Chapter 3 Ore reserve calculation

3-1 Assay data and processing

This survey results clarify the shape of mineralized zone and ore grades for both the Hayl as Safil and Rakah deposit. Base on these results, ore reserve calculations were made for these ore deposits. Data and method for the calculation are given in this paragraph.

(1) Assay data

The ore reserve calculation for the Hayl as Safil deposit was made using the assay results of 12 drill holes (Table 1-5) completed in this project as well as 30 previous drill holes (Table 1-6).

The calculation for the Rakah deposit was made using the 11 drill holes (Table 2-1) completed in this project and 45 previous drill holes (Table 2-2).

Assay results obtained from the gossan and secondary enriched zones in the drill holes were excluded for the calculation because only sulfide minerals are recoverable in the designed mineral processing plant. The all assay results used for the calculation are shown in Appendix 16.

(2) Calculation method

The calculation was made according to the following procedures.

- 1 Determination of specific gravity.
- ② Determination of size for an ore block ($20 \text{ m} \times 20 \text{ m} \times 10 \text{ m}$).
- ② Determination of ore boundary for each 10 m level on the base of geologic level sheets.
- Selection and determination of calculation method.
- © Calculation of tonnage and grade for each ore block and preparation of level sheets by computer.
- Modification of volume for ore blocks on the base of geologic level sheets.
- Re-calculation of ore reserve for each block and preparation of modified level sheets.
- Totaling the calculated ore reserves.

The specific gravity of ore has good correlation with the contents of sulfur in general. But no assay for sulfur was made in this survey as well as previous survey. MPM made the measurement of specific gravity for the core samples in Hayl as Safil deposit. The measured specific gravity ranges from 2.82 to 4.73, and show good correlation (correlation coefficient: 0.591) with the copper

grade excluding the samples of more than 10% Cu. Therefore, the specific gravity (S.G.) of each block was decided by means of the least square method using these copper grades (Cu) and specific gravities. The obtained equation by the least square method is given as follows:

$$S.G. = 0.146 \times (Cu) + 2.0$$

Then 0.95 is multified for the obtained specific gravity because measured specific gravity in laboratory shows higher than actual gravity in general due to clay minerals and porosity in the ores. However, in case of extremely low and high Cu grade ore, the minimum and maximum specific gravities were decided to be 2.80 and 4.20 respectively. Specific gravities are measured for the samples from the Hayl as Safil deposit. But, volume of sulfide minerals in the Rakah deposit is lesser than that of the Hayl as Safil deposit. Because the gravity of ore in the Rakah deposit is thought to be lower than that of the Hayl as Safil deposit, further 0.95 were multified to the specific gravity obtained in the same manner for the Hayl as Safil deposit.

The size of the ore block is 20 m (N-S) by 20 m (E-W) with 10 m high. The size of ore block was decided based on the planned mining method.

Distribution of ore blocks for each level was decided using a geologic plan map and taking account of the ore shoot for each level.

Reasonable semivariogram, which suggests the applicapability of the Krieging method, could not be obtained. The grades of blocks at each level were estimated by means of the method to interpolate and/or extrapolate the values at the grid points from the values distributed randomly, using the second order polynomial approximation with the weight coefficients. In this case, the blocks in which the grade is known, was treated as the random data points.

Based on the above mentioned method, ore reserves for each block were calculated and distribution maps of ore blocks for each level were prepared. However, because of complicated shape of the mineralized zone, some blocks show difference between the calculated volume and expected volume, and then modification of the volume were made for these blocks. The calculation was made using 0.20% Cu as the cut-off grade. Distribution map and ore reserves of each ore block for the Hayl as Safil deposit are shown in Appendix 17 and 18 respectively. Distribution map and ore reserves of each ore block for the Rakah deposit are given in Appendix 19 and 20 separately.

The calculated ore reserves of each block were totaled for each level. The results are shown in Table 3-1 (Hayl as Safil deposit) and Table 3-2 (Rakah deposit).

3-2 Hayl as Safil deposit

The ore reserve estimation was made for the area where mineralized zone was confirmed by the drilling survey. The area is from the southern half of Main Gossan to the east and south of Main Gossan. The high Cu grade blocks are found mostly at the southeast of the mineralized zone

Table 3-1 Geologic ore reserves for each level in the Hayl as Safil deposit

	Tonnage Grade								
Leve1	(t)	Cu %	Zn %	Au g∕t	Ag g∕t	Cu (t)	Zn (t)	Au (kg)	Ag (kg)
670 mL	107, 400	1. 54	0. 01	0.16	1. 44	1, 649, 18	10. 74	17. 64	154. 44
660 mL	481, 190	1. 13	0. 16	0. 59	3. 67	5, 424, 66	775. 16	285. 15	1, 768. 25
650 mL	672,786	1.62	0. 13	0.73	4.78	10, 896. 35	904. 97	490. 12	3, 217. 21
640 mL	731, 264	1. 15	0.10	0.60	4. 50	8, 402. 76	761. 18	437. 95	3, 285. 13
630 mL	931, 714	1. 53	0.12	0. 84	6. 09	14, 261. 97	1, 149. 19	786. 46	5, 673. 25
620 mL	862,313	1.86	0. 22	0.48	3. 97	16, 059, 30	1, 936. 14	412.04	3, 426, 34
610 mL	823, 918	0. 82	0. 22	0.42	2.46	6, 726, 55	1, 784. 45	350. 16	2, 029. 95
600 mL	758, 520	0.77	0.18	0. 47	2.41	5, 836, 21	1, 340. 75	354. 05	1, 830, 98
590 mL	726, 651	1. 24	0. 16	0.67	4. 22	8, 992. 08	1, 187. 17	487. 18	3, 065. 58
580 mL	617,390	1. 03	0. 15	0. 29	l. 29	6, 355. 17	925. 94	178. 96	798. 68
570 mL	624, 068	0. 79	0. 13	0. 14	0.84	4, 951. 49	815. 55	85. 82	522. 16
560 m1	483, 944	0. 75	0. 08	0.11	0. 90	3, 618. 67	396. 36	55. 25	435. 21
550 mL	462, 926	0. 47	6. 08	0. 07	0.40	2, 187, 98	356. 52	32. 95	183. 97
540 nL	445, 793	0.49	0. 04	0. 05	0.48	2, 179. 57	165, 23	22. 99	215. 21
530 mL	424, 705	0. 48	0.02	0. 04	0. 21	2, 043. 84	103. 35	15. 94	89. 24
520 mL	378, 937	0. 42	0. 03	0. 05	0. 32	1, 600. 78	117. 30	19.65	122. 54
510 mL	458, 349	0. 30	0.03	0.11	0, 66	1, 372. 36	149.67	52. 53	302. 05
500 mL	360, 733	0. 54	0. 05	0. 27	0. 73	1, 945. 26	198. 03	98. 33	264. 62
490 mL	200, 490	0. 33	0. 07	_		663.11	130, 42	0. 00	0. 00
Total	10, 553, 091	1.00	0. 13	0. 40	2. 59	105, 167. 29	13, 208. 12	4, 183. 17	27, 384. 82

Table 3-2 Geologic ore reserves for each level in the Rakah deposit

	Tonnage	Grade			Contents				
Level	(t)	Cu %	Zn %	Au g/t	Ag g/t	Cu (t)	Zn (t)	Au (kg)	Ag (kg)
660 mL	13, 914	0. 84	0.08	1. 53	2. 13	116.68	10. 67	21. 34	29. 57
650 mL	224, 471	1. 56	0. 15	1. 35	3, 94	3, 491. 90	328. 58	302.95	883. 41
640 mL	392, 263	1. 93	0. 23	1.63	4. 78	7, 574. 31	895. 65	639. 46	1, 874. 98
630 mL	460, 536	1. 18	0.15	0.75	2. 21	5, 451. 56	691.83	343. 19	1, 019. 94
620 mL	467, 445	0. 89	0.89	0. 67	2. 85	4, 141. 25	906. 36	313. 50	1, 331. 69
610 mL	430, 384	1. 51	0. 32	1. 39	4. 53	6, 515. 44	1, 384. 26	599. 87	1, 948. 81
600 mL	362, 060	1.20	0. 23	0. 45	1. 57	4, 362. 65	841.83	163. 87	568. 18
590 mL	301, 027	0.70	0. 27	0.30	l. 65	2, 116. 16	814. 21	89. 76	497.74
580 mL	218, 634	0. 38	0. 22	1. 22	1. 25	830.66	476. 17	266. 75	273. 29
570 mL	294, 507	0.69	0. 15	0. 62	1.50	2, 026. 84	448. 53	181.84	441.76
560 mL	381, 503	0.80	0.11	1.03	1.08	3, 059. 89	435. 62	393. 01	412. 59
550 m1	210, 157	0. 49	0.09	0. 69	0. 95	1, 022. 45	198. 91	144. 93	199. 86
540 mL	231, 188	0. 50	0.23	0. 82	1.21	1, 161. 04	538. 97	190.70	279. 74
530 mL	257, 865	0.75	0.05	1. 23	0. 54	1, 946. 87	124. 80	319. 17	139. 45
520 mL	175, 445	0.66	0. 05	0. 34	0.68	1, 158. 44	82. 34	59. 65	119.30
510 mL	101,391	0. 56	0. 10	0. 42	-	567.77	104.74	42. 58	0. 00
500 mL	147.089	0.65	0.10	0. 62		950.65	151.70	91. 20	0. 00
490 mL	50, 411	0. 24	0.11	-		119. 42	54. 38	0. 00	0. 00
480 mL	30, 446	0. 69	0. 07	_		210. 38	21.63	0.00	0. 00
Total	4, 750, 736	0. 99	0. 18	0. 88	2. 11	46, 824. 39	8, 511. 18	4, 163. 77	10, 020. 31

where the massive ores occur. Most of the ore blocks in the stockwork ore zone show low Cu grade. The blocks at the upper level show higher Cu grade compared with the lower blocks. High Au blocks distribute in similar tendency to the Cu high blocks and are found in the area of massive ore zone and also at the upper level. High Zn blocks are found in the area of massive ore zone as well as marginal parts of the orebody. Ag show similar tendencies of Au.

This survey resulted to discover the large amounts of ore reserves.

The relationship between the ore reserves estimated by MPM before starting this project and the ore reserves estimated in this project is as follows:

	Tonnage (t)	Cu%	Au g/t	Cu (t)	Au (kg)
MPM	2,086,000	2.09	0.97	43,597	2,023
This survey	10,533,000	1.00	0.40	105,167	4,183
	8,467,000	0.73	0.26	61,570	2,160

Therefore, approximately 8.5 million tons of ores were newly discovered in this survey. The newly estimated ore reserves mainly consist of the stockwork ore.

3-3 Rakah deposit

The ore reserves calculation was made for both the mineralized zone of the lower and upper mineralized zone. The ore blocks containing massive and brecciated ore show higher grades of Cu and Au. Because these blocks are situated at the upper levels, the blocks at upper levels show higher grades. The blocks consisting of stockwork ore also show higher Cu grade at the upper levels. Because number of Au and Ag assays are limited for the previous drilling, the calculated Au and Ag grades for the stockwork ore blocks may be slightly higher than the exact Au and Ag grades.

Observation results for polished sections show that the copper minerals in the massive ore consist of secondary enriched copper minerals. No native gold is confirmed under the microscope and gold may be mixed in pyrite. The results of metallurgical test for mine development (Volume III) show that is is difficult to separate copper and gold in the massive ore and ore must be treated separately. The relation between the ore reserves of the massive ore and the total ore reserves are as follows:

	Tonnage	Cu%	Au g/t	Cu (t)	Au (kg)
Massive and brecciated ores	280,006	2.51	3.67	7,022.62	1,027.62
Stockwork ore	4,470,730	0.89	0.70	39,801.77	3,136.15
Total	4,750,736	0.99	0.88	46,824.39	4,163.77

3-4 Discussion

The estimation of ore reserves for the Hayl as Safil deposit was carried out in the area from the southern half of Main Gossan to the south where the drilling survey was completed. However the mineralized zone extend further north, and additional drill holes are necessary for the northern extension to clarify the grades and thickness of the mineralized zone. A drill hole HS-39 completed by MPM in the middle of the Main Gossan encountered stockwork ore zone of less than 1.0% Cu. Therefore, the northern extension of the Hayl as Safil deposit possibly consists of low grade stockwork ore, and also this stockwork ore zone is situated at deeper depth. This ore zone is thought to be low potentiality for development. The massive ore confirmed by a drill hole MJO-A12 in the Hayl as Safil deposit may extend to further east and additional ore reserves are expected in this part. And, therefore, it is possible to discover the additional ore reserves, but the ore reserves for the Hayl as Safil deposit are thought to be estimated mostly in this survey. A drill hole HS-7 by BRGM at the north of Small Gossan encountered massive sulfide ore but the follow-up drill holes could not confirm the extensions. Therefore, the ore reserves may be limited.

Sufficient drill holes were carried out for the massive ore zone of the Hayl as Safil deposit, but in the area of stockwork ore zone drill holes are not enough to calculate acculate ore reserves. It is necessary to carried out additional drill holes of 50 m grid if the ore deposits go to the development stage. Based on the results of these additional drill holes, ore reserves should be re-calculated.

This survey results possibly clarify the ore reserves of the Rakah deposit exactly and additional ore reserves are not expected for this deposits. However, accuracy of the Au grade of the ore reserves are thought to be low due to limited number of assay results. Because of low core recovery at the shallow depth, the ore reserves calculated may be different to the actual mineable ore reserves. But, the difference may be limited.

In addition to the above mentioned ore reserves, gossan and gossan dum in the Rakah deposit have higher content of Au and these are possible to estimate about 300 thousand tons of 5.0 g/t Au and 10.0 g/t Ag. In order to clarify the acculate ore reserves, it is necessary to carry out significant number of shallow drill holes. But if the Rakah deposit go to development stage, systematic sampling for the gossan should be carried out instead of the drilling, because the gossan zones is situated in the area of planned open pit. The gossan should be treated separately in the development stage.

Chapter 4 Overall discussion for the survey results

4-1 Formation process of the ore deposits in the Rakah area

The surveys completed for the Hayl as Safil and Rakah deposits delineated following characteristics for these two ore deposits:

- ① The Samail Volcanic Rocks in the Rakah area are divided into the Lower Volcanic Rocks and Middle Volcanic Rocks. The Lower Volcanic Rocks is subdivided into the Lower Extrusives I and Lower Extrusives II in ascending order. The ore deposits is situated at the top of the Lower Extrusives I.
- ② The orebodies show lenticular shape and consist of the stockwork, massive and siliceous ores. The stockwork ore dominates the orebody and found at the uppermost part of the Lower Extrusives I. The massive and siliceous ores are found on the surface of the Lower Extrusives I and are overlaid with the Lower Extrusives II.
- The stockwork ore consists of stockwork veinlets and disseminations of sulfide minerals. The host rocks are silicified, chloritized and brecciated. The Hayl as Safil deposit is characterized with intense silicification and repeated brecciation and the Rakah deposit is characterized with strong chloritization. Quartz-hematite are found throughout the stockwork ore zone.
- The massive ore is mostly found at the marginal parts of the orebody and consist of sulfide breccia and fine-grained pyrite matrix. The sulfide minerals consist mostly of pyrite and framboidal and colloform textures are found in the pyrite.
- The siliceous ore is found at the marginal part of the orebody and form irregular shape. The ore consists of strongly silicified brecciated host rocks with matrix of white to grey clay and sulfide minerals.
- © Ore minerals comprise pyrite and chalcopyrite with minor sphalerite. Secondary enriched copper minerals of covellite, chalcosite and bornite are found at the shallower depth.
- Assay results show good correlation between Au and Cu. Especially the massive ore has high grades. Assays of Zn show higher values at the upper and marginal parts of the orebody.

The stratigraphic horaizon of the ore deposits in the Rakah area is same as the Lasail and Bayda deposits in the Sohar area. The nature of ore and constituent minerals of the ore deposits in the Rakah area are similar to those in the Sohar area. The Hayl as Safil and Rakah deposits in the Rakah area may be formed by the same formation processes and same age of the ore deposits in the Sohar area. These deposits are thought to be formed on the sea floor of spreading ridge and the footwall rocks are basic volcanic rocks. Therefore, these deposits can be classified into the Cyprus type copper deposits.

Taking accounts of the tectonic history of the Oman Mountains and the nature of mineralization, the ore deposits in the Rakah area may be formed by following formation processes and history.

- ① Eruption and deposition of the Lower Extrusives I in the spreading ridge of the Palaeo-Tethys sea.
- ② Formation of large-scale faults, parallel to the axis of the spreading ridge, and brecciation due to the igneous activity of the Lower Extrusives I. Formation and deposition of ore forming fluid due to the volcanic activity of the Lower Extrusives II. Formation of the stockwork ore in the brecciated zone, and of the massive and siliceous ores on the sea floor.
- Repeated brecciation due to ascending ore forming fluid and enlargement of the mineralized zones.
- Eruption and deposition of the Lower Extrusives II over the mineralized zones in the marginal part of the spreading ridge. Termination of sea weathering for the mineralized zones.
- Carge dislocation of ore bodies due to the obduction of the Samail Ophiolite.
- ® Small dislocation of ore bodies due to the tectonic movement of after obduction.
- ② Elosion and weathering of the surface and gossanization of the mineralized zone.
- ® Deposition of Quaternary sediments over the mineralized zone and hanging wall volcanics.

The general trend of this type ore deposits in the Oman Mountains region is similar to that of the dykes in the Sheeted-dyke Complex which indicates the direction of the spreading ridge. Therefore, the parallel faults to the ridge may play important role as the path for the ore forming fluid. The volcanic activity of the Lower Extrusives II is the most conspicuous in the period of the formation of these ore deposits, and these ore deposits are found in the area, where the Lower Extrusives II are developed. These facts suggest the close relationship between the Lower Extrusives II and the formation of this type ore deposits.

4-2 Potential and guidelines for further exploration work in the Rakah area

This survey results clearly delineated both the Hayl as Safil and Rakah deposits and no remaining potential are expected for both the survey areas of Area A and B except the limited potential for the northern and southeastern extensions of the Hayl as Safil deposit.

However, this survey was carried out in the limited area of the Rakah area. The similar geology to the survey areas are widespread in the Rakah area, and the Tawi Rakah prospect, a copper showing, is found 4 km southeast of the Rakah deposit in the area where the Lower Extrusives I and II are distributed. Therefore, the potential of copper deposits is thought to be

existed in the Rakah area. Previous survey results interpreted the sedimentary rock at the south of Rakah deposit are the Hawasina Sediments of Hawasina Nappes. However this survey results interpreted the sedimentary rocks are the Supra-ophiolite sediments. This interpretation suggests that the Samail Volcanic Rocks which are host rocks of the ore deposits are situated under these sedimentary rocks. Therefore it is necessary to carry out the exploration work for the area of the sedimentary rocks.

The guidelines for further exploration work of this type copper deposits in the Rakah area are as follows:

- ① Exploration work should be carried out at the boundary between the Lower Extrusives I and II where the Lower Extrusives II are predominant.
- ② The orebodies are dislocated by the obduction and the tectonic movement of after the obduction. Interpretation of these tectonic movement is very important for the exploration work.
- Solution Nature of ore is depend on the nature of the host rocks. Therefore it is better to understand that the Cyprus type copper ore deposits are not formed only by the massive sulfide ore.
- The value of the ore deposits is depend on not only the grade but also the quantity of the ores. Therefore, even if the ore grades are low, it is better to carry out the exploration work to clarify the outline of the ore deposits.

These guidelines for the exploration are thought to be applicable for the exploration work of this type copper deposits in the Oman Mountains region.

Chapter 5 Conclusions

The geologic, geophysical (CP method) and drilling surveys were carried out for the known two ore deposits, the Hayl as Safil and Rakah deposits in the Rakah area during a period of two years in order to clarify the potential of these ore deposits. These survey results delineated both the ore deposits very clearly and approximately 8.5 million tons of ore were discovered. The ore reserves confirmed in this survey are approximately 15.3 million tons for both the ore deposits. Based on these estimated ore reserves, a preliminary feasibility study for the mine development was carried out in this survey as shown in Volume III.

The survey results completed in the Rakah area are conclusively summarized as follows:

- ① The Rakah area is situated in the area of the Samail Nappe and the geology consists of the Samail Ophiolite and Supra-ophiolite sediments. The Samail Ophiolite comprises the Tectonites, Cumulate Sequence, High-level Gabbro, Sheeted-dyke Complex and Samail Volcanic Rocks in ascending order. The Samail Volcanic Rocks can be divided into the Lower Volcanic Rocks and Middle Volcanic Rocks. Furthermore the Lower Volcanic Rocks are subdivided into the Lower Extrusives I and Lower Extrusives II in ascending order. The known two ore deposits are situated at the top of the Lower Extrusives I and are covered with the Lower Extrusives II. These ore deposits are syngenetic copper deposits and this type ore deposits in the Oman Mountains region are situated in the area where the Lower Extrusives II are developed. Therefore, the Lower Extrusives II possibly have relation with the formation of these ore deposits. It is important for the exploration to clarify the distribution and stratigraphy of the volcanic rocks, especially of the Lower Extrusives II.
- ② Tectonically, the Rakah area is marked by the thrust faults related to the obduction of the Samail Ophiolite. The area is characterized by imbrication structure due to these thrust faults and stratigraphically lower units of ophiolite are observed at the upper part. Tectonic movement after the obduction formed NW-SE trending faults and gentle folds. The two known ore deposits in the area are dislocated by these tectonic movements. Especially the Hayl as Safil deposit is dislocated largely by a second order thrust faults related to the obduction.
- The known ore deposits in the Rakah area consist of stockwork, massive and siliceous ores in ascending order. Among these ores, the massive and siliceous ores are found at the boundary between the Lower Extrusives I and II. The Hayl as Safil deposit is characterized with strongly silicified and brecciated thick stockwork ore zone. Quartz-hematite is found throughout the Hayl as Safil deposit. The stockwork ore in the Rakah deposit is characterized with strong chloritization. The massive and siliceous ores in the Rakah deposit are situated at the boundary between the Lower Extrusives I and II where sedimentary rocks are intercalated and show close relationship between these ores and the sedimentary rocks. Ore

constituent minerals for these deposits consist of pyrite, chalcopyrite, sphalerite, covellite, chalcosite and bornite. Among these minerals, covellite, chalcosite and bornite are found at the shallower depth and are thought to be formed by secondary enrichment.

- Based on the geophysical survey (CP method) results in Phase I, the drilling survey was carried out in Phase II for both the Hayl as Safil and Rakah deposits. The survey results confirmed that the geophysical survey delineated the mineralized zone exactly. Therefore, it is concluded that the CP method using drill hole for electrode is very efficient survey method to outline the mineralized zone.
- The following geologic ore reserves were confirmed in this survey.

	Tonnage (t)	Cu%	Au g/t	Cu (t)	Au (kg)
Hayl as Safil deposit	10,553,091	1.00	0.40	105,167.29	4,183.17
Rakah deposit	4,750,736	0.99	0,88	46,824.39	4,163.77
Total	15,303,827	0.99	0.55	151,991.68	8,346.94

Within this 15.3 million tons, about 8.5 million tons of geologic ore reserves were discovered in this survey. Because of limited number of drill holes for the stockwork ore zone of the Hayl as Safil deposit, accuracy of the ore reserves for this zone is thought to be slightly low. The accuracy of the Au and Ag grades of the Rakah deposit is also low due to limited number of Au and Ag assay results.

- © Gossanized zone and gossan dump in the Rakah deposit contain higher Au and Ag and are estimated to be 300 thousand tons of 5.0 g/t Au and 10.0 g/t Ag. These gossan zone is located in the area of pre-stripping for the mine development and, therefore, systematic sampling and estimation of the tonnage should be carried out in the stage of the mine development.
- Additional ore reserves are expected in the north and southeast of the Hayl as Safil deposit. However these ore reserves are thought to be limited and the ore reserves are mostly estimated in this survey.

This survey was carried out in a limited period of two years, but the Hayl as Safil and Rakah deposits are clearly delineated and necessary data for the mine development are obtained. This survey results are thought to be very usefull for further exploration work of this type ore deposits in the Oman Mountains region.

FIGURES

Fig. 1-1	Stratigraphic columnar section of the Rakah area	2
Fig. 1-2	Tectonostratigraphic section of the Rakah area	3
Fig. 1-3	Geologic map of Area A	4
Fig. 1-4	Structural map of Area A	6
Fig. 1-5	Sketch of thrust fault between Tectonites and High-level Gabbro	5
Fig. 1-6	Sketch of chromitite showing	8
Fig. 1-7	Correlation of Samail Volcanic Rocks in the Oman Mountains area	11
Fig. 1-8	Columnar sections of volcanic rocks in Area A	12
Fig. 1-9	Tectonic history of Samail Ophiolite in the Rakah area	15
Fig. 1-10	Geologic map of the Hayl as Safil deposit area	17
Fig. 1-11	Geologic sections of the Hayl as Safil deposit area (1), (2), (3), (4) 19, 21, 23,	, 25
Fig. 1-12	Location map of samples collected from gossan zones for assaying in Area A	31
Fig. 1-13	TiO ₂ -FeO*/MgO and P ₂ O ₅ -FeO*/MgO diagrams	36
Fig. 1-14	P2O5-TiO2 diagrams	36
Fig. 1-15	Cu-Co, Ni-Co and V-Co diagrams	37
Fig. 1-16	AMF diagram	38
Fig. 1-17	Schematic illustration of charged potential method	39
Fig. 1-18	Model distribution patterns of charged potential	40
Fig. 1-19	Location map of CP survey stations in Area A	41
Fig. 1-20	Model curve of charged potential and its electric field	43
Fig. 1-21	Charged potential map for the drill holes HS-14 and HS-7 in Area A	45
Fig. 1-22	Electric field map for the drill hole HS-14 in Area A	47
Fig. 1-23	Electric field map for the drill hole HS-7 in Area A	49
Fig. 1-24	Results of model calculation and its resistivity structure for the Hayl as Safil deposit	54
Fig. 1-25	Geophysical interpretation map of Area A	

Fig. 1-27	Schematic history of the Hayl as Safil deposit
Fig. 2-1	Geologic map of Area B
Fig. 2-2	Structural map of Area A
Fig. 2-3	Columnar sections of volcanic rocks in Area B
Fig. 2-4	Geologic map of the Rakah deposit area
Fig. 2-5	Geologic sections of the Rakah deposit area (1), (2), (3)
Fig. 2-6	Location map of samples collected from gossan zones for assaying in Area B 99
Fig. 2-7	Location map of CP survey stations in Area B
Fig. 2-8	Charged potential map for the drill hole MJO-B1
Fig. 2-9	Charged potential map for the drill hole MJO-B5
Fig. 2-10	Electric field map for the drill hole MJO-B1
Fig. 2-11	Electric field map for the drill hole MJO-B5
Fig. 2-12	Results of model calculation and its resistivity structure for the Rakah deposit . 117
Fig. 2-13	Geophysical interpretation map of Area B
Fig. 2-14	Sketch of core sections for mineralized zone in the Rakah deposit 126, 127
Fig. 2-15	Geologic plan maps of the 560 m and 640 m levels in the Rakah deposit 141
	TABLES
Table 1-1	Observation results of thin sections
Table 1-2	Assay results for gossan samples in Area A
Table 1-3	Values of physical properties
Table 1-4	List of drill holes completed in Area A in this project
Table 1-5	List of drill holes completed by MPM and BRGM in Area A
Table 1-6	Observation results of polished sections for the Hayl as Safil deposit
Table 1-7	Results of X-ray diffraction analyses in Area A
Table 2-1	List of drill holes completed in Area B in this project

Geologic plan maps of the $600 \, \text{m}$ and $650 \, \text{m}$ levels in the Hayl as Safil deposit ... $76 \,$

Fig. 1-26

Table 2-2	List of previous drill holes in Area B	.23
Table 2-3	Observation results of polished sections for the Rakah deposit	.35
Table 2-4	Results of EPMA analyses	37
Table 2-5	Results of X-ray diffraction analyses in Area B	.39
Table 3-1	Geologic ore reserves for each level in the Hayl as Safil deposit	44
Table 3-2	Geologic ore reserves for each level in the Rakah deposit	45

PLATES

Plate II-1-1	Geologic map of Area A (1:2,000)
Plate II-1-2	Geologic sections of Area A (1:2,000)
Plate II-2-1	Geologic map of Area B (1:2,000)
Plata II-9-9	Goologic sections of Area B (1.2 000)

APPENDICES

Appendix	1	Descriptions for thin sections of typical rock facies in the Rakah area	A1
Appendix	2	Results of chemical analyses for petrochemical studies and C. I. P. W. norm calculation	A 5
Appendix	3	TiO ₂ diagrams	A9
Appendix	4	FeO*/MgO diagrams	A13
Appendix	5	Charged potential in area A	A15
Appendix	6	Electric field in area A	A19
Appendix	7	Progress of the each drill hole in area A \hdots	A23
Appendix	8	Geologic core log for the drill holes in area A	A29
Appendix	9	Assay results for gossan and gossan dump samples in area B $\hfill \ldots \ldots$	A67
Appendix	10	Charged potential in area B	A71
Appendix	11	Electric field in area B	A73
Appendix	12	Progress of the each drill hole in area B \hdots	A75
Appendix	13	Geologic core log for the drill holes in area B $\hfill B$	A81
Appendix	14	Photographs of polished sections	A115
Appendix (15	SEM and microprobe images of ore samples	A121
Appendix	16	Basic assay data used for the ore reserve calculation	A125
Appendix 3	17	Distribution map of the ore blocks for each level in the Hayl as Safil deposit	A145
Appendix 3	18	List of ore reserves for each ore block in the Hayl as Safil deposit $\ \ldots \ $	A155
Appendix 1	19	Distribution map of the ore blocks for each level in the Rakah deposit	A177
Appendix 3	20	List of ore reserves for each ore block in the Rakah deposit	A187

Descriptions for thin sections of typical rock facies in the Rakah area

Geologic unit

Tectonites

Rock name

Harzburgite (Hz)

Sample number:

M008

Texture

Porphyroclastic and mesh textures

Descriptions

Rock consists of olivine and subordinate orthopyroxene and chromite. Olivine is completely altered to serpentine and magnetite, and exhibites mesh texture. Subhedral and anhedral orthopyroxene (enstatite) is 0.4 to 3 m/m in grain size and presents exsolution lamellae of clinopyroxene. Orthopyroxene is mostly altered to serpentine, chlorite and small amounts of

magnetite and tremolite.

Geologic unit

Cumulate Sequence (Cg)

Rock name

Clinopyroxene gabbro

Sample number:

M017

Texture

Orthocumulus texture

Descriptions

Cumulus phase consists of euhedral to subhedral plagioclase and augite. Augite is 1 to 1.5 m/m in grain size and is slightly altered to amphibole and chlorite. Post-cumulus phase consists of anhedral plagioclase, augite and subordinate olivine, apatite and opaque minerals. Augite exhibites locally poikilitic texture. Plagioclase is altered locally to sericite and calcite.

Olivine is decomposed to serpentine and magnetite.

Geologic unit

High-level Gabbro (Hg)

Rock name

Clinopyroxene gabbro

Sample number:

N011

Texture

Porphyritic texture

Descriptions

Rock consists of plagioclase, hornblende, augite and subordinate apatite and opaque minerals. Numerous euhedral to subhedral plagioclase grains are 0.2 to 1.5 m/m in size and are marked by sericitization. Green euhedral to subhedral hornblende, 0.3 to 2.5 m/m in grain size, is partially altered to chlorite. The rock is strongly altered and presents chlorite, amphibole,

sericite, epidote, sphene, hematite and limonite.

Geologic unit

Sheeted-dyke Complex (Sd)

Rock name

Dolerite (dyke)

Sample number:

M016

Texture

Glomeroporphyritic texture

Descriptions

Rock is mainly composed of plagioclase and mafic minerals with minor opaque minerals. Plagioclase is euhedral to subhedral, 0.3 to 1.2 m/m in grain size, and shows zoning structure. Mafic minerals are altered completely to chlorite, epidote and calcite. Alteration minerals are epidote,

chlorite, calcite and subordinate sphene.

Geologic unit

Lower Volcanic Rocks (Lower Extrusives I)

Rock name

Pillow lava

Sample number:

M032

Texture

Intersertal texture

Descriptions

Rock is altered completely and the original structure is not clear.

Phenocrysts consist of plagioclase and mafic minerals. Plagioclase is altered mostly to quartz and epidote. Mafic minerals are mostly replaced with

smectite, chlorite, epidote calcite and opaque minerals.

Geologic unit

Lower Volcanic Rocks (Lower Extrusives II)

Rock name

Andesitic pillow lava

Sample number:

M015

Texture

Glomeroporphyritic texture

Descriptions

Phenocrysts consist of augite and subordinate plagioclase. Euhedral to subhedral and prismatic augite, 0.4 to 0.6 m/m in grain size, shows undulatory extinction and is altered to chlorite and epidote. Euhedral plagioclase is 0.4 m/m in grain size. Groundmass consists mainly of laths of plagioclase, augite, glass and opaque minerals. Glass is altered to chlorite, epidote, albite and smectite. Opaque minerals are probably iron oxide minerals and are partially oxidized to hematite.

Geologic unit

Middle Volcanic Rocks (M)

Rock name

Doleritic massive lava

Sample number:

M005

Texture

: Subophitic texture

Descriptions

Phenocrysts consist of euhedral plagioclase, 0.5 to 2.0 m/m in grain size, and subordinate euhedral to subhedral augite, 1.0 m/m in grain size. Plagioclase is altered to calcite and chlorite. Groundmass is composed of lath of plagioclase, augite and subordinate opaque minerals. Carbonetes, smectite,

chlorite, sphene and epidote are the secondary minerals.

Geologic unit

Middle Volcanic Rocks (M)

Rock name

Basaltic pillow lava

Sample number:

M003

Texture

Intersertal texture

Descriptions

Phenocrysts consist of plagioclase and augite. Euhedral plagioclase, 0.5 to 1.5 m/m in grain size, is prismatic. Small amounts of euhedral to subhedral augite are 0.5 m/m in grain size. Groundmass includes plagioclase, augite and subordinate titan-augite, hyperthene and iron oxide minerals. Carbonates and subordinate chlorite, epidote and smectite are the secondary

minerals.

Geologic unit

Intrusive Rocks (I)

Rock name

Dolerite

Sample number:

M031

Texture

Ophitic texture

Descriptions

Phenocrysts consist of euhedral plagioclase, 0.2 to 2.0 m/m in grain size, and subhedral augite, 0.4 to 0.6 m/m in grain size. Augite exhibites undulatory extinction. Groundmess is intensely altered and iron minerals are partially

oxidized to hematite.

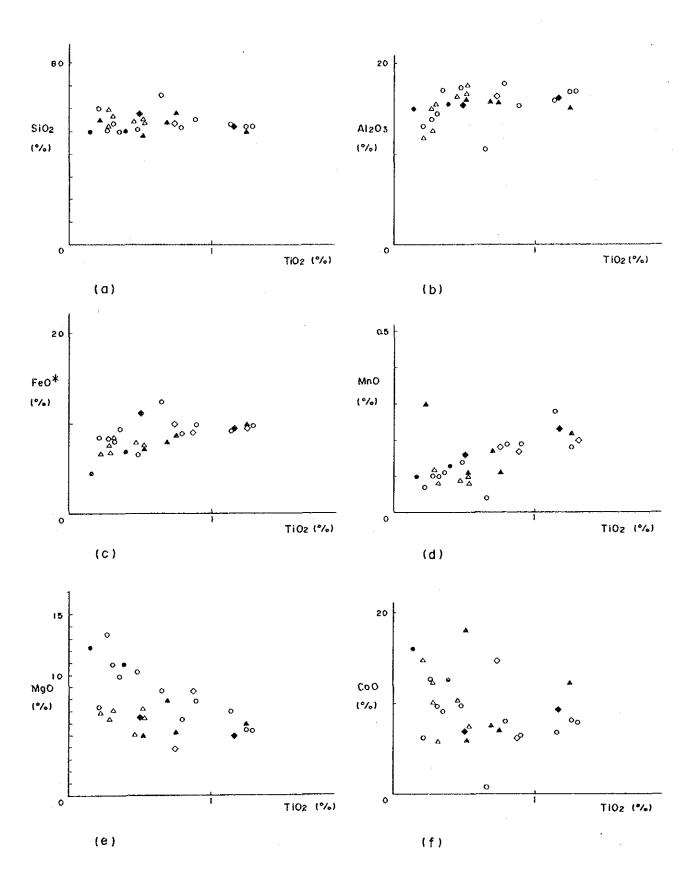
Results of chemical analyses for petrochemical studies and C. I. P. W. norm calculation

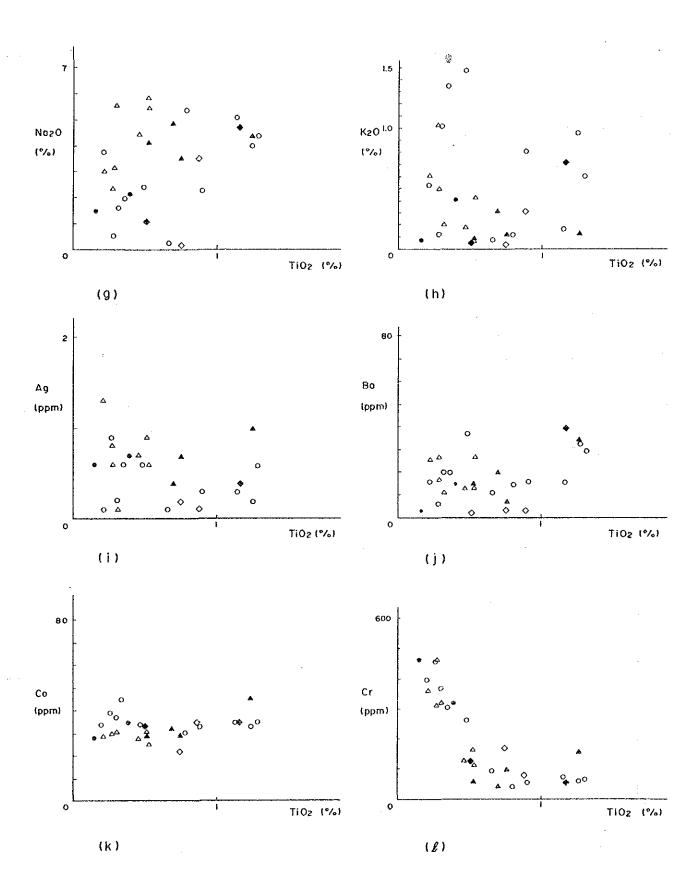
Results of whole rock chemical analyses

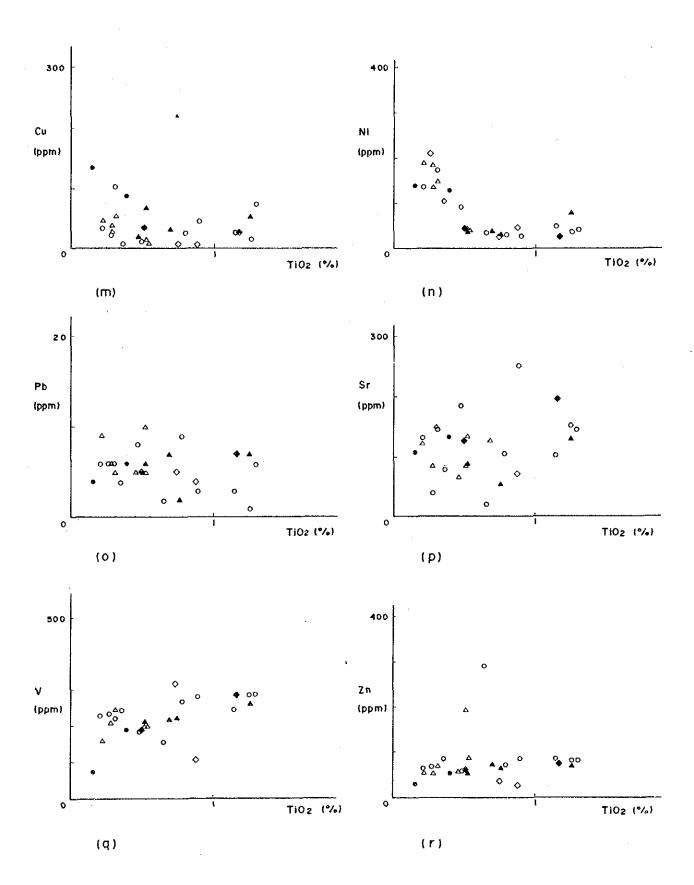
														<u> </u>		7-1	Γ	<u> </u>	Γ	Ī	T		<u> </u>	T -		Γ		Γ		Γ	
ŕ	remarks	calcareous														altered, silicified															
	Total	100.21	100.23	100.35	100.21	96.66	100.18	100.39	99.97	99.85	66.66	96.66	99.89	100.49	100.03	100.04	99.83	99.77	100.38	100.05	86.66	09.66	99.29	99,79	16.66	99.84	100.25	100.16	99.96	100.35	99.95
	200	5.09	1.09	0.43	0.10	0.00	0.16	0.23	90.0	6.33	0.15	1.35	0.20	1.58	0.17	0.24	0.36	09.0	0.23	0.62	2.09	0.30	0.36	0.30	0.43	0.39	0.68	0.50	0.95	0.16	0.10
	LOI*	2106	1089	4034	3017	3.07	4.74	3.77	4.72	9.12	4.87	5.42	4.34	4.48	5.83	6.14	4.69	7.16	4.26	7.22	6.01	8.29	4.40	4.39	4.47	6.87	5.09	3.62	3.90	4.33	7.91
	P205	0.05	0.11	0.02	0.05	0.01	90.0	0.00	0.05	0.02	0.06	0.05	0.12	0.10	90.0	0.01	0.05	0.03	90.0	0.01	0.04	0.03	0.10	0.04	0.11	0.01	0.10	0.01	0.04	0.16	0.01
	BaO*3	17	40	16	4	13	3	63	2	53	∞	22	34	3	18	12	14	42	8	မ	8	22	18	15	37	23	16	18	61	88	66
(%)	K20	0.08	0.12	68.0	0.03	0.19	0.29	70.0	0.05	0.55	0.11	0.29	0.58	69.0	0.76	0.07	0.07	1.36	0.41	0.11	96.0	1.22	0.16	0.17	0.92	0.94	0.11	0.51	0.48	0.13	0.08
MAJOR COMPONENTS (%)	Na20	3.75	4.15	2.04	0.16	5.39	3.34	1.42	1.01	2.75	3.32	4.56	4.18	4.52	2.13	0.24	5.61	2.22	5.26	0.49	2.22	1.78	4.84	4.25	3.81	1.50	5.10	3.61	3.02	5.81	0.40
R COMP	CaO	16.36	11.70	12.12	14.14	5.56	5.86	15.45	6,49	13,29	6.65	7.09	7.57	8.97	6.04	79.0	5.58	9,03	7.13	11.71	11.43	8.28	6.51	9.83	4.84	8.93	7,64	6.00	99'6	3,29	7.81
MAJC	мво	4.59	5.65	10.44	3.71	6.80	8.20	11.85	6.04	6.16	4.90	7.40	5.15	4.75	7.35	8.06	6.78	9.50	6.10	12.35	8.04	F6.8	6.66	4.79	5.21	10.09	5.95	7.02	6.05	6.47	15.45
	MnO	01.0	0.21	0.12	0.17	80.0	91.0	0.10	0,15	0.27	01.0	0.16	0.19	0.22	0.18	0.04	0.09	0.13	0.03	0.09	0.11	0.10	0.26	60.0	0.17	60.0	0.13	70.0	0.10	0.17	0.19
	Fe2O3*2	7.28	10.19	7.35	10.54	9.12	9,49	4.85	11.64	6.64	9.11	8.32	10.29	16.6	10.22	12.82	7.98	6.75	7.73	8.49	7.84	9.47	9.64	8.33	10.06	8.20	9.27	96'8	7.22	10.58	8.36
	Al ₂ O ₃ F	14.83	14.34	14.92	15.77	14.91	14.73	14.45	14.57	10.68	14.83	14.80	16.13	15.42	14.42	9.92	15.77	16.02	16.91	12.77	14.05	15.49	15.22	15.54	16.08	13.42	16.83	12.67	12.13	15.92	11.89
	TiO ₂	0.48	1.19	0.38	0.72	0.31	0.83	0.15	0.48	0.21	0.72	99.0	1.23	1.11	0.84	0.61	0.50	0.45	0.52	0.26	0.27	0.33	1.09	0.45	1.19	0.30	92.0	0.21	0.28	10.64	0.25
	SiO ₂	43.82	43.68	48.23	51.75	54.52	52.48	48.28	54.77	50.16	55.32	51.21	50.11	50.32	52,18	61.46	52.71	47.12	51.92	46.55	49.01	45.64	50.77	51.91	50.05	49.49	49.22	57.48	57.07	51.85	47.60
, , , , , , , , , , , , , , , , , , ,	rwck tyaine	basalt	dolerite	hb-cpx gabbro	dolerite	andesite	andesite	cbx gabbro	andesite	basalt	andesite	basalt	basalt	dolerite	andesite	andesite	andesite	basalt	basalt	basalt	basait	basalt	basalt	basalt	basait	basalt	basalt	andesite	andesite	basalt	basalt
Geol. "1	Unit	Me	Me	Яg	Sđ	171	33	స్టి	ឯ	רע	Me	Me	ដ	ji.	11	ij	11.	ij	ij	п	III.	ra '	ï	LII.	וו	3	11	III	HT.	ı	Ħ
ıntes	E (km)	453.108	452,857	454.245	454,222	453.344	457.542	457.200	457.236	457.172	458.642	458.925	458.596	457.534	457.502	453.198	453.458	453.458	453.434	453.434	457.404	457,404	457,404	457.526	457.526	457.358	457,405	453.194	457.385	4553.296	453.296
Coodinates	N (km)	2,618.723	2,619,150	2,618.724	2,618.638	2,619.830	2,617.975	2,618.985	2,618.950	2,618,365	2,618.938	2,618,440	2,618.314	2,618,249	2,617,977	2,619,127	2,618,676	2,618.676	2,618.742	2,618.742	2,618.700	3,618.700	2,618.700	2,618.784	2,618.784	2,618.723	2,618.631	2,618.782	2,618.772	2,618,698	2,618.792
Sample	No.	M003	M005	M011	M012	M015	M016	M017	M018	M020	M022	M023	M024	M031	M032	M034	MJO-A4	MJO-A4 143.70	MJO-A1 63.70	MJO-A1 172.00	MJO-B5 23.50	MJO-B5 79.20	MJO-B5 136.10	MJO-B3 55.20	MJO-B3 147.70	MJO-84 101.20	MJO-B6 85.90	N011	MJO-82 52.20	MJO-A2 136.00	MJO-A5 17.50
Ser.	νς Vo	#4	63	က	4	w	9	۲-	8	6	10.	11	12	13	14	35	16	17	18	19	ន	21	23	23	24	22	36	27	58	63	8

Results of C. I. P W. norm calclation

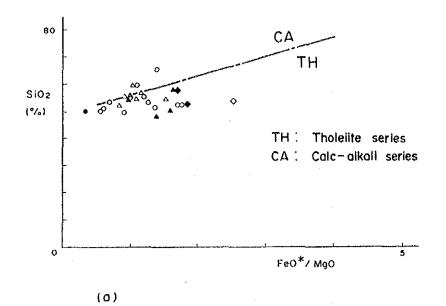
	F.M.L	1,43	4.62	0.63	2.56	1.21	1.04	0.37	1.73	0.97	1.67	101	1,80	1,88	1.25	£.	1.06	0.64	1.14	0.62	0.88	0.95	1.30	1.57	1.74	0.73	3.	1.15	101	1.47	0.49
- (SLTE	30,55	29.59	63.59	17.77	33.03	40.26	\$639	34.36	39.9.	29.65	37.50	26.86	25.17	37.38	40.50	34.52	49.60	32.58	59.98	8,4	43.78	32,75	28.66	27.72	50.63	30.52	36.56	37.70	29.49	65.88
	Peo	6.55	9.18	19.9	9.49	8.21	8.54	4.36	10.48	5.38	8,20	7.48	9.29	16.8	9.20	11.53	7.18	20.9	5.95	7.64	7.05	8.52	8.68	7.50	9.05	7.38	8.33	3.06	6.50	9.53	7.52
	i	00.0	0.00	0.00	000	0.00	0.00	0.00	0.00	00.0	0.00	0.00	0.00	0.00	0.00	000	0.00	000	0.00	0.00	90.0	00.0	0.0	8	0.00	0.00	8.0	00.0	000	0.00	8.0
	8	11.58	2,48	95.0	11.58	0.00	2,48	0.52	11.58	0.98	2.48	11.58	2.48	0.98	11.58	00.0	0.82	1.36	0.52	1.41	4.75	99.0	0.82	0.68	860	68.0	1.55	0.82	2.16	98.0	0.23
	g g	0.12	0.25	0.05	0.12	0.02	0.25	00'0	0.12	0.05	0.25	0.12	0.25	0.05	0.12	0.02	0.12	0.07	70.4	0.02	60'0	0.07	9.23	80	0.25	0.02	0.23	0.12	0.09	0.37	0.02
	2	0.00	0.00	0.00	0.00	0.00	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	0.00	9.0	0.00	0.00	0000	0.00	0.00	00.0	90.0	90.0	0.00	0.00	0.00	0.00	0.00	0.00
	Ъď	0.00	0.00	00'0	0.00	0.00	0.00	0.00	0.00	00.0	0.00	0.00	00'0	0.00	00.0	0.00	0.00	0.00	0.00	00.0	00.0	0.00	00.0	000	0.00	0.00	9,0	00'0	0.00	0.00	0.00
	ti.	0.00	00.0	00.0	00.0	0.00	00.0	00.0	0.00	0.00	0.00	0.00	00.0	0.00	00.0	00.0	00.0	0.00	0.00	0.00	000	8	0.00	0.00	0.30	0.00	8.0	00'0	0.00	0.00	0.00
	:=	0.91	2.28	0.72	0.91	65.0	2.26	0.28	16.0	0.72	2.26	0.91	2.26	0.72	16.0	0.59	0.95	0.85	66.0	0.49	0.51	0.63	2.07	0.85	226	0.57	1.46	0.95	0.53	3.11	0.47
	щч	00'0	00'0	00'0	00.0	00:0	00'0	00'0	00'0	00'0	00'0	00'0	000	00'0	00'0	0.00	0.00	00.0	0.00	0000	0.00	00.0	0.00	00.0	00'0	00.0	000	00.0	000	00.0	0.00
	mt	2,12	2.96	2.13	2.12	2.64	2.96	1.41	2.12	2.13	36.2	2.12	2.96	2.13	21.2	2.64	2.32	1.36	2,25	37.2	2.28	2.74	2.80	2.42	2.91	2.38	2.68	2.32	2.09	3.07	2.42
	olfa	3.17	4:03	2.11	3,17	1.84	4.03	1.59	3.17	2,11	4.03	3.17	4.03	2.11	3.17	1.84	3.18	2.35	4.84	00'0	000	2.33	3.02	0.0	0.93	0.00	6.36	3.18	0.00	2.89	0.00
	ojio	4.21	5.04	6.16	4.21	2.77	5.04	7.66	4.21	6.16	5.04	4.21	5.04	6.16	4.21	2.77	5.70	6.90	8.12	0.00	00.0	4,45	4.63	000	60.1	0.00	8.73	5.70	0.00	4.30	0.00
	hyen	0.00	0.00	2.94	0.00	60.9	0.00	0.99	0.00	2.94	0.00	00.0	0.00	2,94	0.00	60.9	3,43	3.30	0.28	7.75	7.00	6.57	4.47	5.10	6.83	08.7	0.00	3.49	5.05	6.10	9.18
	difs	3.71	4.99	2.42	3,71	1.73	4.99	2.50	3.71	2.42	4.39	3.71	4.99	2.42	3.71	1.73	0.95	0.97	1.67	1.94	1.95	1.02	1.45	4.10	1.95	1.48	1.56	0.95	3.15	0.00	0.57
	dien	5,43	6.38	7.76	5.43	2.84	6.88	13.32	5.43	7.76	6.88	5.43	6.88	7.76	5.43	2.87	1.38	3.13	3.03	22.9	4.42	2.15	2.44	5.40	2.53	4.07	2.36	1.88	5.88	0.00	2.30
	diwo	9.54	12.36	11.11	9.54	4.84	12.36	17.62	9.54	11.11	12.36	9.54	12.36	11.11	9.54	4.84	3.10	4.47	5.04	8.93	6.84	3.39	4.10	9.85	4.65	6.02	4.10	6.01	9.52	0.00	3.16
	w ₀	0.00	0.00	00.0	0.00	0.00	0.00	00.0	0.00	. 0000	0.00	000	00.0	00:0	00.0	00'0	00'0	0.00	0.00	0.00	00'0	0.00	000	0.00	0.00	00.0	0.00	0.00	000	0.00	0.00
	Z.	0.00	0.00	0.00	0.00	0.00	00'0	0.00	0.00	0.00	0.00	0.00	00'0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	0.00	0.00	000	0.00	0.00	00.0	0.00	0.00
	85	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00'0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0000	0.00	0.00
) 1	00.0	00.0	0.00	0.00	0.00	00.0	00.00	0.00	0.00	0.00	000	0.00	0.00	0.00	00'0	00'0	000	0.00	0.00	0.00	0.00	0.00	00'0	000	0.00	00'0	0.00	00'0	0.00	00.0
	2	0.77	2.06	0.0	0.77	0.00	2.06	0.00	0.77	0.00	0.00	9.00	0.00	00:00	0.00	0.00	0.00	00'0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00'0	0.00	0.00	0.00	0.00	0.00
L	ş	22.58	20.15	30.40	22.58	15.93	20.15	32.85	22.58	30.40	20.15	22.58	20.15	30.40	22.58	15.93	17.64	29.73	21.32	32.32	25.54	30.67	19.33	22.82	24.06	27.11	22.70	17.64	18.12	14.16	30.41
	ם	30.30	31.31	17.26	30.30	45.61	31.31	12.02	30.30	17.26	31.31	30.30	31.31	17.26	30.30	45.31	47.47	18.79	44.51	4,15	18.79	15.06	40.95	35.96	32.24	12.69	42.03	47.47	25.55	49.16	3.38
	5	0.47	0.71	2.30	0.47	1.12	0.71	0.41	0.47	2.30	0.71	0.47	0.71	2.30	0.47	1.12	0.41	8.04	2.42	0.65	5.67	7.21	0.95	1.00	5.44	5.55	0.65	0.41	2.84	0.77	0.47
	ű	0.00	0.00	00.0	000	0.00	0.00	0.00	0.00	0.00	0.00	00'0	00.0	0.00	0.00	00.0	000	00'0	0.00	00.00	00'0	000	00'0	0.00	0.00	00'0	00'0	00:00	0000	1.03	0.00
ş.	<u>-</u>	0.00	0.00	0.00	00:0	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	000	0.00	0.00	1.94	1.86	0.00	0.00	0.32	0.00	3.14	0.00	0.00	12.19	8	2.79
7	5	Me	Me	Hg	33	Ë	8	రో	ù	11	Же	Μe	3	-1	3	3	111	3	П	11	1	Ħ.,	1	- Irri	1	11	II	III	IT1	3	Ë
Samula	No	MOO3	M005	M011	M012	M015	M016	M017	MOIS	M020	Ж022	M023	M024	M031	M032	M034	MJO.A4	MJO-A4 143 70	MJO-A1 63.70	MJO.A1	MJO.B5 23.50	MJO B5 79.20	MJO-B5 136.10	MJO-B3	MJO-83	MJO-34 101 20	MJO-B6 85.90	N011	MJO-B2 52.20	MJO-A2 136.00	MJO.A5 17.50
Š	ģ	_	64	63	•,	2	g	7	8	6	S.	=	12	13	4	12	16	17	18	13	20	21	22	23	24	25	56	27	28	gi	S

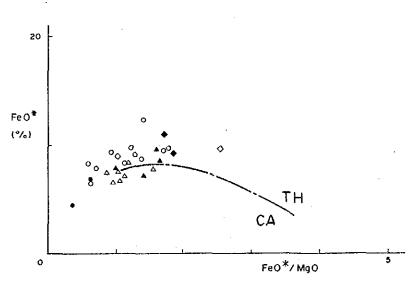

*! S.L.: Abbrevigious are shown in Fig. II-3-1. *2 S.L.: Solidification index = MgOX100/(MgO + Total FeO + Na₂O + K₂O) *3 F.M.L.: Total PeO - MgO index = Total FeO/MgO (Fe₂O₅: FeO was estimated to be I:4.)

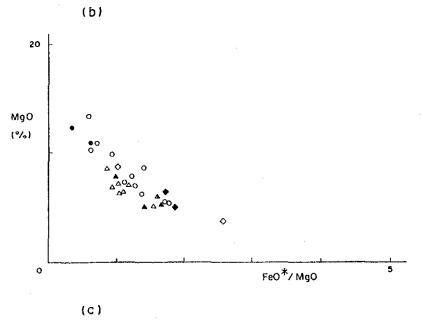

Results of chemical analyses for minor elements

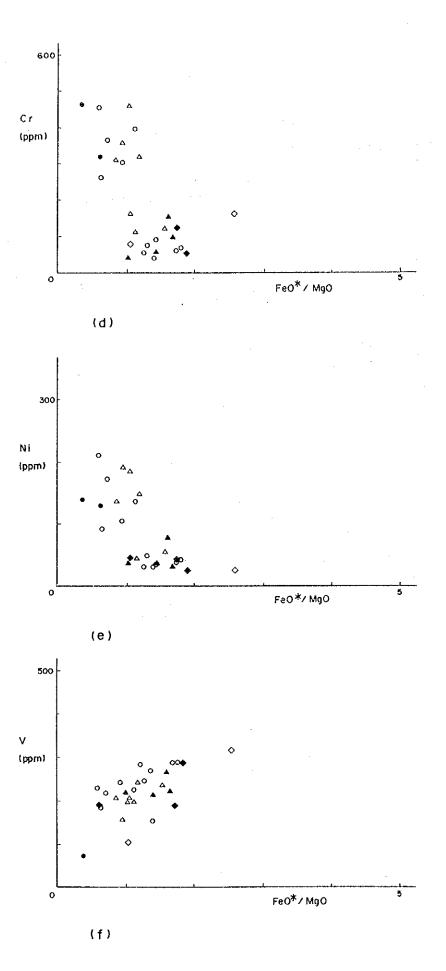

	Zu	2	1.1	55	85	22	83	8	8	55	93	55	83	76	37	292	195	88	8	19	٤	85	25	ន	æ	٤	Ę;	55	3	540	472	601	60	142
	>	214	267	190	317	243	105	74	130	158	224	230	291	288	285	156	196	186	197	231	207	244	249	237	291	520	272	228	207	321	200	195	33	15
	¥	<10	210	012	33	010	95	12	010	35	A10	01.V	oi v	e e	01.0	x	010	82	8	Z	89	01.0	01.0	6	ន	53	양	32	e e	01.0	16	36	28	35
	F	2700	7020	2230	4320	1850	4990	911	2850	1270	4330	3970	7340	0999	5040	3670	2980	2690	3120	1540	1610	1950	6550	2710	7150	1800	4560	1260	1690	9830	1500	3260	181	229
	ശ്	89	132	134	383	151	57	108	121	124	55	128	143	197	253	22	87	186	135	40	36	8	104	69	154	147	107	133	28	121	68	16	40	2
,	a a	27800	30800	15100	1200	40000	24800	10500	7500	20400	24600	33800	31000	33500	15800	1800	41600	16500	39000	3600	16500	13200	35900	31500	28300	11100	3800	26800	22400	43100	3000	7400	1700	200
2		2.2	1.0	0.7	0.2	0.1	1.0	0.6	< 0.1	1.3	0.7	0.4	0.6	0.4	0.3	0.1	6.0	0.6	9.0	6.0	0.8	0.6	6.0	0.3	0.2	0.2	9.0	0.1	0.6	0.2	5.0	<0.1	9.0	20.2
	×	640	1000	3200	270	1550	2400	550	450	4600	910	2400	4800	2800	6300	550	250	71300	3400	016	8000	10100	1360	1450	7500	7800	910	4200	4000	1100	700	016	450	180
	<u>α</u>	235	450	1.6	238	28	261	12	225	7.1	278	202	507	418	257	57	224	128 1	250	133	166	111	416	179	485	32	413	33	154	698	<3	68	3	93
,		37	78	130	25	149	\$	47	42	192	31	39	42	26	31	35	46	8	4	211	137	106	64	25	38	174	31	137	186	25	419	7.0	36	8
200	 %	<2	<2	<2	 V2 V	22	22	22	∨2	<2 <2	2 V	<2	22	<2 <2	2. V	22	~ 5	<2 2 2 3	2	72	2>	25	\\ \?	បូ	25	- Z>	<2	<2 <	22	77	7 2>	23	ιó	2
2	m,	774	1680	906	1300	612	1250	743	1140	2070	805	1240	1470	1730	1430	297	999	976	209	724	843	805	2000	720	1280	685	1400	546	787	1350	1460	349	38	1914
4	Wg	27700	34100 1	63000	22400 1	41000	1.00567	71500	36400 1	73100 2	29600	44600 1	31100 1	28600 I	44400 1	48600	40900	57300	36800	74500	48500	54100	40200 24	28900	31400 1	00609	35900	42300	36500	39000 1	93200 1	54600	2370	2710 1
	 &	6 27	7 34	63	5 22	5 41	45	17	s 36	9	<3 29	4	6 31	7 28	24	52	5 40	8 57	9£ 01	6 74	<3 48	4 54	3 40	5 28	<3 31	9	9 35	6 42	96 36	15 39	9	4 54	23	511
	 	50900	71300	51400	73800	63300	66300	33900	81400	48400	63700	58200	72000	00269	71500	89700	55800	47200	54100	39400	54800	66200	67400	58300	70400	57300	64800	62700	50500	74000	58500	123700		408200 5
3	ي ئ	67 50	54 71	87 51	7 73	53 63	5 86	134 33	34 81	45 46	220 63	31 58	75 72	27 69	46 71	\vdash	13 55	12 47	8 54	22 39	37 54	8 66	26 67	18 58	15 70	101 57	25 64	34 62	26 50	40 74		653 123	I I	ı,
7		39	45	35	22	31	35	23 1:	33 (29	29 2:	32	35	35	35	33 1830	124	ม	34	22	39	30	45	35	28	33 10	37	30	34	45	100 2310	128 6:	40	14 7070
;		58				-	81				86	43	٠ <u>٠</u>	2 95	S6 3	93	_			_			76 4		61 2		41			65 4	-			94
		_	00 156	322	00 166	00 322		00 463	127	00 359						4790 9	00 165	00 263	00 113	00 457	00 312	00 305	_	00 127		00 367		966 00	00 464		00 655	3650 209	-	£3.
		117000	33600	1 86600	1 101000	1 39700	1 41900	110000	1 46400	00096 1	1 47500	1 50700	1 54100	1 64100	1 43200		1 39800	1 64500	1 51000	1 82700	1 81700	1 63100	1 46600	1 70300		_	1 54600	1 42800	1 69000	1 23500	1 55800	-	4	-
	3	v ~	Ÿ	ī>		3 <1	3 <1	Ÿ	1 <1	۲ ۲	7	۲۷ ۲۱	۲ ۳	۲ ۲	7	2.	7	⊽ 	۲ ۲	7	Ÿ	₹	۲ ۲	7	7	7	Ÿ	7	7	2	7	٧ د	ý	
	m m	ş	٧		× 33	ς,	<3	ю 	<3	3	წ	د دع	₹3	× × ×	۲ ۲	Α3	2 ×3	ξ,	2 <3	1 43	-1 A3	v V	٧ ٧	۳ ۲	Ÿ	₹	3	1 <3	2 ∨3	6 63	٠ ۲	73	1 <3	٧ ۲
	Ř	1	ຕ	1	CI	1	1	۲	2	1	2	1	3	ຕ		1	_	-1				**	2	ຕ	63	_								₹
	BB.	0 15	35	0 15	3	71 0	0 3	3	1 0	0 26	. 0	0 20	0 30	0 40	0 16	0 11	0 13	0 37	0 27	9 0	0 27	0 30	0 16	0 13	33	0 20	0 15	0 16	71 0	0 34	0 88	0 2	8	7
	₹	75900	45900	79000	83400	78900	78000	76500	77100	56500	78500	78200	85400	81690	76300	52500	83500	84300	89500	67600	74400	82000	80600	82200	85160	71000	89100	67.100	64200	84300	62900	62300	4380	4340
	Geol. "	Me	Me	Hg	8	III	PS	ඊ	1	13	We.	Me	13	:a 		13	TI TI	17	1 E	7 17	5 LII	2 11	2 11	3 1.11	 	77 I	;;j :Q	Η	2 LII	20	5 LII	1 11	2 ORE	3 ORE
	Sample No.	M003	M005	Ж011	M012	MO15	910M	Ж017	M018	M020	M022	M023	M024	M031	X032	M034	MJO-84	MJO-A 143.70	MJO-A 63.70	MJO-A 172.00	MJO-B5 23.50	MJO.B 79.20	MJO-B 136.10	MJO.B 55.20	MJO-B	MJO.B 101.20	MJO-B 85.90	N011	MJO.B2 52.20	MJO-A2 136.00	MJO-A 17,50	M-OLM 106.90	N010"	MJO-81*3
Ì	S &	-	61	e5	4	vo	φ	Ŀ	œ	6	22	=	12	ដ	14	15	91	17	18	13	ន	21	32	23	24	55	36	23	28	29	30	33	32	8

*1 Abbreviations are shown in Fig. 15-3-1. *2 Coodinates: N 2,618.845, E 453.168 *3 Coodinates: N 2,618.796, E 457.278


TiO2 diagrams







FeO*/MgO diagrams

Charged potential in area A

X Y Potential(mV/A) (m) (m) HS-14 HS-7	X Y Potential(mV/A) (m) (m) HS-14 HS-7	X Y Potential(mV/A) (m) (m) HS-14 HS-7
550 300 60.3 11.8	350 250 59, 9 13, 2	650 800 8.9 4.3
500 300 64.8 12.7	300 200 56.2 14.6	700 800 9.1 4.3
550 250 54.3 13.1	250 200 50.3 14.7	550 800 10.0 5.5
500 250 59.4 13.0	350 150 58.2 15.5	500 800 10.5 5.8
550 200 48,1 13,2	400 150 58.3 13.9	450 800 10.3 4.9
500 200 54.8 14.0	250 450 18.5 11.7	250 700 13.5 7.2
550 150 40.7 13.1	250 500 14.1 8.6	250 650 14.3 7.6
500 150 47.7 13.7	300 500 19.2 7.9	350 750 10.0 5.5
550 100 32.6 15.0	250 550 9.9 6.7	350 700 8.3 4.9
500 100 35,8 14,4	300 450 20.5 10.4	350 650 16.5 8.4
550 50 25.5 15.7	400 450 43.4 10.4	300 650 15.7 8.0
500 50 26.8 15.7	350 450 34.5 10.2	300 700 14.2 7.8
550 0 20.8 17.2	400 500 25.4 7.9	300 750 10.8 6.1
500 0 23.2 21.2	350 500 23.3 8.6	250 750 11.4 6.1
550 -50 16.6 21.7	400 550 14.5 7.2	300 900 7.6 5.0
500 -50 17.6 18.8	350 550 14.4 7.3	400 850 8.6 4.3
550 -100 12.7 22.3	400 600 10.6 6.5	400 900 7.6 4.6
500 -100 13.8 24.3	350 600 9.3 6.8	500 850 7.1 4.1
550 -150 8.9 26.6	300 600 9.2 7.4	450 850 9.0 4.2
500 -150 9.7 26.5	300 550 13.3 7.8	500 900 7.3 4.2
550 -200 7.1 34.4	250 600 9.4 6.9	450 900 6.0 3.3
500 -200 7.1 34.1	200 600 7.2 8.6	600 900 7.0 4.0
650 ~200 5.9 20.2	150 600 7.0 7.2	700 900 5.0 2.6
650 -150 8.5 18.8	100 600 5.8 7.4	800 900 5.1 2.5
700 -150 7.1 16.3	100 500 11.0 8.8	600 1000 5.1 3.0
600 300 49.4 11.8	150 500 12.0 8.0	700 1000 4.0 2.2
650 300 43.3 10.5	200 500 13.4 8.6	800 1000 3.4 2.4
700 300 33.5 9.9	600 450 37.6 8.7	500 1000 5. 7 3. 7
750 300 24.1 8.6	650 450 36.0 8.3	400 1000 6.0 4.1
550 350 59.9 11.4	700 450 29.9 7.6	300 1000 5.1 3.6
500 350 64.9 13.7	550 450 49.2 9.9	600 1100 3.4 2.4
600 400 47.5 10.0	500 450 42.4 9.4	700 1100 3.4 2.5
650 400 43.1 11.6	450 450 44.0 9.9	800 1100 3.1 2.3
700 400 31.7 10.4	600 500 27.3 6.2	500 1100 3.8 2.9
550 400 53.4 10.2	650 500 28.4 7.4	400 1100 2.6 2.4
500 400 57.5 10.6	700 500 21.2 6.4	300 1100 2.6 2.1
600 350 51.5 12.0	750 500 17.6 5.7	600 1200 2.3 2.4
650 350 41.5 10.3	550 500 33.0 7.6	500 1200 2.8 2.1
700 350 34.4 9.8	500 500 34.4 8.6	400 1200 3.1 2.4
750 350 20.7 7.7	450 500 30.2 8.6	700 1200 1.9 1.8
750 400 20.0 7.1	600 550 26.5 7.5	800 1200 1.1 1.1
400 400 67.3 12.4	650 550 21.6 6.6	600 1300 1.5 1.3 700 1300 1.3 1.2
450 400 62.7 11.3	700 550 17.4 5.9 750 550 15.4 5.7	700 1300 1.3 1.2 800 1300 1.3 1.1
400 350 72.9 13.6		500 1300 1.6 1.7
450 350 73.0 12.2		600 1400 1.1 .9
450 300 72.4 12.5	500 550 23.9 7.9 450 550 22.5 8.2	700 1400 9 .8
400 250 69.9 13.5		800 1400 . 8 . 7
450 250 69.3 13.4		700 1500 .6 .5
350 200 57.6 13.8	650 600 17.9 5.8 700 600 15.7 5.3	800 800 8.3 3.8
400 200 60.1 13.3		
450 200 62.0 12.5	750 600 14.4 5.1 550 600 18.4 6.8	900 800 6.0 3.1 1000 800 4.2 2.5
450 150 50.4 14.6	500 600 19.3 7.5	1100 800 4.2 2.5
400 100 37.8 19.3 350 100 34.5 21.1	450 600 18.9 7.6	900 900 4.7 2.6
	600 650 14.2 5.6	1000 900 2.9 2.0
450 100 37.3 16.4 400 50 26.1 22.6	650 650 13.5 4.7	1100 900 2.6 1.6
350 50 21.9 29.0	700 650 13.5 5.0	900 1000 3.8 2.1
450 50 26.5 19.2	750 650 11.6 4.6	1000 1000 2.7 1.7
400 0 19.6 25.6	550 650 15.8 7.0	1100 1000 2.1 1.4
450 0 19.5 23.1	500 650 15.3 6.8	900 1100 2.3 1.7
400 -50 14.5 27.1	450 650 16.2 7.9	1000 1100 1.9 1.3
450 -50 13.4 26.9	600 700 9.7 4.4	1100 1100 1.5 .9
400 -100 10.8 32.3	650 700 11.0 4.8	900 1200 1.8 1.2
400 300 71.2 11.9	700 700 10.2 4.6	1000 1200 1.5 1.0
300 400 34.1 13.2	750 700 8.8 3.8	900 1300 1.2 1.2
350 400 50.2 11.8	550 700 9.5 4.3	1200 1000 2.7 1.6
250 400 19.0 12.0	500 700 12.0 6.2	1200 900 2.9 1.5
300 350 45.1 11.4	450 700 14.0 6.3	1300 900 2.2 1.2
250 350 32.0 12.1	600 750 10.5 5.5	1200 800 2.5 1.2
350 350 57.1 11.9	650 750 9.7 4.5	1300 800 2.4 1.2
300 300 52.6 12.9	700 750 9.3 4.5	1400 800 2.2 1.1
250 300 39.3 12.6	550 750 6.8 3.0	1200 700 4.8 2.8
350 300 63.2 12.8	500 750 12.0 6.1	1300 700 3.0 2.2
300 250 54.3 14.2	450 750 13.3 5.9	1400 700 2.5 1.4
250 250 43.9 13.7	600 800 10.3 4.9	1500 700 1.3 1.2

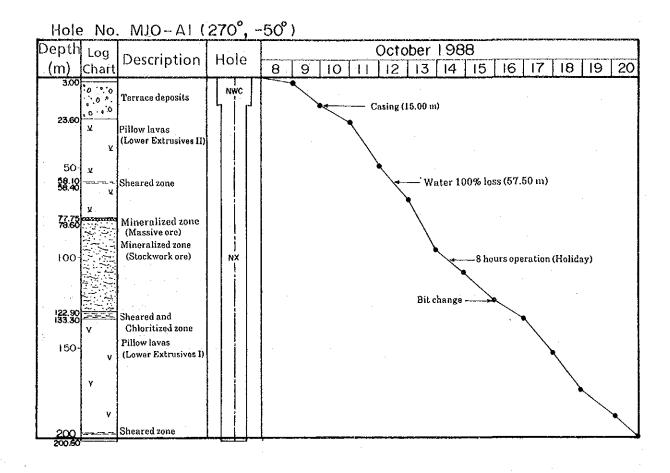
	5			V V Dodoudial (v	V D	atantial	(mV/A)
X (m)	Y Po	otential HS-14	L (MV/A) HS-7	X Y Potential((m) (m) HS-14	mv/a) HS-7	(m)	(m)	otential HS-14	HS-7
1100	700	5.8	3. 9	650 50 14.2	15. 2	0	200	20. 4	21.8
1000	700	9. 5	5. 9	700 -50 10.2	15.3	50.	200 200	25. 5 31. 7	21.9 21.9
1200 1300	600 600	6. 2 5. 2	3, 6 2, 9	600 0 18.9 650 0 13.5	15. 0 16. 0	100 150	200	42.5	21. 6
1400	600	3, 6	2. 1	700 0 12.7	12. 3	200	200	40. 2	20. 5
1500	600	2. 4	1.5	750 0 9.5	10.9	-50	250	15.8	15. 2
1100	600	6, 9	3, 5	600 50 22, 1	14. 6	0	250	20.0	16.9
1000	600	8.9	4. 4	650 50 20.0 700 50 16.2	15. 4 13. 9	50 100	250 250	25. 2 32. 8	15, 9 16, 4
1200 1300	500 500	6. 7 5. 1	4. 4 3. 3	750 50 11.3	11.8	150	250	41.3	18. 3
1400	500	3. 7	2. 2	600 100 28.2	12.8	200	250	44. 3	17.8
1500	500	2. 5	1, 9	650 100 24.6	12. 4	-50	300	12. 9	12. 2
1100	500	9. 5	4. 7	700 100 21.1	11.2	0 50	300 300	18.6 23.9	14, 0 13, 2
1000 1200	500 400	12. 6 7. 7	5. 7 5. 1	750 100 14.2 600 150 34.7	11.8 11.4	100	300	28. 9	13.3
1300	400	6.0	3. 4	650 150 28.9	13.0	150	300	32.2	15.0
1400	400	3.8	2. 7	700 150 26.2	12.3	200	300	39. 1	14. 1
1100	400	9. 2	5. 0	750 150 16.1	11.0	-50	350	12.5	13.4
1200 1300	300 300	7. 8 5. 8	5. 5 4. 4	600 200 41.1 650 200 32.5	12. 4 11. 8	0 50	350 350	16.4 21.7	12. 7 13. 7
1200	200	8. 7	6. 3	700 200 28.8	10. 9	150	350	29. 4	13.9
1100	200	9.8	7. 1	750 200 15.3	7. 1	200	350	33.3	12. 5
900	700	7. 4	4. 1	600 250 45.4	12. 4	100	350	23. 7	17.6
800	700	8.0	3.7	650 250 36.3 700 250 30.5	12. 2 10. 2	0 50	400 400	13. 2 17. 7	9. 9 13. 4
900 800	600 600	10. 8 14. 0	6. 0 8. 1	750 250 25.2	9.4	100	400	21, 5	12. 9
800	550	17. 2	8. 2	350 -150 12.1	48. 3	150	400	23.9	13. 1
900	500	13.4	7. 8	350 -100 15.9	41.8	200	400	28. 2	13. 2
850	500	15. 5	7.0	350 -50 17.7	40. 1	-50	450 450	9. 5 11. 1	11.8 11.0
800 900	500 450	17. 3 11. 7	7. 5 5. 9	350 0 23.1 300 ~150 15.0	34. 3 54. 7	50	450	13. 0	13.8
800	450	19. 1	8, 2	300 -100 18.1	45. 4	100	450	16.6	11.2
750	450	18.8	7. 5	300 -50 19.4	41.2	150	450	17.3	11.3
900	400	14.6	6.8	250 -150 16.1	51. 1	200	450	18. 9	12.6
850 950	400 400	14.6 13.3	7. 3 6. 7	250 -100 18.6 250 -50 19.6	43. 6 42. 1	50 0	500 500	12. 4 8. 1	11. 5 10. 4
1000	400	12. 1	6.6	200 -150 14.7	56.9	-100	600	3. 3	6. 7
900	350	12.6	6. 4	150 -150 14.3	76. 0	0	600	5. 6	6. 2
950	350	11.8	8.0	150 -100 17.7	56. 1	100	550	11.3	8. 1
1000	350 450	10. 2 16. 0	6. 6 6. 9	100 -150 13.2 100 -100 17.1	82. 5 54. 0	150 200	550 550	11.8 14.9	7. 8 8. 7
850 800	400	19.0	9. 0	100 -50 18.7	49. 6	200	650	7.8	6. 7
850	350	16.6	7. 9	100 0 22.1	40.9	200	700	6.5	6. 1
800	350	19. 4	8.3	50 -150 10.8	72. 1	-100		1.1	5.6
900	300	13. 9	8.6	50 ~100 13.7	64. 3 51. 6	0 100-	700 700	3. 0 4. 5	5. 2 6. 2
950 1000	300 300	12. 5 10. 6	8. 0 7. 7	50 -50 15.4 150 -50 20.0	51, 6 46, 6	0-	800	1.0	4. 9
1050	300	9.9	6. 7	250 100 34.2	29.1	100	800	1.5	5. 2
1100	300	8. 9	6. 1	0 -150 10.2	79.3	100	900	1. 2	3. 4
850	300	17. 7	8. 9	0 -100 11.3	64. 3	200	800	3.5	7.4
800 900	300 250	19. 5 15. 7	8. 4 8. 7	0 -50 13.4 -50 -150 8.1	52. 4 72. 4	200 -200	900 600	2. 6 1. 6	3. 6 8. 6
950	250	13. 1	8.3		64. 0		1000	1. 5	3. 4
1000	250	11.8	7. 8	-50 -50 12.1	52.0	-200	500	2. 2	8. 1
850	250	17.6	9. 0	-50 0 11.8	36. 4	-300	500	1. 9	8.3
800	250	21.2	10. 4 8. 7	0 0 15.6 50 0 18.7	39. 7 39. 2	-200 -300	400 400	2. 7 1. 8	10. 1 8. 5
900 950	200 200	15. 2 13. 3	8. 5	-50 50 13.5	30. 8	-200	300	5. 4	13. 0
1000	200	12. 1	8. 3		30.7	-300		2.5	9. 1
850	200	17.6	8. 6		31. 1	-150	200		18.4
800	200	20.5	10.9	150 50 30.8	30.8	-150. -150	250 300	8. 9 8. 7	18. 4 12. 7
900 850	150 150	13. 8 15. 8	9. 1 9. 2	200 50 33.8 200 100 32.3	31.3 31.3	-150 -200	200		17. 7
800	150	17. 9	11.6	250 50 29. 4	33. 2	-200	250		12.8
850	100	14.7	10.8	250 0 22.8	40.0	-250	200	4. 5	14.8
800	100	13.5	11.8	50 50 23.3	30.7	-300	200	2.5	13. 1
800 600	50 -250	13.0 7.2	11.5 27.3	-50 100 15.1 0 100 19.4	29. 4 30. 3	-150 -200	150 150	9. 3 7. 1	22. 0 21. 4
	-200 -200	7.8	15.5	50 100 19. 4	30. 5	~250	150	5. 5	20.9
600	-200	9. 7	28. 1	100 100 29.7	29. 6	~300	150	3.2	18.0
600	-150	11.5	21.0	-50 150 15.2	24. 6	-150	100	9. 1	26. 7
	-100	12.7	21.6	0 150 20.2	24. 3 25. 1	-200 -250	100 100	7. 0 5. 3	23. 2 23. 1
	-100 -100	10. 7 10. 1	15. 3 14. 3	50 150 27.4 100 150 34.3	25. 1 27. 3	-300	100	3. 5	18. 5
600	-50	14.6	16.6	<u>-50 200 16.4</u>	18.3	-350	100	. 9	13.4

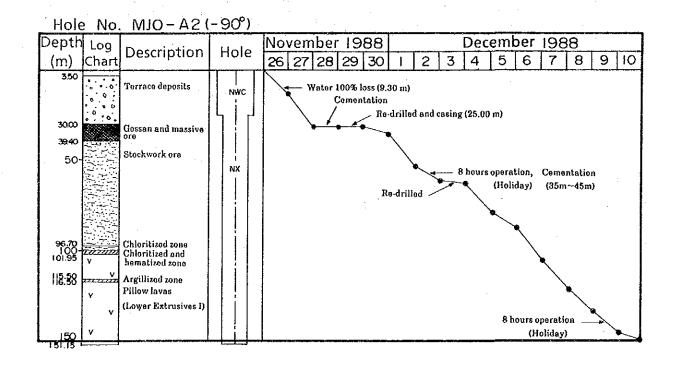
X Y Potential (mV/A)	X Y Potential (mV/A)	X Y Potential(mV/A)
(m) (m) HS-14 HS-7	(m) (m) HS-14 HS-7	(m) (m) HS-14 HS-7
-150 50 8,9 32.6	-100 -100 6.1 63.0	0 -600
-200 50 6.8 29.6 -250 50 4.8 27.1	-100 -150 5.5 67.3 0 -250 4.7 143.9	900 100 12.8 10.6
-300 50 3.6 30.8	~50 -250 3.6 125.6	1000 100 9.6 8.0
-350 50 1,9 27.6	0 -300 4.0 213.4	900 0 10.7 10.5
-150 0 7, 5 34, 2	-50 - 300 3.0 134.3	1000 0 9,0 10,6
-200 0 5.1 35.1	0 -350 2. 7 232. 3	800 0 12.0 13.3
-250 0 3.6 32.4	-50 -350 1. 7 151. 4	900 -100 10.0 14.1
-300 0 3,3 29,8 -350 0 1,7 30,8	0 -400 1.6 220.8 50 -250 5.6 136.5	800 -100 11.2 12.4 1000 -100 8.0 8.9
-350 0 1.7 30.8 -150 -50 7.0 44.0	50 -250 5.6 136.5 100 -250 5.6 200.1	900 -200 8.6 13.3
-200 -50 4.5 39.2	200 -250 8.7 114.9	800 -200 9. 5 15. 4
-250 -50 3.6 38.8	150 -250 6.5 152.7	800 -300 6.9 14.0
-300 -50 2.1 34.4	250 -250 8.6 83.0	700 -300 7.7 19.4
-350 -50 1.8 30.8	200 -300 5.8 106.3	400 650 15.7 7.6
-150 -100 5.3 53.1	150 -300 5.6 203.3	-50 400 10.1 13.9
-200 -100 4.2 45.2 -250 -100 3.1 43.0	200 -350 3.7 118.1 150 -350 3.8 213.2	450 -100 13.0 29.4 400 -150 9.9 38.8
-250 -100 3.1 43.0 -300 -100 1.6 40.3	150 -350 3.8 213.2 200 -400 2.8 157.8	450 -150 9.6 36.4
-150 -150 4.3 62.1	300 -250 7. 5 62. 4	400 100 3.0 30.4
-200 -150 3.1 56.8	350 -250 6.5 55.0	
-250 -150 2.4 51.9	300 -300 6.0 68.3	
-150'-200 3.3 79.9	250 ~300 6.4 109.0	
-200 -200 3.8 72.1	350 -300 5. 7 61. 6	
-300 -200 1, 5 53, 5	300 -350 4.8 79.6	
-400 -100 1.1 30.6	250 -350 4.5 88.8	
-400 0 1.5 25.2 -500 0 .9 17.4	350 -350 3.8 68.0 300 -400 3.2 76.8	
-400 50 1.4 16.3	250 -400 3.2 98.0	
-400 100 1.1 10.6	350 -400 3.0 65.0	
-500 100 .9 8.3	400 -250 6.1 44.4	
-600 100 .8 6.9	450 -250 7.8 38.1	
-400 200 1.1 6.4	400 -300 5.1 46.2	
-500 200 1.0 8.8 -600 200 .9 4.7	450 -300 5.7 41.9 500 -300 6.9 36.1	
-600 200 .9 4.7 -400 300 1.2 5.6	400 -350 4.4 50.3	
-500 300 1.0 4.9	500 -250 9.3 35.4	-
-400 400 1.3 4.8	600 -300 5. 3 24. 2	
-300 -300 .8 62.3	600 -400 3.6 29.4	
-200 -300 1.6 82.4	500 -400 1.7 29.8	
-200 -400 3.4 87.4	400 -400 4.7 58.0	
-100 -250 3.2 94.0 -150 -250 2.3 87.6	600 -500 .6 31.6 500 -500 .7 37.0	
-100 -300 2.4 106.0	500 -600 .6 33.8	
-100 -400 1.2 139.4	400 -500 .8 55.7	
-100 -500 .9 117.2	400 -600 .6 45.5	
400 800 10.7 6.2	400 -700 .5 33.5	
400 700 14.5 7.6	300 -500 2.7 75.5	
400 750 13.6 6.9 350 800 11.0 6.7	300 -450 3.5 75.5 300 -600 .8 60.7	
350 800 11.0 6.7 300 800 10.6 6.4	300 -700 .9 41.0	
450 -200 9.6 35.2	300 -800 .6 30.4	
400 -200 12.3 46.6	250 -500 2.8 87.2	
350 -200 9. 2 52. 2	250 -450 3.9 85.8	
300 -200 12.2 58.5	200 -500 3.2 109.5	
250 -200 13.0 69.1 200 -200 11.1 89.7	200 -450 4.1 107.0 200 -550 1.3 88.5	
150 -200 9.6 116.2	200 -600 1.2 63.8	
100 -200 9.3 120.4	200 -700 . 7 49. 4	
50 -200 9.1 112.5	200 -800 . 6 37. 9	
0 -200 7. 7 104. 5	150 -500 2. 5 106. 9	
-50 -200 6.0 98.0	150 -450 4.4 181.6	
-100 -200 4.4 87.7 -100 500 6.5 8.8	150 -400 4. 5 174. 5 100 -500 3. 3 185. 3	•
-100 500 6.5 8.8 -100 450 7.7 10.7	100 -600 2.6 90.8	
-100 400 8.5 10.0	100 -700 2.5 49.8	
-100 350 10.7 11.3	100 -450 3.9 237.3	
-100 300 12.1 11.4	100 -400 4.4 281.3	
-100 250 12.0 15.0	100 -350 4.7 295.8	
-100 200 11.9 17.7 -100 150 12.0 20.4	100 -300 4. 9 234. 4 50 -450 4. 1 245. 8	
-100 150 12.0 20.4 -100 100 11.5 26.6	50 -400 4.4 281.3	
-100 50 10.6 32.0	50 -350 4.5 281.8	
-100 0 10.6 37.7	50 -300 4.8 218.1	
<u>-100 -50 7, 5 53, 7</u>	0 -500 3.1 177.3	

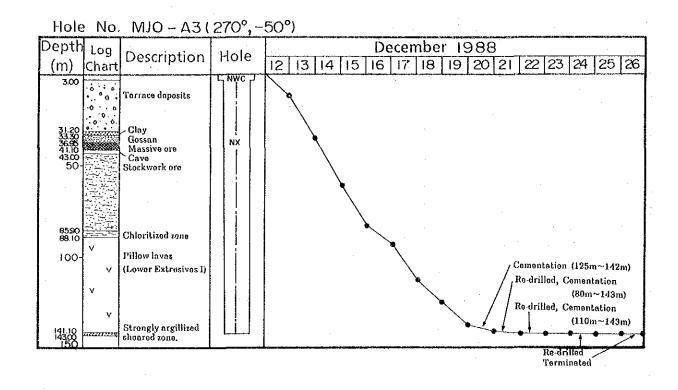
Electric field in area A

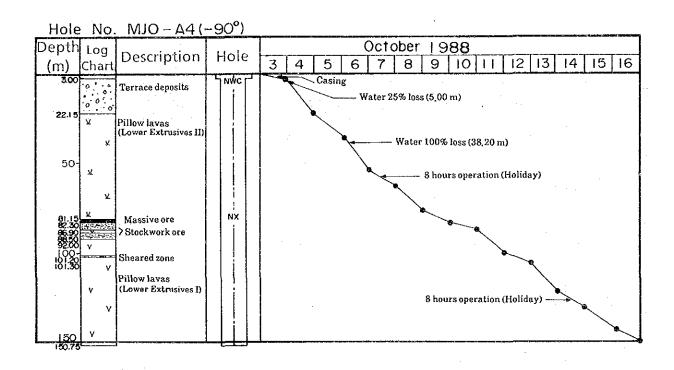
X Y (m) (m)	HS-14 [Ε] φ	HS-7	X Y (m) (m)	HS-14 Ε φ	HS-7 E ∳	X Y (m)	HS-14 Ε φ	HS-7
325 575	37 92	2 179	275 375	36 288	2 222	850 675	3 198 7 168	0 189 3 166
325 525 275 575	15 89 44 62	5 39 7 132	225 325 225 276	8 218 30 222	3 118 3 176	850 575	4 195	4 149
275 525 225 575	25 44 38 57	1 202 5 94	175 375 175 425	2 182 27 77	8 137 3 222	825 525 825 475	12 171 5 188	6 169 4 2 30
225 575 225 525	28 55	4 143	475 275	17 204	12 158	725 275	8 197	4 208
175 575 175 525	28 28 34 45	4 84 2 65	525 276 525 326	22 231 25 215	7 161 2 263	675 275 775 375	5 239 12 286	2 232 6 309
125 - 575	29 18	8 143	575 275	12 262	4 278	725 375	22 286 28 175	10 283 12 167
125 525 75 575	42 15 25 16	3 225 3 159	475 325 475 426	48 265 61 182	9 174 9 170	675 325	6 207	2 248
75 525 25 575	31 9 16 9	5 182 7 139	475 375 525 425	49 218 40 204	5 187 3 228	725 325 775 325	23 120 3 103	12 120 2 62
25 525	15 34	23 144	525 375	31 193	5 151	825 275	4 151	1 175
-25 575 -25 525	16 26 20 9	23 132 13 309	575 425 575 375	30 244 17 181	4 234 1 173	950 350 875 425	4 179 4 200	2 166 1 11
~75 575	14 359	3 131	625 425 625 375	33 302 25 350	5 317 6 13	950 425 875 550	6 117 6 275	5 102 1 280
-75 525 -125 575	13 18 15 325	20 160 24 128	625 325	22 360	3 45	875 475	12 147	3 174
-125 525 -175 575	14 11 11 305	7 183 34 141	575 325 625 275	14 195 17 2	2 126 3 322	950 550 950 475	3 172 5 238	1 161 3 253
-175 525	9 1	26 182	625 225	8 286	8 137	950 650	5 134	3 126
-175 675 -125 675	11 324 9 32	16 106 15 144	650 175 650 125	1 213 5 240	6 228 2 161	950 750 950 850	2 183 3 166	1 164 0 223
-125 750	11 333	7 184	525 125	3 285	3 133 2 245	1050 650 1050 750	4 146 1 136	2 127 1 339
325 625 325 675	22 71 34 101	5 83 2 106	525 175 525 225	5 262 5 336	0 43	1050 850	1 236	0 100
325 725 325 775	32 85 12 162	5 95 5 236	475 625 475 675	35 171 33 141	8 172 4 141	1050 550 1050 450	3 162 6 175	2 138 3 166
375 575	36 128	4 208	475 725	40 138	6 227	1050 350	5 200	3 196
375 525 425 625	30 146 37 156	13 143 7 231	475 575 475 525	68 144 36 220	9 153 3 216	1150 650 1150 750	2 177 3 169	0 279 1 162
425 675	46 122	12 159	475 475	47 174 5 236	5 158 6 318	1150 850 1150 550	4 158 2 159	2 155 2 149
425 725 425 575	40 99 25 126	14 131 1 145	525 625 525 675	34 133	4 128	1150 450	2 292	1 264
425 525 375 625	53 165 37 112	4 164 9 140	525 725 525 775	18 137 8 172	3 128 6 267	1250 650 1250 550	2 153 2 158	2 149 1 216
375 675	25 77	5 22	525 575	30 139	5 81	1250 750	2 128	2 132
375 725 375 775	47 101 8 252	7 75 7 254	525 525 525 475	36 172 30 209	4 124 1 188	1250 850 1350 650	1 281 1 155	0 280 1 156
425 775	11 312	13 296	575 625 575 675	27 143 19 131	5 143 4 137	1350 750 1350 850	1 176 1 168	1 173 1 190
425 425 425 475	83 169 66 165	8 151 5 152	575 725	9 129	2 158	1450 750	1 161	1 160
375 425 375 475	19 181 45 142	6 130 6 239	575 775 575 575	4 221 27 181	7 255 3 167	850 850 850 950	7 145 4 128	3 150 1 131
325 475	26 86	1 226	575 525	18 207	2 162	850 1050	3 137	1 129
275 425 275 475	5 23 35 73	6 177 4 157	575 475 625 625	13 202 22 160	2 155 3 145	850 1150 950 950	1 169 3 116	1 119 1 131
225 375	11 313 34 349	3 140 3 72	625 675 625 725	17 154 9 149	4 155 1 147	950 1050 950 1150	1 1.17 1 211	1 130 0 142
225 425 225 475	34 349 35 45	6 301	625 775	11 156	9 256	1050 950	3 145	1 130
175 475 125 425	41 13 69 1	7 157 20 152	625 575 625 525	11 213 14 168	2 74 3 135	1050 1050 1050 1150	2 140 1 228	1 144 1 201
125 375	81 352	20 162	625 475	9 188	1 20	1150 950	1 143	1 139 1 128
125 475 75 425	45 7 40 358	10 132 16 135	675 625 675 675	16 172 8 180	5 . 145 1 286	1150 1050 1250 950	1 132 1 156	1 128 0 105
75 375	45 342	35 141	675 725 675 825	13 149 10 168	2 122 2 182	950 1250 850 1250	1 105 0 100	0 59 0 330
75 475 25 425	37 358 22 1	15 128 13 140	675 575	22 165	10 153	850 1350	1 161	0 151
25 475 -25 425	27 332 18 13	15 153 5 174	675 525 675 475	11 190 8 156	2 193 7 146	750 1250 750 1350	6 141 1 140	4 159 3 141
-25 475	25 326	31 115	725 625	6 302	4 338	750 1450	3 103	1 140 5 155
-75 425 325 425	15 329 7 324	20 151 6 341	725 675 725 725	5 149 6 123	1 155 3 102	750 1150 750 1050	7 162 14 148	8 153
425 325	72 230 79 227	11 153 6 201	750 775 725 575	4 110 9 182	1 72 4 182	650 1250 650 1350	4 144 5 144	2 136 2 132
425 375 425 275	51 268	4 259	725 525	8 90	6 94	650 1450	3 133	2 137
375 325 375 275	55 228 63 225	6 344 2 100	725 475 775 625	7 111 3 106	1 163 4 120	650 1150 650 1050	3 148 4 74	1 356 3 28
375 375	59 247	6 267	775 675	3 154	1 177	550 1250 550 1350	3 107 3 88	3 126 2 111
325 325 325 275	44 234 52 241	5 177 2 206	775 750 775 575	2 111 16 310	1 130 12 315	550 1450	2 95	1 100
325 375 275 325	34 233 20 254	4 134 6 142	775 525 775 475	18 106 11 157	10 96 3 188	550 1150 550 1050	8 133 10 140	2 168 3 142
275 275	39 246	4 202	850 625	7 139	3 125	450 1250	4 119	4 113

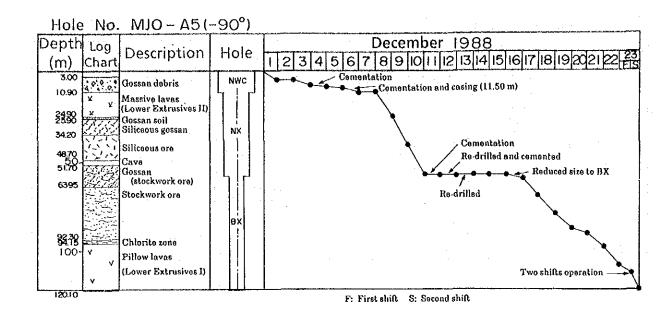
|E| : Intensity (unit; mV/A·100m) of Electiric Field ϕ : Azimuth (unit; Degree) of Electiric Field

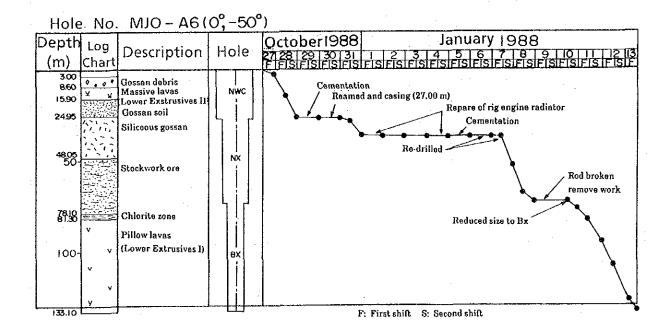

χ γ	HS-14	HS-7	X Y	HS-14	HS-7.	X Y	S- 4 Ε φ	HS-7 [Ε] φ
(m) (m) 450 1350	<u>Ε </u> φ 5 112	1E φ 2 100	(m) (m) 225 625	E φ 31 63	<u> Ε φ</u> 2 91	(m) (m) 375 25	<u>ξξ</u> φ 21 240	$\begin{array}{c c} 1EI & \phi \\ \hline 10 & 199 \end{array}$
450 1150	3 77	1 200	225 675	17 43	3 60	375 75	15 206	13 266
350 1250	4 93	2 106	225 725	44 83	12 101	375 175	23 215	5 120
260 1150	3 130	3 141	225 775 275 625	46 314 37 52	22 289 1 43	375 225 375 125	18 166 21 249	3 29 20 141
750 950 750 850	7 257 2 40	5 255 1 314	275 675	36 31	7 118	425 25	17 245	12 287
650 950	5 186	3 163	275 725	23 46	3 66	425 75	20 219	2 49
650 850	11 152	8 155	275 775	4 285	12 266	425 125	18 206	6 184
575 850	11 154	3 94	-125 375	15 31	39 124	425 175 425 225	27 214	6 185 5 118
550 950 550 875	6 203 9 128	4 153 5 218	-75 375 -25 375	. 18 70 25 25	33 100 49 114	525 -25	. 44 .135 8 228	7 157
525 825	7 122	2 69	25 375	19 118	35 121	475 25	12 212	10 257
475 950	6 338	7 16	-125 325	17 48	.47 136	475 75	12 260	12 132
475 825	21 145	9 145	-75 325	12 68	26 126	475 125	19 188	8 183
475 775	15 185 19 164	11 195 8 174	0 325 -125 275	12 53 10 26	22 148 30 206	475 175 475 225	19 197 19 176	12 200 14 168
425 925 425 875	19 164 6 2	3 131	-75 275	4 29	8 230	550 75	10 152	10 104
450 975	5 78	2 164	-25 275	7 . 7	16 168	550 25	15 253	8 208
450 1050	6 81	4 118	-100 225	8 319	26 128	650 -50	5 227	2 157
375 925	9 23	7 286	-125 175	12 354 5 338	99 136 49 153	650 50 575 125	4 185 19 185	3 226 3 156
375 975 375 1050	9 47 10 37	8 133 3 90	-75 200 -125 125	12 326	126 169	575 125 575 175	19 213	4 238
475 875	27 115	9 117	-75 125	10 300	32 244	575 225	31 147	7 95
425 825	17 89	7 116	-25 125	13 323	28 180	675 225	23 259	4 230
375 875	18 116	7 111	25 150	26 336	25 181	750 225	24 258 4 218	5 300 2 255
375 825 325 925	11 98 7 132	3 25 9 166	-125 75 -75 75	14 312 12 297	71 249 52 141	750 50 750 150	4 218 6 215	2 233
325 976 325 976	8 111	1 94	~25 75	18 323	33 168	850 150	3 262	5 233
325 1025	4 122	6 139	0 200	18 356	27 173	850 250	12 263	7 165
350 1075	4 81	3 130	150 300	27 359	28 151	950 250	9 257	2 262
350 1150 325 875	2 73 16 106	2 150 4 164	-125 25 -75 25	4 3 9 323	64 143 43 162	550150 450150	7 262 10 265	2 302 4 177
325 875 325 825	7 95	2 255	-75 25 -25 25	8 333	45 163	450 -250	2 275	3 263
275 925	12 125	2 106	-125 -25	9 308	37 220	350 -175	12 248	5 168
275 975	6 115	2 115	-75 -25	10 327	41 182	350 -250	5 257	7 261
275 1050 275 875	8 126 8 88	2 102 1 114	-25 -25 -25 -25	4 254 14 295	53 182 22 210	225 -125 275 -125	10 272 11 265	2 90 23 149
275 875 275 825	16 115	10 144	25 -25 25 25	15 316	31 176	350 -125	12 250	8 146
225 925	8 75	1 81	25 75	18 335	29 175	225 -175	7 258	17 189
225 975	5 98	1 137	75 -25	18 286	5 176	275 -175	9 249	19 273
225 1050	5 105	3 129	75 25	16 279	1 182	250 -225 250 -275	8 253 7 269	13 231 9 221
225 875 225 8 2 5	10 91 12 78	2 343 9 101	75 125 100 175	12 302 15 317	5 170 5 199	175 -125	7 269 9 261	13 156
175 950	8 49	2 149	75 225	16 109	7 270	175 -175	7 262	13 188
175 875	11 46	2 169	150 225	15 335	20 158	175 -225	7 241	21 185
175 825	14 38	10 107	75 300	21 38	16 153	175 ~275	8 254	19 211
125 875 125 825	9 60 18 344	6 173 4 97	25 300 75 75	23 353 18 303	25 157 2 241	125 -125 125 -175	8 274 7 273	16 178 13 243
75 850	2 32	3 69	125 -25	15 272	17 191	125 -225	6 276	7 183
-225 650	9 21	22 82	125 25	23 276	20 182	125 -275	6 262	16 264
-175 750	6 249	5 301	125 75	13 289	19 171	150 -325	9 260	19 242 20 174
-175 625 -125 625	14 65 11 68	36 132 8 76	125 150 175 -25	16 344 18 284	8 201 22 \77	75 -125 75 -175	6 276 7 275	20 174 24 205
-75 625	9 47	27 128	175 25	24 272	9 198	75 -225	7 282	16 213
-75 675	12 10	3 95	175 75	24 255	13 215	75 -275	4 261	44 163
-75 750	6 294	7 356	175 150	12 139	19 172	75 -325 25 -125	7 241	49 193 13 246
-25 625 -25 675	18 5 12 88	5 117 7 329	225 -25 225 25	14 262 18 265	16 229 17 181	25 -175 25 -175	12 295 10 306	13 246 19 171
-25 750	9 353	12 202	225 75	21 266	20 180	25 -225	7 310	20 207
25 625	23 59	4 246	225 125	37 276	19 177	25 -275	2 319	9 291
25 675	24 7	13 99	225 175	9 118	12 162	25 -325	5 275	11 163
25 725 25 775	17 43 15 295	8 42 14 283	225 225 275 -25	37 292 17 235	22 115 12 211	-25 -125 -25 -175	3 315 9 284	47 225 22 230
75 625	23 19	7 205	275 -25	18 255	11 160	-25 -225	3 269	22 184
75 675	22 40	12 153	275 75	26 261	9 192	-25 -275	7 309	21 224
75 725	25 45	12 142	275 125	32 246	12 211	-25 -325	1 248	12 270
75 775 125 625	15 313 27 29	4 273 5 164	275 175 275 225	33 198 17 176	11 171 19 133	-75 -125 -75 -176	6 334 4 284	46 228 34 233
125 675	16 53	5 164	325 ~25	19 266	7 304	-75 -225	4 296	16 207
125 725	26 73	3 306	325 25	20 247	5 149	-75 -27 5	5 287	22 204
125 775	3 276	9 210	325 75	19 246	2 351	-125 -125	6 310	35 210
175 625 175 675	27 76 16 69	3 246 7 162	325 125 325 175	21 212 26 248	16 338 5 140	-125 -175 -125 -225	6 314 3 314	43 205 35 209
175 725	33 75	10 136	325 175	20 181	7 137	-175 -125	5 311	66 203
175 775	20 263	17 223	375 -25	15 238	3 56	-175 -175	3 145	59 207

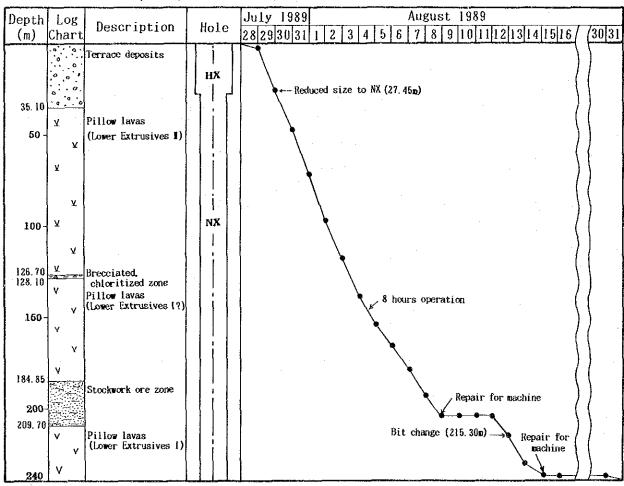

|E| : Intensity (unit; mV/A·100m) of Electiric Field ϕ : Azimuth (unit; Degree) of Electiric Field


X (m) -150 -250 -250 -350 -250 -375 -375 -375 -375 -375 -375 -375 -375	HS-14 E	HS-7 E	X (m) (m) -375 325 -375 325 -375 325 -375 325 -225 425 -225 425 -225 450 -225 450 -225 450 -225 450 -225 450 -325 450 -325 450 -350 650 -375 450 -450 450 -450 450 -475 350 -450 275 -425 225 -550 250 -475 225 -575 225 -575 225 -575 125 -575 125 -575 125 -375 125 -375 125 -375 125 -375 125 -375 125 -375 125 -375 125 -375 125 -375 125 -375 125 -375 125 -375 125 -375 125 -375 125 -375 75 -32	HS-14 E	HS-7 E \$\phi\$ 41 76 79 114 15 313 23 71 14 137 16 113 24 124 20 97 15 108 11 12 32 106 10 79 83 137 42 103 90 96 220 23 108 39 94 42 21 47 97 42 103 90 96 220 23 108 39 99 4 33 31 28 33 299 358 300 95 168 23 376 57 197 16 82 0 284 52 431 82 261 192 411 127 286 154 146 13 2 261 192 411 127 286 154 146 13 145	X Y HS-14 (m) (m) [E]	HS-7 IEI \$
-275 225 -275 225 -275 175 -325 225 -325 175 -376 225 -225 325 -225 375 -275 325 -275 275	10 350 3 347 8 341 6 1 4 336 17 11 9 8 5 12 8 8	31 342 539 123 107 112 453 95 376 128 28 118 37 105 30 131 164 123					
-275 275 -275 375 -325 326 -325 275 -325 375	4 38 5 41 6 349 7 343	57 113 55 134 75 24 64 110			,		······································


|E| : Intensity (unit; mV/A·100m) of Electiric Field ϕ : Azimuth (unit; Degree) of Electiric Field


Progress of the each drill hole in area A





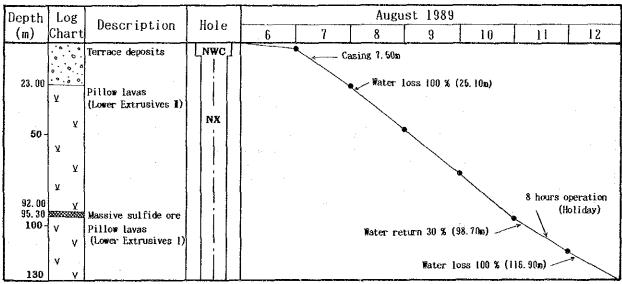
Hole No. MJO-A7 (-90°)

Depth L	og	Deganing	11.1.			Λu	gust 19	189	-		
	art	Description	Hole	14	15	16	17	18	19	20	21
12. 80 22. 30 27. 60 29. 80 Y	ν Σ.Α.Ζ.	Pillow lavas (Lower Extrusives I) Clayey gossan Siliceous gossan Clayey gossan Pillow lavas (Lower Extrusives I)		Casing	3.00 m		hours oper		loss 100 %		
100 Y	v		,				·	Water ret	urn 20 % (76. 45m)	

Hole No. MJO-A8 (-90°)

Hole No. MJO-A9 (-90°)

Depth	Log	Dananintian	11.1.		July	1989			Augus	st 1989	9	
	Chart	Description	Hole	28	29	30	31	1	2	3	4	5
3. 00 24. 00 31. 20 42. 20 50	√ √ ∆	Terrace deposits Massive lavas Pillow breccia Pillow lavas (Lower Extrusives 1)	NWC		Casir	Exte	nded casi	ng up to	6.00m		:	,
88, 70 89, 40 100 - 117, 80 123, 00	V V	disseminations Pillow lavas (Lower Extrusives I)						8 ho	ours opera	ation		
150	۷.								loliday)		→ <u> </u>	


Hole No. MJO-A10 (0°,-50°)

Depth	Log						Aug	ust	989					5	Sept	embei	19	89
	Char	Description	Hole	22	23	24	25	26 2	7 2	28	29	30	31	1	2	3	4	5
7, 20 9, 60 37, 90 50 - 65, 80 72, 00	V V	Pillow lavas Argillized zone Siliceous gossan Cave Cave Pillow lavas (Lower Extrusives 1) Pillow breccia Pillow lavas (Lower Extrusives 1)	NX NX BX		ter lo	oss 10	Cer	1	drille —•	ed	Reduc	ed si				ered hange ours o		
100-	1																•	
120			i														1	

Hole No. MJO-A11 (-90°)

Depth	Log	Description	llole		4	Au	gust 19	89			
(m)	Chart	Deset thereit		17	18	19	20	2.1	2.2	23	24
27. 66 28. 20 42. 30 50 – 53. 35	¥ ¥ %%%	Pillow and massive lavas (Lower Extrusives 1) Clay zone Siliceous gossan Stockwork ore Pillow lavas (Lower extrusives 1)	NX	Casing		8 hours ope	eration (H	oliday)			
100										and the Collection of the Coll	

Hole No. MJO-A12 (-90°)

Geologic core log for the drill holes in area A

Hole	e No.	MJO - A (From	0.00 m to 50	.00 m)					
Depth (m)	Chart	The speciment of the state of t		Depth	D.L.	Au (g/t)	Ag	Ču (%)	Pb (%)	2n (%)
(111)		Casing, No recovery	والمراجعة	(m)	1117.	1970	(9/1)	1707	(%)	(70)
		choing, 270 towning,								
3.00		lm t "		ĺ						
	0.0	Terrace deposits. Gravel and sand								
	0.00	Rounded to subrounded Pobble to granule in size.	:							
	0.0		;					·		
	0.0									
10										
10-			:				·			
	0	Locally comented with calcite.								
				ļ	1					
		·	:							
						l 	!			
•	6,0,0	Completely cemented with calcite.	:							
20-										
	6.7.6.	÷				·	·			
		·								
23.60	X	Light brownish green brecciated		 						
	(\ \	Poillow lava. Fractures filled with hematite and calcite.								
	, ,	Weakly weathered.								
27.40	Δ Δ	Light green pillow breccia. Hematite dominant in matrix.								
28.60	<u>v</u>	Light brownish green pillow lava								-
30-	Cal	weakly brecciated. Vesicles filled with calcite.	• !							
	¥		·							
	Cal: epi.									
}	У	34.70~35.00								
-		Sheared zone with calcite, hematite and clay								
	X (al	38.40~39.40	1							
	<u>(a]</u>	Dominant hematite zone	,							
39.40 40	¥×	Green chloritized massicve lava								
~	*	with calcito stringers.		İ						
-	v						:			
43.15	4 2	Green~dark green chloritized								
	_ [pillow breccia with dominant hematite in matrix.								
45.70	ν ,	Dark green and light green								
	ام کا	pillow lava. Chloritized								
	∆ ∆ x	47.60~48.70 Brecciated						;		
50	צ								L	

Hole	No.	MJO-AI (From,	50.00 m to 100				SÓLVE STILLER			
Depth (m)	Chart	Lithology and Alteration	Mineralization	Depth (m)		Au (g/t)	Ag (g/t)	Cu (%)	Pb (%)	Zn (%)
	Gtz-call									
58.10° 58.40	Y X Reo.	Sheared zone with quartz and				-				
58.40	<u>v</u>	hematite veinlets. Chloritized.								
60-	У ————————————————————————————————————	Dark green chloritized pillow lava. 58.70 Sheared 3 cm 58.90 Sheared 2 cm 62.10~70.00 Green in color				·	-			
	¥									
	አ									
	У У		,							
70-	¥ ./	Dark green~dark brownish green brecciated strongly chloritized pillow lava. Hematite in matrix and along fractures.								
	1									
	٠ ¥ آ¥									
76.70 77.60 77.75	¥ V V	Light yellowish green brecciated strongly argillized pillow lava. Hematite-clay zone.		77.75						
78.60	1051112	Massive sulfide zone.	Pyrite≫chalcopyrite massive ore with angular	78.60	0.85	2.0	2.6	1.08	<0.01	0.06
80-		Stockwork zone with sulfides. Fragment : strongly silicified,	hematite and silicified rocks fragment. Stockwork ore, Sulfide	8Q 60	2.00	2.2	5.1	0 .68	<0.01	0.07
3			30~80 Vol. % in strongly silicified rocks.	82.60		1.9	8.0	0.64	< 0.01	0 .29
				84.60	2.00	1.1	8.5	0.76	< 0.01	0.50
85.30		Light green strongly silicified and brecciated zone with stockwork	Pyrite > chalcopyrite with quartz voinlets and	86.60	2.00	1.0	3.1	0.33	< 0.01	0 .27
	N/ a	mineralization. Argillized in part.	disseminations. Stockwork zone. Minor hematite fragment	88.60	2.00	0,1.	0.7	0.40	< 0.01	0 .06
90-	Amai	90.50~90.70	in places,	90.60	2.00	Υr	1.1	0 ,53	< 0.01	0 .40
-) HE Δ	Clay zone		92.60	200	0.1	1.2	0.90	< 0.01	0.27
_	Δ ÷			94.60	2.00	Tr	Tr	0.89	<0.01	0 .15
-	nt 🛆			96.60	2.00	Tr	Tr	0.69	<0.01	0 .13
	Δ,			98.60		Tr	Tr			0 .18
100	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			Li	2.00	Τ̈́r	Tr	U.38	~ 0.01	0.10

(From 100.00 m to 150.00 m) MJO- AI Hole No. Depth D.L. Depth Au. Cu Zn Lithology and Alteration Mineralization Chart (m) (g/t) (%) (m) (m) (g/t)(%)(%) 100.60 2.00 Tr Tr 0.51 < 0.01 0.11 102.60 0.66 < 0.01 0.14 2.00 Tr Tr 104.60 0.36 < 0.01 2.00 0.18 Tr 0.3 106.60 2.00 Tr 0.41 < 0.01 0.16 Tr 108.60 0.30 2.00 0.8 1.6 0.52 < 0.01 110-110.60 2.00 0 . 2 4.1 0.29 < 0.01 0.68 112.60 0.66 2.00 0 . 9 2.3 0.51 < 0.01 114.60 2.00 0.6 3.1 1.38<0.01 0.69 116.60 0.37 < 0.01 0.3 3.3 1.20 118.60 2.00 0.3 1.6 0.01 0.14 120-120.60 2.00 0.1 1.8 0 .64<0.01 0.21 122.60 2.00 0.5 0 .75 < 0.01 0.56 1.7 124.60 125.00 125.00~125.15 Dark brown brecciated clay zone 2.00 0.6 3.5 0.69 < 0.01 126,60~127,20 126.60 126.00~127.20 Brecciated strongly clhloritized zone. Pyrite disseminations 2.00 1.1 3.0 0.63 < 0.01 1.36 128.60 1.08 1.55 0.8 4.3 1.00<0.01 Sheared zone with hematite, 130.15 chlorite and gray clay. 130.15 Pyrite disseminations, Strongly chloritized phyllitic zone. 132,30~133.20 13230 Siliceous stockwork ore 0.95 0.90 1.9 3 .2 0 .49<0.01 133.30 Dark green chloritized, weakly Quartz-hematite stringers brecciated pillow lava. No sulfide minerals. 136.70 Light green aphanitic pillow lava. Weakly chloritized. Fractures filled with hematite and calcite. 139.70 Same as 133,30~136.70 Calcite quartz stringers. Hematite in fractures Dark brownish green pillow lava Calcite stringers. and pillow breccia. Hematite and chlorite.

Hole	No.	MJO - A (From)	50.00 m to 200	0.60 m)					:
Depth (m)	Chart _.	Lithology and Alteration	Mineralization	Depth (m)		Au (g/t)	Ag (g/t)	Cu (%)	Pb (%)	Zn (%)
	٧ /		中心,但是他们的一个人,他们就是一个人,他们就是一个人,他们就是一个人,他们就是一个人,他们也不是一个人,他们也不是一个人,他们也不是一个人,他们也不是一个人,		*************		,ii,\\\	·		
	/ v									
	٧ -		:							
(55.70 (55.75	A N A N A N A N A N A N A N A N A N A N	Gray clay zone						,		
100.10	1-12	Light green (fragment) and reddish- brown (matrix) brecciated pillow								
-	, (\ v	lava. Chloritized, hematized and weakly sheared.								
160-	など		·							
16 1.60	<u>' ') v</u>	Light green weakly chloritized pillow	·		'	'				
	ν .	lava. Fractures and matrix filled with hematite.								
	\ V				-					
-	v					,				
1 7 0-										
	, v								-	
	`								:	
	٧									
_	٠٠٠ 									;
· -	,									
180-	۱ ۷		•							
100-	7									
182.80	v				-					
-	V	Green chloritized and weakly brecciated pillow lava.				:				:
-	v 	Fractures filled with hematite 185.40 ~185.70								
187.00	v	Weakly sheared Dark groen strongly chloritized								
	, ,	pillow lava. Fractures filled with hematite. Vesicles filled with								
190-	\ v	chlorite and zeolites.								
-	v									.
	v				;					
	ν Δ <u>-</u> Δ <u>-</u> Δ <u>-</u>	196,70~197.30 Sheared and brecciated zone]						
-	v	Chloritized and argillized 198.20~198.50 Brecciated zone	•							
200.60	v, ~	200.60 End of hole	- A32 -	<u> </u>						

Holo	e No.	MJO-A2 (From	0.00 m to 5	0.00 m					and the second	
Depth (m)	Chart	Lithology and Alteration	Mineralization	Depth (m)		Au (g/t)	Ag (g/t)	(%).	Pb (%)	Zn (%)
		Casing. No recovery,								
				<u> </u>						
3.50				ŀ	:					
	0	Gravel and sand (terrace deposits) Gravel :gabbro dominant						ļ.		
	, 0	(boulder to pebble)								
	.0 .0									
							[
10-										
10-	0.00		,			<u> </u>				
,	,,0,	·								
	0									
	0 0									
	o °			1						
	000									
	0000						:			
19.20 20	7.7.7	Gravel and sand.								
		Gravel :gabbro dominant								
		Comented with calcite.								İ
							<u>.</u>	; 		
25.30							[
-	0.00	Gravel and sand. Comented with calcite in part				j				
	0.0	Comonton with talette in part								
	0 0									
30-	· 0	Reddish brown gossan soil.	Mostly hematite	30.00						
30.70		Siliceous ore. Intensely silicified	Matrix : coarse-grained pyrite with minor		2.00	1.5	8.4	0.55	<0.01	0.04
32.45		and brecciated rock. Reddish-brown weathered ore zone.	cholcopyrite and hematite.	32.00	2.00	2.9	7.7	1 13	<0.01	0 .03
	8 0 0	Mandish olomi maneratan ola min.	Hematite and gathite with angular siliceous	34.00	2.00	2.3	, . 1		-5.01	
3480 35.50		Massive ore zone.	fragments.	35.50	1.50	2.0	8.8	0 .17	<0.01	0.02
333		Weathered massive ore zone.	Massive sulfide and hematite-gathite with		2.00	 	4.3	0 .42	<0.01	0.02
			minor siliceous fragments.	37.50		0.5	10.5		0.00	
38.20 39.40		More sulfides.		39.40	1.90	2.5	10.5	1 .11	10.0	0.07
40-	Δ . Cs	Strongly silicified and brecciated	Pyrite > chalcopyrite stringers, spots and		2.00	1.2	11.0	0 .77	اه. 🗫	0.38
		zone with sulfide mineralization (stockwork ore).	disseminations	41.40				-		
	<u>△</u>		Quartz veinlet network and brecciated quartz	43.40	2.00	0.6	4.0	0 .33	<0.01	0.28
	Δ	39.40~81.50	fragments. Fructuros filled with		2.00	Tr	Τr	0.24	<0.01	0.29
		Matrix of breccia filled with hematite in places	quartz,	45.40						
				47.44	2.00	0.7	3.5	0 .25	<0.01	0.21
	Δ			47.40	200	0.7	2.0	0 .63	<0.01	0.21
50	Δ		'	49.40	2.00					
										

		MJO-A2 (From	50.00 m to 10			(** a)**** ******************************	·			
Depth (m)	Chart	Lithology and Alteration	Mineralization	Depth (m)		Au (g/t)	Ag (g/t)	(%)	Pb (%)	Zn (%)
~~	$\Delta = \frac{1}{c_{\rho}}$	50,40~62,30 Homatite dominant in matrix	and the second s		2.00		1.8	1	< 0.01	1
-			51.70 Sphalerite in spots	51.40	2.00	Tr	Tr	1.09	< 0.01	0.1
-	Δ.			53.40				1.70		
	. ς _ρ . Δ.			55.40	2.00	0.2	1.0	1.36	< 0.01	0.1
	Δ			57.40	2.00	0.4	0.7	0.72	< 0.01	0.0
					2.00	0.4	1.8	2.12	< 0.01	0.1
60-)_(Cp)			59.40	2.00	0.1	1.3	0.97	< 0.01	0.0
				61.40		0.3	. 6	0.77	< 0.01	0.7
	Δ			63.40	2.00	0.2	1.5			
) } }			65.40	2.00	0.2	2.0	0.67	< 0.01	0.3
	\ - - -			67.40	2.00	О. І	1.5	0.60	< 0.01	0.1
	\$4// }}}			07.40	2.00	0.3	1,2	0.77	< 0.01	0.2
70	Δ΄ Cp.			69.40	2.00	0. I	1,5	0.46	< 0.01	0.1
	Δ			71.40	2.00	Tr	Tr	0 33	< 0.01	
-				73.40		<u></u>	''	0.33	2 0.01	
	Δ.			75.40	2.00	0.2	0.9	0.38	< 0.01	0.0
	Δ			77.40	2.00	Tr	Tr	0.35	< 0.01	0.0
4	C _P				2.00	0.2	0.6	0.56	< 0.01	0.2
80-				7 9.40	2.00	0,3	0. 6	0.40	< 0.01	0.0
				8 1.40	2.00	Tr		0.40	1001	
				83.40			Tr		< 0.01	
	() Cp			85.40	2.00	0. 5	2. 1	0.76	< 0.01	0.1
) } }			87.40	200	0.6	3. 6	4.92	<0.01	0.3
-				20.40	2.00	0.3	2.6	1.08	< 0.01	0.5
90-	· · · · Δ			89.40	2.00	0.3	1.8	0.71	< 0.01	0.6
	Δ			9 1.40	2.00	0.2	1.8	1.15	< 0.01	0.4
	φ Δ			93.40	2.00	Tr	Tr		<0.01	0.1
96.20	Otz-ht			95.40 96.20	0.80	Tr	Tr		< 0.01	
96.70		Light green clay zone. Dark green skrongly chloritized rock .	Pyrite diss eminations Pirite stringers and	30.20						
18810	www.	Mixture of chloritized and hematized zones	disseminations.						ļ	
	Δ-Δ	· · · · · · · · · · · · · · · · · · ·	- A34 -	L			لـــــا			

Depth (m)	Chart	Lithology and Alteration	Mineralization	Depth (m)	D.L. (m).	Au (g/t)	Ag (a/t)	Cu (%)	Pb (%)	2n (%)
101.95	TILDOS SALVIA TITLIOS SECUN	Light green~green strongly								
,	> ' \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	chloritized and brecciated pillow lava. Minor homatito in places. Quarts in matrix and stringors,	·							
107.00 107.50	V \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Reddish brown hematite zone with quartz stringers.								
110-	ر . ا ر ا	Green chloritized and weakly brecciated pillow lava, with quartz stringers.								
	, v,	Hematite in matrix,								
115.50	V , `	Light green argillized zone.							•	
116.50		Dark green~dark brown hematized and chloritized pillow lava to pillow breccia with quartz stringers.								
120-	ν Δ \ Δ	116.50~117.90 Strongly bracciated zone 120.00~125.30				-				
	Δ,Δ	Pillow breccia strongly hematized								
	Δ Â v								-	
	\ v									
130~	v ~									
134,40	v `									
	× ~ ×	Green chloritized doleritic massive lava. Hematite and quartz stringers and veinlets.		·						
13990	✓ ¥									
13990 140 -	~ v	Dark green~dark brown chloritized pillow lava with quartz stringers.								
14300	V _ V	Green massive lava with quartz and calcite stringers. Vasicles filled with calcite.								
14755	* _					į				
	v 	Same as 139.90~143.00								
150	٧ ~	151,15 End of hole	- A35 -	<u> </u>						
151.15										

(From 100.00 m to 151.15 m)

Hole No. MJO-A2

Hole Pepth	. 140.	MJO-A3 (From	0.00 m to 50	Depth		Au	Ág	Cu	Pb	Zn
epui (m)	Chart	Lithology and Alteration	Mineralization	(w)	(m)				(%)	(%)
		Classic St.			-		**************************************			
		Casing. No recovery			ì					
-	1	٠.								
3.00	0, , 0	Terraco deposits. Gravel and sand.								
٠	· ° ° o .	Clabbro boulder dominant.		ŀ						
	.00									
-										
7.20	00.0	_	:	-		İ	-			
-	0.0.	Gravel and sand. Locally cemented with calcite. Mostly								
		còbble to granule in size								
10-										
İ				ļ	ļ					
						ļ				
	. 0								ļ	
13.25					ļ .					
-	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Gravel and sand.								Ì
	0	Comented with calcito.								
4	16/19	Gabbro boulder in places.								
				l						
20-										
		·							ļ.	
	9 / / / 8							<u> </u> 		
				İ						
	.00			ľ						
	1000									
										ļ .
1								İ		
	6000									
1										
].						
30-	16, 10.									
31.20		Clay zone. Light yellowish gray and							<u> </u> 	•
1		locally reddish brown.		1						
3330		Dark reddish brown gossan soil.								
3430			Brecciated with siliceous							
35.00		Red siliceous gosson with hematite. Reddish brown gosson, possible	fragment.							
-	e accessor	massive ore	36.20~36.40	36.20						
3695 37.60		Massive ore.	Fine-grained massive ore		1.70	5. 2	18.2	1.89	0.01	0.0
37.60 37.90.		Brecciated zone with siliceous fragments.	ore 36.95∼37.60	37.90						
		Brocciated massive ore. Lower part:	Pirite ≫ chalcopyrita	39.50	1.60	1.8	20.3	9.44	0.01	0.0
40-		siliceous fragments	brecciated. Fine-	39.5U	1.60	ł. J	7	12 44	< 0.01	o ń
41.10			grained. 37.90~41.10	41.10		4 . 1	11.1	16,34	-0.01	0.0
4		Cave. No recovery	Pyrito > chalcopyrite.							
43.00	27.575.50	·	Fine grained.	43.00						<u> </u>
43.70	2442	Gray brecciated clay zone. Light argillized, brecciated zone.	Pyrite disseminations.		2.00	1.0	8.1	2 37	<0.01	0.0
j	9/2	Silicified in part. Hematite in matrix	Pyrite disseminations. Chalcopyrite:pyrite	45.00			9.1	2.91		
	A	locally.	fragments in matrix.		2.00	0.3	8.5	224	<0.01	0.0
		46,40~47.90		47.90		V.J	υ. υ	2.24	~0,01	0.0
		Strongly argillized and brecciated		,,	2.00	0.0	, , ,	9 '00		^ ^
			:	49.00	2.00	0.9	11.1	2.80	0.01	0.0
49.70 50				,,,,,,,	2.00	2.4	12.1	2.43	< 0.01	0.0

Hole	e No.	MJO-A3 (From	50.00m to 100),00 m)					
Depth		Lithology and Alteration	*	Depth	D.L.		Ag	Cu (%)	Pb	Zn
(m)	200.7787	Light gray argillized and hematized	Sulfide fragment: Pyrita	(m)	(m)	(8/0	(g/t)	(%)	(%)	(%)
51.35		zone with siliceous and sulfides	Sulfidos: 35 vol%	51.00			ļ			
	4	fragments. Light groon silicified and brocciated	Chalcopyrite pyrite quartz		2.00	1.1	17.4	3.39	<0.01	0.05
	CP.	zone with minoralization. Locally	stockwork zono	53.00				- > -		
	Δ	argillized. Quartz-hematite fragments in places.	53.00 Brnite-chalcopyrite	55.00	2.00	0.4	10.6	3.04	<0.01	0.06
.	Δ		spots		2.00	0.5	8.9	1.69	<0.01	0.05
		·	52.60~53.80	57.00			<u> </u>			
-	A A		Chalcopyrite rich Pyrite: 20 vol%		2.00	.0.3	4.9	1.58	<0.01	0.06
60-	Δ		Chalcopyrite: 6 vol%	59.00	1000					2.4
00-			·	61.00	2.00	0.5	6.5	1.26	< 0.01	0.14
] .	$\Delta \Delta$		62.10~64.90		2.00	0.4	8.5	0.33	< 0.01	0.21
			Sulfidos (pyrito): 50 vol%	63.00						
-		,			2.00	0.2	8.8	3.26	< 0.01	0.09
	Δ.,		66.10~66.30	65.00	2.00	0.8	9.6	207	<0.01	Λ ΛΒ
	A CONTRACTOR		Sulfides (pyrito):	67.00	2.00	0.8	8.6	2.51	VO.01	0.08
] .	Δ	ŧ	70 vol%		2.00	0.6	5.6	1.61	< 0.01	0.12
				69.00						
70-				71.00	2.00	0.3	4.8	1.75	< 0.01	019
	Δ,		71,60~74,40 Sulfides (pyrite):	71.00	2.00	0.4	6.0	Lon	< 0.01	0.42
			50~60 vol%	73.00	2.00		0.0			J. 12
					2.00	2. 1	7.7	1.14	< 0.01	0.79
	4 5	·	76.10~77.10	75.00						
77.0			Sulfides (pyrito and chalcopyrito): 75 vol%	77.10	2.10	1.0	20.7	4.37	0.01	0.18
77.10		reddish brown strongly hemetized and breccieted zone with sulfides and			1.80	2.4	12.4	0.43	< 0.01	0.02
		siliceous fregments. Metrix: Mostly hometite		7890						
80-60	147.27.5. 15.27.5.6	79.80~80.30 Hematitic clay		80.60	1.70	2.8	4.4	0.82	< 0.01	0.01
0.50		Light green brecciated and strongly silicified zone.	80.60~81.40 Sulfides (pyrite):		2.00	0.7	11.5	1.98	0.01	0.29
		Lower part: Strongly brecciated and weakly	60 vol%	82.60				`		
-	Δ	chloritized	81.60~81.80	Q4 CD	2.00	1.0	3.4	0.65	<0.01	0.11
		81.60~81.80 Strongly chloritized zone	Pyrite disseminations	84.60	1.30	0.7	4.8	0. 34	<0.01	0.14
<i>8</i> 5.90		Sttrongly chloritized zone with	Weak pyrito disseminations	85.90						
98.10		hematite bands. Dark green	24021111101010							
88.10 -	ν	Light green~green pillow leves chloritized with quartz-hematite								
90-	\\v\	veinlets and calcito stringers weakly								
	,	brecciated. Variolo like texture visible.								
-	v									
93.20	- <u></u> <u>'</u> -	Dark green and dark brown weakly								
		brecciated pillow lavas chloritized. Variole-like texture visible.								
-	`	Humatite in fracture and calcite								
	v ~	stringers.								
-	v									
100	v >=									

Depth	Chart	Lithology and Alteration	Mineralization	Depth (m)	D.L.	Au (g/t)	Ag (n/t)	(%)	Pb (%)	Zn (%)
<u>(m)</u>		geographic and the second control of the sec	**************************************	7,11	7117	1.64.4	13,4	7,07	1/0/	(70)
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	,								
	~ v					[
		·	•					·		ż
	/ V	·							-	
107.80		Light green chloritized pillow lavas.								
110	٧	Hematita in matrix and fractures. Calcite stringers variole-like texture								
	~v	in places.								
-	v \									
	1	•								
	/ V				٠					
_	v									
	(v	÷								
	v	·						·		
120-	· 									
122.187	/ V Z <i>TO</i> ZZZ	Strongly argillized sheared zone.	·							
122.50	v```	Light green and locally dark green								
	~\#\ 	pillow lavas. Hematite dominant in fractures								
	1	variolo-like texturo visible,								
	- v									
	ノヘノ								-	
130-	v									
	1 Ht							. 	-	
	_\ v							:		
	``、									
	V \	·								
									:	
	\									
140-	v ` _	141.10~141.70 Strongly argillized sheared zone.								
141.10	70.v	141.70~ 143.00 Weakly argillized. 142.70~142.80								
141.70	V //	Sheared and fractured. 143.00 m End of hole								
143,00				-						
						·				
15 <u>0</u>										
150	I									

Hole No. MJO-A3 (From 100.00 m to 143.00 m)

Hole		MJO – A4 (From	0.00 m to 50	.00 m)					1.
Depth . (m)	Chart	Lithology and Alteration	Mineralization	Depth (m)	D.L.	Au (g/t)	Ag (a/t)	Cu (%)	Pb (%)	Zn (%)
	**********	Charles NI	- A STATE OF THE S		*****	13. 7	73. 7	7.4.7		
		Casing. No recovery.								
3.00										
		Gravel and sand (terrace deposits)								
	7 °	Ciravel : peridotite > gabbro Matrix : sand and calcite.								
	o°:									
	Ο.									
	0									ŀ
10-				 						
	0 0									
	0									
:	0.									
	0.									
	0 . 0							:		
16.20	7787	Terrace deposits. Rounded to								
		subangular pebble to granule. Matrix: completely cemented						·		
		with calcite					:			
20-									,	
22.15-	0,00									
22.13	V Ht	Dark green medium-grained basaltic							,	Ì
	٧	massive lava with epidota. Celcite hematite stringers.								
25.30	<u>م لام</u>	Bottom : argillized and brecciated Light brownish-green argillized and		·						
-	yΔ	weathered pillow lava.					;			
	Δ. A.	Weakly brecciated.								
29.10	χ, Δ									
30-	¥	Light green~green pillow lava with closely packed pillows. Zeolite and								
	1	epidote spots and in vosicles.								
	~ , , ,	Weakly weathered		-						
	Call-lift									
	Α									
	¥	,								
	~									
	¥									
	1 1					٠				:
40~	~ ¥									
	<u> </u>									
	A Zeo									
-	(_¥									
45.20		Dark bluish-green weakly	;							
	¥	chloritized and brecciated pillow lava 49.60~49.80								
	Cally	Sheared zone with calcite								
	ž V	49.85~50.05 Hyaloclastite with dominant								
50	2222	homatite				<u></u>	L			

Hole No. MJO - A4 (From 50.00 m to 100.00 m) Depth Depth D.L. Αu Zn Ag Chart Lithology and Alteration Mineralization (m) (g/t) (%) (%) (m) (m) (g/t) (%) 50.05 ¥ Light bluish- green chloritized pillow 59.00 Δ breccia. Vesicles filled with zeolite. 60 Calcite stringers. Δ 60.80~60.85 Sheared zone with chlorite, calcite 62.10 Light green weakly chloritized and weakly brecciated pillow lava. (same as 45.20~59.00) 69.80 70~ Dark green weakly brecciated and strongly chloritized pillow lava. Δ Upper part : brecciated Δ) Lower part: comparatively massive Quartz, homatite and zeolites stringers. Vesicles filled with zeolites. Bottom part: weakly argillized 80.75~81.15 Pyrite in gray clay with hematite 81.15~82.20 80 Massive medium to fine-Pyrite-clay zone. 80.75 grained Massive ore. 0.34 4.5 3.24 0.01 1.55 1.2 pyrito > chalcopyrite Siliceous ore 82 30 zone with minor clay 0.54 Pyrite-clay zone 0.90 2.2 11.6 |3 .81|<0.01 83.20 Silicious ore 82.30~82.50 Dense pyrite and 1.80 0.1 2.6 0.60<0.01 0.55 Stockwork zone: ,chalco pyrite in siliceous 85.00 Green~light green brecciated and fragment weakly silicified zone (pillow lava) 82.50~82.80 1.90 0.4 5.8 1.67<0.01 0.27 Dense pyrite dissemi-86.90 **96**.90 Poor mineralized zone. nation in gray clay sheared. 82.50~83.20 88.50 88.50 Same as 83.20~86.90. Same as 82.30~82.50 5.2 10.0> | 0.01 0.28 1.80 0.2 90 83.20~86.90 and 90.30 88.50~92.00 0.09 1.17<0.01 1.70 0.1 2.8 Pyrite > chalcopyrite 92.00 Green~light green brecciated stockwork zone with Δ Chloritized and weakly silicified quartz-hematite ∆ QtzV 92.00~95.30 pillow lave. Pyrite disseminations 95.30 Brownish-green weakly chloritized No sulfide minerals. and brecciated pillow lava with NAME OF THE PARTY. hematite in matrix. 98.50~101.20 96.70~96.80 Very weak pyrite Quartz and clay zone. disseminations

Hole	No.	MJO - A4 (From	100.00 m to 150),75 m)					
Depth (m)	Chart	Lithology and Alteration		Depth (m)	D.L.	Au (n/t)	Ag (g/t)	Cu (%)	Pb (%)	Žn (%)
101.20 101.80	v , v	Strongly chloritized sheared and argillized zone.		1.1111	(111)	19/4	(9/4)	1/0/	1707	1701
	V Qtz-call-kt	Dark green chloritized and weakly silicified pillow leve.								
	Otz-cal-ht	Woakly brocciated. Many quartz, calcite and hematite vein to stringers. Hematite in matrix.	-							
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \								- *	
110-	Cal-ht V								•	
	(>									
_	Cal Otz-ht									
-	· v									
	V									
120-	v									
122.40 122.60	V ~	Strongly chloritized sheared		,						
122.60	ν	and argillized zone. Dark greun~green chloritized								
	v	and weakly silicitied pillow lava. Weakly brecciated. Calcite-quartz with minor hematite								
	V Qtz-cal-ht	veins, veinlets and stringers.								
130~	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \									
_	V Qtz-ht									
_	Qtz-ht								:	
	v /	136.60~126.90	•							
,	v	Hematite dominant zone in matrix					:			
140-	v \									
-	v									
~	v	145.90								
	~ v	Homatito quartz vein 4 cm								
150	_V	150.75 End of holo								
150.75	~		- A41 -							

Hole		MJO-A5 (From	0.00 m to 50					·		
Depth (m)	Chart	Lithology and Alteration	'Mineralization	Depth (m)	(m)	Au (g/t)	Ag (g/t)	(%)	Pb (%)	Zn (%)
AL THE COMMENT	<u></u>	Casing. No recovery.								
3.00	0 0	Gossan debris (Overburden)								
	9000	(Cotolium and				Į.				
	000		:							
-	DO D		:							
10	4040									
10.90	ÿ <u>, • d</u>	Light green doleritic massive lavas.				ļ				
	~	Weakly brecciated locally. Hematite band and in fractures. Calcite		:						
-	\ \	stringers.								
	*						i.			:
	\ ₩	1								}
	₩ ``	19.90~20.80 Weathered		!						
20 20.80	~~~~ <u>~</u>	Light green argillized and chloritized	Weak pyrite	-						
	X	pillow lavas. Weakly sheared and weathered.	disseminations.		! !					
		23.00~24.90 Strongly argillized and weathered							,	
24.90	<u> </u>	Reddish brown gossen soil. Hematite, limonite and clay.								
25.90	7///	Siliceous gossan. Bracciated siliceous fragments with								
		gray clay. Comented with hematite. Dominant limonite and hematite.								
- 30-		Dominant Infontes and namatre.		:						
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\									
	A									
34.20	<u> </u>	Light green-white strongly	Pyrite disseminations.	34.20				-		
: }	Δ · //	brecciated, silicified and argillized zone. Quartz stringers and fragments. Hematite dominant in matrix.	Pyrite and chalcopyrite disseminated breccia.	36.20	2.00	0.3	3.7	0.78	<0.01	0.01
	΄΄. Δ	Weakly weathered.			2.00	0.4	1.4	0.68	< 0.01	<0.01
	4	•		38.20	2.00	0.3	1.6	0.51	< 0.01	0.06
40-	, A	}		40.20	2.00			0.10	* 0.01	0.75
	, ' <u>\</u> \			4220	2.00	2.2	1.8	0.19	<0.01	0.35
-4	AZZĀ	43.30~44.30 Strongly brecciated and argillized		44.20	2.00	Tr	Tr	0.83	<0.01	0.19
	Δ ()	50ue		11.20	2.00	1.9	2.6	2.23	<0.01	0.01
-	$\langle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$			4620						
1070	Δ \ ,	Massive sulfides with silicoous	Pyrite>Chalcopyrite	4870	2.50	1.8	6.9	5.37	<0.01	0.01
48.70 50		Massive sullides with silicoous fragments.	A 40	,	1.50	1.8	14.1	10.53	<0.01	0.06

Hole	e No.	MJO – A5 (From	50.00m to 100							
Depth	Chart	Lithology and Alteration	Mineralization	Depth (m)		Au (g/t)	Ag (g/t)	Cu (%)	Pb (%)	(%)
(m)		mangalanda de de de de de de de de de de de de de	agyalludususal cimel Circles (Circles (Circles) cine Association (Circles) Circles (Circles) Circles (Circles)	50.20			-			
51.70		White strongly brecciated siliceous	Pyrito disseminations,	51.70	1.50	1.3	8.9	9.56	<0.01	0.04
53.40	7 7	zone with quartz-hematite voins and stringers. Weakly weathered.	Quartz-pyrite veins	53.40	1.70	1.5	4.6	2.08	<0.01	0.02
		Cave								
			•						·	
56.70	1 3 3 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Brecciated silicified zone Weathered,	Siliceous gossan.	56.70			-			
	Δ	Hematite and limonite in matrix.	Pyrite disseminations and voins.		3.50	0.8	1.1	0.29	<0.01	0.01
60-	Δ`			60.20						·
			,							
	Δ				3,75	1.6	4.5	0.64	<0.01	0.0 1
63.95 .	Δ	Strongly silicified brocciated zone.	Pyrite disseminations and	63.95						
	$\Delta \sim 1$	Quartz-hematite breccia în places.	breccia. (Stockwork ore zone)	66.00	2.05	1.1	17.0	3.06	<0.01	0.01
-	♦		Sulfides: 15~35 vol%	86.00	2.00	1.4	37.2	3.90	0.01	0.04
				68.00						
70-		•		70.00	2.00	0.6	12.9	0.98	<0.01	0.03
. 10			70.00~73.50 Sulfidos (pyrite):		2.00	1.5	10.0	0.36	<0.01	0.06
			30~60 vol%	72,00						
				74.00	2.00	2.2	11.8	0.79	0.01	0.05
	Δ				2.00	2.9	16.1	0.65	<0.01	0. 12
	ati-it			76.00	2.00	0.4	2.6	0.44	<0.01	0.09
	Δ			7800	2,00	0.4	2.0	0.44	~0.01	0.03
	Δ				2.00	0.3	2.2	0.16	<0.01	0.08
80-	Qlz-ht △			80.00	2.00	0. 1	2.0	0.98	<0.01	0.48
	۵			82.00						
8390.	Δ	Dark green strongly brecciated and	Pyrite disseminations and	84.00	2.00	0.4	3. 3	0.13	<0.01	0.67
84.90		chloritized zone.	stringers.		2.00	0.2	3.1	0.66	<0.01	0.53
-		Same as 63,95~83.90		8600	0.00			0.00	40.0	
				8800	2.00	0.4	4.5	0.68	<0.01	0.99
					2.00	0.4	1.6	0.3	<0.01	0.43
96-	Δ	Light green strongly silicified and brecciated volcanics.	Pyrite disseminations. Pyrite-chalcopyrite-quartz	9000	0.30	6.4	~	A 10	~~ ~:	0.07
9230	Δ.		boxwork.	92.30	2.30	0.4	0.8	0.10	<0.01	0.01
9230		Dark brown (upper) and dark green (lower) hematized and chloritized zone								
94.15		with quartz stringers.								
	- /	Dark green chloritized pillow lavas with quartz-hematite and calcite								
	\ \ \ \ \	stringers.								
98.70										
100	∛ ∀			•						

pth	Chart	Lithology and Alteration	Mineralization	Depth	D.L.	Au	Ag	Cu	Pb	Z
<u>m)</u>			Willierguzaugh	(m)	(m)	(g/t)	(g/t)	(%)	(%)	(%
ŀ	× -,	Light green~green massive laves with quartz-calcite stringers and		ļ						
1	y - y	veinlets.			·					
		101.00, 102.80 Quartz-calcite veinlets								
1	vv	103,40~104,20								
	¥	Pillow lavas weakly brecciated		}			,			
	٧									
1	V	107.25, 108.40								
	¥	Quartz-calcite veinlets	·			 			į	
110-	~- <u>-</u> -							:		
9.38		Green argillized, chloritized and brecciated zone with hematite in	•	:					i	
1	v -	matrix.								
	. ~ v	Green~brownish green weakly chloribized pillow lavas.					l. i			
1	_	Hematite in fractures and matrix.			-					
	٧	Variole-like structure in part.								
1		110.00 110.00								
}	, v	118.60~118.75 Strongly chloritized								
þ	v ~									
20-	-	120.10 m End of holo			_					
		120.10 III Dist of horo							:	
1										
									ļ	İ
-										
	l									
1										
7	.			<u>-</u>						
1										
1			İ							
						ļ	ļ			
1	-							٠		
		·								
1								ļ		
4	.									
			į							
4										
1										
1			;			•		1		
1										
- 1	i		i		1		- 1	- 1	- 1	

Hole		MJO-A6 (From	0.00 m to 50	0.00m)			derminer		,,,,, <u>,,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Depth (m)	Chart	Lithology and Alteration	Mineralization	Depth (m)	D.L. (m)	Au (g/t)	Ag (g/t)	Cu (%)	Pb (%)	Zn (%)
		Casing. No recovery,								
3.00	Dio.	Gossan debris. (Overburden)								
	0000	(0.000	:							
] . 	0 6 0									
860	0000					,				
10-	* *	Green~yellowish green doleritic mossive lavas. Weathered and					÷			
11.20	* *-X-Z-Z-X	argillizod. 10.80 Hematits calcite vein.						·		:
12.60	¥.24	10.60~11.20 Hematized.								
	*	11.20~12.60 Strongly argillized,								
15.90	>	chloritized and sheared.								
	v									
-	0									
20-	• 0									
	0									
	0 0	·								
2405	0		·							
24.95 25.50 26.00~	>3°, 2°, 2°, 2°, 2°, 2°, 2°, 2°, 2°, 2°, 2	Brecciated siliceous gossan. Many cavities. Poor core recovery.	Limonite and hematite.							
	A 10/1	25.50~26.00 Cave.								
-										
30		·								
										•
	14 N. Y.				·					
- 36.70		Light brown and dark brown gossan	Limonite and goethite							
37.70	% & % '\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	soil with angular siliceous breccia. Brecciated siliceous gossan.								
3920 40-	1777.79	Many cavities 39.20~40.70 Cave.	Limonite.							
40.70	477.74									
-	77.73									
43.10		Light brown gossan soil with siliceous breccia.	Goethite and limonite,							
4530		Dark brown~raddish brown silicified,	Limonite and hematite.							
		brecciated gossan.								
4605"		Strongly silicified, chloritized and brocciated zone.	Pyrite disseminations and veinlets.							
50	Δ	(stockwork ore)	Pyrite: 10 vol.%							

Hole	e No.	MJO-A6 (From	50.00m to 100	0.00 m)					
Depth		Lithology and Alteration		Depth	D.L.	Au	Ag	Cu	Pb	Zn
(m)	Chart	Littlology and Alteration	Witteranzauoti	(m)	(m)	(g/t)	(g/t)	(%)	(%)	(%)
	A	·						-		
51.60 52.00		Gray brecciated and strongly argillized zone.		52.00				ļ	<u> </u>	
	Δ				2.00	0.7	2.3	0.54	<0.01	0.41
		Light green silicified, chloritized and brecciated zone.	Pyrite disseminations. Pyrite chalcopyrite	54.00					ļ:	
	Δ.	(Stockwork ore)	disseminated breccia.	<u> </u>	2.00	0.3	3.7	0.44	< 0.01	0.22
1	Δ	Hematite in matrix.	Pyrite: 6~7 vol.%	56.00						
1		54.50~57.10			2.00	0.3	2.1	0.42	<0.01	0.24
1	- : . Δ	Homatite dominant in matrix.	•	58.00	0.00					0.70
60~				60.00	2.00	0, 4	1.8	0.44	<0.01	0.38
	Δ		,	00.00	2.00	0.3	1.9	0.37	<0.0 l	0.37
				62.00	2.00					
	ΔΔ				2.00	0.7	2.2	1.14	<0.01	0.15
64.50	Δ	64.50~65.00		64.00			 			
65.00	V22/12/2	Argillized zone.			2.00	0.8	2.3	0.91	<0.01	0.31
-				66.00	·			 		
		,	÷		2.00	0.1	1.7	0.74	<0.01	0.13
	[.^ 			68.00	2.22	_				
7.0~	Δ		:	70.00	2.00	Tr	Tr	0.58	<0.01	0.11
,,,,				10.00			<u> </u> 			
	Δ				2.65	Tr	Tr	0,36	<001	80.0
		72.65 Reduced the size to BX.		72.65						
	ΔΔ				2.00	0.1	1.0	0.43	< 0.01	0.05
		•	·	74.65						
_	Δ			76.65	2.00	0.1	0.7	0.31	<0.01	0.06
		/ m ² y	79 - 14 - 34 1 1 1 1			_				
78.10 78.80	_AA	Dark green strongly chloritized and brecciated zone with quartz and	Pyrite disseminations.		2.65	Tr	Tr	0.37	<0.01	0.06
79.30 80-		hematite breccia. Silicifiad stockwork oro.	Pyrite disseminations and	79.30						
81.30			stringers.							
61.30	[V/]	Dark reddish brown strongly]			
	v	hematized volcanics. 81.30~82.80 and 83.60~85.30								
-		Brecciated and argillized. Dark green strongly chloritized zone.								
8550	///×	Dark green strongly chloricized zone.			;					
	v v	Dark brownish green hematized								
	~	pillow lavas. Matrix: strongly chloritized. A fow calcite and quartz								
		stringers.								
90-	\									
	~ v			•		=				.
-	(\									
95. 48	eranaga	Gray clay zons.				İ				
]	V 	96.70 Sheared zone 5 cm.								
_	v ′	97.70~104.60								
		Quartz-calcits veinlets and		Ì			.			
100	<u> </u>	stringers. Homatite stringers.			.					

Hole		MJO-A6 (From	100.00 m to 13			1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Depth (m)	Chart	Lithology and Alteration	Mineralization	Depth (m)	(m)	Au (g/t)	Ag (g/t)	Cu (%)	Pb (%)	Zn (%)
104.60	V V V	Light green~light greenish bluo massivo lava with quartz and calcito stringors. 104.80 Quartz veins. 109.30 Quartz vein.								
110-	*									
11900	* *	Dark groen~dark brownish green								
-	, v , v	chloritized pillow lava. Hematito in matrix and fractures. Quartz calcite-homatite stringers and veinlets. 124,90~125,35 Brecciated weakly argillized zone.								
130-	v) v	130.20 Quartz-hematite voin.		·						
133.10	V	133.10m End of hole.					· · · · · · · · · · · · · · · · · · ·			
140-					-			-		
150										

	No.	MJO - A 7	(From	0.00	m to	50.00 m)	
epth		STATE OF THE PARTY			***************************************	Denth	$\overline{\mathrm{D}}$

Hole	IVU.	IVIJO – A 7 (From	0.00 m to 50.		THE WAY TO SHARE			programa		
Depth	Chart	Lithology and Alteration	Mineralization	Depth		Au	Ag	Cu	Pb	Zn
(m)	Chart	Ethology and Alteration	wineralization	(m)	(m)	(g/t)	(g/t)	(%)	(%)	(%)
	¥ 	Pillow lavas. Light green to light yellowish green, weakly brecciated. Weathered and weakly argillized. Calcite stringers.								<u>-</u>
	Α,				ĺ					
	/ Y.					ĺ				
1 1	_	6.50 - 7.10	,		İ					
F	Δ <u>Α</u> Δ	Strongly brecciated zone. Calcite stringers and						:	-	
	<u></u>	hematite in matrix. 9.20 - 9.80							:	
10-	Tillille	Strongly argillized.								
	¥};	10.50 - 12.80 Enrichment of copper oxide ninerals.		10.50	2. 30	Tr	Tr	3. 28		0.41
1 1	Y			12 90	2.00	11	11	3. 20		0.41
12.80		Gossan zone, clayey, reddish brown.	Limonite-hematite-clay.	12.80	2. 00	T.,	т	1.20		0.21
		Fragment: light yellowish green argillized		14.80	2. 00	Tr	Tr	1. 30		0. 21
	νΔ	pillow lava.		16.80	2. 00	Tr	Tr	1. 03		0. 16
1	Δ: Υ				2. 00	Tr	Tr	0. 51		0, 05
20-	Δ			18. 80	2. 00	Tr	Tr	0. 11		0. 02
1 "	Δ			20. 80	Z. 00	11	11	0. 11		0. 02
					1.50	Tr	Tr	0. 05		0. 02
22. 30	27777	Siliceous gossan, reddish	Limonite-hematite-	22.30				0.00		
		brown, intensely brecciated.	quartz.	24. 30	2. 00	0. 1	0.8	0. 01	****** .	0. 02
				24. 50	2. 00	Tr	Tr	<0.01		<0.01
	()			26. 30	1. 30	1. 5	5. 6	0. 01	_	0. 01
27.60	Δ	Gossan zone, strongly argillized, reddish brown.	Hematite-limonite-clay.	27. 60						
29.80 30-	Δ.	Pillow lavas, light yellowish		29. 80	2. 20	0. 3	2.6	0. 23		0.10
		green to yellowish brown, chloritized and weakly silicified. Brecciated and			2. 40	Tr	Tr	1. 02		0.16
	$\overline{\mathbf{v}}$	fractured. Quartz-calcite- hematite veinlets and		32. 20						
1	~	stringers dominant. 29.80 - 32.20	İ	34. 90						
		Enrichment of copper oxide minerals along fractures.		36. 10	1. 20	0. 1	1.4	0. 38		0. 05
	v) _	33.20 Quartz-calcite-hematite		00.10						
1		veinlet 0.03m. 33.80	e de la companya de l							
40-	ΔΔ	Quartz-hematite veinlet 0.02m (vertical).	ļ							
	٠ ٧٧	34.90 - 36.10 Argillized and sheared zone								
	\v	with copper oxide minerals along fractures.	n na na na na na na na na na na na na na							
	<u>`</u> `	38.40 - 40.00 Strongly brecciated.								
	۷	41.60 Quartz-hematite vein 9.06m.								
	_ v		·							
	~ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \									
48. 90 50		Pillow lavas, dark green to green, weakly brecciated.		:						
10	٧	Or cont. Acuttly proportion.					ــــــــــــــــــــــــــــــــــــــ			<u> </u>

Hole		MJO – A 7 (From	50.00 m to 100	.30 m)		e distribute de la constitución de la constitución de la constitución de la constitución de la constitución de	rgespannethingsmick	·	
Depth (m)	Chart	Lithology and Alteration	Mineralization	Depth (m)			Ag (g/t)	Cu (%)	Pb (%)	Zn (%)
ann airte de accen	v \	Hematite in matrix. Guartz stringers.		7.11					and in the same	
63. 00	v -	Pillow lavas, light yellowish to brownish green. Alternation of aphanitic and medium-		W						
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	grained lavas. Brecciated in places. Fractures and matrix are filled with hematite. Variole like texture in places				·				
60-	V	57.60 - 57.90 Pillow breccia. 58.00 Sheared zone with chlorite								_
	Δ_V V\Δ	0.05m 60.30 - 62.80 Pillow breccia, chlorite in matrix					-	:		
		62.75 - 62.90 Fractured zone with quartz-calcite-hematite veinlets. 64.35 - 65.40 Quartz-hematite veinlets and								
	1 / 12	later stage calcite veins.								
70 <u>-</u>	////	70.20, 72.80, 73.30, 74.30, 77.40 Quartz-hematite veinlets 0.01 - 0.03m.								
	11/2/	·								
	1 V V									
80-) () () () () () () () () () (80.30 - 80.50 Fractures filled with quartz stringers. 82.10 - 82.50 Several quartz-hematite veinlets.								
	v v	83.30 Quartz stringers.								
_	v	87.90 - 100.30 Poor veinlets								
90-	v v	:								
-	V									
-	٧	:		·						
100	V V	100.30 m End of hole.								

Hol		MJO-A8 (From	0.00 m to 50.						
Depth (m)	Chart	Lithology and Alteration	Mineralization	Depth (m)	Au (g/t)	Ag (g/t)	Cu (%)	Pb (%)	Zn (%)
	0.00	Gravel and sand (terrace deposits). Gravel: boulder of harzburgite >> gabbro. 0 - 27.50 Poor core recovery.							
10-	.0.0.0								
			:						
20-	.0.0.								
-			·						
27.50 30- 30.25		Gravel and sand, white to whitish brown, cemented with calcite. Gravel: subrounded pebble to granule. Gravel and sand, light greenish			·				
35. 10 -	* () () () () () () () () () (brown, cemented with calcite. Gravel: angular to subrounded cobble to granule. Doleritic massive lavas, green, with calcite stringers. Weakly fractured.					٠		
37. 50 40-	У , Y У , Y	Pillow lavas, green to dark green, weakly brecciated. Amigdal filled with zeolites							
	x .	Hemsatite-white clay vein.					-		
50	¥								

Hole		MJO-A8 (From 5	50.00 m to 100	.00m)		. :			
Depth (m)	Chart	Lithology and Alteration		Depth (m)	D.L.	Au (g/t)	Ag (g/t)	(%)	Pb (%)	Zn (%)
53. 80	Х Х Х	Pillow lavas, dark green and dark brownish green in part. Brecciated to weakly			<u> </u>					
60-	X X X X X X X X X X X X X X X X X X X	brecciated. Chloritized and hematized in part. Fractures filled with quartz, hematite and calcite. Matrix of pillows: green clay minerals in places. 54.70 - 54.90 Sheared and argillized zone with hematite. 59.50 - 59.55 Hematite. 62.65-62.80, 65.60-65.70								
70-	X X X X X X X X X X X X X X X X X X X	Quartz veins. 63.30 - 70.60 Amigdal in places filled with quartz and zeolite. 65.10 Quartz vein 0.02m. 72.70 - 72.90 Brecciated zone filled with calcite.								
80-	Y \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	76.80 - 77.70 Pillow breccia. 78.95 Quartz-hematite veinlet.								3
90-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	84.60 - 84.70 Quartz-hematite vein 0.07m. 88.00(t) - 126.70 More closely packed pillow lavas.								

Hole		MJO-A8 (From 1	00.00 m to 150				historia dell'accessoria			- المالية
Depth (m)	Chart	Lithology and Alteration	Mineralization	Depth (m)	D.L. (m)	Au (g/t)	Ag (g/t)	Cu (%)	Pb (%)	2n (%)
-	x /	[0].95 Quartz veinlet 0.02m								
	Y \	105.20 - 105.30 Quartz-hematite vein.					-			
- 110	Y	107.40, 107.55 Quartz-hematite veinlets. 107.50(±) - 125.70 More deep green in color. 108.20								
	ν)-	Quartz-hematite veinlets. 111.30 - 111.35 Quartz-hematite vein.								
	\	:								
120~	\ <u>\</u>	121.00 Quartz-hematite veinłet.								
107.70	X \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	124.40, 128.05, 126.20 Quartz-hematite veinlets (0.02 - 0.03m).								
125.70 128.101 130-	χ	Pillow lavas, dark green. Strongly brecciated and chloritized 127.70, 128.10 Quartz-hematite veinlets. Pillow lavas, dark green and								
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	dark brownish green in part. Chloritized and hematized. Fractures filled with quartz. calcite and hematite. 132.90 - 133.00 Quartz-hematite zone. 136.60 - 138.40								
140-	// // K.	Amigdal texture. 138.40-138.50, 140.10-140.40 Quartz-calcite veins (vertical).								
	X			-						
-	, Y								:	
150	/ .~									

Hole No. MJO-A8 (From 150.00 m to 200.00 m)

Hole	No.	MJO-A8 (From)	150.00m to 200	0.00m)	·				
Depth (m)	Chart	Lithology and Alteration		Depth (m)	D.L.	Au (g/t)	Ag (g/t)	Cu (%)	Pb (%)	2n (%)
	X X	150.90. 152.70 Hematite veinlets.								
	, х , х	(55.00(±) - 179.10 Pillow margin: hematized,								
160-	¥),									
	X,									
	У <u>,</u> ,									
170-	,' ¥ 									
	<u>ν</u> χ							·		
179.10	Y \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\									
180-	Υ Δ Υ Υ Α Υ	Brecciated pillow lavas, dark green to brown. Chloritized, hematized and brecciated. More intense alteration than upper pillow lavas.								
183. 90_ 184. 85	Δ ¥ []][][][][][][][][][][][][][][][][][][Hematite zone (hematized pillow lavas). Reddish brown brecciated. Silicified, strongly	Pyrite disseminations. Chalcopyrite-pyrite- quartz stringers in	184. 85 186. 85	2. 00	Tr	Tr	0. 07	<u> </u>	0. 05
	Δ	chloritized and brecciated zone with stockwork mineralization. Green.	places.	188. 85	2. 00	Tr	Tr	0. 24	. .	0. 02
190-	Δ		102.20	190.85	2. 00	Tr	Tr	0. 12		0. 02
	Cp-py		l92.20 Chalcopyrite-pyrite- quartz stringers and veinlets.	192. 85	2. 00	Tr	Tr	0. 20		0. 02
	Cp-py-gtz		196.00	194. 85	2.00	0.2	1.2	0. 67		0. 05
	Δ		Chalcopyrite-pyrite- quartz in matrix.	196, 85	2. 00		0. 5	0.68		0. 02
200	Δ Cp			198.85	2. 00	0. 2	1.0	1. 15		0.10

Hole No. MJO - A8 (From 200, 00 m to 240, 05 m)

Hole	e No.	. MJO – A 8 (From 2	200.00 m to 240							
Depth		List of sure and Alsonation	A A 1 3 1 1 1	Depth	D.L.	Au	Ag	Cu	Pb	Zn
(m)	Chart	Lithology and Alteration	Mineralization	(m)		(g/t)	(g/t)	(%)	(%)	(%)
	94799 N						سلمساهم	- in a section		
1	A::::-	1		200.85	 				L	
-	1-: 5-		201.80		2. 00	0. 1	1.0	1. 03		0, 03
	100 miles		Chalcopyrite-pyrite	202.85	2, 00	0. 1	1.0	1.00		0.00
	10 1 M		in matrix. 202.48		•		Į į			
			Chalcopyrite-pyrite.		2. 00	Tr	Tr	0.65		0. 02
	· X * Y >		charcopyrite pyrite.	204. 85						
	1.25%				2. 00	Tr	Tr	0. 50		0. 26
				206.85	Z. UU	11	11	0. 50		0. 20
1 .	Δ΄, Δ΄	ĺ		400.00		·				
1 1	3.33				2.00	Tr	Tr	0.67		0.10
209.70	XXXX			208.85	n or	m.	T.,	0 00		0.05
210-		Strongly chloritized and		209.70	0. 85	Tr	Tr	0.08		0. 05
210.30	eri inden sa	sheared zone.								
	٧	Pillow lavas, dark green at								
1 -	`	the top and green, weakly								
1 1		brecciated. Chloritized and								
	~ V	hematized. Hematite in matrix.								i
1 1	\	A few quartz and quartz-								
	ا ,	hematite stringers.								
	٧							.		
	i	[
	V	Ì		ļ i						
1 1	_\`\									
1 1										
220-	٧			ļ				İ		
	~-/~									
		221 70 222 44								
		221.70 - 223.20								
		Quartz, quartz-hematite and quartz-calcite stringers and	 							
]	y	yeinlets dominant zone.	1							
]]	, i	retureco dopluant zone.								
	``,									
1 1	· V	226. 50					Ì			
1		Quartz-calcite veunlet 0.01m.		!				i i	İ	
		227. 10								
1	V	Quartz-hematite veinlet						, ,		
	` `	0.03%.								
230-		227. 60	•			,				
		Quartz-calcite-hematite	ļ							.
1 1	, , ,	veinlet 0.04m.	}							
1		232.40 - 233.50								
		Quartz veinlets dominant zone	İ							
1 4	<u> </u>	More strongly chloritized	ļ							
		and weakly sheared.		1				1		
		232,40 - 232,60	•				.	}		
	γ̈	Silicified-quartz vein.	·	i		r = 1				
1 1		234: 90								ļ
	ان ا	Quartz-veinlet 0.01m.						ļ		
	` '			Ì		-		l		
1	v, -	240.05 m End of hole.		[
240-	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	and of note.								
240.05					ļ					
				1						j
]			
1 1) ')]	}	1	}	1		
-				1	Ì				'	i
		N.								
					- [l	l	į		
] 1]]]]	.	
				1				:	l	
				ļ	- 1			·		
{			į		ļ		ļ	ļ		
250				1				Ì		
لتنت	أحصيب									

Hole		MJO - A9 (From	0.00 m to 50					<u> </u>		
Depth (m)	Chart	Lithology and Alteration	Mineralization	Depth (m)		Au (g/t)	Ag (q/t)	(%)	Pb (%)	2n (%)
angergyphine statistic für the state.		Casing. No recovery.	Old Control of the C		<u></u>					
				}						
3.00	0.00	Gravel and sand (terrace								
	° ° O.	deposits), light green to brown.								
•		Gravel: harzburgite and gabbro (boulder to								
	0.0	cobble). Matrix: sand and white clay								
- 10-				Į 					İ	
10	0.00									
-	0.0									
-	0.0.	·								
_	0			ŀ						
	0.0									
18.95	• 0.•									
20~	V 0 0	Gravel, sand and soil. Light brownish gray.								
21.00	ره بر در در	Gravel: angular pebble to granule. Gravel and sand. Rounded								
	, 6 , 6 , 6 6 , 9 , 6	cobble to pebble. Cemented with calcite.		<u> </u>						
24.00-	* \ _	Doleritic massive lavas, light green. Fractures								
-	>	filled with dominant calcite and hematite. Weakly								
_	*\	hematized and chloritized.								
									٠	
30- 31. 20	V H	Bottom: strongly brecciated (0,15m).								
-	V. K	Pillow breccia, dark brownish green. Epidotized and								
_	γ(Δ	chloritized. Dominant calcite and hematite in matrix.								
	5,1					•				
-	Δ .V									
-	'N' _V	38 90 Calcite vein.								
40-	Δ\.V	40.10 Calcite and white clay								
	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	vein.								
42.20	¥, <	Pillow lavas, yellowish green. Brecciated and fractured.								
-	\`~,	Weakly epidotized. Fractures filled with hematite and								
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	calcite.	:							
	, X - / -	Bottom 0.70m: strongly								
49.10	* * * *	brecciated.								
50	'A' \			L			L			

Hole No. MJO-A9 (From 50.00 m to 100.00m)

Hole		MJO-A9 (From !	50.00 m to 100				***********			
Depth	Chart	Lithology and Alteration	Mineralization	Depth		Au (~ 4)	Ag	Cu	Pb	Zn
(m) 53. 10	Δ - Δ · Δ · Δ ·	Pillow breccia, dark brownish green. Strongly hematized and weakly chloritized. Fractures with hematite and calcite. Pillow layas and pillow		(m)	(m)	(9/1)	(g/t)	(%)	(%)	(%)
60	x X X X X X X X X X X X X X X X X X X X X X X X X X X X X	breccia in part. Brecciated and weakly chloritized. Fractures filled with quartz. calcite and hematite. Calcite and zeolites spots in places. 56.85 - 56.90 Hematite-calcite vein. 57.15 (0.04m) Calcite-hematite vainlet								
70-	K K K K K K K K K K K K K K K K K K K									
80-	N N N N N N N N N N N N N N N N N N N	75.50 - 76.10 Pillow breccia.								
88. 70 89. 40 90-		86.20 - 88.70 More chloritized 88.30, 88.50 - 88.60 Zeolites-quartz-hematite vein Strongly chloritized sheared zone with quartz stringers. Argillized. Pillow lavas, brecciated, dark green to dark brownish green. Chloritized and silicified. Quartz-hematite stockwork with no sulfides	Pyrite disseminations.	88. 70 89. 40	0.70	Tr	Tr	0. 06	Pitta .	0. 21
100	次次	·	·							

Hole	e No.	MJO – A 9 (From 1	100.00 m to 150	,20m)					
Depth (m)	Chart	Lithology and Alteration	Mineralization	Depth (m)	D.L.	Au (g/t)	Ag	Cu (%)	Pb (%)	Žn (%)
102.30	※	10).90 - 102.20 Quartz-hematite network vein. Pillow lavas, brownish green		(11)	(111)	(9/4)	(9/4)	(/0)	(70)	(70)
-	V \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Chloritized, hematized and weakly silicified. Quartz stringers.								
110-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	109.50 - 109.60 Quartz-hematite vein. 110.10 Quartz veinlet 0.03m. 111.30 Quartz veinlet 0.02m.								
	/ /	113.70 - 113.85 Quartz-hematite vein								
117.80	V ~ A	Weakly brecciated at the bottom. Pillow breccia, brownish green. Hematized, chloritized and								
120-	Δ) Δ	silicified. Quartz stringers along fractures and in matrix.								
123.00) /Δ v ~	Pillow lawas, brownish green, weakly brecciated.								
- -	V A A A A	Chloritized, hematized and weakly silicified. Quartz- hematite and quartz stringers. 126.00 - 127.40 Pillow breccia.				-				
130-	`\\ `\\									
- -	×	133.20-133.25.133.60-133.65 Quartz-hematite vein.								
137.70	V	136.60 - 136.75 Quartz-hematite vein. 137.10 Quartz veinlet 0.02m.								
140-		Same pillow lavas with more intense quartz-hematite stockwork veins and veinlets. Chloritized and strongly								
-	(V)(V)	silicified. Light brown. 141.90 Calcite vein 0.03m.								
144.60		Pillow lavas, dark green to dark brownish green. Fractures filled with quartz and				÷				
150	v \-	hematite veinlets and stringers. Chloritized and weakly silicified. 150.20 m End of hole.						:		
100	V	190. go is pire of pove.	A 5.7				<u> </u>	<u></u>	<u> </u>	

Hole No. MJO-A10 (From 0.00 m to 50.00 m)

Hole	iyo.	MJO-A10 (From	0.00 m to 50							
Depth				Depth	D.L.	Au .	Ag	Cu	Рb	Zn
(m)	Chart	Lithology and Alteration	Mineralization	(m)		(g/t)		(%)	(%)	(%)
•	, Y , Y , Y	Pillow lavas, light green, weakly brecciated. Weathered. Fractures filled with hematite and calcite.								
	Y/	6.65 - 6.80 Hematite veins.								
7.20	_ ¥ Δ =	6.80 - 7.20 Enrichment of copper oxide minerals along fractures. Strongly argillized and		7,20	2. 40	Tr	Tr	0.65		0. 01
9.60 10-	Z 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	weathered zone, white to brown with limonite and hematite. Siliceous gossan, reddish brown	Limonite and hematite.	9,60			1.9	0. 00		<0. 01
	Δ	and white, intensely brecciated.		11.60	2. 00 2. 00		0.9	0. 01	borgan, market	<0. 01
				13.60	2. 00		1.3	0. 03		<0.01
				15.60	2. 00	0. 2	2. 5	0. 02		<0. 01
				17.60 19.60	2. 00	0. 5	3. 2	0. 03		<0.01
20-				21. 60	2. 00	0. 3	5. 9	0. 01		<0. 01
			·	23. 60	2.00	0.1	2.2	0. 03		<0. 01
26 10				25. 60	2. 00 0. 90	1. 8 5. 4	5. 7 12. 9	0. 06 0. 03		<0. 01 <0. 01
26.50		Cave zone.		28. 50 28. 50						
30-				30. 50	2. 00	3. 7	16. 0	0. 05		<0. 01
				32. 5 0	2. 00	1.2	7.7	0. 05		<0. 01
				34. 50	2. 00 1. 50	0. 7	3.9 5.6	0. 09 0. 06	_	<0. 01 <0. 01
36. 00 37. 50	STATES AND	Cave zone.		36. 00 37. 50						
37. 90- 39. 10 40		Pillow breccia, brownish green. Argillized and weathered. Pillow lavas, yellowish green,		37. 90	-0. 40	- ir -	- Tr -	-0. 15		<0. 01
407	v (v (v (v (v (v (v (v (v (v (v (v (v (v	strongly chloritized and fractured. Fractures filled with dominant quartz-hematite- calcite veinlets and stringers. Hematite and dark green clay minerals in matrix. Variole like texture.								
	こいくいい	39.10 - 41.85 Weathered with limonite along fractures. 42.30 Quartz-hematite veinlet.								
50	, , v					,	·		· · · · · · · · · · · · · · · · · · ·	

Hole No. MJO-A 1 0 (From 50.00 m to 100.00m)

Hole		MJO-A10 (From	50.00 m to 100							
Depth	Chart	Lithology and Alteration	Mineralization	Depth		Au	Ag	Cu	Pb	Zn
(m)				(m)	(m)	(<u>g/t)</u>	(g/t)	(%)	(%)	(%)
	## () \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	50.10 Quartz-hematite-calcite veinlet 0.03 m.								
) 0300									
	ジバ	56. 60					٠.			
		Quartz-hematite veinlet 0.04 m. 58.00								
60-	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	Quartz-hematite veinlet 0.02 m.								·
-	生がくない						:			
65. 80 __	_	64.40 Quartz-hematite caicite veinlet 0.03 m.								
	۱، ۱، ۱، ۱، ۱، ۱، ۱، ۱، ۱، ۱، ۱، ۱، ۱، ۱	Pillow breccia, yellowish green to dark green, chloritized and hematized (same lava flows as above). Variole like texture. Many quartz-hematite stringers.						:		
70-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Hematite in matrix. Fractures filled with calcite.								
71.75 72.00	v	Light green aphanitic rock (pillow margin ?). Pillow lavas, green to dark	71.60 - 72.00 Calcite veinlets with native copper.	-						
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	green, chloritized and hematized. Fractures filled with quartz, hematite and calcite. Hematite in matrix.								
	. v	77.30 Quartz-hematite veinlet 0.01 m.								
80-	> /									
	v (``				;					
-	o™ o o	Thick hematite in matrix.								
	v									
90-	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	91.85								
-	> \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Calcite stringer 0.01 m. 94.40 - 94.65								
-	V /	Hematite dominant in matrix.								
10/	~ v				-					
100							L	ــــــا	L	L

Hole No. MJO-A10 (from 100.00 m to 120.55 m)

Hole	J IYO.	MJO-A10 (From I	00.00 m to 120			-		-	-	
Depth	Chart	Lithalamy and Altaration	NAImanillandian	Depth		Au	Ag	Cu	Pb	Zn
(m)	Chart	Lithology and Alteration	Mineralization	(m)	(m)	(g/t)	(g/t)	(%)	(%)	(%)
	V		<u> </u>						معمل سيند	
		101.20 - 102.20			Ì	1	l			
	. 🛕 🛕	Pillow breccia.								
	V	Hematite in matrix.								
1 1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	104.35 - 104.55				ļ		ļ		
104 65	V	Quartz-hematite vein (fault?)				ŀ	[
104, 65		Pillow layas, dark green.								
	1/-	weakly brecciated. Chloritized								
	21	and silicified. Fractures								
1) v	filled with quartz, hematite								
1 -		and calcite. Hematite in								
1 1		patrix.								
110-	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						1			
110-	CONTRACTOR	110.30 - 110.50						<u>'</u>)
	1 ~ V	Strongly brecciated and		1			Ì			
		sheared zone. Matrix filled with quartz, hematite and					1			
1 1	V . /	green clay minerals.								
}	バン	3					i			
1	٠١. ن	İ		ļ						
	< \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	115.10				,	•	. 1		
	・・・	Quartz-hematite stringer 0.01 m.		[[
[]	٧ `	114.20 - 120.55								
		Vesicles filled with quartz.								
	_` <u>`</u>	118,60								
	٠.	Quartz-hematite stringer 0.01 m.								
120-	ψ··	120.55 m End of hole.								
120.56										
								İ		
1 (ļ	·	, !		į		-,			, ,
1 1										
			į							Ì
(ļ		. ·		,		į			
]]										
	i	·								
1	Į		i							
130-	-									
1										
			i							
	}		ļ							
1 .]	[į	,		İ					
[1									
-	ļ									
		į								
			ļ							
,,,		ľ		•						
140-										
]		Ì						Ì
4										
		_				.				
										·
] 1		1		}	Ì					
]			İ		[
-				.		i				
]		_		. [
				}	1	1				
]										
150	ļ			ļ	İ					
1										

Hole No. MJO-A11 (From 0.00 m to 50.00m)

Hole		MJO – A 11 (From	0.00 m to 50	.00m)					
Depth (m)	Chart	Lithology and Alteration	Mineralization	Depth (m)		Au (g/t)	Ag (g/t)	Cu (%)	Pb (%)	Zn (%)
0.75	· · · · · · · · · · · · · · · · · · ·	Soil and gravel, overburden. Doleritic massive lavas, yellowish green. Weakly breceiated.								
4.00-		Pillow lavas, light yellowish green. Calcite and hematite stringers, Brecciated and								;
		epidotized in places. 5.10 - 5.00 Weakly argillized. 6.00 - 6.95								
10-	ν, Δ ν Δ ΕΞΞΕ	Strongly fractured with calcite veinlets and stringers. 7.95 - 8.15								
	ΥΔ΄ Δ΄///Δ΄	Hematite and calcite in matrix. 8.90 - 9.90 Pillow breccia. Calcite fills fractures in matrix.								
,	, X	10.25 - 10.80 Sheared and argillized zone. 11.70 - 13.30 Strongly brecciated zone.	15.15 Quartz-hematite veinlet 0.02m.							
18. 95	Λ ,	Hematite/calcite in matrix. 13.30 - 13.70 Brecciated/argillized zone. Doleritic massive layas, light	17.20 Quartz-calcite veinlet 0.01m.							
20 -	*	green to yellowish green, brecciated in places. Fractures filled with calcite and limonite.								
24. 00-	× (×	19.40 Quartz-calcite veinlet 0.02m. Pillow lavas, light green.		24. 00						
-		brecciated Fractures filled with limonite. Copper oxide minerals along fractures.		26. 00	2.00	0.1	1.5	3.60	_	0. 10
27. 65 28. 20		Argillized zone, bleached, whitish green.		27. 65 28. 20	1.65	Tr	Tr	3. 98		0. 05
30-	Δ	Siliceous gossan zone, reddish brown, intensely brecciated.	Limonite- hematite- goethite.	30. 20	2. 00		0.8	0. 14 0. 12	<u></u>	0. 01 0. 01
				32. 20	2. 00 2. 00	0. 1 Tr	6. 4 1. 0	0. 12		0. 01
_	<u>'</u> (34. 20	2. 00	5. 6	8. 7	0. 21		0. 03
				36. 20 38. 20	2. 00	1.1	5. 4	0. 07		0. 01
40-				40. 20	2. 00	0. 2	3.7	0. 10		0.01
42. 30		Stockwork zone, intensely	Fine-grained pyrite	42. 30	2. 10	0. 4	19. 0	0. 43		0. 01
	Δ	brecciated and strongly silicified. Hematite in matrix	disseminations and stringers.	44. 30	2. 00	Tr	Tr	3. 10	biochille	0. 01
	Δ			46. 30	2. 00	0.3	2.7	0.66		0. 01
-	Δ			48. 30	2. 00 2. 00		12. 7 5. 8	1. 06 1. 19		0. 01
50	10 M 1 1 1			<u></u>						

Hole No MIO-All (From 50.00 m to 100.65m)

Hole		MJO – A 11 (From	50.00 m to 100			477 h-4794 T-477		to the transmission of the last section of the		
Depth (m)	Chart	Lithology and Alteration	Mineralization	Depth (m)		Au (g/t)	Ag (g/t)	Cu (%)	Pb (%)	2n (%)
	A 5.88	50.00 - 53.35 Hematite dominant.		50.30		*****		schra cadian.	COLUMN ACTION OF	
	Δ	nematite dominant.			2. 00	0. 1	3, 3	0.89		0. 01
	Δ	. •		52.30	1. 05	0. 1	3. 2	1. 39		0. 01
53, 35 53, 70-	TI BATE A	Argillized clay zone, whitish	Weak pyrite disseminations.	53, 35		0. 1	0.0			
33.10	×	green, with hematite. Pillow lavas, medium to coarse	disseminations.							
	V	-grained, dark green, brecciated and chloritized.								
	1~/,	Fractures filled with quartz.								
-	v.	calcite and hematite. Matrix filled with hematite in places								
	~~~	54.60 - 54.65 Quartz-hematite vein 0.05m.		:		!				i
60~	~~ V,	gua de nomeros vota v. vva.			İ	1				ļ
	~\~									
1 1	````		,							
	\`~\\			·				·		
	35	67.50. 67.70 Quartz-hematite veinlets	<u> </u>							
]	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0. Olio.								
	- <u>`</u> v	68.00 Quartz-hematite veinlet			ļ					
68.00-		0.01m. Pillow lawas, aphanitic to								
	v	fine-grained, light green to	,							
70-		light greenish gray. Quartz, calcite and zeolites stringers.						·		
	_ Y	Hematite in matrix. Weakly brecciated in part.			·				,	
	^`	74.60								
	v	Quartz-hematite veinlet 0.03m.	ļ							
	, Y								:	
	\ \ \ \ \	na							·	
		77.65 Zeolites veinlets O.Olm.								
]	٧		4.							
80-	`\					i				
	v ⁻									
1 1										
	٧	84.40 - 87.50								
	(A)	Brecciated in part. Matrix:								
-	2	calcite.								
	77									
-	\	88.20 Hematite in matrix 0.05m.								
	`	HENGLICE IN MICHAEL IN USAN.								
90-	\	91.60 Calcite stringer.		į				.		
91.60	· · · · · · · · · · · · · · · · · · ·	Pillow lavas, green to light								
	Ϋ́	green, medium to coarse- grained. Weakly brecciated.	*				.			
-	/ - V	Matrix filled with hematite.		ļ	ļ					, I
	ý 🔪	Fractures filled with hematite and calcite.							ļ	
-	ر ما س									
97. 20	- V	Pillow breccia, dark green, chloritized. Matrix filled		ļ						
	\\(\)	with hematite. 97.20 - 97.60								
100	ν ' Δ	Quartz-hematite veinlets zone.								
]	Δ. ٧	100.85 m End of hole.	- A62 -							

Hole	No.	MJO - A 1 2	(From	0.00	m to	50.00	n)

TOTOL		MIONALZ (HOIII	0.00 m to 50.	00 111	hiteoria. I		···		51.	
Depth (m)	Chart	Lithology and Alteration	Mineralization	Depth (m)	D.L. (m)	Au (g/t)	Ag (g/t)	Cu (%)	Pb (%)	Zn (%)
		Gravel, sand and soil (terrace deposits). Gravel: harzburgite≫ gabbro, rounded boulder to pebble.								
10-	0. 0.								:	
12. 90		Gravel and sand, harzburgite≫ gabbro, cobble to granule. Cemented with calcite. Upper part: subangular pebble to granule dominant.								
20-										
23.00	10,75,75 6,79,73									
30-	K K K K K K K K K K K K K K K K K K K	Pillow lavas and pillow breccia in places, light brown to light brownish green. Brecciated and dominant fractures filled with calcite and quartz stringers.  26.75, 26.95, 27.10  Calcite veinlets 0.01 - 0.02m  26.10-26.50, 28.10-28.60,  31.60-34.20  Variole texture.								
40-	、メン・メン・、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、			,						
50	X / / \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \									

Hole No. MJO-A12 (From 50.00 m to 100.00 m)

m) Chart Lithology and Alteration Mineralization (m) (m) (g/t) (g/t) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%	Hole		MJO~A12 (From	50.00 m to 100					وسنانيون		
100    Y	Depth	Chart	lithology and Altauntin	Minoralimatian	Depth		Au	Ag	Cu	Pb	Zn
Pillow lawas, green. Brocolated chiertized and hematized in part fried with constitict.  Y country and calcite.  57.20 - 57.30 - 58.36 Metalliferous acdimentary layer.  59.30, 58.46, 52.20 Metalliferous acdimentary layer.  59.30, 58.46, 52.20 Metalliferous acdimentary layer.  59.40	(m)	CHart	Lithology and Afteration	ivimeralization	(m)	(m)	(g/t)	(g/t)	(%)	(%)	(%)
62.70 A V Pillow lawae, grown. Brecolated chloritized and hometized in part, Fractures and matrix are filled with hometic, quartz and calcite.  5.7.20 - 7.3 S Metalliferous societentary ligrer.  5.9.30, 60.40, 62.20 Metalliferous societentary ligrer.  7. A V Pillow lawae, rather measive and matrix and calcite atriogers.  6.3.20 Y Pillow lawae, dark green and sociute grained. Chloritized and sociute grained. Chloritized and sociute grained. Chloritized and sociute grained. Chloritized and sociute grained. Chloritized and sociute grained. Chloritized and sociute grained. Chloritized and sociute grained. Chloritized and sociute grained. Chloritized and sociute grained. Chloritized and sociute grained. Chloritized and sociute grained. Chloritized and sociute grained. Chloritized and sociute grained. Chloritized and sociute grained. Chloritized and sociute grained. Chloritized and sociute grained. Chloritized and sociute grained. Chloritized and sociute grained. Chloritized and sociute grained. Chloritized and sociute grained. Chloritized and sociute grained. Social grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained grained		W			<del></del>						سەئىيىنىدىنىد
Filtor laws, green Recolated to cheritized and besident to part. Fractures and marix a refisite with healtite, quartz and calcite.  17. 20 - 57. 35  Metalliferous sedimentary layer.  28. 10 - 39. 30, 58. 46, 52. 20  Metalliferous edimentary layer.  Y pillor laws, rather mansive and aphantic, light green. Researched in part. Few quartz and calcite atringers.  Y pillor laws, dark green and mcdive grained. Chloritized and seatty hematical Hematite or grained. Chloritized and seatty hematical Hematite or grained. Chloritized and seatty hematical Hematite or grained. Chloritized and seatty hematical Hematite or grained. Chloritized and seatty hematical Hematite or grained. Chloritized and seatty hematical Hematite or grained. Chloritized and seatty hematical Hematite or grained. Chloritized and seatty hematical Hematite or grained. Chloritized and seatty hematical Hematite or grained. Chloritized and seatty hematical Hematite or grained. Chloritized and seatty hematical Hematite or grained. Chloritized and seatty hematical Hematite or grained. Chloritized and seatty hematical Hematite or grained. Chloritized and seatty hematical Hematite or grained. Chloritized and seatty hematical Hematite or grained. Chloritized and seatty hematical Hematite or grained. Chloritized and seatty hematical Hematite or grained. Chloritized and seatty hematical Hematite or grained. Chloritized and seatty hematical Hematite or grained. Chloritized and seatty hematical Hematite or grained. Chloritized and seatty hematical Hematite or grained. Chloritized hematical Hematite or grained. Chloritized and seatty hematical Hematite or grained hematical Hematite or grained. Chloritized hematical Hematite or grained hematical Hematite or grained hematical Hematite or grained hematical Hematite or grained hematical Hematite or grained hematical Hematite or grained hematical Hematite or grained hematical Hematite or grained hematical Hematical Hematical Hematical Hematical Hematical Hematical Hematical Hematical Hematical Hematical Hematical Hemati	1	X \ \D									
Filtor laws, green Recolated to cheritized and besident to part. Fractures and marix a refisite with healtite, quartz and calcite.  17. 20 - 57. 35  Metalliferous sedimentary layer.  28. 10 - 39. 30, 58. 46, 52. 20  Metalliferous edimentary layer.  Y pillor laws, rather mansive and aphantic, light green. Researched in part. Few quartz and calcite atringers.  Y pillor laws, dark green and mcdive grained. Chloritized and seatty hematical Hematite or grained. Chloritized and seatty hematical Hematite or grained. Chloritized and seatty hematical Hematite or grained. Chloritized and seatty hematical Hematite or grained. Chloritized and seatty hematical Hematite or grained. Chloritized and seatty hematical Hematite or grained. Chloritized and seatty hematical Hematite or grained. Chloritized and seatty hematical Hematite or grained. Chloritized and seatty hematical Hematite or grained. Chloritized and seatty hematical Hematite or grained. Chloritized and seatty hematical Hematite or grained. Chloritized and seatty hematical Hematite or grained. Chloritized and seatty hematical Hematite or grained. Chloritized and seatty hematical Hematite or grained. Chloritized and seatty hematical Hematite or grained. Chloritized and seatty hematical Hematite or grained. Chloritized and seatty hematical Hematite or grained. Chloritized and seatty hematical Hematite or grained. Chloritized and seatty hematical Hematite or grained. Chloritized and seatty hematical Hematite or grained. Chloritized and seatty hematical Hematite or grained. Chloritized hematical Hematite or grained. Chloritized and seatty hematical Hematite or grained hematical Hematite or grained. Chloritized hematical Hematite or grained hematical Hematite or grained hematical Hematite or grained hematical Hematite or grained hematical Hematite or grained hematical Hematite or grained hematical Hematite or grained hematical Hematite or grained hematical Hematical Hematical Hematical Hematical Hematical Hematical Hematical Hematical Hematical Hematical Hematical Hemati	1			1	•		}	<u>'</u>	'	'	
of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the	E2 20	Δ, Υ			<b>!</b>		[	Ì			
y part. Fractures and satist are filled with beastite, quartz and calcite.  9. 20 - 97. 30  Motalliferous aciscontary layer.  83. 40  V Julios layes. rather messive and acistic and aphanitic light green. Hematized in part. Few quartz and calcite are in fractures and calcite are in fractures and calcite are in fractures and calcite are in fractures and calcite are in fractures and calcite are in fractures and satist green clay minerals in pillows. Bright green clay minerals in pillows. Bright green clay minerals in pillows. Bright green clay minerals in pillows. Bright green clay minerals in pillows. Bright green clay minerals in pillows. Bright green clay minerals in pillows. Bright green clay minerals in pillows. Bright green clay minerals in pillows. Bright green clay minerals in pillows. Bright green clay minerals in pillows. Bright green clay minerals in pillows. Bright green clay minerals in pillows. Bright green clay minerals in pillows. Bright green clay minerals in pillows. Bright green clay minerals in pillows. Bright green clay minerals in pillows. Bright green clay minerals in pillows. Bright green clay minerals in pillows. Bright green clay minerals in pillows. Bright green clay minerals in pillows. Bright green clay minerals in pillows. Bright green clay minerals in pillows. Bright green clay minerals in pillows. Bright green clay minerals in pillows. Bright green clay minerals in pillows. Bright green clay minerals in pillows. Bright green clay minerals in pillows. Bright green clay minerals in pillows. Bright green clay minerals in pillows. Bright green clay minerals in pillows. Bright green clay minerals in pillows. Bright green clay minerals in pillows. Bright green clay minerals in pillows. Bright green clay minerals in pillows. Bright green clay minerals in pillows. Bright green clay minerals in pillows. Bright green clay minerals in pillows. Bright green clay minerals in pillows. Bright green clay minerals in pillows. Bright green clay minerals in pillows. Bright green clay minerals in pillo	92. 10		Pillow layas, green. Brecciated								
and calcite.  1. 2	1 1	X (			•		į i				
quartz and calcite.  57.20 - 57.38 Metalliferous sedimentary layer.  53.20 V Pillos lavae. rather massive and aphalitic. Light green. Reseatized in part. Pew quartz and calcite arringers.  70 V Reseatized in part. Pew quartz and calcite are in fractures and matrix of pillows.  Fright green clay minerals in pillow matrix.  71.20 - 74.00 Reseatized in matrix of pillows.  Fright green clay minerals in pillow matrix.  72.20 - 74.00 Reseatized in such with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust with vestices (flust		`~/~		·.	<b> </b> `		ļ				
Mataliferous sedimentary layer.  50. 40	1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1				i				
So. 20 — 57. 36  Metalliferous sedimentary layer.  59. 80, 50, 40, 52. 20  Metalliferous sodiments in matrix.  Fillow layer, each eye quarte and calcite stringers.  Fillow layer, dark green and sodium grained. Chloritized and seasily hematical. Hematicity quartz and calcite are in fractures and satists of pillows.  Fight green clay minerals in pillow Batrix.  70. — 73. 20, 74. 0  Quartz veinlets 0.38. 75. 10 — 77. 15. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 — 77. 10 —	1 1	-1~	quartz and calcite.				1				
Metalliferous sedimentary layer.  53.20  Y  Fillow layas. rather massive and ophanitic. light green. Hematized in part. Few quartz and calcite are in frectures and calcite are in frectures and calcite are in frectures and calcite are in frectures and native of pillows.  Beight green clay minerals in pillow sauriz.  73.20.74.40  Vestcles filled with zeolites, quartz and calcite.  78.20. 80.70  Pillow broccia.  79.30  Quartz-hematite valiet 0.03c.  80.2.80  Metalliferous sediments 0.03c.  82.80  Metalliferous sediments 0.03c.  83.6.56.40. 83.50-98.40  Vestcles filled with zeolites and calcite.  80.31.95.20.00  Green clay zone with hematite cyclicie.  Martz-hematite-calcite veinicts.  19.40. 91.45  Quartz-hematite-calcite veinicts.  19.40. 31.45  Quartz-hematite colite of process of the colite of process of the colite of process of the colite of process of the colite of process of the colite of quartz.  Pillow it he colite of process of the colite of quartz.  V  V  V  V  V  V  V  V  V  V  V  V  V	1	X 'Q	F7 00 F7 0F					,			
So. 30, 60. 40, 62. 20 Metalliferous sodiments in matrix.  Fillow layas, rather massive and sphanitic, light green. Hemalized in part. Few quartz and calcite stringers.  Fillow layas, dark green and section grained. Chloritized and weakly hemalized. Hemalized and calcite are in fractures and satix of pillows.  Fight green clay minerals in pillow matrix.  73. 20, 74. 40 Quartz vaindets 0.03e. 75. 10 - 77. 10 Vescles filled with zeolites, numerals and calcite.  80. 20 80, 70 Pillow hemalized.  82. 80 Metalliferous sodiments 0.03e. 83. 80. 84. 88. 50. 90. 40 Vescles filled with zeolites and calcite.  92. 80 Metalliferous sodiments 0.03e. 93. 83. 80. 84. 88. 50. 90. 40 Vescles filled with zeolites and calcite.  92. 80 Metalliferous sodiments 0.05e. 93. 83. 80. 84. 88. 50. 90. 40 Vescles filled with zeolites and calcite. What is a filled with zeolite and guartz.  94. 90. 91. 40. 91. 45 Quartz venicles filled with calcite and quartz.  95. 30 Pillow layas, dark green. Venicles filled with calcite and quartz.  96. 30 Pillow layas, dark green. Venicles filled with calcite and quartz.  97. 00 Pillow layas, dark green. Venicles filled with calcite and quartz.  98. 30 Pillow layas, dark green. Venicles filled with calcite and quartz.  99. 30 Pillow layas, dark green. Venicles filled with calcite and quartz.  91. 40. 41 Pillow layas, dark green. Venicles filled with calcite and quartz.  92. 00 Pillow layas, dark green. Venicles filled with calcite and quartz.  94. 00 Pillow layas, dark green. Venicles filled with calcite and quartz.  95. 70 Pillow layas, dark green. Venicles filled with calcite and quartz.  95. 70 Pillow layas, dark green. Venicles filled with calcite and quartz. Pillow with calcite and quartz. Pillow with calcite and quartz. Pillow with calcite and quartz. Pillow with calcite and quartz. Pillow with calcite and quartz. Pillow with calcite and quartz. Pillow with calcite and quartz. Pillow with calcite and quarty and partly with hematite.	1 .	}						ľ			
50. 30, 60. 40, 52. 20  Metalliferous sediments in matrix.  53. 20  Y  Fillow lavas, rather massive and aphanitic, light green. Hematized in part. Few quartz and calcite stringers.  Fillow lavas, dark green and sodium grained. Chloritized and seasity hematice, quartz and calcite are in fractures and satrix of pillows. Bright green clay minerals in pillow matrix.  73. 20, 74.0 Quartz veinlets 0.03s.  73. 20, 74.0 Quartz veinlets 0.03s.  73. 20, 74.0 Quartz veinlets 0.03s.  73. 20, 74.0 Quartz veinlets 0.03s.  73. 30 Quartz veinlets 0.03s.  73. 30 Quartz hematite voinlet 0.03s.  80. See See See See See See See See See Se	1 1	\ \ \ X									
So. 20  Weight a service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the serv	1 1	\4	layer.								
So. 20  Weight a service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the serv	60-	سر محمد ا	59.80, 60.40, 62.20		İ			•	·		·
53.20  Y  Pillow lavas, rather massive and aphanitic, light green. Henatized in part. Few quartz and coloite stringers.  Pillow lavas, dark green and modium grained. Chloritized and weakly hematized. Hematice, quartz and caloite are in fractures and satrix of pillows.  Bright green clay minerals in pillow matrix.  73.20, 74.40  Quartz veinlets 0,03m. 75.10 - 77.10  Vescicles filled with zeolites.  80.  Whetalliferous sediments 0,03m. 83.80-84.40, 38.50-90.40  Vescicles filled with zeolites and calcite.  78.20 - 30.70  Pillow breccia. 78.30  Quartz-hematite veinlet 0,03m. 83.80-84.40, 38.50-90.40  Vescicles filled with zeolites and calcite.  80.  Whetalliferous sediments 0,03m. 83.80-84.40, 38.50-90.40  Vescicles filled with zeolites and calcite.  91.40, 91.45  Quartz-hematite veinlets  91.40, 91.45  Quartz-hematite veinlets  91.40, 91.45  Quartz-hematite veinlets  91.40, 91.45  Quartz-hematite veinlets  91.40, 91.45  Quartz-hematite veinlets  91.40, 91.45  Quartz-hematite veinlets  91.40, 91.45  Quartz-hematite veinlets  91.40, 91.45  Quartz-hematite veinlets  91.40, 91.45  Quartz-hematite veinlets  91.40, 91.45  Quartz-hematite veinlets  91.40, 91.45  Quartz-hematite veinlets  91.40, 91.45  Quartz-hematite veinlets  91.40, 91.45  Quartz-hematite veinlets  91.40, 91.45  Quartz-hematite veinlets  91.40, 91.45  Quartz-hematite veinlets  91.40, 91.45  Quartz-hematite veinlets  91.40, 91.45  Quartz-hematite veinlets  91.40, 91.45  Quartz-hematite veinlets  91.40, 91.45  Quartz-hematite veinlets  91.40, 91.45  Quartz-hematite veinlets  91.40, 91.45  Quartz-hematite veinlets  91.40, 91.45  Quartz-hematite veinlets  91.40, 91.45  Quartz-hematite veinlets  91.40, 91.45  Quartz-hematite veinlets  91.40, 91.45  Quartz-hematite veinlets  91.40, 91.45  Quartz-hematite veinlets  91.40, 91.45  Quartz-hematite veinlets  91.40, 91.45  Quartz-hematite veinlets  91.40, 91.45  Quartz-hematite veinlets  91.40, 91.45  Quartz-hematite veinlets  91.40, 91.45  Quartz-hematite veinlets  91.40, 91.45  Quartz-hematite veinlets  92.40  1.	"	~ / Vee									
Fillow lavas. rather massive and aphanitic. light green. Heastized in part. Few quartz and calcite stringers.  Fillow lavas. dark green and sective grained. Chloritized and weakly heastized. Heastite, quartz and calcite are in fractures and matrix of pillows. Bright green clay minerals in pillow satrix.  73.20 74.40 Quartz vaincles 0.03m. 75.10 - 77.10 Vesicles filled with zeolites.  80 Whetalliferous sediments 0.03m. 83.80 Waster heastite veinlet 0.03m. 83.80 Waster heastite veinlet 0.03m. 83.80 Waster heastite veinlet 0.03m. 83.80 Waster heastite veinlet 0.03m. 83.80 Waster heastite veinlet 0.03m. 83.80 So-95.40 85.60-90.40 Vesicles filled with zeolites and calcite.  91.40 91.45 Quartz heastite veinlet 0.03m. 83.80 So-95.40 85.60-90.40 Vesicles filled with zeolites and calcite.  91.40 91.45 Quartz heastite veinlet 0.03m. 83.80 So-95.40 85.60-90.40 Vesicles filled with zeolites and minor quartz.  92.00 Vesicles filled vith calcite. Matrix and fractures are filled vith calcite. Matrix and fractures are filled vith calcite and quartz, and partly with heastite filled vith calcite and quartz, and partly with heastite.		× / `	patrix.								
Fillow lavas. rather massive and aphanitic. light green. Heastized in part. Few quartz and calcite stringers.  Fillow lavas. dark green and sective grained. Chloritized and weakly heastized. Heastite, quartz and calcite are in fractures and matrix of pillows. Bright green clay minerals in pillow satrix.  73.20 74.40 Quartz vaincles 0.03m. 75.10 - 77.10 Vesicles filled with zeolites.  80 Whetalliferous sediments 0.03m. 83.80 Waster heastite veinlet 0.03m. 83.80 Waster heastite veinlet 0.03m. 83.80 Waster heastite veinlet 0.03m. 83.80 Waster heastite veinlet 0.03m. 83.80 Waster heastite veinlet 0.03m. 83.80 So-95.40 85.60-90.40 Vesicles filled with zeolites and calcite.  91.40 91.45 Quartz heastite veinlet 0.03m. 83.80 So-95.40 85.60-90.40 Vesicles filled with zeolites and calcite.  91.40 91.45 Quartz heastite veinlet 0.03m. 83.80 So-95.40 85.60-90.40 Vesicles filled with zeolites and minor quartz.  92.00 Vesicles filled vith calcite. Matrix and fractures are filled vith calcite. Matrix and fractures are filled vith calcite and quartz, and partly with heastite filled vith calcite and quartz, and partly with heastite.	1	11									
Pillos lavas, rather massive and sphanitic. Light green, Heastized in part. Few quartz and calcite stringers.  Pillos lavas, dark green and medium grained. Chloritized and weakly heastized. Hemstite, quartz and calcite are in fractures and matrix of pilloss. Brisht green clay minerals in pillow matrix. 73.20, 74.40 Quartz violets 0.03m. 75.10 - 77.10 Vesicles filled with zeolite. 78.20 - 80.70 Pillos breccia. 79.30 Quartz hemstite voinlet 0.03m. 83.80-86.40, 88.50-90.40 Vesicles filled with zeolites and calcite. 79.20 90.00  91.40, 91.45 Quartz hemstite-calcite veinlets. 91.45 - 92.00 Price and party zone with hemstite veinlets. 91.40, 91.45 Quartz hemstite-calcite veinlets. 91.40, 91.45 Quartz hemstite voinlet 0.03m. 83.80-86.40, 88.50-90.40 Vesicles filled with zeolites and calcite. 79.20 Price and minor quartz. 91.40 Price and minor quartz. 92.00 Price and minor quartz. 93.30 Price and minor quartz. 94.30 Price and minor quartz. 95.30 Price striled with calcite. Matrix and fractures are filled with calcite. Matrix and fractures are filled with calcite. Matrix and partiy with hemstite veinlets. 95.70 Price and minor quartz.	62.20	٠, ٧	, i				,				
and aphanitic, light green. Hematized in part. Few quartz and calcite stringers.  Pillow lavas. dark green and green and green green.  Pillow lavas. dark green and green and green and green and green and substitute and quartz and calcite are in fractures and matrix of pillows.  Bright green clay minerals in pillow matrix.  73.20, 74.40  Quartz veinlets. 0.03m.  80. — 15.10 - 77.10  Vesicles filled with zeolite. 78.20 - 80.70  Pillow broccia. 79.30  Quartz-hematite veinlet 0.03m. 82.80  Metalliferous sediments 0.03m. 82.80  Metalliferous sediments 0.03m. 83.50-86.40. 88.50-90.40  Vesicles filled with zeolites and calcite.  78.10  Green clay zone with hematite veinlets.  91.40, 91.45  Quartz-hematite-calcite veinlets.  92.00  Price clay zone with hematite veinlets.  92.00  Rematite zone. brecciated.  Pillow lavas. dark green.  Price illed with zeolites and quartz.  95.70  Rematite zone. brecciated.  Pillow lavas. dark green.  Vesicles filled with calcite.  Matrix and fractures are filled with calcite.  Matrix and fractures are filled with calcite.  Matrix and fractures are filled with calcite.  Matrix and fractures are filled with calcite.  Matrix and fractures are filled with calcite.  Matrix and partiy with hematite veinlets.  95.70	03. 20		Pillow lavas, rather massive		į						
Heastized in part. Few quartz and calcite stringers.  Pillow lavas. dark green and medium grained. Chloritized and weakly heastized. Hemstite, quartz and calcite are in fractures and matrix of pillows. Bright green clay minerals in pillow matrix. 73. 20. 74. 40 Quartz vinlets 0.03m. 75. 10 - 77. 10 Yesicles (illed with zeolites, quartz and calcite. 78. 20 - 80. 70 Pillow Precia. 78. 30 Quartz-hemstite veinlet 0.03m. 83. 80-85. 40. 28. 50-99. 40 Yesicles filled with zeolites and calcite. 78. 20 - 80. 70 Perciated.  90.  91. 40. 91. 45 Quartz-hemstite veinlet 0.03m. 83. 80-85. 40. 28. 50-99. 40 Yesicles filled with zeolites and calcite. 91. 40. 91. 45 Quartz-hemstite veinlet 0.03m. 83. 80-85. 40. 28. 50-99. 40 Yesicles filled with zeolites and calcite. Yesicles filled with prints and minor quartz. 92. 00  92. 00  92. 00  94. 00  95. 30 96. 30 96. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97. 30 97.	1 1	Y									
80- Al Pillow lawas. dark green and medium grained. Chloritized and weakly hesatized. Hematite quartz and calcite are in fractures and matrix of pillows. Bright green clay minerals in pillow matrix.  Y 13.20 74.40 Quartz veinlets 0.03m. 75.10 77.10 Yesicles filled with zeolites, quartz and calcite. 78.20 - 80.70 Pillow breccia. 78.30 Quartz-hematite veinlet 0.03m. 82.80 Metalliferous sediments 0.03m. 83.80-86.40. 85.50-90.40 Yesicles filled with zeolites and calcite. 92.00 Wesicles filled with zeolites and calcite. 92.00 Wesicles filled with zeolites and calcite. 92.00 Wesicles filled with zeolites and quartz-hematite veinlets. 91.40, 91.45 Government of the matrix of pillow price and minor quartz. 92.00 Wesicles filled with zeolites and quartz and fractures are brecois a filled with pyrite and minor quartz. 93.30 Westella filled with zeolites and quartz and partly with hematite veinlets. 94.00 Wesicles filled with zeolites and quartz and fractures are filled with calcite and quartz and partly with hematite veinlets.	) )						] .	] .	] [		
Fillow lavas. dark green and medium grained. Chloritized and weakly hematized. Hematice, quartz and calotice are in fractures and matrix of pillows.  Pright green clay minerals in pillow matrix.  V 32.0, 74.40  Quartz veinlets 0.03m. 15.10 - 77.10  Venicles (filled with zeolites, quartz and calotice.  78.20 - 80.70  Pillow breccia.  93.30  Quartz-hematite veinlet 0.03m. 83.50-85.40, 83.50-90.40  Vesicles filled with zeolites and calotice.  V 39.40, 91.45  Quartz and calotice veinlets.  91.40, 91.45  Quartz benefite calotice veinlets.  91.40, 91.45  Quartz benefite calotice veinlets.  91.40, 91.45  Quartz benefite veinlets.  92.40  93.40  94.40  95.30  95.30  96.30  96.30  96.40  97.40  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50  98.50		V									
Pillow lavas. dark green and modium grained. Chloritized and ready heantized. Hematite, unartz and calcite are in fractures and matrix of pillows. Pright green clay minerals in pillow Batrix.  V. 73. 20, 74. 40 Quartz veinlets 0.03m. 75. 10 - 77. 10 Vesicles filled with zeolites and calcite. 78. 20 - 80. 70 Pillow breccia. 78. 33. 80-86. 40, 88. 50-90. 40 Vesicles filled with zeolites and calcite.  90. 40. 91. 45 Quartz-hematite calcite veinlets. 83. 80-86. 40, 88. 50-90. 40 Vesicles filled with zeolites and calcite.  91. 40. 91. 45 Quartz-hematite-calcite veinlets. 91. 40. 91. 45 Quartz-hematite calcite veinlets. 92. 00 93. 00 94. 00 95. 30 96. 30 97. 00 97. 00 98. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99.	1 ]		Day and day								
Pillow lavas. dark green and modium grained. Chloritized and ready heantized. Hematite, unartz and calcite are in fractures and matrix of pillows. Pright green clay minerals in pillow Batrix.  V. 73. 20, 74. 40 Quartz veinlets 0.03m. 75. 10 - 77. 10 Vesicles filled with zeolites and calcite. 78. 20 - 80. 70 Pillow breccia. 78. 33. 80-86. 40, 88. 50-90. 40 Vesicles filled with zeolites and calcite.  90. 40. 91. 45 Quartz-hematite calcite veinlets. 83. 80-86. 40, 88. 50-90. 40 Vesicles filled with zeolites and calcite.  91. 40. 91. 45 Quartz-hematite-calcite veinlets. 91. 40. 91. 45 Quartz-hematite calcite veinlets. 92. 00 93. 00 94. 00 95. 30 96. 30 97. 00 97. 00 98. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99. 00 99.		, ,	ļ			. :					
The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s		¥ `									
The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s		^ .	<u> </u>								
medium grained. Chloritized and weakly hematized. Hematite quartz and calcite are in fractures and matrix of pillows. Bright green clay minerals in pillow matrix. 73.20. 74. 40 Quartz veinlets 0.03m. 75. 10 - 77. 10 Vesicles filled with zeolites. 78. 20 - 80. 70 Pillow breccia. 79. 30 Quartz-hematite veinlet 0.03m. 82. 80 Metalliferous sediments 0.03m. 83. 60-86. 40. 88. 50-90. 40 Vesicles filled with zeolites and calcite.  91. 40. 91. 45 Quartz-hematite-calcite veinlets. 91. 91. 40. 91. 45 Quartz-hematite-calcite veinlets. 91. 91. 40. 91. 45 Quartz-hematite-calcite veinlets. 91. 91. 40. 91. 45 Quartz-hematite veinlet ore forecal filled with price and minor quartz. 92. 90 Hematite zone. brecciated. Pillow lavas. dark green. Vesicles filled with calcite. Matrix and fractures are filled with calcite and quartz. and partly with hematite with price and minor quartz.		<del>-</del>									
and weakly hematized. Homatite, quartz and calcite are in fractures and matrix of pillows.  Bright green clay minerals in pillow matrix.  73.20,74.40 Quartz veinlets 0.03m. 75.10 - 77.10 Vesicles filled with zeolite. 78.20 - 80.70 Quartz-hematite veinlet 0.03m. 82.80 Wetalliferous sediments 0.03m. 83.80-86.40.88.50-90.40 Vesicles filled with zeolites and calcite.  Y 91.40, 91.45 Quartz-hematite-calcite veinlets.  Y 91.95 - 32.00 Green clay zone with hematite veinlets.  Hematite zone, brecciated.  Pillow lavas. dark green. Vesicles filled with calcite. Marrix and fractures are filled with calcite and quartz. and partly with hematity with a least term and racture are filled with captite and minor quartz.	70-	v~ ~				1	!	1			
quartz and calcite are in fractures and matrix of pillows. Bright green clay minerals in pillow matrix.  73. 20. 74. 40 Quartz veinlets 0.03m. 75. 10 - 77. 10 Yesicles filled with zeolites, quartz and calcite. 78. 20 - 80. 70 Pillow breccia. 79. 30 Quartz-hematite veinlet 0.03m. 82. 80 Metalliferous sediments 0.03m. 83. 80-86. 40. 88. 50-90. 40 Yesicles filled with zeolites and calcite.  91. 91. 40. 91. 45 Quartz-hematite-calcite veinlets.  92. 00 Green clay zone with hematite veinlet. Nassive sulfide ore zone. brecciated. Pillow lavas. dark green. Yesicles filled with calcite. Metalite zone. brecciated. Pillow lavas. dark green. Yesicles filled with calcite. Metalite zone. brecciated. Pillow lavas. dark green. Yesicles filled with calcite. Metalite zone. brecciated. Pillow lavas. dark green. Yesicles filled with calcite. Metalite zone. brecciated. Pillow lavas. dark green. Yesicles filled with calcite. Metalite zone. brecciated. Pillow lavas. dark green. Yesicles filled with calcite. Metalite zone. brecciated. Pillow lavas. dark green. Yesicles filled with calcite. Metalite zone. brecciated. Pillow lavas. dark green. Yesicles filled with calcite. Metalite zone. brecciated. Pillow lavas. dark green. Yesicles filled with calcite. Metalite zone. brecciated. Pillow lavas. dark green. Yesicles filled with calcite. Metalite zone. brecciated. Pillow lavas. dark green. Yesicles filled with calcite. Metalite zone. brecciated. Pillow lavas. dark green. Yesicles filled with calcite. Metalite zone. brecciated. Pillow avas. dark green. Yesicles filled with calcite. Metalite zone. brecciated. Pillow avas. dark green. Yesicles filled with calcite. Metalite zone. brecciated. Pillow avas. dark green. Yesicles filled with calcite. Metalite zone. brecciated. Pillow avas. dark green. Yesicles filled with calcite. Metalite zone. brecciated. Pillow avas. dark green. Yesicles filled with calcite. Metalite zone. brecciated. Pillow avas. dark green. Yesicles filled with calcite. Metalite zone. brecciated. Pillow avas. dark green. Yesi		` \	!								
fractures and matrix of pillows.  Bright green clay minerals in pillow matrix. 73.20, 74.40 Quartz veinlets 0.03m. 75.10 - 77.10 Vesicles filled with zeolite. 78.20 - 80.70 Pillow breccia. 78.30 Quartz-hematite veinlet 0.03m. 83.50-85.40, 83.50-90.40 Vesicles filled with zeolites and calcite. 24. Vesicles filled with benatite veinlets. 91.40, 91.45 Quartz-hematite-calcite veinlets. 91.40, 91.45 Quartz-hematite veinlets 92.00  92.00  92.00  Chalcopyrite ore breccia filled with pyrite and minor quartz.  93.30 Hematite zone, brecciated. Pillow lavas, dark green. Vesicles filled with calcite. Massive sulfide ore zone, brecciated. Pillow lavas, dark green. Vesicles filled with calcite. Matrix and fractures are filled with calcite and quartz. and partly with hematite.		[ [ ]									
Pillows. Bright green clay minerals in pillow matrix.  7	1	( x	=					[			ļ <b>!</b>
Bright green clay minerals in pillow matrix.  73.20, 74.40  Quartz veinlets 0.03m. 75.10 - 77.10  Yesicles filled with zeolites, 20.3 m. 28.00  Pillow breccia. 79.30  Quartz-hematite veinlet 0.03m. 83.60-86.40, 88.50-90.40  Yesicles filled with zeolites and calcite.  Yu  91.40, 91.45  Quartz-hematite-calcite veinlets.  19.40, 91.45  Quartz-hematite-calcite veinlets.  19.40, 91.45  Quartz-hematite-calcite veinlets.  19.40, 91.45  Quartz-hematite-calcite veinlets.  19.40, 91.45  Quartz-hematite-calcite veinlets.  19.40, 91.45  Quartz-hematite-calcite veinlets.  19.40, 91.45  Quartz-hematite-calcite veinlets.  19.40, 91.45  Quartz-hematite-calcite veinlets.  19.50  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.	] ]	<u> </u>	r ·								
10	]	[ ; , ]				:					
73.20. 74.40 Quartz veinlets 0.03m. 75.10 - 77.10 Yesicles filled with zeolites, quartz and calcite. 78.20 - 80.70 Pillow breccia. 79.30 Quartz-hematite veinlet 0.03m. 83.80-86.40. 88.50-90.40 Yesicles filled with zeolites and calcite.  91.40. 91.45 Quartz-hematite-calcite veinlets. 91.40. 91.45 Quartz-hematite-calcite veinlets. 91.40. 91.45 Quartz-hematite-calcite veinlets. 91.40. 91.45 Quartz-hematite-calcite veinlets. 91.40. 91.45 Quartz-hematite-calcite veinlets. 91.40. 91.45 Quartz-hematite-calcite veinlets. 92.00 92.00 Pillow lavas, dark green. 92.00 93.00 94.00 95.30 95.70 V. Veicles filled with calcite. Matrix and fractures are filled with calcite and quartz. and partly with hematite.	] }	<b>-</b> ≚_}									
Quartz veinlets 0.03m. 75.10 - 77.10 Vesicles filled with zeolites, quartz and calcite. 78.20 - 80.70 Pillow breccia. 79.30 Quartz-hematite veinlet 0.03m. 82.80 Metalliferous sediments 0.03m. 83.60-86.40, 88.50-90.40 Vesicles filled with zeolites and calcite.  91.40, 91.45 Quartz-hematite-calcite veinlets. 91.95 - 92.00 Green clay zone with hematite veinlet. 92.00 Weinlets. 91.95 - 92.00 Green clay zone with hematite veinlet. 92.00 Weinlet. 93.00 Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated. Prociated.	1	-	1	ļ							
80-	1 4	.^ ⊻	73. 20, 74. 40			.					
Vesicles filled with zeolites, quartz and calcite.  78. 20 - 80.70 Pillow breccia. 78. 30 Quartz-hematite veinlet 0.03m. 82. 80 Metalliferous sediments 0.03m. 83. 60-85. 40. 88. 50-90. 40 Vesicles filled with zeolites and calcite.  91. 40. 91. 45 Quartz-hematite-calcite veinlets. 91. 95 - 92. 00 Green clay zone with hematite veinlet. 91. 95 - 92. 00 Green clay zone with hematite veinlet. Massive sulfide ore zone. brecciated. Pillow lavas, dark green. Vesicles filled with calcite. Matrix and fractures are filled with calcite and quartz. and partly with hematite.	1										
200   20		2.1									
78.20 - 80.70 Pillow breccia. 79.30 Quartz-hematite veinlet 0.03m. 82.80 Metalliferous sediments 0.03m. 83.80-86.40. 88.50-90.40 Yesicles filled with zeolites and calcite.  91.40, 91.45 Quartz-hematite-calcite veinlets.  91.40, 91.45 Quartz-hematite-calcite veinlets.  92.00 Green clay zone with hematite veinlet. Massive sulfide ore zone, brecciated.  95.30 Pillow lavas. dark green. V- V- V- V- V- V- V- V- V- V- V- V- V-	1 1		Yesicles filled with				-				
Pillow breccia. 78.30 Quartz-hematite veinlet 0.03m. 82.80 Metalliferous sediments 0.03m. 83.80-86.40.88.50-90.40 Vesicles filled with zeolites and calcite.  91.40, 91.45 Quartz-hematite-calcite veinlets. 91.95-92.00 Green clay zone with hematite veinlet. Massive sulfide ore zone. brecciated.  95.70 V We hematite zone. brecciated. Pillow lavas. dark green. Vesicles filled with calcite. Matrix and fractures are filled with calcite and quartz, and partly with hematite.	1	A < -	i i	ļ							
79. 30 Quartz-hematite veinlet 0. 03m. 82. 80 Metalliferous sediments 0. 03m. 83. 80-86. 40. 88. 50-90. 40 Vesicles filled with zeolites and calcite.  91. 40. 91. 45 Quartz-hematite-calcite veinlets.  29. 00 Green clay zone with hematite veinlet.  84. 85. 92. 00 Green clay zone with hematite veinlet.  85. 30 95. 30 95. 30 95. 70 V - Vesicles filled with calcite.  Mematite zone, brecciated.  Pillow lavas, dark green. Vesicles filled with calcite.  Matrix and fractures are filled with calcite and quartz, and partly with hematite.	0.0	~~~									
Quartz-hematite veinlet 0.03m.  82.80  Metalliferous sediments 0.03m. 83.60-85.40. 88.50-90.40  Vesicles filled with zeolites and calcite.  91.40. 91.45 Quartz-hematite-calcite veinlets. 91.95 - 92.00 Green clay zone with hematite veinlet. Massive sulfide ore zone. brecciated. price and minor quartz.  92.00  93.00  94.00  94.00  95.30  95.70  96.30  97.70  97.70  98.30  98.30  99.40  99.50  99.00  99.00  99.00  99.00  99.00  99.00  99.00  99.00  99.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00  90.00	1 804	A) 1-1			l	į			l		
82.80 Metalliferous sediments 0.03m. 83.60-86.40, 88.50-90.40 Vesicles filled with zeolites and calcite.  91.40, 91.45 Quartz-hematite-calcite veinlets. 91.95 - 92.00 Green clay zone with hematite veinlet. Massive sulfide ore zone. brecciated.  92.00 92.00 Hematite zone. brecciated. Pillow lavas, dark green. Vesicles filled with calcite. Matrix and fractures are filled with calcite and quartz.  1040 V hematite zone. brecciated. Watrix and fractures are filled with calcite and quartz. and partly with hematite.		:,,									
Metalliferous sediments 0.03m. 83.80-85.40. 88.50-90.40 Vesicles filled with zeolites and calcite.  91.40, 91.45 Quartz-hematite-calcite veinlets. 91.95 - 92.00 Green clay zone with hematite veinlet. Massive sulfide ore zone, breccia filled with pyrite and minor quartz.  95.30 95.70 V-Vesicles filled with calcite.  Metalliferous sediments 0.03m. 83.80-85.40. 88.50-90.40 Vesicles filled with purite ore breccia filled with pyrite and minor quartz.  92.00 91.00 3.9 26.1 2.95 - 0.26 1.00 3.7 21.4 4.79 - 0.36 1.30 3.3 42.6 6.29 - 2.28 95.70 95.70  96.70 96.70 97.00 98.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.	]	~( , <del>*</del> ]	quartz-nematite veiniet 0,030.		İ						
Metalliferous sediments 0.03m. 83.80-85.40. 88.50-90.40 Vesicles filled with zeolites and calcite.  91.40, 91.45 Quartz-hematite-calcite veinlets. 91.95 - 92.00 Green clay zone with hematite veinlet. Massive sulfide ore zone, breccia filled with pyrite and minor quartz.  95.30 95.70 V-Vesicles filled with calcite.  Metalliferous sediments 0.03m. 83.80-85.40. 88.50-90.40 Vesicles filled with purite ore breccia filled with pyrite and minor quartz.  92.00 91.00 3.9 26.1 2.95 - 0.26 1.00 3.7 21.4 4.79 - 0.36 1.30 3.3 42.6 6.29 - 2.28 95.70 95.70  96.70 96.70 97.00 98.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.	]		82 80								
83. 50-85. 40, 88. 50-90. 40  Yesicles filled with zeolites and calcite.  91. 40, 91. 45 Quartz-hematite-calcite veinlets. 91. 95 - 92.00 Green clay zone with hematite veinlet. Massive sulfide ore zone. brecciated.  95. 30 95. 70  Y  Hematite zone, brecciated. Pillow lavas, dark green. Vesicles filled with calcite. Matrix and fractures are filled with calcite and quartz, and partly with hematite.	1	· ·		1							
Yesicles filled with zeolites and calcite.  91.40, 91.45 Quartz-hematite-calcite veinlets. 91.95 - 92.00 Green clay zone with hematite veinlet. Massive sulfide ore zone, brecciated. Pillow lavas, dark green. Vesicles filled with calcite. Matrix and fractures are filled with hematite.  100  Yesicles filled with calcite and quartz, and partly with hematite.	1 1	/x . ~									
91.40, 91.45 Quartz-hematite-calcite veinlets. 91.95 - 92.00 Green clay zone with hematite veinlet. Massive sulfide ore zone, brecciated.  95.30 95.70 V - Weicles filled with calcite. Matrix and fractures are filled with calcite and quartz. and partly with hematite.  Chalcopyrite ore breecia filled with pyrite and minor quartz.  92.00 93.00 94.00 94.00 95.30 95.30 95.30 95.30 95.70  0.40 0.3 - 2.3 - 0.26 - 0.41		v							l	l	
91. 40, 91. 45 Quartz-hematite-calcite veinlets. 91. 95 - 92.00  92. 00  92. 00  92. 00  Green clay zone with hematite veinlet. Massive sulfide ore zone. brecciated.  95. 30 95. 30 95. 70  V  100  W  100  91. 40, 91. 45 Quartz-hematite-calcite veinlets. 91. 95 - 92.00 Green clay zone with hematite veinlet. Massive sulfide ore zone. brecciated. Philow lavas. dark green. Vesicles filled with calcite. Matrix and fractures are filled with calcite and quartz, and partly with hematite.  92. 00  92. 00  92. 00  92. 00  93. 00  94. 00  95. 30  95. 30  95. 30  95. 30  95. 70  96. 1	[ ]	(T, \; )	i i		. [						
91.40, 91.45 Quartz-hematite-calcite veinlets. 91.95 - 92.00 Green clay zone with hematite veinlet. Massive sulfide ore zone, brecciated.  92.00  93.00 95.30 95.70  Hematite zone, brecciated.  Pillow lavas, dark green. Vesicles filled with calcite. Matrix and fractures are filled with calcite and quartz, and partly with hematite.	1 1	[~, \. <del>x</del> ]	and catette.	ì	Ì					]	
91.40, 91.45 Quartz-hematite-calcite veinlets. 91.95 - 92.00 Green clay zone with hematite veinlet. Massive sulfide ore zone, brecciated.  92.00  93.00 95.30 95.70  Hematite zone, brecciated.  Pillow lavas, dark green. Vesicles filled with calcite. Matrix and fractures are filled with calcite and quartz, and partly with hematite.		_ \	· .							· į	
Quartz-hematite-calcite veinlets. 91.95 - 92.00 Green clay zone with hematite veinlet. Massive sulfide ore zone, brecciated. 95.30 95.70 V Hematite zone, brecciated. Pillow lavas, dark green. Vesicles filled with calcite. Matrix and fractures are filled with calcite and quartz, and partly with hematite.  Chalcopyrite ore breccia filled with pyrite and minor quartz.  92.00 93.00 94.00 94.00 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30	1	ע , ע		İ	i						
Quartz-hematite-calcite veinlets. 91.95 - 92.00 Green clay zone with hematite veinlet. Massive sulfide ore zone, brecciated. 95.30 95.70 V Hematite zone, brecciated. Pillow lavas, dark green. Vesicles filled with calcite. Matrix and fractures are filled with calcite and quartz, and partly with hematite.  Chalcopyrite ore breccia filled with pyrite and minor quartz.  92.00 93.00 94.00 94.00 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30 95.30	1 1	. (	03 40 01 45		ļ				{	ļ	
92.00  92.00  92.00  Green clay zone with hematite veinlet.  Massive sulfide ore zone, brecciated.  95.30  95.70  Whematite zone, brecciated.  Pillow lavas, dark green.  Vesicles filled with calcite. Matrix and fractures are filled with calcite and quartz, and partly with hematite.  Position lavas and partly with hematite.  Position lavas and partly with hematite.  Position lavas are filled with calcite and quartz, and partly with hematite.	]	1.7-		·			İ				
92.00  92.00  91.95 - 92.00  Green clay zone with hematite veinlet.  Massive sulfide ore zone, brecciated.  95.30  95.70  95.70  96.30  97.00  Green clay zone with hematite veinlet.  Massive sulfide ore zone, brecciated.  97.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.00  98.0	9n-				ļ						
92.00 Green clay zone with hematite veinlet.  Massive sulfide ore zone, brecciated.  95.30 Planetite zone, brecciated.  Pillow lavas, dark green. Vesicles filled with calcite, Matrix and fractures are filled with calcite and quartz, and partly with hematite.  Chalcopyrite ore breccia filled with pyrite and minor quartz.  92.00 1.00 3.9 26.1 2.95 — 0.26 1.00 3.7 21.4 4.79 — 0.36 1.30 3.3 42.6 6.29 — 2.28 95.70 1.30 3.3 42.6 6.29 — 2.28 1.30 3.3 42.6 6.29 — 2.41 1.00 3.7 21.4 4.79 — 0.36 1.30 3.3 42.6 6.29 — 2.28 1.30 3.3 42.6 6.29 — 2.28 1.30 3.3 42.6 6.29 — 2.28 1.30 3.3 42.6 6.29 — 2.28 1.30 3.3 42.6 6.29 — 2.28 1.30 3.3 42.6 6.29 — 2.28 1.30 3.3 42.6 6.29 — 2.28 1.30 3.3 42.6 6.29 — 2.28 1.30 3.3 42.6 6.29 — 2.28 1.30 3.3 42.6 6.29 — 2.28 1.30 3.3 42.6 6.29 — 2.28 1.30 3.3 42.6 6.29 — 2.28 1.30 3.3 42.6 6.29 — 2.28 1.30 3.3 42.6 6.29 — 2.28 1.30 3.3 42.6 6.29 — 2.28 1.30 3.3 42.6 6.29 — 2.28 1.30 3.3 42.6 6.29 — 2.28 1.30 3.3 42.6 6.29 — 2.28 1.30 3.3 42.6 6.29 — 2.28 1.30 3.3 42.6 6.29 — 2.28 1.30 3.3 42.6 6.29 — 2.28 1.30 3.3 42.6 6.29 — 2.28 1.30 3.3 42.6 6.29 — 2.28 1.30 3.3 42.6 6.29 — 2.28 1.30 3.3 42.6 6.29 — 2.28 1.30 3.3 42.6 6.29 — 2.28 1.30 3.3 42.6 6.29 — 2.28 1.30 3.3 42.6 6.29 — 2.28 1.30 3.3 42.6 6.29 — 2.28 1.30 3.3 42.6 6.29 — 2.28 1.30 3.3 42.6 6.29 — 2.28 1.30 3.3 42.6 6.29 — 2.28 1.30 3.3 42.6 6.29 — 2.28 1.30 3.3 42.6 6.29 — 2.28 1.30 3.3 42.6 6.29 — 2.28 1.30 3.3 42.6 6.29 — 2.28 1.30 3.3 42.6 6.29 — 2.28 1.30 3.3 42.6 6.29 — 2.28 1.30 3.3 42.6 6.29 — 2.28 1.30 3.3 42.6 6.29 — 2.28 1.30 3.3 42.6 6.29 — 2.28 1.30 3.3 42.6 6.29 — 2.28 1.30 3.3 42.6 6.29 — 2.28 1.30 3.3 42.6 6.29 — 2.28 1.30 3.3 42.6 6.29 — 2.28 1.30 3.3 42.6 6.29 — 2.28 1.30 3.3 42.6 6.29 — 2.28 1.30 3.3 42.6 6.29 — 2.28 1.30 3.3 42.6 6.29 — 2.28 1.30 3.3 42.6 6.29 — 2.28 1.30 3.3 42.6 6.29 — 2.28 1.30 3.3 42.6 6.29 — 2.28 1.30 3.3 42.6 6.29 — 2.28 1.30 3.3 42.6 6.29 — 2.28 1.30 3.3 42.6 6.29 — 2.28 1.30 3.3 42.6 6.29 — 2.28 1.30 3.3 42.6 6.29 — 2.28 1.30 3.3 42.6 6.29 — 2.28 1.30 3.3 42.6 6.29 — 2.28 1.30 3.3 42.6 6.29 —	"	270							Ì	ļ	
Veinlet.  Massive sulfide ore zone, brecciated.  95. 30 95. 70  V - Veinlet.  Massive sulfide ore zone, brecciated.  Pillow lavas, dark green. Vesicles filled with calcite. Matrix and fractures are filled with calcite and quartz, and partly with hematite.  Chalcopyrite ore breccia filled with pyrite and minor quartz.  Chalcopyrite ore breccia filled with pyrite and minor quartz.  93. 30 94. 00 94. 00 95. 30 95. 30 95. 70  O. 26  1. 00 3. 9 26. 1 2. 95  O. 26  1. 30 3. 3 42. 6 6. 29  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 41  O. 4	1	=====	Green clay zone with hematite		1				\ \ \ \ \	1	1
Massive sulfide ore zone, brecciated.  95.30 95.70  We sicles filled with calcite. Matrix and fractures are filled with calcite and quartz, and partly with hematite.  Chalcopyrite ore breccia filled with pyrite and minor quartz.  Chalcopyrite ore breccia filled with pyrite and minor quartz.  93.00  1.00  3.9  20.1  2.93   0.20  1.00  3.7  21.4  4.79   0.36  95.30  95.70  95.70  0.40  0.3  2.3  0.26   0.41	92.00	*********		· 1	92.00			-			
brecciated.  breccia filled with pyrite and minor quartz.  breccia filled with pyrite and minor quartz.  breccia filled with pyrite and minor quartz.  94.00  1.00  3.7  21.4  4.79  0.36  1.30  3.3  42.6  6.29  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41		<b>*************************************</b>		Chalcopyrite ore	93 00	1, 00					
95.30 95.70 Whenatite zone, brecciated. Pillow lavas, dark green. Vesicles filled with calcite. Matrix and fractures are filled with calcite and quartz, and partly with hematite.	(	<b>***********</b>		breccia filled with		1.000	3.7	21.4	4.79		0.36
95.30 95.70  Hematite zone, brecciated.  Pillow lavas, dark green.  Yesicles filled with calcite.  Matrix and fractures are filled with calcite and quartz, and partly with hematite.	1			pyrite and minor	94.00						
95.70 Hematite zone, brecciated. Pillow lavas, dark green. Vesicles filled with calcite. Matrix and fractures are filled with calcite and quartz, and partly with hematite.	05 22		•	1	95 30						
Pillow lavas, dark green.  Vesicles filled with calcite.  Matrix and fractures are filled with calcite and quartz, and partly with hematite.			Hematite zone, brecciated,		95. 70	0.40	- 0.3	$-2.\overline{3}$	- 0. 26 <del>l</del>	. — 🚽	- 0. 41
Matrix and fractures are filled with calcite and quartz, and partly with hematite.	1 35.197	7	Pillow lawas, dark green.			i		1			, 1
100 V filled with calcite and quartz, and partly with hematite.									ļ		
100 V · quartz, and partly with	]	\ \ ~	Matrix and fractures are				ļ		ļ	1	
100   V · · ·   hematite.		` \					l				
	106	(V.): 1	quartz, and partly with	†	j	1	Ì		1	Ì	]
A G A	1001		newallte.			لسحي					

Hole	No.	MJO - A12	(From	100.00 m	to 130,35m)
epthl.					Denth

HOR		MIND-MIZ (FIOIII	100.00 m to 130						-	
Depth (m)	Chart	Lithology and Alteration	Mineralization	Depth (m)	D.L. (m)	Au (g/t)	Ag (g/t)	Cu (%)	Pb (%)	Zn (%)
103.90	V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V	101.80 Calcite-quartz-(hematite) veinlet 0.02m. Pillow lavas with dominant quartz-hematite veinlets and stringers, green to dark green. Yesicles filled with quartz.								
110-	× × × × × × × × × × × × × × × × × × ×	103.90 - 104.74 Brecciated zone with quartz- hematite veins. 105.20, 109.40 Quartz veinlets (0.01 0.02m).								
-	) v	113.40 - 113.80 Hematite dominant zone.				:				
120-	>	118.25 - 118.30 Quartz vein 0.05m. 119.20 - 119.60 Quartz-hematite veinlet zone.								
130-		129.20 - 129.60  Quartz veins and veinlets. 130.25  Quartz veinlet 0.01m.								
130.35		130.35 n End of hole.								
- 140-										
-										
-										
150			Δ65			L	<u></u>	<u></u>		

## Appendix 9

Assay results for gossan and gossan dump samples in area B

Sample		Assay results				
number	Descriptions	Au(g/t)	Ag(g/t)	Cu (%)	Zn (%)	
N501 N502	Gossan dump. Light brown gossan soil with siliceous fragments. Limonite rich. Gossan dump. Reddish brown gossan soil with minor	3. 6	4.3	0. 38	0. 02	
N503	siliceous fragments. Hematite rich. Gossan dump. Light yellowish brown gossan soil.	12. 8	13.2	0. 86	0.01	
N504	Limonite rich.  Gossan dump. Purplish red porous gossan soil with	0. 5	1.4	0. 25	0.01	
N505	minor siliceous fragments. Hematite & goethite rich. Gossan dump. Light yellowish brown gossan soil with	7.4	21. 1	0.68	0. 01	
	siliceous fragments. Limonite rich.	2. 5	6.9	0.30	0. 01	
N506 N507	Gossan dump. Light yellowish brown gossan soil with volcanic fragments. Gossan dump. Mixture of red and light yellowish	5. 8	11. 2	0. 35	0. 01	
N508	brown gossan soil with siliceous fragments.  Gossan dump. Reddish brown gossan soil with	3. 3	8. 0	0.40	0. 01	
N509	siliceous fragments. Hematite > limonite.  Gossan dump. Brown and reddish brown in part gossan	1. 0	2. 5	0.10	0.01	
N510	soil with minor siliceous fragments.  Gossan dump. Red to reddish brown gossan soil with	4.4	3, 8	0.20	0. 02	
иото	minor siliceous fragments.	2. 2	2. 3	0. 12	0. 01	
N511	Gossan dump. Light reddish brown gossan soil with siliceous fragments.	0.6	1.7	0. 26	0.10	
N512	Siliceous gossan. Strongly brecciated. Hematite> limonite>goethite with green copper speck.	0. 5	0. 4	0. 25	0.05	
N513	Siliceous gossan. Intensely silicified and brecciated. Goethite rich.	Tr	Tr	0.21	0. 05	
N514	Siliceous gossan. Strongly silicified and brecciated . Hematite>limonite>goethite.	4.6	8.4	0. 09	0.10	
N515	Siliceous gossan. Strongly silicified and brecciated . Green copper along fractures. Limonite rich.	2. 1	6.3	0.18	0. 01	
N516	Siliceous gossan. Chart origin ?. Brecciated. Goethite rich.	13.7	13. 5	0. 28	0.10	
N517	Siliceous gossan. Strongly silicified and brecciated Goethite rich.	Tr	Tr	0.10	0. 03	
N518	Siliceous gossan. Intensely silicified. Limonite> goethite>hematite.	0. 6	4. 1	0. 08	0. 02	
N519	Gossan dump. Brown porous gossan soil with siliceous volcanic fragments.	Tr	Tr	0. 03	0. 01	
N520	Gossan dump. Yellowish brown and reddish brown gossan soil with siliceous fragments.	0. 8	4.6	0.08	0.01	

Sample		Assay results				
number	Descriptions	Au(g/t)	Ag(g/t)	Cu (%)	Zn (%)	
N521	Gossan dump. Reddish brown gossan soil with silicified volcanics.	2. 2	4, 3	0. 26	0. 01	
N522	Gossan dump. Reddish brown gossan soil with silicified volcanics. Hematite rich.	2.3	2.3	0.32	0.01	
N523	Gossan dump. Reddish brown gossan soil with silicified volcanics.	2. 2	3. 1	0. 19	0. 01	
N524	Siliceous gossan. Dark brown, strongly silicified. Limonite with green copper speck.	Tr	Tr	0.16	0. 01	
N525	Siliceous gossan. Brown and black. Limonite and goethite.	Tr	Tr	0. 32	0. 03	
N526	Siliceous gossan. Brown , brecciated. Limonite	Tr	Tr	0. 23	0. 01	
N527	rich. Siliceous gossan. Brown, limonite>hematite. Brecciated.		Tr	0. 28	0. 01	
N528	Gossan dump. Reddish brown gossan soil with siliceous fragments.	1.0	1.4	0. 32	0. 01	
N529	Gossan dump. Reddish brown gossan soil with siliceous fragments.	1, 1	1.8	0. 37	0. 01	
N530	Gossan dump. Reddish brown gossan soil with siliceous & volcanic fragments. Limonite & hematite.	2.1	2. 9	0.71	0.10	
N531	Gossan dump. Reddish brown gossan soil. Limonite & hematite.	0.9	3. 4	0.60	0. 05	
N532	Gossan dump. Reddish brown gossan soil. Hematite rich.	Tr	Tr	0. 42	0. 02	
N533	Gossan dump. Brownish gray soil with volcanic fragments.	0.9	1.8	1.13	0. 18	
N534	Gossan dump. Reddish brown gossan soil. Hematite rich.	1. 8	3. 5	0. 53	0. 10	
N535	Gossan dump. Reddish brown gossan soil. Hematite rich.	4. 5	3. 1	0.11	0. 01	
N536	Gossan dump. Light reddish brown gossan soil with	m		0.55	0 0-	
N537	fragments. Gossan dump. Reddish brown gossan soil. Hematite	Tr	Tr	0. 55	0. 05	
N538	rich. Siliceous gossan. Dark purplish brown, strongly	0.6	1.7	0.62	0.10	
N539	silicified and brecciated. Siliceous gossan. Red and yellowish brown. Hematite	Tr	Tr	0. 32	0. 01	
N540	rich. Gossan. Dark brown silicified and argillized in	0.7	1.3	0.11	0. 01	
	part.	Tr	Tr	0.40	0. 01	

Sample number	Descriptions	Assay results				
1,0	peset the tons	Au(g/t)	Ag(g/t)	Cu (%)	Zn (%)	
N541	Siliceous gossan. Gray and brownish gray. Limonite rich.	0.8	1.9	0. 08	0, 01	
N542	Siliceous gossan. Dark purplish brown. Hematite > goethite > limonite.	Tr	$ au_{\mathbf{r}}$	0. 24	0. 03	
N543	Siliceous gossan. Dark reddish brown gossan with green copper speck. Hematite rich.	Tr	Tr	0.10	0. 02	
N544	Gossan dump. Light yellowish brown weathered volcanics with limonite.	0.4	1.5	0. 35	0.10	
N545	Gossan dump. Reddish brown gossan soil. Porous soil in part.	1.5	1.7	0. 32	0.01	
N546	Gossan dump. Reddish brown gossan soil with siliceous fragments.	1. 9	2. 3	0. 47	0. 01	
N547	Gossan dump. Dark brown gossan soil with fragments. Limonite rich.	1.6	3. 3	0. 28	0. 03	
N548	Siliceous gossan. Dark purplish gray, strongly silicified and brecciated.	1. 0	1.3	0.12	< 0.01	
N549	Gossan dump. Red gossan soil with volcanic fragments.	5. 8	6. 5	0. 23	< 0.01	
N550	Siliceous gossan. Dark purplish brown, silicified and brecciated.	0.7	1. 9	0.31	0.01	
N551	Siliceous gossan. Dark brown. Goethite and limonite.	0.8	2. 6	0.45	0.10	
N552	Siliceous gossan. Brownish gray silicified and rusty volcanics with green copper speck.	Tr	Tr	0. 28	0. 02	
N553	Slag with green copper speck.	0.5	2. 0	1. 98	0. 01	
N554 N555	Slag. Slag.	0. 7 0. 3	2. 0 1. 5	1. 52 0. 99	0. 03 0. 05	

## Appendix 10

Charged potential in area B

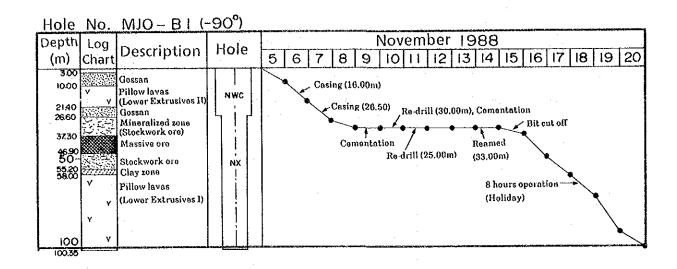
X Y Potential (mV/A)	X Y Potential (mV/A)	X Y Potential (mV/A)
(m) (m) MJO-B1 MJO-B5	(m) (m) MJO-B1 MJO-B5	(m) (m) MJO-B1 MJO-B5
0 1000 22, 7 23, 2	250 300 67, 9 74, 1	700 -200 50.9 54.4
-100 1000 21.8 22.4	300 300 64.6 70.3	800 -200 42.3 44.5 700 -100 49.7 53.5
100 1000 23. 7 24. 8 0 1100 19. 2 19. 7	350 300 60.0 65.7 400 300 53.2 58.7	700 -100 49.7 53.5 800 -100 44.8 48.1
100 1100 20.0 20.6	500 300 50.8 55.3	600 100 53.2 58.3
200 1000 23.9 24.8	300 250 65.9 73.1	700 100 46.8 51.0
300 1000 22, 4 23, 4	350 250 63,1 69,8	700 0 48.8 52.6
200 900 26.8 28.0	400 250 58.4 64.4	800 0 44.1 47.7
100 900 27.4 28.3	450 250 55, 5 60, 9	800 100 44.1 47.6
300 900 26.7 28.1 300 800 30.5 32.5	500 250 51.9 56.9 350 200 65.7 72.8	700 200 45.8 49.7 600 300 46.7 50.7
200 800 31.2 32.9	400 200 59.6 65.4	800 300 41.0 44.4
100 800 31,8 33,1	450 200 56.7 62.1	800 200 42.6 46.0
200 700 35, 9 37, 9	500 200 58, 1 59, 3	900 100 40.5 43.7
100 700 35.5 37.4	550 200 51.6 56.2	1000 200 34.7 37.2
300 700 36.7 39.4	600 200 50.5 55.0	700 300 43.9 48.0 900 300 35.6 38.4
400 700 34.0 36.3 400 800 30.2 32.4	400 150 63. 7 70. 2 450 150 60. 8 66. 8	900 300 35.6 38.4 900 400 33.6 36.2
400 900 27.0 28.7	500 150 56.2 61.7	900 200 36.1 38.7
500 700 32.5 34.8	550 150 54,4 59.6	1000 100 35.1 38.0
500 800 28.7 30.5	600 150 51.8 56.3	1000 0 35.9 38.5
500 900 25.5 27.7	400 100 74.0 82.2	900 0 40.2 43.5
600 700 30.1 32.5	450 100 64.2 70.6	900 -100 41.2 43.9
600 800 26.9 28.8	400 50 76.7 85.3 450 50 67.7 74.5	900 -200 38.6 40.9 300 200 70.6 77.7
700 700 29.1 31.3 700 800 26.2 28.1	450 50 67.7 74.5 500 50 62.2 68.7	250 200 78.8 87.3
800 700 27.5 29.3	550 50 58.7 64.2	250 250 74.7 82.1
800 800 24.7 26.5	500 100 60.1 66.3	200 200 88.2 98.0
900 600 26.8 28.8	550 100 56.2 61.9	200 250 79.1 87.0
800 600 29.6 32.2	600 50 55.1 60.1	200 300 74.3 80.6
900 700 24.5 26.4	600 0 54.7 59.9	150 200 95.6 105.3 150 250 86.7 94.1
1000 700 23.1 24.9 1100 600 22.2 23.8	550 0 58, 2 63, 9 500 0 61, 1 67, 3	150 300 77.4 83.4
1100 600 22.2 23.8 1000 600 24.1 25.9	450 0 69.6 76.9	100 200 104.5 113.1
1200 600 21.0 22.3	400 0 77.5 86.3	100 250 92.7 99.1
1000 500 25.8 27.9	600 -50 57.1 62.8	100 300 80.0 85.8
1100 500 23.8 25.4	550 -50 60.7 66.4	100 350 75.1 80.0
1200 500 22.1 23.8	500 -50 65.4 71.7	150 350 70,7 75.5 50 300 85,3 89.6
1100 400 25,3 27,2 1100 300 26,9 28,9	450 -50 73.0 79.8 400 -50 80.8 89.3	50 300 85.3 89.6 50 450 70.7 73.3
1100 300 26.9 28.9 1000 400 28.4 30.8	600 -100 57.4 62.2	50 -100 154, 7 165, 6
1000 300 30.5 32.7	550 -100 62, 1 67, 7	50 -150 152,8 159.5
200 600 46.1 49.3	500 -100 65.9 71.9	0 -150 167.7 162.7
100 600 47.9 50.4	450 -100 72.7 79.6	-50 -150 182, 1 161, 7
300 600 42.2 44.7	400 -100 81.6 89.6	-100 -150 196, 9 160, 4 -150 -150 202, 7 159, 0
400 600 39.4 42.5	600 -150 57, 1 61, 3 550 -150 60, 9 66, 6	-200 -150 192, 7 152, 3
200 500 52.8 56.5 100 500 58.9 62.3	500 -150 65.7 71.5	-250 -150 157. 1 130. 3
300 500 50.5 55.1	450 -150 72.1 78.0	-300 -150 147.8 123.6
300 400 54.4 59.1	400 -150 81.7 89.3	-350 -150 119.3 103.2
400 500 47.9 52.5	600 -200 57.6 61.9	-500 -100 82, 5 74, 7
400 400 51.5 56.4	550 -200 59.7 64.5	-400 -100 101,5 90.9
500 600 37.4 40.5	500 -200 66.3 71.1 450 -200 71.5 77.8	-400 -50 102, 5 92, 3 -350 -100 117, 1 102, 4
500 500 44.4 47.9 500 400 48.5 52.8	400 -200 83.1 90.5	-350 -50 117, 3 104, 1
600 500 42.4 46.0	550 -250 60.1 64.3	-400 -200 97.3 86.3
600 400 45.0 49.2	500 -250 66. 2 70. 8	-300 -100 145,8 123.2
600 600 33,9 36,5	450 -250 71.5 76.6	-300 -50 138.7 118.7
700 600 32.0 34.5	400 -250 80.3 86.3	-300 -200 142.1 120.0
700 500 38.2 41.7	600 -300 55.6 59.4	-250 -100 151.5 124.3
700 400 40.9 44.8	500 -300 62.8 67.0 400 -300 74.8 79.8	-250 -50 151,8 128,8 -250 -200 148,8 124,2
800 500 34.1 37.1 800 400 37.5 41.0	500 -400 55.4 58.6	-200 -100 184.7 147.9
900 500 29.1 31.2	400 -400 65.7 68.6	-200 -50 169, 7 143. 9
200 450 58.3 62.4	600 -500 46.9 49.1	-160 -50 183.8 155.8
150 450 61.7 65.7	500 -500 51.4 53.3	-150 -100 196. 9 162. 5
100 450 64.9 68.5	400 -500 58.1 60.0	-200 -200 169, 7 138, 2
200 400 63.4 68.2	600 -600 43.1 44.9 700 -600 39.5 40.8	-200 -250 155.9 129.3 -200 -300 129.7 112.3
150 400 66. 1 70. 4 100 400 71. 3 75. 1	700 -500 43.2 44.9	-150 -200 192.1 152.1
250 400 58.9 63.1	600 -400 47.7 50.0	-150 -250 169.0 139.7
200 350 66.7 71.8	700 -400 45.5 47.5	-100 -200 194, 5 157, 3
250 350 62.3 67. <u>7</u>	800 -400 40.5 42.3	-100 -250 -166. 5 141. 5
300 350 59.3 64.5	700 -300 48.6 51.5	-100 -300 141.5 125.1
<u>350 350 55.0 60.1</u>	800 -300 41.7 43.9	<u>-100 -100 195, 1 165, 9</u>

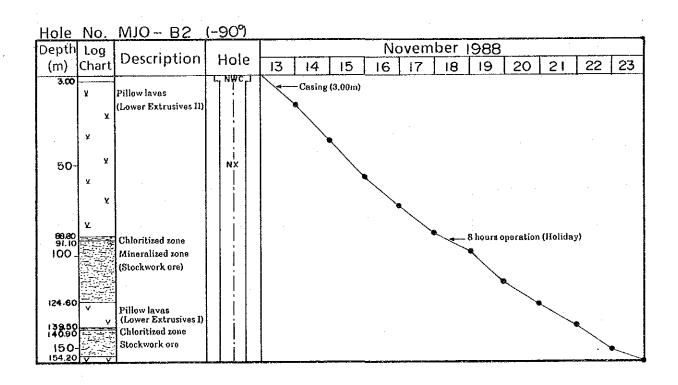
X Y Potential (mV/A)	X Y Potential (mV/A)	X Y Potential(mV/A) (m) (m) MJO-B1 MJO-B5
(m) (m) MJO-B1 MJO-B5 -100 -50 183.5 166.5	(m) (m) MJO-81 MJO-85 -250 150 102.6 98.4	50 250 94, 4 100, 5
-50 -200 164.3 146.5	-200 50 123.2 114.9	0 900 26.3 27.1
-50 -250 153.0 138.9	-200 100 113, 1 108, 9 -200 150 106, 8 103, 3	-100 900 25.9 26.2 0 800 31.3 32.3
-50 -300 138, 2 126, 5 -50 -100 183, 8 166, 1	-200 150 106,8 103,3 -150 50 140,3 133,4	-100 800 31.3 31.6
-50 -50 181. 7 166. 7	-150 100 122.8 120.0	0 700 38.7 39.5
0 -200 157.5 151.6	-150 150 110.4 110.3	-100 700 40.6 40.8
0 -250 147.3 140.3	-100 50 153.7 151.3	-200 700 40.3 40.2 0 600 50.7 51.9
0 -300 136.3 130.4 0 -100 176.6 170.3	-100 100 133.5 133.1 -100 150 117.3 117.5	0 600 50.7 51.9 -100 600 51.8 52.4
0 -50 171.2 171.6	-50 50 149, 2 152, 4	-200 600 50.0 49.8
50 -50 156, 9 166, 8	-50 100 133, 4 137, 1	0 500 64.8 67.2
50 -200 145.6 148.4	-50 150 118.1 121.3	-100 500 64.0 64.7
50 -250 139.1 139.9 50 -300 129.1 128.2	0 50 153.4 158.3 0 100 129.0 139.4	-200 500 58.7 58.1 -300 500 55.2 54.4
100 -200 132, 1 140, 4	0 150 114, 7 121, 7	0 450 75.1 77.3
100 -250 128.3 134.3	50 50 138.5 149.5	-50 450 71.8 73.7
100 -300 119.4 123.8	50 100 127. 9 138. 7	-100 450 71.9 73.0
100 -400 98.1 98.8	50 150 116.5 125.1 100 0 137.0 150.5	-150 450 65.1 65.1 0 400 78.7 81.2
100 -150 140.8 154.8 100 -100 145.4 161.2	100 0 137. 0 150. 5 150 0 120. 8 135. 9	-50 400 77.9 80.3
100 -50 144.2 160.2	200 0 110.4 124.2	-100 400 75.3 76.5
150 ~200 120.5 130.4	250 0 102.9 115.5	-150 400 74.4 74.8
150 -250 115.9 124.5	300 0 93.6 104.0	-200 400 73.0 72.4 -300 400 67.8 66.6
150 -300 113.1 119.7 150 -150 131.5 145.9	350 0 85.4 95.5 350 50 83.8 93.5	50 350 79.7 83.5
150 -100 132.0 147.5	350 100 79.2 88.1	50 400 77.4 80.5
150 -50 129.3 145.3	350 150 69.8 77.3	
200 -200 112.2 121.5	300 50 91.9 103.1	
200 -250 111.4 119.1 200 -300 107.9 114.9	300 100 89.7 100.5 300 150 81.8 91.1	
200 -400 87.1 89.8	300 -100 97.2 106.8	
200 -150 113.5 124.5	250 50 99.0 111.6	
200 -100 118.5 132.0	250 100 100.4 112.9	
200 -50 115.9 130.4 250 -200 105.5 115.1	250 150 86.7 96.7 200 50 107.6 121.3	
250 -200 105. 5 115. 1 250 -150 102. 5 112. 3	200 100 105.0 118.0	
250 -100 106.8 119.1	200 150 99.4 111.2	
250 -50 104.9 118.1	150 150 104.6 116.2	
250 -250 103.1 111.1	150 50 110.7 124.5 150 100 107.4 120.3	
250 -300 96.9 102.9 300 -300 87.3 92.4	150 100 107, 4 120, 3 100 50 125, 2 138, 1	
300 ~400 73.5 76.4	100 100 115.8 128.1	
300 -500 65.6 66.8	100 150 108.6 119.6	
350 -250 86.9 93.5	0 200 106.7 111.6	
300 -250 95.4 102.5 300 -200 98.0 106.2	-50 200 105.3 107.7 -100 200 105.2 105.9	
300 -150 96.6 106.3	-150 200 104.2 102.9	
300 -50 96.3 107.4	-200 200 103.5 100.9	•
350 -200 92.0 99.7	-250 200 94.4 90.9	•
350 -150 92.3 100.9 350 -100 93.1 102.4	-300 200 85.9 81.3 -350 200 80.6 75.9	
350 -100 -53.1 102.4	-400 200 78.1 73.3	
50 0 157.3 167.3	-350 250 75.4 72.1	
0 0 166.6 170.8	-300 250 81.7 78.1	
-50 0 171. 7 165. 7	-300 300 73.3 71.0 -250 250 87.2 84.9	
-100 0 173.0 162.2 -150 0 159.3 145.3	-250 250 67.2 64.5 -250 300 77.8 76.3	
-200 0 148.1 132.1	-250 350 71.1 69.1	
-250 0 135.5 119.3	-200 250 93.5 92.4	
-300 0 128.0 112.8 -350 0 112.7 101.1	-200 300 83.7 82.7 -200 350 77.6 76.8	
-350 0 112.7 101.1 -400 0 104.5 94.1	-200 350 77.6 76.8 -150 250 97.2 96.7	
-500 0 82.0 75.3	-150 300 86.2 86.1	
-400 50 96.7 88.8	-150 350 81.1 81.2	
-400 100 86.3 80.6	-100 250 95.2 96.3 -100 300 88.4 90.5	
-400 150 80.4 75.7 -350 50 104.7 95.5	-100 300 88.4 90.5 -100 350 83.6 84.8	
-350 100 97.9 91.2	-50 250 93.5 96.6	•
-350 150 90.3 84.7	-50 300 86.2 89.1	
-300 50 114.1 104.1	-50 350 83.6 85.6 0 250 93.3 97.5	
-300 100 106.9 99.5 -300 150 98.8 92.5	0 250 93.3 97.5 0 300 85.9 88.7	
-250 50 120.2 109.5	0 350 82.7 85.9	
<u>-250 100 105.3 98.5</u>	50 200 107.7 115.0	

## Appendix 11

Electric field in area B

X Y	MJO-B1	мјо-вѕ	X Y	MJO-B1	MJO-B5	X . Y .	MJO-B1	мло-въ
(m) (m) 1050 50	E  φ 9 196	<u>  [Ε]   φ</u>   10 205	(m) (m) 175 475	E  φ 37 132	$\begin{array}{c c}  & 1E1 & \phi \\ \hline  & 34 & 133 \end{array}$	(m) (m) 275 275	$\begin{array}{c c} &  E  & \phi \\ \hline & 67 & 128 \end{array}$	<u>Ε  φ</u> 60 131
1050 150	9 183	11 180	175 525	16 43	16 138	225 225	79 134	77 136
950 250	7 177	8 182	175 575	23 137	24 136	275 225	39 137	40 142
950 150 950 350	9 171 11 184	9 176 12 186	175 650 125 425	21 113 85 136	18 112 83 136	325 225 225 175	60 140 69 140	55 144 67 147
850 350	10 175	11 179	125 475	32 130	29 131	275 175	72 141	64 146
850 250	11 171	12 175	75 425	56 107	56 106	325 175	44 156	42 161
850 150 750 250	11 172 12 190	12 177 13 197	75 475 75 525	39 123 25 122	35 124 25 118	225 125 275 125	89 143 84 155	80 151 71 159
750 150	9 186	11 186	75 575	27 125	24 119	325 125	34 152	31 158
750 350	17 156	19 156	125 525	33 135	32 136	375 125	35 131	33 137
750 450 850 450	10 159 9 154	11 159 11 153	125 575 75 650	20 120 22 120	21 122 20 116	375 175 325 75	37 139 47 137	31 144 36 148
750 550	11 148	12 152	25 650	18 81	18 87	525 75	61 145	38 142
850 550	9 152	8 149	25 575	22 82	20 85	-75 75	48 76	23 75
750 650 750 750	8 162	10 162 9 148	25 525 25 475	19 69 52 103	19 69 49 104	-125 75 -125 25	61 81 87 59	39 37 41 23
750 750 750 850	8 152 10 133	10 134	25 425	52 103 48 96	47 96	-125 -25	73 83	23 347
650 950	9 130	9 129	-25 650	33 116	34 116	-125 -75	75 97	28 347
650 850	9 126	11 130	-25 575	26 125	22 125	~125 ~125 ~125 ~175	41 135 64 231	19 338 40 237
650 1050 550 1050	5 118 7 131	6 114 8 129	-25 525 -25 475	38 132 50 114	35 130 43 110	-125 -225	180 261	114 255
550 1150	6 134	6 135	-25 425	51 113	50 108	-125 -275	47 258	33 267
450 1050	10 130	12 129	-75 650	23 94	22 82	-125 -325	143 266	102 268
350 1050 650 250	10 120 27 159	11 117 31 158	-75 575 -75 525	30 107 23 98	28 104 21 93	-50 -450 -75 -375	62 310 78 274	41 272 58 277
650 250 650 150	31 172	33 175	-75 475	41 88	38 89	-25 -375	136 327	60 279
650 350	15 153	14 158	-75 425	53 95	50 92	-75 -325	143 270	104 275
650 450	14 160	16 162	-125 650	17 83 24 72	16 74 27 78	-25 -325 -150 -350	140 310 112 275	74 258 85 278
550 250 550 150	18 161 32 151	18 169 33 154	-125 575 -125 525	24 72 29 87	25 85	-75 <b>-275</b>	46 219	23 194
550 350	22 162	27 166	-125 475	39 85	33 76	-25 -275	99 319	59 240
450 350	12 143	12 146	-125 425	57 91	57 89	-175 -275	44 310	28 311
550 450 450 450	23 158 12 140	27 155 13 138	-175 650 -175 575	20 99 14 61	19 98 17 51	-75 <b>-</b> 225 -25 <b>-</b> 225	166 270 105 301	120 281 89 238
650 550	15 144	18 145	-175 525	40 96	33 87	-175 -225	113 292	76 293
550 550	18 164	19 166	-175 475	31 83	33 88	-75 -175	96 219	75 255
450 550	13 140	15 144	-175 425 -225 625	70 97 24 95	64 95 21 87	-25 -175 -25 -125	81 300 37 2	84 225 75 225
550 650 450 650	24 154 12 123	26 156 14 126	-225 525 -225 525	37 88	33 87	-75 -125	66 172	37 207
650 650	10 153	11 153	-225 475	32 90	30 78	-175 -175	161 316	99 315
650 750	9 141	10 144	-225 425	55 72	53 67	-225 -175	95 317	68 310 91 339
550 750 450 750	19 146 11 128	21 147 12 130	-250 650 -275 550	22 74 30 47	21 73 27 45	-275 -150 -175 -125	134 347 54 348	91 339 43 323
550 850	17 132	19 130	-275 450	49 47	45 45	-225 -125	116 6	63 352
450 850	11 220	16 129	-350 550	32 47	30 46	-175 -75	152 85	56 74
550 950 475 250	10 125 86 176	10 126 30 174	-350 450 -450 650	41 48 12 79	38 42 11 77	-225 -75 -275 -75	155 26 126 7	80 9 82 355
475 250 525 175	45 152	27 143	-450 550	18 48	17 39	-75 -75	81 136	3 336
475 125	97 169	34 155	-450 450	30 41	27 38	-25 -75	121 4	21 184
425 225	41 139	39 139	-550 650 -350 650	16 43 25 15	15 45 24 15	-175 -25 -225 -25	95 21 63 27	80 341 39 350
425 175 425 125	30 149 50 141	26 155 41 144	-350 750	18 59	16 52	-275 -25	75 7	65 343
450 275	118 136	33 143	-250 750	22 71	20 69	-75 -25	37 106	21 278
375 225	33 126	27 131	-150 750 -150 850	26 98 13 56	25 95 9 352	-25 -25 -175 25	133 23 78 50	25 258 58 16
375 275 375 325	27 138 88 163	28 145 35 140	-50 750	15 100	14 100	-225 25	65 39	57 2
425 425	37 150	14 143	-50 850	11 100	1 203	-275 25	66 33	51 13
325 275	39 150	38 150	125 650	21 113	21 118	-75 25	113 104	25 75 24 99
325 325	42 139 51 126	37 142 45 129	150 750 50 750	9 109 15 114	9 110 13 108	-25 25 -25 75	160 26 172 22	24 99 33 85
325 375 350 450	32 167	10 124	50 850	12 91	0 243	-175 75	77 62	68 36
350 550	34 158	13 119	150 850	12 113	11 112	-225 75	63 59	51 34
275 325	18 115	21 130 34 127	250 750 350 650	11 120 29 163	10 115 8 119	-275 75 -175 125	70 44 72 53	63 21 88 35
275 375 275 425	34 124 36 151	34 127 34 148	350 850	34 151	17 120	-225 125	65 73	58 58
325 475	39 147	24 125	250 850	20 103	19 102	-275 125	55 35	56 22
275 550	11 132	12 133	150 950	21 130	13 159	-350 150	60 27	66 20
225 375	40 113 19 111	40 112 17 107	350 750 350 950	31 163 31 101	12 132 15 111	-125 125 -75 125	52 64 67 95	55 54 69 94
225 425 225 475	11 231	15 114	450 950	41 133	18 133	-25 125	126 36	89 123
225 525	54 133	20 128	250 950	4 110	4 102	-175 175	69 37	89 30
250 575	9 131	8 132 17 129	50 950 225 325	13 85 40 134	17 127 33 133	-225 175 -275 175	32 44 30 63	40 43 34 44
250 650 175 425	18 129 31 <u>14</u> 5 _	29 145	225 325 225 275	56 117_	55 118	-125 175 -125 175	90 89	107 86
110 420	0, 140			<u> </u>			<del></del>	

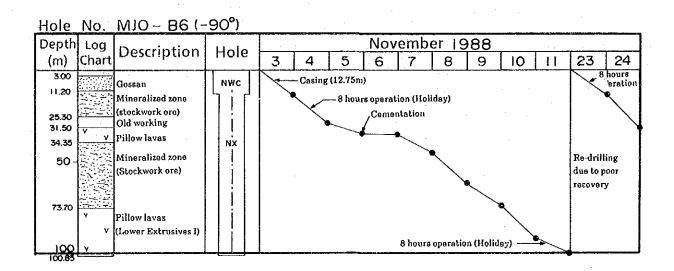

|E| : Intensity(unit; mV/A·100m) of Electiric Field  $\phi$  : Azimuth(unit; Degree) of Electiric Field


X Y	мјо-в1	мјо-в5	X Y	MJ0-B1	MJ0~B5	X Y	MJ0-B1  Ε  φ	MJO-B5  Ε  φ
(m) (m) -75 175	E  φ   69 101	<u>Ε  φ</u> 78 98	(m) (m) 125 375	E  φ   65 151	$\begin{array}{c c}  E  & \phi \\ \hline 61 & 151 \end{array}$	(m) (m) 425 75	1 <u>Ε</u> Ι φ 55 138	45 143
-25 175 -175 225	103 40 34 79	88 122 35 65	175 375 75 325	44 124 50 105	42 122 50 105			
-225 225	62 274	42 73	125 325	78 127	78 127			
-275 225 -350 250	46 293 52 357	64 71 71 28	175 325 -75 325	99 133 26 102	96 134 22 82			
-125 225	61 65	71 58	75 275	44 79	43 81			
75 225 25 225	-60 102 100 34	65 97 69 117	125 275 175 275	105 142 56 148	102 142 55 149			
-175 275 -125 275	62 256 70 288	47 107 45 42	75 225 125 225	54 107 43 141	51 109 43 143			
-75 275	70 288 50 259	62 95	175 225	101 131	98 132			
25 275 225 275	107 330 102 153	55 104 47 65	175 175 75 175	62 150 27 136	60 155 26 143			
-275 275	69 57	66 52	125 175	23 140	24 151	• *	,	
-275 350 -350 350	62 38 48 30	60 · 32 45 26	75 - 125 125 - 125	104 123 66 131	84 126 57 138			
~450 350	33 44	29 35	175 125	35 135	37 152			
-225 375 -225 325	50 52 54 73	48 49 49 68	225 25 225 -25	80 185 71 187	72 194 59 199	**		
-175 325	37 104	33 89	225 -75	60 181	49 191			
-125 325 -25 325	26 81 43 113	27 84 43 113	225 -125 225 -175	42 188 60 184	34 206 44 193	-		•
-175 375	53 88	46 83	225 -225	70 232	59 239			
-125 375 -75 375	64 86 72 106	58 82 66 103	225 -275 225 -325	57 244 44 226	50 251 33 236			
-25 375	59 116	54 111	300 -375	27 213	20 221			
25 75 25 25	166 133 96 145	123 137 65 165	325 -325 275 -275	47 234 60 213	35 237 49 224		•	
25 -25	139 167	71 201	350 -275	31 238	29 248			
25 -75 25 -125	116 176 141 216	57 198 103 235	275 -225 325 -225	68 214 53 221	57 221 48 221			
25 -175	164 204	108 217	425 -225	54 226	44 241			
25 -225 25 -275	119 220 95 208	81 232 54 217	275 -175 325 -175	63 200 39 203	53 204 34 209			
25 -325	104 242	65 244	375 -175	35 217	31 225			
25 -375 75 -450	68 226 83 234	44 232 56 237	275 -125 325 -125	67 170 34 203	53 178 33 222		,	
75 -375	79 217	53 219	375 -125	42 201	37 209			•
125 -375 175 -375	78 243 61 257	58 245 47 255	275 -75 325 -75	42 166 32 155	29 183 29 167			·
75 -325	70 234	48 244	375 -75	49 180	42 185			
125 -325 175 -325	71 230 77 221	53 232 59 222	275 -25 325 -25	44 179 15 175	38 187 18 174			
75 -275	57 220	35 229	375 -25	35 : 171	27 183 46 199			
125 ~275 175 ~275	50 169 81 196	35 .172 63 208	275 25 325 25	45 188 20 169	46 199 15 197		:	
75 -225 125 -225	91 191 49 250	61 206 52 269	375 25 225 75	30 143 82 166	26 153 73 173		4.73	
175 -225 175 -225	49 250 55 207	45 213	275 75	55 170	55 172			
75 ~175 125 -175	119 239 69 237	97 252 62 243	950 50 95050	25 155 23 183	17 167 16 189			
175 -175	69 237 29 228	62 243 37 252	850 50	21 136	16 157	· ·		
75 ~125 125 ~125	132 218 98 221	112 233 82 233	850 -50 750 50	16 180 35 129	15 187 25 143			
175 -125	56 228	52 224	750 -50	28 168	25 172			
75 -75 125 -75	124 167 97 180	91 184 81 194	800 -150 650 50	22 182 48 138	20 185 38 154			
175 -75	73 183	61 .198	650 -50	34 174	32 178			
75 <b>-</b> 25 125 <b>-</b> 25	98 195 96 164	82 201 80 188	650 -150 550 50	30 191 63 132	27 195 51 145			
175 ~25	79 165	68 182	550 -50	37 184	35 191			
75 25 125 25	171 149 86 176	104 155 89 178	550 -150 600 -250	31 212 29 201	29 219 27 202			
175 25	49 193	53 199	475 25	67 157	26 130			
75 75 125 75	102 128 100 133	79 133 86 142	525 -25 475 -75	53 202 48 179	38 208 10 200			
175 75	71 138	58 151	525 -125	57 226	47 237	•		
25 125 25 175	120 126 87 134	96 130 82 134	425 25 425 -25	23 160 37 187	20 169 33 188			
25 225	49 111	46 108	425 -75	25 217	26 228			
25 275 25 325	61 113 50 102	61 109 43 96	425 -125 450 -175	56 185 44 191	49 190 24 209			
25 375	48 101	47 102	450 -250	41 202	22 220			
<u>75 375</u>	51 123	49 124	<u>375 75</u>	31 116	23 131			

|E| : Intensity (unit; mV/A·100m) of Electiric Field  $\phi$  : Azimuth (unit; Degree) of Electiric Field

## Appendix 12

Progress of the each drill hole in area B






Hole No. MJO -B3 (-909) Depth Log October 1988 Description Hole 22 23 24 25 26 27 28 29 30 (m) |Chart 3.00 y Casing (3.00 m) Pillow lavas - Water loss 100% (16.65 m) (Lower Extrusives II) ¥ 28.20 30.20 Argillized zone 50-69,20 Sheared zone NX Mineralized zone (Stockwork and 100disseminations) 137,20 Pillow lavas 150 (Lower Extrusives I) 8 hours operation (Holiday)

epth	Log	Description	Hala	October		November	1988	
	Chart			31	1	2	3	4
3.00		Pillow lavas (Lower Extrusives II)	ТИЖСТ		— Casing (3.00	m)	,	
27.60	¥	Mineralized zone		- 		•		
	[:		LNX	1				
50-		(Stockwork ore)	#X					
50- 69.80			       					8 hours operation (Holiday

MJO - B5 (-90°) Hole No. Depth Log October 1988 Description Hole 20 21 22 23 24 25 26 27 28 29 30 31 18 19 (m) Chart 300 N₩C Pillow lavas Bit change (Lower Extrusives II) Casing (12.00 m) Water loss 50% 8 hours operation-2870 (Holiday) Mineralized zone (Stockwork) 50 Water loss 100% (52.70 m) (Stockwork ore) NX Sheared zone 71.00 72.**8**0 Pillow lavas Water loss 80% (82.65 m) 84.20 Mineralized zone (Stockwork ore) 100 Pillow lavas 8 hours operation '-(Lower Extrusives I) (Holiday)



Hole No. MJO-B7 (-90°)

Depth	Log	Description	Шата	·			0ct	tober	989			 		
(m)	Chart	nescription	Hole	4	5	6	7	8	9	$\Box$	10	11	12	13
49, 60 50- 50, 65	V V	Siliceous gossan Gossanized clay zone Pillow lavas and pillow breccia  Sheared zone Pillow lavas Sheared zone Stockwork ore Pillow lavas and pillow breccia (Lower Extrusives I)	NWC NX		8 hours (Holic	operation	and casi							), 55m)
. 100-	v v													,
120	V											 		

Hole No. MJO-B8 (-90°)

Depth   Lo	g	n	g 1.	1			Se	eptemb	er 198	39				0ct
(m) Cha	- 1	Description	Hole	21	22	23	24	25	26	27	28	29	30	1
11.50 18.75 24.70 38.60 43.80 43.80 50 52.30 V 88.80 59.95 V	Y (L) Good Si Si Ma Ar Pi Se Pi (L) Ile	Now lavas ower Extrusives I) ssanized clay zone liceous rock ssive ore gillized zone llow lavas dimentary rocks llow lavas. ower Extrusives I) matite zone. llow lavas.		W	Roater Ios		(18.75m); change	) (37. 25	Reduc	ced size	e to BX	(24.70m) ss 100%		<b>)</b>

Hole No. MJO-B9 (-90°)

epth		Description	Hole	September 1989
(m)	Chart			2   3   4   5   6   7   8   9   10   11   12   13   1
17. 80	Y. Y	Pillow lavas. (Lower Extrusives 1)	NWC	Casing 3.00 m  Water loss 100 % (11.60m)
17.00	Y Y	Pillow layas with minor pillow breccia.	NX	
	٧			
50 -	Y			Reduced size to BX (53.80m)
60. 70 62. 20	<b>&gt;</b>	Strongly argillized zone.		Water loss 50 % (61.75m)
		Stockwork ore.		
90, 10 99, 10	Δ ٧	Pillow breccia.	ВХ	8 hours operation (Holiday)
100 -	٧	Pillow lavas.		. •
	· V	(Lower Extrusives 1)		
135.50	٧	Pillow lavas with		
	ν	pyrite		
150 - 160	v.	disseminations.		
	v:			167.75

Hole No. MJO-B10 (-90°)

Depth	Log	Description	Uolo	,			Septem	ber 19	989	· · · · · · · · · · · · · · · · · · ·		•	
	Chart	Description	Hole	17	18	19	20	21	22	23	24	25	26
4. 70 10. 35		Pillow lavas. Massive lavas Pillow lavas. (Lower Extrusives I)	NWCJ	*	Casing	3.65 m — Water	loss 80	% (21.8	5m)				
34. 10 35. 50 50 -	v v	Sheared zone. Pillow lavas with minor pillow breccia	NX.			W.	ater loss	s 100 %	(27.90ma)				
67. 60	V V	Pillow lavas with pyrite disseminations						Redu	ced size	to BX (	(80. 00æ)		
98.70 99.10 100-	νγ	Metalliferous sediments. Pillow lavas.			¥	later los	s 100 %	(100.75	) S	8 hours	operati (Holida	on ay)	
117.00 117.35	V V	Massive lavas. Metalliferous sed. Pillow lavas. Sheared zone.	BX								<b>B</b>		
137.40 138.80 150-	Ζ.Υ.:Υ:: Υ	Pillow lavas with pyrite dissemination Pillow lavas.	1									*	
180	۷ ۷												\

Hole No. MJO-B11 (-90°)

Depth	Log	Description	Hole	September 1989	October	1989
(m)	Chart	Description		7 8 9 10 11 12 13 14 15 16 17 18 28 29 30	1 2 3	4 5
14. 90 27. 20	V V V V	Pillow lavas. (Lower Extrusives I) Massive tavas. Pillow lavas and pillow breecia.	NX NMC	Casing 3.00 m  8 hours operation (Holiday)  Water loss 100% (25.20m)		:
50 -	ν ν ν					
100 - 115. 90 116. 20	ν Δ ν	Strongly chloritized and sheared zone. Stockwork ore.		8 hours operation / (Holiday)  Reduced s	ize to BX ();	36. 55 <b>m)</b>
137.90 <b>150</b> - 163.60	V V V	Pillow lavas. (Lower Extrusives I)	BX	Terminated work due to drill machine repairing		
183. 75 200	v	Pillow lavas, silicified. Pyrite disseminations. Pillow lavas.			oss 180% (ma)	