REPUBLIC OF INDONESIA

THE ACADEMIC DEVELOPMENT OF THE GRADUATE PROGRAM AT THE FACULTY OF AGRICULTURAL ENGINEERING AND TECHNOLOGY, INSTITUT PERTANIAN BOGOR

DETAILED DESIGN REPORT

ON

MODEL INFRASTRUCTURE IMPROVEMENT WORKS

APPENDIX C TECHNICAL DATA

APRIL, 1990

JAPAN INTERNATIONAL COOPERATION AGENCY

JICA LIBRARY

1080996[0] 2-9 35

REPUBLIC OF INDONESIA

THE ACADEMIC DEVELOPMENT OF THE GRADUATE PROGRAM AT THE FACULTY OF AGRICULTURAL ENGINEERING AND TECHNOLOGY, INSTITUT PERTANIAN BOGOR

DETAILED DESIGN REPORT
ON
MODEL INFRASTRUCTURE IMPROVEMENT WORKS

APPENDIX C TECHNICAL DATA

APRIL, 1990

JAPAN INTERNATIONAL COOPERATION AGENCY

国際協力事業団

20935

Appendix C. Technical Data

- 1. Climate
- 2. Hydrology
- 3. Soil Mechanics
- 4. Irrigation & Drainage
- 5. Bill of Quantities
- 6. Labour Cost and Material Cost
- 7. Unit Price
- 8. General Plan of the Agro-civil Engineering Tests and Farm Machinery Tests Fields
- 9. Measurement Plot
- 10. Pump Station at the Cihideung River
- 11. Workshop / Workstation

Appendix C1 Climate

- 1. General
- 2. Collected Data
- 3. Evaluation, Tabulation and Analysis

1. General

The project site is located at the outskirts of Bogor city which is about 60 km south of Jakarta.

It is laid on the alluvial fan developed from the northern slope of the Salak volcanic mountain (EL. 2,211 m).

Its geographical position is 6°34'S, 106°43' E and the elevation is about 200 m above see level.

The climate belongs to the tropical monsoonal pattern. The Salak volcanic mountain, along with other mountains to the east, influences the rainfall distribution in the vicinity of Bogor city.

The Darmaga rainfall observation station was established in January, 1964 by the Meteorology and Geophysics Board of the Government (BMG) and in 1976 it is reorganized as the 1st class Climatological Station Darmaga Bogor (CSDB) with installation of additional climate measurement instrument. Since then, the climate observation is operating by the said BMO. The main office is located at Jalan Raya Darmaga 6.5 km, but its observation station is placed on the cleared land between the swamp (Rawadjaha) and the rubber forest in the north-east about 2.5 km of the project site. It can be accessed through Jalan Sindangbarang from Jalan Raya Sindang Barang or through village road from the Darmaga Campus IPB. Its geographic position is announced to be 6°30'S, 106°45'E, EL. 250 m, however, it can be read as 6°33'S, 106°45'E, EL. 190 m from the topographic map with scale of 1/50,000.

The area of the CSDB is 250 m² with 50 m length and 50 m width. The observing meteorological elements are air temperature, humidity, air pressure, sunshine, radiation, evaporation, wind speed and soil temperature.

Collected Data

The valuable observation records have been collected during the field survey period for the study as follows:

Calendar year 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 Items I. Monthly Data 1.1 Mean Tem. 1.2 Max Tem. 19 1.3 Min Tem. 26 1.4 Rainfall 26 1.5 Rainy day 26 1.6 Max. 24hr Rain 19 1.7 Re. Humidity 1.8 Sunshine % 2. Daily Data 13 2.1 Mean Tem. 2.2 Max Tem. 2.3 Min Tem 13 2.4 Rainfall 2.5 Sunshine % 2.6 Re. Humidity 2.7 Pan Evap. 2.8 Air Pressure 13 2.9 Wind Speed 3. Hourly Data 3.1 Rainfall

3. Evaluation, Tabulation and Analysis

All the collected data have been evaluated, tabulated and analyzed as shown in the following tables and a figure.

- Table C1-1 Monthly Mean temperature at the Climatological Station of Darmaga Bogor (CSDB)
 - C1-2 Monthly Mean Maximum Temperature at the Climatological Station of Darmaga Bogor (CSDB)
 - C1-3 Monthly Mean Minimum Temperature at the Climatological Station of Darmaga Bogor (CSDB)
 - C1-4 Monthly Maximum Temperature at the Climatological Station of Darmaga Bogor (CSDB)
 - C1-5 Monthly Minimum Temperature at the Climatological Station of Darmaga Bogor (CSDB)
 - C1-6 Monthly Mean Relative Humidity (%) at the Climatological Station of Darmaga Bogor (CSDB)
 - C1-7 Monthly Mean and Maximum of Pan Evaporation at the Climatological Station of Darmaga Bogor (CSDB)
 - C1-8 Monthly Mean of Sunshine Percentage between 8:00 and 16:00 at the Climatological Station of Darmaga Bogor (CSDB)
 - C1-9 Monthly Mean of Radiation Intensity (Kcal/cm²/day) at the Climatological Station of Darmaga Bogor (CSDB)
 - C1-10 Monthly Total Rainfall at the Climatological Station of Darmaga Bogor (CSDB)
 - C1-11 Number of Rainy Days at the CSDB
 - C1-12 The Highest 24 hours Rainfall in the Month at the CSDB
 - C1-13 Probability Calculation on the Highest Rainfall Data at the CSDB by Gumble Method, Data Period 26 years from 1964 to 1989
 - (1) January (7) July (13) Annual Maximum (2) February (8) August (3) March (9) September (4) April (10) October
 - (5) May(11) November(6) June(12) December
 - C1-14 The Highest Rainfall (mm) for the Short Duration in the Month and Annual at the CSDB
 - No. 1 1985, 1986 No. 2 1987, 1988
 - No. 3 1989
 - C1-15 Calculation of Probability of Exceedance on the Data of the Short Duration Rainfall Intensity (mm/hr)
 - No. 1 5 minutes, 10 minutes and 15 minutes
 - No. 2 30 minutes, 45 minutes and 60 minutes
 - No. 3 2 hours, 3 hours and 6 hours
 - No. 4 12 hours and 24 hours
 - C1-16 The Longest Dry Consecutive Days During one year at the CSDB

- C1-17 Calculation of Probability of Exceedance on the Data of the Monthly Mean Pan Evaporation at the CSDB
 - January, February and March
 - April, May and June No. 2
 - No. 3
 - July, August and September October, November and December No. 4
- C1-18 Estimated Possible Working Hours of Outdoor Works for Construction and Farming Practice
 - 1985 No. 1
 - No. 2 1986
 - 1987 No. 3
 - No. 4 1988
 - No. 5 1989
 - Recapitulation of Estimated Possible Working hours and their percentage to the Scheduled Construction No. 6 Working Hours

Fig.C1-1 Curves of Probable Rainfall Intensity in mm/hour

Monthly Mean Temperature At The Climatological Station of Darmaga Bogor (CSDB) Table C1-1

j						Latitude	Latitude : 06°30'S	Longi	Longitude: 106°45'E	°45'E	Altitude: 250m.	. 250m.
YEAR					Temp	verature in de	Temperature in degree centigrade (°C)	ide (°C)				
	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
1977	24.5	24.6	24.7	25.6	25.7	24.9	25.0	25.0	25.2	26.7	25.8	25.3
1978	24.7	25.1	25.3	25.3	25.7	25.2	24.8	25.1	25.3	25.1	25.6	24.9
1979	25.0	25.0	25.3	25.5	25.7	25.3	24.9	25.3	25.6	25.8	25.8	25.1
1980	24.7	24.8	24.8	25.6	26.0	26.2	25.3	24.8	25.8	25.4	25.5	24.9
1981	24.1	24.8	25.5	24.9	25.8	25.6	25.1	25.3	25.8	26.1	25.6	25.6
1982	24.1	24.8	25.1	25.3	25.9	25.4	25.0	24.9	25.6	26.0	26.1	25.8
1983	25.3	25.6	25.9	26.2	26.0	26.1	25.5	25.8	26.2	25.8	25.4	25.3
1984	24.7	24.6	24.9	25.3	24.9	25.3	25.0	25.0	24.7	25.8	25.5	24.9
1985	24.9	25.5	25.6	25.7	25.9	25.4	24.7	25.3	25.5	25.5	25.8	25.6
1986	24.7	24.6	24.8	25.7	26.2	25.7	25.1	25.0	25.1	25.8	25.0	25.7
1987	24.9	24.6	25.5	26.1	25.7	26.9	25.7	25.7	26.4	26.6	26.2	25.5
1988	25.7	25.4	25.5	26.3	26.1	25.4	25.7	25.6	26.1	26.0	25.8	24.7
1989	25.3	24.4	25.0	25.8	26.4	26.8	25.2	25.7	25.6	25.7	25.9	25.4
Mean	24.8	24.9	25.2	25.6	25.8	25.7	25.2	25.3	25.6	25.9	25.7	25.3

Monthly Mean Maximum Temperature At The Climatological Station of Darmaga Bogor (CSDB) Table C1-2

						Latitude	Latitude: 06°30'S		Longitude: 106°45'E		Altitude :	: 250m.
YEAR					Temp	Temperature in degree centigrade (°C)	gree centig	rade (°C)				
	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
1977	30.3	29.8	30.7	32.4	32.3	31.0	32.3	32.6	32.2	34.5	32.8	31.6
1978	30,3	31.1	31.5	32.3	32.2	31.7	30.7	30.0	30.8	31.2	31.6	29.6
1979	29.3	31.0	30.5	31.2	31.5	30.8	31.2	31.5	31.9	32.3	31.2	29.8
1980	28.5	29.7	31.3	31.6	31.6	31.7	31.4	31.0	31.7	31.6	31.4	29.8
1981	27.7	29.6	30.7	31.3	31.3	31.3	30.4	30.8	31.8	32.0	30.4	29.9
1982	27.8	29.6	30.7	30.6	31.4	30.9	31.1	31.8	33.5	33.2	32.9	31.3
1983	29.6	30.9	31.2	31.7	31.2	32.1	31.5	32.5	33.0	31.9	30.4	30.4
1984	28.7	28.9	29.9	30.5	30.7	31.0	30.7	30.9	30.4	31.5	31.1	29.4
1985	29.5	30.5	30.9	30.7	31.3	30.6	29.9	31.3	31.3	31.2	31.1	30.8
1986	28.2	29.7	30.0	31.2	31.8	31.3	30.9	30.8	30.7	31.2	30.6	30.9
1987	28.4	28.7	31.0	31.3	31.4	31.3	31.5	32.6	33.0	32.8	31.9	29.7
1988	30.2	30.3	30.6	31.6	31.3	30.9	31.6	31.5	32.8	31.6	30.8	29.0
1989	29.7	28.0	30.1	31.4	30.8	30.7	31.3	31.5	31.7	31.7	30.8	29.8
Mean	29.1	29.8	30.7	31.4	31.4	31.2	31.1	31.4	31.9	32.0	31.3	30.2
TATACALI				,								

Monthly Mean Minimum Temperature At The Climatological Station of Darmaga Bogor (CSDB) Table C1-3

						Latitude	Latitude: 06°30'S	Longi	Longitude: 106°45'E	°45'E	Altitude: 250m.	: 250m.
YEAR					Tem	erature in d	Temperature in degree centigrade (°C)	ide (°C)				
	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
1977	21.2	21.6	21.5	22.1	22.2	21.5	20.6	21.0	20.3	21.2	21.6	21.7
1978	21.8	21.8	21.8	21.7	22.1	21.8	21.1	21.1	21.2	21.2	21.2	21.9
1979	21.9	22.0	22.2	22.2	21.7	21.3	20.1	20.1	21.1	21.4	22.2	21.7
1980	22.2	21.7	21.1	22.1	22.1	21.4	21.2	20.6	21.7	21.2	21.6	21.7
1981	21.2	21.2	21.8	21.9	25.8	21.7	21.5	21.6	21.7	21.8	21.8	21.7
1982	21.5	21.5	21.7	22.2	21.8	21.4	20.4	19.5	19.8	20.8	21.6	22.2
1983	22.3	22.3	22.6	22.6	22.7	21.1	20.9	20.8	21.1	21.6	21.9	21.2
1984	21.7	21.7	21.7	21.9	21.6	20.9	25.0	21.0	21.1	21.7	21.8	21.3
1985	21.7	21.8	21.8	22.5	22.6	21.8	21.1	20.2	21.3	21.6	21.7	21.5
1986	22.1	21.5	22.0	22.6	22.4	22.1	20.9	20.8	21.5	22.1	22.0	22.3
1987	22.5	21.9	22.4	22.8	22.1	22.4	21.4	20.7	21.6	22.1	21.7	22.4
1988	22.7	22.2	22.7	22.3	22.8	21.6	21.4	21.5	21.4	22.2	21.4	21.4
1989	22.3	21.9	21.7	22.1	22.4	22.3	21.2	21.5	21.4	21.8	22.1	22.2
Mean	21.0	21.8	21.0	, , ,	375	216	21.3	900	. 1.	210		0
INICALI	7117	77.10	61.7	7.77	٠.77	41.0	C.1.2	20.0	71.7	71.0	7.17	61.0

Monthly Maximum Temperature At The Climatological Station of Darmaga Bogor (CSDB) Table C1-4

						Latitude	S.0E.90:	Longit	Longitude: 106°45'E	45'E	Altitude :	: 250m.
YEAR					Tem	Temperature in degree rentigneds (%)	Sorre centions	()				
	1	ţ					Bree centifia	()				
	Jan.	reb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct	N	
101	•											יייי
//61	33.8	31.8	33.2	33.8	33.3	32.7	33.9	34.0	3 V 8	0 3 0		
1978	32.9	33.3	33.8	33.2	33.2	37.0	33.6	2 6	0.10	77.7	34.4	33,4
1979	33.0	31.8	33.7	33.0	3000	7.5.0	52.0	27.0	32.9	32.8	33.7	31.7
1980	31.0	3.7.0	1 6	4.00	0.70	33.5	33.8	32.6	33.6	33.8	32.6	32.5
	>	32.0	33.7	32.9	33.2	32.7	32.6	33.0	33.7	7 5 5	Ċ	
1981	31.3	32.0	33.6	32.5	32.4	32.2	33.0	, ,		0.00	37.8	31.4
1982	30.4	37.6	. ;;			777	32.0	32.3	33.0	33.8	32.9	33.8
0 0	t.	37.0	33.1	31.6	32.2	32.6	32.4	33.4	34.8	356	217	
1983	33.2	33.0	32.9	33.4	32.3	33.4	73 A	24.2	7	0 0	7.4.	33.1
1984	31.6	31.0	31.8	32.0	31.0		t ()	0.4.0	4.40	33.2	32.3	32.5
1985	32.0	22.3	2 6	5.40	0.10	27.7	32.0	32.0	32.6	33.7	33.4	32.4
1001	0.50	32.3	33.0	32.8	32.9	32.0	32.3	32.6	32.6	33.0	32.9	33 0
1986	31.5	31.1	31.8	32.7	33.2	32.8	32.7	32.7	30 6	200		
1987	30.9	31.8	32.5	32.5	33.0	32.7	3.2 g	22.7	26.30	7.70	52.4	33.1
1988	33.2	32.6	32.1	32.0	32.2	32.4		77.0	23.6	34.4	34.4	32.8
1989	31.0	20.2		; ``	7.70	7.70	23.0	33.9	34.4	34.5	32.7	32.6
	0.10	20.5	32.1	33.6	32.5	31.9	32.4	33.0	33.6	33.6	32.9	32.5
Mean	32.0	32.0	32.8	32.9	32.7	376		6				
					75.7	32.0	32.8	33.0	33.7	33.9	33.2	32.7

Table C1-5 Monthly Minimum Temperature At The Climatological Station of Darmaga Bogor (CSDB)

						Latitude	: 06°30'S	Longi	Longitude: 106°45'E	°45'E	Altitude	: 250m.
YEAR	2				Temp	erature in de	Temperature in degree centigrade (°C)	(C)				
	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
1977	19.3	20.5	20.4	20.8	19.7	18.5	18.9	18.5	17.0	20.0	20.4	20.2
1978	20.5	20.8	20.2	20.2	21.0	20.2	19.6	20.2	20.1	20.1	16.5	20.5
1979	20.7	21.0	20.8	21.0	18.4	18.6	14.2	19.0	13.6	18.4	21.0	18.3
1980	21.0	19.4	17.6	20.6	21.0	19.7	19.1	18.4	19.0	19.9	20.4	20.2
1981	19.6	20.0	19.6	20.3	19.6	20.0	20.0	19.7	20.2	18.6	19.5	20.5
1982	20.0	20.0	19.6	21.1	19.6	19.8	18.2	17.7	16.3	18.2	19.9	21.0
1983	20.9	21.0	20.8	21.0	21.4	19.4	18.5	18.0	19.3	20.5	20.6	17.8
1984	20.7	20.2	20.4	20.8	20.2	17.6	19.5	18.2	19.4	20.2	19.2	19.0
1985	19.9	20.2	19.5	21.3	21.2	19.6	20.0	18.3	19.4	19.8	20.3	19.8
1986	21.2	20.0	20.6	20.9	20.7	20.5	17.2	17.8	20.0	20.7	20.4	20.9
1987	21.5	20.5	21.0	21.4	19.8	20.6	19.9	18.6	19.2	20.6	21.2	21.2
1988	20.0	19.1	21.4	20.6	21.8	18.7	19.4	20.3	19.9	20.1	21.4	9.61
1989	21.0	20.6	19.6	21.0	21.4	21.0	19.8	19.5	19.0	20.4	20.1	20.1
Mean	20.5	20.3	20.1	20.8	20.4	19.6	18.8	18.8	18.6	19.8	20.1	19.9

Table C1-6

Table C1-7 Monthly Mean and Maximum of Pan Evaporation (mm/day) at the Climatological Station of Dramaga Bogor (CSDB)

į	Latitude	Latitude : 06°30'S Longitude : 100	'S Long	gitude: 1	106°45'E	Altitud	Altitude : 250m.	0m.					No. 1
YEAR	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Annual Mean, Max
1977 Mez	l		1.69	2.75	3.06	2.24	3.20	3.63	3.68	4.23	3.33	2.81	2.90
σ Max	1.08	3.5	0.99	1.00	0.85	0.80	3.9	0.55	1.29	0.78	0.99	0.90	7
1978 Me			2.76	3.26	2.92	2.49	2.76	2.86	3.30	3.70	4.45	3.30	2.86
α			1.18	1.32	98.0	0.87	0.84	1.26	0.85	1.21	1.60	1.65	
1979 Mez			2.97	3.08	3.02	2.66	3.06	3.03	3.24	3.57	2.53	9.0	5.8 2.96
b			1.13	0.90	0.73	0.89	0.76	0.94	0.87	0.88	0.63	0.97	
Ma			5.0	4.6	4.6	4.8	4.4	5.3	5.4	4.7	3.4	3.9	5.8
1980 Me			2.87	2.25	2.62	2.91	2.98	2.92	3.20	3.13	3.06	2.31	2.70
Q N			1.26	0.59	0.89	1.09	0.64	1.16	0.94	0.97	0.92	1.02	,
Ma			5.4	3.6	3.9	8.9	4.2	5.2	5.0	5.1	5.2	4.6	8.9
1981 Mea			2.99	3.02	2.75	2.72	2.79	2.68	2.84	3.16	2.87	2.86	2.76
b X			0.88	0.87	0.89	0.79	0.85	0.78	0.89	1.12	0.84	1.14	
Max			4.7	4.6	4.5	4. 8.	4.6	4.3	4.3	5.3	4.3	0.9	0.9
1982 Me			2.87	2.63	2.73	2.40	2.70	3.09	3.85	3.74	3.21	2.63	2.86
ь			0.82	0.80	0.73	0.63	0.49	0.88	0.56	0.87	0.80	0.97	
Ma			5.3	4.3	3.7	3.6	3.7	4.9	4.9	0.9	4.2	4.9	0.9
1983 Me			3.12	3.26	3.00	3.40	3.40	4.05	4.67	3.64	3.09	3.67	3,39
ь;			1.28	0.89	0.83	0.69	0.98	0.55	0.60	1.07	0.87	1.09	
Ma	1		8.0	 - -	4.8	4.2	4.7	5.3	6.3	5.6	5.5	6.4	6.4

Table C1-7 Monthly Mean and Maximum of Pan Evaporation (mm/day) at the Climatological Station of Dramaga Bogor (CSDB)

	Latitude	Latitude : 06°30'S Longitude : 106	'S Long	gitude: 1	06°45'E	Altitude	: 250m.	ï.					No. 2
YEAR	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Annual Mean, Max
1984 Mea	n 2.72	2.84	2.95	3.10	2.83	3.16	3.26	3.70	3.25	3.86	3.37	3.02	3.17
ъ		0.88	1.03	0.73	0.82	0.63	9.76	0.82	0.77	0.87	0.99	1.24	
Max		4.3	4.7	5.6	5.6	4.1	4.8	5.4	4.9	5.4	5.3	5.9	5.9
1985 Mea		3.44	3.72	3.25	3.19	2.81	2.70	3.79	4.11	3.60	3.78	3.86	3,43
ď		0.98	1.02	0.89	0.72	0.79	0.72	99.0	09.0	0.89	1.17	1.27	
Max		4.5	5.5	5.4	5.0	4.0	3.6	5.2	5.3	5.1	5.8	9.9	9.9
1986 Mea		3.24	2.93	3.35	3.78	3.28	3.41	3.65	3.50	4.11	3.51	3.80	3.42
ď		1.05	0.87	0.75	0.50	0.65	0.57	0.93	1.12	0.99	1.17	0.94	
Max		4.6	4.4	4.4	4.7	4.3	4.4	6.1	5.7	5.9	5.4	5.5	6.1
1987 Mea		2.78	3.63	3.47	4.10	3.69	4.02	4.99	5.37	5.10	4.65	3.39	3.96
С		1.09	1.07	0.91	0.94	0.74	0.59	0.62	0.79	0.81	0.78	0.15	
Max		4.7	4.7	5.9	5.7	5.5	4.9	7.2	9.9	6.7	6.1	6.1	7.2
1988 Mean	n 3.45	4.27	3.75	4.34	3.77	3.40	3.96	4.12	4.89	4.49	3.87	3.36	3.97
כ		1.95	1.03	1.46	1.01	0.98	0.53	1.04	0.71	1.21	1.02	1.19	
Max		7.9	5.9	7.4	6.3	4.7	5.0	6.3	9.9	6.2	6.2	5.2	7.4
1989 Mean		2.56	3.89	4.17	3.47	3.58	3.89	4.39	4.29	4.36	4.13	3.28	3.8
מ		1.03	1.35	1.17	0.84	0.85	0.88	0.80	0.81	1.18	1.24	1.28	ı
Max		4.6	7.3	8.9	5.2	6.5	8.9	5.9	6.1	6.4	6.3	5.8	7.3
No.		13	13	13	13	13	13	13	13	13	13	13	•
Mean	2.51	2.93	3.09	3.23	3.17	2.98	3.24	3.61 0.65	3.86 0.73	3.90 0.53	3.53 0.60	3.12 0.50	3.26
Sta. Dev.	0.37												

Table C1-8 Monthly Mean of Sunshine Percentage between 8:00 and 16:00 at the Climatological Station of Dramaga Bogor (CSDB)

	Latitude	: 06°30'S		zitude :	Longitude: 106°45'E	Altitude	: 250m.	Jm.					
YEAR	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Average
1971	29	23	33	76	73	72	81	90	73	43	38	40	56
1972	26	45	38	11	70	89	91	•	88	83	•	•	19
1973	29	48	39	64	61	29	73	80	09	63	48	37	26
1974	19	35	52	71	71	11	78	7.1	70	57	37	43	57
1975	47	30	41	62	75	77	9/	83	<i>L</i> 9	20	57	34	58
1976	12	53	38	61	79	85	92	88	79	<i>L</i> 9	51	51	63
1977	34	18	39	89	81	09	87	89	81	83	99	48	63
1978	35	47	20	69	62	52	65	72	65	65	63	37	57
1979	30	42	38	09	63	70	79	83	72	7.5	51	43	59
1980	18	37	61	62	78	98	80	11	69	58	57	25	59
1981	15	42	65	70	69	74	<i>L</i> 9	91	62	99	36	37	57
1982	20	44	52	61	78	70	87	91	88	93	78	48	89
1983	42	26	57	62	61	98	89	87	85	63	42	55	65
1984	27	31	49	62	63	83	75	11	44	52	58	32	54
1985	50	48	56	51	70	29	69	87	80	62	09	52	63
1986	18	46	43	63	78	73	79	65	50	65	55	63	58
1987	19	34	<i>L</i> 9	29	80	7.1	90	90	79	80	61	28	64
1988	41	48	41	89	64	71	9/	72	82	54	44	40	58
1989	47	18	53	67	65	99	76	77	77	59	55	55	09
Mean	29	39	48	65	7.1	73	79	81	72	65	53	40	

Table C1-9 Monthly Mean of Radiation Intensity (KcaVcm2/day) at the Climatological Station of Dramaga Bogor (CSDB)

Latitude: 06°30'S Longitude: 106°45'E Altitude: 250m.

YEAR	Jan.	Feb.	Mar.	Apr.	May	Jun.	Ju1.	Aug.	Sep.	Oct.	Nov.	Dec.	Average	D
							•					! 		
1977	199.1	174.6	199.6	276.6	•	•	295.2	319.4	294.3	299.8	•	ι	257.3	52.9
8761	237.3	269.4	264.5	292.2	272.7	227.2	275.9	262.7	268.9	271.1	258.4	218.3	259.9	20.6
1979	225.7	269.2	247.4	244.7	258.4	264.7	278.6	292.6	264.6	271.9	245.5	204.9	255.7	22.9
1980	189.5	226.3	274.1	237.4	234.3	245.7	230.5	225.5	161.6	173.0	182.5	134.1	209.5	39.0
1981	102.3	168.3	179.5	196.6	188.7	199.5	192.4	206.7	203.1	220.2	190.8	173.2	185.1	28.5
1982	110.5	192.1	216.5	227.2	231.6	210.7	234.1	245.2	246.9	228.1	178.8	151.8	206.1	39.5
1983	139.3	155.9	147.3	162.3	134.4	194.3	195.5	233.0	231.6	188.8	150.5	166.3	174.9	32.2
1984	118.8	133.5	137.8	142.5	138.2	168.3	153.4	169.6	148.0	169.1	132.4	251.4	155.3	32.9
1985	299.4	304.3	309.1	323.8	294.0	283.0	286.9	351.1	347.9	333.5	277.7	289.6	308.4	24.1
1986	202.9	258.5	264.0	274.3	309.1	289.1	294.9	287.1	285.5	296.8	238.7	271.2	272.7	27.9
1987	200.2	256.7	289.8	244.8	290.4	273.6	311.6	340.9	286.0	269.4	302.5	206.5	272.7	39.3
1988	268.6	249.2	247.8	308.1	300.7	296.2	300.0	281.9	361.4	322.0	268.7	259.2	288.7	31.7
1989	276.2	218.1	310.6	1	295.4	•	396.7	298.3	313.6	324.9	280.0	263.7	297.8	43.9
G	13	13	13	12	12	11	13	13	13	13	12	12		
Mean	197.7	221.2	237.5	244.2	245.7	241.1	265.1	270.3	262.6	259.1	225.5	215.9		
р	62.2	50.2	55.1	53.5	59.3	41.6	8.09	51.1	64.4	55.6	53.8	49.3		
Max.	299.4	304.3	310.6	323.8	309.1	296.2	396.7	351.1	361.4	333.5	302.5	289.6		

Monthly Total Rainfall At The Climatological Station of Darmaga Bogor (CSDB) Table CI-10

Altitude: 250m.	Annual Jun. to Nov.	- Total																											l		3,738 1,602 598 431
106°45'E		Dec.	343	337	181	305	245	97	187	206	313	380	257	270	305	285	313	327	454	436	430	253	185	273	528	231	307	444	100	304	304 97
		Nov.	208	766	135	361	255	467	272	238	392	289	169	458	382	495	474	373	518	157	501	300	252	279	543	436	151	346	200	222	122
Longitude		Oct.	286	214	353	247	263	284	159	344	172	386	493	163	241	228	553	438	413	246	241	654	328	241	252	413	240	367	316	210	120
S.0E.90		Sep.	348	109	37	191	449	341	376	290	20	497	552	583	160	248	412	384	348	366	96	178	317	298	387	20	80	255	283	2	156
••	(mm)	Aug.	257	158	33	89	183	87	279	439	129	398	327	466	244	135	414	161	226	194	71	93	455	285	264	103	200	230	777	ì	125
Latitude	illimeter	Jul.	98	195	80	174	225	218	238	270	69	96	368	248	73	84	309	261	223	551	247	263	259	514	232	235	89	147	22.1		120
	Rainfall in millimeter (mm)	Jun.	143	302	61	34	295	166	185	293	48	288	250	325	113	352	320	223	272	383	164	140	190	156	281	218	148	333	219		96
	Raj	May	202	224	118	309	103	334	281	312	330	539	337	532	345	365	303	227	338	263	396	224	420	321	241	460	371	554	325	1	112
		Apr.	417	421	389	520	214	819	343	360	272	744	336	361	202	532	332	354	476	335	280	296	208	337	233	290	445	150	387		135
		Mar.	321	139	270	452	482	440	303	414	344	438	413	227	242	545	628	334	308	421	214	256	551	231	526	404	344	281	366)	119
		Feb.	305	420	301	403	272	285	445	517	293	479	306	376	181	467	229	293	368	240	240	241	235	354	436	282	380	507	341	:	93
		Jan.	457	620	211	231	259	397	328	320	527	514	402	243	781	602	384	541	386	476	477	328	382	375	311	295	434	464	413		131
	YEAR		1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	Mean		Ь

Table C1-11 Number of Rainy Days at the CSDB

YEAR					The nu	number of	rainy da	days					TOTAL
	Jan.	Feb.	Mar.	Apr.	May	1	(Aug.	Sep.	Oct.	Nov.	Dec.	
1964	19	20	21	24	18	1	ŧ.	20	17	17	20	21	221
1965	30	56	70	18	91			9	6	6	17	24	204
1966	21	25	23	18	81			δ	21	26	22	22	212
1961	23	24	22	24	12			5	∞	16	24	25	197
1968	25	22	23	24	17			16	21	23		19	244
1969	17	21	11	28	11	}	Į.	C	19	12	-	14	191
1970	26	23	25	18	20			10	91	12		21	221
1971	18	23	23	∞	18			11	14	23		11	214
1972	24	21	29	18	71			=	7	2		25	192
1973	26	25	28	22	25			20	11	18		23	250
1974	25	24	22	22	19		į	22	19	25		22	245
1975	26	25	27	26	24			19	23	22		20	257
1976	30	20	24	20	13			12	Ξ	21		22	181
1977	29	25	53	23	23			Π	12	6		24	235
1978	26	22	26	19	21	l		22	20	22	- 1	22	252
1979	20	20	24	20	22	1		16	16	18		21	221
1980	28	21	23	21	4			14	22	23		25	247
1981	29	21	25	22	70			20	19	18		20	259
1982	20	21	22	23	18			'n	01	13		74	214
1983	21	22	18	20	22	-		7	14	24	- 1	21	216
1984	26	26	24	25	22	1	ļ .	19	24	23		75	263
1985	25	24	24	23	22			14	19	17		2	238
1986	30	24	26	21	13			14	24	23		3 6	258
1987	3.5	26	24	19	22			4	S	16		23	223
1988	28	24	25	15	24			14	15	19		19	221
1989	25	24	19	16	24	ļ	ļ	6	11	19	1	25	216
Mean	25.3	23.0	23.6	20.7	19.2	13.8	11.8	13.0	15.5	18.4	21.2	21.6	226.6
ב	3.9	2.0	3.0	4.0	4.0			5.5	5.4	2.0		3.0	22.8
Max	31	56	53	25	25			22	24	, 26		5 6	259
Min	17	20	17	∞	=	- {	•	4	2	2	- 1	41	181

Table C1-12 The Highest 24 hours Rainfall in the Month at the CSDB

(unit:mm)

Dec.	49	112	23	25	37	25	30	35	44	87	38	48	28	80	53	40	144	128	111	56	33	09	82	31	59	104
Nov.	41	51	27	94	58	11	38	39	17	79	25	<i>L</i> 9	63	49	65	82	11	31	85	64	59	9/	80	83	34	50
Oct.	50	62	46	65	85	57	33	89	72	64	80	30	32	74	109	11	129	47	63	06	83	84	48	81	53	83
Sep.	87	70	15	74	77	91	116	83	70	96	61	98	53	69	108	119	119	27	48	55	88	59	87	11	17	70
Aug.	44	75	26	9	101	38	117	132	22	7.1	81	84	96	36	53	26	45	72	31	34	114	88	71	20	63	64
Jul.	19	47	5 6	09	54	70	58	103	Π	54	148	44	41	28	149	137	61	146	82	81	57	103	105	69	73	51
Jun.	44	43	37	33	47	87	57	61	28	63	59	171	72	80	69	110	92	83	78	57	88	36	110	63	64	92
May	42	105	39	16	21	66	55	86	59	70	69	78	181	09	27	9	70	44	88	44	79	63	72	88	7.1	122
Apr.	71	70	66	80	59	86	59	86	70	104	17	88	36	84	70	71	99	70	16	82	93	74	53	76	83	41
Mar.	49	32	40	59	103	71	39	98	27	51	85	33	20	9	80	79	20	111	55	69	901	64	104	99	61	54
Feb.	92	58	81	51	52	18	59	86	88	69	41	54	43	11	41	63	115	58	89	43	32	105	105	33	<i>L</i> 9	240
Jan.	100	80	63	29	78	99	52	92	85	113	89	36	84	80	47	106	41	52	56	74	73	73	40	42	89	75
YEAR	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989

Table C1-13

Probability Calculation of the Highest Daily Rainfall Data at the CSDB by Gumble Method (Data period 26 years 1964-1989)

- (1) January
- (2) February
- (3) March
- (4) April
- (5) May
- (6) June
- (7) July
- (8) August
- (9) September
- (10) October
- (11) November
- (12) December
- (13) Annual Maximum

(1) Probability Calculation of Maximum Daily Rainfall in <u>January</u> at the Climatological Station of Darmaga Bogor (CSDB).by Gumble Method (Data period: 1964 - 1989)

GUMBLE MAX. DISTRIBUTION DATA N=26. CONFIDENCE INTERVAL CALCULATION J(1)=100.0 SUM X= 1794. $\mathbb{D}(2)=$ 80.0 T=5. SUM X^2= 136198. D(3)= 63.0 C.L.=95% LMT=+-14.5 SUM X^3= 11118768. D(4)= 29.0 C.L.=90% LMT=+-12.2 D(5)=78.0 C.L.=80% LMT=+-9.5 MEAN X= 69. D(6)= 66.0 C.L.=68% LMT=+-7.4 MEAN X^2= 5238.384615 D(7)= 52.0 T=10. DEAN XAS= 427644.9231 D(8)= 92.0 SUM DEV SQU. S=12412. C.L.=95% LMT=+-20.1 85.0 D(9)= C.L.=90% LMT=+-16.8 VARIANCE S/N=477.38 D(10)= 113.0 C.L.=80% LM7=+-13.1 UNBIASED VARI. =S/(N-1)= D(11)= 68.0 C.L.=68% LMT=+-10.2 496.48 9(12)= 36.0 T=20. VARIATION COEF. = SX/MEAN D(13)= 34.0 C.L.=95% LMT=+-25.7 X=0.32 D(14) =80.0 C.L.=90% LMT=+-21.5 STANDARD DEV. SX=1(S/N)= B(15)= 47.0 C.L.=80% LMT=+-16.8 21.85 :36.0 41.0 D(16)= C.L.=68% LMT=+-13.1 STA. DEV. EST. USX=1(S/(D(17)= T=25. N-1))=22.28 =(81)E 52.0 C.L.=95% LMT=+-27.5 SKEWNESS COEF. CS!=0.03 B(19)= 56.0 C.L.=90% LMT=+-23. UNBIASED S.C. CS1=0.03 D(20)= 74.0 C.L.=80% LMT=+-18. 2(21)= 73.0 C.L.=68% LMT=+-14. PROBABLE EXTREAM VALUE(D(22)= 73.0 T=50. XT), RETURN PERIOD(T), D(23)= 4й.й C.L.=95% LMT=+-33.1 FREQUENCY FUNCTION: B(24)= 42.0 C.L.=90% LMT=+-27.7 D(25)= 89.0 C.L.=80% LMT=+-21.6 XT=XM+K*SX, K=(YT-YM)/SY D(26)= 75.ø C.L.=68% LMT=+-16.9 , XM=MEAN X, YT=-LN(LN(T T=100. /(T-1))) RANKING C.L.=95% LMT=+-38.7 SO THAT XT=XM-(YM*SX/SY) I=1. X=113. C.L.=90% LMT=+-32.5 +(SX/SY)*YT I=2. X=106. C.L.=80% LMT=+-25.3 I=3. X=100. C.L.=68% LMT=+-19.7 CAL. VALUE: I=4. x=92. T=200. XM=69. SX=22.28 YM=0.5 I=5. X=89. C.L.=95% LMT=+-44.3 321 SY=1.0961 ĭ=6. x=30. C.L.=90% LMT=+-37.2 I=7. X=X4 C.L.=80% LMT=+-29. ESTIMATE EQUATION: I=8. X=90. C.L.=68% LmT=+-22.6 XT=58.18+20.33YT <u>!</u>=9. ×=80. T=1000. I=10. X=78. C.L.=95% LMT=+-57.3 T=2. XT=65.6 I=11. X=75.C.L.=90% LMT=+-48.1 T=4. XT=83.5 I=12. n=74. C.L.=80% LMT=+-37.5 ™=5. XT=88.7 l=13. x=73. C.L.=68% LMT=+-29.3 T=10. XT=103.9 [=|4. X=73. T=20. XT=118.6 T=15. X=68. T=25. XT=123.2 X=66. I=16. T=50. XT=:37.5 I = 17.X=63. T=100. XT=151.7 I=18. X=56. T=200. XI=165.8 I=19. X=52. T=1000. XT=198.5 I=20. x=52. I=21. X=47.NOTE 1. XT : Magnitude of the event reached or exceeded $I=22. \times = 42.$ on an average once in T years I=23. X=41. 2. T : Return period

4. LMT

3. C. L.: Confidence level

: Conficence limit

I=24.

I=25.

I=26. k=29.

<=4ÿ.

X=36.

(2) Probability Calculation of Maximum Daily Rainfall in February at the Climatological Station of Darmaga Bogor (CSDB).by Gumble Method (Data period: 1964 - 1989)

GUMBLE MAX. DISTRIBUTION				
JATA M=25.	CALCULATION	CONFIDENCE	INTERVAL	
0(1)= 92.0	SUM X= 1851.			
D(2)= 58.2	SUM X^2= 176947.	T=5.		
Ū(3)= €1.0	SUM x△3= 23640921.	C.L.=95%	LMT=+-27.7	
D(4)= 51.0		C.L.=90%	LMT=+-23.2	
D(5)= 52.0	MEAN X= 71.19230769		LMT=+-18.1	
D(6)= 18.3	MEAN X^2= 6805.653846	C.L.=68%	LMT=+-14.1	
D(7)= 59.0	MEAN XA3= 909266.1923	T=10.		
D(8)= 98.0	SUM DEV SQU. S≂45170.038	C.L.=95%		
D(9)= 88.0	46		LMT=+-32.1	
D(10)= 69.0	VARIANCE S/N=1737.31		LMT=+-25.	
B(11) = 41.0	UNBIASED VARI. =S/(N-1)=	C.L.=68%	LMT=+-19.5	
D(12) = 54.3	1896.8	T=20.		
B(13)= 45.0	VARIATION COEF.=SX/MEAN	C.L.=95%	LMT=+-49.	
D(14)= 77.0	X=0.59		LMT=+-41.1	
D(15)= 41.0	STANDARD DEV. SX=1(S/N)=	C.L.=80%	LMT=+-32.	
D(16)= 63.0	41.68	C.L.=68%	LMT=+-25.	
D(17)= 115.0	STA. BEV. EST. USX=1(S/(T=25.		
D(18)≃ 58.0	N-1))=42.51		LMT=+-52.4	
B(19)= 68.0	SKEWNESS COEF. CS!=2.45 UNBIASED S.C. CS1=2.402	C:L.=90%	LMT=+-44.	
D(20)= 43.0	OURTH2ED 2.C. C21=5.405	C.L.=80%		
D(21)= 32.0	PROBABLE EXTREAM VALUE(C.L.=68%	LMT=+-26.7	
D(22)= 105.0	XT), RETURN PERIOD(T):	T=50.		
D(23)= 105.0		C.L.=95%	LMT=+-63.1	
D(24)= 33.0 D(25)= 67.0	FREQUENCY FUNCTION:	C.L.=90%	LMT=+-52.9	
D(26)= 240.0	UT_UM. J.AU J_ZJT UM\ 780	C.L.=80%	LMT=+-41.3	
1(26)- 240.0	XT=XM+K*SX, K=(YT-YM)/SY	C.L.=68%	LMT=+-32.2	
RANKING	, XM=MEAN X. YT=-LNCLNCT	T=100.		
1=1. X=240.	/(T-1)))	C.L.=95%	LMT=+-73.8	
I=2. X=115.	90 THAT XT=XM-(YM*SX/SY)	C.L.=90%		
I=3. X=105.	+(\$X/\$Y)*YT		LMT=+-48.3	
I=4. X≈105.	CAL COLUMN	C.L.=68%	LMT=+-37.6	
I=5. X=98.	CAL. VALUE:	T=200.		
I=6. X=92.	XM=71.19230769 SX=42.51	C.L.=95%	LMT=+-84.5	
I≃7. X=88.	YM=0.5321 SY=1.0961	C.L.=90%	LMT=+-70.9	
I=8. %=81.	FOTTHATE MANAGES	C.L.=80%	LMT=+-55.3	
I=9. X=77.	ESTIMATE EQUATION:	C.L.=68%	LMT=+-43.1	
I=10. X=69.	XT=50.56+38.78YT	T=1000.		
I=11. X=68.	T=0	C.L.=95%	LMT=+-109.4	
I=12. X=67.	T=2. XT=64.8		LMT=+-91.8	
I=13. X=63.	T=4. XT=98.9		LMT=+-71.6	
1=14. X=59.	T=5. XT=198.7		LMT=+-55.8	
I≃15. <=58.	T=10. XT=137.8			
I=16. x=58.	T=29. x7=165.7			
I=17. x=54.	T=25. XT=174.6			
I≃18. x=52.	7=50. XT=201.9			
I=19. X=51.	7=100. XT=229.			
I=20. x=43.	1=200. XT=255.9	•		
I=21. x=43.	T=1000. XT=318.4			
I=22. X=41.	NOTE 1. XT : Magnitude	of the eve	nt reached or exceeded	
I=23. X=41.		Tane case	n T waste	
I=24. X=33.	2. T : Return pe	rage once i	n i years	
I=25. X=32.		r 100 0. 100 - 1		
I=26. X=18.	3. C. L.: Confidenc	e level		
	4. LMT : Conficenc	e Imit		

(3) Probability Calculation of Maximum Daily Rainfall in March at the Climatological Station of Darmaga Bogor (CSDB).by Gumble Method (Data period: 1964 - 1989)

GUMBLE		
DATA N= 26.0	CALCULATION	CONFIDENCE INTERVAL
D(1)= 49.0	SUM X= 1714.	T
D(2)= 32.0	SUM X^2= 125726.	T=5.
D(3)= 40.0	SUM X^3= 10117234.	C.L.=95% LMT=+-14.7
D(4)= 59.0 D(5)= 103.0	MEAN X= 65.92307692	C.L.=90% LMT=+-12.3 C.L.=80% LMT=+-9.6
D(6)= 71.0	MEAN X^2= 4835.615385	C.L.=80% LMT=+-9.6 C.L.=68% LMT=+-7.5
D(7)= 39.0	MEAN X^3= 389124.3846	T=10.
D(8)= 86.0	SUM DEV SQU. S=12733.846	C.L.=95% LMT=+-20.3
D(9)= 57.0	15	C.L.=90% LMT=+-17.1
D(10)= 51.0	VARIANCE S/N=489.76	C.L.=80% LMT=+-13.3
D(11)= 85.0	UNBIASED VARI. =S/(N-1)=	C.L.=68% LMT=+-10.4
B(12)= 33.0	509.35	T=20.
D(13)= 50.0	VARIATION COEF.=SX/MEAN	C.L.=95% LMT=+-26.
D(14)= 60.0	X=0.34	C.L.=90% LMT=+-21.8
D(15)= 80.0	STANDARD DEY. SX=((S/H)=	C.L.=80% LN =+-17.
D(16)= 79.0	22.13	C.L.=68% LMT=+-13.3
D(17)= 50.0	STA. DEV. EST. USX=f(S/(T=25.
D(18)= 111.0	N-1))=22.57	C.L.=95% LMT=+-27.8
D(19)= 55.0	SKEWNESS COEF. CS!=0.533	C.L.=90% LMT=+-23.3
D(20) = 69.0	UNBIASED S.C. CS1=0.522	C.L.=80% LMT=+-18.2
D(21)= 106.0		C.L.=68% LMT=+-14.2
D(22)= 64.0	PROBABLE EXTREAM VALUE(T=50.
D(23)= 104.0	XT), RETURN PERIOD(T),	C.L.=95% LMT=+-33.5
D(24)= 66.0	FREQUENCY FUNCTION:	C.L.=90% LMT=+-28.1
D(25)= 61.0 D(26)= 54.0	UT_UM:/	C.L.=80% LMT=+-21.9 C.L.=68% LMT=+-17.1
D(26)= 34.0	XT=XM+K*SX, K=(YT-YM)/SY , XM=MEAn X, YT=-LN(LN(T	T=100.
RANKING	/(T-1)))	C.L.=95% LMT=+-39.2
I=1. X=111.	SO THAT XT=XM-(YM*SX/SY)	C.L.=90% LMT=+-32.9
I=2. X=106.	+(SX/SY)*YT	C.L.=80% LMT=+-25.6
ī=3. X=104.	. (512-517-11	C.L.=68% LMT=+-20.
I=4. X=103.	CAL. VALUE:	T=200.
I=5. X=86.	XM=65.92307692 SX=22.57	C.L.=95% LMT=+-44.9
I=6. X=85.	YM=0.5321 SY=1.0961	C.L.=90% LMT=+-37.6
I=7. x=80.		C.L.=80% LMT=+-29.3
I=8. X=79.	ESTIMATE EQUATION:	C.L.=68% LMT=+-22.9
I=9. X=71.	XT=54.97+20.59YT	T=1000.
I=10. X=69.		C.L.=95% LMT=+-58.1
I=11. X=66.	T=2. XT=62.5	C.L.=90% LMT=+-48.8
I=12. X=64.	T=4. XT=80.6	C.L.=89% LMT=+-38.
I=13. X=61.	T=5. XT=85.9	C.L.=68% LMT=+-29.6
I=14. X=60.	T=10. XT=101.3	
I=15. X=59.	T=20. XT=116.1	
I=16. X=57.	T=25. XT=120.8	
I=17. X=55. I=18. X=54.	T=50. xT=135.3 T=190. XT=149.7	
I=19. X=51.	T=200. MT=164.	
I=20. X=50.	T=1000. X!=197.2	
I=21. X=50.		
I=22. X=49.	_	of the event_reached or exceeded
I=23. X=40		rage once in T years
I=24. X=39.	2. T : Return pe	
I=25. X=33.	3. C. L. : Confidenc	
I=26. X=32.	4. LMT : Conficenc	e limit

Probability Calculation of Maximum Daily Rainfall in April at the Climatological Station of Darmaga Bogor (CSDB).by Gumble Method (Data period: 1964 - 1989)

GUMBLE MAX. DISTRIBUTION

DOUBLE HAY. BISIKID	71 ton		
	•	CONFIDENCE	INTERVAL
JATA N=26.	CALCULATION	99111 22211012	
D(1)= 71.0	sum x= 1936.	T=5.	
D(2)= 70.0	SUM X^2= 151266.	C.L.=95%	I MT
D(3)= 99.0	SUM XA3= 12286876.	U.L.=93%	LMT-1-9 2
	3011 /1 3 12A300	U.L.≃90%	LMT=+-9.2
D(4)= 80.0	MEAN X= 74.46153846	C.L.=80%	LMT=+-7.2
D(5)= 59.0	MEHN X= 14.40133040	C.L.=68%	LMT=+-5.6
D(6)= 98.0	MEAN X^2= 5817.923077	T=10.	
D(7)= 59.0	MEAN XA3= 472572.1538	C.L.≃95%	LMT=+-15.2
D(8)= 98.0	SUM DEV SQU. S=7108.4615	C.1.=90%	LMT=+-12.7
B(9)= 70.0	39	ก 1 =80%	LMT=+-9.9
B(10)= 104.0	YARIANCE S/N=273.4	C L -497	LMT=+-7.7
D(11)= 71.0	UNBIASED YARI. =S/(N-1)=		ZIII III III
D(12)= 88.0	284.34	T=20.	LMT=+-19.4
D(13) = 36.0	VARIATION COEF.=SX/MEAN	U.L.≅93%	LN1===17.4
D(14)= 84.0	X=0.22	C.L.=90%	LMT=+-16.3
	STANDARD DEV. SX=1(S/N)=	C.L.=80%	LMT=+-12.7
D(15)= 70.0			LMT=+-9.9
D(16)= 71.0	16.53 STA. DEV. EST. USX={(S/(T=25.	
D(17)= 6ธิ.ปี		C.L.=95%	LMT=+-20.8
D(18)= 70.0	N-1>)=16.86	C.L.=90%	LMT=+-17.4
D(19)= 70,0	SKEWNESS COEF. CS!=-0.3	C.1.=80%	LMT=+-13.6
D(20)= 82.0	UNBIASED S.C. CS1=-0.294		LMT=+-10.6
D(21)= 93.0	PROBABLE EXTREAM VALUE(T=50.	EH1 - 1010
i(22)= 74.0			いみて_ い_うE
D(23)= 53.0	XT), RETURN PERIOD(T),		LMT=+-25.
0(24)= 76.0	FREQUENCY FUNCTION:		LMT=+-21.
9(25)= 83.0			LMT=+-16.4
	XT=XM+K*SX, K=(YT-YM)/SY		LMT=+-12.8
0(26)= 41.0	, XM=MEAN X, YT=-LN(LN(T	T=100.	
RANKING	/(T-1)))		LMT=+-29.3
I=1. X=104.	SQ THAT XT=XM-(YM*SX/SY)		LMT=+-24.6
I=2. X=99.	+(SX/SY)*YT		LMT=+-19.1
	. (3() 317 . 11	C.L.=68%	
I=3. X=98.	CAL NOTHER		LIII - 14.7
I=4. X=98.	CAL. VALUE:	T=200.	
I=5. X=93.	XM=74.46153846		LMT=+-33.5
I=6. X=88.	Ym=0.5321 SY=1.0961		LMT=+-28.1
I=7. X=84.		C.L.=80%	LMT=+-21.9
I=8. X=83.	ESTIMATE EQUATION:	C.L.=68%	LMT=+-17.1
I=9. X=82.	XT=66.28+15.39YT	T=1000.	
I=10. X=80.		C.L.=95%	LMT=+-43.4
I=11. X=76.	T=2. XT=71.9		LMT=+-36.4
I=12. X=74.	T=4. XT=85.4		LMT=+-28.4
	T=5. XT=89.3		LMT=+-22.1
I=13. X=71.		C.L004	Ln1-7-22.1
I=14. X=71.	T=10. XT=100.9		
I=15. X=71.	T=20. XT=112.		
I=16. X=70.	T=25. XT=115.5		
I=17. X=70.	T=50. XT=126.3		
I≈18. X=70.	T=100. XT=137.		
I=19. X=70.	T=200. XT=147.7		
I=20. X=70.	T=1000. XT=172.5		
I=21. X=66.		the event	reached or exceeded
I=22. X=59.			
	on an averag		years
I=23. X=59.	2. T : Return perio		
I=24. X=53.	3. C. L.: Confidence 1	level	
I=25. X=41.	4. LMT : Conficence 1		,
I=16. X=36.	,, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

(5) Probability Calculation of Maximum Daily Rainfall in May at the Climatological Station of Darmaga Bogor (CSDB).by Gumble Method (Data period: 1964 - 1989)

GUMBLE MAX. DISTRIBUTION

****		001101111111111111111111111111111111111
DATA N=26.	CALCULATION	CONFIDENCE INTERVAL
D(1)= 42.0	SUM X= 1902.	
D(2)= 105.0	SUM X^2= 166022.	ĩ=5.
D(3)= 39.0	SUM X^3= 17153118.	C.L.=95% LMT=+-21.3
D(4)= 91.0	030 0 3 111031101	C.L.=90% LMT=+-17.9
D(5)= 21.0	MEAU V- 77 46704616	C.L.=80% LMT=+-14.
D(6)= 99.0	MEAN X= 73.15384615	C.L.=68% LMT=+-10.9
	MEAN X^2= 6385.461538	
D(7)= 55.0	MEAN XA3= 659735.3077	T=10.
D(8)= 98.0	SUM DEV SQU. S=26883.384	C.L.=95% LMT=+-29.5
D(9)= 59.0	62	C.L.=90% LMT=+-24.8
D(10)= 70.0	VARIANCE S/N=1033.98	C.L.=80% LMT=+-19.3
D(11)= 69.0	UNBIASED VARI. =S/(N-1)=	C.L.=68% LMT=+-15.1
D(12)= 78.0	1075.34	T=20.
D(13)= 181.0	YARIATION COEF.=SX/MEAN	C.L.=95% LMT=+-37.8
D(14)= 60.0		C.L.=90% LMT=+-31.7
	X=0.44	
B(15)= 27.0	STANDARD DEV. SX=1(S/N)=	C.L.=80% LMT=+-24.7
D(16) = 60.0	32.16	C.L.=68% LMT=+-19.3
D(17)= 70.0	STA. DEV. EST. USX=1(S/(T=25.
D(18)= 44.0	N-1))=32.79	C.L.=95% LMT=+-40.4
D(19)= 89.0	SKEWNESS COEF. CS!=1.243	C.L.=90% LMT=+-33.9
D(20)= 44.0	UNBIASED S.C. CS1=1.219	C.L.=80% LMT=+-26.4
D(21)= 79.0	UNDINSED 5.C. USI-1.219	C.L.=68% LMT=+-20.6
D(22)= 63.0		T=50.
D(23) = 72.0	CONFIDENCE INTERVAL	C.L.=95% LMT=+-48.7
D(24)= 88.0		C.L.=90% LMT=+-40.8
D(25)= 77.0	PROBABLE EXTREAM VALUE(C.L.=80% LMT=+-31.8
D(26)= 122.0	XT), RETURN PERIOD(T),	C.L.=68% LMT=+-24.8
	FREQUENCY FUNCTION:	T=100.
RANKIMO	TREMOENCE PONCETON.	C.L.=95% LMT=+-56.9
I=1. x=181.	XT=XM+K*SX, K=(YT-YM)/SY	
I=2.	, XM=MEAN X, YT=-LN(LN(T	C.L.=80% LMT=+-37.2
ī=3. x=105.	/(T-1)))	C.L.=68% LMT≈+-29.
I=4. X=99.	SO THAT XT=XM-(YM*SX/SY)	T=200.
I≃5. X=98.	+(SX/SY)*YT	C.L.=95% LMT=+-65.2
I=6. X=91.	. (3// 3/7 / 1/	C.L.=90% LMT=+-54.7
I=7. X=89.	241 1141 1154	C.L.=80% LMT=+-42.6
	CAL. VALUE:	C.L.=68% LMT=+-33.2
I=8. X=89.	XM=73.15384615 SX=32.79	
]=9. X=79.	YM=0.5321 SY=1.0961	T=1000.
I=10. X=78.		C.L.=95% LMT=+-84.4
I=11. X=77.	ESTIMATE EQUATION:	C.L.=90% LMT=+-70.8
I=12. x=72.	XT=57.24+29.92YT	C.L.=80% LMT=+-55.2
I=13. x=70.	111 01121.2000211	C.L.=68% LMT=+-43.1
I=14. X=70.	T-0 VT-40 0	
	T=2. XT=68.2	
I=15. X=69.	T=4. XT=94.5	
I=16. X=53.	T=5. XT=102.1	
I=17. X=60.	T=10. XT=124.6	
I=18. X=60.	T=20. XT=146.1	
I=19.	T=25. XT=152.9	
ī=20. X=55.	T=50. XT=174.	
I=21. X=44.	T=100. XT=194.9	
I=22. X=44.	T=200. XT=215.7	
I=23. X=42.	T=1000. XT=263.9	
I=24. X=39.		
I=25. X=27.	NOTE 1. XT : Magnitude	of the event reached or exceeded
I=26. X=21.		age once in T years
	2. T : Return per	
	C. L.: Confidence	
	4. LMT : Conficence	limit

(6) Probability Calculation of Maximum Daily Rainfall in June at the Climatological Station of Darmaga Bogor (CSDB).by Gumble Method (Data period: 1964 - 1989)

GUMBLE MAX. DISTRIBUTION DATA N=26. CONFIDENCE INTERVAL CALCULATION 9(1)= 44.0 SUM X= 1814. J(2)= 43.0 SUM XA2= 150666. D(3)= C.L.=95% LMT=+-20.2 37.0 SUM X^3= 15013664. D(4)=33.0 C.L.=90% LMT=+-17. D(5)= 47.0 C.L.=80% LMT=+-13.2 MEAN X= 69.76923077 D(6) =87.0 C.L.=68% LMT=+-10.3 MEAN X^2= 5794.846154 $\bar{y}(7) =$ 57.0 MEAN X^3= 577448.6154 T=10. D(8)=61.0 C.L.=95% SUM DEV SQU. S=24104.615 LMT=+-28. D(9)= 28.0 C.L.=90% LMT=+-23.5 39 D(10)= 63.0 C.L.=80% LMT=+-18.3 VARIANCE S/N=927.1 D(11)=59.0 UNBIASED YARI. =S/(N-1)= C.L.=68% LMT=+-14.3 D(12)= 177.0 964.18 T=20. D(13) =72.0 VARIATION COEF. = SX/MEAN C.L.=95% LMT=+-35.8 D(14)= 80.0 C.L.=90% X=0.44 LMT=+-30. D(15)= 69.0 C.L.=80% STANDARD DEV: SX=1(S/N)= LMT=+-23.4 D(16)= 110.0 C.L.=68% LMT=+-18.2 30.45 D(17)= 76.0 STA. DEV. EST. USX=1(S/(T=25. D(18)= 83.0 C.L.=95% N-1))=31.05 LMT=+-38.3 D(19) =78.0 SKEWNESS COEF. CS!=1.551 C.L.=90% LMT=+-32.1 D(20) =57.0 C.L.=80% UNBIASED S.C. CS1=1.521 LMT=+-25. D(21)= 88.0 C.L.=68% LMT=+-19.5 PROBABLE EXTREAM VALUE D(22) =36.0 T=50. J(23) =XT), RETURN PERIOD(T), 110.0 C.L.=95% LMT=+-46.1 FREQUENCY FUNCTION: J(24)= 63.0 C.L.=98% LMT=+-38.7 B(25) =64.0 LMT=+-30.1 C.L.=80% D(26) =XT=XM+K*SX, K=(YT-YM)/SY 92.0 C.L.=68% LMT=+-23.5 , XM=MEAN X, YT=-LN(LN(T T=100. RANKING /(T-1))) C.L.=95% LMT=+-53.9 I=1. X=177. SO THAT XT=XM-(YM*SX/SY) C.L.=90% LMT=+-45.2 I=2. X=110. +(SX/SY)*YT C.L.=80% LMT=+-35.2 I=3. X=110. C.L.=68% LMT=+-27.5 I=4. X=92. CAL. YALUE: T=200. I=5. XM=69.76923077 SX=31.05 X=88. C.L.=95% LMT=+-61.7 I=6. X=87. YM=0.5321 SY=1.0961 C.L.=90% LMT=+-51.8 I=7. X=83. C.L.=80% LMT=+-40.4 I=8. X=80. ESTIMATE EQUATION: C.L.=68% LMT=+-31.5 I=9. X=78. XT=54.7+28.33YT T=1000. I=10. X=76. C.L.=95% LMT=+-79.9 I=11. X=72. T=2. XT=65.1 C.L.=90% LMT=+-67.: I=12. X=69. T=4. XT=90. C.L.=80% LMT=+-52.3 I=13. X=64. T=5. XT=97.2 C.L.≃68% LMT=+-40.8 I=14. X=63. T=10. XT=118.5 I=15. T=20. XT=138.8 X=63. I=16. X=61. T=25. XT=145.3 I=17.X=59. T=50. XT=165.2 I=18. X=57. T=100. XT=185. T=200. XT=204.7 I=19. X=57. I=20. X=47. T=1000. XT=250.4 X=44. I=21.NOTE 1. XT : Magnitude of the event reached or exceeded I=22. X=43. on an average once in T years I=23. X=37. 2. T I=24. : Return period X=36. 3. C. L.: Confidence level I=25. X=33. I=26. 4. LMT : Conficence limit X=28.

(7) Probability Calculation of Maximum Daily Rainfall in July at the Climatological Station of Darmaga Bogor (CSDB).by Gumble Method (Data period: 1964 - 1989)

GUMBLE MAX. DISTRIBUTION ∃ATA N=26. CALCULATION CONFIDENCE INTERVAL J(1)=19. -SUM X= 1877. B(2)= 47.0 SUM X^2= 174843. T=5. D(3)= 26.0 SUM XA3= 19296155. C.L.=95% LMT=+-25.8 D(4)= 60.0 C.L.≃90% LMT=+-21.7 D(5)= 54.0 MEAN X= 72.19230769 C.L.=80% LMT=+-16.9 D(6)= 70.0 MEAN X^2= 6724.730769 C.L.=68% LMT=+-13.2 D(7)= 58.0 MEAN X43= 742159.8077 T=10. D(8)= 103.0 SUM DEV SQU. S=39338.038 C.L.=95% LMT=+-35.7 D(9)= 11.0 46 C.L.=90% LMT=+-30. D(10) =54.0 YARIANCE S/N=1513. C.L.=80% LMT=+-23.4 B(11)= 148.0 UNBIASED YARI. =S/(N-1)= C.L.=68% LMT=+-18.2 D(12)=44.0 1573.52 T=20. D(13)=41.0 VARIATION COEF.=SX/MEAN C.L.=95% LMT=+-45.7 D(14)= 28.0 X=0.54 C.L.=90% LMT=+-38.3 B(15) = 149.0STANDARD DEV. SX={(S/N)= C.L.=80% LMT=+-29.9 D(16)= 137.0 C.L.=68% 38.9 LMT=+-23.3 D(17)= 61.0 STA. BEV. EST. USX=1(S/(T=25. D(18)= 146.9 N-1))=39.67 C.L.=95% LMT=+-48.9 D(19) =82.0 SKEWNESS COEF. CS!=0.65 C.L.=90% LMT=+-41. D(20)= 81.0 UNBIASED S.C. CS1=0.637 C.L.=80% LMT=+-32. D(21)= 57.0 C.L.=68% LMT=+-24.9 D(22)= 103.0 PROBABLE EXTREAM VALUE(T=50. D(23)=105.0 XT), RETURN PERIOD(T), C.L.=95% LMT=+-58.9 10(24)= 69.0 FREQUENCY FUNCTION: C.L.=90% LMT=+-49.4 D(25) =73.0 C.L.=80% LMT=+-38.5 D(26) =51.0 C.L.=68% LMT=+-30. XT=XM+K*SX, K=(YT-YM)/SY , XM=MEAN X, YT=-LN(LN(T T=100. RANKING /(T-1))) C.L.=95% LMT=+-68.8 I=1. X=149. SO THAT XT=XM-(YM*SX/SY) €.L.=90% LMT=+-57.8 I=2. X=148. +(SX/SY)*YT C.L.=80% LMT=+-45. I=3. X=146. C.L.=68% LMT=+-35.1 I=4. X=137. CAL. YALUE: T=200. I=5. X=105. XM=72.19230769 SX=39.67 C.L.=95% LMT=+-78.8 I=6. X=103. YM=0.5321 SY=1.0961 C.L.=90% LMT=+-66.2 I=7. X=103. C.L.=80% LMT=+-51.6 I=8. X=82. ESTIMATE EQUATION: C.L.=68% LMT=+-40.2 I=9. X=81. XT=52.93+36.19YT T=1000. I=10. X=73. C.L.=95% LMT=+-102.1 I=11. X=70. T=2. XT=66.2 C.L.=90% LMT=+-85.7 I=12. X=69. T=4. XT=98. C.L.=80% LMT=+-66.8 I=13. X=61. C.L.=68% LMT=+-52.1 T=5. XT=107.2 I=14. X=60. T=10. XT=134.4 I=15. X=58. T=20. XT=160.4 I=16. X=57. T=25. XT=168.7 I=17. X=54. T=50. XT=194.1 X=54. I=18. T=100. XT=219.4 X=51. I=19. T=200. XT=244.6 X=47. I=20. T=1000. XT=302.9 I=21. X=44. NOTE 1. XT : Magnitude of the event reached or exceeded I=22. X=41. on an average once in T years I=23. X=28. 2. T : Return period I=24. X=26. 3. C. L.: Confidence level I=25. X=19.

: Conficence limit

4. LMT

I=26.

X=11.

(8) Probability Calculation of Maximum Daily Rainfall in <u>August at the Climatological Station of Darmaga Bogor (CSDB).by Gumble Method (Data period: 1964 - 1989)</u>

GUMBLE MAX. DIST	TRIBUTION	
DATA N=26.	CALCULATION	CONFIDENCE INTERVAL
D(1)= 44.0		CONFIDENCE INTERVAL
D(2)≃ 75.0	SUM X= 1640. SUM X^2= 129842. SUM X^3= 11793740.	T=5.
D(3)= 26.0	SUM X^3= 11793740.	C.L.=95% LMT=+-21.1
₽(4)= 6.0		C.L.=90% LMT=+-17.7
D(5)= 101.0	MEAN X= 63.07692308	C.L.=80% LMT=+-13.8
D(6)= 58.0	MEAN X^2= 4993.923077	C.L.=68% LMT=+-10.8
D(7)= 117.5	MEAN X^3= 453605.3846	T=10.
D(8)= 132.0	SUM DEV SQU. S=26395.846	C.L.=95% LMT=+-29.3
D(9)= 22.0	15	C.L.=90% LMT=+-24.6
D(10)= 71.0 D(11)= 81.0	YARIANCE S/N=1015.22	C.L.=80% LMT=+-19.1
D(12)= 84.0	UNBIASED VARI. =S/(H-1)=	C.L.=68% LMT=+-14.9
D(13)= 96.0	1055.83	T=20.
D(14)= 36.0	YARIATION COEF.=SX/MEAN	C.L.=95% LMT=+-37.4
D(15)= 53.0	X=0.51	C.L.=90% LMT=+-31.4
D(16)= 26.0	STANDARD DEV. SX=1(S/N)=	C.L.=80% LMT=+-24.5
D(17)= 45.0	31.86	C.L.=68% LMT=+-19.1
D(18)= 72.0	STA. DEV. EST. USX=√(S/(N-1))=32.49	T=25.
D(19)= 31.0	SKEWNESS COEF. CS!=0.326	C.L.=95% LMT=+-40.
D(20)= 34.0	UNBIASED S.C. CS1=0.319	C.L.=90% LMT=+-33.6
D(21)= 114.0	011014350 3.C. C31-0.313	C.L.=80% LMT=+-26.2
D(22)= 88.0	PROBABLE EXTREAM VALUE(C.L.=68% LMT=+-20.4
D(23)= 71.0	XT), RETURN PERIOD(T),	T=50.
D(24)= 50.0	FREQUENCY FUNCTION:	C.L.=95% LMT=+-48.2
D(25)= 63.0	7 11 11 11 11 11 11 11 11 11 11 11 11 11	C.L.=90% LMT=+-40.5
D(26)= 64.0	XT=XM+K*SX; K=(YT-YM)/SY	C.L.=80% LMT=+-31.5
541117116	, XM=MEAN X, YT=-LN(LN(T	C.L.=68% LMT=+-24.6 T=100.
RANKING	/(T-1)))	C.L.=95% LMT=+-56.4
I=1. X=132.	SO THAT XT=XM-(YM*SX/SY)	C.L.=90% LMT=+-47.3
I=2. X=117. I=3. X=114.	+(SX/SY)*YT	C.L.=80% LMT=+-36.9
I=4. X=101.		C.L.=68% LMT=+-28.8
I=5. X=96.	CAL. YALUE:	T=200.
I=6. X=88.	XM=63.07692308 SX=32.49	C.L.=95% LMT=+-64.6
1=7. X=84.	YM=0.5321 SY=1.0961	C.L.=90% LMT=+-54.2
I≃8. X=81.	***	C.L.=80% Lm7=+-42.2
I=9. X=75.	ESTIMATE EQUATION:	C.L.=68% LMT=+-52.9
I=10. X=72.	XT=47.3+29.64YT	T=1000.
I=11	T=2. XT=58.2	C.L.=95% LMT=+-83.6
I=12. X=71.		C.L.=90% LMT=+-70.2
I=13. X=64.	T=4. XT=84.2 T=5. XT=91.8	C.L.=80% LMT=+-54.7
I=14. X=63.	T=10. XT=114.	C.L.=68% LMT=+-42.7
I=15. X=53.	T=20. XT=135.3	
I=16. X=50.	T=25. XT=142.1	-
I=17. X=45.	T=50. XT=163.	
I=18. X=44.	T=100. XT=183.6	
I=19. X=38.	T=200. XT=204.3	
I=20. X=36.	T=1000. XT=252.	
I=21. X=34. N	^	<u></u>
1=22. X=31.	riagilitude of the pr	vent reached or exceeded
I=23. X=26. I=24. X=26.		in T years
		-
I=25. X=22. I=26. X=6.	3. C. L.: Confidence level 4. LMT : Conficence limit	
	4. LMT : Conficence limit	

(9) Probability Calculation of Maximum Daily Rainfall in September at the Climatological Station of Darmaga Bogor (CSDB).by Gumble Method (Data period: 1964 - 1989)

⁹⁸ GUMBLE MAX. DISTRIBUTION DATA N=26. CALCULATION CONFIDENCE INTERVAL 87.0 i(1)= SUM X= 1818. $\mathbb{D}(2)=$ 70.0 SUM X^2= 152760. T=5. D(3)= 15.0 SUM X^3= 13981530. C.L.=95% LMT=+-20.8 MEAN X= 69.92307692
MEAN X^2= 5875.384615
MEAN X^3= 537751.1538
SUM BEV SQU. S=25639.846
15
VARIANCE S/N=986.15
UNBIASED VARI. =S/(N-1)=
1025.59
VARIATION COEF.=SX/MEAN
X=0.45
STANDARD BEV. SX={(S/N)=
31.4
STA. BEV. EST. USX={(S/(N-1))=32.02
SKEWNESS COEF. CS!=-0.35
5 3(4)= 74.0 C.L.=90% LMT=+-17.5 C.L.=80% LMT=+-13.6 ໓(5)≃ 77.0 3(6)= 91.0 C.L.=68% LMT=+-10.6 D(7)= 116.0 T=10. D(8)= 89.0 C.L.=95% LMT=+-28.8 B(9)= 29.0 C.L.=90% LMT=+-24.2 D(10)= 96.0 C.L.=80% LMT=+-18.9 B(11) = 61.0 D(12) = 86.0C.L.=68% LMT=+-14.7 T=20. 29.0 B(13)= C.L.=95% LMT=+-36.9 C.L.=90% LMT=+-31. B(14)= 69.Ð D(15)= 108.0 C.L.=80% LMT=+-24.1 D(16)= 119.0 C.L.=68% LMT=+-18.8 D(17)= 119.0 T=25. D(18)= 57.0 C.L.=95% LMT=+-39.5 48.0 D(19)= C.L.=90% LMT=+-33.1 B(20)= 55.0 C.L.=80% LMT=+-25.8 5 Unbiased S.C. CS1=-0.348 .D(21)= 88.0 C.L.=68% LMT=+-20.1 59.0 B(22)= T=50. D(23)= 87.9 PROBABLE EXTREAM VALUE(
XT), RETURN PERIOD(T),
FREQUENCY FUNCTION: PROBABLE EXTREAM VALUE(C.L.=95% LMT=+-47.5 C.L.=90% LMT=+-39.9 C.L.=80% LMT=+-31.1 C.L.=68% LMT=+-24.2 D(24) = 11.0B(25)≈ 17.0 D(26)≃ 70.0 XT=XM+K*SX, K=(YT-YM)/SY
, XM=MEAN X, YT=-LN(LN(T T=100. RANKING C.L.=95% LMT=+~55.6 I=1. X=119. I=2. X=119. /(T-1)))
SO THAT XT=XM-(YM*SX/SY) C.L.=90% LMT=+-46.6 C.L.=80% LMT=+-36.3 I=3. X=116. I=4. X=108. I=5. X=96. +(8X/SY)*YT C.L.=68% LMT=+-28.4 T=200. CAL. VALUE: C.L.=95% LMT=+~63.6 XM=69.92307692 SX=32.02 I=6. X=91. C.L.=90% LMT=+-53.4 I=7. X≂89. YM=0.5321 SY=1.0961 C.L.=80% LMT=+-41.6 C.L.=68% LMT=+-32.5 I=8. X=88. ESTIMATE EQUATION: I=9. X=87. XT=54.38+29.21YT T=1000. I=10. X=87. C.L.=95% LMT=+-82.4 I=11. X=86. C.L.=90% LMT=+-69.2 I=12. X=77. T=2. XT=65.1 C.L.=80% LMT=+-53.9 T=4. XT=90.8 T=5. XT=98.2 T=10. XT=120.1 T=20. XT=141.1 I=13. X=74. C.L.=68% LMT=+-42.1 I=13. X=74. I=14. X=70. I=15. X=70. I=16. X=69. I=17. X=61. I=18. X=59. I=19. X=57. I=20. X=55. T=25. XT=147.8 T=50. XT=168.4 T=100. XT=188.8 T=200. XT=209.1 I=21. X=48. T=1000. XT=256.1 I=22. X=29. NOTE 1. XT : Magnitude of the event reached or exceeded I=23. X=20. on an average once in T years I=24. X=17. 2. T : Return period 3. C. L.: Confidence level I=25. X=15. I=26. X=11.

4. LMT : Conficence limit

(10) Probability Calculation of Maximum Daily Rainfall in October at the Climatological Station of Darmaga Bogor (CSDB).by Gumble Method (Data period: 1964 - 1989)

GUMI	BLE MAX. DIS	OITUE	И		
DATA D(1)	N=26. = 50.0		CALCULATION	CONFIDENC	E INTERVAL
D(2)			SUM X= 1768.		
D(3)			SUM X^2= 133390.	T=5.	
D(4)			SUM X^3= 11015776.		LMT=+-14.9
			0011 A-3- 11010110.		LMT=+-12.5
D(5)			MEAN X= 68.		LMT=+-9.8
D(6)			MEAN X^2= 5130.384615		LMT=+-7.6
D(7)				T=10.	
	= 68.0		MEAN X^3= 423683.6923	C.L.=95%	LMT=+-20.7
	= 72.0		SUM DEV SQU. S=13166.	C.L.=90%	LMT=+-17.3
)= 64.0		VARIANCE S/N=506.38	C.L.=80%	LMT=+-13.5
	>= 80.0		UNBIASED VARI. =\$/(N-1)=	C.L.=68%	
)= <u>30.0</u>		526.64	T=20.	
	>= 35.0		VARIATION COEF.=SX/MEAN		LMT=+-26.4
	>= 74.0		X=0.33		LMT=+-22.2
	= 109.0		STANDARD DEY, SX=1(S/N)=		LMT=+-17.3
)= 77.9		22.5	C.L.=68%	
	= 129.0		STA. DEV. EST. USX=1(S/(T=25.	E/// = 13.3
	= 47.0		N-1>>=22.95		LMT=+-28.3
	= 63.0		SKEWNESS COEF. CS!=0.522		LMT=+-23.7
	= ÷÷.0		UNBIASED S.C. CS1=0.512		LMT=+-18.5
D(21)	= 35.0				LMT=+-14.4
D(22)			PROBABLE EXTREAM VALUE(T=50.	Ln1=+-14.4
D(23)			XT), RETURN PERIOD(T),		1 MT
D(24)	= 81.0		FREQUENCY FUNCTION:		LMT=+-34.1
	= 53.0				LMT=+-28.6
D(26)	= 83.0		XT=XM+K*SX, K=(YT-YM)/SY		LMT=+-22.3
			, XM=MEAN X, YT=-LN(LN(T	U.L.=68%	LMT=+-17.4
RANKI			/(T-1)))	T=100.	
	X=129.		SO THAT XT=XM-(YM*SX/SY)	C.L.=95%	LMT=+-39.8
	X=109.		+(SX/SY)*YT		LMT=+-33.4
	X=90.		• • • • • • • • • • • • • • • • • • • •	C.L.=80%	LMT=+-26.1
	X=85.		CAL. VALUE:		LMT=+-20.3
	X=34.		XM=68. SX=22.95 YM=0.5	T=200.	
I=6.	X=83.		321 SY=1.0961	C.L.=95%	LMT=+-45.6
I=7.	X=83.		0_0 0, 1,0,01	C.L.=90%	LMT=+-38.3
I≃8.	X=81.		ESTIMATE EQUATION:	C.L.=80%	LMT=+-29.8
I=9.	X=80.		XT=56.86+20.94YT	C.L.=68%	LMT=+-23.3
	X=77.		00:09:20:1411	T=1000.	
I=11.	X=74.		T=2. XT=64.5	C.L.=95%	LMT=+-59.1
I=12.	X=72.		T=4. XT=82.9	C.L.≃90%	LMT=+-49.6
I=13.	X=68.		T=5. XT=88.3	C.L.=80%	LMT=+-38.6
I=14.	メ=65.		T=10. XT=104.	C.L.=68%	LMT=+-30.1
I=15.	X=64.		T=20. XT=119.1		
I=16.	X=63.		T=25. XT=123.8		
I=17.	X=62.		T=50. XT=138.6		
I=18.	X=57.		T=100. XT=153.2		
I=19.	X=53.		T-100. A:-105.Z		
I=20.	X=50.		T=200. XT=167.8		
I=21.	X=48.		T=1900. XT=201.5		
I=22.	X=4 ⁻	NOTE	1. XT : Magnitude of the	event read	chad on avacaded
I=23.	X=45.		on an average on	ce in T	ened of exceeded
I=24.	X=35.		2. T : Return period	ice in i ye	ar:2
I=25.	X=33.		3. C. L.: Confidence level		
I=26.	X=30.		4. LMT : Conficence limit		
	•		Com reence rimit		

(11) Probability Calculation of Maximum Daily Rainfall in November at the Climatological Station of Darmaga Bogor (CSDB).by Gumble Method (Data period: 1964 - 1989)

GUMBLE	MAX. DIST	RIBUTION			
DATA N	l=26.		CALCULATION	CONFIDENCE	INTERVAL
D(1)=			SUM X= 1511.		
D(2)=			CHM VACE COACA	T=5.	·
D(3)=			SUM X^3= 7080743.	C.L.≃95%	LMT=+-14.1
	94.0		301. 11 2 1000143:		LMT=+-11.8
	58.0		MEAN X= 58.11538462	C.L.=80%	
D(6)=			MEAN X^2= 3826.192308		LMT=+-7.2
D(7)=			MEAN X^3= 272336.2692	T=10.	
D(8)=			SUM DEY SQU. S=11668.653		LMT=+-19.5
D(9)=			85		LMT=+-16.3
	79.0		VARIANCE S/N=448.79		LMT=+-12.7
D(11)=			UNBIASED YARI. =S/(N-1)=		LMT=+-9.9
D(12)=			466.75	T=20.	200
D(13)=			VARIATION COEF.=SX/MEAN		LMT=+-24.9
			X=0.36		LMT=+-20.9
D(14)=			STANDARD DEY. SX=1(S/H)=		LMT=+-16.3
D(15)=			21.18		LMT=+-12.7
D(16)=			STA. DEV. EST. USX=1(S/(T=25.	LIII-! 12.1
D(17)=					LMT=+-26.6
D(18)=			N-1))=21.6		LMT=+-22.3
D(19)=			SKEWNESS COEF. CS!=-0.23		LMT=+-17.4
D(20)=			UNBIASED S.C. CS1=-0.226		LMT=+-13.6
D(21)=				T=50.	CIII 47-13.0
	76.0		PROBABLE EXTREAM VALUE(LMT=+-32.1
	80.0		XT), RETURN PERIOD(T),		LMT=+-26.9
D(24)=			FREQUENCY FUNCTION:	C.L.=80%	
D(25)=					
D(26)=	50.0		XT=XM+K*SX, K=(YT-YM)/SY	C.L.=68%	LMT=+-16.4
RANKING	=		, XM=MEAN X, YT=-LN(LN(T	T=100.	1 MT 1 77 E
I=1. >			/(T-1)))		LMT=+-37.5
			SO THAT XT=XM-(YM*SX/SY)		LMT=+-31.5
I=2. > I=3. >			+(SX/SY)*YT		LMT=+-24.5
	<=83.				LMT=+-19.1
	<=82.		CAL. YALUE:	T=200.	
	<=80.		XM=58.11538462 SX=21.6		LMT=+-42.9
	<=79.		YM=0.5321 SY=1.0961		LMT=+-36.
	₹=77 .				LMT=+-28.1
	K=77.		ESTIMATE EQUATION:		LMT=+-21.9
I=9. X			XT=47.63+19.71YT	T=1000.	
I=10.					LMT=+-55.6
I=11.	-		T=2. XT=54.9		LMT=+-46.7
	X=64.		T=4. XT=72.2		LMT=+~36.4
	X=63.		T=5. XT=77.2	C.L.=68%	LMT=+-28.4
	X=59.		T=10. XT=92.		
	X=58.		T=20. XT=106.2		
	X=51.		T=25. XT=110.7		
	X=50.		T=50. XT=124.5		
	X=49.		T=100. XT=138.3		
	X=41.		T=200. XT=152.		
I=20.	X=39.		T=1000. XT=183.8		
I=21.	X=38.				
	X=34.	NOTE 1	I. XT : Magnitude of the	event reach	ned or exceeded
	X=31.		on an average onc		
	X=27.	2	2. T : Return period		
	X=25.		3. C. L.: Confidence level		
	X=17.		LMT : Conficence limit		
		7	TOOM TOOM TO THAT		

(12) Probability Calculation of Maximum Daily Rainfall in <u>December at the Climatological Station of Darmaga Bogor (CSDB)</u>.by Gumble Method (Data period: 1964 - 1989)

GUMBLE MAX. DISTRIBUT	ION	
		CONFIDENCE INTERVAL
DATA N=26.	CALCULATION	
D(1)= 49.0	SUM X= 1619.	T=5.
D(2)= 112.0	SUM XA2= 128971.	C.L.=95% LMT=+-21.8
D(3)= 23.0	SUM X∧3= 12430367.	C.L.=90% LMT=+-18.3
D(4)= 52.0		C.L.=80% LMT=+-14.3
D(5)= 37.0	MEAN X= 62.26923077	C.L.=68% LMT=+-11.1
B(6)= 25.0	MEAN XA2= 4960.423077	T=10.
D(7)= 30.0	MEAN XA3= 478091.0385	C.L.=95% LMT=+-30.2
D(8)= 35.0	SUM DEY SQU. S=28157.115	C.L.=90% LMT=+-25.4
D(9)= 44.0	39	C.L.=80% LMT=+-19.8
D(10)= 87.0	VARIANCE S/N=1082.97	C.L.=68% LMT=+-15.4
D(11)= 38.0	UNBIASED VARI. =S/(N-1)=	T=20.
D(12)= 48.0	1126.28	C.L.=95% LMT=+-38.7
D(13)= 58.0	VARIATION COEF. = SX/MEAN	C.L.=90% LMT=+-32.4
D(14)= 80.0	X=0.53	C.L.=80% LMT=+-25.3
D(15)= 53.0	STANDARD DEV. SX=1(S/N)=	C.L.=68% LMT=+-19.7
D(16)= 40.0	32.91	T=25.
D(17)= 144.0	STA. DEV. EST. USX=1(S/(C.L.=95% LMT=+-41.4
D(18)= 128.0	N-1))=33.56	C.L.=90% LMT=+-34.7
D(19)= 111.0	SKEWNESS COEF. CS!=0.964	C.L.=80% LMT=+-27.1
D(20)= =0	UNBIASED S.C. CS1=0.945	C.L.=68% LMT=+-21.1
D(21)= 33.0		T=50.
B(22)= 50ิ.บิ	PROBABLE EXTREAM VALUE(C.L.=95% LMT=+-49.8
L(23)= 82.0	XT), RETURN PERIOD(T),	C.L.=90% LMT=+-41.8
D(24)= 51.0	FREQUENCY FUNCTION:	C.L.=80% LMT=+-32.6
D(25)= 59.0	11100001101	C.L.=68% LMT=+-25.4
D(26)= 104.0	XT=XM+K*SX, K=(YT-YM)/SY	
2,23,	, XM=MEAN X, YT=-LN(LN(T	T=100.
RANKING	/(T-1)))	C.L.=95% LMT=+-58.2
I=1.	SO THAT XT=XM-(YM*SX/SY)	C.L.=90% LMT=+-48.9
I=2. X=128.	+(SX/SY)*YT	C.L.=80% LMT=+-38.1
I=3. X=112.	£(2V(21)41)	C.L.=68% LMT=+-29.7
I=4. X=111.	041 1141 115-	T=200.
I=5. X=104.	CAL. VALUE:	C.L.=95% LMT≈+-66.7
I=6. X=87.	XM=62.26923077 SX=33.56	C.L.=90% LMT=+-56.
I=7. x=82.	YM=0.5321 SY=1.0961	C.L.≃80% LMT=+-43.6
I=8. X=80.		C.L.=68% LMT=+-34.
I=9. X=60.	ESTIMATE EQUATION:	T=1000.
I=10. X=59.	XT=45.98+30.62YT	C.L.=95% LMT=+-86.4
I=11. X=58.		C.L.=90% LMT=+-72.5
I=12. X=56.	T=2. XT=57.2	C.L.=80% LMT=+-56.5
I=13. X=53.	T=4. XT=84.1	C.L.=68% LMT=+-44.1
I=14. X=52.	T=5. XT=91.9	
	T=10. XT=114.9	
I=15. X=49.	T=20. XT=136.9	
I=16. X=48.	T=25. XT=143.9	
I=17. X=44.	T=50. XT=165.5	
I=18. X=40.	T=100. XT≃186.8	
I=19. %=38.	T=200. XT=208.1	
I=20. X=37.	T=1000XT=257.5	
I=21. X=35.		
I=22. X=33. NOT		e event reached or exceeded
I=23. X=31.	on an average o	nce in T years
I=24. X=30.	2. T : Return period	-
I=25. X=25.	3. C. L.: Confidence leve	1
I=26. X=23.	4. LMT : Conficence limi	
	Toom recirce, Time	~

(13) Probability Calculation of Annual Maximum Daily Rainfall at the Climatological Station of Darmaga Bogor (CSDB).by Gumble Method (Data period: 1964 - 1989)

GUMBLE MAX. DISTRIBUTION

```
DATA N=26.
                            CALCULATION
        100.0
                                                        CONFIDENCE INTERVAL
II(1)=
                            SUM X= 3170.
D(2)=
        112.0
                            SUM X^2= 419096.
                                                        T=5.
B(3)=
         99.0
                            SUM X^3= 60858920.
                                                         C.L.=95% LMT=+-23.5
D(4) =
         94.0
D(5)=
        103.0
                                                         C.L.=90% LMT=+-19.7
                            MEAN X= 121.9230769
                                                         C.L.=80% LMT=+-15.4
D(6)=
         99.0
                            MEAN X^2= 16119.07692
                                                         C.L.=68% LMT=+-12.
D(7)=
        117.0
                            MEAN XA3= 2340727.692
                                                        T=10.
=(8)I
                            SUM DEV SQU. S=32599.846 .
                                                         C.L.=95% LMT=+-32.5
D(9)=
         88.0
B(10) = 113.0
                                                         C.L.=90% LMT=+-27.3
                            VARIANCE S/N=1253.84
D(11)= 148.0
                                                         C.L.=80%
                                                                   LMT=+-21.3
                            UNBIASED VARI. =S/(N-1)=
                                                         C.L.=68% LMT=+-16.6
D(12)=
        177.0
                            1303.99
D(13)= 181.0
                                                        T=20.
                            VARIATION COEF. = SX/MEAN
                                                         C.L.=95% LMT=+-41.6
D(14) =
         84.0
                           X=0.29
D(15) = 149.0
                                                         C.L.=90% LMT=+-34.9
                            STANDARD DEV. SX=((S/N)=
                                                         C.L.=80% LMT=+-27.2
D(16) = 137.0
                            35.41
                                                         C.L.=68% LMT=+-21.2
D(17)= 144.0
                            STA. DEV. EST. USX=1(S/(
                                                        T=25.
B(13) = 146.0
                            N-1))=36.11
                                                         C.L.=95% LMT=+-44.5
D(19)= 111.0
                            SKEWNESS COEF. CS!=1.57
                                                         C.L.≔90%
                                                                   LMT=+-37.4
D(20) =
        90.0
                           UNBIASED S.C. CS1=1.539
                                                         C.L.=80%
D(21) = 114.0
                                                                   LMT=+-29.1
                                                         C.L.=68% LMT=+-22.7
D(22)=
        105.0
                            PROBABLE EXTREAM VALUE(
                                                        T=50.
D(23) = 110.0
                           XT>, RETURN PERIOD(T),
                                                         C.L.=95% LMT=+-50.5
B(24) =
         88.0
                           FREQUENCY FUNCTION:
                                                         C.L.=90% LMT=+-45.
D(25) =
         89.0
                                                         C.L.=80% LMT=+-35.
B(26)= 240.0
                           XT=XM+K*SX, K=(YT-YM)/SY
                                                         C.L.=68% LM7=+-27.3
                            , XM=MEAN X, YT=-LN(LN(T
                                                        T=189.
RANKING
                            /(T-1)))
                                                         C.L.=95%
                                                                   LMT=+-62.7
I=1. X=240.
                           SO THAT XT=XM-(YM*SX/SY)
I=2. X=181.
                                                         C.L.=90%
                                                                   LMT=+-52.6
                           +(SX/SY)*YT
                                                         C.L.=80% LMT=+-41.
I=3. X=177.
                                                         C.L.=68% LMT=+-32.
I=4.
     X=149.
                            CAL. VALUE:
                                                        T=200.
I=5.
      X=148.
                            XM=121.9230769 SX=36.11
                                                         C.L.=95% LMT=+-71.8
:=6.
      X=146.
                             YM=0.5321 SY=1.3961
                                                         C.L.=90% LMT=+-60.2
I=7.
     X=144.
                                                         C.L.=80% LMT=+-46.9
     X=137.
I=8.
                            ESTIMATE EQUATION:
                                                        C.L.=68% LMT=+-36.6
I=9.
     X=132.
                           XT=104.39+32.94YT
                                                        T=1000.
I=10. X=117.
                                                        C.L.=95% LMT=+-92.9
I=11. X=114.
                            T=2. XT=116.5
                                                       C.L.=90% LMT=+-78.
C.L.=80% LMT=+-60.8
I=12. X=113.
                           T=4. XT=145.4
I=13.
      X=112.
                           T=5. XT=153.8
                                                        C.L.=68% LMT=+-47.4
I=14.
      X=111.
                           T=10. XT=178.5
i=15.
      X=110.
                            T=20. XT=202.2
I=16.
      X=105.
                           T=25. XT=209.7
I = 17.
      X=105.
                            T=50. XT=232.9
I=13. X=100.
                            T=100. XT=255.9
I=19. X=99.
                            T=200. XT=278.8
I=20. X=99.
                           T=1000. XT=331.9
I=21. X=94.
                                      : Magnitude of the event reached or exceeded
                  NOTE 1. XT
I=22. X=90.
I=23. X=89.
                                        on an average once in T years
I=24. X=88.
                                      : Return period
I=25. X=88.
                            3. C. L.: Confidence level
I=26. X=84.
                                     : Conficence limit
                            4. LMT
```

Table C1-14

The Highest Rainfall (mm) for the Short Duration in the Month and Annual at the CSDB

No. 1 1985, 1986

No. 2 1987, 1988

No. 3 1989

The Highest Rainfall for the Short Duration in the Month and Annual at the CSDB.

No. 1

Month				Minutes					Hou	rs	
	5	10	15	30	45	60	2	3	6	12	24
Α.	Records	S									
1985											
Jan.	14.7	29.4	39.2	<i>5</i> 8.8	62.0	73.1	73.1	73.4	73.4	73.4	73.4
Feb.	10.2	20.4	25.5	39.9	55.7	63.6	74.8	83.2	101.5	105.0	105.0
Mar.	10.0	18.0	20.0	36.0	47.0	50.0	60.5	63.5	64.0	64.0	64.0
Apr.	9.9	19.9	29.8	49.7	62.4	62.8	63.8	63.9	64.0	64.0	64.0
May	9.9	19.8	29.7	44.6	55.6	60.4	62.1	62.5	62.9	62.9	62.9
Jun.	9.0	10.0	16.0	27.8	28.7	30.0	33.5	34.1	34.4	35.9	35.9
Jul.	20.0	30.0	45.0	60.0	72.0	85.0	90.0	94.0	102.7	102.7	102.7
Aug.	20.2	25.3	35.4	60.6	75.8	84.3	87.7	87.7	87.7	87.7	86.8
Sep.	10.4	13.0	17.0	28.0	35.3	42.5	43.2	43.7	58.5	58.7	58.7
Oct.	10.0	16.0	20.0	40.0	54.0	60.0	78.9	83.5	84.0	84.0	84.0
Nov.	10.0	15.0	20.0	36.0	45.5	48.4	48.4	48.4	76.7	76.7	76.7
Dec.	10.0	19.0	23.0	34.0	38.0	40.0	60.5	60. <u>5</u>	60.5	60.5	60.5
Annual	Max				· 						
mm	20.2	30.0	45.0	60.6	75.8	85.0	90.0	94.0	102.7	105.0	105.0
mm/hr	242.4	180.0	180.0	121.2	101.1	85.0	45.0	31.3	17.1	8.8	4.4
1986											
Jan.	7.5	13.0	20.0	34.0	38.0	39.9	39.9	39.9	39.9	40.5	41.0
Feb.	20.0	30.0	40.0	60.0	68.0	82.5	98.0	102.5	104.7	104.7	104.7
Mar.	10.0	20.0	24.0	38.0	54.0	64.0	80.0	96.0	104.2	104.2	104.2
Apr.	10.0	20.0	23.0	40.0	54.0	54.9	55.3	55.4	55.4	55.4	55.4
May	20.0	30.0	40.0	50.0	66.0	71.4	71.4	71.4	71.4	71.4	71.4
Jun.	10.0	20.0	30.0	60.0	65.0	68.8	80.0	90.0	112.5	113.8	113.8
Jul.	10.0	20.0	30.0	50.0	55.0	70.0	104.5	104.8	104.8	104.8	104.8
Aug.	20.0	30.0	35.0	50.0	58.0	62.0	66.4	66.4	67.0	70.4	70.4
Sep.	20.0	30.0	37.0	49.0	52.0	70.0	72.5	72.5	80.6	88.8	88.8
_	10.0	18.0	26.0	35.9	36.3	40.0	44.8	46.4	47.4	47.4	47.4
Oct. Nov.	15.0	20.0	30.0	40.0	58.0	62.5	74.5	78.0	78.4	78.4	78.4
Dec.	15.0	25.0	35.0	60.0	62.0	76.0	80.5	80.5	80.5	80.5	80.5
Annual		20.0	40.0	60.0	۲0 N	82.5	104.5	104.8	112.5	113.8	113.8
mm	20.0	30.0	40.0	60.0	68.0			34.9	18.8	9.5	4.7
mm/hr	240.0	180.0	160.0	120.0	90.7	82.5	52.3	34.7	10.0	9.3	4.7

The Highest Rainfall for the Short Duration in the Month and Annual at the CSDB.

No. 2

Mosth				Minutes					Hour	S	
Month		10	13	30	45	60	_2	3	6	12	24
1987											
	10.0	17.0	20.0	32.0	39.0	37.0	40.0	42.5	43.4	43.4	43.4
Jan.	7.0	9.8	10.0	20.0	30.5	30.0	30.9	32.5	32.5	32.5	67.4
Feb. Mar.	10.0	18.7	18.9	25.0	33.0	37.0	60.0	64.5	67.4	67.4	67.4
Apr.	17.0	20.0	25.0	33.0	36.0	50.0	61.0	72.5	76.8	76.8	76.8
May	15.0	25.0	39.0	43.0	64.0	67.0	85.0	87.9	87.9	87.9	87.9
Jun.	14.0	20.0	25.0	34.0	46.0	52.0	59.0	59.0	64.0	64.0	64.0
Jul.	10.0	20.0	27.0	40.0	60.0	63.5	68.5	69.5	70.2	70.2	70.2
Aug.	10.0	20.0	30.0	40.0	48.0	50.0	50.3	50.3	50.3	50.3	50.3
Sep.	5.5	9.5	10.0	10.1	10.2	10.3	11.3	11.3	11.3	11.3	11.3
Oct.	10.0	20.0	23.0	42.0	54.0	60.0	72.3	72.3	83.0	83.0	83.0
Nov.	16.0	20.0	26.0	37.0	45.5	55.0	75.5	77.0	77.0	82.5	82.5
Dec.	7.3	9.5	12.7	15.5	17.5	27.1	29.2	29.2	29.2	29.8	29.8
Annual											
mm	17.0	25.0	39.0	43.0	64.0	67.0	85.0	87.9	87.9	87.9	87.9
mm/hr	204.0	150.0	156.0	86.0	85.3	67.0	42.5	29.3	14.7	7.3	3.7
1988											
	10.0	20.0	26.0	40.0	56.0	71.0	74.0	74.0	74.0	90.0	90.0
Jan.	10.0	20.0 20.0	27.0	40.0	50.0	66.0	67.0	67.0	67.0	67.0	67.0
Feb.	10.0		20.0	31.0	33.5	34.0	50.0	53.0	58.8	59.0	59.0
Mar.	10.0	15.0	30.0	50.0	65.6	70.5	75.0	75.6	86.7	86.7	86.7
Apr.	15.0	20.0 16.8	19.8	34.8	39.1	40.3	52.4	55.6	80.2	80.2	80.2
May	9.6	16.5	21.0	28.6	30.0	33.8	34.0	34.4	64.3	64.3	64.3
Jun.	9.5 9.8	19.6	31.5	41.3	46.1	48.7	52.5	61.8	69.8	70.0	70.0
Jul.	8.5	10.2	20.1	35.5	36.6	36.9	37.0	37.0	60.5	63.1	63.1
Aug.	6.5	8.7	9.6	13.0	14.9	15.8	15.9	15.9	16.7	16.7	16.7
Sep.		10.2	12.2	20.4	25.4	26.5	43.8	47.3	51.3	52.1	52.1
Oct.	8.0 6.0	10.2	14.7	20.4	30.2	31.7	33.5	33.9	33.9	33.9	33.9
Nov.		20.0	20.4	33.2	38.0	40.6	40.6	40.6	46.5	49.0	49.0
Dec.	10.0	20.0	20.4		30.0	70.0	70.0	70.0	70.5	77.0	77.0
Annual !		20.0	21.5	50 O	56.0	71.0	74.0	74.0	06.7	07.7	0/7
mm	15.0	20.0	31.5	50.0	56.0	71.0	74.0	74.0	86.7	86.7	86.7
mm/hr	180.0	120.0	126.0	100.0	74.7	71.0	37.0	24.7	14.5	7.2	3.6

The Highest Rainfall for the Short Duration in the Month and Annual at the CSDB.

<u>No. 3</u>

Month				Minutes					Hou	rs	
		10	15	30	45	60	2	3	6	12	24
1989							· -				
Jan.	8.0	10.2	19.4	31.4	48.6	58.9	69.0	75.0	75.2	75.2	75.2
Feb.	10.1	17.1	22.9	36.7	40.2	43.9	67.5	87.4	127.4	226.3	233.1
Mar.	10.2	20.1	23.9	32.3	33.8	35.4	52.4	54.7	54.7	54.7	54.8
Apr.	18.6	21.8	22.8	29.3	32.1	33.9	38.3	40.1	40.7	40.8	40.8
May	10.0	20.0	25.5	47.3	60.0	71.7	78.2	82.8	122.6	123.6	133.6
Jun.	9.0	12.3	18.0	28.0	41.0	63.0	77.0	91.1	92.7	92.7	92.7
Jul.	11.0	19.0	25.0	42.0	48.3	50.2	50.6	50.7	50.7	50.7	50.7
Aug.	10.0	15.0	24.8	41.0	49.7	52.1	53.7	56.3	60.0	62.7	62.7
Sep.	14.0	24.0	34.0	53.0	54.1	54.1	70.3	70.3	70.3	70.3	70.3
Oct.	16.0	30.0	40.0	44.5	54.0	57.0	59.0	61.5	61.5	61.7	61.7
Nov.	11.2	21.2	25.0	31.3	40.0	41.3	61.0	73.5	83.4	83.4	83.4
Dec.	20.0	26.0	31.0	54.0	75.0	82.0	91.1	94.1	103.5	103.5	103.5
Annual	Max										
mm	18.6	30.0	40.0	54.0	75.0	82.0	91.1	94.1	127.4	226.3	233.1
mm/hr	223.2	180.0	160.0	108.0	100.0	82.0	45.6	31.4	21.2	18.9	9.7
B.	Maximu	ım of R	ecords	(1985 -	- 1988)						
mm	20.2	30.0	40.0	60.0	75.0	82.5	104.5	104.8	127.4	226.3	233.1
mm/hr	242.2	180.0	160.0	120.0	100.0	82.5	52.3	34.9	21.2	18.9	9.7

Table C1-15

Calculation of Probability of Exceedance on the Data of the Short Duration Rainfall Intensity (mm/hr) Data Period 5 years

No. 1	5 minutes, 10 minutes, 15 minutes
No. 2	30 minutes, 45 minutes, 60 minutes
No. 3	2 hours, 3 hours, 6 hours
No. 4	12 hours, 24 hours

Probability Calculation of Rainfall Intensity for the short duration at the CSDB (unit: mm/hr) : No. 1

at the Cobb (c	(): 1 0 () ()	/ : NO. 1			
IWAI METHOD 5	min.	IWAI METHOD		THAT METHOD	4
DATA N=5.			O min.	IWAI METHOD	15 min.
D(1)=242.4		DATA N=5.		DATA N=5.	
D(2)=240.				D(1)=180.	
D(3)=204.		D(2)=180.		D(2)=160.	
D(4)=180.		D(3)=150.		D(3)=156.	
		D(4)=120.			
B(5)=223.2	TTUC 200	D(5)=180.		D(4)=126.	
RANKING & PLOT	ITMG POSTI	RANKING & PLOT	77115 20077	D(5)=160.	TTTUE 0000
ION		ION	IINU PUSII	RANKING & PLO	TIME PUSIT
P. OF EXCEEDANG	CE				
RANK DATA WEIB		P. OF EXCEEDANG	CE	P. OF EXCEEDA	NCE
(J) (X) J/(N		RANK DATA WEIB		RANK DATA WEI	
1. 242.4 16		(J) (X) J/(N-		(J) (X) J/(I	
2. 240. 33.				1. 180. 16	
3. 223.2 50		2. 180. 33.		2. 160. 33	
4. 204. 66.		3. 180. 50.	50. 50.	3. 160. 50	. 50.
5. 180. 83.3		3. 180. 50. 4. 150. 66.	7 %% %	3. 160. 50 4. 156. 66	.7 33.3
J. 100. 03.	10.1	5. 120. 83.	16.7	5. 126. 83	.3 16.7
CALCULATION		J. 120. US.	10.1	01 120. 02	
SUM X= 1089.6		CALCULATION		CALCULATIO	N
		SUM X= 810.		SUM X= 782.	•
MEAN X= 217.92	24 204255	MEAN X= 162.		MEAN X= 156.4	
SUM OF DEVIATION	JN SWURKE	SUM OF DEVIATION	N COUADE	SUM OF DEVIAT	
S=2746.368	:_		JN SWUHKE	S=1507.2	ION SWOME
VARIANCE S/N=54		S=2880.		VARIANCE S/N=	701 44
S/(N-1)=686.592		YARIANCE S/N=5	16.		301.44
SD/(MEAN X)=0.1		S/(N-1)=720.		S/(N-1)=376.8	4.4.4
SD=\(S/N)=23.43	, ,	SD/(MEAN X)=0.	148	SD/(MEAN X)=0	
USD=\(S/(N-1))=	-26.203	SD={(S/H)=24.		SD=F(S/N)=17.	
SKEWNESS CFT. 0	S!=-0.491	USD=J(S/(N-1)):	=26.833	USD=1(S/(N-1)	
6		SKEWNESS OFT.	CS!=-0.843	SKEWHESS CFT.	US!=-0.567
UNBIASED S.C. (S1=-0.439	8		8	001- 0 507
7		UNBIASED S.C.	CS1=-0.754	UNBIASED S.C.	C21=-0.201
		7		8	
MEAN LOG(XI)=2.	335668144			MEAU LOCZUTNA	0.404404500
XG=216.6		MEAN LOG(XI)=2.	. 204218004	MEAN LOG(XI)=	2.191401022
CAL. OF B-YALUE	•	XG=160.04		XG=155.38	
				041 65 5 1141	
1. T=242.4 S=		CAL. OF B-VALUE	:	CAL. OF B-YAL	
B(1.)=-304.03	2222	1. T=180. S=		1. T=180. S	
	_	B(1.)=-199.8		B(1.) = -307.	3412605
MEAN B=-304.03	5				- 4
HOER R.O.		MEAN B=-199.84	\$	MEAN B=-307.	54
USED B=0.				HOER R A	
X0=216.6		USED B=0.		USED B=0.	
LOG(X0+B)=2.335		X0=160.04		X0=155.38	014
1/A=0.07643 SX	K=0.04825	LOG(X0+B)=2.204	122	_OG(X0+B)=2.1	
		1/A=0.1101 SX		1/A=0.07966	5x=0.05045
IWAI FORMULA		1.11 011131 011		THAT FARMIN	
LOG(Y+(0.))=2.3	3567	IWAI FORMULA		IWAI FORMUL	
+0.07643*KS	SI(YR)	LOG(Y+(0.))=2.2	08422	LOG(Y+(0.))=2	
		+0.1101*KS		+0.07966*	KSI(TR)
		1011101110			
PROBABILITY IWA	1I			ODODADILITU T	LLACT
Y(2)	216.6	PROBABILITY IWA	17	PROBABILITY I	
Y(3)	228.5	Y(2)	160.	Y(2)	155.4
Y(4)	235.6	Y(3)	172.9	Y(3)	164.3
Y(5)	240.5	Y(4)	180.6	Y(4)	169.6
Y(10)	254.1		186.1	Y(5)	173.3
Y(20)	255.8	Y(5)		Y(10)	183.5
Y(25)	269.3	Y(10)	201.4	Y(20)	192.3
Y(50)	279.7	Y(20)	214.9	Y(25)	195.
Y(100)	289.3	Y(25)	219.	Y(50)	202.8
		Y(50)	231.3	Y(100)	210.1
		Y(100)	242.8		

		duration
numberiaty Calculation Of	F Rainfall Intensity for th	ie snort dui do to
at the CSDB (unit: mm/hr) : No. 2	
	INAI METHOD 45 min.	INA: METHOD 60 min.
INAI METHOD 30 min.	DATÁ N=5.	DATA N=5.
DATA N=5.	D(1)=101.1	D(1)=85. D(2)=82.5
D(1)=121.2	D(2)=90.7	D(3)=67.
D(2)=120. D(3)=86.	D(3)=85.3	D(4)=71.
D(4)=100.	B(4)=74.7 B(5)=100.	D(5)=82. RANKING & PLOTTING POSIT
D(5)=108.	RANKING & PLOTTING POSIT	ION
RANKING & PLOTTING POSIT	ION	• • • • • • • • • • • • • • • • • • • •
	P. OF EXCEEDANCE	P. OF EXCEEDANCE
P. OF EXCEEDANCE	RANK DATA WEIBULL PLOT%	RANK DATA WEIBULL PLOT% (J) (X) J/(N+1) F=1-P
RANK DATA WEIBULL PLOT% (J) (X) J/(N+1) F=1-P	(J) (X) J/(N+1) F=1-P 1. 101.1 16.7 83.3	1. 85. 16.7 83.3
1. 121.2 16.7 83.3	1. 101.1 16.7 83.3 2. 100. 33.3 66.7	2. 92.5 33.3 66.7
2. 120. 33.3 66.7	3. 90.7 50. 50.	3. 82. 50. 50. 4. 71. 66.7 33.3
3. 108. 50. 50. 4. 100. 66.7 33.3	4. 85.3 66.7 33.3	4. 71. 66.7 55.5 5. 67. 93.3 16.7
5. 86. 83.3 16.7	5. 74.7 83.3 16.7	3. 3. 2. 3.
	CALCULATION	CALCULATION SUM X= 387.5
CALCULATION SUM X= 535.2	SUM X= 451.8	MEAN X= 77.5
MEAN X= 107.04	MEAN X≃ 90.36 SUM OF DEVIATION SQUARE	SUM OF DEVIATION SQUARE
SUM OF DEVIATION SQUARE	S=479.232	S=254.
S=861.632	YARIANCE S/N=95.85	Variance S/N=50.8 S/(N-1)=63.5
VARIANCE S/N=172.33 S/(N-1)=215.408	S/(N-1)=119.808	SD/(MEAN X)=0.092
SD/(MEAN X)=0.123	SD/(MEAN X)=0.108 SD={(S/N)=9.79	SD=\(S/N)=7.127
SD=1(S/H)=13.127	USD=\$(\$/(N-1))=10.946	USD=f(S/(N-1))=7.969
USD=((S/(N-1))=14.677 SKEWNESS CFT. CS!=-0.410	SKEWHESS CFT. CS!=-0.391	SKEWNESS CFT. CS!=-0.438
8	2	UNBIASED S.C. CS1=-0.392
UNBIRSED S.C. CS1=-0.367	UNBIASED S.C. CS1=-0.349	5
4		MEAN LOG(XI)=1.887403976
MEAN LOG(XI)=2.026121214	MEAN LOG(XI)=1.953325615	XG=77.16
XG=106.2	XG=89.81	
CAL. OF B-VALUE	CAL. OF B-VALUE	CAL. OF B-YALUE 1. T=85. S=67.
1. T=121.2 S=86.	1. T=101.1 S=74.7 B(1.)=-134.4675654	B(1.)=-111.4937931
B(1.)=-164.4692308	B(1.7154.4013034	
MEAN B=-164.47	MEAN B=-134.47	MEAN B=-111.49
HERM W- AUTHTI	USED B=0.	USED B=0.
USED B=0.	X0=89.81	X0=77.16
X0=106.2 LOG(X0+B)=2.02612	LOG(X0+B)=1.95333	LOG(X0+B)=1.8874 1/A=0.06471 SX=0.04111
1/A=0.08729 SX=0.05525	1/A=0.07663 SX=0.04829	17H=0.06471 5X=0.04111
	IWAI FORMULA	IWAI FORMULA
IWAI FORMULA LOG(Y+(0.))=2.02612	LOG(Y+(0.))=1.95333	LOG(Y+(0.))=1.8874
+0.08729*KSI(YR)	+0.07663*KS1(YR)	+0.06471*KSI(YR)
PROBABILITY IWAI	PROBABILITY IWAI	PROBABILITY IWAI
Y(2) 106.2	Y(2) 89.8	Y(2) 77.2 Y(3) 80.7
Y(3) 112.9	Y(3) 94.8 Y(4) 97.7	Y(4) 82.8
Y(4) 116.9	Y(5) 99.8	Y(5) 84.3
Y(5) 119.7 Y(10) 127.4	Y(10) 195.4	Y(10) 88.3 Y(20) 91.8
Y(20) 134.2	Y(20) 110.3 Y(25) 111.7	Y(25) 91.8
Y(25) 136.2	Y(50) 116.	Y(50) 95.8
Y(50) 142.2	Y(100) 120.1	Y(100) 98.6
Y(100) 147.8		

Probability Calculation of at the CSDB (unit: mm/hr)	Rainfall Intensity for th : No. 3	
IWAI METHOD 2 hours	IMAI METHOD 3 hours	TWAI METHOD 6 hours
DATA N=5. D(1)=45. D(2)=52.3 D(3)=42.5 D(4)=37. D(5)=45.6 RANKING & PLOTTING POSIT ION	DATA N=5. D(1)=31.3 D(2)=34.9 D(3)=29.3 D(4)=24.7 D(5)=31.4 RANKING & PLOTTING POSIT ION	DATA N=5. D(1)=14.7 D(2)=14.5 D(3)=17.1 D(4)=18.8 D(5)=21.6 RANKING & PLOTTING POSITION
P. OF EXCEEDANCE RANK DATA WEIBULL PLOTX (J) (X) J/(N+1) F=1-P 1. 52.3 16.7 83.3 2. 45.6 33.3 66.7 3. 45. 50. 50. 4. 42.5 66.7 33.3 5. 37. 83.3 16.7	P. OF EXCEEDANCE RANK DATA WEIBULL PLOTX (J) (X) J/(N+1) F=1-P 1. 34.9 16.7 83.3 2. 31.4 33.3 66.7 3. 31.3 50. 50. 4. 29.3 66.7 33.3 5. 24.7 83.3 16.7	P. OF EXCEDANCE RANK DATA WEIBULL PLOTX (J) (X) J/(N+1) F=1-P 1. 21.6 16.7 83.3 2. 18.8 33.3 66.7 3. 17.1 50. 50. 4. 14.7 66.7 33.3 5. 14.5 83.3 16.7 CALCULATION
CALCULATION SUM X= 222.4 MEAN X= 44.48 SUM OF DEVIATION SQUARE S=122.548 VARIANCE S/N=24.51 S/(N-1)=30.637 SD/(MEAN X)=0.111 SD=F(S/N)=4.951 USD=F(S/(N-1))=5.535 SKEWNESS CFT. CS!=0.0881 UNBIASED S.C. CS!=0.0788	CALCULATION SUM X= 151.6 MEAN X= 30.32 SUM OF DEVIATION SQUARE S=55.728 YARIANCE S/N=11.15 S/(N-1)=13.932 SD/(MEAN X)=0.11 SD=J(S/N)=3.339 USD=J(S/(N-1))=3.733 SKEWNESS CFT. CS!=-0.431 4	SUM X= 86.7 MEAN X= 17.34 SUM OF DEVIATION SQUARE S=35.372 VARIANCE S/N=7.07 S/(N-1)=8.843 SD/(MEAN X)=0.153 SD=1(S/N)=2.66 USD=1(S/(N-1))=2.974 SKEWNESS CFT. CS1=0.3716
MEAN LOG(XI)=1.64545394 XG=44.2	UNBIASED S.C. CS1=-0.385 8	MEAN LOG(XI)=1.234058609 XG=17.14
CAL. OF B-VALUE 1. T=52.3 S=37. B(1.)=20.6	MEAN LOG(XI)=1.478972797 XG=30.13 CAL. OF B-VALUE 1. T=34.9 S=24.7	CAL. OF B-VALUE 1. T=21.6 S=14.5 B(1.)=-10.67054945 MEAN B=-10.67
MEAN B=20.6	B(1.)=-69.37409091	UCER P-0
USED B=20.6 X0=44.29 LOG(X0+B)=1.81219 1/A=0.05234 SX=0.03301 IWAI FORMULA LOG(Y+(20.6))=1.81219 +0.05234*KSI(YR)	MEAN B=-69.37 USED B=0. X0=30.13 LOG(X0+B)=1.47897 1/A=0.07831 SX=0.04961 IWAI FORMULA LOG(Y+(0.))=1.47897	USED B=0. X0=17.14 LOG(X0+B)=1.23406 1/A=0.10351 SX=0.06544 IWAI FORMULA LOG(Y+(0.))=1.23406 +0.10351*KSI(YR)
PROBABILITY IWAI Y(2) 44.3 Y(3) 46.7 Y(4) 48.1 Y(5) 49.1 Y(10) 51.8 Y(20) 54.1 Y(25) 54.7 Y(50) 56.7 Y(100) 58.5	+0.07831*KSI(YR) PROBABILITY IWAI Y(2)	PROBABILITY IWAI Y(2) 17.1 Y(3) 19.4 Y(4) 19.2 Y(5) 19.8 Y(10) 21.3 Y(20) 22.6 Y(25) 23. Y(50) 24.2 Y(100) 25.4

Probability Calculation of Rainfall Intensity for the short duration at the CSDB (unit: mm/hr) : No. 4

THAT METHOD AS .	IWAI METHOD	
IWAI METHOD 12 hours	24 hours	
DATA N=5.	DATA N=5.	
D(1)=7.3	D(1)=3.7	
N(2)-7 0	D(2)=3.6 D(3)=4.4	
D(3)=8.8	D(4)=4.7	
D(4)=9.5	D(5)=9.7	
D(5)=18.9	PANYING & DIGITING POSIT	
RANKING & PLOTTING POSIT	ION	
ION	* 011	
	P. OF EXCEEDANCE	
P. OF EXCEEDANCE	RANK DATA WEIBULL PLOT%	
RANK DATA WEIBULL PLOT?	(J) (X) $J/(N+1)$ $F=1-P$	
(J) (X) J/(N+1) F=1-P	1. 9.7 16.7 83.3	
1. 18.9 16.7 83.3 2. 9.5 35.3 66.7	2. 4.7 33.3 66.7 3. 4.4 50. 50.	
3. 8.8 50. 50.	3. 4.4 50. 50.	
4. 7.3 66.7 33.3	4. 3.7 66.7 33.3	
5. 7.2 83.3 16.7	5. 3.6 83.3 16.7	
	0A) 014 ATTEM	
CALCULATION	CALCULATION SUM X= 26.1	
SUM X= 51.7	MEAN X= 26.1	
MEAN X= 10.34	SUM OF DEVIATION SQUARE	
SUM OF DEVIATION SQUARE	S=25.948	
S=95.452	VARIANCE S/N=5.19	
14KIHNUC 3/M=17.07	S/(N-1)=6.487	
S/(N-1)=23.863	S/(N-1)=6.487 SD/(MEAN X)=0.436	
SD/(MEAN X)=0.423 SD=1(S/N)=4.369	SD=1(S/N)=2.278	
	USD=\(S/(N-1))=2.547	
USD=J(S/(N-1))=4.885 SKEWNESS CFT. CS!=1.3524	SKEWNESS CFT. CS!=1.3782	
UNBIASED S.C. CS1=1.2096	UNBIASED S.C. CS1=1.2327	
MEAN LOG(XI)=9.838646874	MEAN LOG(XI)=6.853652986	
E-01	E-01	
	E-01 XG=4.85	
E-01 XG=9.64	XG=4.85	
E-01 XG=9.64 CAL. OF B-VALUE	XG=4.85 CAL. OF B-VALUE	
E-01 XG=9.64 CAL. OF B-VALUE 1. T=18.9 S=7.2	XG=4.85 CAL. OF B-VALUE 1. T=9.7 S=3.6	
E-01 XG=9.64 CAL. OF B-VALUE	XG=4.85 CAL. OF B-VALUE	
E-01 XG=9.64 CAL. OF B-VALUE 1. T=18.9 S=7.2 B(1.)=-6.327038123	XG=4.85 CAL. OF B-VALUE 1. T=9.7 S=3.6	
E-01 XG=9.64 CAL. OF B-VALUE 1. T=18.9 S=7.2	XG=4.85 CAL. OF B-VALUE 1. T=9.7 S=3.6 B(1.)=-3.165972222	
E-01 XG=9.64 CAL. OF B-VALUE 1. T=18.9 S=7.2 B(1.)=-6.327038123 MEAN B=-6.33	XG=4.85 CAL. OF B-VALUE 1. T=9.7 S=3.6 B(1.)=-3.165972222 MEAN B=-3.17 USED B=0.	
E-01 XG=9.64 CAL. OF B-VALUE 1. T=18.9 S=7.2 B(1.)=-6.327038123 MEAN B=-6.33 USEN B=0.	XG=4.85 CAL. OF B-VALUE 1. T=9.7 S=3.6 B(1.)=-3.165972222 MEAN B=-3.17 USED B=0. X0=4.85	
E-01 XG=9.64 CAL. OF B-VALUE 1. T=18.9 S=7.2 B(1.)=-6.327038123 MEAN B=-6.33 USEN B=0. X0=9.64	XG=4.85 CAL. OF B-VALUE 1. T=9.7 S=3.6 B(1.)=-3.165972222 MEAN B=-3.17 USED B=0. X0=4.85 LOG(X0+B)=0.68537	
E-01 XG=9.64 CAL. OF B-VALUE 1. T=18.9 S=7.2 B(1.)=-6.327038123 MEAN B=-6.33 USEN B=0. X0=9.64 LOG(X0+B)=0.98386	XG=4.85 CAL. OF B-VALUE 1. T=9.7 S=3.6 B(1.)=-3.165972222 MEAN B=-3.17 USED B=0. X0=4.85	
E-01 XG=9.64 CAL. OF B-VALUE 1. T=18.9 S=7.2 B(1.)=-6.327038123 MEAN B=-6.33 USEN B=0. X0=9.64	XG=4.85 CAL. OF B-VALUE 1. T=9.7 S=3.6 B(1.)=-3.165972222 MEAN B=-3.17 USED B=0. X0=4.85 LOG(X0+B)=0.68537 1/A=0.24816 SX=0.15693	
E-01 XG=9.64 CAL. OF B-VALUE 1. T=18.9 S=7.2 B(1.)=-6.327038123 MEAN B=-6.33 USEN B=0. X0=9.64 LOG(X0+B)=0.98386	XG=4.85 CAL. OF B-VALUE 1. T=9.7 S=3.6 B(1.)=-3.165972222 MEAN B=-3.17 USED B=0. X0=4.85 LOG(X0+B)=0.68537 1/A=0.24816 SX=0.15693 IWAI FORMULA	
E-01 XG=9.64 CAL. OF B-VALUE 1. T=18.9 S=7.2 B(1.)=-6.327038123 MEAN B=-6.33 USEV B=0. XO=9.64 LOG(XO+B)=0.98386 1/A=0.24263 SX=0.15349	XG=4.85 CAL. OF B-VALUE 1. T=9.7 S=3.6 B(1.)=-3.165972222 MEAN B=-3.17 USED B=0. X0=4.85 LOG(X0+B)=0.68537 1/A=0.24816 SX=0.15693 IWAI FORMULA LOG(Y+(0.))=0.68537	
E-01 XG=9.64 CAL. OF B-VALUE 1. T=18.9 S=7.2 B(1.)=-6.327038123 MEAN B=-6.33 USED B=0. X0=9.64 LOG(X0+B)=0.98386 1/A=0.24263 SX=0.15349 IWAI FORMULA	XG=4.85 CAL. OF B-VALUE 1. T=9.7 S=3.6 B(1.)=-3.165972222 MEAN B=-3.17 USED B=0. X0=4.85 LOG(X0+B)=0.68537 1/A=0.24816 SX=0.15693 IWAI FORMULA	
E-01 XG=9.64 CAL. OF B-VALUE 1. T=18.9 S=7.2 B(1.)=-6.327038123 MEAN B=-6.33 USEU B=0. X0=9.64 LOG(X0+B)=0.98386 1/A=0.24263 SX=0.15349 IWAI FORMULA LOG(Y+(0.))=0.98386	XG=4.85 CAL. OF B-VALUE 1. T=9.7 S=3.6 B(1.)=-3.165972222 MEAN B=-3.17 USED B=0. X0=4.85 LOG(X0+B)=0.68537 1/A=0.24816 SX=0.15693 IWAI FORMULA LOG(Y+(0.))=0.68537	
E-01 XG=9.64 CAL. OF B-VALUE 1. T=18.9 S=7.2 B(1.)=-6.327038123 MEAN B=-6.33 USEU B=0. X0=9.64 LOG(X0+B)=0.98386 1/A=0.24263 SX=0.15349 IWAI FORMULA LOG(Y+(0.))=0.98386 +0.24263*KSI(YR)	XG=4.85 CAL. OF B-VALUE 1. T=9.7 S=3.6 B(1.)=-3.165972222 MEAN B=-3.17 USED B=0. X0=4.85 LOG(X0+B)=0.68537 1/A=0.24816 SX=0.15693 IWAI FORMULA LOG(Y+(0.))=0.68537 +0.24816*KSI(YR)	
E-01 XG=9.64 CAL. OF B-VALUE 1. T=18.9 S=7.2 B(1.)=-6.327038123 MEAN B=-6.33 USEU B=0. X0=9.64 LOG(X0+B)=0.98386 1/A=0.24263 SX=0.15349 IWAI FORMULA LOG(Y+(0.))=0.98386 +0.24263*KSI(YR)	XG=4.85 CAL. OF B-VALUE 1. T=9.7 S=3.6 B(1.)=-3.165972222 MEAN B=-3.17 USED B=0. X0=4.85 LOG(X0+B)=0.68537 1/A=0.24816 SX=0.15693 IWAI FORMULA LOG(Y+(0.))=0.68537 +0.24816*KSI(YR) PROBABILITY IWAI	
E-01 XG=9.64 CAL. OF B-VALUE 1. T=18.9 S=7.2 B(1.)=-6.327038123 MEAN B=-6.33 USEU B=0. X0=9.64 LOG(X0+B)=0.98386 1/A=0.24263 SX=0.15349 IWAI FORMULA LOG(Y+(0.))=0.98386 +0.24263*KSI(YR) PROBPBILITY IWAI Y(2) 9.6	XG=4.85 CAL. OF B-VALUE 1. T=9.7 S=3.6 B(1.)=-3.165972222 MEAN B=-3.17 USED B=0. X0=4.85 LOG(X0+B)=0.68537 1/A=0.24816 SX=0.15693 IWAI FORMULA LOG(Y+(0.))=0.68537 +0.24816*KSI(YR) PROBABILITY IWAI Y(2) 4.8	
E-01 XG=9.64 CAL. OF B-VALUE 1. T=18.9 S=7.2 B(1.)=-6.327038123 MEAN B=-6.33 USEU B=0. X0=9.64 LOG(X0+B)=0.98386 1/A=0.24263 SX=0.15349 IWAI FORMULA LOG(Y+(0.))=0.98386 +0.24263*KSI(YR) PROBHBILITY IWAI Y(2) 9.6 Y(3) 9.6 11.4	XG=4.85 CAL. OF B-VALUE 1. T=9.7 S=3.6 B(1.)=-3.165972222 MEAN B=-3.17 USED B=0. X0=4.85 LOG(X0+B)=0.68537 1/A=0.24816 SX=0.15693 IWAI FORMULA LOG(Y+(0.))=0.68537 +0.24816*KSI(YR) PROBABILITY IWAI Y(2) Y(3) Y(4) 6.4	
E-01 XG=9.64 CAL. OF B-VALUE 1. T=18.9 S=7.2 B(1.)=-6.327038123 MEAN B=-6.33 USEU B=0. X0=9.64 LOG(X0+B)=0.98386 1/A=0.24263 SX=0.15349 IWAI FORMULA LOG(Y+(0.))=0.98386 +0.24263*KSI(YR) PROBHBILITY IWAI Y(2) 9.6 Y(3) 11.4 Y(4) 12.6	XG=4.85 CAL. OF B-VALUE 1. T=9.7 S=3.6 B(1.)=-3.165972222 MEAN B=-3.17 USED B=0. X0=4.85 LOG(X0+B)=0.68537 1/A=0.24816 SX=0.15693 IWAI FORMULA LOG(Y+(0.))=0.68537 +0.24816*KSI(YR) PROBABILITY IWAI Y(2) 4.8 Y(3) 5.8 Y(4) 6.4 Y(5) 6.8	
E-01 XG=9.64 CAL. OF B-VALUE 1. T=18.9 S=7.2 B(1.)=-6.327038123 MEAN B=-6.33 USEU B=0. X0=9.64 LOG(X0+B)=0.98386 1/A=0.24263 SX=0.15349 IWAI FORMULA LOG(Y+(0.))=0.98386 +0.24263*KSI(YR) PROBHBILITY IWAI Y(2) 9.6 Y(3) 11.4 Y(4) 12.6 Y(5) 13.4	XG=4.85 CAL. OF B-VALUE 1. T=9.7 S=3.6 B(1.)=-3.165972222 MEAN B=-3.17 USED B=0. X0=4.85 LOG(X0+B)=0.68537 1/A=0.24816 SX=0.15693 IWAI FORMULA LOG(Y+(0.))=0.68537 +0.24816*KSI(YR) PROBABILITY IWAI Y(2) Y(3) Y(4) Y(5) Y(10) 8.1	
E-01 XG=9.64 CAL. OF B-VALUE 1. T=18.9 S=7.2 B(1.)=-6.327038123 MEAN B=-6.33 USEU B=0. X0=9.64 LOG(X0+B)=0.98386 1/A=0.24263 SX=0.15349 IWAI FORMULA LOG(Y+(0.))=0.98386 +0.24263*KSI(YR) PROBHBILITY IWAI Y(2) 9.6 Y(3) 11.4 Y(4) 12.6 Y(5) 13.4 Y(10) 16.	XG=4.85 CAL. OF B-VALUE 1. T=9.7 S=3.6 B(1.)=-3.165972222 MEAN B=-3.17 USED B=0. X0=4.85 LOG(X0+B)=0.68537 1/A=0.24816 SX=0.15693 IWAI FORMULA LOG(Y+(0.))=0.68537 +0.24816*KSI(YR) PROBABILITY IWAI Y(2) Y(3) Y(4) Y(5) Y(10) Y(20) Y(20) 9.4	
E-01 XG=9.64 CAL. OF B-VALUE 1. T=18.9 S=7.2 B(1.)=-6.327038123 MEAN B=-6.33 USEU B=0. X0=9.64 LOG(X0+B)=0.98386 1/A=0.24263 SX=0.15349 IWAI FORMULA LOG(Y+(0.))=0.98386 +0.24263*KSI(YR) PROBHBILITY IWAI Y(2) 9.6 Y(3) 11.4 Y(4) 12.6 Y(5) 13.4 Y(10) 16. Y(20) 18.5	XG=4.85 CAL. OF B-VALUE 1. T=9.7 S=3.6 B(1.)=-3.165972222 MEAN B=-3.17 USED B=0. X0=4.85 LOG(X0+B)=0.68537 1/A=0.24816 SX=0.15693 IWAI FORMULA LOG(Y+(0.))=0.68537 +0.24816*KSI(YR) PROBABILITY IWAI Y(2) Y(3) Y(3) Y(4) Y(5) Y(10) Y(20) Y(25) 9.8	
E-01 XG=9.64 CAL. OF B-VALUE 1. T=18.9 S=7.2 B(1.)=-6.327038123 MEAN B=-6.33 USEU B=0. X0=9.64 LOG(X0+B)=0.98386 1/A=0.24263 SX=0.15349 IWAI FORMULA LOG(Y+(0.))=0.98386 +0.24263*KSI(YR) PROBPBILITY IWAI Y(2) 9.6 Y(3) 11.4 Y(4) 12.6 Y(5) 13.4 Y(10) 16. Y(20) 18.5 Y(25) 19.2	XG=4.85 CAL. OF B-VALUE 1. T=9.7 S=3.6 B(1.)=-3.165972222 MEAN B=-3.17 USED B=0. X0=4.85 LOG(X0+B)=0.68537 1/A=0.24816 SX=0.15693 IWAI FORMULA LOG(Y+(0.))=0.68537 +0.24816*KSI(YR) PROBABILITY IWAI Y(2) Y(3) Y(3) Y(4) Y(5) Y(10) Y(20) Y(25) Y(50) Y(
E-01 XG=9.64 CAL. OF B-VALUE 1. T=18.9 S=7.2 B(1.)=-6.327038123 MEAN B=-6.33 USEU B=0. X0=9.64 LOG(X0+B)=0.98386 1/A=0.24263 SX=0.15349 IWAI FORMULA LOG(Y+(0.))=0.98386 +0.24263*KSI(YR) PROBABILITY IWAI Y(2) 9.6 Y(3) 11.4 Y(4) 12.6 Y(5) 13.4 Y(10) 16. Y(20) 18.5 Y(25) 19.2	XG=4.85 CAL. OF B-VALUE 1. T=9.7 S=3.6 B(1.)=-3.165972222 MEAN B=-3.17 USED B=0. X0=4.85 LOG(X0+B)=0.68537 1/A=0.24816 SX=0.15693 IWAI FORMULA LOG(Y+(0.))=0.68537 +0.24816*KSI(YR) PROBABILITY IWAI Y(2) Y(3) Y(3) Y(4) Y(5) Y(10) Y(20) Y(25) 9.8	

Table C1 - 16 The Longest Dry Consecutive Days During One Year at The CSDB

GUMBLE MAX. DISTRIBUTION	
BOTO N-17	
DATA N=13.	PROBABLE EXTREAM VALUE(
B(1) = 23.6 1977 B(2) = 10.6 1978	XT), RETURN PERIOD(T),
D(2)= 10.0 1978 D(3)= 19.0 1979	FREQUENCY FUNCTION:
	CKERDEUCT FUNCTION:
	VT-VMIVECU UM_MEATITE
	XT=XM+K*SX, XM=MEAN X,
D(6)= 34.0 1982 D(7)= 20.0 1983	K=(YT-YN)/SY, YT=-LN(LN(T/(T-1)))
D(7)= 20.0 1983 D(8)= 18.0 1984	
18.9 1904	YT=REDUCED YARIATE, YN=R EDUCED MEAN
	EDUCED LIGHT
D(10)= 10.0 1986 D(11)= 25.0 1987 D(12)= 17.0 1989	XT=XM-(YN*SX/SY)+(SX/SY)
D(II)= 25.0 1907	*YT
D(12)= 17.0 1989	*11
D(13)= 21.0 1988	CAL. VALUE:
541144115	XM=18.15384615 SX=6.9
RANKING	YN=0.507 SY=0.9971
I=1. X=34. I=2. X=25.	d. d. d. 31-9.77(1
I=2. X=23. I=3. X=23.	ESTIMATE EQUATION:
	XT=14.65+6.92YT
I=4. X=21. I=5. X=20.	
I=6. X=19.	T=2. XT=17.2
I=7. X=18.	T=4. XT=23.3
	T=5. XT=25.
I=8. X=17.	T=10. XT=30.2
I=9. X=15. I=10. X=15.	T=20. XT=35.2
I=11. X=10.	T=25. XT=36.8
I=12. X=10.	T=50. XT=41.7
	T=100. XT=46.5
I=13. X=9.	T=200. XT=51.3
CALCULATION	T=1000. XT=62.4
SUM X= 236.	
SUM X-2= 4856.	T-11 97-78 8
SUM X^3= 111440.	T=11. XT=30.9
30A Y.2- 111448.	T=12. XT=31.5
MEAN X= 13.15384615	T=13. XT=32.1 T=14. XT=32.7
MEAN X^2= 373.5384615	T=15. XT=33.2
MEAN X^3= 8572.307692	
SUM DEV SQU. S=571.69230	T=16. XT=33.6 T=17. XT=34.
77	T=18. XT=34.5
VARIANCE S/N=43.98	T=19. XT=34.8
UNBIASED YARI. =S/(N-1)=	7=20 VT-75 o
47.64	1 20: N1-33.2
VARIATION COEF.=SX/MEAN	
X=0.37	
STANDARD DEV. SX=((S/N)=	
6.63	
STA. DEV. EST. USX=1(S/(
N-1))=6.9	
SKEWNESS COEF. CS!=0.667	
UNBIASED S.C. CS1=0.641	

Table C-17

Calculation of Probability of Exceedance on the Data of Monthly Mean Pan Evaporation at the C S D B.

- No.1 January, February and March
- No.2 April, May and June
- No.3 July, August and September
- No.4 October, November and December

Calculation of Probability of Exceedance Monthly Mean Pan Evaporation : No. 1 January, February and March

	Jan			THAT METHOD ****	
INAI nETHOD	,	IWAI METHOD	fel	INAI METHOD No	
TRAL INDIVIDU		DATA N=13.		DATA N=13.	
DATA N=13.		D(1)=1.94		D(1)=1.69	
D(1)=2.22				D(2):2.76	
D(2)=2.34		D(3)=3,12		D(3):2.97	
D(3)=2.92		B(4)=2.34		0(4)==2.87	
0(4)=1.75		D(5)=2.71		10(5)==2.99	
D(5)=1.69		D(6)=2.76		B(6)==2.87	
D(6)=1.67 D(7)=2.49		D(2)=3.2 B(3)=3.12 B(4)=2.34 D(5)=2.71 D(6)=2.76 D(7)=2.94 D(8)=2.84		D(7)==3.12 D(8)==2.95	
D(8)=2.72		У(8)=2.84		D(9)==3.72	
D(9)=3.01		D(9)=3.44 D(9)=3.24 D(11)=2.78 D(12)=4.27 D(13)=2.56 RANKING & PLOTTI		D(10)=2.93	
D(10)=2.52		D(11)=2.78		D(11)=3.63	
D(11)=2.28		D(12)=4.27		D(12)+3.75	
D(12)=3.45		D(13)=2.56		D(13)=3.89	
D(13)=3.56		RANKING & PLOTTI	NG POSIT	RANKING & PLOTTING	POSIT
P. OF EXCEEDANCE		IOH		ION	
RANK BATA WEIBULL PL	OTX			P. OF EXCEEDANCE	
(J) (X) J/(H+1) F=		P. OF EXCEEDANCE		RANK DATA WEIBULL	לדה ום
1. 3.56 7.1 92.		RAHK BATA WEIBUL		(J) (X) J/(H+1)	
2. 3.45 14.3 85		1, 4.27 7.1	92.9	1. 3.89 7.1	
3. 3.01 21.4 78 4. 2.92 28.6 71		2. 3.44 14.3	85.7	2. 3.75 14.3	85.7
4. 2.92 28.6 71 5. 2.72 35.7 64	-	3. 3.24 21.4	78.6	3. 3.72 21.4	78.6
6. 2.52 42.9 57	-	4. 3.2 28.6	71.4	4. 3.63 28.6	71.4
7. 2.49 59. 50.		5. 3.12 35.7	64.3	5. 3.12 35.7	64.3
	.9	6. 2.94 42.9		6. 2.99 42.9	57.1 50.
9. 2.28 64.3 35		7. 2.84 50.	58.	7. 2.97 50. 5 8. 2.95 57.1	
10. 2.22 71.4 2			42.9 35.7	9. 2.93 64.3	35.7
	1.4	9. 2.76 64.3 10. 2.71 71.4	28.6	19. 2.87 71.4	
*** **** **** *	4.3 .1	11. 2.56 78.6		11. 2.87 78.6	21.4
13. 1.67 92.9 7	• •		14.3	12. 2.76 85.7	14.3
CALCULATION		13. 1.94 92.9	7.1	13. 1.69 92.9	7.1
SUM X= 32.62					
MEAN X= 2.509230769		CALCULATION		EALCULATION SUM X= 40.14	
SUM OF DEVIATION SQU	ARE	SUM X= 38.14		SUM X= 40.14 MEAN X= 3.0876923	20
S=4.570292308		MEAN X= 2.933846	1104	SUM OF DEVIATION	
VARIANCE S/N=0.35		sum of DEVIATION S=3.833707693		S=4.00023077	040////
S/(N-1)=3.808576923E	-81	VARIANCE S/N=0.1	9	VARIANCE S/N=0.31	
SD/(MEAN X)=0.236		S/(N-1)=3.194756	411E-81	S/(N-1)=3.3335256	42E-01
SD={(\$/H)=0.593 USD={(\$/(N-1))=0.617		SD/(MEAN X)=0.18		SD/(MEAN X)=0.18	
SKEWNESS CFT. CS!=0.	213			SD=1(S/N)=0.555	
UNBIASED S.C. CSI=0.	2046	USD=1(\$/(N-1))=8	.565	USD=1(S/(N-1))=0.	577
		SKEWNESS CFT. CS	S!=0.6269	SKEWNESS CFT. CS!	=-0.709
MEAN LOG(XI)=3.87117	8565	UNBIASED S.C. CS	1=0.6023	2 UNBIASED S.C. CS1	0 601
E-91				UNBIASED S.C. CSI	0.031
XG=2.44		MEAN LOG(XI)=0.4	169129481	4	
		XG=2.88		MEAN LOG(X1)=4.81	4047602
CAL. OF B-VALUE		CAL. OF B-YALUE		E-01	
1. T=3.56 S=1.67 B(1.)=8.024		1. T=4.27 S=1.	.94	XG=3.03	
D(1.)-0.024		B(1,)=2.355555			
MEAN B=0.02				CAL. OF B-VALUE	
		MEAN B=0.02		1. 7=3.89 \$=1.6	
U\$ED 8=0.02				B(1.)=-5.430833	222
X0=2.44		USED B=0.02		MEAN B=-5.43	
LOG(X0+B)=0.39077	700	X0=2.89 LOG(X0+B)=0.4631	ıΩ	112.111 2 01 .2	
1/A=0.15293 SX=0.10	587	1/A=0.11658 SX		USED B=0.	
IWAI FORMULA		71 M-31 7 7 0 0 0 0	313172	X0=3.03	
L05(Y+(0.02))=0.3907	7	IWAI FORMULA		LOG(X0+B)=0.4814	
+8.15293+KS1(YR)		LOG(Y+(0.02))=0.	,46318	1/A=0.13045 SX=0	.08865
		+0.11658*KS	I(YR)	IWAI FORMULA	
				LOG(Y+(0.))=0.481	4
PROBABILITY IWAI		D0004071 7711 7114	•	+0.13045*KSIC	
Y(2)	2.4	PROBABILITY IWA	2.9		
Y(3) Y(4)	2.7	Y(3)	3.1	GOODANTI TTU THAT	
Y(4) Y(5)	2.9 3.	Y(4)	3.3	PROBABILITY IWAI	3.
Y(10)	3.4	Y(5)	3.4	Y(2) Y(3)	3.3
Y(20)	3.7	Y(10)	3.7	Y(4)	3.5
Y(25)	3.3	Y(20)	3,9	Ϋ(5)	3.6
Y(50)	4.1	Y(25)	4.	Y(10)	4.
Y(100)	4.4	Y(50)	4.3 4.5	Y(20)	4.3
		Y(100)	4.5	Y(25)	4.4
				Y(50)	4.7 5.
		-43-		Y(100)	٦.
		a.s			

Calculation of Probability of Exceedance Monthly Mean Pan Evaporation : No.2 April, May and June

		IWAI METHOD			THE .
IMAI WETHOD	194	IMMI METHOD	had	INAL METHOD	
DATA N=13.		DATA N=13.		BATA N≈13.	
D(1)=2.75 D(2)=3.26		D(1)=3.06 D(2)=2.92		D(1)=2.24	
D(3)=3.08		D(3)=3.02		D(2)=2.49	
D(4)=2.25		D(4)=2.62		D(3)=2.66 D(4)=2.91	
D(5)=3.02 D(6)=2.63		D(5)=2.75 D(6)=2.73		D(5)=2.72	
D(7)=3.26		D(7)=3.		D(6)=2.4	
D(8)=3.1		D(8)=2.83		D(7)=3.4 D(8)=3.16	
D(9)=3.25 B(10)=3.35		D(9)=3.19 D(10)=3.78		D(9)=2.81	
D(11)=3.47		D(11)=4.1		D(10)=3.28	
B(12)=4.34 B(13)=4.17		D(12)=3.77 D(13)=3.47		D(11)=3.69 D(12)=3.4	
RANKING & PLOTTING	POSIT	RANKING & PLOTTIN	c poetr	B(13)=3,58	
TON		ION	0 (031)	RANKING & PLOTTING	PUSII
P. OF EXCEEDANCE		n of typenaupe			
RANK DATA WEIBULL (1) (X) J/(H+1)		P. OF EXCEEDANCE RANK DATA WEIBULL	PLOT%	P. OF EXCEEDANCE RANK DATA WEIBULL F	עדה וכ
	2.9	(J) (X) J/(N+1)	F≠1-P	(J) (X) J/(N+1) f	
2. 4.17 14.3	85.7	••	2.9	1. 3.69 7.1 92	2.9
	78.6 71.4	2. 3.78 14.3 3. 3.77 21.4	85.7 78.6		85.7 8.6
	64.3	4. 3.47 28.6	71.4	J	1.4
	57.1	5. 3.19 35.7 6. 3.06 42.9	64.3 57.1	5. 3.28 35.7	64.3
	0. 2.9		50.	V. 2000	57.1 0.
9. 3.08 64.5	35.7	8. 3. 57.1 4	2.9		42.9
10. 3.02 71.4 11. 2.75 78.6	28.6 21.4	9. 2.92 64.3 10. 2.83 71.4	35.7 28.6	** ***	35.7
12. 2.63 85.7	14.3	11. 2.75 79.6	21.4	10. 2.66 71.4 11. 2.49 78.6	28.6 21.4
13. 2.25 92.9	7.1	12. 2.73 85.7	14.3		14.3
CALCULATION		13. 2.62 92.9	7.1	13. 2.24 92.9	7.1
SUM X= 41.93	_	CALCULATION		CALCULATION	
MEAN X= 3.22538461 SUM OF DEVIATION S		SUM X= 41.24		SUM X= 38.74	
\$=3.823923077		MEAN X= 3.1723076		MEAN X= 2.98 SUM OF DEVIATION S	OHARE
YARIANCE S/N=0.29	45-01	S=2.60143077	•	S=2.6672	anur.
S/(N-1)=3.18660256 SD/(MEAN X)=0.168	45-41	YARIANCE S/N=0.2	755 01	VARIANCE S/N=0.21	
SD=f(S/N)=0.542		\$/(H-1)=2.1678589 \$D/(MEAN X)=0.141	135-01	S/(N-1)=2.22266666	7E-01
USD=1(S/(N-1))=0.5 SKEWHESS CFT. CS!=		SD=f(S/N)=0.447		SD/(MEAH X)=0.152 SD={(S/N)=0.453	
UNBIASED S.C. CS1=		USD=1(5/(H-1))=0.		USD=\$(\$/(N-1))=8.4	71
	120724	SKENNESS CFT. CS! UNBIASED S.C. CS1		SKEWHESS CFT. CS!=	-0.015
MEAN LOG(XI)=5.025 E-01	1160124	•		UNBIASED S.C. CS1=	-0.014
XG=3.18		MEAN LOG(XI)=4.97	2732852	8	
CAL. OF B-YALUE		XG=3.14		MEAN LOG(XI)=4.690	874316
1. T=4.34 S=2.25	5	CAL OF THAILE		E-01	
B(1.)=1.51043478	,,,	CAL. OF B-VALUE 1. T=4.1 S=2.62		XG=2.95	
MEAN B=1.51		B(1.)=-2.005454	545	CAL. OF B-YALUE	
USED B=1.51		MEAN B=-2.01		1. T=3.69 S=2.24 B(1.)=14.5633333	
X0=3.19		11000 0 0 01			-
LOG(X0+B)=0.67256 1/A=0.07238 SX=0.	04911	USED B=-2.01 X0=3.09		MEAN B=14.56	
		LOG(X0+B)=0.03506		USED B=14.56	
IWAI FORMULA LOG(Y+(1.51))=0.67	7256	1/A=0.23579 SX=0	. 16019	X0=2.97	
+0.07238*KSI()		IWAI FORMULA		LOG(X0+B)=1.24388 1/A=0.01652 SX=0.0	01177
		LOG(Y+(-2.01))=0.		•> H=0+0100¥ 9V≈A*	61117
PROBABILITY INAI		+0.23579*KSI	TK)	. INAI FORMULA	
Y(2)	3.2 3.4			L0G(Y+(14.56))=1.2 +0.01652*KSI(Y	
Y(3) Y(4)	3.6	PROBABILITY IWAI	7 4	2121205.407/1	
Y(5)	3.7	Y(2) Y(3)	3.1 3.3	<u> ይይጠውለውን፤ የተሁ</u> ምሳሌም	
Y(10) Y(20)	4. 4.2	Y(4)	3.4	PROBABILITY IWAI Y(2)	3.
Y(25)	4.3	Y(5)	3.5	Y(3)	3.2
Y(50)	4.5	Y(10) Y(20)	3.8 4.	Y(4)	3.3
Y(100)	4.7	Y(25)	4.1	Y(5) Y(10)	3.4 3.6
		Y(50)	4.4 4.7	Y(20)	3.8
		Y(100)	4+1	Y(25) Y(50)	3.8
		-44-		Y(190)	4. 4.1
					. • •

Calculation of Probability of Exceedance Monthly Mean Pan Evaporation : No. 3 July, August and September

				INAL METHOD	
IWAI METHOD		IWAI METHOD		IMMI HELMOD	
•		DATA H=13.		DATA N=13.	
DATA N=13.		D(1)=3.63		D(1)=3.68	
D(1)=3.2		D(2)=2.96		D(2)=3.3	
D(2)=2.76 D(3)=3.06		D(3)=3.03 D(4)=2.92		D(3)=3.24	
D(4)=2.98		D(4)=2.72 D(5)=2.68		D(4)=3.2	
D(5)=2.79		D(6)=3.09		D(5)=2.84 D(6)=3.85	
D(6)=2.7		D(7)=4.05		D(7)=4.67	
D(7)=3.4		D(8)=3.7 D(9)=3.79		D(8)=3.25	
D(8)=3.26		D(10)=3.65		D(9)=4.11	
D(9)=2.7 D(10)=3.41		D(11)=4.99		D(10)=3.5	
D(11)=4.02		D(12)=4.12		D(11)=5.37 D(12)=4.89	
D(12)=3.96		D(13)=4.39		D(13)=4.29	
D(13)=3.89		RANKING & PLOT	TING PUSIT	RANKING & PLOTTING	POSIT
RANKING & PLOTTING	POSIT	1011		ION	
ION		P. OF EXCEEDAN			
P. OF EXCEEDANCE		RANK DATA WELL		P. OF EXCEEDANCE	
RANK DATA WEIBULL	PLOT%	(J) (X) J/(I 1. 4.99 7.1	(+1) F=1-P 1 92.9	RANK DATA WEIBULL P	
(J) (X) J/(N+1) I	F=1-P	2. 4.39 14.			.9
	2.9_	3. 4.12 21.			5.7
-	35.7	4. 4.05 28.			8.6
	78.6 71.4	5. 3.79 35.			1.4
	1.3	6. 3.7 42.9			4.3 7.1
	57.1	7. 3.65 50. 8. 3.63 57.		7. 3.68 50. 50	
7. 3.2 50. 50.	,	9. 3.09 64			. 9
	12.9		1.4 28.6		. 7
9. 2.98 64.3 3 10. 2.79 71.4	55.7 28.6		3.6 21.4		28.6
11. 2.76 78.6	21.4		14.3		21.4
	14.3	13. 2.68 97	2.9 7.1		4.3 7.1
	7.1	CALCULATION	ł	13. 2.04 72.7	1.1
		SUM X= 46.9	•	CALCULATION	
CALCULATION		MEAN X= 3.607		SUM X= 50.19	
SUM X= 42.13 MEAN X= 3.240769231	1	SUM OF DEVIATI S=5.5192307		MEAN X= 3.860769231	
SUM OF DEVIATION SO		VARIANCE S/N=		SUM OF DEVIATION SQ	IUARE
S=2.721892308	- Onic	S/(N-1)=4.599		S=6.952692308 VARIANCE S/N=0.53	
VARIANCE S/N=0.21		SD/(MEAN X)=0		S/(N-1)=5.793910257	E-91
S/(N-1)=0.226824359)	SD=1(S/H)=0.6	52	SD/(MEAN X)=0.189	
SD/(MEAN X)=0.141		USD=1(S/(H-1)		SD={(S/N)=0.731	
SD={(S/N)=0.458 USD={(S/(N-1))=0.47	7/	SKEWNESS CFT. UNBIASED S.C.		USD=1(S/(H-1))=0.76	
SKEWNESS CFT. CS!=		OURTHOED 2.C.	C31-0.3733	SKEWHESS CFT. CS!=0	
UNBIASED S.C. CS1=6		MEAN LOG(XI)=	5.502494242	UNBIASED S.C. CS1=0	. 3813
		E-01		MEAN LOG(XI)=5.7928	66432
MEAN LOG(XI)=5.0643	346321	XG=3.55		E-01	
E-01			.=	XG=3.79	
XG=3.21		CAL. OF B-YALE			
CAL. OF B-VALUE		B(1.)=-1.35		CAL. OF B-VALUE	
1. T=4.02 S=2.7		21117		1. T=5.37 S=2.84 B(1.)=-1.40746031	7
B(1.)=-1.833		MEAN B=-1.35		D(1.7=-1.1)d	• •
MEAN S				MEAN B=-1.41	
MEAN B=-1.83		USED B=-1.35			
USED B=0.		X0=3.51 LOG(X0+B)=0.33	5543	USED B=-1.41	
X0=3.21		1/A=0.18634 S		X0=3.76 LOG(X0+B)=0.37067	
LOG(X0+B)=0.50643				1/A=0.18606 SX=0.1	2641
1/A=0.08847 SX=0.0	16015	INAI FORMULA		1 · // 0110000	
IWAI FORMULA		LOG(Y+(-1.35); +0.18634*F		IWAI FORMULA	
LOG(Y+(0.))=0.50643	:	TU.10034+1	(31(1K)	LOG(Y+(-1.41))=0.37	
+0.08847*KSI(YR				+0.18606*KSI(YR	8)
		PROBABILITY IV			
		Y(2)	3.5	PROBABILITY IWAI	
PROBABILITY IWAI	7.0	Y(3)	3.8	Y(2)	3.8
Y(2) Y(3)	3.2 3.4	Y(4) Y(5)	4. 4.1	Y(3)	4.1
Y(4)	3.4 3.5	Y(10)	4.5	Y(4)	4.3
Y(5)	3.6	Y(29)	4.9	Y(5)	4.4 4.9
Y(10)	3.9	Y(25)	5.	Y(10) Y(20)	5.3
Y(20)	4.1	Y(50)	5.4	Y(25)	5.4
Y(25)	4.1	Y(100)	5.7	Y(50)	5.8
Y(50) Y(100)	4.3 4.5			Y(100)	6.2
111007	119				

Calculation of Probability of Exceedance Monthly Mean Pan Evaporation: No.4 October, November and December

	·	
INAL METHOD Out ,cla	INAI METHOD NOV 110	orc. INAI METHOD
DATA N=13.	_	
D(1)=4,23	DATA N=13.	DATA N=13.
D(2)=3.7	D(1)=3.33	D(1)=2.81
D(3)=3.57	B(2)=4.45	D(2)=3.3
D(4)=3.13	D(3)=2.53 D(4)=3.06	D(3)=2.32
D(5)=3.16	D(5)=2.87	D(4)==2.31 D(5)==2.86
D(6)=3.74	D(6)=3.21	D(6):=2.63
D(7)=3.64	D(7)=3.09	D(7)==3.67
D(8)=3.86	D(8)=3.37	D(8)==3.02
D(9)=3.6 D(10)=4.11	D(9)=3.78	p(9)==3.86
D(11)=5.1	D(10)=3.51	D(10)*3.8
D(12)=4.49	D(11)=4.65	D(11)=3.39
D(13)=4.36	D(12)=3.87	D(12)+3.36
RANKING & PLOTTING POSIT	D(13)=4.13	B(13):3.28
ION	RAHKING & PLOTTING POSIT	RANKING & PLOTTING POSIT
	ION	10H
P. OF EXCEEDANCE	P. OF EXCEEDANCE	P. OF EXCEEDANCE
RANK DATA WEIBULL PLOT%	RANK DATA WEIBULL PLOT%	RANK DATA WEIBULL PLOT%
(J) (X) J/(N+1) F=1-P	(J) (X) J/(N+1) F=1-P	(J) (X) J/(N+1) F=1-P
1. 5.1 7.1 92.9	1. 4.65 7.1 92.9	1. 3.86 7.1 92.9
2. 4.49 14.3 85.7	2. 4.45 14.3 85.7	2. 3.8 14.3 85.7
3. 4.36 21.4 78.6 4. 4.37 20.6 71.4	3. 4.13 21.4 78.6	3. 3.67 21.4 78.6
4. 4.23 28.6 71.4 5. 4.11 35.7 64.3	4. 3.87 28.6 71.4	4. 3.39 28.6 71.4
6. 3.86 42.9 57.1	5. 3.70 35.7 64.3	5. 3.36 35.7 64.3 6. 3.3 42.9 57.1
7. 3.74 50. 50.	6. 3.51 42.9 57.1	
8. 3.7 57.1 42.9	7. 3.37 50. 50.	7. 3.28 50. 50. 8. 3.02 57.1 42.9
9. 3.64 64.3 35.7	8. 3.33 57.1 42.9	9. 2.86 64.3 35.7
10. 3.6 71.4 28.6	9. 3.21 64.3 35.7	10. 2.81 71.4 28.6
11. 3.57 78.6 21.4	10. 3.09 71.4 28.6	11. 2.63 78.6 21.4
12. 3.16 85.7 14.3	11. 3.06 78.6 21.4	12. 2.32 85.7 14.3
13. 3.13 92.9 7.1	12. 2.87 85.7 14.3 13. 2.53 92.9 7.1	13. 2.31 92.9 7.1
	13. 2.33 92.9 1.1	
CALCULATION	CALCULATION	CALCULATION
SUM X= 50.69	SUM X= 45.85	SUM X= 40.61
MEAN X= 3.899230769	MEAN X= 3.526923077	MEAN X= 3.123846154
SUM OF DEVIATION SQUARE	SUM OF DEVIATION SQUARE	SUM OF DEVIATION SQUARE
S=3.626892308 VARIANCE S/N=0.28	S=4.657276924	\$=3.210787693
S/(N-1)=3.022410257E-01	YARIANCE S/H=0.36	YARIANCE S/N=0.25
SD/(MEAN X)=0.135	S/(N-1)=3.881064103E-01	S/(N-1)=2.675589744E-01
SD={(S/H)=0.528	SD/(MEAN X)=0.17	SD/(MEAN X)=0.159
USD={(S/(H-1))=0.55	SD=1(S/N)=0.599	SD=f(S/N)=0.497
SKENNESS CFT. CS!=0.5904	USB={(S/(H-1))=0.623	USD=1(S/(H-1))=0.517
UNBIASED S.C. CS1=0.5673	SKEWNESS CFT. CS!=0.3494	SKEWNESS CFT. CS!=-0.198
	UNBIASED S.C. CS1=0.3357	UNBIASED S.C. CS1=-0.190
MEAN LOG(XI)=5.871114883	MEAN LOG(XI)=5.411949528	9
E-01	E-01	•
XG=3.86	XG=3.48	MEAN LOG(XI)=4.889306718
		E-01
CAL. OF B-YALUE	CAL. OF B-YALUE	XG=3.08
1. T=5.1 S=3.13	1. T=4.65 S=2.53	
B(1.)=-2.085098039	B(1.)=1.572272727	CAL. OF B-YALUE
MEAN B=-2.09	MEAU D 4 57	1. T=3.86 S=2.31
11CH1 92.09	MEAN B=1.57	B(1.)=56.98
USED B=-2.09	USED B=1.57	MEAN D-FC OC
X9=3.82	X0=3.49	MEAN B=56.98
LOG(X0+B)=0.23914	LOG(X0+B)=0.70435	USED B=56.98
1/A=0.18676 SX=0.12688	1/A=0.07442 SX=0.05057	X0=3.12
		LOG(X0+B)=1.77889
IWAI FORMULA	IWAI FORMULA	1/A=0.00529 SX=0.00192
LOG(Y+(-2.09))=0.23914	LOG(Y+(1.57))=0.70435	,
+0.18676*KSI(YR)	+0.07442*KSI(YR)	IWAI FORMULA
		LOG(Y+(56.98))=1,77889
55555454 554 544 544 5	DOGRADII 170 100.	+0.00529*KSI(YR)
PROBABILITY IWAI	PROBABILITY INAI	
Y(2) 3.8	Y(2) 3.5 Y(3) 3.8	
Y(3) 4.1	Y(3) 3.8 Y(4) 3.9	PROBABILITY IWAI
Y(4) 4.2 Y(5) 4.3		Y(2) 3.1
,,,	Y(5) 4. Y(10) 4.3	Y(3) 3.3
Y(10) 4.7 Y(20) 4.9	Y(29) 4.6	Y(4) 3.5
Y(25) 4.9 Y(25) 5.	Y(25) 4.7	Y(5) 3.6 Y(10) 3.9
Y(50) 5.3	Y(50) 4.9	V/20)
Y(100) 5.6	Y(100) 5.1	V/nex
	V.1	V/50\
	-46-	Y(100) 4.2 4.3
	-	7.3

Table C1-18

Estimated Possible Working Hours of Outdoor Works for Construction and Farming Practice

No.	1	1	9	8	5
2 10.	•	_		~	_

No. 2 1986

No. 3 1987

No. 4 1988

No. 5 1989

No. 6 Recapitulation of Estimated Possible
Working Hours and their Percentage to the
Scheduled Construction Working Hours

No. 1 Estimated Possible Working Hours

Scheduled Daily Construction Working Hours: 10 hrs from 7:00 up to 17:00 If rainfall is equal to or in excess of 0.25 mm per hour, outdoor works will be deferred.

Month Date	1 Jan	. Feb	. Mai	r. Apr	. Ma	y Jun	. Jul.	Aug	g. Sep	. Oct	. Nov	. Dec	. Remarks
1	10		9	8	10	10	10	10				10	
2	10		8	10		10	8	8	10			10	
3	9		9	9		9	8	10	10			10	
4	10		8	10	10	10	10	10	10	10		9	
5	9	10	8	10	9	9	10	10	10	10		7	• • • • • • • • • • • • • • • • • • • •
Sub-Total	48	50	42	47	48	48	46	48	47	49	42	46	
6	9	9	10	10	10	10	10	10	10	10	10	8	
7	7	9	9	10	10	9	10	7	10	10	9	10	
8	8	8	9	10	9	9	10	10	9	10	10	10	
9 10	8 10	7	9	8	9	10	9	10	6	10	10	10	
		9	10	7	10	9	10	10	10	8	9	10	*******
Sub-Total	42	42	47	45	48	47	49	47	45	48	48	48	••••
11	9	8	10	10	10	10	8	10	10	10	9	10	
12	5	8	10	10	7	9	10	10	10	10	10	10	
13	10	10	9	10	8	10	10	10	9	10	10	10	
14	10	10	10	8	8	10	7	10	10	7	10	10	
15	5	10	10	10	10	10	10	10	10	10	10	10	
Sub-Total	39	46	49	48	43	49	45	50	49	47	49	50	•••••••
16	9	9	10	9	10	10	10	10	10	9	10	8	*************
17	10	10	8	9	10	10	9	10	9	7	10	10	
18	10	8	10	9	10	10	10	9	10	10	10	10	
19	8	10	10	9	10	10	10	10	10	7	7	10	
20	10	9	8	10	10	9	8	10	10	10	10	9	
ub-Total	47	46	46	46	50	49	47	49	49	43	47	47	• • • • • • • • • • • • • • • • • • • •
21	8	10	10	10	10	10	7	10	10	10	10	8	
22	8	6	10	7	10	10	10	10	10	10	10	10	
23	10	8	10	10	9	10	10	ĬŎ	10	10	10	7	
24	10	10	10	10	10	10	10	9	9	10	ğ	10	
25	10	10	8	9	10	8	9	8	10	10	10	10	
ub-Total	46	44	48	46	49	48	46	47	49	50	49	45	**************
26	9	10	8	7	7	10	10	10	7	8	7	10	*************
27	10	6	10	9	9	10	8	10	10	10	10	9	
28	10	7	10	10	5	9	8	10	8	4	8	Ź	
29 20	10	-	10	10	10	9	10	10	10	10	10	10	
30 31	9 10	-	10	10	10	10	10	10	10	7	9	10	
• • • • • • • • • • • •		-	7	-	10	-	10	10	-	10	-	10	
ıb-Total	58	23	55	46	51	48	56	60	45	49	44		**************
rand Total 2		251	287	278			•••••	• • • • • • •	• • • • • • •	•••••	• • • • • • •	• • • • • •	

No. 2 Estimated Possible Working Hours

Scheduled Daily Construction Working Hours: 10 hrs from 7:00 up to 17:00 If rainfall is equal to or in excess of 0.25 mm per hour, outdoor works will be deferred.

Year: 1986

Year: 19	00												
Month Date	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Remarks
1 2 3	10 8 10	8 10 10	7 8 8 9	5 10 10	10 10 10	9 10 10	10 10 10	10 9 10	10 10 9	10 10 8	9 9	10 10 10	
4 5	8 10	10 8	9	9	10 10	10 8	10 10	7 10	10	10 7	10 6	10 10	
Sub-Total	46	46	41	43	50	47	50	46	48	45	43	50	
6 7 8 9 10	7 7 5 10 10	9 10 9 10 7	7 6 10 10 9	7 10 10 8 9	10 10 10 9 10	10 10 9 10 8	10 10 9 10 10	8 10 9 10 10	10 9 10 9	10 10 10 10 9	6 9 6 9 8	10 10 10 10 8	
Sub-Total	39	45	42	44	49	47	49	47	48	49	38	48	• • • • • • • • • • • • • • • • • • • •
11 12 13 14 15	9 7 6 10 8	8 7 10 9 10	8 10 10 8 6	7 8 9 9	10 8 10 9	8 10 10 10 7	10 10 10 10 10	10 10 9 10 10	9 10 10 10 9	10 8 9 10 10	8 7 10 8 10	10 8 10 10 8	
Sub-Total	40	44	42	42	46	45	50	49	48	47	43	46	
16 17 18 19 20	10 8 8 7 7	7 10 10 10 10	10 7 10 9	10 10 10 8 10	10 10 10 10 10	9 10 8 10 10	10 10 10 10 10	10 10 10 10 10	6 10 10 10 10	10 10 10 10 10	10 9 10 9 7	8 5 10 8 10	
Sub-Total	40	47	45	48	50	47	50	50	46	50	45	41	
21 22 23 24 25	7 6 8 7 9	10 10 10 NA NA	8 7 7 10 10	8 10 10 10 10	10 10 10 10 10	10 10 10 10 10	10 8 10 10 10	10 10 10 9 9	10 10 7 10 9	10 10 10 10 10	8 10 9 10 10	9 10 10 10 8	
Sub-Total	37	- -	42	48	50	50	48	48	46	50	47	47	
26 27 28 29 30 31	6 9 10 10 10 8	NA NA NA	10 10 8 10 8	10 10 10 9 10	10 10 10 10 9 9	10 10 10 10 10	10 8 10 8 10 10	10 10 10 10 10 10	8 10 10 10 10	6 4 6 8 8	10 7 8 7 10	8 10 7 8 7 9	
Sub-Total	53	-	56	49	58	50	56	60	48	42	42	42	***************************************
Grand Total	255	-	268	274	303	286	303	300	284	283	258	274	

No. 3 Estimated Possible Working Hours

Scheduled Daily Construction Working Hours: 10 hrs from 7:00 up to 17:00 If rainfall is equal to or in excess of 0.25 mm per hour, outdoor works will be deferred.

T7	ea			•	•	•	~
Y	2	*	•		u	×	- 1
	~4		•		•	u	

Year: 1	1987												
Mont Date	ih Jar	n. Fel	b. Ma	г. Арг	r. May	Jun	ı. Jul	. Aug	g. Sep	. Oct	. Nov	. Dec.	Remarks
1 2 3 4 5	9 9 5 7 7) 7 5 10 7 8	7 9) 6 3 10	7 10 10	10	9 10 10 10 8	10 10 10	9 10 10	10 10 9 10 9	9 10 10 10	10 9 8 9 10	10 9 8 9	
Sub-Total	37	44	44	47	46	47	50	49	48	48	46	45	
6 7 8 9	10 9 9 9	7 8 4	10 10 10	10 8	8 10 10 10 8	7 8 9 10	10 10 10 8 10	10 10 10 10 10	10 10 10 10 10	10 10 10 10 10	10 8 8 8 10	5 6 7 8 8	
Sub-Total	47	34	48	43	46	44	48	50	50	50	44	34	•••••
11 12 13 14 15	10 10 10 4 7	7 9 10 9	10	10 6 9 9	7 10 9 9 8	10 10 10 10	10 10 10 10	10 10 10 10	10 10 10 10	10 8 10 10 10	10 10 9 7 7	6 10 10 10	
Sub-Total	41	45	49	42	43	50	50	50	50	48	43	44	••••••
16 17 18 19 20	8 10 7 8 9	8 8 6 10 9	10 9 7 9 8	8 10 10 10	10 8 8 10 10	10 10 10 10 10	10 10 10 10	10 10 10 10 10	9 10 10 10 10	10 9 10 9 10	8 9 10 9	10 10 8 9	•••••••
Sub-Total	42	43	43	48	46	50	50	50	49	48	46	45	•••••••
21 22 23 24 25	10 7 10 7 9	10 7 7 8 10	8 9 9 8 10	10 10 10 9	10 10 10 10	10 10 10 10	10 10 10 10	9 10 10 10 10	10 10 10 10 10	9 10 10 10	10 8 10 10	10 10 9 4 10	•••••••••••••••••••••••••••••••••••••••
Sub-Total	43	42	44	49	50	49	50	49	50	49	48	43	•••••••
26 27 28 29 30 31	9 5 10 10 8 9	7 7 10 - -	10 9 6 7 8 10	10 10 10 10 10	9 10 9 10 8 10	10 10 8 9 10	10 10 10 10 10 10	10 10 9 10 10	10 8 10 10 9	10 10 9 10 9	10 10 10 10 10	10 10 10 8 10	•••••••
Sub-Total	51	24	50	50	56	47	60	59	47	58	48	58	************
Grand Total	261	232	278	279	287	287	308	307	294	301	275	269	*******

No. 4 Estimated Possible Working Hours

Scheduled Daily Construction Working Hours: 10 hrs from 7:00 up to 17:00 If rainfall is equal to or in excess of 0.25 mm per hour, outdoor works will be deferred.

Year: 1988

Year: 19	00_												· -
Month Date	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Remarks
1 2 3 4 5	10 10 9 10	10 6 10 9 6	9 10 10 8 8	8 7 8 10 10	10 10 7 8 10	10 10 9 10 10	10 10 10 8 10	10 10 10 10 8	9 10 10 10	10 9 10 9 10	7 8 10 8 9	9 10 7 9 10	
Sub-Total	49	41	45	43	45	49	48	48	49	48	42	45	
6 7 8 9	10 7 10 9 10	3 10 10 10 10	9 10 10 10	10 8 10 10	10 10 10 10 10	10 10 7 10 10	10 10 10 10 10	9 10 10 10 10	10 10 9 10 10	10 10 10 9 10	10 8 9 10 10	10 9 9 6 10	
Sub-Total	46	43	46	48	50	47	50	49	49	49	47		
11 12 13 14 15	10 10 10 9 6	10 8 7 9 8	10 9 10 10	10 8 10 10	10 10 6 8 6	9 10 10 10	10 10 10 10 10	10 10 10 10 9	10 9 10 9	7 10 10 10 9	8 9 7 9	8 8 6 8 7	
Sub-Total	45	42	47	48	40	49	50	49	48	46	43	37	
16 17 18 19 20	10 8 8 8 8	7 8 10 8 9	9 10 9 10 10	10 10 10 10 10	10 8 10 8 10	10 10 10 8 10	6 10 10 10 10	10 10 10 10 10	10 9 10 10 10	10 8 8 8 8	10 10 10 10 10	9 4 4 4 4	
Sub-Total	43	42	48	50	46	48	46	50	49	43	50	25	
21 22 23 24 25	9 10 9 10 7	10 10 10 8 10	6 7 7 10 8	9 10 10 10 10	10 10 10 10 10	10 10 10 10 10	10 10 9 10 10	9 10 10 10 10	10 9 10 10 9	10 10 5 10	10 10 9 9	6 10 10 10	
Sub-Total	45	48	38	49	50	50	49	49	48	45	48	46	
26 27 28 29 30 31	8 7 10 10 9	9 10 10 10 -	6 10 8 6 4 10	10 10 10 7 8	9 10 10 9 10	10 10 10 10 10	10 10 10 10 10	10 10 10 10 10 10	9 8 9 9 10	10 10 10 6 10	6 9 9 9 10	10 8 10 10 8 10	
Sub-Total	54	39	44	45	58	50	60	60	45	56	43	56	
Grand Total	282	255	268	283	289	293	303	305	288	287	273	253	

No. 5 Estimated Possible Working Hours

Scheduled Daily Construction Working Hours: 10 hrs from 7:00 up to 17:00 If rainfall is equal to or in excess of 0.25 mm per hour, outdoor works will be deferred.

~~			•	•	•	^
Y	ear.	•	- 1	u	x	u
_	еаг	•		,	u	,

rear:									_					
Mont Date	th Ja	ın. Fo	eb. M	ar. A	.pr. λ	1ay J	un	Tul, A	Aug.	Sep	. Oct	. No	v. Dec	. Remarks
1				0					10	10				
2 3	10					10			10	9	10	8		
3 4	10 10				0				10	10	10	6		
5	10			0 0	9 8	8 9 1	8 10		10 10	10 10	8 10	8 10		
Sub-Total	49								50	49	48	38	46	***************
•••••	•••••	• • • • • • •	•••••	•••••	•	•••••	•••••			•••••				*******************
6	10			9	9				10	9	10	10	7	
7	10		5 1					10	9	10	10	10	10	
8	9		_						10	10	9	6	9	
9 10	10						0		10	10	9	9	7	
	8			5 1		8 1	0 1	0	10	10	10	8	8	
Sub-Total	47	39) 4	2 4	2 4	5 5	0 4	7	19	49	48	43	41	
11	8				9 1		0 1	0	0	10	10	10	10	
12	10				8 1				10	10	10	10	5	
13	9					8 1			0	10	10	10	10	
14	8 9				9 1				0	9	10	10	9	
15					9	9 1	0 1	0 1	0	10	10	9	8	
Sub-Total	44	41	47	4.	5 4	7 5	0 5	0 3	0	49	50	49	42	• • • • • • • • • • • • • • • • • • • •
16	10	5	9	10) 9) 1	0 1	0 1	0	10	5	9	9	
17	8	10					0 1		0	9	10	10	10	
18	7	10							0	10	10	9	9	
19	8	7							0	10	9	10	10	
20	7	5	10	10) 9	10) 1	0 1	0	10	8	10	10	
Sub-Total	40	37	48	49	48	5() 5	0 5	0	49	42	48	48	**************
21	8	10	8	10	8	10) [() 1	0	9	9	 10	10	***************
22	8	10	9	10					Õ	8	8	6	10	
23	9	9	8	10		10) [(9	9	10	10	
24	10	10	9	10				9 1	0	9	10	10	9	
25	8	10	10	9	10	8	10)	9	10	7	10	10	
Sub-Total	43	49	44	49	46	47	49) 4	ġ	45	43	46	49	********
26	9	9	10	10	10	10	9	······	· · · · · 7	10	10	9	10	• • • • • • • • • • • • • • • • • • • •
27	10	10	10	9	10	10				10	10	9	10 8	
28	7	10	10	10	10	10				10	10	10	8	
29	9	-	9	9	10	10				10	8	9	9	
30	10	-	8	10	10	10) 7	7	9	10	10	8	
31	10	-	10	-	8	-	10	10)	-	9	-	9	
ub-Total	55	29	57	48	58	50	<u>5</u> 8	54	1		<u></u> 57	47	52	*************
rand Total	278	231	286	277	290	294	302	302	····	90 1	 288	•••••	••••••	************
								302		,,,,,,	200	211	278	

No. 6 Recapitulation of Estimated Possible Working Hours and their Percentage to the Scheduled Construction Working Hours

Year	Month Decade	Jan.	Feb. N	Mar. A	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Remarks
1985	1 Hrs %	90 ditto		89	92	96	95	95	95	92	97	90	94	
	2 Hrs %	86 ditto		95	94	93	98	92	99	98	90	96	97	
	3 Hrs %	104 95			92 92	100 91	96 96	102 93	107 97	94 94	99 90	93 93	101 92	
	T Hrs %	280 2 90			78 93	289 93	289 96	289 93	301 97	284 95	286 92	279 93	292 94	
1986	l Hrs %	85 ditto		83	87	99	94	99	93	96	94	81	98	
	2 Hrs %	80 ditto		87	90	96	92	100	99	94	97	88	87	
	3 Hrs %	90 1 82			97 97	108 98	100 100	104 95	108 98	94 94	92 84	89 89	89 81	
	T Hrs %	255 82			74 91	303 98	286 95	303 98	300 97	284 95	283 91	258 86	274 88	
1987	1 Hrs %	84 ditto		92 !	90	92	91	98	99	98	98	90	89	
	2 Hrs %	83 dittos		92 !	90	89	100	100	100	99	96	89	89	
	3 Hrs %				99 99	106 96	96 96	110 100	108 98	97 97	107 97	96 96	101 92	
	T Hrs %				79 90	287 93	287 96	308 99	307 99	294 98	301 97	275 92	269 87	
1988	l Hrs %	95 dittos		91 9	91	95	96	98	97	98	97	99	99	
	2 Hrs %	88 dittos		95	8	86	97	96	99	97	89	93	62	
	3 Hrs %				94 94	108 98	100 100	99 90	109 99	93 93	101 92	91 91	102 93	
	T Hrs %				33 94	289 93	293 98	303 98	305 98	288 96	287 93	273 91	253 82	
1989	1 Hrs %	96 dittos		90 8	36	91	97	95	99	98	96	81	87	
	2 Hrs %	84 dittos		95 9	94	95	100	100	100	98	92	97	90	
	3 Hrs %)7)7	104 95	97 97	107 97	103 94	94 94	100 91	93 93	101 92	
	T Hrs %			36 2° 92 9	17 : 92	290 94	294 98	302 97	302 97	290 97	288 93	271 90	278 90	

					No.8	
			-	في و سببيد شيد د		
4						
				- 1 - 1	: :	
		<u> </u>				
······································	<u></u>	<u> </u>	٠ ج	\$ 5		· · · · · · · · · · · · · · · · · · ·
		:	8	30- 5-y		er e ž
		• ;	· · · · · · · · · · · · · · · · · · ·			1
					· · · · · · · · · · · · · · · · · · ·	140
		•				<u> </u>
	1.1					
				///		2
			[-]-[-	/		
		//				
		- F/				360
N MM/hour						~
<u> </u>		///	;			
	·········· ///					180
Ě		· · · · · · · · · · · · · · · · · · ·	•		: .	0.
EN	· · · · / ///	• .	• • • •			
	/ <i>///</i>			·	İ	
./ FAL	///					··· 6
Ni di						45
2 ///				en e		
BE BE	. : .					
PROBAL		:		4		.
Z	• •					
• 4.	•	•				
ъ ///						
S / //-/						
CURVE	*** 	- · · · · · · · · · · · · · · · · · · ·				
ਰ ////	• • •					
				er ee .		
1 1			•	or or or experience of the second	1.1.	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	• • •	•	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	The state of the s		
19 2000 1000			÷	*** - == 4 -	e e jar	
ш,				•		,.,
	1					
and the second s	- •	•	1	i .	1	, !
MM/hour 300 200	80 60 40	30	5	Ŋ	m	
	- - -	E 0	-		177	
				The second of the second secon		

V. 11 "1

MS At Teally offer again, a

Appendix C2 Hydrology

- 1. General
- 2. River System of the Cihideung River
- 3. River Surveying Results of the Cihideung River at the Project Site
- 4. Recapitulation of Records for Irrigation Intake Water at the Cihideung River
- 5. Available River Water at the Project Site
- 6. Estimate of Flood Discharge of the Cihideung River
- 7. Design flood and Design Floor Elevation of the Pump Station under Consideration

Fig. C2-1 Fig. C2-2 Fig. C2-3 Fig. C2-4	Catchment Area of the Cihideung River River System of the Cihideung River River Profile in the Catchment Area Discharge Curve of the Cihideung River at Pump Station Site under Consideration
Fig. C2-5	Curve of the Relationship between Rn and QN
Table C2-1 Table C2-2	Calculated Flood QN by Der Weduwen Formula Calculated Probable Flood Discharge
Drawings C2-1	Plan, Profile, Typical Cross Section and Flood Discharge Curve of the Cihideung River
Drawings C2-2	Cross Section of the Cihideung River (1/2)
Drawings C2-3	- do (2/2)

1. General

The water source of the Cihideung River is available at the Project site. It, therefore, is necessary to study on availability of drought discharge in the dry season and on recurrence of flood, river capacity of flood passing in relations to flood water level and discharge of the Cihideung River.

During the field survey, efforts have been made for collection of hydrological data of the Cihideung River at the water source section of Bogor Branch Office, West Java Provincial Public Works. Irrigation intake water records at the Cihideung weir were collected for only 1988 and 1989. Also, river surveying for plan, profile and cross section of about 400 m distance of the Cihideung River at the Project site was

carried out by the survey team. The results were studied subsequently for flood discharge estimate as well as location of future pump station.

2. River System of the Cihideung River

The color topographic maps with scale of 1/50,000 (old print) and the black and white copies of topographic maps with the same scale have been used for study of the catchment area.

The Cihideung River Originates the Salak mountains, accurately in the Peak (EL. 2,180 m) which locates on the connected ridge between the Salak mountain (EL. 2,211 m) and the Sumbu mountain (EL. 1,916 m). It flows down toward north in collecting drained water from its tributaries developed on the northern slope of the Salak mountains and reaches to the Project site after run about 18 km. The catchment area is 35 km² showing nearly a long elliptic shape on the map.

The Project site and catchment area of the Cihideung River is attached as Fig. C2-1 and the river system is illustrated in Fig. C2-2. As seen from Fig. C2-2, there are nine (9) tributaries, and the catchment areas are estimated at 35 km², 16 km², 15 km² and 13 km² at the sites of the pump station, the Cihideung weir, the Cianyar weir and the Cisunar weir, respectively.

River profile in the Catchment area has been prepared as shown in Fig. C2-3.

3. River Surveying Results of the Cihideung River at the Project Site

During the field survey period, the river route surveying for plan, profile and cross section was carried out for about 400 m distance of the Cihideung River.

The plan, profile and typical cross sections are given in Drawing C2-1 to -3.

The typical flow section is estimated as follows:

1. Bottom width at EL. 209.0 m 5.8 m 2. Width at EL. 211.6 m of the crest of Cihideung Supply Weir: 22 m 3. Width at EL. 213.6 m 34 m 4. Side Slope : 3 to 1 5. River bed slope (average) -0.00725 6. Damming up height at the Cihideung Supply Weir 2.6 m (EL. 211.6 m - EL. 209 m) 7. Distance between Cihideung Supply Weir and pump station 255 m 8. Roughness coefficient of Manning Formula 0.020

Utilizing the above survey results, river capacity on flood passing in relation to water level and discharge has been calculated and shown in a curve as given in Fig. C2-4.

4. Recapitulation of Records for Irrigation Intake Water at the Cihideung River

The Water Resource Division, Bogor Branch Office of the West Java Provincial Public Works (SBDPUJB) is the responsible agency for water use of the Cihideung River.

Irrigation intake water and spilled water at the Cihideung Weir site is being record by the gate master at every morning and evening.

In order to know the status of river discharge, daily records from February, 1988 to December, 1989 have been collected with kind cooperation of the above SPBPU.

All the data were evaluated and arranged in a form of mean flow during pentad period as attached in Table C2-1.

Pentad Mean Irrigation Intake Flow and Spilled Flow Table C 2-1 at the Cihideung Irrigation Weir (Catchment Area = 16 km^2)

(Unit: lit/sec)

_			19	88		1989				1988					1989			
	1	 Intake			Note Intake	Spill	Total	Note_]	ntake	Spill	Total	Note Intake	Spill	Total	Note	
			<u></u>		440	528	968		J	1	189	0	189	296	384	680		
J	I	11. T	3-4- A-	-:1-1-1-	428	152	580		•	2	195	634	829	305	393	698		
	2	NoT	Data Av	anable	423	472	895			3	179	0	179	300	275	575		
	3 4				432	104	536			4	176	0	176	294	90	384		
	5				452	546	998			5	163	0	163	305	435	740		
	6				485	0	485			6	198	0	198	302	0	302		
	M				443	300	743			<u>M</u>	183	106	<u> 183</u>	300	263	563		
F	I	315	378	693	322	191	513		Α	1				251	0	251		
•	2	329	178	507	324	262	586			2	No I)ata Ava	ilable	275	0	275		
	3	319	214	533	311	369	680			3				252	0	252		
	4	317	0	317	308	202	510			4				270	0	270		
	5	355	116	471	274	0	274			5				252	202	457		
	6	354	985	1,339	214	205	419			6				260	164	424		
	M	332	312	644	292	205	497			M				260	61	321		
M	1	223	1,024	1,247	306	0	306		S	1	239	0	239	249	0	249		
-	2	276	3,034	3,310	313	0	313			2	240	0	240	263	0	263		
	3	270	2,596	2,866	318	0	318			3	232	0	232	247	0	247		
	4	255	1,402	1,657	314	0	314			4	239	0	239	251	0	251		
	5	264	920	1,184	319	104	423			5	243	0	243	241	0	241		
	6	271	1,587	1,858	319	1,434	1,753			6	266	0	266	264	0	264 253		
	M	260	1,761	2,021	315	256_	571			M	243	0_	243	253				
Α	1	266	325	591	313	943	1,256		О	i	265	1,165		230	366	596		
	2	265	960	1,225	313	281	594			2	261	1,328	1,589	233	188	421		
	3	267	1,044	1,311	301	0	301			3	257	2,611	2,868	244	1,548	1,792		
	4	259	342	601	307	864	1,171			4	273	1,178	1,451	240	3,860	4,100		
	5	257	274	531	300	90	390			5	279	1,370	1,649	240	2,732	2,972		
	6	254	0	254	289	0	289			6	247	563	810	242	3,140	3,382		
	M	261	491	752	304_	363	667			<u>M</u>		1,369	1,633	238	1,972	2,210		
M	1	263	576	839	300	779	1,079		N	1	284	435	719	375	8,080	8,455		
	2	241	474	715	309	868	1,177			2	245	0	245	298	388	686		
	3	236	461	697	295	866	1,161			3	245	0	245	361	3,336	3,697		
	4	269	435	704	317	967	1,284			4	287	594	881	363	6,256	6,619		
	5	264	90	354	306	860	1,166			5	287	563	850		224	529		
	6	261	128	389		1,357	1,678			6	258	0	258	304	0	304		
	M	256	361	617	308	950	1,258			M	268	265	<u>533</u>	334	3,047	3,381		
J	1	251	0	251	329	1,051	1,380		D	1	267	176	443		11,447	11,806		
	2	260	628	888	324	638	962			2	259	90	349			2,170		
	3	253	156	409	336	0	336			3	288	269	557					
	4	230	0	230	270	0	270			4	291	370	661			1,596		
	5	207	0	207	282	0	282			5	253		253		458	859		
	6	198	0	198	288	0	288			6	258	0	258		6,244			
	<u>M</u>	233	131	364	305	281	<u>586</u>			M	269	151	420	387	3,521	3,908		

Note

- Source: Seksi BOGOR DPU. Java Barat. (SBDPUJB)
 Flow is estimated on the basis of overflow depth read at morning and evening.
 M means the average in the month.

5. Available River Water at the Project Site

As seen from Table C2-1, the spilled flow at the Cihideung weir is high in the rainy season but very small or zero in both dry season and in no rain pentad in rainy season.

While the water shortage of the irrigation experimental farm, IPB concentrates in the dry season, much water release from the Cihideung Weir can be unexpected.

So, run-off from the tributaries: Cimoboran, Cirandi, Cibeurem, Cikiruk, Cipakar and Cisasah becomes to the reliable water source for the Project. Such remaining part of the catchment area in downstream of the Cihideung Weir is 19 km² in total at the pump station site under consideration.

The run-off in the drought period available for the Project is estimated as follows:

1. The lowest run-off at the Cihideung Weir, : 163 lit/sec 5th pentad July, 1988 (CA = 16 km²)

2. Specific run-off of the above : 10 lit/sec/km²

3. Estimated lowest run-off from the remaining catchment : 133 lit/sec

 $(CA = 19 \text{ km}^2, \text{ safety factor } 0.7)$

4. Irrigation water requirements for the Cihideung : 115 lit/sec irrigation system from the Cihideung Supply Weir (IA = 64 ha, Unit W. R. = 1.8 lit/sec/ha)

5. Available water source at the Pump Station Site : 18 lit/sec (Item 3 - Item 4)

From the above, it is concluded that river discharge available for the Project is 18 lit/sec during the drought period.

6. Estimate of Flood Discharge of the Cihideung River

The catchment area of the Chihideung River is estimated at 35 km² at pump station site under consideration read on the Topographic Map with the scale of 1:50,000.

Also, the following features of the catchment area are found:

- the highest elevation
- the lowest elevation
- the longest river length
- the average river slope

EL 2,000 m

EL 190 m

L = 17.8 km

910/16,000 = 0.0569

The Chihideung River system and profile have been illustrated as shown in Fig and Fig .

The Der Weduwen flood formula has been applied for this area as follows:

$$Qn = \alpha \cdot \beta \cdot qn \cdot A$$

in which,

$$\alpha = 1 - \frac{4.1}{\beta \cdot qu + 7}$$

$$\beta = \frac{120 + (\frac{t+1}{t+9}) A}{120 + A}$$

$$qu = \frac{Rn}{240} \cdot \frac{67.65}{t+1.45}$$

$$t = 0.25 \cdot L \cdot Q^{-0.125} \cdot I^{-0.25}$$

and where,

 $Qn \text{ or } Q = N - Yr \text{ flood discharge in } m^3/\text{sec}$ Rn = N - Yr design rainfall in mm/day

 α or F = run-off coefficient

 β or B = areal reduction coefficient for the catchment rainfall

qu or Qu = heavy rainfall given in m³/sec per km²
A = catchment area in km² upto 100 km²
t = duration of heavy rainfall in hours

L = river length in km

average gradient of river or terrain, for determination the upstream 10 % of the length is excluded. Height difference and length are taken from a point 0.1 L from the upstream catchment boundary.

Using the above figures of the Catchment, the relationship between Rn and QN

have been calculated with the try and error method by assuming QN as follows.

Calculated Flood Qn by Der Weduwen Formula

Based on the above calculation, curve of the relationship between Rn and QN for flood discharge of the Cihideung River has been shown in Fig. C2-5.

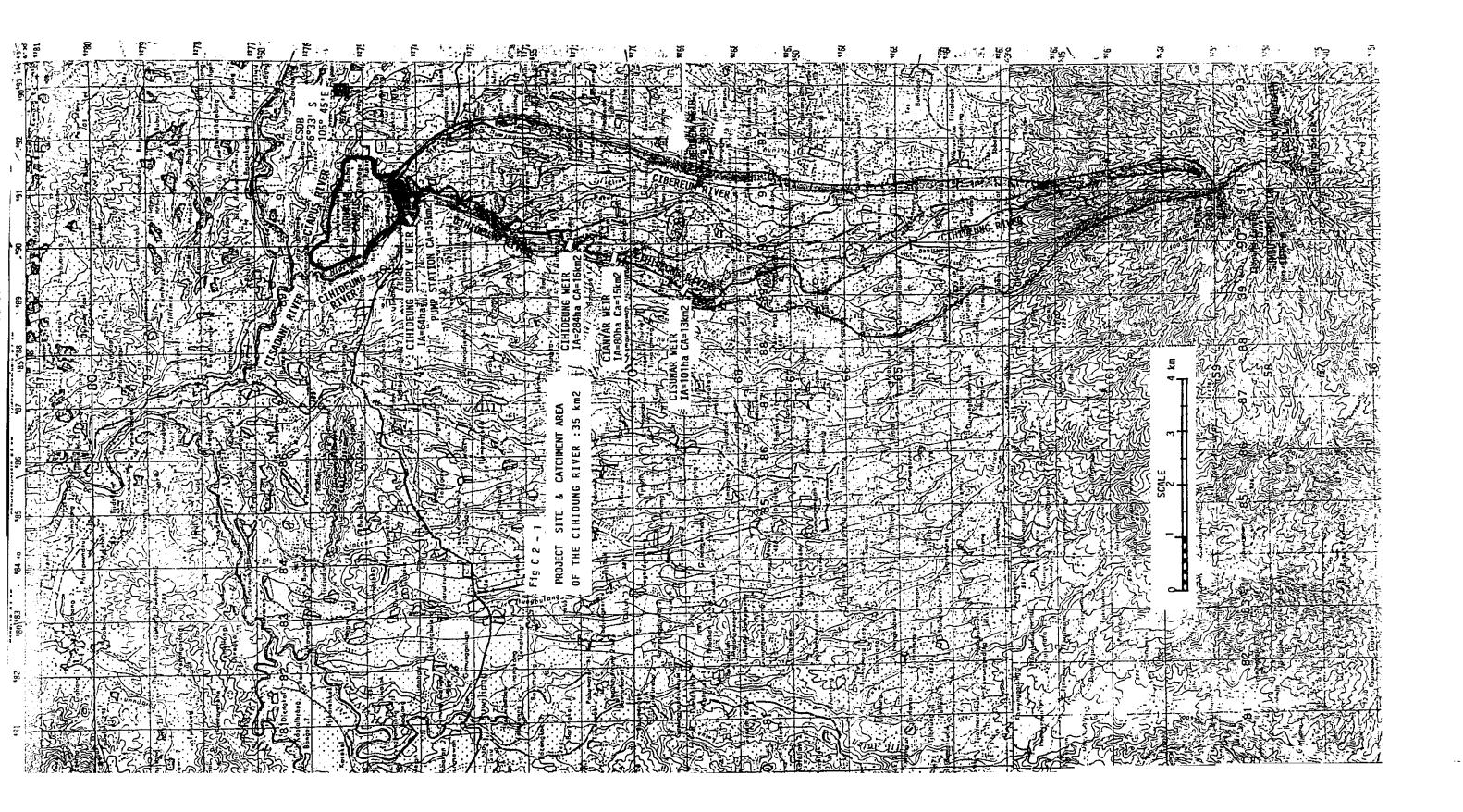
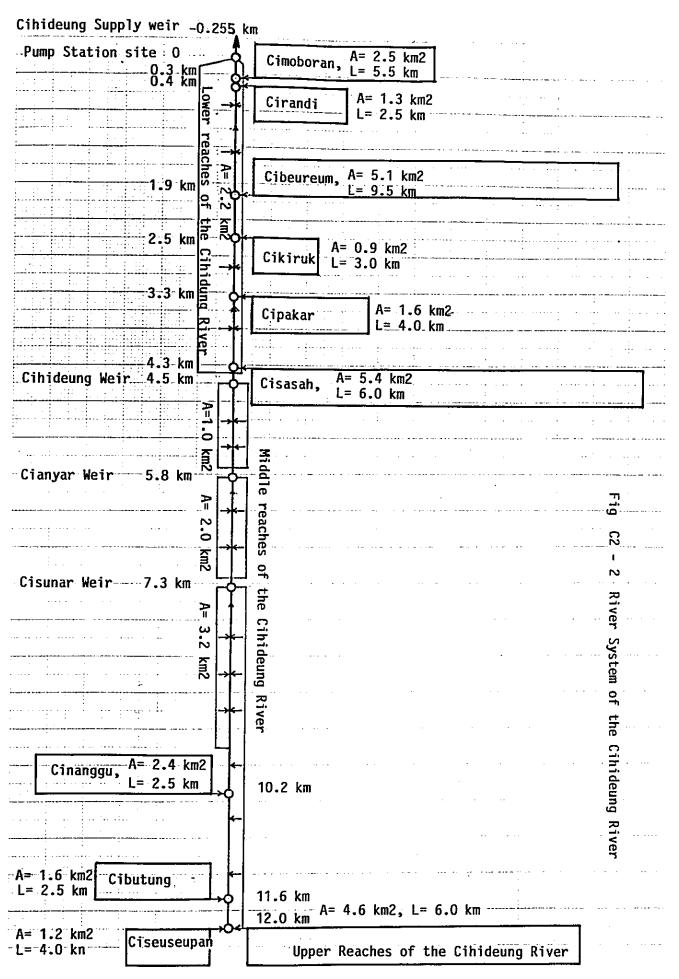
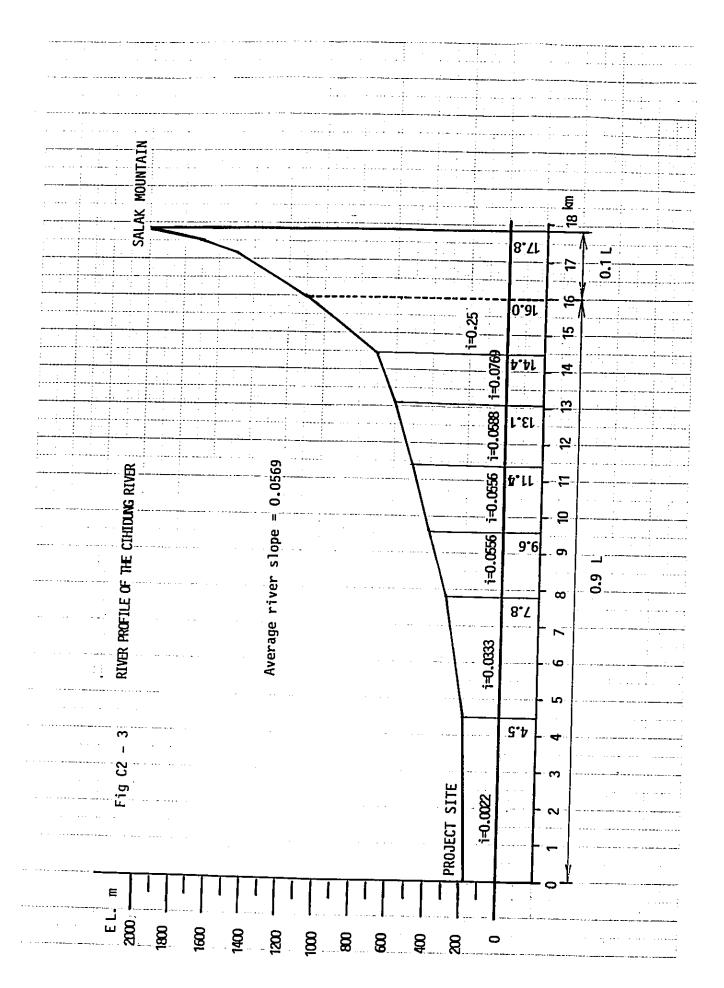
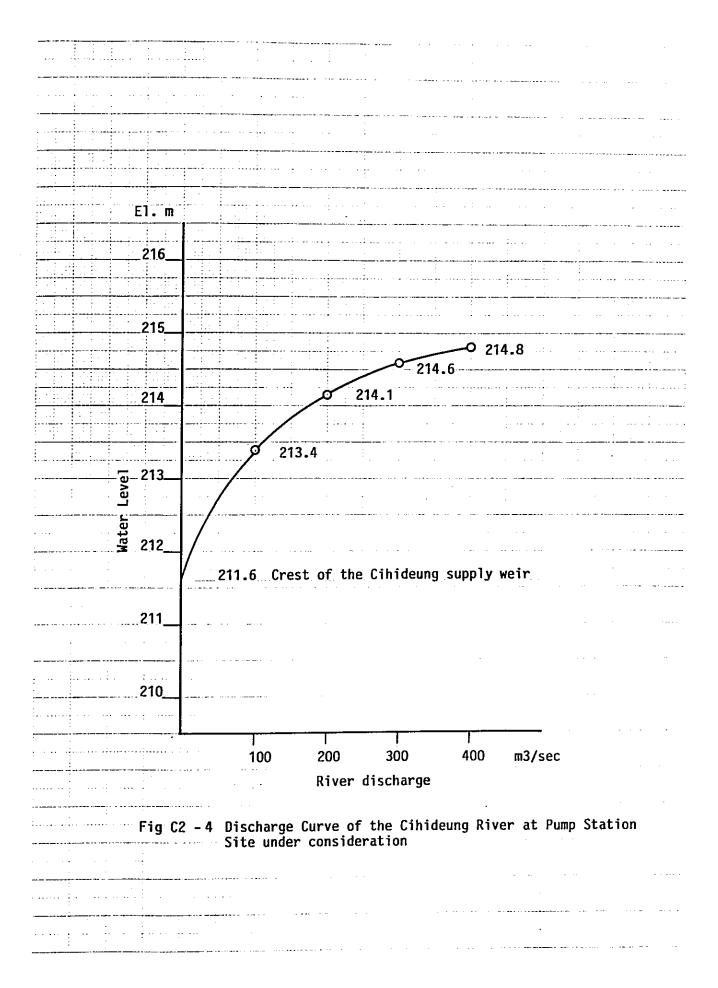
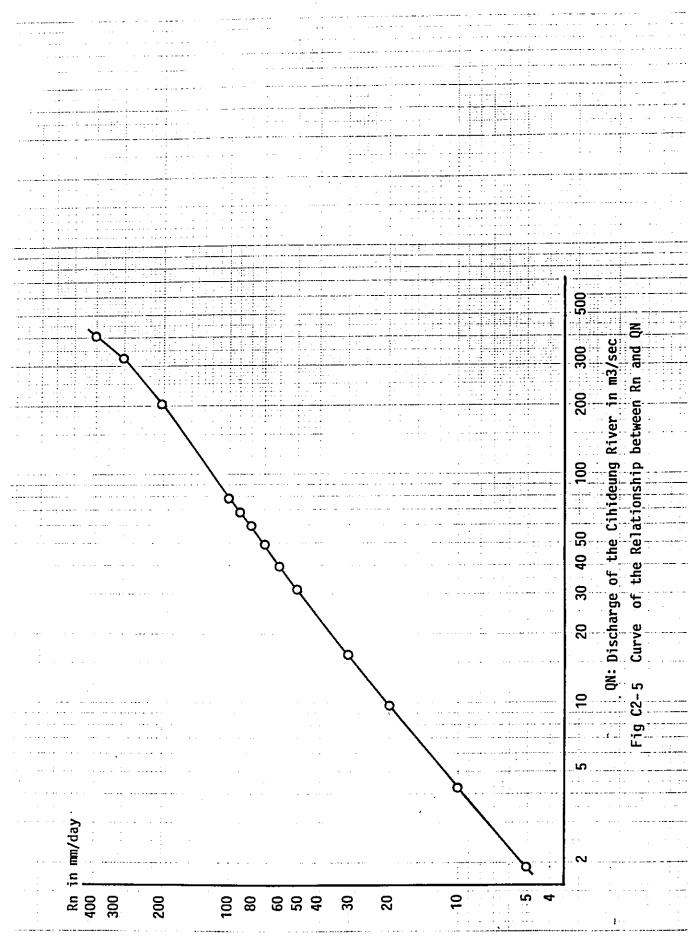

By applying the Der Weduwen flood formula with parameters of probable daily rainfall (mm/day) for annual and every monthly maximum rainfall, flood discharges of the Cihideung River have been estimated as shown in Table C2-2.

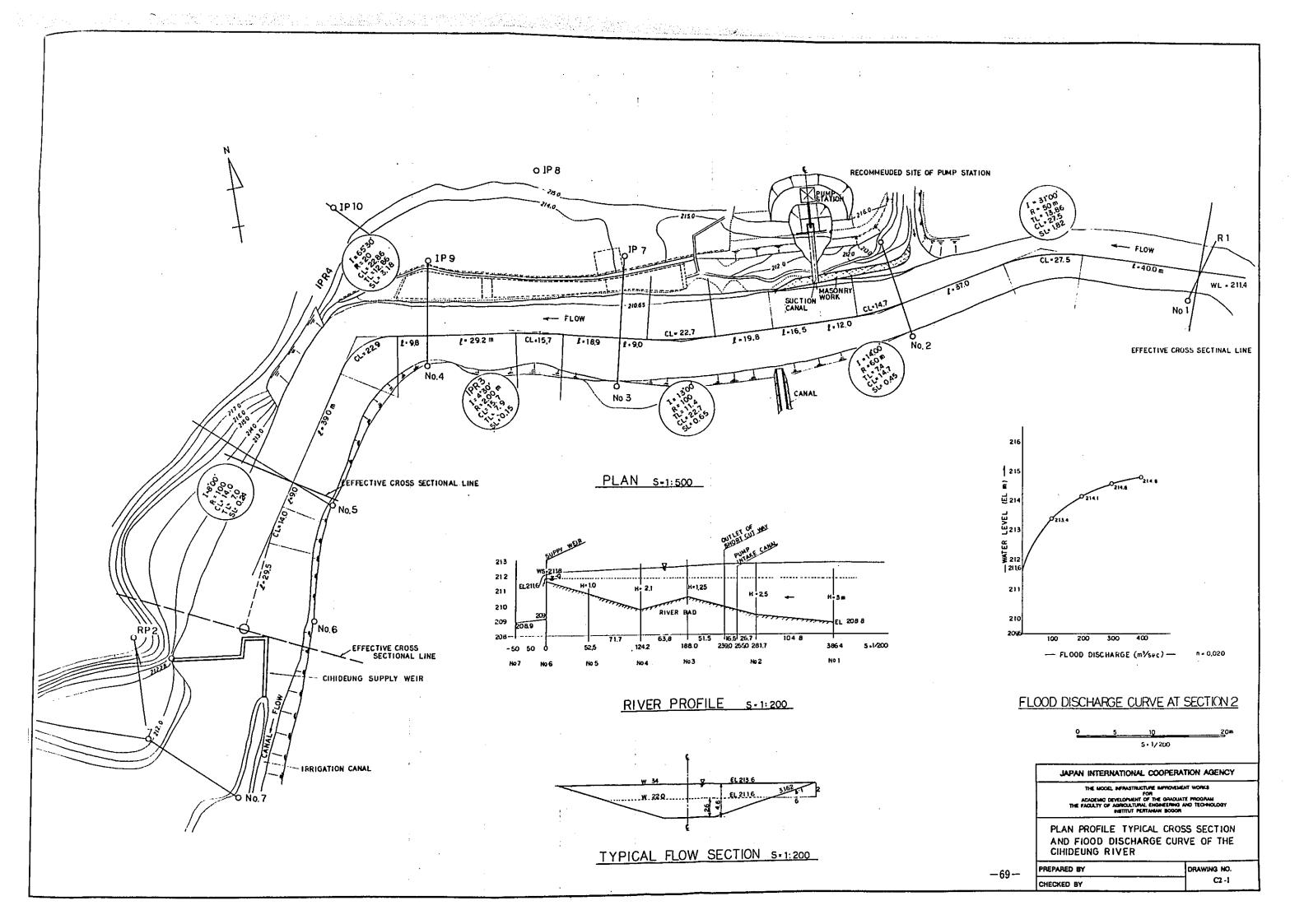
Table C2-2 Calculated Probable Flood Discharge

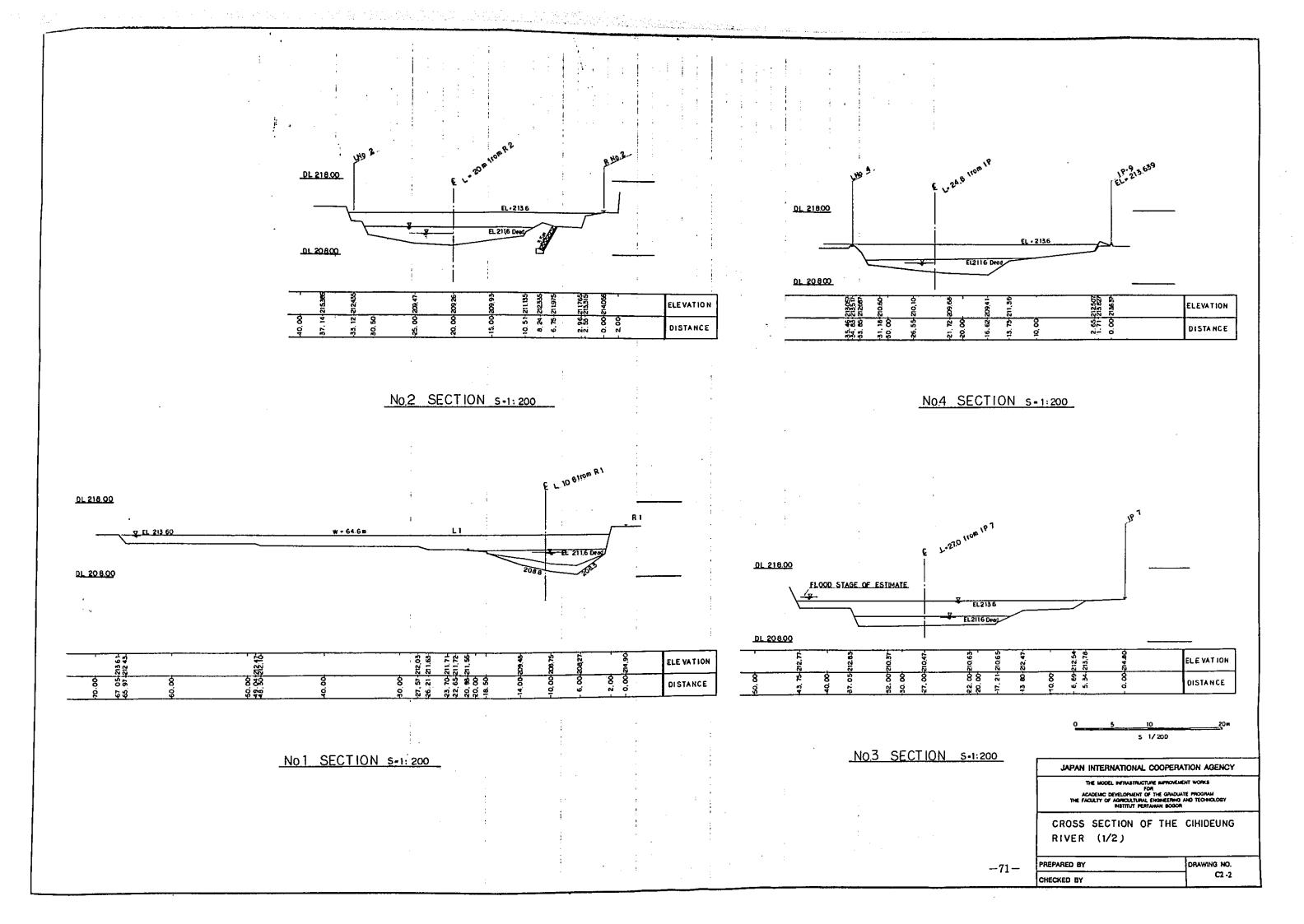

Return Period	Item	ıs Unit	Аппиа	Jan.	. Feb	. Mar	Apr	. May	Jun.	Jul.	Aug	. Sep.	. Oct.	Nov	Dec.
2-Yr	Rn	mm/day	116.5	65.6	64.8	62.5	71.9	68.2	65.1	66.2	58.2	65.1	64.5	54.9	57.2
	Qn	m³/s	97.1	44.5	48.3	41.7	50.3	46.9	44.0	45.0	37.9	44.0	43.5	35.1	37.0
4-Yr	Rn	mm/day	145.4	83.5	98.9	80.6	85.4	94.5	90.0	98.0	84.2	90.8	82.9	72.2	84.1
	Qn	m³/s	131.5	61.6	77.6	58.7	63.6	73.0	68.3	76.7	62.3	69.1	61.0	50.6	62.2
5-Yr	Rn	mm/day	153.8	88.7	108.7	85.9	89.3	102.1	97.2	107.2	91.8	98.2	88.3	77.2	91.9
	Qn	m³/s	141.9	66.9	88.3	64.1	67.5	81.1	75.8	86.7	70.1	76.9	66.5	55.4	70.2
10-Yr	Rn	mm/day	178.5	103.9	137.8	101.3	100.9	124.6	118.5	134.4	114.0	120.1	104.0	92.0	114.9
	Qn	m ³ /s	173.7	83.0	122.2	80.2	79.8	106.5	99.4	118.1	94.3	101.2	83.2	70.3	95.3
20-Yr	Rn	mm/day	202.2	118.6	165.7	116.1	112.0	146.1	138.8	160.4	135.3	141.1	119.1	106.2	136.9
	Qn	m³/s	205.5	99.5	157.0	96.7	92.0	132.3	123.4	150.3	119.2	126.2	100.1	85.6	121.1
50-Yr	Rn	mm/day	232.9	137.5	201.9	135.3	126.3	174.0	165.2	194.1	163.0	168.4	138.6	124.5	165.5
	Qn	m ³ /s	248.3	121.8	205.1	119.2	108.5	167.8	156.4	194.5	153.6	160.5	123.1	106.3	156.8
100-Yr	Rn	mm/day	255.9	151.7	229.0	149.7	137.0	194.9	185.0	219.4	183.6	188.8	153.2	138.3	186.8
	Qπ	m ³ /s	281.3	139.3	242.8	136.8	121.2	195.6	182.3	229.3	180.5	187.4	141.2	122.8	184.7

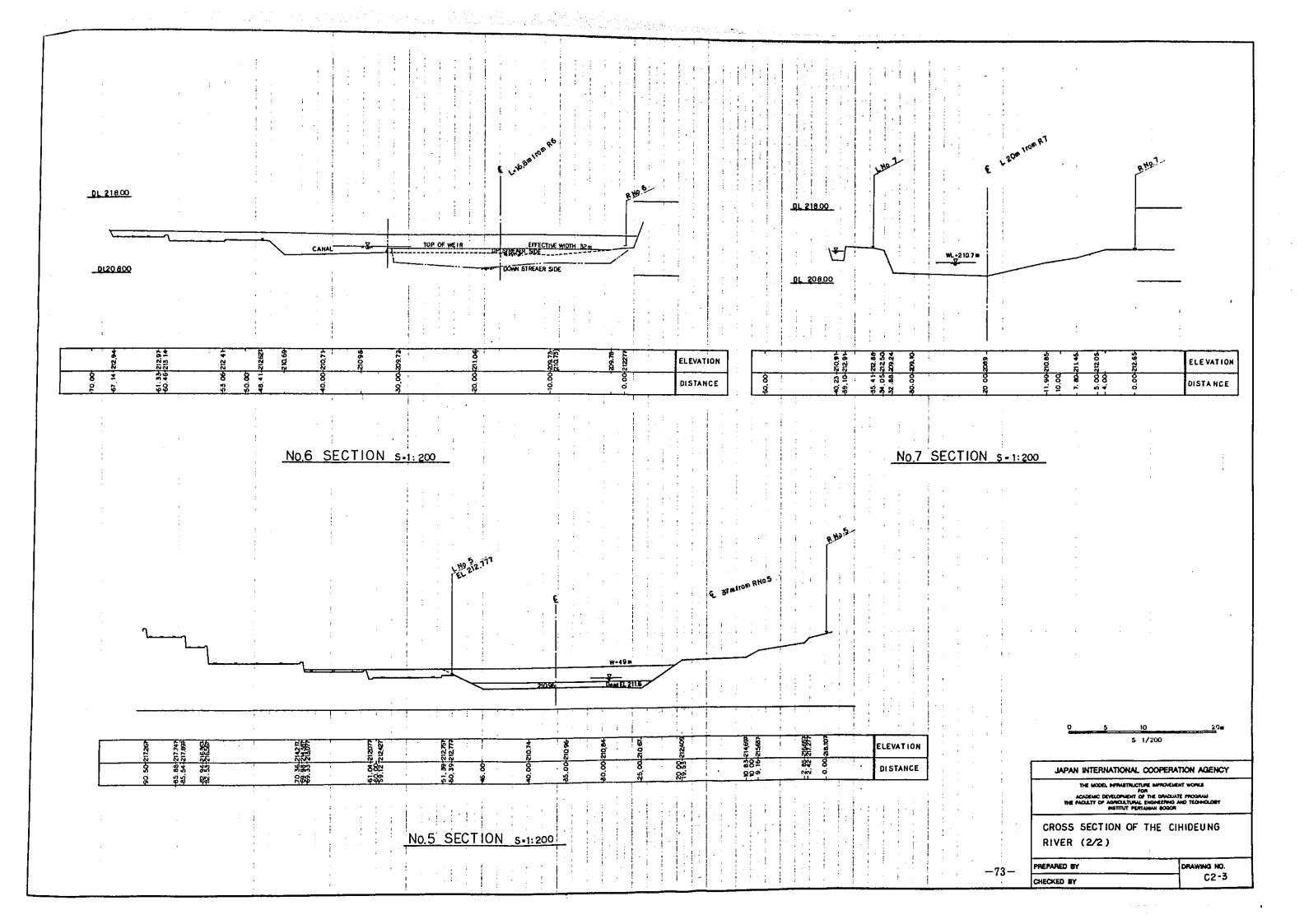

7. Design Flood and Design Floor Elevation of the Pump Station under Consideration


As seen from Table C2-2, 100-Yr flood is 255.9 m³/sec and 229.0 m³/sec for annual data and February data, respectively. Thus, the design flood for the pump station is decided to be 260 m³/sec. Accordingly, design high water level is found to be EL 214.6 m so that the design floor elevation of the pump station is determined to be EL. 215.0 m in adding 0.4 m allowance to the designed high water level.









Appendix C3 Soil Mechanics

- 1. General
- 2. Result

Fig. C3-1 Grain Size Accumulation Curve

Fig. C3-2 Plasticity Chart

Table C3-1 Results of Soil Physical Characteristics Determination

General

During the field survey, one test pit with dimensions of 1.5 m width, 1.5 m length and 1.0 m depth was digged at the south west part of the coconut trees growing area.

Two soil samples were taken from 0.5 m (No. 1) and 1.0 m (No. 2) depth and tested the soil mechanic characteristics at the Soil Laboratory of Soil Physics and Mechanics, Faculty of Agricultural Technology, IPB Darmaga Campus.

The tested items were:

- (1) mechanical analysis including measurement of soil moisture ratio, hydrometer test and grading by sieve
- (2) plastic limit and liquid limit

The test was carried out by Messers M. Azron D., Asep. S., Erizal who are counterparts of JICA Expert Dr. Seiji Sudo.

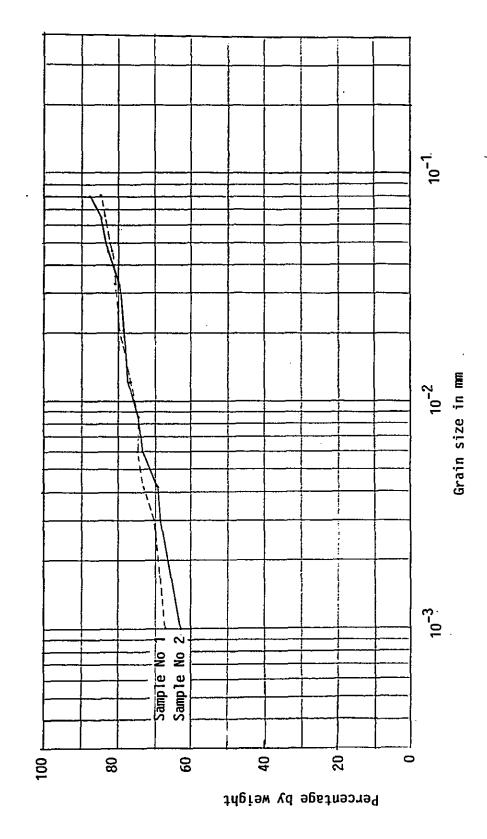
2. Result

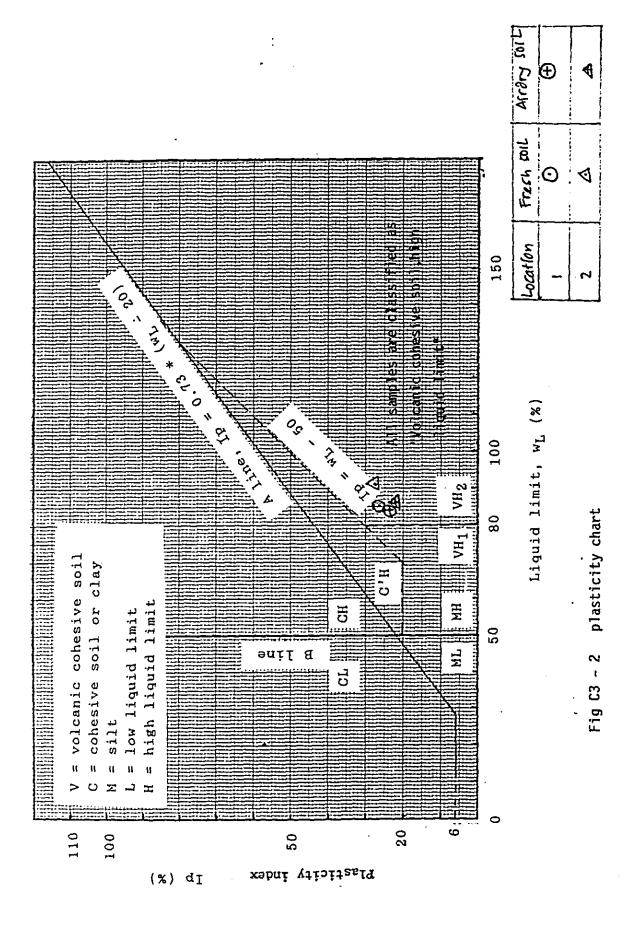
The test results have been arranged in Table C3-1 and Fig. C3-1 and Fig. C3-2.

As seen from the data, the soil has been classified as volcanic cohesive soil with high liquid limit (VH2).

Table C3-1 Results of soil Physical Characteristics Determinations

L	ocation : Leuwikopo, IPB Dar	maga Campus Bogor	
	Characteristics	Samp	le No.
_		1	2
1.	Natural water content, Wn (by weight, %)	59.70	62.34
2.	Atterberg limit:		·
	Air dried soil: - Plastic limit, Wp (%) - Liquid limit, Wl (%) - Plasticity index, IP (%) Fresh soil: - Plastic limit, Wp (%) - Liquid limit, Wl (%) - Plasticity index, IP (%) Plasticity Chart: Volcanic cohesive soil (60.92 84.10 23.18 59.67 85.70 26.03 VH2)	63.54 85.80 22.26 63.52 91.00 27.48
3.	Specific gravity, Gs	2.64	2.70
4.	Texture (JSF Grading):		
	 Plastic limit, Wp (%) Liquid limit, WI (%) Plasticity index, IP (%) Triangle coordinates: fine soil, F 	73.80 10.30 15.90	71.10 15.60 13.30
5.	Data sheets: enclosed		


Fig C3 - 1 Grain size accumulation curve


sand 15.00 13.30

clay 73.80 71.10

> Sample No 1 Sample No 2

silt 10.30 15.60

Appendix C4 Irrigation & Drainage

- 1. Determination of the basic years for planning and design of irrigation facilities
- 2. Calculation of crop water requirements
 - 2.1 Reference crop evaporation
 - 2.2 Cropping plan on irrigation experiment fields
 - 2.3 Crop Coefficients (Kc)
 - 2.4 Crop Water requirements
- 3. Calculation of Water Balance
- 4. Drainage plan
 - Table C4-1 Calculation of Probability of Non Exceedance on Dry Season Rainfall at the CSDB: 4 months, July, August, September, October
 - C4-2 Calculation of Probability of Non Exceedance on Annual Rainfall at the CSDB
 - C4-3 Calculation of Probability of Exceedance on Annual Rainfall at the CSDB
 - C4-4 Estimated Reference Evapotranspiration: ETo by applying FAO: Pan Evaporation Method
 - C4-5 Estimated Crop Water Requirements of the Experimental Farm by applying FAO: Pan Evaporation Method (Case A)
 - C4-6 Estimated Crop Water Requirements of the Experimental Farm by applying FAO: Pan Evaporation Method (Case B)
 - C4-7 Calculation of Water Balance in the Wet year of 1977 which is corresponding to 5 years Return Period in the Probability of Exceedance for Data of Annual Rainfall at the CSDB (Case A)
 - C4-8 Calculation of Water Balance in the Dry year of 1988 which is corresponding to 5 years Return Period in the Probability of Non Exceedance for Data of Annual Rainfall at the CSDB (Case A)
 - C4-9 Calculation of Water Balance in the Wet year of 1977 which is corresponding to 5 years Return Period in the Probability of Exceedance for Data of Annual Rainfall at the CSDB (Case B)
 - C4-10 Calculation of Water Balance in the Dry year of 1988 which is corresponding to 5 years return Period in the Probability of Non Exceedance for Data of Annual Rainfall at the CSDB (Case B)

1. Determination of the basic years for planning and design of irrigation facilities

Probability analyses have been made on the dry season rainfall of 4 months: July, August, September, October and annual rainfall obtained data at the Climatological Station Darmaga Bogor (CSDB), by the Iwai method as shown in Tables C4-1 to 3, respectively. As the results, the years of 1988 and 1977 have been decided as the basic years for irrigation planning and design.

It has been found that the year of 1988 is regarded as the dry year having the probability of non-exceedance with 5 years return period for annual rainfall but with 10 years return period for dry season rainfall, while the year of 1977 as the wet year having the probability of exceedance with 5 years return period for annual rainfall but having the probability of non-exceedance with 6 years return period for dry season rainfall.

Moreover, the longest dry consecutive days during one year have been calculated with the negligence of a light rain less than 5 mm/day based on the daily rainfall data of 13 years from 1977 through 1989 obtained at the CSDB and arranged as follows:

The Longest Dry Consecutive Days during One Year at the CSDB

Year	Days	Period	Remarks
1977	23	3 to 25 July	Basic year
1978	10	15 to 24 July	
1979	19	6 to 25 May	
1980	15	19 August to 2 September	
1981	15	5 to 19 August	
1982	34	15 August to 17 September	Maximum
1983	20	23 July to 11 August	
1984	18	16 June to 3 July	
1985	9	8 to 20 December	Minimum
1986	10	15 to 24 August	
1987	25	3 to 27 August	
1988	21	22 August to 11 September	Basic year
1989	17	15 April to 1 May	David your
Mean	18.1		
σ	6.6		

The probability of non-exceedance for the above data is also analyzed with the Gamble method. It was found that the years of 1977 and 1988 correspond to the return period of 4 years and 3 years, respectively.

From the above, it was concluded that the decided basic years are adequate to use for irrigation planning and design of this project.

2. Calculation of crop water requirements

Crop water requirements of upland crops and paddy were estimated by applying FAO: Pan Evaporation Method: Irrigation & Drainage paper No.24 to the evaluated data of the observation records at the CSDB. Most of the data are shown in Appendix C1 Climate.

2.1 Reference crop evapotranspiration

Probability of non-exceedance on the data of monthly mean pan evaporation has been analyzed with the application of the Iwai method. The results are as follows:

(unit: mm/day) Return Period Return Period <u>5-yr</u> <u>10-yr</u> <u>5-yr</u> <u> 10-yr</u> January 3.0 3.4 July 3.6 3.9 February 3.7 3.4 August 4.1 4.5 March 3.6 4.0 September 4.4 4.9 April 3.7 4.0 October 4.3 4.7 May 3.5 3.8 November 4.0 4.3 June 3.4 3.6 December 3.6 3.8

Reference crop evapotranspiration ETo has been estimated using the data of monthly mean temperature, wind velocity, relative humidity and the pan evaporation with 10 years return period.

The Class A evaporation pan has been placed in the dry surface area at the windward side distance of about 25 m at the CSDB, therefore the pan factor (Kp) to be used in the calculation was decided to be 0.79 throughout one year.

The estimated reference crop evaporation ETo are shown on Table C4-4.

2.2 Cropping plan on irrigation experiment fields

With consideration to the natural climate of Bogor area, cropping plans were studied for upland experiment fields of 5,500 m² and paddy experiment fields of 3,150 m², respectively.

Two kinds of cropping have been chosen for this study. The former consists of 3 times upland cropping on upland fields and 3 times paddy cropping on paddy fields in one year as Case A, and the later is comprised of 3 times upland cropping on upland fields and 2 times paddy cropping in the rainy season and 1 time upland cropping in the dry season on paddy field as Case B.

From the tendency of rainfall distribution, it was found that the start of paddy cropping will be at the beginning of November, so, this has been taken into the both cases.

Paddy variety is assumed to be the improved varieties such as Cisadane, Knung Aceh, of which the growing periods are 130 - 140 days.

Corn of 133 days, fruit vegetable of 133 days (such as cucumber, eggplant, melons, tomatoes and peppers) and soybeans of 92 days are chosen for upland cropping on upland fields.

Also, soybeans of 92 days are selected as the dry season crop on the paddy field.

2.3 Crop coefficients (Kc)

The crop growing season has been divided into four stages, those are, (1) initial stage, (2) crop development stage, (3) mid-season stage and (4) late season stage. In referring Fig. 7, Table 21 & 22 in the said FAO: I & D Papers

No.24, the following crop coefficients have been applied to the calculation of crop water requirements:

		Com	(133)	Fruit, Vegetab	ole (133)	Soybea	ıns (92)	Paddy	(102)
(1)	Initial stage	0.5	(20)	0.5	(31)	0.5	(15)	1.1	(25)
(2)	Crop development stage	0.75	(41)	0.78	(41)	0.75	(16)	1.1	(26)
(3)	Mid-season stage	1.05	(41)	1.05	(40)	1.0	(30)	1.05	(25)
(4)	Late-season stage	1.0-0.5	55(31)	0.93-0	.6(21)	0.9-0.4	15(31)	0.95	(26)

Note: 1. Parentheses () show the growing days for each stage of crops.

2. Paddy is given the figures after transplanting.

2.4 Crop water requirements

The calculation of crop water requirements has been tabulated for the above two Cases as shown in Table C4-5 and C4-6.

In the calculation, percolation of the paddy field is assumed to be 2 mm/day throughout one year. Also, the necessary water for land preparation and paddling practice before transplanting of seedling is assumed to be 250 mm during 10 days or 5 days. Seedling age may be 20 to 25 days olds.

3. Calculation of water balance

In order to check the status of water balance after construction of irrigation and drainage facilities and to find the adequacy of the designed farm pond capacity (1,000 m³) and the necessity of supplemental pumping irrigation water supply from the Cihidung river, the calculation of water balance has been made for every pentad period throughout one year by dividing two cases: Case A & B and two basic years: 1988 & 1977, as shown in Table C4-7 to 10.

After deduction of effective rainfall, crop requirements of upland and paddy crops: Column (5) & (6) in the Tables have been calculated for every pentad period throughout one year of 1988 & 1977 with the following assumptions:

- (1) If daily rainfall is less than 5 mm, the effective rainfall for crops is regarded as zero.
- (2) If daily rainfall is more than 5 mm and less than the estimated crop water requirements, the difference is to be irrigated.
- (3) If daily rainfall is equal to or more than the estimated crop water requirements, irrigation is not required.

Irrigation requirements of upland field: Column (9) in the Tables were calculated for 5,500 m² including the tracter test field by multiplying the above crop requirements and by dividing 60 % of irrigation efficiency and 95 % of conveyance efficiency.

Irrigation requirements of paddy field: Column (10) in the Tables were calculated for 3,150 m² of paddy field including lysimeter are by multiplying the above crop requirements and by dividing 95 % of conveyance efficiency.

The catchment area of the farmpond has been designed to be 24,100 m² in total on the topographic survey drawing, which includes 5,400 m² of the tractor test road, 5,700 m² of the tractor test field, 7,700 m² of the irrigation experiment field (paddy), the lysimeter area and the farm pond, and 5,300 m² of the irrigation experiment field (upland crops). However the effective catchment area of the farm pond has been estimated to be 21,000 m² nearly equal to 90 % of the designed area, with the safety side consideration.

Rainfall on the catchment area will be drained to the designed drainage canal and led to the farm pond.

The run-off to the pond in each pentad period is estimated from the daily rainfall records in 1988 and 1977 with the following assumptions:

- 1. Total rainfall in the pentad (5-day as normal, 6-day is the last pentad of the month having 31 days, 3-or 4-day is the last pentad of February) is considered as the source of run-off to the farm pond.
- 2. If the pentad rainfall is less than the Product of 3 mm/day multiplying the number of the days in the pentad, the run-off to the pond is regarded as zero.
- 3. If the pentad rainfall is more than the above Product, the run-off to the pond is calculated as 60 % to the amount over the Product.

The calculation of water balance have been made in the following manner:

- 1. Calculate the Water Volume: the carried over pond volume (Column 12) from the previous pentad plus the run-off (Column 8) minus the irrigation requirements (Column 11) in the pentad,
- If Water Volume is less than 1,000 m³ of the pond capacity, the Water Volume will be stored in the farm pond,
- 3. If Water Volume is more than 1,000 m³, the exceed water volume will be spilled out, and
- 4. If Water Volume becomes minus, the water shortage will be filled by the Cihidung pump.

The maximum water shortage was found to be 486 m³ in the 1st pentad July, 1988 (Case B, Table C4-8). Based on this figure, the required pump capacity at the Cihidung river may be with the assumption of 9 hr pump operation in one day:

Req. Capacity =
$$\frac{486 \text{ m}^3}{5 \text{ day x 9 hr}}$$
 = 10.8 m³/hr = 0.18 m³/min. = 3 lit/sec.

The following	table is the	recapitulation	of water	balance calculation.
---------------	--------------	----------------	----------	----------------------

			C	ase A	C	ase B
			1977	1988	1977	1988
1.	Rainfall	mm	4,338	3,189	4,338	3,189
2.	Crop Water Requ	irement	S.			
	upland	mm	664	707	664	707
	paddy	mm	1,456	1,853	950	1,275
3.	Run-off to Pond					
		mm	2,065	1,390	2,065	1,390
		m ³	43,365	29,190	43,365	29,190
4.	Irrigation Water I	Requiren	ients.			
	upland	m ³	6,412	6,831	6,412	6,831
	paddy	m^3	4,820	6,133	3,147	4,222
	Total		11,232	12,964	9,559	11,053
5.	Water Shortage	m ³	1,421	2,395	415	1,187
6.	Spillout Water	m ³	32,686	18,080	33,353	18,783
7.	Pump Operation	hг	133	224	38	112
8.	Number of Full Storage of Pond		10	10	11	9
9.	Full storage of Po	nd				
	No. of pentad		36	31	39	34
	Percentage in th	e year	50	43	54	47

Table C4 - 1 Calculation of Probability of Non Exceedance on Dry Season Rainfall at the CSDB , for 4 months period : July, August, September, October

IWAI METHOD				
DATA N=26.		_		
D(1)=977. 1964 D(2)=676. 1965 D(3)=509. 1966 D(4)=680. 1967	CALCULATI SUM X= 27244 MEAN X= 1047 SUM OF DEVIA S=3291903.). 7.846154 HTION SQUARE 385		
D(5)=1120. 1968 D(6)=930. 1969 D(7)=1052. 1970 D(8)=1343. 1971	VARIANCE S/N S/(N-1)=1316 SD/(MEAN X)= SD=1(S/N)=35	76.1354 9.34		
D(9)=390. 19/2 D(10)=1377.1973 D(11)=1740.1974	USD={(S/(N-1 SKEWNESS CFT			
D(12)=1460.1975 D(13)=718. 1976 D(14)=695. 1977 D(15)=1688.1978	MEAN LOG(XI) XG=981.31	=2.991806788		
J(16)=1244.1979 D(17)=1210.1980 D(18)=1357.1981 D(19)=649. 1982	CAL. OF B-VA 1. T=1740. B(1.)=1698 2. T=1688.	S=390. .944415		
D(20)=1188.1983 D(21)=1359.1984 D(22)=1338.1985 D(23)=1135.1986	B(2.)=442. 3. T=1460. B(3.)=694.	7737695 S=609.		
D(24)=801. 1987 D(25)=609. 1988 D(26)=999. 1989	MEAN B=945.	•		
RANKING & PLOTTING POSIT ION	USED B=945.24 X0=1015.38 LOG(X0+B)=3.1	29239		
P. OF HON-EXCEEDANCE RANK DATA WEIBULL PLOT%	1/A=0.11456			
(I) (X) I/(n+1) P=1-F 1. 390. 3.7 96.3 2. 509. 7.4 92.6 3. 609. 11.1 88.9	IWAI FORMUL LOG(Y+(945.24 -0.11456*	9)=3.29239		
4. 649. 14.8 85.2 5. 676. 18.5 81.5	PROBABILITY I	WAI		
6. 680. 22.2 77.8 7. 695. 25.9 74.1	Y(2) Y(3)	1015.4 864.	Y(25)	469.1
8. 718. 29.6 70.4	Y(4)	783.6	Y(50) Y(100)	391.5 325.2
9. 801. 33.3 66.7 10. 930. 37. 63.	Y(5) Y(6)	730.5 690.9	Y(200)	267.4
11. 977. 40.7 59.3	Y(7)	561.4	Y(300) Y(400)	236.8 216.2
12. 999. 44.4 55.6 13. 1052. 48.1 51.9	Y(8) Y(9)	636.8	Y(500)	201.
14. 1120. 51.9 48.1	Y(10)	616. 598.5		
15. 1135. 55.6 44.4	Y(11) Y(12)	583.1	•	
16. 1188. 59.3 40.7 17. 1210. 63. 37.	Y(13)	569.5 557.4		
18. 1244. 66.7 33.3	Y(15)	536.6	1977 Ref	turn period T= 6
19. 1338. 70.4 29.6 20. 1343. 74.1 25.9	Y(16) Y(17)	527.5	_	
21. 1357. 77.8 22.2	Y(18)	519.1 511.4	1988 Ref	turn period T=10
22. 1359. 81.5 18.5	Y(19)	504.1		•
23. 1377. 85.2 14.8 24. 1460. 88.9 11.1	Y(20) Y(22)	497.4 485.1		
25. 1688. 92.6 7.4	Y(24)	474.1		
26. 1740. 96.3 3.7	Y(26) Y(28)	464.4		
	Y(30)	455.4 447.4		

Table C4 - 2 Calculation of Probability of Non-Exceedance on Annual Rainfall at the CSDB

lwal memedo	CALCULATION SUM X= 97178.
DATA N=26. D(1)=3373. :564	MEAN X= 3737.615385 SUM OF DEVIATION SQUARE S=9304984.154 VARIANCE S/N=357884.01 S/(N-1)=372199.3662 SD/(MEAN X)=0.16 SD=J(S/N)=598.234 USD=J(S/(N-1))=610.081 SKEWNESS CFT. CS!=-0.208 3
D(10)=5048. D(11)=4210. D(12)=4252. D(13)=3269.	UNBIASED S.C. CS1=-0.204 3 MEAN LOG(XI)=3.56662142
D(14)=4338. D(15)=4671. D(16)=3916. D(17)=4330. D(18)=4068. D(19)=3651. D(20)=3226. D(21)=4082. D(22)=3664.	XG=3686.56 CAL. OF B-VALUE 1. T=5048. S=2175. B(1.)=-17394.91496 2. T=4671. S=2909. B(2.)=13.46497293 3. T=4338. S=3189. B(3.)=-1580.175243
D(23)=4234. D(24)=5417. D(25)=3189.	MEAN B=-6320.54 USED B=0.
D(26)=4078. 1989 RANKING & PLOTTING POSIT ION	03ED 5-0. X0=3686.56 LOG(X0+B)=3.56662 1/A=0.10629 SX=0.07377
P. OF NON-EXCEEDANCE RANK DATA WEIBULL PLOTX (I) (X) 1/(N+1) P=1-F 1. 2175. 3.7 96.3 2. 2909. 7.4 92.6	IWAI FORMULA LOG(Y+(0.))=3.56662 -0.10629*KSI
7 7465	PROBABILITY IWAI Y(2)

Table C4 - 3 Calculation of Probability of Exceedance on Annual Rainfall at the CSDB

RANKING & PLOTTING POSIT 10N F. OF EXCEEDANCE RANK BATA WEIBULL PLOT% USED B=0. (J) (X) J/(N+1) F=1-P X0=3686.56 3.7 96.3 1. 5048. LOG(X0+3)=3.56662 92.6 7.4 2. 4671. 1/A=0.10629 SX=0.07377 11.1 88.9 3. 4338. 4. 4330. 14.8 85.2 IWAI FORMULA 81.5 5. 4252. 18.5 LOG(Y+(0.))=3.56662 22.2 77.8 6. 4234. +0.10629*KS1(YR) 7. 4210. 25.9 74.1 8. 4082. 76.4 29.6 9. 4078. 33.3 66.7 PROBABILITY IWAI 37. 10. 4068. 63. Y(2) 3686.5 11. 4003. 40.7 59.3 3971.9 11. 4003. 12. 3916. 13. 3734. 14. 3664. 15. 3651. 15. 3417. 17. 3405. 18. 3393. Y(3)55.6 44.4 4143. Y(4) Y(5) 48.1 51.9 4264.5 51.9 48.1 Y(19) 4601.9 44.4 40.7 55.6 4900.4 Y(20) 59.3 4991.2 Y(25) 37. 63. 5259.6 Y(50) 66.7 33.3 Y(199) E514. 29.6 70.4 20. 3295. 74.1 25.9 21. 3269. 77.8 22.2 22. 3245. 81.5 18.5 23. 3226. 24. 3189. 25. 2909. 26. 2175. 85.2 14.8 88.9 11.1 92.6 7.4 3.7 96.3 CALCULATION SUM X= 97178. MEAN X= 3737.615385 SUM OF BEVIATION SQUARE 3=9304984.154 VARIANCE S/N=357884.01 S/(N-1)=372199.3662 SD/(MEAN X)=0.16 SB={(S/N)=598.234 USD=J(S/(N-1))=610.081 SKEWNESS CFT. CS!=-0.208 UNBLASED S.C. CS1=-0.204 #EAN LOS(XI)=3.56662142 XG=3686.56 CAL. OF 3-VALUE 1. T=5048. S=2175. B(1.)=-17394.91496 7=4671. S=2909. B(2.)=13.46497293 3. T=4338. S=3189. B(3.)=-1580.175243

MEAN B=-6320.54

Table C4-4 Estimated Reference Crop Evapotranspiration: ETo by applying FAO:

Pan Evaporation Method

	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.	Dec.	Remarks
1. Monthly Mean Temp. (°C)	24.8	24.8 24.9 25.2 25.6 25.8 25.7 25.2 25.3 25.6 25.9 25.7 25.3	25.2	25.6	25.8	25.7	25.2	25.3	25.6	25.9	25.7	25.3	1977-1989
 Wind Velocity a. 0.5 m height (km/day) 	1.71	1.71 2.09 2.15 1.75 1.67 1.55 1.85 1.79 1.93 1.96 2.10	2.15	1.75	1.67	1.55	1.85	1.79	1.93	1.93	1.96	2.10	1972-1989
b. Corrected at 2 m height (km/day)	55	89	70	57	54	20	60 58 63	58		63	49	89	Factor 1.35
3. R. H. mean (%)	06	88	88	87	98	84	82	82	82	83	85	87	1971-1989
4. Pan Factor (Kp)	0.79	0.79 0.79		0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79	0.79	FAO Case B-D=25 m RH > 70 % Kp = 0.79
5. Pan Evaporation (mm/day)	3.4	3.7	4.0	4.0	4.0 3.8 3.6 3.9 4.5 4.9 4.7	3.6	3.9	4.5	4.9	4.7	4.3	3.8	T = 10 Yr n = 13
6. ETo (mm/day)	2.7	2.9	3.2	3.2	3.2 3.2 3.0 2.8		3.1	3.6 3.9 3.7	3.9	3.7	3.4	3.0	

Table C4-5 Estimated Crop Water Requirements of the Experimental Farm by applying FAO: Pan Evaporation Method (Case A)

Upland Field: 3 cropping, Paddy Field: 3 cropping

No. 1		Total mm/day		4.8	4.8	4.8	4.8	0	0	0	20	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5
	ļ ! !	P P veb/mm		7	7	~	7		•	•	>				7	7	7	7	7	~	7
	eld	CWR mm/dav		7	'n	2.8	4				d padd	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
	Paddy Field	Xc.		0.95	0.95	0.95	0.95	1	1	•	2nd	1.1	1.1	1.1		1:1	1.1	1.1	1.1	1.1	=
	Par	Growing		87	92	97	102	107	110	115	ı	S	10	15	21	26	31	36	41	46	51
	eld	CWR mm/day		3.0						2.2	1.9	1.8	table	1.6	1.6	1.6	1.6	1.6	1.6	2.5	2.5
	Upland Field	ন		1.05	1.05	1.00	1.00	6.0	0.8	0.7	9.0	0.55	Vege	0.5	0.5	0.5	0.5	0.5	0.5	0.78	0.78
	Upl	Growing		6	102	105	110	115	118	123	128	133	Fruit	' '	11	16	21	5 6	31	36	4
		ETo mm/dav		2.9	2.9	2.9	2.9	2.9	2.9	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.5	3.2	3.2	3.2	3.2
	!	Pentad			7	m	4	5	9	-	7	m	4	'n	9	-	7	E.	4	ν,	9
		Month		Feb.						Mar.						Apr.	ı				
		Total mm/dav		25	25	5.7	5.1	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	4.8	4.8	4.8	4.8	4.8	4.6
:	ı	P mm/dav		•	1	7	7	7	2	2	7	7	7	7	2	7	7	7	7	7	2
İ	pl	CWR mm/dav			•	3.7	3.7	3.7	3.7	3.3	ж. Э.З	3.3	3.3	3.3	3.3		2.8				
	Paddy Field	3 2 2	1st paddy		,	1.1	1.1	1.1	1.1	1.1	<u> </u>	1.1	1.1	1.1		1.05	1.05	1.05	1.05	1.05	0.95
	Pad	Growing	1	•	•	ς,	01	15	20	25	30	35	40	45	51	56	19	99	71	9/	82
	pla	CWR mm/day		1.7	1.7	1.7	1.7	5.6	2.6				2.3		- 1	2.8	2.8	2.8	2.8	2.8	2.8
	Upland Field	3		0.5	0.5	0.5	0.5	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	1.05	1.05	1.05	1.05	1.05	1.05
	Up	Growing day	E OS	s						35	40	45	20	55	61	99	71	9/	81	98	32
		ETo (mm/dav		3.4	3.4	3.4	3.4	3.4	3.4	3.0	3.0	3.0	3.0	3.0	3.0	2.7	2.7	2.7	2.7	2.7	2.7
	ļ	Pentad		1	7	m	4	5	9		7	ന	4	ς,	9	-	7	m	4	S	9
i	:	Month		Nov.					00	Dec.						Jan.					

Table C4-5 Estimated Crop Water Requirements of the Experimental Farm by applying FAO: Pan Evaporation Method (Case A)

Upland Field: 3 cropping, Paddy Field: 3 cropping

70.7	Total		0.9	9	9.0	9.0	9	9	19		7.7	- -		5.7	5 5	, v.) 	o	· c	>	
	P mm/day		7	ر ا	1 C	۱ د	1 C	1 C	,	4 C	4 C	1 C	4 C	2 73	,	10	1		•		
ield	CWR mm/day		4.0	4.0	4.0	4.0	4.0	4.0	l.		7 7			3.7	ĺ	ν. γ					
Paddy Field	g Kc		1.1	_	-	-	-	1.05	1 05	1.05	1.05	1.05	0.05	0.95	0.95	0.95) } ;	,	•		
Pa	Growing day		31	36	41	46	2.5	57	3	1.9	25	1.	£ 6	87	92	97	102	107	12		
eld	CWR mm/day		1.8	~	~	2.7	2.7	2.7	3.9	. 6	6		6	3.0	3.3	3.0	2.6	2.2	6	1.7	0 vears
Upland Field	33	ans	0.5	0.5	0.5	0.75	0.75	0.75	1.0	2	0	0	0	2:	0.9	8.0	0.7	0.6	0.5	0.45	od of 1
큠	Growing day	Soybeans	ั้ง	01	15	70	25	31	36	4	46	5	56	61						92	ım Peri
	ETo mm/day		3.6	3.6	3.6	3.6	3.6	3.6	3.9	6	3.0	3.9	3.0	3.9	3.7	3.7	3.7	3.7	3.7	3.7	ith Retu
:	Pentad		_	7	ო	4	5	9	-	2	'n	4	٠٧	9	_	7	က	4	'n	9	ethod w
	Month		Aug.						Sep.	4					Oct.						ation M
	Total mm/day		5.2	5.2	5.2	5.2	5.2	5.2	4.7	4.7	4.7	0	0	0	50	5.4	5.4	5.4	5.4	5.4	by Pan Evaporation Method with Return Period of 10 years.
	P mm/day		7	~	7	7	7	7	2	7	7			•	•	7	7	7	7	2	
- O	CWR mm/day		3.2						2.7	2.7	2.7	•	,	,	ıddy	3.4	3.4	3.4	3.4	3.4	iration
Paddy Field	S E		1.05	1.05	1.05	1.05	1.05	0.95	0.95	0.95	0.95			•	3rd paddy		1:1	1.1	1.1	1.1	otransp
Pad	Growing day		56	61	99	71	9/	82	87	35	24	102	107	112	•	Ś	0	15	70	26	Estimated reference crop evapotranspiration
	CWR mm/day		2.3	2.3	2.3	2.3	2.3	2.3	2.9	2.9	2.9	2.9	2.9	2.9	3.3	3,3	2.9	2.5	2.7	1.9	erence c
and Fi	S S	;	0.78	0.78	0.78	0.78	0.78	0.78	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	0.93	0.82	0.7	9.0	ited ref
Up]	Growing day	1	46	<u>ک</u>	26	61	99	72	11	82	87	35	26	102	107	112	117	122	127	133	Estima
	ETo (0.6	3.0	3.0	3.0	3.0	3.0	2.8	2.8	2.8	2.8	7.8	2.8	3.1	3.1	3.1	3.1	3.1	3.1	••
	Pentad	,	— (7	m	4	S	9	-	7	m	4	ν,	9		7	m	4	S	9	C
	Month	;	May					ļ	Jun.						Jul.						1. ETo

. Days after planted at the end of the Pentad, as for Paddy the day after transplanting (Seedling 25 days old).

Assumed value in reference to FAO Irrigation and Drainage Paper No.24. Growing day Kc 4.4.4.

CWR

Crop water requirements = ETo times Kc.
Crop water requirements = ETo times Kc.
Total growing days of vegetable are as follows: Peppers 125 days, Egg plant 130 days, Melons 120 days, Tomato 135 days, Fruit Vegetable

No. 1

Table C4-6 Estimated Crop Water Requirements of the Experimental Farm by applying FAO: Pan Evaporation Method (Case B)

	Total mm/day		4.8	4.8	4.8	4.8	•	•	•		25	25	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5
	P mm/day		7	7	7	7	•	•	•		•	ı	7	2	7	7	7	7	7	2
밁	CWR mm/day		2.8	2.8	2.8	2.8	,		,		•	•	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Paddy Field	χ.		0.95	0.95	0.95	0.95	,		•		•	,	Ξ:		1:1	1.1	1.1	1.1	1.1	1.1
Par	Growing day		87	92	97	102	107	110	115		•	,	Ś	=	16	21	26	31	36	41
eld	CWR mm/day				2.9				2.2	1.9	 8:	table	1.6	1.6			1.6			
Upland Field	3		1.05	1.05	1.00	1.00	0.0	0.8			0.55			- 1	0.5	0.5	0.5	0.5	0.78	0.78
ŋ	Growing day		97	102	105	110	115	118	123	128	133	Frait	3		16	21	26	31	36	41
	ETo mm/day	i	2.9	2.9	2.9	2.9	2.9	2.9			3.2			3.2	3.2	3.2	3.2	3.2	3.5	3.2
	Pentad	!	_	7	ന	4	5	9	-	7	m	4	ς,	9		7	ო	4	5	9
	Month		Feb.						Mar.						Apr.	1			_	
	Total mm/day		25	25	5.7	5.7	5.7	5.7	5.7	5.3	5.7	5.7	5.7	5.7	4.8	4.8	4.8	4.8	4.8	4.8
	P mm/dey		•	•	7	7	7	7	7	~	7	7	7	2	2	7	7	7	7	7
P	CWR mm/day		•		3.7	3.7	3.7	3.7	3.3	3.3	3.3	3.3	3.3	3.3	2.	4	2.8	7	તં	7
Paddy Field	ਨ ਨ ਵ		,		1.1	1.1	1.1		1:1		1:1		1:1	=	1.05	1.05	1.05	1.05	1.05	0.95
Pad	Growing day		•	·	5	10	15	20	25	30	35	40	45	51	26	61	99	71	9/	82
eld	CWR mm/day		1.7	1.7	1.7	1.7	5.6	2.6	2.3	2.3	2.3	2.3	2.3	2.3	2.8	2.8	2.8	2.8	2.8	2.8
Upland Field	25		0.5	0.5	0.5	0.5	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	1.05	1.05	1.05	1.05	1.05	1.05
Upl	Growing day				15			- 1	35	40	45	20	55	61	99	71	9/	81	98	92
 -	ETo mm/day		3.4	3.4	3.4	3.4	3.4	3.4	3.0	3.0	3.0	3.0	3.0	3.0	2.7	2.7	2.7	2.7	2.7	2.7
			-	7	m	4	'n	9	-	7	ო	4	'n	9	_	7	ന	4	5	9
	Month Pentad		Nov.						Dec.						Jan.					

Table C4-6 Estimated Crop Water Requirements of the Experimental Farm by applying FAO: Pan Evaporation Method (Case B)

	Total mm/day	_ _		 	2.7	2.7	2.7	3.9	3.9	3.9	3.9	3.9	3.9	3.3	3.0	2,6	2.2	1.9	1.7
	P mm/day		•	,	•		•	,		•	•		•	·	•	•	•		,
ield	CWR mm/day	~		1.8				3.9	3.9	3.9	3.9	3.9	3.9					[.]	
Paddy Field	g Kc	ans 0.5	0.5	0.5	0.75	0.75	0.75	1.0	1.0	1.0	1.0	1.0	1.0	0.9	0.8	0.7	0.6	0.5	0.45
Pa	Growing day	Soybeans 5 0	10	15	70	25	31	36	41	46	51	56	61	ł .				98	
ield	CWR mm/day	1.8	F. 8.	1.8	2.7	2.7	2.7	3.9	3.9	3.9	3.9	3.9	3.9	3.3	3.0	2.6	2.2	1.9	1.7
Upland Field	Кc	ans 0.5	0.5	0.5	0.75	0.75	0.75	1.0	1.0	1.0	1.0	1.0	1.0	0.9	0.8	0.7	9.0	0.5	0.45
L _P	Growing day	Soybeans 5 0.	10	15	20	25	31	36	41	46	51	26	61					98	
!	ETo mm/day	3.6	3.6	3.6	3.6	3.6	3.6	3.9	3.9	3.9	3.9	3.9	3.9	3.7	3.7	3.7	3.7	3.7	3.7
	Pentad	-	7	ო	4	S	9	_	7	m	4	S	9	-	7	က	4	S	9
	Month	Aug.	ì					Sep.						Oct.					
	Total mm/day	5.3	5.3	5.2	5.2	5.2	5.2	4.9	4.7	4.7	4.7	4.7	4.7	,	,	1			
	P mm/day	2	7	7	7	7	7	7	7	7	7	7	2	•	•	•			
ų,	CWR mm/day	3.3	3.3	3.2	3.2	3.2	3.2	2.9	2.7	2.7	2.7	2.7	2.7	1					
Paddy Field	% □ E	1.1	1.1	1.05	1.05	1.05	1.05	1.05	0.95	0.95	0.95	0.95	0.95			,			
Pad	Growing day	46	51	26	[9]	99	72	77	82	87	92	6	102	107	120	115			
Pls	CWR mm/day		2.3					2.9						3.3	3.3	2.9	2.5	2.5	I.9
Upland Field	<u>۲</u>	0.78	0.78	0.78	0.78	0.78	0.78	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	0.93	0.82	0.1	9.0
ď	Growing day	46	51	, Şe	19	90	71	11	82	87	92	76,	707	107	112	117	122	127	133
	ETo mm/day	3.0	0.0	0.0	0.0	0.0	3.0	2.8	7.8	2.8	2.8	2. 8.	7.8	3.1	3.1	3.1	3.1	3.1	3.1
	Pentad	—	7	, U.	4 r	α \	٥		~	ω,	4 ,	Λ (٥		7	m	4	ر ک	9
	Month	May						Jun.						Jul.					

: Estimated reference crop evapotranspiration by Pan Evaporation Method with Return Period of 10 years. Growing day

-. 2. 6. 4. 2.

CWR : Fruit Vegetable :

Days after planted at the end of the Pentad, as for Paddy the day after transplanting (Seedling 25 days old).
Assumed value in reference to FAO Irrigation and Drainage Paper No.24.
Crop water requirements = ETo times Kc.
Total growing days of vegetable are as follows: Cucumber 130 days, Egg plant 130 days, Melons 120 days, Tomato 135 days, Peppers 125 days

Table C4-7

Calculation of Water Balance in the Wet year of 1977

which is corresponding to 5 years Return Period in the Probability of Exceedance for Data of Annual Rainfall at the CSDB. (Case A)

No. 1 (16)		Remarks Rmax(mm/day)				54	09	80		55	65	77		19			44	54	35	22	53	09	
(15)		Pump Ope. hr																					
(14)	Balance	Spill out	0	78	0	1,960	1,001	1,820	4,859	1,400	1,445	1,337	0	159		4,341	522	176	1,050	609	1,095	1,452	4,904
(13)	Ba	Shortage m ³																					
(12)		Pond volume m ³	245	1,000	860	1,000	000,1	1,000		1,000	1,000	1,000	818	1,000	971		1,000	1,000	1,000	1,000	1,000	1,000	
(11)	ġ	Total m ³	91	91	182	0	91	22	546	91	46	91	182	58	53	497	58	622	0	0	33	39	758
(10) (11)	Irrigation Req.	Paddy m ³	33	33	99	0	33	33	198	33	17	33	99	0	0	149	0	583	0	0	20	2	623
6	Imga	Upland m ³	58	58	911	0	28	28	348	58	23	58	116	28	29	348	58	39	0	0	19	19	135
(8)	Run-off to Pond	Volume m ³	336	924	42	2,100	1,092	1,911	6,405	1,491	1,491	1,428	0	399	0	4,809	609	798	1,050	609	1,134	1,491	5,691
(2)	Run-of	Ro	91	44	7	100	25	2	305	7.1	7.1	89	0	19	0	229	29	38	2	53	54	7	271
(9)	Crop Req.	Paddy	10	10	70	0	10	2	09	10	ν	01	20	0	0	45	0	176	0	0	9	و	188
(5)	Crop	Upland	9	9	12	0	9	9	36	9	ന	9	12	9	3	36	9	4	0	0	7	7	14
(4)	Rainfall	шш	42	83	18	182	102	169	602	133	133	128	12	46	15	467	63	78	66	Z	105	136	545
(3)	Pentad		5	5	'n	Ś	Ŋ.	و	otal	'n	ν,	S	بر	5	3	otal	S	S	S	S	5	9	otal
(3)	Month		Jan.						Sub-tota	Feb.						Sub-total	Mar.						Sub-tota
Ξ	Year		1977					}															

Calculation of Water Balance in the Wet year of 1977

which is corresponding to 5 years Return Period in the Probability of Exceedance for Data of Annual Rainfall at the CSDB. (Case A)

No. 2 (16)		Remarks Rmax(mm/day)	37	33	29	84	37		24	. 84	36	,	09	1		56	73	80				
(15)	,	Pump Ope.							:							-						
(14)	Balance	Spill out	201	869	969	1,730	889 693	4,907	343	1.232	854	0	567	0	2,996	622	1,652	850	0	0	0	3,124
(13)	Ba	Shortage m ³																				
(12)		Pond volume m ³	1,000	1,000	1,000	1,000	1,000 1,000		1,000	1,000	1,000	937	1,000	747		1,000	1,000	1,000	855	710	565	
(11)	ģ	Total m ³	156	79	33	118	98 147	637	86	49	49	147	147	253	743	91	91	137	145	145	145	754
(11) (11)	Irrigation Req.	Paddy m ³	79	91	20	09	6 6	299	40	20	20	9	9	79	279	33	33	9	0	0	0	116
(6)	Irriga	Upland m ³	77	66 9	19	58	58 87	338	58	53	29	87	87	174	464	58	28	87	145	145	145	638
(8)	Run-off to Pond	Volume m ³	357	777	735	1,848	987 840	5,544	441	1,281	903	84	777	0	3,486	996	1,743	987	0	0	0	3,696
(7)	Run-of	Ro mm	17	37	33	& :	47	264	21	61	43	4	37	0	166	46	დ :	41	0	0	0	176
(9)	Req.	Paddy	24	12	9	∞ :	18	90	12	9	9	<u>8</u>	18	24	84	10	<u>o</u> ;	15	0	0	0	35
(5)	Crop Req.	Upland mm	∞ ·	4 (7	9 (9 6	35	9	m	m	6	6	18	48	9	9 (У	15	15	15	99
(4)	Rainfall	mm	44	11	4/	162	93 82	532	20	117	81	22	11	12	365	91	153	94	6	~	0	352
(3)	Pentad		ري ا	y v	Ω '	د د	5 2	otal	5	ν,	S	ν.	ν.	9	otal	' '	თ ს	ጥ ¹	ر	S)	2	otal
(2)	Month		Apr.					Sub-total	May						Sub-total	Jun.						Sub-total
(E)	Year		161																			

Table C4-7

Calculation of Water Balance in the Wet year of 1977
which is corresponding to 5 years Return Period
in the Probability of Exceedance for Data of Annual Rainfall at the CSDB. (Case A)

No. 3	(16)	Domo-1	Rmax(mm/day)	(Amarian and)															49	1	33	69			
;	(15)	Pilmp Ope	h T	2.2	27	23	33	C7		133															
3	(14)	Paramice	m ₃																		1 124	1,134		1 134	1.11
((51) 	Shortage	m³.	397	292	244	244 244	:	1 421	1747															
(13)	(17)	Pond volume	m3	0	0	0		554		1	358	475	693	449	254	437		673	264	200 800 800	1.000	708	416		
(10) (11)	čeg.	Total	Ξ	962	292	544 244	244 244	118	2.104		196	156	118	244	195	3	1,104	747	300	186	123	292	292	1,449	
(10)	Irrigation Req.	Paddy	E	808	88	8	38	9	1,264		9 9	6,6	9	<u>S</u> (79	2	495	93	11,5	70	46	66	66	523	
6)	Imi	Upland	È	154	193	145	145	28	840	1	<u></u>	7 5	<u>۾</u>	145	911		609	154	193	116	11	193	193	920	
(8)	un-off to Pond	Volume	è	0	0	0	0	672	672		7,0	213	000	> c	378	2/2	987	483	0	651	1,428	0	0	2,562	
(7)	Run-of	Ro		0	00	0	0	32	32		2 -	<u> </u>	2 <	> <	> <u>∝</u>		47	23	0	31	89	0	٥	122	
(9)	Crop Req.	Paddy	111111	244 25	200	30	30	I8	382	30	3 2	ţ ∝	2 5	3 2	7 7		150	28	35	21	<u>1</u> 4	္က (30	158	
(5)	Crop	Upland	:	9 6	15	15	15	٥	87	2	~	.	<u>.</u>	2	72	,	ç	16	20	12	× 6	3 8	07	98	
(4)	Rainfall			ے د	0	~	0 -	1/	84	m	36	41		6	45	125	3	53	0 ;	9 2	971	- <	>	248	
(3)	Pentad		"	J &	رب ا	ن ې ر	o v	, !	otal	ν,	ς.	رم د	٠ د	S	9	 	Igi	()	^ '	n v) Y	ט ע	. اد	[a]	
(2)	Month		111	in:					Sub-total	Aug.	}					Sub total	1000	Sep.						Sub-total	
Ξ	Year		1977																						

Calculation of Water Balance in the Wet year of 1977 which is corresponding to 5 years Return Period in the Probability of Exceedance for Data of Annual Rainfall at the CSDB. (Case A)

No. 4 (16)		Remarks Rmax(mm/dav)						45		82	84	2	:		47			80	25	30	40	2		
(15)		Pump Ope.	İ																					133
(14)	Balance	Spill out						307	307	1.457	2,499	48	0	0	492	4,496	0	77.1	189	301	357	0	1,618	32,686
(13)	Ba	Shortage m ³																						1,421
(12)		Pond volume m ³	183	328	135	19	009	1,000		1,000	1,000	1,000	882	939	1,000		898	1.000	1,000	1,000	1,000	898		
(11)	.gd.	Total Im ³	233	233	193	116	154	154	1,083	118	0	66	118	195	98	628	195	147	147	86	147	195	929	1,232
(11) (11)	Irrigation Req.	Paddy m ³	79	79	0	0	0	0	158	66	0	09	9	79	40	338	79	9	9	40	9	79	378	4,820 11,232
(6)	Irrig	Upland m3	154	154	193	116	154	154	925	19	0	39	28	116	28	290	116	87	87	28	87	116	551	6,412
(8)	Run-off to Pond	Volume m ³	0	378	0	0	735	861	1,974	1,575	2,499	147	0	252	651	5,124	63	1,050	336	399	504	63	2,415	43,365
(7)	Run-of	Ro	0	8I	0	0	35	41	94	75	119	7	0	12	31	244	ю	20	16	19	24	က	115	2,065
(9)	Crop Req.	Paddy mm	24	24	0	0	0	0	48	30	0	<u>8</u>	18	24	12	102	24	18	∞	12	<u>8</u>	24	114	1,456
(5)	Crop	Upland mm	16	16	20	12	16	16	96	7	0	4	9	12	9	30	12	6	6	9	0	12	57	664
(4)	Rainfall	mm	11	45	m	∞	74	87	228	140	214	26	13	35	67	495	20	66	42	46	55	23	285	4,338
(3)	Pentad		S	S	5	5	S.	9	otal	S	2	S	S	S.	5	otal	5	S	2	5	3	9	otal	
(2)	Month		Oct.						Sub-total	Nov.						Sub-tota	Dec.						Sub-total	Total
Ξ	Year		1977																					

Table C4-8

Calculation of Water Balance in the Dry year of 1988
which is corresponding to 5 years Return Period
in the Probability of Non Exceedance for Data of Annual Rainfall at the CSDB. (Case A)

No. 1	(10)	Remarks	Rmax(mm/day)	73	ţ	2.4.5 V 0.00	133	37		30	77 21	2	36	9 6	67		45	41	; ;	5	32	81	
(15)	(61)	ള	Ĕ																				,
3	Balance	Spill out	Ē	0	0 5	1 760	308	180	9/9,7	220	27	<u> </u>	483	243	1,714	3.033	522	0	631	6	430	239	1,822
(13)	Bal	Shortage	Ē																				
(13)		Pond volume		871	000	1,000	1,000	1,000		1.000	1,000	902	1.000	1,000	1,000		1,000	786	1.000	921	1,000	1,000	
(13)	ģ	Total		137	137	46	20.0	7,5	CI,	137	137	182	91	87	29	693	87	886	79	79	79	118	1,328
(11) (01)	Irrigation Req.	Paddy m3		20	50	17	33	340	74.7	20	20	99	33	0	0	199	0	828	40	79	40	9	1,047
6)	Irrig	Upland m3		/8/ 1/45	87	53	8 8	464	5	87	87	116	28	87	29	464	87	28	39	0	39	28	281
(8)	un-off to Pond	Volume m ³	000	1,008	504	1,806	399	4 380	2021	357	210	84	672	630	1,743	3,696	609	672	924	0	588	357	3,150
(7)	Run-of	Ro	9.	0 €	2 4	98	32	200		17	10	4	32	30	83	176	29	32	44	0	5 8	17	150
(9)	Req.	Paddy	15	25	15	Ŋ	99	75		15	15	70	2	0	0	99	0	720	12	74	12	82	316
(5)	Crop Req.	Upland	٥	15	9	m ·	9 9	48		6	6	12	9	σ	۳	48	6 (۰ ص	4	0	4 ,	او	29
(4)	Rainfall	mm	96	20	55	158	47 69	434		43	31	22	89	65	151	380	63	6	66 ;	SI ;	62	46	344
(3)	Pentad		\ \	. v	S	y) i	n 9	otal		ري د	م ا	^ '	y) i	٠ <u>٠</u>	4	tal	Y) Y	ე (o,	a v	'n	0	fai
(2)	Month		ļan					Sub-total		Feb.					ŀ	Sub-total	Mar.						Sub-total
(1)	Year		1988	3			•																

Calculation of Water Balance in the Dry year of 1988 which is corresponding to 5 years Return Period

_
A
4
بآج
\mathcal{L}
~
S
Ų,
Ę
Ξ
=
E
.⊑
~
_
na
Ξ
₹
چ
ر ر
at
\Box
,ō
e f
ပ္
120
ຼັ
ဦ
臼
_
2
Ž
0
Ĕ
둉
9
تم
ัย
the

No. 2 (16)		Remarks Rmax(mm/dav)	17	37	78	75	35	83		37	55	11	33	1			64	27						
(15)		Pump Ope. hr																						
(14)	Balance	Spill out	7.1	656	1,247	848	57	819	3,698	619	504	1,316	301	0	0	2,800	394	371	0	0	0	0	765	
(13)	Ba	Shortage m ³																						
(12)		Pond volume m ³	1.000	1,000	1,000	1,000	000,1	1,000		1,000	1,000	1,000	1,000	889	925		1,000	1,000	905	757	641	496		
(11)	żą.	Total m ³	18	79	118	118	195	14/	775	86	147	49	98	195	195	782	182	5	182	145	116	145	861	
(10) (11)	Irrigation Req.	Paddy m ³	9	40	9	9	62	8	359	40	9	20	40	79	79	318	99	33	99	0	0	٥	165	
(6)	Imiga	Upland m ³	58	36	58	58	116	۵	416	28	87	53	28	116	116	464	116	28	116	145	116	145	969	
(8)	Run-off to Pond	Volume m ³	189	735	1,365	996	252	200	4,473	777	651	1,365	399	84	231	3,507	651	462	84	0	0	0	1,197	
(7)	Run-of	Ro	6	35	65	46	12	40	213	37	31	65	19	4	11	167	31	22	4	0	0	0	57	
(9)	Crop Req.	Paddy mm	18	12	81	82	24	0	108	12	28	9	12	74	24	96	20	0	70	0	0	0	20	
(5)	Crop	Upland mm	9	4	9	9	12		43	9	6	ന	9	12	12	48	12	9	12	15	12	15	72	
(4)	Rainfall	mm	30	73	123	35	35	77	445	11	99	124	47	21	36	371	99	51	21	က	_	0	148	
(3)	Pentad		5	2	S	S	د ۲ د	2	total	5	ν,	ς,	S	~	9	total	ν,	()	ν,	ν,	Ś	5	iotal	
(2)	Month		Apr.	ı					Sub-total	May						Sub-tota	Jun.						Sub-tota	
Ξ	Year		1988																					

Table C4-8

Calculation of Water Balance in the Dry year of 1988 which is corresponding to 5 years Return Period

in the Probability of Non Exceedance for Data of Annual Rainfall at the CSDB. (Case A)

No. 3		Remarks	Milax(milivaay)									41	7										
(15)		Pump Ope.		5 C	† "C	C 7			92								0	21	4	23	<u>20</u>	18	98
(14)	Balance	Spill out										266				266							
(13)	Ba	Shortage m ³	787	253	244	5			983									224	45	247	212	191	916
(12)		Pond volume		0	· c	520	276	41		259	712	1.000	756	687	394		85	0	0	0	0	0	
(11)	eq.	Total m ³	83	253	244	215	244	235	2,173	118	156	118	244	195	293	1,124	309	309	189	247	233	233	1,520
(10) (11)	Irrigation Req.	Paddy m ³	828	66	66	66	66	119	1,343	09	79	9	66	79	119	496	911.	116	73	93	79	79	556
(6)	Irrig	Upland m ³	154	154	145	116	145	116	830	58	11	28	145	116	174	628	193	193	116	154	154	154	964
(8)	Run-off to Pond	Volume m ³	0	0	0	735	0	0	735	336	609	672	0	126	0	1,743	0	0	147	0	21	42	210
(7)	Run-of	Ro mm	0	0	0	35	0	0	35	. 16	29	32	0	9	0	83	0	0	7	0		2	10
(9)	Crop Req.	Paddy mm	250	30	30	30	30	36	406	18	54	18	30	24	36	150	35	35	22	78	24	24	168
(5)	Crop	Upland mm	16	16	15	12	15	12	98	9	∞	9	15	12	18	65	20	70	12	16	16	16	100
(4)	Rainfall	mm	9	7	0	73	m (0	89	42	4	69	0	22	٥	200	m ·	1	<u>5</u> 6	15	11	18	80
(3)	Pentad		5	ζ.	ς,	S	, co	9	otal	5	ς,	Ś	ۍ	S	9	otal	S)	∽ '	٠ ٠	S	5	2	otal
(2)	Month		Jul.						Sub-tota	Aug.						Sub-total	Sep.						Sub-total
Ξ	Year -		1988																				

Calculation of Water Balance in the Dry year of 1988 which is corresponding to 5 years Return Period in the Probability of Non Exceedance for Data of Annual Rainfall at the CSDB, (Case A)

No. 4 (16)		Remarks Rmax(mm/day)			{	55	36		21									45	59				
(15)		Pump Ope. hr		21				46															224
(14)	Balance	Spill out m ³			9	480	455	935	175	0	m				178			829	1,078			1,907	18,080
(13)	Ba	Shortage m ³	272	224				496															2,395
(12)		Pond volume m ³	0	0	677	1,000	1,000		1,000	966	1,000	804	651	477		999	828	1,000	1,000	785	541		
(11)	eq.	Total m ³	272	224	82	22	77	766	287	359	79	196	195	195	1,311	147	195	49	86	215	244	948	12,964
(10) (11)	Irrigation Req.	Paddy m ³	79	79	00	0	0	158	248	301	40	66	79	79	846	99	79	20	40	66	66	397	6,133 12,964
(6)	Irrig	Upland m ³	193	145	28	200	11	809	39	28	39	97	116	- 116	465	87	116	53	28	116	145	551	6,831
(8)	Run-off to Pond	Volume m ³	0	0 5	735	00	609	2,205	462	357	84	0	42	21	996	336	357	1,050	1,176	0	0	2,919	29,190
(7)	Run-of	Ro	0	0 ;	35	<u>;</u> 0	29	105	22	17	4	0	7	-	46	91	17	20	2 6	0	0	139	1,390
(9)	Crop Req.	Paddy mm	24	74	00	0	0	48	75	91	12	30	54	24	256	18	24	9	12	20 30	30	120	1,853
(5)	Crop	Upland mm	20	15	ب م	> ∞	œ	63	4	9	4	01	12	12	48	6	12	ന	9	12	15	57	707
(4)	Rainfall	mm	4	ب در	5 K	30	99	240	51	43	21	_	18	17	151	41	44	66	109	ς.	6	307	3,189
(3)	Pentad	 	5	y) v	n v	טיי נ	9	total	5	2	S	S	S	5	total	5	5	Ś	∽	ς,	9	total	
(2)	Month		Oct.					Sub-total	Nov.						Sub-total	Dec.						Sub-total	Total
(1)	Year		1988																				

Table C4-9

Calculation of Water Balance in the Wet year of 1977
which is corresponding to 5 years Return Period
in the Probability of Exceedance for Data of Annual Rainfall at the CSDB. (Case B)

No. 1		Remarks	Milax(mmoay)			54	09	. 08		55	5,5	77	•	10	•		44	54	35	22	183	19	
(15)		Pump Ope.								:													
(14)	Balance	Spill out		, K	<u> </u>	1.960	1,00,1	1,820	4,859	1 400	1.445	1 337	0	159	0	4,341	522	759	931	407	1,095	1,452	5,166
(13)	Ba	Shortage m ³														<u> </u>							
(12)		Pond volume m ³	245	1.000	860	1,000	1,000	1,000		1.000	1,000	1,000	818	1,000	971		1,000	1,000	1,000	1,000	1,000	1,000	
(11)	eq.	Total m ³	5	16	182	0	91	16	546	91	46	91	182	28	29	497	58	33	119	202	39	39	496
(10) (11)	Irrigation Req.	Paddy m ³	33	33	99	0	33	33	198	33	17	33	99	0	٥	149	0	0	119	202	70	70	361
(6)	Irrig	Upland m ³	85	58	116	0	28	28	348	28	53	28	116	28	29	348	58	33	0	0	19	19	135
(8)	un-off to Pond	Volume m ³	336	924	42	2,100	1,092	1,911	6,405	1,491	1,491	1,428	0	399	0	4,809	609	798	1,050	609	1,134	1,491	5,691
(1)	Run-of	Ro	91	44	7	100	52	7	305	7.1	71	89	0	19	0	229	29	38	တ္တ	29	χ	1/	271
(9)	Req.	Paddy mm	2	10	20	0	22	2	9	10	5	0	20	0	0	45	0	0 ;	36	9	9	9	109
(5)	Crop Req.	Upland mm	9	9	12	0	9	ام	36	9	ന	9	12	9	3	36	9.	4	0	0	7	7	14
(4)	Rainfall	mm	42	89	8	182	102	109	602	133	133	128	17	46	15	467	63	× ;	<u></u>	7 9	105	136	545
(3)	Pentad		5	Y) i	ا د	y) i	Λ Υ	٥	otal	ζ,	vo'i	د د	٠ ٠	S,	3	otal	Ś	α '	~ 1	ا ر ہ	ر بر د	9	otal
(2)	Month		Jan.						Sub-total	Feb.						Sub-tota	Mar.						Sub-tota
Ξ	Year 		1977																				

Table C4-9

Calculation of Water Balance in the Wet year of 1977
which is corresponding to 5 years Return Period
in the Probability of Exceedance for Data of Annual Rainfall at the CSDB. (Case B)

No. 2 (16)		Remarks Rmax(mm/day)	(Carrier Annual	33	200	% 7	37.	3	24	48	3,45	8	9	3		56	73	80	1			
(15)		Pump Ope.																				
(14)	Balance	Spill out	500	707 708	969	1,730	889	4.907	343	1.232	854	C	567	0	2,996	622	1,652	850	0	0	0	3,124
(13)	Ba	Shortage m ³																				
(12)		Pond volume m ³	1 000	1,000	1,000	1,000	1,000		1.000	1,000	1,000	937	1.000	747		1,000	1,000	1,000	789	578	367	
(11)	ģ	Total m ³	156	36	39	118	98 147	637	86	49	49	147	147	253	743	91	91	137	211	211	211	952
(10) (11)	Irrigation Req.	Paddy m ³	70	5	20	9	6 9 8	299	9	70	70	9	9	. 79	279	33	33	20	99	99	99	314
(6)	Imiga	Upland m ³	77	39	61	28	58 87	338	58	53	53	87	87	174	464	58	28	87	145	145	145	638
(8)	Run-off to Pond	Volume m ³	357	777	735	1,848	987 840	5,544	441	1,281	903	84	111	0	3,486	996	1,743	987	0	0	0	3,696
(2)	Run-of	Ro mm	12	37	35	88	47 40	264	21	61	43	4	37	0	166	46	င္တ	41	0	0	0	176
(9)	Req.	Paddy	24	12	9	8	18	90	12	9	9	<u>~</u>	18	24	84	10	<u>0</u>	15	70	70	70	95
(5)	Crop Req.	Upland mm	8	4	7	9,	90	35	9	က	က	6	6	18	48	9	9 (δ	15	15	15	99
(4)	Rainfall	mm	44	11	74	162	823	532	20	117	87	22	11	12	365	91	153	94	σ,	ۍ.	0	352
(3)	Pentad		5	5	ۍ	د ۲ د	ر کر	total	5	S	ς,	5	'n	9	total	γ	ე ს	?	Ω.	S.	5	total
(2)	Month		Apr.	•				Sub-tota	May						Sub-total	Jun.						Sub-total
Ξ	Year -		1977																			

Calculation of Water Balance in the Wet year of 1977 which is corresponding to 5 years Return Period

	a
	٥
	(d 920)
	CSDB (C.
	~
	S
	7
	٥
	+
	ď
	=
	Ĭ.
	Sa
	ij
•	9
	ξ
	0
	ate
	Da
	ق
	ce for Data
	Ĭ
	of Exceedance
	흸
	즶
	2
	robability
	<u>.</u>
	칅
	Pro
	<u>o</u>
	ii.

No. 3	(16)	Remarke	Rmax(mm/day)	, <u> </u>	-														49	3.6	66	60			
í,	(CI)	Pump Ope.				ţ	7 [13.5		38	3														
3	Balance	Spill out	m ₃															1	<u></u>	736	1 325	() C	0	1 620	>121
(13)	Ba Ba	Shortage	m ³			125	145	145		415															1
(13)	(72)	Pond volume	m ₃	213	20	2	0	0;	614		484	654	912	717	561	783		1000	1,000	1.000	1,000	741	482		
(1)	G	Total	ш3	154	193	145	145	145	8	840	130	103	282	195	156	156	818	5,	250	156	103	259	259	,243	
(10) (11)	Irrigation Req.	Paddy	Ê	0	0	0	0	00		0	33	26	70 70	20	40	\$ 4	209	2	3 9	4	5 6	99	99	317 1,243	
6	Imig	Upland	Ē	154	193	145	145	145	5	840	97	11	28	145	116	116	609	154	193	116	11	193	193	920	
(8)	Run-off to Pond	Volume	E I	0	0	0	0	0	715	672	0	273	336	0	0	378	786	483	0	651	1,428	0	0	2,562	
(2)	Run-of	Ro		0	0	0	0	ۍ 0	3	32	0	13	16	0	0	18	47	23	0	31	89	0	0	122	
(9)	Crop Req.	Paddy		0	0	0	0 (-	, ,	٥	10	∞	9	15	12	12	63	91	20	12	∞ .	<u>5</u> 0	20	96	
(5)	Crop	Upland		16	20	15	15	<u>্</u> য		8/	10	∞ '	9	15	12	12	63	16	20	12	00	70	20	96	
(4)	Rainfall	ä		७०	-) t	~ 0	71	70	÷	£ ;	36	41	-	Q	45	135	53	0	99	128	c	ə	248	
(3)	Pentad			5	n 4	ე ч	n v	o 0] [ังว่า	ე I	~ '	∽	S	9	tal	S	S	Ś	0 '	م ر		al	
(2)	Month			Jul.					Cut total	31-One	Aug.						Sub-total	Sep.						Sub-total	
Ξ	Year -			1977				;										_							

Calculation of Water Balance in the Wet year of 1977 which is corresponding to 5 years Return Period in the Probability of Exceedance for Data of Annual Rainfall at the CSDB. (Case B)

No. 4		Remarks	Kmax(mm/day)					45	;	63	707	10	7		47	:		00	350	20	000	1		1	
(13)	(21)	<u>8</u> .	III K																					38	
(14)	Balance	Spill out	All l					226	226	1 457	2,499	48	ç	· C	492	4.496		771	180	301	357	0	1.618	33,353	
(13)	Ba	Shortage) 											•										415	
(12)		Pond volume	000	700	# C	44	572	1,000		1.000	1,000	1,000	882	939	1,000		898	1.000	1,000	1,000	1,000	868			
(11)	eg.	Total m3	1 2	200	250	156	207	207	1,230	118	0	66	118	195	98	628	195	147	147	86	147	195	929	9,559	
(10) (11)	Irrigation Req.	Paddy m ³	5	2 4	9	40	53	53	305	66	0	9	9	79	40	338	79	9	09	40	9	79	378	!!	
(6)	Irrig	Upland m3	154	154	193	116	154	154	925	61	0	36	28	116	58	290	116	87	87	58	87	116	551	6,412 3,147	
(8)	Run-off to Pond	Volume m ³	c	378	0	0	735	861	1,974	1,575	2,499	147	0	252	651	5,124	63	1,050	336	399	504	63	2,415	43,365	
(1)	Run-of	Ro	C	× ×	0	0	35	41	94	75	119	7	0	12	31	244	3	20	91	19	74	3	115	2,065 4	
(9)	Req.	Paddy mm	12	16	20	12	91	9	92	30	0	18	<u>∞</u>	74	12	102	24	<u>∞</u>	18	12	<u>8</u>	24	114	950	
(5)	Crop Req.	Upland mm	16	16	70	12	9[16	92	7	o	4	9 ;	12	9	30	12	6	0	9	6	12	57	664	
(4)	Rainfall	шш	11	45	m	∞	74	/8	228	140	214	76	I3	3;	/9	495	20	66	42	46	55	23	285	4,338	
(3)	Pentad	·	5	5	S	ς.	د د	٥	total	S	Ω ⁽	ر د	ሳ ነ	Λ ^γ	0	total	'n	ر د	ر د	ر د دم	د	9	total		
(2)	Month		Oct.						Sub-total	Nov.						Sub-total	Dec.						Sub-total	Total	
(1)	Year		1977																						

Table C4-10

Calculation of Water Balance in the Dry year of 1988
which is corresponding to 5 years Return Period
in the Probability of Non Exceedance for Data of Annual Rainfall at the CSDB. (Case B)

No. 1	(91)		Remarks	Rmax(mm/day)	5	C/	4.5		23.4	37			29	15		28	43	29			45	41	01	ç	32 18	2	
	(15)		Pump Ope.	hr																							
	(14)	Balance	Spill	m ₃	•	0	2,0	1 760	308	581	7 676	2,012	220	73	0	483	543	1,714	3.033	33	226	410	<u>}</u>	145	239	2 167	701,7
	(13)	Ba	Shortage	E																							
3	(71)		Pond volume	E	871	099	1.000	1,000	1,000	1,000			,000	000,	706	1,000	000,1	1,000		1 000	000,1	000	989	1.000	1,000		
=		-	Total	È	137	211	137	46	26	╗	713	127	127	201	701	, c	\ \(\delta\)	77	663	87	85	277	364	79	118	983	
(11)		ninganon Keq.	Paddy	È	20	99	20	17	33	ગ	249	Ş	3 6	2 4	3 6	ე ი	> <	>	199	0	0	238	364	40	60	702	
6) I	Sim	Upland m3		87	145	87	29	, 88 8	ဂ	464	87	× 5	71	205	0 0) o 0	ì	464	87	58	39	0	39	58	281	
8	Run-off to Pond	10101	Volume m ³		I,008	0 ;	204	1,806	399 673	7/0	4,389	357	210	84	673	7/0	1,743		3,696	609	672	924	0	588	357	3,150	
(3	Run-of		Ko III		4 8 9	- ;	57	98	3.5	770	209	17	2	7	ξ.	3 6	8 6		176	29	32	44	0	78	17	150	
9	Crop Reg.		rado min	:	25	07	2'	n ç	20	}	75	15	15	20	9	; =	0	;	3	0	0	72	110	17	P	212	
(5)	Cro		Optano mm	٥	٠ ١	<u>.</u>	, (7 (၀ ဖ	:	48	6	6	12	9	0	'n		48	ο,	9	4 (o ·	4 ,	٥	29	
(4)	Rainfall		mm	90	2 5	2 5	100	130	69		434	43	31	22	89	65	151	200	200	63	69	£.	<u> </u>	79	40	344	
(3)	Pentad			¥) V) V) V) v	9	-)rail	S	ئ	ر	نہ	٧	4	ļ .	g	Ś	n v	O 4	n 4	n v		īg	
(2)	Month			[an						0.1	Sub-total	Feb.						Sub total	21-212	Mar.						Sub-total	
(E)	Year			1988																•							

Table C4-10

Calculation of Water Balance in the Dry year of 1988 which is corresponding to 5 years Return Period

in the Probability of Non Exceedance for Data of Annual Rainfall at the CSDB. (Case B)

No. 2 (16)		Remarks	Kmax(mm/day)	37	78	75	35	6	27	7 5		- 66	Ç			49	27	i					
(15)	,	鱋																					
(14)	Balance	Spill out	12	656	1.247	848	57 819	3.698	670	205	1 316	301	5	0	2,800	394	371	0	0	0	0	765	
(13)	Ba	Shortage																					
(12)		Pond volume	1.000	1,000	1,000	1,000	1,000		1 000	1,000	1,000	1,000	889	925		1,000	1,000	905	674	492	264		
(11)	eq.	Total m3	118	79	118	118	195 147	775	86	147	49	98	195	195	782	182	91	182	228	182	228	1,093	
(10) (11)	Irrigation Req.	Paddy m3	09	40	9	09	6 9	359	9	09	20	40	79	79	318	99	33	99	83	99	83	397	
(6)	Irrig	Upland m3	. 58	39	28	58	116 87	416	58	87	29	28	116	116	464	116	28	116	145	116	145	969	
(8)	Run-off to Pond	Volume m ³	189	735	1,365	996	252 966	4,473	777	651	1,365	399	84	231	3,507	651	462	84	0	0	0	1,197	
(1)	Run-of	Ro	6	35	65	46	12 46	213	37	31	65	19	4	=	167	31	7.7	4	0	0	0	57	
(9)	Crop Req.	Paddy mm	18	12	<u>~</u>	∞ ;	74 18	108	12	<u>8</u>	9	12	24	24	96	50	2;	70	25	20	25	120	
(5)	Crop	Upland mm	9	4	9 (စ ဋ	71	43	9	6	ო	9	12	12	48	12	۽ م	17	15	12	15	72	
(4)	Rainfall	шш	30	73	123	76	92 92	445	77	99	124	47	21	36	371	99	7.0	71	י ני	_ `	0	148	
(3)	Pentad		5.	י מי	~ 4	n 4	ο ν.	otal	5	2	ر ې	٠,	ς,	9	total	52 4	ሳ ነ	α '	α '	م ر	2	total	
(2)	Month		Apr.					Sub-total	May						Sub-total	Jun.						Sub-total	
Ξ	Year		1988																				

Calculation of Water Balance in the Dry year of 1988 which is corresponding to 5 years Return Period in the Probability of Non Exceedance for Data of Annual Rainfall at the CSDB. (Case B)

	No. 3	(01)		Remarks	Rmax(mm/day)			-							3	ç ;	41											
	(15)			Pum	hr		,	4	14				<u>∞</u>											01	2 0	16	5	77
1	(14)	Balance		Spill out											122	777	174			716								
	(13)	Ba		Shortage	È		•	44	145				189											193	186	165	544	
	(12)			Fond volume	È	110	2	> 0	0 ;	619	358	95		616	1.000	1,000	808	277	541		6	797	67 7	- C	0	0		
	(11)	eq.		10fa 73		154	154	177	140	97:	145		200	78	103	78	195	156	234	844	250	250	156	207	207	207	1,295	
	(10) (11)	Irrigation Req.		73. 13.		C	· C	> <	> <	> 0	-	,	>	20	79	20	20	40	9	216	77	3 9	8	53	53	53	331	
	(6)	Imig	I In	Cprident Transfer		154	154	175	116	011	116	020	OCO	58	11	58	145	116	174	628	103	193	116	154	154	154	964	
	(8)	Run-off to Pond	Volume	m ³		0	c	· C	735	2	0	725	551	336	609	672	0	126	0	1,743	c	• -	147	0	21	42	210	
	<u>E</u>	Run-of	2	mm	'	0	0	· C	3.5	3 <	0	35	3	91	29	32	0	9	0	83	0	0	7	0	-	2	10	
	9	Crop Req.	Paddy	, mm	١	>	0	C	· C	· C	0	C	,	9	∞	ဖ	15	12	18	65	20	20	12	16	16	16	100	
	(5)	Crop	Upland	шш	}	0	91	15	17	1.5	12	86		9	∞ ·	9	15	12	8I 8	65	70	20	12] 9	9[9]	100	
	4	Rainfall		шш	,	9	7	0	73	m	0	89		45	\$ (69	0	25	0	200	m		26	<u> </u>		8	80	
į	(3)	Pentad			¥	יי	o	S	Υ)	ۍ	9	otai		نم بر	n ı	α '	~ '	ر	9	ital	5	ς,	ری د	~ \	n v	<u></u>	[a]	
((2)	Month			11	:						Sub-tota		Aug.						Sub-total	Sep.						Sub-total	
3		Year			1988																							

Calculation of Water Balance in the Dry year of 1988 which is corresponding to 5 years Return Period in the Probability of Non Exceedance for Data of Annual Rainfall at the CSDB. (Case B)

No. 4 (16)		Remarks Rmay(mm/day)				53	;	36		[•								45	59	ò			
(15)		Pump Ope.		- «-	2				42														The state of the s	112
(14)	Balance	Spill out				440	0 6	403	843	175	C	ייי אי	•			178			829	1.078			1,907	18,783
(13)	Ba	Shortage m ³	259	195					454													,		1,187
(12)		Pond volume m ³	C	0	657	1,000	897	1,000		1,000	966	1.000	804	651	477		999	828	1.000	1,000	785	541		
(11)	eq.	Total m ³	259	195	78	78	103	3	816	287	359	79	196	195	195	1,311	147	195	49	86	215	244	948	1,053
(11) (11)	Irrigation Req.	Paddy m ³	99	20	70	20	58	9	208	248	301	40	66	79	42	846	99	79	70	40	66	66	397	4,222 11,053
(6)	Irrig	Upland m ³	193	145	58	28	77		809	39	28	39	97	116	116	465	87	116	29	58	116	145	551	6,831 4
(8)	Run-off to Pond	Volume m ³	0	0	735	861	0 0	000	2,205	462	357	84	0	42	21	996	336	357	1,050	1,176	0	0	2,919	29,190
3	Run-of	Ro IIII	0	0	35	41	ဝင္ဂ	67	105	22	17	4	0	7	-	46	16	17	20	26	0	0	139	1,390
(9)	Crop Req.	Paddy mm	70	15	9	9	∞∝	0	63	75	91	12	30	5 4	24	256	18	24	9	12	30	30	120	1,275
(5)	Crop	Upland mm	82	15	9	9	∞ œ	-	63	4	9	4	10	12	12	48	6	12	က	9	12	15	57	707
(4)	Rainfall	E	4	S	73	83	ر د ک	3	240	51	43	21	_	18	17	151	41	44	66	109	S	6	307	3,189
(3)	Pentad		5	5	د ک	ν, i	Λ Y		total	S	S	'n	S	Ś	5	total	ς	Ŋ	'n	S	S	9	total	
(2)	Month		Oct.						Sub-total	Nov.						Sub-tota	Dec.						Sub-total	Total
Ξ	Year		1988																					

4. Drainage Plan

4.1 General

Rainfall on terraced experimental fields shall be drained to the surrounding drainage canal network connected to the farm pond. Excessed water from the farm pond shall be drained to the existing drainage canal along the National road: Jalan Raya Darmaga. Rainfall on the soil conservation experiment fields, workstation and workshop and part of link road shall be drained through the drainage canal toward the Cihideung River.

4.2 Design modulus of drainage

The design modulus of the drainage facilities has been decided in consideration of the importance of their functions in referring the short duration rainfall intensity (Table C1-15) as follows:

(1) drainage canals to drain fully 10-Yr, 15 minutes rainfall intensity: 183.5 mm/hr

lysimeter (a precise mesurment fields) and side drainage canal of the link road to drain fully 100-Yr, 5 minutes rainfall intensity:
 289.3 mm/hr

(3) spillway of the farm pond to drain fully 100-Yr, 30 minutes rainfall intensity: 183.5 mm/hr

Therefore, the design modulus of drainage are calculated as follows:

- (1) drainage canals $q = 100 \times 183.5 \times 10^{-3} / 3,600 = 0.0051 \text{ m}^3/\text{sec} / 100 \text{ m}^2$
- (2) lysimeter and side drainage of link road $q = 100 \times 289.3 \times 10^{-3} / 3,600 = 0.0080 \text{ m}^3/\text{sec} / 100 \text{ m}^2$
- (3) spillway of farm pond $q = 100 \times 98.6 \times 10^{-3} / 3,600 = 0.0027 \text{ m}^3 / \text{sec } /100 \text{ m}^2$

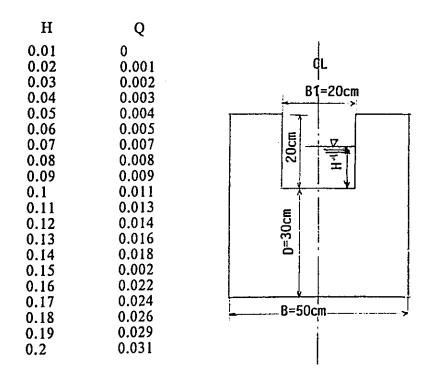
4.3 Measurement devices to be installed in the drainage network for future water balance study

Measurement devices at the paddy experimental fields and lysimeter are proposed to be a kind of rectangular weir.

For the purpose, the dimension and discharge are calculated by the Itaya weir formula as follows:

$$Q = C \times B \times H^{1.5}$$

where C = 1.785 +
$$\frac{0.00295}{H}$$
 + $\frac{0.237 \cdot H}{D}$
- $0.428 \cdot \sqrt{\frac{(B-B1)\cdot H}{B \cdot D}}$ + $0.034 \cdot \sqrt{\frac{B}{D}}$


Q : Overflow discharge in m³/sec

B : Canal width in m

B1: Overflow width in m

D : Damming up height in m

When B1 = 0.2 m, B = 0.5 m, D = 0.3 m, the overflow discharge Q is calculated as follows:

Appendix C5 Bill of Quantities

Division	Work Item	Amount (Rp.)
Division-I	Land Levelling	26,005,000
Division-II	Link Road	35,894,000
Division-III	Farm Pond	32,445,000
Division-IV	Irrigation Canal	6,610,000
Division-V	Drainage Canal	72,195,000
Division-VI	Soil Conservation Test Field	25,731,000
Division-VII	Irrigation Test Field - Paddy Field	2,420,000
Division-VIII	Irrigation Test Field - Upland	1,538,000
Division-IX	Tractor Test Field	487,000
Division-X	Tractor Test Road	13,344,000
	Grand Total	216,669,000

Division-I: Land Levelling

Bill No.	Item	Unit	Q'ty	Unit Price (Rp.)	Amount (Rp.)	Remarks
I-1	Tractor Test Road Area and Link Road Area (BN: No.2+23.0 - BW: No.1) (A = 6,500 m ²)	<u>;</u>				
1-1	Excavation (Top Soil)	m ³	1,950	1,381	2,692,950	No. Eq-1-2
1-2	Excavation	m ³	1,935	1,654	3,200,490	No. Eq-1-3
1-3	Spreading	m ³	1,935	691	1,337,085	No. Eq-3-3
	I-1 Sub-Total				7,230,525	
I-2	Paddy Field Area, Farm Pond Area and Link Road Area (A: No. 0 - A: No. 2 + 35.0) (A = 8,300 m ²)					
2-1	Excavation (Top Soil)	m ³	2,310	1,381	3,190,110	No. Eq-1-2
2-2	Excavation	m ³	2,300	1,654	3,804,200	No. Eq-1-3
2-3	Spreading	m ³	2,300	691	1,589,300	No. Eq-3-3
	I-2 Sub Total				8,583,610	
I-3	Upland Area (A = 5,300 m ²)					
3-1	Excavation	m ³	20.0	1,654	33,080	No. Eq-1-3
3-2	Spreading	m ³	4,000.0	691	2,764,000	No. Eq-3-3
	I-3 Sub-Total		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•	2,797,080	1.0.2400
I-4	Tractor Test Field Area and Link Road Area (A: No.2 + 35.0 - B: No.0) (A = 5,700 m ²)					
4-1	Excavation	m ³	1,290.0	1,654	2,133,660	No. Eq-1-3
4-2	Spreading	m ³	3,200.0	691	2,211,200	No. Eq-3-3
	I-4 Sub-Total		Ì		4,344,860	
I-5	Soil Conservation Test Field Area and Link Road Area (BW: No.1 - BW: No.1 + 20.0 & C: No.0 - C: No.1 + 20.0) (A = 3,200 m ²)					
5-1	Excavation	m ³	1,300.0	1,654	2,150,200	No. Eq-1-3
5-2	Spreading	m ³	1,300.0	691	898,300	No. Eq-3-3
	I-5 Sub-Total			1	3,048,500	
	Division-I Total				26,004,575	(Say 26,005,000)

Division-II: Link Road

Bill No.	Item	Unit	Q'ty	Unit Price (Rp.)	Amount (Rp.)	Remarks
П-1	Link Road: A (B = 5.0m, L = 180.0m)					
1-1	Spreading	m ³	489.6	691	220.214	N. F. 3.2
1-2	Compaction	m ³	489.6	1,456	338,314	No. Eq-3-3
1-3	Sub Base Course (t = 150)	m ²	900.0	2,778	712,858 2,500,200	No. Eq-4
1-4	Form Work	m ²	252.0	8,108	•	1
1-5	Concrete	m ³	23.4	98,646	2,043,216	No. 8
1-6	Asphalt Pavement (t = 50)	m ²	900.0	7,531	2,308,316	No. 7-2
1-7	Wet Masonry	m ²	10.0	,	6,777,900	No. 11
	II-1 Sub-Total	***	10.0	52,531	525,310	No. 19
				, ,	15,206,114	
II-2	Link Road: B (B = 4.0m, L = 204.0m) & C (B = 4.0 m, L = 70.0 m)				_	
2-1	Spreading	m³	663.1	691	458,202	No. Eq-3-2
2-2	Compaction	m ³	663.1	1,456	965,474	No. Eq-4
2-3	Sub Base Course (t = 150)	m ²	1,096.0	2,778	3,044,688	No. 14
2-4	Form Work	m ²	383.6	8,108	3,110,229	No. 8
2-5	Concrete	m ³	35.6	98,646	3,511,798	No. 7-2
2-6	Asphalt Pavement (t = 50)	m ²	1,096.0	7,531	8,253,976	No. 11
	II-2 Sub-Total				19,344,367	
П-3	Gate, Setting & Base	:				
3-1	Gate, Setting & Base	L.S.	1.0		1,344,000	
	II-3 Sub-Total				1,344,000	
	Division-II Total				35,894,481	(Say 35,894,000)

Division-III: Farm Pond

Bill No.		Uni	it Q'ty	Unit Pric	e Amount (Rp.)	Remarks
III-1	Farm Pond (V = 1,000 m ³)					
111-1		m ²	1,725.	3,126	5,392,350	No Es 2.2
1-	1	m ³	1 '	Į.		No. Eq-2-3 No. 1-1
1-		m ³	1	1 1		No. 2-1
1-	"	m ³		1 .		No. 5
1-:		m ²			1	No. 4
1-6	- I	m ²		'		No. 10
•	III-1 Sub-Total	***	194.0	10,004	11,129,311	140. 10
	1		1		11,125,511	
III-2	Spillway					
2-1		m ³	130.6	3,126	408,256	No. Eq-2-3
2-2	i	m ²	175.1	8,108	1,419,711	No. 8
2-3		ton		1,727,500	3,455,000	No. 9
2-4		m ³	40.5	93,710	3,795,255	No. 7-1
2-5		m ³	55.6	1,606	89,294	No. 13
	III-2 Sub-Total		}		9,167,516	
Ш-3	Pump, Catch Basin, Stairs & Suction Box					
3-1	Excavation	m ³	13.4	3,025	40,535	No. 1-1
3-2	Form Work	m ²	24.5	8,108	198,646	No. 8
3-3	Reinforcement-Bar	ton	0.2	1,727,500	345,500	No. 9
.3-4	Concrete	m ³	4.1	93,710	384,211	No. 7-1
3-5	Backfill	m ³	6.4	1,606	10,278	No. 13
3-6	Pump No. 1 (Farm Pond),					
2.7	Setting & Base	L.S.	1.0		1,709,000	ļ ·
3-7	Pump No. 2 (Cihideung River), Setting & Base	L.S.	1.0		6 764 000	
	III-3 Sub-Total	L.S.	1.0		5,764,000	
					8,452,170	
III-4	Inlet (3 nos.)					
4-1	Excavation	m ³	63.0	3,126	196,938	No. Eq-2-3
4-2	Form Work	m ²	123.2	8,108	998,906	No. 8
4-3	Reinforcement-Bar	ton	0.7	1,727,500	1,209,250	No. 9
4-4	Concrete	m ³	13.0	93,710	1,218,230	No. 7-1
4-5	Backfill	m ³	45.0	1,606	72,270	No. 13
	III-4 Sub-Total			,	3,695,594	
	Division-III Total				32,444,591	(Say 32,445,000)

Division-IV: Irrigation Canal

Bill No.	Item	Unit	Q'ty	Unit Price (Rp.)	Amount (Rp.)	Remarks
IV-1	Irrigation Canal (L = 96.0 m)					
1-1	Excavation	m ³	35.5	3,025	107,388	No. 1-1
1-2	Form Work	m ²	144.0	8,108	1,167,552	No. 8
1-3	Reinforcement-Bar	ton	0.9	1,727,500	1,554,750	No. 9
1-4	Concrete	m ³	17.3	93,710	1,621,183	No. 7-1
1-5	Backfill	m ³	18.2	1,606	29,229	No. 13
	IV-1 Sub-Total	"	10.2	1,000	4,480,102	140. 13
IV-2	Concrete Box (1 m x 1 x 1 x 1 nos. & 0.5 m x 0.5 x 0.5 x 7 nos.)					
2-1	Excavation	m ³	23.1	3,025	69,878	No. 1-1
2-2	Form Work	m ²	26.6	8,108	215,673	No. 8
2-3	Reinforcement-Bar	ton	0.2	1,727,500	345,500	No. 9
2-4	Concrete	m ³	3.3	93,710	309,243	No. 7-1
2-5	Backfill	m ³	17.4	1,606	27,944	No. 13
	IV-2 Sub-Total				968,238	
IV-3	Crossing of Farm Road (3 nos.)					
3-1	Excavation	m ³	17.6	3,025	53,240	No. 1-1
3-2	Concrete	m ³	5.0	93,710	468,550	No. 7-1
3-3	Concrete Pipe (ø300)	m	18.0	34,626	623,268	No. 18
3-4	Backfill	m ³	10.3	1,606	16,542	No. 13
	IV-3 Sub-Total			,	1,161,600	
į	Division-IV Total				6,609,940	(Say 6,610,000)

Division-V: Drainage Canal

Bill No.	Item	Unit	Q'ty	Unit Price (Rp.)	Amount (Rp.)	Remarks
•,•	D : 0 1110 # (1 10510)			İ		
V-1	Drainage Canal: U-Gutter (L = 1,051.0)	m ³	620.5	3,126	1,939,683	No. Eq-2-3
1-1 1-2			1,051.0	, , , , ,	29,244,075	No. 12
1-2		m m ²	1,261.0		10,224,188	No. 9
1-4		m ³	105.1	93,710	9,848,921	No. 7-1
1-5		m ³	525.5	1	843,953	No. 13
1-6		m ²	1,220.7	1,826	2,228,998	No. 4
1-0	V-1 Sub-Total	111	1,220.7	1,020	54,329,818	140. 4
	7-1 505-1500]	5 1,525,616	
V-2	Drainage Canal: Open Ditch (L = 400.0 m)		i.			
2-1	Excavation	m ³	200.0	3,126	625,200	No. Eq-2-3
2-2	Smoothing	m ²	764.0	1,826	1,395,064	No. 4
	V-2 Sub-Total				2,020,264	
V-3	Drainage Canal: ConcPipe (L = 120.0 m)					
3-1	Excavation	m ³	192.0	3,126	600,192	No. Eq-2-3
3-2	Form Work	m²	72.0	8,108	583,776	No. 9
3-3	Concrete	m ³	32.4	93,710	3,036,204	No. 7-1
3-4	Concrete Pipe (ø500)	m	120.0	56,175	6,741,000	No. 16
3-5	Backfill	m ³	84.0	1,606	134,904	No. 13
	V-3 Sub-Total				11,096,076	
V-4	Concrete Box (31 nos.)	- 1			ļ	
4-1	Excavation	m ³	85.3	3,025	258,033	No. 1-1
4-2	Form Work	m ²	185.3	8,108	1,502,412	No. 8
4-3	Reinforcement-Bar	ton	0.8	1,727,500	1,382,000	No. 9
4-4	Concrete	m ³	16.2	93,710	1,518,102	No. 7-1
4-5	Backfill	m ³	55.1	1,606	88,491	No. 13
	V-4 Sub-Total	- 1			4,749,038	
					ļ	
	Division-V Total				72,195,196	(Say 72,195,000)

Division-VI: Soil Conservation Test Field

Bill No.	Item	Unit	Q'ty	Unit Price (Rp.)	Amount (Rp.)	Remarks
VI-1	Soil Conservation Test Field - Plot A, B & C (25.0 m x 20.0 m x 3 plots)					
1-1	Excavation	m ³	112.0	3,126	350,112	No. Eq-2-3
1-2	Form Work	m ²	216.5	8,108	1,755,382	No. 8
1-3	Reinforcement-Bar	ton	3.0	1,727,500	5,182,500	No. 9
1-4	Concrete	m ³	59.2	93,710	5,547,632	No. 7-1
1-5	Backfill IV-1 Sub-Total	m ³	167.1	1,606	268,363 13,103,989	No. 13
VI-2	Sedimentation Tank - Plot A, B & C (L = 61.2 m)					
2-1	Excavation	m ³	123.0	3,126	384,498	No. Eq-2-3
2-2	Form Work	m ²	140.8	8,108	1,141,606	No. 8
2-3	Reinforcement-Bar	ton	1.1	1,727,500	1,900,250	No. 9
2-4	Concrete	m ³	21.4	93,710	2,005,394	No. 7-1
2-5	Backfill	m ³	6.1	1,606	9,797	No. 13
	VI-2 Sub-Total				5,441,545	
VI-3	Soil Conservation Test Field - Plot D & E (25.0 m x 10.0 m x 2 plots)					
3-1	Excavation	m ³	34.5	3,126	107,847	No. Eq-2-3
3-2	Form Work	m ²	76.2	8,108	617,830	No. 8
3-3	Reinforcement-Bar	ton	1.2	1,727,500	2,073,000	No. 9
3-4	Concrete	m ³	24.9	93,710	2,333,379	No. 7-1
3-5	Backfill	m ³	95.9	1,606	154,015	No. 13
	VI-3 Sub-Total				5,286,071	
VI-4	Sedimentation Tank - Plot D & E (L = 20.9 m)					
4-1	Excavation	m ³	42.0	3,126	131,292	No. Eq-2-3
4-2	Form Work	m ²	48.1	8,108	389,995	No. 8
4-3	Reinforcement-Bar	ton	0.4	1,727,500	691,000	No. 9
4-4	Concrete	m ³	7.3	93,710	684,083	No. 7-1
4-5	Backfill	m ³	2.1	1,606	3,373	No. 13
. 7-9	VI-4 Sub-Total				1,899,743	
	Division-VI Total				25,731,348	(Say 25,731,000)

Division-VII: Irrigation Test Field - Paddy Field

Bill No.	Item	Unit	Q'ty	Unit Price (Rp.)	Amount (Rp.)	Remarks
VII-1	Paddy Field (25.0m x 30.0m x 4 plots)					
1-1	Excavation	m ³	690.0	1,654	1,141,260	No. Eq-1-3
1-2	Spreading	m ³	690.0	691	476,790	No. Eq-3-3
1-3	Smoothing	m ²	186.0	1,826	339,636	No. 4
1-4	Spreading (Top Soil) VII-I Sub-Total	m ³	600.0	684	410,400 2,368,086	No. Eq-3-2
VII-2	Weir at Outlet for Irrigation Water (4 nos.)			! 		
2-1	Excavation	m ³	1.7	3,025	5,143	No. 1-1
2-2	Form Work	m ²	2.6	8,108	21,081	No. 8
2-3	Concrete	m ³	0.2	93,710	18,742	No. 7-1
2-4	Backfill	m ³	1.6	1,606	2,570	No. 13
	VII-2 Sub-Total				47,536	
VII-3	Weir at Inlet for Irrigation Water (4 nos.)					
3-1	Concrete	m ³	0.02	93,710	1,874	No. 7-1
3-2	Form Work	m ²	0.3	8,108	2,432	No. 8
	VII-3 Sub-Total				4,306	
	Division-VII Total				2,419,928	(Say 2,420,000)

Division-VIII: Irrigation Test field - Upland

Bill No.	Item	Unit	Q'ty	Unit Price (Rp.)	Amount (Rp.)	Remarks
VIII-1	Upland (30.0 m x 90.0 m x 1 plot)					
1-1	Spreading (Top Soil)	m ³	440.0	684	300,960	No. Eq-3-2
1-2	Hauling (Top Soil)	m ³	100.0	1,326	132,600	No. 2-1
•	VIII-1 Sub-Total				433,560	
VIII-2	Farm Road: E (B = 3.0 m, L = 100.0 m)					
2-1	Spreading	m ³	43.0	691	29,713	No. Eq-3-3
2-2	Compaction	m ³	43.0	1,456	62,608	No. Eq-4
2-3	Sub Base Course (t = 150)	m ²	300.0	2,778	833,400	No. 14
2-4	Smoothing	m ²	98.0	1,826	178,948	No. 4
	VIII-2 Sub-Total				1,104,669	
	Division-VIII Total				1,538,229	(Say 1,538,000)

Division-IX: Tractor Test Field

Bill No.	Item	Unit	Q'ty	Unit Price (Rp.)	Amount (Rp.)	Remarks
IX-1 1-1 1-2	Tractor Test Field (86.0 m x 35.0 m x 1 plot) Spreading (Top Soil) Hauling	m ³	480.0 120.0	684 1,326	328,320 159,120	No. Eq-3-2 No. 2-1
1-2	IX-1 Sub-Total	""	120.0	1,520	487,440	110. 2-1
	Division-IX Total				487,440	(Say 487,000)

Division-X: Tractor Test Road

Bill No.	Item	Unit	Q'ty	Unit Price (Rp.)	Amount (Rp.)	Remarks
X-1	Tractor Test Road: D: Concrete Pave. (B = 3.0 m, L = 150.0 m)					
1-1	Spreading	m ³	231.0	691	159,621	No. Eq-3-3
1-2	Compaction	m ³	231.0	. 1,456	336,336	No. Eq-4
1-3	Sub Base Course (t = 200)	m ²	450.0	3,702	1,665,900	No. 15
1-4	Form Work	m ²	36.0	8,108	291,888	No. 8
1-5	Wire Mesh	m ²	450.0	5,968	2,685,600	No. 17
1-6	Concrete	m ³	54.0	98,646	5,326,884	No. 7-2
1-7	Smoothing	m ²	366.0	1,826	668,316	No. 4
	X-1 Sub-Total	·			11,134,545	
X-2	Tractor Test Road: Gravel Pave. (B = 3.0 m, L = 150.0 m)					
2-1	Spreading	m ³	65.0	691	44,915	No. Eq-3-3
2-2	Compaction	m ³	65.0	1,456	94,640	No. Eq-4
2-3	Sub Base Course (t = 150)	m ²	450.0	2,778	1,250,100	No. 14
2-4	Smoothing	m ²	147.0	1,826	268,422	No. 4
	X-2 Sub-Total				1,658,077	
X-3	Tractor Test Road: Earth Road (B = 3.0 m, L = 150.0 m)					
3-1	Spreading	m ³	132.0	691	91,212	No. Eq-3-3
3-2	Compaction	m ³	132.0	1,456	192,192	No. Eq-4
3-3	Smoothing	m ²	147.0	1,826	268,422	No. 4
	X-3 Sub-Total				551,826	
	Division-X Total				13,344,448	(Say 13,344,000)

Appendix C6 Labour Cost and Material Cost

LABOUR COST

Foreman Carpenter Head of Carpenter Stone Worker Head of Stone Worker Steel Worker Head of Steel Worker Asphalt Worker Oriver Operator (Heavy Equipment) Assistant Operator Mechanical	Unit	Unit Price (Rp.)	
Labour	m.d	3,500	
Foreman	m.d	5,000	
Carpenter	m.d	4,000	
Head of Carpenter	m.d	5,000	
Stone Worker	m.d	4,000	
Head of Stone Worker	m.d	5,000	
Steel Worker	m.d	4,500	
Head of Steel Worker	m.d	5,000	
Asphalt Worker	m.d	4,000	
Driver	m.d	4,000	
Operator (Heavy Equipment)	m.d	5,000	
Assistant Operator	m.d	4,000	
Mechanical	m.d	4,000	
Electrical	m.d	5,000	

MATERIAL COST

Item	Unit	Unit Price (Rp.)	Remarks
Sand	m ³	12,500	
Gravel	m ³	12,500	
Gravel for Pavement	m ³	13,000	
Stone	m ³	15,000	
Lumber	m³	150,000	
Reinforced Iron Bar	kg	750	
Nail	kg	1,500	
Wire for Binding	kg	1,250	
Cement	bag	4,650	40 kg
Asphalt Pitch	ton	49,500	_
Tack Coat	m ²	1,020	
Gasoline	lit	385	
Diesel	lit	200	
Concrete Pipe ø500 mm	рс	50,000	L = 1 m
Concrete Pipe ø300 mm	рс	145,150	L = 4.72 m
PVC Pipe ø2"	stick	22,200	L = 4 m
PVC Pipe ø4"	stick	67,000	L = 4 m
Wire Mesh	m ²	5,400	· · · · · · · · · · · · · · · · · · ·

Appendix C7 Unit Price

	LIST	OF	UNIT	PRICE
--	------	----	------	--------------

		-	Item	Unit	Unit Price (Rp.)
1.	Unit Pri	ce by	Manpower		
	No. 1	Exc	avation by Manpower		
	No.	1-1	Normal Soil	m ³	3,025
	No.	1-2	Hard Soil	m ³	4,032
	No. 2	Hau	ling by Manpower		
	No.	2-1	Distance (L) less than 30 m	m ³	1,326
	No.	2-2	Distance (L) more than 30 m	m ³	14L + 1,050
	No. 4	Smo	oothing of Face Excavated or Filled up	m ²	1,826
	No. 5	Con	npacting by Manpower	m ³	1,606
	No. 6	Con	npacting by Compactor	m^3	1,169
	No. 7	Con	crete Mixed by Portable Concrete Mixer		
	No.	7-1	$\sigma 28 = 175 \text{ kg/cm}^2$	m ³	93,710
	No.	7-2	$\sigma 28 = 225 \text{ kg/cm}^2$	m ³	98,646
	No. 8	Woo	oden Form of Concrete	m^2	8,108
	No. 9	Proc Rein	essing & Assembling of afforced Iron Bar	ton	1,727,500
	No. 10	Ston	e Masonry	m^2	16,664
	No. 11	Asp	halt Pavement (t = 50 mm)	m^2	7,531
	No. 12	Half	Concrete Pile (ø500)	m	27,825
	No. 13	Bacl	kfill by Manpower	m ³	1,606
	No. 14	Sub	Base Course (t = 150 mm)	m^2	2,778
	No. 15	Sub	Base Course (t = 200 mm)	m ²	3,702
•	No. 16	Con	crete Pipe (ø500)	m	56,175
	No. 17	Wire	: Mesh	m ²	5,968
	No. 18	Con	crete Pipe (ø300)	m	34,626
	No. 19	Wet	Masonry	m ²	52,531

Item	Unit	Unit Price (Rp.)
2. Unit Price by Using Construction Equipment		
No. Eq-1 Excavation by Bulldozer (11 ton)		
No. Eq-1-1 Sand	m ³	1,183
No. Eq-1-2 Normal Soil	m ³	1,381
No. Eq-1-3 Clayey Soil	m ³	1,654
No. Eq-2 Excavation by Back-hoe Shovel (0.35 m	³)	
No. Eq-2-1 Sand	m^3	2,458
No. Eq-2-2 Normal Soil	m ³	2,430
No. Eq-2-3 Clayey Soil	m ³	3,126
No. Eq-3 Spreading by Bulldozer (11 ton)		·
No. Eq-3-1 Sand	m ³	615
No. Eq-3-2 Normal Soil	m ³	684
No. Eq-3-3 Clayey Soil	m ³	691
No. Eq-4 Compaction by Vibration Roller (3 ton)	m ³	1,456
3. Operation Cost of Construction Equipment		
No. OP-1 Bulldozer (11 ton)	day	325,234
No. OP-2 Back-hoe Shovel (0.35 m ³)	day	409,850
No. OP-3 Vibration Roller (3 ton)	day	181,514

Breakdown of Unit Price

No. 1-1 Excavation by Manpower (Soil Condition: Normal Soil)

Rp. $3,025/m^3$

Item	Q'ty	Unit	Unit Cost	Cost	Remarks
Labour	0.75	m.d	3,500	2,625	
Foreman	0.025	m.d	5,000	125	
Temporary Works	10	%		275	
Total				3,025	

No. 1-2 Excavation by Manpower (Soil Condition: Hard Soil)

 $Rp. 4,032/m^3$

Item	Q'ty	Unit	Unit Cost Cost Remarks 3,500 3,500 5,000 165 367 4,032		
Labour	1.0	m.d	3,500	3,500	
Foreman	0.033	m.d	5,000	165	
Temporary Works	10	%		367	
Total				4,032	

No. 2-1 Hauling by Manpower (Distance ≤ 30 m)

Rp. $1,326/m^3$

Item	Q'ty	Unit	Unit Cost	Cost	Remarks
Labour	0.33	m.d	3,500	1,155	
Foreman	0.01	m.d	5,000	50	
Temporary Works	10	%		121	
Total				1,326	

No. 2-2 Hauling by Manpower (Distance > 30 m)

Item K = 2	Q'ty	Unit	Unit Cost	Cost	Remarks
$K = \frac{1}{2}$	$\frac{a}{75}$ (L + 75) x 1.1 where; K =	Unit Price	, , , , , , , , , , , , , , , , , , , ,		
	a = L =	Wages for Hauling D	Labour, istance (m)		
$K = \frac{3}{2}$	500 75 (L + 75) x 1.	1 = 14.0L+	· 1,050 (Rp.))	

No. 4 Smoothing of Face Excavated or Filled up

Rp. 1,826/m²

Item	Q'ty	Unit	Unit Cost	Cost	Remarks
Labour	0.46	m.d	3,500	1,610	-
Foreman	0.01	m.d	5,000	50	
Temporary Works	10	%	ŕ	166	
Total				1,826	

No. 5 Compacting by Manpower

Rp. 1,606/m³

Item	Q'ty	Unit	Unit Cost	Cost	Remarks
per 10 m ³					· · · · · · · · · · · · · · · · · · ·
Labour	4	m.đ	3,500	14,000	
Foreman	0.12	m.d	5,000	600	
Temporary Works	10	%	,	1,460	
Total				16,060/10	m ³
per m ³				1,606	

No. 6 Compacting by Compactor

Rp. $1,169/m^3$

•	Item	Q'ty	Unit	Unit Cost	Cost	Remarks
per	10 m ³					
1.	Worker					
	Labour	2.30	m.d	3,500	8,050	
	Foreman	0.07	m.d	5,000	350	
	Sub-total				8,400	
2.	Fuel & Others			•		
	Fuel	0.9	lit	200	180	6 lit/day x 0.15 day
	Others	15	%		27	
	Sub-total			•	207	
3.	Depreciation & Others	0.15	đay	13,457	2,019	
4.	Temporary Works & Others	10	%		1,063	
	Total				11,689/10) m ³
	per m ³				1,169	

No. 7-1 Concrete (o28 = 175 kg/cm²)
(Mixed by Portable Concrete Mixer)

Rp. $93,710/m^3$

	Item	Q'ty	Unit	Unit Cost	Cost	Remarks
1.	Material					.,
	Gravel	0.82	m3	12,500	10,250	
	Cement	8.75	bag	4,650	40,688	
	Sand	0.55	m^3	12,500	6,875	
	Sub-total				57,813	
2.	Worker					
	Labour	7.0	m.d	3,500	24,500	•
	Foreman	0.23	m.d	5,000	1,150	
	Sub-total				25,650	
3.	Fuel & Others			•		
	Mixer Fuel	0.22	lit	200	44	
	Others	20	%		9	
	Vibrator Fuel	0.22	lit	200	44	
	Others	20	%		9	
	Sub-total				106	
1.	Depre. & Main.					
	Mixer	0.061	day	20,742	1,265	
	Vibrator	0.071	day	5,027	357	
	Sub-total				1,622	
5.	Temporary Works & Others	10	%		8,519	
	Total				93,710	

No. 7-2 Concrete (σ 28 = 225 kg/cm²) (Mixed by Portable Concrete Mixer)

Rp. 98,646/m³

	Item	Q'ty	Unit	Unit Cost	Cost	Remarks
1.	Material	Material				
	Gravel	0.88	m^3	12,500	11,000	
	Cement	9.5	bag	4,650	44,175	
	Sand	0.57	m ³	12,500	7,125	
	Sub-total				62,300	
2.	Worker	1	Compl	ete	25,650	No. 7-1
3.	Fuel & Others	1	Compl	ete	106	No. 7-1
4.	Depre. & Main.	1	Compl	ete	1,622	No. 7-1
5.	Temporary Works & Others	10	%		8,968	
	Total				98,646	

No. 8 Wooden Form of Concrete

Rp. 8,108/m²

	Item	Q'ty	Unit	Unit Cost	Cost	Remarks
pe	er 10 m ²					
1.	Form					
	Wooden Plate	0.196	m ³	150,000	29,400	(1)
	Wooden Frame	0.113	m ³	150,000	16,950	(2)
	Iron Nail	3.0	kg	1,500	4,500	(3)
	Sub-Total 1				50,850	(4)=(1)+(2)+(3)
	Depre. Cost of 1	30	%		15,255	(5)
2.	Support					
	Square Lumber	0.339	m ³	150,000	50,850	(6)
	Log	0.154	m^3	150,000	23,100	(7)
	Sub-Total 2				73,950	(8)=(6)+(7)
	Depre. Cost of 2	20	%		14,790	(9)
3.	Other Materials					
	Nail & Others	1.1	kg	1,500	1,650	(10)
	Wire ·	0.8	kg	1,250	1,000	(11)
	Oil Paint	0.15	lit	1,000	150	(12)
	Others	3	%		985	(13)=(5)+(9)+ (10)+(11)+(12)
	Sub-Total				3,785	(14)
4.	Worker					
	Сагрептег	3.36	m.d	4,000	13,440	(15)
	Labour	4.14	m.d	3,500	14,490	(16)
	Foreman	0.12	m.đ	5,000	600	(17)
	Sub-Total				28,530	(18)
5.	Trans. of Materials	15	%		18,720	(19)=(4)+(8)
	Total				81,080/10m ²	(20)=(5)+(9)+ (14)+(18)+(19)
	per m ²				8,108	

No. 9 Processing & Assembling of Reinforced Iron Bar

Rp. 1,727,500/ton

	Item	Q'ty	Unit	Unit Cost	Cost	Remarks
per	100 kg					
1.	Materials					
	Reinforced I.B.	110	kg	750	82,500	
	Wire for Binding	2	kg	1,250	2,500	
	Sub-Total				85,000	
2.	Process. & Assembl.			·		
	Steel Worker	12	m.d	4,500	54,000	
	Labour	9	m.d	3,500	31,500	
	Head	0.45	m.d.	5,000	2,250	
	Sub-Total			•	87,750	
	Total .				172,750/1	00 kg
	per ton				1,727,500	

No. 10 Stone Masonry

Rp. 16,664/m²

	Item	Q'ty	Unit	Unit Cost	Cost	Remarks
1.	Materials					
	Stone	0.385	m3	15,000	5,775	
	Gravel	0.33	m3	12,500	4,125	
	Sub-Total				9,900	
2.	Worker					
	Stone Worker	0.64	m.d	4,000	2,560	
	Labour	0.58	m.d	3,500	2,030	
	Sub-Total				4,590	
3.	Others	15	%		2,174	
	Total				16,664	

No. 11 Asphalt Pavement (t = 50 mm)

Rp. 7,531/m²

Item	Q'ty	Unit	Unit Cost	Cost	Remarks
per 100 m ²					
1. Worker					
Asphalt Worker	24.07	m.d	4,000	96,280	•
Labour	22.52	m.d	3,500	78,820	
Sub-Total				175,100	
2. Materials					
Asphalt Pitch	9.38	ton	49,500	464,310	
Gasoline	2.1	lit	385	809	
Sub-Total		•		. 465,119	
. Fuel & Others			•		
Gasoline	5.13	lit	385	1,975	
Others	10	%		198	
Sub-Total				2,173	
. Depre. & Main.					
Tamper/Rammer	1.25	day	10,000	12,500	
7. Temporary Works & Others	15	%		98,234	
Total				753,126/10	0 m ²
per m ²				7,531	

No. 12 Half Concrete Pipe (ø500 mm)

Rp. 27,825/m

Item	Q'ty	Unit	Unit Cost	Cost	Remarks
1. Materials					
Half Concrete Pipe	1	m	25,000	25,000	
2. Worker					
Labour	0.4	m.d	3,500	1,400	•
Foreman	0.02	m.d	5,000	100	
Sub-total				1,500	
3. Temporary Works & Others	5	%		1,325	
Total				27,825	

No. 13 Backfill by Manpower

Rp. 1,606/m³

Item	Q'ty	Unit	Unit Cost	Cost	Remarks
per 10 m ³					
Labour	4	m.d	3,500	14,000	
Foreman	0.12	m.d	5,000	600	
Temporary Works	10	%		1,460	
Total				16,060/1	0 m ³
per m ³				1,606	

No. 14 Sub Base Course (t = 150 mm)

Rp. 2,778/m²

Item	Q'ty	Unit	Unit Cost	Cost	Remarks
per 100 m ²					
1. Material			•		
Gravel	16.5	m ³	13,000	214,500	
2. Worker					
Labour	11.0	m.d	3,500	38,500	
Foreman	0.15	m.d	5,000	750	
Sub-Total				39,250	
3. Compaction	16.5	m ³	1,456	24,024	No. Eq-4
Total				277,774/10	00 m ²
per m ²				2,778	

No. 15 Sub Base Course (t = 200 mm)

Rp. 3,702/m²

	Item	Q'ty	Unit	Unit Cost	Cost	Remarks
per	100 m ²					
1.	Material					
	Gravel	22.0	m ³	13,000	286,000	
2.	Worker					
	Labour	14.7	m.đ	3,500	51,450	
	Foreman	0.15	m.d	5,000	750	
	Sub-Total				52,200	
3.	Compaction	22.0	m ³	1,456	32,032	No. Eq-4
	Total				370,232/10	00 m2
	per m ²				3,702	

No. 16 Concrete Pipe (ø500 mm)

Rp. 56,175/m

Item	Q'ty	Unit	Unit Cost	Cost	Remarks
per 10 pieces (10 m)					
1. Material					
Concrete Pipe	10	nos.	50,000	500,000	
2. Worker					
Labour	10	m.d	3,500	35,000	
3. Temporary Works & Others	.5	%		26,750	
Total				561,750/10	m
per m		•		56,175	

No. 17 Wire Mesh

Rp. 5,968/m²

Item	Q'ty	Unit	Unit Cost	Cost	Remarks
per 100 m ²					
1. Material					
Wire Mesh	110	m^2	5,400	594,000	
2. Worker					
Labour	0.8	m/d	3,500	2,800	
Total				596,800/10	00 m ²
per m ²				5,968	

No. 18 Concrete Pipe (ø300 mm)

Rp. 34,626/m

Item	Q'ty	Unit	Unit Cost	Cost	Remarks
per 1 piece (4.72 m)					
1. Material					
Concrete Pipe	1	nos.	145,150	145,150	
2. Worker					
Labour	3	m.d	3,500	10,500	
3. Temporary Works &					
Others	5	%		7,783	
Total				163,433/4	.72 m
per m				34,626	
No. 19 Wet Masonry]	Rp. 52,531/m ²
Item	Q'ty	Unit	Unit Cost	Cost	Remarks
per 10 m ²					
1. Materials					
Stone	3.5	m^3	15,000	52,500	
Gravel	3.0	m^3	12,500	37,500	
Concrete	3.6	m ³	93,710	337,356	No. 7-1
VP (φ50 mm)	1.5	m	5,550	8,325	
Sub-Total				435,681	
2. Worker					
Stone Worker	3.30	m.d	4,000	13,200	
Labour	7.05	m.d	3,500	24,675	
Foreman	0.80	m.d	5,000	4,000	
Sub-Total				41,875	
3. Others	10	%		47,756	
Total			•	525,312/10	m ²
per m ²				52,531	

No. Eq-1 Excavation by Bulldozer (11 ton)

Ite	em	Q'ty	Unit	Cost (Rp.)	Remarks
Operation Cost				325,234	OP-1
Temporai	ry Works	10	%	32,523	
Total	l			357,757	
Eq-1-1	Sand	1	m ³	1,183	Production 302.4 m ³ /d
Eq-1-2	Normal Soil	1	m^3	1,381	Production 259.0 m ³ /d
Eq-1-3	Clayey Soil	1	m³	1,654	Production 216.3 m ³ /d

No. Eq-2 Excavation by Back-hoe Shovel (0.35 m³)

Item Operation Cost		Q'ty	Unit	Cost (Rp.)	Remarks OP-2	
		-		409,850		
Тетрога	ry Works	10	%	40,985		
Total				450,835		
Eq-2-1	Sand	1	m ³	2,458	Production 183.4 m ³ /d	
Eq-2-2	Normal Soil	1	m^3	2,430	Production 185.5 m ³ /d	
Eq-2-3	Clayey Soil	1	m ³	3,126	Production 144.2 m ³ /d	

No. Eq-3 Spreading by Bulldozer (11 ton)

em	Q'ty	Unit	Cost (Rp.)	Remarks		
Operation Cost Temporary Works		%	325,234 32,523	OP-1		
Sand	1	m ³	615	Production 582.1 m ³ /d		
Normal Soil	1	m ³	684	Production 523.3 m ³ /d		
Clayey Soil	1	m ³	691	Production 517.4 m ³ /d		
	n Cost ry Works al Sand Normal Soil	n Cost ry Works 10 ll Sand 1 Normal Soil 1	n Cost ry Works 10 % al Sand 1 m ³ Normal Soil 1 m ³	n Cost 325,234 rry Works 10 % 32,523 al 357,757 Sand 1 m ³ 615 Normal Soil 1 m ³ 684		

No. Eq-4 Compaction by Vibration Roller (3 ton)

Item	Q'ty	Unit	Cost (Rp.)	Remarks	
Operation Cost			181,514	OP-3	
Temporary Works	10	%	18,151		
Total			199,665		
Eq-4	1	m ³	1,456	Production 137.1 m ³ /d	

No. OP-1 Operation Cost of 11 ton Bulldozer

Rp. 325,234/day

Item	Q'ty	Unit	Unit Cost	Cost	Remarks
1. Worker					
Operator	1.0	m.d	5,000	5,000	
Assistance	0.5	m.d	4,000	2,000	
Sub-Total				7,000	
2. Fuel & Others				·	
Diesel Oil	59.5	lit	200	11,900	
Others	30	%		3,570	
Sub-Total				15,470	
. Depreciation	7	. hr	43,252	302,764	
Total				325,234	

No. OP-2 Operation Cost of 0.35 m³ Back-hoe Shovel

Rp. 409,850/day

	Item	Q'ty	Unit	Unit Cost	Cost	Remarks
1.	Worker	Worker				
	Operator	1.0	m.d	5,000	5,000	
	Assistance	0.5	m.đ	4,000	2,000	
	Sub-Total				7,000	
2.	Fuel & Others					
	Diesel Oil	35.0	1it	200	7,000	
	Others	30	%		2,100	
	Sub-Total				9,100	
3.	Depreciation	7	hr	56,250	393,750	
	Total				409,850	

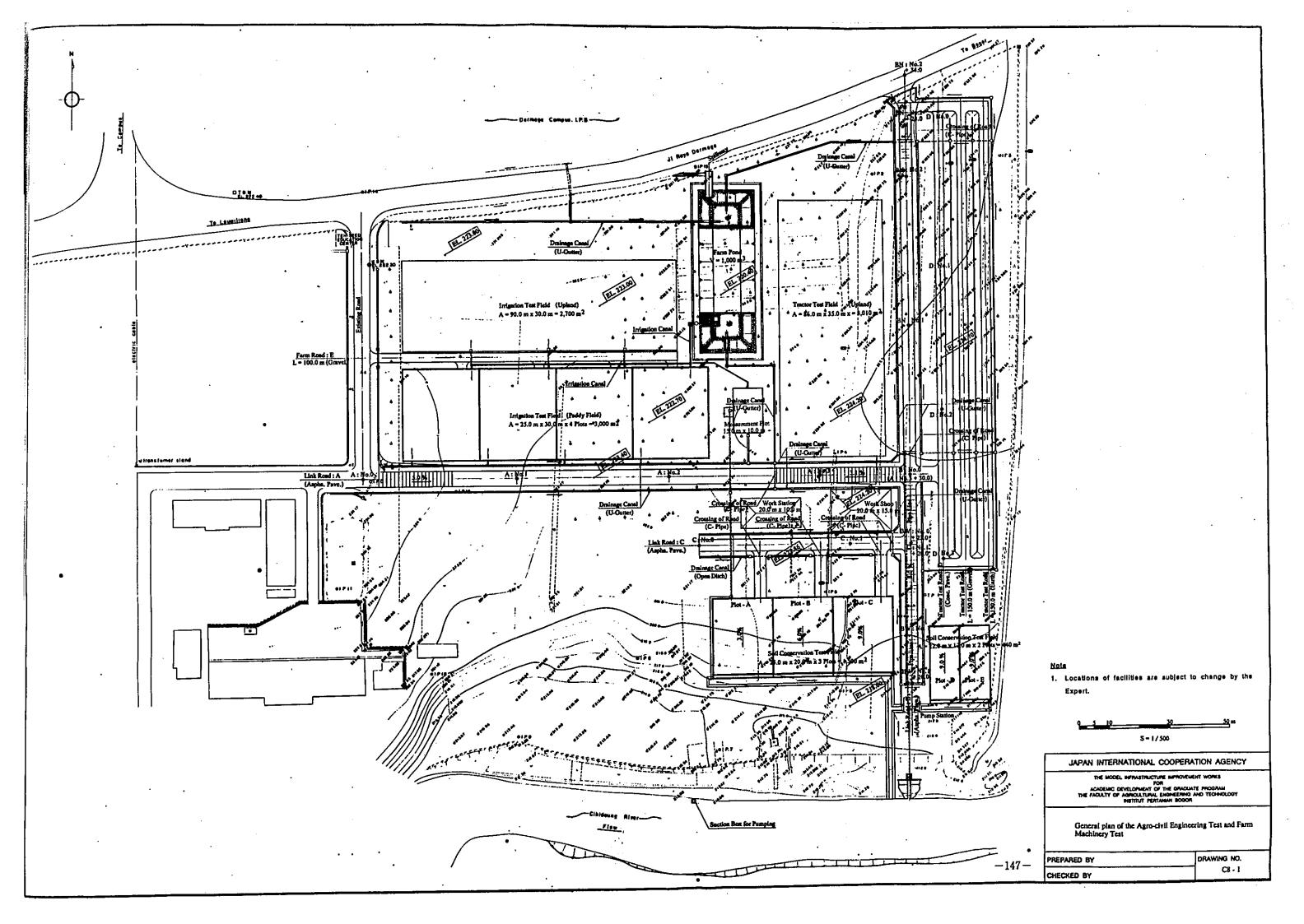
No. OP-3 Operation Cost of Vibration Roller 3 ton

Rp. 181,514/day

	Item	Q'ty	Unit	Unit Cost	Cost	Remarks
1.	Worker					
	Operator	1.0	m.đ	5,000	5,000	
	Assistance	0.5	m.d	4,000	2,000	
	Sub-Total				7,000	
2.	Fuel & Others					
	Diesel Oil	8.9	lit	2,000	1,780	
	Others	30	%		534	
	Sub-Total				2,314	
3.	Depreciation	7	hr	24,600	172,200	
	Total				181,514	

Appendix C8 General Plan of the Agro-civil Engineering Tests and Farm Machinery Tests Fields

Based on the Basic Plan which was described in the Letter of Team Leader of the Detailed Design Survey Team of JICA dated January 16, 1990, general plan of the agro-civil engineering tests and farm machinery tests fields has been prepared at the depth of the detailed design study, as shown in Drawing C8-1.


After deliberation on basic needs, urgency and priority for the components of the general plan as well as their required construction cost in comparison with available fund, the components of the Model Infrastructure Improvements Works have been decided as follows:

- 1. land leveling and land preparation,
- 2. link road,
- 3. drainage facilities,
- 4. irrigation facilities (excluding the Cihideung pump station and its related pipe line except pump machine)
- 5. soil conservation test fields,
- 6. paddy irrigation tests fields,
- 7. upland irrigation tests fields,
- 8. tractor test field, and
- 9. tractor test roads.

Accordingly, the following components of the said general plan shall be left behind in further consideration on the self-construction of the Indonesian side:

- 1. measurement plot (lysimeter)
- 2. the Cihideung pump station and its related pipe line except pump machine,
- 3. workshop and workstation, and
- 4. others, if any.

Appendix C9 Measurement Plot

1. Site allocation

The site for the measurement plot has been allocated to the surrounding area by the farm pond in the north, the tractor test field in the east, the link road in the south and the paddy experimental field in the west. The available land is about 17 m in width and 26 m in length.

2. Structure

This is used for study on the water balance at a paddy field. It is made of watertight reinforceed concrete with outflow measurement devices for amounts of surface water and percolated water.

The dimensions of the structure are 10 m in width, 15 m in length and 2 m in height. The structural framework consists of reinforeced concrete walls and a bottom slab. Two rectangular weirs are provided at the inlet and the outlet canals respectively in order to measure amounts of water comming into and going out from the measurement plot. The percolated water into the soil is collected with perforated PVC pipes installed on the bottom slab and measured it at the outlet box by bulk. While, the inside of the measurement plot is filled with arable soil on filter with adequate thickness of gravel and sand.

3. Design

The rates of irrigation water necessary for the experiments in the measurement plot are the same as the paddy experiment fields. The irrigation water is supplied from the farm pond.

For surface drainage during heavy rainfall concentration, the maximum capacity of the measurement weir was decided with the following criteria:

$$Q = R_5^{100} \cdot A$$

Where; Q: Design discharge

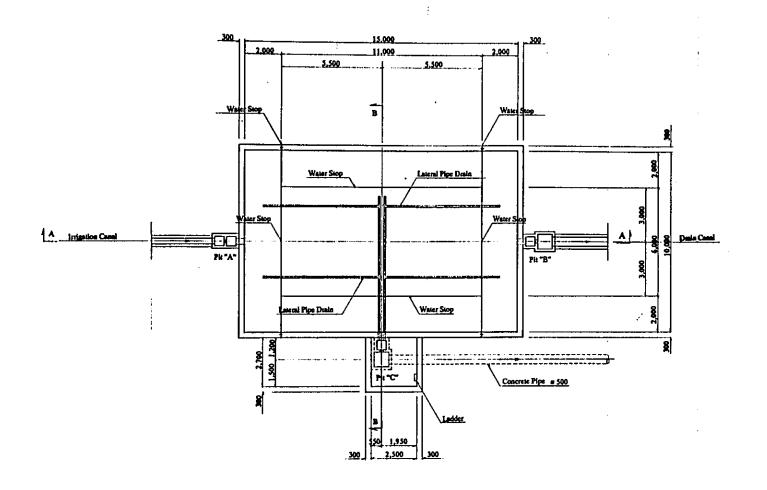
 R_5^{100} : 5 minutes rainfall intensity of 100 years

return period = 289.3 mm/hr

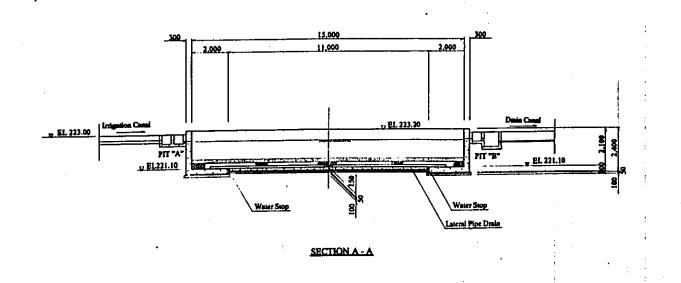
A : Catchment area = 150 m²

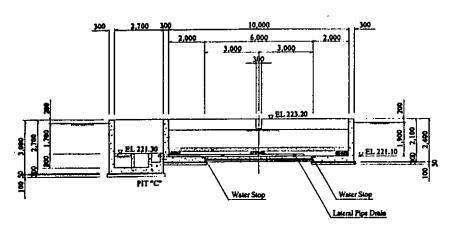
Therefore; Q = $289.3 \text{ mm/hr} \times 150 \text{ m}^2$

 $= 0.012 \text{ m}^3/\text{sec}$

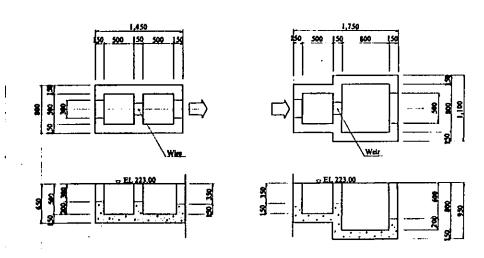

The dimension of the drainage canal of concrete flume is:

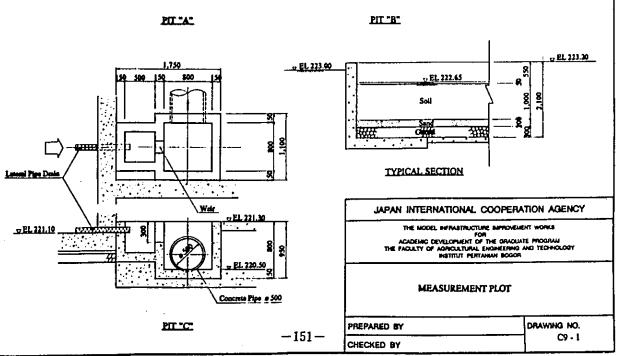
 $Q = 0.012 \text{ m}^3/\text{sec}$, Canal width = 0.5 m, Canal slope = 0.001


n = 0.015, Water depth = 0.08 m, Canal depth = 0.3 m

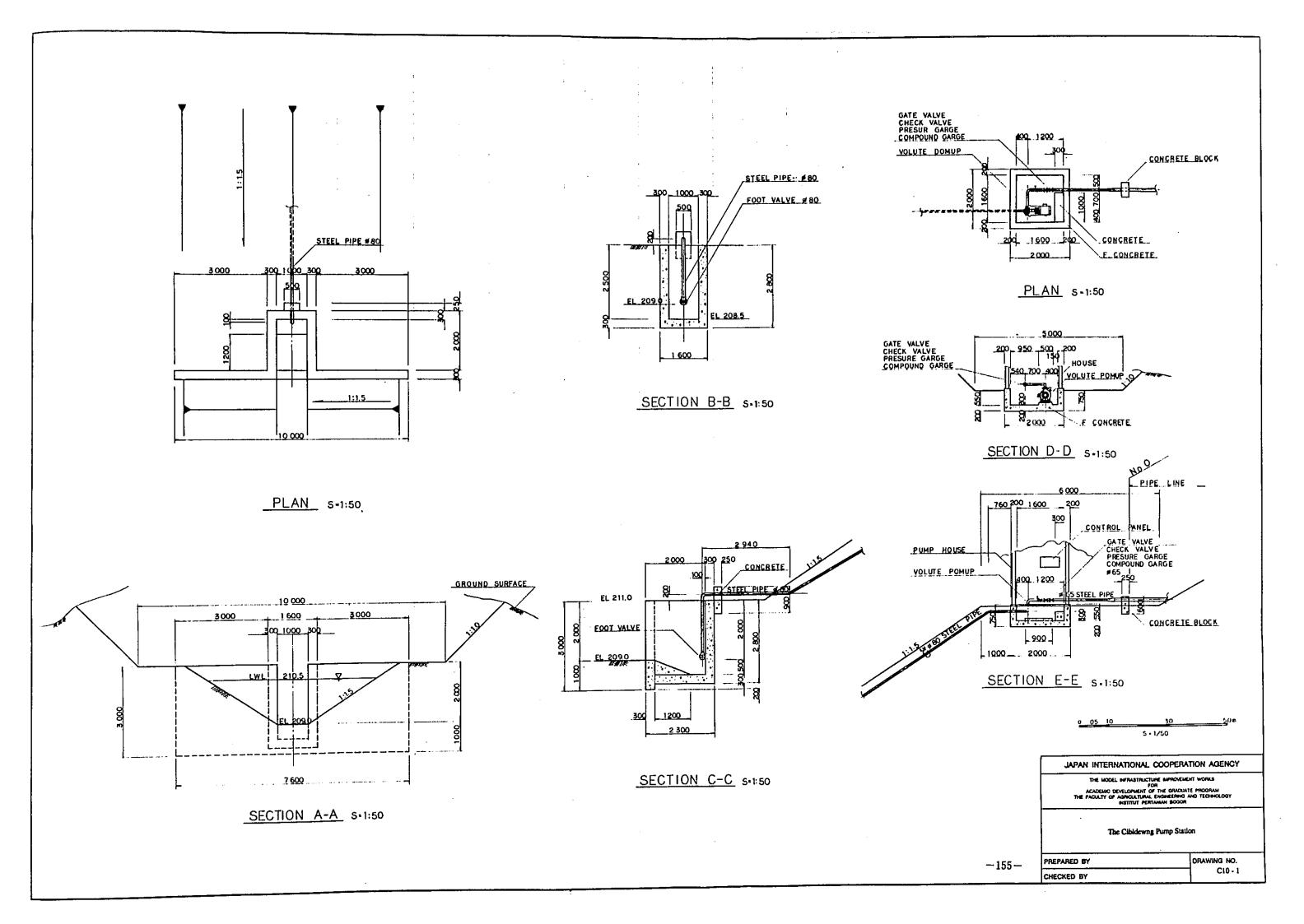

The structure is designed as shown in Drawing C9-1.

The Cost is estimated at Rp. 28,050,000.

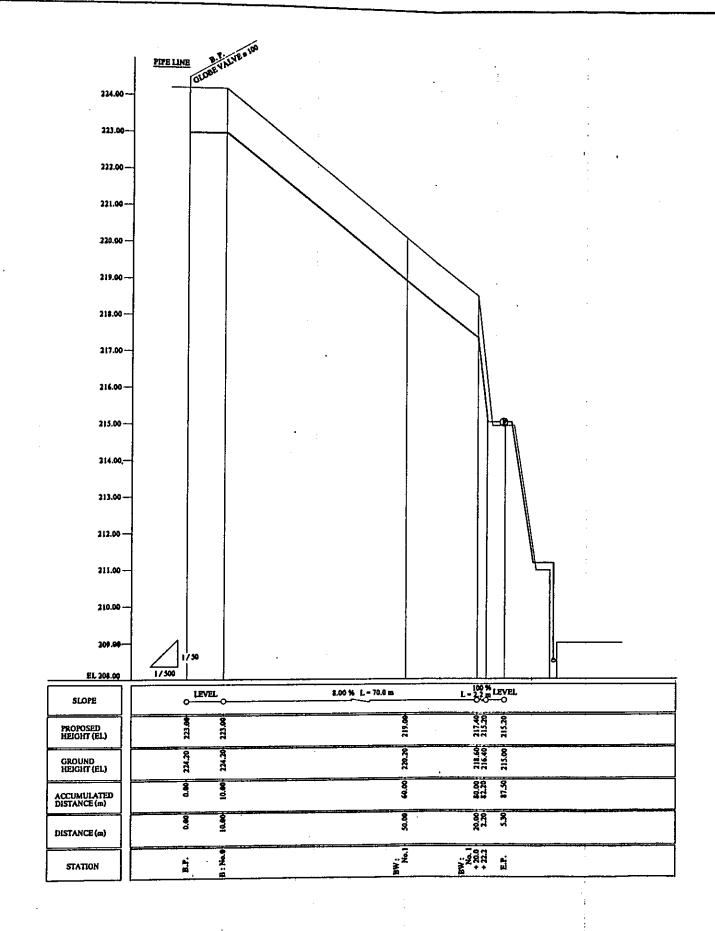


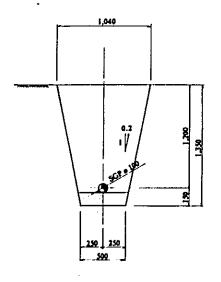

PLAN

SECTION B - B


Appendix C10 The Cihideung Pump Station

As the result of the water balance calculation the required pump capacity is found at 180 lit/min with 40 mm of pump bore.


The location and the design drawing of the Cihideung pump station and pipe line are shown in Drawing C10-1 and C10-2.


The construction cost is estimated at Rp. 32,831,000 for pump station and Rp. 2,767,000 for pipe line.

TYPICAL SECTION

JAPAN INTERNATIONAL COOPERATION AGENCY

THE MODEL INFRASTRUCTURE IMPROVEMENT WORKS
FOR
ACADEMIC DEVELOPMENT OF THE GRADUATE PROGRAM
THE FACULTY OF ADROUNTIRAL EMPRESHED AND TECHNOLOGY
INSTITUT PERTANEAN BOOOR

PIPE LINE

PREPARED BY CHECKED BY

DRAWING NO. C10 - 2

Appendix C11 Workshop / Workstation

The design conditions of the Workshop / Workstation are based on the discussion results during the field survey.

Major elements of the building structures are as follows;

Floor

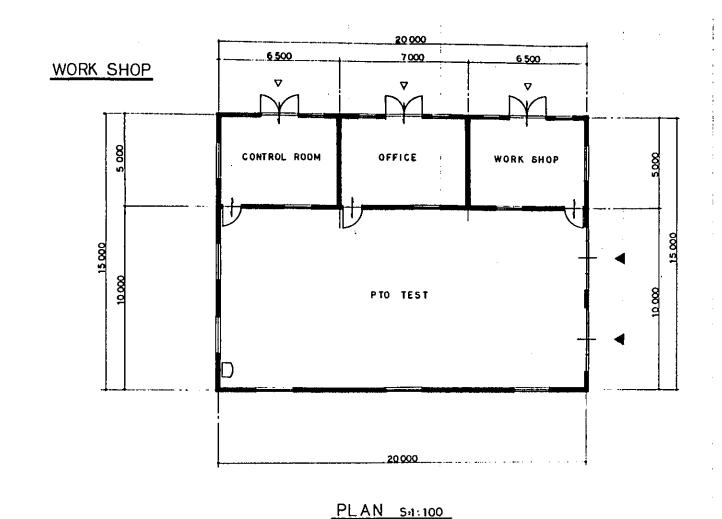
concrete

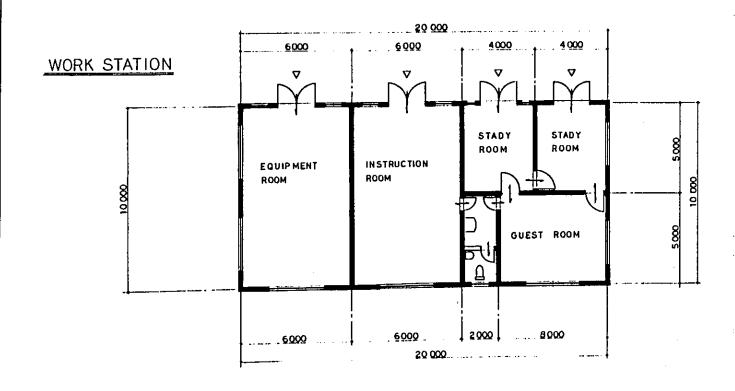
Wall

: concrete blocks with cement mortar finishing

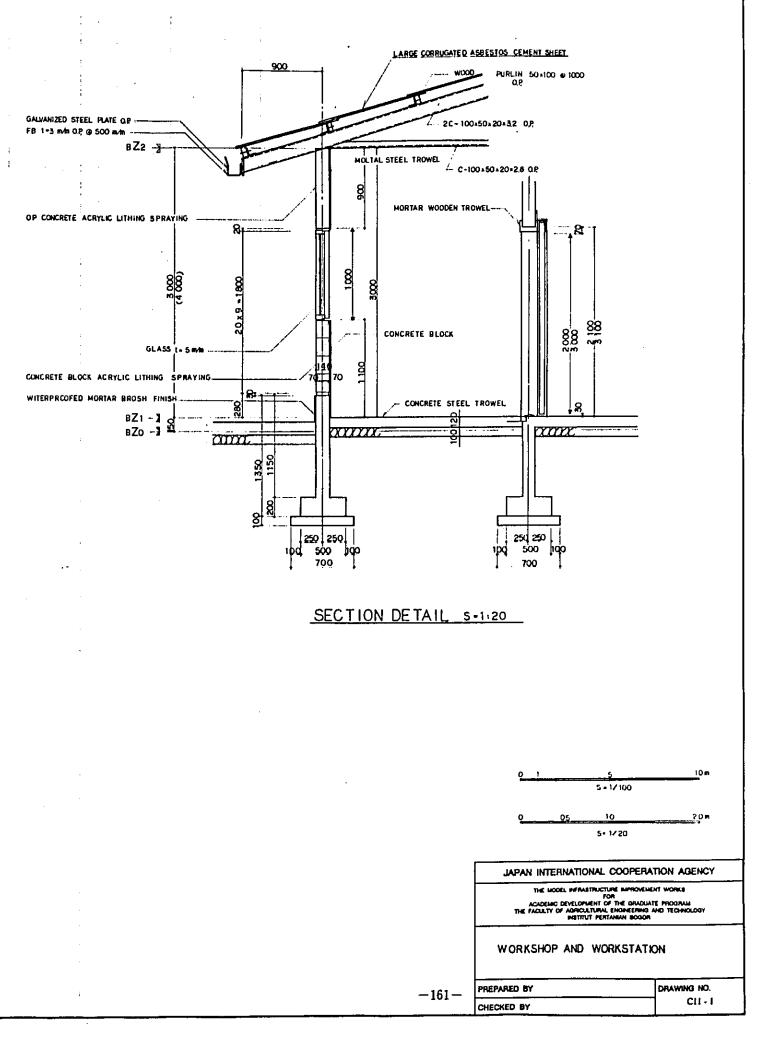
Column

: reinforced concrete


Roof


: cement slate roofing

The design of the Workshop/Workstation is shown in Drawing C11-1.


The Construction Cost is estimated at Rp. 138,000,000 in total.

PLAN_ S - 1 : 100_

