CV-5 STRUCTURAL CALCULATION OF PUMP PIT

(

 (\cdot)

· .		
	Contents of this calculation note is shown as below.	
1.	Soil Condition	- 2
2.	Outline of Pump Pit	4
3.	The Design Structure	6
4.	Study of Block I (Screen Room)	10
5.	Study of Block II (Connected Culvert)	63
6.	Study of Block III (Pump Room)	96
7.	Study of Stop Log	148

CV-5-1

 $\left(\right)$

1.1 Soil Condition

FORM 04

Boring data around the construction area is shown in Fig 1. Now the average N-value above the foundation level is calculated as follows.

 $\overline{N} = \frac{\frac{1}{2} \times \{(0+9) \times 2.0 + (9+11) \times 2.0 + (10+13) \times 2.0 + (13+30) \times 2.0 + (30+25) \times 2.0\}}{10.0}$ = 15

According to the above calculation, the angle of the internal friction is assumed by the following equation.

 $\phi = (\sqrt{15 \cdot N} + 15)^\circ = (\sqrt{15 \times 15} + 15)^\circ = 30^\circ$

The bulk density of soil above the ground water $r = 1.9 \text{ t/m}^3$

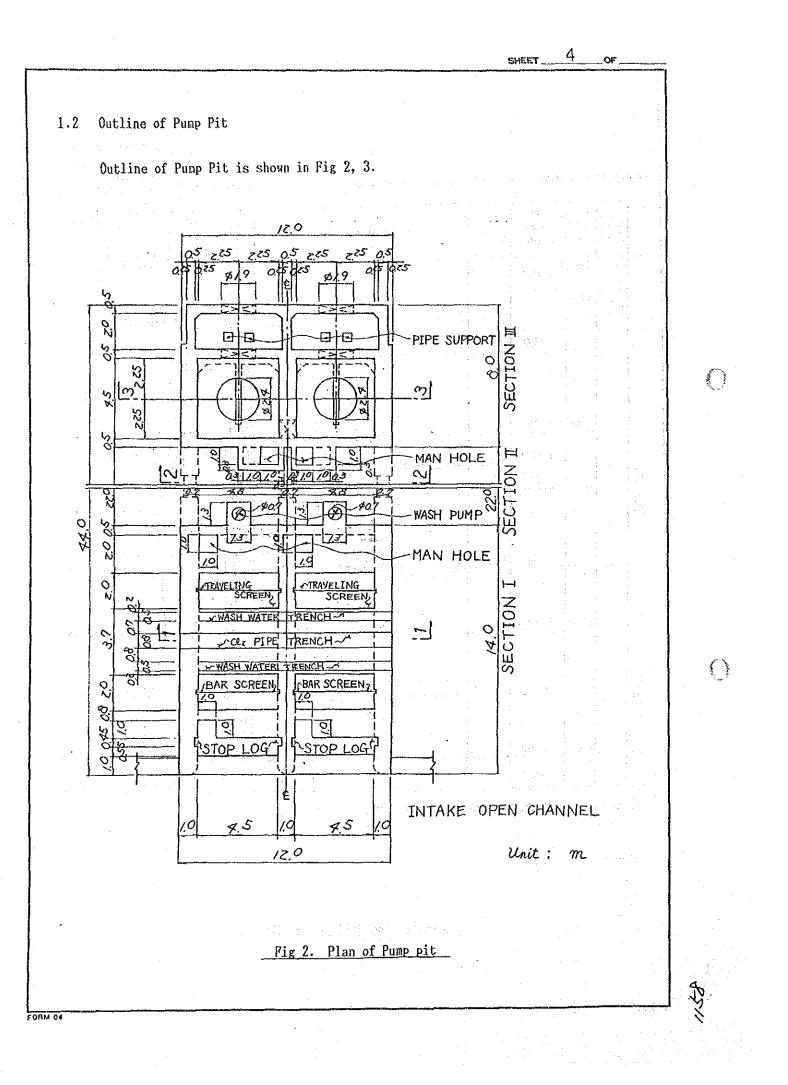
The bulk density of soil under the ground water $r^2 = 1.0 \text{ t/m}^3$

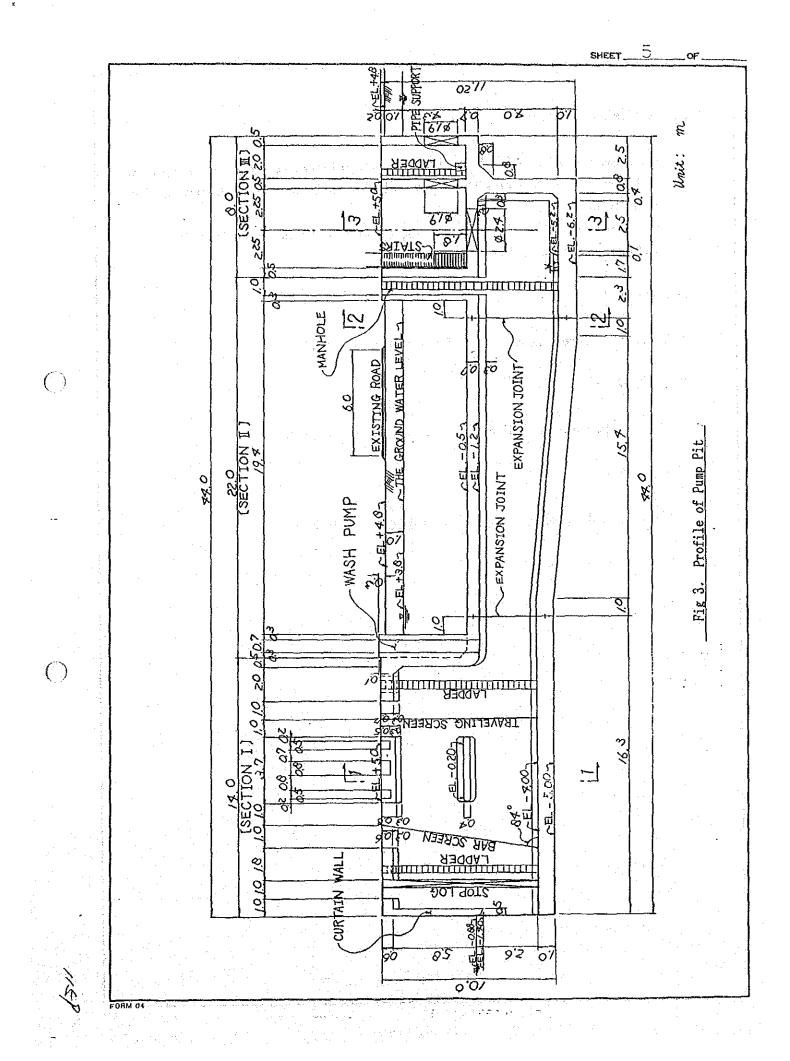
Other design condition data are descripted in "Civil Design Condition" (vid.No EWC-1001).

OF SITE : WEST WHARF THERMAL POWER STATION, KARACHI. CLIENT : KARACHI ELECTRIC SUPPLY CORPORATION. BORE CHART OF BORING No.2 Penatration Test Blow No. Thickness of Layers In (Meter) . Depth Soll Symbols Dismater of Baring Depth Depth Meters DAX 0.00 Ground Water Level 20 40 60 80 101 STRATAENCOUNTERED EL+4.846m т =1.9 Jum +3,846 1:00 (m) 9 blows @ 2m. . · • . . · • r=1.0 5.70 Brown loose silty fine SAND. ÷ 10 blows @ 4m. 5.70 -0.854 5"Ø 13 blows @ 6m. т'=10 ٠. 1.80 Grey medium silty fine SAND. 7.50 23/12/87 .654 -2 · · · · Ţ. $g_{i} \in \mathcal{D}$., . • • • • . . • • 30 blous @ 8m. 47 ÷ Foundation Level. Grey medium to dense silty fine τ=1.0 4.50 SAND with small percentage of 25 blouse 10m. coarse send. - A -12.00 -7.154 22 blows @ 12m. 24/12/87 Brown medium to dense silty 32 blows @ 14m 4.00 T'=1.0 fine to medium SAND. 36 blows @ 16m 16.00 -11.154 T'=1.0 cont. on sheet 2.

3

SHEET


Remarks : GROUNDWATER TABLE AT 1.00 METER.


Date :- 24/12/87

FORM 04

(_)

Fig 1. The soil column diagram

 \bigcirc

()

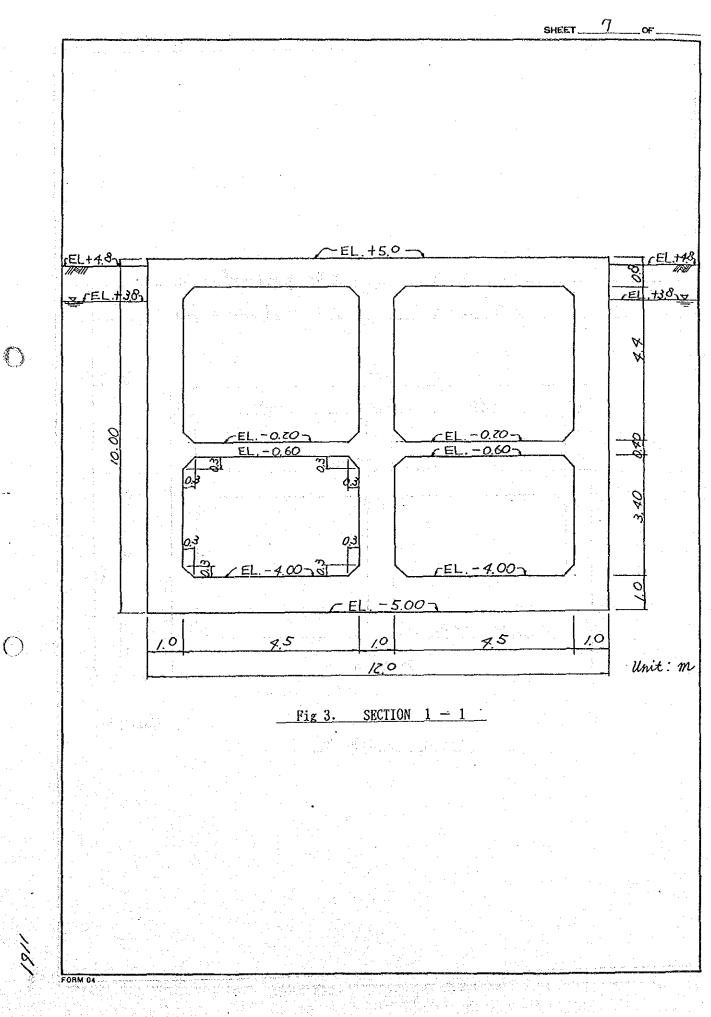
1.3 The Design Structure

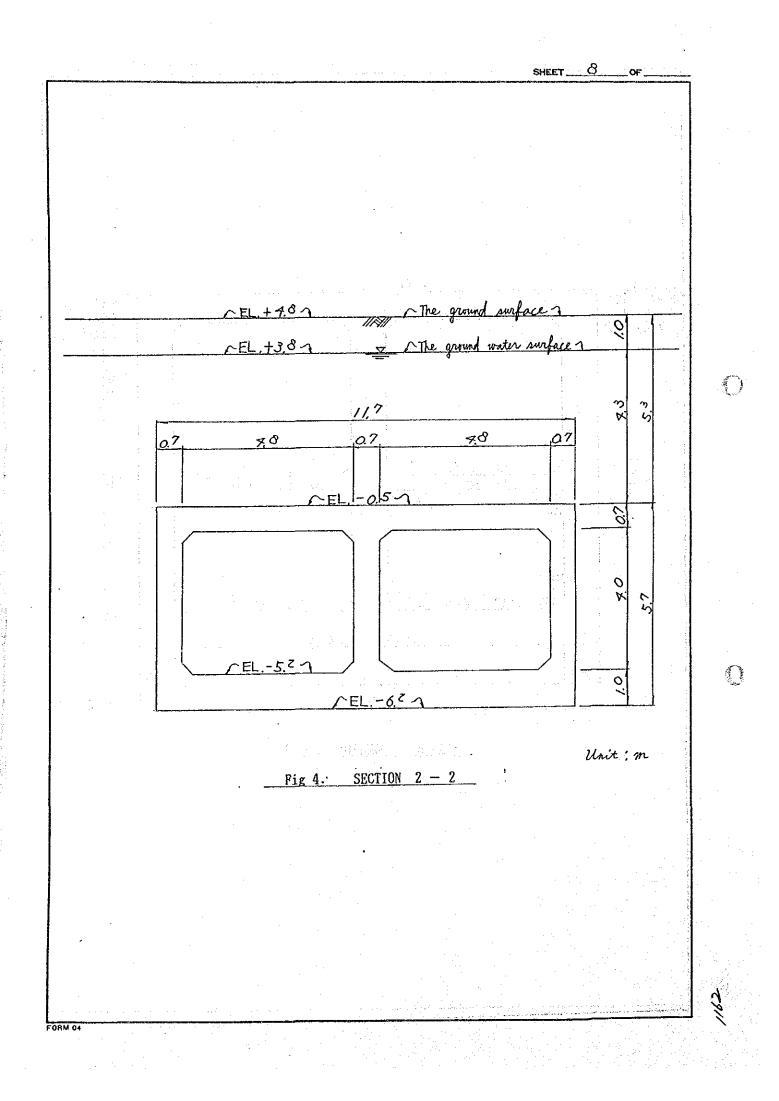
The structure of Pump Pit is devided into three blocks as shown in Fig 1 and 2. In the design of Pump Pit, the design calculation is executed individually for each block.

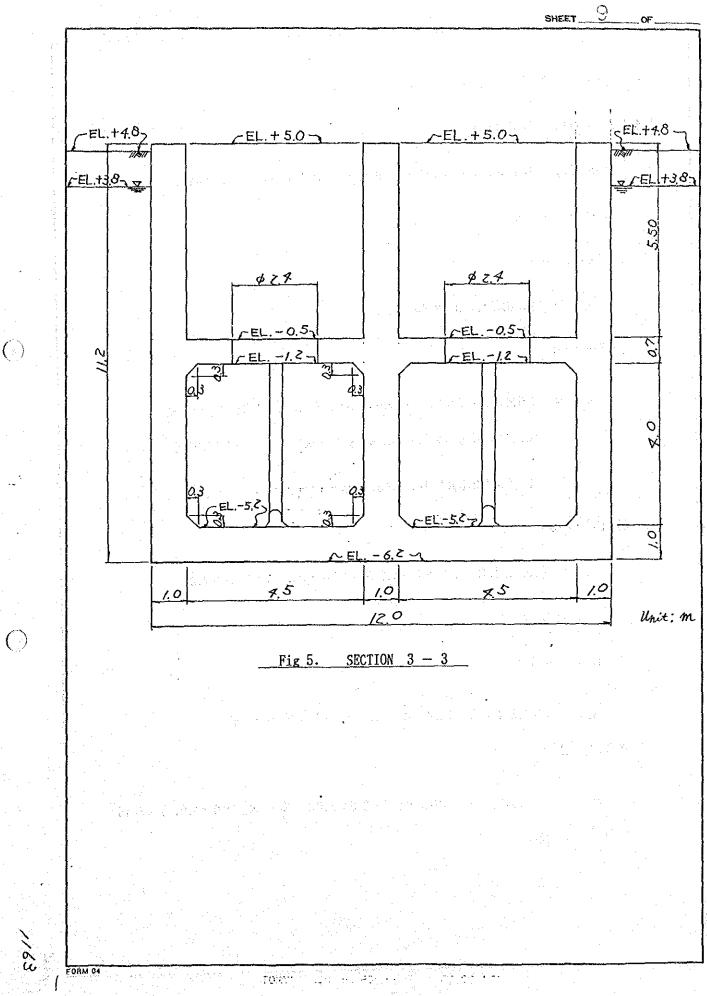
The summary of the design sections are as follows and the typical design sections are shown in Fig 3, 4 and 5.

1) Block I

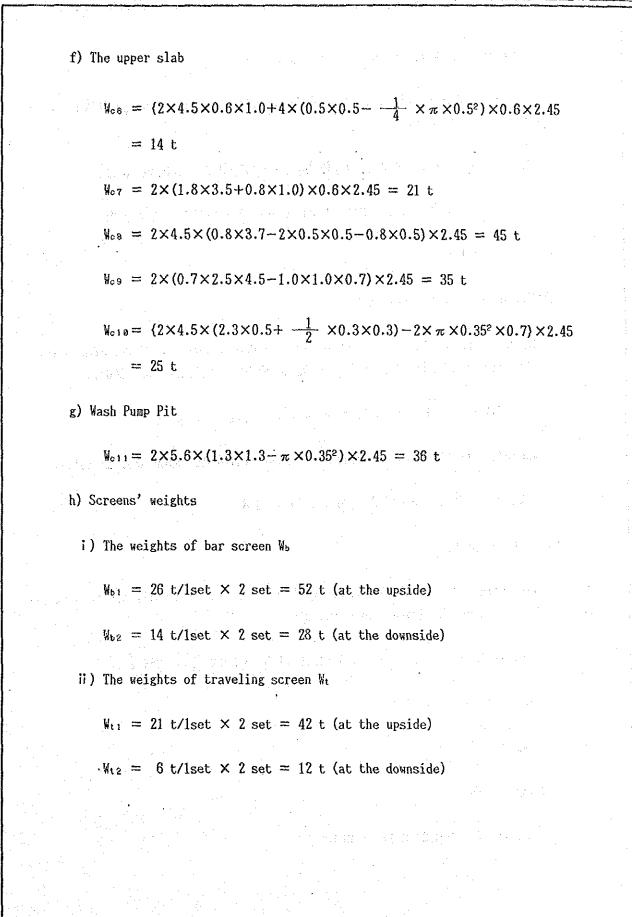
Block I is Screen Room. Total length $L_1 = 14.0\pi$


2) Block II


Block II is Connected Culvert. Total length $L_2 = 22.0m$


3) Block III

FORM 04


Block III is Pump Room. Total length $L_3 = 8.0m$

SHEET 10 OF. Study of block I (Screen Room) 1.4 1.4.1 Stability Calculation Stability calculation is executed at the longitudinal direction. 1) Vertical forces a) Base slab $W_{c1} = 12 \times 16.3 \times 1.0 \times 2.45 = 479 t$ **(**) b) Side wall $W_{c2} = \{9.0 \times (3 \times 1.0 \times 14.0 - 4 \times 0.45 \times 0.25 - 8 \times 0.05 \times 0.3 + 3 \times \frac{1}{2} \times \pi$ $(\times 0.5^2) + 4 \times 0.3 \times 0.3 \times 15.5 + 3 \times 1.0 \times 2.3 \times 2.8 - 2 \times 0.5 \times 0.5 \times 1.0$ $-3 \times 0.8 \times 0.5 \times 1.0 \times 2.45 = 965 t$ c) Middle slab $W_{c3} = \{2 \times 4.5 \times (3.3 \times 0.4 + \pi \times 0.2^2) + 4 \times 0.3 \times 0.3 \times 3.7\} \times 2.45$ = 35 t ()d) Curtain wall $W_{c4} = 2 \times 4.5 \times (0.5 \times 5.3 + \frac{1}{4} \times \pi \times 0.5^2) \times 2.45 = 63 t$ e) Back wall $W_{c5} = 2 \times 4.5 \times (\frac{1}{2} \times 0.5 \times 0.5 + 0.5 \times 5.0 + \frac{1}{4} \times \pi \times 0.5 \times 0.5) \times 2.45$ = 62 tFORM 04

()

()

i) The surcharge weights due to machineries Wme

A unit surcharge weight is 0.5 t/m², therefore total surcharge weight W_{mc} is calculated as below.

 $\Psi_{mo} = 0.5 \times \{12.0 \times 14.0 - 2 \times (1.0 \times 1.0 + 1.0 \times 4.5 + 2 \times 0.45 \times 0.25)\}$

 $-4 \times (2.0 \times 4.5 + 2 \times 0.05 \times 0.3) - 2 \times 0.5 \times 11.0 - 0.8 \times 12.0)$

= 50 t

j) The internal water weight Ww

Water weight W. is calculated at the lowest low water level considered for the water head loss due to Intake Tunnel(vid. 1.b,P3,Na EWC-1004).

[H.H.W.L] EL. $-0.43 \text{ m} - 0.45 \text{ m} = \underline{\text{EL}} - 0.88 \text{ m}$

According to the above calculation, water weight is calculated as below.

 $W_{\rm w} = 2 \times 4.5(3.12 \times 16.3 - 2.8 \times 0.38) = 448 \text{ t}$

k) Soil weight Ws

Soil weight W_s is calculated as the back-fill of back wall, and this weight is including the ground water weight.

 $W_s = (2.3 \times 12 - 2 \times 1.3 \times 1.3) \times (1.0 \times 1.9 + 4.3 \times 2.0) = 254 t$

1) The weight of Wash Pump W_p

 $W_{p} = 5.0 t$

m) Buoyancy Us

FORM 04

 $U_b = 12.0 \times 16.3 \times 3.12 = 610 t$

2) Horizontal forces

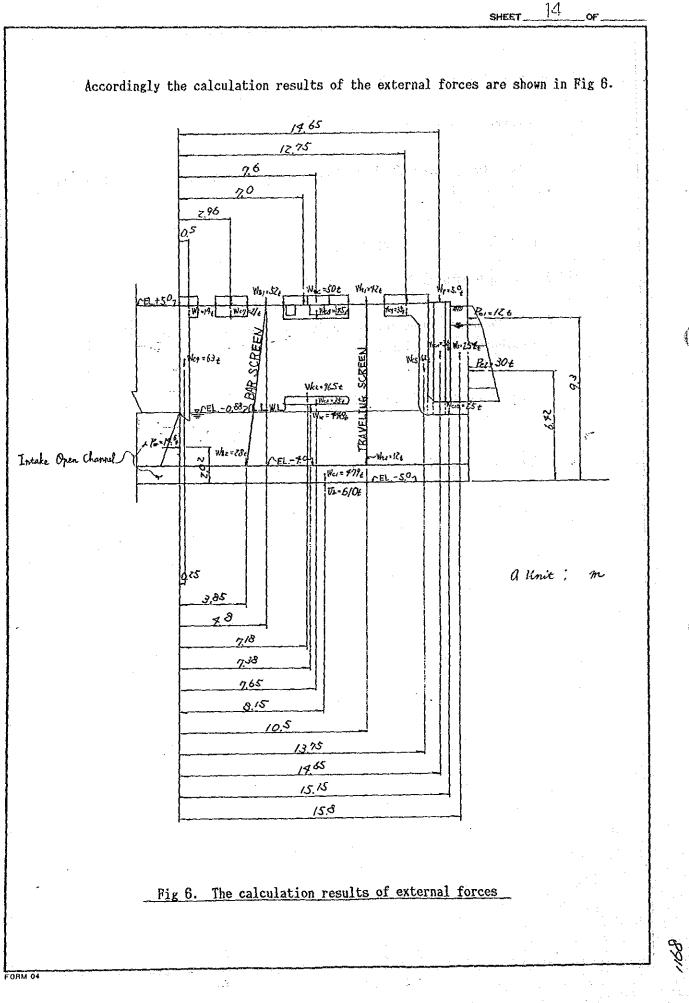
a) The water pressure P_{μ}

As the water pressure P_{ω} is working to the front face of side wall, P_{ω} is calculated as below.

$$P_w = 3 \times -\frac{1}{2} \times 1.0 \times 3.12^2 \times 1.0 = 14.6 t$$

b) The earth pressures Pei

()


 \bigcirc

084 04

As the earth pressures $P_{e\,i}$ are working to the back face of back wall, $P_{e\,i}$ are calculated as follows.

$$P_{e1} = -\frac{1}{2} \times (0.5 + 1.45) \times 1.0 \times 12.0 = 12 t$$

 $P_{e2} = -\frac{1}{2} \times (1.45 + 3.6) \times 1.0 \times 12.0 = 30 t$

3) The calculation of the ground reaction

a) The calculation of the eccentric distance

The eccentric distance is determined by the external moment calculations, then the summarized table of the external moments is shown in Table 1.

	Vertical force	Arm	Moment	Horizontal	Arn	Moment
Species	Yi [t]	X; [m]	Mi[t·n]	force Hi[t]	Yi[m]	M;[t•m]
	479	8.15	3 904			
We2	965	7.18	6 929			
We 3	35	7.65	268			
We 4	63	0.25	. 16			
We 5	62	13.75	853			
Wc 6	14	0.5	7			
We7	21	2.96	62			1
Wc.8	45	7.6	342			
Wc 9	35	12.75	446			
We 18	25	15.15	379			
Hc11	36	14.65	527	galise na colta		
Wp.	5	14.65	73			
Wmc	50	7.0	350			
Wb 1	52	4.8	250			
Wb2	28	3.85	108			
Wti	42	10.5	441			
Wt2	12	10.5	126			
₩s	254	15.8	4 013	•		
រដ្ឋ	448	7.38	3 306			
Pel				-12	9.3	-112
Pe2				- 30	6.42	- 193
Pw			이 같은 것 같은	15	3.34	50
Ub	-610	8.15	-4 972			
TOTAL	2 081		17 428	-27		- 255

Table 1. The summarized table of the external moments

FORM 04

 $\left(\begin{array}{c} \\ \end{array} \right)$

 \bigcirc

SHEET 16 OF

etila.

According to Table 1, the eccentric distance e is calculated as follows.

$$e = \frac{\sum M_1}{\sum V_1} - \frac{L}{2} = \frac{17 \ 428 - 255}{2 \ 061} - \frac{16.3}{2}$$
$$= 8.33 - 8.15$$

$$= 0.18 \text{ m} < \frac{L}{6} = \frac{16.3}{6} = 2.72 \text{ m}$$

Therefore working point of the composite force at the basement is within the middle-third.

- b) The calculation of the ground reaction gmax, gmin

4) Study of the bearing capacity

a) The ultimate bearing capacity qu

The ultimate bearing capacity qu is calculated as follows.

$$q_u = \alpha KCN_c + KqN_q + \frac{1}{2} r_1 \beta BN_r$$

с:

where

FORM 04

cohesion C = 0

q: the surcharge load

 $q = 1.9 \times 1.0 + 1.0 \times 8.8 = 10.7 t/m^2$

OF.

r: : the bulk density of the bearing soil

$$r_1 = 1.0 \text{ t/m}^3$$

B^{*}: the effective width considered for the eccentric distance

 $B^{-} = 12.0 m$

 α , β : the coefficient of the basic form

$$\alpha = 1 + 0.3 \cdot \frac{B}{L} = 1 + 0.3 \times \frac{12.0}{16.3 - 2 \times 0.10}$$

= 1.23

$$\beta = 1 - 0.4 \cdot \frac{B}{L} = 1 - 0.4 \times \frac{12.0}{16.3 - 2 \times 0.10}$$
$$= 0.70$$

K: the extra coefficient for the embedded effect

$$K = 1.0$$

No, Na, Nr:

FORM 04

the bearing coefficients considered for the load inclination, and these coefficients are adopted from graphs are shown as follows.

$$N_{c} = 30$$
 (from Fig 7.)

 $N_{q} = 18$ (from Fig 8.)

 $N_r = 14$ (from Fig 9.)

SHEET 18

OF

()

 \bigcirc

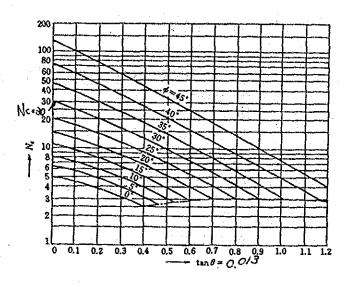


Fig 7. Graph of the bearing coefficient Nc

Where

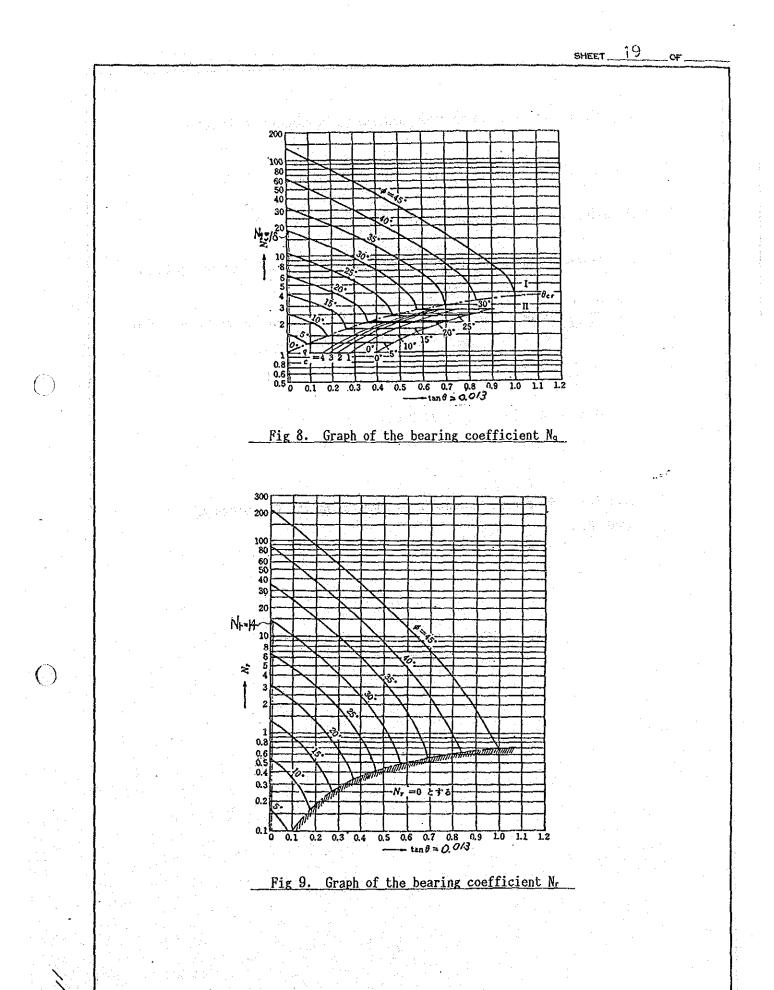
tan 0:

٧

$$\tan \theta = -\frac{H}{V} = -\frac{27}{2.061} = 0.013$$

vertical force at the foundation

V = 2.061 t


H: horizontal force at the foundation

H = 27 t

 $\phi = 30^{\circ}$

φ: the angle of the internal friction

FORM 04

FORM 04

र्भ

SHEET 20

OF'

and the second

Accordingly the ultimate bearing capacity q_u is calculated as follows.

$$q_u = 1.0 \times 10.7 \times 18 + \frac{1}{2} \times 1.0 \times 0.70 \times 12.0 \times 14.0 = 251 t$$

b) The allowable bearing capacity qa

FORM 04

The allowable bearing capacity q_a is calculated by the following equation.

$$q_{a} = \frac{1}{F_{s}} \cdot q_{u} \qquad \text{where } F_{s}: \text{ the factor of safety at normal} \\ = \frac{1}{3} \times 251 \qquad \qquad F_{s} = 3 \\ = 83 \text{ t/m}^{2} > q_{max} = 11.2 \text{ t/m}^{2} \\ \text{OK}$$

Accordingly the spread foundation is adopted for the foundation of Screen Room.

5) Study of floating

The calculation of floating is executed at Normal and at Constuction, so this calculation is as follows.

a) Total vertical force

i) at Normal (L.L.W.L)

 $V_1 = 2 \ 061 + 610 - 50 = 2 \ 621 \ t$

ii) at Construction (Empty)

 $V_z = 2\ 061 + 610 - 448 - 50 = 2\ 173\ t$

b) Up lift U

()

(:)

FORM 04

Up lift U is calculated as below.

 $U = r \cdot h_{\mu} \cdot A = 1.0 \times 8.8 \times 12.0 \times 16.3 = 1.721 t$

c) Checking on the safety factor of floating F_1

The safety factor of floating is checked by the following two cases.

i) at Normal

$$F_{1,1} = \frac{V_1}{U} = \frac{2.621}{1.721} = 1.52 >_{OK} 1.1$$

ii) at Construction

 $F_{12} = \frac{V_2}{U} = \frac{2 \ 173}{1 \ 721} = 1.26 \ge 1.0$

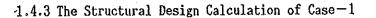
SHEET

OF.

()

1.4.2 The structural Design Case

FORM 04


The following three cases are considered for the structural design cases.

		and the second	1 State 14 St
Case	1	2	3
Condition	at Normal	at Construction	at Inspection
Period	Long term	Short term	Short term
The internal water condition	L.L.W.L	Empty	Empty (oneside)
The distributed surcharge load	1.0 t/m²	1.0 t/m	1.0 t/m ³
he incremental of oefficient of the allowable 1.0 tress		1.25	1.25

Table 2. The summary of the design cases

Now considering for the seismic load case, total horizontal force at earthquake is less than total horizonatl force at normal in consideration of the incrimental coefficient for the allowable stress (= 1.5), so the seismic load case is excluded from the structural design cases.

SHEET 23

1) Frame of the design structure

Frame of the design structure is shown in Fig 10.

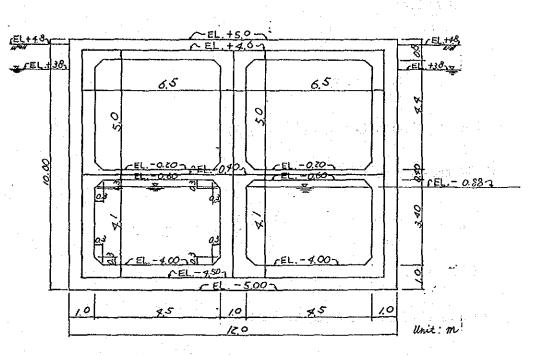


Fig 10. Frame of the design structure

Considering for manholes and other opening areas, the converted thickness of members are calculated as follows.

a) The upper slab

()

 \bigcirc

ORM 0

Considering the effects of the setting areas for screens and manholes, now the converted thickness of the upper slab is calculated as follows.

 $t_{o} = (2 \times 0.6 \times 1.0 \times 4.5 + 2 \times 0.6 \times (3.5 \times 1.8 + 0.8 \times 1.0) + 2 \times (3.7 \times 4.5 \times 0.8)$

 $-2 \times 0.5 \times 0.5 \times 4.5 - 0.8 \times 0.5 \times 4.5) + 2 \times 0.7 \times (2.5 \times 4.5 - 1.0 \times 1.0))$

 $\div (9.0 \times 14.0)$

≒ 0.36 m

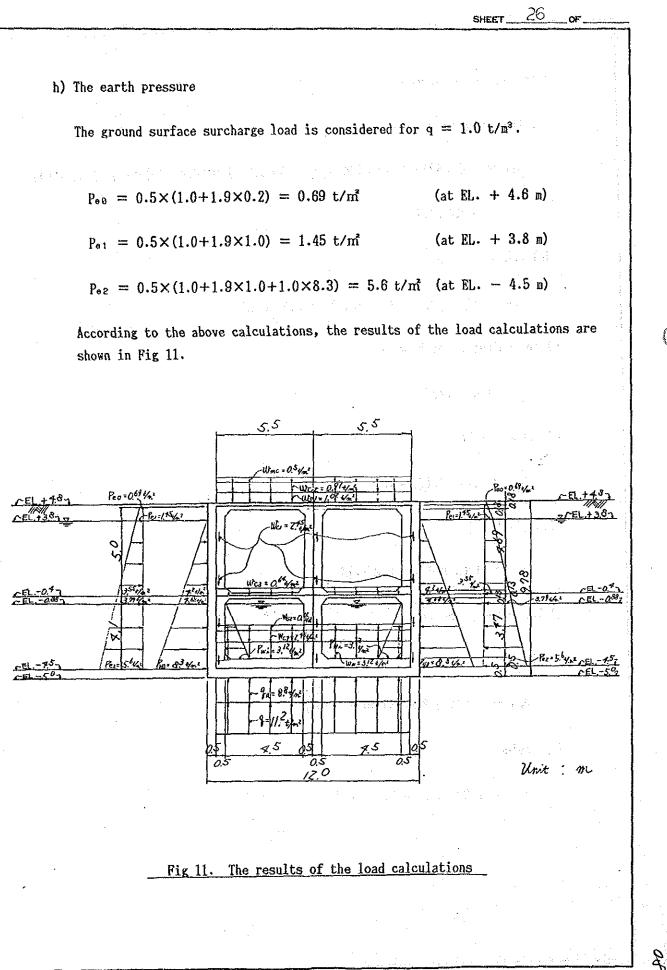
	· 20
SHEET	24
- 16470 I	

0F

()

b) The middle slab As the converted thickness tm is setted up the same value with the moment of inertia, tm is calculated as below. $\frac{13.5\times t_m^3}{12}$ $\frac{3.7\times0.4^3}{12}$ tm ≒ 0.26 m 2) Load calculation (per 1 m unit length) a) The ground reaction $\frac{q_{max} + q_{min}}{2} = \frac{13.3 + 12.3}{2} = 12.8 \text{ i/m}^2$ q b) Self weight i) a side wall and a partition wall $W_{c1} = 1.0 \times 2.45 = 2.45 \text{ t/m}^2$ ii) the upper slab $W_{c2} = 0.37 \times 2.45 = 0.91 \text{ t/m}^2$ iii) the middle slab a da ante da care da ser esta a s $\psi_{c3} = 0.26 \times 2.45 = 0.64$ t/m² iv) the base slab $W_{c4} = 1.0 \times 2.45 = 2.45 \text{ t/m}^2$

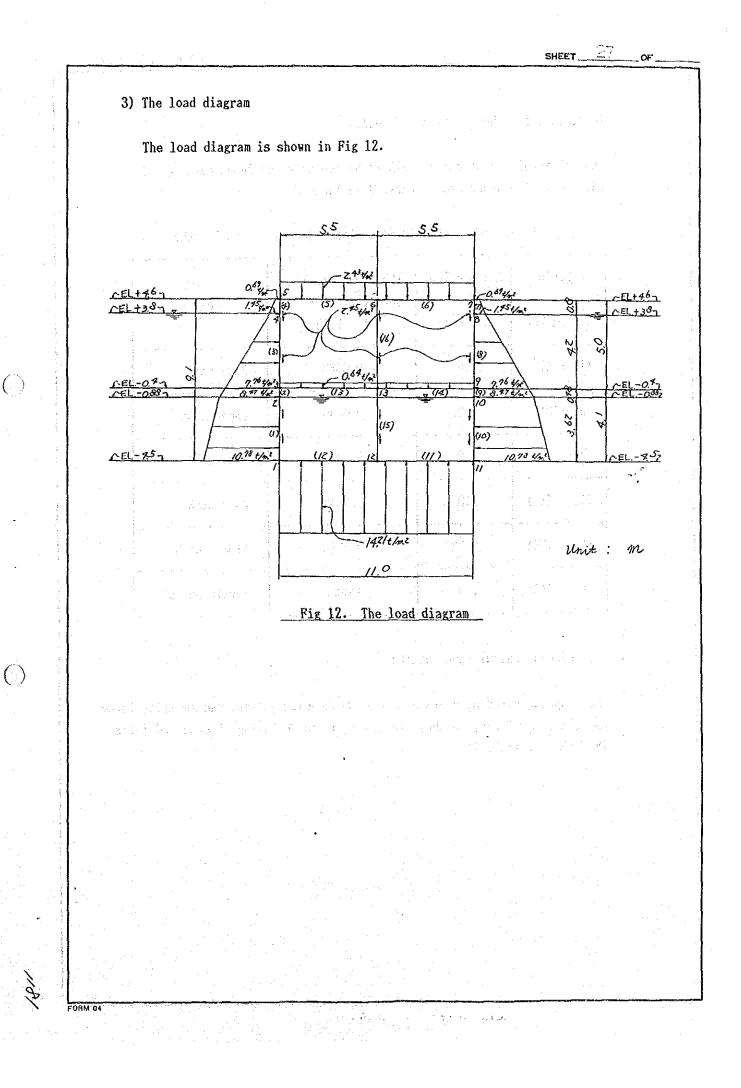
FORM 04


c) The weight of screen
i) the upper slab

$$\Psi_{n1} = (52+42) + (2 \times (4.5 \times 14.0 - 1.8 \times 3.5 - 1.0 \times 0.8 - 2.0 \times 4.5 - 1.0 \times 1.0))$$

 $= 1.02 \text{ t/ml}$
ii) the base slab
 $\Psi_{n2} = (28+12) + (12.0 \times 15.5) = 0.22 \text{ t/ml}$
d) The weight of machineries
 $\Psi_{n} = 0.5 \text{ t/ml}$
o) Water weight
 $\Psi_{n} = 1.0 \times 3.12 = 3.12 \text{ t/ml}$
f) Up lift
 $q_{0} = 1.0 \times 8.8 = 8.8 \text{ t/ml}$
g) The water pressure
i) Outside
 $P_{n0} = 1.0 \times (3.8 + 4.5) = 8.3 \text{ t/ml}$
ii) Inside
 $P_{n1} = 1.0 \times 3.12 = 3.12 \text{ t/ml}$

SHEET _ 25


OF

FORM 04

승규는 것은 그는 것으로 가슴을 했다.

FORM 04

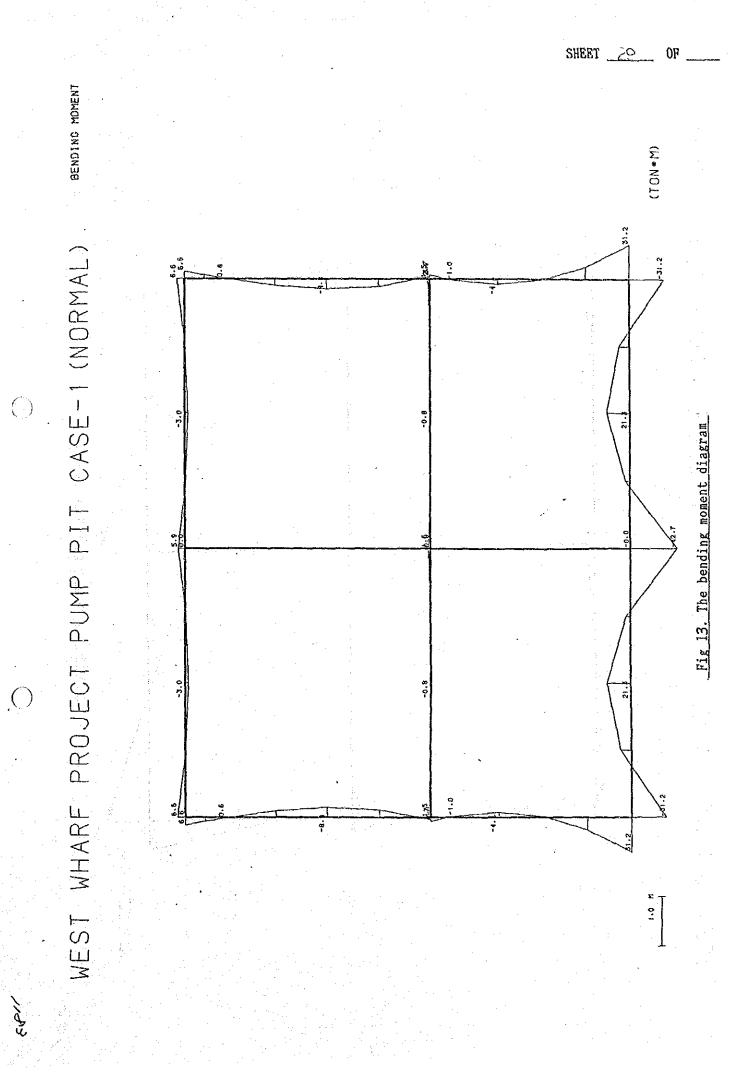
SHEET 28 OF

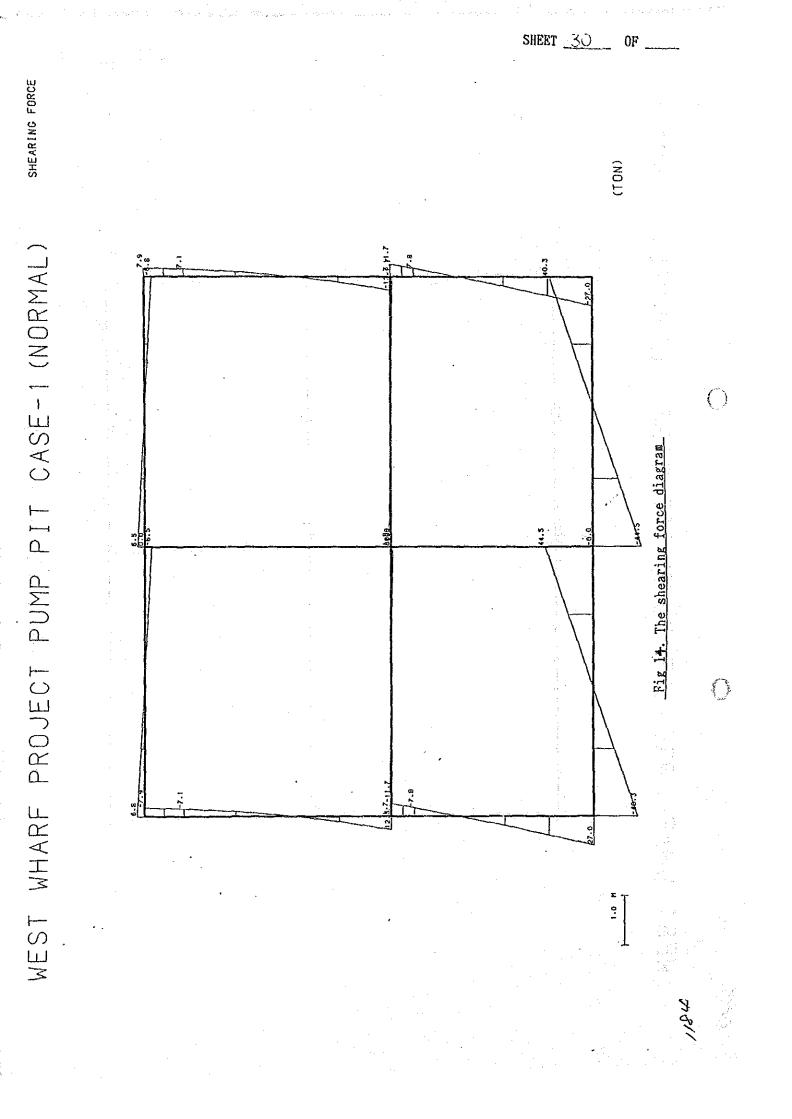
 \bigcirc

 \bigcirc

4) Input data for the sectional dimensions

The sectional forces are calculated by computer, so input data for the sectional dimensions are summarized in Table 3.

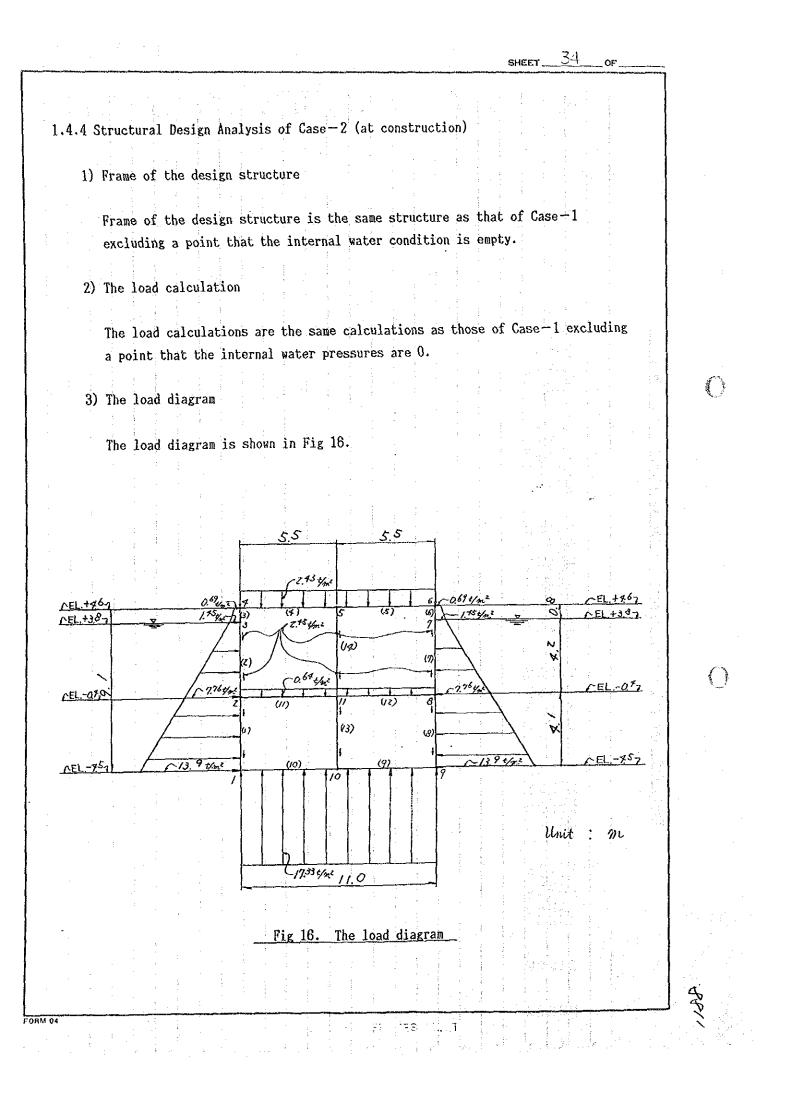

Member's number	The section area A [m²]	The geometrical moment of inertia I [m ⁴]	Remarks
(1)-(4)	1.0	0.0833	Side wall
(5) - (6)	0.36	0.0039	Upper slab
(7) - (10)	1.0	0.0833	Side wall
(11) - (12)	1.0	0.0833	Base slab
(13) - (14)	0.26	0.0015	Middle slab
(15) - (16)	1.0	0.0833	Partition wall


Table 3. The sectional dimensions (per 1 m unit length)

5) The computer calculation results

FORM 04

The computer calculation results are the bending moment, the shearing force and the axial force, so they are shown in the following figures and Table (Fig 13-15, Table 4).


	AXIAL FORCE	(ton)
-	(NORMAL)	
	*	
• •	PITCASE	^{58.9} The axial force diagram
	CTPUMP	Fig 15. The
с <i>)</i>	FPROJEC	
	WEST WHARF	
j ž ž		

SHEET 31 OF

1/40

				1	>		1		ĭ. Ì.,			1	<u>,</u>	1					<u>, </u>]	 	<u> </u>		 	 :]'
					•			1 1												ľ.					
•				•			}) 	1.0	1. 1.]	
				ŝ.	ezet.												.								
							•						- X.	нц. ⁴ 1											
														ļ								:. 			
		2112	-12			i si	t e																		ļ
)	(Normal)	2.3167E-12 1.5339E-12 1.3869E-12	.2409E																						
	forces																			C.	- j.				
	· · · · ·	-2.8708E-12 1.1755E-13 1.1755E-13	755E-1: 755E-1:									. :		на) 1								-			
	sectional.	-2-8-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	1.1					-																	
	the	45 +01 15 +01 35 +01	5E +0 1 3E +0 1									x = . 2			ŀ		х 								
•	lts of	2.98945+01 2.22715+31 1.92086+A1	1.5140				-															· .			
	results	13 51 52	53.				• •		1																
<u>`</u>	<u>calculation</u>	- 14 253					• • • • • •																:		.
) ·	calcu	-6.2509F-13 1.6808E-12 1.5339F-12	39696-1								 							:	1.15		-		en Servit Servit		
	e E					а н. 1. т.														м 11 м.					
-	e 4–2.	-2.87385-12 1.17555-13 1.17555-13	556-13 556-13				- ¹ - 1		1			с. 41 Т						· · · ·			,				
· .	Tab	-2.87	1.175											:		а.									
		10 10+	101			ч.,			s .				s Na ang Rés s			- 1.									:
•		3.14056+91 2.53336+91 2.22716+91	- 92 CHE						•••	- N. J.															
· · ·																									
a la de Seconda	1	51 51 51																							
	•	5 2 3 2 2 3	23												 	· .				·	e e				

1

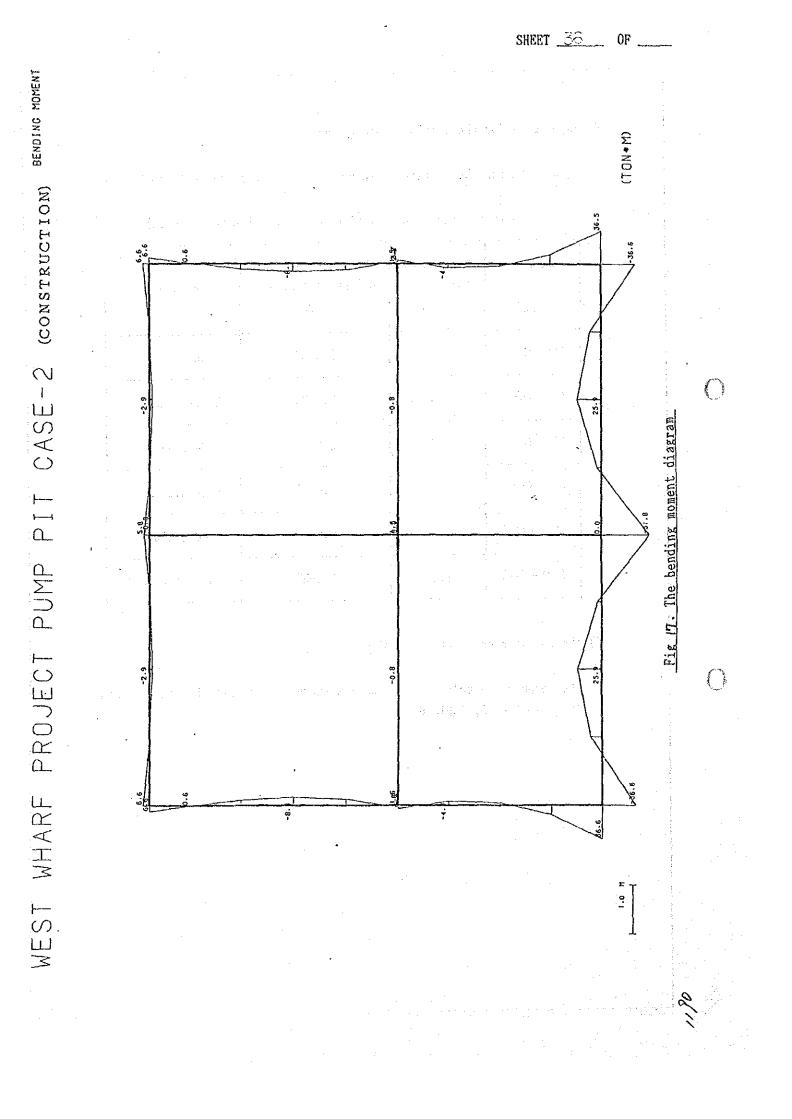
OF.

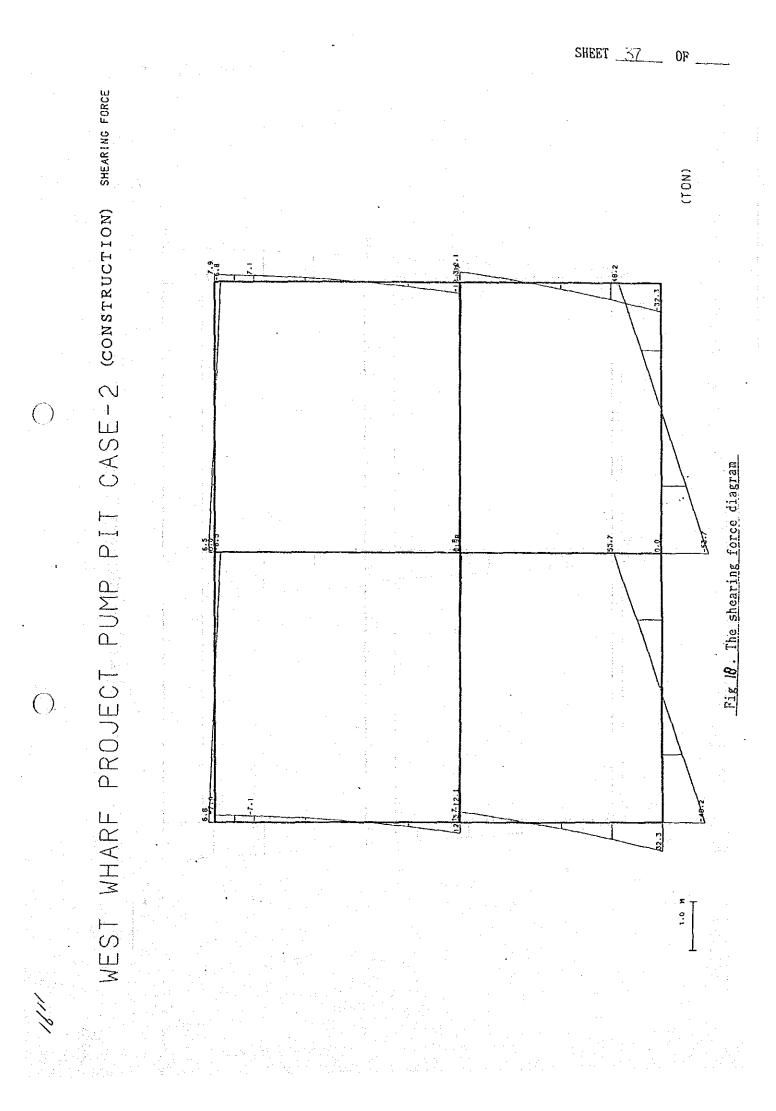
4) Input data for the sectional dimensions

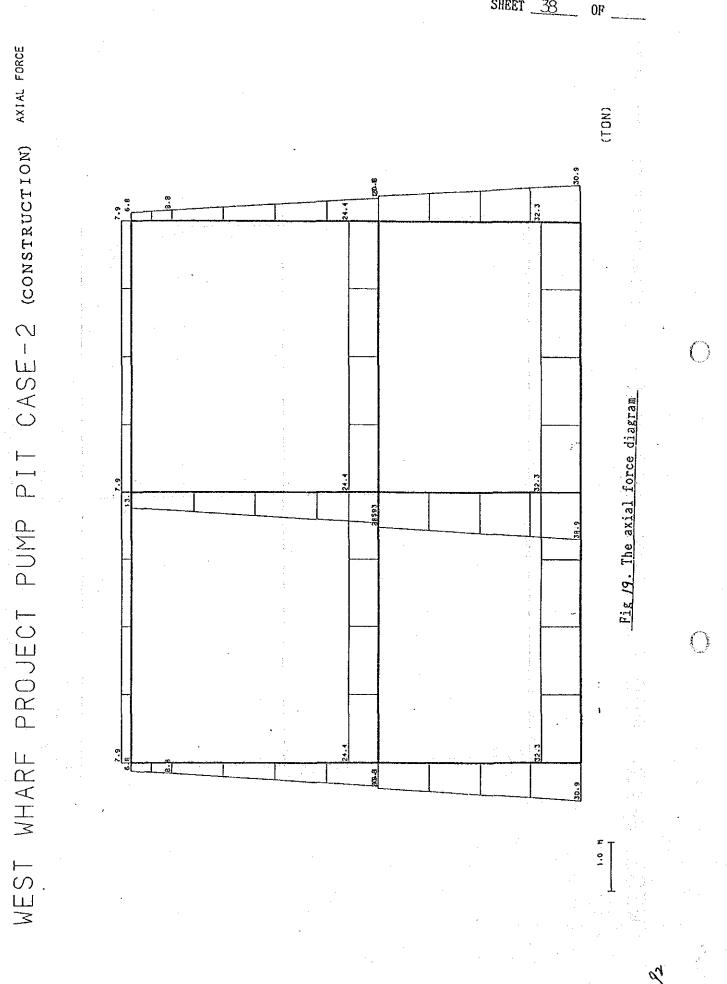
Input data for the sectional dimensions are summarized in Table 5.

The section The geometrical Member's moment of inertia Remarks area [m4] [m] I number A Side wall 0.0833 (1) - (3)1.0 0.36 0.0039 Upper slab (4) - (5)1.0 0.0833 Side wall (6) - (8)Base slab (9) - (10)1.0 0.0833 Middle slab 0.26 0.0015 (11) - (12)0.0833 Partition wall (13) - (14)1.0

Table 5. The sectional dimensions (Per 1 m unit length)


5) The computer calculation results


()


()

FORM 04

The computer calculation results are shown in the following figures and Table (Fig 17-Fig 19, Table 6).

SHEET <u>38</u>

	•			•					,			•				· ,							1								4	•	•		· · · · · · · · · · · · · · · · · · ·	
		1 M H M U M	<u>د</u>	2062.		c r	72.8	4 N	62955	n σ	4774	646	5076	5	5106F+	8230E	10001+	7175	1, 73	6355	5528F+	50	21.82 H	si n	5 BO4 B	523	-14404	~, c	6456F+	5446	- 14303	- 2290F+	100	94F-1 947-1	078F-1	•1411F-14
•	: •	slife all is truction)	4842541		.21006401	.10-11-20-201	. 12645+00	: 	00+31626.	2.4879F+JO	0046710	- 5408F+00	10-12914.		5411E+00	······································	10-30261.	-94416+	35526470	.95405+00	.23036401	.82496+2J	10+36v22	, 8189F+71 27695+31	.16,985+00	.8249F+01 1727F+01	10-385ú9.	.04155-07 00425-01		2760		144042	. B028E-1	80.08 80.08	α.	6105.
:		tional forces (Con	.8349E	2,33266+91				7.842E+00	· •	7,93315+00 7,93315+00	•		• •	7,93316+20	ч. •		• •	. •	• <u>•</u> ••	· •	• •		*) *			• •	1 . T	• 1	* *	÷ •	**	• •`	••	• •	. u i	۰.
		results of the sect	.65555+01	• 04 735 + 01 • 6 9925 + 10	-3176E+00	-20076+30 -68866+00	19115 + 20	.75,78,E.+CO	.52365+27	.62855+00 .57645-01	-94956+31	47245-01	47346-01					-8.7617E+17 28	1		1.4428++1.	5.17896+01					1-53896 +00	2 4944F-01	0 21725-01	1 64565400	1.9605F-11 9.27755-31	2.49445-1				: 4
4. 4. 4. 4.	: 1	1. The calculation	23.03		:35.72	~ 0	1970	-2.07716+20	1156.1	6.32426+01 2.48241+05	41	1996 8638	Veo⊺.	576-01	00431640	115400	• 72645+0.0			2.75926400	1.88425+01		2.76926+00		10+36022	. 769PC+11 . 8269P+11	74756+30			- 19617+		10-38569.	.8.2RF-14	81286-14 "		91-36L60°
EMENIAL LUNCES		Table 6-	867E	20	33345	+ +	1:29296+31		7.80425+20		7.922154	7,9323540	1.431554	7.93316+33	6.82426+1	C+ 12700 - L	5. / H4/6+ 1.1357F+01	1.392664.01	2.0.6151+71	-	7.702564.7 7.836954.1	3.23021+11	44	1. trans.	- +		17.	<u> </u>			TL.	2.43446+1	<u>;+</u>	÷	+ , +]	4
11 ** UL		FLEM LEVO	-	2 13			4 mi 1 1	8 17 9 3								о 	-1 0	23 27	5	5	~ . r.	a. (~	6 .				بر	- -	2	4 · · · · · · · · · · · · · · · · · · ·		46 44	- 8	-
4								· · ·		: .: .: .: .:.									•	•				•		•	•	•			• • •				•	

A state of the second se

 $\mathcal{L}_{1,2}(x_{1},y_{2},y_{2},y_{3}$

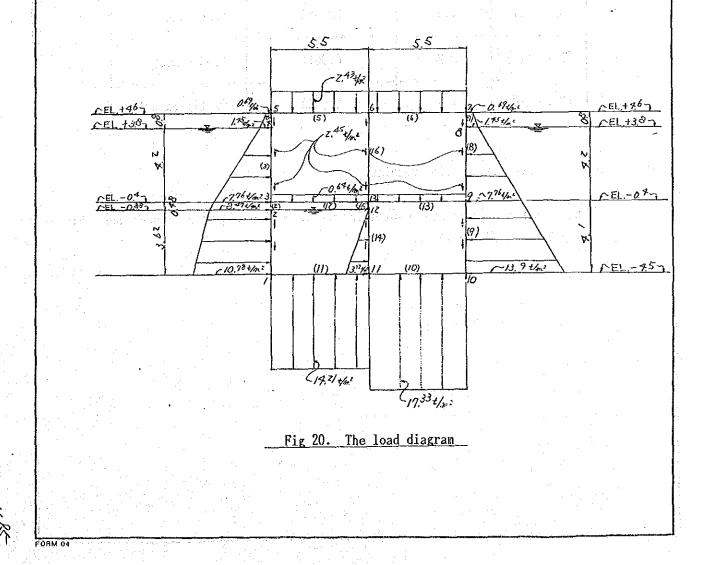
22 49 1. 1. 1. 1. 99,125-14		<u>Table 6-2. The calculation results of the sectional forces (Consyruction)</u>	•
	5.2	<u>49 1.61.46+11 1.9973E-14 -2.8922E-14 5 1.3082E+01 1.9973E-14</u>	
			. 4
			•
	5 7 7		
	-		
SHEET 40 OP			
			2
	:		•
	•		
24			
	"But		

1.4.5 Structural design analysis of Case-3 (at Inspection)

1) Frame of the design structure and the standard stand

Frame of the design structure is the same structure as that of Case-1 excluding a point that the internal water condition is empty at oneside.

2) The load calculation


The load calculations are the same calculations as those of Case-1 excluding a point that the internal water pressure and water weight are 0 at oneside.

3) The load diagram

(

 \bigcirc

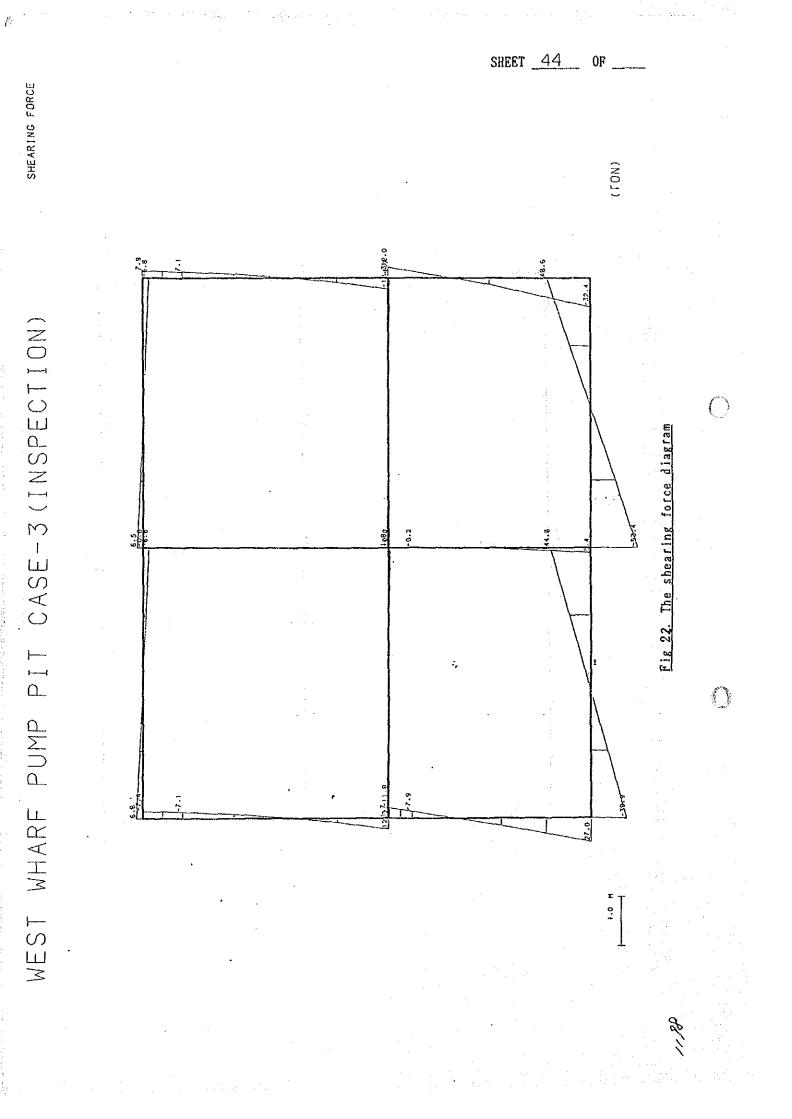
The load diagram is shown in Fig 20.

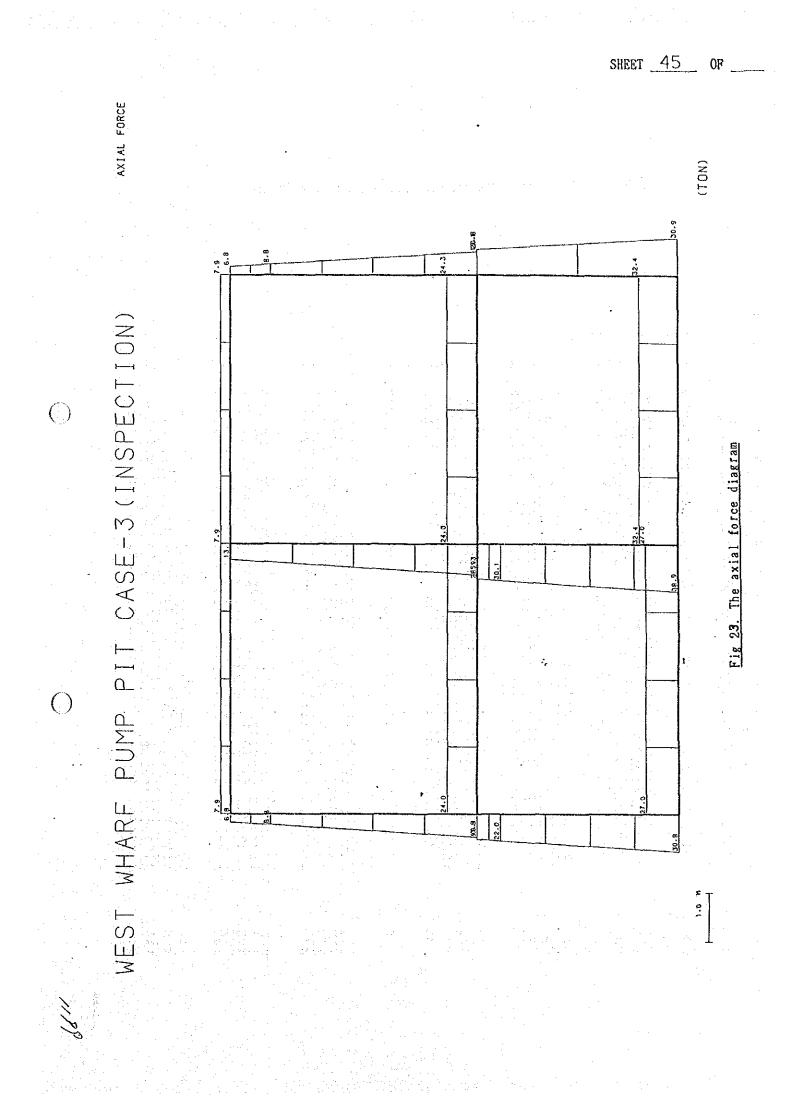
()

4) Input data for the sectional dimensions

Input data for the sectional dimensions are summarized in Table 7.

Member's number	The section area A [m³]	The geometrical moment of inertia I [m ⁴]	Remarks
(1) - (4)	1.0	0.0833	Side wall
(5) – (6)	0.36	0.0039	Upper slab
(7) – (8)	1.0	0.0833	Side wall
(9) - (11)	1.0	0.0833	Base slab
(12) - (13)	0.26	0.0015	Middle slab
(14) - (16)	1.0	0.0833	Partition wall


Table 7. The sectional dimensions (Per 1 m unit length)


5) The computer calculation results

FORM 04

The computer calculation results are shown in the following figures and Table (Fig 21-Fig 23, Table 7).

SHEET 46 OF

 \bigcirc

g

Table 7. The calculation results of the sectional forces

.

•	· · ·	÷ .	
	 		• • • •

.

•

and a set of the set of the set of the

** ELEPENTAL FORCES **	*⇒ Et	EPENTAL	FORCES	**
------------------------	-------	---------	--------	----

.

•

EĻEM	I-END	AXIAL	SHEAR	TARKOK	J-EN9	AXTAL	SHEAP	NOMENT
,	• :	2 69455 191			• •			
1	1	3.0845E+01 2.8623E+01	2.6953E+01	3.09396+01	14	2-96255+01	1.74536+01	1.09908+01
3	15	2.64116+11	1.7458E+01 8.4964E+00	1.03828+31 -3.18345-31	15	2.54118+91	8,49645+00	-8.1046E-01
Å	16	2.41935+01	2.71438-32	-4.63595+03	2	2.41938+11	3.71435-02	~4.62806+00
5	2	2-1976E+01	-7.88952+23	-1.0132E+00	17	2+19755+01 2+13885+01	-7,86955+99	-1.03546+30
6	17	2.13385+71	-9.87975+33	1.0938E+33	3.	2+13695+01	~9.87975+00	1.0911E+30
7	3	1.90658+01	1.2253E+31	2+1682E+00	18		~1.1785E+91	3.69265+17
. 9	19		4,94312+22		19	1.54925+71	4.94316+00	-6.69198+10
. 9	17	1.6492E+11 1.3920E+11	-7 20385-01	-5.72396+11	2	1.39275+01	-7.20285-01	-8.7630F+20
10	27	1.13476+91	-4.72745+11	-3.7920E+1) -3.78692+11	4	1+1347E+01	~4.72745+00	-5.75872+00
	4	2.77498+00	-7 0781E+00	5.55928-31	21	A.7749E+11	-7.07815+00	5.8499E-01
11	21	7+7949E+30	-7.59218+20			7.79492+00	-7.58218+00	2.49415+10
	-1			3,49308+30	-5	6.81495+71	-7.93418+30 -	
13		7.93416+00	5,81495+11	5+6014E+33	22	7.93415+10	3.47376+00	-4.72965-91
14	22	7.9341E+00	3,47375+33	-4 7275E-11	- 23	7.93415+17	1.32435-01	-2.9512E+70
15	22	7.93412+00	1.32438-71	-2.9512E+))	24	7.93415+77	-3.20385+00	-8.3622E-01
2.5	24	7,93418+70	~3.2083E+70	-3.36226-11	5	7.92418+31	-6+55112+00	5+87308+00
17	5	7.94502+30	6.5324E+00	5.82706+00	.25	7.94506+33	3-19115+00	-8.57918-01
18	25	7.94502+00	3 19115+))	-8.5791E-)1	25	7.9450E+30	-1.50158-01	-2.9486E+00
19	24	7+94502+20	-1.5015F-71	-2,9486E+))	27	7.94572+01	-3.4914E+70	-4.45018-01
20	27	7.94522+32	-3.47145277	-4.45015-11	7	7.94515+01	-6.83265+70	6.65238+00
21	7	6.8326E+00	7.94578+70	5.6528F+72	23	7.81265+77	7.59308+00	3.53916+00
22	28	7.8126E+11	7-23316+30	3,54)[E+1]	8	A+1026E+13	7,08902+33	5.9765E-11
23	8	8.79262+7)	7.08995+11	3.9366E-21	29	1.13658+01	4.73335+70	-5+78465+00
24	29	1.12656+01	4 7 <u>2326+</u>))	-5 75562+11	30	1.79385+01	7.31216-01	-8.8010E+00
25	30	1.39385+01	7.31216-01	-3.7727E+))	31	1+65105+01	-4.93225+77	-6.7474E+70
25	31	1.65100+01	-4.97225+11	-5.71148+10	9	1.90935+01	-1.22525+01	2.13645+10
- 27	7	2.08286+01	1 2023F+31	3.7157E+32	32	2.58579+31	-7.03185+90	-2.6904E+00
28	32	2+58505+01	-7+03136+00	-2.4754E+13	12	3.)3735+01	-3+23875+01	3.66325+71
29	11	3-23825+31	-5.33675+71	-5 .71765+*1	33	3.32005+01	-2.73945+01	5,73125+1C
30	33.	3.23832+31	-2.7834F+?l	5.7312E+11	34	3+53845+1	-2.40535+00	2.56155+11
31	34	3.23806+11	-2.43536+75	2.65155+31	35	3.23835+01	2.37735+01	1.23465+11
32	35	3.23806+01	2,30735+01	1.23965+11	17	3+53805+01	4.85525+91	-3.68475+11
33	1	2.69535+11	-1,9935 +11	-3,0139=+11	25	2-59535+21	-1.87475+31	9.40595+10
34	36.	2+67535+11	-1.37475+71	9.41595+11	37	2+49578+31	2.44147+77	2.16165+11
35	37	2.69530+31	2.44146+71	2.76165+71	32	2+59535+31	2.36305+01	2.69276+00
36	39	2+69535+11	2.36305+11	2.69332+33	11	2.59535+71	4.48195+01	-4.4367F+71
37	3.	2.4:)48E+11	1.7352+11	1.5241E+30	39	2,41495+11	8.55186-01	-2-56928-01
23	35	2.47428+71	2 5135-11	-2.54225-^1	4	2.40485+01	-2.4917E-12	-8.27495-11
39	43	2.4-1455+1	-2.43175-33	-3.27695-21	4	2-41495+71	-9.04926-01	-1.95575-01
43	61	2.4-1455+11	-9.04975-01	-1-83576-11	13	2.43435+31	-1.73435+11	1.6536F+32
41	13	2.42755+1	1.77405+**	1.63245+13	42	2+42755+21	8.94957-1	-2.03116-11
42	47	2.4775.+1	8.94952-1	-2. 1.11-1	43	2.42756+01	1.49455-12	-8.28565-01
4 2	43	2.42751+1	1.444*6-12	1 23444 1	44	2+42758+11	-5-55757-61	-2.44219-11
44	44	2.4.275 + 11	-8.45157-1	-2 41215-11	** 3	2+42755+01	-1.7451=+11	1.55025+00
45	11	3.89275+11	5,41905+11	5 7 193 -** 1	45	3.57205+01		
	45	3.672-78+11	2.93925+**	1.93545+11	45	3,45135+01	2,93935+97	1.20476-11
45 47	42 45		2.9297047	1.77937-71	45 47		1.17365+10	1.88636-01
		3+45430+11	1-14745-11			3.22655+31	1.14748-01	-3.41115-11
48	47	3+22650+11		-3.5175E-31	12	2,03648+31	-2,38215-01	-2.32 115-11
49	12	3 011645 + 1	-2.13716-11	+7.43652-11	41	2,94375+1	-2.38215-01	-1.85498-01
57	43	2,54212+11	-2.39215-11	-1.85485-11	13	2.33977 + 71	-2,39215-01	-1.29310-71
51	13	2,53326+11	-1.34296-32	+1,33236-31	<i>ډ</i> ۲	2,2273#+01	-1,^8795-72	-8-66528-12
-	-						•	
	45	2.22715+11	-1.09298-02	-3.60628-02	50	1.92075+91	-1.08298-02	-7,31260-02
56								
52 53	52	1.92076+01	-1.73295-32	-7.312672	51	1.51459+31	-1.03295-02	-5.95396-12

1.4.6 The Stress calculation

()

FORM 04

Before calculating the stress, the sectional force for the structural design is determined by selecting one case among three design cases from a view point of the safety design, and the stress calculations are executed, after that the stress calculation results are indicated in Table 8 and the arrangement of the reinforcing bars is shown in Fig 24.

1) The reinforcement of opening portion at the middle slab

The reinforcement of opening portion at the middle slab considering for the reinforcement of the opening portion of the middle slab, the opening portion shall be dealt with a fixed beam, so the bending moment M_b and the shearing force S are calculated as follows, then a distributed load W t/m is the same value as the axial force to the middle slab N = 24 t/m at normal.

 $M_{b} = \frac{1}{12} \quad Wl^{2} = \frac{1}{12} \times 24 \times 5.3^{2} = 56.2 \text{ t} \cdot m$ $S = \frac{1}{2} \quad Wl = \frac{24 \times 5.3}{2} = 63.6 \text{ t}$

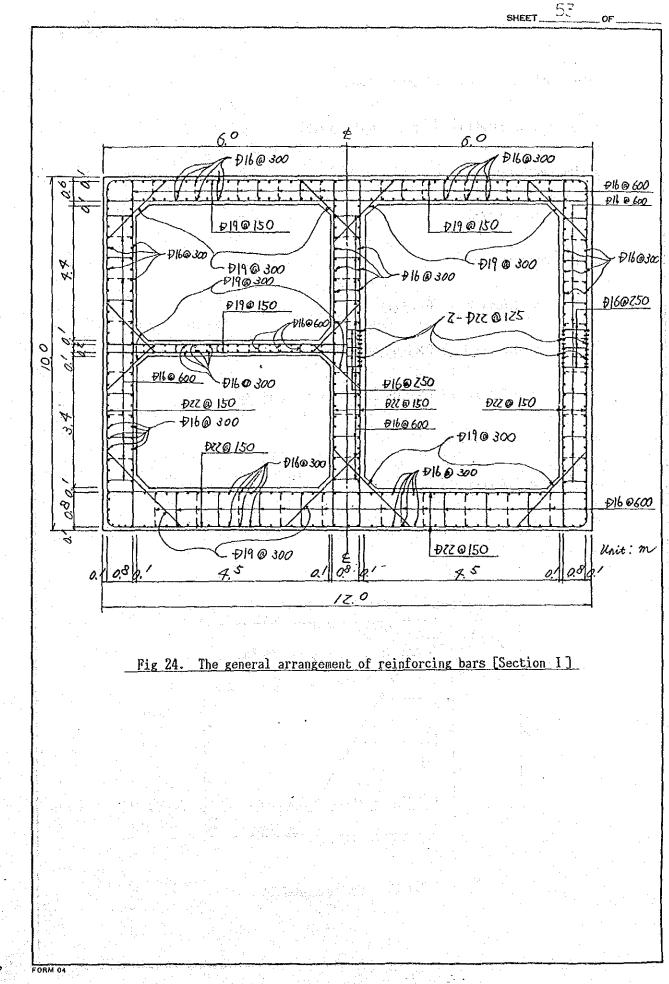
Accordingly the stress calculation results are shown in Table 9.

48 SHE ÔF As+As' ≥0.00×B·H = x0 c+c ollia DITTO Remarks DITTO DITIO DITTO D1110 DITTO DIT10 DI 7 TO DITTO DITIO The compressive stress The shearing stress 10% 60 0.9. 6.2 0.0 14 8 0.0 ю. О 80.0 The bending stress (kg/cm²) 0 ÷ (Section L 9. N 2.6 26 5:14 o' N 6.2 5.8 *у "*у 2.9 5 g G The strees 37 139 5 Å 8 12 16 Ż 262 ŝ 9 2 10 ŝ о 9 ÷ The Arrangement of Reinforcing Bars [cm²] λ's [cm²] <u>25.8</u> 25.8 25.8 3 25.B 25.0 25.8 ح5,8 8.S S S zs;8 zs;ð 2 2 2 2 Ås. As : The area of tension bars A's : The area of compression bars The Calculation Results of The Stress 505 03 03 03 03 03 03 03 03 છુ 150 Pitch <u>ଞ୍ଚା</u>ର୍ଚ୍ଚାର୍ଟ୍ର ମ୍ 50 50 30 202 S [mm] D : Diameter of bars 22A 22A 22A 77A 77A 22Q 724 77 A 22 G 224 22A 22A 22a. 72A 72*Q* 229 224 224 224 20 9 8 9 9 9 9 9 9 9 9 9 3 **b** Dimensions The covering of compression bar 20 8 8 8 g 6 8 8 g 8 Ś 8 [c#] Table. 8-1 Sectional Ś Ś 8 8 Ś 8 000 8 00/ 10 00 00 [c_m] The lleight The effective height The Ś 8 8 Ś 8 8 8 8 8 8 8 8 b [cm] The Width 00006. 8 600 12 300 12 300 7900 7800 7 000 00/6 ĝ 2 7 00 2600 2000 ర్జ్) ని The Sectional Force 80 22 ਕ = ਰ ਰੇ 8× % 000 22 20 200 00/6/ 21 400 8 800 6 80 00/ 6/ 8 800 /3 900 2 80 2 (kg) ~ [Pump Pit] : Dending moment Shearing force Center - 67 000 2/0 000 860 000 3 120 000 000 00/ - /20 00) -1000 000 0/2 --80000 000025 -6000 -60,000 [kg.cm] Axial force i Center Center | Center Point n Ņ 5 \sim n Å. R ×. 2 0 Member Ξ e E (ર ર ₹ There

イロイ

· · · ·			Remarks										AS+AS = 20.004 B·H	>4505 =	DITTO	DITTO) - 7/	BITTO H	DITTO	<u>0</u> of
	L)	(kg/cm ²)	۴	6.7	0		9.		, c	<		6.1	6	Š.	0.0	80 		S	0'	1.4	stress tive str stress
	t i on	strees ()	9 D	21/2	9 //		/8.6		10.0	11 6		2.12	5	0	ۍ ک	11			50	6 N	
	(Section]	The st	4.	627	229	۲, /	sas		505	622	;	621	091	/ 2/	25	×	2	\$	197	8	: The b : The c : The s
and the second			As [cm ²] A's [cm ²]	9.58	958	, <u>, , , , , , , , , , , , , , , , , , </u>	14. 25 0	. 19.1	9.5%	9.54	1.61	9.58	8.22 9	0.52 9.52	25,8	حج:8 ۲۰ ۲۰	25.8	25.0 25.0	200	25.8 25.8	bars
C	The Calculation Results of The Stress	Arrangement of Rei	Pitch (and	150	300	/50	0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	/50	300 2005	854	150	300	150	150	150	150	/20	150	/50	150	liameter of bars The area of tension bars The area of compression bars
	lation Resu	The Arran	Cmm]	44		_	6/4		614	£/6	. 6/G				22A	22A	22 4	22G	224 774	274 224	Diameter of bars The area of ten The area of com
	le Calcu	iońs	(m) (m)	2	Ś	2	2		8	2	2	202	Ŷ	ŝ	0/	Ş		2	0	.0/	h's A's
		l Dimensions	cm]	CQ Q	2	Ś	Ş		Ş	Ş	Ş	8	ξ	3	06 .	00	, S	2	8	8	
	Table.&−2	Sectional	JI [cn]	60	Q Q	3	60		g	ŝ		8			8	ş		 }	8	8	icht
		The	ß [cm]	8		3	8		8	Ś		00/	Ę	3	8	Ş		ž	8	8	Vidth Neight effective height
		Force	S [Xr]	15 100			17 500		14 500	ي مخ		15/00	\$ \$	<u>}</u>	7600	100	2/00		8	. 008 2/	The The
		Sectional	N CkrJ	0441	19.000		00/ 1/		17 700	17 700		17 700			7800	2000 2000 2000 2000			13 900	00/6/	ເສ ສະ ⊽ົາ
	(Pump Pit)	The	[Lkg·cm]	000 064 /	r - 260 m		/300 000		/300 000	- 660 000	1.44	1,≰70,000	w vy		- 350000	- 60 000	- 60 000		-880,000	2/0 000	: Bending moment : Axial force : Shearing force
			r Point	\$	Center		ò		0	Center		<u>``</u>	4		Center	°	૨	,	Center	9	N : Ber N : Axi She
120	9n		Nenher		£					(9				• • .	(2)				(8)		Mcre

50 SHEET DITTO 01110 As + As = 0.004B+H = \$0 cm² DITIO Remarks DITT0 DITTO : The compressive stress 2.0 6.01 K. SX. 0% S.K. 0.0 5.7 8 X : The shearing stress N . The bending stress (kg/cm² م (Section I) 0 16.02 27.4 37.9 6.02 192 5 50 27,6 6.2 в Л 0 37.9 a a 2 The strees 2 266 522 Ś 5 5 528 550 Ь 500 X 578 5 đ e ٤ The Arrangement of Reinforcing Bars As [cm²] A's [cm²] 25.0 25.0 25.65 25:0 252 202 25.0 250 8.72 258 250 25.8 25.8 As : The area of tension bars A's : The area of compression bars Table. 3-3 The Calculation Results of The Stress Pitch [mm] ୟତ୍ୟାୟତ୍ରାର୍ଯ୍ୟୁକ୍ଷ୍ୟୁକ୍ D : Diameter of bars 2244224 224 224 224 224 224 NG. 224 224 220 22 A 220 22A 22A 524 e Sectional Dimensions II d d' d' [[cm] [cm] [cm] ŝ 9 9 б 0 2 2 9 02 9 Ŋ 2 8 bar 8 8 8 8 ĝ 20 8 8 Ś g Ś The covering of compression Ś Ś 8 Ś 8 10 Ś 0// 0// 8 0)/ 8 : The effective height The 8 8 8 Ś 00/ 8 [cm] Ś Ś 00/ 8 00/ 8 : The lleight : The Width 9 800 12 300 780 880 27 000 0202000 005. XX <u>8</u>2 € 7800 8,8 2 100 20 300 S Dr.J The Sectional Porce 00/ 6/ 84 12 22 000 8 22 \$ c 20 000 27 000 -3/2000 27 000 30 20 20 000 27 000 27 00 (kc] · (Pump Pit) 8 X ... Bending moment
X : Axial force
S : Shearing force 2/0 000 Shearing force 000 0// 0000/-3120000 -3/20 000 00000/--67000 Center |. 2 /30 000 220022 2 130000 -× 270 000 [kg.cm] × Center . Center Center - 1. - A Point Ņ 6 11 2 Ś 8 Member (Q) 6) S (2) Where


.

yac/

4

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Pump	0it)			Table.	T.		ition Resul	ts of The S		Sect	ionI			:
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			The S		orce	ĩ	Sectional	Dimensi	ous		sment of Re.		$\left - \right $	1 1	(cm²)		· ·
3 740 cm 3 740 cm 36 90c 2 70c 70c 70 70 70 70 70 70 70 70 70 70 70 70 70 70	Acaber		A [kg·cm]	د در (۲	S (Xr)	L [cm]	R [cn]	d Can J	ر ویا م		Pitch [mm]		<u> </u>		نا به ا	Remarks	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		~	240 000	5		4.1.				614	150	19.1			0	As + As'	
(1) Catalar $-130 \mod 36$ 300 100 30 100 300 100 300 100		,	2			.	2	3	<u>s</u>	614	150	1.61	10,	/6.	<u>,</u>	= 0,000 D'T	
13 260000 $35 3000$ 27000 300 2700 300 2700 300 2700 300 2700 300 2700 300 2700 300 2700 300 2700 300 2700 300 290 910 190 192 162 67 091 167 67 091 1010 1000 100 1010 1010 1000 100 1000 100 1000 100 10000 1000 1000	(?)	Center	·	4× 900	ې د د		Ş	Ş	ļ	614	150	1.6.1			\ \ \	OLL OL	<u></u>
13 230000 36 2700 400 40 <td></td> <td></td> <td>:</td> <td>200</td> <td>3</td> <td></td> <td>2</td> <td>3</td> <td>\$</td> <td>6/4</td> <td>150</td> <td>1.61</td> <td>5</td> <td>Ì</td> <td></td> <td>2 17</td> <td></td>			:	200	3		2	3	\$	6/4	150	1.61	5	Ì		2 17	
13 $z40000$ 55700 700		~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-			\$	ļ	(614	150	1.61	: - -				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2	Source	1	22/2		2	8	5	6/ 4	150	1.61	, Å	%		01110	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	* 17 4. 1.	4					· · ·		_1	£14	150	1.61				 .	
(1) Ceckar $-130 \mod 36 \ 9\infty$ 3∞ (∞) 30 (1) 150 (1) (53) (2) (53) (2) </td <td></td> <td>2</td> <td>520000</td> <td></td> <td>00/, 2</td> <td></td> <td>8</td> <td>ဂ္ဂ</td> <td>0</td> <td>614</td> <td>150</td> <td>1.61</td> <td>\$¢.</td> <td>8</td> <td>0.7</td> <td>DITTO</td> <td></td>		2	520000		00/, 2		8	ဂ္ဂ	0	614	150	1.61	\$¢.	8	0.7	DITTO	
0 contact 0 contact	(14)	Contro		X err	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			9			150	/6/					
9 260000 36 700				2	3		2	8	0	614	150	1.6.1	155			D1 10	
12 $xsy \cos 33$ xo		0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	200 25		{		()	 (614	150	16/				() <u>+</u> +++	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			2007	32	3	<u></u>	2	8	2	614	150	/6/	/82	16.	~	D I TA	
Norm		~	2¢11m	000 85	1	ла. 11	2	(224	150	25.ď	-	۲ <u>.</u>	7	As + As 20,000,044	_
0 Center r_{f} coo 33 900 970 100 900 970 100 900 970 100 900 900 970 100 900 970 100 900 970 100 900 970 100 900 970 100 900 900 970 100 900		, ,	2	3	200		3	8	2	224	150	258	82	~	メ		
Mathematical force Mathemat	(15)	۲ ر								224	150	25.8					
13 -1000 23 900 200 100 90 100 92 150 256 70 27 0 DITTO 13 -000 20 100 92 150 256 70 2.7 0 DITTO 13 0 20 20 20 90 92 150 256 70 7 7 0 DITTO 0 13 0 70 20 20 20 90 256 7 7 7 0 DITTO 0 13 0 12 0 150 256 7		Lever		37 700	22		8	<u>Ş</u>	9	224	150	25.8	26	5	0.7	NT I O	
130209002009090902150258702700Centur09090909092215025677700Centur09090909092215025677700603001201202025677700060130001201202020256757700811111111111000071111111111100081111111111100008111<		3	-10 000	28 900	2002	00/	8	6	9	22 4	150 150	25.8 25.8	- X		0	01110	
13020207002007010 $D22$ 15025.6702.70DITTOCenter0192000100 $D22$ 15025.6707.800DITTO60130001007070707.800DITTO60130001007070707.80008110100202025.815025.8150000111010020202025.815025.815000111010101002025.815025.8150000111010101002025.815025.815000111010101002025.815025.81600111010101015015025.8160017101110101010101010015015016101011101010101010010010010010010010011110101010100100100								-		-922	5	253			,		
)Carter0/92000/0020020000060/3/000/00/2020 $\frac{922}{750}$ /50 $\frac{25}{550}$ /5/00060/3/000/00/2020 $\frac{922}{750}$ /50 $\frac{55}{550}$ /5/000M: Unding momentB: The WidthD: Diameter of bars σ_1 : The bending stressM: Maial forceII: The lleightAs: The area of tension bars σ_0 : The compressive stressS: Shearing forced<: The effective height		Ŋ	0	20, 22	28	8	8	8	0/	Ð22	150	25.0	8		0	DITTO	
Content0/92000/00/0090/0 $D1710$ 60/3/000/00/20 222 /50 25.8 /7/.0060/3/000/20/2020 222 /50 25.8 /7/.00111 <td< td=""><td>()()</td><td></td><td></td><td></td><td></td><td></td><td>na an a</td><td></td><td></td><td>-22G</td><td>150</td><td>250</td><td></td><td></td><td></td><td></td><td>. <u>.</u></td></td<>	()()						na an a			-22G	150	250					. <u>.</u>
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	 }	Center	0	1002 6/	0	8	8	8	0	£22Œ	150	25.8			0	DITTO	SHE
N00110101010101010N: Dending momentD: The area of bars σ : The bending stressN: Atal forceII: The lleight hs : The area of tension bars σ : The compressive stressS: Shearing forced: The effective height hs : The area of compression bars τ : The shearing stress		Y					1			22G	150	25,8		 	:	77770	ET
M: Dending momentB: The WidthD: Diameter of bars σ : The bending stressN: Axial forceII: The lleightAs: The area of tension bars σ : The compressive stressS: Shearing forced: The effective heightA's: The area of compression bars τ : The shearing stress			12	120/2/	0	8	107	8	5	224	/50	1 258	2	_	1		
: Axial force ii : The lleight As : The area of tension bars σ_{\circ} : The compressive stress : Shearing force d : The effective height A's : The area of compression bars τ : The shearing stress	Where N	••	ling moment		: The Yid	th			•••	ancter of l	ars		••	bending :	stress	:)]
: Shearing force d : The effective height A's : The area of compression bars r : The shearing stress		••	ul force		: The llei	ght j			- •	he area of	tension bar		• The	compress;	ive stres		
	~3	• •	ring force		: The eff	ective he	icht		•••	he area of	compression	bars	The	shearing	stress		OF.

and the second secon	Remarks										T	:			Sł	IEE	<u> </u>		<u>OF</u>	
<u>∽</u>	(kg/cm ²)	16									•				 :		· ·	tress ve stres	stress	
(Section])		37.6																The bending stress The compressive stress	The shearing stress	
(Sed	The strees	8211]		•												The b	The si	
stab-	forcing Bars As [cm ²] A's [cm ²]	62.0						•												
of portion at the middle A The Calculation Results of The Stress	The Arrangement of Reinforcing Bars D Pitch As D Fitch A's	125																liameter of bars The area of tension bars	The area of compression bars	
The opening portion at the middle stab- Table. 9 The Calculation Results of The Stress	The Arrange D	220 × 2						•										Diameter of bars The area of ten	The area of	
prorti	imensions I d' cm] [cm]	5				یں : ا												0 - 4 	. 1	
ering 9 Th	<u>a</u> č	8				-									<u> </u>				sion bar	
lhe oper Table. 9	The Sectional I II m] [cm]	8								 :									iight compress	
•	B The S	Ś				-			:	-				 	•			h ht	effective height covering-of compression	
•	orce S [kg]	63 600	-		•		• • • • • • •					•						: The Vidth : The Meight	: The effecti : The coverin	
- Lt	Sectional Force N : 1 (kg) []	0	-															8 3	יס יס איין איין איין איין	• .
[Pump Pit]	The Se K [kg.cm]	5 620 000							•									Bending moment Axial force	Shearing force	•
-	Point						•	Ī										•• ••		
-	Member	 i	-		J	- -				 	سنبه <i>ا</i>		- - - - - -	L				there X N	S	900

 $\left(\left(\begin{array}{c} 0 \\ 0 \end{array} \right) \right)$

()

1.4.7 Study of the back wall of Screen Room 1) The load calculation (per 1 m unit length) a) The surcharge load = 1.0 t/mq b) The earth pressure $P_{e0} = 0.5 \times 1.0 = 0.5 t/m^2$ $P_{e1} = 0.5 \times (1.0 + 1.9 \times 1.0) = 1.45 \text{ t/m}^{2}$ $P_{e2} = 0.5 \times (1.0 + 1.9 \times 1.0 + 1.0 \times 4.3) = 3.6 \text{ t/m}^2$ c) The water pressure = 4.3 t/mP. Accordingly the load diagram is shown in Fig 25. 05 0 . The assumed pressure line Unit: M 7,9 t/m

54

OF

()

SHEET

Fig 25. The load diagram

FORM 04

2) Structural design calculation

The design structure of the back wall is considered for the plate with four sides fixed, so the bending moments and the shearing forces are calculated as follows.

a) the moments

 $M_1 = 0.0231 \times 0.98 \times 4.8^2 - 0.0115 \times 6.92 \times 4.8^2 = -1.31 \text{ t} \cdot \text{m}$

 $M_2 = -0.0513 \times 0.98 \times 4.8^2 - 0.0334 \times 6.92 \times 4.8^2 = -6.48 \text{ t·m}$

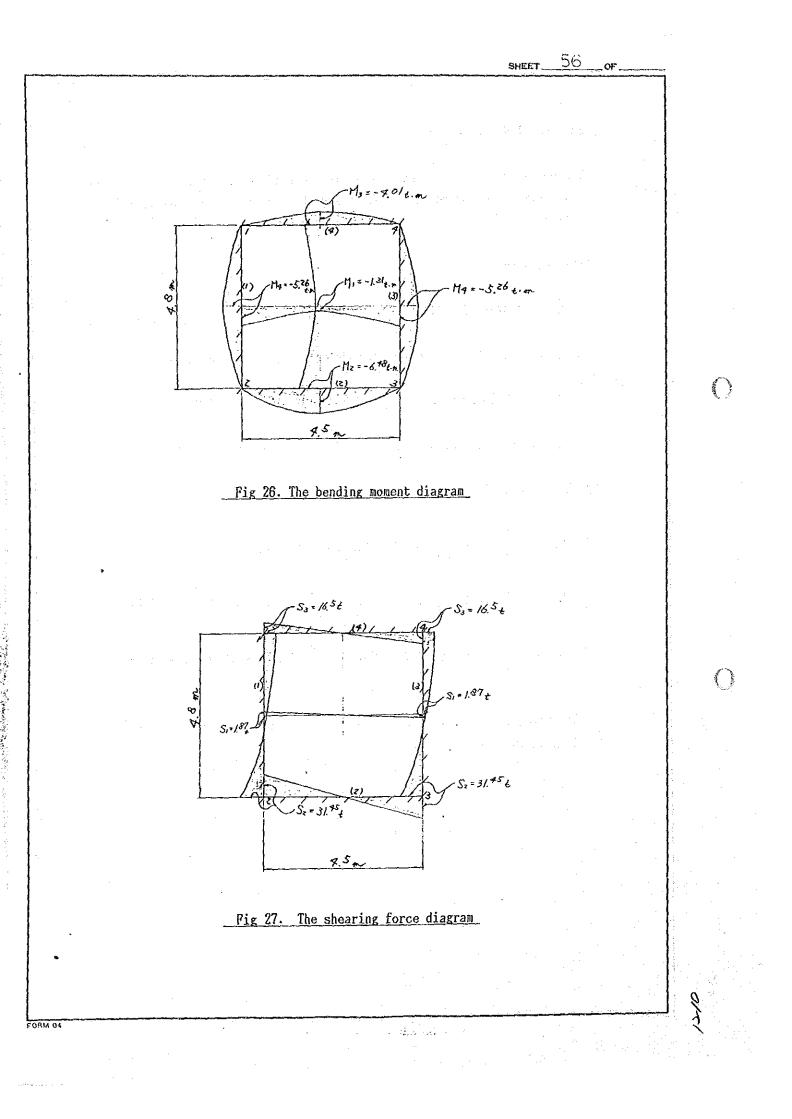
 $M_3 = -0.0513 \times 0.98 \times 4.8^2 - 0.0179 \times 6.92 \times 4.8^2 = -4.01 \text{ t} \cdot \text{m}$

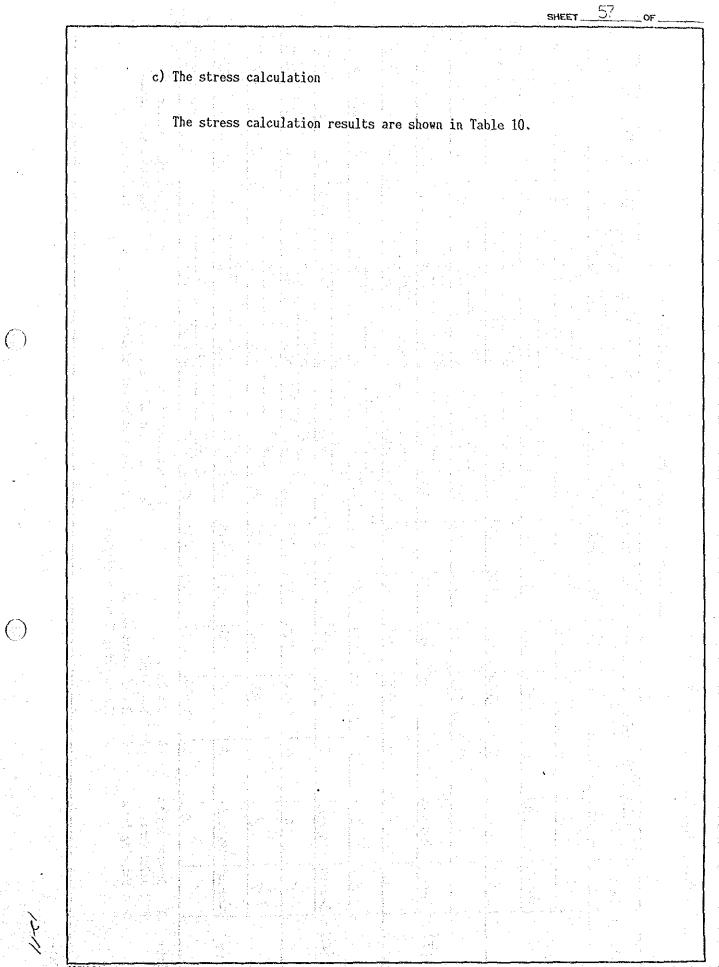
 $M_4 = -0.0513 \times 0.98 \times 4.8^2 - 0.0257 \times 6.92 \times 4.8^2 = -5.26 \text{ t·m}$

b) the shearing forces

$$S_{1} = \frac{1}{2} \times \left(\frac{1}{40} \times 5.92 \times 4.8\right) \times 4.5 = 1.87 \text{ t}$$

$$S_{2} = \frac{1}{2} \times \left(\frac{1}{2} \times 0.98 \times 4.8 + \frac{7}{20} \times 6.92 \times 4.8\right) \times 4.5 = 1.87 \text{ t}$$


$$S_{3} = \frac{1}{2} \times \left(\frac{1}{2} \times 0.98 \times 4.8 + \frac{3}{20} \times 6.92 \times 4.8\right) \times 4.5 = 16.50 \text{ t}$$


Accordingly the moment diagram is shown in Fig 26 and the shearing force diagram is shown in Fig 27.

P FORM ON

()

 (\cdot)

PORM 04

		The So	The Sectional Rores	Porco	The	Soctional					and and	•		(1.4/0.2)	
Mombor	Doint		TENTOTOO	2		TPHATAAA	2	rolls	THE VLENES	VILANTONIA IN ACTION AND A	OFCLIRE DAFS	1116 211	201 602 148		a
		[kg.cm]	د کرد کر	د کلا	ہ [دھ]	и [ся]	d [cn]	d' [cm]	u [uu]	Pitch [mm]	As Lcm ²] A's [cm ²]	4. D	de	L.	Kemarks
		((-Ð14	200	143			- I	As+As
	-	0	0	16 500	8	8	ŝ	8	- 19 - 19	2002	143	0	0	ری ک	=0.007 ± 4.4
	,					•			614	2002	143		6		
	121127	-576 000	0	006/	Ś	ß	8	0)	Ð19	2002	/∢ ځ	1018	25.1	0.5	DITIO
	N	1							61G	002	14.3	(
	J	0	0	31500	8	8	So	22	- Ð19	200	143	0	0	63	01110
	.,								Ð19	2002	14.3			3	
	$\overline{}$	0	0	31,500	Ś	60	50	20	P/9	2002	143	0	0	6.2	DITTO
ĩ	(- 61A	<i>8</i> 2	143		`		
(7)	Lenter	-6%% 000	0	0	8	<i>S</i>	Ş	0	914 -	82	₹X 2	1 25%	37.0	0	01110
									-919-	202	<u>14.</u> 3		<u></u>		
	3	0	0	31 500	00/	9	50	2	· 199	202	19,3	0	0	6.3	DITIO
								k	614	<i>Q</i> 2	14.3	•			
	γ	0	0	31,500	8	8	22	2	P19	22	<u>ن /م/</u>	0	0	۰ د د	01110
2) .	<							ليسم	£14	8	14.3			I	
2	Center	-526 000	0	600	8	20	8	6	614	8	<i>A</i> 3	8/0/	25.7	2.0	D1170
			•	•		••••		f	6/4 .	<i>Q</i> 2	£¥/				
	Ŕ,	0	0	/6 500	8	8	3	2	6/4-	<i>8</i> 2	· 5,¢/	0	0	う う う	DILIO
	1							t-	614	82	14.3	·		<u>.</u>	
	X	0	9	16 500	8	8	50	8	6 l(A	<i>\$</i>	541	0	0	, ~	01110
~	, ,			. 1				, ,	£14	2002	14.3	100	70	. (
(≁)	Lehter	000/0%-	0	0	8	8	<u>8</u> 0	Ś	<i>₽1</i> 9	200	14.3	0/ /	12.51	20	DI 110
	-							!	Ð19	2002	123		. (1
••		0	0	/6 500	00/	60	25	22	-61A	202	الإيخ ا	0	0		DITIO
Where	N : Den	Bending moment	£	••	tch			Q : 0	Diameter of h	bars	Φ	: The be	bending s	stress	
	ital : N	Axial force		* •	ght	1		vs .	The area of	The area of tension bars	` 0	': The co	ompressi	compressive stress	۲ŋ.
	S : Shee	Shearing force	.	: The eff	The effective height	cight		A's .	The area of	compression bars	Jars t	: The sh	shearing stress	stress	
	2	•	P	' : The cove	covering of compi	compress	ession bar								
• .					~										

,

.

r unm

 (\cdot)

1.4.8 Study of Wash Pump Pit

1) Plan of Wash Pump Pit

Plan of wash Pump Pit is shown in Fig 28, then the opening area is transformed to be the two dots chain line for the structural design.

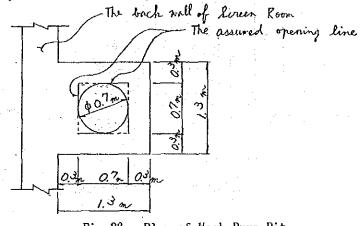


Fig 28. Plan of Wash Pump Pit

...

2) The load calculation

 \bigcirc

()

FORM 04

a) The surcharge load

$$q = 1.0 \, t/m$$

b) The earth pressure

 $P_{e0} = 0.5 \times 1.0 = 0.5 \text{ t/m}^2$ and the definition of the second s

 $P_{e1} = 0.5 \times (1.0 + 1.9 \times 1.0) = 1.45 \text{ t/m}^2$

$$P_{e2} = 0.5 \times (1.0 + 1.9 \times 1.0 + 1.0 \times 4.3) = 3.6 t/m^2$$

c) The water pressure

$$P_w = 4.3 \text{ t/m}^3$$

Accordingly the load diagram is shown in Fig 29.

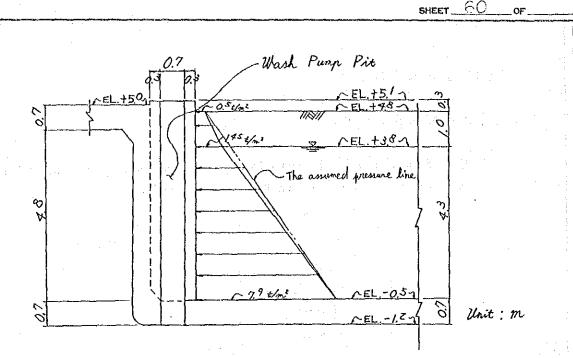


Fig 29. The load diagram

3) The structural design calculation

The design structure of Wash Pump Pit is considered for the two dimensional plate with three sides fixed and one side free, so the structural design calculation is executed as follows.

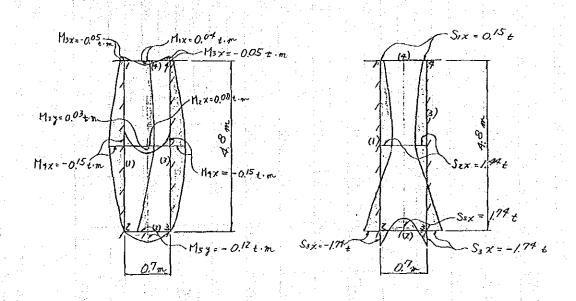
a) The bending moments

 $M_{1\times} = 0.0454 \times 0.5 \times 0.7^{2} + 0.0065 \times 7.4 \times 0.7^{2} = 0.04 \text{ t} \cdot \text{m}$ $M_{2\times} = 0.0402 \times 0.5 \times 0.7^{2} + 0.0191 \times 7.4 \times 0.7^{2} = 0.08 \text{ t} \cdot \text{m}$ $M_{2y} = 0.0118 \times 0.5 \times 0.7^{2} + 0.0075 \times 7.4 \times 0.7^{2} = 0.03 \text{ t} \cdot \text{m}$ $M_{3\times} = -0.0842 \times 0.5 \times 0.7^{2} - 0.0087 \times 7.4 \times 0.7^{2} = -0.05 \text{ t} \cdot \text{m}$ $M_{4\times} = -0.0755 \times 0.5 \times 0.7^{2} - 0.0364 \times 7.4 \times 0.7^{2} = -0.15 \text{ t} \cdot \text{m}$ $M_{5y} = -0.0418 \times 0.5 \times 0.7^{2} - 0.0291 \times 7.4 \times 0.7^{2} = -0.12 \text{ t} \cdot \text{m}$

FORM 04

 (\cdot)

()


FORM 04

$$S_{1\times} = 0.527 \times 0.5 \times 0.7 - 0.006 \times 7.4 \times 0.7 = 0.15$$
 t

 $S_{2x} = 0.491 \times 0.5 \times 0.7 + 0.245 \times 7.4 \times 0.7 = 1.44 t$

$$S_{3\times} = 0.373 \times 0.5 \times 0.7 + 0.311 \times 7.4 \times 0.7 = 1.74 t$$

Accordingly the moment diagram is shown in Fig 30 and the shearing force is shown in Fig 31.

Fig 30. The moment diagram

Fig 31. The shearing force diagram

61

OF

SHEET_

c) The stress calculation

The stress calculation results are shown in Table 11.

As + As = 0.009 B·H = 8.7 cm Remarks DITTO 01110 DITTO DITIO DITTO DITTO 01110 ollid 6.0 0) 0.9 60 0.9 0.9 6.0 0 [kg/cm² ٤ Ò. s, S ε, 80 37 ň. 0 0 0 0 g o 0 The strees 169 50 169 0 B 0 0 1 0 \$. The Arrangement of Reinforcing Bars [Cm²] A's [cm²] 7 22 224 ₹. 22 72 2 23 \$ 22 7.22 3.22 22.8 × 22 22 X 22 ≯ 22 6 \$ 22 XK 7.22 ¥. 22 % Λs The Calculation Results of The Stress 300 300 300 300 300 300 300 300 300 300 Pitch [mm] 300 300 300 300 300 300 Р Р £13 Ð 13 £14 <u>6</u> <u>e</u> 4 £13 Ð 13 ٩Ē Ð 13 £14 <u>2</u> 4 814 Ð13 £13 51 A 13 Ð13 Ð 13 Dimensions d d' [cm] [cm] 9 6 0 9 9 g 0 9 0 N. 2 20 20 20 · Q 20 20 2 Table, // Sectional 30 30 3 ğ 30 3 30 3 R [ເພ] The 00/ Ś 8 001 /00/ 200 8 8 8 в [ся] 120 0 \$\$ 1 1790 0851 1740 1740 1740 150 1780 د لا The Sectional Force 0 0 Q 0 0 0 0 0 0 [kg] Kg] (Wash Pump Pit) 8 - 15 000 0 0 Center | - 15 000 0 - 1200 0 [kg.cm] -500 Ś 1 Center Center Point Ņ か η 4-Member $\widehat{\boldsymbol{\varepsilon}}$ (2)<u>ر</u>

: The bending stress : The compressive stress 0' : The shearing stress 、 う 、 3 4 b 6 Þ 22 8 A 22 D : Diameter of bars As : The area of tension bars A's : The area of compression bars 200 Ð13 Ð/3 9 : The covering of compression bar 2 ß : The Height : The effective height 00 The Width 150 တ် က ဆ က 0 : Bending moment : Shearing force -500 : Axial force

sheet <u>62</u>

DITTO

D1110

0

3.

25

22 2

× 22

300

113 113 113

9

8

30

Ś

150

0

-500

K

2

20

3

ģ

0

0

2000

Center

E

۰.

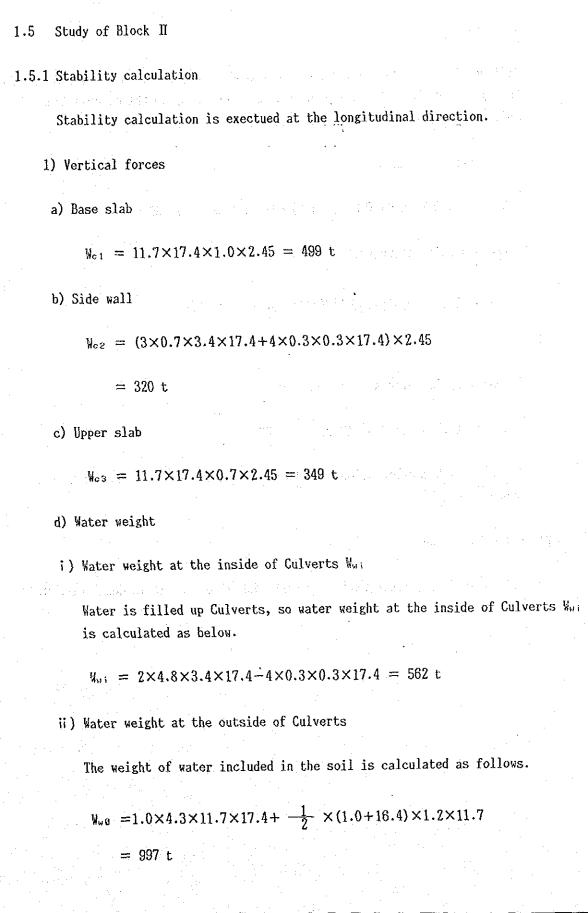
<u>____</u>0

9/2/

lhere

Ð13

005 005


DITTO

0

0%

X

× 22

FORM 04

()

e) Soil weight

Soil weight is including the surcharge load q = 1.0 t/m² and divided between the upside of Culvert and the underside of Culvert, so the calculations of soil weights are as follows.

i) the upside of Culvert

 $W_{s1} = (1.0+1.9\times1.0+1.0\times4.3)\times11.7\times17.4 = 1466 t$

ii) the underside of Culvert

 $W_{s2} = 1.0 \times \frac{1}{2} \times (1.0 + 16.4) \times 1.2 \times 11.7 = 122 t$

f) Buoyancy

Buoyancy Ub is calculated as follows.

 $U_b = 11.7 \times 17.4 \times 10.0 = 2036 t$

Accordingly the calculation results of the external forces at Block II are shown in Fig 32.

2) Horizontal forces

FORM 04

Horizontal forces are equilibriumed at both sides, so it is dealt with 0.

65 SHEET. OF 48 ∧El TINT ũ õ surface m round wate Ws1 = 19662 WRW = 875t か ŋ ¥ ø . 9.6 60 0 Wcj=349+ -1.2 -A EL 90 N Wwi=562 + 1 Wce= 320 + 0 Ő Wc1= 4992 CF. The accurat base line Wsz= 122+ W+02= 122+ (*) U= 2036+ 5 49 0.75 0.7 Unit : n 17.4 Fig 32. The calculation results of the external forces \bigcirc FORM 04

SHEET 63 OF_

- 3) The calculation of the ground reaction
 - a) The calculation of the eccentric distance
 - The eccentric distance is determined by the external moment calculations, then the summarized table of the external moments is shown in Table 12.

Species	Vertical forces V; [t]	Årm x: [m]	Moment Mi [t·m]
We 1	499	8.7	4 341
Wc2	320	8.25	2 640
Wc 3	349	8.7	3 036
	562	8.25	4 637
¥w01	875	8.7	7 613
Ww02	122	5.49	670
Ws1	1 466	8.7	12 754
Ws2	122	5.49	670
Ub	-2 036	8.7	-17 713
TOTAL	2 279 t		18 648

Table 12. The summarized table of the external moments

According to the above Table, the eccentric distance e is calculated as follows.

$$e = \frac{L}{2} - \frac{\Sigma N_i}{\Sigma V_i} = \frac{17.4}{2} - \frac{18.648}{2.279}$$

$$= 8.7 \cdot - 8.183$$

$$= 0.52 \text{ m} < \frac{1}{6} = \frac{17.4}{6} = 2.9 \text{ m}$$

Therefore working point of the composite force at the basement is within the middle-third.

.

0F

b) The calculation of the ground reaction qmax, qmin

4) Study of the bearing capacity

a) The ultimate bearing capacity qu

The ultimate bearing capacity qu is calculated as follows.

 $q_u = \alpha KCN_c + KqNq + \frac{1}{2} r_i \beta B N_r$

where

ORM 04

 (\cdot)

C : cohesion C = 0

q : the surcharge load $q = 1.9 \times 1.0 + 1.0 \times 9.4 = 11.3 \text{ t/m}^2$

r: the bulk density of the bearing soil $r_i = 1.0 \ t/m^3$

B⁻: the effective width $B^- = 11.7$ n

 α , β : the coefficient of the basic form

$$\alpha = 1 + 0.3 \cdot \frac{B^{-}}{L^{-}} = 1 + 0.3 \times \frac{11.7}{17.4 - 2 \times 0.308}$$
$$= 1.21$$

$$\beta = 1 - 0.4 \cdot \frac{B^{-1}}{L^{-1}} = 1 - 0.4 \times \frac{11.7}{17.4 - 2 \times 0.308}$$
$$= 0.72$$

_OF.

K : the extra coefficient for the embedded effect K = 1.0

- $N_{\rm c}\,,N_{\rm q}\,,N_{\rm r}$: the bearing coefficients considered for the load inclination
 - $N_{c} = 30$ $N_{q} = 18$ $N_{r} = 14$

Accordingly the ultimate bearing capacity qu is calculated as follows.

$$q_u = 1.0 \times 11.3 \times 18 + \frac{1}{2} \times 1.0 \times 0.72 \times 14$$

$$= 262 t$$

b) The allowable bearing capacity q.

FORM 04

The allowable bearing capacity 9. is calculated as follows.

 $q_{a} = \frac{1}{F_{s}} \cdot q_{u} , \qquad \text{where } F_{s} : \text{the factor of safety at normal} \\ F_{s} = 3 \\ = \frac{1}{-3} \times 262 \\ = 87.3 \text{ t/m}^{2} > q_{max} = 13.2 \text{ t/m}^{2} \\ 0.K .$

Accordingly the spread foundation is adopted for the foundation of the connected culvert.

5) Study of floating

Checking against the floating is executed at Normal and at Construction, so checking is as follows.

a) Total vertical force

i) at normal

 $v_1 = 2\ 279 + 2\ 036 = 4\ 315\ t$

ii) at construction (empty)

 $V_2 = 4 \ 315 - 562 = 3 \ 753 \ t$

b) Up lift U

 \bigcirc

 $U = r \cdot H_{\mu} \cdot A = 1.0 \times 10.0 \times 11.7 \times 17.4 = 2.036 t$

c) Checking on the safety factor of floating F_1

The safety factor of floating is checked by the following two cases.

i) at normal

 $F_{11} = \frac{V_1}{U} = \frac{4.315}{2.036} = 2.1 > 1.1$

ii) at construction

FORM (

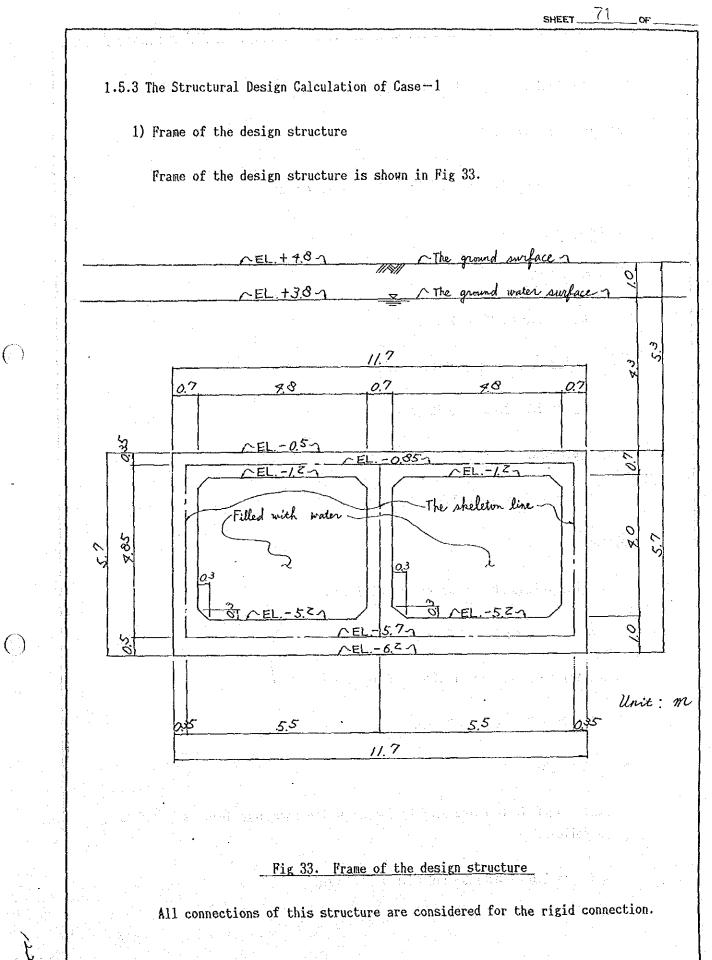
 $F_{12} = \frac{V_2}{U} = \frac{3.753}{2.036} = 1.8 \gtrsim 1.0$

OF.

()

1.5.2 Design Case

e provinsi se que se 👘


FORM 04

The following three cases are considered for the structural design cases.

· · ·		-	1
Case	1	2	3
Condition	at Normal	at Construction	at Inspection
Period	Long term	Short tern	Short term
The internal water condition	Լ.Ն.».Ն	Empty	Empty (oneside)
The distributed surcharge load	1.0 t/m ²	1.0 t/m	1.0 t/m²
The incremental of coefficient of the allowable stress	1.0	1.25	1.25

Table 13. The summary of the design cases

And Alan An

FORM 04

. .

C	HEET	 -
~		

and the second

2) Load calculation (per 1m unit length)

a) The ground reaction

$$q_r = \frac{q_{max} + q_{min}}{2} = \frac{13.2 + 9.2}{2} = 11.2 \text{ t/m}^2$$

- b) Self weight
 - i) base slab

 $W_{c1} = 1.0 \times 2.45 = 2.45 \text{ t/m}^2$

ii) a side wall and a partition wall

 $W_{c2} = 0.7 \times 2.45 = 1.72 \text{ t/m}^2$

iii) upper slab

$$W_{c3} = 0.7 \times 2.45 = 1.72 \text{ t/m}^2$$

c) Water weight

i) water weight at the upside of Culvert $W_{W\,u}$

$$W_{uu} = 1.0 \times 4.3 = 4.3 \text{ t/m}^2$$

ii) water weight at the inside of Culvert $W_{w\,i}$

 $W_{wi} = 1.0 \times 4.0 = 4.0 \text{ t/m}^2$

d) Soil weight

FORM 04

Soil weight W_s is calculated by including the surcharge load $q = 1.0 \text{ t/m}^2$ as follows.

 $W_{\rm s} = 1.0 + 1.9 \times 1.0 + 1.0 \times 4.3 = 7.2 \text{ t/m}^2$

SHEET 73

OF

e) Up lift

$$P_{u} = 1.0 \times 10.0 = 10.0 \text{ t/m}^{2}$$

f) The water pressure

i) the outside of Culvert

 $P_{w21} = 1.0 \times 4.65 = 4.65 \text{ t/m}^2$

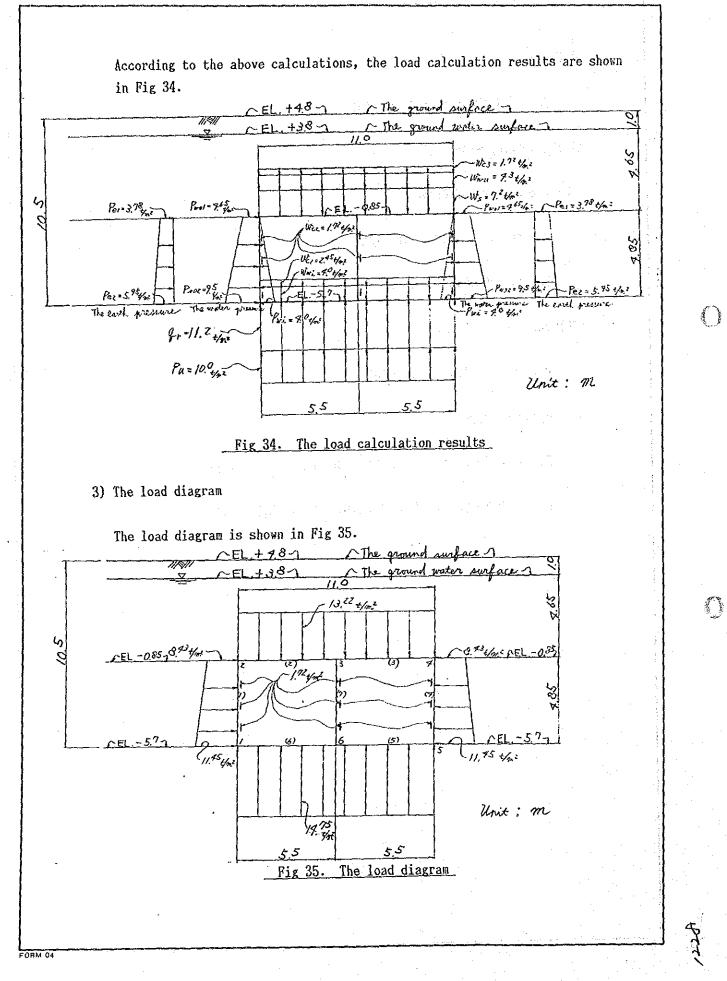
 $P_{w02} = 1.0 \times 9.5 = 9.5 \text{ t/m}^2$

- ii) the inside of Culvert

$$P_{wi} = 1.0 \times 4.0 = 4.0 \text{ t/m}^2$$

g) The earth pressure

 \bigcirc


ORM 04

 $P_{e1} = 0.5 \times (1.0 + 1.9 \times 1.0 + 1.0 \times 4.65) = 3.78 \text{ t/m}$

 $P_{e2} = 0.5 \times (1.0 + 1.9 \times 1.0 + 1.0 \times 9.0) = 5.95 \text{ t/m}^3$

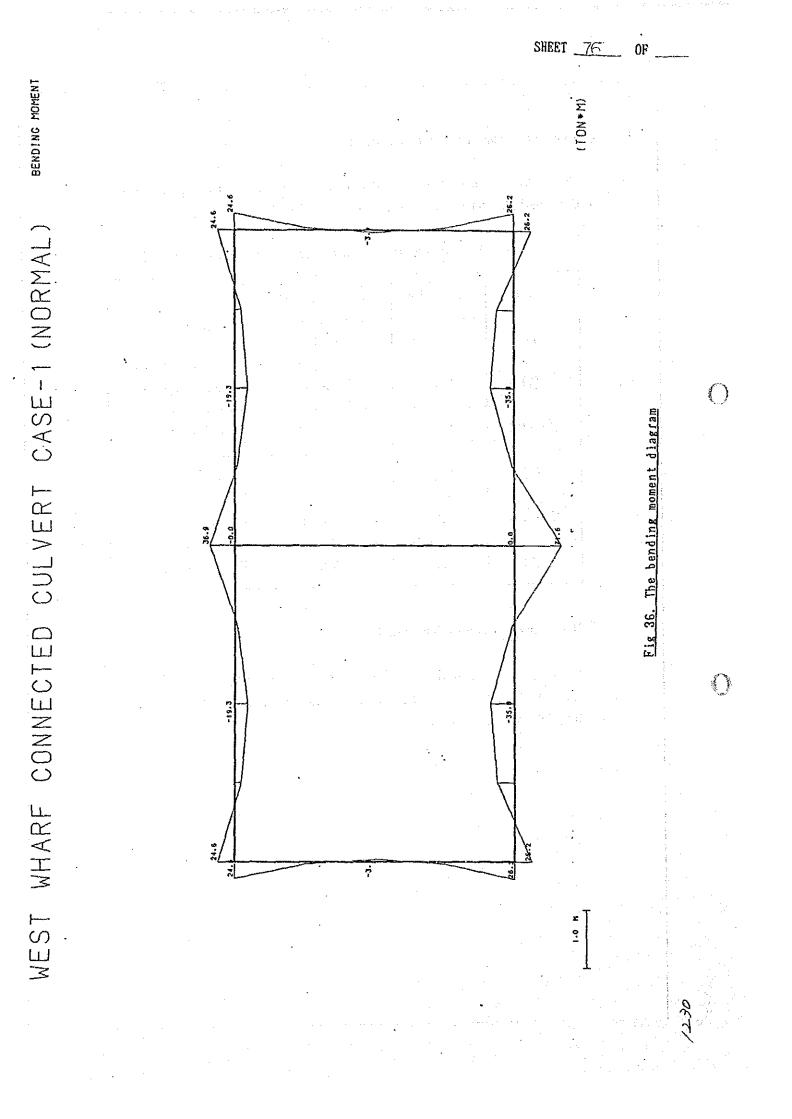
SHEET 74

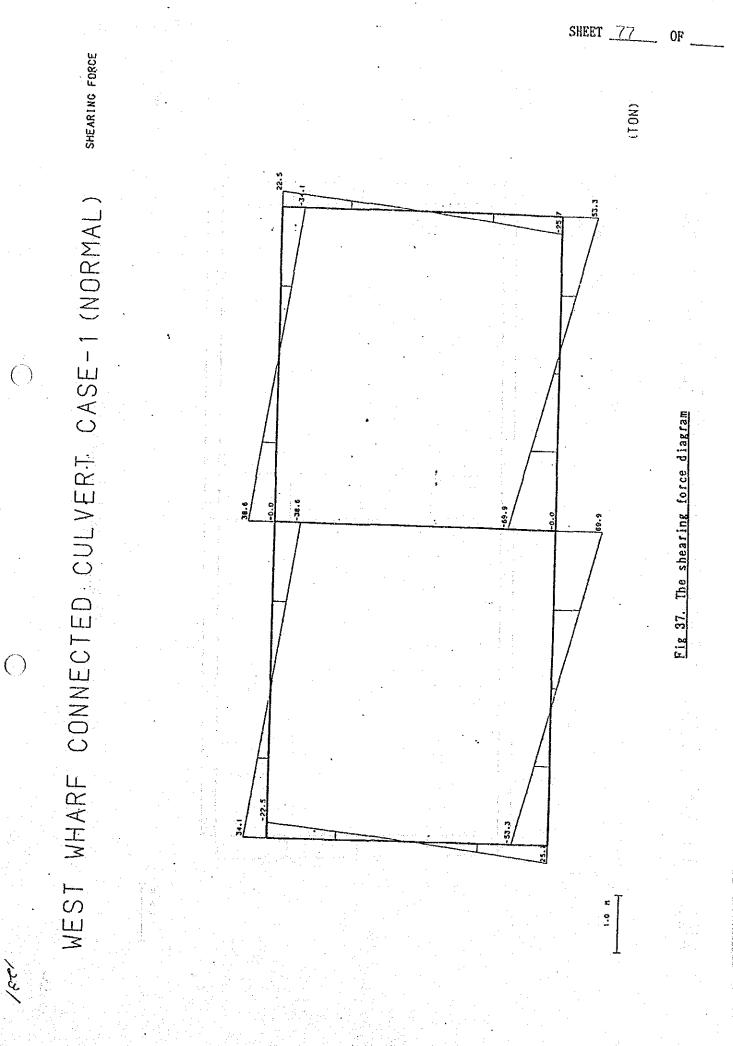
OF

OF

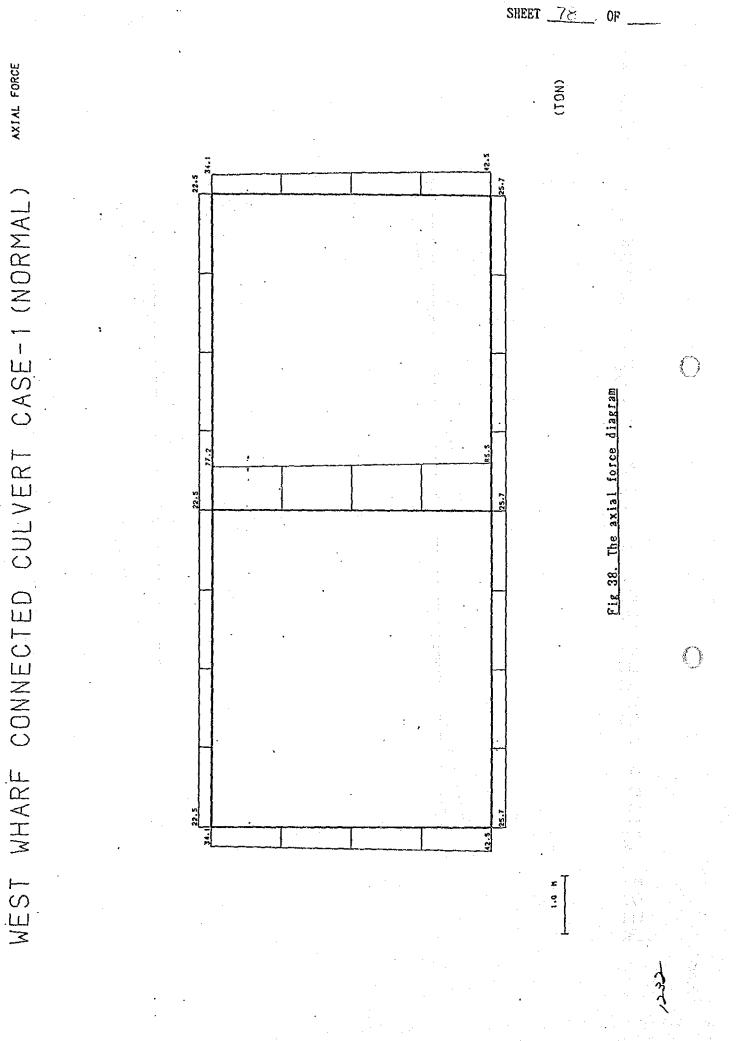
4) Input data for the sectional dimensions

The sectional forces are calculated by computer, so input data for the sectional dimensions are summarized in Table 14.


Member's number	The section area A [m]	The geometrical moment of inertia I [m ⁴]	Remarks
(1)	0.7	0.0286	Side wall
(2) - (3)	0.7	0.0286	Upper slab
(4)	0.7	0.0286	Side wall
(5) (6)	1.0	0.0833	Base slab
(7)	0.7	0.0286	Partition wall


Table 14. The sectional dimensions (per 1 m unit length)

5) The computer calculation results


FORM 04

The computer calculation results are the bending moment, the shearing force and the axial force, so they are shown in the following figures and Table (Fig 36-38, Table 15).

ç ç

							a a constant and a constant of									• §*								•			Shi	EET		<u>79</u>		OF	
						i .					:	1			· * .				•				-	23		, , ,			İ	•			•
																										-							
				MOMENT		3.3400E+00	3.6372E+00	-9.8447E+00			-3.7067E+00 -1.9273E+01		• •	-3.8551E+00	2.6184E+01	-2.5973E+01	• [•	÷	-3.57996+01	-2.5973E+01	-1.26076-14	3,7982E-15	3.6610E-14										
		al forces		SHEAR	·	1.2235E+01 2.7512E-01	1.1870E+01	1.5945E+01	2.0410E+01	3.8587E+01	2.0410E+01 2.2320E+00	1.59456+01	10+30/81.1	2+7512E-01	2.56606+01	2.25466+01	-3.90545+01	. a I.	3.90546401 8.25386400		35306-1	- 1	1.3530E-14			i pro anti- anti-							والمستعمل المتنافع والناف متواقعهم مستعد معادينا والمترك
2		of the sectional		AXIAL	. - 	0379E+01 8294E+01		2549E+01	25496+01	2549E+D1	2549E+01 2549E+01	2549E+01	520BE+01	1294E+01	2465E+01	5660E+01 5660E+01	5660E+01	5660E+01	5660E+01 5660E+01		10+30926	• 1	8.5516E+01 -1									-	
		ation results		J-FND			6.									19 2						26 8				• • • •						•	
		The calculat		MOMENT		2.6203E+01 3.3215E+00	-3.8366E+00	2 45776+01	-9.8447E+00 -1.9273E+01	-3.7067E+00	3.6853E+01 -3.7067E+00	-1.9273E+01	2.45776+01	3.61876+00	-3-3215E+00	2.6203E+01	-3.57996+01	-3.2754F+00	/.15996+01 -3.2754E+0D	-3.5799E+01	-2.9013E-14	2607E-	2.02046-14						يەر بەر بەر مەربەر بەر مەرب	عليا يستري ويربعهم بالإستانية			
		<u>Table 15.</u>	¥	SHEAP		2.5660E+01								1.18705+01	2.()12E=01 -1.2235E+01	5.3346E+01	-8.25385470	-3.9054F+01	•••	.	+1-30ESE	.3530E-14 3530E-14	-1.3530E-14										
			ELEMENTAL FORCES	AXIAL		.2465E+01 .0379F+01		2549E+01	2549E+01 2549E+01	25496+01	.2549E+01 .2549E+01	25496+01	•4123E+01	10+36029.	.8294E+01 .0379E+01	10+30995	5660E+01	.5660E+01	.5660E+91 .5660E+91	-5660E+01 5460E+01	F.	0	8.3421E+01									-	
2		1	** ELG	1-END		1		2	10	12	ო ლ -	41	4	- 1	ः २ 87	5	111	21	22 22	23	7 M	25	27										
ESS.	¢			RELEM			en v		9	8	10		13	(6 14	15	11	61	• 20	21	23	25	(9 26	28	9	e		6		3		9		

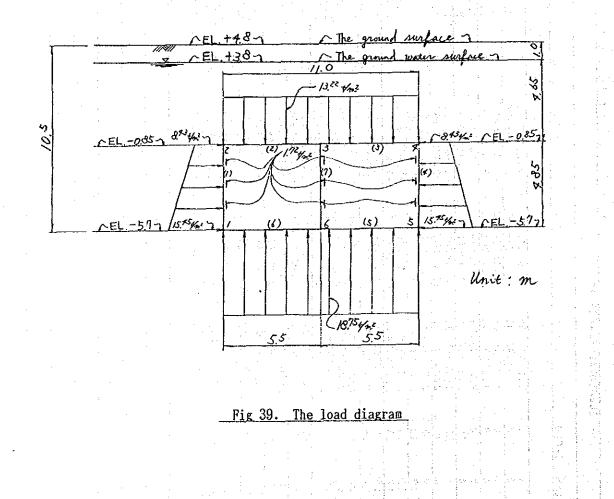
OF

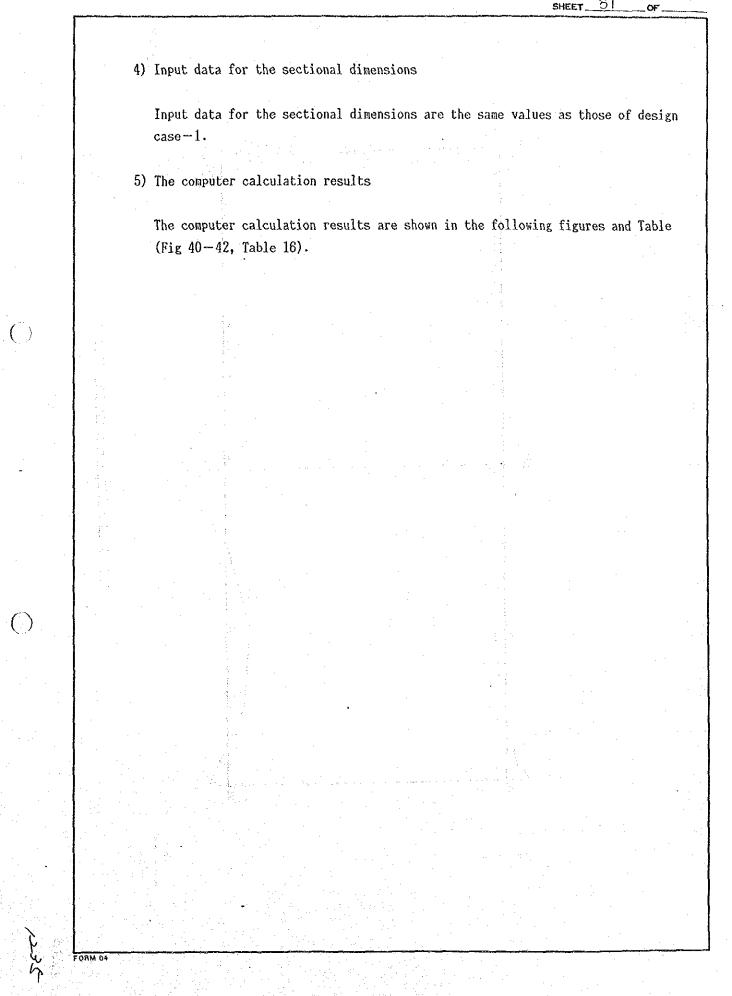
-subsection

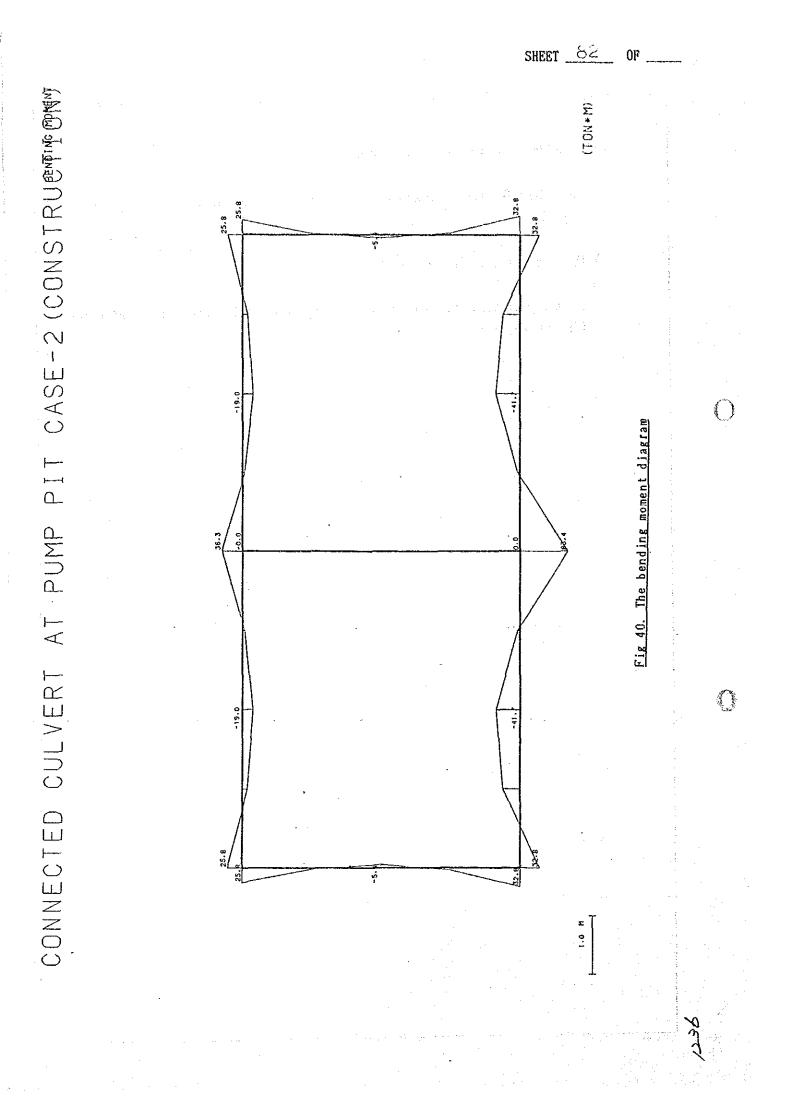
1.5.4 The Structural Design Calculation of Case-2 (at Construction)

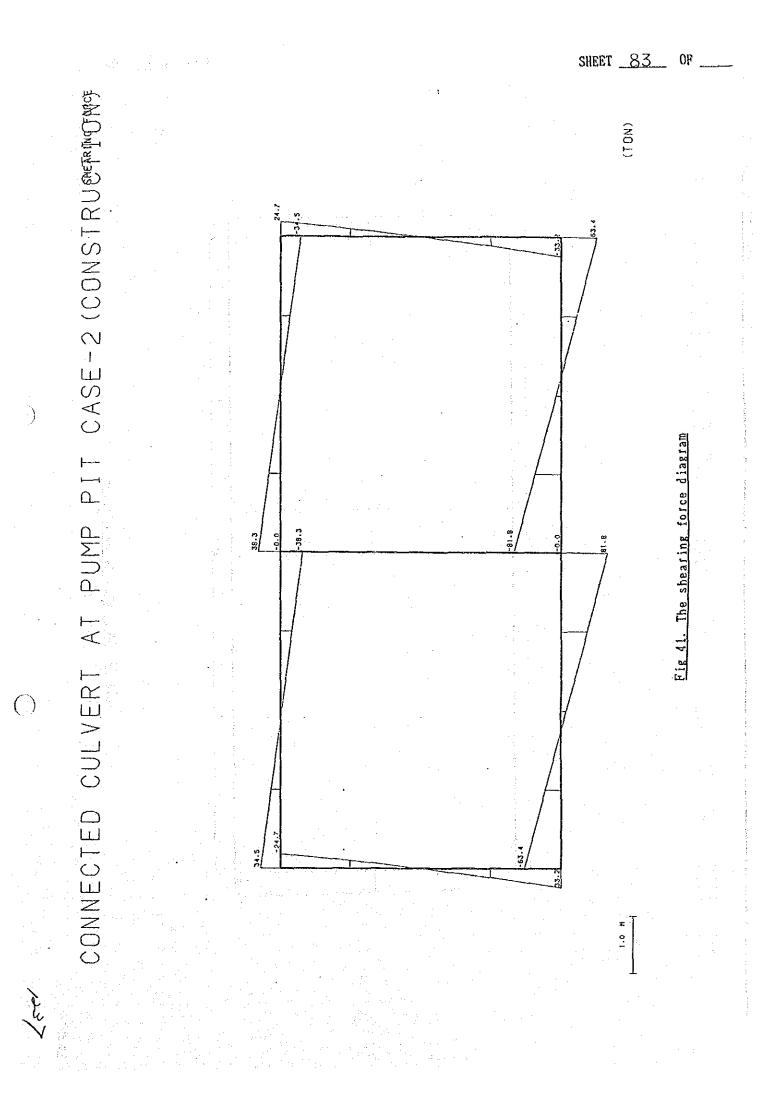
1) Frame of the design structure

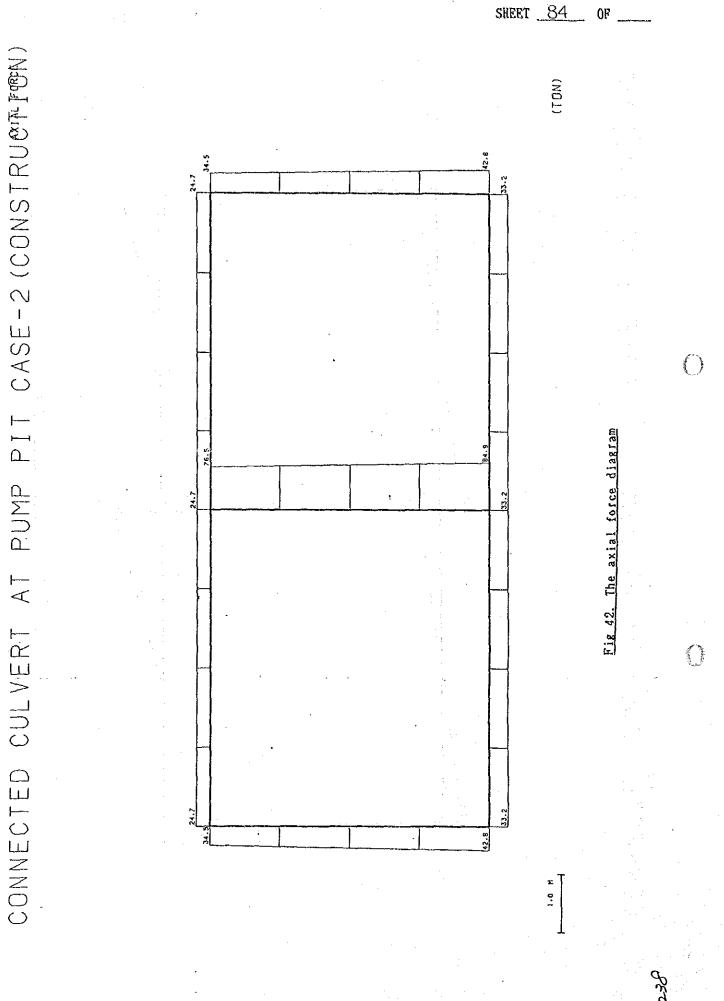
Frame of the design structure is the same structure as that of design case -1.


2) Load calculation (per 1 m unit length)


Load calculations are the same calculations as those of case-1 excluding a part that the internal water loads are no considered (=0).


3) The load diagram

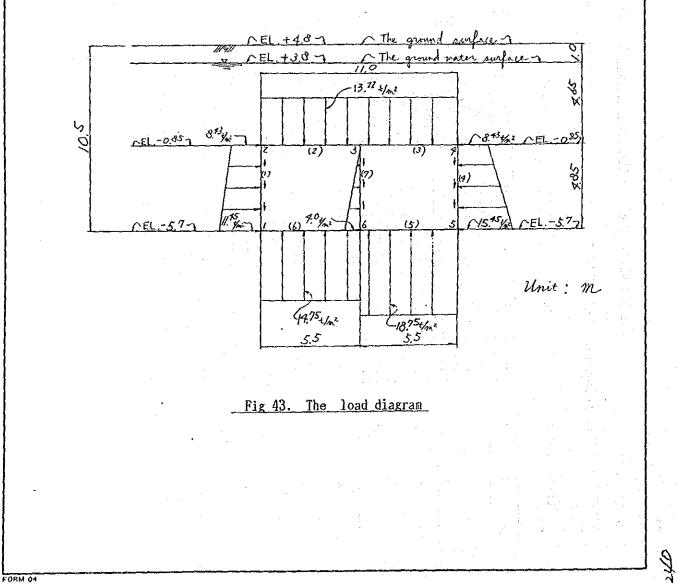

FORM 04


The load diagram is shown in Fig 39.

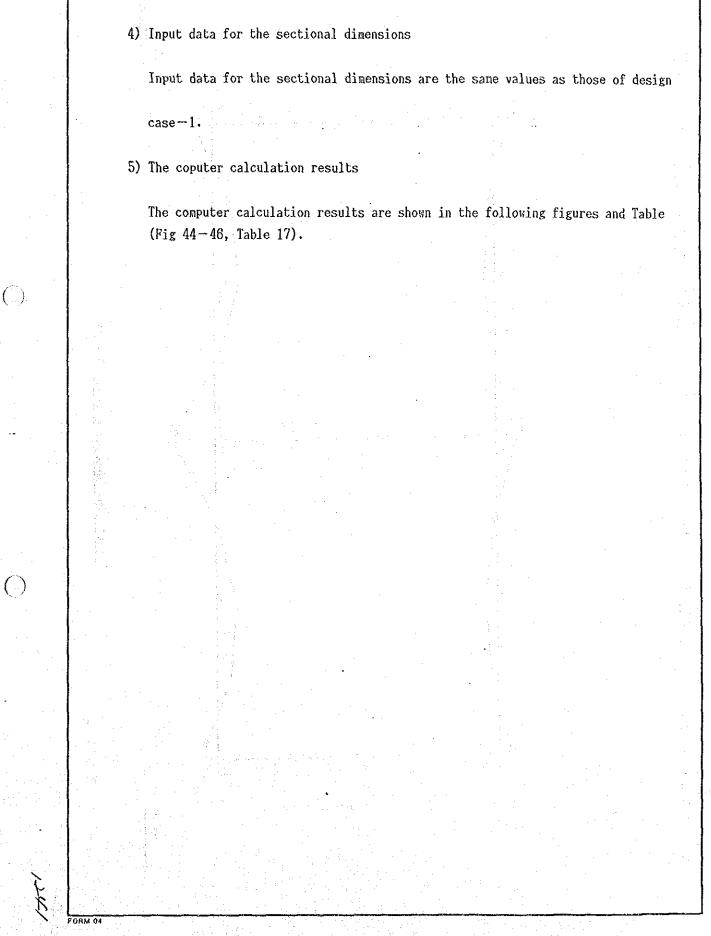
:)		
Table	<u>16. Ihe calculati</u>	<u>on results of the</u>	sec t i ona l	IOFCES	(Lonsyruc Lion)	-
ELEMENTAL FORCES	615S ++			and the second		remains a party of the Co. A base of the Revenue of the
TVI XV	L SHEAR	MOMENT J-END	END	IVI V	SHEAR	NOMENT
на 1 1 1 1	 • . • .					
7526+0	3.3236	3.2796E+01 3.4246E+01	7 6:	4.07095+01 3.86225+01	1.55666+01 2.51605-02	•46 •76
ίω υ 1.27 1.12	2.5167E		6	2.652/7+11		2.54655490 2.5824541
0+110/2 	3 44516		υT	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1.4746401	+3656.
C+ 1 92		c'-	11	- 46737	10731000_07	9595 4405
73640	1 -2.33316+91			-297°		• 244714 • 626554
73 [+ 7		03.4	3	. 16775	2, 1081F+01	າ ພູ ເ
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			4 5	<pre><. + 6 / * + + 01 / *</pre>		
ີ (• +	1-2-1-	3.44515	5797F
			16 17	2.64375401 2.663355401		•
1 + 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -			1.8.		. 5566	-3916E
€+38			۲. ۲. ۲.	120200		3,27576+01
56 П + 1 16 <u>+</u> 1 16 <u>+</u> 1		3.4/905+01 -2.04155+01	202	キロジョン		L 1. L
е + -)		1. gr (21	12/22/01		- 1005F
2.0 1 - 1 2		-4.0995E+00	\$ 2,2		-3.13067401 4.55067401	10+-12000-2-
い (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		-	5 m 5 M	23.55	• •	171
(+ <u>3</u> 98		+	24	.22366+	2.7004E+	5175 *
() +) -) () +) -) () -) -) -) () -) -) -) -) () -) -) -) -) -) -) -) -) -) -		N. P	1 26		Tu+⊹+056.40-	+ 101 / 70
:++ 		-1.29416-14	20	10890		541
1430	*` •	i +	27	.277	-1.42455-14	,1849F-1
4 - 4 - 7	-1-4		ئ	٠	-1.43465-14	3
1						
	and the second se			· ·		
				·	-	
		a mayaka da ana ang ang ang ang ang ang ang ang an				
		·				

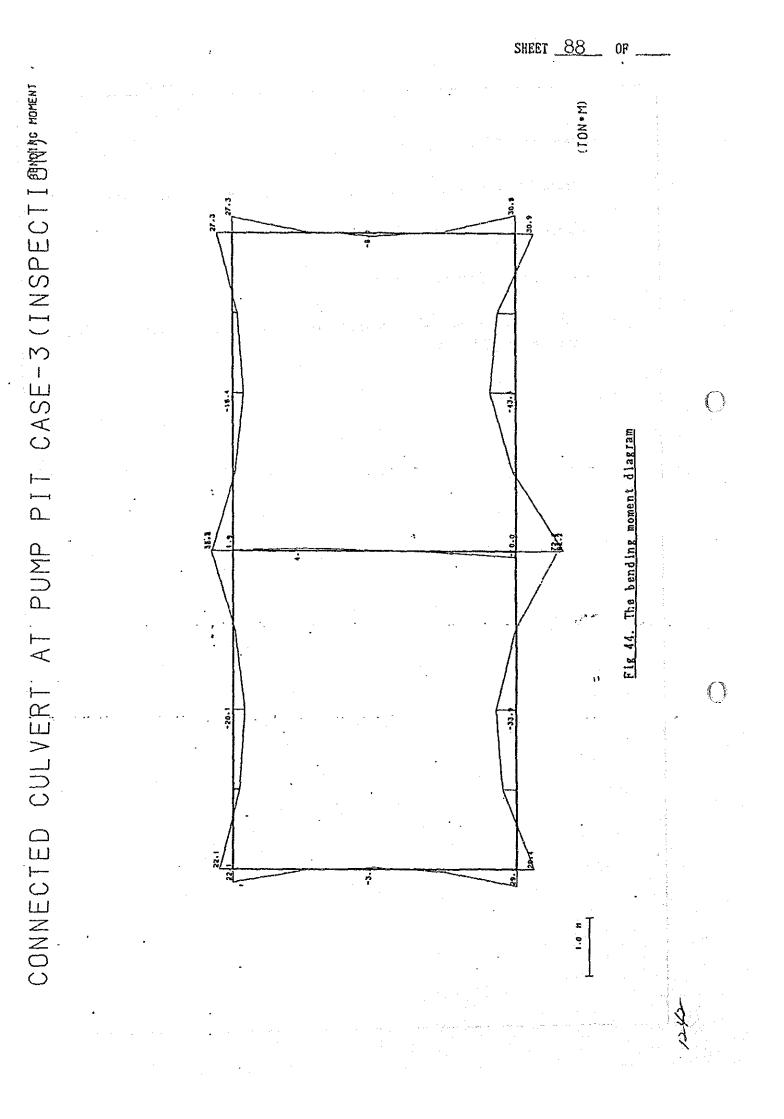
1.5.5 The Structural Design Calculation of Case-3 (at Inspection)

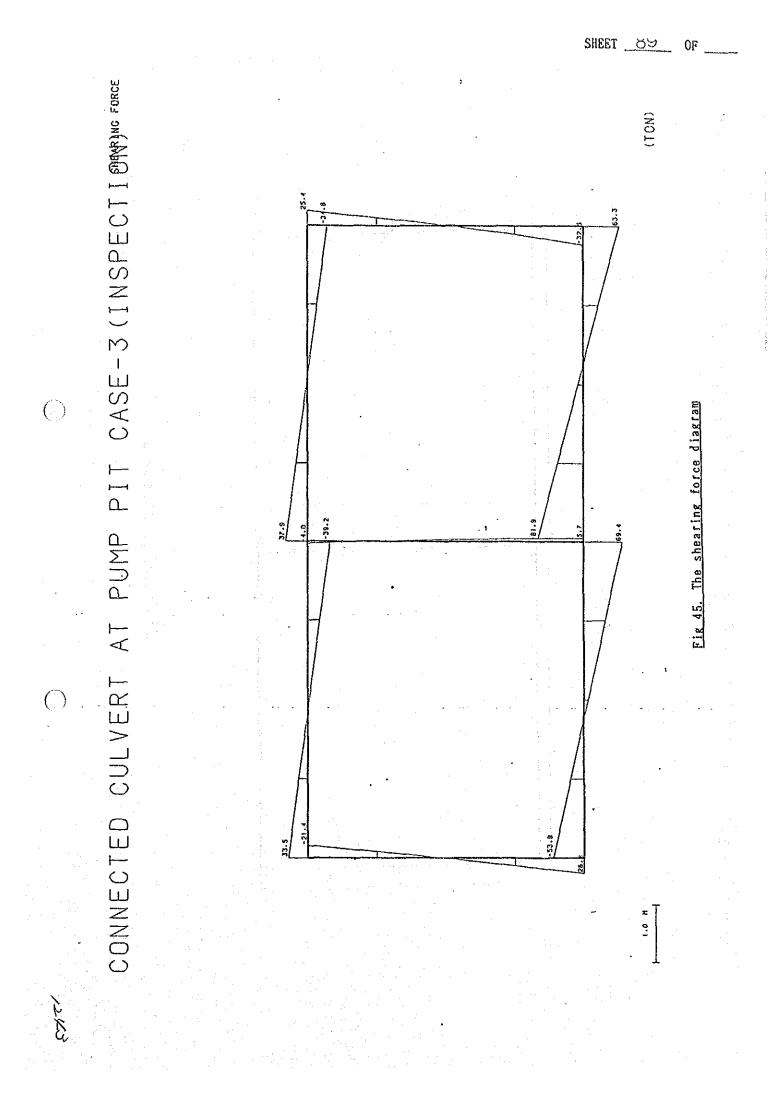
1) Frame of the design structure

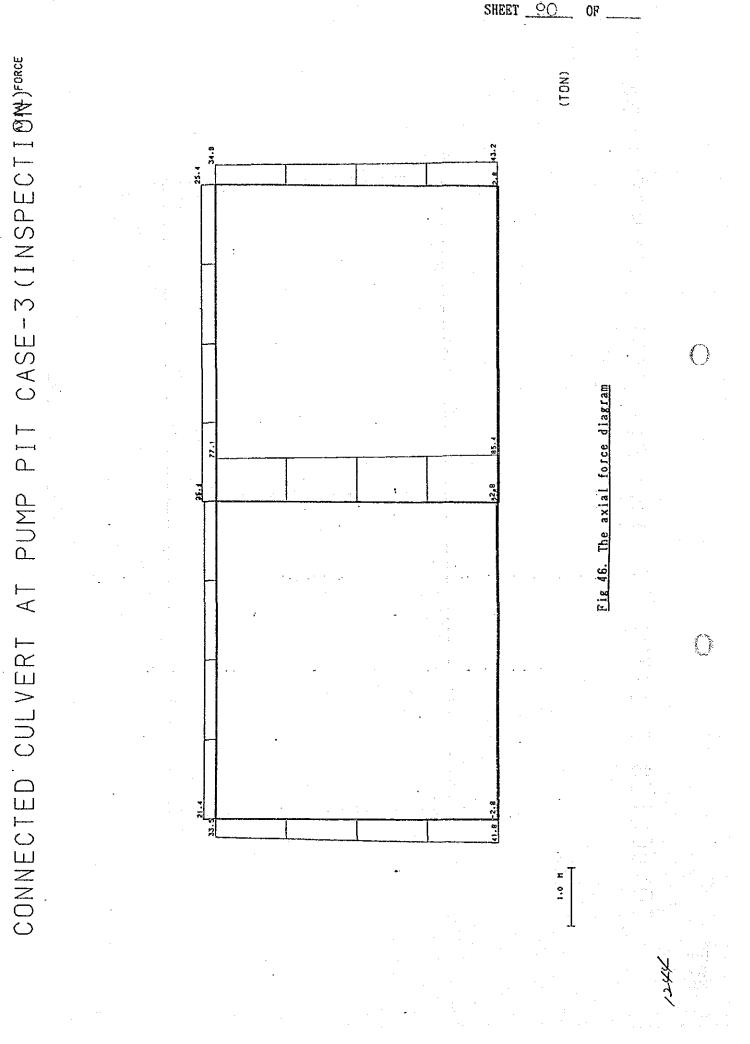

Frame of the design structure is the same structure as that of design case-1.

2) Load calculation (per 1m unit length)


Load calculationS are the same calculations as those of case -1 excluding a part that the internal water loads are no considered(=0).


3) The load diagram


The load diagram is shown in Fig 43.



OF.

SHEET <u>90</u>

	HOMENT	0088F	5993E+11	10+378701 152751.	6721E+01	7700 400	82935401 02255400	73426401 1×666400	1040U	32976+01	11505401		22046+01 24155400	5916E	3 6	72015 0226F	106	00498401		EET		OF
pection)	SHEAR	- 10-32	3755+01 2.		2.1027E+01 -3.	10+37210-1		3.4809E+01 2		-1.43546+01 2.	5- IU+2020	- 201301-01-01-01-01-01-01-01-01-01-01-01-01-0	10375401 8	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	-2-19E+71 -2	32876-01	• 24415+Jn	+3728		•		
sectional forces (Inspecti	axiat	6762E+	3.55016+01 2.35066+01		2.12755+01	• •	u · u ·		10.366		84265	1445E	.8446F	- 3445F	8446F	->iC- + + ∪ ⊔	12775	8+230011+11 8+5448E+01	and a second			3
results of the sect	MONENT J-EWD	.9385E+01 .0803E+00	.5011E+00 .5308E+00	.20666491 1		-5847E+01	.7700E+00 I .8393E+01 1	• 0225F+00	•13446+00 17 •18896+00 17	.9910E+00 1	.0890E+01	•11 506 +01 •32786+01	.4929E+00	.0415E+00 2	6E+01 2	2	- <u>+</u>	• 3683E+00 6	والمراجع المالية المراجع المراجع المراجع والمراجع والمراجع المراجع المراجع المراجع المراجع		۰.	
() 17. The calculation	SHEAR	69346+01 2		•3506E+01 2	84926400 -	10+31064.	1 01246+01 -3	- 6631E+01	1001 1001	6.87135-72 -5 -1.44546+01 2	32705+21	9 10E +01	- 5630E+01		- 73145+00 -	T 00+36010 7-	32976-01	5.03296+00 - 1 5.03296+00	35R - COUNT		·	
ELEMENTAL FORCES	AXIAL	140	2.5591C+01	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		4	2.5386E+01 2.5386E+01	5	r .	ě,	8446E	2.8446E+00 2.8446E+00	٠	-2.8446E+70) -2.8446E+70)	•	-2.39465 401	01916	8.12776+41 8.33626+01	SUMMARY: MESSAGE NUMBER	21	. *	
	ELEM I-END	2 2	w 4	5 2		4 U U	10 11 14		-	15 17		19 20	2 0	25 25 25	сч с С	4 v	6	27 26 28 27	MESSAGE SUMM		•	

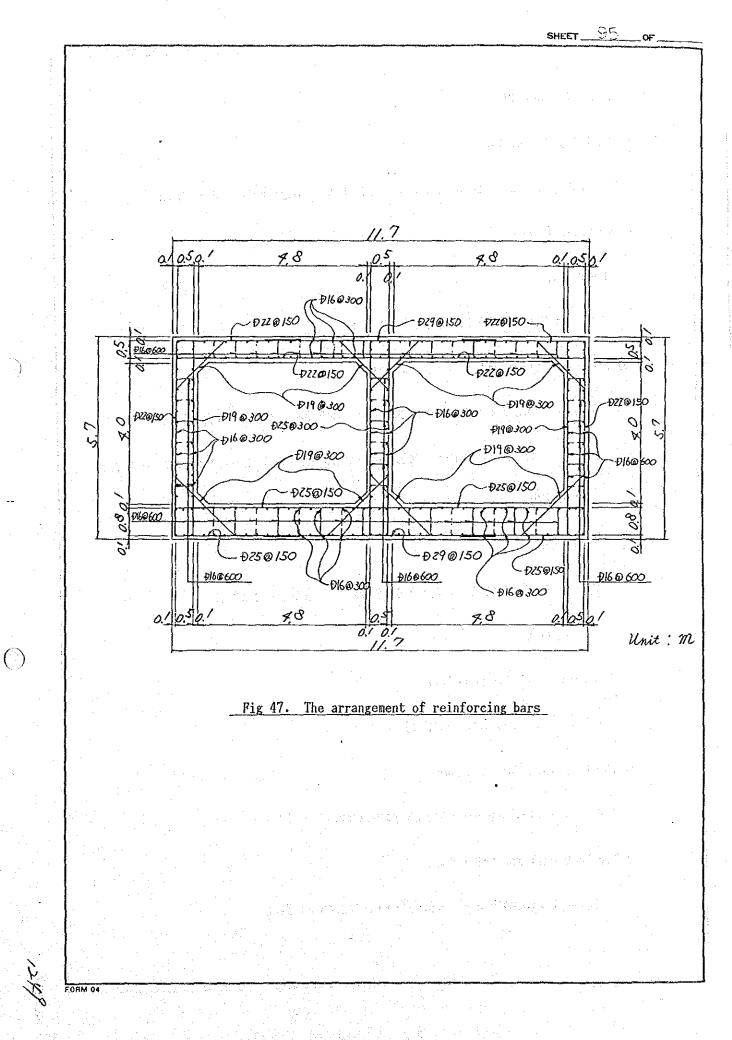
OF

1

1.5.6 The Stress Calculation

FORM 04

Before calculating the stress, the sectional force for the structural design is determined by selecting one case among three design cases from a view point of the safety design, and the stress calculations are executed, so the stress calculation results are indicated in Table 18 and the arrangement of the reinforcing bars is shown in Fig 47.


Point The Sectional Force The Sectional Dimensions Roint M N S B N d d' I Cana-21 Cau-21 Cau-21 Can Can Can Can Can I J 3280000 74 300 33 700 30 700 70	he Calculation Results of The Stress Con	[Section II]	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩
Point M N S B N d d' d' 1 J (2ae-2) (fae-2) (fae-2) (fae-2) (fae-2) (fae-1) (fae-	Arrangement of Reinforcing Bars	The strees (kg/cm ²)	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	D Pitch As [cm ²] [mm] [nm] A's [cm ²]	1	Remarks
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	/50	(540=2000
Center $\frac{1}{50000}$ 37000 30000 37000 300000 37000 300000 37000 300000 37000 300000 37000 300000 37000 300000 37000 300000 37000 300000 300000 37000 3000000 3000000 30000000 30000000 <th< td=""><td>00%</td><td>1260 537 7.1</td><td>564=87344</td></th<>	00%	1260 537 7.1	564=87344
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	300	c	DITTO
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	#<)))	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		9/3 ×0.2 3.2	6ca = 70176-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			
Center [Cau-1] [Caue-1] [Caue-2] [1113 39.7 7.9	01170
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	150		01110
$ \frac{3}{3} \frac{((au - 1)]}{(500 \text{ cm}^{-1})} \frac{((au - 1)]}{(au - 1)} \frac{((au - 1))}{(au - 2)} \frac{((au - 2))}{(au - 2)} \frac{(au - 2)}{(au - 2)} $	<u> 9.22 150 258</u>	974 360 0	01170
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	P.25 50 50		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	P22 150 253	1462 53,9 5.5	01110
J $3690 \cos 75 500$ 3660 70 80 70	P25 1 150 338	(
Center [Cour1] [Caue1] [Caue2]	P22 150 250	185 537 53	D1110
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	/50		
4 $[Cour1]$ $[Cour2]$ <td< td=""><td>P22 150 25,8</td><td>974 368 0</td><td>01170</td></td<>	P22 150 25,8	974 368 0	01170
4 7×80000 27×500 37×100 100 20	Piz /50 258		(T-TC
4 [Cour-1] [Cour-1] [Cour-1] [Cour-1] [Cour-2] [Cour-	P22 150 258	1113 39.7 4.4	2 - 77
Y Z X60 37 100 22 500 70 20 Center (Caue-2) (Cue-2) (Cue-2) (Cue-2) 0 00 00 S 3280 38 700 33 500 10 20 S 3280 32 32 300 33 500 10 20 b<: Bending moment B : The Width D 11 1 1	P27 150 25.8		
Center [Cout-2] [Cut-2]	P19 300 9.54	913 ×0.2 3.6	2 - 7
b: Bending moment B: The Width Col	£19 300 9.5×		
5 [[Cume-2]] [Came-2]] [Came-2] [Came-2]] [Came-2] [Came-2]] 5]3.280 000 \$7.800 \$3.500 \$3.500 \$000 \$200 b<:	<u> </u>	135 10.7 0	T = 10,00 = 1
3 13 200 33 200 20 20 20 20 20 20 1 20 20 20 20 1 20 1 20 2	/50		-
b : Bending moment B : The Width	ŝ	1260 53.7 77	01110
. Axial force H . The leight	of bars	2	
	sion bars	The compressive stress	
ve heicht Å's	bars	. The shearing stress	OF.
d' . The covering of compression har			

 $\bigcap_{i=1}^{n}$

Rubble Data State The Social form The Social form <ththe soc<="" th=""><th>·</th><th></th><th></th><th></th><th></th><th></th><th>1 auter 10</th><th></th><th>TUSTEN</th><th>The Uoto</th><th>The Vatentation results of the ocless</th><th>1</th><th>Connected</th><th></th><th>Culvert</th><th>البار</th></ththe>	·						1 auter 10		TUSTEN	The Uoto	The Vatentation results of the ocless	1	Connected		Culvert	البار
Der (Varte Name S Der Mark Mark S Der Mark Mark <t< th=""><th></th><th></th><th>The St</th><th>- 1</th><th>OLCC</th><th>The</th><th>Sectional</th><th></th><th>ons</th><th></th><th>1 2</th><th></th><th>The st</th><th></th><th>/cm²)</th><th></th></t<>			The St	- 1	OLCC	The	Sectional		ons		1 2		The st		/cm²)	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	leaber	Point	M [kg'cm]	Ckg]	s S	[c], [c],	= []	G G G	G, d,		Pitch [mm]	As [cm ²] A's [cm ²]			4	Remarks
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		47,	[Care-2] 3780 000	(Care-2)	[[cur-7] 63 200	ŝ.	Ş	ξ		S7 4	-/50	33.8	Q'P)	072	1	644 =2 0044
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,				3	2	<u>}</u>	$\overline{\mathbf{x}}$	\$ 25	/50	23.0	20	ġ	, l	Tes 100 th
6 $[c_{unr}-1]$ $(c_{unr}-1)$ <td>(5)</td> <td>Center</td> <td>-3580 000</td> <td>([care -]) 25 700</td> <td>[[-aue-]] 0</td> <td>8</td> <td>Ś</td> <td>6</td> <td>9</td> <td>25 A 25 A</td> <td>150</td> <td>33.0 23.8</td> <td>944</td> <td>31,8</td> <td></td> <td>544=1600412 544 - 70 71/4</td>	(5)	Center	-3580 000	([care -]) 25 700	[[-aue-]] 0	8	Ś	6	9	25 A 25 A	150	33.0 23.8	944	31,8		544=1600412 544 - 70 71/4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			[[me -]]	[[- ===]]	(Cane-1)			-		£2.4	/50	72.9			1 c	(<u></u>
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		٥	7 160:000	25 700	69 900	8	0//	8	10/	-9 25	150	کری	1565	70.4	20	01177
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1	[[ave-1]]	[[- 310]]	[Care-1]	-			J	62 A	150	72.9		1		0110
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	•	o	7160000			8	0//	8	0	-52 A	150	8.00°	1,585	78.<	7.0	2112
Canter -3.800.00 35 700 <t< td=""><td>(2)</td><td>1.1.1</td><td>[[on-1]]</td><td>([_ane_]]</td><td>[[[]]]</td><td></td><td></td><td></td><td>لي۔۔</td><td>P25</td><td>150</td><td>33,6</td><td></td><td>1</td><td></td><td></td></t<>	(2)	1.1.1	[[on-1]]	([_ane_]]	[[[]]]				لي۔۔	P25	150	33,6		1		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Center	-350000		0	8	8	90	0	- 55 G	150	رييرم	9,84	\$15		OLITA
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-	[(2-m2)]	[2-202]	[(Cale-2]					Ð 25	150	33.8			¢	Fraco 2= 099
3 $[Cuu - 3]$ $(Cuu - 3)$ <		~	3280000	33 200	63 800	100/	1/0	00/	20	-925	150	స్తుడి	629		n.,	To = 10.47/1
3 90 70 700 700 700 700 700 700 700 700 725 300 69 70 5 70 5 70 6 7			[Case - 3]	(C-240)	(Care-3)					-025	ŝ	/6.9				As + As
) Center [$(Lut -3]$ [$(Lut -3]$] [$(Lut -3]$] [$(Lut -3)$] [$(Lut -3$		ッ	190 200	22 100	A 000	<u>8</u>	8	. ୧୯୦	2	ÐzS	300	16,9	134	9.6		£0.007 B.H
ConcertStop73ZOOZOO7050705106 $\left[\text{Loue-3}\right] \left[\text{Loue-3}\right] \left$	7	to the c	[[au-3]	[[Care - 3]]	[Care-3]				4	Ð25	88	16.9		``		01110
6 $[Caue-3]$ $[Cau-3]$ $[$		רכוונגי	8/0 000	79 200	22	8	2	60	0	Ð25	ŝ	16,9	102	15.	0	2 74
0 $\sqrt{000}$ $\sqrt{0}$ $\sqrt{0}$ $\sqrt{0}$ $\sqrt{9}$ $\sqrt{6}$ $\sqrt{0}$ $\sqrt{10}$		V	[Care-3]	[[aue-3]]	[[Lau-3]]				-	Ð25	Sol	169		/		01110
Mb : Bending momentB: The WidthD: Diameter of bars σ_b : TheMb : Bending momentB: The WidthD: Diameter of bars σ_b : TheM : Axial forceII: The lleightA's : The area of tension bars σ_a' : TheN : Axial forced: The effective heightA's : The area of compression bars τ : The		0	000 000/-	QC X00	5 700	8	8	Ś	8	324	300	16.9	199	. 9/	ò	2174
Mb : Bending momentB : The WidthD : Diameter of bars σ_b : TheMb : Bending momentB : The WidthD : Diameter of bars σ_b : TheN : Axial forceII : The lleightA's : The area of tension bars σ_o' : TheS : Shearing forced : The covering of compression bars τ_o' : The									 .							
Mb : Bending momentB: The WidthD: Diameter of bars σ_b : TheM : Axial forceII : The lleight δ_s : The area of tension bars σ_o' : TheS : Shearing forced : The effective height $A's$: The area of compression bars τ : Thed' : The covering of compression bard' : The covering of compression bar τ																
Mb : Bending momentB : The WidthD : Diameter of bars σ_b : TheMb : Bending momentB : The WidthD : Diameter of bars σ_b : TheN : Axial forceII : The HeightA's : The area of tension bars σ_o' : TheS : Shearing forced : The effective heightA's : The area of compression bars τ_o' : TheS : Shearing forced' : The covering of compression bars τ_o' : The								· · · ·	I				1	· · ·		
Mb : Bending momentB : The WidthD : Diameter of bars σ_b : TheN : Axial forceII : The Height δ : The area of tension bars σ_a' : TheS : Shearing forced : The effective height $A's$: The area of compression bars τ_a' : TheS : Shearing forced' : The covering of compression bars τ_a' : The															-	
Mb : Bending momentB : The WidthD : Diameter of bars σ_b : TheN : Axial forceII : The HeightAs : The area of tension bars σ_a' : TheS : Shearing forced : The effective heightA's : The area of compression bars τ : Thed' : The covering-of compression bard' : The covering-of compression bar τ τ		•				-			I							: :
: Axial force II : The Height As : The area of tension bars σ_{α}' : The . Shearing force d : The effective height A's : The area of compression bars τ : The d' : The covering of compression bar			LINE MOMENT		: The Vid	lth			: 	laneter of	bars		: The	bending sl	Cress	
: Shearing force d : The effective height $h's$: The area of compression bars τ : The d' : The covering of compression bar		-	1 force		The liei	ght	,		••	The area of	tension ba	Þ	': The	compressiv	ve stres	Ŋ
covering of compressi	• • •	• •	ring force	73	: The eff	ective h	ieisht			the area of	compressio	•		shearing s	stress	
				τ υ		ering-of	compres			· .				•		

25

()

