(2) Primary voltage	V	4,160	4,160	4,160
İ	(3) Secondary voltage	V	440	460/265	460/265
	(4) Quantity	ļ	3	3	3
	(5) Winding method				
	(6) Cooling method		0il	0 i 1	Oil
1	(7) Quantity		2	2	2
ĺ	(8) Manufacturer		ALSTHOM	ини	MHI
 		-	<u> </u>	-	
3	Substation				
	β-1 Circuit breaker				
	(1) Type				1
	(2) Voltage	V			1
	(3) Current	A			
	(4) Rupturing capacity	MVA			
	(5) Manufacturer			2CM96/	
	[<u>.</u>			2LHCM10	
	B-2 Lightning arrester				
1	(1) Type			2CM96/	Metal
	kas was			2LHCM10	oxide
	(2) Voltage	ĮΥ		115000/	97000/
				220000	196000
	(3) Maximum allowable voltage	γ		650000/	212000/
	(1) Dischange every			550000	424000
	(4) Discharge current (5) Manufacturer	A	ACEA	10,000	10,000
I	Not manuracturer		ASEA	EMP	MELCO

2. Electrical equipment (3/3)

NO.	Description	Unit	1#	#11	#111
	3-3 High voltage switch gear for station (1) Type		HP6E/11-15	SJ2/5J4	SF6-120
	(2) Voltage	γ	170000/	123000/ 245000	123000 (245000)
	(3) Current (4) Rupturing capacity	A MVA	600/1250	1600/1600	1200
	(5) Quantity (6) Manufacturer		4/1 DELLE	4/3 GEC	2(1) MHI
	β-4 Battery (1) Type (2) Connecting and O'the	ATT	Non	1SF-900	EA-15
	(2) Capacity and Q'ty (3) Voltage (4) Manufacturer	A H Y		900x1 120 G.S.JAPAN	880 x 2 1 2 5 EXIDE
	3-5 Battery charger			STORAGE	BATEB
	(1) Type		Non	and the second s	US-130-3- 150 U.P.S.
	(2) Capacity and Q'ty (3) Yoltage (4) Manufacturer	A V		35x2 440 G.S.JAPAN	48.9x2 460
				STORAGE	EXIDE P.

3. Other facilities (1/2)

Vo.	Description	Unit	#1	#11	#111
	Over head travelling crane		"^		
	(1) Capacity (main/aux)	t	70	-	-
	(2) Span (3) Lift (main/aux)	i n m	100	•	-
	(4) Quantity	1111	16	_	- ·
	(5) Manufacturer		APPLEVAGE		
	(3) Manuracturer		MILPPANOP		
2	Emergency generating equipment	1	Í	3 17 17	
	2-1 Generator		ļ	e et e	
	(1) Type		Non	SRCR	20.332
	(2) Rated capacity and Q'ty	kVA			312.5x1
	(3) Voltage	V	l Transport	230/460	
	(4) Manufacturer				PILLAR
	2-2 Prime Mover				
	(1) Type	1	Non .	D334	2 D353
	(2) Capacity and Q'ty	k W		205x1	361.8x1
	(3) No. of Revolving speed	rpm		- 1,800.	
	(4) Manufacturer		,	CATER	PILLAR
			1	1	
	Water treatment equipment			1.	
	3-1 Raw water		01.	D.1	
	(1) Kind of water (or name of river)		Chicamoch	a Kiver 	
1	(2) Hardness (CaCo3)	nnm		12.5	
	(3) PH value	ppm	•	7.4	
	(4) Silica	ppm		5.3	
	(5) Turbidity	l bhu		19.0	
	3-2 Raw water tank				
	(1) Type		Cylindrical	Non	Non
				(channel)	(channel)
	(2) Capacity and Q'ty	m 3	80		,
1	(3) Manufacturer		COPEF		
	3-3 Clarifier				
	(1) Type			Coagulator	
	(2) Capacity and Q'ty		25m3/hrx1	24m3/hrx1	24m3/hrxl
	(3) Manufacturer	 	COREF	KURITA	RAMFE
	3-4 Filter				
	(1) Type		Sand, charc		
	(2) Conceity and O'ty		only sand U	1	or of
	(2) Capacity and Q'ty (3) Manufacturer	t/day		25m3xhrx4	25m3/hrx4
	(5) manuracturer 3-5 Feed water treatment		COREF	KURITA	RAMFE
	(1) Method of W/treatment				
	1) Method		lonic -ex	l chango	
	2) Type		pen circui		ttion
			The second secon	filtration	
	3) Kind of treatment	kg/piece	lonic		
	material and Q'ty		exchange		
	4) Type of decarbonater	t/h	Non		
	and capacity			2 10 10 T	
	(2) Capacity	t/cycle	1,400	200	4 5 0
	(3) Quantity of series		1	2	2
	(4) Manufacturer		COREF	KURITA	DEGREMONT
L			L		

3. Other facilities (2/2)

Vo.	Description	Unit	#1	#11	#111
	 B-6 Demineralized water tank				
1				0.1	
	(1) Type			Cilynd	1
Ī	(2) Capacity and Q'ty	m3		258	260
	(3) Manufacturer		,	MHI	MHI
	 B-7 Make-up water for boiler fe	l eed water ti	l eatment pla	n t	
1	(1) Capacity	m3/h	7	10(t/h)	20
			<u> </u>		
,					
	Chemical injection equipment 4-1 Feed water		# A 1		
	(1) Name of chemicals		N2H4	N2H4	N2H4
	(2) Pump capacity and Q'ty	` 		401/hr	401/hr
i		· 1	500		
ļ	(3) Tank capacity and Q'ty	. 1	300		1,000
	(4) Manufacturer			HILTON	KOANT
	4-2 Boiler water (1) Name of chemicals		Na2PO4+Na2H	 DOI Coondi	noted
	(1) Rame of chemicals		Hazi V4 IKazii		hatel
1	(2) Pump capacity and Q'ty		8 x 2	11.5x2	
	(3) Tank capacity and Q'ty		4,000		
]				1,000	1,000
	(4) Manufacturer		COREF	HILTON-	HILTON-
			1.0	ROYAL	ROYAL
5	Air compressor				
	5-1 Control air compressor				
	(1) Service				
	(2) Type		RADIAL	RADIAL	RADIAL
			2 H A 2 S	WN114F	WN114F
	(3) Capacity and Q'ty	m3/min	x 1	43.9x2	43.9x2
	(4) Compressed pressure	kg/cm2	8	8	8
	(5) Revolving speed	rpm	, and the second	586	585
l	(6) Capacity of air reciever	m3	5 x 1	14x1	14x1
	and Q'ty	l lii o	3 7 1	14.7.1	1411
	(7) Manufacturer		CREPEUE	ІЅН. ЈА	R TOV
	(8) Motor	1	DKDI DOD	1311. 77	.K. 101
	1) Type		NP3.37	FKT	FZKT
l	2) Capacity and Q'ty	k₩	47x1	220x2	2 2 0 x 2
	3) Manufacturer		ALSTHOM	MHI	MHI
	5-2 Plant air compressor			·	
	(1) Service		•		
	(2) Type		RADIAL	RADIAL	RADIAL
			2 H A 2 S	WN114F	WN114F
	(3) Capacity and Q'ty	m3/min	1	43.9x1	43.9x1
	(4) Compressed pressure	kg/cm2	8	8	8
	(5) Revolving speed	rpm		586	585
	(6) Capacity of air reciever	m 3	5 x 1	14x1	15x1
	(7) Manufacturer		301	1271	10,1
	(8) Motor		100000		
	1) Type		NP3.37	FKT	F2KT
	2) Capacity and Q'ty	kW	47x1	220x1	220x1
I		l vii		I ZZUZI .	1 KUUN 1
	3) Manufacturer	i	ALSTHOM	MHI	MHI

ANNEX-II PLANT DATA

CONTENTS

H.1	Operation data (1983~1988)	∏ -1-1
II . 2	Consumption of coal and production of ash	II -2-1
II . 3	Cooling water analysis (circulating water)	II -3-1
II . 4	Technical data of coal and ash	II -3-1

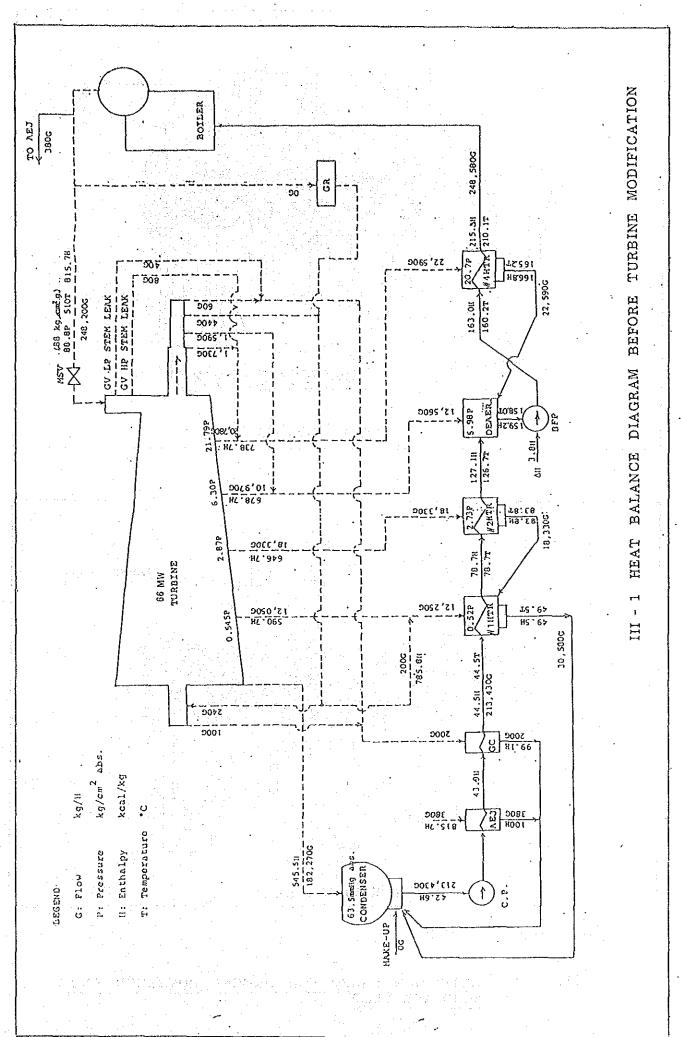
	. Description	unit	1983	1984	1985	1986	1987	198
	No. 1 unit			-			<u> </u>	
				7.44		100	••	
1	Installed capacity	· (XY)	.33	3 3	3 3	3 3	3 3	3
	Generated energy	(GYh)	177	185	175	179	109	ì
	Running hour	(IIr)	6, 224	7, 169	5,857	8,056	4.043	2, 72
	No. of starting time	(Time)		15	17	21		4, 16
5	Cause of trip	(Tine)	**	10	11	41	19,	1
٠.	a) Boller	(IIRC)	٥	٥			•	
	b) Turbine		a series y	,	1	4	.1	
	c) Generator · ·		1		2	3	6	
			6 '	1	0	0	. 0	
	d) Cooling system .		1	. 1 1		. 1	3	
٠.	e) Other		0	<u>0</u>	<u>l</u>	0	. 0	
	Sub total	4.4		. 6	5	8	10	2
	Operation factor	(x)	71	8 2	78	6 9	4 6	3
7	Utilization factor	(%)	61	6.4	50	6 2	38	2
- 3	No. 2 unit							•
			••		•		•	
	Installed capacity	(NN)	8.6	6.6	6.6	6.6	6.6	6
	Generated energy	(GWh)	372	523	409	313	3 4 3	29
3 .	Running hour	(Rr)	6,223	8,141	6,605	4,791	6,372	5,81
4.	No. of starting time	(Time)	25	14	14	. 14	8	-, -
5	Cause of trip	(Time)						
	a) Boller		9	4	9	3	2	
	b) Turbine	•	. 2	1	ĩ	. 2	. 0	
	c) Generator		2	î	2	1	2	
	d) Cooling system		i		0	:	. "	
	e) Other		1	, 0	0		0	
	Sub total		15			<u> </u>		·
e		121		7	5	_!	4	
	Operation factor	(X)	.71	93	75	. 55	73	6
١.	Villization factor	(X)	64	. 90	71	54	5 _. 9	5
	11 - 0 - 1							
	No. 3 unit		•		-	•		
	not v unit		÷ .					•
	•	(MM)	74	74	74	7 &	74	•
i	Installed capacity	(MH) (MH)				74 265		
1 2	Installed capacity Generated energy	(GWh)	461	426	405	265	240	3 9
1 2 3	Installed capacity Generated energy Running hour	(GWh)	461 6,307	426 6.225	405 7,310	265 5,636		3 9
1 2 3 4	Installed capacity Generated energy Running hour No. of starting time	(GWh) (Hr) (Time)	461 6,307	426	405 7,310 24	265 5,636 10	240	3 9
1 2 3 4	Installed capacity Generated energy Running hour No. of starting time Cause of trip	(GWh)	461 6,307 42	426 6.225 26	405 7,310 24	265 5,636 10	240 4,674 7	3 9
1 2 3 4	Installed capacity Generated energy Running hour No. of starting time Cause of trip a) Boller	(GWh) (Hr) (Time)	461 6,307 42	426 6.225 26	405 7,310 24	265 5,636 10	240 4,674 7	. 39
1 2 3 4	Installed capacity Generated energy Running hour No. of starting time Cause of trip a) Boller b) Turbine	(GWh) (Hr) (Time)	461 6.307 42 16 :14	426 6.225 26 10 4	405 7,310 24 10 5	265 5,636 10	240 4,674 7 	. 39
1 2 3 4	Installed capacity Generated energy Running hour No. of starting time Cause of trip a) Boller b) Turbine c) Generator	(GWh) (Hr) (Time)	461 6.307 42 16 :14	426 6.225 26 10 4 2	405 7,310 24 10 5	265 5.636 10 2 2	240 4.674 7 	3 9
1 2 3 4	Installed capacity Generated energy Running hour No. of starting time Cause of trip a) Boller b) Turbine c) Generator d) Cooling system	(GWh) (Hr) (Time)	461 6.307 42 16 :14	426 6.225 26 10 4 2	405 7,310 24 10 5	265 5,636 10	240 4,674 7	3 9
1 2 3 4	Installed capacity Generated energy Running hour No. of starting time Cause of trip a) Boller b) Turbine c) Generator d) Cooling system e) Other	(GWh) (Hr) (Time)	461 6,307 42 16 :14 2 0	426 6.225 26 10 4 2 1	405 7,310 24 10 5 4 3	265 5,636 10	240 4.674 7 3 2 1 0	729
1 2 3 4 5	Installed capacity Generated energy Running hour No. of starting time Cause of trip a) Boller b) Turbine c) Generator d) Cooling system e) Other Sub total	(GWh) (Hr) (Time)	461 6,307 42 16 :14 2 0 2	426 6.225 26 10 4 2 1 1	405 7,310 24 10 5 4 3	265 5,636 10	240 4,674 7 	729
1 2 3 4 5	Installed capacity Generated energy Running hour No. of starting time Cause of trip a) Boiler b) Turbine c) Generator d) Cooling system e) Other Sub total Operation factor	(GWh) (Hr) (Time) (Time)	461 6,307 42 16 :14 2 0 2 34 72	426 6.225 26 10 4 2 1 1 18 71	405 7,310 24 10 5 4 3 1	265 5,636 10 2 2 2 2 0 0 6	240 4,674 7 3 2 1 0 0	729
1 2 3 4 5	Installed capacity Generated energy Running hour No. of starting time Cause of trip a) Boller b) Turbine c) Generator d) Cooling system e) Other Sub total	(GWh) (Hr) (Time)	461 6,307 42 16 :14 2 0 2	426 6.225 26 10 4 2 1 1	405 7,310 24 10 5 4 3	265 5,636 10	240 4,674 7 3 2 1 0 0	729
1 2 3 4 5	Installed capacity Generated energy Running hour No. of starting time Cause of trip a) Boiler b) Turbine c) Generator d) Cooling system e) Other Sub total Operation factor	(GWh) (Hr) (Time) (Time)	461 6,307 42 16 :14 2 0 2 34 72 71	426 6.225 26 10 4 2 1 1 18 71	405 7,310 24 10 5 4 3 1	265 5,636 10 2 2 2 2 0 0 6	240 4,674 7 3 2 1 0 0	729
1 2 3 4 5	Installed capacity Generated energy Running hour No. of starting time Cause of trip a) Boller b) Turbine c) Generator d) Cooling system e) Other Sub total Operation factor Utilization factor	(CWh) (Hr) (Time) (Time)	461 6,307 42 16 :14 2 0 2 34 72 71	10 4 2 2 5 2 6 10 4 2 1 1 1 1 8 7 1 6 5	405 7,310 24 10 5 4 3 1 23 83 63	265 5,636 10 2 2 2 2 0 0 6	240 4,674 7 3 2 1 0 0	39
1 2 3 4 5	Installed capacity Generated energy Running hour No. of starting time Cause of trip a) Boller b) Turbine c) Generator d) Cooling system e) Other Sub total Operation factor Utilization factor Plant total Installed capacity	(CWh) (Hr) (Time) (Time) (X) (X) (MW)	461 6,307 42 16 :14 2 0 2 34 72 71	10 4 2 1 1 18 71 65	405 7,310 24 10 5 4 3 1 .23 83 63	255 5,636 10 2 2 2 2 0 0 0 5 54 41	240 4,674 7 3 2 1 0 0 5 5 3 3 7	39 729
1 2 3 4 5 6 7 1 2	Installed capacity Generated energy Running hour No. of starting time Cause of trip a) Boller b) Turbine c) Generator d) Cooling system e) Other Sub total Operation factor Utilization factor Plant total Installed capacity Generated energy	(CWh) (Hr) (Time) (Time) (X) (X) (MW) (GWh)	461 6.307 42 16 :14 2 0 2 34 72 71	10 4 2 10 4 2 1 18 71 66	405 7,310 24 10 5 4 3 1 .23 83 63	255 5,636 10 . 2 2 2 2 0 0 6 54 41	240 4,674 7 3 2 1 0 0 5 5 3 3 7	3 S 7 2 S
1 2 3 4 5 6 7 1 2 3	Installed capacity Generated energy Running hour No. of starting time Cause of trip a) Boller b) Turbine c) Generator d) Cooling system e) Other Sub total Operation factor Utilization factor Utilization factor Plant total Installed capacity Generated energy Running hour	(CWh) (Hr) (Time) (X) (X) (MW) (GWh) (Hr)	461 6.307 42 16 :14 2 0 2 34 72 71	10 4 2 1 1 18 71 66	100 5 4 3 1 1 2 3 8 3 6 3 1 7 3 9 8 9 2 0 7 7 2	265 5,636 10 2 2 2 2 0 0 6 64 41	240 4,674 7 3 2 1 0 0 0 5 5 3 3 7	35 729
1 2 3 4 5 6 7 1 2 3 4	Installed capacity Generated energy Running hour No. of starting time Cause of trip a) Boller b) Turbine c) Generator d) Cooling system e) Other Sub total Operation factor Utilization factor Utilization factor Plant total Installed capacity Generated energy Running hour No. of starting time	(CWh) (Hr) (Time) (Time) (X) (X) (MW) (GWh) (Hr) (Time)	173 1,010 18,754 88	10 4 2 10 4 2 1 18 71 66	405 7,310 24 10 5 4 3 1 .23 83 63	255 5,636 10 . 2 2 2 2 0 0 6 54 41	240 4,674 7 3 2 1 0 0 5 5 3 3 7	35 729
1 2 3 4 5 6 7 1 2 3 4	Installed capacity Generated energy Running hour No. of starting time Cause of trip a) Boller b) Turbine c) Generator d) Cooling system e) Other Sub total Operation factor Utilization factor Utilization factor Plant total Installed capacity Generated energy Running hour No. of starting time Cause of trip	(CWh) (Hr) (Time) (X) (X) (MW) (GWh) (Hr)	173 1,010 18,754 88	173 1, 134 21, 535 55	10 5 4 3 1 23 83 63 173 989 20,772	265 5,636 10 2 2 2 2 0 0 6 64 41	240 4,674 7 3 2 1 0 0 0 5 5 3 3 7	35 725
1 2 3 4 5 6 7 1 2 3 4	Installed capacity Generated energy Running hour No. of starting time Cause of trip a) Boller b) Turbine c) Generator d) Cooling system e) Other Sub total Operation factor Utilization factor Utilization factor Plant total Installed capacity Generated energy Running hour No. of starting time Cause of trip a) Boiler	(CWh) (Hr) (Time) (Time) (X) (X) (MW) (GWh) (Hr) (Time)	16 307 42 16 114 2 0 2 34 72 71	173 1, 134 21, 535 55	10 5 4 3 1 23 83 63 173 989 20,772 55	265 5,636 10 2 2 2 2 0 0 6 64 41	240 4.674 7 3 2 1 0 0 0 6 53 37	35 725
12345	Installed capacity Generated energy Running hour No. of starting time Cause of trip a) Boller b) Turbine c) Generator d) Cooling system e) Other Sub total Operation factor Utilization factor Utilization factor Plant total Installed capacity Generated energy Running hour No. of starting time Cause of trip a) Boiler b) Turbine	(CWh) (Hr) (Time) (Time) (X) (X) (MW) (GWh) (Hr) (Time)	16 307 42 16 114 2 0 2 34 72 71	173 1,134 21,535 55	10 5 4 3 1 23 83 63 173 989 20,772 55	265 5,636 10 2 2 2 2 0 0 6 64 41	240 4,674 7 3 2 1 0 0 0 5 53 37	39 729
12345	Installed capacity Generated energy Running hour No. of starting time Cause of trip a) Boller b) Turbine c) Generator d) Cooling system e) Other Sub total Operation factor Utilization factor Utilization factor Plant total Installed capacity Generated energy Running hour No. of starting time Cause of trip a) Boiler b) Turbine c) Generator	(CWh) (Hr) (Time) (Time) (X) (X) (MW) (GWh) (Hr) (Time)	16 307 42 16 114 2 0 2 34 72 71	173 1,134 21,535 55	10 5 4 3 1 23 83 63 173 989 20,772 55	265 5,636 10 2 2 2 2 0 0 6 64 41 173 757 16,493 48	240 4,674 7 3 2 1 0 0 0 5 53 37	39 729
1 2 3 4 5 6 7 1 2 3 4 5	Installed capacity Generated energy Running hour No. of starting time Cause of trip a) Boller b) Turbine c) Generator d) Cooling system e) Other Sub total Operation factor Utilization factor Utilization factor Plant total Installed capacity Generated energy Running hour No. of starting time Cause of trip a) Boiler b) Turbine c) Generator d) Cooling system	(CWh) (Hr) (Time) (Time) (X) (X) (MW) (GWh) (Hr) (Time)	16 16 16 114 2 0 2 34 72 71 71	173 1,134 21,535 55	405 7,310 24 10 5 4 3 123 83 63 173 989 20,772 55	255 5,636 10 2 2 2 2 0 0 6 64 41 173 757 16,493 48	240 4,674 7 3 2 1 0 0 0 5 5 3 3 7	39 729 15.8
1 2 3 4 5 6 7 1 2 3 4 5	Installed capacity Generated energy Running hour No. of starting time Cause of trip a) Boiler b) Turbine c) Generator d) Cooling system e) Other Sub total Operation factor Utilization factor Utilization factor Plant total Installed capacity Generated energy Running hour No. of starting time Cause of trip a) Boiler b) Turbine c) Generator d) Cooling system e) Other	(CWh) (Hr) (Time) (Time) (X) (X) (MW) (GWh) (Hr) (Time)	16 16 16 114 2 0 2 34 72 71 173 1.010 18,754 88 25 17 10 2 3	173 1,134 21,535 55	173 20, 772 173 173 173 173 173 173 173 173 173 173	255 5,636 10 2 2 2 2 0 0 6 64 41 173 757 16,493 48	240 4,674 7 3 2 1 0 0 0 5 5 3 3 7	35 729
1 2 3 4 5 6 7 1 2 3 4 5	Installed capacity Generated energy Running hour No. of starting time Cause of trip a) Boller b) Turbine c) Generator d) Cooling system e) Other Sub total Operation factor Utilization factor Utilization factor Plant total Installed capacity Generated energy Running hour No. of starting time Cause of trip a) Boiler b) Turbine c) Generator d) Cooling system	(GWh) (Hr) (Time) (Time) (X) (X) (MW) (GWh) (Hr) (Time)	16 16 16 114 2 0 2 34 72 71 173 1.010 18,754 88 25 17 10 2 3 57	173 1,134 21,535 55	173 989 20,772 55	255 5,636 10 2 2 2 2 0 0 6 64 41 173 757 16,493 48 9 7 3 2 0 0	240 4,674 7 3 2 1 0 0 5 5 3 3 7	35 729
12345	Installed capacity Generated energy Running hour No. of starting time Cause of trip a) Boiler b) Turbine c) Generator d) Cooling system e) Other Sub total Operation factor Utilization factor Utilization factor Plant total Installed capacity Generated energy Running hour No. of starting time Cause of trip a) Boiler b) Turbine c) Generator d) Cooling system e) Other	(CWh) (Hr) (Time) (Time) (X) (X) (MW) (GWh) (Hr) (Time)	16 16 16 114 2 0 2 34 72 71 173 1.010 18,754 88 25 17 10 2 3	173 1,134 21,535 55	173 20, 772 173 173 173 173 173 173 173 173 173 173	255 5,636 10 2 2 2 2 0 0 6 54 41 173 757 16,493 48 9 7 3 2 0 0	240 4,674 7 3 2 1 0 0 0 5 5 3 3 7	729 729

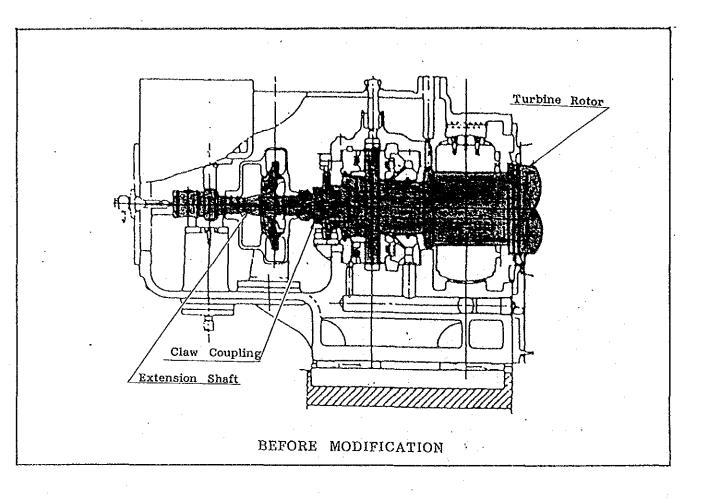
11.2 Consumption of coal and production of ash

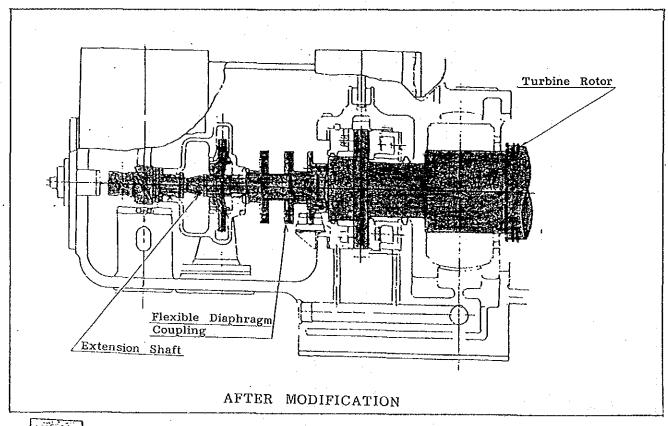
	Coal consump		/MWh)		l ash (ton)	Total
Year	U	Init No.			Unit No.		Coal ash
			111	I	<u> </u>	111	(ton)
1983	0.56	0.42	0.42	17.565	31,234	38,876	87,67
1984	0.55	0.43	0.38	15,790	40,889	30,420	87,099
1985	0.54	0.41	0.40	15,999	30,627	27,976	74,60
1986	0.53	0.41	0.41	16,342	27,323	19,573	63,238
1987	0.53	0.44	0.42	11,426	31,719	17,976	61,12
1988							
Jan.	0.52	0.45	0.41	1,002	2,235	1,915	5, 15
Feb.	0.56	0.42	0.46	1,789	2,991	3,395	8,17
Mar.	0.53	0.42	0.42	1.579	3,613	3,810	9,00
Apr.	0,53	0,41	0.42	1.585		3,786	8,63
May	0.55	0.42	0.43	777	2,716	2,579	ed 4 24 6 , 0 7
Jun		0.42	0, 41	0	1,860	2,317	4, 17
Jul.	. 0	0	0.40	0	0	3, 121	3,12
Aug.	0	0.45	0.41	0	2,099	2,526	4,62
Sep.	0	0.45	0.42	0	2, 247	474	2,72
Oct.	0.55	0.45	0,44	84	1,253	1,054	2,39
Nov.	0	0	0.42	119	0	2,367	2,48
Dec.	0	0.45	0.42	U	1,001	2,577	3, 57
	Su	b total	ĺ	6,935	23, 283	29,921	60,13

II.3 Cooling water analysis (Circulating water)

No.	Description	Unit	Data	Remarks
1 2 3 4 5	Hydrogen concentration Dissolved oxygen concentration Blectric conductivity Oxidant-reduction potential Cyanogen ion concentration	ph mg/1 uS/cm mY mg/1	7.1 7.9 110	
6 7 8 9	Chlorine ion concentration Ammonia concentration Turbidity Total hardness Total dissolved solids	mg/1 mg/1 mg/1 mg/1	8 0.41 66 39 77	

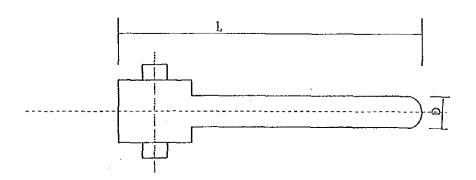

II.4 Technical data of coal and ash


Vo.	Description	Unit	Specification	Remarks
				•
1	Analysis of coal	ļ		
1	1) Chemical analysis			
j j	a) Calorific value	kcal/kg	6547	
	b) Water content	%	3. 25	
	c) Ash content	% %	15.00	
	d) Valotile	%	40.40	
	e) Carbon	% %	32.06	
1	f) Sulfur	%	1.37	
	g) Melting point	∫°Ç] 	
	2) Physical analysis of ash			
1	a) Shape		Round	
i i	b) Specific gravity	g/cm3	2.00	
	c) Specific gravity at			
	ash storage yard			
	d) Diameter	i		
	- Fly ash	μ m	125	·
	- Clinker	mm		
	e) Carbon	max.%	12	
	3) Composition of coal ash			
	a) Si02	8	66.18	
	b) AL203	%	19.05	
	c) Fe203	%	7.93	
	d) CaO		1.59	
	e) MgO	% %	0.71	
	f) K20	%	1.58	
	g) Na 20	%	0.32	
	h) S03	ž	0.07	
		.,		

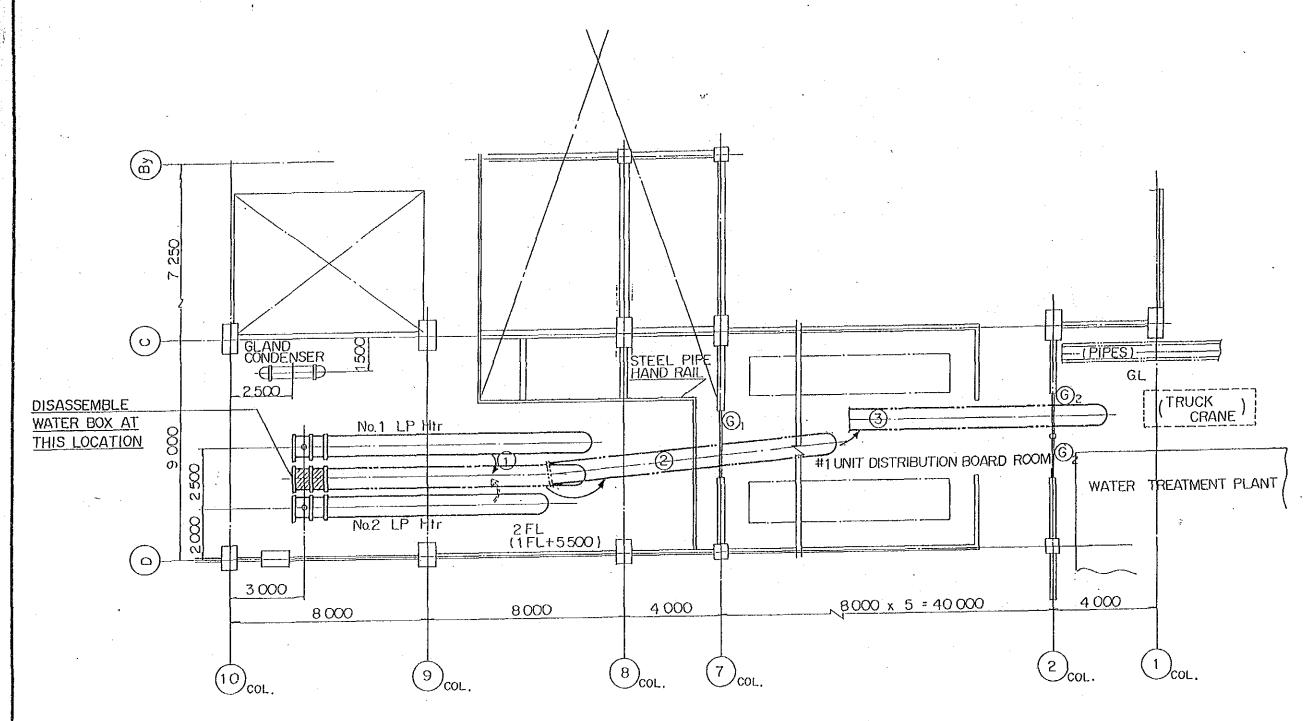

ANNEX-II DATA OF POWER-UP FOR #2 TURBINE

CONTENTS

Ⅲ.1	Heat balance diagram before turbine modifications	III -1-1
四.2	Extension shaft	m -2-1
ш.3	Technical data of feedwater heater	Ш -3-1
Ⅲ.4	Replacement procedure for feedwater	•
	- #1 & #2 L.P. heater	∭ -4-1
	- #4 HP heater	∭-4-2
W . S	Performance sheet of #2 Boiler	III -5-1



EXCHANGING PART


III - 2 EXTENSION SHAFT FOR DRIVING GOVERNOR AND MAIN OIL PUMP

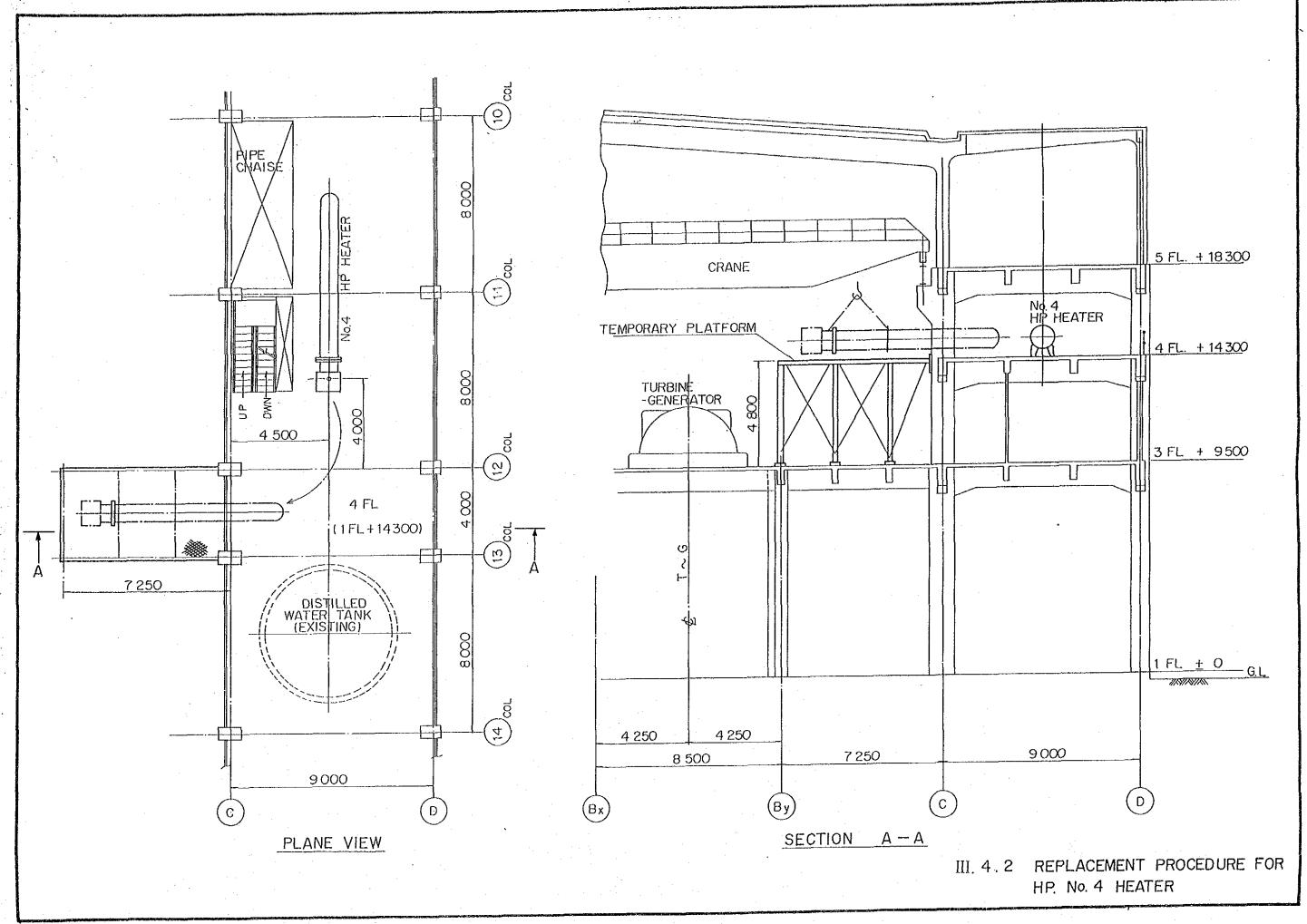
111.3 TECHNICAL DATA OF FEEDWATER HEATER

HTR. NO.	ITEMS	UNIT	66000 kW	74000 kW
	Heating surface area	mi	240	281
LP No. 1	Number of tubes		U-230	U-265
HEATER	Shell I.D.	מנים	750	800
•	Channel I.D.	mm	750	800
l	Total length	mm	11800	12100
	Heating surface area	m²	200	221
LP No. 2	Number of tubes	<u> </u>	U-230	U-265
HEATER	Shell I.D.	nm	750	800
	Channel I.D.	min	750	800
	Total length	mm	_10000	9750
ĺ	Heating surface area	m	260	300
HP No. 4	Number of tubes		U-342	U-394
HEATER	Shell I.D.	mm	860	1140
	Channel I.D.	mm	750	1030
	Total length	mm	8920	9020

	(Unit:mm)			
Description	66000 KW	74000 KW		
LP No. 1 HEATER				
D	750	800		
L	11800	12100		
LP No. 2 HEATER				
D	710	800		
L	10000	9750		
HP No. 4 HEATER				
D	860	1140		
Ł	8920	9020		

Notes:

1) \bigcirc_1 and \bigcirc_2 indicate glass windows


Dimensions of glass windows:

Width (mm) X Height (mm)

- (G)₁:
- 2,800 X 1,300
- (G)₂:
- 1,900 X 1,300
- 2) The G₁ and G₂ glass windows should be temporarily removed before taking out the existing heater units. After installing new heater units, reinstall the windows.
- 3) The No.1 LP heater unit should be taken out first followed by the No.2 unit.
- 1) The heater units should be moved out according to the following route:
 - In the No.1 Unit Distribution Room, place a heater unit on rollers (heaters are to be moved one at a time) and move it along column No. (2) towards the window side.

 Lift the heater unit by using a truck mounted crane and take it out off the powerhouse.

III. 4.1 REPLACEMENT PROCEDURE FOR LP. No.1 & LP.2 HEATERS

III. 5 Performance sheet of #2 Boiler

Design Pressure	1500 PSIG		
Fuel		COAL	COAL
Boiler Load Main Steam Saturated Auxiliary Steam At temp. Water Flow Pressure Airheater outlet Steam Temp. Prim SH outlet Steam Temp. Second SH inlet Steam Temp. Final SH outlet Pressure boiler drum Excess air leaving Gas leaving boiler Air entering boiler	% M 1b/hr M 1b/hr M 1b/hr Psig F F F Psig % M 1b/hr M 1b/hr	PEAK 661.5 8 11.5 1308 814 789 960 1437 22 870.87 812.36	MCR 626.22 8 10.7 1308 815 785 960 1425 22 834.41 778.36
TEMPERATURES			
Feed ent. unit Attemp. water temp. Air ent. unit Air Lvg. air heater Gas Lvg. furnace Gas Lvg. prim. S.H. Gas Lvg. boiler Gas Lvg. air heater	F F F F F F	470 420 57 658 1982 1368 736 287	410 410 57 653 1959 1348 729 283
GAS DRAFT LOSS			
Draft in furnace Boiler Superheater Air heater Flues Dust collector Total gas side loss	in H20 in H20 in H20 in H20 in H20 in H20 in H20	0.10 1.45 0.17 6.60 1.13 2.82 12.27	0.10 1.33 0.16 6.06 1.04 2.59 11.28
AIR PRESSURE LOSS			
Air heater Ducts Burners Steam Coil Total Air side Total Air & Gas Loss	in H20 in H20 in H20 in H20 in H20 in H20	3.14 1.34 7.39 1.22 13.09 25.35	2.88 1.23 6.78 1.12 12.01 23.29
Primary S.H. pressure drop Secondary S.H. pressure drop Fuel Burned Furnace Liberation Net heat Release Boiler efficiency Boiler efficiency	Psi Psi Lb/hr BTU/cu.ft.hr BTU/sq.ft.hr H.M.V % L.H.V %	27 102 68706 16483 72680 87.00 91.06	24 93 65824 15792 69593 87.09 91.15

HEAT LOSSES

Dry gas			%	5.54	5,45
H2 and H20 in fuel			%	4.99	4.98
Moisture in air		14 to 30 100	%	0.08	0.08
Unburned combustibl	e		%	0.66	0.65
Radiation			%	0.23	0.25
Manufacturers margi	in.		%	1.50	1.50
Total losses	100	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	%	13.00	12.91
Efficiency H.H.V.			%	87.00	87.09
Efficiency L.H.V.		A A STATE	%	91.06	91.15
		and the second			Georgia de la companya della companya della companya de la companya de la companya della company
	11.44	10 mm = 10 mm			

Performance based on fuel apecified below

The state of the s

ULTIMATE ANALYSIS		COAL	
Percent by	1. 1. 1. 1. 1. 1.	WEIGHT	ASH ANALYSIS
Ash	12 : 1 :	14.38	S102 61.54
S ·		1.04	AL203 31.42
Н2		5.38	Ti02 0.70
C		69.42	Fe203 3.87
H20		3.55	Ca0 0.07
N2	:	1.46	Mg0 0.38
02		4.77	Na20 0.44
Btu/Lb fired		12049	A Section of

PROXIMATE ANALYSIS

Per cent by	\\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.	WEIGHT
H20		3.55
Ash	•	14.38
Volatile matter		34.87
Fixed Carbon		47.20
Hardgrove Grindability		39.8

ANNEX-IV DATA OF INSTRUMENTATION FOR #2 GENERATING FACILITY

CONTENTS

IV . 1	outline of repraced system	[V-1-1
IV.2	Specification of turbine governor system modification	IV -2 - 1
IV . 3	Instrumentation data of present #2 Boiler	IV-3-1

IV. 1 OUTLINE OF REPLACED SYSTEM

Digital - ABC system 1.1 Computer system hardware (1) CPU with 512 KB memory (180286) 2 sets (2) Data network interface (ETHERNET) 2 sets (3) Serial communication interface (RS232C) 2 sets (4) Process input/output system - Analog input 96 48 - Analog output - Digital input 128 - Digital output 128 (5) RAS unit 1 set (6) Signal interface module 1 set (include signal isolator, DISTRIBUTOR) (7) Power distribution 1 set (8) System cabinet including above all 5 cabinets (W 700 mm x D 800 mm x H 2300 mm/1 cabinet) 1.2 Operator console desk (1) 20 inch color CRT (DP810) 3 sets (2) Communication interface (ETHERNET) 3 sets (3) Functional P.B. panel (3 types) 3 sets 1.3 AUTO/HAND station 22 sets (1) fitted on operator console desk 1.4 Maintenance system hardware (using IDOL) 1 set (1) 16 bit personal computer with 14 inch color CRT (2) 20MB HARD DISK (3) 1MB FLP DISK 1.5 Software of D-ABC system 1 set (1) Basic operating system (2) Control execution software (3) CRT operation (4) IDOL maintenance software Digital - E/H governor 1000 2.1 Computer system hardware 1 set (1) CPU with 512kB memory (180286) 2 sets (2) Data network interface (ETHERNET) 2 sets (3) Serial communication interface (RS232C) 2 sets (4) Process input/output system - Analog input 32 - Analog output 24 - Digital input 128 - Digital output

(1) 10001 0100110000000	1 000
(8) System cabinet including above all (W 700 mm x D 800 mm x H 2300 mm/1 c	1 set
Operator Control Panel (W 600 mm x D500 mm)	
AUTO/HAND station	
(1) Fitted on operator console desk	
Software of D-E/H system	
(1) Basic operating system(2) Control execution software(3) IDOL maintenance software	
Data acquisition system	
DAS hardware	
 (1) 32 bit CPU with 8MB memory (Micro VA (2) Communication Interface (ETHERNET) (3) Magnetic disk 159MB (4) Remote I/O system AI (4 - 20 mA) T/C (Thermo couple) DI (5) CRT of D-BCE are commonly used with 	1 1 1 100 100 100
DAS software	
Other instrumentation	
 (1) Air flow elements (Double ventury and differential pre) (2) Primary air flow elements (Slant orifice and differential pres) (3) Heavy fuel oil flow elements (Orifice and differential pressure t) (4) Coal feeder speed transmitter (5) DSH outlet temperature thermo couple (6) Pneumatic/electric converter (7) Electric/pneumatic converter 	essure transmitter) esure transmitter) eransmitter)
	Operator Control Panel (W 600 mm x D500 mm) AUTO/HAND station (1) Fitted on operator console desk Software of D-E/H system (1) Basic operating system (2) Control execution software (3) IDOL maintenance software Data acquisition system DAS hardware (1) 32 bit CPU with 8MB memory (Micro VA (2) Communication Interface (ETHERNET) (3) Magnetic disk 159MB (4) Remote 1/0 system Al (4 - 20 mA) T/C (Thermo couple) DI (5) CRT of D-BCE are commonly used with DAS software Other instrumentation (1) Air flow elements (Double ventury and differential pressure to the system of

(5) RAS unit

(6) Signal interface module

(7) Power distributuion

(include signal isolator, DISTRIBUTOR)

1 set

i set

1 set

IV. 2 Specification of Tarbine governor system modification

The exisiting mechanical governor is changed to Digital Electro-Hydraulic (DEH) governor Table-1 and Fig-1 show the comparison between mechanical governor and DEH governor. Appendix-1 shows the advantages which will be expected by this modification.

1. Outline of the work

(1) Parts of Supply

(a) EH Converter of Governing Valve	•	1 set
(b) Pilot Relay Ass'y of Governing Valve Servomoter		1 set
(c) Remote Reset Device		1 set
- Air Cylinder 1 pc		
A		

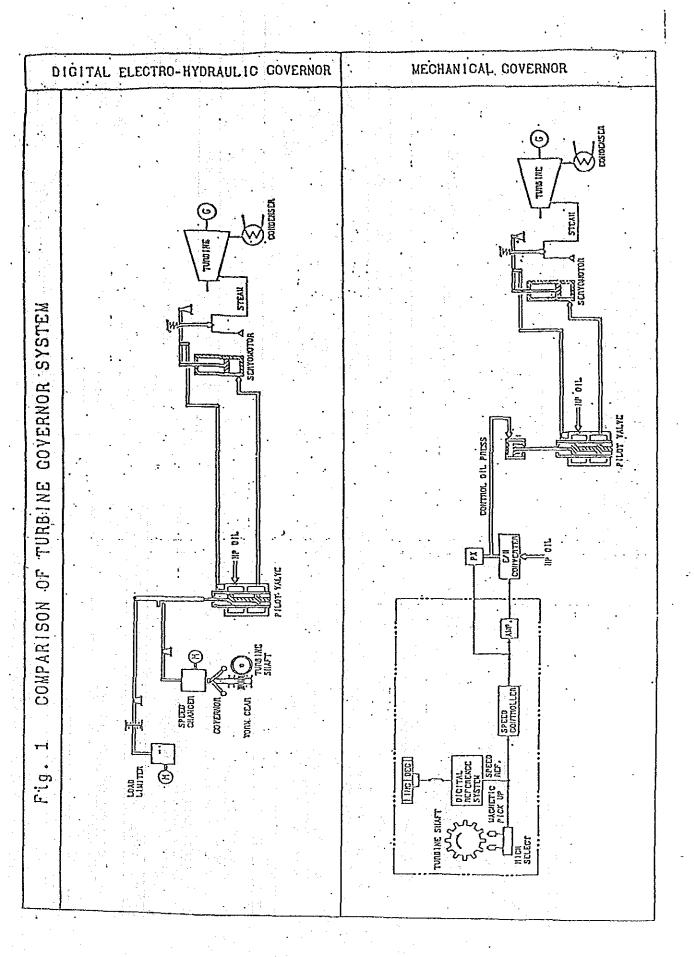
- Solenoid Valve 1 pc
- (d) Yacuum Trip Device - Pressure Switch 3 pcs
- (e) Lube. Oil Emerg. Device - Pressure Switch 2 pcs

(f)	Oil Piping Material			1 set
	· ·	•		

- (g) Welding Rod 1 set
- (h) Motor Valves 4 pcs
- (i) Foremore Valves for Motor Valves 2 pcs

(2) Removed Device

- (a) Mechanical Governor
- (b) Speed Changer
- (c) Load Limiter
- (d) Pilot Valve of Governing Valve Servomotor
- (e) Yacuum Trip Device
- (f) Lube. Oil Emerg. Device


2. Recommendation

Following Valves are also exchanged to motor valves for the operation from the control room.

- MSV Stem Leak Valve (TV-5)
- MSV Steam pipe drain Valve (TV-2)
- 1st Stage Exit drain Valve (TV-5)
- LP Gland Steam drain Valve (TV-5)

Table 1 COMPARISON OF TURBINE GOVERNOR SYSTEM

					: :
DEH GOVERNOR SYSTEM	<pre>T/G shaft → Magnetic Pick Up → Pulse Counter → Electrical Speed Control Circuit</pre>	Electrical speed control circuit	Electrical speed control circuit		Electrical Circuit (Non-Interference condition is variable)
MECHANICAL GOVERNOR SYSTEM	T/G shaft → Main Oil Pump Shaft → Worm Gear → Flexible Shaft → Governor	Displacement of governor spindle due to centrifugal force	Amplifier of displacement of governor spindle to displacement of speed changer lever	Displacement of governor spindle — Change of Hydraulic pressure — Change of position of Differential Piston — Displacement of speed changer lever Relation between displacement of governor spindle and speed changer lever can be changed by speed changer handle or governor motor	Control Lever Mechanism (Non-Interference condition is not variable)
	Speed Detection	Governor	Speed Changer		Non-Interference Control

ADVANTAGES

FLEXIBLE AND AUTOMATIC OPBRATION

- Droop can be changed during operation in order to match the net work condition. This is very suitable for the requirement of the TERMOPAIPA POWER STATIOM.
- Operator can choose the speed change rates which are set in stops (COLD STARI/ HOT STARI etc) and can change the speed automatically from turning speed to rated speed by setting the target speed.

DEN governor system adopts electrical speed control circuit, so that the speed can be controlled correctly from low speed to rated speed.

- After synchronizing, load can be controlled according to the load demand.
- load can be changed aythnaturally be setting tanget loads and load change rates. And it is also equiped with the load limiter function and the auto follow function (tanget load will follow the load limiter) where setting can be changed at random.
- Synchronizing operation can be done automatically by the combination of the automatic synchronizing system. (option)
 And other functions can be added by connecting external computers.

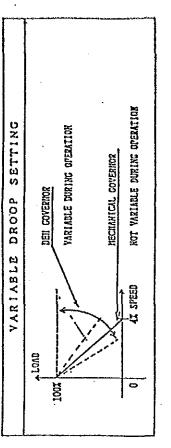
HIGHER RELIABILITY

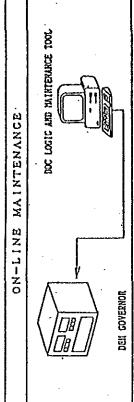
d

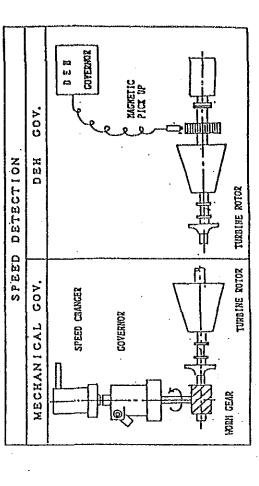
SELF-DIAGNOSTIC FUNCTION
 If some trouble happens in control circuit, the operation mode is changed "MANUAL" mode automatically and the operation can be continued.

2

 OH-LINE MAINTENANCE. Logic and parameter is control system can be modified easily during operation by the maintenance Lool (personal computer).


3. NO DETERIORATION DUE TO MECHANICAL WEAR


 GOVETRIOR DRIVING GEAR IS NOT NECESSARY To governor hunting occurs oven II there is uneven sinking of the 1/6 foundation.


LOW MAINTENANCE COST

• FREE FROM MAINTENANCE OF MECHANICAL GOVERNOR DEVICES

DEH governor system does not consist of many mechanical parts, so that the maintenance is simple, easy and at low cost.

IV.3 Indicator for boiler (1/2)

				l n:	strume	ent	Remarks
No.		Description				Unit	Homat No
1101		DOOL I PUI ON			.00	<u>. Y.O.S</u>	
1 1	Presion	aire atemperacion	0		400	mmH2O	
		aire de sellos	Ċ	→		mmH2O	
	Presion		. 0			mmH2O	
	Presion		-50	>		50 mmH20	•
		Tiro Inducido 1. A			•	mmH2O	
		Tiro Inducido 1.B				mmH2O	
		Tiro Inducido 2. A				mmH2O	
		Tiro Inducido 2.B				mmH2O	•
		a Tiro Inducido 1	. () 	60	mmH2O	
	·	Tiro Inducido 2	() →	60	mmH2O	
		a Tiro Forzado 1	()>	500	mmH2O	-
		a Tiro Forzado 2	(} →	500	mmH2O	
		Gas calentador Aire 1	() →	-100	mmH2O	
14	Entrada	Gas Calentador Aire 2	() >	-100	mmH2O	
15	Salida (Gas Calentador Aire 1	() ->	-300	mmH2O	
16	Salida (Gas Calentador Aire 2	()	-300	mmH2O	
17	Salida <i>i</i>	Aire Calentador Aire 1	() →	300	mmH2O	
18	Salida <i>i</i>	Aire Calentador Aire 2	() →	300	mmH2O	•
19	Presion	Tambor	() →	150	kg/cm2	
20	Presion	Vapor Atomizacion	() →	10	kg/cm2	
21	Presion	Fuel Oil Quemador	() →	10	kg/cm2	•
22	Presion	ACPM Pilotos	() →	6	kg/cm2	•
23	Presion	aire de sellos puluerizadores	1 () →	200	mmH2O	
24	Presion	aire de sellos puluerizadores	3 () →	200	mmH2O	*
25	Presion	aire de sellos puluerizadores	2() ->	200	mmH2O	
26	Presion	Aire de Sellos Fulverizadores	4 () →	200	mmH2O	
27	Presion	Descarga Puluerizador 3	() →	400	mmH2O	
28	Prusion	Diferencial Molino 3	() →	600	mmH2O	
29	Presion	diferencial Aire Primario 3	() →	125	mmH2O	
30	Тетрега	tura Mezcla Puluerizador 3	() >	100	<u>.c</u>	
31	Presion	Aire Primario Puluerizador 3	() →	1000	mmH2O	
32	Tempera	ture Aire Primario 3	() →	400	C	
33	Presion	Descarga Puluerizador 1	() →	400	mmH2O	
34	Presion	Diferencial Molino 1) →	600	mmH2O	
35	Presion	Diferencial Aire Primario 1	9)	125	mmH2O	
36	Темрега	tura Mezcla Puluerizador 1) →			
37	Presion	Aire Primario 1	() →	1000	mmH2O	
38	Tempera	ture Aire Primario 1	() →	400	C	
39	Presion	Descarga Pulverlzador 4	() →	400	mmH2O	
40	Presion	Diferencial Molino 4	() ->	600	mmH2O	
41	Presion	Diferencial Aire Primario 4	()>	125	mmH2O	
	_	ture Mezcla Pulv. 4) →			
		Aire Primario 4	()>		mmH20	
		ture Aire Primario 4)>			
		Descarga Pulverlzador 3	0)	400	mmH2O	
		Diferencial Molino 3	()>	600	mmH2O	
47	Presion	Diferencial Aire Primario 3	() →		mmH2O	
48	Tempera	ture Mezcla Pulv. 3	()>	100	C	
49	Presion	Aire Primario 3	() →		mmH20	
50	Tempera	ture Aire Primario 3	() ~→	400	. C	
51	Tempera	tura Vapor Sabre calentado	200)>	600	C	
_		tura Vapor Antes Atemperador) →	600	_	

IV. 3 Indicator for boiler (2/2)

******			Instrument			Re	Remarks		
No.	Description		Ran	ge	Unit	;	-		
53	Temperatura Vapor Despues Atemperador	200	 >	600	c				
54	Temperatura Gas Salida Caldera	0	 ≯	500	C				
55	Flujo Vapor Sobre calentado	0	>	300	ton/Hr				
56	Presion Vapor Sobre calentado	. 0	->	150	Kg/cm2				
57	Presion Agua Alimentacion	0	 ≯	150	Kg/cm2	4.			
58	Temperatura Agua Alimentacion	0	>	250	, C				
59	Flujo Agua Alimentacion	0	\rightarrow	35	ton/Hr				
60	Presiones Aire de Servicio Bloqueo	0	>	8	Kg/cm2				
61	Presiones Aire de Servicio Instrumento	s 0	->	8	Kg/cm2				

(x,y) = (x,y) + (x,y

III-B Meter for Boiler (input signal : 0-1 mA)

1	Amperimetro		
	(1) Ventilador Tiro Inducido 1	0 →	450 Amp
	(2) Ventilador Tiro Inducido 2	0 →	_
	(3) Ventilador Tiro Forzado 1	0 →	225 Amp
	(4) Ventilador Tiro Forzado 2	0 →	-
2	Posicionador		-
	(1) Registro Aire/Quemador 11	0 →	90 %
	(2) Registro Aire/Quemador 1C	0 .→	90, %
	(3) Registro Aire/Quemador 1D	0 →	90 %
3	Amperimetro		
	(1) Puluerizador 1	0 →	75 Amp
	(2) Ventilador Aire Primario 1	0 →	150 Amp
4	Posicionador		
	(1) Registro Aire/Quemador 21	0 →	90 %
	(2) Registro Aire/Quemador 2C	0 →	90 %
	(3) Registro Aire/Quemador 2D	0 →	90 %
5	Amperimetro Posicionador		.*
	(1) Puluerizadoe 3	0 →	75 Amp
	(2) Ventilador Aire Primario 3	0 →	150 Amp
6	Posicionador		
	(1) Registro Aire/Quemador 31	0 →	90 %
	(2) Registro Aire/Quemador 3C	0 →	90 %
	(3) Registro Aire/Quemador 3D	0 →	90 %
7	Amperimetro		
	(1) Puluerizador 4	. 0 →	75 Amp
	(2) Ventilador Aire Primario 4	0>	150 Amp
8	Posicionador		
	(1) Registro Aire Quemador 41	0 →	90 %
	(2) Registro Aire Quemador 4C	0 →	90 %
	(3) Registro Aire Quemador 4D	0 →	90 %
9	Amperimetro		
	(1) Puluerizador 2	0 →	75 Amp
	(2) Ventilador Aire Primario 2	0 →	150 Amp
	(3) Ventilador Aire de Sellos 1	0 →	50 Amp
	Ventilador Aire de Sellos 2	0 →	50 Amp

IV. 3. 3 Recorder for Boiler

0.	Description		Kar	ge	Unit	Recorder Type	Input Signal
	1) Flujo Vapor	0			ton/Hr	• • •	
-	2) Flujo Aire	0		100		Bailey	3-15 psi
(:	3) Presion Vapor	0	-	150	Kg/cm2		
-	1) CO	0		5	%		
	2) Humo	0		100		Bailey	4-20 mA
(:	3) Oxigeno	0	-	10	**		
-3 (1) Flujo Carbon	0		100			
-	2) Temp Vapor Sobre Calga	200		600	.c	Bailey	3-15 psi
(;	3) Spare						
-4 (1) Flujo Agua Alim	0	-	350	ton/Ilr		
(:	(2) Flujo Agua Atemp	0	-	30	ton/Hr	Bailey	3-15 psi
(:	(3) Nivel Domo	-300	·	400	mm		
-5 ((1) Temp Hogar	0	_	1000	. C		. •
((2) Temp Hogar	. 0	-	1000	C	FOXBORO-1	
-6 ((1) Temp Despues Atemp	. 0	_	1000	С		
(2) Temp Antes Atemp	0		1000	· C	FOXBORO-2	
-7 (1) Temp Gas Entrada AH-1						
(2) Temp Gas Entrada AH-2					*.	
	(3) Temp Gas Salida AH-1					. 61	muno i (10)
_	(4) Temp Gas Salida AH-2					L/N	TYPE-J (IC)
	(5) Temp Aire Entrada AH-1 (6) Temp Aire Entrada AH-2						į.
	(7) Temp Aire Salida AH-1						
	(8) Temp Aire Salida AH-2						
-8 T	emp Metal Primary SH-1~18					L/N	TYPE-K (CA)
-9 T	Cemp Metal Secondary SH-1~13					L/N	•

o. Description	Remarks
1 Disparo Nivel Tambor	
2 Rele Corte Combustible Disparo 3 Ventilador Tiro Forzado 1 Parado	
4 Ventilador Tiro Forzado 2 Parado	
5 Yentilador Tiro Inducido 1 Parado	
6 Ventilador tiro Inducido 2 Parado	•
7 Ventilador Aire de Sello 1 Parado	
8 Ventilador Aire de Sello 2 Parado	
9 Llama apaeada Pilotos	
10 Peligro Bajo Porcentaje Oxigeno	
11 Hogar Alta Presion Disparo	
12 Hogar Alto Vacio Disparo	
13 Alimentador de Carbon No. 3 Parado	
14 Ventilador Primario 3 Parado	
15 Puluerizador 3 Parado	
16 Alimentador de Carbon No. 1 Parado	
17 Ventilador Primariol Parado	
18 Puluerizadorl Parado	
19 Alimentador de Carbon No. 4 Parado	
20 Ventilador Primario 4 Parado	
21 Puluerizador 4 de Parado	
22 Alimentador de Carbon No. 2 Parado	
23 Ventilador Primario 2 Parado	
24 Puluerizador 2 Parado	
25 Nivel Tambor Alto	
26 Presion Tambor Alta	·
27 Nivel Tambor Bajo	
28 Presion Vapor Bajo	
29 Presion Vapor Alta	
30 Temperatura Vapor Alta	<u></u>
31 Vacio Hogar Alto	
32 Presion Hogar Alta	
33 Relacion Combustible/Aire Insuficiente	$(x_1, \dots, x_n) = (x_1, \dots, x_n) + (x_1, \dots, x_n)$
34 Presion Aire de Sello Baja	
35 Flujo de aire Bajo Minimo	
36 Gas Salida de Calentador Temperatura Alta	
37 Gas Salida de Calentador Temperatura Alta	
38 Ventilador Tiro Inducido 1 Sobre Carga Mo	
39 Ventilador Tiro Inducido 2 Sobre Carga Mo	
40 Ventilador Tiro Forzado 1 Sobre Carga Mot	
41 Ventilador Tiro Forzado 2 Sobre Carga Mot	
	OI .
42 Puluerizador 3 Aviso Alta Carga Motor	
43 Puluerizador 3 Sobre carga Motor	
44 Puluerizador 3 Temperatura Alta	
45 Alimentador 3 Falta Flujo Salida	
46 Puluerizador 1 Aviso Alta Carga Motor	
47 Puluerizador 1 Subre Carga Motor	
48 Puluerizador 1 Temperatura Alta	•
49 Alimentador 1 Falta Flujo Salida	
50 Puluerizador 4 Aviso Alta Carga Motor	
51 Puluerizador 4 Sobre Carga Motor	
52 Puluerizador 4 Temperatura Alta	
53 Alimentador 4 Falta Flujo Salida	•
54 Puluerizador 2 Auiso Alta Carga Motor	

IV. 3.4 Boiler Alarm (2/2)

No.	Description	Remarks
	56 Puluerizador 2 Puluerizazdor 1 Temperatura	a Alta
	57 Alimentador 3 Falta Flujo Entrada	
	58 Alimentador 1 Falta Flujo Entrada	•
	59 Alimentador 4 Falta Flujo Entrada	
	60 Alimentador 2 Falta Flujo Entrada	
	61 Falla Sistema Deshollinadores	
	62 Aire Instrumentos Cerrado	
	63 Falla Llama Carbon	•
	64 Presion Baja Aire Instrumentos	
	65 Baja Presion Atonizacion Pilotos	
	66 Baja Presion ACPM Pilotos	
	67 Baja Presion Diferencial Vapor Quemadores	F. O.
	68 Quemador 31 Presion Baja F.O.	
	69 F.O. Quemador 11 Presion Baja	•
	70 F.O. Quemador 3C Presion Baja	
	71 F.O. Quemador 1C Presion Baja	
	72 F.O. Quemador 3D Presion Baja	
	73 F.O. Quemador 1D Presion Baja	•
	74 Ceniza Vacio Alto Reserva	•
	75 Ceniza Vacio Bajo Reserva	:
	76 F.O. Quemador 41 Presion Baja	
	77 F.O. Quemador 21 Presion Baja	•
	78 F.O. Quemador 4C Presion Baja	•
	79 F.O. Quemador 2C Presion Baja	•
	80 F.O. Quemador 2C Presion Baja	
	81 F.O. Quemador 4D Presion Baja	
	82 F.O. Quemador 2D Presion Baja	

IV. 3. 5 Lamp Indicator (1/2)

	Data Logging System
No. Description	Design Input
1104	5 003 Sit 111940
1 Fila 1 de Quemadores Izquierda	Sin Llama y Encendido
2 Fila 1 de Quemadores Centro	Sin Llama y Encendido
4 Fila 2 de Quemadores Izquierda	Sin Llama y Encendido
5 Fila 2 de Quemadores Centro	Sin Llama y Encendido
6 Fila 2 de Quemadores Derecha	Sin Llama y Encendido
7 Fila 3 de Quemadores Izquierda	Sin Llama y Encendido
8 Fila 3 de Quemadores Centro	Sin Llama y Encendido
9 Fila 3 de Quemadores Dercha	Sin Llama y Encendido
10 Fila 4 de Quemadores Izquierda	Sin Llama y Encendido
11 Fila 4 de Quemadores Centro .	Sin Llama y Encendido
12 Fila 4 de Quemadores Derecha	Sin Llama y Encendido
13 Piloto 1 izquierda	Energizado-Llama Apagada-Listo Para Operar-En operacion
14 Piloto 1 centro	Energizado-Llama Apagada-Listo Para Operar-En operacion
15 Piloto 1 derecha 16 Piloto 2 izquierda	Energizado-Llama Apagada-Listo Para Operar-En operacion
17 Piloto 2 centro	Energizado-Llama Apagada-Listo Para Operar-En operacion
18 Piloto 2 derecha	Energizado-Llama Apagada-Listo Para Operar-En operacion Energizado-Llama Apagada-Listo Para Operar-En operacion
19 Piloto 3 izquierda	Energizado-Llama Apagada-Listo Para Operar-En operación
20 Piloto 3 centro	Energizado-Llama Apagada-Listo Para Operar-En operación
21 Piloto 3 derecha	Energizado-Llama Apagada-Listo Para Operar-En operación
22 Piloto 4 izquierda	Energizado-Llama Apagada-Listo Para Operar-En operacion
23 Piloto 4 centro	Energizado-Llama Apagada-Listo Para Operar-En operacion
24 Piloto 4 derecha	Energizado-Llama Apagada-Listo Para Operar-En operacion
25 Ventilador Tiro Inducido No. 1	Parado 1 En Marcha
26 Ventilador Tiro Inducido No. 2	Parado 2 En Marcha
27 Ventilador Tiro Forzado No.1	Parado - En Marcha
28 Ventilador Tiro Forzado No. 2	Parado - En Marcha
29 Ventilador Aire de Sello No.1	· Parado - En Marcha
30 Ventilador Aire de Sello No. 2	Parado - En Marcha
31 Puzen childern	
32 Compuerta Descarga Aire de Sello 1	Abierto y Cerrado
33 Compuerta Descarga Aire de Sello 2	Abierto y Cerrado
34 Compuerta Entrada Aire atemperacion	Abierto y Cerrado
35 Compuerta Salida Aire Calentador 1	Abierto y Cerrado
36 Compuerta Salida Aire Calentador 2	Abierto y Cerrado
37 Compuerta Entrada Gas A Calentador 1 38 Compuerta Entrada Gas A Calentador 2	Abierto y Cerrado
	Abjecto y Cerrado
39 Compuerta Ducto Interconexion Gases 40 Cierre Emergencia ACPM-Pilotos	Abierto y Cerrado Reposicionador
41 Cierre Emergencia Fuel oil Quemadores	Reposicionador
42 Cierre Maestro Combustiable	Cerrado y Adierto
43 Yalvula Principal de Vapor	Cerrado y Adierto
44 Valvula de Alivio Motarizada	Cerraba - Abierto - Automatico
45 Bomba Fuel Oil # 1	Parado - En Marcha - Sobre Carga
46 Valvula de carbon 1 Derecha	Abierto - Cerrado
47 Valvula de carbon 1 Centro	Abierto - Cerrado
48 Valvula de carbon 1 Derecha	Abierto - Cerrado
49 Valvula de carbon 2 Izquierda	Abierto - Cerrado
50 Yalvula de carbon 2 Centro	Abierto - Cerrado
51 Valvula de carbon 2 Derecha	Abierto - Cerrado
52 Valvula de carbon 3 Izquierda	Abierto - Cerrado
53 Yalvula de carbon 3 Ceatro	Abierto - Cerrado
54 Valvula de carbon 3 Derecha	Abierto - Cerrado
55 Yalvula de carbon 4 Izguierda	Abierto - Cerrado

	IV. 3. 5 Lamp Indicator (2/2)	
		Data Logging System
No.	Description	Design Input
56	Valvula de carbon 4 Centro	Abierto - Cerrado
57	Valvula de carbon 4	Abierto - Cerrado
58	Bomba Fuel Oil #2	Parada - En Marcha - Sobre Carga
59	Control Puluerizader 1	Parada - En Marcha
60	Control Puluerizader 2	Parada - En Marcha
61	Control Puluerizader 3	Parada - En Marcha
62	Control Puluerizader 4	Parada - En Marcha
63	Control Ventilador Aire Primario 1	Parado - En marcha
64	Control Ventilador Aire Primario 2	Parado - En marcha
65	Control Ventilador Aire Primario 3	Parado - En marcha
66	Control Ventilador Aire Primario 4	Parado - En marcha
67	Bomba ACPM #1	Parado - En marcha - Sobre Carga
68	Bomba ACPM #2	Parado - En marcha - Sobre Carga
69	Alimentador de carbon #1	Parado - En marcha
******	Alimentador de carbon #2	Parado - En marcha
	Alimentador de carbon #3	
	Alimentador de carbon #4	Parado - En marcha
73	Yalvula Bloqueo agua Alimentacion	Cerrado - Abierto
74	Valvula Bloqueo agua Alimentacion Arranque	Cerrado - Abierto
	Yalvula Bloqueo By-pass Agua Alimentacion	_Cerrado - Abierto
	Valvula de corte, Agua Atemperacion	Cerrado - Abierto
77	Control By-pass Agua Atemperacion	Cerrado - Abierto
78	Anunciador Alarmas	Falla CC - Falla CA
79	Anunciador Disparo	Falla CC - Falla CA
	Flujo Minimo Bomba Alimentacion 1	Abierto - Cerrado
	Flujo Minimo Bamba Alimentacion 2	Abierto - Cerrado
82	Flujo Minimo Bamba Alimentacion 3	Abierto - Cerrado
83	Bomba Alimentacion 1	Parada - En Marcha
84	Bomba Alimentacion 2	Parada - En Marcha
	Bomba Alimentacion 3	Parada - En Marcha
86	Bomba Circulacion 1	Parada - En Marcha
87	Bomba Circulacion 2	Parada - En Marcha
88	Bomba Circulacion 3	Parada - En Marcha
	Bomba Circulacion 1	Cedo - Abito
	Bomba Circulacion 2	Cedo - Abito
	Governador	
	Limitador	
	Bomba Enfriamiento intercambiadores 1	
	Bomba Enfriamiento intercambiadores 2	
	Valvuladescarga Bomba Circulacion 1	Abierto - Cerrado
	Valvuladescarga Bomba Circulacion 2	Abierto - Cerrado
97	Valvula Control rebose Tanque Agua	Abierto - Cerrado
0.0	Alimentacion	Altonia Cominda
98	Valvula Cerada Principioz	Abierto - Cerrado
99	ALR	En Servicio
	Rompe Vacio	Abierto - Cerrado - Sobre Carga
	Valvula Entrada Eyector de Aire 1	Abierto - Cerrado - Sobre Carga
102	Valvula de Patanaian de Eutrasaignes	Abierto - Cerrado - Sobre Carga
103	Valvula de Retencion de Extracciones	1-2-3
104	Bomba Transferencia Agua Tratada 1	Parada - En Marcha
	Bomba Transferencia Agua Tratada 2	Parada - En Marcha
106	Bomba Incendio Diesel	Parada - En Marcha
107	Valvula Cierre Agua Potable	Abierto - Cerrada
108	Compresor Aire Instrumentos 1	Parada - En Marcha
109	Compresor Aire Instrumentos 2	Parada - En Marcha
110	Compresor Aire Servicio	Parada - En Marcha Parada - En Marcha
111	Bomba Incendios Motor	i at ava - Dit Mat vita

ANNEX-V DATA OF COOLING WATER SYSTEM

CONTENTS

V.1	Data sheet of cooling tower	V -1-1
V . 2	Design specification of cathodic protection for	t.
	Cooling water pipe	V -2-1
V.3	Technical specification of chemical injection unit	
•	for cooling water system	V -3-1

V · 1 DATA SHEET OF COOLING TOWER

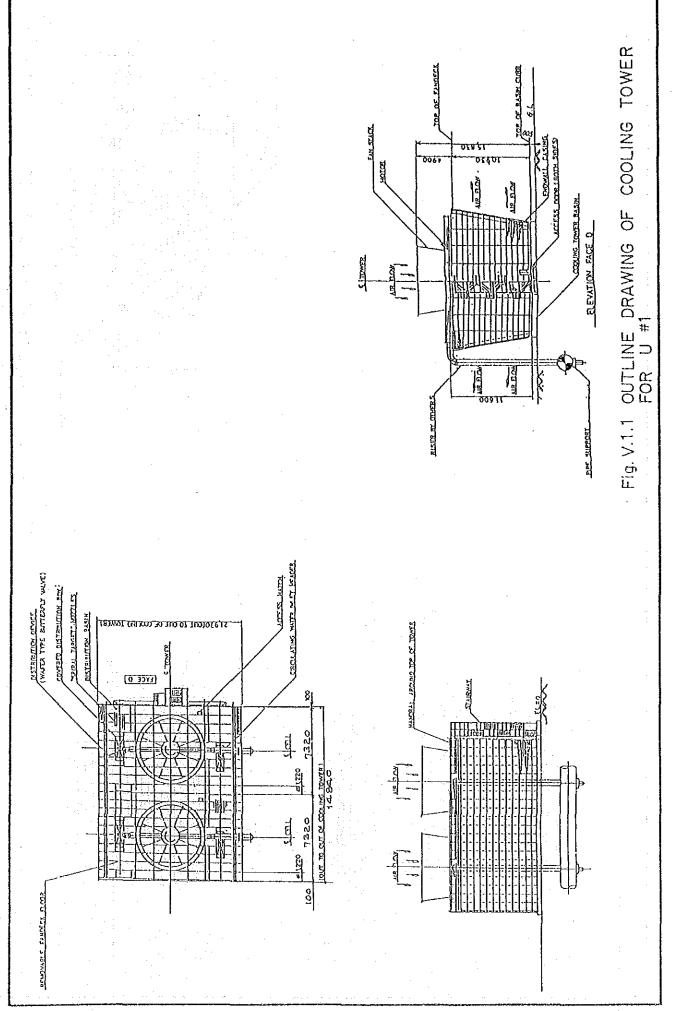
1. GENERAL

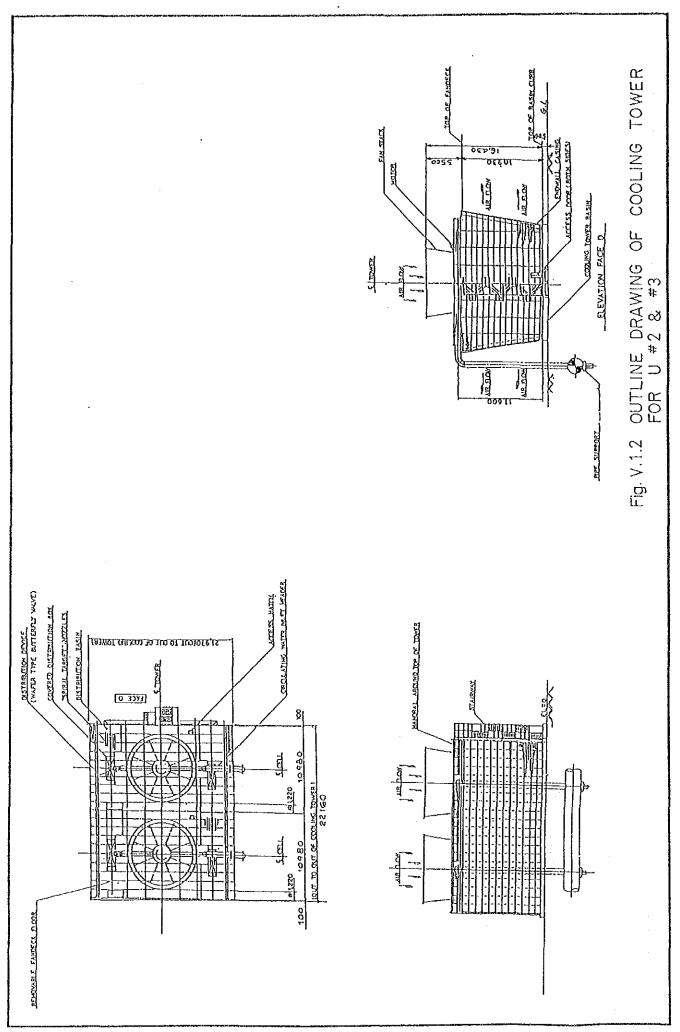
Description	UNIT 1	UNIT 2 & 3
1. Circulating Water FLOW:	7,000m³/H	13,000㎡/H
2. Hot Water Temp.;	38℃	38℃
3. Cold Water Temp.;	30℃	
4. Wet Bulb Temp.;	13℃	13℃
5. Wind Load;	6	o√H
6. Seismic load;		0.30G
7. Water Loss		en en en en en en en en en en en en en e
1) Evaporation Loss;	98.0㎡/H	182.0 ㎡/H
2) Drift Loss;	7.0 "	13.0 ··· <i>n</i>
3) Blow Down;	12.6 "	23.4 · n
(Total)	(117.6㎡/II)	(218.4 m³/H)

2. SPECIFICATION OF COOLING TOWER FOR UNIT 1: 7,000 ml/H

Item	Description		
1. Type:	Hechanical Induced Draft Cross Flow		
2. Number of Units	One unit (2 Cells/Unit)		
3. Structural Details;			
(1) Overall Tower Dimension;			
a;Tower Length;	14,840mm		
b;Tower Width;	21,970mm		
c;Height;	10,930mm (From top of basin curb)		
d;Total Height	16, 430 mm		
(2) Inside Basin Dimension			
a;Total Length;	14,940թո		
b;Total Width;	17,230mm		
c;Depth;	2,500mn		
4. Mechanical Equipment;			
(1) Fan			
a;Type;	Axial Flow Propeller Fan		
b;NO. of Fan and	2 sets, 6700mm		
Diameter	:		
c;Blade Materials;	FRP		
d;Brake HP/Fan;	65 BKW/FAN		
(2) Driver	·		
a;Type;	Outdoor use, Induction Motor		
b;Rated HP;	75 KW, 4 Poles		
c;Electric Charact.;	380V, 50Hz		
d;No. Required ;	2 sets		
(3) Speedreducer			
a;Type;	Sprial bevel/Helical gear		
b;No. Required;	2 sets		

3. SPECIFICATION OF COOLING TOWER FOR UNIT 2 & 3: 13,000 ml/H


	Item	Description
1.	Type	Hechanical Induced Draft Cross Flow
2.	Number of Units	2 Units (2 Cells/Unit)
3.	Structural Details; (Per One Unit)	
	(1) Overall Tower Dimension;	
:	a;Tower Length;	22,160mm
	b;Tower Width;	21,970mm
	c;Height;	10,930mm (From top of basin curb)
	d;Total Height	16,430 жүл
5.		
	(2) Inside Basin Dimension	
	a;Total Length;	22,260mm
. :	b;Total Width;	17,230mm
1	c;Depth;	2,500mm
4.	Hechanical Equipment;	
	(1) Fan	
	a;Type;	Axial flow Propeller Fan
	b;NO. of Fan and	2 sets/Unit, 8,535mm
	Diameter	
	c;Blade Materials;	FRP
	d;BRAKE HP/Fan;	140 BKW/FAN
:		
:	(2) Driver	
	a;Type;	Outdoor use, Induction Hotor
	b;Rated HP;	150KW, 4 Poles
:	c;Electric Charact.;	380V, 50Hz
	d;No. Required ;	3 sets
	(3) Speed reducer	
	a;Type;	Sprial bevel/Helical gear
	b;No. Required;	3 sets/Unit


4. MATERIALS OF CONSTRUCTION FOR COOLING TOWER

Item		Description		
	framework Hembers;	Douglas fir (Treated wood)		
(2)	Casing;	FRP or Asbestos Coment Boards		
(3)	Filling;	Polypropylene (Splash type)		
(4)	Filling Support	Douglas fir (Treated wood)		
(5)	Draft Eliminator;	Rigid PVC		
(6)	Eliminator Spacer;	Ploypropylene		
(7)	Fan stack;	FRP (Velocity recovery type)		
(8)	Fan Deck;	FRP or Asbestos Cement Boards		
(9)	Fan Deck;	Douglas fir (Treated wood)		
(10)	Water Distribution;	Douglas fir (Treated wood)		
(11)	Splash Nozzles;	Polypropylene		
(12)	Stairway & Handrail;	Douglas fir (Treated wood)		
(13)	Structural Connector;	Hot dip galv. carbon steel		
(14)	Ring Joint Connector;	FRP DAY DAY DE LA COMPANIA		
(15)	Bolts, Nuts, Washers;	Hot dip galv. carbon steel		
(16)	Anchor Connectors;	Hot dip galv, carbon iron		
(17)	Nails;	Stainless steel (SUS.304)		
(18)	Hech. Equip. Support;	Hot dip galv. carbon steel		
		· .		

5. COLD WATER BASIN

Item	Description
(1) Construction;	Reinforced concrete
(2) Depth;	2,500 mm - 1974 - 1974
(3) Level of Basin Curb;	

V. 2 Design Specification of Cathodic Protection System for Cooling Water Pipe

1. General

This specification covers the design of the cathodic protection system for the pipes in power plant.

2. Codes and Standards

The following codes and standards shall be used for partial guidance for the design and selection of materials for cathodic protection system.

National Association of Corrosion Engineers (NACE) Standard RP-01-69, Control of External Corrosion on Underground or Submerged Metallic Piping Systems

3. Basic Requirement

3.1 Protection Method

The galvanic anode method is applied for the protection of pipes.

3.2 Electrical Insulation

To prevent electrical connection with foreign metallic structure,— such as concrete reinforcing steel bar, earthing, casing, cable rack, other underground piping and existing pipeline—a unit of insulating flanges with insulating bolts and a gasket, is installed at each rising point of underground protected pipe.

The structures to be protected should be electrically insulated from existing pipelines and structures.

Inner surface of insulation joint installed in pipe conveying electric conductive fluid should be coated with tar epoxy of 300 micron thick or equivalent for the length shown in the following table.

Fluid	Length to be coated
Sea water	20 times of inside dia.
Fresh water(approx.80°C)	5 times of inside dia.
Water(normal temp.)	2 times of inside dia.

Also, instrument cable conduit shall be electrically insulated from the pipe to be protected.

3.3 Bonding

To reduce excessive resistance of valves, bonding cables are used.

4. Structures to be protected

4.1 Pipe Descrition

Fluid conveyed	Pipe O.D.	Length (m)	Wall thickness	Protective area
	1000	240	- ()	\/
CW	1300	170 640		
	1000	V4V		4334

4.2 Pipe Service Condition

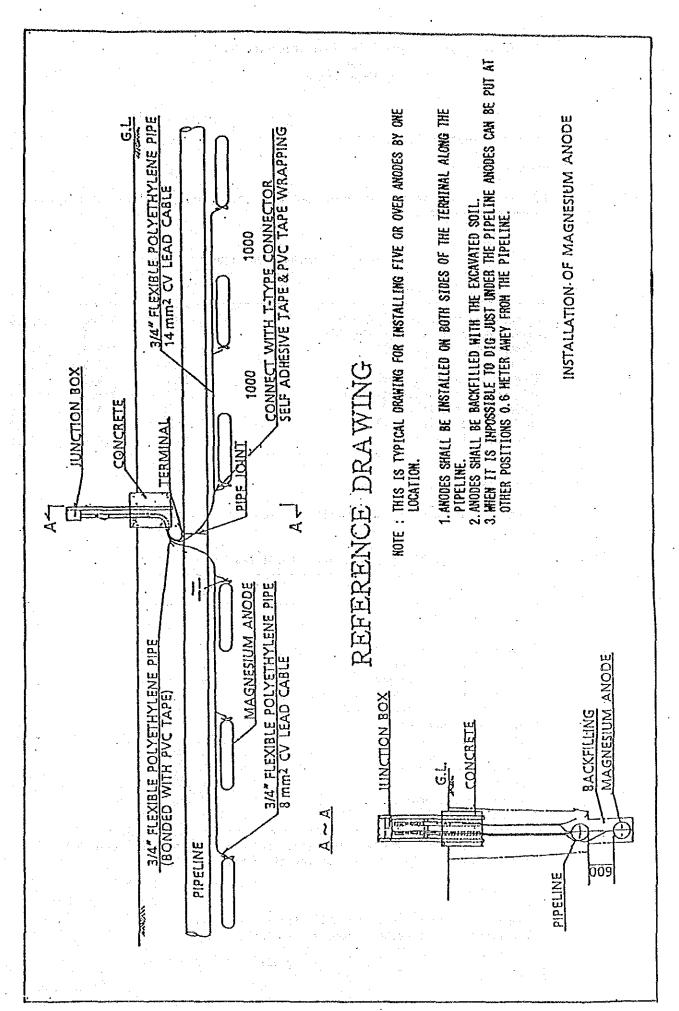
Material	Operation temp.	Pipe coating
N	(°C)	
Carbon steel	40	Asphalt Jute

- 5. Design Conditions
- 5.1 Soil Resistivity of Anode Groundbed Design

10000 ohm-cm (estimated) to be confirmed by site survey

5.2 Protective Current Density

2.0 mA/m


5.3 Anode Design Life

20 years

- 6. Design Calculation
- 6.1 Design Calculation Results

Structure	Protective current requirement (A)	Quantity of anode (pcs)
U/G pipe	8. 7	580

U/G : Underground

V. 3 Technical Specification of Chemical Injection Unit for Cooling Water System

1. Conditions of cooling water system

1-1. Water Balance

Table-1 shows the water balance of the open recirculating cooling water system at cycle number of 6.

Table-1 Water Balance and Operating Conditions

Description		UNIT-1	UNIT-2	UNIT-3
Circulating water quantitiy(m3/hr)		7, 000	13,000	13.000
Water temperature difference (°C)	14	8	. 8	8
Evaporation loss (m3/hr)	*	98.0	182.0	182.0
Drift loss (m3/hr)		7.0	13.0	13.0
Blowdown quantity (m3/hr)		12.6	23.4	23.4
Make-up water quantity (m3/hr)		117.6	218.4	218.4
Cycles of concentration		6.0	6.0	6.0
Holding water volume (m3)		1,750	3, 250	3, 250
Retention time (hr)		90.0	90.0	90.0

1-2. Make-up Water Quality

Table-2 shows Make-up water quality for the cooling water system.

Table-2 Make-up Water Qualities

Description		Values	
		1 1 1	
PH		7. 1	
Electrical conductivity (us/cm)		110	
Dissolved solids (ppm)		77	
Total hardness (CaCO3 ppm)		39	
Calcium hardness (CaCO3 ppm)			
Magnesium hardness (CaCO3 ppm)	-	_	
M-alkalinity (CaCO3 ppm)			
Chloride ion (Cl ppm)		8	, .
Silica (SiO2 ppm)		_	
Sulfate ion (So4 2- ppm)		•	
Iron (Fe ppm)		. -	
Turbidity (Sio2 ppm)		66	1
Ammonia (NH3 ppm)		0.41	

Note: Suspended solids, turbidity shall be removed by pre-treatment for make-up water or side filteration for circulating water.

Aimed value

Suspended solid: below 20 ppm in circulating water Turbidity: below 20 ppm in circulating water

Note: Calcium hardness, M-alkalinity and silica in make-up water quality should be confirmed to determine the final technical proposal of chemical treatement program.

2. Recommended Chemical Treatment Program

2-1. Corrosion and Scale Control

2-1-1 Initial Treatment

Polyphosphate and Polymer are recommended as a corrosion inhibitor and a scale inhibitor for initial treatment.

The dosage of the chemicals and the conditions of initial treatment are shown in Table-3.

Table-3 Initial Treatment Condition

Description	Yalues
Dosage of chemicals *1	
Polyphosphate	400 ppm
Polymer	200 ppm
Initial pH of cooling water	6.0 - 7.0
Period of initial treatment	Longer than 24 hours

^{*}The dosage against holding water volume

Initial treatment shall be generally carried out without heat load.

2-1-2 Maintenance Treatment

The inhibitors based treatment program by phosphates and polymer is recommended for cooling water treatment. Its concept is to control both corrosion and scale under weak alkaline cooling water by combination use of synthetic polymer and phosphate. Phosphates and polymer shall be injected into cooling tower basin or cooling water line by using a quantitative pump for maintaining the specified concentration in cooling water. The control range of cooling water quality is shown in Table-4.

Table-4 Standard Cooling Water Control Range

Description	Values
PH (at 25°C)	7.0 - 8.5 *1
M-alkalinity (CaCO3 ppm)	below 200
Ca-hardness (CaCo3 ppm)	50 - 150
Silica (Sio2 ppm)	below 130
Turbidity (degree)	below 20
Total dissolved solids (ppm) Chloride ion (C1-)	below 1,500
+ Sulfate ion (Sol 2) (ppm)	below 1,000
KURITA S-3300 (ppm)	80 - 60

Table-5 Application Method of KURITA S-3300

Description	and the depth of the	Yalues
Dosage (ppm against blowdown) Dosing frequency Dosing point		60 - 80 Continuous dosing Cooling tower basin

2-2. Bio-fouling Control

2-2-1 Chlorination

Chlorination is recommended for sterilization and reducing the bacteria number in cooling water. The recommended condition of chlorination is shown in Table-6.

Table-6 Application Method of Chlorination

Description	Specification
Residual chlorine (C12 ppm)	0.5-1.0 in the cooling water
Dosing frequency	Continuously for 3-5 hrs per day
Dosing point	Cooling tower basin

2-2-2 Slime Control Agent

The application of slime control agent, Nitrogenous compounds and organic polyer is recommended together with chlorination. The combined treatment can minimize the corrosive chlorine concentration in water and demonstrates excellent biofouling control.

The proposed application method of Nitrogenous compounds and organic polymer is shown in Table-7.

Table-7 Application Method of Nitrogenous compounds and organic polymer

Description	 Specification
Dosage (ppm against holding water volume) Dosing frequency Dosing point	100 once/2 weeks Cooling water basin

3. Chemical Consumption

The estimated chemical consumption for initial treatment and maintenance treatment based on the water balance specified in Table-1 are shown in Table-8 and Table-9 respectively.

The initial treatment is carried out at the start-up of plant and/or after the annual turn-around of plant.

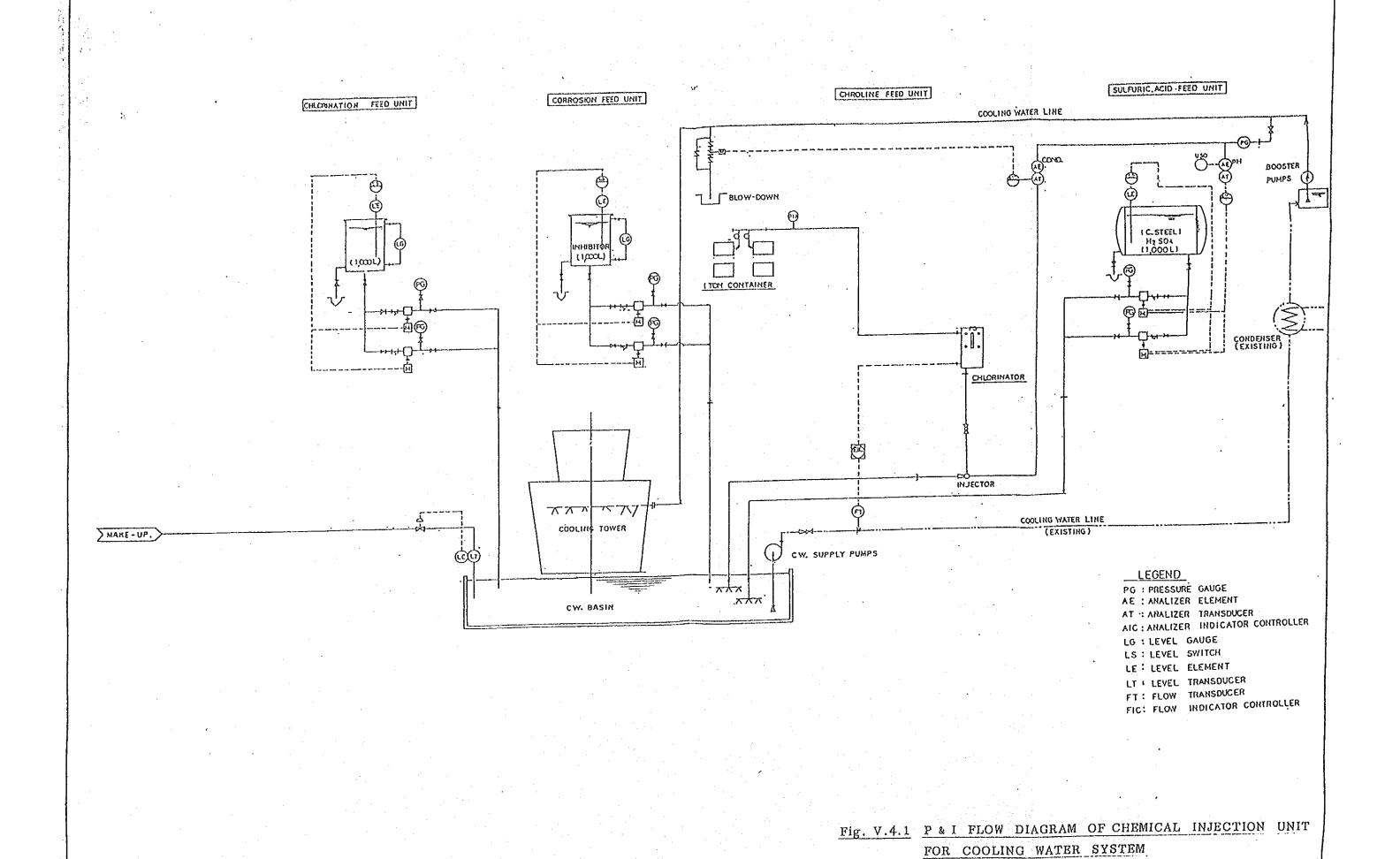
Table-8 Chemical consumption for Initial Treatment

Descriptio	n Dosago	e Annual Unit-1	Consumption Unit-2 Unit-3	
Polyphosphates Polymer	400 ppi 200 ppi		1,300kg 1,300kg 650kg 650kg	

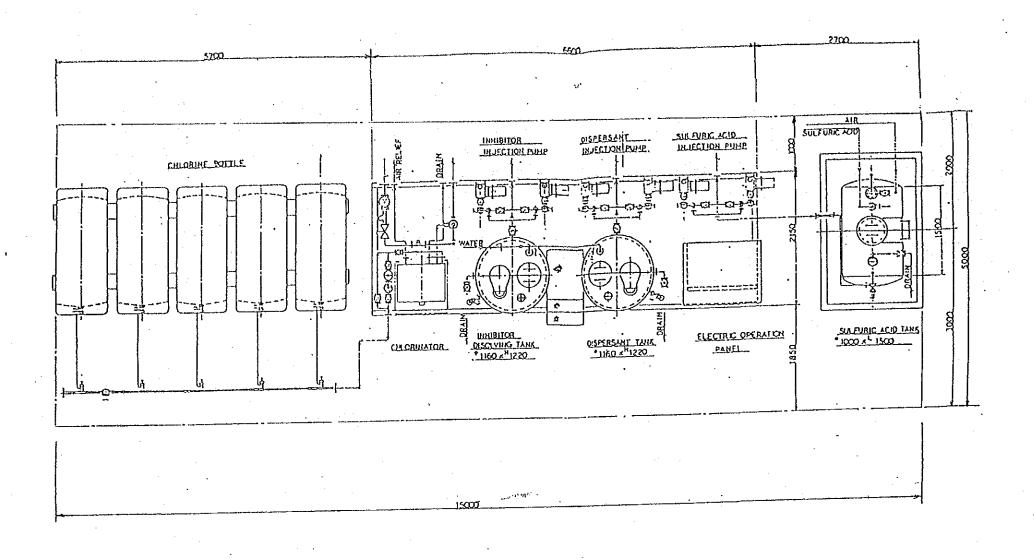
Table-9 Chemical consumption for Maintenance Treatment

Chemical	Dosage	Annual Unit-1	Consumption Unit-2	Unit-3
Polyphosphates and polymer	70 ppm*2	13, 328Kg	24.752Kg	24, 752Kg
Nitrogenous compounds and organic polymer	100 ppm/15 days *1	4, 200Kg	7,800Kg	7,800Kg
Chlorine	1 ppm*4	9,324Kg	17,316Kg	17,316Kg

- *1 Concentration against holding water volume (5000 m3) of the system.
- *2 Concentration against the total blowdown quantity.
- *3 For 8000 hours operation.
- *4 Concentration against recirculating water quantity.
- *5 Chlorine is out of scope.


Drawing

- 4-1. P&I flow diagram for chemical injection unit
- 4-2. Layout drawing for chemical injection unit


Note

This is a brief proposal based on the given conditions as show on TABLE-1 and TABLE-2.

When the conditions will be very changed in the actual operation, the chemical treatment program, especially the cycle number might be re-considered.

····V-3-5

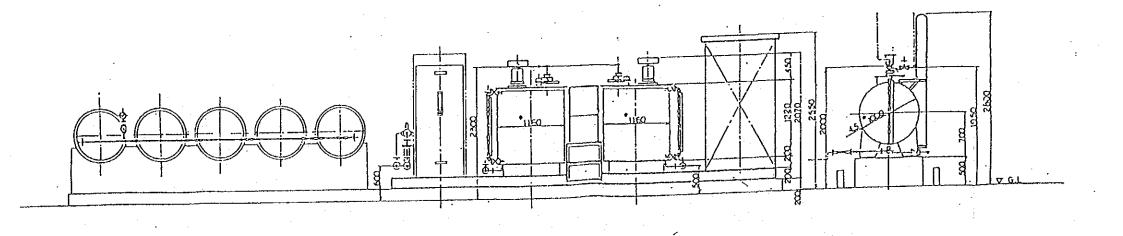


Fig. V.4.2 GENERAL ARRANGEMENT OF CHEMICAL INJECTION UNIT FOR COOLING WATER SYSTEM

V. 4 Cooling System Maintenance and Inspection Manual (Draft)

Foreward

The cooling towers, cooling water booster pumps, circulating pumps, and condenser units are connected by the cooling system through pipelines and concrete ducts.

The following equipment units are involved in the cooling system:

No.	Name of Equipment Unit	Numbe	гof U	nits	Remarks
Ĺ		No. 1	No. 2	No. 3	
1	Cooling Tower	1	1	1	
2	Circulating Pump	1+1	1+1	1+1	One for normal use and
	(existing)				one for standby
3	Condenser (existing)	1	1	1	
4	Cooling Water	1+1	1+1	1+1	One for normal use and
	Booster Pump]		one for standby
5	Make-up]			Two for normal use and
	Water Pump		2+1		one for standby
6	Chemical Injection	1	1	1	
	Equipment	<u>L</u> .			
7	Auxiliary Cooling				One for normal use and
	Water Pump (existing)	1+1	1+1	1+1	one for standby

Since the operation, inspection, and maintenance manual for equipment unit will be provided by the equipment supplier, only a general outline of the cooling system's operation and maintenance method is described hereunder.

- 1. Item to be Considered for daily Operational Maintenance
- (1) Air Temperature and Cooling Water Temperature
 Air and cooling water temperatures are factors having a great affect on the
 thermal efficiency of power generating equipment,
 it is important that they be observed continuously. The observations made
 over a long period of time should be compared to the equipments' design
 temperatures.
- (2) Cooling Water Qualities

Cooling water that is condensed by condenser units is concentrated when it circulates through the cooling water system. Certain types of water qualities are detrimental to the equipment units and piping of the cooling water system. It is important for possible problems to be forecast and to improve the quality of the cooling water by setting the concentration levels, by adding chemicals to the water, and by properly conducting blowdown operations.

For detailed information pertaining to the operation and maintenance of the chemical injection equipment, reference should be made to the manuals provided by the manufacturer.

(3) Mixture of Foreign Substances

Any mixture of foreign substances that may damage the cooling system pumps or that may interrupt plant operations by clogging the condenser tubes must be avoided.

2. Inspection of Cooling System

Items and objectives of the general inspections of the cooling system are as shown in Table. The inspection schedule for the cooling towers are attached to ANNEX III for reference purposes.

- 3. Inspection and maintenance schedule for cooling tower
- 3.1 Time to Replace Mechanical Equipment Parts.

and the last of the local plants had been present and the Mechanical equipment parts are manufactured to withstand use for a long period of time. To ensure smooth operation, however, it is advisable to disassemble mechanical equipment for inspection and replacement of the parts according to the following schedule:

- (1) Replacement of speed reducer oil every 3 years JOALS seal
- (2) Disassembly and inspection of speed --- every & years reducer and replacement of shaft bearing
- Disassembly of motor and representations... (3) Disassembly of motor and replacement of — as per motor instruction
- (4) Replacement of fan clamping bolt
- (5) Replacement of speed reducer flex- ---every 3 years ible hose
- 3.2 Fill and Eliminator.

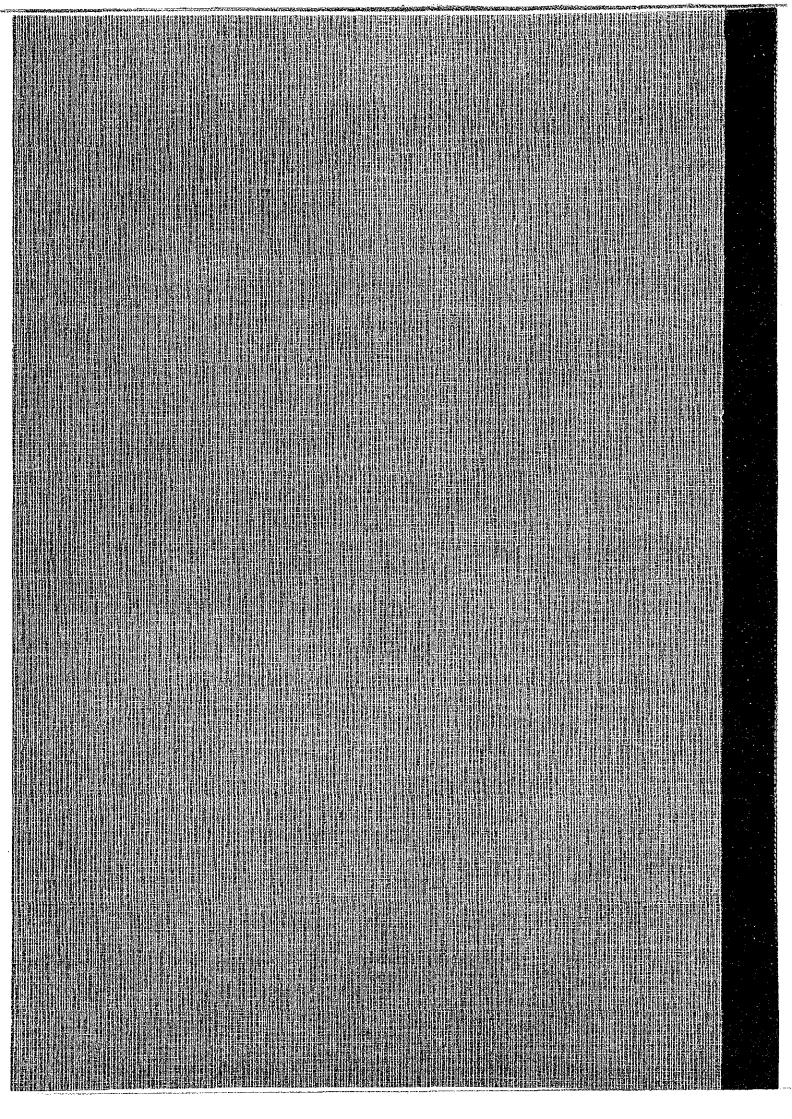
Remove dirt and algae from fill and eliminator to prevent clogging.

Inspection and maintenance schedule

Please refer to attached Table-1.

nga atomika ang kalawat kataloga Barata Barata Barata Mangaloga kanaloga Barata Barata Barata Barata Barata Barata Mangaloga Barata

Table-1 inspection of Cooling System (1 of 3)


	Remarks	Wet builb and dry builb temperatures and relative humidity (%)		Turbidty, electric	conductivity, and PR values must be observed	daily.			Inspection of foreign substance in water tanks that may demage pump propellers, shafts, or casings, or that may clog the cooling water pipes of the condensors. If foreign substances are found, they must be removed immediately.		
	Evaluation Standard		Design temperature of condensers and cooling towers	1) Values shown in	Table inspect especially for	corrosive components such as acid and ammonia.	•	2) Values shown in the chemical injection equipment manuals provided by manufacturers.	inspection of foreign substance that may damage pump propellers, casings, or that may clog the copies of the condensers. If for are found, they must be removed		i) Compare with daily recorded values
	Method of Inspection	Visual thermometer reading and temperature recording	Visual readings of temperature gages and temperature recording	1) Nater sampling and	water quality analysis by water	test equipment			Visual inspection Visual inspection 1) Observation of injet and outlet pressure differences	i) By touching the units. If necessary, observe by vibration gage	1) By hearing 1) By touching the units 1f necessary, observe by temperature gage 1) Visual observation of water level indica- tors and recording.
Frequency	Periodic in- spection Time						 				
Observation	Weekly			0	0	0	· · · ·				
0ps	Daily	0	000	◁	4	4	·.		00 0	0	0 0 0
	Location and Purpose of Inspection	At appropriate outdoor and indoor locations at the power station	(1) At cooling tower inlets (2) At cooling tower outlets (3) Make up water (at the inlet of cooling tower water basin)	(1) Cooling tower basins	(2) Booster pump basins (or booster pump outlets)	(3) Make up water (at the inlets of cooling tower water basins)			(1) Cooling tower water basins (2) booster pump basins and basin inlets bar-screens (3) inlet strainers of auxiliary cooling water pumps	(1) Presence of excessive vibrations (drive shafts, fans, motors, reduction gears)	(2) Presence of abnormal sound (fans, motors, reduction gears) (3) Overheating of motors (4) Abnormal water level in basin
	Inspection Item	Air Temperature (°C)	Cooling Water Temperature (°C)	Water Quality					Mixture of foreign Substance	Operating Conditions of Cooling Towers	
	No.	-	7	∾ .					4	w	

· Table-1 inspection of Cooling System (2 of 3)

			õ	SPETVALIC	Observation Frequency			
No.	Inspection Item	Location and Purpose of Inspection	Daily	Weekly	Preiodic In- spection Time	Method of Inspection	Evaluation Standard	Remarks
م	Operating Conditions of	(1) Presence of exessive vibration	0			 By touching the units. If necessary, 		
	Pumps					observe by vibration		
		(2) Overheating	0			1) by touching the units.		•
						(f necessary,		
		(3) Abnormal sound	0			temperature gauge.	:	:
		(4) Abnormal discharge pressure			0	1) confirm valve	I) Compare with daily	1) Measure pump discharge
					•	opening	recorded values	pressure under valve
				٠				closed conditions
								Examine the annual
								changes of the pressures
				-	•	•		to determine the inter-
					·			inspection.
	<u> </u>		•					
		(5) Abnormality of bearings	0			I) Visual inspection	I) Confirm smooth	1) Replace parts having
		(6) To measure disassembled parts			C	1) Based on buse same	1) Based on outp manual	from allowable values.
		disensions and check electrical		-)		(provided	***************************************
		System				and coil resistance		2) Replace Torn parts
					~4	3) Confirmation of rotat-		
						101,50175 811		
		(7) To confirm adequate cooling liqui	٠.	-				
		through a sight glass of self-				-		-
	;	(a) ror non-sell-cooling type pumps,						·
		inlet pressure is slightly						
		higher (0.3-0.4 kg/cm2) than the						
		pump discharge pressure		· ·				•
-	Valves							
		(1) Valve glands	0		4	Visual inspection	Water leakage through	1) Befasten gland or replace
		(2) Valve seat seals		-	С	inspection by disassemb-	Existence of cracks.	grand gasacts
)	ring, based on valve	corrosion, and wear.	
. 1					(manual		
Ì		(3) Spindle and moving part			<u> </u>		printed to acitodes	
		(4) Water level control valves	0			Visual inspection	conditions (per manu-	
							facturer s manuals)	
						_		

Table-1 Inspection of Cooling System (3 of 3)

		1	Observation Frequency	Frequency			
o l	Inspection Item	Location and Purpose of Inspection Da	lyweeklyPr sp	Preiodic In- spection Time	Method of Inspection	Evaluation Standard	Remarks
_∞	Chemical Injec-						
	(1) Pump opera-	(1) Oil level in crankcase			Visual inspection	i) Oil level must be) Stop operation and replace
	condition	(2) 011 leakage through carnkcase parts				allowable levels	excessive
		(3) Chemical liquid leakage through joints					Actabrem joints) if leakage is excessive, replace gaskets
		(4) Presence of excessive vibration) By touching, Observe by vibration gauge if		
		(5) Overheating			necessary 1) By touching Observe by vibration gauge if necessary		
		(6) Presence of abnormal sound			l) By hearing		
-		(7) Discharge pressure			By gauge		·
		(8) Discharge rate				•	
		(9) Inspection of disassembled parts			Based on manufacturer's manual	·	
	(2) Confirmation of chemical quantity	(1) Examination of remaining quanitity (2) Examination of operating conditions of self-melting type equipment			ual inspection	Based on manufacturuer's manual	
	(3) Leakage of equipment parts	(1) Leakage through valve glands, various containers, liquid level gauges, pipes and pipe fitting joints		-	 Visual inspection 		Refasten joints
	(4) Instruments i) Relief Valves	(1) Leakage (2) Operating test for set pressure			 Visual inspection Based on manufacture's 		1) Smooth out poor seats or replace then
	ii) Presure Cauges	(1) Operating conditions			manual (1) Visual inspection	Compare with daily recorded pressures	1) Readiust if necessary
~	(S) Control systems	(1) Adjustment of each control equipment unit and testing of entire system			Based on manufacturer's manual	Based on manufacturer's manual	
	(6) Warning systems	(1) Operating test			Based on manufacturer's manual	Based on manufacturer's manual	
					tors and recording.		

