5. LIST OF COLLECTED DATA

1. SOCIO - ECONOMIC

- 1) Annual Budget of Ministry of Works & Transport and Department of Roads. 84/85 ~ 88/89:
- 2) List of Land aquisition and Demolishing cost, 1988: Department of Roads. (D.O.R)
- 3) Unit cost of Materials in Nepal, 1989: Department of Housing and Financial Planning, District Secretary
- 4) Labor cost in Nepal, 1989: ditto
- 5) Lubricant rate in Nepal, 1989: Department of Roads. (D.O.R)
- 6) Population Distribution in KATHMANDU, 1987:
- 7) Wardwise Distribution of Houses in KATHMANDU, 1987:
- 8) List of Planned Utility services at Bridge sites, 1989: Department of Roads. (D.O.R)
- 9) Organization of Department of Roads, 1989: Department of Roads. (D.O.R)
- 10) Equipment wise list of Heavy Equipment in Department of Roads, Aug. 1988: Department of roads. (D.O.R)
- 11) Equipment wise list of Heavy Equipment in Bagmati Zone office, 1989: D.O.R.
- 12) Kathmandu Valley Physical Development Concept (PLANS) vol.2, 1984: KATHMANDU VALLEY TOWN PLANNING TEAM.
- 13) Main Economic Indicators, Monthly Report Sep. Oct. Nov. 1988: Nepal RASTRA BANK Research Department.

2. TRANSPORT/TRAFFIC

1) Traffic volume records in Kathmandu, 1988, 1989: D.O.R.

3. METEOROLOGICAL

Climatological Records of Nepal 1971 ~ 1975 vol. I, June 1977:
 Ministry of Water Resorces, Department of Hydrology and Meteorology.

2) - ditto - 1976 ~ 1980 Vol. I, Dec. 1982

3) - ditto - 1981 ~ 1982 Vol. I, Jul. 1984

4) - ditto - 1988 ~ 1984 Vol. I, Sep. 1986

5) - ditto - 1985 ~ 1986 Feb. 1988

6) - ditto - 1921 \sim 1976 Special Supplement Kathmandu Valley, Vol. II, June 1977

7) - ditto - 1976 ~ 1984 Supplemental Data, Vol. II, Nov. 1986

4. GEOLOGY

- 1) Study on the Crustal Movements in the Nepal Himalayas II, 1984: Nepal Geological Society
- 2) Engineering Geology of Kathmandu, Nepal, April 1987: UMESH SHAKA, Asian Institute of Technology Bangkok, Thailand
- 3) Report on Soil Investigation of SANKHAMUL Bridge Site: D.O.R., SILT CONSULTANTS (P.) LTD.

5. HYDROLOGY

- 1) Flood Records on Bagmati River, ~ 1980:
- 2) Flood Records on Bishnumati River, ~ 1985:
- 3) Report on Hydrological Study of Bagmati River at SANKHAMUL Bridge Site. March, 1982: D.O.R., SILT CONSULTANTS (P.) LTD.

6. SPECIFICATIONS & STANDARDS

- 1) Nepal Road Standards (2027) (First Revision 2045): H.M.G. Ministry of Works and Transport, D.O.R.
- 2) Standard Designs, January 1978: H.M.G. Ministry of Works and Transport, D.O.R.
- 3) Specification for Road and Bridge Works. Fifth impression 1985: Department of Transport, Scottish Development Department, Welsh Office.
- 4) National Building Code of INDIA 1970, Group 2, Part VI, Structural Design: Indian Standards Institution.

7. MAP

- 1) Nepal Central Development Region, S=1:500,000: H.M.G. Survey Department, Topographical Survey Branch, 1985
- 2) Kathmandu Metropolitan Area, S=1:2,000, Sheet No. 11, 13, 17, 24, 31: UNDP Kathmandu Water Supply & Sewerage Project
- 3) Base Map Derived from LANDSAT Imagery, MAP II, Eastern sheet and Western sheet, S=1:500,000: H.M.G. National Remote Sensing Centre, Nepal, 1984
- 4) Land Utilization Map, Central Development Region, S=1:50,000: H.M.G. Survey Department, Topographical Survey Branch, 1984
- 5) Geological Map No.72 E A, Central Development Region, S=1:125,000: H.M.G. Survey Department, Topographical Survey Branch, 1984
- 6) Nepal Administrative, S=1:2,000,000: H.M.G. Survey Department, Topographical Survey Branch, 1987
- 7) NEPAL S=1:1,000,000, H.M.G. Survey Department, Topographical Survey Branch, 1986
- 8) NEPAL S=1:1,500,000, EAST NEPAL S=1:50,000 : APA PRESS, Singapore
- 9) Kathmandu Valley S=1:50,000 : Nepal Kartenwerk der Arbeitsgemeinschaft für vergleichende Hochgebirgsforshung Nr. 1, 1977.

- 10) Kathmandu City S=1:10,000: Nepal Kartenwerk der Arbeitsgemeinschaft für vergleichende Hochgebirgsforshung Nr. 21, 1979.
- 11) City Map No.1 Kathmandu S=1:10,000: H.M.G. Survey Department, Topographical Survey Branch, 1986.
- 12) KATHMANDU CITY / KATHMANDU VALLEY 1988/89 EDITION: Tiwari's Pilgrims Book House, Thawel, Kathmandu, Nepal.
- 13) Kathmandu Patan / KATHMANDU VALLEY 1989 EDITION : Jore Garesh Press Pvt. Ltd. Kathmandu.
- 14) Kathmandu Valley S=1:50,000: MANDALA TREKKING MAPS
- 15) KATHMANDU VALLEY, EAST No. 1 CHISAPANI GAPHI No.72 E/6, S=1:50,000: Brigadier Gambhir Singh M.I.S. Surveyer General of India, 1957
- 16) INDIAN SUBCONTINENT S=1:4,000,000 : NELLES VERLAG.

(1) ROAD LENGTH, INFLUENCED POPULATION AND INFLUENCED AREA

Plan	Year	Description	Total Length (km)	Influenced Population (person)	Influenced Area (km2)
<u>د. خدیب</u> د	1951		376	21,250	378
<u> </u>	1956	First Five Year Plan	624	13,600	228
٠.	1962	Second Five Year Plan	1,193	7,970	119
	1965	Third Five Year Plan	2,049	5,130	69
	197Ò.	Fourth Five Year Plan	2,504	4,600	.57
	1974/75	Fifth Five Year Plan	3,173	3,800	45
	1975/76	First Year of Fifth	3,444	3,594	42
		Five Year Plan	:	!	
	1976/77	Second Year of Fifth Five Year Plan	4,136	3,132	35
	1977/78	Third Year of Fifth Five Year Plan	4,594	2,921	32
	1978/79	Fourth Year of Fifth Five Year Plan	4,691	2,925	31
	1979/80	Fifth (Final) Year of Fifth five Year Plan	4,940	2,844	28
	1980/81	First Year of the Sixth Five Year Plan	5,021	2,869	. 28
	1981/82	Second Year of the Sixth Five Year Plan	5,270	2,854	28
	1982/83	Third Year of the Sixth Five Year Plan	5,546	2,894	27
÷	1983/84	Fourth Year of the Sixth Five Year Plan	5,717	2,882	25
	1984/85	Final Year of Seventh Five Year Plan	5,925	2,840	25
	The Seven	ch Plan			
	1985/66	First Year of the Seventh Five Year Plan	6,039	2,841	24
) -1. j.	1986/87	Second Year of Current Plan	6,306	2,775	23

(2) ROAD DEVELOPMENT IN NEPAL

Name of Road .	Total Length km	Date of Start	Date of Completion	Foreign . Assistance
1. Thankor-Naubise	17	1953 .	1956	India
(Reconstruction)	17	1978	1982	World Bank
2. Naubise-Mugling	84	1967	1974	China
3. Naubise-Bhainse	97	1953	1956	India
4. Bhainse-Herauda	10	1958	1967	U.S.A.
	78	1973	1983	A.D.B.
5. Herauda-Narayangarh	116	1969	1975	U.X.
6. Narayangarh-Butwal	36	1978	1982	China
7. Narayangarh-Nugling	25	1978	1982	China
8. Khaireni-Gorkha	.90	1967	1974	China
9. Mugling-Pokhara	140	1967	***	U.S.A.
O. Dhangadi-Dadeldhura	184	1964	1972	India
1. Pokhara-Sunauli	204	1973		Nepal-India
2. Kohalpur-Banbasa	57	1958	1967	U.S.A.
3. Hetauda-Raxaul	92	1975	-	Nepal
4. Kohalpur-Surkhet	114	1963	1967	China
5. Kathmandu-Kodari	68	1957	1963 .	Nepal-India-U.S.
6. Kathmandu-Trishuli		1973	-	India
7. Bucval-Kohalpur	251	1712	Cree	. · · · · · · · · · · · · · · · · · · ·
A. Butwal-Chandrauta		•	•	•
B. Chandrauta-Xrishna-				₽ •
nagar				_
C. Chandrauta-Shiyapur	~	1072	1978	Nepal
8. Bhairahava-Lumbini	22	1973	1972	U.S.S.R.
9. Pathalaiya-Dhalkebar	109	1967	1974	India
O. Dhalkebar-Rajbiraj	95 10	1967	1974	India
l. Rajbiraj-Itahari	. 69	1967	**	India
2. Itahari-Kakarbhitta	92	1967	1974	Nepal
3. Charali-Ilam	78	~-		U.X.
4. Jogbani-Dharan	. 50		••• 1	Switzerland
5. Lamosangu-Jiri	110	1975	1005	U.K.
6. Dharan-Dhankuta	50	1976.	1985	V.A.

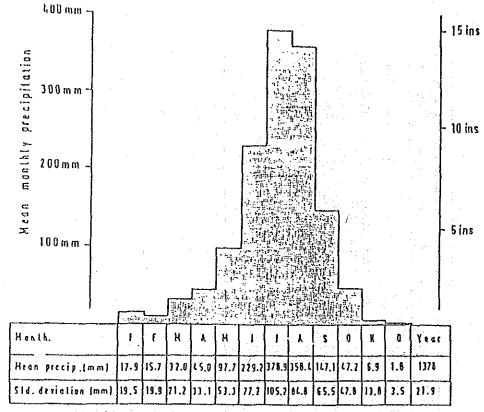
Source: Department of Road

(3) FINANCIAL TARGETS FOR THE ROAD AND BRIDGE DURING THE SEVENTH PLAN

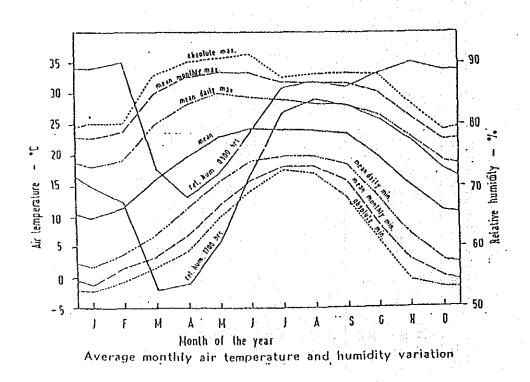
P.	rogramme	In Million rupees Expenditure
Ā.		•
	A.1 Central Level	2,987.0
	i. Highway Construction	(1,780.0)
	ii. Feeder Roads Construction	(600.0)
	iii. Major Urban Roads	(69.0)
	ly. Roads under the IRDPs and Maintenance	(105.0)
•	y Highway Reconstruction and Maintenance	(300.0)
	vi. Equipment for Roads Construction and Main	tenance ·
	Establishment of Workshop and Training	(73.0)
	vii. Feasibility Study, Surveys and Designs	(25.0)
	vii: Miscellaneous	(35.0)
	A.2 District Level	394.5
	i. Current Road Projects	
	ii. Roads to be constructed on the basis of	
	Feasibility Studies	
	iii. Miscellancous	
	Total	3,381.5
В.	Bridges	149.4
Д.	i. New Bridge Construction	
	# Reconstruction of Bridges	
	iii. Feasibility Study and Survey Design.	
	iv. Backlog Projects from the Sixth Plan.	
_	Suspension Bridges	199.1
<u>ب</u>	C.1 Central Level	(5.0)
	i. Training Programme	
	ii. National Highway Development Masterplan	1
:	iii. Suspension Bridge Masterplan	
	iv. Study and Research on Cable Crossing	•
	v. Directory of Suspension Bridge Construction	and
	Maintenance	•
	C.2 District Level	(194.1)
	i. Current Suspension Bridges	
	ii. Suspension Bridges to be Undertaken after	
	Feasibility Studies	
	iii. Miscellancous	
	Grand Total (A+B+C)	3,730.0

Rainfall in m

										·
Mex in 24 hrs.	72.0	18 June 115.2 24 Aug.	13h.0 10 July	62.1 18 May	59.1 19 Aug.	68.0 16 July	109.0	107.1 28 July	96.9 11. Aug.	53.L 11 Sept.
Annual	1333.2	122L .B	3.816.	1519.2	1110.2	339.8	1681.0	1509.5	1969.2	335.55
Dec.	NEL	٠ ا	לאַ	0	o o	0 .	0,0	0.0	0.0	7°6
Nov.	12.3	1.2	5,0	0	2.3	۳ 8	6.1	23.0	2.0	0
Det.	62.6	4.6	Lin	139.5	65.0	34.5	8 7	93.9	126.7	30.3
Sept.	82.7	e. El	9. عالد	83	123.0	197.14	59.7	203.2	373.9	212.4
Aug.	342.0	0.754	353.5	279.2	310.9	310,8	256.5	20h.7	23.6 91.6 400.3 416.0 418.4 373.9 126.7	38.4 119.3 80.8 324.6 285.0 212.4 30.3
vini.	345.5	396.7	176.1	० यह	315,9	158,1	230.6	529.0	0.91	324.6
June	31.9.5	163.8	245.0	331.8	311.8	235.5	697.5	225.8	100.3	80.8
Mary .	17.5	82.9	9,11	130,2	60.5	95°.	2,511	85.	91.6	2.621
Apr.	37.5	8 1	60.8	28,9	31.3	6.म	176.1	35.8	83 9° 8	38.4
Mar.	16.5	9.0	52.2	8 77	9.77	24.9	21.9	82.6	9°	15,1
Feb.	8*17	4.04	٠, د	0.6	2,5	23.1	7 00	25.3	8. 대	6.4
Jan.	1.7	37.1	MI	30.5	2.5	277.5	5.1	5.6	ς Σ	15,0
Year	1965	1966 '37.1 10.1 0.6 8.1 82.9 163.8 396.7 137.0 13.9 9	1967	1968	1969	1970	1971	1972	1973	1971 <u>⊬</u>


Tear	20.73	21,5	0,18	10.01	500	97.0
Min Date	0.16 20.73	trune.	173 0.18	0.15 10.04	20	March 174
Mex Dete	335	25 July house	73	350	30 Aug. 20	17.17
Nov. Dec.	9.276 3.752	9.772	0.52	7,180 1,912 350	6.70 6.L3	3.40
	9.276	15,2 24,6	5.56 0.52	7,180	02.6	5,86 3,40
Aug. Sep. Oct.	39.19	I 221	15.8	15.09	36,2	30.2
Sep.	62.15	217	22.5 25.8	61,56	200 171	15,0
Aug.	55.h8	160	22.5	79.82	200	22.22 15.00
July	119,21	2115	0,18 7,82	17.29	177	2,10 2
May June	1,581 19,11 48,21 55,48 62,15 39,19	66.2		2,282	3,15 18,0 17,5	
Мау	1,581	70.17	0.36	1.263	18.0	0.24 0.20 0.29
Apr.	0.518	3,09	0,23	1,112	3.15	0.24
Mar.	3,338	27.2	0,38	0.711	2,88	91.0
Jan. Feb.	Mean 2.076 1.465 3.338 0.518	1973 Max 5.56 11.5 17.2	Min 1.15 0.39 0.38 0.23 daily	Mean 1,604 0,721 0,714 1,112 4,263 2,282 47,29 79,82 61,56 15,09	2,10	Main 0.82 0.33
Jan.	2.076	5.56	1.15	1.604	1974 Max 8.72 2.10	28.0
<u>rear</u>	Nean	73 Max Viis	Min	Mean	7t Max	Matn dailt
l &		6		1	33	

Location - Latitude 27° 39' Wo" N, Longitude 85° 17' 50" E

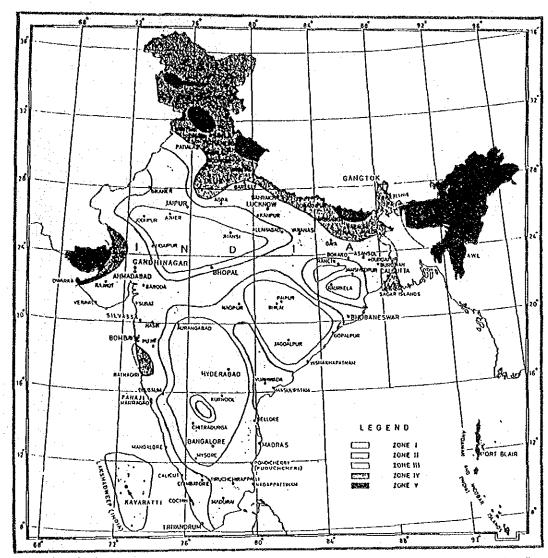

Drainage area - 585 sq. km.

Note: The regrest gauging station from the bridge site in the Chobhar gauging station (Station No. 550) at Chobhar gorge.

(5) PRECIPITATION, AIR TEMPERATURE AND HUMIDITY IN KATHMANDU

Monthly precipitation based on 1948-1970 data

(6)	DISCHARGE AND GAUGE HEIGHT	₹.	
	(BAGMATI RIV., CHOBAR)		


tation name:	Chover					Date: 23 Jul	6861 41
r: Ba	gmati River	-					
tation no.: 55	0		٠.				
			EXTRE	ME DISCHARGES			
MUMIXAM	FSZI				ALONI MUMINIM	NTANEDUS	
Discharge Gaus	ge height meters)	C)	(T) (I)	Discharge (oumed)			Date
ŀ	1						
O	ſ~į	(V)	1963	,		ņ	96
251	6.76	3 Sep.	1964	.02	1.40	9 Ju	ne 1964
£	4	J C	196	0		3 Ju	967 6
ŀ)	. 55	A AU	ů,	,ţ		D D	1.96
ത	2.25	301	196			4 30	ô
ው	.60	4 00	196	S		3 3 4	196
(·)	.70	P Aug	196	ব		J.	9 T 6
ω	0.22	6 JU	197	Ġ		1 A	197
-1	.57	2 Jun	197	1 .7		E.	197
1	3,16	5	197	2		'n	197
M	.66	5 Jul	197	~		מ	197
பி	် (၂)	O AU	0.	٦.		E)	0,
Û٠		o Au	0	C.		D	0,
A	66	o da	197	4		0 E	197
O.	.36	J D	13		1.27	E	0. L
O	ນ ນ	ŵ	101	Ü		Σ.	ů,
	ரு ந	1 Aug	197	۲.		ק	Ü
11.1	J	<u>ال</u> ال	198	o O		Ap	g)

(7) SEISMIC COEFFICIENTS FOR SOME IMPORTANT TOWNS (NBCI)

SEISMIC COEFFICIENTS FOR SOME IMPORTANT TOWNS

			and the second second		and the second second
Тоwи	Zone	HORIZONTAL SEISMIC COEFFICIENT	Town	Zone	Horizontal Seismic Coefficient ab
Aara	111	0.04	Jabalpur	111	0.04
Agra Ahmadabad	111	0.04	Kanpur	iii	0.04
	111	0.01	Katmandu	v ·	0.08
Ajmer	H	0.02	Kohima	v	0.08
Allahabad		0.05	Kurnool	ì	10 0
Almora	lV ·			ΙΙΪ	0.04
Ambala	ΪΛ	0.05	Lucknow	lV	0.05
Amritsar	IV	0.05	Ludhiana	II	0 02
Asansol	ļII	0.04	Madras	11	0 02
Aurangabad	Ţ	0.01	Madurai		0.08
Bahraich	ΪΛ	0.05	Mandi	V	
Bangalore	Ĭ	0.01	Mangalore	Ш	;0:04
Barauni	17	0.05	Monghyr	IV	0.05
Bareilly	111	0.04	Moradabad	IV	0.05
Baroda	111	0.04	Myosre	I	0.01
Bhatinda	111	0.04	Nagpur][0.02
Bhilai	1.	0.01	Nainital	IV	0.05
Bhonal	11	0.02	Nasik	III	0.04
Bhubaneswar	111	0.04	Nellore	11	0 02
Bhui	V	0.08	Panjim	111	0.04
Bikaner	III	0.04	Patiala	111	0.04
Bokaro	111	0.04	Patna	IV	0.05
Bombay	Ш	0.04	Pilibhit	IV.	0:05
Burdwan	jii	0.04	Pondicherry	II	0.02
Calcutta	iii	0.04	Poona	111	0.04
Calicut	iii	0.04	Raipur	ì	0.01
Chandigarh	iγ	ŏ·ŏs	Rajkot	III	0.04
Chitradurga	i	0.01	Ranchi	ii -	0.02
Coimbatore	in	0.04	Roorkee	ĨV .	0.05
Cuttack	111	0.04	Raurkela	î	0.01
Darbhanga	V V	0.08	Sadiya	v	0.08
	ίν	0.05	Simla	iv	0.05
Darjeeling	iv	0 05		Ĭ	0.01
Dehra Dun			Sironj	v	0.08
Delhi	ΙV	0.05	Srinagar		0.04
Durgapur	III	0.04	Surat	III	0.08
Gangtok	IV	0.05	Tezpur	V	
. Gauhati	V	0.08	Thanjavur	ĬĬ.	0.02
Gaya	111	0.04	Tiruchchirappall		0.02
Gorakhput	IV	0.05	Trivandrum	Ш	0.04
Hyderabad	I	0.01	Udaipur	H	0.02
lmphal	V	0.08	Varanasi	Ш	0 04
Jaipur	11	0 02	Vijayawada	III	0 04
Jamshedpur	11	0.02	Vishakhapatnan	ı II	0.02
Jhansi	Ī	0.01	NOTE - The coef		re according to
Jodhpur	I	0.01	5.2.1 and should be	e suitably modif	ed for important
Jorhat	V	0.08	structures accordir	ig to 5.2.2 and 5.	4.
	-	•	•		

(8) SEISMIC ZONES (NBCI)

The territorial waters of India extend into the sea to a distance of twelve nautical miles measured from the appropriate base line.

Based upon Survey of India map with the permission of the Surveyor General of India. © Government of India copyright 1975

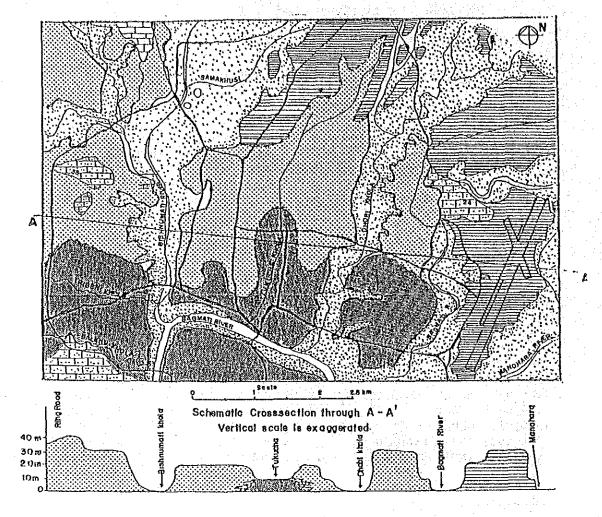
Fig. 13 Map of India Showing Selsmic Zones

NATIONAL BUILDING CODE OF IMPLA 1974

(9) LIST OF EARTHQUAKES OF MORE THAN
5 MAGNITUDE IN RICHTER SCALE,
OCCURRED WITHIN THE NEPAL REGION

LIST OF EARTHQUAKES OF MORE THAN 5 MAGNITUDE
ON RICHTER SCALE, OCCURED WITHIN THE NEPAL REGION

			4 m m u p		*****		-9				
Y	MD	EPCL A	REA		LAT . DEG N	LONG	DEPT	. 1	MT	MAG	២៥៥
1066	1210	urer ki	TDAI	*****	29.6 29.65 30.0 28.0 29.46 29.7 28.3 28.1				~ ~ -	 	Lica
1966 1966	1210	MEDI 14	Brab		49.0	01.0				5.0	050
1900 1067	0105				20 O	00.79 04 n				5.2	130
1967	0103				28.0	80.0				5.0	. LAU LAN
1967	1218				20.0	81.71				5.0	I BAU
1968	0527	NEDAT.			20.40	80.4				5 1	1160
1969	0204	1121111			28.7	81 /			•	: 5 1	TAO
1969	0211				20.3	82 7		*	5	6 2	TAO
1969	0213				28.1 27.9	なない 人				5.0	TAD
	0213		-		27 7 28 N	Q 1 Q				5 3 ·	TAG
	0224				27 0	01.0	,			.J.J	TAO
	0303				20.06	70.0%				5.2	TEC
	0305	•			30 t 0 ti	01 1				5.0	HADT
	0212				29.4	01.1		1		5.2	TOG
	0212				47 44 17 41	.01.3/ 02 7				2.2	190
		TIBET	Í		27.02	02.7	0.7			5.0	100
		NEPAL			20.75	04. <i>33</i>	20			5.5	100
		TIBET			20.34	. 97 . 93	10	:		5.Z E 1	190
		TIBET			30.54	84 502	44			5.1	ME LG
	4.5	TIBET			27.9 28.0 27.9 30.04 29.2 29.24 27.62 30.79 27.93 30.34 30.425 31.34 61.17 28.135	84 02	30			5.0	Ter
		TIBET			61 17	88 08	52 63			5 1	100
		TIBET			28 135	86.993	33			5 2	NETS
		NEPAL			28.219	82 945	33			5.2	NEIS
		TIBET			28.219 30.74 27.66 28.59	86 32	55			5.5	ISC
		NEPAL			27.66	86.0	. · · · · · · .			5.4	ISC
		NEPAL			28.59	85.51	20			5.5	ISC
		NEPAL			29.32	81.38	45			5.2	ISC
		NEPAL			28.1	0/ 700	20				110 7 //
	0619	•			26.74	87.5	4			5.1	NEIS
		NEPAL			29.21 28.15 29.284	81.95	33			5.1	ISC
		TIBET		100	28.15	87.8	33			5.0	ISC
976	0510	NEPAL			29.284	81.46	33			5.2	NEIS
976	0914	TIBET			28.1 26.74 29.21 28.15 29.284 29.795	89.559	82			5.5	NEIS
		NEPAL	•	•		81.39				5.0	
976	1023	TIBET			1	86.228				5.1	
		TIBET				88.058				5.2	
		TIBET			31.3	89.38				5.0	
		TIBET				88.388				6.5	
		NEPAL			28.03	84.7				5.3	ISC
		TIBET		•	32.27	83.1				5.1	ISC
		NEPAL.		÷		85.963	33			5.2	NEIS
		NEPAL :	INDIA	DODDED	30.029	80 31	33			5 0	NEIS


LIST OF EARTHQUAKES OF MORE THAN 5 MAGNITUDE ON RICHTER SCALE, OCCURED WITHIN THE NEPAL REGION

~ -								
Y	M D	EPCL AREA	፤.ለ ጕ . 1	LONG	DEPT	INT	MAG	REF
. •		III OB TIMBIT	DEG N I			MM		
+ .			ו א סשע	ՍԵԵ Ե	Ý.11	1111		
		professional and the second second						
19	79 0619	NEPAL INDIA BORD	ER 26.74 I	87.48			5.2	ISC
	80 0222		30.55				5.7	
19	30 0625		30.13				5.1	ISC
193	80 0729	NEPAT.	29 34	81.21	3		5.7	ISC
19	RO 0729	NEPAL TIBET NEPAL TIBET SIKKIM	29.598	81.092	18		6.1	NEIS
10	RN INNR	TIRET	31.354	87.666	33		5.0	NEIS
10	00 1000 00 1010	NEDAT	29 17	81 208	33		5.0	NEIS
190	00 1010	NETAL	27.17	01.200	0/		5.0	
19	BO 1118	TIBET	29.55	85.18	24		3.0	190
19	80 1119	SIKKIM	27.4	88.8			6.0	ISC
19	B1 0515		29.504	81.942			5.1	
19	82 0405	the state of the s	27.496	88.894			5.1	NEIS
		INDIA CHINA BORD			33		5.2	NEIS
		INDIA CHINA BORD					5.0	NEIS
		NEPAL INDIA BORD					5.0	NEIS
								NEIS
		TIBET						NEIS
	84 0518		29.606					
19	84 0521	INDIA BANGLADESH	23.663	91.519	33		5,3	NEIS
10	R4 1230	INDIA BANGLADESH	24,598	92.839	33		5.6	NEIS
12	OA TSJA	THATH PHICHUPPING	,550					

Abbreviation

Y = year M = month
D = day EPCL = epicentre location
LAT = latitude LONG = longitude
DEPT = depth of hypocentre

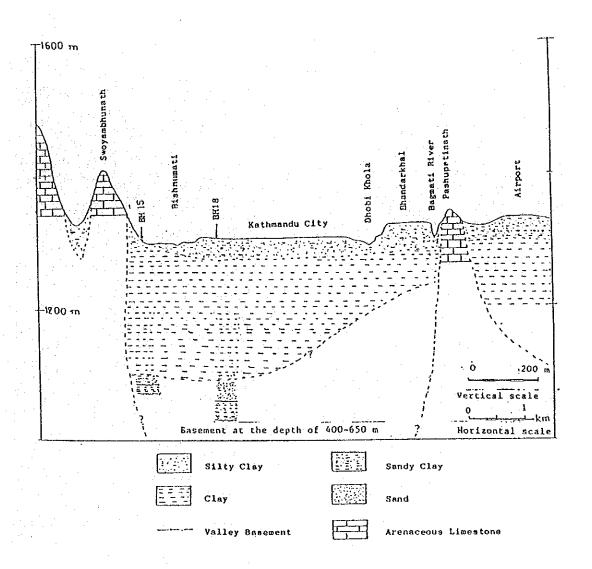
(10) GEOLOGICAL MAP OF KATHMANDU CITY

LEGEND

된 Limestone

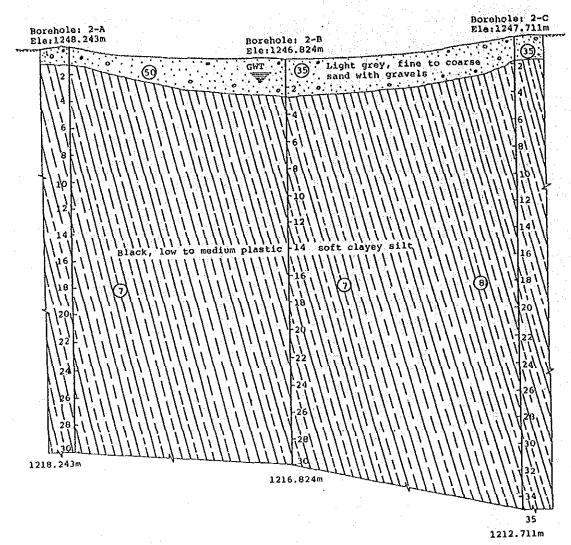
Arenaceous Limestone

Lake Delta Facies: Coarse and Fine Sand Interlayered with Thin Clay


Proximal Lake Facies: Lamination of Fine Sand and Clay

Distel Lake Facies: Black Carbonaceous Clay

Flood Plain


Geological Map of Kathmandu City

(11) GEOLOGICAL CROSS SECTION IN THE KATHMANDU VALLEY

Cross Section in E-W Direction between Swayambhu and Pashupatinath

(12) SOIL PROFILES AT BRIDGE SITE

30 average SPT for the strata

Fig-8 Geological profile at bridge construction site of Bishnumati river (Dallu)

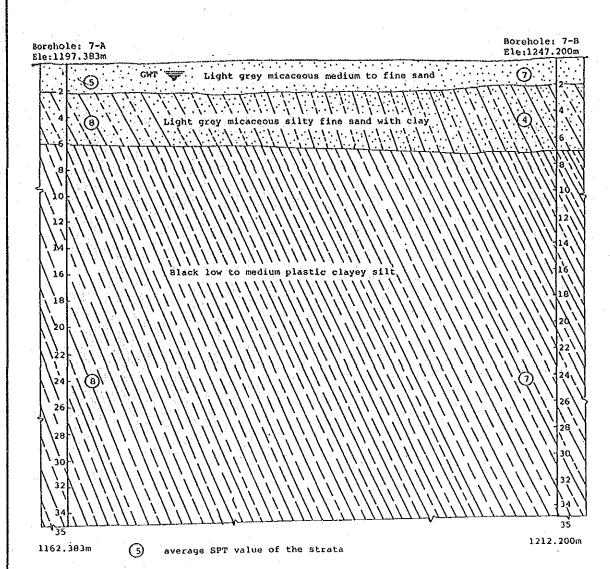
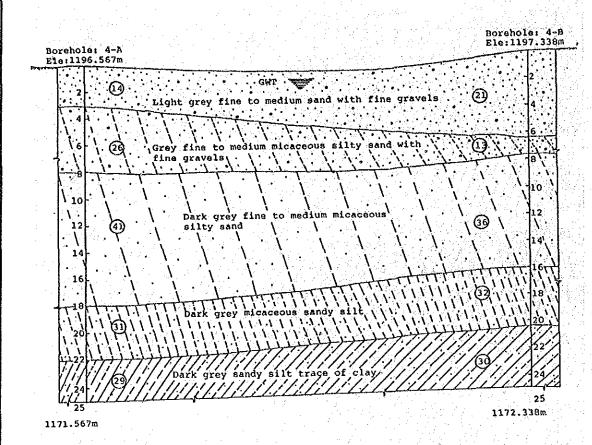
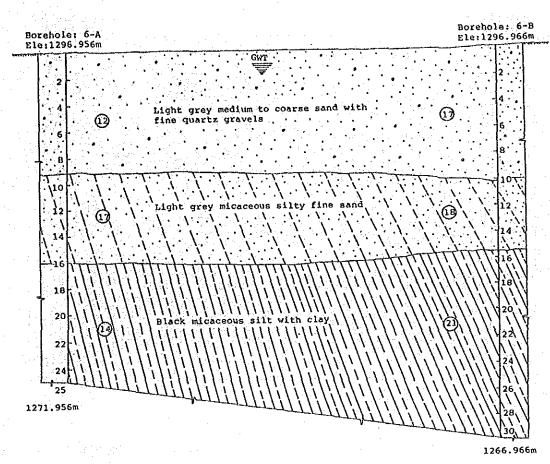




Fig- 11 Geological profile at the bridge construction site of Dhobikhola (Babarmahal)

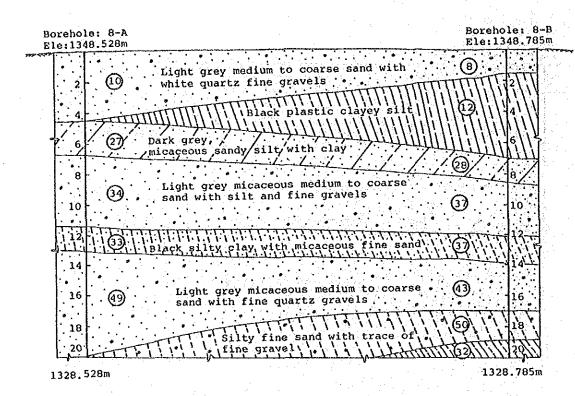

(14) average SPT of the strata

Fig- 9 Geological profile at the bridge construction site of Dhobikhola river (Kalopul)

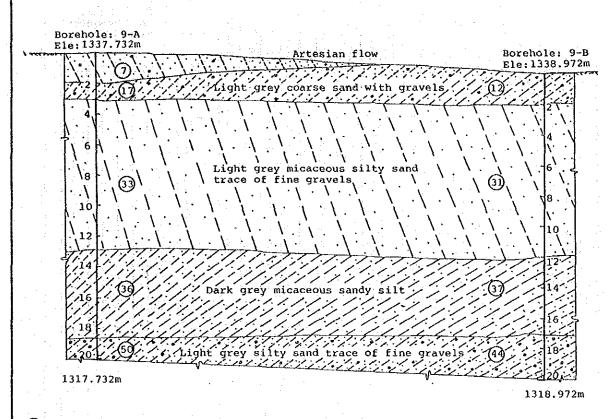

(12) average SPT for the strata

Fig- 10 Geological profile at the bridge construction site of Dhobikhola river (Handigaon)

(10) average SPT for the strata

Fig-12 Geological profile at the bridge construction site of Mahadeo khola

average SPT for the strata

Fig-13 Geological profile at the bridge construction site of Manmatta river (Branch of Manohara river)

Borehole: 2-A

Project : Soil investigation and laboratory test for basic design study on reconstruction of Kathmandu valley bridges

Elevation:1248.243

Location: Bishnumati

Total depth: 30.0m

Date: 20-25/10/89

Soil Description	Symbol	Depth, meter	Sample/type	ь1	ows	-	N-Value	Water level		No	٠. ١	of	ъJ	OW	e-N s/3 ion	i0ci	m N	
	ις.	De	80	10cm	10cm	10cm	Z	3	L	10	3				F	0	\$,
Light grey fine to medium sand gravels with boulders (0.0-1.35m)	• • •			50			50					سسا						
	M	-		1	0	1	2	=	1	-				5				
		3	발	1	1	1	3	lite.	-	1			-	111				
		} .	depth	1	1	1	3		•	١.					1			
	V_{ij}	.	entire	1	1	2	4		ľ									
	[i]	6	ent	ı	1	1												
	()		the	1	1	1	3	٠.										
	$\langle i \rangle$	9	3	2	1	2				_						_	_	
	///		of borehole to	2	2	1	5		1									
	$ \cdot $	}	reh	1	2	3	6		ļ									
	V_{ij}	-12	<u>გ</u>	2	2	3	7		-	-	Н	1	,			$\vdash \vdash$	\dashv	
•	(i)	-	ų G	1	2	3	6	_r	į				1					
	I/I	+	depth	3	3	3	1	depth	Ì									
Black moist to wet, medium plasticity clay with silt and	III	-15	1.0m c	3	3	3		2.3m	H	-	\vdash						-	-
plasticity clay with slit and trace of fine sand (1.35-30.0m)	M'	•	 	3	4	3	1											
	M	ł	each	2	3	3	1	رم و										Ŀ
	V_i	-18		2	3	3	1	level encountered										
	$ \cdot $	[g g	3	3	3	İ	, and										
•	Ni	21	rac	33	2	4	1.	enc	_	_	L		_		_			_
	V/V	-	ext	2	2	2	6	193	á									
	N'	Į.	les	4	5	5	14		Ì	>								
	1//	24	amp	2	1	2	5	tex	4	1-	-	-		}-	├-	┼-	-	-
	1//	ŀ] S	4	3	4	11	₹ ₽										
	1//	1	nrbe	3	4	4		Ground water	1	Ĭ.			-					
	1,1	-27	Disturbed samples extracted at	4	5	5		Į ö	-	<i>)</i>	 -	├-	\vdash	+-	\vdash	\dagger	 -	\vdash
	[i]	ł		3	2	3	8	İ	1	1								
	III	30		4 3	4 2	4	12			7						-		

Borehole: 2-B

Project : Soil investigation and laboratory test for basic design study on reconstruction of Kathmandu valley bridges

Elevation:1246.824

Location: Bishnumati

Total depth: 30.0m

Date: 20-25/10/89

Soil Description	Symbol	Depth, meter	Sample/type	loca pj	10cm swo.		N-Value	Water level		No.	SPT of pen	bl	OW	s/3	Òcn	n .	
Light grey medium to coarse, sand and gravels with boulder	0	Ω	S	11	5		20	· ·	10		» 	,		Ñ	,	Ť	1
(0.0-2.8m)	0.:	•	ų	50			50	1]	->					
	[]]	3	the entire depth	1	1	1	3		ا س	7	+	_				\dagger	\exists
	W_{i}	•	ire	1	1	1	3										-
	V/V	6	ent	1	1	1	3			\perp							
	[//]	- '		2	1	2	5		þ								
	\mathbb{N}	. :	ţ	. 1	2	2	5		ţ								
	(\/)	9	hole	2	2	2	6		+	-	\vdash	-		\dashv	+		-
	\mathbb{N}	;	ore	1	2	2	5	c	ł		.				-		
	$\langle i \rangle$		the borehole	2	1	3	7 5	depth				L					
	W	12	of t	1	2	3	6	m _O	1								
Black moist to wet medium	W		depth	2	3	3	8	at 1.0m	1			١.			1		
plasticity clay with silt (2.80-30.0m)	//i}	15	ı de	3	4	- 1	10	a b	-}	+	╀				+	+	+
	\ \\		each 1.0m	3	2	2	7 8	encountered	-								
	\\\Y		ach	3	3	3	9	cont									
	\mathbb{W}	18	ان ب ۾	1	2	2	5	l en	•								
	///			2	3	3	8	level	-								
	$\langle \rangle \rangle$	21	extracted	3	2	4	9	1	-		╄-	-		-	+	+	\dashv
	$\parallel \parallel$			-2	3	3	8	water	†								
	1//		samples	3	3	4 5	9	Ground	ŧ,								
	$\ \cdot\ $	24		3	5		1.2	ž5	ì								1
	<u> </u>		peq p	3	4	- 1	11		*								
	$\parallel \parallel$	27	Disturbed	3	3	4	10		-}	+	-	_			-	+	-
	₩,		ρίι	3	3	3	9		-								
	{///	30		3	4 2	3	10										

Borehole: 2-C

Project: Soil investigation and laboratory test for basic design study on reconstruction of Kathmandu valley bridges

Elevation: 1247.711

Location: Bishnumati

Total depth: 35.0m

Date: 1-4/11/89

Soil Description	Symbol	Depth, meter	Sample/type		ows		N-Value	Water level		No 10		o£ ene	b1	ati	:/3	Öçi	ī) 90	
Light grey fine to medium sand gravels with boulders (0.0m-1.9m)	0.	-		10	6		21	-					V) A					
	77			25	15	10	50 3	•					\geq					
	$\langle \langle \langle \rangle \rangle$	-3		1	0	1	2		ľ				_					
	$\langle i \rangle$			1	1	1	3											
	$\langle \cdot \rangle$	-6		1	1	2	4		i 	-		-		_	_		-	_
	//			1	2	2	5		ŀ								.	
	N/		נסט	1	2	2	5											
	[\]	-9		2	2	. 2	6		+			7	7		\dashv	7	7	-
			UD2	2	2 2	2	5			3				٠	١			
	///	-12	UD3	1	2	3	6	_							_	_	_	
	N'	12		1	2	3	6	depth									-	-
n	$\langle \cdot \rangle$		UD4	2	2	3	7	1.0m d	•	1			1		. 4		•	
Black moist to wet medium plasticity clay with silt (1.9m-35.0m)	///	-15		2	3	4	9		\vdash	31.		\dashv			-	-	-	\dashv
(1.5m 33.0m)	N			2	3	4	9	d at	Ą		1.4							
	W_{i}		UD5	4	4	4	12	cere	١,	è				_			ļ	
	[i]	-18	ODJ	2 2	3 4	4	10	onu	1									
	$/\!/\!/$		UD6	2	3	3	8	enc	1									
	[\]	-21		2	3	3	8	evel	┟┆								-	
	$\parallel \parallel$			3	3	3	9	Water level encountered						·	***			
	$\ \ $	}		3	3	4	10	Wate										.]
	[ji	-24		3	3		10	100 m								2		
• • •	h'			3	3		10											
	i	27		3	4	l .	12											
	M	~		3	4	4	11											1
	Vil			2	4	4	10			ľ								
* Average SPT from 30m to 35m	U1	30	<u> </u>	3	3	4	11	<u> </u>	L	<u></u>	Ш	Ц		<u> </u>	Ļ			

Borehole: 4-A

Project : Soil investigation and laboratory test for basic design study on reconstruction of Kathmandu valley bridges

Elevation:1196.567

Location: Dhobikhola

Total depth: 25m

Date: 20-24/10/89

		,			<u> </u>				F					-				Ŧ
Soil Description	Symbol	Depth, meter	Sample/type	b1	ows		N-Value	er level	-	Ńc	. (ρÉ	blo	lue ows ati	/30	0cm		
	Sy	Dep	Sam	10cm	10cm	10cm	N-N	Water		0	30		30		70		90	
Light grey fine to medium sand with fine gravels (0-3.0m)				4	4	7	15 14	ŧ							ž.			
		3		5	- 5	7	17			4	\dashv	_	_	\perp	4	- -	+	$\frac{1}{1}$
Grey fine to medium micaceous			depth	6 7	7	9	22 24				1				}			
silty sand with fine gravels (8.0-8.0m)	$ \cdot $	6		8	9		30				1	_	_	4	_	_	+	-
			the entire		13 16		38 47	다				N						
		9	to t	j	15		44	depth				_ ,	4	_	_	_	-	-
	\ \ \ \	-	hole	10	9 14		32 47	m96.0				$\langle $						
	·).	-12	each 1.0m depth of borehole	[]	15		45	d at				4	$\langle $	_	+	-	\perp	-
Dark grey fine to medium micaceous silty sand (8.0-18.0m)	$\frac{1}{N}$		th of	1 1	16 16		47 45	otere										
	1.	-15	dep		9		28	encountered				4	4	4	-	+	\downarrow	_
	\ \ .		1.0π	l .	11 14		35 44	level e										
	//	18			13		40		<u></u>	_		\downarrow	<u> </u>	_	-	\perp	+	_
Dark grey micaceous sandy silt	17		d at	·7	12 7	:	33 26	1 water				/			.			
(18.0-22.0m)		-21	extracted	6			26	Ground			1	_	-		_	+	-	_
	1			7	9		29 25	0.			Ż							
Dark grey sandy silt trace of clay (22.0-25.0m)		-24	зтр1е	8	8		32				1			_	_	+	+	
	Ail	<u>{</u>	Disturbed samples	10	10	12	32											
Barrier (n. 1846) Antonio de la companya (n. 1846)		-27	sturk							-		-		_	_	+	+	
			0.1															
		30						<u></u>		_						\bot		

Borehole: 4-B

Project : Soil investigation and laboratory test for basic design study on reconstruction of Kathmandu valley bridges

Elevation:1197.338

Location: Dhobikhola

Total depth: 25.00m

Date: 20-23/10/89

Soil Description	Symbol	Depth, meter	Sample/type	ьì	of ows	N-Value	Water level	No. of	vali blow netrat	18/3	Ocm	9 0
Light grey medium to coarse sand with fine quartz gravels (0-5.50m) Dark grey sandy silt trace of fine gravels (5.50-7.50m) Dark grey fine medium micaceous silty sand (7.50-16.00) Dark grey micaceous sandy silt (16.00-20.50m) Dark grey micaceous sandy silt trace of clay (20.50-25.00m)		-3 -6 -9 -15 -18 -21	[@	3 5 8 7 6 2 4 11 6 10 11 15 13 8 6 6 7 4 6 8 6 5 6 6 7 4 6 7 7	5 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 28 1 31 8 41 7 50 4 43 4 33 1 26 2 28 2 47 3 26 6 33 0 23 8 19 4 33	Ground water level encountered at 1.0m depth					
		30										_L_,

Borehole: 6-A

Project : Soil investigation and laboratory test for basic design study on reconstruction of Kathmandu valley bridges

Location: Dhobikhola

Total depth: 25.0m

Date: 24-27/10/89

Soil Description	Sympol.	Depth, meter	Sample/type	b1	o. o		N-Value	Water level	N	o . c	T vefi	low	s/3	Óсл	
Light grey medium to coarse sand with fine quartz gravels (0-9.0m) Light grey micaceous silty fine sand (9.0-16.0m) Black micaceous silt with clay (16.0-25.0m)		-15 -15 -18 -24 -27	Disturbed samples extracted at each 1.0m depth of borehole to the entire depth Sampl	H 3 3 3 3 4 3 5 5 5 4 3 5 7 3 4 4 3 4 4 4 4 3 3	E 3 3 4 4 4 3 4 6 6 4 4 7 8 6 6 6 4 5 5 5 5 5 5 4 4 5	W307 5 3 4 6 5 4 5 6 8 6 8 5 9 9 8 8 7 7 7 6 5 6 5 6 5	11 9 11 13 13 10 14 17 19 14 15 17 24 18 18 18 14 16 16 15 14 15 13 13 13 13 13	Water level encountered at 1.0m depth		>		50		-	8

Borehole: 6-B

Total depth: 30.0m

Project: Soil investigation and laboratory test for basic design study on reconstruction of Kathmandu valley bridges

Location: Dhobikhola

Elevation:1296.966

Date: 24-28/10/89

Soil Description	Symbol Symbol	Depth, meter	Sample/type	bl	ows.		N-Value	Water level	-	No 10	٠. د	of ene	va bl tr	ows ati	/3	0cı	m See	the second second
	.;0,			7	6	5	18		-				-					
	! ::	[3	2	4	9			,,						l		
	•			5	5	I	16	-			·			1				·,
		-3		6	7		21			1					٠.	٠.		
Light grey medium to coarse sand						- 1	1			/	"							
with fine quartz gravels (0-10.0m)	<u>.</u>			5	5	ĺ	15 16			1]]							.]
	: .	-6		4	5					1			-				1	
	<i>i</i> .			5	5 7		17 23			٩								
	· :			8)		}			1		
	· · ·	-9. :		5	5		19			1			\neg			7	+	
	Ϋ́			5	7	- 1	18			d								
	.\			4	7		20	depth)						- }	1	
	/. '	12		3	5	8	16	6m de		-{					_		1	٦
Dark grey micaceous silty fine sand (10.0-15.5m)	Į, į	-		4		10	1.0	1.6		/	•				- [1	
	[:/	ŀ		4	4	6		at		€			 		4		Į	
	X	-15		4	6	7	17		Н	-}						\dashv	\dashv	\dashv
	III	-		4	5	6	15	encountered		į		Í						
	I/I	}		4	5	5	14	nnc		•								
	Ŋį	-18	UD1	4	5	5	14	ouc	_					-		-	\dashv	\dashv
	\mathbb{N}	-		4	4	5	13	61.					٠.					
	N'	 	UD2	6	6	6	18	level		\								3
Black micaceous silt with clay (15.5-30.0m)	M_{I}	21	UD3	4	5	6	15			1	\sqcup		_			$\left - \right $	-	\dashv
(13.3-30.011)	V/I			5	6	7	18	Water		b								
	M/M			6	6	8	20											.
	///	-24		5	7	8	20										4	4
	W			10	1 1				1	 		,						
:	M			10	1 1	13				- 1		ļ						
	W_{i}	27		10	12		35		Ŀ							Ц		
	NN			7	8		24				/]
	W_i			8	9	_ [24 26			. :	N							
	N	30		7	1 - 1	1.0	25 25											_

Borehole: 7-A

Project: Soil investigation and laboratory test for basic design study on reconstruction of Kathmandu valley bridges

Elevation:1197.383

Location: Dhobikhola

Total depth: 35.0m

Date: 5-9/11/89

Soil Description	Symbol Symbol	Depth, meter	Sample/type	pj	ows		N-Value	Water level		No	٠. ١	o£	va bl	OW:	s/3	30ci	m	
	Ś	Del	Say	10cm	10cm	10cm	Ż	3	_	10	3	0	5	9	j	no .	90	
Light grey micaceous medium to fine sand (0-2.2m)				2	2	1	5	<u> </u>	8									
	\\	-3	•	2	3	3	8		j					-				
Light grey micaceous silty fine sand with clay (2.2-6.0m)	//	Ĭ		2	3	4	9		ļ	٠								
	/ /			2	2	.4	8		ř			j						
	1	6		1	2	2	5		i			_	-		-	┌┤		
	${\mathbb W}$			1	2	3	6		j							ŀÌ		
	W		TOD	1	1	2	4		4									
	///	9	UD2	2	2	2	6	£	Ť	-						П	1	
	///		002	2	2	3	7	depth	ř								Í	
	$\langle \cdot \rangle$		UD3	2	1 2	2	6	1.3m	4									
	\\\	12		2	2	.3	7	at 1	1	-								\neg
	(//			3	2	3	8	رة 10	ì									
Black low to medium plastic	1/,	15	UD4	2	2	2	6	encountered	į									_}
clayey silt (6.0~35m)	V_{I}	.		1	2	- 2	5	ount	-				ı					
	\\	. }	UD5 ·	2	3	3	8	enc	`								. }	
		-18	. !	2	2	3	7		-				_			$\vdash \downarrow$	-	{
`	$\langle \cdot \rangle$.]		1	2	3	6	le,	ŧ	•								
	N	.		2	3	4	9	ter	-									
	$\backslash \backslash$	-21		2	3	4	9	Ground water level	- ($\vdash \mid$					\dashv	_	\dashv
	\'\	.		2	3	4	9	onno	ŧ								ĺ	
	11:	•		3	3	4	10	Ğ	1	,								
	\mathbb{W}	24		4	5	7	16		-	}		\dashv		\dashv		_	-	\dashv
	\\}	•		4	5	5	14			*								
	1//			3	3	4	10								.		İ	
grand and a grand and a second	V_{\prime}	27		2	3	4	9		1			7					1	7
A Commence of the Commence of	\\			3	3	4	9 10		1								ļ	
* 12 average SPT from 30m to 35m	$\parallel \parallel$	30		3	4	- 1	12*											

Borehole: 7-B

Project : Soil investigation and laboratory test for basic design study on reconstruction of Kathmandu valley bridges

Elevation: 1247.200

Location: Dhobikhola

Total depth: 35.0m

Date: 5-9/11/89

Soil Description	Symbol	Depth, meter	Sample/type	b)	10cm swo	10cm J	N-Value	Water level	1		. 0	net:	l.ow	s/3	lOci	m ex	0.1
Light grey medium to fine sand (0-2.0m)				1	3	3	7		/								
Light grey micaceous silty sand clay (2.0-6.5m)		-3	depth	1 2	2	2	5 6		1		1					200	
	, 'i	-6	e entire	1 1 2	1	2 1 2	4 3 5		•		+		<u> </u>	<u> </u>			
	\! \!	-9	e to the	2	3	3 2	8 5	depth				_	_	_			
	W_{i}		borehole	2 2	2	2 2	6 6	1.5m									
		12	depth of	1	1 2	3	6	sered at								2	
Black low to medium plastic clayey silt (6.5-35m)	\\\\ \\\\	-15	1.0m	1 1 1	1 2 2	2 2 2	4 5 5	encountered						-			
	$\frac{1}{1}$	-18	m each	2	1 2	2	5 6	r level		-			-				
			cted from	1 2	2	2 3	5 7	Ground water	-								
		-21	s extracted	2 3 2	3	3	6 9 8	Gron	-								
		-24	Disturbed samples	3	3	3	9					-	1				
		-27	sturbed	3 2	4	4	11 9			,		-	-		-		
* 11 average SPT from 30m to 35m		30	ia	2 3	2 3	4 3 3	8 9 11*				-						7.7

Borehole: 8-A

Project: Soil investigation and laboratory test for basic design Elevation: 1348.528 study on reconstruction of Kathmandu valley bridges

Location: Mahadeo khola

Total depth: 20.0m

Date:260ct.-1Nov.,89

Soil Description	Symbol	Depth, meter	Sample/type	ьı	10cm swo	_,,	N-Value	Water level	No	of en	va bl etz	ow:	s/3 ion	lÒ¢i	m	5
Light grey medium to coarse sand with white quartz fine gravels (0-4.5m) Dark grey micaceous sandy silt with clay (4.5-6.7m) Light grey micaceous medium to coarse sand with silt and fine gravels (6.7-11.35m) Black silty clay with micaceous fine sand (11.35-13.0m) Light grey micaceous medium to coarse sand with fine quartz gravels (13.0-20.0m)		-3 -6 -12 -15 -21 -24	Disturbed samples extracted at each 1.0m depth of borehole to the entire depth	2 3 8 4 9 25 9 19 12 8 6 18 19 11 12 25 17 16	1 2 4 6 4 14 25 10 18 13 23 24 16 25 20 22	1 5 3 6 17 12 13 10 13 18 9 7	50 35 34 33 50 46 50 50 50	Ground water level encountered at 2.4m depth	\\ \tag{\text{\tint{\text{\tint{\text{\tin}\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tin}\text{\texitilex{\text{\text{\ti}\text{\text{\text{\texi}\text{\text{\texitilex{\text{\texit{\ti}\tint{\text{\text{\texit{\texi{\texi\tint{\tiint{\texit{\texi{\texitiex{\texit{\texi{\texi{\texi}\texitilex{\tiint{\texi{							
		30														

Borehole: 8-B

Project : Soil investigation and laboratory test for basic design study on reconstruction of Kathmandu valley bridges

Elevation: 1348.785

Location: Mahadeo khola

Total depth: 20.0m

Date: 280ct.-2Nov.,89

Soil Description	Symbol	Depth, meter	Sample/type	bl	TOCH TOCH		N-Value	Water level	Nc o	٠. ١	of end	va bl tr	ows ati	/3	0c	m 90	
Light grey micaceous fine to medium sand with gravels (0-1.9m) Black silty clay (1.9-7.0m) Light grey silty sand with clay (7.0-8.6m) Light grey medium to coarse sand with fine quartz gravels (8.6-12.0m) Light grey silty sand trace of fine gravels (12.0-14.0m) Light grey medium to fine sand with fine quartz gravels (14.0-17.0m) Light grey silty fine sand trace of fine gravels and black clayey silt after 19.5m (17.0-20.0m)		-15	d samples extracted at each 1.0m depth of borehole to the entire depth	9 10 50 6 5 12 12 12 20 25 20	10 13 10	13 11 20 15 16 18	8 8 11 13 14 27 29 34 50 29 50 41 39 50 50 50 50	Ground water level encountered at 2.0m depth									
		-27	Disturbed														

Borehole: 9-A

Project : Soil investigation and laboratory test for basic design study on reconstruction of Kathmandu valley bridges

Elevation: 1337.732

Location: Manmatta khola

Total depth: 20.0m

Date: 3-5/11/89

Soil Description	Symbol	Depth, meter	Sample/type	bl	ows Local	_	N-Value	Water level		No.	pe	T vof l	blo trạ)WS	:/3 .on	Öçn •	1 80	
Light grey medium silty sand with fine gravel (0-2.0m) Light grey coarse sand with gravels (2.0-3.0m) Light grey micaceous silty sand trace of fine gravels (3.0-13.0m) Dark grey micaceous sandy silt (13.0-19.0m) Light grey silty sand trace of fine gravels (19.0-20.0m)		-3 -6 -12 -15 -18	Disturbed samples extracted at each 1.0m depth of borehole to the entire depth	9 19 9 12 10 11 12 7 10 12 8 10 9	2 6	11 16 14 13 16 14 20 14 18 18 17 14	7 17 32 29 31 50 33 36 39 37 45 32 38 45 37 33 30 33 50 50	Ground water level encountered at 1.3m depth	2		30		50					
		30										_						

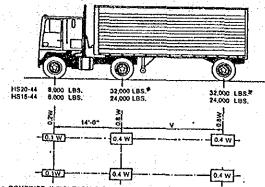
Borehole: 9-B

Project: Soil investigation and laboratory test for basic design study on reconstruction of Kathmandu valley bridges

Elevation:1338.972

Location: Manmatta khola

Total depth: 20.0m


Date: 2-5/11/89

Soil Description	Symbol	Depth, meter	Sample/type	10cm	TOCH SWO	10сш	N-Value	Water level		No		of end	va bl etr	ows at:	s/3	10ci	m	ò
Light grey medium to coarse sand with gravels (0-2.0m)				2	4	6	12										,	
	١.		N	5	9	9	23 25											
	1.	3	pt th	7	7	10 8	23				7							Γ
	1.		entire depth	7		12	28				N							
Light grey micaceous silty sand	[∵\ 	-6	. 1xe	6		10	25											L
trace of fine gravels (2.0-12.0m)	\ :	١	ent		11		32				Ŋ	9						
(2.0-12.0%)	$\left[egin{array}{c} \lambda & 1 \\ A & \end{array} ight]$		the	10	14	17	41	# 1 % 1. 				`						
	:\	-9	ţ,	12	15	15	42		ļ			14	-	_				L
	i : `		borehole	14	14	15	43	- ×										
	\ :		ore	9	11	16	36					1						-
	11.	-12	or or	1.1	12	١.	37	occured	-		H	+						-
	11			1	13		35 35	000				ľ						
Dark grey micaceous sandy silt (12.0-17.0m)	77	1	dep		12	•	30	flow				,						L
	1.1.1	-15	ę.	100	28		50											ŀ
	1.1.1		each 1.0m depth		28		50	Artesian										
Light grey silty sand trace of	1.1	13		9	11	13	33	Arti	-			K	-	_		<u> </u>	-	F
fine gravels (17.0-20.0m)	1.1	ļ	dat	15	15	15	45	 	1			,	Y					
	ΔX		cte	35	15		50										1	
		-21	extracted						-	-	-		T	-	-		-	T
	1		u					 										
		24	samples														L	
		2"				-								-				
			Disturbed											-				-
		-27	stui						-	_	_	-	ļ		L	-	\vdash	1
		-	, i															
		-			1								1	1		1		١

(14) DESIGN LIVE LOADS (AASHTO, HS20-44)

3.7.7 - HS Loading

The HS loadings consist of a tractor truck with semitrailer or the corresponding lane load as illustrated in Figures 3.7.7A and 3.7.6B. The HS loadings are designated by the letters HS followed by a number indicating the gross weight in tons of the tractor truck. The variable axle spacing has been introduced in order that the spacing of axles may approximate more closely the tractor trailers now in use. The variable spacing also provides a more satisfactory loading for continuous spans, in that heavy axle loads may be so placed on adjoining spans as to produce maximum negative moments.

W . COMBINED WEIGHT ON THE FIRST TWO AXLES WHICH IS THE SAME AS FOR THE CORRESPONDING H (M) TRUCK.
Y VARIABLE SPACING — 14 FEET TO 30 FEET INCLUSIVE. SPACING TO BE USED IS THAT WHICH PRODUCES MAXIMUM STRESSES.

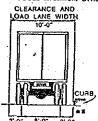
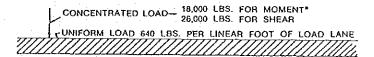



Figure 3.7.7A. Standard HS Trucks

. In the design of limber floors and orthoropic steel decks (excluding transverse beams) for 115 70 loading, one seek load of 24,000 pounds or two asle loads of 16,000 pounds each, spaced a feet apart may be used, whichever produces the greater stress, instead of the 21,000-pound as its shown.

"For slab design, the center line of wheels shall be assumed to be I foot from face of curb. (See Article 3.74.2).

H20-44 LOADING HS20-44 LOADING

F13.3.7.6B

2.1.3 Live load loading on the 1st class and 2nd class bridges

The live load shall consist of the moving load of trucks (the T-loading and the L-loading), the sidewalk loading and the trancar loading.

Table 2.1.2 T-loadings

Class of bridge	Loading	Gross weight W(ton)		Weight of a rear wheel 0.4W(kg)	a front wheel	Width of a rear wheel b ₂ (cm)	Length of contact area of a wheel on the road- surface a (cm)
lst	T-20	20	2000	8000	12.5	50	20
2nd	T-14	14	1400	5600	12.5	50	20

Fig. 2.1.1 T-loadings

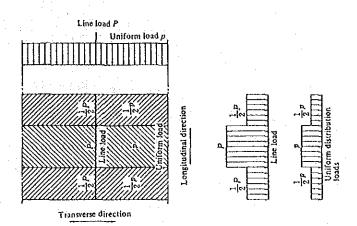


Fig. 2.1.3 L-loadings

Table 2.1.3 L-loadings

Class of bridge	Loading	Main loads (up to 5.5 meters in width)				Sub-loads
		Line load	Uniform load, p (kg/m²)			
		P (kg/m)	r₹80	80 <r₹130< td=""><td>L>130</td><td rowspan="2">50% of main loads</td></r₹130<>	L>130	50% of main loads
lst	L-20	5,000	350	430-L	300	
2nd	L-14	70% of those of 1st class				

where,

L = Span length in meters.

For the suspended span and the can-tilever span in a cantilever bridge, those span lengths L and L, respectively, shall be taken as shown in Fig. 2.1.4.

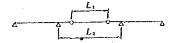


Fig. 2.1.4 Now to take the span length in the suspended span

