CV-1 CIVIL DESIGN CONDITION

- 1. Design Condition
 - 1) Sea water level
 - a) The Highest High Water Level (The Highest Astronomical Tide is adopted as design H.H.W.L)
 H.H.W.L = E.L + 3.23 m
 - b) Mean Sea Water Level M.S.L = E.L + 1.64 m
 - c) The Lowest Low Water Level (The lowest Astronomical Tide is adopted as design L.L.W.L)
 - L.L.W.L = E.L 0.43 m

4.11.5

the the last second

2) Wind load

 (\cdot)

The design wind loads are indicated in the design concept of architectural/structural section, if necessary.

医外毒的 化合合物合金合金

3) Ground level (G.L)

G.L. = E.L + 4.80 m

CV-1-1

SHEET _____OF ___

ji kang

4) Soil condition

The soil physical values shall be determined at the normal cases as follows.

a) The N - Value

The N - Value shall be adopted from the site boring test.

b) The angle of the internal friction ϕ

In the case of sandy soil, the angle of the internal friction ϕ shall be calculated by the following equation.

 $\phi = 15 + \sqrt{15N} \leq 45^{\circ}$ provided that N > 5

2. Design load

The increment ratio 1) Composite vertical load 1.0 a) Long term (D.L + L.L) b) Short term (D.L + L.L + W.L)1.25 c) Short term (D.L + S.L) 1.50 D.L: Dead load **Where** L.L : Live load ¥.L : Wind load S.L: Seismic load

2) Seismic load (S.L)

 $F_{W} = K_{h}$. W Where K_{h} : Seismic coeficient = 0.1 W: Weight of structure included dead load. 3) Live load (Wheel load) a) Truck load Truck load (T - 20) The gross weight 20 ton . : A front wheel weight : 2 ton A rear wheel weight 8 ton b) The impact coefficient (i) i = 0.34) Cohesion C Cohesion C shall be calculated by the following equation. $C = \frac{q_u}{2}$ qu : the uniaxial compressive stress qu can be obtained from Table 1, if N - values can be measured. Table 1. Relation of the N values vs consistency q_u of cohesive soil N value Consistency of cohesive soil qu (kg/ent) 0 to 1 Very soft 0.25 to below Soft 2 to 4 0.25 to 0.5 5 to 8 Normal (medium) 0.5 to 1.0 9 to 15 1.0 to 2.0 Hard 2.0 to 4.0 16 to 30 Very hard 30 to above Consolidated 4.0 to above

(

FORM O

1.

3. Hydrographic calculation

e - 1

FORM 04

1) The Summary of the water head loss

Table 2. Example of the loss in water channel

SHEET

4

_ OF _

Equipment	Loss
Intake	 Loss due to inflow curtain. Loss due to friction between intake.
Intake Channel	 Loss due to inflow at intake channel Loss due to friction of water channel wall Loss due to water channel's cross sectional change (Gradual contractin and gradual expansion) and bend, etc.) Loss due to water channel's accessory machineries and structures.
Screen Pump Pit	 Loss due to inflow at Screen Room Loss due to Screens Loss due to inflow at Pump Room Loss due to room wall friction
Discharge Channel	 Loss due to outlet conduit and discharge culvert Loss due to the wall friction of channel Loss due to water channel's sectional change (gradual contraction, gradual expansion) Loss due to water channel's accessory (machineries and structures)
Outlet	 Loss due to outlet's exit Loss due to the friction of water channel wall Loss due to water channel's sectional change (gradual expansion, etc) Loss due to water channel's necessory structures, such as hiden wier, pier, etc.

2) The coefficient of roughness

 \cdot

()

FORM 04

The values given in Table 2 are used as the satandard coefficients of the roughness used for hydrographic calculation of a water channel.

.

Table 2. The coefficient of the roughness used for water channel

Wall shape	e n bret	Wall shape	n
Welded steel pipe	0.012	Ordinary concrete with shells stuck	0.02
	1.1 I.		
Good concrete surface		Steel plate	0.02
such as centrifugal force	0.013		
steel reinforced concerte		Other especially rough	0.03
pipe		surface	
Ordinary concrete such as			
cast-in-field concrete	0.015		
Concrete block	0.02		
			:
	.*	a second a second second	
			5
	~ -50		

SHEET 6

OF.

 \bigcirc

4. The Allowable Unit Stress

1) The allowable unit stress of reinforced concrete (kg/cm²)

	Stresses	Perm	anent St	resses	
			She	ar	D aw J
Concretes		Compression	(1)	(2)	Bond
Concrete for	plain bar	130	5.5	24	10
(above) C-400	Deformed bar	100	(slab) 11	43	20
Concrete for	Plain bar	100	5	22	9
C-300	Deformed bar		(slab) 10		18
Concrete	Plain bar	80	4.5	20	8
for C-240	Deformed bar		(slab) 9.0		16
Concrete	Plain bar	70	4.25	19	7.5
for C-210	Deformed bar	70	(slab) 8.5	13	15
Concrete for	Plain bar	60	4	18	7
C-180 ·	Deformed bar		(slab) 8	10	14

*Remarks

(1):No calculating with diagonal tention bar.(2):Calculating with diagonal tention bar.

OF _

١

StressesPermanent stressesMaterialsTensionCompressionSD 301,8001,800SD 351,8002,000SD 30 for Pile1,6001,800

2) The allowable unit stress of reinforcing bars ($kg/\ensuremath{\mathsf{cm}}^2$)

3) The allowable unit stress of steel ($kg/\ensuremath{\textit{cm}^2}$)

()

(:)

ORM 0

		Permanent Stresse	s
Type of Steel	Tension	Compression	Shear
SS 41 SM 41	1,400	1,400	800

4) The allowable unit stress of welded joint (kg/cm²)

	Stresses	P	ermanent St	resses	
Appli-	Welding Positions	G	roove Weld	•	Fillet
cation	Materials	Tension	Compress	Shear	Shear
	(SS41,SM41)	1,400	1,400	800	800

SHEET 8 OF

1

- 5) The young's modulus of concrete
 - a) At the case of the displacement calculation

CK(kg/cm²)	180	240	270	300]
Ec(kg/em²)	2.2×10 ⁵	2.5×10 ⁵	2.65×10 ⁵	2.8×10 ⁵	

b) At the case of the unit stress calculation

 $E_{\rm c}$ = 1.4 \times 10^{5} (kg/cm²)

FORM 04

0F

5. Applicable Standards

1) Japan Society of Civil Engineers

a) Standards for Calculation of Reinforced Concrete Structures

b) Design Standards for Steel Structures

c) Standards for Structural Design of Building Foundations

2) Japan Road Association

()

Specifications for Highway Bridges

3) Japan Port and Harbour Research Institute

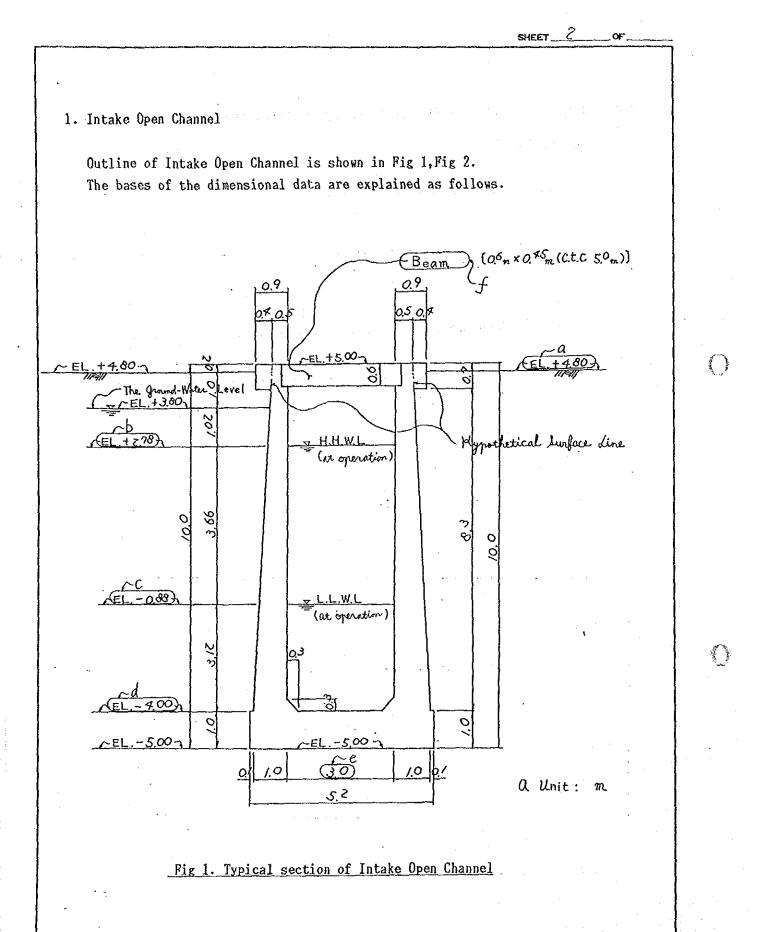
Technical Standards for Port and Harbour Facilities

4) Standards of Architectural Institute of Japan

Standard Specification for Concrete

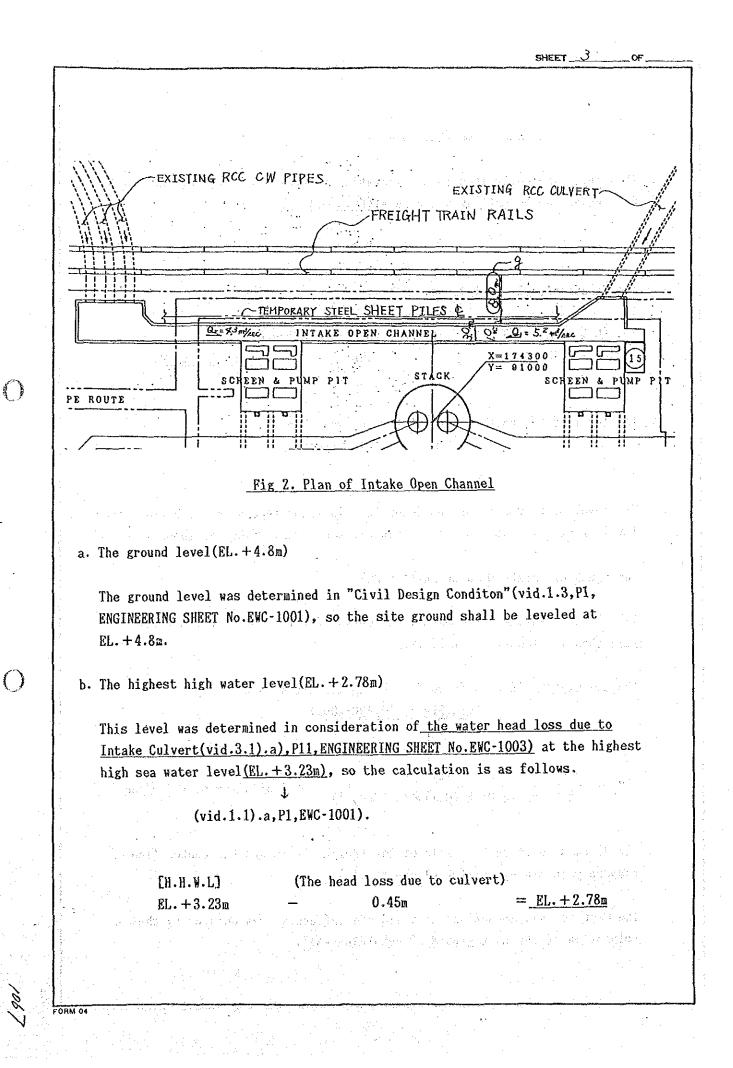
5) Japanese Industrial Standards (JIS)

CV-2 THE BASIC DATA FROM THE STUDY OF HYDRAULICS AT THE COOING WATER WAY


Contents of this note is shown as below.

Contents

()


1. Intake Open Channel 2 2. Pump Pit

7

;

FORM 04

c. The lowest low water level (EL. -0.88m)

This level was determined in consideration of the water head loss due to Intake Culvert at the lowest low water level (EL. -0.43m).

(vid.1.1).c,EWC-1001)

The Calculation is as follows.

[L.L.W.L] (The head loss due to Intake Culvert) EL.-0.43m - 0.45m = EL.-0.88m

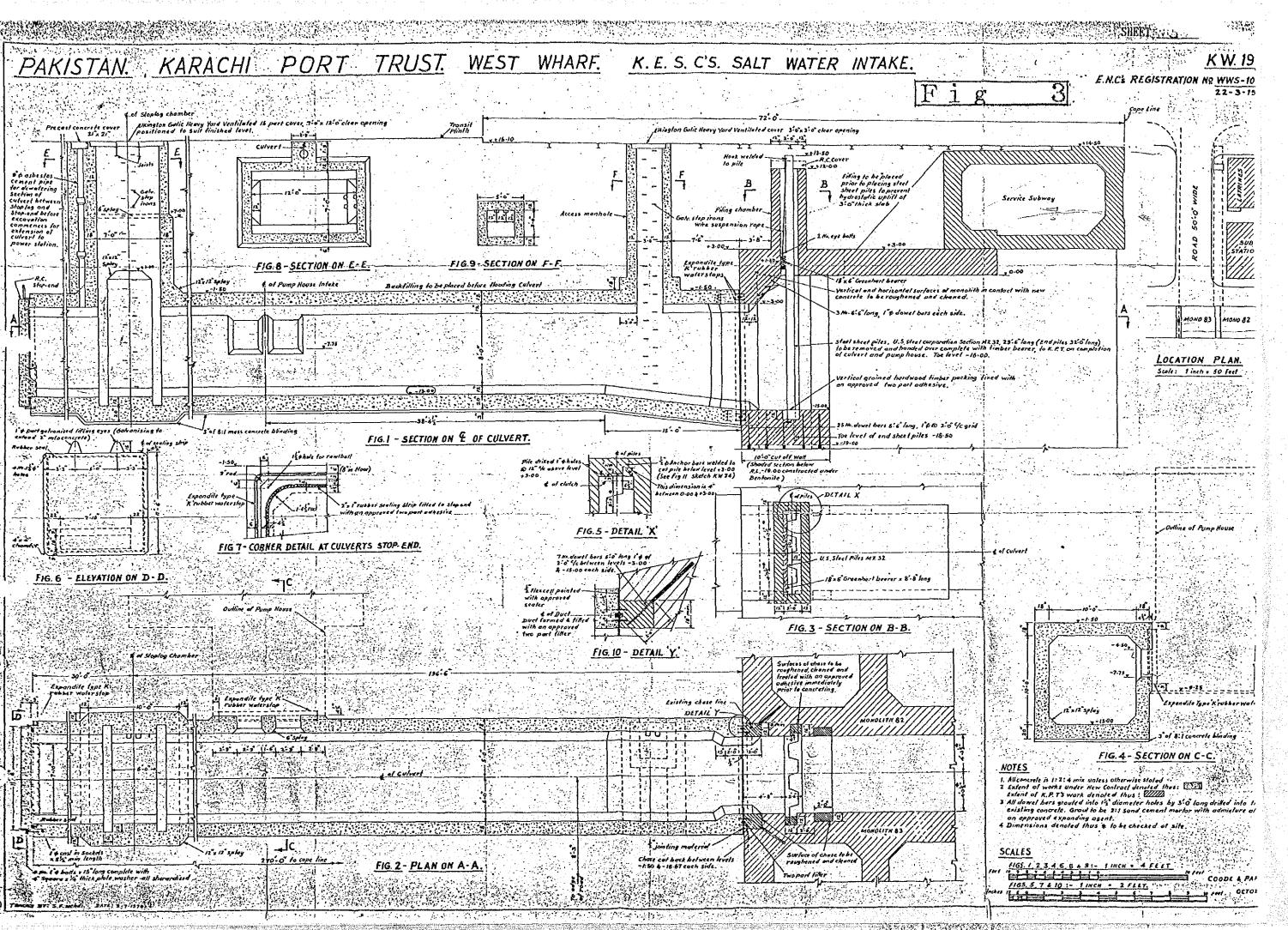
d. The level of the bottom floor of Intake Open Channel (EL. -4.00m)

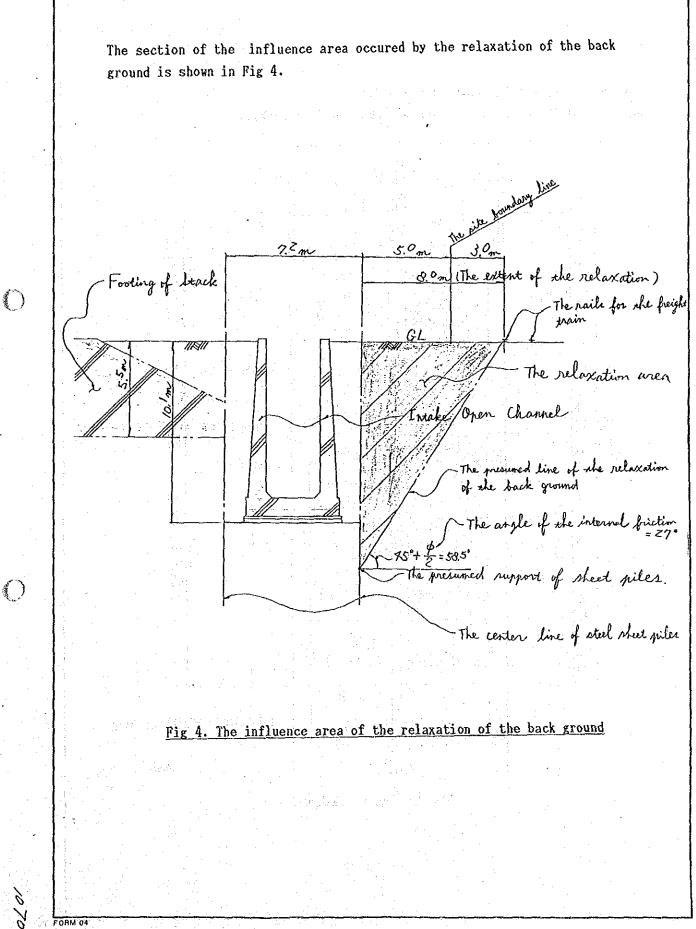
The level of bottom floor was determined in accordance with the bottom floor level of existing Intake Culvert (EL.-1.3feet=EL.-4.0m) as shown in Fig 3.

e. The width of Intake Open Channel (= 3m)

FORM 04

The width of Intake Open Channel was determined to limit the water velocity less than V = 1.0 m/sec at L.L.W.L.


The calculation is considered for the shells stuck 10cm.


(vid.Fig 4,P10,EWC-1003)

$$V = \frac{Q_1}{A} = \frac{(5.2\pi^3)}{(3.0 - 2 \times 0.1) \times (3.12 - 0.1)} = 0.61 \text{ m/sec} < 1.0 \text{ m/sec}$$

f. The distance between the rails of the freight train and the center line of temporary retaining wall(steel sheet pile).

The distance was determined to avoid the influence area occured by the relaxation of the back ground of retaining wall.

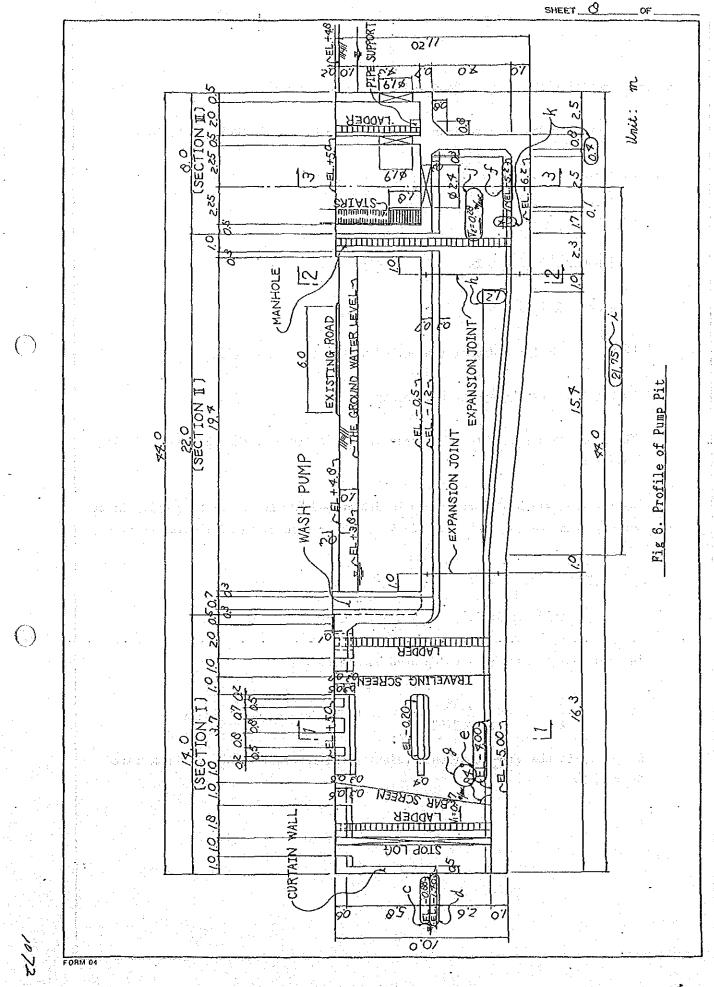
FORM 04

SHEET 7 OF 2. Pump pit Outline of Pump Pit is shown in Fig 5, Fig 6. The bases of the dimensional data are explained as follows. 2.0 25 25 75 05 25 0. N 月 Ð PIPE SUPPORT Ð F 3 SECTION 0 6 3 ΰŢ ന 35 Ħ MAN HOLE z NY i~i à٦ī G WASH PUMP 7.3 0 MAN HOLE 10 10 0 TRAVELING TRAVELING SCREET SECTION WASH WATER 0 PIPE A WASH WATERI TRENCH BAR SCREEN BAR SCREEN 2 ő <u>Ő</u> STOP LOG STOP LOG a Ę INTAKE OPEN CHANNEL

Unit: m

Fig 5. Plan of Pump Pit

12.0


45

. . .

10

(4.5

FORM 04

.

 $\left(\right)$

a. The internal width of Pump Room and Screen Room.

The internal width of Pump Room was determined by the following relations.

i) by the data from Table 1.

Let the width is B,

2.0 Do $\leq B \leq 2.5$ Do

 $3.6m \leq B \leq 4.5m$

Where Do : the diameter of C.W Pump's bellmouth = 1.8m

ii) by the limit of the approrch velocity

The approach velocity to bar screen V_1 is usually controled by the following relation.

The internal width of Screen Room is determined by the approach velocity to bar screen, then the approach velocity V_1 is restricted by the following relation.

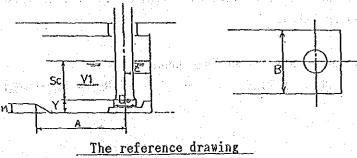
 $V_1 \leq 0.375 \text{ m/sec}$ \downarrow (vid. Table 1)

FORM 04

In this design case V₁ is calculated as follows.

 $v_1 = -\frac{Q}{\Lambda} = -\frac{4.75}{4.3 \times 3.02} = 0.37 \text{ m/sec} < 0.375 \text{ m/sec}$

According to the above mentioned relation, the internal width was dertermined $B_1 = 4.5m$


SHEET 10 OF

Na	Itens	The usual value	The recommended value	Remarks
1	The diameter of Bellmouth :Do		Do=1800mm	
2	The width of Pump Room :B	B=2.0~2.5Do	B = 4500mm	
3	The distance between Bellmouth and the bottom floor :Y	B=0.5~0.75Do		Y = 0.5Do
4	The distance between the center of Pump and the back wall :Z			The preventive wall for vortex was designded
5	The submarged depth:Sc		Sc=2700mm	ante en la companya La poste fondi a se companya La companya
6	The approach velocity to Pump and Screen :V2	V₂≦0.375m/sec		In this design case V2 = 0.28 m/sec
7	The distance between the Center of Pump and the mound :A		A≧10.8m	
8	The height of mound:Hm	Hm≦ 0.8Do	Hn≦1.44m	

 \bigcirc

 \bigcirc

FORM 04

b. The length of Pump Pit

The length of Pump Pit is determined by the site layout plan. (vid. DWG Na WGTS-1002)

c. The lowest low water level(EL. -0.88m)

This water level was the same level as Intake Open Channel.

d. The lowest side level of curtain wall

The lowest side level of curtain wall is calculated as follows.

[L.L.W.L]	(the	allowance)		
EL0.88m	[.]	0.52m	=	<u>EL1.40 m</u>

e. The bottom floor level of Screen Room

The bottom floor level of Screen Room was determined in accordance with the bottom floor level of Intake Open Channel(vid. Fig 1), accordingly this level was setted up at $\underline{EL.-4.00m}$.

f. The bottom floor level of Pump Room

The bottom floor level of Pump Room was determined by the height of the back wall of Pump Room, and the height of the back wall of Pump Room He was determined by the following relation.

 $H_b = S_c + Y \ge 1.5D_0 = 1.5 \times 1.8 + 0.5 \times 1.8 = 3.6m$

accordingly H_b was determined $\underline{H}_b = 4.0m$, so the bottom floor level was calculated as below.

(The lower side level of Pump Room) [H_b] EL. $-1.20m - 4.0m = \underline{EL. -5.2m}$

OF

g. The setting angle between Bar Screen and the bottom floor.

The setting angle of Bar Screen was determined by the reference of "Design for the Civil Structures of Thermal Powew Plant and Nuclear Power Plant" published by The Society of Electric Power Civil Technology, Japan. (vid.12-10-3,P435)

h. A difference in level between the bottom of Screen Room and that of Pump Room.

This difference in level H_m was determined by the following relation. (vid.Item No 8 in Table 1)

 $H_m = 1.2m \leq 0.8Do = 0.8 \times 1.8m = 1.44m$

i. The horizontal length of the slope

(

FORM 04

The horizontal length of the slope A was determined by the following relation to the distance between the vertical center of Pump and mound. (vid.Item Na 8 in Table 1)

 $A = 21.75m \ge 6.00Do = 10.8m$

j. The approach velocity to Pump

The approach velocity to Pump V2 is calculated by the following equation.

$$V_2 = \frac{Q}{A} = \frac{4.5}{4.3 \times 3.8} \rightleftharpoons 0.28 \text{ m/sec} \leq 0.375 \text{m/sec}$$
(vid. Item No 6 in Table 1)

k. The dimensional data of the protection wall for vortex

The dimensional data of the protection wall for vortex was determined by the reference data from the mechanical design structure.

CV-3 HYDROGRAPHIC CALCULATION

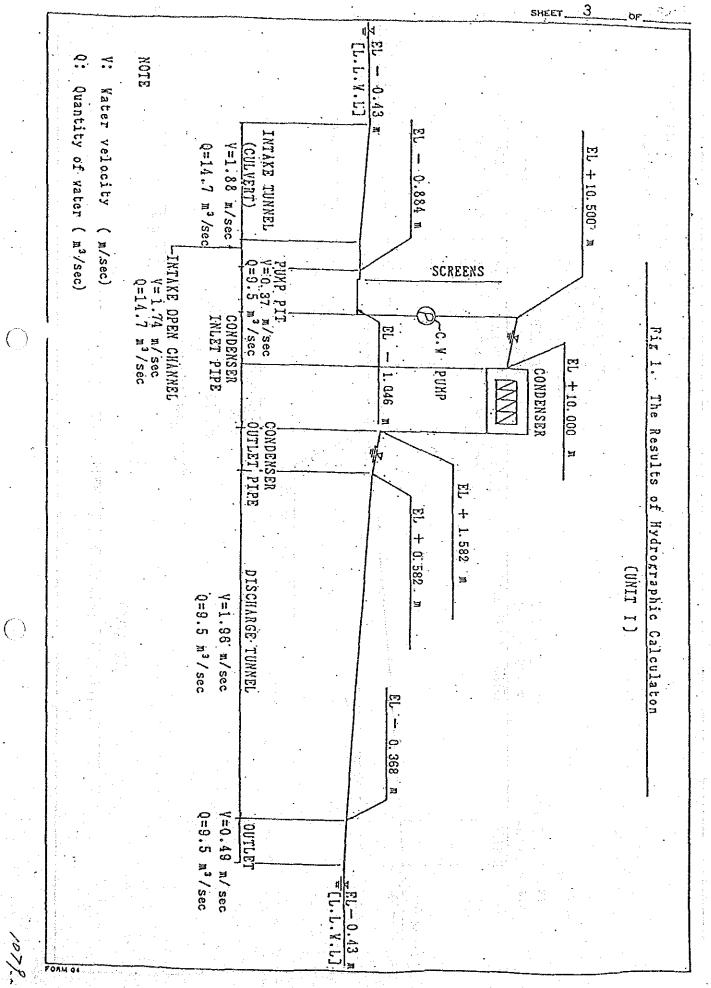
Contents of this calculation note is shown as below.

a da ser a tas a provinsi da da su

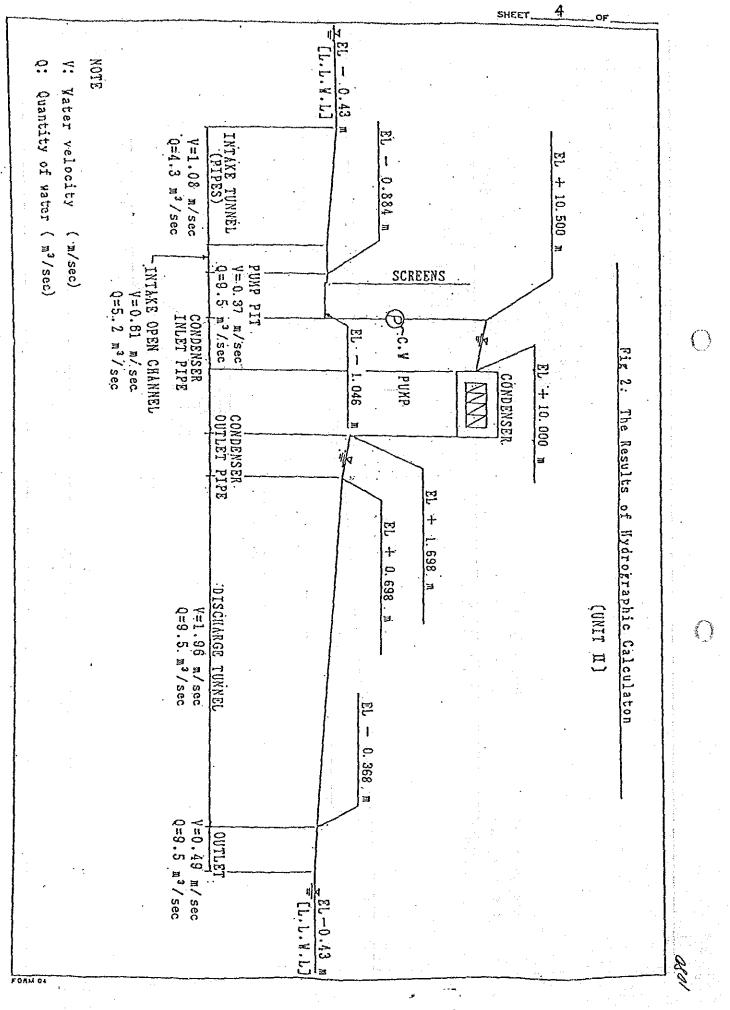
Contents

1.	The Results of Hydrographic Calculation	2
2.	Design Condition	5
3.	The Calculation of The Water Head Loss	11
	1) Intake Tunnel	11
	2) Intake Open Channel	14
	3) Pump Pit	15
	4) Discharge Tunnel	18
	5) Outlet	21

()

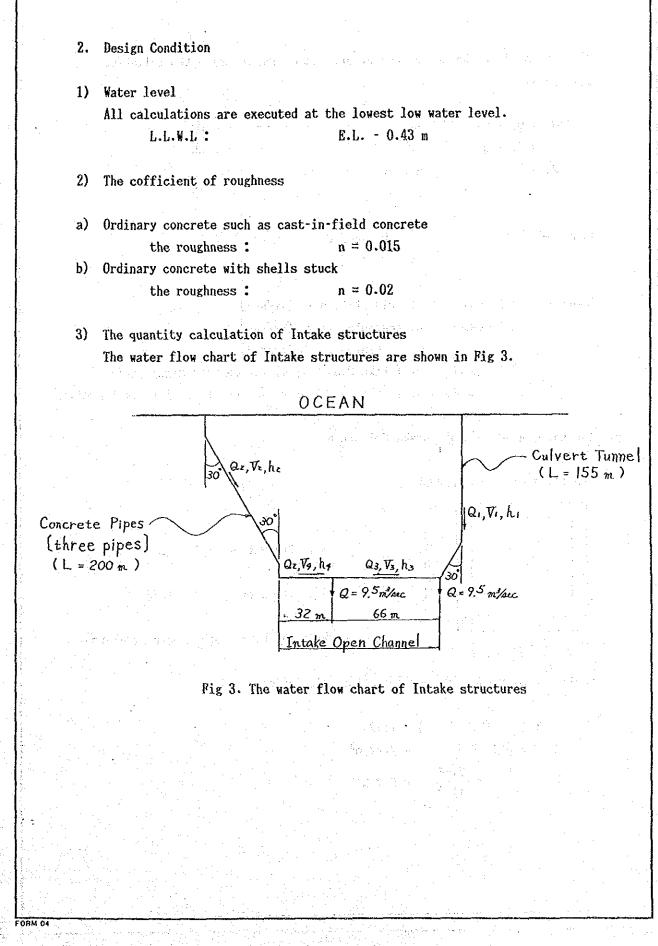

 \bigcirc

1. Thw Results of Hydrographic Calculation


FORM 04

Hydrographic calculation is executed to determine the water head of circulating water pump and the water head loss of condenser cooling water way. The results of hydrographic calculation are shown in Fig 1. and Fig 2.

> 7 }



.

SHEET 5

OF_

()

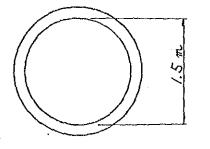
 \bigcirc

		.t.						
						1		
Qua	antities of Intake str	ructures Q ₁ à	re determ	ined to so	lve the foll	owing		
equ	ations.					- <u>1</u> -1-1-		
	• • • ·] · · · • • • •	t vy	Apple A	e Kinete al com	, an the f			
	$2Q = Q_1 + Q_2 = 19.0$				0			
	$Q = Q_2 + Q_3 = 9.5$				2	·	-	
	$Q_3 = Q_1 - Q = Q_1$				3	an th ^{a t}	\$	
	$h_2 + h_4 = h_1 -$	+ h3		<u>.</u>	4			
		$Q_1 \leq$	0 0	an in the		1 . v	<u>.</u>	
pro	ovided that			•		•		
		$Q_2, Q_3 \leq$	Q.	Arta 175		N AN A	to.	
				•	$\mathbb{E} = \{1, 2, \dots, n\}$			
Whe		y of culvert						
	Q2: Quantity	y of concrete	11 A.				• '	
			1 State	ocated]			1	
		y of Intake O						
	Q4: Quantity	y of Intake O	pen cham	let (at con	ctere bibe :	STOCY LI	1112003	
່ງ		T. A. I. C. Juan						
a) The	e water head loss of	fucake cuiver	ic ni					
	·····	ant						
C A F	pical section of culv	erc						
	·				· · ·		Neger and State	
1		E	s: i	the wet per	ineter [m]			
		0				an a		
					C 07			
		, М	A: 1	the area	[m²]		·	
		ი ე	A : 1	the area	[m²]			
		Š.			1. L	level [n	រ]	
	3.0 m	<u>~</u>			ل ^{w2}] aphic mean	level [r	ญ	
She		considered fo	R: 1	che hydrogr	1. L	level [r	ญ	
She	<u>3.0 m</u> ell deposits 10cm is d	considered fo	R: 1	che hydrogr	1. L	level [r	າ ງ	
She	ell deposits 10cm is a	· "	R: 1	che hydrogr	1. L	level [r	ז]	
She	ell deposits 10cm is $S = 4 \times (3.0 - 0)$.2) = 11.2 m	R: t or calcula	che hydrogr	1. L	level [r	ງ	
She	ell deposits 10cm is S = 4 × (3.0 - 0 A = 2.8 × 2.8	(.2) = 11.2 m = 7.84 m ²	R: t or calcula	che hydrogr	1. L	level [r	1]	
She	ell deposits 10cm is S = 4 × (3.0 - 0 A = 2.8 × 2.8	.2) = 11.2 m	R: t or calcula	che hydrogr	1. L	level [r	ŋ]	a succession of the second
She	ell deposits 10cm is S = 4 × (3.0 - 0 A = 2.8 × 2.8	(.2) = 11.2 m = 7.84 m ²	R: t or calcula	che hydrogr	1. L	level [r	າງ	
She	ell deposits 10cm is S = 4 × (3.0 - 0 A = 2.8 × 2.8	(.2) = 11.2 m = 7.84 m ²	R: t or calcula	che hydrogr	1. L	level [r	ŋ]	a second a second s
She	ell deposits 10cm is S = 4 × (3.0 - 0 A = 2.8 × 2.8	(.2) = 11.2 m = 7.84 m ²	R: t or calcula	che hydrogr	1. L	level [r	ŋ]	
She	ell deposits 10cm is S = 4 × (3.0 - 0 A = 2.8 × 2.8	(.2) = 11.2 m = 7.84 m ²	R: t or calcula	che hydrogr	1. L	level [r	ŋ]	
She	ell deposits 10cm is S = 4 × (3.0 - 0 A = 2.8 × 2.8	(.2) = 11.2 m = 7.84 m ²	R: t or calcula	che hydrogr	1. L	level [r	ŋ]	
She	ell deposits 10cm is S = 4 × (3.0 - 0 A = 2.8 × 2.8	(.2) = 11.2 m = 7.84 m ²	R: t or calcula	che hydrogr	1. L	level [r	ŋ]	

i) The head loss due to inflow hoi, $V = \frac{Q_1}{A} = \frac{Q_1}{7.84} = 0.1276 Q_1$ $h_{e1} = fe \cdot \frac{v^2}{2g} = 0.5 \times \frac{(0.1276Q_1)^2}{2 \times 9.8} = 0.0004 Q_1^2$ f_{e} : the coefficient of the inflow loss = 0.5 Where ii) The head loss due to the wall surface friction her $h_{f1} = \frac{Q_1^2 \cdot n^2 \cdot L}{A^2 \cdot R^{4/3}} = \frac{Q_1^2 \cdot 0.02^2 \cdot 155}{7.842 \times 0.7^{4/3}} = 0.0016 Q_1^2$ iii) The head loss due to bend het $h_{b1} = f_{b1} \cdot \frac{v^2}{2g} = 0.073 \times \frac{(0.1276 Q_1)^2}{2 \times 9.8} \stackrel{!}{=} 0.0001 Q_1^2$ f_{b1} : the coefficient of the bend loss = 0.073 Where Accordingly the head loss due to Intake Culvert is calculated as hereinafter. $h_1 = h_{e1} + h_{f1} + h_{b1} = (0.0004 + 0.0016 + 0.0001)Q_1^2 = 0.0021 Q_1^2$

 (\cdot)

()


SHEET

()

 $\left(\right)$

b) The water head loss due to Intake Concrete Pipes he

typical section of concrete pipe

Shell deposits 10cm is considered for the calculation. $S = \pi \times (1.5 - 2 \times 0.1) = 4.08 \text{ m}$ $A = \frac{1}{4} \times \pi \times 1.3^2 = 1.33 \text{ m}^2$ $R = \frac{A}{5} = \frac{1.33}{4.08} = 0.326 \text{ m}$

i) The head loss due to inflow here

$$V = \frac{Q_2}{3A} = \frac{Q_2}{1.33 \times 3} = 0.2506 Q_2$$

he2 = f_e $\cdot \frac{v^2}{2g} = 0.5 \times \frac{(0.2506 Q_2)^2}{2 \times 9.8} = 0.0016 Q_2^2$

Where f_e: the coefficient of the inflow loss = 0.5

ii) The head loss due to the wall surface friction hre

 $h_{r_{2}} = \frac{Q_{2}^{2} \cdot n^{2} \cdot L}{A^{2} \cdot R^{4/3}} = \frac{(Q_{2}/3)^{2} \cdot 0.02^{2} \cdot 200}{1.33^{2} \cdot 0.326^{4/3}} = 0.0224 Q_{2}^{2}$

iii) The head loss due to the bend loss he2

FORM 04

 $h_{b2} = 2 \cdot f_b \cdot \frac{v^2}{2g} = 2 \times 0.073 \times \frac{(0.2506 \ Q_2)^2}{2 \times 9.8} = 0.0005 \ Q_2^2$

Accordingly the head loss of Intake Pipe Tunnel is calcurated as hereinafter.

 $h_2 = h_{02} + h_{12} + h_{b2} = 0.0016Q_2^2 + 0.0224Q_2^2 + 0.0005Q_2^2 = 0.0245Q_2^2 = 0.0245(19.0 - Q_1)^2$

SHEET 9

OF

c) The water head loss due to Intake Open Channel [at culvert side]

the section of Intake Open Channel

Shall deposits 10cm are considered for the calculation $\underbrace{EL. - 4.00 \text{ m}}_{3.0 \text{ m}} = \underbrace{L.L.WL}_{5} = \frac{A}{S} = \frac{9.72}{9.74} = 1.00 \text{ m}$ Shall deposits 10cm are considered for the calculation

The head loss h_3 is the same as the head loss due to the wall surface friction.

$$h_3 = \frac{Q^2 \cdot n^2 \cdot L}{A^2 \cdot R^{4/3}} = \frac{Q_3^2 \times 0.02^2 \times 66}{9.72^2 \times 1.0^{4/3}} = 0.0003Q_3^2 = 0.0003(Q_1 - 9.5)^2$$

d) The water head loss due to Intake Open Channel h4 [at concrete pipe side]

The section and the process of calculation are the same as C), therefore

$$h_4 = \frac{Q_2^2 \cdot n^2 \cdot L}{A^2 \cdot R^{4/3}} = \frac{Q_2^2 \times 0.02^2 \times 32}{9.72^2 \times 1.0^{4/3}} = 0.0001 \ Q_2^2 = 0.0001 \ (19.0 - Q_1)^2$$

Above calculated the head losses are substituted into the previous equation ④ here.

 $\begin{array}{rl} (0.0245 + 0.0001) & (19.0 - Q_1)^2 &= 0.0021 \ Q_1^2 + 0.0003 \ (Q_1 - 9.5)^2 \\ 0.0246 & (Q_1^2 - 38Q_1 + 361) &= 0.0024Q_1^2 - 0.0057Q_1 + 0.0271 \\ 0.0222 \ Q_1^2 - 0.9291 \ Q_1 + 8.8535 = 0 \end{array}$

Q₁ is determined by solving the above equation.

$$Q_1 = 14.7 \text{ m}^3/\text{sec}$$

FORM 04

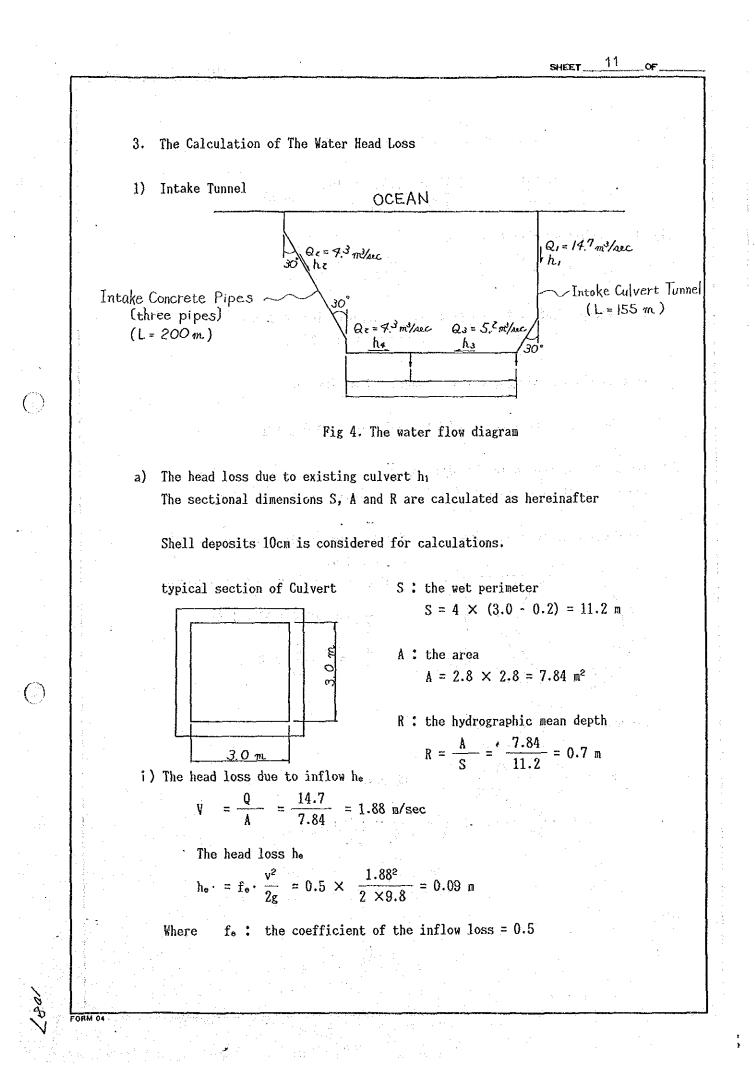
()

()

SHEET 10 OF

 \bigcirc

 \bigcirc


Accordingly other quantities are calculated as hereinafter.

 $Q_2 = 19.0 - Q_1$ = 19.0 - 14.7 = 4.3 m³/sec

 $Q_3 = 9.5 - Q_2$ = 9.5 - 4.3 = 5.2 m³/sec

FORM 04

.

SHEET 12

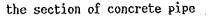
0F

-

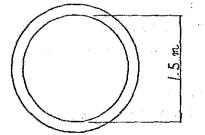
ii) The head loss due to the wall surface friction hr

$$h_r = \frac{Q^2 \cdot n^2 \cdot L}{A^2 \cdot R^{4/3}} = \frac{14.7^2 \times 0.02^2 \times 155}{7.84^2 \times 0.7^{4/3}} = 0.351 \text{ m}$$

iii) The head loss due to bend hee


$$h_{be} = f_{be} \cdot \frac{v^2}{2g} = 0.073 \times \frac{1.88^2}{2 \times 9.8} = 0.013 \text{ m}$$

Where f_b : the coefficient of the bend loss = 0.073 (the angle of bend = 30°)


Accordingly calculating culvert tunnel's head loss hi

$$h_1 = h_e + h_f + h_{be} = 0.09 + 0.351 + 0.013 = 0.454 m$$

b) The head loss due to Intake pipes h2
 The sectional dimensions S, A and R are calculated as hereinafter.

Shell deposits 10cm is considered for calculation.

 $S = \pi \times (1.5 - 2 \times 0.1) = 4.08 \text{ m}$ $A = \frac{1}{4} \times \pi \times 1.3^2 = 1.33 \text{ m}^2$ $R = \frac{A}{5} = \frac{1.33}{4.08} = 0.326 \text{ m}$

i) The head loss due to inflow he

FORM 04

$$V = \frac{Q}{A} = \frac{1/3 \times 4.3}{1.33} = 1.08 \text{ m/sec}$$

he = fe $\cdot \frac{v^2}{2g} = 0.5 \times \frac{1.08^2}{2 \times 9.8} = 0.030 \text{ m}$

.

ii) The head loss due to the wall surface friction he

$$hr = \frac{Q^2 \cdot n^2 \cdot L}{A^2 \cdot R^{4/3}} = \frac{1.43^2 \times 0.02^2 \times 200}{1.33^2 \times 0.326^{4/3}} = 0.412 \text{ m}$$

iii) The head loss due to bend h_{be}

 \bigcirc

()

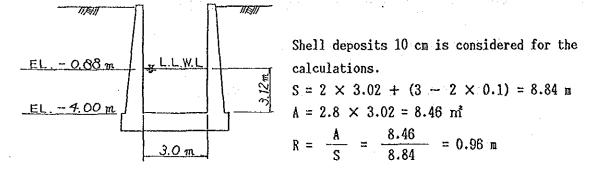
FORM 04

$$h_{be} = f_{be} \cdot \frac{v^2}{2g} = 0.073 \times \frac{1.08^2}{2 \times 9.8} = 0.004 \text{ m}$$

Accordingly calculating the head loss ha

$$h_2 = h_e + h_f + h_{be} = 0.03 + 0.412 + 0.004 = 0.446 m$$

SHEET 14 OF

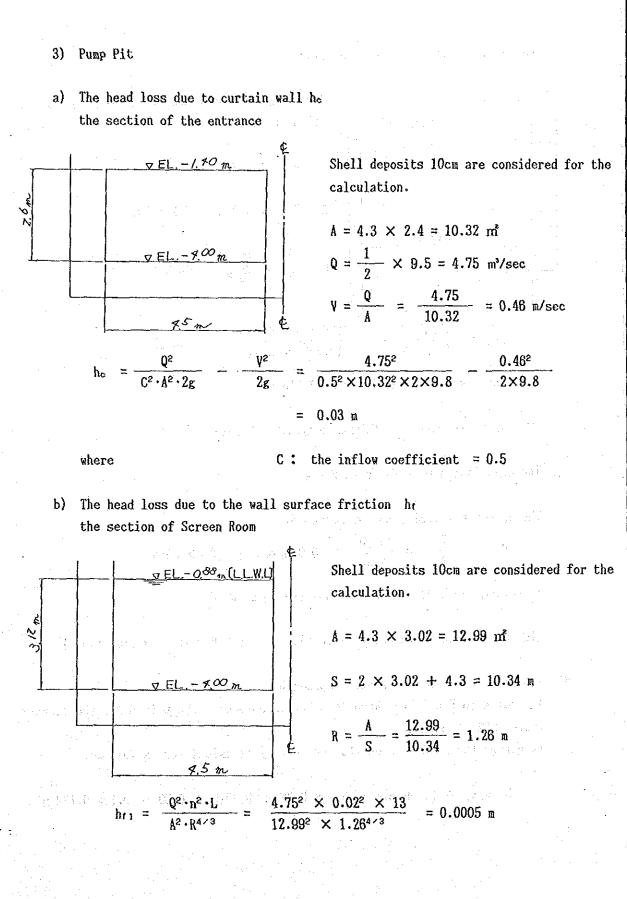

 $\left(\right)$

2) Intake Open Channel

FORM 04

a) The water head loss (at culvert side) ha

the section of Intake Open Channel

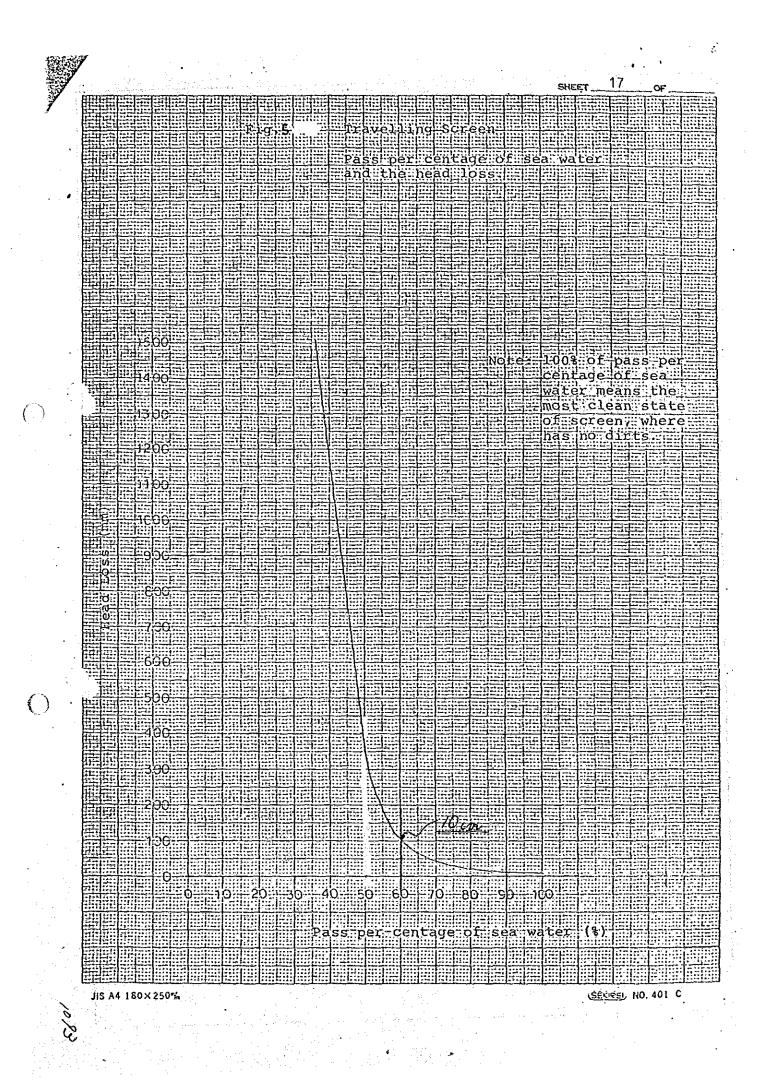

The head loss h₃ is the same as the head loss due to the wall surface friction. $h_3 = \frac{Q_3^2 \cdot n^2 \cdot L}{A^2 \cdot R^{4/3}} = \frac{5 \cdot 2^2 \times 0 \cdot 02^2 \times 66}{8 \cdot 46^2 \times 0 \cdot 96^{4/3}} = 0.010 \text{ m}$

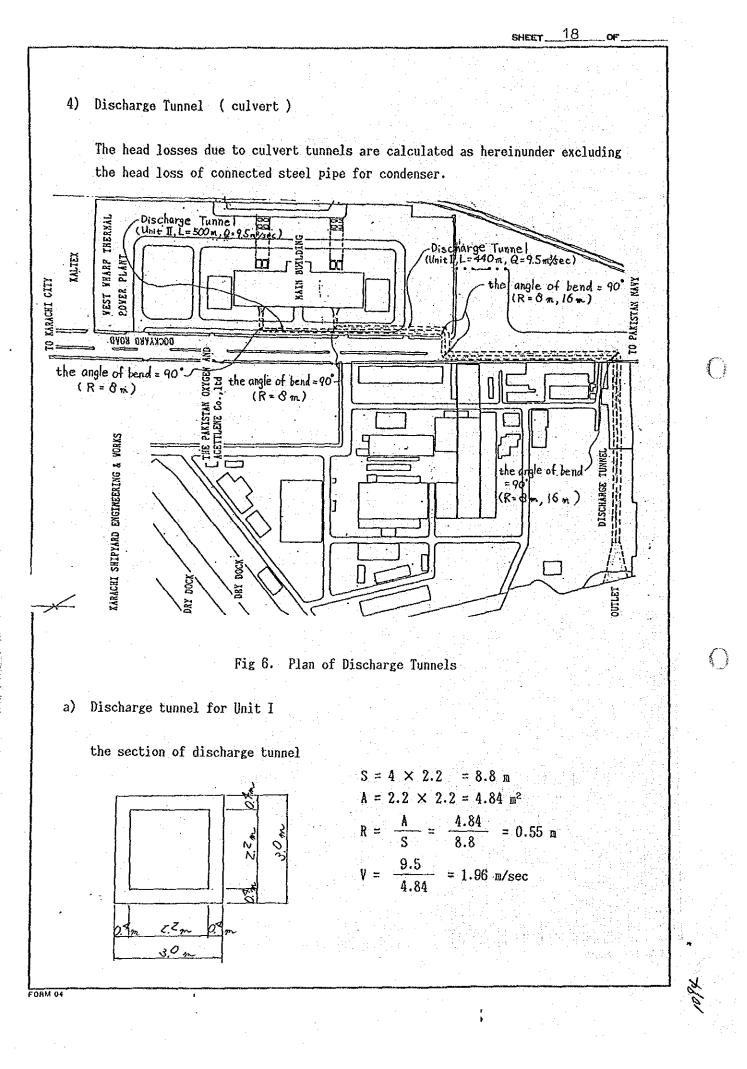
b) The head loss (at pipe side) h₄The process of calculation is the same as a).

$$h_4 = \frac{Q_3^2 \cdot n^2 \cdot L}{A^2 \cdot R^{4/3}} = \frac{4.3^2 \times 0.02^2 \times 32}{8.46^2 \times 0.96^{4/3}} = 0.003 \text{ m}$$

SHEET 15

OF




 \bigcirc

()

()

the mean section of Connected Culvert Shell deposits 10cm are considered for the calculation. ₩ EL. ~/2 # $A = 4.3 \times 3.2 = 14.72 \text{ m}^2$ N R $S = 2 \times (3.2 + 4.6) = 15.6 m$ $R = \frac{A}{S} = \frac{14.72}{15.6} = 0.94 \text{ m}$ $h_{12} = \frac{Q^2 \cdot n^2 \cdot L}{A^2 \cdot R^{4/3}} = \frac{4.75^2 \times 0.02^2 \times 23}{14.72^2 \times 0.94^{4/3}}$ = 0.001 m Accordingly he is calculated as follows. $h_f = h_{f1} + h_{f2} = 0.0005 + 0.001 = 0.0015$ c) The head loss due to bar screen hea The approach velocity to bar screen Va $V_e = \frac{Q}{A} = \frac{4.75}{12.99} = 0.37 \text{m/sec} < 0.40 \text{ m/sec}$ Therefore the head loss h_{ba} is assumed to be 0.03 m. (The above value 0.03 m/sec is regulated by U.S Bureau of Reclamation.) d) The head loss due to traveling screen htr According to Fig 5, the head loss htr is assumed to be 0.10 m for the cleaness factor 60% of screen. Therefore the head loss due to Pump Pit hp is calculated as follows. $h_p = h_c + h_f + h_{ba} + h_{tr} = 0.03 + 0.0015 + 0.03 + 0.1 = 0.162 m$ FORM 04

i) The head loss due to the water surface friction he

$$h_{f} = \frac{Q^{2} \cdot n^{2} \cdot L}{A^{2} \cdot R^{4/3}} = \frac{9.5^{2} \times 0.015^{2} \times 440}{4.84^{2} \times 0.55^{4/3}} = 0.846 \text{ m}$$

ii) The head loss due to double curves of the same type hou

$$h_{ou} = 2 \times \left[\left\{ 0.131 + 0.1632 \left(\frac{D}{\rho_1} \right)^{3.5} \right\} \left(\frac{90^{\circ}}{90^{\circ}} \right) \\ + \left\{ \left(0.131 + 0.1632 \left(\frac{D}{\rho_2} \right)^{3.5} \right\} \left(\frac{90^{\circ}}{90^{\circ}} \right) \right\} \cdot \frac{\sqrt{2}}{2g} \\ = 2 \times \left\{ \left\{ 0.131 + 0.1632 \left(\frac{2.48}{8} \right)^{3.5} \right\} \left(\frac{90^{\circ}}{90^{\circ}} \right) \\ + \left\{ \left(0.131 + 0.1632 \left(\frac{2.48}{10.6} \right)^{3.5} \right\} \left(\frac{90^{\circ}}{90^{\circ}} \right) \right\} \times \frac{1.96^2}{2 \times 9.8} \\ \end{array}$$

= 0.104 m

Where

()

 ρ : the radius of curvature $\rho_1 = 8 \text{ m}$ $\rho_2 = 10.6 \text{ m}$ D: the diameter of culvent $D = \sqrt{\frac{4.84 \times 4}{\pi}} = 2.48 \text{ m}$

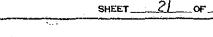
Accordingly the head loss due to discharge tunnel for unit I h_{c1} is calculated as hereinafter.

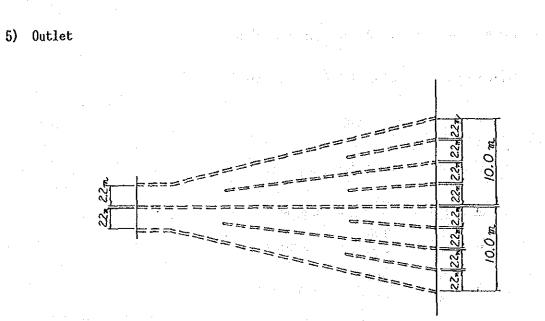
 $h_{o1} = h_f + h_{ou} = 0.846 + 0.104 = 0.950 \text{ m}$

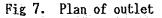
b) Discharge tunnel for unit II

hr

FORM 04

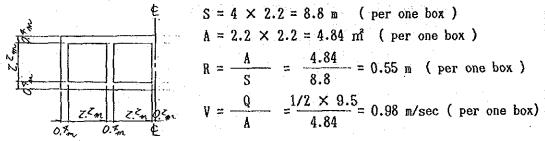

The section of culvert and the process of calculations are the same as culvert I.


i) The head loss due to the water surface friction hr.


$$= \frac{9.5^2 \times 0.015^2 \times 500}{4.84^2 \times 0.55^4/_3} = 0.962$$

SHEET ii) The head loss due to curve h'ou h'cu is calculated as hereinafter. $h'_{cu} = (3 \times \{0.131 + 0.1632 \times (\frac{2.48}{8})^{3.5} \times (\frac{90^{\circ}}{90^{\circ}})$ + $(0.131 + 0.1632 \times (\frac{2.48}{10.6})^{3.5} \times (\frac{90^{\circ}}{90^{\circ}})) \times \frac{1.96^{2}}{2 \times 9.8}$ = 0.104 m Accordingly the head loss due to culvert II her is calculated as hereinafter. $h_{c2} = h_f + h_{cu} = 0.962 + 0.104 = 1.066 \text{ m}$ \odot \bigcirc FORM 04

1



Both outlets of unit I and unit II are the same structures, so the head loss calculation is all the same.

a) The head loss due to outlet ho (per one culvert box) typical section of outlet (one unit)

i) The head loss due to the water surface friction hr

 $\left(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \right)$

FORM 04

 $h_{r} = \frac{Q^{2} \cdot n^{2} \cdot L}{A^{2} \cdot R^{4/3}} = \frac{4.75^{2} \times 0.015^{2} \times 40}{4.84^{2} \times 0.55^{4/3}} = 0.019 \text{ m}.$

ii) The head loss due to the gradual expansion he

The entrance area of outlet A_1 (one unit)

 $A_1 = 2.2 \times 2.2 = 4.84 \text{ m}^2$

The exit area of outlet A_2 (one unit)

$$A_{2} = 4 \times 2.2 \times 2.2 = 19.36 \text{ m}^{2}$$

$$V_{1} = \frac{Q_{1}}{A_{1}} = \frac{9.5}{4.84} = 1.96 \text{ m/sec}$$

$$V_{2} = \frac{9.5}{A_{2}} = \frac{9.5}{19.36} = 0.49 \text{ m/sec}$$

$$h_{9} = f_{9} \cdot f_{5} \cdot \frac{(V_{1} - V_{2})^{2}}{2g} = 0.7 \times 0.563 \times \frac{(1.96 - 0.49)^{2}}{2 \times 9.8} = 0.043 \text{ m}$$

22

5

SHEET

Where f_g : the coefficent of the gradual expansion loss = 0.7 f_s : the coefficent of the sudden expansion loss

$$f_s = (1 - \frac{A_1}{A_2})^2 = (1 - \frac{4.84}{19.36})^2 = 0.563$$

Accordingly the head loss due to outlet h_0 is calculated as hereinafter.

 $h_0 = h_1 + h_9 = 0.019 + 0.043 = 0.062 m$

CV-4 STRUCTURAL CALCULATION OF INTAKE OPEN CHANNEL

(-

Contents of this calculation note is shown as below.

	Contents	ontents			
1.	Soil Condition	2			
		4			
3.	Stability Calculation	5			
4.	Design Case 1	1			
5.	Structural Design 1	2			

SHEET _____

1. Structural Calculation of Intake Open Channel

1.1 Soil Condition

Boring data around the construction area is shown in Fig 1. Now the average N-value above the foundation level is conjectured by the following calculation.

 $N = \frac{(10+12) \times 2.0 + (12+11) \times 2.0 + (11+13) \times 2.0 + (13+6) \times 2.0 + (6+9) \times 1.54}{2 \times 9.54}$

≒ 10

FORM 04

According to the above caluculation, the angle of the internal friction is calculated by the following equation.

 $\phi = (\sqrt{15N} + 15)^\circ = (\sqrt{15 \times 10} + 15)^\circ \rightleftharpoons 27^\circ$

the bulk density of soil above the ground water γ : $\gamma = 1.9 \text{ t/m}^3$ the bulk density of soil under the ground water γ^- : $\gamma^- = 1.0 \text{ t/m}^3$.

Moreover other basic condition data are published in "Civil Design Condition" (vid.Na EWC-1001).

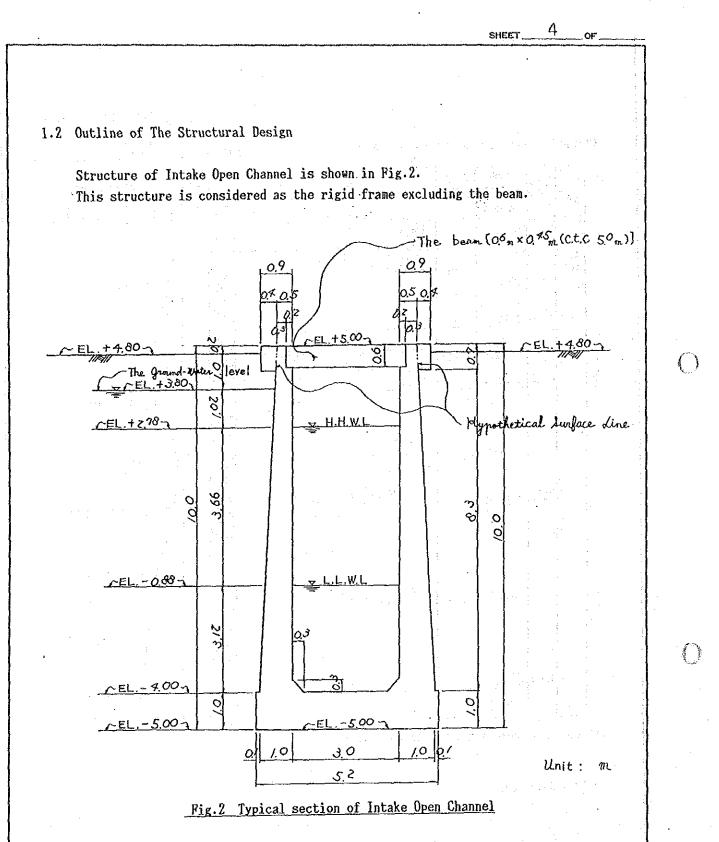
	マ
SHEET	U, U

0F

cu	FNIT	• к/	ARACHT FI	FCTRIC	WEST WHARF THERMAL SITE : POWER STATION, .KARACHI. SUPPLY CORPORATION. BORE CHART OF BORING N.
$\overline{}$	i	Reduced Levelars M/E	D*pih METERS 0.00	Thickness of Layare in (Metur)	SUPPLY CORPORATION. BORE CHART OF BORING No.4
1		4.539 + 3.5	т =1.9	3.70	The ground water Aurface filling material of brown medium to coarse sand with gravels, pebbles and clay.
20/12/87	+	0.838	3.70 T'=1.0	2.10	Brown medium silty medium to
/02	-	1.262	5.80		coarse SAND. 13 blows @ 6m.
-	-	5.000	T'=1.0	4.20	Dark grey loose to medium silty fine to coarse SAND, traces GRAVELS. Foundation Level
	-		10.00		9 blows @ 10m. 22 blows @ 12m.
27/12/87			τ'=1.0	6.00	Grey loose to medium silty fine to medium SAND. 24 blows @ 14m.
	-	 11.46	2 16.00 T'=1.0		27 blous@ 16m

Remarks : GROUNDWATER TABLE AT 1.00 METER.

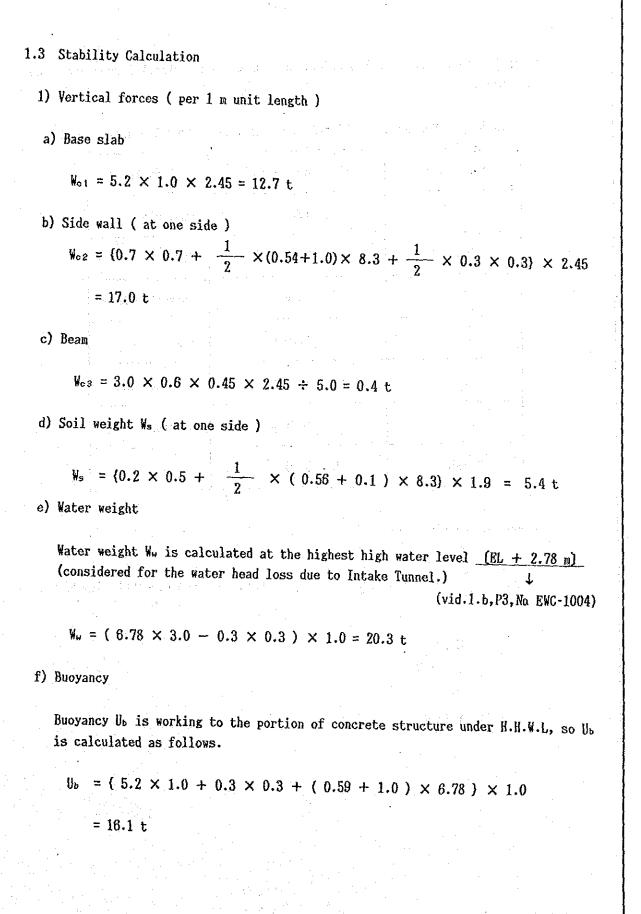
Date :- 27/12/87.


FORM 04

 (\cdot)

 \bigcirc

an jarga i $\{i_1, \dots, i_n\}$


Fig 1. Soil column diagram

The structural design calculation is executed at the lowest low water level. (EL - 0.88 m) (considered for the water head loss due to Intake Tunnel). \downarrow

(vid.1.c, P4, No. EWC-1004)

SHEET 5

FORM 04

()

OF

According to the above calculation, the summarized vertical forces are shown in Table 1.

Species	Vertical force	Remarks
Wol	12.7 t	Base slab
Wc2	34.6 t	Side wall
Vc 3	0.4 t	Connected beam
Ws	11.0 t	Soil weight
W.,	20.3 t	Water weight
Ub	- 16.1 t	Виоуалсу
. TOTAL	V = 62.9 t	

Table 1. Summarized table of vertical forces (per 1 m unit length)

2) The ground reaction 91

 $q_1 = \frac{V}{B.L} \cdot (1 \pm \frac{6e}{B})$ Where e: the eccentric distance e = 0

 $=\frac{62.9}{5.2 \times 1.0}$

= 12.1 t/m² and the set of t

SHEET.

___OF __

3) Study of the bearing capacity qu

The ultimate bearing capacity is calculated by the following equation in consideration of the unbalanced inclination.

 $g_u = \alpha KCN_c + KgN_e + \frac{1}{2} \gamma_1 \beta \beta N_r$

Where

 $(\overline{.})$

 (\cdot)

ORM 04

C : soil cohesion = $0 t/m^2$

g : the surcharge load $q = 1.9 \times 1.0 + 1.0 \times 8.8 = 10.7 \text{ t/m}^2$

A^{*}: the effective load area (m²) A^{*} = 5.2 × 1.0 = 5.2 m²

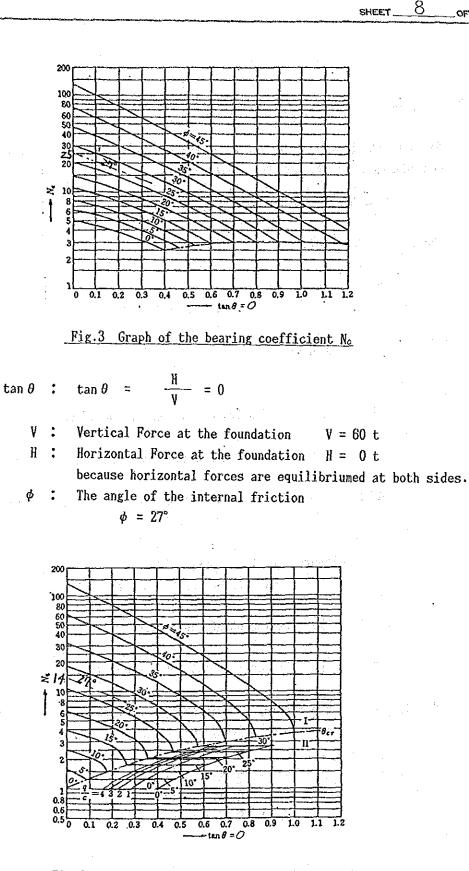
 γ_1 : the bulk density of the bearing soil(t/m^3) $\gamma_1 = 1.0 t/m^3$

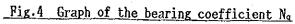
 $(\gamma_1$ is the bulk density under the ground water.)

B^{*}: the effective width considered for the eccentric distance. B^{*} = B - 2e_b = $5.2 - 2 \times 0 = 5.2$ m

where B : the basic width

Cb : the eccentric distance


 $\alpha \cdot \beta$: the coefficient of basic form $\alpha = \beta = 1.0$


K: the extra coefficient for the embedded effect K = 1.0

No, Ng, Nr :

the bearing coefficients considered for the load inclination, and these coefficients are adopted from the following graphs.

 $N_c = 25$ (from Fig 3.) $N_q = 14$ (from Fig 4.) $N_r = 9$ (from Fig 5.)

where

OF

9 SHEET

OF:

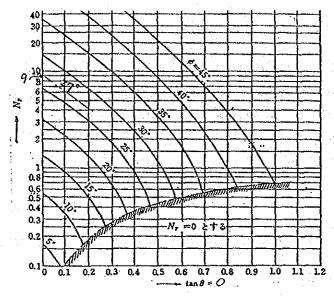


Fig.5 Graph of the bearing coefficient Nr

Accordingly the ultimate bearing capacity qu is calculated as below.

$$q_u = 1.0 \times 10.7 \times 14 + \frac{1}{2} \times 1.0 \times 1.0 \times 5.2 \times 9 = 173 t$$

4) The allowable bearing capacity qa

 (\cdot)

()

0856 04

The allowable bearing capacity is calculated as below.

$$q_{B} = \frac{1}{F_{S}} \cdot q_{U} = \frac{1}{3} \times 173 = 57 \text{ t/m}^{2} \Rightarrow q_{1} = 11.5 \text{ t/m}^{2}$$

Where F_s : the factor of safety $F_s = 3$

Therefore the spread foundation is adopted for the foundation of Intake Open Channel.

SHEET 10

OF

ality Sheet

5) Study of floating

The calculation of floating is executed at normal (The internal water condition is at L.L.W.L) and at construction (The internal water condition is empty), so this calculation is as follows.

a) Total vertical force

i) at normal

 $V_1 = 12.7 + 34.6 + 0.4 + 11.0 + (3.12 \times 3.0 - 0.3 \times 0.3) \times 1.0 = 68.0 t$

ii) at construction

 $V_2 = 12.7 + 34.6 + 0.4 + 11.0 = 58.7 t$

b) Up lift U

Up lift U is calculated as below.

 $U = \gamma_{w} \cdot h_{w} \cdot A = 1.0 \times 8.8 \times 5.2 \times 1.0 = 45.8 t$

c) Checking on the safety factor of floating Fi

The safety factor of floating F1 is checked by the follwing two cases.

i) at normal

$$F_{11} = \frac{V_1}{U} = \frac{68.0}{45.8} = 1.48 > 1.1$$

ii) at construction

$$F_{12} = \frac{V_2}{U} = \frac{58.7}{45.8} = 1.28 \times 1.0$$

SHEET 11

OF

1.4 Design Case

 \bigcirc

 \bigcirc

FORM 04

The following three cases are considered for the structural design calculation.

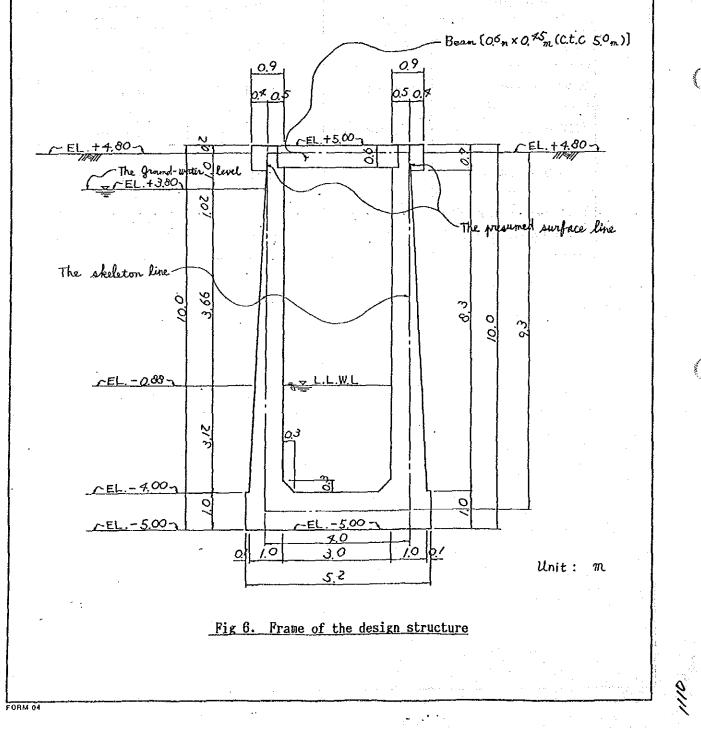
CASE	1	2	an a
CONDITION	at Normal	at Earthquake	at Construction
Earthquake	None	Considered	None
Water Content	L.L.¥.L	L.L.W.L	Empty
Self weight	Considered	Considered	Considered
The surcharge load	Considered	Considered	Considered
The increment ratio of the allowable stress	1.0	1.5	1.25

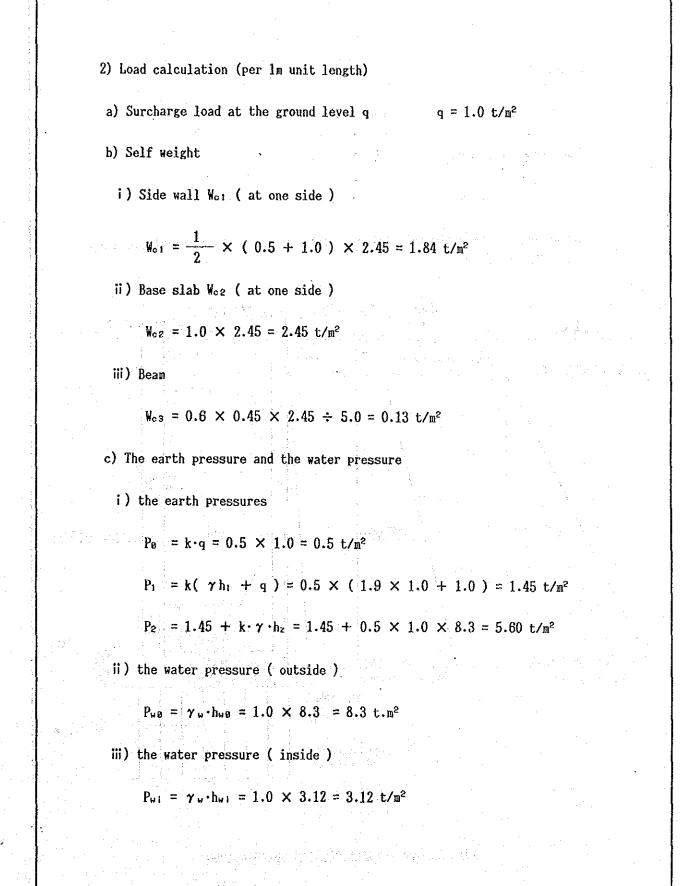
_ -----

Table 2. Summary of design cases

1.5 Structural Design

1.5.1 Load Case-1 (Normal, Long term)


1) Frame of the design structure


Frame of the design structure is shown in Fig 6, and the design structure is considered for the rigid frame structure.

-12

OF

SHEET_

(:)

()

ORM 04

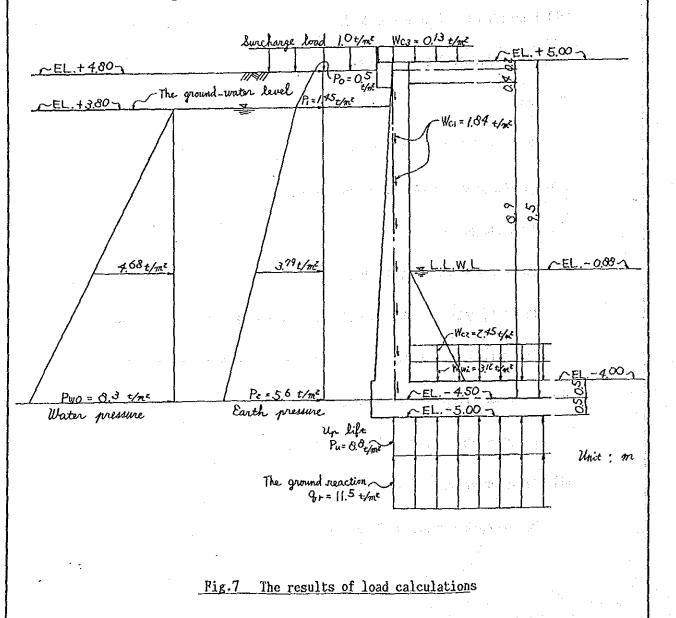
iv) up lift

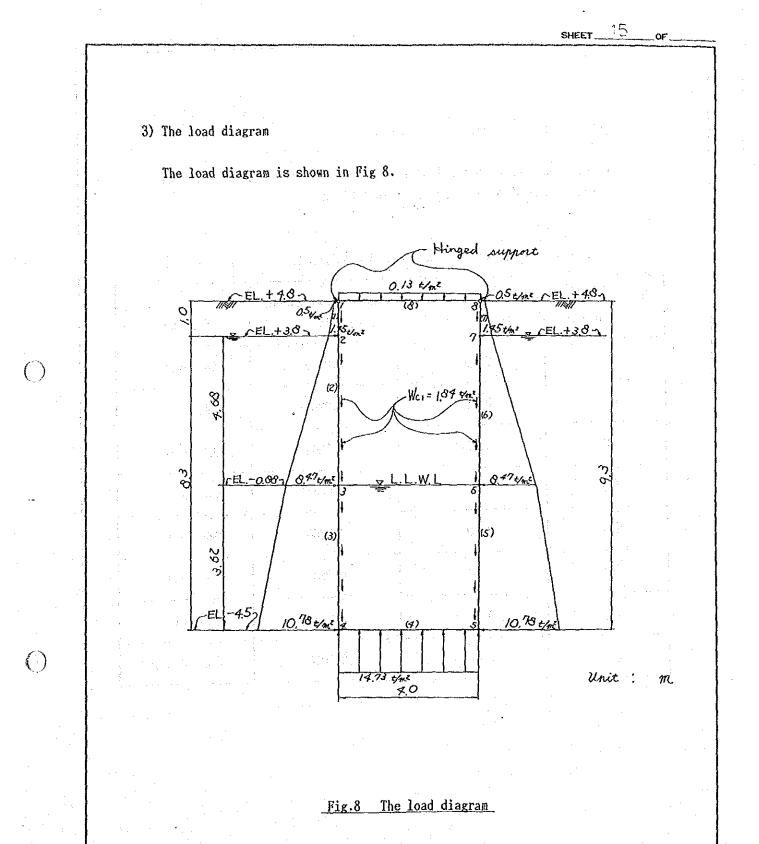
FORM 04

 $P_u = \gamma_u \cdot H_u = 1.0 \times 8.8 = 8.8 t/m^2$

d) The ground reaction

 $q_r = 11.5 \text{ t/m}^2$


According to the above calculations, the results of load calculations are shown in Fig 7.


14

OF

filla.

SHEET.

L

OF

a and a second

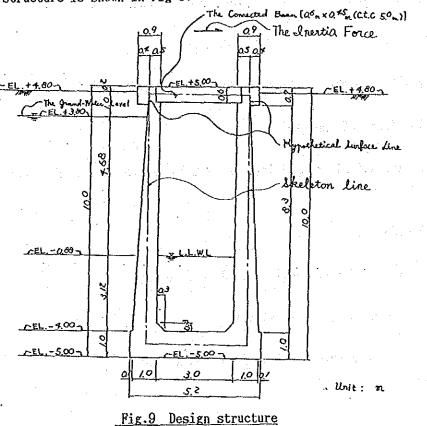
4) Imput data for the sectional dimensions.

.

The sectional forces are calculated by computer, so imput data for the sectional dimensions are indicated in Table 3.

Table 3. Table of the sectional dimensions (per 1 m unit length)

Member's number	Section area A (m ²)	Geometrical moment of inertia I(m ⁴)	Remarks
(1)	0.53	0.0129	Side wall
(2)	0.68	0.0262	Side wall
(3)	0.90	0.0608	Side wall
(4)	1.0	0.0833	Footing
(5)	0.90	0.0608	Side wall
. (6)	0.68	0.0262	Side wall
(7)	0.53	0.0129	Side wall
(8)	0.054	0.0016	bean 🖲 5.0 m


0F

1.5.2 Load Case-2 (Earthquake, Short term)

1) Design structure

()

Design structure is shown in Fig 9.

2) Load calculation (per 1 m unit length)

a) The ground surface surcharge

 $q = 1.0 t/m^2$

SHEET 18 OF

()

- b) Self weight
 - i) side wall $W_{c1} = 1.84 \text{ t/m}^2$ (at one side)
- ii) base slab $W_{c2} = 2.45 \text{ t/m}^2$ (at one side)
- iii) beam $W_{c3} = 0.13 \text{ t/m}^2$
- iv) water weight $W_{W} = 1.0 \times -3.12 = 3.12 \text{ t/m}^2$
- c) The force of inertia

Design seismic coefficient $k_h = 0.10$, so the force of inertia is calculated as below.

i) side wall (at one side)

 $W_{ch1} = k_h \cdot W_{c1} = 0.1 \times 1.84 = 0.18 t/m^2$

ii) base slab (at one side)

$$W_{ch2} = k_h \cdot W_{c2} = 0.1 \times 2.45 = 0.25 t/m^2$$

iii) beam

FORM 04

 $W_{ch3} = k_h \cdot W_{c3} = 0.1 \times 0.13 = 0.01 t/m^2$

- 14-

d) The seismic earth pressures and the water pressures i) the seismic earth pressures The coefficient of seismic active pressure is calculated by the following equations. $\frac{\cos^{2} (\phi - \theta_{\theta} - \theta)}{\cos \theta_{\theta} \cdot \cos^{2} \theta \cdot \cos(\theta + \theta_{\theta} + \delta)} \left\{ 1 + \sqrt{\frac{\sin(\phi + \delta) \sin(\phi - \delta - \theta_{\theta})}{\cos(\theta + \theta_{\theta} + \delta) \cos(\theta - \alpha)}} \right\}^{2}$ Kea ≒ ϕ : the angle of the internal friction = 27° Where α : the angle between the ground surface and the horizontal plane $\alpha = 0^{\circ}$ heta : the angle between the back wall surface and the vertical plane $\theta = \tan^{-1} \quad \frac{0.5}{8.97} \quad \rightleftharpoons \quad 3^{\circ}$ δ : the angle of the wall surface friction between the back wall $\delta = 0^{\circ}$ surface and back-fill θ_{θ} : the composite angle of earthquake $\theta_{B} = \tan^{-1}k_{h} = \tan^{-1}0.1 \doteq 5.7^{\circ}$ Therefore the state of the second state of the

The seismic passive earth pressure is determined by balancing the force which is figured out by the inertia forces and the seismic active earth pressures.

Accordingly the seismic earth pressures are calculated as follows.

ii) the active earth pressures (Horizontal)

(Horizontal) $P_{EADB} = K_{EA} \cdot \cos^3 \cdot q = 0.463 \times 0.999 \times 1.0 = 0.46 t/m^2$ $P_{EAb1} = 0.463 \times 0.999 \times (1.0 + 1.9 \times 1.0) = 1.34 \text{ t/m}^2$ $P_{EAh2} = 0.463 \times 0.999 \times (1.0 + 1.9 \times 1.0 + 1.0 \times 8.3) = 5.18 t/m^2$ (Vertical) $P_{EAV0} = K_{EA} \cdot \sin^3 \cdot q = 0.463 \times 0.052 \times 1.0 = 0.02 t/n^2$ $P_{EAV1} = 0.463 \times 0.052 \times (1.0 + 1.9 \times 1.0) = 0.07 \text{ t/m}^2$ $P_{EAV2} = 0.463 \times 0.052 \times (1.0 + 1.9 \times 1.0 + 1.0 \times 8.3) = 0.27 t/m^2$ iii) the passive earth pressures Total passive pressures are balanced to total horizontal forces, so they are calculated as below. (Vertical) (Horizontal) $P_{EPU0} = P_{EPh0} \cdot \tan^3 = 0.95 \times 0.052 = 0.05 t/m^2$ $P_{EPh0} = 0.95 t/m^2$ $P_{EPV1} = P_{EPV1} \cdot \tan^3 = 1.70 \times 0.052 = 0.09 \text{ t/m}^2$ $P_{EPh1} = 1.70 \text{ t/m}^2$

 $P_{EPh2} = 5.78 \text{ t/m}^2$ $P_{EPU2} = P_{EPU2} \cdot \tan 3^\circ = 5.78 \times 0.052 = 0.30 \text{ t/m}^2$

iv) the static water pressure

ORM 04

The static water pressures are calculated by dividing between inside and outside.

SHEET 21 OF

(Inside)

$$P_{wi} = \gamma_w \cdot h_i = 1.0 \times 3.12 = 3.12 t/m^2$$

(Outside)

$$P_{w8} = \gamma_w \cdot h_B = 1.0 \times 8.3 = 8.3 t/m^2$$

v) the dynamic water pressure

The dynamic water pressure is considered for working to side walls, therefore dynamic water pressure is calculated as below.

$$P_{ew} = \frac{7}{12} \cdot K_h \cdot \gamma_w \cdot b \cdot h^2 = \frac{7}{12} \times 0.1 \times 1.0 \times 1.0 \times 3.12^2 = 0.57 t$$

Working point of Pew (hew)

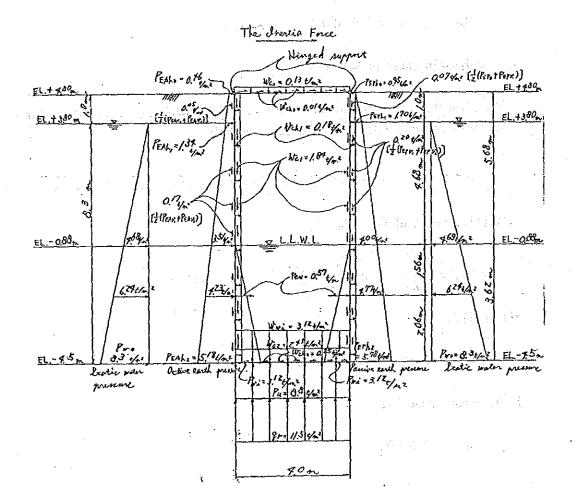
$$h_{ow} = \frac{h}{2} + 0.5 = \frac{3.12}{2} + 0.5 = 2.06 m$$

vi) up lift

()

 \bigcirc

FORM 04


$$P_u = \gamma w \cdot H_u = 1.0 \times (8.3 + 0.5) = 8.8 t/m^2$$

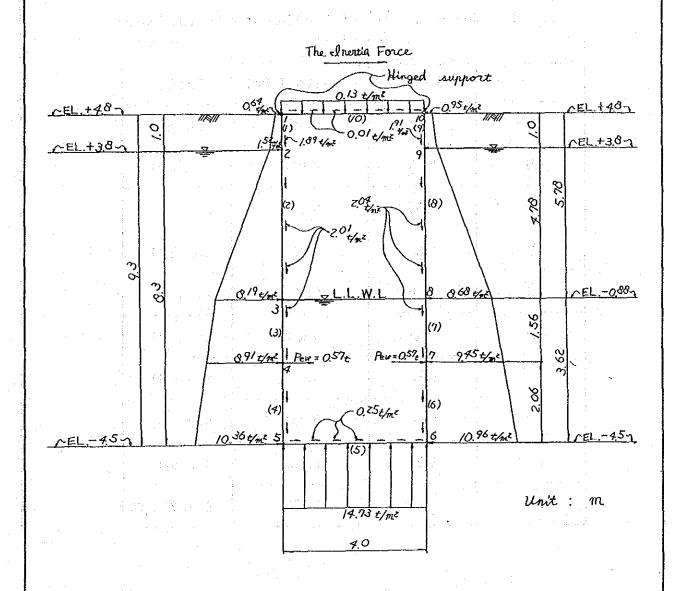
e) The ground reaction

gr = 11.5 t/m2

f) The results of load calculations

The results of load calculations are shown in Fig 10.

22


OF

SHEET ___

Fig.10 The results of load calculations

3) The load diagram

The load diagram is shown in Fig 11.

23_0F

SHEET.

Fig.11 The load diagram

FORM 04

()

()

24 SHEET

OF

 \bigcirc

4) Input data for the sectional dimensions

a) The sectional dimensions

Member's number	Section Area A (m ²)	Geometrical moment of inertia I (m^4)	Renarks
(1)	0.53	0.013	Side wall
(2)	0.68	0.026	Side wall
(3)	0.85	0.051	Side wall
(4)	0.95	0.071	Side wall
(5)	1.00	0.083	Footing
(6)	0.95	0.071	Side wall
(7)	0.85	0.051	Side wall
(8)	0.68	0.026	Side wall
(9)	0.53	0.013	Side wall
(10)	0.054	0.0016	Bean @ 5.0m

Table 4. Table of the sectional dimensions (per 1 m unit length)

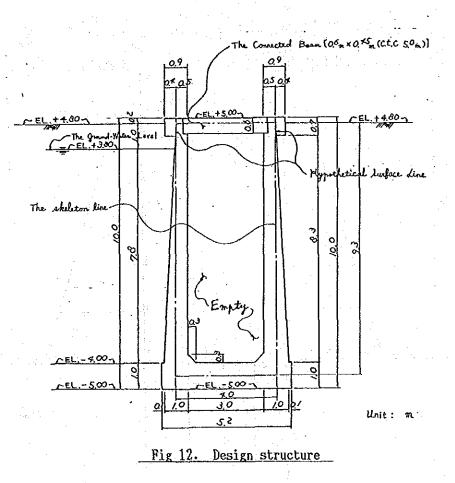
SHEET 25

OF

1.5.3 Load Case (at construction, Short term)

1) Design structure

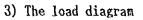
4

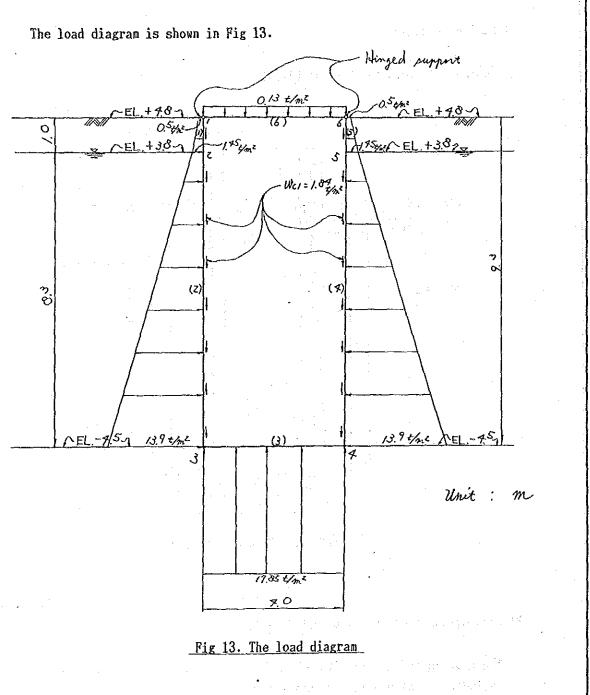

 $\left(\begin{array}{c} 0 \\ 0 \end{array} \right)$

(

È

FORM 04


Design structure is shown in Fig 12.


2) Load calculation (per 1 m unit length)

The process and the results of load calculations are the same as Case-1 excluding a calculation of inside water load.

In this design case the inside water pressure and the inside water weight is no considered(= 0).

ГОЯМ 04

SHEET 26 OF

()

SHEET _____

OF

4) Imput data for the sectional dimensions.

()

(÷)

FORM 04

The sectional forces are calculated by computer, so imput data for the sectional dimensions are indicated in Table 5.

Member's number	Section area A (m ³)	Geometrical moment of inertia I (m ⁴)	Remarks
(1)	0.53	0.0129	Side wall
(2)	0.79	0.0411	Side wall
(3)	1.0	0.0833	Footing
(4)	0.79	0.0411	Side wall
(5)	0.53	0.0129	Side wall
(6)	0.054	0.0016	Beam @ 5.0 m

Table 5. Table of the sectional dimensions (per 1 m unit length)

 \bigcirc

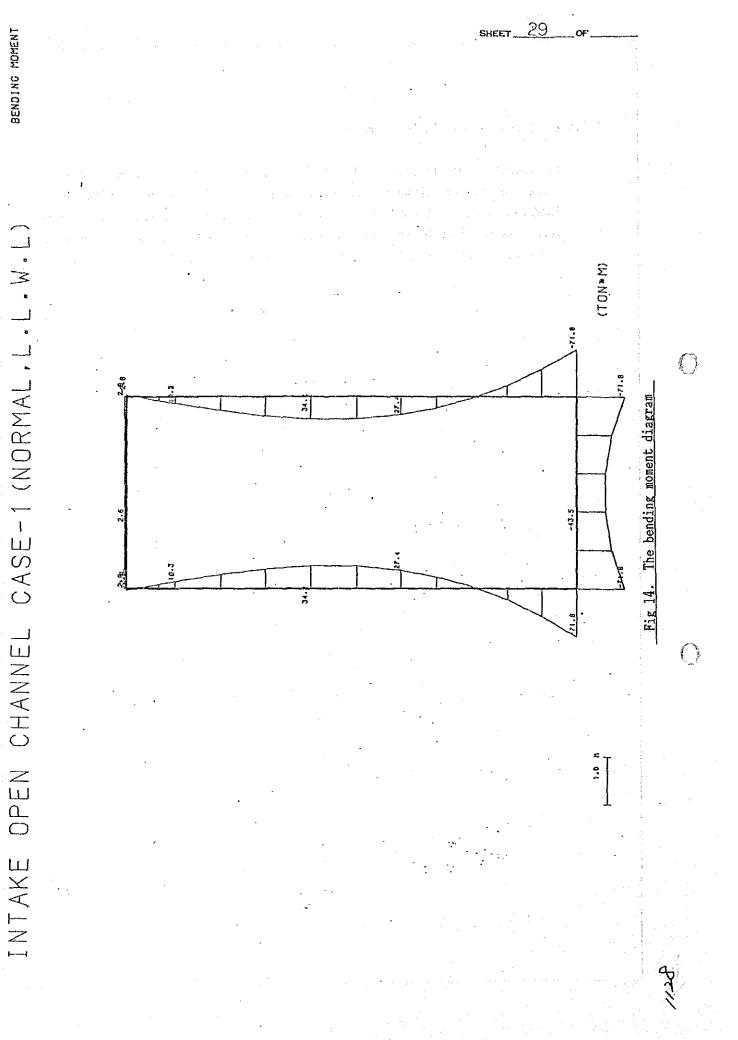
()

7

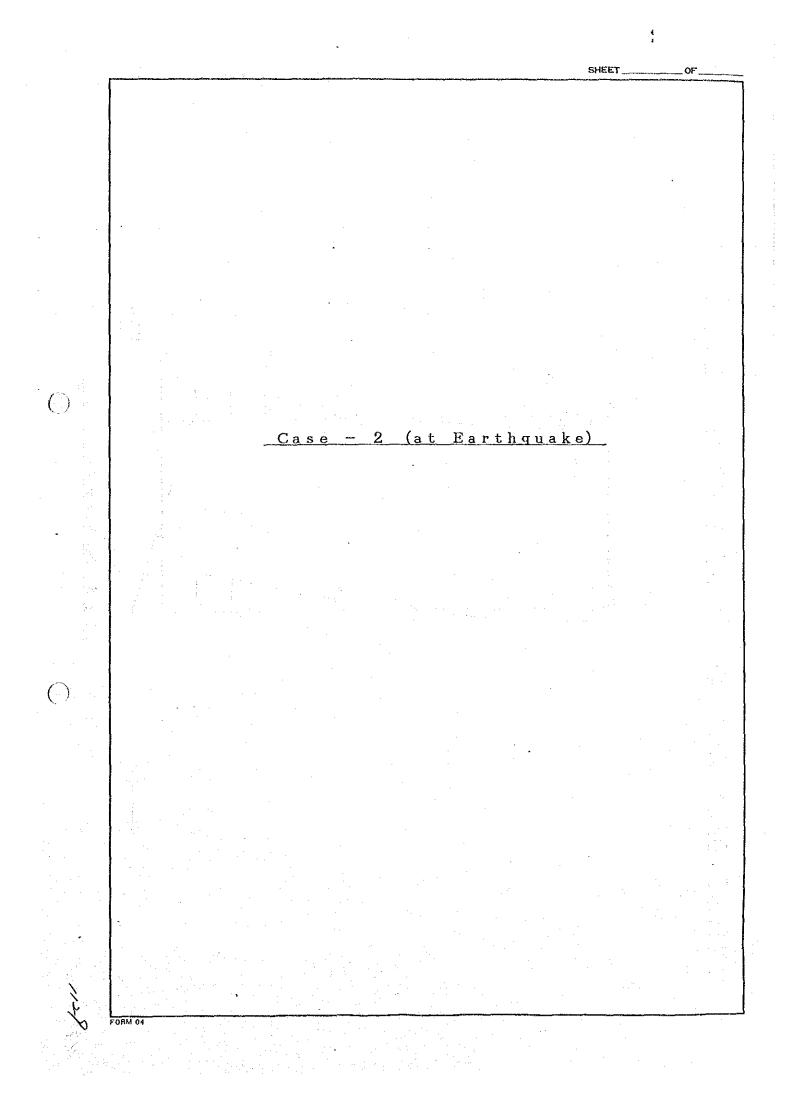
FORM 04

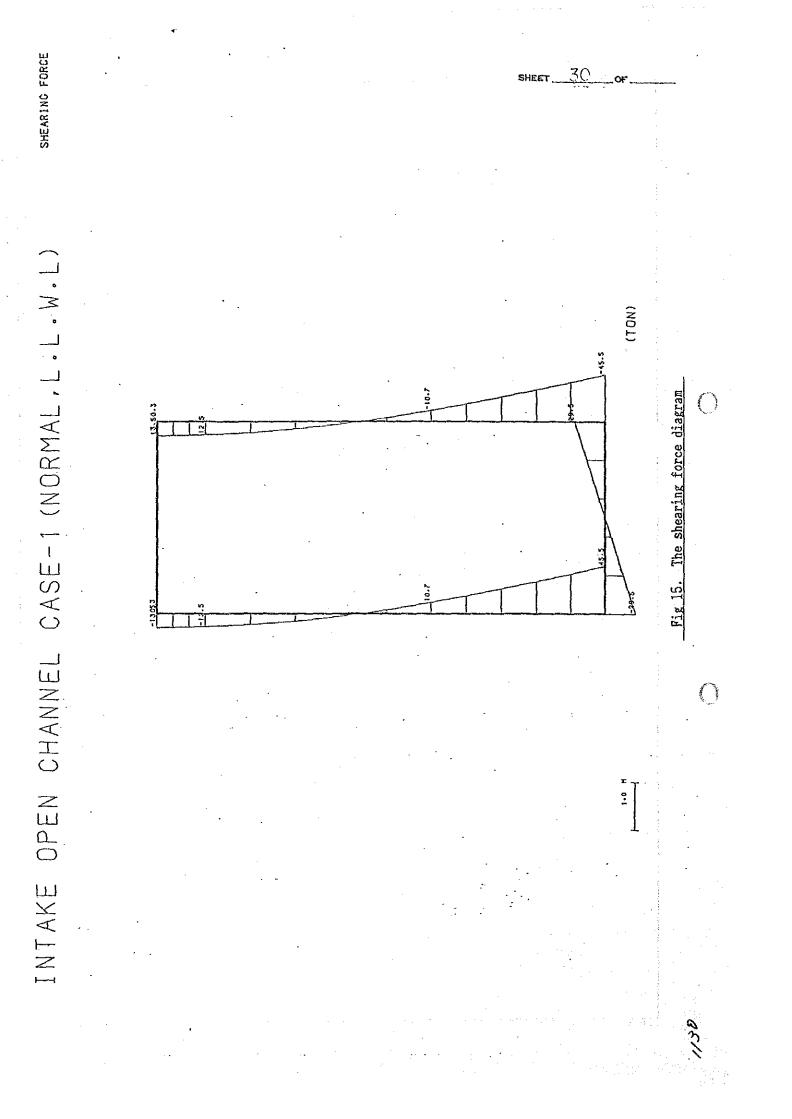
sheet_28

OF

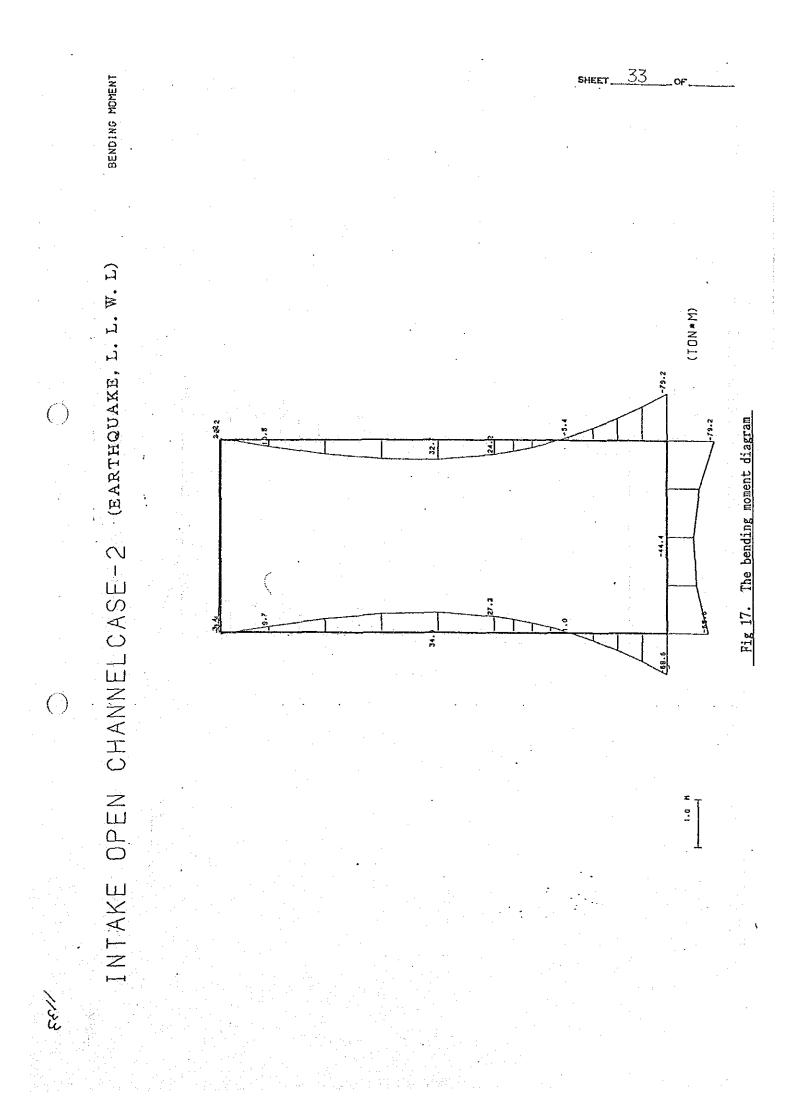

1.5.4 The Computer Calculation Results

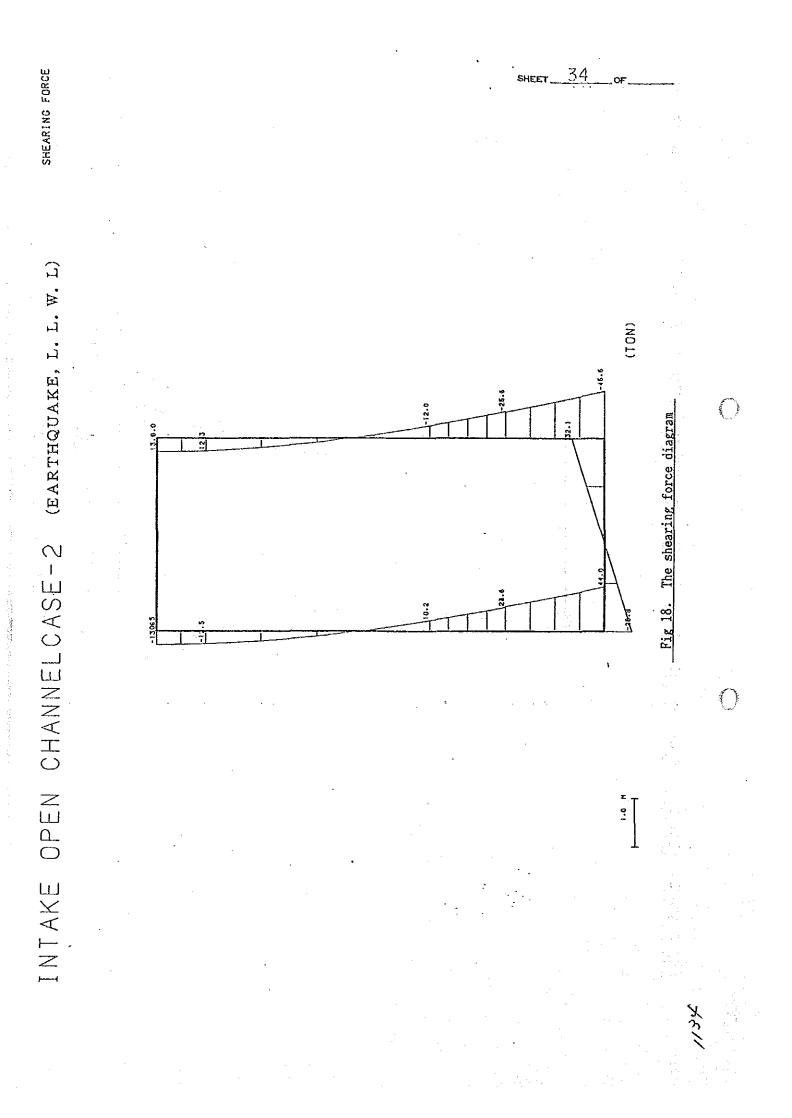
 $\left(\frac{1}{2} \right)$

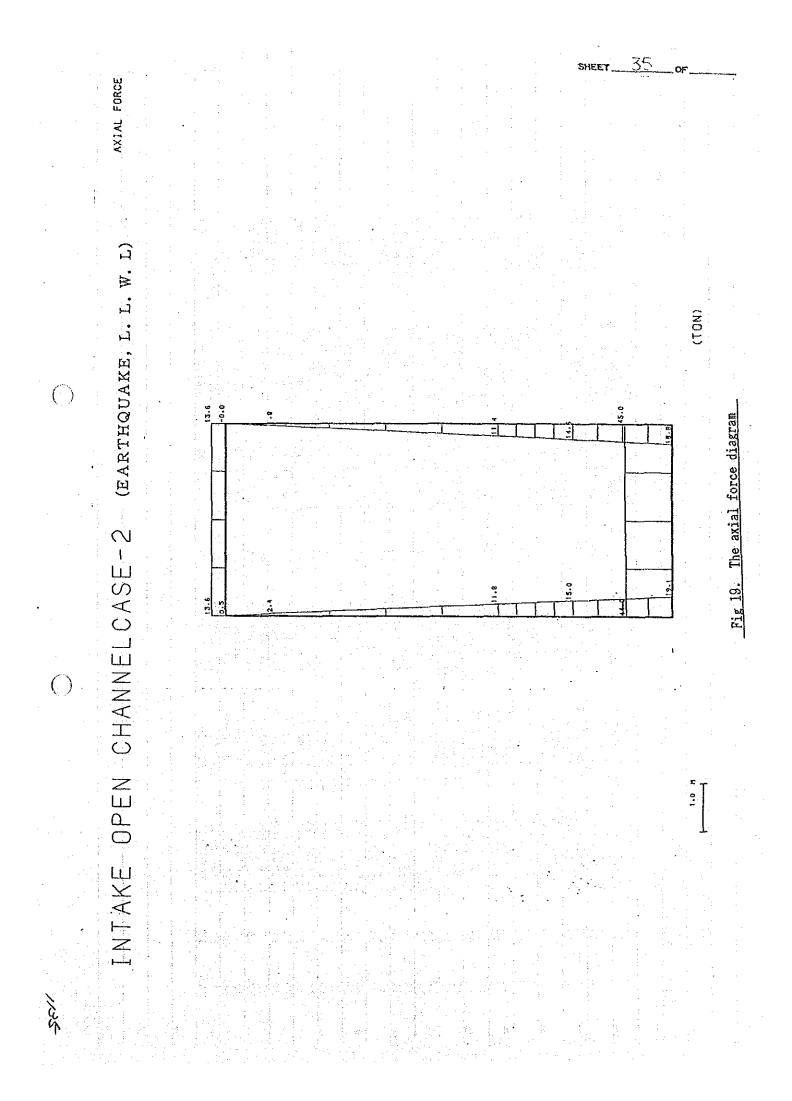

(


FORM 04

The computer calculation results are bending moment, shearing force and axial force, so they are shown in the following figures. Now comparing with three load cases, the sectional forces are almost same at both cases, so the sectional forces at nomal case are mainly adopted to calculate the sectional stresses and the arrangement of reinforcing bars from the view point of safety design.


P E N

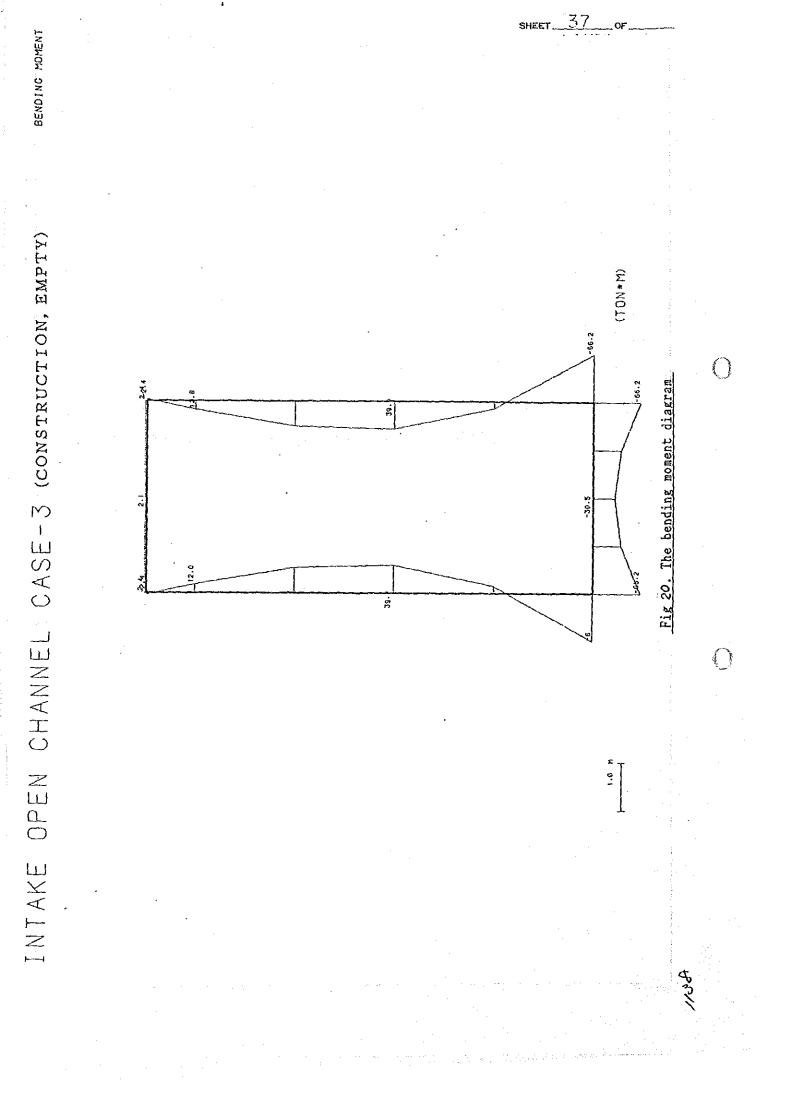


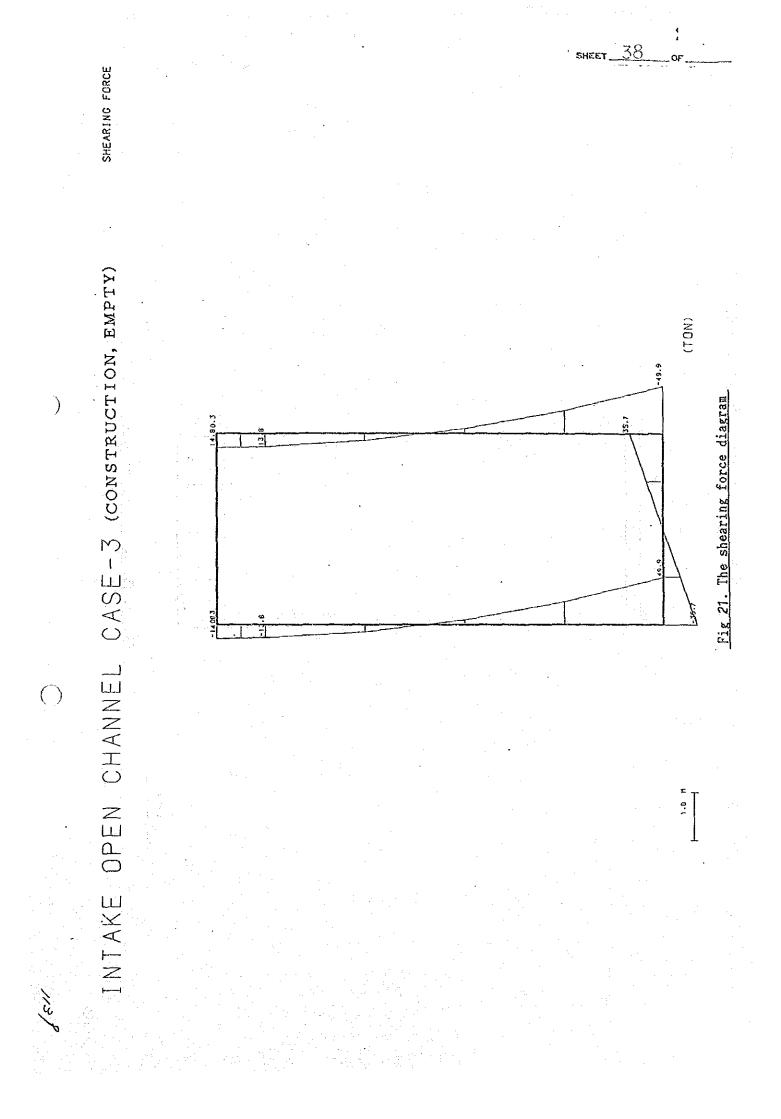


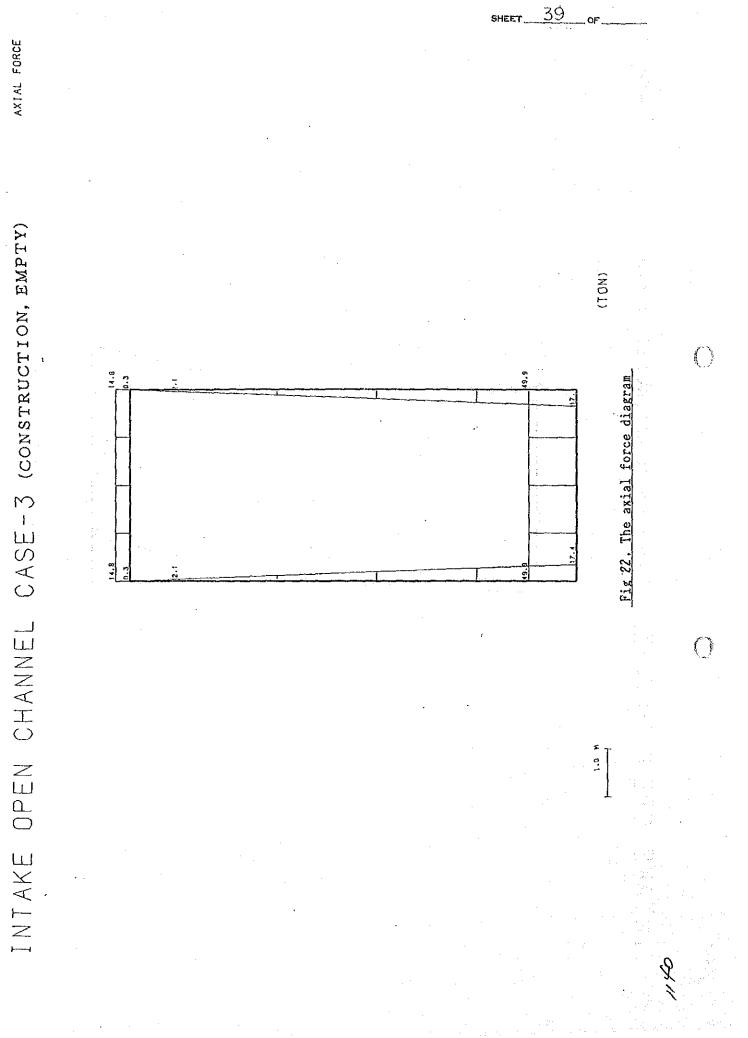
INTAKE OPEN CHANNEL CASE-1 (NORMA

R.E.U. Model Model Model Model Model Model 1 1 1,0000 1,00	o	בר **	EMENTAL FORCES	S **						
1 1 2,0000F-01 -1.328/F+01 -2.3329/F+01 -1.328/F+01 -1.368/F+01 -1.368/F+0	L L	I-END	AXIAL	SHEAR	MOMENT	J-END	AXIAL	SHEAR	MOMENT	
3 12 1.46076-00 -1.35956-01 -1.35956-01 -1.35956-01 -1.35956-01 -1.35956-01 -1.35956-01 -1.35956-01 -1.35956-01 -1.35956-01 -1.35956-01 -1.35956-01 -1.35956-01 -1.35956-01 -1.35956-01 -1.35956-01 -1.35956-01 -1.35956-01 -1.35956-01 -1.35956-01 -1.36966-01 -1.35956-01 -1.369666-01 -1.369666-01 -1.36966			. 6000E-	1.3504E	8329E4	11.	8.7327E-01	-1.3284E+01 -1.2259F+01	1.6349£+00 6.0126F+00	
5 12 3.822226+0 -1.050.6+0 3.11466+0 3.11466+0 3.11466+0 3.11466+0 3.11466+0 3.11466+0 3.11466+0 3.11466+0 3.11466+0 3.11466+0 3.11366+0 3.11666+0 3.11366+0 3.11366+0 3.11366+0 3.11366+0 3.11366+0 3.11366+0 3.11366+0 3.11366+0 3.11366+0 3.11366+0 3.11366+0 3.11366+0 3.11366+0 3.11366+0 3.11366+0 3.1166600 3.11366+0 3.11366+0 3.11366+0 3.1	m 4	12	4867E	1.29595	012064	101 C	2.1006400 3.8222F+00	-1-2529E+01 -1.0514F+01	1.0263E+01 2.1170E+01	
7 15 7.35078+01 2.5358+00 3.43818+01 3.458188+01 3.458188+01 3.458188+01 3.458188+01 3.458188+01 3.458218+01 3.768018+01 3.768018+01 3.768018+01 3.768018+01 3.768018+01 3.7768188+01 3.7768188+01 3.77778181818+01 3.72667819 3.72697818+01 <td></td> <td>13</td> <td>.8222E</td> <td>1.0514E+0</td> <td>114964</td> <td>14 u 1-1</td> <td>5.5445E+00 7.2667E+00</td> <td>-7.1860E+00</td> <td>2.9556E+01 3.4212F+01</td> <td></td>		13	.8222E	1.0514E+0	114964	14 u 1-1	5.5445E+00 7.2667E+00	-7.1860E+00	2.9556E+01 3.4212F+01	
1 1.07118+01 1.06866+01 2.73926+01 1.070466+01 3.05866+01 11 11 1.23766+01 2.66866+01 2.73956+01 1.668964+01 3.058666+01 1.668964+01 3.058666+01 3.058666+01 3.058666+01 1.668966+01 3.058666+01 2.069666+01 3.058666+01 2.069666+01 3.058666+01 2.069666+01 3.058666+01 2.069666+01 3.058666+01 2.069666+01 3.058666+01 2.060666+01 3.058666+01 2.0606666+01 2.0606666+01 2.0606666+01 2.06066660 2.06066660 2.060	~ ~ ~	15	26675	2.54356	4191E+	16	8.9890E+00	3.41326+00	3,39076+01 3,39076+01 2,34136-01	
11 11 14 1.33956491 1.13306491 1.47366491 3.53866491 12 19 1.47366491 2.7886491 1.6696791 3.53866491 3.53866491 15 21 1.47086491 2.76866491 -7.181274491 2.5586491 -1.75776401 -1.5776491 -1.579566491 -1.		<u>م</u> ا	07115	06846	7392E+	11		1.6984E+01	1.7400E+01	
12 19 1.47086+01 3.76366+01 -1.66354+01 20 1.75576+01 3.76566+01 3.76566+01 3.76566+01 3.76566+01 3.76566+01 3.76566+01 3.76566+01 3.76566+01 3.76566+01 3.76566+01 3.76566+01 3.76566+01 3.765666+01 3.76566+01 3.76566+01 3.76566+01 3.76566+01 3.76566+01 3.76566+01 3.765666+01 3.765666+01 3.765666+01 3.765666+01 3.765666+01 3.765666+01 3.765666+01 3.765666+01 3.765666+01 3.765666+01 3.765666+01 3.765666+01 3.765666+01 3.765666+01 3.7656666+01 3.7656666+01 3.7656666+01 3.7656666+01 3.765666601 3.765666601 3.765666601 3.765666601 3.765666601 3.765666601 3.765666601 3.765666601 3.765666660		18	-2043E	.36185	718964	19		2 • 30 185 +01	-1.68795+00	
14 4 4.55277E+01 -7.12577E+01 -5.9266+01 15 27 4.55277E+01 -5.9266+01 -5.9266+01 18 2.4 4.55277E+01 -5.9266+01 -5.9266+01 18 2.4 4.55277E+01 -5.9266+01 -5.9266+01 19 5 1.77566+01 -7.1275+01 -5.9266+01 -5.9266+01 19 5 1.73726+01 -5.95277E+01 2.94606E+01 -5.94606E+01 -5.95606E+01 -5.94606E+01 -5.95606E+01 -5.94606E+01 -5.94606E+01 -5.94606E+01 -5.94606E+01 -5.94606E+01 -5.94606E+01 -5.94606E+01 <t< td=""><td>13</td><td>20</td><td>- 60 40 F</td><td>78895</td><td>• 68835+ 16515+</td><td>20</td><td></td><td>3.70895+01 4.5527E+01</td><td>-4.1646E+01 -7.1823E+01</td><td></td></t<>	13	20	- 60 40 F	78895	• 68835+ 16515+	20		3.70895+01 4.5527E+01	-4.1646E+01 -7.1823E+01	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$,	4	.5527E	2.94605	.1827E+	. 21		-1-7676E+01	-5.29726+01	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5 5	12	.5527E	1.7676	-2972E+	22		-5.89296+90 5.89206+00	-4.3545E+01 -4.3545E+01	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		23	.5527E	5.8920	3545E+	-24		1.7676E+01	-5.29726+01	
20 25 1.0706E+01 -3.73397E+01 -4.1551E+01 20 1.4708E+01 -3.0586E+01 -3.0118E+01 -1.0688E+01 -3.0118E+01 -1.0688E+01 -3.0118E+01 -1.0688E+01 -3.0118E+01 -1.0688E+01 -3.0118E+01 -1.0688E+01 -3.0132E+00 -3.6132E+00 -3.6132E+00 -3.6132E+00 -3.6132E+00 -3.6132E+00 -3.6132E+00 -3.6132E+01 -3.0588E+01 -3.0118E+01 -1.0688E+01 -3.0118E+01 -1.0688E+01 -3.0188E+01 -3.0188E+01 -3.0188E+01 -3.6132E+00 -3.6186E+01 -3.6186E+01 -3.21898E+01 -3.2322E+01	18		5527	1.7676	5.2972E+	22		2,9460E+01	-7.1827E+01	
21 24 1.4708E+D1 -3.0596E+D1 -1.6883E+D1 27 1.3376E+01 -1.6984E+D1 22 27 1.3376E+01 -7.548E+D1 2.71895E+D1 2.6885E+D1 -1.6694E+D1 -1.6984E+D1 -1.6984E+D1 -1.6984E+D1 -1.6984E+D1 -1.6984E+D1 2.71895E+D1 2.91895E+D1 -1.6984E+D1 -1.6984E+D1 2.71925E+D1 2.91895E+D1 -1.6984E+D1 -1.6984E+D1 -1.6984E+D1 2.71925E+D1 2.41084E+D1 2.41084E+D1 2.41084E+D1 2.41084E+D1 2.41084E+D1 2.41084E+D1 2.41084E+D1 2.4455E+D0 2.5455E+D0 2.5455E+D0 2.5455E+D0 2.5455E+D0 1.25595E+D1 1.25695E+D1 1.25695E+D1 <td< td=""><td>50 S</td><td>25</td><td>1.60406401</td><td>- 708 - F</td><td>(.10/11+ 4.15516+</td><td>22</td><td></td><td>-3.05866+01</td><td>-1.6807E+01</td><td></td></td<>	50 S	25	1.60406401	- 708 - F	(.10/11+ 4.15516+	22		-3.05866+01	-1.6807E+01	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	21	26	1.4708E+D1	3.0590	1.6883E+	27		-2.3618E+01	2.7149E+00	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		200	1.33/05+01	2102.2	110964	22		-1 04040401	1.15926±01	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		3 •0	1.07116+01	1.068	.7392E+	62°		-3.41326+00	3.38666+91	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	25	52	906905	3.4132	3887E4	0.0		2.5435E+00 7 1040E+00	3.41716+01 2 86155±01	
32 3.8222E+00 1.7514E+01 2.1149E+01 1.2529E+01 7 2.1200E+00 1.2529E+01 3.149E+01 1.2559E+01 33 1.4867E+00 1.2559E+01 1.2959E+01 1.2959E+01 34 8.7327E-01 1.2959E+01 1.3594E+01 1.3594E+01 1.3594E+01 34 8.7327E-01 1.2959E+01 5.0120E+00 34 8.7327E-01 1.3594E+01 1 1.3504E+01 1.2589E+01 1.6343E+00 35 1.3504E+01 1.5600E-02 35 1.3504E+01 1.25607E-01 2.6605E+00 37 1.3504E+01 -5.2000E-02 36 1.3504E+01 -1.56007E-02 2.5833E+00 38 1.3504E+01 -1.56007E-02 37 1.3504E+01 -1.56007E-01 2.6665E+00 38 1.3504E+01 -2.60007E-02 36 1.3504E+01 -1.56007E-01 2.6665E+00 38 1.3504E+01 -2.60007E-01 37 1.3504E+01 -1.56007E-01 2.6665E+00 38 1.3504E+01 -2.60007E-01	27	31	<u>.5445F</u>	1860F+0	419856.	32		1.0514E+01	2.1129E+01	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28	32	.822E	0-3+150°	.1149E+	•		1.2529E+01	1.0242E+01	
34 8.7327E-01 1.2284E+01 1.3543E+01 1.3564E+01 1.3564E+01 1.3564E+01 1.3564E+01 1.3564E+01 1.5600E-01 1.3564E+01 1.5600E-01 1.3564E+01 1.5600E-01 1.3564E+01 1.5600E-01 1.3564E+01 1.5600E-01 1.3564E+01 1.5600E-01 1.3564E+01 1.3564E+01 1.5600E-02 35 1.3564E+01 1.5600E-02 35 1.3564E+01 -5.2000E-02 35 37 1.3564E+01 -5.2000E-02 35 36 1.3564E+01 -2.6000E-02 35 36 1.3564E+01 -2.6000E-01 -2.60000E-01 -2.6000E-01 <t< td=""><td>40 · · · · · · · · · · · · · · · · · · ·</td><td>Г р г</td><td>.10005</td><td>2529 2960</td><td>.0263E+</td><td>33</td><td></td><td>-</td><td>0114E+00</td><td></td></t<>	40 · · · · · · · · · · · · · · · · · · ·	Г р г	.10005	2529 2960	.0263E+	33		-	0114E+00	
1 1.3504E+01 2.6000F-01 2.8329E+00 35 1.3504E+01 1.5600E-01 35 1.3504E+01 1.5600F-01 2.6665E+00 36 1.3504E+01 -5.2000E-02 36 1.3504E+01 5.2000F-02 2.5833E+00 37 1.3504E+01 -5.2000E-02 37 1.3504E+01 -5.2000F-02 2.5833E+00 38 1.3504E+01 -1.5600E-01 37 1.3504E+01 -1.5600F-02 2.5833E+00 38 1.3504E+01 -1.5600E-01 38 1.3504E+01 -1.5600F-01 2.6665E+00 8 1.3504E+01 -1.5600E-01	31	1 1 1 1	.7327E	2284E	• 63 43 E4	. 8			-2.83346+00	
35 1.3504E+71 1.5600F-01 2.6665E+00 36 1.3504E+01 5.2000E-02 36 1.3504E+01 5.2000F-02 2.5833E+09 37 1.3504E+01 -1.5600E-02 37 1.3504E+01 -1.5600E-01 -2.6605E+00 8 1.3504E+01 -2.6000E-01 -2.6000E-01	ð 32	1	.3504E+0	. 6000E	.8329E+	35			2.66655+00	
37 1.3504E+01 -1.5600E-02 2.5833E+00 38 1.3504E+01 -1.5600E-01 39 1.3504E+01 -1.5600E-01 2.6665E+00 8 1.3504E+01 -2.6000E-01	6 6 7	98 98	-3504E-	0-30002-0	.5833E+	36 37	1.3504E+01 1.3504E+01		2.5833E+00 2.5833E+00	
	35	37 39	3504E+ 3504E+	5.2000E-0 1.5600E-0	.5833E+	38 8	1.3504E+01 1.3504E+01	-N	2.6665E+00 2.8329E+00	
			and the second secon							
	935	۰.								

		وترجي والماري والمسرب المسرعة المسروفين المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع							وبالمحافظ المحافظ
ELEM	1-6ND	1VI XV	SHEAP	MOMENT	J-END	AXIAL	SHEAR	MOMENT	وبوالمحافظ والمحافظ
		5.4210E-01	-1.35796+01	-3.36656400	13	1.4871E+00	-1-31496+01	3.3263E+00 9.7472F+00	
		43216	36642.	.74546+0	14	4.78386+90	-9.74476+00	2.29866401	
4		.7838.E	.74476	.29485+0	15		-5.03996400	3.18256+01	والمتعادية والمتعادية والمتعادية والمتعادية والمتعادية والمتعادية والمتعادية والمتعادية والمتعادية
ίΛ - C		- 1	-5.03996400	.1787	- 16 - 1		1.02236400	3.40188+01 7.72836+01	
1		18395		7245	17	1.2623E+01	1.3452E+01	2.26316+01	
8		\sim		.2631	18		1.67516+01	1.67446+01	
6 C		34076	•	6743E+0	19		2.01216+01	9.55586+00	
11		- 49755	-1	+ 4 4 4 4 4	4		2.23015+U1 2.8813F+01	-1.25846+01	
12		.60106		.2585	21		3.36816+01	-2.86686+71	
13		20456	3.3681E+01	.8670	22		3.87375+01	-4.7308E+01	
1 4		10808	-	2061			104242403	-0-0745401	
16		77777	-	10001 0145	22		2.63906+00	10+36175***	
17		396		4419	25		1.73695+01	-5.4423E+01	
513		47295	- 1	• 4423E	9		3.20995+01	-7.915/5419	
6 C C C		88205		.9157E .6600F	27		-4.10446+01	-3.68516+01	
21		67196		•6850E	28		-3.05316+01	-1.98086+11	
22		56685		.98065+3			-2.5567E+01	-5.37126+00	
		3 6	-2.613/1401	-5.36956+00 4.31016+00	3 6		-2.24896491	4.10905+30	
25		30266		.21826	31		-1.5418E+01	1.88745+01	
26		22316		- B874E+	8		-1.1996E+01	2.421/F+01	
282		• • • • • • • • • • • • • • • • • • •		2710	1 87		4.23236+00	3.1668E+01	
52		-6615E		.17086+	.34		9.2838E+00	2.35636+01	
		10	- 1	1780F+	35		1.30506+01	4.43526+00	
		32905	30206	.436854	2		1.36196+01	-2.2397E+00	
6 v 6		14 4	210	.3665E 8804E	36 37	1-35896+01	4.1210E-01 2.8210E-01	2.8894E+00 7.5423F+00	
	37	-3599E+	-30128 ·	<u>5423E+0</u>	. 38		1.5210E-01	2+3252E+00	
36	m	-3609E+	-20125-	•3252E	10		2.21036-02	2.2381E+00	
	 - - -	-					•		
									OF
				· · · · · · · · · · · · · · · · · · ·					
130	· .	•	· ·						* • •


Table 7. Summary of the sectional forces (Earthquake)


<₂


6

SHEET OF ()(at Construction) Case 3

V Z FORM 04

ange engen part de gritte de la tra

	ana	and a second	ی داده از می دادی می در میرود برد از م			 A second sec second second sec			·
							•		
				Table 8. Summary	of sectional forces	(Construction)	-		
¥		 		1991 - Friedrich Harrison, 1992 - 199	and the second				
÷									
		10 17 14	ELEMENTAL FORCES	***					
ļ• ,						: : :	· · · ·		
	ELEM	I-END	AXIAL	SHEAR	MOMENT J-END	AX I AL	SHEAR	NOMENT	
•	-1		2.6009E-01	10+36641-	-2.4035E+00 9	1.18095+00	-1.44306+01	4.9156E+00	
b.	2 6	ο (1.1800E+00 2.1000E+00	-1.4430E+01 -1.3824E+01	4.9136E+00 2 1.1987F+01 10	2.1000E+00 5.9180E+00	-1.38246+01 -7.58585+00	1,19695+01 3.55405+01	
	n +- 10	10	5.9180E+00	-7.5858E+00 5.1106E+00		9.7360E+00 1.3554F+01	5.1106E+00 2.4265E+01	3.9224E+01 9.8636E+00	
	0	12	1.3554E+01 4.9879E+01	2.42656+01 -3.5700F+01	• 6402E+00 6168E+01	1.7372E+01 4.0870E+01	4.98795+01 -1 78505+01	-6.59445+01 -2.03035101	
U	- @ 0	E -	4.98796+01	-1.78506+01 4.84006-13		4.98796+01 4.98796+01	2.5283E-13	-3.0468E+01 -3.0468E+01	
	10	15	4.9879E+01	1 . 7850E+01 -4 00 70E+01	3-93936+01 6-61686+01	4.98795+01 1 35555+01	2.5700E+01	-6.6168E+01	
1	12	16	1.3554E+01 9.7360E+00	-2.4265E+01 -5.1106E+00	9.6402E+00 17 3.9001E+01 10	5.9180E+00		3.50975401	
12	15	8.0	5.9180E+00	7.5850F+00 1.3824E+01	.53166+01	2.1000E+00 1.1800E+00	1.38246+01 1.44306+01	1.1764E+01 4.9116E+00	
	16	19	1.1800E+00 1.4799E+n1	1.4430E+01 2.6000E-01	.91366+30 .40356+00	2.6000E-01 1.4799E+01	1.4799E+01	-2.4055E+0) 2.2085E+00	
1	18	20 21	1.4799E+01 1.4799E+01			1.4799E+01	-1.3000E-D1	2.2085E+00 2.2085E+00	
:	20	22	1.4799E+01	-1.30006-01	.20856+00	1.4799E+01	-2.6000E-01	2 + 4035 E+20	
				· · · ·					
		- -				-			
]									
[[່ si
									Keet. K
									! }
• • •									<u>`</u>
	1								

SHEET 41 OF

(

1.5.5 The Calculation Results of the Stress

The stress calculations are shown in the following Tables, and the general arrangement of reinforcing bars are figured in Fig.26, now the allowable stress of reinforced concrete is stated again as below.

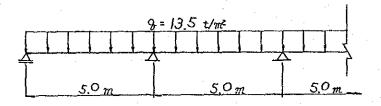
1) The allowable bending stress of the reinforcing bars σ_{bs} $\sigma_{bs} = 1800 \text{ kg/cm}_2$

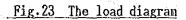
2) The allowable compressive stress σ_{co} $\sigma_{co} = 70 \text{ kg/cm}_2$

3) The allowable shearing stress τ_{*}

FQRM 04

Classificat	ion	τ. (kg/cm²)
No considered for the	Bean	4.25
diagonal tension bars	Slab	8.5
Considered for the	As working force is	
diagonal tension bars	the shearing force	19.0
	only	


Table 9. The allowable shearing stress ta


In this design case the design structure is considerd for the slab structure, so the allowable shearing stress is determined $\tau_s = 8.5 \text{ kg/cm}^2$.

0F

4) Study of coping

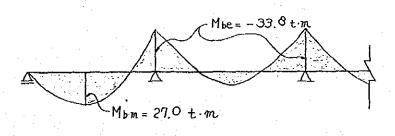
Coping is considered for the continuous beam, so the bending moment M_b and the shearing force S are calculated as follows, then the uniformly distributed load is q = 13.5 t/m.

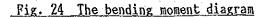
a) The bending moment

()

()

FORM O


i) at the support


$$M_{be} = -\frac{1}{10} q \cdot 2^2 = -\frac{1}{10} \times 13.5 \times 5^2 = -33.8 t/m$$

ii) at the middle point of beam

The maximum bending moment at the middle of beam is occured at both end spans, then the bending moment is calculated as below.

 $M_{bm} = \frac{8}{100} \quad q \cdot 2^2 = \frac{8}{100} \times 13.5 \times 5^2 = 27.0 \text{ t/m}$

()

b) The shearing stress

FORM 04

The shearing stress is equal to the reaction force at the support.

 $S = \frac{1}{2}$ q. $g = \frac{1}{2} \times 13.5 \times 5.0 = 33.8 t$

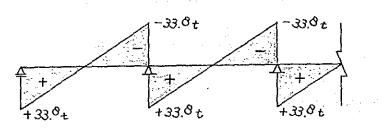


Fig.25 The shearing force diagram

•

(

 \bigcirc

N.

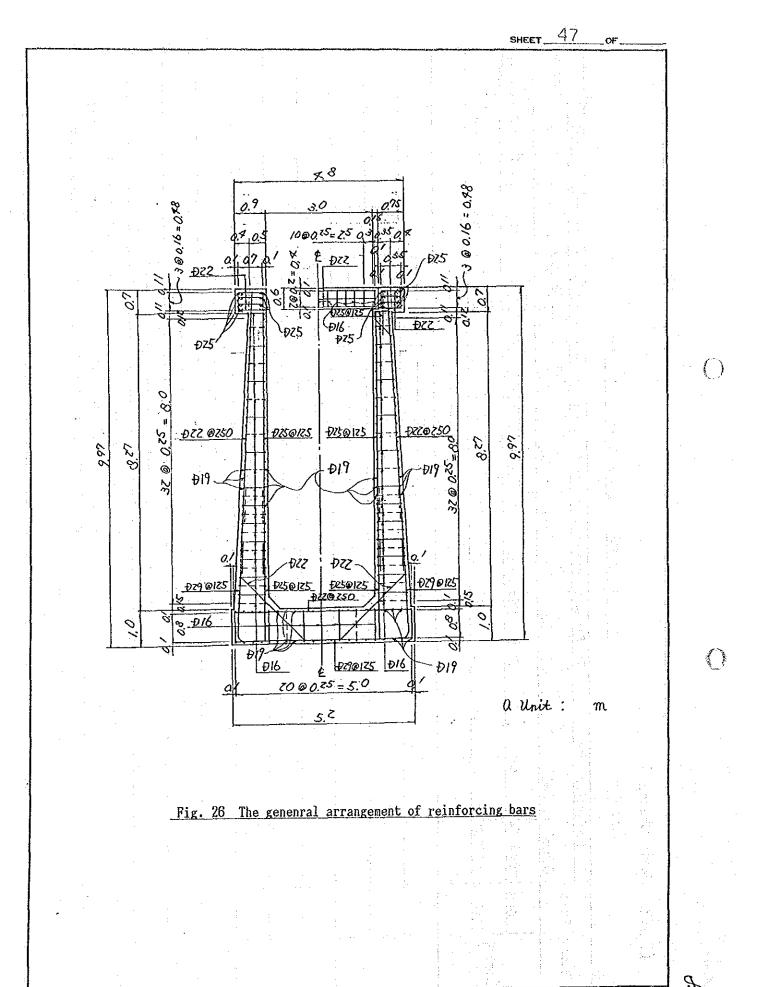
	. IntaKe	Upen Channel	nannel]												
- 5.						_ <u>Table./O</u> =	\neg	ve Calcul	<u>The Calculation Results</u>	lts of The Stress	tress	~			
2.4		The	그	Force	The	Sectional	1 Dimensions	ions	The Arrang	Arrangement of Rej	of Reinforcing Bars	The s	strees ()	(kg/cm ²)	
Menber	Point	[kz·cm]	N [ke]	s K	و ا ا		ل م	ر مر 1 مر		Pitch Fmm7	As [cm ²] A's [cm ²]	°.	ð	1	Remarks
1				<u> </u>					Ð25	125					Calculat
•	-	0	8) 2) 2)	/≯ 000	3	2	2	0	22G	250	15.5	/	ò	ςς	on hypothetic section.
-				· :		:			£2A	125	₹0,5 ⁻				
	Lenter			13 000	30	40	**	5	224	250	155	385	17.0	ю. Э	
	Ŷ	m v v v	2001	\$ \$	çç	1	N P	Ş	025	125	2.2	, cux	05%		
ſ	, , ,	20000			Ś	8	5	5	22 A	250	/5,5	3		, ,	
-	n		j se P		(52A	125	\$0.5		2	c	
	v	/ 000 000	2/00	000 2/	8	56	8	0	- <i>1</i> , 22	250	15.5	633	21.7	ð N	
	<		1.						ĐZS	125	×0.5				
	Center	3×0000	7300	5 500	00/	69	59	0/	£2G	250	15.5	1583	33 23	0,4	
1	-						2		£2 G	125	\$0.5				
. 1	ņ	2//2020	22/ 02/	00/.0/	8) (8	0, .	1 22	550	15.5	666	37.5	0.7	
	4		<u>.</u>	÷.,				(Ð 25	125	20.5				
	n	200 021.2	201.01	20/. 0/	8	22	જી	0	Ð 22	250	15.5	666	37.5	/ 6	
	10100	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4.0			Ċ	č		<i>62</i> 4	125	51.4				
	Center	-/ 6/000	001, 41	30 00	8	16 .	6	0	-925	125	\$0.5	327	15.	ک	
1	V	- 1 (BC 200				(Ç	<u></u>	624	125	51.7				Considered
T		m noi /-	224 - 2	302	3	2	ŝ	2	524	125	20.5	1394	44.0	0.A	tension po
			1						- 42G	125	S/A		()		
	×	2000//-	\$5 500	cy 560	8	0//	99	5	52G	550	1 155	2611	49.7	3.0	
		- < 3€0 m	×5 500	4 000	ç	Ş	8	Ş	£24	125	51.4		•		
ليسب				-	2	2	2	>	224	250	15.5	/82	2%5	0. 0	
		4				-			62A	125	51.4				
	S	-7/100000	75 500	29 500	00/	0//	8	0	-22A	250	15,5	2611	\$9.9	ري م	
	M : Denc	Bending moment	B	: The Width	t h			Q : Q	r of	bars	46	•••	The hendinr :	stress	
	N : Axis	Axial force		: The Neitht	cht			••	The area of	f tension bars		The	compressive stress	ive stre	, K
	• •	Shearing force		The off.	The offertive height	, aicht	1	•					chostine attend		2
ſ	5 11 1 1 5 5	ATAT VITIE	ל יי	· THC PLA				,							

•

[Intake Open Channel]

SHEET OF Considered for the di-gond tEnsion bars Colculated On hypothetial Section. Remarks oc' : The compressive stress 76 r. 10 2 ¥.0 0 か 5.5 82 82 0 0.0 The shearing stress \ O ob : The bending stress (kg/cm²) μ 37.5 24.0 3.5 58.5 86 6:12 6.12 17.6 8,6 15. 66.6 0 в The strees 999 1394 327 666 1543 0 633 0 S.S. 28 *2*83 è. 1 . ч The Arrangement of Reinforcing Bars [Cm²] k's [cm². 155 205 N.S. SOX 205 <u>8</u>. S NO.S 15.5 5.5 155 5/.4 5/.4 405 50% AON S 12:5 15.5 5.5 1.0 0.0 1.6 0 0 116 NS. A's : The area of compression bars Table./0-2 The Calculation Results of The Stress As : The area of tension bars Jpieces Jpieces 3 pieces 3 Pleces 3 pieces JPIECES Pitch 250 125 125 25 52 52 25 220 125 52 22 125 3 250 S D : Dianeter of bars ٥Î 924 52A 62G 22A 22A 22A 224 52G 22G 22 G 52A 224 22G 229 Ð25 220 224 224 224 224 224 25 .75 2.5 9 δ Q. 9 δ 9 Q Q ۲ ۲ 9 ò Dimensions : The covering of compression bar 573 52.5 <u>5.5</u> 3 Ś ŝ 5 ð જ X ** 2 ر د ا Sectional 8 Ś 8 69 ß 9 2 8 3 3 6 ß [cm] : The effective height The X X 8 Ś Ś 8 Ś 8 8 Ś 8 8 B Cm] : The Height : The Width 2200 0200/ 00200 \$5 500 12 600 ŝ 30.600 ŝ 8 130 12 600 020 €/ S D(g) হ Force 001 41 'n 0 200 10.700 67500 17 400 7300 2/00 67.500 67.500 Ω. 2/00 1500 ŝ Sectional [Kg] : Bending moment Shearing force 000 062 / Center |- / 690 000 - 7 /80000 Q 270000 2200022 3 720 000 1 030 000 600 000 0 Ö 1030 000 The [kg.cm] : Axial force E, Center Center Center Point 4 5 ŵ 6 5 ଚ 8 ×. 25 ŝ Member (8) (\mathcal{C}) 6 (9) here

45

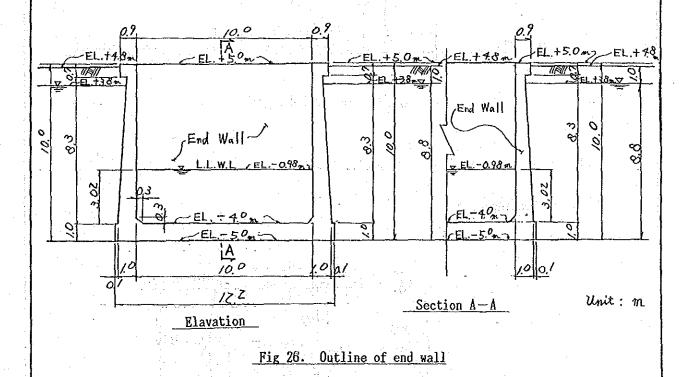

 $\left(\right)$

 $\langle \rangle$

46 SHEET OF Considered for the dimonal Remarks db : Ine verments
de': The compressive stress
t : The shearing stress \$ 0. 0. 0.0 [kg/cm²] ч 35.9 <u>66. X</u> ο° The strees 639 1026 . م The Arrangement of Reinforcing Bars As [cm²] λ's [cm²] 30. S 705 20.5 \$0.5 D : Diameter of bars
As : The area of tension bars
A's : The area of compression bars Table. /0-3 The Calculation Results of The Stress O pieces 3 pieces & pieces & pieces Pitch [mm] <u>م</u> [**BZ5** Ð25 720 Ð25 হ 5 ်မှ ခြီ The Sectional Dimensions : The covering of compression bar Ś 2 d [cm] 25 ĉ [cm] : The Width : The Height : The effective height C B 8 8 33.8 0 C S The Sectional Force a. ≕ .a ò 0 0 [Intake Open Channel] K [] Coping H : Bending moment
N : Axial force
S : Shearing force -1 38000 middle 2 700 00 [kg.cm] end Member | Point Coping lhere

 \bigcirc

()


FORM 04

SHEET 48

OF

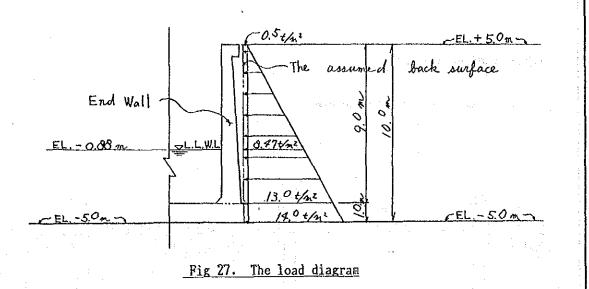
1.5.6 Study of End Wall

1) Outline of design structure

2) Strucrural design

()

FORM 04


End wall is considered for a two dimensional plate with three edges fixed and one edge free, so the structural design calculation is executed at nomal case as follows.

a) The load diagram (Normal)

Working load to end wall is the same load as the channel, then the uniformly distributed load of end wall is transformed to the uniformly varying load that is shown in Fig 23.

SHEET 49 OF

 \bigcirc

- b) The calculation of the sectional force
- i) the bending moment

FORM 04

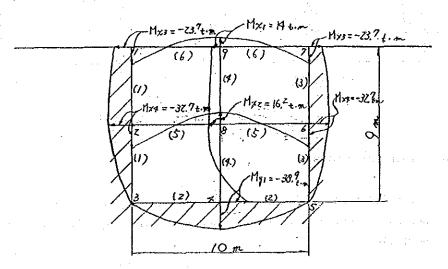
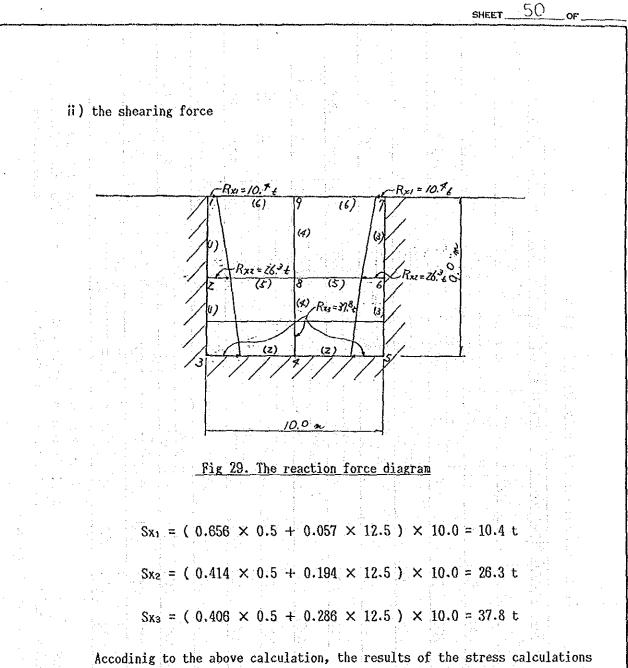
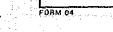




Fig 28. The bending moment diagram

$$\begin{split} & M_{x1} = (0.0425 \times 0.5 + 0.0095 \times 12.5) \times 10^2 = 14 \text{ tm} \\ & M_{x2} = (0.0287 \times 0.5 + 0.0118 \times 12.5) \times 10^2 = 16.2 \text{ tm} \\ & M_{x3} = (-0.0836 \times 0.5 - 0.0156 \times 12.5) \times 10^2 = -23.7 \text{ tm} \\ & M_{x4} = (-0.0563 \times 0.5 - 0.0239 \times 12.5) \times 10^2 = -32.7 \text{ tm} \\ & M_{y1} = (-0.0523 \times 0.5 - 0.029 \times 12.5) \times 10^2 = -38.9 \text{ tm} \end{split}$$

According to the above calculation, the results of the stress calculations are shown in the following tables and the general arrangement of reinforcing bars is shown in Fig 30.

 \bigcirc

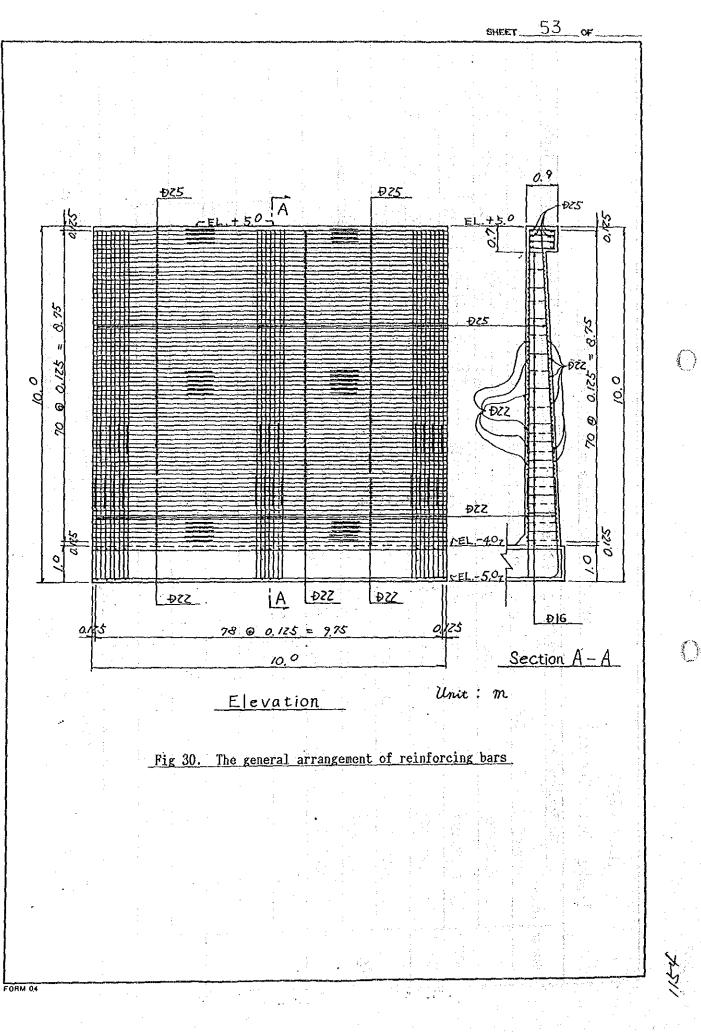
				L 00 /	-			•								
		•	LERA WOULJ	מדר א												*****
	<u>⊢</u> і ·	Intake	Open Ch	Channel		- 4 •	Table.	11-1 The	<u>calcula</u>	tion Result	The Calculation Results of The Stress	.ess				
			The Se	The Sectional R	Porce	The S	Sectional	Dimensions		The Arrangement		of Reinforcing Bars	The strees		(kg/cm ²)	
	Member	Point	M [kg·cm]		s [kr]	B [cm]	H [cm]	1		D [mm]		سبا وليب إ	a. 0	5	4	Remarks
										Ð 25	125		L		v.	
		~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2	/0≯0/	0,	2	8	9	Ð 25	/25	\$0.5	ŝ	22	2	
	CE -	~	-3270000	0	26.30	Q	75	کرک	Q	Ð 25 Ð 25	125	40.5 40.5	1405	428	4 0	
							2			922 922	125	3/0			 	
		ņ	0	0	37 000	8	0//	8	Ó	Ð 22	125	0.18	0	0	3.0	
									- -	22 0	125	37.0				
		m	0	0	37800	8	0//	8	0/	Ð22	125	0./£	0	0	S S S	
	5					• (.		-		Ð22	125	31.0	· · ·			*
•	<u>ر</u>	4	-3890000	0	37800	0/	0//	8	0	£24	125	31.0	1369	20.0	<u>8</u> 8	
	•	۱ 			····					Ð22	125	31:0				
		2	0	0	37,800	8	0//	8	0/	- PSS	125	0.18	0	0	ð. S	
							- <u>-</u>	<u>-</u>		Ð22	/25	31:0		<u> </u>		
		S	0	0	37,800	8	0//	8	<u>,</u>	520	125	31.0	Ö	0	ひ . か	
13	<u> </u>			 				1		Đ 255	125	¥0.5			- 	
•	<u>ה</u>	Q I	-3270000	0	26 30	8	22	Ś	0	Đ25	125	×0.5	1405	\$28	0.∀	
• .						÷.,	(] (· D25	125	70.5				
		∽	-<3/0000	0	0×0/	8	20	ð	0	Đ25	125	70.5	015	0.22	1.5	
	- · · ·	1		(((((224	125	31.0			(
		*	2000	5	200/20	8	2	3	2	-923 	125	31.0	1369	0. 29	ひごう	
	¥	ب	/620.000	C	0	00	25	22	-1 -1 -1	-22G	/25	31.0	8	8	. C	SH
		>		,		•		<u>}</u>		524	125	2.02	<u>}</u>			
		6	/ #00000	0	0	8	ç	g	2	2 25	125	70,5	285	13.0	0	
•	Vhere.	K : Ber	ນີ້ຄາດໍ່າມະ ພດຫຍຸກປະ	. F	: The Vidth	t.h			ia :	پ د	hars	÷ b	. The	bending stress	ress	
•		• • •	Axial force	n ≓	: The Height	ght	,				tension bars		: The	compressive stress	e stress	
		S : She	Shearing force	q	: The eff	The effective height	cight		A's : 7	The area of	compression bars	bars t	: The sh	shearing stress	Cress .	<u>>F</u>
•		•	• • •	ָ דּי [ָ]	: The cov	The covering of		compression bar							•	
								•	_						:	
		and the second second second second	a setta providente de la composición de													

SHEET 51 OF

ŧ

.

()


 \bigcirc

-

.

•

		¥		ABMALKS												SHE	Ì	<u>52</u>	OF	
		· .	(kg/cm ²)	4	0	0	0	0										stress	ive stre	Sufess
				d c	\$7.Q	2,72	L			042	;;	 						The bending stress	The compressive stress	searce Surgers
-	1 		The strees	4	1 405	8	1405	8/5	2012	2/2								: The	The	• 1116
		223	of Reinforcing Bars	A's [cm ²]	\$0.5 \$0.5	31.0	40.5	2.02 2.02	<u>70.5</u>	70.5	×0.<							þ	9	
$\sum_{i=1}^{n}$		The Calculation Results of The Stress		[mm]	125 125	125	125	125	125	125	/23							bars	The area of tension bars	erra norseardan
		lation Result	The Arrangement		Ð 25			52A	220	925	SA							Diameter of bars	The area of	IN ALES OF
		he Calcu	Dimensions	5	0	<i>•</i>	9	9	9	Ş					•			1	As .	
		\sim		, <mark>[</mark>]	٤5	%	\$	- 29 -	Ş	£						-				ssion ba
		Table. 11	Sectional		75	8	35	90	6	8			1			<u> </u>			و بر بر	f compre
\mathbf{i}			The		/00	8	8	8	8	8		· · ·						dth	ight 	ine ellective neight The covering-of compression bar
		e	Rorce «	ۍ, کړ	0	0	0	Q	0	0			na Danasa T			. 1		: The Width	The lieight	The co
	Vall)	Open Channel	The Sectional Ro	(kg]	0	0	0	0	0	0			т. ж.	8 - 1 - 1		· · · ;			ш т	סי ב
	[End Wall)	Intake Ope		đ	-327000	1 620 000	-320000	0000L2-	/ 400 000	-2370000								Bending moment	Axial force	Sucarting Lorce
		Intí	Point		∼	8	9		6	5						•			N : Axi	•
1. S.			Member		ایر بادین	(5)			(9)			i Agelo			•	. .	•••	¥here		

