3) Benefication Results

It can be estimated on the basis of the results of beneficiation tests made in the present survey in Mexico that mixture processing will result in an increase in Au and Ag recovery rates by 6 to 7% in comparison with those for separate processing of oxidized ore and sulfidized ore.

Consequently, when the modernization plan is carried out, the results obtained for separate processing of cyanidation and bulk flotation (records for January to June, 1989, Table 3.7.2.) are expected to be improved as follows:

Au recovery rate: 25.9% x 1.067 = 27.6%

Ag recovery rate: 62.7% x 1.067 = 66.9%

Table 8.1.2 shows the results expected to be obtained after the system is improved.

4) Rough Estimate of the Construction Cost for Improvement of the Processing System

Figures 8.4.1 and 8.4.2 show the present system and the improved system respectively.

Machines to be installed

Conditioner

1 unit (11 KW)

Flotator

10 cells (30 KW)

Pump

3 units (18 KW)

Estimate of Construction Cost:

Cost of Construction including Piping Work: 18,500,000 pesos

(2) Instrumentation

- 1) Installation of Constant Mill Feeder
 - a) Purpose

The amount of ore to be fed to the ball mills is continuously measured, and the exeed of the fine grain bin extraction conveyor is automatically controlled, so that ore is fed to the ball mills at a constant rate.

b) Contents of Construction Work and Rough Estimate of the Construction Cost

Three feeder sets will be installed for No. 1, No. 2 and No. 3 ball mills.

Specifications:

Scale (CS-EC-S1, maximum weighing capacity 90 t/n)

Speed controller EH782

Wide range meter, Converter

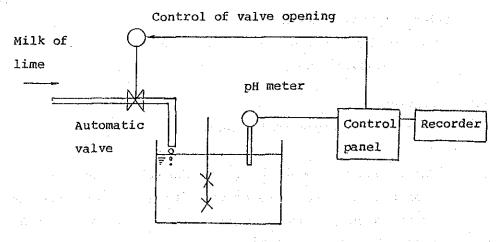
VS motor (2.2 KW)

Control panel, Operation panel

Rough Estimate of the Cost:

Installation cost

106,000,000 pesos


Price of three feeder sets in total

318,000,000 pesos

- c) Effects:
 - o Stabilization of the processing rate
 - o Reduction in the occurrence of operation problems
 - o Improvement of the operation rate of the facilities
 - o Reduction in the maintenance cost
 - o Improvement of the recovery rates
 - o Labor saving

2) Automatic pH Control System

- a) Purpose: Measurement of cyanidation pH with an electrode and automatic control of the amount of lime to be added.
- b) Control Flow:

Cyanidation agitator

c) Specifications and Rough Estimate of the Cost:

pH meter

AC100V, four-wise type

Controller

AC 100V, IN OUT DC 4-20 mA

Recorder

AC 100V, IN DC4-20 mA

Line control valve

Overal cost including the construction: 34,200,000 pesos

- d) Effects:
 - o Stabilization of cyanidation pH
 - o Improvement of the recovery rates for Au and Ag
 - o Reduction in line consumption
- 3) Problem Alarm System for Mechanical and Electrical Facilities
 - a) Purpose: To prevent problems due to overload meter relays are installed in the motors of major machinery, so that an alarm is given when the load exceeds a set level, and the machine is automatically shut down when the load reaches a limit value.
 - b) Specifications and Rough Eximate of the Cost

Meter relays

20

Display panel

Power supply set

Total cost including installation: 55,650,000 pesos

- c) Effects
 - o Reduction in the occurrence of failure of a motor or equipment
 - o Reduction in the maintenance cost
 - o Improvement of the operation rate of the facilities
 - o Labor saving
- 4) Television Camera Monitoring System
 - a) Purpose: The operation conditions of the mechanical equipment and the systems are monitored with television cameras to detect abnormalities in the early stages.
 - b) Monitoring Locations

Ball mill feeding ports

3 locations

Flotator floss

2 locations

Cyanidation thickener extract

2 locations

Total

7 locations

c) Specifications and Rough Estimate of the Cost

Monitor

Monochrome

1 unit

Camera

Monochrome

7

Total Cost including installation cost: 79,700,000 pesos

- d) Effects:
 - o Prevention of problems
 - o Reduction in the maintenance cost
 - o Improvement of the operation rates of the equipment
 - o Improvement of the recovery rates
 - o Improvement of the working environment

(3) Personnel Planning

The total number of workers of Barones Beneficiation Plant is 122, and this is thought to be to many for the scale of a plant for beneficiation of about 9,000 tons of ore.

The plant can be operated and managed by 101 workers, the number being reduced by 21, when the ore purchase conditions are improved and the administration section is rationalized, as shown in the modernization plan commion to the three beneficiation plants, and the beneficiation process is improved and instrumentation is completed according to the modernization plan for the existing facilities of Barones Beneficiation Plant.

Since 21 additional workers are required to operate the new plant to be built on the site of Barones Beneficiation Plant according to the improvement plan, all 122 worker can still be employed in Barones Plant.

Personnel Planning Table

O- dian	Nu	mber of Worker	s
Section. Position	Moderniza- tion Plan	State as of September, 19891	Change
Operation section	(27)	(30)	(3)
Three-shift foremen	5	5	la •
Ore receiving	2	-2	
Crushing	6	6	
Grinding	3	6	3
Flotation	3	3	
Cyanidation	6	6	
Concentrate dehydration	2	2	
Maintenance	(20)	(23)	(3)
Mechanical service	15	17	2
Electrical service	5	6	1
Experiments and analysis	12	14	2
Administration	(39)	(52)	(13)
Accounting, supply	11	13	2
Commissioning, ore purchasing	5	9	4
Drivers and others	23	30	7
Staff	3	3	
Total	101	122	21

(4) Economic Evaluation

1)

t of Facility Investment	000 peso
Improvement of the processing system	18,500
Instrumentation	487,550
Constant mill feeder	318,000
Automatic pH control system	34,200
Problem alarm system	55,650
Television camera monitoring system	79,700
Subtotal	506,050
Rationalization of the administration	
	106.000
Section	106,000
Total	612,050,000

2) Balance Improvement

a) Improvement of the recovery rates

The sales of concentrates are estimated as follows on the basis of the beneficiation results which will be achieved after the existing facilities are modernized:

	(US\$/month)	(000 pesos/month)
Bulk cocentrate	136,868	362,700
Au, Ag precipitate	17,482	46,327
Total	154,350	409,027

Sales of each kind of metal

		(000pesos/month)	Beneficiation recovery rate (%)	Sales for 2% in the benficiation recovery rate (000 pesos/ month.%)
Au	10,143	26,879	23.5	1,144
Ag	144,207	382,148	59.9	6,380
Total	154,350	409,027	2000 20	

When the beneficiation process is improved, the recovery rates of Au and Ag will increase by approximately 1.4% and 2.8%, respectively. When the instrumentation plan is carried out, they will also increase by 0.6% and 1.2%, respectively. Consequently, the Au recovery rate will increase by 2.0%, and the Ag recovery rate will increase by 4.0%.

Sales Increase

Au 1,144,000 pesos/month.% x 2.0% = 2,288,000 pesos/month

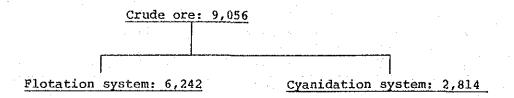
Ag 6,380,000 pesos/month.% x 4.0% = 25,520,000 pesos/month

Total 27,808,000 pesos/month

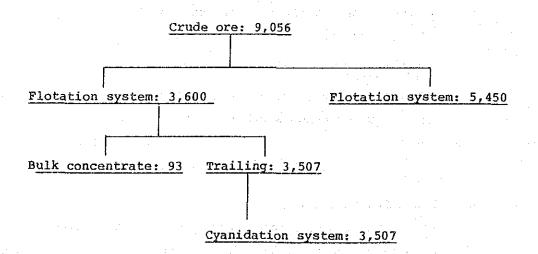
(3,071 pesos/ton of crude ore)

b) Reduction in Labor Cost

According to the records of Barones Beneficiation Plant from January to June, 1989, the average labor cost per man is estimated as follows:


Wages 539,000 pesos/man.month
Subordinate 154,000 pesos/man.month
personnel expenses
Total 703,000 pesos/man.month

When the number of workers is decreased by 21, the labor cost reduction will be


703,000 pesos/man.month x 21 men = 14,763,000 pesos/month

- c) Expenses for Consumables Materials
 - 1 Amount of the ore processed in each system (t/month)

Present State (Record for January to June, 1989)

Modernization Plan

Expenses for Consumable Materials per Ton of Crude Ore According to the records for January to June, 1989 the expenses for consumable materials used in the flotation system and the cyanidation system amount to 1,991 pesos/ton of crude ore and 9,703 pesos/ton of crude ore, respectively.

In the modernization plan, the expense for consumable materials used in the flotation system is expected to be 1,991 pesos/ton crude ore, the same amount as that in the actual records. On other hand, the expense for

consumable materials used per ton of crude ore in the cyanidation system is expected to be about 70% of the amount in the actual records (6,792 pesos/ton of crude ore), because 70 to 80% of Au and Ag is recovered in the previous stage of flotation, and consumption of reagents such as sodium cyanide in the cyanitation system is decreased.

3 Increase in the Expenses for Consumable Materials Present state

1,991 pesos/t x 6,242 t/month + 9,730 pesos/t x 2,814 t/month = 39,732,000 pesos/month

Modernization Plan

1,991 pesos/t x (3,600 + 5,456) t/month x 6,792 pesos/t x 3,507 t/month

= 41,851,000 pesos/month

Increase

14,851-39,732 = 2,119,000 pesos/month

d) Increase in the Power Expenses

The additional power required by system modification such as installation of the flotator and other machines is 59 kW, which results in an increase of the power expenses as follows:

59 KW x 52% x 24 HR/day x 26 day/month x 97.0 pesos/KWH = 1.857.000 pesos/month

Overall Balance Improvement:

$(1, \dots, 1, \dots, 1) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times n}$	00 pesos/month	pesos/ton of
		crude ore
Improvement of		·
recovery rates	· ·	
Reduction of labor		٠
cost	14,763	1,630
Increase of expenses		
for consumable		
materials		234
Increase in power		4
expenses	1,857	205
Total	38,595	4,262

Investment Efficiency

Facility Investment

612,050,000 pesos

Depreciation Fund (10 years) 4,845,000 pesos/month

 $612,050 \times 0.95 \times 1/10 \times 1/12 = 4,845$

Interest (5% per year)

1,275,000 pesos/month

 $612,050 \times 1/2 \times 0.50 \times 1/12 = 1,275$

Balance Improvement

38,595,000 pesos/month

Investment Efficiency

ARR:
$$\frac{(38,595-4,845-1,275) \times 12}{612,050} = \frac{389,700}{612,050}$$
= 63.7%

PB:
$$\frac{612,050}{389,700} = 1.57 \text{ year (approximately one year and a half)}$$

- 8.5 Improvement Plan for Developing a New Beneficiation Plant in Barones
- (1) Outline of the Improvement Plan
 The outline of the improvement plan is summarized as follows:
 - 1) Site: Barones Beneficiation Plant in Zacatecus
 - 2) Processed ore: 150 t/day x 26 day/month = 3,900 t/month
 - 3) Beneficiation method: Pb-Cu-Zn selective flotation
 - 4) Processing systems
 Ore receiving -- crushing -- grinding -- flotation -- concentrate dehydration
 - 5) Estimate of the Construction Cost

Cost of equipment: US\$3,029,000
Contruction cost: 1,569,000
Cost of mechanical and electrical
equipment istallment 1,449,000

Total US\$6,047,000

Peso equivalent (2,650 pesos/US\$) 16,024,550,000 pesos Yen equivalent (143 yen/US\$) 864,721,000 yen

- (2) Estimation on Construction Work
 - 1) Conditions for Design

a) Nominal beneficiation capacity 150 dry-t/day

b) Number of working days 26 days/month

- d) Descriptions of crude ore
 - 1 Transportation to ore acceptance bin in beneficiation plant

Dump trucks

2 Grain size Max. dia. for ore acceptance: -200 mm

- 3 Moisture 2.65%
- 4 True specific gravity 3.80 (apparent specific gravity 2.0)
- 5 Hardness Work index: some 13 14 kWh/t
- Projected construction site

 In Barones beneficiation plant, Zacatecas City, United Mexican
 States.

Altitude:

2,500 m (above sea level)

- f) Bearing capacity of projected site 12 t/m2 or more
- g) Power source

3 , 60Hz, 13,200V, 440V, 120V

h) Water supply Pumps will be installed at the water source 1 km from the projected site.

2) Conditions for Estimations

a) Basic Policies

- The estimation was done in such a way that the entire construction work (design, furnishing of machines, appliances and materials, construction work, test run, training of operators, etc.) would be carried out at the site in Mexico.
- 2 The construction cost was based on the prices as the last of January, 1990, and has not considered price hikes during the construction period (two years in total) and before starting the work.

b) Scope for Estimations

1 Machines, appliances and major facilities

Grouped together

2 Preparation of plant site, foundation work and civil engineering work

One

3 Building work including sheds with steel frames

One

4 Installation of machines and electric facilities

One

5 Facilities for water supply including1 km long piping

One

c) Items excluded

- 1 Design cost
- Wiring work introducing necessary electric power to an incoming panel in the plant (including materials and construction work)
- 3 Management expenses for construction work and operator training
- 4 Incidental facilities (offices, repair shops, warehouses, analyzing instruments and tools, etc.)
- 5 Expenses for temporary facilities (prefabricated houses for construction work, temporary power source and water supply, etc.)
- 6 Other items not described in the estimation
- d) Construction period 24 months from commencement of construction work

Machines and Facilities to be Supplied

Item No•	Name	Specification	Number
	Crushing Facilitie	s US\$599,264	
1,,	Crude Ore Bin	100T capacity 3mW x 5mL x 4mD, H=10m including retaining wall	1
2	Pan Conveyor	12.5t/hr 1.2mW x 10mL x 11kW	1
3	Jaw Crusher	-200mm, 12.5 t/hr, 20"x36"x37kW	1
4	Belt Conveyor	25 t/hr, 600W x 20mL x 3.7kW	1
5	Vibrating Screen	25 t/hr, 4' x 8' x 7.5kW 3/4" openings (mesh), single deck, rubber	1
6	Cone Crusher	15 t/hr, 4' b short-head type x 55kW	1
7	Belt Conveyor	15 t/hr, 600W, 20mL x 2.2kW x 1 5.0m x 1.0kW x 2, 6mL x 1.0kW x 1	1 set
	Grinding Facilitie	s US\$733,370	
8	Fine Ore Bin	100T capacity 5.0mg x 6.0mH with 4mH stand	2
9	Belt Conveyor	600W x 10mL x 2.2kW x 2	2
10	Belt Conveyor	600W x 30mL x 3.7kW with load cells	1
11	Ball Mill	1.5 t/hr with rubber liner 7' x 7' x 150kW	
12	Pump	5" x 4", SRL-C x 7.5kW, 1,800 rpm	2
13	Cyclone	15B with rubber lining and valve	2
14	Scalp Flotation	Unit type x 11 kW	1

Item No.	Name	Specification	Number
	Flotation Faciliti	es US\$193,947	
	/		
15	Conditioner	6d х 6'H х 5.5kW	1
16) 17	Cu. Pb Bulk Rougher and Scavenger	D-R #24 4 cells x 2 motors x 11kW x 1,800 rpm	8
18	Cu Pb Bulk Cleaner	FW 4 cells x 2 motor x 5.5kW	8
19	Pump	SRL-C, 3" x 3" x 3.7kW, 1,800 rpm	1
20	Conditioner	6'6 x 6'H x 5.5kW	1
21	Cu Pb Separator	FW 4 cells x 2 motors x 5.5kW	8
22) 26) 30) 36	Pump	SRL 3" x 3" x 3.7 kW 1,800 rpm	·
31	Pump	SRL-C, 4" x 3" x 5.5kW	1
32	Conditioner	6'б x 6'н x 5.5kW	
33) 35	Zn Rougher Scavenger	D-R #24 4 cells x 2 motors x 11kW x 1,800 rpm	8
34	Zn Cleaner	FW 4 cells x 2 motors x 5.5kW	8
	Concentrate Dehydr	ation Facilities US\$373,700	
23) 27) 37	Thickener	איס2 x 10'H x 1.2kW	3
25) 29) 39	Filter Press	Manual press, frame of cast iron 1.0m x 1.0m x 40 chambers Hydraulic pump 0.75kW Centrifugal pump 3.7kW	3
24) 28) 38	Pump	SRL, 3' x 3' x 3.7kW 1,800 rpm	3

Item No.	Name	Specification	Number
	Other Facilities	US\$1,129,888	
40	Pump	SRL-C, 4" x 3" x 5.5kW	1
41	Rotary blower	Single-stage compression 20m ³ /min x 1,500mmAq x 11kW x 4P with silencer	2
42	Water tank	L50m ³ steel tank, supply piping 3Dkm x 1 0.3m ³ /min x 90mH x 11kW with pump	1
43	Crane	Mill-stage 10t, hoist 10.5 kW, traver- sing 1.2kW, travelling 15kW, span 10m	. 1
44	Crane	Floatation stage 3t, hoist 5.0kW traversing 1.2kW, travelling 0.8kW span 12m	2
45	Reagent facility	28 pumps Reagent tanks, lime facility, etc.	l set
46	Water supply	₫B	1 set
47	pH meter	pH meter (5) pH meter with controller (2)	l set
48	Load cell	For conveyor	1
49	Power receiving facility	Incoming panel x 1 High voltage panels 150kW, 55kW 1 each Transformers 500kVA x 1.75kVA x 1 Condensers, etc.	1
50	Control center	Control panel in electric distribution room equivalent to 40 motors 440V cables and bus bars	1 set
51	Desk-top X-ray spectrometric analyzer	Analysis equipment for pulp density	l set
52	Grinding size analyzer	Denver Automatics (On line)	
53	Instrumentation		l set
54	Valves, etc.	6"> 3/4" various valves, packing, sealing materials, consumables	l set
	Total	US\$3,030,169	

Civil Engineering Work

No.	Subject Name	Detail	Number	US\$
1	Foundation for water tank	Foundation for 200t water tank Concrete volume	1	in thousands of dollars
2	Foundation for 100t bin	Foundation for 2 100t bins Concrete volume 182m ³	1 set	
3	Filter press concrete stand	18mL x 10mW x 5mH stand Concrete volume 216m ³ Floor concrete 282m ²	1 set	
4	Ground leveling (Grading)	150m x 80m + 12,000 m ² Excavation volume (1.5m depth in average) 18,000m ³ Roads 150m Drainage ditch 460m	1 set	
5	Foundation for crushing mill	Foundation for jaw crusher 120m ³ Foundation for cone crusher 120m ³ Foundation for ball mill 44m ³	1 set	
6	Floor and founda- tion for stand in floatation- grinding shop		1 set	
7	Foundation for thickener	Foundation for 3-6m6 thickeners Concrete volume 137m3	1 set	
8	Pile driving	100 piles for buildings, crushers, thickeners, press stands, water tank, etc.	1 set	
9	Miscellaneous	Fire-hydrant facility	1 set	
	Total		1 set	762

Building Work

No.	Subject Name	Detail	Number	US\$
1	Grinding / floatation shop	Slated steel frame 28m x 30m x 10mH one house 840 m ²	1 set	in thousands of dollars
.2	Crushing shop	Slated steel frame 10mL x 10mW x 10mH 2 houses 100 m2/l house	1 set	
3	Electric equipment room	Room space 10m x 10m 1 house	1 set	
	Total			807

Machine Installation Work

No.	Subject Name	Detail	Number	usş
1	Installation of purchased machines	45 persons x 10 months x 25 days x @	1 set	in thousands of dollars
2	Floor for stands	Grinding 28x30x0.7=588m ² Crushing 10mx10mx2x0.7 = 140m ² Total 728m ²		
3	Corridors, stairs	Thickener, etc.	1 set	
4	Piping	For water supply, pond, blowers, reagents, etc. Preparation of materials and installation of racks, piping, joints	1 set	
5	Miscellaneous		1 set	
	Total			1,136

Time Schedule for Construction Work (Draft)

		9	12	18	24
Designing	Six months for main designs	Incidental design			
Supply of machines and materials		Eight months for main machines	Materials of construction	WOEK	
Civil engineering work		Eight months for main civil engineering work	nain Incidental Work Work		
Building work		Mai	Main building work	Incidental	
Machine installation and electric work			Ten months for machine installation and elect	r machine and electric work	
Test run					Two months
<i>U</i>	Start			Te	Test Commercial run operation

(3) Production Plan

The income of the new plant was estimated on the basis of the plan for the grade of original ore to be processed and the recovery rates.

Table 8.1.2 shows the expected beneficiation results, and Table 8.5.1 shows the calculated sales of concentrates.

1) Grade of Crude Ore

Records	Au	Ag	Бр	Zn	Zn		
for		•					*
January	0.8 g/t	160 g/t	0.8%	0.4%	1.6%	3,900	t/month
to	0 • 4	126	0.7	0.3	1.2	3,651	11
June, 1989							

2) Beneficiation Recovery Rates

Au	Ag	Pb	Cu	Zn
33%	76%	73%	87%	68%

3) Sales of Concentrates

	(US\$/month)	(Pesos/ton of crude ore)	(%)
Pb concentrate	53,429	36,304	36.7
Cu concentrate	53,629	36,440	36.9
Zn concentrate	38,438	26,118	26.4
Total	145,496	98,862	100.0

Values after subtraction of 11,154 US\$/month for ore production taxes (7% for Au and Ag and 5% for Pb, Cu and Zn).

Calculations were performed on the following conditions:

- a) IMMSA smelting conditions
- b) I.V.A. not included
- c) The average market prices of metals in January to June, 1989
 Au: 388.119 US\$/TOZ

Aq: 569.281 US cents/TOZ
Pb: 633.944 US\$/MT
Cu: 131.951 US cents/LB
Zn: 1819.577 US\$/MT

(4) Estimates of Costs

The costs were estimated on the basis of the records from January to June, 1989.

- Total Beneficiation Cost: 16,265 pesos/ton of crude ore (I.V.A. not included)
 - a) Labor Cost: 3,785 pesos/ton of crude ore

(Personnel Planning)	
Ore receiving and crushing	$1 \times 2 + 1 = 3$
Grinding, flotation, and	
dehydration	$2 \times 3 + 1 = 7$
Mechanical and electrical	
equiment	2
Plant supervisor	1
Three-shift foremen	$1 \times 3 + 1 = 4$
Office workers	2
Experiment and analysis staff	2
Total	21

Wages: 549,000 pesos/month x 21 3,900 t/month = 2,956 pesos/ton of crude ore Subordinate personnel expens

154,000 pesos/month x 21 3,900 t/month

= 829 pesos/ton of crude ore

Total 3,785 pesos/ton of crude ore

b) Expenses for Consumable Materials
7077 pesos/ton of crude ore (I.V.A. not included)

Kind of materials	Consumption (g/ton of crude ore)	Unit cost (Pesos/kg)	Cost (pesos/ton of crude ore)
Frother agent	35	3,229	113
Xanthate	60	5,283	317
AF#242		9,043	45
NaCN	80	2,935	235
ZnSO ₄	100	1,026	103
CuSO ₄	250	1,683	421
Ca(OH)2	1,300	90	117
(Subtotal for chemicals)			(1351)
Ball (3")	1,500	1,006	1510
Liner			609
Lubricating			130
Others		e je sake i sak Samana samana	3,477

Total

7,077 pesos/ton of crude ore

c) Power Expenses: 4,015 pesos/ton of crude ore (I.V.A. not included)

Rated power consumption of equipment	(KW) Ope	
Crushing	130	
Grinding, Flotation, etc.	435	24
Lighting	85	24

Total

650 KW

Actual Power Consumption

Rated power consumption x 52%

Unit cost: 82.5 pesos/KWH

Power expenses per ton of crude ore:

(30 KW x 12 H + 520 KW x 24 H) x 0.52 150 t/day x 82.5 pesos

= 4,015 pesos/ton of crude ore

c) Cost of Tailings Diposal: 188 pesos/ton of crude ore Since it is planned that tailings of 3,665.6 t/month are to be piled up for the dam now in use in Barones Beneficiation Plant, the cost of managing and maintaining the dam is estimated at 200 pesos per ton of crude ore.

200 pesos/ton of tailing x 3,665.6 t 3900 t = 188 pesos/ton of crude ore

d) Expenses for Water: none

It is planned to use fresh water at a rate of 3 m^3 /ton of crude ore (0.3 m^3 /minute). According to the plan, a pump will be isntalled at the water source 1 km away from the new plant to supply water through a 3" pipe. Since the cost of installing the pump and the pipe is included in the construction cot the expenses for water is estimated to be nil.

e) Assayig Cost: 1,200 pesos/ton of crude ore
Crude ore received will be assayewd in lots of 75 tons of
crushing production. A dry assay will be done for Au and Ag,
and a wet assay for Pb, Cu and Zn in the assay room of Barones
Beneficiation Plant.

Unit Cost of Analysis

Au, Ag 30,000 pesos for each sample Pb, Cu, Zn 10,000 pesos for each sample Total 90,000 pesos

Assay cost per ton of crude ore 90,000 pesos + 75 tons = 1,200 pesos/tonof crude ore

It is planned that operation management analysis will be carried out by two persons in the analysis laboratory with a fluorescent X-ray analyzer. The cost of installing the analyzer is not included in the assaying cost but in the construction cost.

f) General Administrative Cost 1,266 pesos/ton of crude ore (I.V.A. not included)

According to the records of Barones Beneficiation Plant from January to June, 1989,

Processed ore: 9,057 t/month

General management cost: 1,811 pesos/ton of crude ore

When the new plant is put into operation,

Processed ore: 9,057 + 3,900 = 12,957 t/month

General management cost:

 $1,811 \times 9,057$ 12,957 = 1,266 pesos/ton of crude ore

g) Overall Beneficiation Cost:

The total of the costs of a) to f) is obtained as follows:

Labor cost 3,785 pesos/ton of crude ore

Expenses for consumable 7,077

materials

Power Expenses 4,015

Cost of Tailings disposal 188

Expenses for water 0

Assay cost 1,200

General management cost 1,266

Total 16,265 pesos/ton of crude ore

- Distribution Cost 2,060 pesos/ton of crude ore (I.V.A. not included)
 - Concentrate Transportation Cost

1,552 pesos/ton of crude ore

Amount of concentrate production (8% moisture included)

Pb concentrate $44.9 \text{ t (dry)} \quad 0.92 = 40.8 \text{ t (wet)/month}$

57.4 t ("). Cu concentrate 0.92 = 62.4 t (")/month

Zn concentrate 84.8 t (") 0.92 = 92.2 t (")/month

Unit cost of transporting concentrate by truck:

120 pesos/km.ton of crude ore

Transportation distance:

Pb concentrate: Barones - Torreon

Cu, Zn concentrate: Barones - San Luis Potosi 200 km

Concentrate transportation cost

Pb concentrate: $120 \times 400 \times 48.8 \quad 3900 = 601 \text{ pesos/ton of}$ crude ore

Cu concentrate: $120 \times 200 \times 62.4 \quad 3900 = 384$

Zn concentrate: $120 \times 200 \times 92.2 \quad 900 = 567$

Total

1,552 pesos/ton of crude ore

b) Concentrate Assay Cost: 508 pesos/ton of crude ore Assay of concentrate of Au, Ag, Pb, Cu and In will be requested to be carried out in the assay room of Barones Beneficiation Plant in lots of 10 t.

Unit assay cost: Assay of Au, Ag, Pb, Cu and Zn in total 90,000 pesos/sample

(Refer to the above section of "Assay Cost".

Number of lots

Pb concentrate 48.8 10 5 lots 115 (pesos/ton of

Cu concentrate 7 lots 162 crude ore) 62.4 10

10 lots 231 Zn concentrate 92.2 10

Total 22 lots

508 pesos/ton of crude ore

Concentrate Assay Cost per Ton of Crude Ore 3900 = 508 pesos/ton of crude ore 90,000 x 22

Overall Distribution Cost c)

Concentrate transportation cost 1,552 pesos/to of crude

Total

ore

Concentrate assaying cost

508

2,060 pesos/ton of crude ore

3) Depreciation Fund: 29,715 pesos/ton of crude ore

Machinery installation cost:

(3,029 + 1,449) 000 x 2,650 = 11,867,000,000 poesos

Construction cost:

US\$ $1,569 \times 2,650 = 4,158,000,000$ poesos The depreciation term is set at 10 years for the machinery instal-

lation cost and 15 years for the construction cost.

11,867 x 0.95 x 1/10 x 1/12 3,900

Depreciation fund for machinery installation:

= 24,089 pesos/ton of crude ore

Depreciation fund for construction

 $4,158 \times 0.95 \times 1/15 \times 1/12 = 3900$

= 5,627 pesos/ton of crude ore

Total

29,716 pesos/to of crude ore

4) Interest 8,693 pesos/ton of crude ore Interest on equipment cost (5% per year)

 $6,047 \times 2,650 \times 1/2 \times 0.05 \times 1/12$ 3900

= 8,560 pesos/ton of crude ore

Interest on operation cost (5% per year)

Beneficiation Distribution General Ore
cost cost management expenses
cost

16,265 2,060 1,266 44,659 = 64,250

 $64,250 \times 1/2 \times 0.05 \times 1/12 = 133 \text{ pesos/ton of crude ore}$

Total interest 8560 + 133 = 8,693 pesos/ton of crude ore

(5) Crude Ore Purchase Conditions

On the basis of the ore purchase conditions used in Chihuahua Pb Smelting Plant and San Luis Potosi Cu Smelting Plant and Zn Smeling Plant, the crude ore purchase conditions of the beneficiation plant were determined as follows:

1) Standard Crude Ore Grades
The following standard grades were determined:

Au Ag Pb Cu Zn
0.8 g/t 160 g/t 0.8% 0.4% 1.6%

2) Lower Limits of the Crude Ore Grades

A lower limit grade was set for each metal, and it ws determined that the prices for the elements of a grade lower than the limit grade would not be paid.

Au Ag Pb Cu Zn
0.5 g/t 100 g/t 0.5% 0.25% 1.0%

3) Setting of the Recovery Rate for Each Metal
On the basis of the beneficiation results in the yearly production
plan (Table 8.1.2), the overall recovery rate (beneficiation recovery rate x smelting recovery rate) was set for each metal contained in crude ore. The overall recovery rate does not change depending on the mine.

	Au	Ag	Pb	Cu	zn	
Beneficiation recovery rate (%)						
Smelting recovery rate (%)	92.0	89.2	80.7	90.0	75.6	
Overall recovery rate (%)	30.4	67.8	58.9	77.4	51.4	

4) Estimate of the Amount of Concentrate

On the basis of the estimated beneficiation results, the ratio of each kind of concentate to crude ore is determined as follows and is used for the estimation of the amount of concentrate which is poroportional to the grade of crude ore.

a) Setting of the Concentrate Ratios

Pb concentrate 44.9 3900 = 0.0115 Cu concentrate 57.4 3900 = 0.0147 Zn concentrate 84.8 3900 = 0.0217

b) Estimate of the Amount of Concentrate

Pb concentrate: amount of crude ore (t) x 0.0115 x

Pb grade of crude ore (%)

Cu concentrate: amount of crude ore (t) x 0.014 x Cu grade of crude ore (%)

In concentrate: amount of crude ore (t) x 0.0217 \times Zu crude ore (%)

5) Setting of the Beneficiation Cost

17.83 US\$/ton of crude ore is substituted in determining the purchase price of ore.

Beneficiation General Depreciation cost + Administrative + fund cost

16,265 + 1,266 + 29,716 = 47,247 pesos/ton of crude ore

47,247 / 2650 = 17.83 US\$/ton of crude ore

6) Esimtation of the Distribution Cost

On the basis of the concentrate transportation cost ad the assay cost, the distribution cost is determined proportionally to the crude ore grade.

The following equation is used for the estimation of the concentrate distribution cost (US\$/ton of crude ore)
(Concentrate transportation cost + Concentrate assay cost)

Standard grade x Crude ore Pb grade (%) : 2,650

Pb concentrate: $(601+115) \div 0.8 \div 2,650 \times \text{curde ore Pb grade (%)}$ = 0.338 x crude ore Pb gade (US\$/ton of crude ore)

Cu concentrate: (384+162) ÷ 2.5 ÷ 2650 x crude ore Cu grade (%)

= 0.515 x crude ore Cu grade (%)

(US\$/ton of crude ore)

Zn concentrate: $(567+231) \div 1.6 \div 2650 \times \text{crude ore Zn grade}$ (%) = 0.188 x crude ore Zn grade 7) Estimation of T/C (Treatment Charge)
On the basis of the smelting condition, the T/C is determined proportionally to the crude ore grade. The following equation is used for the calculation:

T/C (US\$/ton of crude ore) = Smelting T/C x concentrate ratio +
standard grade x crude ore Pb grade (%)

Pb concentrate: 77.03 US\$ x 0.0115 x 1/0.8 x crude ore Pb grade (%)

= 1.107 x crude ore Pb grade (%) (US\$/ton of crude ore)

Cu concentrate: 79.83 US\$ x 0.0147 x 1/0.4 crude ore Cu grade (%)

= 2.934 x crude ore Cu grade (/) (US\$/ton of crude ore)

Zn concentrate: 266.90 US\$ x 0.0217 x 1/26 x crude ore Zn grade(%)

= 3,620 x crude ore Zn grade (%) (US\$/ton of crude ore)

T/C is fixed at 266.90 US\$/T, the figure for the 2nd marke price of 1819 US\$/T. Instead of adopting the sliding scale based on the Zn market price.

8) Estimation of R/C (Refinery Charge) R/C is determined proportionally to the Pb or Cu grade of crude ore.

Pb concentrate: $(109.14 \text{ US} \times 0.539 + 602.71 \text{ US} \times 0.05)$

Pb content in
Pb concentrate

Cu concentrate

x crude ore Pb grade (%) = 0.890 x crude ore Pb grade (%)

Cu concentrate: (670.17 US\$ x 0.144 + 198.20 US\$ x 0.63)

Pb content in

Cu content in

Cu concentrate

x crude ore Cu grade (%) = 2,214 x crude ore Cu grade (%)

9) Total Costs Relating to Distribution Since each of the distribution costs, T/C and R/C is proportinal to the crude ore grade, the total cost for each concentrate can be written as follows: Pb concentrate: (0.338 + 1.107 + 0.890) x crude ore Pb grade (%)
distribution cost T/C R/C
= 2.335 x crude ore Pb grade (%)

Cu concentrate: (0.515 + 2.934 + 2.214) x crude ore Cu grade (%)
distribution cost T/C R/C
= 5.663 x crude ore Cu grade (%)

10) Setting of Smelting Penalty

On the basis of the estimated beneficiation results (estimated for the standard grade of crude ore in the production plan), 0.1 US\$/ ton of crude ore is uniformly subtracted as the smelting panelty.

(Calculation)

	Total	As	S	INSOL		
(US\$/ton of	0.068	0.014	0.036	0.018	b concentrate	Pb
crude ore)	0.015	0.009		0.006	u concentrate	Cu
(US\$/ton of	0.073	0.023	0.036	0.024	Total	
crude ore)						

In consideration of fluctuations in the contents of the penalty elements in crude ore, a penalty of 0.1 US\$/ton of crude ore is set.

11) Ore Production Tax

The ore production tax of 3.6% for Au or Ag, or 2.4% for Pb, Cu, or Zu is subracted from the metal price which is determined according to the overall recovery rate.

12) Examples of Calculation of the Crude Ore Purchase Cost in the Production Plan

The purchase cost can be calcualted using the figures for the standard grades shown in 1). The conversion rate of 1US\$ = 2,650 pesos is used and the figures in US\$ are rounded to two decimal places.

a) Metal Price 49.82 US\$

Au: $12.35 \text{ US} / g \times 0.8 \text{ g/t} \times 0.304 = 3.00 \text{ US}$

Ag: 183.03 US/kg x 0.16 kg/t x 0.678 = 19.86 US\$

Pb: 633.94 US t x 0.008 x 0.589 = 2.99 US\$

Cu: $2,909.00 \text{ US}/t \times 0.004 \times 0.774 = 9.01 \text{ US}$

Zn: 1.819.58 US/t x 0.016 x 0.514 = 14.96 US

Total

49.82 US\$

(132,023 pesos)

- b) Beneficiation Cost: 18.54 US\$
- c) [Distribution Cost + T/C + R/C]: 10.26 US\$

Pb: $233.5 \text{ US} \times 0.008 = 1.88 \text{ US}$

Cu: 566.3 US\$ x 0.004 = 2.27 US\$

Zn: $380.8 \text{ US} \times 0.006 = 6.11 \text{ US}$ \$

Total

10.26 US\$

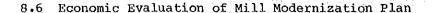
- d) Penalty: 0.1US\$
- e) Ore Production Tax: 1.49 US\$

Au: $3.00 \text{ US} \times 0.036 = 0.11 \text{ US}$

Pb: $2.99 \text{ US} \times 0.024 = 0.09 \text{ US}$

Cu: 9.01 US\$ x 0.024 = 0.22

zn: 14.96 US\$ x 0.024 = 0.36


Total

1.49

Overall Ore Purchase Price: 19.43 US\$ Metal price 49.82 US\$ Beneficiation cost 18.54 (The depreciation fund of 11.21 US\$ is included) Distribution cost + T/C + R/C 10.26 Penalty Total 28.92 One price before tax 20.92 Ore production tax 1.49 Final ore purchase price 19.43

(51,490 pesos)

2.91
Payment 22.34 (59,201 pesos)

8.6.1 Method of economic evaluation

On the plant and equipment investment in both the modernization plan for the existing equipment in all 3 mills and the new plant extension plan for the Barones Mill, an evaluation was made by calculation of the Internal Rate of Return (IRR) by the Discount Cash Flow (DCF) method as a barometer of investment efficiency. IRR is the DR (Discount Rate) that can be determined by the following equation with the operating period:

$$\sum_{n=1}^{m} \frac{NCF}{(1+DR)^n} = 0$$

where NCF: Net Cash Flow
m: Operating period

8.6.2 Prerequisite for economic evaluation

(1) Production amount

In each mill, only the overall mineral processing result is calculated, based on the operational result for the period from January to June, 1989, and with ore from all mines and the total processing system combined. Besides, the sales amount when its product (concentrate) is sold to refineries in Mexico is regarded as the current production amount in each mill. This production amount does not always conform to that in the settlement of account. This reason is that in the case of consignment processing, the price for concentrate sales is not included in the production amount of mineral processing, but only the consignment cost (corresponding to the mineral processing cost) becomes the amount of production of the mill. In addition, that is also the case of the ore purchase plan, where the quantity of concentrate to be sold from each mill to refineries does not always conform to the production result in connection with measured measured values of ore in, to measured concentrate out of the total inventory.

(2) Refining Condition

In calculation of the refining condition of each concentrate, that of IMMSA, the major refining company in Mexico, was used as a standard.

(3) Metal official quotation

For the metal official quotation, the following international metal price, the mean value per month for the period from January to June, 1989, was used:

Au: 384.119 US\$/T.oz

Ag: 569.291 US\$/T.oz

Pb: 633.944 US\$/MT

Cu: 161.951 US¢/LB

Zn: 1819.577 US\$/MT

(4) Consolidated income and expenditure for the mines and a mill

In order to avoid the variation in evaluation due to the condition on which a mill accepts ore from each mine, that is, the difference in system, consignment or ore purchase plan, the economic evaluation was made by assumed estimation of the mining cost (the mean value in all mines in the district) and by trial calculation of the consolidated income and expenditure of the mines and a mill.

(5) Costs such as mineral processing cost

For the present costs such as mineral processing cost, selling expense, administrative expenses, etc., the actual values for the period from January to June, 1989, was used, and after modernization, these costs were calculated based on those past figures and by using the estimated effects of improvement.

(6) Interest rate

The interest rate for the plant and equipment investment was summed up as one of the non-operating expenses. In this case, this rate was assumed to be 5%, and it was set up on the assumption of financing from the international banking facilities such as IDB (Inter-American Development Bank).

(7) Depreciation expenses

Depreciation expenses were calculated over 10 years for mechanical equipment, 15 years for buildings & other construction and 5 per cent for residual value.

(8) Exchange rate

The foreign exchange rate was calculated as 1US\$=2650 pesos.

8.6.3 Conclusion on economic evaluation

For each mill, IRR was calculated for the following three cases: Ag price standard case (the mean value of the actual international prices for the period from January to June, 1989: 569.281 US¢/T.oz), in the case of a 10% increase in the value of silver (630 US¢/T.oz) and in the decrease of silver value of 10%-down case (510 US\$/T.oz).

Further, in the extension plan for Barones Mill, IRR was calculated for the four cases, that is, for the two cases where the quantity of ore to be processed in the plant is 150t/day and 200t/day, and in addition, for the 10% increase in Ag value case to the standard Ag price at 150t/day and the 10% decreased value of Ag case to the same also at 200t/day. For each case, the IRR in consolidation with the profit and loss of the existing equipment in Barones was also calculated for the above-mentioned four cases. All of them can be put together as follows:

(1) Modernization of the existing equipment

		Parral existing	Guanacevi existing	Barones existing
Plant	& equipment investment (thousand peso)	1,493,275	809,392	612,050
IRR (%)	Case A Ag = 569,281 (US¢/T.oz)	19.9	49.5	52.7
(0)	Case B Ag = 630 (10% up)	21.7	51.5	54.4
	Case C Ag = 510 (10% down)	18.0	47.5	51.0

The results of the calculation are shown in Table 6.8.1 to 6.8.4. The IRRs in Guanacevi and Barones are high in investment efficiency (about 50%) in either case.

(2) Barones extension plan

Q'ty of ore processed		t/day	150	200
		t/month	3900	5200
Plan	Plant & equipment investment (thousand peso)		16,025,000	17,628,000
IRR (%)	Case A (Ag price standard)	6.5	9.2
(0)	Case B (10% up)	8.0	(not calculated)
	Case C (10% down)	(not calculated)	7.8

The results of the calculation are shown in Tables 6.8.5 to 6.8.8. In either case, IRR is low (10% or less).

(3) Barones overall evaluation

The overall evaluation on the modernization plan and the extension plan for the existing equipment are as follows:

Q'ty of ore processed (t/month) Plant & equipment invesmtment (thousand peso)		12,956	14,256
		16,637,050	18,240,050
IRR	Case A (Ag price standard)	8.5	10.7
(%)	Case B (10% up)	9.8	(not calculated)
	Case C (10% down)	(not calculated)	9.2

The results of the calculation are shown in Tables 6.8.17 to 6.8.20. In either case, IRR is low (10% or less).

9. CONCLUSION

9.1 Modernization of the Present Equipment in the Three Beneficiation Plants

(1) Parral beneficiation plant

Seen from the viewpoint of mining potential the plant is promising in that there are tremendous ore reserves with the oxide ore still left, the sulfide ore barely exploited while the grade of ores is high as well as unchanging. Mining is being well operated and a steady ore supply will be possible for a long term.

Economically it is important to properly implement depreciation while reappraisal of assets being made and to perform maintenance of equipment and investment for renewal.

Modernization intends to curb deterioration of the equipment, improve production efficiency, stabilize operation, ameliorate working conditions and attain labor saving on the assumption that ore treatment of 6,400 t per month will be attained with the ore grade: Au, 0.74 g/t; Ag, 325 g/t; Pb, 0.2%, Zn, 0.2% and with improvement of beneficiation recovery up to; Au, 67.20%; Ag, 68.25%; Pb, 52.5% and Zn, 47.25%.

An investment in

- a) replacement of ball mills,
- b) full installation of dust collectors in the crushing processes,
- c) some instrumentation of the equipment and
- d) rationalization of administrative department

amounts to Mex \$1,493 million (US\$563 thousand) and this reduces the cost of ore treatment by Mex \$3,556 per ton, which results in an profit of Mex \$8,844 when added to a present ordinary profit of Mex \$5,288 per ton, where IRR is 19.9% (but 18.0% when the market price of silver is lowered by 10% and 21.7% when it is raised by 10%), ARR 18.3% and PB 5.5 yr.

Conditions of investment:

a) The market prices of metals employed are the average values of theinternational market prices from January to June 1989.

- b) The smelting and refining conditions on which sales of concentrates are based are in accordance with IMMSA (major mining and smelting companies in Mexico).
- c) An interest of 5% was based on the premise of loans from the international monetary institutions such as US State Development Bank.
- d) The terms of depreciation employed were 10 years for machinery and 15 years for buildings. The residual value employed was 5% and the depreciation was by straight-line method.
- e) The exchange rate between US\$ and Mex\$ was based on 1\$ = Mex\$2.650.
- The income increment (due to improvement in recovery) equivalent to the amount of investment plus the cost decrement (due to cost reduction in beneficiation expenses and administrative expenses) is the sum of gains by improvement, on the basis of which Internal Rate of Return (IRR) was obtained by Discount Cash Flow (DCF) method.
- g) Accounting Rate of Return; ARR (%) =
 [sum of gains by improvement (depreciation + interest)] /sum of
 investment
- h) Payback Period: PB = 1/ARR expressed by year.
- i) Sensitiveness has some factors such as beneficiation recovery, ore grade, etc. Of them we employed the market price fluctuation of silver, the bands of fluctuation being made to 10% above and below the average value 1). This condition is the same with each beneficiation plant.

(2) Guanacevi beneficiation plant

Seen from the viewpoint of mining potential, ore supply to the plant mainly consists of residual ores and low-grade ores after having thoroughly exploited both oxide and sulfide ores. The ore reserves are being exhausted. Owing to new mining in Santa Cruz mine, the ore supply would be kept for coming two years but in the future it is necessary to further secure the ore quantity through prospecting in cooperation with CRM.

Economically, a decline in the quantity of ore treatment is anticipated and an increase in sales cannot be expected. Rationalization of operation is essential thus to attain drastic cost reduction. A reduction in the sum of labor cost by a third and that in electrical power and material costs by 15% will balance revenue and expense.

Modernization intends to maintain equipment, save energy, stabilize operation, reduce expenses and rationalize office work on the assumption that ore treatment of 7,751 t per month will be attained with the ore grade: Au, 1.45 g/t; Ag, 253 g/t and with enhancement of gold and silver recovery to about 80%, respectively, through modernization.

An investment in

- a) installation of filter presses
- b) some improvement in grinding processes
- c) full preparation of reagents
- d) rationalization of floatation processes and
- e) rationalization of administrative department

The capital cost amounts to Mex \$810 million (US\$306 thousand) and this reduces the cost of ore treatment by Mex \$5,155 per ton, which results in an profit of Mex \$1,340 from current operation after having making up the present deficit of Mex \$3,815, where IRR is 49.5% (but 47.5% when the market price of silver is lowered by 10% and 51.5% when it is raised by 10%), ARR 59.2% and PB 1.7 yr.

(3) Barones beneficiation plant

Seen from the viewpoint of mining potential, oxide ores are nearly in the final stage of exploitation while sulfide ores being scarcely exploited. In this region even low-grade ores that are unprofitable in other regions are being mined because of low beneficiation fee. Long-term ore production may be expected but the fluctuation in ore quantity and grade is likely to happen influenced by the construction of private plants.

On January 1989, CMF raised the beneficiation fee, fee being Mex \$30 thousand (ore purchase: US\$13), but in Barones plant alone fee is suppressed to Mex \$16.5 thousand (ore purchase: Mex \$17.5 thousand). In the first half year of 1989 the income from current operation was Mex \$5,288 per a ton of treated ores in Parral and the loss was Mex \$3,815 in Guanacevi and Mex \$15,799 in Barones. But if Barones plant was operated at the beneficiation fee similar to that of other plants, the loss would be Mex \$1,990.

To make up the deficit not only revising the fee of beneficiation but also operational improvement is necessary. As a means of modernization a plant enlargement with the newest equipment by utilizing effective capital is required to improve recovery as well as greatly reduce operation costs.

The beneficiation plant is not fully operated with mine output suppressed and ore stock in the mine increasing. Ores with a high grade and exploitable in large quantity are being treated in the neighboring CMF El Bote mine at a high beneficiation fee. In the medium-scale mines with large ore reserves, private beneficiation plants and leaching plants and private custom plants are being constructed. Due to such situation and the low beneficiation fee of Barones, low-grade and hard-to treat ores as well as ores of a small lot abound in this region so that the decrease of recovery and operation efficiency and deficit operation result. Amelioration of this condition is quite difficult to perform. There is no choice but to promote plant efficiency and increase recovery.

Modernization of the present plant is to be based on ore treatment of 9.056 t per month and ore grade: Au, 0.47 g/t; Ag, 175 g/t. Beneficiation recovery is assumed to increase to: Au, 2% and Ag, 4%.

An investment in

- a) improvement of beneficiation and cyanidation processes by an increased recovery due to treating a mixture of oxide and sulfide ores.
- b) some instrumentation and automation

c) rationalization of administrative department amounts to Mex \$612 million (US\$211 thousand), thereby reducing the cost of ore treatment by Mex \$4,262 per ton. Also number of workers can be cut by 21.

Here, IRR is 52.7% (but 51.0% when market price of silver is lowered by 10% and 54.4% when it is increased by 10%), ARR 63.7% and PB 1.6 yr.

9.2 Construction Plan of New Barones Beneficiation Plant

Next to the existing beneficiation plant a new plant for lead-copperzinc differential floatation (crushing - grinding - floatation - dehydration) is scheduled to be built. Considering the miner's ore storage, production constraint and the storage capacity of the plant, the optimum amount of ores to be treated is likely to lie between 150 t/d and 200 t/d, these two cases therefore being investigated. The ore grade: Au, 0.8 g/t; Ag, 160 g/t; Pb, 0.8%; Cu, 0.4% and Zn, 1.6% and the beneficiation recovery: Au, 33%; Ag, 76%; Pb, 73%; Cu, 86%; Zn, 68% are assumed, number of workers being 21.

Installation of a) machinery and electrical equipment and b) civil engineering and construction amounts to a sum of Mex \$16,025 million (US\$6,047 thousand, 150 t/d) or Mex \$17,628 million (US\$6,651 thousand, 200 t/d), the profit being Mex \$2,762 or Mex \$11,006 per ton. In combination with the gains from improvement in the present plant, the total gains from modernization of Barones result in Mex R8,451 or 12, 487. The present deficit of Mex \$15,799, however, will remain reduced to Mex\$7,348 or 3,312 and the difference might inevitably be charged by the revision to the beneficiation feet for medium and small scale mines.

In conclusion, the enforcement of modernization plan and a raise of beneficiation fee from the present Mex \$16,500/t\$ to Mex \$25,000/t\$ should be done.

IRR in building a new plant is 6.5% at 150 t/d and 9.2% at 200 t/d, while IRR in the case of improvement of the existing plant plus building a new one is 8.5% at the former and 10.7% at the latter. The term of construction assumed is 2 years.

9.3 Recommendations for Modernization of Each Plant in Common

The fundamental means on which improving beneficiation recovery, reducing operation costs, promoting plant efficiency and improving maintenance are based are instrumentation, automation, establishing the system of preventive maintenance and mending and the adoption of all Ore-Purchasing system in place of the current combined system.

Instrumentation and automation are intended for a stabilized plant operation, where controls of beneficiation factors are necessary and accumulation of daily data are required to obtain the optimum conditions, thus the instrumentation such as recording continuous data being also needed. At the same time, training of operators and acquisition of control technology by staff are essential.

Establishment of maintenance and mending systems are intended for optimization of each machine load, reduction of expenses, optimization of parts stock and the resultant betterment of operation efficiency. The following, therefore, are proposed: A daily check and checking with check sheet by more than one person, Introduction of an annual maintenance plan and utilization of maintenance books and Installation failure detectors to lessen watchmen's load and thus prevent human errors.

Present system of Maquila and Ore-Purchasing incurs waste of time and complication of work resulting in a low operation-efficiency.

Conversion to the All Ore-Purchasing system enables the plant improvement and controlled beneficiation. In this system purchase conditions are properly revised monthly according to the past result of recovery and test result. Then including conditions of smelting and refining and sales expense, the ore purchase system is determined. Based on the classification such as oxide, sulfide, high grade, low grade and hard-to-treat, ores from each mine are mixed and treated separately according to the classes.

In the administrative department the following are proposed: a planned control system on the basis of estimated costs which makes it possible to take measures against abnormality and to prognose the future, and introduction of personal computers for the purpose of simplification, labor-saving and speeding-up of office work.

Summary:

The sum of the investment for modernization of the three beneficiation plants amounts to about Mex \$20,543 million (US\$7,752 thousand) (increased plan of Barones 200 t/d) and the total output (amount of ores treated) of the three plants increases from the present 23,218 t/month to 28,413 t/month with an increment of 5,200 t/month. Sales output increases roughly from the present Mex \$2,000 million/month to Mex \$2,600 million/month, an increment being 30%.

A great amount of improvement in revenue of the three plants will be attained, the sum being Mex \$165 million/month, and this is a conspicuous contribution to mining production in the three regions.

In order to further promote and Mexican private medium and small scale mines, CFM should promptly take measures for modernization as proposed in the present investigation and also start the new construction in the three plants while necessary financing being made.

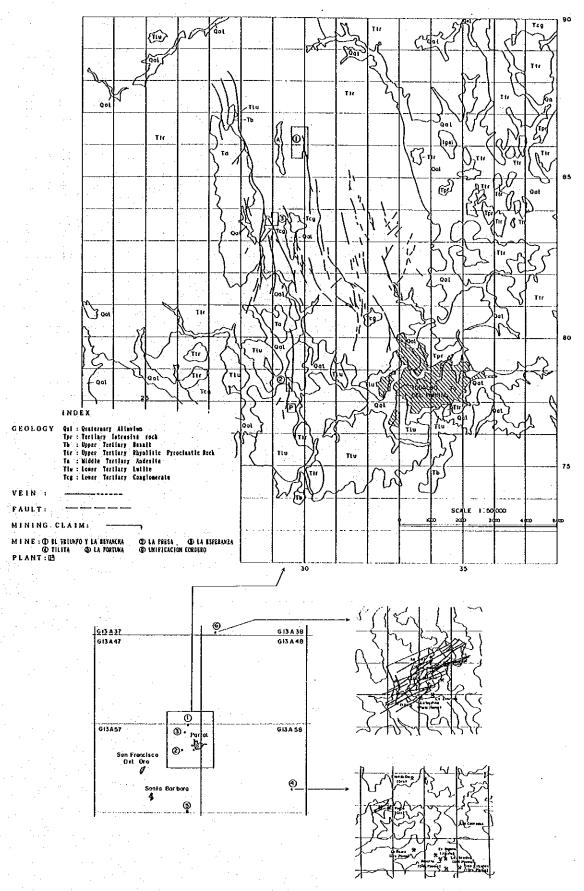


Fig. 3. 1. 1 Geologic and Vein Map "Parral District"



Fig. 3.1.2 Geologic and Vein Map "Guancevi District"

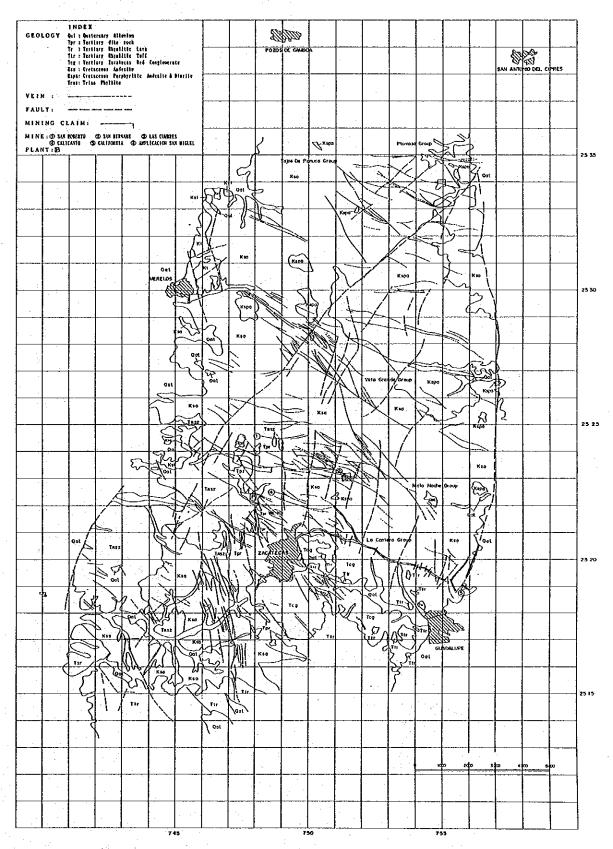


Fig. 3. 1. 3 Geologic and Vein Map "Barones District"

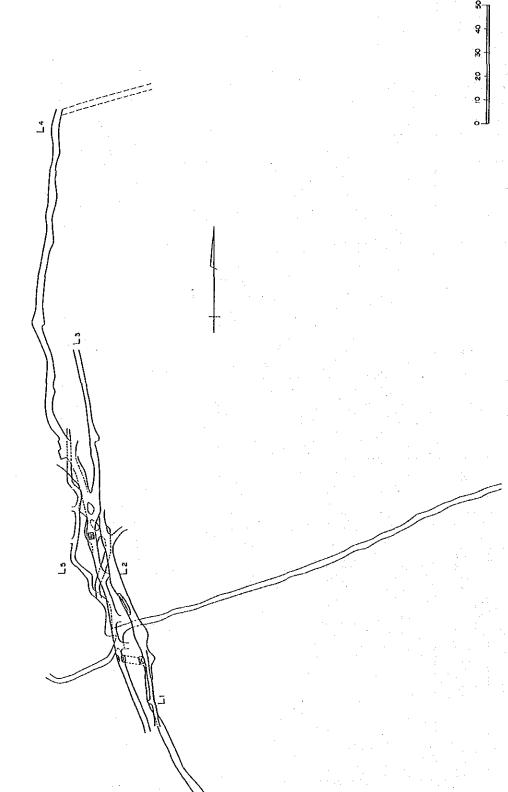


Fig. 3. 3. 1, a El Triunfo Y La Revancha -Plane-

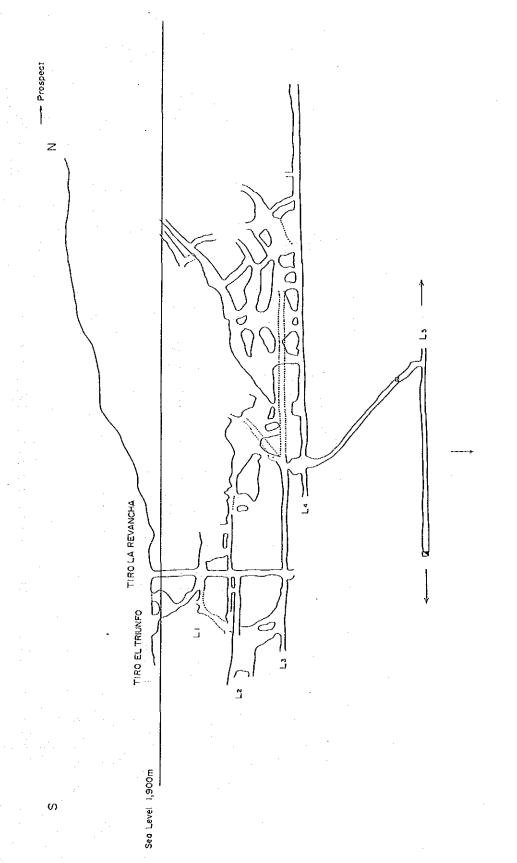


Fig. 3. 3. 1. b El Triunfo Y La Revancha -Longitudinal Section-

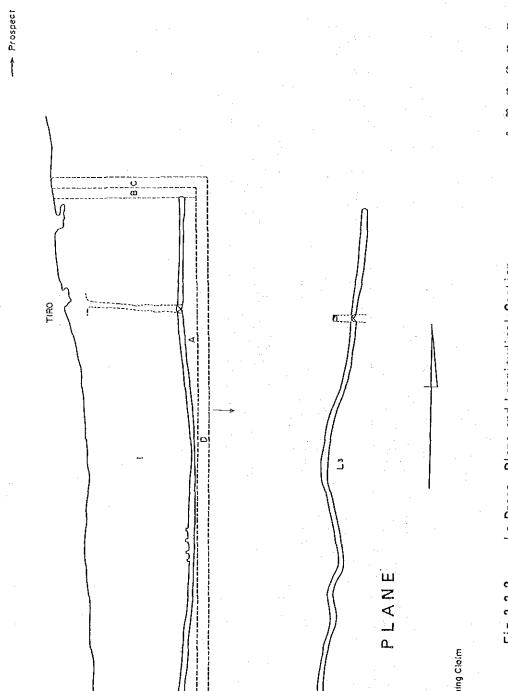


Fig. 3. 3. 2 La Presa -Plane and Longitudinal Section-

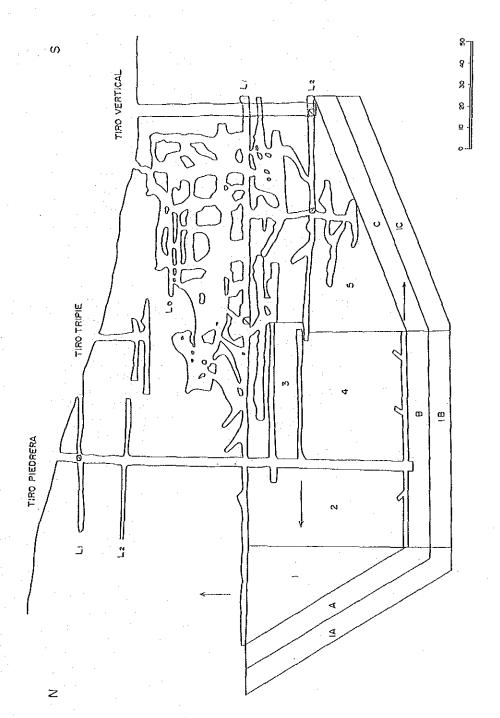
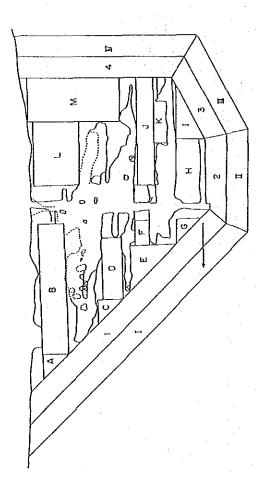
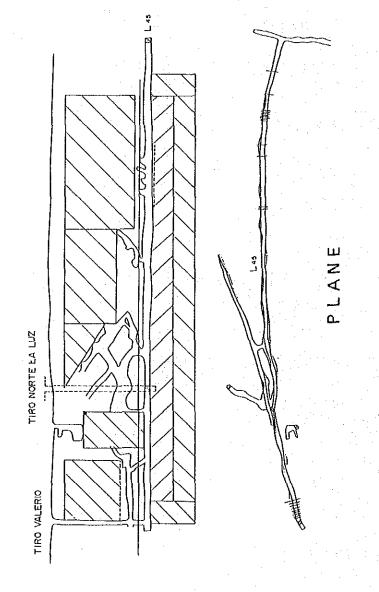



Fig. 3. 3. La Esperanza -Longitudinal Section-

TIRO SAN PEDRO


PLAN

.3.3.4 Tilita -Plane and Longitudinal Section-

Fig. 3. 3. 5 La Fortuna -Plane and Longitudinal Section-

LONGITUDINAL SECTION

0 10 20 30 40 50

3.6 Unificaction Cordero -Plane and Longitudinal Section-

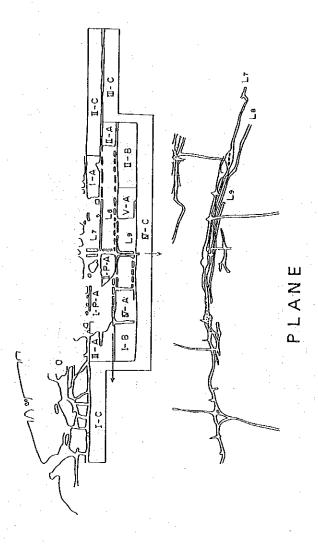
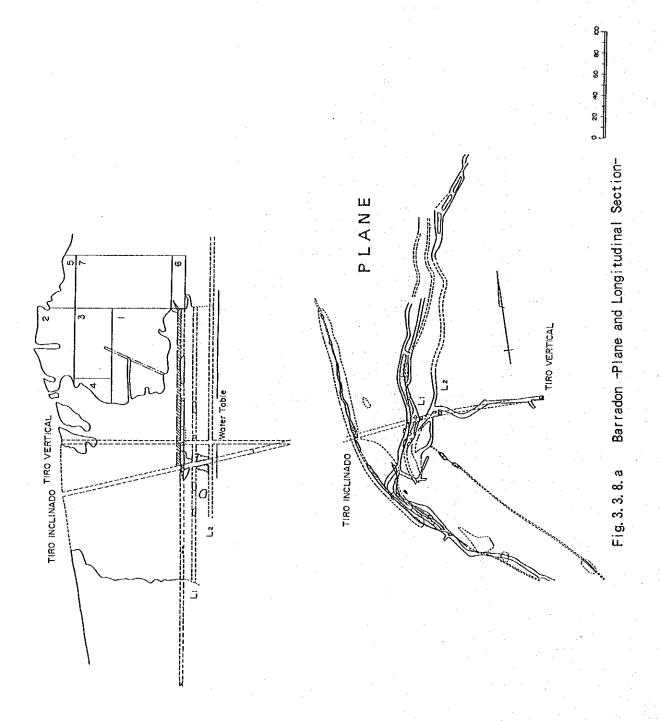



Fig. 3. 3. 7 San Jose Chico -Plane and Longitudinal Section-

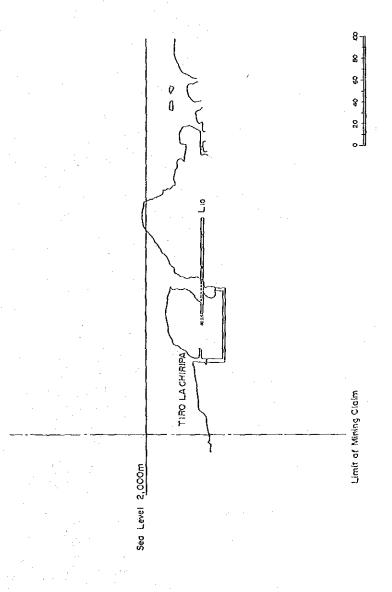
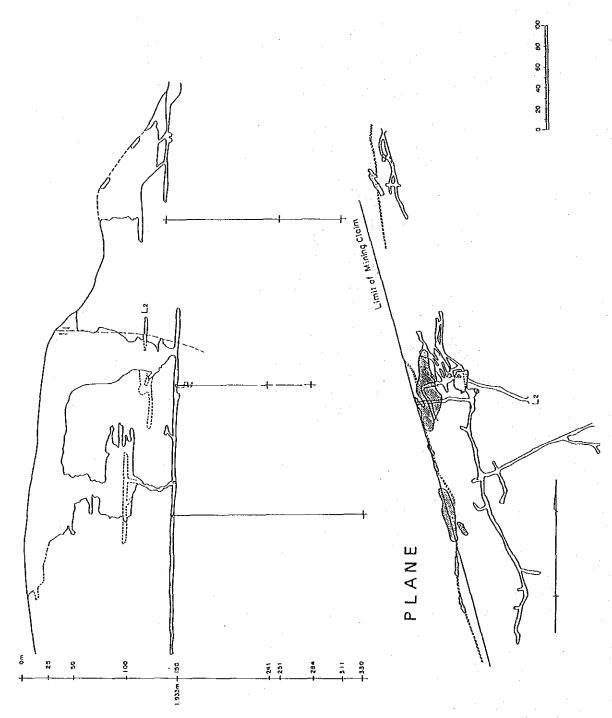
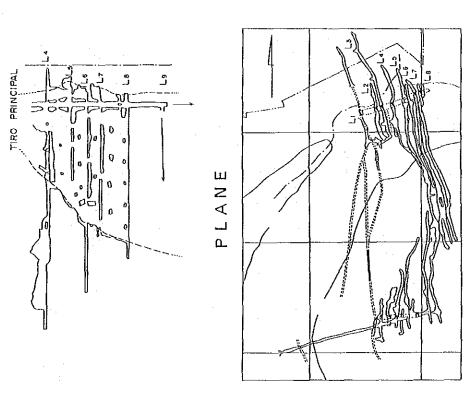
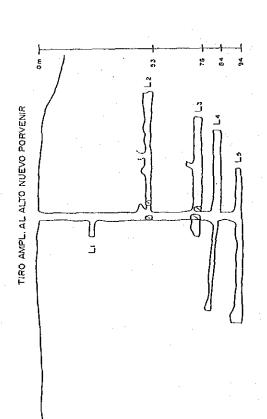
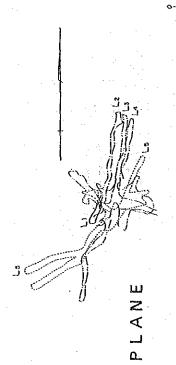
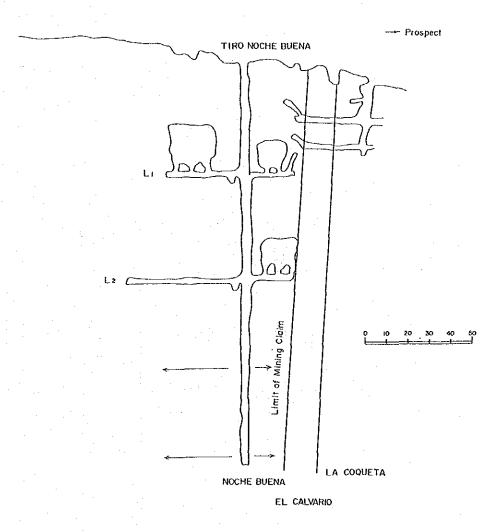


Fig. 3. 3. 8. b Barradon (Chiripa) -Longitudinal Section-


Fig. 3. 3. 9 Capuzaya -Plane and Longitudinal Section-



10 San Rafael -Plane and Longitudinal Section-

11 Ampl. Al Alto Nuevo Porvenir -Plane and Longitudinal Section-

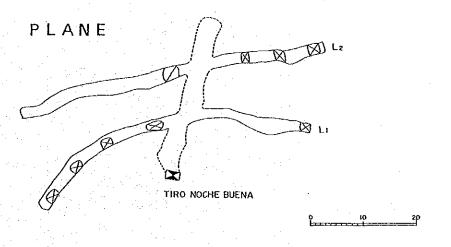


Fig. 3. 3. 12 Noche Buena -Plane and Longitudinal Section-

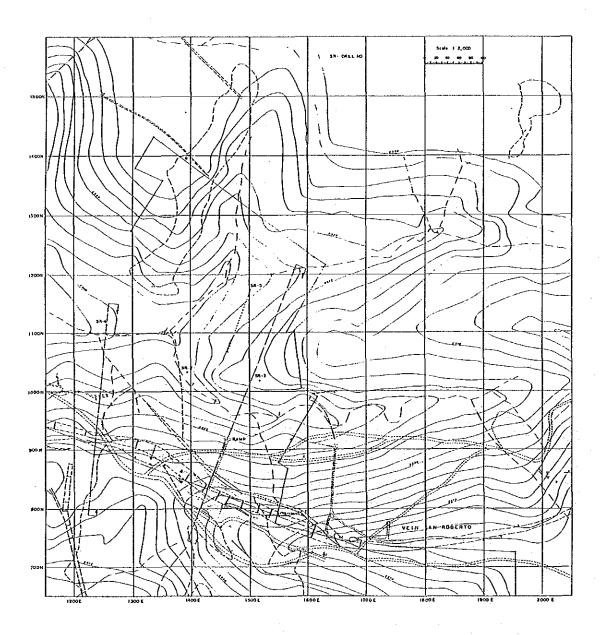


Fig. 3. 3. 13. a San Roberto -Topographic Map-

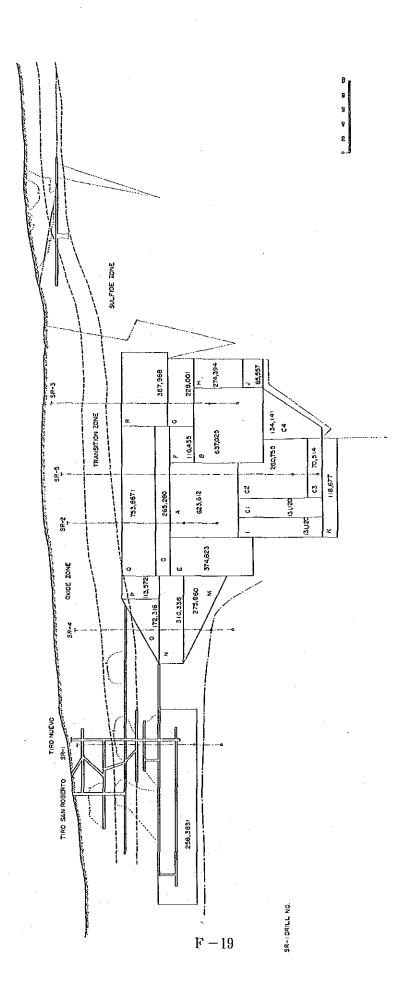


Fig. 3. 3. 13. b San Roberto -Longitudinal Section-

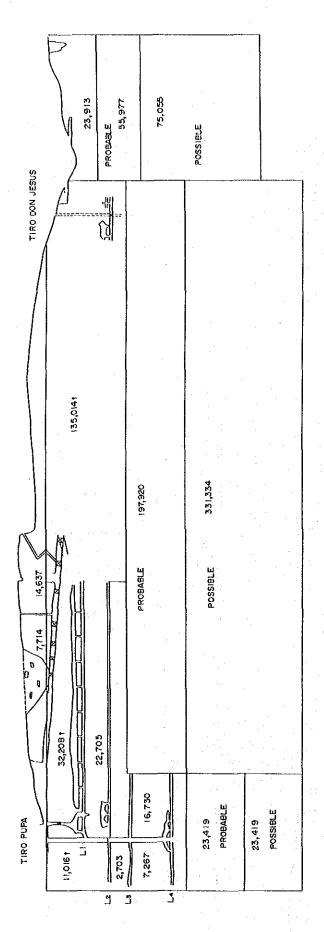


Fig. 3. 3. 14. a San Bernabe y Pupa (Pupa) -Longitudinal section-

8

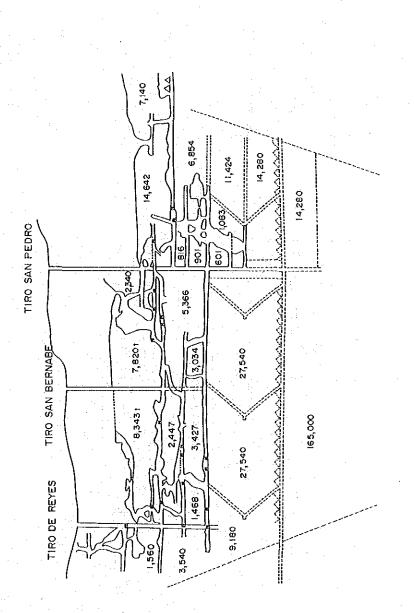


Fig. 3. 3. 14. b San Bernabe y Pupa (San Bernabe) -Longitudinal Section-

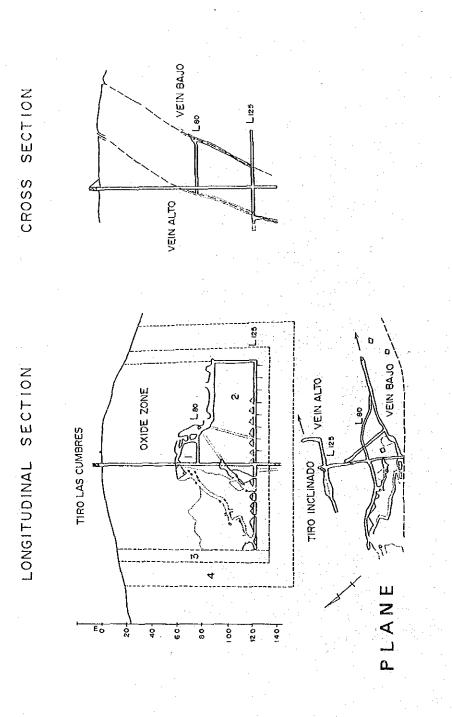


Fig. 3. 3. 15 Las Cumbres -Plane and Section-

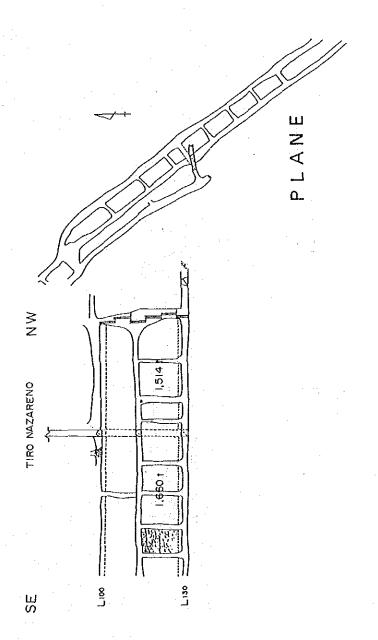


Fig. 3. 3. 16. a Calicanto -Plane and Longitudinal Section-

LONGITUDINAL SECTION

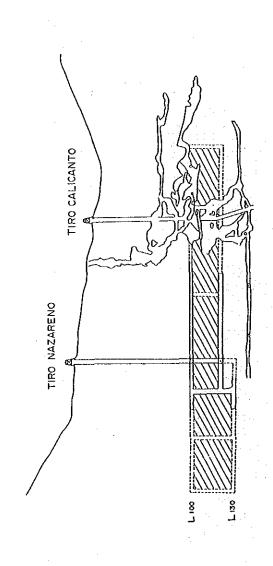


Fig. 3. 3. 16. b Calicanto -Plane and Section-

ô



Fig. 3. 3. 17. a California -Plane-

LONGITUDINAL SECTION

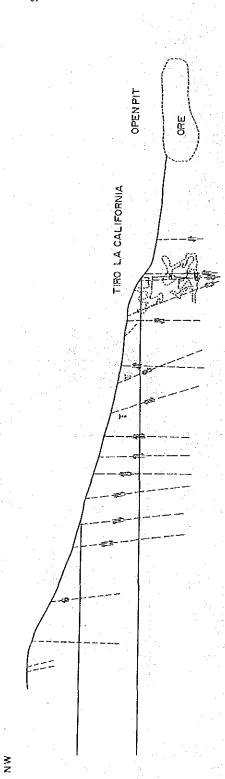


Fig. 3. 3. 17. b California -Longitudinal Seciton-

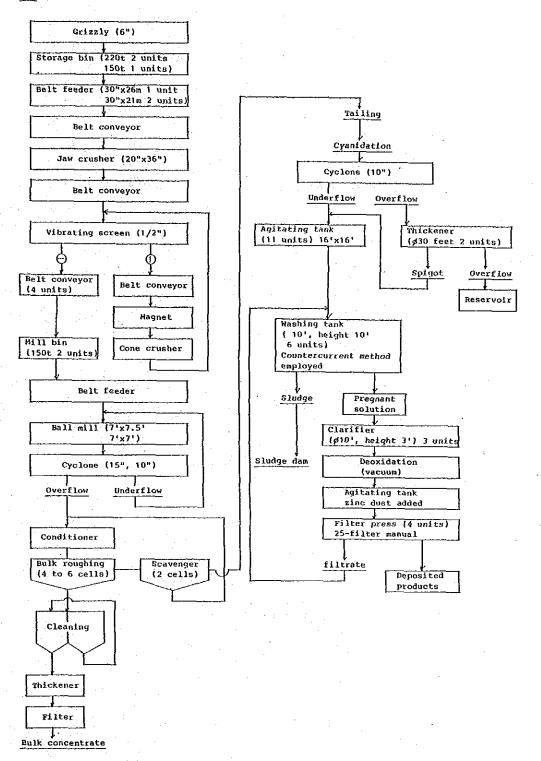


Fig. 3. 6.1 Flow sheet of Porral Plant

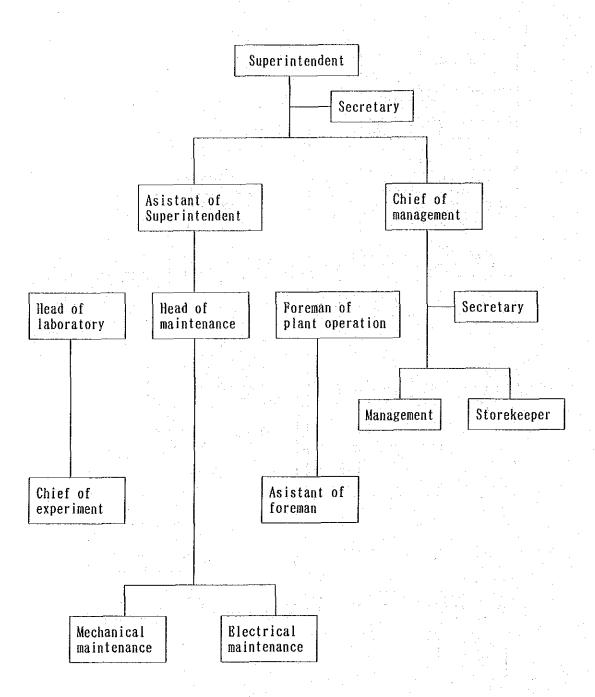


Fig. 3. 6. 2 Figure of Organization and Personnel

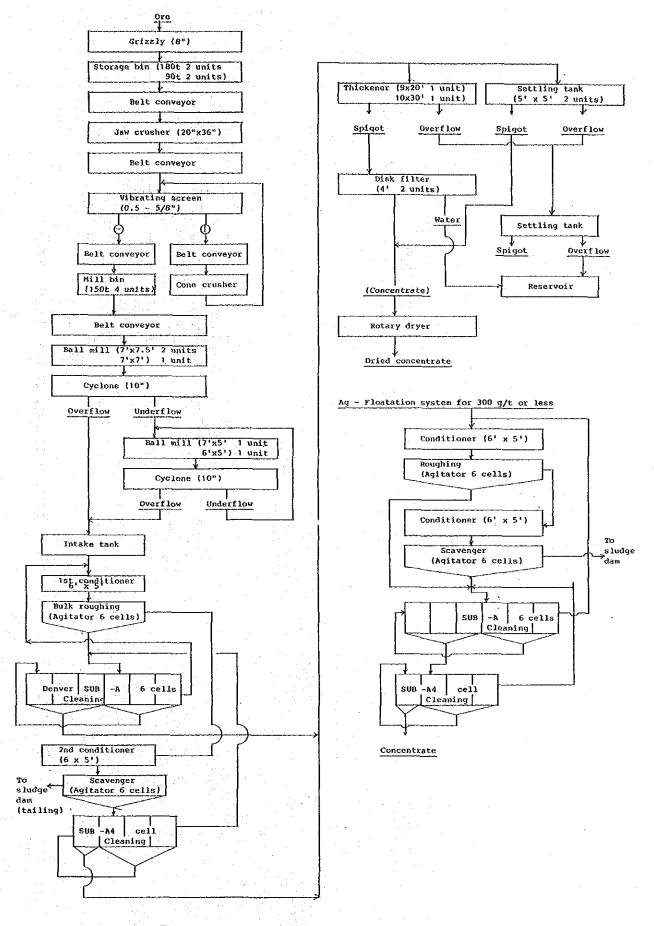


Fig. 3. 6. 3 Flowsheet of Guanacevi Plant

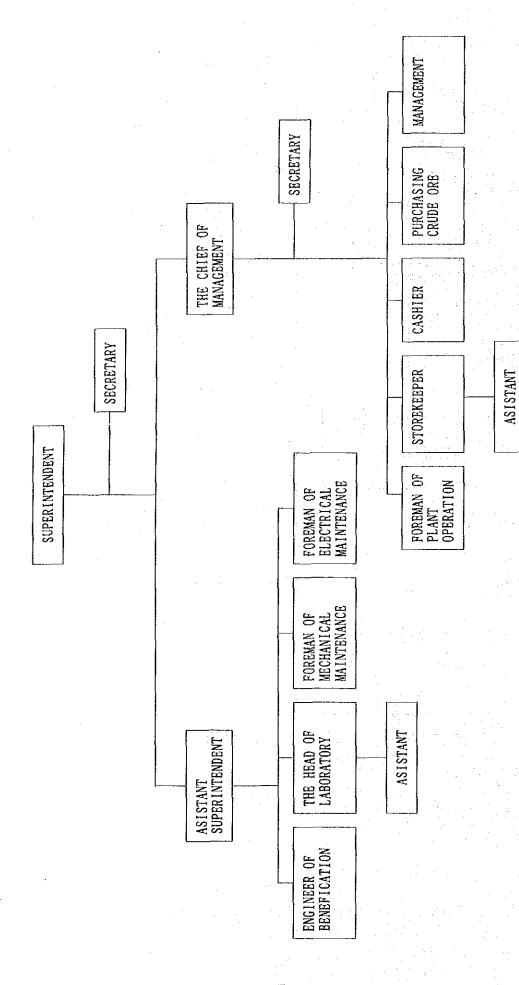
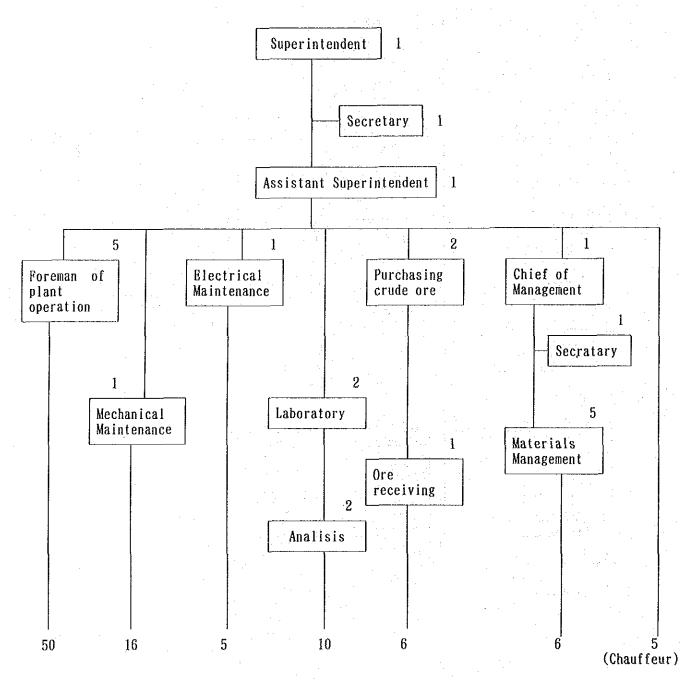



Fig 3.6.4 Figure of organization and personnel Guanacevi

Fig. 3. 6. 5 Flowsheet of Barones plant

Staff; 24

Worker; 98

Total personnel; 122

Fig. 3. 6. 6 Figure of Organization and Personnel

Bulk Flotation-Cyanidation

Example

Wt Au Ag

tons g/t g/t

Distribution % % %

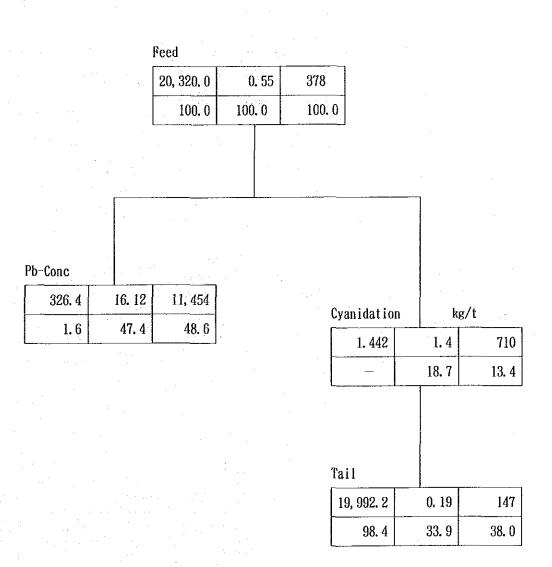


Fig. 3.7.1 Metallurgical Balance at Parral Plant 1

Pb Flotation-Cyanidation

	Exa	mple		
	Wt	Au	Ag	Pb
	tons	g/t	g/t	: %
Distribution	%	%	%	%

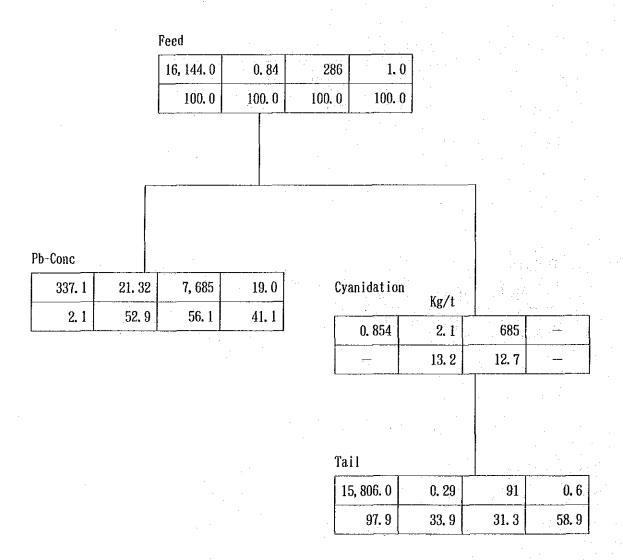


Fig. 3. 7. 2 Metallurgical Balance at Parral Plant 2

Pb/Zn Flotation

Feed 3. 1 2000.0 1.89 95 3. 1 100.0 100.0 100.0 100.0 100.0 Pb-Conc 59.4 77.8 25.79 1,579 Zn Conc 3.9 52.8 64.6 73.8 370 44.4 76.2 14.8 55.0 3.8 Tail 21 0.9 1.5 1,846.0 0.97 92.3 47.2 20.7 26.2 45.0

Example

Distribution

Wt

tons

%

Au

g/t

%

Ag

g/t

%

Pb

%

%

Zn

%

%

Fig. 3. 7. 3 Metallurgical Balance at Parral Plant 3

Examp	1	e
--------------	---	---

	Wt	Au	Ag
	tons	Assay(g/t)	Assay(g/t)
Distribution	%	%	%

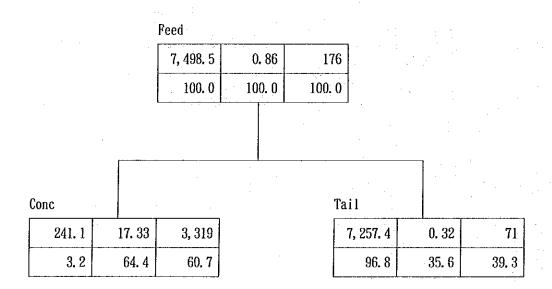


Fig. 3. 7. 4 Metallurgical Balance of Buena Fortuna ore

San Narcos

' 89 1-7

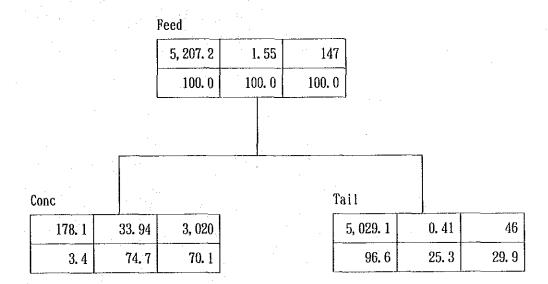
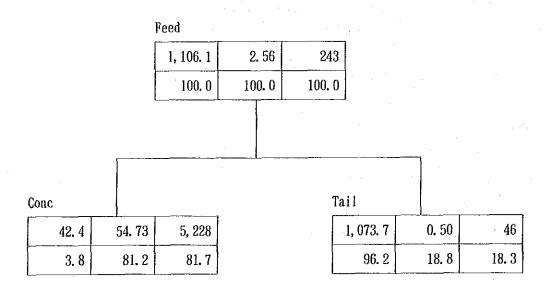



Fig. 3. 7. 5 Metallurgical Balance of San Marcos

'89. 7

1	3x	នា	mı	١c	e
		u	ш	-	~

	Wt	Au	Ag
	tons	Assay(g/t)	Assay(g/t)
Distribution	%	%	%

' 89 1-7

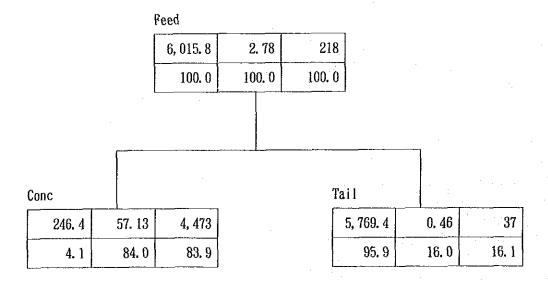
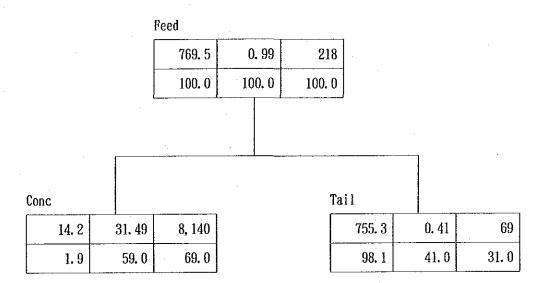



Fig. 3. 7. 6 Metallurgical Balance of Sun Josè Chico

'89. 7

Example
Wt Au A

	Wt	Au	Ag	
	tons	Assay(g/t)	Assay(g/t)	
Distribution	%	%	%	

'89 1-7

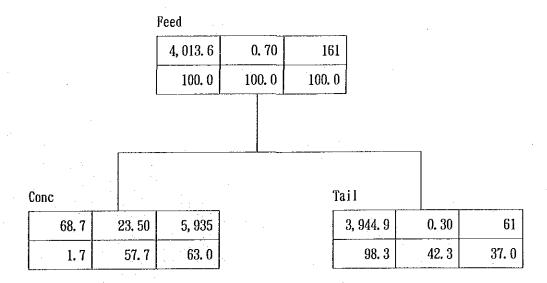
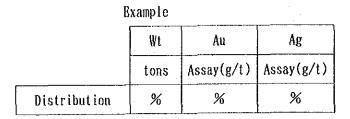
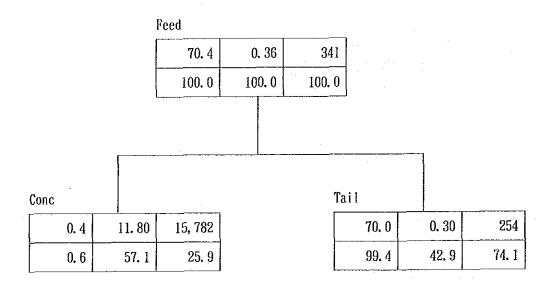




Fig. 3. 7. 7 Metallurgical Balance of Capuzaya

'89. 7

'89 1-7

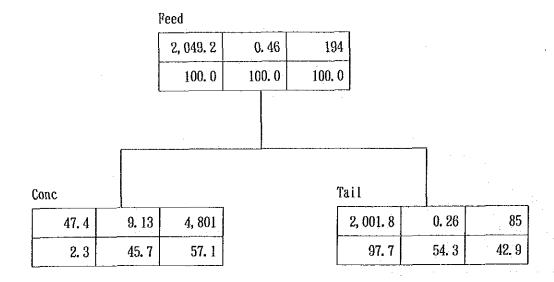
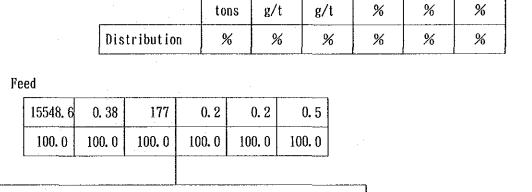



Fig. 3. 7. 8 Metallurgical Balance of El Soto

Bulk Flotation

Au

Pb

Zn

Ag

Fе

Conc						Tail		***			
163. 3	6. 79	9, 122	3.8	3. 3	12. 2	15385. 3	0. 31	82	0. 1	0. 1	4. 9
1.1	18. 9	54. 2	21.7	19. 5	2.6	98. 9	81. 1	45. 8	78. 3	80. 5	97. 4

Example

Wŧ

Fig. 3. 7. 9 Metallurgical Balance of Bulk Flotation at Barones Plant

Pb/Zn Flotation

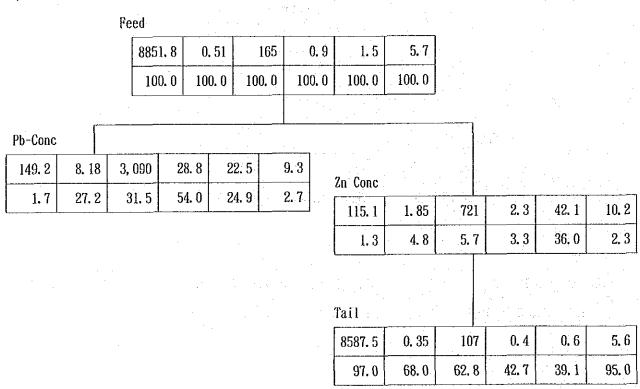


Fig. 3. 7. 10 Metallurgical Balance of Pb/Zn Flotation at Barones Plant

Metallurgical Balancesheet of Barones

Distribution

Pb/Cu/Ze Flotation

'89 1-6

Example Wt Ag Pb Cu Zn Fe Au Х % Х g/t g/t % Assay tons

Х

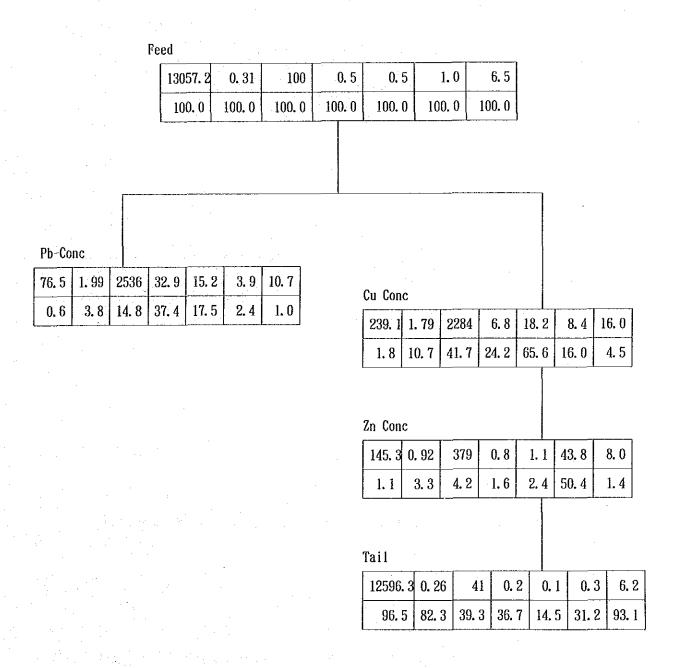


Fig. 3. 7. 11 Metallurgical Balance of Pb/Cu/Zn Flotation at Barones Plant

Cyanidation

	Wt	Au	Ag
Assay	tons	g/t	g/t •%
Distribution	%	%	%

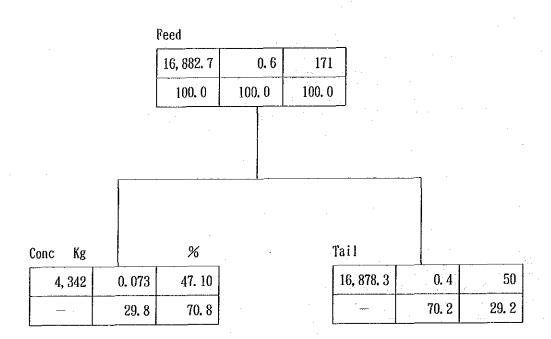


Fig. 3. 7. 12 Metallurgical Balance of Cyanidation at Barones Plant

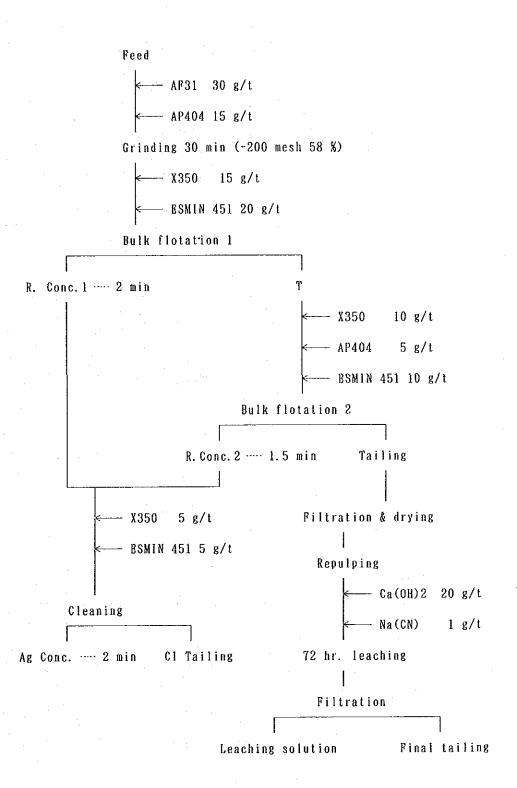


Fig. 4.1.1 Flow sheet of Beneficiation test No. 1

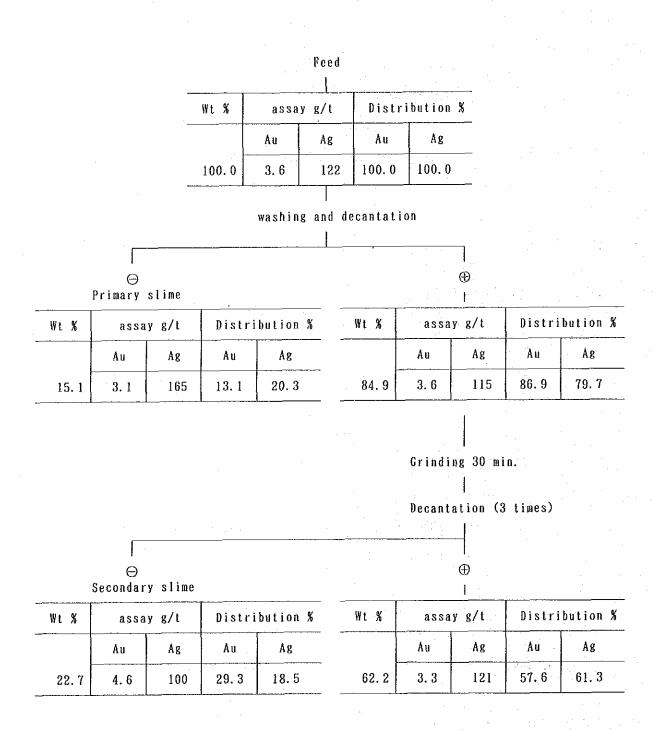


Fig. 4.1.2 Result of Washing test of Jose Galindo Ore

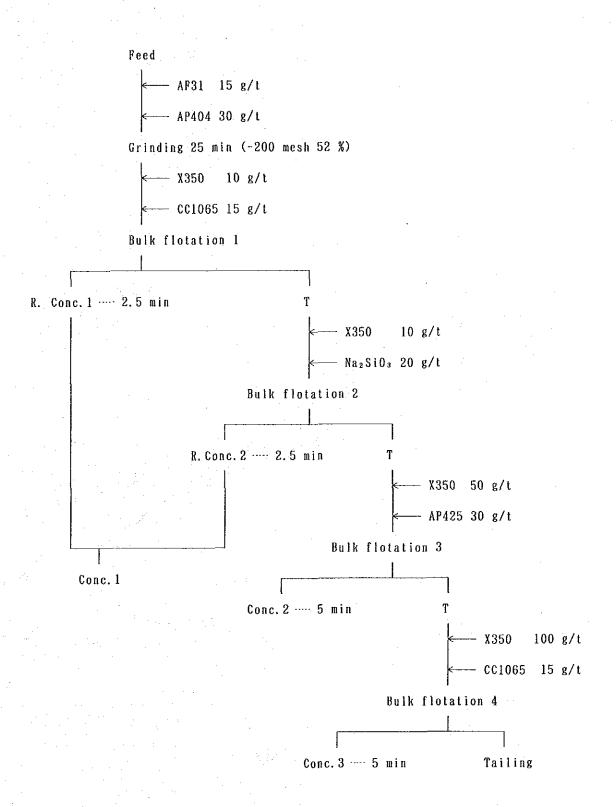


Fig. 4.1.3 Flow sheet of Flotation test for Rosavio Oxide (Test No. 1)

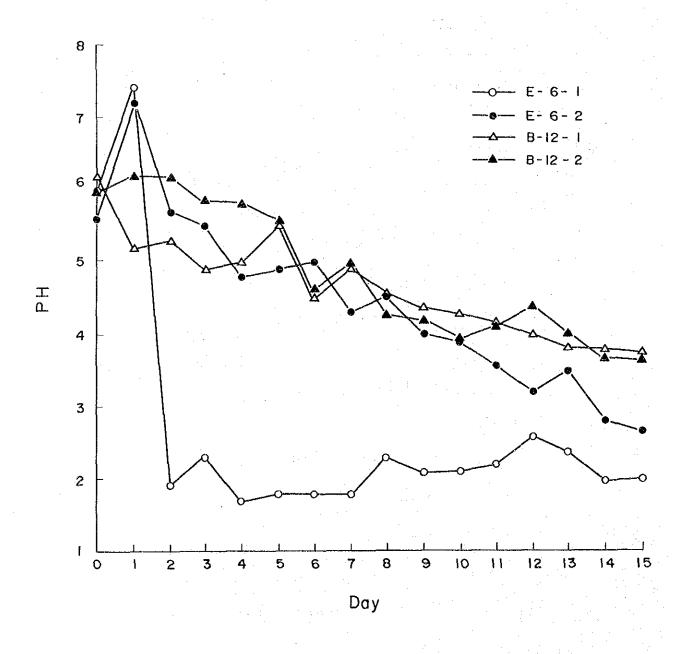


Fig. 4. 2. 1 Relation between pH and Leaching time

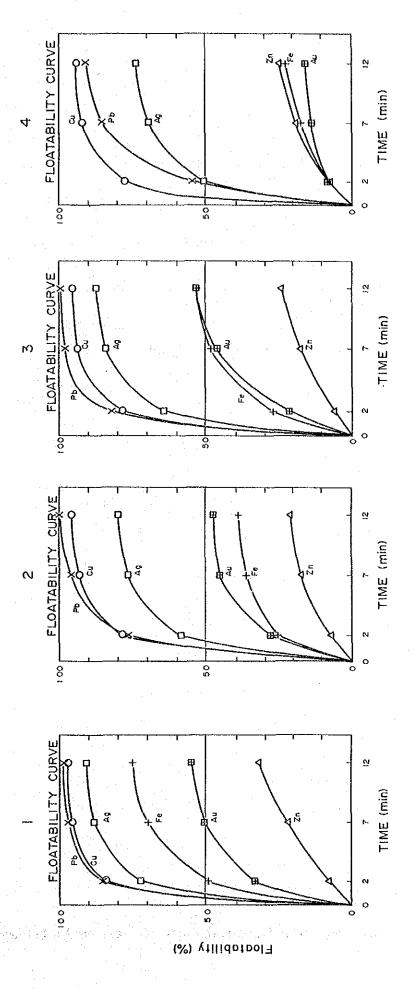


Fig. 4.2.2 Flotablities of Fundamental Flotation test on San Bernabe Ore 9

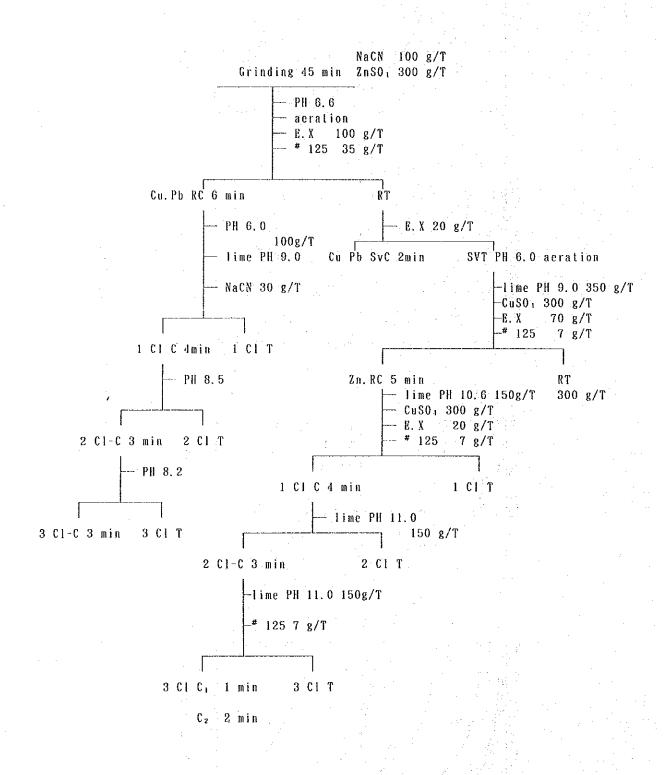


Fig. 4. 2. 3 Follow sheet on Differential Flotation test on San Bernabe Ore

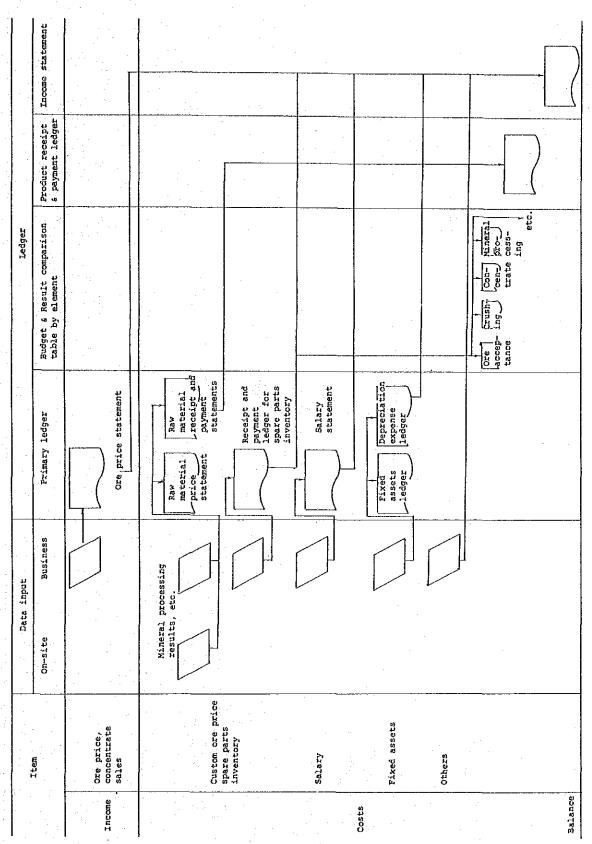


Fig. 6. 6.1 Flow chart of Rationalized office work

₩ork
ce
off
ized
Rational
Q.
chart
WO.
ш
8. (
Fig. 6. 6.
1.

		Data input	nt.			Ledger		-
	Team	On-site	Business	Primary ledger	edger	Budget & Result comparison table by element	Product receipt & payment ledger	Income statement
Income	Ore price, concentrate sales			Ore price statement	statement			
		Mineral processing results, etc.	ssing		Raw material receipt and			
	Custom ore price spare parts inventory			statement	payment statements			
				८ भिनिक्ष	Receipt and payment ledger for spare parts inventory			
	Salary				Salary statement			
Costs	Fixed assets				Depreciation expense			
				ledger	ledger			
	Others							

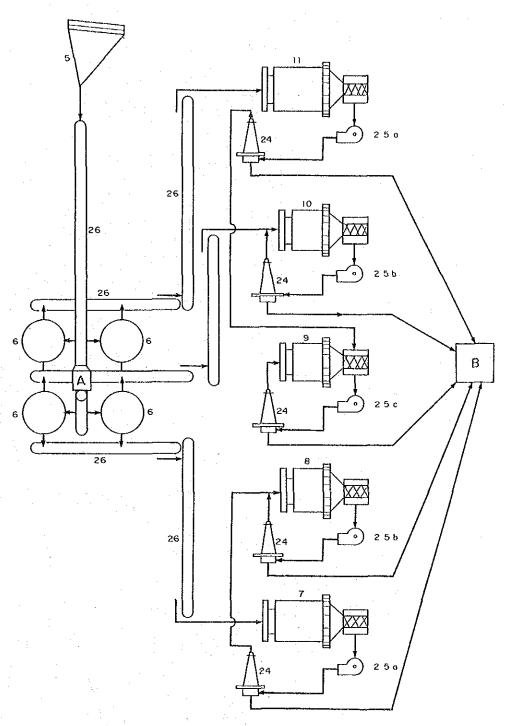


Fig. 8. 3. 1 Current flow sheet of Grinding Process at Guanacevi Plant

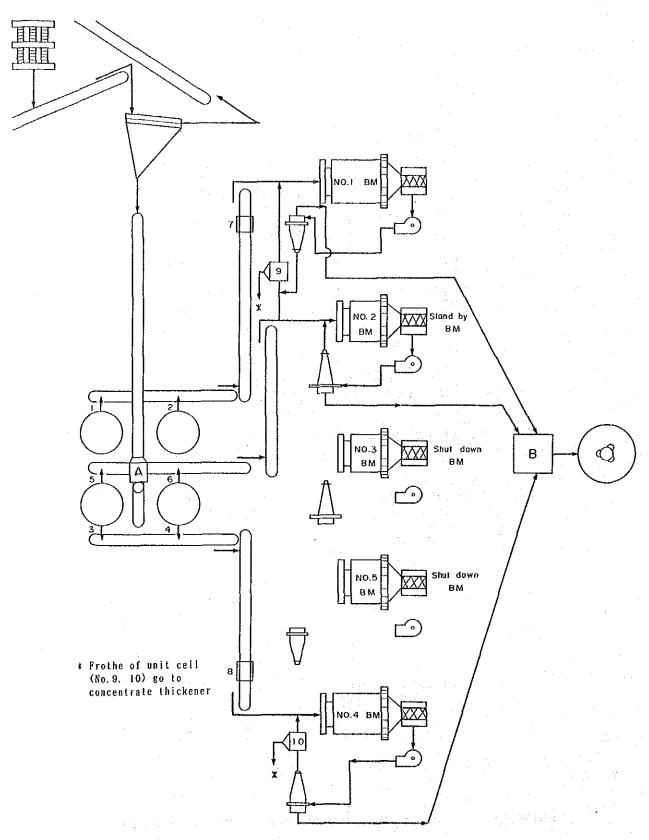


Fig. 8. 3. 2 Flow sheet of Improvement Plant for Grinding Process at Guanacevi Plant

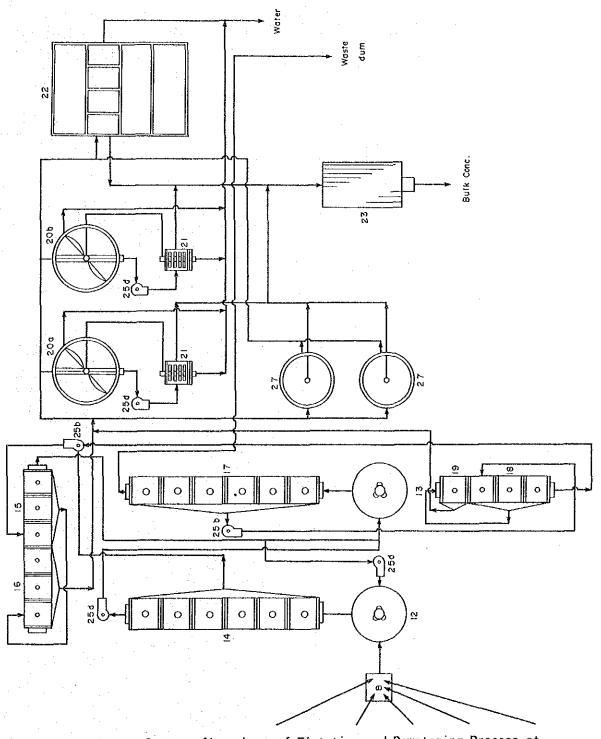


Fig. 8. 3. 3 Current flow sheet of Flotation and Dewatering Process at Guanacevi Plant

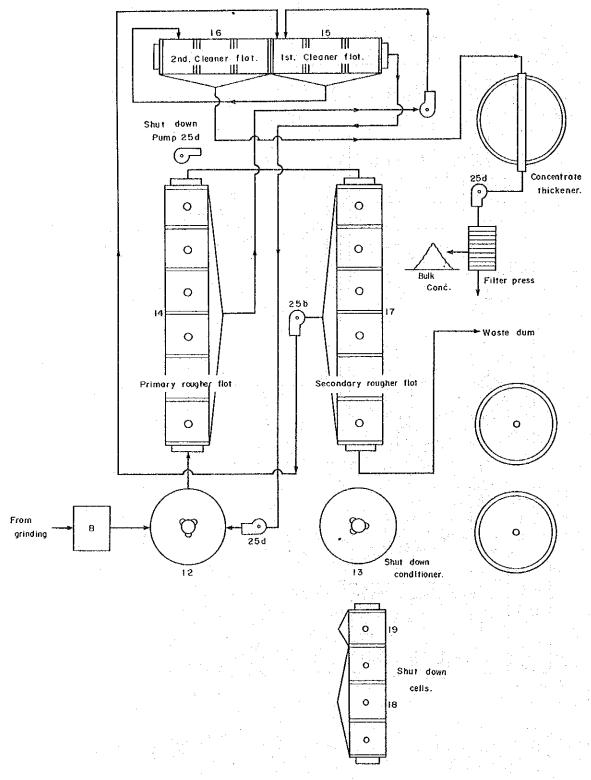
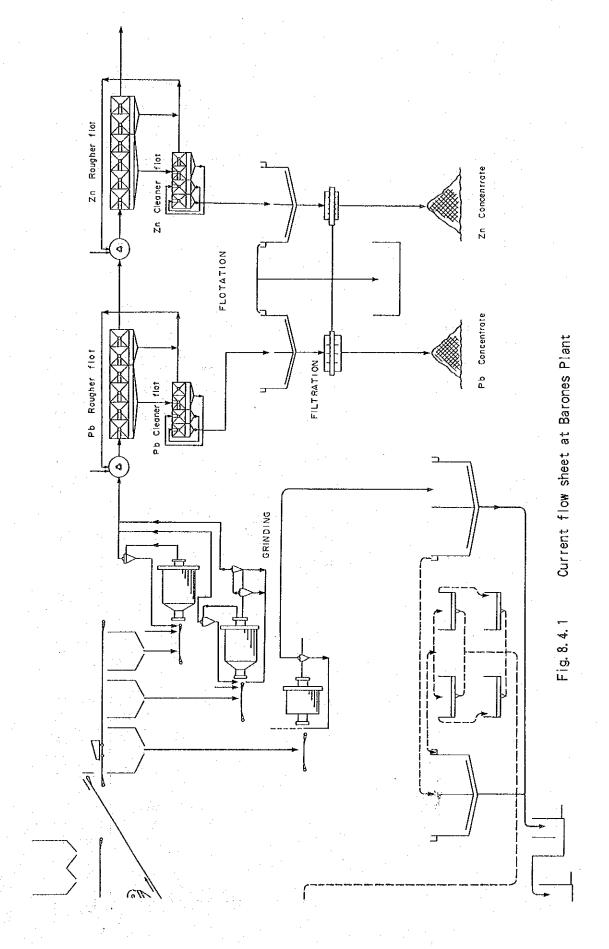
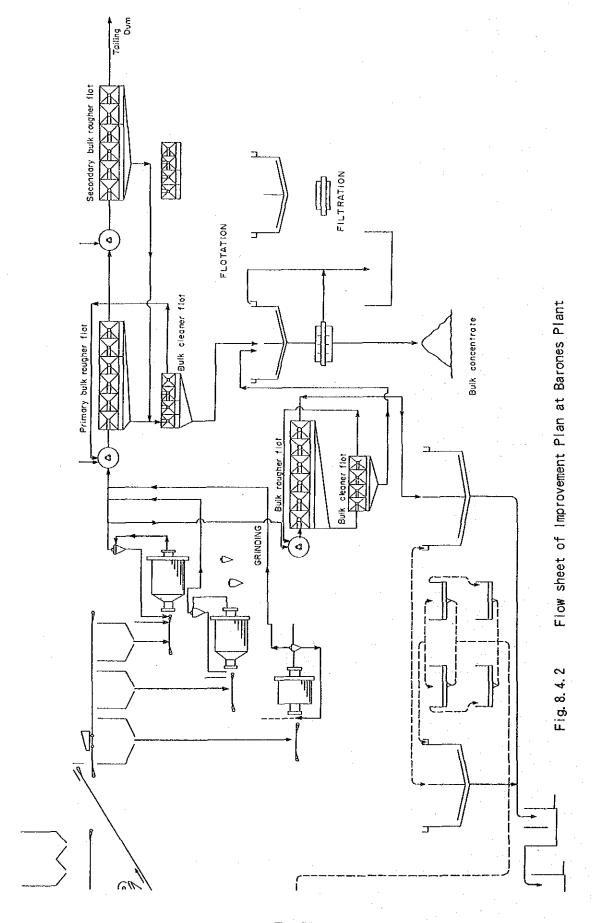
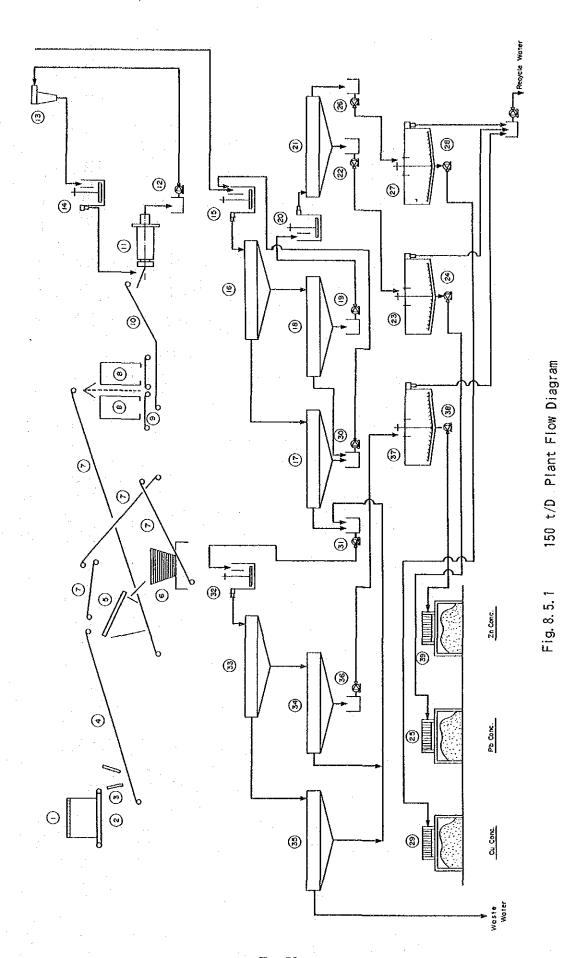
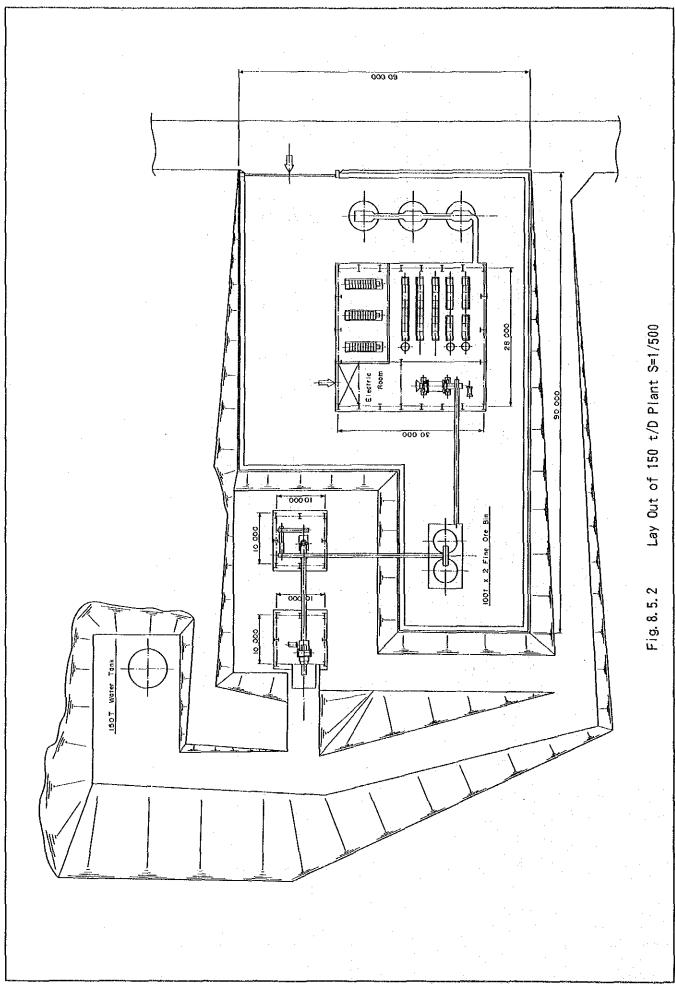





Fig. 8. 3. 4 Flow sheet of Improvement Plan for Flotation and Dewatering Process at Guanacevi Plant



F - 58

F - 59

F - 60

Table 2.1.1 a) Gross National Production 1983 \sim 87

(in millions of Pesos)

Voor	GNP (Young National (Industrial and CND		Ratio of Mining		
Year	Gross National Product (total)	(Industrial and Mining Sector)	GNP (Mining)	To GNP	To industrial and Mining Sector
1983	17,141,694	6,737,860	303,769	1.8	4.5
1984	28,748,889	11,790,025	427,472	1.5	3.8
1985	45,419,841	17,672,860	664,756	1.5	3.7
1986	79,353,450	25,833,231	1,734,395	1.7	5.3
1987	195,614,485	67,397,139	3,795,480	1.9	5.6

Source: National Statistics by the Ministry of budget, Bureau of Geographic Data, Bureau of Mines of the Ministry of Energy, Mines and National Corporations, etc.

Table 2.1.1 b) Mexican Mining Production 1983~87

(in millions of Pesos)

Year	Total	Metal	Non-metal
1983	303,769	198,987	104,782
1984	427,472	260,060	167,412
1985	664,756	329,654	335,102
1986	1,374,395	721,203	653,192
1987	3,795,480	1,137,710	1,657,770

Source: Bureau of Mines, Ministry of Energy, Mines and National Corporations

Mexican Export 1983 \sim 87 (in Millions of Pesos) Table 2.1.3 (in Millions of Pesos)

Year	All Sectors	Mining Sector	8
1983	2,571,440	141,713	5.5
1984	4,059,339	182,856	4.5
1985	5,855,065	249,693	4.3
1986	9,916,200	613,796	6.2
1987	26,451,431	1,376,078	5.2

Source: National Statistics by the Ministry of Planning and Budget

Table 3.4.1 Estimation of the Mining cost

rattar															-
Mine		La Revancha	ncha		La Presa		La Esperanza	nza		Tilita			Unificacion Cordero	n Cordero	
Data Source		Survey Calc	calc i	Calc 2	Survey	Calc	Survey	Calc l	Calc 2	Survey	Calc 1	Calc 2	Survey	Calc 1 (Calc 2
Underground/Surface	/Surface	5/n	9/n	מ/פ	5/0	5/0	5/0	5/0	מ/פ	5/0	9/n	n/c	2/0	9/0	۵/۵
Daily Tonnage (mt)	ye (mt)	70	70	100	50	20	20	20	20	OT.	ន	3.0	15	- 21	15
Stoping Width (m)	:h (m)	2	2	3	1.5	1.5	0.7-2	2	ī	2.5	3	T	1.2	73	7
Employees (men)	ren)	40	37	39		34	14	1.5	22	ព	60	13		13	1.8
ordxa	Exploration														
	Mining Labor (per worker-		7,500	5,500		9,600		10,600	15,600		6,400	10,400	41,050	12,300	17,000
	Supplies		21,000	18,700		23,000		23,800	27,400		23,600	29,400	:	24,500	28,200
	Transporta- tion		5,000	5,000	-	5,000		5,000	5,000		3,000	5,000	12,000	12,000	12,000
	Drainage									-			25,000	25,000	25,000
rotal		34,500	33,500	29,200		37,600	30,000	39,400	48,000	28,000	35,000	44,800	78,050	73,800	82,200
Guanacevi							-								
Mine		San Jose	chico	Barradon			Capuzaya		San Rafael		Ample Al	Alto Porveníz	nir	Noche Buena	g
Data Source		Survey	Calc	Survey	Calc 1	Calc 2	Survey	Calc	Survey	Calc	Survey	Calc	Calc 2	Survey	Calc
Underground/Surface	Surface	5/0	0/0	5/0	5/0	0/0	0/0	0/0	9/0	0/0	9/n	9/0	5/0	9/0	۵/۵
Daily Tonnage (mt)	re (mt)	35	35	13	13	13	6	6	05	80	50	90	20	120	120
Stoping Width (m)	,h (m)	τ	1	П	1	2	2	2	2	2	7	2	5.	0.7-2	2
Employees (men)	len)	36	32	10	16	. 8		6	30	29	18	29	18		54
	Exploration	21,000	21,000							•					
(Peso/Minin mt)	Mining Labor (per worker- week)	009'61	22,900 (150,000)		18,500	9,200		15,000	30,000	14,500		14,500 (150,000)	9,000	25,000	9,000
	Supplies Transporta- tion	29,400 8,500	25,900 8,500		28,600 8,500	18,700 8,500		25,800 8,500	9,000	21,800	50 A	21,800 9,000	18,100 9,000	(8,000)	19,900 8,000
	Drainage										-				
Total		78,500	78,300	22,693	55,600	36,400	27,249	49,300	39,000	.45,300	21,000	45,300	36,100	25,000	36,900

Table 3.4.1 Estimation of the Mining cost

Barones

										,						
Mine			San Rc	San Roberto & San Bernabe	San Ber	ពេង៦៩			Las Cum	Cumbres	Calicanto	o,			Ampl. San	San Miguel
Data S	Source			Survey			Calc		Survey	Calc	Survey	rey	Calc		Survey	Calc
Underg	Underground/Surface	urface	n/6	s 5/n	Surface	9/n	5/0	Surface	D//C	۵/۵	5/n	Surface	n/6	Surface	5/0	מ/פ
Daily	Daily Tonnage (mt)	(mt)	9	80	40	09	80	40	25	25	35	15	35	15	12	12
Stopin	Stoping Width (m)	(E)	3.15 0	0.2-2.5		ហ	2		2	2	0.7-2		2		0.7-2.5	2.5
Employ	Employees (men)	(1)	81	62		21×70%=15	40	4	73	18	45		23	m	3.0	10
	Exploration	ation							:							
Cost (Peso/ mt)	Min- La ing (j	Labor (per worker- week)		*. *		12,500	25,000	2,500		10,100			9,200 (98,000)	2,800		12,500
•	I W Ci	Sup- plies				17,800	20,800	9,600		23,300			22,500	14,600		24,000
	l e v	Trans- porta- tion			: :	2,000	2,000	5,000		5,000			5,000	5,000		5,000
	I Ci &	Drain- age			.4									: : : :		
	Total			18,500		35,300	50,800	17,100	35,191	38,400	35,974		36,700	22,400	35,099	41,500
	(Average)	ge)					(38,100)						(32,410)			
				:	:	:										

Table 3.4.1 Estimation of the Mining cost

Barones

Mine			California	វិនា	
Data So	Source		Survey	Calc 1	Calc 2
Undergr	ound/	Underground/Surface	Surface	Surface	Surface
Daily T	Tonnage	re (mt)	120	120	120
Stoping	Width	th (m)			·
Employees		(mem)	07	8	40
	Explo	Exploration			
Cost (Peso/ mt)	Min- ing	Labor (per worker- week)		1,000	5,000
		Sup- plies		6,000	6,000
		Trans- porta- tion		5,000	5,000
		Drain- age			
	Total		16,029	12,000	16,000

Table 3.7.1 Metallurgical Balance of each Plant (1988)

	Weight		ASSay	a y			Content	en t			Distribution %	ntion %	
	(Ton)	Au g/t	Au g/t Ag g/t	Pb %	Zn %	Au g	Au g Ag Kg Pb t Zn t	35 t	Zn t	Au	Ag.	æ	2
Feed	85, 670. 1	99.0	240	0.7	0.2	56, 473	20, 520	603.1	135.9	100	901	100	81
Bulk conc	277.0	47.30	7,300	l		13, 102	2 023	1	i	প্ত	ග	I	1
Pb conc	1,539.5	8	6,003	19.9	ı	13, 722	9,241	306.3	ı	77	45	21	
Zn conc.	179.6	I	178	1	43.3	1	32	-	77.8	1	0.2	ŀ	21
Au • Ag Precip.	3, 533	1/88/1	kg/t 690	1	l	8, 019	2 438			14	12	ļ]
Tailings	83, 670. 5	0.28	83	0.4	0.1	0.1 21,630	6, 787	236.8	88 1	ස	ਲ ਲ	49	43

	Weight		ASSAY	ρ. γ	-		Content	nt			Distribution	ution %	
	(Ton)	Au.g/t	Au g/t Ag g/t Pb %	F %	Zn %	Zn %. Au g Ag Kg Pb t Zn t	Ag Kg	8 +	Zn t	γn	Ag	윤	Zn
eed	111, 347	1.18	202	-1		131, 147	22,507		ŀ	100	100		l
bulk conc.	3,294	ਲ 왕	4			93, 301	15,610	1	I	17	66	. 1	l
Tailings	108, 053	0.33	22	l	1	37,846	6,897	1	I	83	31	1	i

(3) Barones('88_1~12)	~12)						-	· · ·	-							
	Weight		Y	SSaj	Ą			C	Content				Distribution	ntion %		
	(Ton)	(Ton) Au g/t	Ag g/t	Pb %	Cu %	Zn %	Au 8	Ag Kg	1. 1. 1.	S t	Zn t	Au	Ag.	Pb	n)	Zn
Feed	126, 806 0, 51	0.51	145	ზ უ	0.1	0.4	64, 682	18,416	403	124	497	8	81	8	100	8
Au • Ag Precip. 7516Kg	7516Kg	0.16%	40.3%	I	l		12, 117			1	I	61	16	1	j	
Bulk conc.	1,037	8 44	4,303	ក្ស ប	1	1	8, 750	1000	٠.	1	1.	14	22	14	Ī	1
Po conc.	439	11.51	4,440	6 %	9 g	တ တ	5,051			16	. 3 3	<u></u>	11	37	13	∞
Ch conc.	472	1.45	1,230	4.9	17.6	ည တံ		250		83	45		က	9	67	ග
Zn conc.	9 8	<u></u>	88	2.1	1.1	42.3	85 176	×	12	9	237	П	23	က	വ	⇔
Tailings	124, 300	0.30	22	0.1	ı	0.1	85			13	172	83	£	8	15	얺

Table 3.7.2 Metallurgical Balance of each Plant (1989)

Products Weight A s s a y Content Content Distribution Feed 38,464 0.74 325 0.6 0.2 28,476 12,500 218.1 61.1 100.0 100.0 100.0 Bulk conc 326 16.12 11,454 - - 5,255 3,734 - - 18.5 28.9 100.0 <th></th> <th>(1) rarial (ox $1\sim 0$)</th> <th>1~0)</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>:</th> <th></th> <th>:</th> <th></th> <th></th> <th></th>		(1) rarial (ox $1\sim 0$)	1~0)						:		:			
(Ton) Au gft Pb % Zn % Au g Ag Kg Pb t Au f Au g Ag Kg Pb t Au f Au g Ag Kg Pb t Au f Au g Ag Kg Pb t Au g Au g Ag Kg Pb t Au g Au g Ag Kg Au g		Dendinte	Weight		ASS	a y			Con	ent			Distrib	rtion
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		ri oducis	(Ton)	Au g/t	Ag g/t	Pb %	Zn %	Au g	Ag Kg	-2c +-	Zn t	Au	Ag	£2.
ceip. 2.256 1.454 - - 5.255 3.734 - - 18.5 22.9 ecip. 2.258 1.454 - 4.44 - 3.164 - 3.267 - 3.867 1.627 - 3.36 - 0.2 ecip. 2.256 1.77 1.67 - 3.867 1.627 - 3.36 1.30 37,648 0.30 117 0.3 0.1 11,170 4,399 108.1 27.5 35.6 35.2		Feed	38, 464	0.74		9.0	0.2	28, 476	12,500	218.1	61.1	100.0	100.0	100
ecip. 2.29 6.582 26.7 $ 9.184$ 2.712 110.0 $ 32.3$ 21.7 ecip. 2.296 1.77 1.87 $ 3.867$ 1.627 $ 1.36$ 13.0 $37,648$ 0.30 117 0.3 0.1 $11,170$ 4.399 108.1 27.5 35.6 35.2		Bulk conc	328	16.12	11, 454	1		5,255	3,734			18.5	ಣ	
ecip. 2,296 kg/t kg/t		Pb conc.	412	82	6,582	26.7	İ	9, 18	2,712			823	21.7	ස
ecip. 2,296 kg/t kg/t — — 3,867 1,627 — — 13,6 13,0 37,648 0,30 117 0,3 0,1 11,170 4,399 108,1 27.5 35,6 35,2		Zn conc.	76	1		ı	44.4		83	. 1	9 %		0.2	
37,648 0.30 117 0.3 0.1 11,170 4,399 108.1 27.5 35.6 35.2		Au•Ag Precip.	2 2 2 kg	kg/t 1.7	kg/t	ı	ı	3,867	1,627	ı	1.	13.6	13.0	
	. '	Tailings	37,648	0.30	117	0,3	0.1	11, 170	4,399		27.5	35.6	35.2	₩

(2) Guanacevi ('88 $1\sim7$)	8 1~1)					-	
Deschioto	Weight	As	Assay	Con	Content	Distr	Distribution
riouncis	(Ton)	Au g/t	Au g/t Ag g/t	Au g	Ag Kg	Au %	Ag %
Feed	54, 258	1.45	253	78, 447	13,726	100.0	100.0
Bulk conc.	1,724	83	6, 131	61,023	10, 572	77.8	77.0
Tailings	52, 534	83	8	17, 418	3, 154	22.2	23.0

Table 3.7.2 Metallurgical Balance of each Plant (1989)

(3) Barones('89, $1 \sim 6$)	(9~								-						:				
District	Weight			AS	Assay					Content	e n t				Dist	Distribution	ion	%	
SIONDOLL	(Ton)	Au g/t	Au g/t Ag g/t	Pb %	Cu %	% uZ	Fe %	Au g	Ag Kg	Pb t	Cu t	Zn t	Fe t	Au	Ag	Pb	පී	Zn	Fe
Feed	37, 458	0.38	145	0.5	0.2	0.8	بر زیر	14,381	5,516	175.3	86.2	289.0	2, 132	100.0	100.0	100.0	100.0	100.0	100.0
Bulk conc	163	6.79	9, 122	ထ ကံ	1	ෆ ෆ්	12.3	1, 109	1, 489	62		다. 44	83	7.7	27.0	ಭ	T.	1.9	6 Ü
Pb conc	228	6.07	2,898	8 1	다 디	16.2	9.7	1,372	655	68 1	11.6	36.6	83	တံ	11.9	ж Ж	17.5	12.7	1.0
Cn conc	239	1.79	2 285	8	18.2	က လ ၁	15.9	429	546	16.3	43.4	20.2	88	0 ස්	တ တံ	က တံ	9 19	7.0	7.8
Zn conc	280	1.33	531	1.4	0.6	43.2	න න්	346	88	<u>~</u>	1.6	112.2	ន	24	2.5	2.1	2.4	8 88	
Tailings	36, 570	0.30	74	0.3	0.03	0.3	വ	11, 125	2 688	81.0	9 6	114.6	2 029	77.4	48.7	46.3	14.5	39.6	95.2
Cyanidation Feed	16,883	9.0	171					10,602	2,885					100.0	100.0	2			
Au • Ag Precip	4,342	0.073%	47.1%					3, 156	2.04					8.58	70.8				
Tailings	16,878	0.4	ß					7,446	₩					70.2	29.2				

Table 3.7.3(a) Net sales of concentrates Parral Plant (1989 Jan-June)

USS TOTAL	0	55, 796	597, 770	S	-25, 112	-1, 223	-815	-326		[12 727, 382	TOTAL	46, 587	97, 507	434, 125	4.381	-31, 736	-1, 391	-1,030	-412	.		9 636, 640	USS	43, 038	2, 193	FII-		39 4, 089
I. V. A		٠								101, 292	101, 292	7 2										88, 609	88, 609	1.1.3					4.089
SUB TOTAL	0	55, 796	591, 770	9	-25, 112	-1, 223	-815	-326			626.090	SUB TOTAL			বা		-31, 736	-1, 391	-1, 030	-412			548, 031	SUB TOTAL	43, 038	2, 193			
M. P. TAX	0	4, 200	44, 993	>							19, 193	M. P. TAX	2, 452	7, 339	32, 676	331							42, 698	M. P. TAX	2, 265	165			
SUB TOTAL M.	0	59, 996	642, 763	0	-25, 112	-1, 223	-812	-326			675, 283	SUB TOTAL M	တ	104,846	166.801	4,612	-31,736	-1, 391	-1, 030	-412			590, 729	SUB TOTAL M	45, 303	2, 358	-114		
PEXALTY			÷			1, 223	815	326			2,364	PENALTY		٠	•			1, 391	1,030	412			2, 833	PENALTY			114		
R/C&T/C	0	•		0	25, 112						25, 112	3/2	10, 198			1.381	31, 736						43,315	R/C		20, 289	Î		
VALUE	0	59, 996	642, 163	>							702, 759	VALUE	59, 237	104, 846	466, 801	5, 993							636, 877	VALUE	45, 303	2, 358			
REC, METAL	0.000 T	5, 255, 1 G	3, 734, 004 KG	0.000							:	REC. METAL	93.442 T	9, 183, 5 G	2, 711, 784 KG	2.060 T								REC. METAL	27.664 T	13. 7 KG			
RECOVERY	96 :	≽ ₹ :		S.								RECOVERY	1.5UL&90 %	100 %		5 KGL								RECOVERY	3 UL	93. 3GLES*65%			
CONTENTS	0.000 T	5, 255, 1 G	3,734,004 KG	1.000 1								CONTENTS	110.004 T		2, 711, 784 KG	4.120 T								CONTENTS		28. 1 KG			
PARRAL GRADE	0.00	16. 12 G/T	11, 454, 00 6/1	6 JC 10	77, 03 S/DT	30,00 %	20,00 %	2.00 %	96			PARKAL GRADE	26.70 %		6.582.00 G/T 2	1.00 %	77.03 S/DT	-	24.00 %	2.00 %	96			PARRAL GRADE	44, 40 %	370 G/T 266, 96 \$/DT	80 00 82 82 82 83 83 83 83 83 83 83 83 83 83 83 83 83		
	Pb		8 E	2	2/1	INSOLUBLE	S	As	H20	I. V. A.	TOTAL		 G	Yn.		3	3/2	INSOLUBLE	v)	As	H20	I. V. A.	TOTAL				Fe H20		7 7 T
BULK-CONC	DMT T	326, 000								-		PB-CONC.	. T TM	412,000			•							ZN-CONC	DAIT T	76, 000			

Table 3.7.3(b) Net sales of concentrates Parral Plant (1989 Jan-June)

	AU-AG PRE	AU-AG PRECIPITATION PARRAL	PARRAL						<u> </u>				US\$
	-		CRADE	CONTENTS	RECOVERY	REC. METAL	VALUE R/C	PENALTY	SUB TOTAL M. P. TAX		SUB TOTAL 1. V. A	I. V. A	TOTAL
	£	£.	0.00 %		1.500%90%	0,000 T	0	0	0	0	0		0
	2.296	γn	1, 700, 00 G/T	3, 903. 2 6	100 %	3, 903. 2 G	44, 562		44, 562	3, 119	41, 443		41,443
		SF.	T08, 000. 00 G/T	, 1, 625. 568 KG	100 %	1, 625. 568 KG	279,822		279,822	19, 588	260, 234		260, 234
			0.00	0.000 T		0.000 T	0	0	0	0	0		0
		1/0	77.03 \$/DT	TI.				177	-111		-177		-177
		INSOLUBLE	E 0. 00 %						0 (0		0
		د	0,00 %					J	0 0		0		0
		As	0,00 %					_	0 (0		0
		H20	96	٠						-			0
,		I. V. A.							-			48, 631	48, 631
		1 TOTAL		1			324, 384	177	3 824, 207	22, 707	301, 500	48, 631	350, 131

Table 3.7.4 Net sales of concentrates Guanacevi Plant (1989 Jan. -July)

rss	TOTAL	0	647,806	1,692,107	0	-132, 800	-6,465	-4,310	-1, 724	0	355, 611	355, 611 : 2, 550, 225
	I. V. A										355, 611	355, 611
	SUB TOTAL I. V. A	0	647,806	1, 692, 107	0	-132, 800	-6, 465	-4,310	-1, 724			2, 194, 614
		0	48, 760	127, 363	0							176, 123
	PENALTY SUB TOTAL M. P. TAX	0	696, 566	1,819,470	0	-132, 800	-6, 465	-4,310	-1, 724			12, 499 2, 370, 737
	PENALTY		-				6, 465	4,310	1, 724			12, 199
		0			0	132, 800		-				132, 800
	VALUE R/C	0	696, 566	1,819,470	0		٠					2, 516, 036
	REC. METAL	0.000 T	61,012.4 G	10, 569, 844 KG	0.000 T							
	RECOVERY	1. 5UL&90 %	100 %	100 %	5 KGL	:						
	CONTENTS	0,000 T	61, 012, 4 G	6, 131, 00 G/T 10, 569, 844 KG	8.620 T						•	
CUANACEVI	RADE	% 00 0	35.39 G/T	6, 131, 00 C/T	0.50 %	77.03 S/DT	30.00 %	20.00 %	2 00 %	96		
			4		n,		INSOLUBLE	S	As	H20	1. V. A.	TOTAL
0.307 .71.10	ם שרבע ברכונים	DMT T	1, 724, 000 Au	:								
							•					

Table 3.7.5(a) Net sales of concentrates Barones Plant (1989 Jan.-June)

R.CERTAC PENALTY SUB TOTAL M.P.TAX SUB TOTAL 1. V. A 1. 5759 106, 122 5, 306 100, 816 4, 542 94, 007 6, 580 87, 427 225 19, 079 -19, 079 -19, 079 -120 90 -90 -120 120 120 120 120 120 120 120 120 120	24 177	-226	136	20/-	-11, 408	22, 062	104,849	14, 586	29, 003	USS TOTAL		274, 273			-163	-408	-611	-12, 556	0	238, 033	11.731	0	USS TOTAL	.	201 532		27	1.20	181	-72	-10 070	225	87, 427	4,542	100,816	USS TOTAL
PENALTY SUB TOTAL M. P. TAX SUB 106, 122 5, 306 4, 884 342 94, 007 6, 580 237 12 90 -19, 079 72 -72 90 -120 12, 636 90 -120 12, 636 90 12, 240 90 12, 240 90 12, 340 90 12, 409 90 12,	24, 479 24, 479									1.1		38, 227	38, 227										F 7. 1		97 883	97, 883	٠									I. V. A
PENALTY SUB TOTAL M. P. 106, 122 4, 884 94, 007 237 90 -19, 079 -72 -90 120 -120 90 12, 636 255, 949 10 0 0 12, 636 255, 949 10 0 0 12, 636 11, 182 254, 847 11 408 163 -163 15, 662 11, 741 28, 223, 223 9 763 -17, 409 763 -163 9 763 -17, 409 763 -163	151, 517	-226	-563	-163	-17,409	22, 062	104, 849	14, 566	29, 003	SUB TOTAL		236, 046			-163	-108	-611	-12, 556	0	238, 033	11, 751	0	SUB TOTAL		173, 649			061-	U6-	-12	-10 070	225	87, 427	4, 542	100,816	SUB TOTAL
PENALTY SUB TOTAL 4, 884 94, 007 72 90 120 120 120 120 12, 636 90 12, 636 90 12, 636 90 12, 636 1, 182 90 12, 638 133, 529 136, 611 1408 163 112, 741 913, 741 914, 917 915, 662 112, 741 917, 406 113, 741 917, 406 114, 662 115, 662 117, 406 11	11,675					1, 161	7887	1, 096	1, 528	പ		18, 801							0	17,916	885		1. P. TAX		19 910						!	2	6, 580	342	5, 306	f. P. TAX
PENAL B						23, 223	112, 741	15, 662	30, 529	TOTAL		. •						-12, 556	0	255, 949	12, 636	0	_		185 889		071-	061	00-	-72	10 070	237	94,007	4,884	i co	
8/C&T/C 7, 759 4, 581 19, 079 10, 079 12, 556 12, 556 12, 556 12, 556 12, 556 12, 556 13, 409 17, 409	1, 554	226	565	163						PENALTY		1, 182			163	108	611						PENALTY		986		071	261	8	57						PENALTY
	30, 710				17, 403	o, 952	6		6,349	R/C&T/C	,	12, 556						12, 556	0			0	R/C&T/C	,	21 J19					2	10 070	4, 381			7, 759	R/C&T/C
VALUE 113, 881 4, 884 94, 007 4, 818 7, 818 12, 636 208, 585 268, 585 7, 590 0 12, 636 112, 662 112, 741 30, 175	195, 456					30, 175	112, (41	15, 662	36, 878	VALUE	:	268, 585							0	255, 949	12, 636	0	VALUE		217, 590							4,818	94,007	4,884	113, 881	VALUE
REC. NETAL 39. 148 T 427. 8 C 346. 115 KG 7. 6 T 1. 106. 8 C 1. 486. 886 KG 0. 000 T 0. 000 T 1. 186. 886 KG 1. 486. 886 KG 0. 000 T 1. 371. 8 G 654. 948 KG 10. 373 T						10.373 1	004.848 NG	1,371.8 G	58. 172 T	REC. METAL										1.486.886 KG	1, 106.8 6	0.000 T	REC. METAL									7.67	546.115 KG	427.8 C	39.148 T	REC. METAL
RECOVERY 100 % 100 % 47 % 1.50L&90 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 %							* * OOT	¥ 001	1.501&90 %	RECOVERY									5 KGL	% 001	100 %	1.5UL&90 %	RECOVERY													RECOVERY
CONTENTS 43.498 T 427.8 G 546.115 KG 16.252 T 1.106.8 G 1.486.886 KG 0.815 T 0.815 T 1.371.8 G 654.948 KG 11.526 T						11.520	654.948 KG	1, 371. 8 G	68,026 T	CONTENTS									0.815 T	1, 486, 886 KG	1, 106, 8, 6	6. 194 T	CONTENTS									16, 252 T	546.115 KG	427.8 G	43, 498 T	CONTENTS
GRADE 18. 20 % 1. 79 G/T 2. 285. 00 G/T 6. 80 % 8. 50 % 8. 50 % 1. 00 % 8. 50 % 1. 00 % 9. 122. 00 G/T 7. 03 S/DI 30. 00 % 20. 00 % 20. 00 % 5. 00 % 5. 00 % 7. 10 % 7. 03 S/DI 8. 00 % 8. 00 % 8. 00 % 8. 00 % 8. 00 % 8. 00 % 9. 122. 00 % 7. 10 % 1. 10 % 1. 10 % 2. 00 % 2. 00 % 2. 00 % 2. 00 % 2. 00 % 3. 0	94					5. 10 %	2, 898, 00 6/1	6.07 6/T	30, 10 %	BARONES GRADE				26	2.00 %		30.00 %	TT. 03 \$/DT	0,50 %	9, 122, 00 G/T	6.79 G/T	3.80 %	BARONES GRADE								70 83 S/DT	6.80 %	2, 285, 00 G/T	1.79 G/T	ន្ត	BARONES GRADE
Cu Au	H20 I. V. A. TOTAL	AS	တ	INSUCUBLE	1/5	ng Ca	8 c	판	О			TOTAL	1. V. A.	H20	AS	S	INSOLUBLE	1/C		0.0	γņ	2			TOTAL	7 A 7	25 1190	- T	7n	INSOLUBLE	1/1	Po	Ag	Au		
DMT T 239. 000 BULK-CONC BMT T 1 163. 000 PB-CONC PB-CONC								226, 000	DMT. T	PB-CONC	-			yk make a si	******					emperator a	163,000	DMT. T	BULK-CONC								-			239, 000	DMT T	CU-CONC

Table 3.7.5(b) Net sales of concentrates Barones Plant (1989 Jan, -June)

OROV. RD		BARONES											uss
מאברחואר		GRADE	CONTENTS	RECOVERY	REC. METAL	VALUE	R/C&T/C PENALTY	PENAL TY	SUB TOTAL M. P. TAX	M. P. TAX	SUB TOTAL 1. V. A	I. V. A	TOTAL
DMT T	uZ	43.20 %	112.320 T	71) 8	91.520 T	149,875	-		149,875	7, 494	142, 381		142, 381
260.000 Ag	48	531 G/T	138. 1 KG	93. 3CLES*65%	*65% 74 KG	12,738			12, 738		11,846		11,846
	1/0	266.96 \$/DT			2		69, 410		-69, 410		-69, 410		-69,410
	02	8.80 %						1,014	-1,014				-1,014
	H20	> %							•			-	
-	I. V. A.											13, 828	13,828
	TOTAL								92, 189	8, 386	84, 817	13, 828	97, 631
Au-Ag PRE(Au-Ag PRECIPITATION BARONES	I BARONES											USS
		GRADE	CONTENTS	RECOVERY	REC. METAL	VALUE	R/C&T/C	PENALTY	SUB TOTAL M. P. TAX	M. P. TAX	SUB TOTAL	I. V. A	TOTAL
DIATT KG	Pb	0.00 %	0.000 T	1.5UL&90 %	0.000 T	0	0		0	0	0		0
4, 342	무	730.00 G/T											
	38	471,000.00 G/T 2,045.082 KG	2, 045, 082 KG	100 %	2, 045, 082 KG	352, 036			352, 036	24,643	327, 393		327, 393
	Cu	0.00 %	0.000 T		0.000 T	0	0		0	0	0		0
	1/C	77.03 S/DT	1				334		-334		-334		-334
	INSOLUBLE	.E 0 0 0 %						0	0		0		0
	S	0.00 %						0	0		0		0
	4s	0.00 %						0	0		0		0
	H20	94											0
	I. V. A.											58, 233	58, 233
	TOTAL					388. 223	334	0	388, 223	27, 176	360, 713	58, 233	418.946

Table 4.1.1 Main equipment for Beneficiation test

Equipment	Number	Status
Ball mill(8" ×8")	1	good
Flotation Machine(WEMCO)	2	good
Ro-Tap sieve shaker	1	good
PH meter	3	out of order
Filter press(12" \times 12",8 \times 1	2") 2	good
Agitater for laboratory	2	good

Table 4.1.2 Beneficiation tests at Parral

PROBLEM	OBJECT OF TEST	SAMPLE	CONTENT OF TEST
 Metallurgical results of Casale 	 Improvement of metallurgical results 	casa 1 e	G (
· Low revovery of Ag	2. Study on the cause of low recovery of Ag		ი თ
			4 1V 00 F
			No. / Addition of H ₂ SU ₄ ±NB ₂ S (NB ₂ S= Rougher 300 g/t, SCAV, 300 g/t)
			 BPMA analysis on Ag minerals tailings of flotation and cyanidation.
 Dust of crushing plant, suspended solid in lea- ching solution 	 De sliming of crude ore by washing 	José Galindo	1. Washing and decantation of crude ore.
1. Treatment of mixed ore	 Improvement of rate of operation and reduction of operation cost 	Nochebuena San Iuis II La Unión	 Flotation Individual Sample Mixed Sample

Table 4.1.3 Result of Beneficiation test for Casale Ore

NIDATION	't Recovery* % Total Recovery %	Ag	8.5 35.0	11.5	8.5	2.8 37.0	6.9	7.2 36.8	6.98
CYA	assay g/	Ag	238	236	231	258	243	239	253
N	Recovery %	Ag	26.5	23.3	30.3	34.2	28.2	29.6	27.9
LOTATIO	Distribution %	Ag	100.0 26.5 5.6 67.9	100. 0 23. 3 6. 0 70. 7	100. 0 30. 4 7. 8 61. 8	100.0 34.2 1.8 64.0	100.0 28.2 8.9 62.9	100.0 29.6 7.3 63.1	100.0
ſx.	Assay g/t	Ag	5, 428 275 272	364 6,434 291 282	368 2,640 268 268	361 6, 290 283 270	371 4, 162 281 273	385 9,426 335 270	381
	6	100001	Feed Conc. Middling Tailing	Feed Conc. Middling Tailing	Reed Conc. Middling Tailing	Feed Conc. Middling Tailing	Feed Conc. Middling Tailing	Feed Conc. Middling Tailing	Feed
		lest No.		23	က	7	w	9	2

Metallurgical Results of Flotation tests for each Ore Table 4.1.4

No. 0 1. 0	[Ft.	د. چ			¥	SS	7							Distribution	oution %	``		
The color The	í÷.	%	8		P.P	uZ	Cu	Fe.	S	Insal	Au	Ag	Pb	Zn	ກວ	n e	S	Insol
- C 1.4 0.2 11.666 3.80 1.20 0.15 6.00 2.04 68.20 1.5 53.9 11.7 7.0 6.1 3.6 4.0				294			0.03	2, 25	0.69	83. 56	100.0		100.0	100.0	100.0	100.0	100.0	100.0
-T 13.5 0.1 293 0.54 0.28 0.04 2.80 0.33 80.42 7.2 13.4 16.6 16.2 16.4 16.8 65.0 31.0	O • EO		0.2	11,666	3.80	1. 20	0.15	6.00	2.04	68. 20			11.7	7.0	6.1	3.6	4.0	r~-i
HB BUENA WIT TO 0.2 113 0.37 0.21 0.03 2.10 0.25 84.30 91.3 32.7 71.7 76.8 77.5 79.6 31.0 31.0 31.0 31.0 31.0 31.0 31.0 31.0	C1 • T		0.1	293	0.54	0.28	0.04	2.80		80.42	7.2	13.4	16.6	16.2	16.4	16.8	65.0	13.
HE BUENA Wath Maria Mar	RT	85.1	0.2	113			0.03	2. 10			91.3	32.7	71.7	76.8	77.5	79.6	31.0	85.
Wt Wt Wt Wt Wt Wt Wt Wt	NOCHE B	IUENA																
100.0 0.1 367 1.14 0.58 0.04 4.23 0.23 64.73 100.0		wt			Ą	Ŋ								Distri]	9		
100.0 0.1 367 1.14 0.58 0.04 4.23 0.23 64.73 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 14.5 10.0 100.0 100.0 14.5 10.0 100.0 10.2 14.5 10.0 100.0 10.2 14.5 10.0 100.0 10.2 14.5 10.0 100.0 10.2 14.5 10.0 100.0 10.2 14.5 10.0 100.0		%		1	Pb	Zn	n,	Рe	S	Insol	Αu	Ag	P.b	u2	n _O	E.	S	Insol
- C 1.6 0.4 11,814 7.20 2.40 0.23 9.20 5.63 50.98 5.5 51.2 10.0 6.6 10.2 3.5 39.1 - T 10.0 0.2 613 1.45 0.70 0.06 5.50 0.33 59.26 14.5 16.8 12.7 12.1 16.6 13.0 14.5 - WHOMEN AND AND AND AND AND AND AND AND AND AN	ČI.,	100.0	0 1	367	1.14	0.58	0.04	4.23	0.23	64.73	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
- T 10.0 0.2 613 1.45 0.70 0.06 5.50 0.33 59.26 14.5 16.8 12.7 12.1 16.6 13.0 14.5 14.5 18.8 12.7 12.1 16.6 13.0 14.5	01.0	1.6	0.4		7.20	2.40	0.23	9.20	5.63	50.98	بى ت	51.2	10.0	6.6	10.2		39.1	, i
UNION Wt Wt Mt Mt Mt Mt Mt Mt Mt Mt	C1 - T	10.0	0.2	613		0.70	0.06	5.50	0.33	59.26	14.5	16.8	12.7		16.6	13.0	14.5	6
wt As s a y % As s a a a y % As s a a a y % As s a a a a y % As s a a a a a a a a a a a a a a a a a a	RT		0.1	133					0.12	65.60	77.0	32.0	77.3	81.3	73.2	83.5	46.4	89.5
wt A S a y A S Insol Au Al Ag Pb Zn Cu Fe S Insol Au Bg Pb Zn Cu Fe S Insol		N(
% Au g/t Ag g/t Pb Zn Cu Fe S Insol Au Ag Pb Zn Cu Fe S Insol Au Ag Pb Zn Cu Fe S Insol Au Ag Pb Zn Cu Fe S Insol		Wt			A	S								Distri		20		
• C 0.7 44.8 15.063 1.70 2.00 0.17 0.05 5.47 65.66 36.7 41.6 4.3 7.9 3.6 100.0		%	Au g/t		p.p	uZ	Cu	Fe	S	Insol	. Au	Ag	Pb	Zn.	n,	e e	S	Insol
• C 0.7 44.8 15.063 1.70 2.00 0.17 11.60 5.47 65.66 36.7 41.6 4.3 7.9 3.6 1.9 35.3 • T 7.5 2.0 408 0.41 0.24 0.04 5.40 0.16 82.84 18.4 12.7 11.8 10.7 9.5 9.8 11.6 11.6 11.8 10.7 9.5 9.8 11.6 11.6 11.8 10.7 9.5 9.8 11.6 11.6 11.8 10.7 9.5 9.8 11.6 11.6 11.8 10.7 9.5 9.8 11.6 11.6 11.8 10.7 9.5 9.8 11.6 11.6 11.8 10.7 9.5 9.8 11.6 11.6 11.8 10.7 9.5 9.8 11.6 11.6 11.6 11.6 11.6 11.6 11.6 11	ĥī.	100.0	0.8	243	0.26	0.17	0.03	4.16	0.10	87.92	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.
• T 7.5 2.0 408 0.41 0.24 0.04 5.40 0.16 82.84 18.4 12.7 11.8 10.7 9.5 9.8 11.6 11.6 11.8 10.7 9.5 9.8 11.6 11.6 11.8 12.7 12.8 13.9 13.4 86.9 88.3 53.1	•	0.7	44.8	15,063	1.70	2.00	0.17	11.60	5.47	65.66	36.7	41.6	4.3	7.9	3.6	1.9	35.3	0
91.8 0.4 121 0.24 0.15 0.03 4.00 0.06 88.50 44.9 45.7 83.9 81.4 86.9 88.3 53.1	•	7.5	2.0	408	0.41	0.24	0.04	5.40	0.16	82.84	18.4	12.7	11.8	10.7	9.5	8.6	11.6	7
	RT		0.4	121		0.15		4.00	0.06		44.9	45.7	83.9	81.4	86.9	88.3	53.1	92,4
	המזמומומר	ובם ובסחו	1 7 1															3

	wt			A	SSA	у %							Distribution		26		
-	%	Au g/t	Au g/t Ag g/t	Pb	u2	Cu	Ре	S	Insol	Αu	Ag	P.	uZ	Cu	F.	S	Insol
ÇX.,	100.0	0.4	301	0.62	0.33	0.03	3.54	0.34	78. 70	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
01.0	1.2	0.0	0.9 12,350	4.89	1.87	0.19	8.43	4.24	60.16	27.6	49.5	9.6	6.9	6.8	2.9	15.1	0.9
CI · T	10.4	9.0	424	0.80	0.40	0.05	4.30	1.58	74.18	16.5	14.6	13.5		14.3	12.6	48.2	တ တ
RT	88. 4	0.2	122	0.53	0.30	0.03	3, 39	0.14	79.50	55.9	35.9	76.9	80.2	78.9	84.5	36.7	89.3
ET.	eed, cl	. C : Cle	Feed, cl · C : Cleaner Concentrate,	centrate,	C1 - T	: Cleaner tailing,	r tailin	RT	: Rougher tailing	tailing							† •

Mixed ore SAN LUIS II: NOCHE BUENA: LA UNION = 1:1:1

	wt	٠.		₩.	SS	A							Distrit	Distribution %	26		
	%	Au g/t	Ag g/t	Pb	uZ.	no	Fe	လ	Insol. Au		A8	Pb	Zn	=	Ре	S	Insol
ſŒ,	100.0	0.4	295	0.55	0.30	0.05	3.68	0.15	78.43	0	100.0	100.0	100.0	ဗ္ဗ	100.0	100.0	100.0
01.0	0.4	0.2	406	9.60	3.60	0.38	10.40	8.84	8.84 49.30 0.	တ	1.1	6.4	1.1 6.4 4.3	ŝ	1.0	20.9	0.2
CI • T	6.2	9.0	390	0.70	0.40	0.04	4.60	0.19	74.22		16.5	7.8	8.0	-	7.7	7.5	
RT	93.4	0.3	129	0.51	0.29	0.05	3.60	0.12	0.12 79.90	0	82.4	85.8	87.7		7 91.3 71.6 94.0	71.6	94.0

Table 4.1.6 Main Equipment for Beneficiation test

Bquipment	Number	Status
Ball mill(9 3/4" ×9 7/8")	1	good
Flotation Machine(WEMCO)	1	good
Ro-Tap sieve shaker	1 -	good

Table 4.1.7 Beneficiation tests at Guanacevi

1. Metallurgical results of 1. Improvement of 1. Rosario oxide 1. Flotation test Rosario oxide 1. Improvement of 1. Rosario oxide 1. Flotation test Low recovery of Ag addition of collector No. 3 NsOs. HazS addition. until I st cleaning No. 4 Decreasing of grinding time 2. Treatment of mixed ore 0f operation and reduction and sulfide (1) Individual sample of operation cost Shipping sample to Japan 1. Treatment on refractory 1. La prieta 1. Bacterial leaching test manganese 1. Improvement of rate of 1. La prieta 1. Bacterial leaching test		:					
Metallurgical results of 1. Improvement of Rosario oxide Low recovery of Ag Treatment of mixed ore 1. Improvement of rate of Treatment of mixed ore 1. Improvement of rate of Of operation ost Shipping sample to Japan 1. Treatment on refractory manganese manganese	PROBLEM			OBJECT OF TEST		SAMPLE	CONTENT OF TEST
Treatment of mixed ore 1. Improvement of rate of 1. Rosario oxide 2. operation and reduction and sulfide of operation cost Shipping sample to Japan 1. Treatment on refractory 1. La prieta 1. manganese		ts of	. i	Improvement of metailurgicai results	ਲ ਜ	osario oxide	<u> </u>
 Treatment on refractory 1. La prieta 1. silver ore which contains manganese 			-	Improvement of rate of operation and reduction of operation cost		Rosario oxide and sulfide	
	Shipping sample to	Japan	i.	Treatment on refractory silver ore which contains manganese		La prieta	

Table 4.1.8 Results of Flotation tests for Rosario Oxide

				assa	y g/t	Distrib	ution %	
Test	No.	Production	Wt %	Au	Ag	Au	Ag	Flotation Condition
		Feed	100.0	1.0	181	100.0	100.0	-200 mesh 52%, pH7.9
		Conc. 1	5. 4	8.6	1, 904	46.9	55. 7	Total flotation time 15 min.
1		Conc. 2	2.7	3. 2	744	8.8	10. 9	Total AF 31 15 g/t
		Conc. 3	3. 2	2.6	488	8.5	8. 5	AP 404 30 g/t
		Tailing	88. 7	0.4	52	35.8	25. 9	X-350 170 g/t
								AP-425 30 g/t
		Feed	100.0	0, 9	187	100.0	100. 0	-200 mesh 60%, pH4.5 (H₂SO₄)
2		Conc. 1	6.6	7. 2	1, 930	54.6	68. 1	Total Flotation time 10 min.
		Conc. 2	1.8	1.8	432	3. 7	4. 1	Total AF 31 30 g/t
		Tailing	91.6	0.4	57	41.7	27.8	AP 404 60 %/t
								X-350 140 g/t
		Peed	100. 0	0.9	192	100.0	100. 0	-200 mesh 62%, pH4.5 (H₂SO₄)
		C1. Conc.	3. 4	11.8	3, 036	45.5	53. 9	Total Flotation time 10 min.
3		Cl. Tailing	9. 2	0.9	256	9.1	12. 3	Total Na ₂ S 400 g/t
		SV. Conc.	1.4	4.7	956	6.8	7.0	AF 31 30 g/t
. *		Tailing	86. 0	0. 4	60	38.6	26. 8	AP 404 180 g/t
•.					.			X-350 40 g/t
	-11 <u>23</u> 5					<u>.</u>		(Cleaner X-350 10 g/t)
		Feed	100.0	0.6	183	100.0	100. 0	-200 mesh 53%, pH7.8
		Conc. 1	4.2	3. 6	1, 766	25. 9	40. 5	Total Flotation time 15 min.
4		Conc. 2	1. 2	2.9	1, 032	5.8	6.8	Total AF 31 15 g/t
		Conc. 3	6. 2	0.8	356	8. 5	12. 1	AP 404 30 g/t
		Tailing	88. 4	0.4	84	60. 8	40. 6	X-350 170 g/t
*								AP 425 30 g/t

Table 4.1.9 Metallurgical Results of Flotation tests for each Ore

	W			Å	SSA	y %							Distribution		96		
	%	Au g/t	Ag 8/t	Pb	Zn	Cu	Fe	S	Insol	Au	Ag	Pb	uZ	no	Яе	S	Insol
t.	100.0	0.7	181	0.64	0.72	0.35	2.85	09 .0	84.83	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
RC	7.1	6.7	1666	5.40	7.69	2.73	6.14	7.49	58. 15	72.0	65.5	59.6	75.6	55.1	15.3	89.1	4.7
RT	92.9	02	67	0.28	0.19	0.17	2.60	0.07	87.02	28.0	34.5	40.4	24.4	44.9	84.7	10.9	95.3
C1-C	2.2	19.0	4535	15.20	22.80	7.60	10.00	22, 33	7.00	63.1	55.3	52.0	69.5	47.6	7.7	82.4	0.5
C1-T	4.9	1.2	378	1.00	0.90	0.54	4.40	0.82	78.22	8.9	10.2	7.6	6.1	7.5	7.6	6.7	4.5
ROSARIO	RIO sulfide	e	:				i			-	·						
	TW.			A	SSA	y 36							Distribution	. ,	26		
	%	Au g/t	1/8 8/t	Pb	uZ	Cu	Fe	S	Insol	Au	Ag	ЬÞ	uZ ·	Cu.	ET.	S	Insol
tr-	100.0	0.8	248	10.06	7.72	1. 52	3.14	6.08	65, 45	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
RC	33.5	2.1	890	27.98	22, 30	4.30	5.21	17.29	18.54	83.9	93.0	93.2	96.8	95.2	55.5	95.2	9.5
RT	66.5	0.2	92	1.03	0.37	0.11	2. 10	0.44	89.08	16.1	7.0	6.8	3.2	4.8	44.5	4.8	90.5
C1-C	25.5	2.4	804	34,00	27.00	5.20	5.40	20, 66	4, 56	74.2	82.5	86.2	89.2	87.5	43.8	86.6	1.8
C1-T	8.0	1.0	326	8.80	7.30	1,45	4.60	6.53	63, 12	9.7	10.5	7.0	7.6	7.7	11.7	8.6	7.7
Calc	Calculated result	11.11	-														
		-		-	-							THE PERSON NAMED IN COLUMN		1	è		
	**			ec.	SS	y Se	1						Distribution		9€		
						_											

	wt			A	A S S A	γ %	:						Distri	Distribution %			
	%	Au g/t	Ag 8/t	Pb	Zn	Cu	ب 0	S	Insol	Au	t I	Pb		οCu	н 9	S	Insol
(E.	100.0	0.8	215	5.35	4.23	0.93	3.01	3.34	75.23	100.0	100.0	100.0		, , ,	100.0	100.0	100.0
RC	20.3	2.9	861	24.01	19. 75	4.01	5.39	15.57	25.12	78.7	81.5	91.2	94.9		36. 4		6.8
RT	79.7	0.2	20	0.59	0.27	0.14	2.40	0.23	87.99	21.3		8		12.4	63.6		
01-0	13.9	3.8	1100	32.49	26.71	5.42	5, 78	20, 79	4.77	69.4	71.1	84.2	87.6	80.6	26.6	86.2	0.9
C1-T	6.4		346	5.81	4.81	1.01	4.57	4.34	68.84		10.4	7.0		7.0	8		
H.	eed, Ci	• C : C1e	aner con	Feed, Cl . Cleaner concentrate,	CI - T	: Cleane	r tailir	Ig, RC:	eaner tailing, RC: Rougher concentrate, RT: Rougher tailing	concent	rate, RT	: Roughe	er tailin	n.g			

Table 4.1.10 Metallurgical Result of Flotation test for mixed Ore

Oxide = Sulfide = 1 : 1

Mixed ore

	wt			¥	s s a y	λ %							Distribution	ution %			
	%	4u g/t	Ag g/t	Pb	Zn	Cu	н. ө	S	Insol	Au		Pb		Cu	Fe	S	Insol
Çī.,	100.0	L.0	222	5.09	1.84	0.93	2.85	3.27	74.97	100.0	100.0	100.0		100.0	100.0	100.0	100.0
Sul-C	14.9	3.4	1, 165	29.30	10.00	5.00	5.80	19.88	8.04	69. 6				80.0	30.0	90.7	1.6
Sul-CIT	4.4	0.0	316	5.20	2.60	1.18	4.80	3.02	72.14	5.4				5.6	7.4	4.1	4.2
0XD-C	1.0	1.4	522	10.00	3.00	1.71	5.60	3,67	63.60	1.9	2.5			1.8	2.0	1.1	0.8
OXD-CIT	8.0	0.3	117	1.50	0.65	0.39	3.60	09.0	81.90	3.3				3.4	10.1	1.5	8.7
E	71.7	0.2	27	0.38	0.21	0.12	2.00	0.12	88.40	19.8			8.2	9.2	50.2	2.6	84.7
Total-C	15.9	3.3	1, 127	28.09	9. 26	4.79	5.15	18.86	11.53	71.5	80.8	87.8	82.7	81.8	32.3	91.8	2.4

Table 4.1.11 Main Equipment for Beneficiation test

BQUIPMENT	NUMBER	STATUS
Ball mill (8" x 8")	2	good
(12" x 8")	1	good
Flotation machine (WBMCO)	2	One is out of order
(DENVER)	1	Out of order
Ro-Tap sieve shaker	2	good
Filter press (12" x13")	2	good
(8" x 9")	1	good
pH meter	1	Out of order

Table 4.1.12 Beneficiation test at Barones

	PROBLEM		OBJECT OF TEST	SAMPLE	CONTENT OF TEST
i i	Metallurgical Result of Veta Linda • Low recovery of Ag		Improvement of Metilur-gical result	Veta Linda	Cyanidation Test 1. Grinding time (partide size) 2. Agitation time 3. Addition of Pb (NO ₃) ₂ 4. Pulp heating
61	Dust in crushing plant, suspended solid in leaching solution	2.	Desliming of curde ore by washing Influence of secondary slime on sedimentation	Don Jesus AMP. SN Miguel Asturiana Azteca Rayo Veta Linda Mexicapan	 Washing and decantation of crude ore Sedmentation test for cyanidation tatiling of curde ore with washing and without washing
က်	Low Zn recovery of Sta. Marta ore	ಣ	Study of low In recovery	Sta Marta	 EPMA analysis of Zn flot. tailing in Japan
7	Treatmen of mixed ore	4.	Improvement of the rate of operation and reduction of operation cost	Calicanto Sulfide Oxide	Flotation + Cyanidation 1. Sulfide flotation 2. Oxide cyanidation 3. Mixed sample flotation+cyanidation
	Shipping samples to Japan		Differencial flotation	Sn Bernabé	Execution of differencial flotation test in Japan

Table 4.1.13 Assay of crude Ore

<u>.</u>				Assay(g/t, %)		
	MINE	Au	Ag	Cu	Pb	Zn	Fe
1.	DON JESUS	0.60	191	_	0.16	0.26	3. 27
2.	AMP. Sn MIGUEL	0. 55	226	—	0.11	0.11	3. 27
3.	ASTURIANA	0.50	126	·	0.16	0.25	3.86
4.	AZTECA	0.50	121	0.05	0.15	0.20	5. 35
5.	RAYO	0. 55	151	0.05	0.33	0.44	4.17
6.	CALICANTO SULFIDE	1.40	208	-	0.60	1.05	8. 30
7.	CALICANTO OXIDE	1.30	130	0. 05	0.40	0.40	7. 10
8.	VETA LINDA OXIDE	0.55	169	0.05	0. 25	0.35	4.00
9.	VETA LINDA SULFIDE	0.58	207	_	0.13	0.14	3. 58
10.	MEXICAPAN	0.67	168	0.05	0.55	0.42	6.78
11.	STA. MARTA	0.60	186	0.10	0.10	2.80	5. 40

Table 4.1.14 Effect of Particle size on Au, Ag Dissolution

11.	Grinding time	-200 mesh	Assay	, g/t	Dissolu	tion %
No.	min.	%	Au	Ag	Au	Ag
	Feed		0, 55	170		
1	8′	44	0.30	57	45.5	66.4
2	16'	80	0. 28	59	49. 1	65. 3
3	40′	96	0. 28	45	49. 1	73, 5

CN initial concentration 0.15%

CaO 12kg/t

Agitation time 48hrs

Dilution 3:1

Table 4.1.15 Effect of Agitation time on Au, Ag Dissotution

N.	Agitation time	Assay	, g/i	Dissolu	ition %
No.	hrs.	Λu	Ag	Au	Ag
	Feed	0. 55	170	. –	_
4.	24	0.30	61	45, 5	64.1
1	48	0.30	57	45.5	66.4
5	72	0. 25	40	52.8	76.4

CN initial concentration 0.15%

CaO 12kg/t

-200 mesh 43.8%

Dilution 3:1

Table 4.1.16 Effect of Pb (NO 3)2 added

M-	Pb (NO ₃) ₂	Assay	. g/t	Dissolu	tion %
No.	g/t	Au	Ag	Au	Ag
	Feed	0. 55	170	. —	-
1	0	0.30	57	45.5	66.4
6	200	0. 25	45	54.5	73.4

CN initial concentration 0.15%

CaO 12kg/t
-200 mesh 43.8%

Agitation time 48hrs

Dilution 3:1

Table 4.1.17 Effect of hot pulp agitation

.,		Assay	g/t	Dissolu	tion %
No.		Au	Ag	Au	Ag
	Feed	0.55	169		
7	25℃	0. 25	35	54.5	79. 3
8	35℃	0. 25	37	54.5	78.4

CN initial concentration 0.15%

CaO 12kg/t

-200 mesh 53.6%

agitation time 48hrs

Dilution 3:1

Table 4.1.18 Result of Washig and Decantation test

~ ~ ~	f3	w.t		ASS	Assay g/t	<i>≫</i>		:	Distr	Distribution	% €	
л т ш v	a	%	Au	Ą	Pb	Zn	Fе	Au	Ag	Pb	Zn	ъ 9
DON TROUG	FINE	9.7	9.0	253	0.30	0.35	5.8	9.7	12.9	17.7	13.1	17.2
cocar non	COASE	.90.3	0.6	154	0.15	0.25	3.0	90.3	87.1	82.3	86.9	82.8
AWD CM WICHEL	FINE	5.4	9.0	266	0.30	0.35	8.0	5.9	6.3	14.7	16.7	13.2
AMF. ON. MICUBL	COASE	94.6	0.55	224	0.10	0.10	3.0	94.1	93.7	85.3	83.3	86.8
ASTIIDIANA	FINE	6 8	0.50	106	0.20	0.25	4.5	9.0	7.5	11.6	8.8	10.4
no 1 0 N 1 A N A	COASE	91.1	0.50	128	0.15	0.25	3.8	91.0	92.5	88.4	91.2	89.6
4 7 J T T A	FINE	8.3	0.55	141	0.20	0.20	7.1	9.1	9.7	10.8	8.3	11.0
Abibon	COASE	91.7	0.50	119	0.15	07.50	5.2	90.9	90.3	89.2	91.7	89.0
O A A C	FINE	11.1	0.50	114	0.20	0.35	5.5	10.3	8.4	6.6	8.9	14.7
NA10	COASE	88.9	0.55	155	0.35	0.45	4.0	89.7	91.6	93.4	91.1	85.3
WETA IINDA OVIDO	FINE	14.4	0.50	136	0.30	0.30	4.1	12.3	9.4	33, 3	5.2	16.5
VEIN LINDA CALDO	COASE	85.6	09.0	220	0.10	0.15	3.5	87.7	90.6	66.7	94.8	83.5
WDVICADAN	FINE	16.3	05.0	57	0.80	0.50	10.6	12.3	5.6	23.7	19.7	25.6
MBALVAFAN	COASE	83.7	0.70	189	0.50	0,40	6.0	87.7	94.4	76.3	80.3	74.4

Table 4.1.19 Metallurgical Results of Beneficiation tests for each Ore

-	wt		A S S	S 2 y	≫			Dist	Distribution	
	%	Au 8/t Ag 8/t	Ag g/t	Pb	Zn	гт ⁴ в	Au	Ag	Pb	1
£x	100.0	l	223	0.54	0.75		100.0	100.0	100.0	100.
C1 • C	9.8			4.40	5, 50		58.0	70.4	80.0	71.
CI • T	14.2	1.2		0. 20	0.40		12.6	14.0	5.5	۲-
SVC	4.6		120	0. 20	0.30	10.8	3.0	2.5	1.7	<u>.</u> :
SVT	71.4			0.10	0.20		26.4	13.1	13.1	19.

	wt	Assay	1y g/t	Distrib	Distribution %	. •				
	%	Au	Ag	Au	Ag					
CT.	100.0	1.2	229	100.0	100.0		**.		-	
Disol.		ı	1	100.0	81.2			-	-	
CNT	100.0	Ţ	43	0	18.8					
Calculated	ed result						· :			
	wt		A S	s a y	34	. 1)		Dis	Distribution %	3 €
	%	Au g/t	Ag g/t	Pb	uZ	Fe	γn	Ag	Pb	uZ
ſī.	100.0	1.3	225	0.27	0.38	3.6	100.0	100.0	100.0	100.
01.0	4.9	8.0	1,600	4.40	5.50	25.0	30.7	34.7	80.0	71.
C.I. • 13	7.1	1.2	220	0.20	0.40	11.9	6.7	6.9	5.2	⊢
SVC	2.3	0.9	120	0.20	0.30	10.8	1.6	1.2	1.7	-
SVT	35.7		41	0.10	0.20	3.7	14.0	6. 5	13.1	19
Disol	ı	1	1	-	1	1	47.0	41.2	1	
CNT	50.0	Ţ	43	: .	1	}1	ı	9.3	.1	. 1
		Tc	Total reco	recovery %			7.77	75.9		

CALICANTO oxide

Table 4.1.20 Metallurgical Results Beneficiation tests for mixed Ore

						•						
≥.	Mixed ore	Sulf	ide: oxid	 ເດ	5							
	:	wt		AS	s a y	<i>></i> <		.: 	Distri	butio	78°	
		%	Au g/t	Ag 8/t	Pb	Zn	ът. 6)	Au	Ag	Pb	Zn	Рe
	CT.	100.0	1.9	205	0.40	0.51	ω ω	100.0	100.0	100.0	100.0	100.0
	C1 · C	7.2	17.0	1,741	3.40	4.20	36.0	66.0	61.2	61.7	59.2	31.2
	C1 - T	8.5	1.5	276	0.41	0.48	8	6.9	11.1	89	7.7	6.7
	RT	84.6	0.6	67	0.14	0.20	5.8	27.4	27.7	29.7	33.1	59.1
٠.	Disol.			ı				18.2	19.8			
	CNT	84.6	0.2	19	٠ ،			8 2	7.9	:		
					Total	recovery	%	84.2	81.0			
Æ	Mixed ore	Sulf	ide :	Oxide = 3	. T :		:					
		wt		S	s a y	<i>></i> e			Dist	stribution	% u	
		%	Au g/t	Ag g/t	d d	uZ	(T. O)	ηγ	Ag	Pb	u Z	٦. 9
	[±.	100.0	1.2	208	0.36	0.43	8.4	100.0	100.0	100.0	100.0	100.0
	C1 · C	5.6	13.8	2, 130	3 40	4.00	34.5	65.9	57.4	53.1	52.5	23.0
	Cl · T	7.6	0.7	242	0.38	0.38	8 6	4. C	80	8.1	6.8	8.8
	RT	86.8	0.4	81	0.16	0.20	6.6	29.6	33.8	38.8	40.7	68.1
	Disol.	1						14.8	22.1	-		
	CNT	86.8] L	28				14.8	11.7			
					Total	recovery	%	80.7	79.5			

Table 4.1.21 Sampling data of Cyanidation Plant (Salvador lugo Ore)

	SOLID		b	NaCN	Cal		assay	. g/i	. %	
S A M P L B	riquid	рH	P. D.	g/m³	g/m³	Au	Ag	Pb	Zn	Fe
BALL MILL FEED	SOLID					0. 55	182			
CYCLONES O.F.	ridnid. Sorid	12.7	27	0.105	0.125	0.50	133 50	0. 13 0. 0	0.30 0.0	6. 20 13. 0
THIKENER O.F. THIKENER SPIGOT	FIGNID SOFID FIGNID	12. 9 12. 8	43	0. 115 0. 109	0. 123 0. 125	0.55	45 137 49	0. 0 0. 22 0. 0	0.25	14. 0 6. 10 13. 0
AGITATOR TANK #1 PULP	SOLID	12.9	43.5	0.95	0.085	0.40	91 49	0.22 0.0	0.25	7. 2 13. 0
AGITATOR TANK #2 PULP	SOLID LIQUID	12. 9		0, 108	0.085		81 56	0.15 0.0	0.33	4.3 15.0
AGITATOR TANK #3 PULP	ridnid 20rid	12.8		0.102	0.078	0.40	76 56	0. 22 0. 0	0.30	5.7 16.0
AGITATOR TANK #4 PULP	SOLID LIQUID	12.6		0.107	0. 066	0.50	106 56	0. 22 0. 0	0.25	5. 0 15. 0
AGITATOR TANK #5	SOLID		.1	(UT () F (RDE	ER		
AGITATOR TANK #6	SOLID LIQUID	12.6		0. 123	0.060	0.40	73 62	0. 23 0. 0	0.25	6. 20 15. 0
AGITATOR TANK #7	SOLID LIQUID			0.130	0. 057	0.30	72 66	0. 24 0. 0	0.35	5. 40 15. 0
AGITATOR TANK #8	SOLID LIQUID			0.108	0.054	0.40	70 62	0. 22 0. 0	0.30	4.60 16.0
AGITATOR TANK #9	SOLID LIQUID	11.5	38	0.098	0. 054	0. 55	70			
C.C. TANK #1 O.F. C.C. TANK #1 SPIGOT	LIQUID SOLID LIQUID	11.8	44	0.095 0.084	0.039 0.025	0. 25	47 49 47	0. 0 0. 22 0. 0	0. 25	18. 0 5. 80 19. 0
C.C. TANK #3 O.F. C.C. TANK #3 SPIGOT	LIQUID	11.73	43.5	0. 086 0. 075	0. 035 0. 023		28	0. 0 0. 0		17.0 20.00
C. C. TANK #4 O.F.	FIGUID	11.63		0.078	0. 024		34 14	0.0		20.00 17.0
C. C. TANK #4 SPIGOT	SOFID	11.00	43	0.065	0.023	0. 25	50 15	0. 24 0. 0	0.30	6. 10 19. 0
C.C. TANK #5 O.F. C.C. TANK #5 SPIGOT	LIQUID SOLID LIQUID	11, 24	47	0. 052 0. 051	0. 015 0. 024	0.40	7 75 8	0. 0 0. 22 0. 0	0. 25	16. 0 6. 20 17. 0
BARREN SOLUTION	LIQUID	12. 13		0.110	0.045		3. 0	0.0		18.0
SEMI PREGNANT SOLUTION	riquid	12.11		0.110	0. 050		49	0.0		21.0

Table 4.2.1 Complete Analysis

	Ca0	8	8.40	4.95	5.30	6.82	37. 73	2.31	06'0	0, 19	0.83	.0	0.60	0.75	1.15	0.87	5.38	0.46	0.26	0. 17
	(3.	% %	0.34	0.31	0.30	2.74	15, 51	1.18	0.02	0,07	0.03	0.03	0.21	0.11	0.01	0.01	0.04	0, 17	0.02	0,01
	f. o	8	7.42	11.67	4.61	5.85	3, 13	4.86	2.08	1.08	1.83	3, 52	4, 13	3.51	5.37	-7.86	12.66	6.35	8.97	8.9]
	S	ક	6.01	21.92	0.58	12, 50	13.12	7. 11	0.30	11.53	0.36	3, 14	2.81	2.36	. 7. 4. 7.	15.56	14.27	0.28	11.96	10.87
	Mno	(%)	2,62	0.49	0.46	0.21	0.24	60.0	0.96	0.25	1.04	0.17	1.52	1.21	0, 13	0.22	0.47	0.07	0.34	0.10
	å,	89	0.270	0.118	0.009	0.030	0.010	0.119	0.008	0.010	0.012	0.019	0.007	0.010	0.007	0,008	0.003	0,005	0.004	0.007
-	A1203	(%)	1.18	0.93	13.94	1.39	0.24	0.51	4,86	2,55	1.27	12.91	5.95	6.25	1.09	1. 29	1.45	0.77	1.06	4.26
	 66	3	<0,001	0.004	(0, 001)	<0.001	<0.001	<0,001.	<0,001	<0,001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.001	<0.00
	Zn	%	2.37	7,96	0.26	16.40	12.26	1.63	0.40	18, 28	0, 40	0, 24	0.33	0.63	0.99	17.02	1.03	0.16	16.11	2.13
	g.	(%)	1, 15	31.07	0,04	17, 42	7.11	6.38	0.35	7.72	0.41	0.15	0.58	0.41	0.34	16.16	0.90	0,18	0.48	1.24
	В.	(%)	0.017	0.055	0,004	0.091	0.051	0.003	0.002	0.122	0.003	0.001	0.002	0.003	0.005	0.078	0.009	<0.001	0, 117	0,016
	SY	(%)	1.43	0.352	0.042	0.141	0.049	1.51	0.005	0.012	0.003	0,016	0.010	0.013	0.027	0.031	0.062	0.009	0.039	0.019
	8. F.	(mdd)	9.0	3.2	0.2	5.0	80	0.2	1.0	8.8	2.1	2.2	9,0	9.0	2.4	9.0	. 09	0.2	S 0	1.2
	пэ	(%)	0.11	0.11	0.02	0.13	0.09	0.20	0, 12	0.58	0.13	0.07	0.13	0.12	0.02	0.06	0.09	0.01	0.19	0.05
	A.8	(mdd)	1.168	1,630	145	331	85	530	105	921	126	1, 425	300	216	138	105	37	167	33	512
ľ	J T	(mdd)	8.0	J. 6	.0.1	8.0	1.3	10	0.3	8. T	0.2	, O	3.4	8.0	3,0	1.6	2.7	0.3	20.4	7.
		•	1. LA FORTUNA	2. UNFICACION CORDERO	3. REVANCHA	4. LA ESPERANZA	5. LA PRESA	6. TILITA	I. BARRADON	2. SAN JOSES CHICO	3. CAPUZAYA	AMPLE DEL ALTO 4. DEL NUEVO PORVEIR	5. SAN RAFAEL	6. NOCHE BUENA	1. AMPL SAN MIGUEL	2. LAS COMBERES	3. CALICANTO	4. CALIFORNIA	5. SAN ROBERTO	6. SAN BERNABE
					9	LANKAL						7 2 2 2 3 3					0	SAKUNES		

Tabe 4.2.2 a Analytical result by X-ray powder Method

	Mine	Mineral
Parral	La Fortuna	Galena
		Sphalerite
· .		Pyrite
		Calcite
		Quartz
•	Unificacion Cordero	Galena
		Sphalerite
		Pyrite
		Calcite
		Quartz
	Revancha	Orthoclase
	·	Pyrite
		Calcite
		Monmorillonite
		Quartz
	La Esperanza	Fluorite
	. •	Galena
		Sphalerite
		Pyrite
		Quartz
		Calcite

Table 4.2.2 a) Analytical Result by X-ray Powder Method

	Mine	Mineral
Parral	La Presa	Galena
		Sphalerite
	***	Pyrite
		Fluorite
		Quartz
		Calcite
	Tilita	Galena
		Sphalerite
		Pyrite
	1	Arsenopyrite
		Fluorite
		Quartz
· .		Calcite
		Calcite
Guanacevi	Barradon	Quartz
Valid oct 1		Chlorite
		Fluorite
	San Joses Chico	Galena ·
		Sphalerite
		Pyrite
		Chalcopyrite
		Quartz
		Chlorite

Table 4.2.2 a) Analytical Result by X-ray Powder Method

	Mine	Mineral
Guanacevi	Capuzaya	Orthoclase
		Chlorite
		Sericite
		Quartz
	Ample del Alto	Pyrite
	der Nuevo Porvenir	Orthoclase
		Sericite
		Quartz
	San Rafael	Pyrite
		Orthoclase
		Chlorite
		(Kaolinite)
		Quartz
	Noche Buena	Quartz
		Orthoclase
		Chlorite
		Pyrite
		Di.
Barones	Ample. San Miguel	Pyrite
		Ankerite
		Quartz

Table 4.2.2 a) Analytical Result by X-ray Powder Method

	Mine	Mineral
Barones	Las Cumbres	Galena
		Sphalerite
		Pyrite
•		Quartz
	Calicanto	Pyrite
		Galena
		Calcite
		Montmorillonite
		Quartz
	California	Hematite
		Pyrite
		Fluorite
		Quartz
	San Robert	Sphalerite
		Pyrite
		Galena
		Quartz
		Kaolinite
	San Bernabe	Galena
		Sphalerite
		Pyrite
		· ·

Table 4.2.2 a) Analytical Result by X-ray Powder Method

	Mine	Mineral
Barones	San Bernabe	
		Quartz

Table 4.2.2 b) Analytical Result by X-ray Powder Method (Refernce)

Mineral	Chemical	Note
	Composition	
**	Co (Do No Mo)	Hardness: 3.5-4 Sp.gr.: 2.95-3.1
Ankerite	Ca(Fe,Mg,Mn)	
	(co ₃) ₂	Trigonal, Fe>Mg
Arsenopyrite	FeAsS	Hardness: 5.5-6 Sp.gr.: 5.9-6.2
Arsenopyrice	I Caso	Orthorhombic, soluble in HNO3 generating
	, the same	NO ₂ gas
		102 300
Calcite	CaCO ₃	Hardness: 3 Sp.gr.: 2.71
0410100	3	Trigonal
the state of the second		Streak: white - gray, crystallizes in
		columnar, plate, rhombohedron or nodule
		shapes
Chalcopyrite	CuFeS ₂	Hardness: 3.5-4 Sp.gr.: 4.1-4.3
		Tetragonal
		Streak: black, usually tetrahedron, fre-
		quently massive and compact
	2	
Chlorite	(Mg,Fe ² ,Al) ₁₂ SiAl ₈ O ₁₈ (OH) ₁₆	Hardness: 2-3 Sp.gr.: 2.6-3.3
	SiA18018(OH)16	Monoclinic formed through hydrothermal
		alteration
		v-3 4
Fluorite	CaF ₂	Hardness: 4 Sp.gr.: 3.18 Isometric
		Cleavage: complete, fluorescent
		Cleavage. complete, lidorescent
Galena	PbS	Hardness: 2.5-3 Sp.gr.: 7.4-7.5
darena	, po	Isometric
		Streak: lead gray, cleavable mass ore
		column
•		
Hematite	Fe ₂ 0 ₃	Hardness: 5-6 Sp.gr.: 5.26
	. 3	Streak: red, trigonal, plate or soil-
*		like form
Kaolinite	Al ₂ Si ₂ O ₅ (OH) ₄	White powder, hardness: 2-2.5
		Sp.gr.: 2.61, formed through hydrother-
		mal alteration
	10 77 1 77	Barrier in auchangoskia autocale
Montmorillonite	(CaNa)xAl ₂ (Siy	Powder, ion exchangeable, extremely
	Alx) O ₁₀ (OH) ₂	swelling, formed through weathering or hydrothermal alteration
		MAGNOTHER WATCHT GLOTTON
Orthoclase	KAlSi308	Hardness: 6-6.5 Sp.gr.: 2.56
or thoutase	. vurn:308	Single crystal
	W	Cleavage: complete and good
		

Table 4.2.2 b) Analytical Result by X-ray Powder Method (Refernce)

Mineral	Chemical Composition	Note
Pyrite	FeS ₂	Hardness: 6-6.5 Sp.gr.: 4.95-5.10 Isometric Streak: black, crystallizes in hexa- hedron, octahedron or pentagon dodeca- hedron forms
Quartz	sio ₂	Hardness: 7 Sp.gr.: 2.65 Hexagonal, semitransparent white mass, characterized by shell-like fracture
Sericite	K ₂ Al ₄ (Si ₆ Al ₂) O ₂₀ (OH,F) ₄	Phyllosilicate, frequently produced in hexagonal plate form, formed through hydrothermal alteration
Sphalerite	ZnS	Hardness: 3.5-4 Sp.gr.: 3.9-4.1 Isometric Streak: brown- to yellow-tinged, completely cleaves into rhombodedecahedron shape

Table 4.2.3
Microscopic observation I

ilicroscopic observa	Mine	Mineral
	M I II C	
Parral	La Fortuna	Galena(Pbs), Sphalerite(ZnS), Pyrite(FeS ₂)
	Unficacion cordero	Galena, Sphalerite, Pyrite
	Revancha	Galena, Sphalerite,
	La Esperanza	Chalcopyrite(CuFeS ₂), Galena, Sphalerite, Pyrite
	La presa	Sphalerite, Pyrite
	Tilita	Chalcopyrite, Sphalerite, Pyrite
Guanacevi	Barradon	Chalcopyrite, Sphaterite, Marcasite (FeS₂)
:	San Joses Chico	Galena, Sphaleritc, Pyrite
	Capuzaya	Chalcopyrite, Tetrahedrite ((Cu, Ag) ₁₀ (Fe, Zn) ₂ (As, Sb) ₄ S ₁₃) Sphalerite, Pyrite, Marcasite
	Ample del Alto del Nvevo Porvenir	Sphalerite, Pyrite,
	San Rafael	Marcasite, Galena, Sphalerite, Pyrite
	Noche Bvena	Chalcopyrite, Sphalerite, Pyrite
Barones	Ampl. San Miguel	Sphalerite, Pyrite,
	Las Cumbres	Galena, Sphalerite, Pyrite
	Calicanto	Chalcopyrite, Galena, Pyrite
	California	Tetrahedrite
	San Roberto	Chalcopyrite, Galena, Sphalerite, Pyrite
	San bernabe	Chalcopyrite, Sphalerite, Pyrite
	<u> </u>	

Table 4.2.4

Results of E.P.M.A. observation

	Mine	Mineral
Parra1	La Fortuna	Ag-Tetrahedritc((Cu, Ag) ₁₀ (Fe ₂ , Zn) ₂ (As, Sb) ₄ S ₁₃) Arsenopyrite(Fe, As, S) Stromeyerite, (Cu, AgS)
	Unficacion cordero	Galena(PbS), Ag-Te-(Sb) Manganocalcite((Ca, Mn) CO ₃)
	Revancha	Ag-Tetrahedrite, Arsenopyrite
	La Esperanza	Ag-Tetrahedrite, Arsenopyrite Cupriangold(Au-Cu)
	La presa	Ag-Tetrahedrite, Chalcopyrite (CuFeS ₂)
	Tilita	Ag-Tetrahedrite, Galena
Guanaceve	Barradon	Argentite(Ag ₂ S)
	San Joses Chico	Electrum(Au, Ag), Argentite, Stromeyerite , Chalcopyrite, Galena, Hematite(Fe ₂ O ₃)
	Capuzaya	Ag-Tetrahedrite,
	Ample del Alto Nvevo Porvenir	Polybasite-Antimon pearceite(8(Ag, Cu ₂)S • (SbAS)
	San Rafael	Blectrum
	Noche Bvena	Ag-Tetrahedrite,
Barones	Ampl San Miguel	Polybasite or Antimonpearceite. Argentite Sphalerite
	Las Cumbres	Polybasite-Antimonpearceite, Electrum Argentite, Pyrite (FeS ₂)
	Calicanto	Ag-Tetrahedrite, Chaloopyrite
	California	Argentite
	San Roberto	Matildite(Ag Bi S ₂), Electrum Shalerite
	San bernabe	Stromeyerite, Galena, Sphalerite, Pyrite

Table 4.2.5
Microscopia observation II

Plant	Sample	Mineral
Parral	Casale ——flotation tailing	Pyrite(FeS ₂)
i i i i i i i i i i i i i i i i i i i	Casale ——cyanidation tailing	Pyrite
Guanaceve	La Prieta ——bacterial leaching feed	Tetrahedrite((Cu, Ag) ₁₀ (Fe, Zn) ₂ (As, Sb) ₄ S ₁₃₎
Barones	Santa Marta Zn flotation tailing	Pyrite

Table 4.2.6 Result of Liquid Analysis (mg/l)

		Эu	Ąg	ເຄ	Pb	2 n	Mn	Fe ⁺⁻	Fe	AS
E-6-1	1 hr	< 0.01	< 0.2	0.25	0.55	1.76	6.28	< 0.02	3.06	< 0.01
	5 days	< 0.01	< 0.2	18.5	2 02	541	969		170	0.33
	10	< 0.01	< 0.2	10.1	0.46	654	1.010	0.01	91.5	0, 17
	15	0.01	< 0.2	21.2	0,37	768	862	0.01	50.2	0.07
Na CN	24 hrs	0.01	0.3	0.42	0,76	2, 38	0.1	0.03	1.68	< 0.01
	48	0.01	< 0.2	90.0	0.19	0.72	0 1	0.02	0.84	< 0.01
E-6-2	1 hr	< 0.01	< 0.2	0.16	0.18	5,99	237	0.07	1, 58	< 0.01
	5 days	0.01	< 0.2	0.14	0.18	76.3	252	0.05	1. 67	< 0.01
	10	0 0 0	61. 0 V	1. 25	0.09	286	F1000	0.03	0.28	< 0.01
	15	< 0.01	< 0.2	10.4	0.28	515	1,510	0.01	12.0	< 0.01
CS(NH ₂) ₂ 24 hrs	24 hrs	< 0.01	5.12	7.50	3.04	868	18, 300	0.01	- 43	0.02
	48	0.01	4, 19	1.7.4.	114	398	18,800	0.03	1.61	0.02
8-12-1	1 hr	< 0.01	0.2 V	0.20	0.18	6.18	31.0	0.03	88 1	< 0.01
	5 days	< 0.01	8 6 V	0,48	0.18	66.7	14.9	0.03	1.11	10.0 >
	10	< 0.01	< 0.2	0.13	0.28	40.3	46,5	0.04	0.73	< 0.01
	15	< 0.01	V 0.2	0.11	0.73	4.03	0.28	0.01	1.7.1	< 0.01
Na CN	24 hrs	0.02	9.09	0,54	0.76	3, 18	18.5	0.02	1.68	0.03
	48	0.05	0.76	0.12	0.66	0.92	56.0	0.05	09.0	< 0.01
B-12-2	1 hr	0.01	< 0.2	0.20	0,37	4.37	7, 79	0.02	1.06	< 0.01
	5 days	< 0.01	0.5	0.17	0.37	15,6	6.94	0.02	0.68	< 0.01
	10	< 0.01	< 0.2	0.34	0.37	117	69	0.02	0.97	
	15	< 0.01	< 0.2	0,93	0.37	200	151	0.04	1.26	< 0.01
CS(NH2)2 24 hrs	24 hrs	× 0.01	15, 5	4.64	1,90.	4.200	18, 000	0.05	5.98	0.02
	. 48	0.01	4,78	4.86	1.14	430	19, 800	0.1	1.97	A 0.01

Table 4.2.7 Result of Liquid Analysis (mg/l)

		Au	Å8	 	- P	ч2 .	uk.	Fe + +	Э.	AS
9ez (SO1)3	1 hr	0.01	0.31	8.80	0.47	821	578	0.01	19,500	2.96
	24	0.01	0, 10	13, 62	0 5	689	764	0,01	17,000	3, 46
42 SO 1	1 hr	0.01	0.12	12.3	0.1	371	394	0.01	327	0.18
	24	0.01	0.07	8.84	0.1	394	835	0.01	50.3	0.01
Na CN	24 brs	0.06	37.0	0.06	0.1	1.29	0.99	0.01	09.0	0.01
	8†	0.07	18.2	0, 12	0.1	1.03	0.44	0.01	0.37	0.01
CS(NH2)2	24 hrs	0.02	3.63	2,65	0, 1	33.0	1,920	0.48	1,51	0.01
	48	0.02	2,76	2.29	0.37	19.8	3, 390	0.11	0.39	0.01

Table 4.2.8 Result of Sand Analysis

		Au	Ag	n U	Pb	2a	- N	Fe	s	As
-		(8/ton)	(g/ton)	%	%	%	%	%	%	%
E-6-1	5 days	0.2	342	0.03	0.17	0.48	6.52	4. 19	9.31	0.015
	10	0.2	346	0.03	0.18	0.47	5.98	4.60	9.37	0.008
		0.5	277	0.05	0.18	0.55	3.90	3,02	9, 50	0.009
Na CN S	24 hrs	0.1	346	0.03	0,21	0.56	6.38	4.61	9.01	0.009
• •	4.8	0.1	344	0.02	0, 15	0.55	5.35	5, 43	10, 12	0.007
B-6-2	5 days	0.2	334	0.03	0, 17	0.59	6.48	4.67	9.36	0.015
	10	0 0	367	0.03	0.19	0.61	6, 42	4, 75	7.97	0,008
	15	0.3	323	0.03	0.18	0.58	3.72	3, 32	7. 50	0.009
CS (NH2) 2	24 hrs	0.1	103	0.03	0.21	0.26	1.08	5. 65	10.39	0,008
7	48	0.1	367	0.02	0.17	0.36	1.34	5, 53	10:41	0.007
8-12-1	5 days	0.2	261	0.02	0.12	0.51	5.34	4, 59	12,26	0.01
	10	0.0	270	0.02	0, 12	0.19	4.70	က က	13.01	0.006
	15	0.3	338	0.03	0.18	0.74	1.06	3, 18	6,43	0.009
Na CN S	24 hrs	0.1	375	0, 03	0, 20	0.58	6. 59	3. 67	8.99	0.008
**	48	0.1	367	0, 03	0, 16	0.72	5.50	3, 85	9.17	0.007
B-12-2	5 days	0.2	323	0.03	0, 15	0.61	6.48	4.67	10.16	0.014
	10	0.2	332	0.03	0, 15	0.53	0. 90	4.81	9, 77	0,006
	15	0.2	312	0.03	0,14	0.64	4.00	3.37	10.08	0,008
CS(NH2) 2 24 hrs	24 hrs	0.1	378	0, 03	0, 21	0.33	1.46	4.61	10.28	0,006
4	48	0.2	364	0.03	0, 17	0.46	1.81	5, 43	10,52	0.008

Table 4.2.9 Result of Sand Analysis

					,				
		ΑU	Ag	_ເ	Pb	20	Mn	er.	As
Fe2 (SO4)3	1 hr	0.2	388	0.03	0.21	0.91	7.17	5.30	0.018
	24	0.1	377	0.03	0.20	0.71	6.01	5.30	0.105
H2 SO.	1 hr	0.2	409	0.03	0.22	0, 89	7. 10	5.48	0.018
	24	0.2	382	0.03	0.20	0.80	6.40	5.48	0.017
Na CN	24 hr	0.1	305	0.03	0.21	0.86	7.30	5.66	0.019
	48 rs	0.1	358	0.04	0.20	0.95	3.91	4.70	
CS(NH ₂) ₂	24 hrs	0.1	419	0.04	0.23	68.0	6.27	5.48	0.020
	48	0.1	382	0.03	0.22	0. 79	2.91	3.00	

Table 4.2.10 Extraction Rate of Metals

		:	Mn	Au	Ag
E-6-1	5	days	3, 4		-
	10		3.8		<u></u>
	15		4. 9	. —	
Na CN	24	hrs	0	18. 9	0.1
	48		0	18. 9	0.1
E-6-2	-5	days	0.9		· ;— .
	10		1.9	— ··	_
	15		8. 7		
CS(NII ₂) ₂	24		79.8	0	2. 9
	48		76.6	18. 9	2. 6
B-12-1	5	days	0. 3	. i — i i	_
	10	·	0. 2	· -:	
	15		0.	·	
Na CN	24	hrs	0.1	31.8	5. 4
	48	. <u></u>	0 .	53. 8	0.5
B-12-2	5	days	0		 .
	10		0. 3		:
	15		0. 9	- –	
CS(NII ₂) ₂	24	hrs	74. 2	0	8.7
	48		71.9	10.4	3. 0
Fe ₂ (SO ₄) ₃	48		:		
H ₂ SO ₄	48			·	
Na CN	24		0	58. 3	22. 0
IVA CIV	48	· · · · · · · · · · · · · · · · · · ·	0	61.5	10.5
CS(NII ₂) ₂	24		15. 4	33. 3	1.9
CO(11115 \ 5	48		21.4	33. 3	1.5

Table 4.2.11 Metallurgical Results of Fundamental Flotation test on San Bernabe Ore

	A T		◄	v.	×	:				Distribution	bution	34	
PRDDUCT	%	Au 8/T	Ag 8/T	73	Pb	Zn	er so	Au	Ag	3	P.P	u2	F.e
FEED	100.0		65.2	0.71	4.49	6.55	15.61	100.0	100.0	100.0	100.0	100.0	100.0
COMC1	22. 1	:	213	2.70	17.31	2. 32	34.51	33.0	72.2	84.4	85.1	7.8	48.9
COMC2	11.8		88.0	0.69	4.58	7.82	27.48	17.6	15.9	11.5	12.0	14.1	20.8
COMC3	5.7	0.1	8	0.19	1.09	11.15	13.87	4.3	2.6		1.4	9. 7	
Total	39.6	•	149.4	1.74	11. 18	5.23	29, 14	54.9	90.7	97.4	98.	31.6	74.7
TAILING	60.4	0.1	10.0	0.03	0.11	7.41	6.54	45.1	9.3	2.6	1.5	68.4	25.3
Test 2													
F0110400	1*		¥	5 5 8	A*					Distrib	bution	96	
rkonuci	%	Au 8/T	A8 8/T	r.o	Pb	Zn	Fe	Au	Ąŝ	Cu	Pb	Zn	Fe
	100.0	0	63.8	0.71	4.04	0.72	14.77	100.0	100.0	100.0	100.0	100.0	100.0
COMC1	13.4		281.0	4 14	23, 13	3,99	28.31	28.0	59 0	78.6	76.7	7.6	25.7
COMC2	დ დ	6	135.0	1. 22	9.26	8. 11	18.81	17.4	17.6	14.4	19.0	9.6	10.6
COMC3	3. 1	0	71.0	0.63	5.40	18.54	13.01	2.2	გ. 4	2.8	4.1	က ထ	2. 7
Total	24.8		205.9	2. 72	16.27	5.94	23. 22	47.6	80.0	95. 7	99.8	21.0	39.0
TAILING	75.2	0	17.0	0.04	0.01	7.38	11.99	52.4	20.0	63	0.	79.0	61.0
Test 3				:									
nabalica	1.84		¥	8 8	. A					Distribution	ution A		
רמטממי	%	Au 8/T	Ag g/T	a _O	P.	uZ	e.	γn	84	នី	Pb	Zn.	Fe
	100.0		63.1	0.72	4.19	6,67	15.30	100.0		100.0	100.0	100.0	100.0
	16.0		257.0	3, 57	21.62	2.86	27.24	22.2	65.2	78.9	82.6	တ်	28.5
COMC2	11.5		103.0	0.92	5, 55	90.9	26.54	23.9	8.8	14.6	15.2	10.4	19.9
COMC3	21		39.0	0.25	1.18	19.17	15.43	7.2	3.2	1.8		7.1	5.2
Total	32. 7				12.72	4.99	25. 12		87.2	95.3	99.4	24.5	53.3
TAILING	67.3	0.1	12.0	0.02	0.04	7.49	10.53	46.7	12.8	4.7	0,6	75. 5	46.3
Test 4													
בטוועשם	3.84.		¥	SSB	у %					Distribution	ution %	9	
, moder	%	Au 8/T	A8 8/T	Cu	Pb	Zn	Яe	Αu	Ag	Co	Pb	uZ	e e
FEED	0.001	0.	62.3	0.67	3.74	6.77	15.07	100.0	100.0	100.0	100:0	100.0	100.0
COMC1	8.2	o	398.0	6.41	25, 13	6, 29	14.31		51.1	78.2	55.1	7.6	7.8
COMC2	ც		134.0	1.10	13.26	8: 71	16.81	4.6	18.3	13.9	30.1	11.0	ნ ნ
сомс3	4.9	6	54.0	0.28	4.05	8.80	17.74	9	4.2	2.0	က က်	5, 4	ເກ
Total	21.6	0.	212.3	2.93	15.68	7.84	16.07	16.0	73.6	94.2	90.6	25.0	23.0
TAILING	78.4		21.0	0.05	0.45	6.48	14, 79	84.0	26.4	5.8	9.4	75.0	77.0

100.0 60.1 E. 2n 100.0 76.3 9.6 .. 62.6 % 13.0 Result of Differential Flotation test on San Bernabe Ore 100.0 97.4 93.8 3.6 2.8 91.9 1.9 90.4 9 ... 1.2 Distribution 2 100.0 ب ش 3 20.2 in Si ¥8 12.3 56.6 0.6 100.0 5.1 76.3 8.8 Αu 10.50 24.26 8.95 29.40 11.72 31.02 15. 28 7. 79 18.55 19.98 13.66 16.14 17.88 38.05 e e 6.82 1.35 6.90 10.27 6.59 31.91 9, 45 22.45 9,87 40.30 47.30 1 7 7.30 46,60 0.25 16.24 45.80 0.91 57.13 0.14 0.30 60.84 11.93 0.31 0.31 P. 0.69 2. 63 5. 54 1. 12 1.18 7.07 2, 65 0.05 0.11 0.12 0.16 0.18 0.20 0.20 ි 196.3 418.5 16.2 52.0 12.9 25.0 Au 8/T Ag 8/T 81.0 502.1 112.0 525.0 223.0 36.0 48.0 0.1 24.6 #1 100.0 16.2 . 1.8 8 6.1 75.4 6.4 69.0 19, 7 49, 3 13.7 3.1 Table 4. 2. 12 Pb Svt C Pb Sv T 1 cl T 3 c1 C1 3 c1 C2 3 c1 T 1 cl C 2 cl C 2 c1 T 0 C C PRDDUCT 1 cl Pb &C Pb RT Zn RC Zn RT

Table 4.2.13 Expected Metallurgical Result on San Bernabe Ore

	wt		A	Assay	ኦ %		· .			Distri	Distribution %	≥ €	
	%	Au g/T	T/8 8A	n o	Pb	uZ	gr.,	Αu	Ag	ηŋ	Pb	Zn	Э.
FEED	100.0	0.2	60.5	0.69	4, 10	4.10 6.82 14.71		100.0	100.0	100.0 100.0 100.0 100.0 100.0	100.0	100.0	100.0
Pb Conc.	6.6	0, 1	502.1	6.74	57.13	57.13 1.71 10.50	10,50	4.1.	54.8	64.7	91.9	1.7	4.7
Zn Conc.	13.1	0.1	61.0	1.01		0.97 46.60	16. 73		7.1 13.2 19.1	19.1	3. 1	89.6	14.9
Tailing.	80.3	0.2	24.1	0.14	0.14 0.26	-	0.74 14.73	88.8	32.0	16.2	5.0	8.7	80.4
		Reco	0 v e r	,				11.2	68.0	83.8	91.9	89.6]]. .

Table 5.2.1, a Evaluation of the mines based on ore reserved Parral

Parral

400 5.2 700 1400 31.1035 2500

	Mine	•	LA REVANCHA	LA PRESA	LA REVANCHA LA PRESA LA ESPERANZA	TILITA	UNIF. CORDERO		Metal Prices
Ore Value	Head Grade	Au			-	06.0			Au (US\$/oz)
	(4 / 5 / 6)	Ag	374	120	100	615.	304		Ag (US\$/oz)
		đặ		4.36	4.00		6.50		Pb (US\$/t)
	-	uZ		3.88	5.00		4.30	-	Zn (US\$/t)
	Mill	A.u.				09			Z0/6
	kecovery (%)	Эğ	9	59	99	08	65		Peso/US\$
		P.P.		50	35		50		
		2.0		55	55		55		
	Smelter	Au	92	92	92	92	92		
	Recovery (%)	Ag	83	68	89	68	89		
		q₫	81	81	81	.8	81		r -
	:	42	76	9/	9.2	76	76		
	Recoverable	Au	0	0	0	15,972	0		
	Metals value (Peso/t)	P.G	83,473	29,015	24,179	154,448	73,504		
		₽₽ PP	0	30,902	19,845	0	46,069		
		212	٥	56,764	73,150	D	62,909	·	
	Total (Peso/t)	_	83,473	116,681	117,174	170,420	182,482		
	Mining		33,500	37,600	39,400	35,000	82,200		
Operating	Milling		31,902	31,902	31,902	31,902	31,902		
(Peso/t)	Smelter Charges	Sa	8,347	23,336	23,435	17,042	36,496		
	Total		73,749	92,838	94,737	83,944	150,598		
Operating	Operating Cash Flow (Peso/t)	o/t)	9,724	23,843	22,437	86,476	31,883		

Table 5.2.1.b Evaluation of the mines based on ore reserved Guaracevi

	400	5.2	700	1400	31.1035	2500														.*		
Metal Prices	Au (US\$/oz)	Ag (US\$/oz)	Pb (US\$/t)	2n (US\$/t)	20/5	Peso/US\$												÷				
																			•			
BARRADON CAPUZAYA SAN RAPAEL A.PORVENIR NOCHE BUENA	0.30	160			80	80			92	88	81	9/	7,099	47,614	0	0	54,713	36,900	30,000	5,471	72,371	-17,658
A. PORVENIR	£9*0	615	-		70	09			92	68	81	76	13,644	129,227	0	0	142,271	45,300	30,000	14,227	89,527	52,744
SAN RAFAEL	4.10	968		1	98	08			92	68	. 81	76	97,018	117,844	0	0	214,863	45,300	30,000	21,486	96,786	118,076
CAPUZAYA	0.48	202			09	09			92	89	18	- 16	8,519	45,754	0	0	54,273	49,300	30,000	5,427	84,727	-30,455
	55°T	ε8τ			75	02			92	89	18	92	34,385	47,651	0	0	82,036	36,400	30,000	8,204	74,604	7,433
S.JOSE CHICO	2.50	260			08	98			92	89	83	9/2	59,157	77,373	0	0	136,530	78,300	30,000	13,653	121,953	14,577
	Au	Ag	요	27.77	ą	Ag.	đ	E 23	ą	89	쉾	r Z	n K	Аg	dg.	Zn.				S.)(t)
Mine	Head Grade	(8/17/6)			иіл	(8)		•	Smelter	Kecovery (%)		-	Recoverable	(Peso/t)		- :	Total (Peso/t)	Mining	Milling	Smelter Charges	Total	Operating Cash Flow (Peso/t)
	Ore Value																		Operating	(Peso/t)		Operating (

Table 5.2.1.c Evaluation of the mines based on ore reserved Barones

	Mine		SAN ROBERTO	SAN BERNABE	LAS CUMBRES	CALICANTO	A.S.MIGUEL	CALIFORNIA	Metal Prices	
Ore Value	Head Grade	Au	0.50	0.56	0.45	1.10	0.70	0.58	Au (US\$/02)	400
	(\$ '2/5)	Ag	109	170	185	175	303	300	Ag (US\$/oz)	5.2
		Pb	0.93	1.17	1.00	0.51			Pb (US\$/t)	700
		u2	1.88	1.42	1.84				Zn (US\$/t)	1400
,	-	ກວ	2.86						Cu (US\$/t)	2100
	Mill	Au	20	20	40	90	09	20	zo/5	31.1035
	(%)	64	09	09	09	09	70	35	Peso/US\$	2500
		Q.	20	20	55	50				
		u2	45	45	90					
		ខី	09							
	Smelter	Au	92	92	92	85	92	92		
	Recovery (%)	Ag	89	68	68	68	68	68		
		qa	81	81	18	. 81	81.	81		
		u2	92	92	9/	76	. 76	. 76		
		o n	06	06	06	06	90	06		
-	Recoverable	Au	2,958	3,313	5,324	16,268	12,423	3,431		• .
	Metals value (Peso/t)	Ag	24,328	37,942	41,290	33,058	78,898	61,377	•	:
	٠.	qa	165'9	8, 292	962'1	3,615	0	0		
		uZ	22,504	16,91	24,472	0	0	0	:	
		3	81,081	0	0	0	0	0		
	Total (Peso/t)	_	137,462	66,545	78,883	58,941	91,321	64,808		
	Mining		38,100	38,100	38,400	32,410	41,500	16,000		
Operating	Milling		16,500	16,500	16,500	20,375	16,500	16,500		
(Peso/t)	Smelter Charges	. sə	27,492	13,309	נרר, פנ	5,894	9,132	6,481		
	Total		82,092	606'29	70,677	58,679	67,132	38,981		

Table 6.4.1 Schedule of anual maintenance

4	o 5	Need to replace											
Expected date of	replacement of parts	' 90. 5											
Replacement of parts	Cycle of ovethaul	'86.5 ∼'88.5							• .				
ו ביים לי	הבומוז	eccentric shaft	toggle	bearing	unbalance Weight	trunnion liner	feed side	discharge side	scoop feeder	bearings		inside tubes	
c C	dinka	Jaw Crusher	Vibrating Screen			No.1 Ball Mill	-			Blower		Disk Fiter	
, to	1011000	Crushing				Grinding				Flotation		Filtration	

Table 6.4.2 Schedule of anual maintenance

		Ma	chine R	egiste	r No.		
Name :	-						
Date of A	cquisition			Plice			
	······································	Maker		'			
Productio	un.	Date			No.		
Lloguciio	·III	Туре	· · ·	···.	Materia	1	· · · · · · · · · · · · · · · · · · ·
		Size			Weight		
Function			٠.				
·		.1				· · · · · · · · · · · · · · · · · · ·	
Date	Content	s of Repairme	nt				expense
				· · · · · · · · · · · · · · · · · · ·			

Table 6.4.3 Schedule of anual maintenance

	Daily Report o	f Grinding	Date .	
	rs i.	2 nd.	Date .	d,
Name :				
Treatment t/h				
P.D. (%)				
No. 1 B. M.				
No. 2 B. M.				
Presure of Cyclone (p. s. i)				
No. 1				
No. 2				
Current (A)				
No. 1 B. M.				
Pump	,			
No. 2 B.M.				
Pump				
Statement				
No. 1 B.M.	·		·	
Pump				
No. 2 B.M.				
Pump				
Other equips Notes				
			-	
				·
· · · · ·				
				;

Table 6.4.4 Schedule of anual maintenance

		port of F		Date	•
At.	TSt.		2 n d.		3rd.
Name			ļ		
. D.					
n RF					
n RT					
n Cl. T					
eagent					
n R EX					
u SO ₄					
H					
emperature f Blower		·			
otes					
					et in a
•				•	
	.			10 mm	
				•	
		e e			
				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

Table 6.6.1 Example form of the copmarison between budget and results

								-				
			Budget							Total	Total	Increase/
	Item		3	oct.	Nov.	Dec.	Jan.	Feb.	March	budget	actual	decrease
					:	٠				9	result (D)	(0)-(0)
Work quantity	úty.											
		Number	e	е .	3			m		و	vo	
expenses		Amount	942,000	989,921	969,019			979,470	27,019	27,019 1,884,000	1,958,940	74,940
	Sum		1,534,000	1,584,807	1,606,276			1,595,542	72,276	3,068,000	3,191,083	123,083
Labor rela	Labor related expenses		724,000	724,000	721,000			722,500	-3,000	-3,000 1,448,000	1,445,000	-3,000
	oils			25,620				12,810		٠	25,620	25,620
	Metal product	ħ										
	Medicines				18,950			9,475	18,950		18,950	18,950
Commodity expense	Chemicals Rubber & leather goods	ther	-	1,880	4,760			3,320	4,760		6,640	6,640
	Machines			24,560	21,000			22,680	21,000		45,360	45,360
	Tools											
	Misc. goods	s others	150,000	29,750				14,875	-150,000	300,000	29,750	-270,250
	Total		150,000	54,320	238,874	*.		390,597	88,874	300,000	781,194	481,196
	Repair cost payable	payable	100,000						-100,000	200,000		-200,000
	. Power rates	payable										
Simple expenses	Freight rates payable	S)										
	Contract expenses	enses										
	Traveling and trans portation expenses	id trans- penses										i

Table 6.6.1 Example form of the copmarison between budget and results

	H C C B B B	Budget (A)	Oct.	Nov.	Dec.	es es es	Feb.	Магср	Total budget (C)	Total actual result (D)	Increase/ decrease (D)-(C)
	Communication expenses										
i i	Rent										
expenses	Expense accounts								-		
	Misc. expenses and others	•									,
	Total	100,000	662,961				331.481	-100,000	200,000	662,961	462,961
	Power KwH electricity expenses Amount					-					
4.	Electricity KWH expenses Amount								-		
Compound	Analysis Number	192						-192	384		-384
- Aperioda	expenses Amount	50,000						-50,000	100,000		-100,000
	Water m ³ expenses Amount										
	Total	50,000						-50,000	100,000		-100,000
Total expenses	nses	150,000	662,961				331,481	-150,000	300,000	662,961	362,961
Depreciati	Depreciation expenses	456,000						-456,000	912,000		-912,000
Total.		3,514,088	3,514,088	2,566,150			3,040,119	-447,850	6,028,000	6,080,238	52,238
Original unit price	nit price										

Table 7.1.1 Statement of Profits and Losses, Parral plant (Jan. 1, 1988-Dec. 31, 1988)

Unit: Peso

Sales	7,302,555,902	(85,241 peso/ton)
Sales costs	6,720,536,159	
Sales profit	582,019,743	
General administrative expenses	214,377,505	
Selling expenses	159,915,032	
Operating profit	207,727,206	
Non-operating income	50,853,275	
Non-operating expenses	2,905,860	
Ordinary profit	255,647,621	

Table 7.1.2 Total Revenues, Parral plant (Jan. 1, 1988-Dec. 31, 1988)

$\label{eq:constraints} \mathcal{L}_{ij} = \{ (i,j) \in \mathcal{L}_{ij} : i \in$	en e	
Lead concentrate	5,879,251,334	80.51%
Zinc concentrate	198,114,133	2.71%
Cyanided deposit	1,195,438,234	16.37%
High grade non-treatment ore	29,752,201	0.41%
Total	7,302,555,902	100%

Unit:

Peso

Table 7.1.3 Total Costs of Revenues, Parral plant (Jan. 1, 1988-Dec. 31, 1988)

Unit: Peso

100					
	Treated or	e prices	4,914,625,734	(57,367 peso/ton)	
		Direct costs	1,594,634,908	(28,614 peso/ton)	2 peso discrepancy
Sales	Operating	Indirect costs	188,992,226		
costs	cost	Depreciation expense	22,283,291		:
		Subtotal	1,805,910,425	(21,080 peso/ton)	
	Tot	al	6,720,536,159		

Treated ore volume: 85,670 t

Treated ore prices = Expense for purchasing treated ore + Expense for purchasing high grade non-treatment ore - Concentrate stock price (Concentrate stock price = Term beginning stock concentrate + Duringterm purchased concentrate - Term-end stock concentrate)

Detailed Operation Costs, Parroal plant (Jan. 1, 1988-Dec. 31, 1988) Table 7.1.4

Crucking 36,09,031 27,719,755 106,750 28,450,695 (12,409,1939) (14,916,1783) 28,450,695 (12,409,1938) (14,916,1794) (14,916,1794) (14,916,1794) (14,916,1794) (14,916,1794) (14,916,1794) (14,916,1794) (14,916,1794		Personnel expenses	Material	Others	Cost of electric power	Cost of water	Total
13,412,396 18,071,198	ore receiving	36,609,631 (509,071)	27,719,755	106,750	1	1 `	64,436,136 (15,420,838)
33,616,848 149,790,245	rushing	51,412,396 (4,988,206)	18,071,198 (4,876,794)	1	28,450,695	1 1	97,934,289
S5,840,897 101,080,474 17,823 27,930,163 -	rinding	33,616,848 (6,553,779)	149,790,245	1,682	112,565,794		295,974,569
tration and (16,121,140) (48,172,339) 72,157,560 6 and settle- (2,107,641) (11,868,981) 425,280 21,441,103 6 and settle- (2,107,641) (11,868,981) 425,280 21,441,103 6 and settle- (2,107,641) (11,868,981) 425,620 14,019,183 6 (2,135,628 8,850,535 100,171 13,606,856 6 (2,102,731) 401,503 1,004,144 7,834,250 6 andortenance 15,626,311 401,503 3,225,960 2,380,274 6 (778,133,181 1,649,093 1,049,144 7,834,250 6 (778,133,181 1,649,093 1,325,960 2,380,274 6 (778,133) 23,857,942 801,362 6,173,107 20,431,157 6 (778,133) (95,166,401) (25,19%) 401,731,704 83,845 1,7 Treation and settle- (1,027,008,307 11,326,426 401,731,704 83,845 1,7 Treation and settle- (1,027,008,307 11,326,426 (1,021,0464) Treation and settle- (1,027,008,307 11,326,426 (1,021,0464) Treation and settle- (1,027,008,307 11,326,426 (1,021,0464) Treation and settle- (1,027,008,007 11,326,426 (1,021,0464)	lotation	55,840,897 (6,812,818)	101,080,474 (1,584,060)	17,823	27,930,163		234,869,357 (8,396,878)
13,396,555 28,031,021 426,280 21,441,103 — (2,107,641) (11,868,981) 426,280 21,441,103 — (2,107,641) (11,868,981)	yanidation Primary agitation and washing)	72,265,371 (16,151,140)	335,259,684 (48,172,339)	I.	72,157,560	1	479,682,615 (64,323,479)
- 1,300,234 163,620	yanidation Filtration and settle- ent)	31,396,555	28,031,021 (11,868,981)	426,280	21,441,103	I	81,294,959 (13,976,622)
792,304 5,675,861 - 14,019,183 -	rying Including can packing and shipment)	1	1,300,234	163,620	-	1	1,463,854
2,135,628 8,850,535 100,171 13,606,856 — 275,009 1,037,815 53,325 21,853,433 83,845	yanidation Compr. air)	792,304 (785,560)	5,675,861 (4,656,865)	•	14,019,183	•	20,487,348 (5,472,425)
78,813,105) 78,813,105) 78,813,105) 1,037,815 1,049,104 7,834,250 1,5626,311 401,503 3,225,960 2,350,274 - 33,857,942 801,362 6,173,107 20,451,157 - 66,042,531 478,684,624 702,808,307 11,326,426 (42,359,600) 96,166,401) 778,135 8.858 13.688 (7) = Maintenance [included]	ludge	2,135,628 (2,102,791)	8,850,535	100,171	13,606,856		24,693,190 (2,102,791)
78,813,181 1,649,093 1,049,144 7,834,250 — (1,287,336)		275,009 (273,105)	1,037,815	53,325	21,853,433	83,845	23,303,427 (273,105)
15,626,311	tockyard	78,813,181 (1,287,336)	1,649,093	1,049,144	7,834,250	1	89,345,668 (1,287,336)
53,857,942 801,362 6,173,107 20,451,157 — 61 (778,153) 23,139,527 8,564 9,071,236 — 98 (778,153) (96,166,401) (25,19%) (35,19%) (36,166,401) (25,19%) (35,19%) (35,19%) (35,10%) (36,10	lectrical maintenance	115,626,311	401,503	3,225,960	2,350,274	1	21,604,048
66,042,551 23,139,527 8,564 9,071,236 – 98 (778,153)	echanical maintenance	33,857,942	801,362	6,173,107	20,451,157		61,283,568
478,684,624 702,808,307 11,326,426 401,731,704 83,845 1 (25,19%) (25,19%) (25,19%) 8.85% 44.1% (3 = Maintenance [included]	aboratory	66,042,551 (778,153)	23,139,527	8,564	9,071,236	I	98,261,878 (778,153)
8.85% 13.68% () = Maintenance [included] Treated one volume: 85.670 t	rotal	478,684,624 (42,359,600)	702,808,307	11,326,426	401,731,704	83,845	1,594,634,906 (138,556,001)
	308	8.85% Treated ore vo.	™		- Maintenance [ir	ncl uďeď]	8.69%