5-7. BALDIA SUBSTATION BUILDING

CONTENTS

§1 GENERAL	
1.1 OUTLINE OF BUILDING	1.
1.2 APPLICABLE CODES AND STANDARDS	3
1.3 STRUCTURAL MATERIALS TO BE USED AND ALLOWABLE UNIT STRESS	3.
1.4 LOAD COMBINATION	5
1.5 DESIGN LOAD	6
§2 DESIGN OF SECONDARY MEMBER	12.
2.1 DESIGN OF BEAM	12.
2.2 DESIGN OF SLAB	
§3 DESIGN OF FOUNDATION	16
§4 OUT PUT DATA	20
(DECICA OF MAIN MEMBER)	

§1 GENERAL

1.1 OUTLINE OF BUILDING

1) Name of building
BALDIA SUBSTATION

2) Building dimensions

(1) Building area : 384.0 m^2

(2) Total floor area : 384.0 m^2

Ground floor area : 384.0 m^2

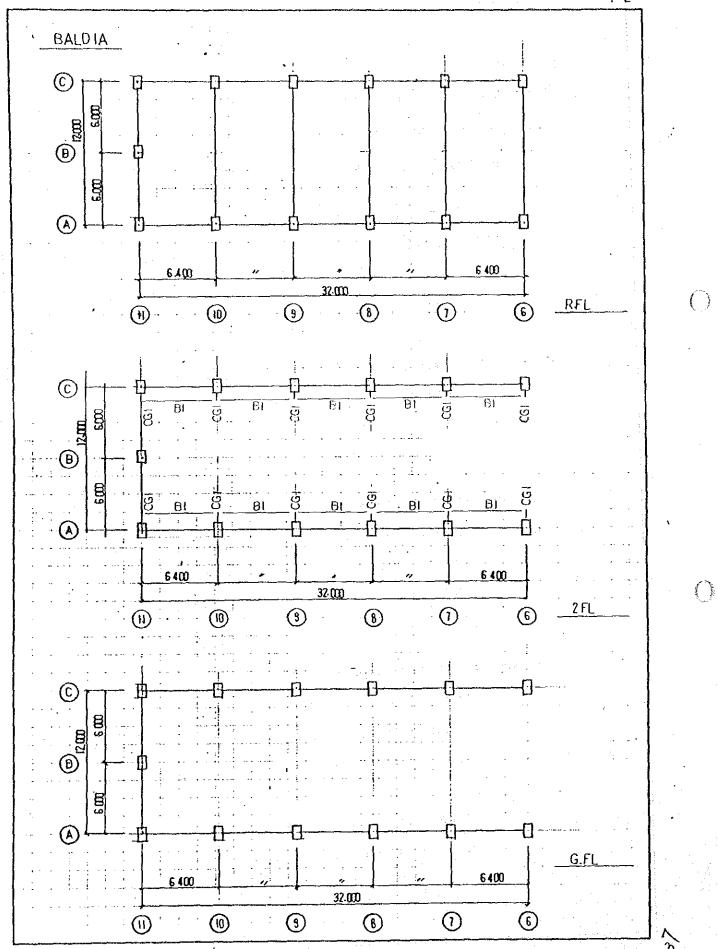
(3) Maximum building height: 11.05 m

(4) Building volume storey: 4243.2 m^3

(5) Number of story : 2

3) Weight of building

Superstructure : 650.1 t


Substructure : 164.37 ^t

Total weight : 814.47 t

4) General design conception

Design calculation to be analyzed as rigid frame with taken design rigidity of foundation girder into considenation.

Stress analysis to be used by Electric computer with stiffness matrix method.

- 1.2 APPLICABLE CODES AND STANDARDS
 - 1) For design and allowable stress of structural materials

Reinforced concrete structure

AIJ : "Standards for calculation of reinforced concrete structures"

Foundation

AIJ : "Standards for structural design of building foundation"

* AIJ : Architectural Institute of Japan

- 1.3 STRUCTURAL MATERIALS TO BE USED AND ALLOWABLE UNIT STRESS
 - 1) Qualities of materials

Concrete; Comperessive strength of 28 days

 $Fc' = 210 \text{ kg/cm}^2$

Reinforcement; Deformed reinforcement

ASTM A615 Grade 40

 $fy = 2.812 \text{ kg/cm}^2$

2) Physical constants for structural materials Modulus of elasticity

Concrete

210 t/cm²

Reinforcement

2100 t/cm²

3) ALLOWABLE UNIT STRESS

i) Allowable Unit Stress of Concrete (kg/cm²)

T	-	stresses	Perma	nent St	resse	Temporary Stresses				
	Materials		Compress	Shear	A	Bond B	С	Conuress	sheer	Bond
	Normal concrete Fc-210	Plain bar Deformed bar	70	7.0	1	12.6 21.0		Permanent Stresses x 2.0		ses

* Remarks

A ; Top bar of flexural members

B : Bar, except "Item A", of flexural members

C : Anchors and lap splices

ii) Allowable Unit Stress of Reinforcing Bars (kg/cm²)

Stresses	Permanent S	tresses	Temporary Stresses					
Materials	Tension Compression	Shear Reinforcement	Tension Compression	shear Reinforcement				
Deformed bar ASTM A615 Grade 40	1,870	1,870	2,812	2,812				

1.4 LOAD COMBINATION

- 1) Load combination for steel and concrete structure
 - Long term loading
 - i) D.L+L.L+M.L+C.L

Short term loading

- i) D.L+L.L+M.L+C.D+W.L
- ii) D.L+L.L+M.L+C.D+S.L

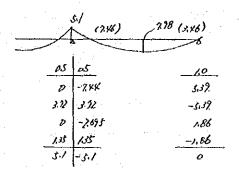
where;

- D.L ; Dead load
- L.L ; Live load and over burden load
- M.L ; Machine load
- C.L ; Crane operation load
- C.D.L ; Crane dead load
- W.L ; Wind load
- S.L ; Seismic load

R LOCATION (mm) (THICKNESS-mm) (kg/m2) (kg/m CONCRETE BLOCK (30) 60 SAND (30) 60 INSULATION (40) 5 ASPHALT W/FROOFING (20) 30 PRESTRESSED CONCRETE SLAB (70) 216 CEILING 15 386 -39 CONCRETE BLOCK BLOCK INT (25) 50			SHEET	7-6 o	
(日)					
(日東南自)	74.77 2.74 1	TORN /	•		•
CONCRETE BLOCK WALL WA	DEAD	LOAD ()	•		•
CONCRETE BLOCK WALL			<u>. </u>	1 1	
CONCRETE BLOCK MALL		FIGURE	MATERIALS	WEIGH	T TOTAL
CONCRETE BLOCK (30) 60 SAND (30	LOCATION	(mm)			
ROOF	;				1 11.1097 11.17
ROOF 10 15 15 15 15 15 15 15		70			
ASPHALT W/PROOFING (20) 30 PRESTRESSED CONCRETE SLAB (70) 216 CELLING 15 386 -39 CONCRETE BLOCK WALL PARAPET B CONCRETE BLOCK WALL CONCRETE EXT (25) 50 INT (25) 50 INT (25) 50 INT (25) 50 INT (25) 50 ASPHALT W/PROOFING (20) 14 MORTAR (55) 66 JOHN STAR (55) 66 JOHN STAR (20) 14 MORTAR (55) 66		AXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX			
W/PRODFING (20) SO PRESTRESSED SO CONCRETE SLAB (70) 216 CEILING 15 386 38	·	30		5	
PRESTRESSED. (70) 216 CONCRETE SLAB (70) 216 S86 -39 CONCRETE BLOCK WALL PARAPET RESTRESSED. (150) 200 WORTAR EXT (25) 50 INT (25) 50 INT (25) 50 GOWERTTE (200) 288 ASPHALT W/PROOTING (20) 14 MORTAR (55) 66 368 - 39	NOOF				
CELLING 15 386 -39 CONCRETE BLOCK WALL PARAPET REST (25) 50 INT (25) 50 INT (25) 50 CONCRETE (200) 268 ASPIALT W/PROOFING (20) 14 MORTAR (55) 66 358 -39	ļ	\	[W/PROOFING(20)	30	t
CELLING 15 386 -39 CONCRETE BLOCK WALL PARAPET REST (25) 50 INT (25) 50 INT (25) 50 CONCRETE (200) 268 ASPHALT W/PROOFING (20) 14 MORTAR (55) 66 358 - 37	į		PRESTRESSED	İ	
CELLING 15 386 -39 CONCRETE BLOCK WALL PARAPET REST (25) 50 INT (25) 50 INT (25) 50 CONCRETE (200) 268 ASPIALT W/PROOFING (20) 14 MORTAR (55) 66 358 -39	i		CONCRETE SLAB (70)	216	
CONCRETE BLOCK WALL PARAPET PARAPET 386 39 30			CEILING	15	7
CONCRETE BLOCK WALL PARAPET BY THE STATE (25) SO TO THE STATE (25) SO		,			390
CONCRETE BLOCK WALL PARAPET BY CONCRETE (25) 50 1NT (25) 50 300 300 300 300 300 300 30	İ	•		i	1
CONCRETE BLOCK WALL PARAPET BY CONCRETE (25) 50 1NT (25) 50 300 300 300 300 300 300 30		•			
CONCRETE BLOCK WALL PARAPET BY CONCRETE (25) 50 1NT (25) 50 300 300 300 300 300 300 30	i	`	1	•••••	••••
CONCRETE BLOCK WALL PARAPET BY CONCRETE (25) 50 1NT (25) 50 300 300 300 300 300 300 30	!			ļ:	
CONCRETE BLOCK WALL PARAPET BARAPET BARAPET CONCRETE CONCRETE CONCRETE (25) 50 INT (25) 50 300 300 300 300 300 300 30	į				
CONCRETE BLOCK WALL PARAPET BARAPET BARAPET CONCRETE CONCRETE (25) 50 INT (25) 50 300 300 300 300 300 300 30	!	Section 1985		ļ	
CONCRETE BLOCK WALL PARAPET BARAPET BARAPET CONCRETE CONCRETE (25) 50 INT (25) 50 300 300 300 300 300 300 30	. [i	
CONCRETE BLOCK WALL PARAPET BARAPET BARAPET CONCRETE CONCRETE (25) 50 INT (25) 50 300 300 300 300 300 300 30	i			i	
CONCRETE BLOCK WALL PARAPET BARAPET BARAPET CONCRETE CONCRETE (25) 50 INT (25) 50 300 300 300 300 300 300 30				İ	
CONCRETE BLOCK WALL PARAPET BARAPET BARAPET CONCRETE CONCRETE (25) 50 INT (25) 50 300 300 300 300 300 300 30	<u></u>				
CONCRETE BLOCK WALL PARAPET BARAPET BARAPET CONCRETE CONCRETE CONCRETE (25) 50 INT (25) 50 300 300 300 300 300 300 30	1	25,150,25	-		
CONCRETE BLOCK WALL PARAPET PARAPET BLOCK WALL CONCRETE (200) CONCRETE (200) ASPHALT W/PROOFING (20) 14 MORTAR (25) 50 CONCRETE (200) 288 ASPHALT W/PROOFING (20) 14 MORTAR (55) 66 368 368 37	ì		IC.B (150)	200	
EXT (25) 50 BLOCK WALL PARAPET BARAPET BLOCK WALL CONCRETE (200) 288 ASPHALT W/PROOFING (20) 14 MORTAR (55) 66 368 - 37	-				
BLOCK WALL 1NT (25) 50 300 -30 300 -30 300 -30 300 -30 300 -30 30	CONCRETE	\ \ XXI			· · · · · · · · · · · · · · · · · · ·
PARAPET 26 150 \$0 300	i	LXXXII			
PARAPET CONCRETE (200) 288 ASPHALT W/PROOFING (20) 14 MORTAR (55) 66 MORTAR (55) 66 MORTAR (55) 368 — 37	BLOCK	T k≪	,1 ₁ ,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	J	
PARAPET CONCRETE (200) 288 ASPHALT W/PROOFING (20) 14 MORTAR (55) 66 MORTAR (55) 66 MORTAR (55) 368 — 37		188811		<u> </u>	
PARAPET 8 ASPHALT (20) 14 W/PROOFING (20) 66 368 - 37	WALL	<u> </u>		300]300
PARAPET 8 ASPHALT (20) 14 W/PROOFING (20) 66 368 - 37		MXX41			!
PARAPET 8 ASPHALT (20) 14 W/PROOFING (20) 66 368 - 37	i		1		•
PARAPET 8 ASPHALT (20) 14 W/PROOFING (20) 66 368 - 37	1.	•		i	
PARAPET 8 ASPHALT (20) 14 W/PROOFING (20) 16 66 368 - 37	į			1	
PARAPET 8 ASPHALT (20) 14 W/PROOFING (20) 66 368 - 37	. [***************************************		```
PARAPET 8 ASPHALT (20) 14 W/PROOFING (20) 66 368 - 37	1			ļ	
PARAPET 8 ASPHALT (20) 14 W/PROOFING (20) 66 368 - 37	•			····	
PARAPET 8 ASPHALT (20) 14 W/PROOFING (20) 66 368 - 37	1		,	ļ	<u>j</u>
PARAPET 8 ASPHALT (20) 14 W/PROOFING (20) 66 368 - 37	.	-			
PARAPET 8 ASPHALT (20) 14 W/PROOFING (55) 66 S6 368 - 37	ļ	•		l	
PARAPET 8 ASPHALT (20) 14 W/PROOFING (55) 66 S6 368 - 37	. []
PARAPET 8 ASPHALT (20) 14 W/PROOFING (55) 66 S6 368 - 37		· · · · · · · · · · · · · · · · · · ·			
PARAPET 8 ASPHALT (20) 14 W/PROOFING (20) 66 368 - 37	i	77			
PARAPET 8 ASPHALT (20) 14 W/PROOFING (20) 66 368 - 37	į		(200)	288	
PARAPET 8 W/PROOFING (20) 14 MORTAR (55) 66 368 - 37	i		ASPHALT		• • • • •
26 150 30 MORTAR (55) 66 368 - 37	PARAPET)(12	
26 150 30 26 150 30]			
- 26 150 30	ļ		(33)	ļ	
- 26 150 30	!		ļ	ببيربسا	
	ļ			308	
		- 2 <u>bj 150</u> j \$ 0	1		
				<u>'</u>	
	· [$\mathcal{L}_{\mathcal{F}}$	1	İ	
	1	•		l	
	į				·····i
	i			i	• • • • • • • • • • • • • • • • • • • •
	-		1		
	1			[,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	!			ļ	
	· į	•	ļ		
	Į		J	l	

【柱,大梁 FIGURE	NAME FI	LOOR	SIZE	(mm)	w (t	/m}	Σω	REMARNS
			<u>B</u> :	D	CONC.	FINISH	(t/m)	
	COLUMN		400	800	0.77	0.12	0-89	l
D	GIRDER		400	1,000	9£0	0.14	1/10	
			250	1200	0.72	0.14	0,86	
В								
	FONDA TION		300	800	058		0.58	
THICKNESS OF FINISHING	GIRDER							<u>i </u>
t = 25 mm	BEAM		400	600	0.58		0.58	
UNIT WEIGHT OF FINISHING		.]						İ
w = 2.0 t/m								<u>!</u> i ;
			3 :					<u> </u>
			<u> </u>	1 1 1 4		<u>:</u> :		
								-
						:		
								1
			<u> </u>					<u> </u>
				·				
		[1
	İ							
							i	
								<u> </u>
							<u>i</u>	<u> </u>
							1	
								1
NOTE: NAME	COLUMN	GTD	वय दवत	AM OP D	NDERGROU	IND EFAM		<u>:</u>

The second second


					·T	_T				 T	- 7	· 	T	· · · · · ·				· 	·			····· 1		 -			4	· 	٠.				·	 -		· 	7	' <u>-</u> E	}
. (g g	17		딢	8													1.0											 	_				1						
101	kg/m	SMIC	ZHZ	1																•																			
TOTAL FLOOR LOAD	: kg/m2	SEI	11	뭐		" [•••									•••	•••	•	``	•••			•••				••••					
E P	Unit:		DL:	- 1	•••		•••		•••			••		:	•••	 		•••		•••	•••				•••		• • •					•••		•••				 	
OTA)					+					-	-	\dashv	-								-	\dashv	-						-									<u>-</u>	
: ⊱4 -} -		& FOUND.		-	-	-			_	-	-		-									-	_				-		-			_						-	-
3		જ	PHI																						; ;		 .			.									ļ.,
H		UMN	סב : בנ											•••																								-	
A C		COI	IJ.		1					·																			ì										
LOAD			TL	450										10.0	-														-										
LIVE		Σ.	PHL		1											-			-				i				<u>:</u>						-		-		-		
1		BEAM	LL P			•••					}										:							1	٠									.::	ļ.,
L L				١٠٠٠}		•••										.																							
		-	-	330	-									_	_	-	_	_										-									Ļ	_	-
) 				콥			_							<u></u>	_	_	_	_																					
-		DER	LL PHD				ļ																					`		,									
		GIF		8																			·																
			Z D	330						•••			•			ļ					•••					• • •						•••	•••	••••					
,		_	7.1.	┝╌┦										-	-	-		-	-					-															-
		L.	ļ		-		-		_	-				-	-	-	-	\vdash																				-	 -
		f i	1 .									٠			 	ļ					٠			.			٠												
		_	김	33	_{	-			_	-					_	_			-		_		_							-			_		_			_	-
	_														٠.			ŀ											•										
	¥==	X E	•		Ì								-)								,															
5	o K	A NA								,	-										- '																		
ā	では、	ROON		4 ROOF		.				-3							,																				.20		
, <u>F</u>	ELOOR LOAD 【数学用采有书】			1 R																	r"																		
		<u>L</u>	-	9	_1			لــا		لـا				L	L	<u> </u>	ļ	L	L	Ш		ل_ا			L						Ш	<u> </u>	i	<u> </u>	<u> </u>		Ц	L.	L
		FLOOR	i				•	•				٠																									,	. : .	

								SHE	er 1.7.	POF	
	•										
SEISMIC	LOAD		•								
【地震有				· .	:						
ITEM		1			CA	LCULA	TION				
	<u></u>	<u>ļ</u>		<u> </u>	·			• • •	·	<u>i</u>	
ZONE FACTOR (7.1		. :		٠.	z = 1					
SOND INCION (- 1		*							٠	
		1						,			
STANDARD SHEAT COEFFICIENT (Co =	n : 4				
COLITICIENT (:					- LO	0.1	•		•	
					·				······································		
GROUND CONDIT	ION (Tc)	ļ.		1.55		Tc = 0	.6			:	
	Haro		 	·		Ic =	n A	<u> </u>		·	
	Medium	 				Tc =		N.			
	Soft	1		· · · · · · · · · · · · · · · · · · ·		Tc =		"			
DIRECTION			X D	IRECT	ION	•••	[Y D	IRECT	TON	
		1	•	·		}	1				
NATURAL PERIO	D a			.							
OF BUILDING (T)	•		••	T = 0.2	23	·	ĺ	-:"	T = 0.2	23	
Heigh h= 1	1.15 %	Leng	th of	Snan	De	3 0 °	Lenn	th of	Sper	De	·
T= (0.01 a		= 0.223	C., C.	9,741			= 0.223	C11 D1	2021	<u>, v-</u>	
T=0.05*h/4	/ V			:			es		*******	********	
T=h/70		-									
CHARACTERISTI	CS OF		_				Ì				
VIBRATION OF	/m		Rt ≠	.0				Rt #	Ò		
THE BUILDING	(Kt)	}	T	· · · · · ·	Rt		 -	· •			
Rt=1	1			Q1 =				T -	× 1.0	Rt	 -
	************	Tc	_				Tc				
Rt=1-0.2*(T/T	c-1}^2			il a					=		
**************************************	********	2.1c	.				2*Tc			-	
Rt=1.6*Tc/T				=			ļ		#		·
2*T/	(1+3°T)							•			
	17.00	-					-				
SEISMIC LOAD		i					1				
FOR EACH FLOO	R						44.		· ;	*1	
(03)		<u> </u>	,			,	<u> </u>		. <u> </u>	9-1	· · · · · · · · · · · · · · · · · · ·
	STORY	Wi	<u> </u>	A1	Ci	Qi	Wi	<u>lai</u>	λi	C1	107
	2 F	368.12 603.18	0.610· 1 000	1.178	0.117	43.07 60.31	368.12 603.18	0.610	1.000	0.117	13.0
		003.10	1,000	1,000	0.100	00.31	003.10	1,000	1000	0.100	60.3
	·	1	 	 	1	 	1			 	
											İ
		<u> </u>		ļ			ļ	<u> </u>			
		1	<u> </u>		 	ļ		<u> </u>	ļ	<u> </u>	<u>i</u>
	<u> </u>	 	<u>!</u>	!	 -	ļ					
		1	<u> </u>	 	 		1	 	<u> </u>	 	+
NOTE: a -	RATIO	OF T	HE HE	IGHT	OF WH	ICH S	TRUCT	URE I	S STI	EEL	
	AGAIN	IST TH								 : , ,	
	= H1/I +	1				- P	4.				
	= 1 + (J	116	0	、	*T/(1	. +. 3.	T)				
Ci	= Z*Rt*/										

12 July 5

NO,	SPANin	LOADING CONDITION	Cim	Motm	Qot	7-12 Member
	f.400	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11.U 3.39	10,13	6.66 338	

DESIN OF BEM

fa ALLOWABLE BOND	STRESS (t/cm2) *
n REQUIRED NUMBER	OF MAIN RE-BAR
Pw STIRRUP RATIO;	= aw/(bxX)
aw, X SECTION AREA	OF A SET OF STIRRUP (cm2), PITCH OF
STIRRUP (cm)	·
•	•

MAIN		D16 D19 D22 D25 D29	STIRRUP		D10 D10 D13 D13
BAR	2	3.98 5.74 7.74,10.14,12.84		<u></u>	` @200; @150 @200 @150
at	3	5.97 8.61 11.61 15.21 19.26	Pw	30	0.2370.3160.4230.564
(cm2)	-4	7.9811.4815.4820.2825.68	(%)	35	0.2030.2700.3630.484
	5	9.95 14.35 19.35 25.35 32.10		40	- 0.2370.3180.423
į	6	11.9417.2223.2230.4236.52	-	45	i - 0.2100.2820.376
į	7	13.93 20.09 27.09 35.49 44.94		50	1 - 0.2540.339

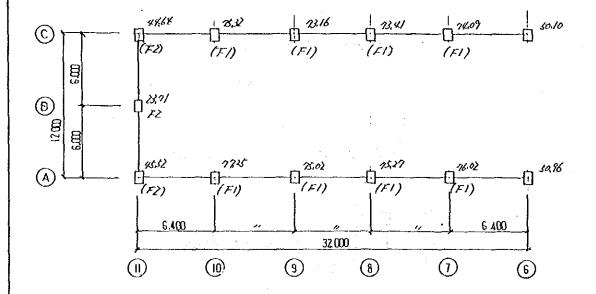
(CG)

Max = 7,8 tm

D=120 d=113 }=9887

1 = 1800 /187 × 98.87 = 4.0 3- HE

4 = 1800 /11 × 98.87 = 4.72.

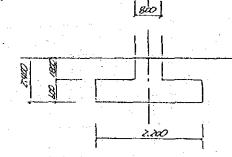

7 = 9800 /40 × 98.87 = 2.47 < 7.0 0.0/6.

3-48 517 D#3-60 150

258

()

AXIAL LOAD



A. A.

DESIGN OF FOUNDATION

OUTLINE OF FOUNDATION

(107-1)

Foundation weight

H= 20x22 x 24 x 20 = 26/2

LOADING

4	1 1 No. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
)	Hx (t)	liy (t)
D.L	77.25	13	
L.L		1	
S.Lx	80.38		
S.Ly	81.63	3.5	
W. Lx			
W. Ly			

Stress at bottom of foundation

$$N_1 = 77.28 + 21./2 = 72.72 \qquad N_2 = 79.78 + 21.12 = 100.7$$

$$N_3 = 26$$

CHECK OF BEARING PRESSURE

N = 77 \$ +4,10= 9837 | e= 26/9837 =0016 d= 1+ 6x008/1= 107 1314 = 107 x 837/1027 = 13.72 <504. N. 8/13+21.p=12.75 e = 136/1029 = 0.135 d= 1+6x018/22= 137 Onax - 1.57 x 1278/20x22 = 4.97 < 100/20

DESIGN OF FOOTING

Factored	Pile F	Pile Reaction			
Load case	Σ); (t)	ΣK (t, m)	P] (t/n)	P]' (t/n)	
D.L÷ L.L	17.25	2.6		. :	
D.L+ L.L+W.L					
D.L+ L.L+S.L	81.63	126			
D.L÷ W.L					

e = 26/17.15 = 0.03K d = 1+6x0034/2 = 1.073

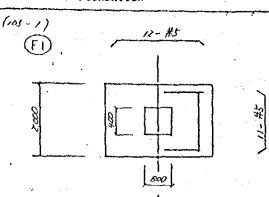
Stress

$$QF = 12.19 \times (22-a8) \times 1/2 \times 20 = 2051 t$$

$$MF = 2051 \times (22-a8) \times 1/2 \times a8 = 221 t \cdot n$$

Reinforcement '

$$D = 60$$
 cm, $d = 10$ cm, $j = 7/8d = 43.25$ cm


nec At =
$$\frac{727}{\text{ft · j}} = \frac{727}{187 \times 93.8} = 8.87$$

$$\phi = \frac{0}{\text{fa · j}} = \frac{20390}{27 \times 932} = 22.97$$

$$\frac{0}{120 \times 932} = \frac{20390}{27 \times 932} = 23.87 \times 23.97$$

DESIGN OF FOUNDATION

DUTLINE OF FOUNDATION

Foundation weight

W= 20x22x20x20=21.12

LOADING

	N (t)	lix (t)	hy (t)
D.L	76,02	(.)	
L.L	17		
S.Lx	19.15		
S.Ly	83, ×8	5.5	
K.Lx			
K'. Ly			

Stress at boitom of foundation

CHECK OF BEARING PRESSURE

N1:120121/1:1214 e:	22/9714:0.023
No 76 & 12/12-12/4 e =	Brax =1.063 x 7214/20x27 = 2347 <50
	132/081 = 013.
K= 1+6×08/2 = 135	
	CORX = 1,35 x 10 86 20 x 27 = 3209 < 100

DESIGN OF FOOTING

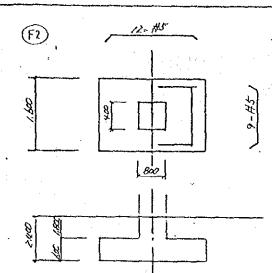
Factored	load	•	Pile Reaction			
Load case	Σ κ (t)	Σ M (t, m)	P1 (t/ŋ)	p1' (t/n)		
D.L+ L.L	76.02	7,2				
D.L+ L.L+W.L						
D.L+ L.L+S.L	_{83,} √ 8	13,2				
D.L+ W.L						

| 12 /162 = 0.027 | 2 = 1.08 | 100 | B = 1.08 × 16.02 | 2 = 1.08

Stress

Reinforcement '

$$D = 60 \text{ cm.} \quad d = 50 \text{ cm.} \quad j = 7/8d = 43.25 \text{ cm}$$


$$\text{nec At} = \frac{MF}{\text{ft } \cdot \text{j}} = \frac{9/4}{167 \times 93.25} = 26.7$$

$$\phi = \frac{0}{12 \cdot \text{j}} = \frac{26R}{27 \times 93.25} = 2.84$$

$$T = \frac{0}{\text{b} \cdot \text{j}} = \frac{26R}{20 \times 93.25} = 2.84$$

DESIGN OF FOUNDATION

OUTLINE OF FOUNDATION

Foundation weight

. NI= 16727x24x20=16.9 t

LOADING

. .

) (t)	Rx (t)	By (t)
D.L	\		
L.L)		
S.Lx	56.7		
S. Ly	63, 46		
h.Lx			
K. Ly			

Stress at bottom of foundation

CHECK OF BEARING PRESSURÉ

Ongx - 8036 /1620 = 2311 2100/1000 OK

DESIGN OF FOOTING

Factored	Pile J	eaction		
Load case	Σ K (t)	Σ H (t, m)	P1 (t/n)	P1' (t/n)
D.L÷ L.L	Striv			
D.L+ L.L+K.L	,			
D.L+ 1.1+S.L				
D.L+ W.L				

700

Stress 0 = 1512 /20x16 = 1423 4/2

Reinforcement '

$$B = 60$$
 cm, $d = 30$ cm, $j = 7/8d = 43.25$ cm

nec At =
$$\frac{NF}{\text{ft} \cdot \text{j}} = \frac{560}{1.87 \times 9275} = 2.89$$

$$0 = \frac{0}{\text{fz} \cdot \text{j}} = \frac{13980}{21 \times 9275} = 17.35$$

UNION SYSTEM 751221 PAGE-

§ 4. OUTPUT DATA(Design of Main Members)

*** Super Build / SS1 ***

```
【1】入力データしlst (INPUT LIST)
  1.1 基本車項
          工 ¥ 名: GRID STATION BALDIA
格 法: BALDIA
日 付: 1989.05.30
担当 者: T.U
          独物形状 : X方内 5 スパン、 Y方向 2 スパン、
          主体構造 :RC选
                       **集任用降高(m)**
R.FL-2FL 3.700
2FL-G.FL 7.450
                                                 * * 構造用階高 [ m ] * *
R.FL-2FL 3.800
2FL -G.FL 7.250
          G.L.から1段原までの高さ 0.000 [m]
パラペット部分の高さ 0.600 [m]
地中県CMQの計算方法:通常有重(独立基礎)
  1.2 コントロールデータ
          ・柱段力での柱・壁の自葉は、腎高の中央で上下尾に分配する。
・袋にMoQ草皮特、型の取り洗い方法(世界)は、陰炎の中央で上下の袋に分配する。
・料実送中の丸分単位 10 kg
・新力型の判定法(視象間口をの取り扱い)は、包格閉口とする。
          ・老屋集体スラブ厚
  1.3 政物特殊形状
                                                                                                                                                             5-7-23
                                                          [BALDIA ]
                                                                                                                                  UNION SYSTEM 751221 PLGE-
 1.4 使用材料
  (2) 贫 路
                                                  雅斯Y 後X 後Y
                                         被新X
                歿(産)
                            机造形式
                                            < 長恩 > 年・引 せん財
                                                               < 短期 > 氏・引 せん既
            「許容成力度(な/al)
                                    76 25
                                   5030
                                            1870 1870
1.5 育 重
 (2) 仕 上
                 (基本任上状態:西源仕上)
                                                      柱 (根準化上状態:四面化上)
            R. FL
2FL
G. FL
(3) 地震力計算用データ
            絶域係数(乙): 1.00
用地係数(J): 1.00
発在紙板型の経済指にするための係数(Sp): 1.00
(4) 比磁階せん町方係数 C1 の確保入力 (指定関係のみ)

/- 一次設計用 --/

数 X方向 Y方向
                     0.117
0.100
```

0.117

```
UNION SYSTEM 751221 PAGE- 3
     (m)
       Νo
         12
             40
30
(3) 基
      (a) [k/d]
(7) 床 (小菜なし) 【な/計】
            スラブ用 ラーメン用
                             趋囊用
(16) 禁出床 【ca】【kg/㎡】【t/m】
                                                                       0. D
    Super Build / SS1 ***
                                     (BALDIA )
             《疑形状、仕上状形 G。 、 柱形状、仕上状形 C 、 床形状 S 、 星形状、荷貴伝達 U 同口 、 。 はスリット位復 、 ニ は支点位置を表す。》
                                                                            100,00
                                                                             1.06
                         10
  <ZFL 雅
```

2.06 1.0W----B 1.0C

THE REAL PROPERTY OF THE PARTY

1.00 j 2.06 1,09

100.00

1.0C

10

5-7-08

1.8 特殊商業及び特正データ

(1) 染持殊药重量计

e.

比(地ノラ) 名パラメータ(荷重塔) P { t } , M [t m] , W [t /m] . () 内は陪雇 [m or 比] - の時は右からの長さ。

(2) 操行政府重配置(大梁)

Νo 層 フレーム フレーム

(6) 存点被正重量 (t)

地莨筋Y5 7.20 7.20 0.00 0.00 0.80 0,00 0,00 4,05 4,05 0,60 101 101 2

(10) 特殊追加節点荷數 《店力解析鉛膜荷重時》 [t][tm]

Рx

```
* * * Super Build / SS1 * * *
                          [BALDIA ]
                                                            INION SYSTEM 751221 PAGE-
 1.9 婚徒・瓜力
(j) 迈力解析·斯拉針算条件
 1.せん新による交形
2.住魅力による変形
3.安貞の状態
            : 考慮する
: 鉛度・水平商重時共考度する。
: 指定による。(ピン、規定、パネ、etc.)
(3) 支点の状態 【t/ta】【t m/red】 (1 の時間定、0 の時自由)
     Νo
                                 水平パネ
                                      给嵌八木
      5
            101
                101
                     2
            101
                101
(5) 独文柱の指定
     No
                     フレーム
                                ĸ
(6) 经成局一套连续位
     No X⊯
                                                                         5-1-15
                                                            UNION SYSTEM 751221 PAGE
                          [ERLDIR ]
(1) 新面界定条件
 1) 共通項目
  2) BCEM
```

(2) 疾筋重心位置

於施業心位置 【四】

X方向ノー祭-ノY方向

. 2)社長的教徒 (本) [🕳] [🗹] 🤘 エロ の時、本数 - エロースロ の時、本数・役 - ロロ、エロ の時、新西様 > 全鉄笠 脳路(c1)X 脳路(c1)Y フープス 主的X **±BY** o, 0 6 7

3)经长粒配置 /---- 菜族胚登録 No 左端 中央 右線 101 101 101 101 101 1 3 101 1 3 101 1 3 101 3 101 102 101 3 101 105

4)拉族語記載 フレーム フレーム 睫 Νo Ŋ. 101 101 102 102 103 33332

(BALDIA) UNION SYSTEM 751221 PAGE- 10 *** Super Build / SS1 ***

/-柱鉄店登録N o -/ 柱版 柱間

(6) 医西算定部材指定

1}フレーム指定 く * 付は、指定フレームを表します> 耐力型用りの部材: 契の真定はしない。

Y方向フレ~ム 11 × 10 × 5 × 8 × 7 × 6 × 6 × X方向フレーム A ★ ま * C ★

UNION SYSTEM 751221 PAGE- 41

2] #	(Kli	芦荟果	(ARRANGEM	ENT FOR CALCULATION)	1	-				•		
2.2 \$2	A.	養素	#Q:[t]									
	Ď.	76ΣQ。 . し . し . し 責	: 預数荷重(多	・ーメン用) ・染色質を含む) ・し	٠.	柱、登自重 小投符及 大投特及 補正	. 競特殊不 . 競特殊不 先端离	中央で上下線に 対変で、小大線へ 対変で、大海 東、等分が 重、等分が重量(は正した重量(かけた有重 かけた有重と	、片持ち頭・	鉄出床の	
	Υŧŧ	-X#	居 (權)	/床分布 ΣQo/ T.L	聚合重	景自重	小架特殊	大柴特娃	柱日重	#IE	合計	数复数力
•	A	-11	2 (R.FL) 1 (2FL) #Y (G.FL)	0.93	5.07 4.79 3.58	2, 28 7, 55 5, 27		1, 39	1,84 4,95 3,31	7.20	15, 70 25, 42 12, 16	15, 70 41, 13 53, 29
•	ą	-10	2 (R.FL) 1 (ZFL) TY (G.FL)	1.86	12, 53 5, 12 3, 70	2, 44 8, 08 5, 64		1. 44	1.64 4.95 3.31	7, 20	35, 33 27, 21 12, 65	35, 33 62, 55 75, 20
f	3	-9	2 (R.FL) 1 (2FL) +y (G.FL)	1.85	12.53 5.12 3.70	2.44 6.08 5.64		1.44	1.64 4.95 3.31	7. 20	35, 33 27, 21 12, 65	35, 33 62, 55 75, 20
F	4	-8	2 (R.FL) 1 (2FL) +y (G.FL)		12.53 5.12 3.70	2, 44 8, 09 5, 64		1.44	1.64 4.95 3.31	7, 20	35. 33 27. 21 12. 65	35, 33 52, 55 75, 20
f	ş	-7	2 (R.FL) 1 (2FL) +7 (G.FL)	17, 28 1, 65 0, 60	12, 53 5, 12 3, 70	2. 44 8. 08 5. 54		1.44	1.64 4.95 3.31	7. 20	35. 33 27. 21 12. 65	35, 33 62, 55 75, 20
A	ì	-B	Z (R.FL) 1 (2FL) *7 (G.FL)	4. 32 0. 93 0. 00	6.07 2.55 1.85	1.22 4.04 2.82		1.39	1.64 4.95 3.31	7.20	14,64 19,68 7,98	14. 54 34. 33 42. 31
B	ì	-11	Z (R.FL) 1 (2FL) +y (G.FL)	8.64 9.00 0.00	6.46 5.10 3.46	2, 42 6, 02 5, 60		1.34	0.00 0.00 0.00	0.80 2.40 1.50	19.66 15.52 10.65	19.55 · 25.18 45.84
		-6	2 (R.FL) 1 (2FL) 17 (G.FL)	8. 54 0. 00 0. 00	6.46 0.00 0.00			1.34	0.00 0.00 0.00		16.44 0.00 0.00	16.44 16.44 16.44
, c		-11	2 (R.FL) 1 (2FL) #y (G.FL)	4, 32 0, 60 0, 99	6.07 4.79 3.58	2, 28 7, 55 5, 27		1.39	1.64 4.95 3.31	7. 20	15. 70 24, 49 12, 16	15.70 40.20 52.36

																5-	7-30
* * , *	Sup	er Buil	4 / S	\$1 •••			(BR	,b1A }						UNION SYSTEM	751221	PAGE-	12
	٠.														9		
					- ノベー 使を) as ΣQo	/										
	ΥĘ	-X#	æ	(長)		T.L	31	菜自宴	駅 自東	公群境小	支持禁大	柱白氣	港正	ĠĦ	概算駐2	J	
٠	C	-10	1	(R.FL) (2FL) (G.FL)	•	17. 28 0. 00 0. 00		12.53 5.12 3.70	2.44 8.08 5.64		1.44	1. 64 4. 95 3. 31	7. 20	35, 33 25, 35 12, 65	35. 3. 60. 69 73. 34	3	
	С	-9 .	1	(R.FL) (2FL) (G.FL)		17. 28 0. 00 0. 00		12.53 5.12 3.70	2, 44 8, 08 5, 64		1,44	1.64 4.95 3.31	7, 20	35, 33 25, 35 12, 65	35. 33 60, 69 73, 34	3 ~·	
	C _.	-B	. 1	(R.FL) (2FL) (G.FL)	:	17.28 0.00 0.00	٠.	12.53 5.12 3.70	2.44	inter	1.64	1.64 4.95 3.31	7, 20	35. 33 25. 35 12. 65	35. 3. 60. 69 73. 34)	
V	c	-7'	1	(R.FL) (2FL) (G.FL)		17.28 0.00 0.00	•	12.53 5.12 3.70	2,44 8,09 5,64	• •	1.44	1.64 4.95 3.31	7. 20	35, 33 25, 35 12, 65	35, 33 60, 69 73, 34	; ·	
. ,	c	1 6	1	(R.FL) (2FL) (G.FL)		4.32 0.00 0.00		6.07 2.55 1.85	1.22 4.04 2.82		1.39	1.64 4.95 3.31	7, 20	14.64 18.75 7.58	14,64 33,40 41,39	٠	

			•					•		5-7-13	
* * * Super Bu	114 / 551	• • •		(FALDIA)				UNION SYSTEM 751	221 PAGE- 13	•
2.3 颗草硅力	单位: [(+)	上段:足点	使 下院:	祝其鞋力						
< 2 程 R.	FL-2FL >										
c	15.70 15.70	35, 33 35, 33	35, 33 35, 33	35. 33 35. 33	35.33 35.33	14.64 14.64					
B	19, 65 19, 65		! !	 	 	16.44 16.44					
A	15. 70 15. 70	35, 33 35, 33	35. 33 35. 33	35, 33 35, 33	35, 33 35, 33	1 14.64 14.64	.*		·		
	. 11	10	9	8	7	6				•	
< 1 Rt 2F	L -6.FL>	•	•								
- с .	24, 49 40, 20	25.35~~ 60.69	35.35 60.89	25, 35 50, 69	25, 35 60, 69	18.75 33.40					
В	15.52 35.18		•			0.00 15.44	•				
R	25. 42	27. 21	27. 21	27. 21		19.68		1,		•*	
	41.13	62.55 10	67.55 9	62.55 8	62.55 7	34. 33 8					
< *y >								*			
c	12.16 52.35	12.65 73.34	12.65 73.34	12.65~~ 73.34	12.65 73.34	7.93 41.39					at we want
8	10.66 45.64	2	e.			0.00 18.44	·		•		
a .	12, 15 53, 25	12.65 75.20	12.65 75.20	12.65 75.20	12.65~~ 75.20	7. 58 42. 31	-				
•	11	10	9	в	7	6		•			
						•			•		
		•			•	1					
					~			•			
	•					e				z + += ,	
•			,			•			*- *, **		
		•	., 1								•
										•	
										5-7-34	
* * * Super B	614 / SS1			(SALDIA	1				UNION SYSTEM 751		
•				(2		,					
2.4 地震稍重量	単位: [:				1			-	
L.L	10: 床分布器 、 積載荷載	(炉を吊)			小祭符章	: 層高の中 : 契特決荷 : お生きた	央で上下解に分割 重で、小質へかけ まで、十級へかけ	(する) た荷重 大荷重と、片持ち	P. BΨEA		Z.N.
D. L T. L 袋目集	现 定	(小袋目重も含 D.L と片持ち袋目重			大梁特殊 特正	・ 気は水の 先端密度 ・ 転点で発	重し、大型では 、等分布荷重 正した重要(地質	用)	- Action		
e	. ,,,,,,,,				・ラデームが	70-4	外で補正した重要	(作業用)		.*	
g	· (AP)	/环分布 I		吳自建	景容素 小兒	\$特殊 大奖符	莊 柱母重	 補正. フ	レームガ 合計	~	
. ?	2 (R.FL)	161.4	4 1	37.44	28.94 95.84	15.	76 19.74 59.46	0.60 10.50	366.12 235.06		
	(2FL) y (G.FL)	6. 5: 0. 0	5	43. 92	66.90		39.72	1, 60	152.14		
v.5						•					
										7	

```
5-7-75
                                             [BALDIA ]
                                                                                                         UNION SYSTEM 751221 PAGE- 15
 2.5 地震力
   wi:i附の直蓋

Ewi:i附よ別上部の直蓋

ai:会面是に対する1階より上の重集の批

Ai:i階の地震層せん断力保養の分布保証
    < &*7-9 >>
                                  ・福準せん終力係数 (一次設計用) Col X方的 D. 20 Y方向 0. 20 - 理域は上新力係数 (保客利力用) Co2 1.00
                                                                                    ・ 送物の高さ・ S 途である階の高さ
      R
                                                        QII
                                                                  P31
                                                                                C i 2
                                                                                          Qi?
      2 368.12
1 235.06
                    368, 12
603, 18
                             0.610
1.000
                                              0.117
0.100
                                     RATIO OF THE HEIGHT OF WHICH STRUCTURE IS STEEL AGAINST THE BUILDING REIGHT \mathbf{h}^{-}
                             oi = Vi/Σv
                             A1 = 1+(1//91-01
                               = Z*R**A1*Co
                                                                                        )
 * * * Super Build / S$1 * * * ·
                                                                                                         UNION SYSTEM 751221
[3] 邓力解析結果 ( STRESS ANALYSIS OF FRAMES )
 3.1 解析条件
```

2) 灰力条件

※応力解析はFortrangほで行った。

5-7-31 UNION SYSTEM 751221 PAGE- 17 (BALDIA) * * * Super Build / SS1 * * * 3.5 抵积成为 (B) 203 、モーメントは終材の引弦側(モーメント図を集く方向)に出力されます。 の場合、石N(右N)は左下(右下)へ向かうプレースの下端における役割方向成分です。 全スレメント試験)の場合、在N(右N)は左下(右下)の開坡場におけるせん断力です。 の場合、花N(右N)は左下(右下)へ向かうプレース能力です。 ・柱に横有重がある場合、Mの反対側にQを出し、Nの下の行に中央Mを出力します。 ・各部村の住会誌でピン語合の場合は、「P」を表示します。 201 本知点において支点となっている関係には、「**」を表示します。 反力 指度 鉛面 ・グミー教材は、「・・・・」で表示します。 101 (必为表) 比らします。 (右N)を放えた何です。)は左下(右下)へ向かうプレースの転力で、正が圧縮、負が引張です。 、耐力差(プレース震換)及び転乗造プレースでは、左N(右N) ・駅力差(エレメント提換)では、登柱における成力を出力します INION SYSTEM 751221 PAGE- 18 Super Build / SS1 *** (BALDIA) (鉛度荷差時) 15.5¢ [-2,1] 2FL 5.9 | 3.1 ---- [5.1] = [4.1] ---- [5.3] = [4.0] ---- [5.4] = [2.5 o.FL 42.74 76, 02 77, 25 反力 鈴連 台げ 50.10 10 11 (水平荷重時) フレーム>

.4 8.8 1 -[2.7]=[3.0]----[3.0]=[9.6 0.0

10

0.49

R. FL

28 L

反力 拾笔 曲げ

```
7-29
```

UNION SYSTEM 751221 PAGE-19.66 2FL 15, 52 10,65 灰力 给真 负げ ZFL 反力 验证 合好

UNION SYSTEM 751221 PAGE- 20 (BALDIA) * * * Super Baild / SS1 * 49. 23 11 (水平荷重時) [5.3] [5.3] [5.6] [11.15 -0, 49

```
7-30
```

UNION SYSTEM 751221 PAGE- 21 • • • Super Build / SS1 * • * (BALDIA) 【鈴蓮荷薫時】 3.4 | 14.7 | 14.7 | 3.4 | 17.0 | 11.4 2FL 反力 拾版 点げ 2FL 反力 鈴葉 合げ * * * Super Build / SS1 * * * . [BSLDIA] (鉛面有重時)・

73.34

c <76-45 〔水平药重時〕 +[4, 4] | 26, 3 | 26, 3 | 4, 47 | 2, 4] | 17, 3 R. FL 25.3 4.40 1 2.4) 1 17.3 0.0 2FL G.FL 反力 伶運 此げ 4.38

医力 鉛匠 色げ

5-7-45

```
UNION SYSTEM 751221 PAGE- 23
* * * Super Build / SS1 * * *
                                                      (BALDIA )
                                             50.7
   2FL
   G. FL
  反力 拾直。
临时
                        (水平有重時)
                                                                 32.5
5.4)+
1 32.5
5.40
{ 3.0}
1 21.3
              +[ 5,4}-
1 32.5
1 32.5
5.41
1 3.0)
1 21.3
                                             0.0
   2FL
                                                                           21.3
                                                [BALDIA]
   * Super Buils / SS1 * * *
          (路龍
20.6
+{23.4}-
1
20.6 |
35.4c
{-2.3}
                                                                 )
1
1
1
21.4
60.7c
{ 3.0}
0.0 1
    2FL
                                                                      73.34
              +[ 6.5]
| 38.6
| 38.6
| 6.57
| 3.5)
| 25.4
                                              0. 0
   G.FL
```

UNION SYSTEM 751221 PAGE- 25

5-7-15

(BALDIA) *** Super Build / SS1 *** フレーム> (粉質粉集時) 35. 4C [2.3) | 12.1 20.6 | 35.40 [-2.3] 12.1 | G. FL 反力 鈴蕉 白げ <7 フレーム> (水平剪度時)

6. FL 反力 给证 会好

2F1. G.FL た 反力 鉛度 曲げ 49.60

(水平存重等) 2FL 33.4 G. FL 反力 鉛質 負げ

5-7-17

```
* * * Super Build / SS1 * * * *
                                          [BALDIA ]
                                                                                                 UNION SYSTEM 751221 PAGE- 27
(4) 応力解析の主とい ( RESULT OF STRESS ANALYSIS )
 ¢
               13.51--
                                  35. 40--
                                            35, 30+-
                                                      35, 59--
                                                               22, 59
               0,00
                                                                0.00
              13.54--
                                  35.40~-
                                           35. 38--
                                                     35. 53--
                                                               22.52
                                                                в .:
               11
                         10
                                   9
                                             8
   < 1 階 6.FL-2FL >
     ·c
              34. 44--
                        61.54--
                                  60.73--
                                           60.63--
                                                     50, 95--
                                                               41.92
               0.00
                                                                0.00
      Ĥ
              35. 29--
                                                     62,89--
                                           62.68--
                                                               42.77
               11
```

80

* * * Super Build / SS1 * * * * (BALDIA) INION SYSTEM 751221 PAGE- 26 4.2 水平力分投 (X方向加力時) (丫方向部为時) Q # 0 Q Q Q c Q c 0 \$ 0 \$ 0 3 Qс Qc Qw 2 Qç Q¢ を数値の技に表示します。 Qw Qс Q¢ Qw 101 103 104 102 < 2 房 2FL -R.FL> ※ 以方向処力時 2.30 c 4, 37 4.37 2.30 4.17 4.17 0.00 0.00 2, 26 4. 32 4.12 4.32 2. 26 4.12 10 11 Q¢ Qw Qc+Qw ΣQ C B A 141.26 21,68 0.00 21.68 21.60 100.00 0.00 50, 32 0.153469 1/ 2476 . 21, 40 21.40 49.68 0.152322 1/ 2494 140.49 0.00 21.40 100.00 0.00 43.08 0.00 43.08 43.06 100.00 0.00 100.00 숨삵 く 1 陪 G.FL-2FL > ※ X方向加力時 4. 41 5.39 4.41 5, 22 5, 22 5.39 c 0.00 0.00 Ð 5. 26 5. 26 4.64 4.44 5.44 5.44 7 6 10 11 . FRAKE Qc Qw Q¢+Qw ΣQ Qc/Qc+Qv Qv/Qc+Qv QR/ΣQ FRAME負担率 展閲責位す 30.04 0, 00 30.04 30.04 100.00 0.00 49.80 19.57 30, 28 0.00 30, 28 30.28 100.00 0.00 50.20 1.546317 1/ 468 19.58 ተዘ EQ. 32 0.00 60. 32 60.32 100.00 0.00 100.00

< 2 / 2F	L ~R.FL> ¥	Y方向放力	片叶 堇							
c	4.08	2, 38	2.93	3, 49	4.05	4,61				•
В	0.00					0.00				
R	4.08	2.38	2.93	3. 49	4,05	4. 51	• .			
	11	10	9	6	7	6	•		. *	
FRAKE	Qc	Qw	Qc+Qw	QR	ΣQ·	0:/0c+0v 0v/0c	Ov QR/Σ0 FRAME負担率	層間交位を	ð/h	Q/8 (t/m)
6 7 8 9 10	9, 22 8, 10 6, 98 5, 86 4, 76 8, 16	0.00 0.00 0.00 0.00 0.00	9, 22 8, 10 6, 90 5, 86 4, 76 6, 16		9, 22 8, 10 8, 98 5, 86 4, 76 8, 16	100.00 0. 100.00 0. 100.00 0. 100.00 0.	00 21,40 00 18,80 00 16,20 00 13,60 00 11,05 00 18,94	0. 354323 0. 361695 0. 369067 0. 376439 0. 363812 0. 391185	1/ 1072 1/ 1050 1/ 1029 1/ 1009 1/ 990 1/ 971	26, 02 22, 39 18, 91 15, 56 12, 40 20, 65
tta	43, 08	0.00	43.08		43,08	100,00 0.	00 100.00	•	*	
< 1 階 6.	FL-2FL > ¥	マ方の加力	为 来					-		
c	12,71	2. 38	2, 93	3.49	4.05	4. 61				
8	ð. 00									
						0.00	•			
A	12.71	2.38	2.93	3.49	4,05	0.00 4.51	•			
¥	12.71 11	2.38 10	2.93 9	3.49	4.05 7		•			
会 Falat						4,51 6	· Qu/Eq fblue負担率	着向契値を	8/h	Q/8 [1/a]

5-7-5

[BALDIA]

*** Super Build / SS1 ***

. 10

L:長期能力〔t〕 · :水平药医時反力【t】 *付は、浮き上がりが生じていることを示す。 . E X方向加力時 彩 44.6<L -15.16E -23.71L 0.00E* 0.00L 0.00£ 45.52L -11.18£ 77. 25L 3. 13£ 75. 27L 0. 49E 76. 62L -3. 13E 7 Б 11 8 10 **√6.FL推**> ※ Y方向加力時 ※ 74.09L 7.45E ċ

9

INION SYSTEM 751221 PAGE- 30

* * * Super Build / SS1 * * *

(BALDIA)

5-7-51 Union System 751221 Page- 31

4.4 保心學

5-7-

18169 SYSTEM 75:221 BICK- 2

S1 *** [BALDIA]

e e

別性率·雇商类形角

ks:開佐事 Fs:形状特性係数

と発展を支援しない場合と

★実施 X方向 業業業 rsの相加平均 1478

※※※ Y方向 ※※※ rsの相加平均 592

階・ 層間交位 [ca] 層間交形角(1/cs) Rs Fs Q/8 [t/cs]

2 0.372754 1/1019 1.723 1.000 115.5' 1 4.429511 1/164* 0.276* 1.800 13.6

UNION SYSTEM 751221 PAGE- 33

, ~

[BULDIN] * * * Super Build / SS1 * * * 4.6 经单位量 【RC 流】 (1)大 *Σ 25Åv+Σ 7Åc+至7Åv' (2)式 *Σ18Åv+Σ18Åc X方向 安米米 主体構造 Σλw ΣΑς (1)式の値 EAw' (2)式の質 ZWA1 (0.75ZWA1) 39400 38400 268800 268800 691200 691200 0 ΣAw' EAW ΣΑς (1)式の値 (2)式の貨 ZWA 1 (0.752WA 1) 691200 691200

5.		OF MAIN MEMBER DESIGN OF GIRDER	
	(1)	CONDITION OF CALCULATION	
	14.	• QD : X DIRECTION QD=QL+n•QE n=1.5	
		Y DIRECTION $QD=QL+n\cdot QE$ $n=1.5$	
	(2)	MATERIAL	
	1.4.	(CONCRETE)	
		Fc : DESIGN STANDARD STRENGTH OF CONCRE	ETE (kg/cm ²)
		Lfc : ALLOWABLE COMPRESSION STRESS AT PERMANENT CONDITION (TRANSIENT CONDITION : Lfc*2.0)	(kg/cm ²)
		Lfs : ALLOWABLE SHEAR STRESS AT PERMANENT CONDITION (TRANSIENT CONDITION : Lfs*1.5)	(kg/cm ²)
		(REINFORCING BAR)	
٠		rft : ALLOWABLE TENSILE STRESS	(kg/cm ²)
-		wft : ALLOWABLE TENSILE STRESS FOR STIRE	RUP (kg/cm2)
	(3)	EXPLANATION OF MARK	
		POINT : DESIGN POINT OF MEMBER	(cm)
		△ : ADOPTION POINT OF STRESS	(cm)
		B*D : WIDTH, DEPTH OF GIRDER	(cm)
	•	dt : DISTANCE BETWEEN TENSILE RE-BAR AND TENSION END	(cm)
	·	ML: BENDING MOMENT AT VERTICAL FORCE (NODAL POINT)	(tm)
		ME : BENDING MOMENT AT HORIZONTAL FORG (NODAL POINT)	CE (tm)
		ML : DESIGN BENDING MOMENT AT PERMANENT CONDITION	(tm)
		MS: DESIGN BENDING MOMENT AT TRANSIENT CONDITION	(tm)
		QL : SHEAR FORCE AT VERTICAL FORCE	(it)
5 25		QE : SHEAR FORCE AT HORIZONTAL FORCE	(t)
		Qo : SHEAR FORCE OF PERMANENT LOAD AT SIMPLE SUPPORT	(t)
		Pt : TENSILE RE-BAR RETIO ;at/B*(D-dt	(%)
		at : SECTION AREA OF TENSILE RE-BAR	(cm²)
		Mu : YIELD BENDING MOMENT	(tm)
		QD : DESIGN SHEAR FORCE	(t)
		fs*B*j : PERMANENT CONDITION	(t)
		α : 4/(M/(Q*(D-dt))+1)	
		Pw : STIRRUP RATIO =aw/(B*x)	(%)
		aw: SECTION AREA OF A SET OF STIE x: PITCH OF STIRRUP	RRUP (cm²) (cm)
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			

ł	

· GIRRE	į	iO Lfe	*70.0 * 7.0	Pain Re- Stif	Bar: (50 Urup: [50	30) rft 30) rft	1010×1	870 S 670 S	19901=1 1901=1	812	SUA	g : (SD	30} s	#10RT * 2 6	12				6:10 ID	ec Olsontal	IDDM.	1109 1109
(R. FL. 2 8*D UPPER LOVER STIRRUP	* LEFT*** A -D -D	-B 1	; 	LENGTH POINT HL NE HL NS LP DOWN		PACTION OF GLEDER 1/4	CENTER)	3/4	dt.		i dt l dt l dt l mal lmal lmal	IOWN LIP IOWN UP	1/	4 (2)	YTEIR	3/4	RI		OL Oo DD Oo LONG SHORT O LONG	LEFT	RIG:	: = # T
21023411												-			-		_	-		*****		
4.			\$D 30		ASTM AG	515 10								1.				•				
			D10		# 3							. •				,						
			D13		ž 4																	
			D16		₹ 5				•							•						
			D19		≱ 6											•						
			D22		# 7 # 0				-													
			D25		₽ 8									•,	ï					,		
												-		4								
	٠.		31				• • • •															
		•																				
																		•				
										•												
·																	<u> </u>					
			, ,								٠.										•	
ik ja Ši		•	•						•		٠.	- 20				*			4, -		u ; #	٠.
•						•.	;							-)				•			
			•	•		٠.					•				:			1.				
																•				•		
																				`	:	5-1-
			r Build /	461			•	Baldi	g 1			÷						ta:1	ON SYSTE	7512		
	- •	- Super	. onto	231 '	- •		·											. (8	CA K	₹#某2}		

·左塔=****中央*** 11 -10] 40*100 | 1/4 | 1/ 中央 7.0 7.0 23.1 34.8 34.8 ### 40*100 | 1 上純一段 3-D25 3-D25 3-D25| 位置 二段 | INL 下線一段 3-D25 3-D25 3-D25| ME 3-D25 3-D25 ME 10 -9 | E4者 7.8 - 2.8 - 2.9 | 1 | 「下 5.3 - 4.6 - 3.5 | 「下 5.3 - 4.6 - 3.5 | 「下 1/4 辛名 3/4 | 72 | (付上 170.0 320.0 170.0 0.0 | 下 -3.1 - 6.1 | ITAL (0E - 1.4) 4.2 | ITAS上 -1.3 - 3.1 - 0.9 6.0 | 下 0.7 0.9 10.3 | ITAL 3.3 3.1 2.9 | 下 東美 500.0 - 月日 - 47 - 7.0 | 左切 7.0 7.0 23.1 34.8 34.6 39.3 640.0 24 0.0 5.4 -4.3 5.4 9.7 右端 7.0 7.0 23.1 34.8 34.8 35.3 中央 7.0 7.0 23.1 34.8 34.8 540.0 左旋 0.0 5.8 -4.0 5.8 9.8 内法 500.0 1/4 中央 170.0 320.0 -2.9 (GE® -1.3) -1.0 -2.9 0.8 2.8 2.9 左尾 7.0 7.0 23.1 34.6 39.3 39.3 中央 7.0 7.0 23.1 34.9 34.6 一段日 3/4 右线 0 7.0 1 8 34.8 35.3 35.3 34.8 334.8 334.8 334.8 334.8 339.3 338.3 388.3 38 2-D10 @150 640.0 左線 0,0 5,9 -4,2 5,5 内法 600.0 1/4 中央 170.0 320.0 -3.1 (GE= -1.4) -1.0 -3.1 7.0 | 右路 (dt 上 0.0 | 下 5.6 | Inal 4.3 | Inas上 5.5 | 下 5.9 | Inu 7.0 7.0 7.0 23,1 34.8 34.8 39,3 一段目 dt 3/4 170.0 1. 都材長 -1.2 0.8 3.2 MS Ł 7.0 | 下 7.0 | 下 3.7 | MeL 5.1 | MeS上 5.7 | F 8.6 | Mes 上 1.4 | 下 左之 7.0 7.0 23.1 34.8 34.8 39.3 中央 7.0 7.0 23.1 34.8 34.8 640.0 左端 0.0 5.3 -4.2 5.3 9.5 -段自 ♂t 数据表 170.0

X

5-7-55

(NION SYSTEM 751221 PAGE- 37 (RC版 新聞日報2)

• • • Super Durin / 331		faurate 1	N		(RC與 被定指其2)
コンクリート: Fc=210 Lfc=7 (音 通) Lfs= ************************************	0.0 主 筋: {S 7.0 オクラップ: {S	030] : (t 長期×1870 短期=28 030] : (t 长期×1670 短期=28	12 スラブ斯:(5D 112	301 15M+2812	A. A. A. A. A. A. A. A. A. A. A. A. A. A
R.FL C 11 -10) B=D 40+100 比単一角 3-025 3-025 3-02: 七二月 3-025 3-025 3-02: 二月 3-025 3-025 3-02: 二月 2-010 9150	観材長 540.0 一 一 1 m。 3.6 1 m。 3.6 1 m。 3.6 1 m。 3.6 1 m。 3.6 1 m。 3.6	内性 600.0 一段目 cf 7 1/4 中央 3/4 前 70.0 320.0 170.0 0 -4.2 5 (0€≈ -1.5) 4 -2.7 -4.2 -1.7 5 5,4 4.7 3.5	0 1 E% 1/ 6 1 ct L 7.0 6 1 T 7.0 6 1 Mal 22.1 23 1.2 1 mas L 34.8 34 1.6 1 T 34.9 34. 1.8 1 Mu L 39.3	4 中央 3/4 7.0 7.0 1 23.1 23.1 1 34.8 34.8 1 34.8 34.8	古曜 7.0 左陽 右堤 7.0 181 4.9 5.5 23.1 100 5.1 5.1
R.FL C 10 -9) 8+D 40+100 18中段 3-D25 3-D25 3-D25 18中段 3-D25 3-D25 3-D25 18中段 3-D25 3-D25 3-D25 18中段 2-D10 8150	1 超技長 640.0 1 左塊 1 位配 0.0 1 1 加. 5.5 1 ME *4.3 1 ML 5.5 1 MS £ 9.8	付送 600.0 - 一段目 dt 2 1/d 中央 3/d 67 10,0 320,0 170.0 0 3.0 6 (GE≈ -1.4) 4 -1.1 -3.0 -0.9 6 0.8 1.0 10	.0 左보 1/.0 ,0 下 7.0 ,0 下 7.0 ,0 Hat 23.1 23. ,3 Mast 34.8 34. ,0 下 34.8 34. ,3 Mu 上 29.3	4 中央 3/4 7.0 7.0 7.0 1 23.1 23.1 8 34.8 34.8 8 34.8 34.8	ち頃 (7.0 左線 右端 7.0 10L 5.1 5.3 23.1 10a 5.1 5.1 34.8 10D 7.2 7.4
R.FL C. 9 -6) B=D 40*100 R-R 3-D25 3-D25 3-D25 工程 R-R 3-D25 3-D25 3-D25 R-R 77*7* 2-D10 9150	新村長 640.0	9性 600.0 一段目 dt 7, 1/4 中央 3/4 52, 0.0 320.0 170.0 0, -2.9 6 (05° -1.3) 4, 1.0 -2.9 -0.9 6, 0.8 0,9 10, 2.8 2.9 2.7	.0 左線 1/-3 .0 T 7.0 .0 T 7.0 .0 Mat 23.1 23. .0 Mas 2 34.8 34. .0 T 34.8 34. .0 T 35.3	4 中央 3/4 7.0 7.0 1 23.1 23.1 6 34.8 34.8 8 34.8 34.8	右端 1
R.FL. C 8 -7 1 40*100 10 5-D25 3-D25 3-D25 -R 10 3-D25 3-D25 3-D25 -R 2-D10 6150	舒材長 540.0 p 左巻) 位波 0.0 17 nL 5.8 nE -4.3 nL 5.8 mS L 10.1	発 600.0 一段日 dt 7. /4 中央 3/4 お 0.0 320.0 170.0 0. -3.0 5. (05 -1.4) 4. 1.0 -3.0 -1.1 5. 0.9 0.5 10. 3.0 3.0 3.1	0	中央 3/4 7.0 7.0 1 23.1 23.1 8 34.8 34.8 8 34.6 34.6	右翅 左线 右线 7.0 5.2 5.2
R.FL C 7 -6 } 8-D 40*100 K+Q 3-D25 3-D25 3-D25 二段 2-R 3-D25 3-D25 3-D25 二段 2-7 2-D10 \$150	」 都材表 640.0 学	2法 500.0 一校目 dt 7. 74 中央 374 岩嶺 0.0 320.0 170.0 の -4.4 3. (05= -1.5) 5. 7.0 -4.4 -2.8 5.	0 左端 1/4 1 let 上 7.0 0 下 7.0 5 mat 23.1 23. 2 JMSL 34.6 34. 5 下 34.8 34. 7 JM L 39.3 7 F 35.3	中央 3/4 7.0 7.0 7.0 1 23.1 23.1 6 34.9 34.8	市場 1

	• • • (BG	* .			751 751221 PAG- 38 規定計算 2]
コンクリート: Fc=210 Lfc=70 (音差) Lfs= 7					
上模一段 4-D25 a-D25 a-D25 二段 2-D25 2-D25 2-D25 下降一段 4-D25 4-D25 4-D25 二段 2-D25 4-D25 2-D25	節材央 600.0 内造 50	59.0 一尺目 dt. 7.0 中央 374	左端 1/4 dt L 9.2 (T 9.2 Hal 45.1 55.6 HasL 57.9 67.9 T 67.9 68.4 hu L 76.8	中央 3/4 右線 5.2 5.2 10.3 5.5 55.6 55.6 45.1 67.9 67.9 67.9 89.4 89.4 67.9	1
(R,FL 11 B - C) B+D 40*100 上型一段 4-D25 4-D25 4-D25 元段 2-D25 2-D25 2-D25 下段一段 4-D25 4-D25 4-D25 元段 2-D25 4-D25 2-D25 スクラーフ* 2-D10 9150	部材長 600,0 内法 56	0.0 一反目 dt 7.0 中央 3/4		中央 3/4 专籍 9.2 9.2 10.3 9.2 55.6 55.6 45.1 67.9 67.9 67.9 67.9 69.4 67.9 76.8	I 在塔 右境 (QL 11:4 7.0 (Po 9.4 8.8 (QD 15:9 11:5 (QA 37.1 37.1 15 41:0 41.0
R.F.L 10 A -C 15-10	部村美 1200.0 内法 112 友達 1/A 位度 0.0 320,0 5 村に 20.6 村に 26.3 (65= 村に 20.6 -35.1 - ボン 48.9 下 5.7 47.4	0.0 一段目 dt 7.0 中央 3/4 岩違 00.0 320.0 0.0 50.7 20.6 -4.4) 26.3	左端 1/4 dt 上 9.2 下 9.2 Meb 45.1 55.6 Mask 67.9 67.9 下 67.9 85.4 T 75.8	中央 3/4 右炮 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2	左陽 右端 10L 23.4 23.4 10e 23.3 23.3 10e 23.3 23.3 10g 30.0 30.0 10g 45.0 45.0 10g 45.0 45.0
	部付表 1200.0 内法 112 左端 5/4 位置 0.0 320.0 6 ML 20.6 ME 32.5 (QE= ML 20.6 -35.1 ME 11.9 50.3	0.0 一校目 ct 7.0 中央 3/4 右钩 50.0 320.0 0.0 1 50.7 20.6 1 55.7 35.1 20.6 1 53.1 55.7 50.3 11.9 1	左维 1/4 5,2 下 9,2 het 45,1 55.5 hes 67.9 67.9 下 57.9 89.4 Hu 1 76.8	中央 3/4 古場 5,2 9.2 10.3 5.6 55.6 55.6 45.1 67.9 67.9 67.9 88.4 67.8 76.8	1
R.FL 9 A -C 40=100 (上端一段 40=100 (上端一段 4-D25 4-D25 2-D25 上段 7-D25 2-D25 上段 4-D25 4-D25 2-D25 上段 2-D25 4-D25 2-D25 スプラフ・フ・フ・フ・フ・フ・フ・フ・フ・フ・フ・フ・フ・フ・フ・フ・フ・フ・フ・	部材表 1200.0 内法 112(位置 0.0 320.0 fd NL 20.5 fd (位置 1.74 fd 1.7	7.0 一段音 dt 7.0 中央 3/4 右端 100.0 320.0 0.0 50.7 20.6 55.5 30.6 50.7 -25.1 20.6 50.7 53.1 18.0	左右 1/4 dt 上 9.2 下 9.2 NAL 45.1 55.6 MASL 57.9 67.5 下 57.9 89.4	中央 3/4 古雄 5.2 5.5 10.3 5.5 55.6 55.6 45.1 67.9 67.9 67.9 85.4 69.4 67.9 76.8 76.8	1 左端 七端 104, 23.4 23.4 106 23.3 23.3 100 23.1 23.1 102 25.8 26.8 1 短 42.7 42.7 1 42.1 1.17 经 1.24

5-7-EC UNION SYSTEM 751221 PAGE- 39

*** 20Mt Bmis / 221 ***	(buchin)			[RC版 快定計算2]
コンクリート: Fc = 210 lfc = 70.0 (音速) lfs = 7.0	主 数:[SD30] rft 長期=18 297+7:{SD30} wft 長期=18	370 短期=2812 ス 370 短期=2812	ラブ路:(SD30) 短期=2812	A: 長期 15点 水平 15点
キョニキュニュルスグ ペンコストウマミニニング はっていない	# 1200.0 内廷 1120.0 一名	投目 dt 7.0 l 1/4 右線 ldt 上 10.0 0.0 l 下 20.6 lmat 44.8 lmas上 15.1 20.6 l 下 65.4 lmu 上	五成 1/4 中央 3/4 9.2 9.7 9.2 9.7 9.2 10.3 45.1 55.6 55.6 55.6 67.9 67.9 67.9 67.9 67.9 69.4 69.4 69.4	ちは 1 9.2 1
【R,FL 6 A -B 】 E材 B D co100 1 上地一段 4-D25 4-D25 4-D25 位置 二段 2-D25 2-D25 2-D25 1	展 600.0 内陸 560.0	段目 et 7.0 1/4 右端 let 上 0.0 0.0 下 -35.3 Hal 0.0 1mas 1 12.6 -35.3 下 4.5 35.3 下	左端 1/4 中央 3/4 9,2 9,2 10,3 15,6 55,6 55,6 67,9 67,9 67,9 67,9 67,9 67,9 69,4 69,4 69,4	54
R.FL 6 8 -C] 数数 B=D 40×100 40×100 1 上端一段 4-D25 4-D25 4-D25 位置 二段 2-D25 2-D25 2-D25 元 下四一段 4-D25 4-D25 4-D25 元 二段 2-D25 4-D25 2-D25 元 スプラフ* 2-D10 9150 円5 上	長 600.0 内法 560.0 一 左塚 1/4 中央 3. 0.0 140.0 260.0 180 -35.3 -23.0 0.0 (DE× -8.5)	段目 dt 7.0 1 /4	左端 1/4 中央 3/4 9.2 9.2 9.2 10.3 45.1 55.6 55.6 55.6 67.9 67.9 67.9	古碑 ! 9.2 ! 左端 右端 9.2 !OL 0.1 15.1 45.1 !Oo 6.2 7.8 67.9 !OD 12.8 28.6
コンクリート: Fc*210 Lfc*70.0 (普通) Lfs* 7.0	主 第:[SD30] rft 長期=187 スタラッツ: [SD30] vft 長期=187	70 短期=2812 ス 70 短期=2612	ラブ語:[SD30] 短期=2612	Δ:長期 節点 水平 節点
2FL R 11 -10)	を 640.0 月注 600.0 ー 月	及目 dt 7.00 7.4	世場 1/4 中央 3/4 9.2 5.2 9.2 9.2 27.5 27.5 27.5 27.5 11.4 41.4 41.4 41.4 45.6 6.6	右尾 左端 右尾 52 2 10L 5.2 5.0 5.2 5.0 5.2 5.0 5.7 5.4 4.6 10.5 34.7 17.5 41.4 10.5 34.0 34.0 34.0 34.0 45.8 1 5 45.0 45.8 1 5 45.0 45.8 1.45 45.0 45.8 1.45 45.0 45
{27L & 10 -9 日初日 P=D 25*120 上投一段 2-D25 2-D25 2-D25 改変 工程 1-D25 1-D25 1-D25 成定 大理一段 2-D25 2-D25 2-D25 内2 T投 1-D25 1-D25 1-D25 内2 T投 1-D25 1-D25 1-D25 内2	長 6.0.0 内法 600.0 月 定程 1/4 中央 3/ 0.0 170.0 320.0 170 6.5 4.2 -12.9 {02* 4.2} 6.6 2.3 4.2 0 19.5 3.5 6	校目 ct 2.0 l 2 24 古雄 lct 上 0.0 0.0 l 下 10.6 lmat 2 13.5 lmast 2 0.4 10.5 l 下 4 6.1 24.2 lmu 上 4	左端 1/4 中央 3/4 5.2	右端 5.2 左端 右端 5.2 10.6.9 6.2 27.5 10.6.9 7.5 41.4 10.8 13.2 14.5 41.4 10.8 33.2 33.2 46.8 1 別 35.7 39.7 46.8 1 長 1.84 長 1.44

* • • Super Build / SS1 =		(SUTDIE)	•		5-7-61 UNION SYSIEM 751221 PAGE- 40 (RC架 核定計算2)
コンクリート: Fc=210 Lfc=70. (甘藷) Lfs= 7.				スラブ版: [SD30] 発放=2B12	Δ: 長陽 55点 水平 55点
[27] R 9 -8] 計画D 25-120 上世一日 27-D25 2-D25 2-D25 二元 1-D25 1-D25 1-D25 1-D25 1-D25 1-D25 1-D25 2-D25 2-D26	お材長 540.0 左端 0.0 1 加 6.4 ME -13.9 ML 5.4 15 上 20.3	方法 600.0 一尺日 1/4 中央 3/4 70.0 320.0 170.0 -4.3 (DE2 -4.4) -2.4 -4.3 -0.4 4.0 6.0	dt 7.0 右名 dt 上 0.0 下 10.7 mal 13.9 mas上 10.7 下 24.5 mu 上 3.2 下	9.2 9.2 9.2 9.2 7.5 27.5 27.5 27.5 41.4 41.4 41.4 41.4 41.4 41.4 41.4 41.4	5.2 1 左端 古楼 5.2 101 6.9 8.2 7.5 27.5 106 7.5 7.5 1.4 41.4 109 13.5 34.8 1.4 41.4 104氏 33.0 33.0 46.8 1 始 39.7 35.7 46.8 1 成 31.4 31.4
[27L 8 8 -7] 19-5 25+170 [上地一般 2-025 2-025 2-0251 二段 1-025 1-025 1-0251 下段一般 2-025 2-025 2-0251 二段 1-025 1-025 1-0251 225-77 2-010 4200 [裁材長 640.0 左右 左右 0.0 1 位置 0.0 1 所に 6.5 所に 13.6 所に 6.5 所に 20.1	内法 600.0 一段目 1/4 中央 3/4 70.0 320.0 170.0 -4.4 (05= -4.2) -2.4 -4.4 -0.6 4.0 5.1	dt 7.0 古墳 ldt 上 0.0 下 10.3 mat 12.9 meSt 10.3 下 23.2 mu 上 25.5 下	左线 1/4 中央 3/ 9.2 9.2 9.2 27.5 27.5 27.5 27 41.4 41.4 41 41.4 41.4 41 45.8	52 1 左端 52 52 1 左端 52 52 1 左端 52 52 1 左端 52 52 52 52 52 52 52 52 52 52 52 52 52
[ZFL A 7 -6] 1 B+D 25-120 1 上境一段 2-025 2-025 2-025 二段 1-025 1-025 1-025 下塚一段 2-025 2-025 2-025 1 元段 1-025 1-025 1-025 1 2-027 2-010 #200 1	部材表 540.0 p 左端 0.0 i7 位課 0.0 i7 ML 5.0 NE ~15.6 ML 5.0 S 1 21.5	村注 500.0 一段日 1/4 中央 3/4 70.0 520.0 170.0 -5.3 (0E= -5.7) -3.1 -5.3 -1.8 2.8 9.1 -2.1 -7.8 12.6	# 7.0 ## 1dt L 0.0 T 6.9 Mat 20.6 Mas L 8.9 F 29.5 Mu L 11.7 T	友達 1/4 早央 3/ 9.2 9.2 9.2 7.5 27.5 27.5 27 41.4 41.4 41 41.4 41.4 41 45.8 46.8	588 女は 右様 9,2 女は 右様 9,2 0 7.1 6.0 1.5 27.5 0 7.5 7.5 4 41.4 GD 15.6 16.5 4 41.4 105.4 35.7 35.7 46.8 58 37.4 37.4 46.6 194 37.4 37.4 46.6 194 199 第 1.35
2FL C 11 -10 1	部材長 540.0 F 左径 1 位置 0.0 17 位置 1.9 ME -20.6 ML 1.5 - S 上 22.5	特法 600.0 一段目 74 中央 374 10.0 320.0 170.0 -5.4 (GE= -5.7) 4.8 -5.4 -1.0 6.1 4.9 5.7 7.9 5.9	dt 7,0 右延 idt 上 0.0 下 10.0 meL 15.6 meS上 10.0 下 25.6 下	左臂 1/4 中央 3/ 9.2 9.2 9.2 9.2 9.2 9.2 27.5 27.5 27.5 27.5 27 41.4 41.4 41.4 41 45.6 445.6 45.6	.4 41.4 100 13.9 16.4 .4 41.4 105兵 33.5 33.5 46.8 1 2 36.8 38.6 46.8 1 4 185 2 1.41
ZFL C 10 -9	舒材長 640.0 戸 左端 1 位置 0.0 17 化 5.5 に ~12.9 に 5.5 ~	注 600.0 一段目 /4 中央 3/4 0.0 320.0 170.0 -3.8 (0E= -4.2) 2.2 -3.6 -0.3 6.1 4.1 6.8	dt 7,0 右線 ldt 上 0,0 下 9.6 mal 13.5 mas上 9.6 下 23.1 mas上 3.9 下	左右 1/4 中央 3/ 9.2 9.2 9.2 5.2 27.5 27.5 27.5 27 41.4 41.4 41.4 41.4	5

	******		2-1-65
* * * Super Build / \$51	* * * [BMLDIR]		INION SYSTEM 751221 PIŒ- 41 【RC於 核定計算2】
and the second s		1970 短期*2812 スラブ終:[SD3 1570 短期*2812	
25-120 上級一段 2-025 2-025 2-025 下は一段 2-025 2-025 2-025 下は一段 2-025 2-025 2-025 下は一段 2-025 1-025 1-025 1分 1-025 1-025 1-025	部枝 540.0 内还 600.0 在	一段日 of 7,0 l	中央 3/4 古曜 万曜 古曜 5曜 5円 5円 5円 5円 5円 5円 5円 5円 5円 5円 5円 5円 5円
(2FL C 8 -7) B*D 25*120 比較一般 2-D25 2-D25 2-D25 15 1-D25 1	1 節材長 6-00.0 内法 6-00.0 1 左端 1/4 中央 1 位堂 0.0 170.0 320.0 1 1 HL 5.5 -3.9 1 ML 5.5 -2.2 -3.9 1 ML 5.5 -2.2 -3.9 1 MS 19.0 4.1 1 下 8.0 8.7 4.2	一段目 dt 7.0 l 左端 1/4 3/4 右端 ldt 上 9.2 70.0 0,0 l 7 9.2 9.2 hMaL 27.5 27.1 12.9 lMaS上 41.4 41.4 -0.5 9.2 l 7 41.4 41.5 5.3 22.1 kM 上 46.8 6.4 3.7 l 7 46.8	中央 3/4 智期
25L C ? -5) 35+120 15 + 125 1-125	新科英 640.0 内法 500.0	一段日 dt 7.0 【 定様 1/4 3/4 台湾 dt 上 9.2 70.0 0.0 79.2 8.5 Insl. 27.5 27.5 20.6 Insl. 41.4 41.4 -1.2 8.5 下 41.4 41.4 12.7 12.1 下 46.8	中央 3.4 5場(9.2 9.2 1 5場 5場 5.2 9.2 1 5場 5場 6.2 7.5 27.5 100 6.6 6.6 41.4 41.4 41.4 100 14.6 15.7 41.4 41.4 41.4 100 14.6 15.7 41.4 41.4 10.4 34.7 34.7 46.8 1 35.4 36.4 45.8 1 6長 1.53 別1.31
(安建) 1/2=7	. G スグフッフ: [SD30] vft 長期×1	870 短期=2812	水平 节点
2FL 11	お材長 600.0 内法 550.0 -	一段目 dt 7.0 l 左端 1/4 3/4 右端 ld 上 10.3 40.0 0.0 l 下 10.3 12.5 lhat 36.3 35.3 0.0 lhas上 54.7 54.7 2.1 12.5 l 下 54.7 54.7 14.2 12.5 l 下 54.7 54.7 9.9 l 下 61.6	中央 3/4 存稿 : 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3
[2FL 11 8 -C]	数材長 500.0 内法 550.0 一 を雇 1/4 中央	- 段長 dt 7.0 左端 1/4 350.0 0.0 下 10.3 - 1.5 Int 1 56.3 56.3 52.0 Ints 1 54.7 54.7 - 1.5 下 54.7 54.7 30.7 50.4 Int 1 51.5 42.0 53.5 下 61.8	中央 3/4 右端
			•

			5-7-63
* * * Super Bulld / SS1 * * *	(BALDIA)		UNION SYSTEM 751221 PAGE- 42 [RC與 故定計算2]
コンクリート: Fc=210 Lfc=70.0 : (日 済) Lfc= 7.0	左 話:[SD30] rft 長期=1570 短 スナウェフト:[SD30] vft 長期=1870 短	期=2012 スラブ店:[SD30] 期=2012) 短期=2812 △:長期 「万点 水平 「5点
[6,FL A 11 -10] 5材表 カッカ 30-80 上院一段 3-D25 3-D25 3-D25 位置 二段 1-D25 1-D25 1-D25 ML 下原一段 3-D25 3-D25 3-D25 ML ア原一段 1-D25 1-D25 1-D25 ML スタンフ 2-D10 9200 HS上	640.0 所是 600.0 一般日 万度 1/4 中央 3/4 0.0 170.0 320.0 170.0 -1.4 -4.2 -15.2 (GE= -4.1) -1.4 -4.8 -4.2 -0.1 13.8 3.3 3.9 16.6 13.0 6.2 4.2	6. 7.0.1 5.6. lot ± 0.5 0.0.1 F 0.6 0.5 Inst 23.6 23.6 11.1 lhast 35.5 35.5 0.5 I F 35.5 35.5 15.6 In ± 40.2 2.5 I F 40.2	8.6 8.6 10.6 3.2 6.3 3.6 23.6 10.6 4.6 4.6 4.6 3.5 5.5 35.5 10.6 4.6
[G.F.C A 10 -9] [新科夫 B+D 30+ 80] 上版一表 3-D25 3-D25 3-D25 [改建 	540.0 所法 500.0 一段目 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	to 7.0 表現 1/4 ち度 et 上 8.6 0.0 下 8.6 6.9 mal 23.6 23.6 6.8 mal 23.5 23.5 6.8 下 35.5 35.5 15.7 he 上 40.2	8.6
66 FL A 9 -8 日村長 30 -80 1-8 -12 1-92	640.0 內性 600.0 一段目 左模 1/4 中央 3/4 0.0 170.0 320.0 170.0 3.1 -2.7 -5.6 (0=-3.0) 3.1 -1.9 -2.7 -0.0 12.7 2.5 4.4	tt 7.0 左線 1/4 古種 1dt 上 8.5 0.0 下 8.5 7.1 ITal 23.6 23.6 9.6 ITal 25.5 25.5 7.1 下 35.5 35.5 16.7 Mu 上 40.2	中央 3/4 右線
[6,FL A B -7] 「 超移長 B+D 30=80 「 上海-段 3-D25 3-D25 3-D25 位置 「2 1-D25 1-D25 1-D25 HC 「2 1-D25 3-D25 3-D25 M2 「2 1-D25 1-D25 1-D25 M2 「2 1-D25 1-D25 1-D25 M5 上 279*27 2-D10 \$200 M5 上	640.0 内法 600.0 一段目 定义 1/4 中只 3/4 0.0 170.0 320.0 170.0 3.2 -2.5 -8.8 (0= -2.7) 3.2 -1.7 -2.5 0.2 12.0 2.5 3.8	t 7.0 五曜 1/4	8.5 左端 ちゅ ちゅ 5.6 左端 ちゅ 5.6 10.1 4.0 5.4 5.5 5
[G.FL A 7 -5] 新材美 B-D 30-80 	540.0 内法 500.0 一段日 6 左連 1/4 中央 3/4 0.0 170.0 320.0 170.0 3.8 -3.3 -11.1 (GE= -4.1)	が 7.0 1	中央 3/4 右端 1 左端 右端 8.6 8.5 10L 4.5 4.9 23.6 23.6 23.6 100 4.6 4.6 35.5 35.5 35.5 100 10.6 11.0 35.5 35.5 35.5 100.£ 21.7 21.7 40.2 1 点 20.5 20.6 40.2 1 点 £ 1.60 统 1.00

)

		-		 _			

(BALDIA)

WION SYSTEM 751221 PAGE- 4

	and the second s												CH CA	C 61 34 2 3		
	コンクリート:Fc=210 Lfc=70 (登道) Lfs=7														長期 水平	BA BA
l E T		部材長 位置 位置 HE HE HE	640.0 宏端 0.0 ~1.4 ~15.1 ~1.4 13.7 16.5	内法 170.0 (DE= -4.8 3.3 12.5	600.0 中央 320.0 -4.2 -4.1) -4.2	一段日 374	dt 7.0 右键 0.0 6.6 11.0 8.6 19.6 2.4	(MAL IMAS 上 IMAS 上	左端 8.6 8.6 23.6 35.5 35.5 40.2	23,6 35,5 35,5	中央 8.6 6.6 23.6 35.5 35.5	3/4 23, 6 35, 5 35, 5	市場 1 8.6 (8.5 (23.5 (35.5 (40.2 (40.2 (を の、 3. の。 4. の 9. 04長 18.	2 6 3 1 6 1 6 知	右相 6.3 4.6 2.4 9.5 0.5 1.00
1 上 下 ス	8.FL C 10 -9 } 9-D 30+ 90 地一般 3-D25 3-D25 3-D25 二段 1-D25 1-D25 1-D25 12 3-D25 3-D25 3-D25 二段 1-D25 1-D25 1-D25 1-D25 1-D25 1-D25 1-D25 1-D25 1-D25	勝村長 位置 付に HE HE HE	640,0 左端 0,0 4.2 -8.0 4.2 12.2	内法 1/4 170.0 (QE# -1.2 2.3	600.0 中央 320.0 -2.3 -2.5) -2.5	3/4 170,0 0.0 4.3 4.2	4t 7:0 有基 0:0 6:9 8:7 6:9 15:6	let 上 I 下 I mal I mas 上 I 下	を報 8.6 8.6 23.6 35.5 35.5 40.2 40.2	23. 6 35. 5 35. 5	中央 8.6 8.5 23.6 35.5 35.5	3/4 23.6 35.5 35.5	右线 (6,6 (8,6 (23,6 (35,5 (35,5 (40,2 (40,2 (左 QL 4. Qo 4. OD 9. Qu兵 10. 支援 21. の長 1,39	编 3 6 7 1 4 9	右編 5.1 4.6 9.0 5.7 1.4 1.04
l E F	9=0 30× 80 # # 3-D25 3-D25 3-D25 _	新村長 位置 位置 HE HE HE	540.0 左進 0.0 3.1 -9.5 3.1 12.6	内法 170.0 (G5# -1,9 2.5	600.0 中央 320.0 -2.7 -3.0) -2.7	一段自 3/4 170.0 -0.0 4.4 4.5	dt 7,0 有成 0,0 7,1 9,5 7,1 16,5 2,4	 dt 上 下 Mal mas上 下	8.6 8.6 23.6 35.5 35.5 40.2	23. 6 35. 5 35. 5	中央 8.5 23.6 35.5 35.5	3/4 23. 6 35. 5 35. 5	を増 ! 8.6 ! 23.6 ! 35.5 ! 35.5 ! 40.2 !	CL 4. Co 4. CD 8. CO 5. CO >6 6 6 7	5.3 4.5 9.8 8.8 1.6	
) 1 1 7 2	3.FL C 8 ~? 1 BAD 30×80 性性 3.7025 3-025 3-025 工段 1-025 1-025 1-025 集一段 3-025 3-025 3-025 五段 1-025 1-025 1-025	は 一般 は と で と で で に は と で で に に に と で に に に と で に に と で に に と で に に と で に に と で に に と で に に と で に に に と で に に に と で に に に と で に に に に	540.0 友權 0.0 3.2 ~6.7 3.2 11.5	内法 170.0 (0E= -1.7 2.4	500.0 中央 320.0 -2.5 -2.5 -2.5	一段目 3/4 170.0 0.2 3.8 3.2	dt 7,0 右線 0,0 7,6 9,0 7,6 15,5	I HaL IMASE	在建 8.6 9,6 23.6 35.5 35.5 40.2	23. 6 35. 5 35. 5	中央 8.6 8.6 23.6 35.5 35.5	23. 5 35. 5 35. 5	存業 9.6 5.6 23.6 35.5 40.2 40.2	EL 4. Oo 4. GD 7. GA 18. 短 22. o 表 1.34	8 0 5 9 2 1 0 2	古塔 5. 4 4. 5 9. 3 8. 2 2. 0
[4] E	S.FL C 7 - 5] 8a D 30 * 80 総一段 3-D25 3-D25 3-D25 1-D2	軽材長 位置 ML ne	640.0 左连 0.0 3.6 -11.0 3.8 14.8 7.2	内法 1/4 170.0	のの。0 中央 320.0 -3.3 -4.1) -3.3	一段目 3/4	dt 7.0 右編 0.0 5.1 25.1 5.1	ict L Ict L Imat Imask Imask Imu L	左射 6,6 23.6 35.5 35.5	1/4 23.6 35.5 35.5	中央 8.5	3,4 23,6 35,5 35,5	名唱 ! 8.6 ! 23.6 ! 35.5 !! 35.5 !! 40.2 !	GL 4. Go 4. GO 10. DA 21.	5 6 1 9 2 6 2	5.5 4.6 1.0 1.9 0.8 1.00

		•	5-7-6\$
* * * Super Build / SS1 * * *	[BALDIA)	* 44	INION SYSTEM 751221 PIE- 44 【RC以表层計算2】
コンクリート: Fc=210 lfe=70.0 (甘 通) lfs= 7.0	注 数: [5D30] +ft 長期=1870 短期=2817 249-7": [5D30] +ft 長期=1870 短期=2817	2 スラブ族:[SD30] 採展=2812 2	A:長騎 野点 水平 印点
### ### ### ### #### ################	左桅 1/4 中央 3/4 右端 0.0 180.0 320.0 140.0 0.0 2.9 -2.7 5.4 2.9 -5.4 0.0 2.9 -5.4 5.4 0.0 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4	1dt <u>k</u> 5.7 9.7 0 l T 5.7 5.7	9.7 i 左猶 右續 9.7 i DL 3.8 5.0 1 27.1 i Do 4.1 4.5 8 43.8 i DD 13.4 14.6
(G.FL 11 B ~ C)	た髪 1/2 中央 3/2 お業 0.0 140.0 290.0 180.0 0.0 5.4 ~2.8 2.9 0.0 (DE≠ −6.4) 35.2 5.4 −0.1 ~2.6 −2.1 2.9	0 F 9.7 9.7 9	9.7 (宏邁 右端 9.7 IQL 5.0 3.8 1 27.1 IO。 4.5 4.1 8 43.6 IQD 14.5 13.4

*				
	DESIGN	ΟF	COLUMI	-
(1)	CONDIT	NOI	OF CALCULATION	
	· OD :	χ	DIRECTION QD=QL+n QE n=1.5	
		Y	DIRECTION QD=QL+n·OE n=1.5	
(5)	MATERI	AL		
	(CONCR	ETE)	•
444	Fc	:	DESIGN STANDARD STRENGTH OF CONCRETE	(kg/cm ²)
	Lfc		ALLOWABLE COMPRESSION STRESS AT PERMANENT CONDITION (TRANSIENT CONDITION : Lfc+2.0)	(Kg/cm ²)
	Lfs	:	ALLOWABLE SHEAR STRESS AT PERMANENT CONDITION	(kg/cm ²)
	(RETNE		(TRANSIENT CONDITION : Lfs*1.5) ING BAR)	and the second second
			ALLOWABLE TENSILE STRESS	
			ALLOWABLE TENSILE STRESS FOR HOOP	(kg/cm ²)
· · (3)			ON OF MARK	(kg/cm2)
. (0)			DESIGN POINT OF MEMBER	
			ADOPTION POINT OF STRESS	(cm)
			DEPTH OF COLUMN	(cm)
	dt dt		DISTANCE BETWEEN TENSILE RE-BAR	(cm)
		•	AND TENSION END	(cm)
.* .	Д	. : 	ADITIONAL COEFFICIENT OF FORCE FOR LONG COLUMN	
	NL	:	AXIAL FORCE AT VERTICAL FORCE	(t)
	NE	:	AXIAL FORCE AT HORIZONTAL FORCE	(t)
	ML	:	BENDING MOMENT AT VERTICAL FORCE (NODAL POINT)	(tm)
, .	ME	:	BENDING MOMENT AT HORIZONTAL FORCE (KODAL POINT)	(tm)
	ML	:	DESIGN BENDING MOMENT AT PERMANENT CONDITION	(tm)
	NS	:	AXIAL LOAD AT TRANSIENT	(t) ' · · ·
	MS	:	DESIGN BENDING MOMENT AT TRANSIENT CONDITION	(tm)
	ór	:	SHEAR FORCE AT VERTICAL FORCE	(t)
	QE	:	SHEAR FORCE AT HORIZONTAL FORCE	(t)
* .1. * .1.	Qo:	:	SHEAR FORCE OF PERMANENT LOAD AT SIMPLE SUPPORT	(t)
	Pt	:	TENSILE RE-BAR RATIO , =at/(dx,y* dy,x)	(%)
	at	:	SECTION AREA OF TENSILE RE-BAR	(cm ²)
	Mu	•	YIELD BENDING MOMENT	(tm)
	ハMu	:	TOTAL MU OF GIRDER USE FOR CALCULATION QD OF COLUMN	(tm)
andre Salaman	α	:	4/(M/(O (Dx,y-dt))+1)	
	QD	:	DESIGN SHEAR FORCE	(t)
	.Qa		ALLOWABLE SHEAR FORCE AT PERMANENT CONDITION	(t)
	Pw	(1) (2)	HOOP RATIO =aw/(Dx.y*x)	(%)
		977	aw : SECTION AREA OF A SET OF HOOP	(cm2)
		· · · · · ·	x : PITCH OF HOOP	(cm)
	**			

								•			
· COLUMN								-			
CONCRETE : F c = 210 (NORML)		AIN-RE BAR: [503) HOOP: [503)	ol altroc ol altroc	*1870 SHORT *1870 SHORT	=2812 =2812			۵	LONG HORIZOVI	TROOM (X) TH	LOINT (A) HODYT I
= X Derection=2Y derect R. Fl = G. Fl R X=DY & Top = D = D	1 (X) 106 1 TENCHI 100 **********	MF 311 LW	dt= - (4E	14f° .	HS HS	**************************************	(125	******** GL	DE	(lu t): tu	00 Q4S
0000 -D -D	i Rotton					-		Da≖	(a=) នេះបារ	1
	(Y) TOP I BOTTON I TOTAL TO	P -D 1907710N	-D	`.*	4 3 5 °	•		î Î Î. Qa=	(a¥	OF OF OF OF	
•	1						100			OF	
										COLLEGE	
			*******		********		*****	******	********	29129234 291294	**********
<u></u>	SD 30	ASTM A615 Grade 40	********	******	**********	*************	5 E S 2 2 2 1	.*3555%	******	AEGETHER SENTER	E * * * * * * * * * * * * * * * * * * *
	SD 30		**************************************			************	*****	.*3062%&	*******	PERETOTASE PONTAS	E * * * * * * * * * * * * * * * * * * *
manatana e		Grade 40	******				15 E 3 E 18 E 18	, *3 T.E I.	医草正式 4 位 円 机	TERETOT MAE	E * * * * * * * * * * * * * * * * * * *
samether P P P P P P P P P P P P P P P P P P P	D10	Grade 40 → #3	**************************************	**************************************			S	Karery	**************************************	PPRESCRAR PROPERTY NAMES	E * * * * * * * * * * * * * * * * * * *
sambles	D10 —	Grade 40 4 #3 • #4	**************************************				SEACHD!	, Kaderyk	*******	PERFUENCE NAME	E * * * * * * * * * * * * * * * * * * *
ta	D10 ————————————————————————————————————	Grade 40 4 #3 - #4 - #5	**************************************				5E*****	*******	**********	PERFOCEME TOTAL	E * * * * * * * * * * * * * * * * * * *

点間 〈Y〉点程 〈X〉 収表:Δ 点程 〈Y〉点程 〈X〉 平水 コンクリート:Fc=210 Lfc=70.0 主 第:[\$930] rft 長期=1870 短期=2812 (者 道) Lfs= 7.0 フーア:[\$D30] vft 長期=1870 短期=2812 MaL NaS 1 12.9 20.3 1 12.9 20.3 1 GL OE Me Nine OD Oas 0.1 4.4 41.9 5.5 24.9 0e 16.1 (a=1.00) 内性 270.0 2.3 2.4 85.3 3.6 35.5 2.3 85.3 3.5 0a=17.8 (a=1.00) 内世 330.0 OL DE No 119114 OD 0a5 0.1 4.2 41.8 6.3 24.9 0.1 41.8 6.3 24.9 0a* 16.1 (a*1.90) 内法 270.0 2.3 3.0 85.5 4.5 35.5 2.3 85.5 17.8 (a*1.00) 内法 330.0 NS NS Nat MaS 1 35.3 8.4- 14.6 29.8 1 35.5 7.8- 14.6 29.8 1

*** Super Build / SS1 *** [ERLDIA] | 27L -G.F.L R 11 | 1 | B村長 725.0 | NL= 35.3 'et= 7.0 | μ=1.156 | DL DE Mu | 19Mu | DD DAS DAS DE MU | 15 | DL DE MU | 19Mu | DD DAS DE MU | 15 | DL DE MU | 19Mu | DD DAS DE MU | 15 | DL DE MU | 19Mu | DD DAS DE MU | 15 | DL DE MU | 19Mu | DD DAS DE MU | 15 | DL DE MU | 19Mu | DD DAS DE MU | 15 | DL DE MU | 19Mu | DD DAS DE MU | DD DAS DE MU | 15 | DD DAS DE MU

5-7-71 UNION SYSTEM 751221 PAGE- 49

	4.3											ı,	KCE K		3	
		10 Lfc=70												(X)	其点 〈Y〉	15
****** X	方向≠≠≈Υ方		******			******	*****	*****	*****	******	****		***		******	***
ZFL -G.FL		11 節材長	725.0	NL≈			7.0	µ=1,156				1				0.0
	40 * 80			₩Ę_	HL	HE.	M: 1	NS.		Mal		OL GE				
tin 7 [25) (X>性川		-0.2		-19.9	-4.8		27.8-	13.2		1, 1,1 5.			9.1	44.
žH 7-6		25 ! 11#	0.0		3, 8	16.3	4, 3	72. 1	25. 5⊶	13, 2		1 1,1 1 01= 15.1				
7-7' Z-E	010 Z-01	10 1				-21.3	24.7	78.6	49.3-	32.6		1 04- 15-1	# - 1, UU	110	5.3	76
9 6	0 0)(マン技算 性質	0.0	-3. A	0.0		0.0		0.0-	32.6	71.1	3.0, 3. 3.0	95.0		5.2	55.
対抗性項 性質	0 0	全民語	EN 16								1414	Da= 17.9	a=1.00) 内法		
		Aurt.			12T.											
*****	V C		22552*** 226 A	**************************************			7.0	errenas 156.156		********	*******	**************************************	*******	CHER	******	
PFL -G.FL	60 * BO)) 1019 <i>1</i> 2	位置	NE	ML	MÉ			MS	Mat	MaS	OL DE	. Me	กรหน	CD	049
±11 7-0		S K×XEN		0.2		-19.9			27.5~	13.2		1.2 5.			9, 1	
1 7-1		5 1 1			4.0		4.6		25.7-	13.2	29. 1	1.2	46.1		9.1	
2-2			4.4									Da= 15.1			525.0	- 1
,		1445柱頭	0.0	-6. 5	21.4	-2-, 4	24.7	95.0	54. 1-	32.6	71.0	3.0 3.	93.4		8.0	35.
28# 1		i en			0.0	0.0	0.0	80.0	0.0-	32.6	71.0	3.0	98.4		5.0	
拉片		1 全族群									11	Qa= 17.8	α=1,00)	内法	725.0	
*******	これなれなながあると		REPERKE:	******	******		======================================	#####################################		*======	#######		*******	*****	*****	*2*2
FL -G.FL	R 7	】 節材長	725.U	NL=	52.9	ME	WL'			MAL	MAS	OL DE	Mu	nume	OD	QAS
		[(X)投資		-1.7		-20.4			28.4-				5 49 4	******	5.5	24.
	22 7 22	に 1・ヘノセル	0.0	-1, /	3.8	19.1	4.3			13.2		1 1 1			9.5	
注 性 フー D アーフ* 2 - D		01	0.0			23.1	4. 5					Ca# 16.1 (
2-0		(Y>柱規	0.0	-7.5		~Z9, 4	74. 7		56.7-	32.5		3.0 4.			7. 1	35.
		1 柱野	0.0		0.0		0.0	61.4	0.0-		70.9	3.0	98.8		7.1	
												Ge= 17.8 (a #1.001	内法	725.0	
	0 0	全共區	拉贯 16	-D25	在時 16:	725										
拍技 技声	0 0	1 全株日	the Bar	#1 £ 4= 1	.aave											2528
AB在政 住居 ARNING	0 0 G \$5,244	日発全 1	5カのわり	としそ行い	はす。				 +		**************************************					
ABER 住庫 ARNING FL-G.FL	0 0 5 50,244	日内全 1 ・1 7 7 3 入 入村田 1(5力の割り 725.0	せしを行い NL=	はす。				 +		**************************************	icseeseeseses	Mu	esas:	OD	Gas
AB住政 住跡 ARNING FL -G.FL (*DY 4	0 0 S \$0,244 . A 6 10 = 80	日共全 1 ・イブカス 長村名 1(5力の割り 725.0 位置	せしを行い NL=	はす。 42.8	essesses ets	7.0	 	******* #\$		##\$ (25, B	01. 05 1 1.5 4.5	Mu 45.6	esas:	00 7.8	Gas
相路性球 技術 ARNING FL -G.FL (*DY 4 対 7-D	0 0 G 80,244 A 6 10 = 80 025 7-02	「全株国 長位です。」)」 野村長	5力の割り 725.0 位置	せしを行い RESEE NL F NE	はす。 42.8	#E	7.0 ML	μ*1, 156 κς	******* #\$: :::::::::::::::::::::::::::	MaS (01. GE 1.5 4.5	Mu 45.6 45.6	nymu	OD 7.8 7.6	Gas
対応性球 技術 人名NING PFL - G. FL (*DY 4 主関 7-D 主関 7-D	0 0 G \$0,744 . A 6 80 = 80 025 7-02 025 7-02	(全長日 天住です。) (田村長 () () () () () () ()	5力の割り 725.0 位置 0.0	せしを行い RESEE NL F NE	はす。 42.8 ML -5.5	8===== 8t= ME ME	7.0 ML -6.3	**************************************	#5 26, 1	MAL 14.0 14.0	HaS (01. GE 1.5 4.5 1.5 2.5 02 16.1 (Mu 45.6 45.6 45.6	nyMu pytt	0D 7.8 7.6 625.0	0a5 24.
対的性球 住跡 人RNING 2FL -G.FL K*DY 4 注例 7-D 17-7 2-0	0 0 3 \$0,244 80 80 025 7-p2 025 7-p2 010 2-p1	全長日 長柱です。 日村長 日村長 	5力の割り 725.0 位装 0.0 0.0	せしを行い RESEE NL F NE	42.8 #L -5.5 5.2	8===== 8t= ME ME	7.0 ML -6.3 8.0	μ=1,156 NS - 57.6 S7.6	#5 26, 1	MAL 14.0	MaS (29.8)	Ot. GE 1.5 4.5 1.5 0 0 2 16.1 (Mu 6 45.6 45.6 45.6 41.00)	nymo mě	0D 7.8 7.8 625.0	0a5 24.
対的性球 住跡 人RNING ZFL - G, FL (*DY 4 性間 7-D 世間 7-D	0 0 3 \$0,244 80 80 025 7-02 025 7-02 010 2-01 00 6 80	(全長日 天住です。) (田村長 () () () () () () ()	5カの割り 725.0 位変 0.0 0.0	NL# NE 7. 1	42.8 NL -5.5 5.2 17.1	6t= ME -17.1 15.2 -33.4	7.0 ML, -6.3 8.0	*************************************	#5 26,1-+ 23,5->	MAL 14.0 14.0	MaS (25, 8) 29, 8 73, 2 73, 2	Ot. GE 1.5 4.5 1.5 0 0 2 16.1 (Mu 6 45.6 45.6 45.6 41.00)	nymu	0D 7.8 7.6 625.0 8.1	0aS 24.

(BRLDIA) UNION SYSTEM 751221 【RC性 技足計算2】 | OL OE Nu | 22.2 | 0.5 4.5 34.0 | 22.2 | 0.5 5 34.0 | 22.2 | 0.5 5 34.0 | 22.2 | 0.5 5 34.0 | 3.4 0 | 12.0 12.0 53.3 65.7→ 53.3 47.5⊶ N= 61.6 dt=7.0 μ=1.156 N= nL m= nL nS nS1.7 -4.6 ~20.3 ~5.3 73.1 28.7 ~ 4.4 10.9 5.0 73.1 26.5 ~ Mal 13.2 13.2 29.1 WARNING Ko.244 長柱です。50カの町り増しを行います。 Espansoning medical state and the st 9] (報符長 725.0 80 | 位置 7-D25 | (X)社員 C.0 7-D25 | 住置 C.0 2-D10 | 8 60 | (Y)社員 C.0 0 | 住員 C.0 0 | 住員 C.0 [2FL -G.FL C Dx*DY 40 = hal HaS | 13.3 29.2 | 13.3 29.2 | DX=DY 40 = 住間 7-D25 住間 7-D25 フ-フ・2-D10 手 80 野森住権 0 世帯 0 7-7* 2-D10 2-D10 | (Y)性質 0.0 5.4 -21.4 -21.3 -24.7 製品は内 0 0 ! 性質 0.0 0.0 0.0 0.0 0.0 世質 0 0 | 全点質 性質 16-D25 性質 16-D25 WARNING Ko,244 長柱です。反力の割り埋しを行います。 35.5 7.0 u= nl' -4.9 4.6 OL OE Nu nyhu 1.2 5.3 47.7 1.2 47.7 Dax 16.1 (a*1,00) 内法 62 3.0 3.5 97.8 3.0 97.8 P. 1 P. 1 内法 625.0 6.0 5.0 方法 725.0 70.6 27.7→ 70.6 25.6→ 13.3 29.2 1 13.3 29.2 1 35.5

[BALDIR]

5-7-13 Union System 751221 Page- 51

フンクリート: Fc=210 しfe=70.0 出 新: [SD30] rfi 長期=1870 短期=2812 フープ: [5030] vft 長期=1870 短期=2812

点理 (Y) 点理 (X) 限美: 占 点理 (Y) 点键 (X) 平水

(学遊) 社会	3.0 ラーデ: (503	0] v(t 長期=1970 知期=2812	点证(Y)点证(X)平水
7-7* 2-010 Z-010 !	対表 725.0 NL= 61 位置 NE 対 注質 0.0 ~1.7 ~4 注料 0.0 7.5 ~21	.2 -20.3 -4.8 68.5 28.3- .8 18.9 4.3 68.5 26.2- .4 -29.4 -24.7 79.2 58.7→ .0 0.0 0.0 79.2 0.0-	Mal Ma5 OL OE Mo 11/Mu OD Oas 13.3 29.3 1.1 5.4 48.0 5.3 24.9 13.3 29.3 1.1 48.0 5.3 24.9 13.3 29.3 1.1 48.0 5.3 29.3 1.1 48.0 5.3 29.3 1.1 48.0 5.2 7.1 3.0 4.1 98.2 7.1 35.5 32.7 71.1 3.0 4.1 98.2 7.1 35.5 71.1 3.0 96.2 7.1 36.2 7.1 36.2 7.1 36.2 7.5 7.
WARNING No. 244 長柱です	、応力の終り増しを行います。		C P T M C T T T T T T T T T T T T T T T T T
DX*DY 40 80 1 技質 7-D25 7~D25 1(メン) 技術 7-D25 7~D25 1 6 7-フ* 2-D10 2~D10 1 9 80 9 80 1(Y)8	位置 NE NE NE NE NE NE NE NE NE NE NE NE NE	.0 dt × 7.0 µ × 1.155 L ME ML NS MS .4 -17.0 -5.2 56.7 25.9 → .1 15.1 5.8 56.7 23.3 → .1 -33.4 -19.7 58.3 58.3 → .0 0.0 0.0 58.3 0.0 →	HaL HaS ! OL DE Hu nºHu OP OAS 14.0 29.8 ! 1.5 4.5 45.5 7.8 24.9 14.0 29.8 ! 1.5 45.5 7.8 Da* 16.1 (a=1.00) 内法 625.0 34.6 73.3 ! 2.4 4.7 \$1.5 6.1 35.5 34.6 73.3 ! 2.4 91.5 8.1 Oa= 17.8 (a=1.00) 内法 725.0

5-8 H₂ GAS GENERATOR ROOM

CONTENTS

	Page
§1 GENERAL	8- 1
1.1 OUTLINE OF BUILDING	8- 1
1.2 APPLICABLE CODES AND STANDARDAS	8- 2
1.3 STRUCTURAL MATERIALS TO BE USED AND ALLOWABLE UNIT STRESS	8- 2
1.4 LOAD COMBINATION	8- 6
1.5 DESIGN LOAD	-/ 8- - 7
§2 DESIGN OF SECONDARY MEMBER	8-12
2.1 DESIGN OF BEAM	8-12
2.2 DESIGN OF SLAB	8-13
§3 DESIGN OF FOUNDATION GIRDER	8-14
§4 DESIGN OF FOUNDATION	8-16
§5 DESIGN OF MAIN MEMBER (STEEL STRUCTURE)	8-18

 \bigcirc

§1 GENERAL

1.1 OUTLINE OF BUILDING

1) Name of building

Ho GAS GENERATOR ROOM

2) Building dimensions

(1) Building area : 45.0 m²

(2) Total floor area : 45.0 m^2 Ground floor area : 45.0 m^2

(3) Maximum building height: 5.35 m

(4) Building volume storey: 240. 75 m³

(5) Number of story : 1

3) Weight of building 63.72 t

Superstructure : 39.77 ^t

Substructure : 103.49 t

Total weight

4) General design conception

Design calculation to be analyzed as rigid frame with taken design rigidity of foundation girder into considenation.

Stress analysis to be used by Electric computer with stiffness matrix method.

- 1.2 APPLICABLE CODES AND STANDARDS
 - 1) For design and allowable stress of structural materials

Reinforced concrete structure

AIJ : "Standards for calculation of reinforced concrete structures"

Foundation

AIJ : "Standards for structural design of building foundation"

* AIJ : Architectural Institute of Japan

- STRUCTURAL MATERIALS TO BE USED AND ALLOWABLE UNIT STRESS 1.3
 - Qualities of materials 1)

Concrete ; Comperessive strength of 28 days

 $Fc' = 210 \text{ kg/cm}^2$

Reinforcement; Deformed reinforcement

ASTM A615 Grade 40

 $fy = 2.812 \text{ kg/cm}^2$

2) Physical constants for structural materials Modulus of elasticity

Concrete

. 210 t/cm²

Reinforcement 2100 t/cm²

Control of the second of the second

3) ALLOWABLE UNIT STRESS

i) Allowable Unit Stress of Concrete (kg/cm²)

T		stresses	Perma	nent St	resse	S		Temporary Stresses		
	Materials		Compress	Shear	A	Bond B	С	Compress	shear	Bond
	Normal concrete Fc-210	Plain bar Deformed bar	70	7.0	1 1	12.6 21.0	i I	Permanent Stresses x 2.0		ses

* Remarks A ; Top bar of flexural members

B : Bar, except "Item A", of flexural members

C : Anchors and lap splices

ii) Allowable Unit Stress of Reinforcing Bars (kg/cm²)

Stresses	Permanent S	tresses	Temporary Stresses		
Materials	Tension Compression	Shear Reinforcement	Tension Compression	shear Reinforcement	
Deformed bar ASTM A615	1,870	1,870	2,812	2,812	

iii) Allowable Unit Stress of Steel (kg/cm²)

	and the second of the second o	• • • • • • • • • • • • • • • • • • • •
	For General Structures	For Welded Structures
Type of Steel	SS 41	SM 41
Thickness net more than 40 mm t \(\frac{4}{2} \) 40 mm	2.4	2.4
Thickness more than 40 mm t > 40 mm	2.2	2.2

iv) Allowable Strength per Medium Bolts (Bearing Type)
 Medium Bolts (Unfinished Bolts)

Appli- cation	Materials	Bolt Nominal Dia.	Dia. of Bolt Hole (mm)	Bolt Gross Area (cm ²)	Permand Shead Single Shear	ent Stren r (f) Double Shear	gth Tension (t)	Temporary Strength (t)
	SS41	M12	12.5	1.13	1.02	2.03	1.36	
		- M16	16.5	2.01	1.81	3.62	2.41	
ļ	:	M20	20.5	3.14	2.83	5.65	3.77	Permanent
	į	M22	22.5	3.80	3.42	6.84	4.56	Strength
	į	M24	. 24.5	4.52	4.07	8.14	5.42	x 1.5

()

()

v) Allowable Strength per High Strength Bolt (Friction Type) High Strength Bolts

			* *						
Appli-	Materials	Bolt Nominal	Dia. of Bolt Hole	Bolt Effective	Bolt Allowable	Perm Shear	anent Str (t)	ength	Temporary
cation		Dia.	(mm)	Area (cm ²)	Tensile Stress	Single Friction	Double Friction	Tension (t)	Strength (t)
	Flor	M 16 M 20 M 22 M 24	17.5 21.5 23.5 25.5	1.52 2.38 2.95 3.42	10.3 16.1 20.0 23.1	3.02 4.71 5.70 6.78	6.03 9.42 11.40 13.60	i · · ·	Permanent Strength
	FllT	M 16 M 20 M 22 M 24	17.5 21.5 23.5 25.5	1.52 2.38 2.95 3.42	10.9 17.0 21.1 24.4	3.22 5.02 6.08 7.23	6.43 10.00 12.20 14.50	6.63 10.40 12.50 14.90	x 1.5

vi) Allowable Unit Stresses in Welded Joints (t/cm2)

Appli-	Stresses Welding	:	Permane	ent Stres	ses		Temporary
cation	Positions	2.1	Croove	Weld		Fillet	Stresses
1		Tension	Compress	Bending	Shear	Weld	
	SS 41 (1)	1.60	1.60	1.60	0.92	0.82	Permanent
	SM 41 (2)	1.44	1:.44	1.44	0.83	0.83	Stresses x 1.5

- (1) Flat or horizontal
- (2) Overhead or verfical

1.4 LOAD COMBINATION

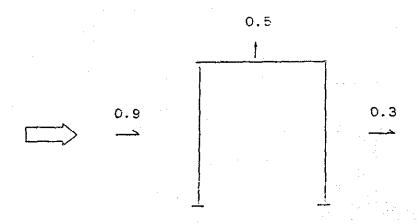
- Load combination for steel and concrete structure
 Long term loading
 - i) D.L+L.L+M.L+C.L

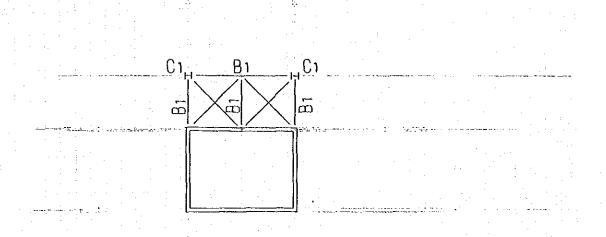
Short term loading

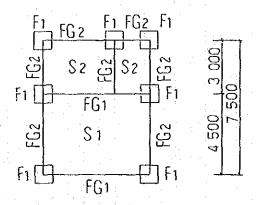
- i) D.L+L.L+M.L+C.D+W.L
- ii) D.L+L.L+M.L+C.D+S.L

where;

- D.L ; Dead load
- L.L ; Live load and over burden load
- M.L ; Machine load
- C.L ; Crane operation load
- C.D.L ; Crane dead load
- W.L ; Wind load
- S.L ; Seismic load


【閲定	LOAD () 荷宜]			
ROOM NAME R LOCATION	FIGURE (mm)	MATERIALS (THICKNESS-mm)	WEIGHT (kg/m2)	TOTAL
ROOF	900 C. A.C.S	C.A.C.S PURLIN SUB BEAM & BRACING EQUIPMENT	15 12 10 5	1 45
1F FLOOR	30	MORTAR (30)		540
1F FLOOR	300	MORTAR (30) CONCRETE SLAB (300)	60 720 780	- →780
CONCRETE WALL 200	25H 200 H 25	CONCRETE (200) MORTAR EXT (25) INT (25)	50	580


WIND LOAD


1) Velocity Pressure

$$0 \sim 10 \text{ m}$$
 150 kg/m^2 $10 \text{ m} \sim 45 \sqrt{n}$

2) Wind Coefficient

4 000 ₁2 000 6 000

S. C.

					•															-							1						{	3-	10	
0.0	2		밁	45		890	1130																													
GER LOAD	kg/m,	SEISMIC	LL PHL	-	•••	350:	350							•••			•••										• • • •				.,,				•••	• • •
PIPE HANGER TOTAL FLOOR	Unit:		DI.	45:		540	780						***	•••		•••		•••	•••	•••	•••	•••		***			•••	***		••••					•••	•••
PIPE TOTA			TL	75		830	1130		Ì		Ì														Ì									Ì		
LOAD PHL		LUMN &	סב : דר אור	5 45: 30:		540; 350;	780: 350:																						•							
DEAD LO			L TL	75		830	1130	1			 	 -		<u> </u>																						
		الشاا	ביב שווני	30:	ļ	350	350			-	ļ				ļ	•••					•••		•••				•••				;	•••		 	•••	
DE			DĽ.	45:		540:	780:										•••		••••			•••	•••	•••		••-	•••	•••	•••			•••			•••	
NOTE:			1.0	75		830	1130																					-								
		GIRDER	DE LE PIIL	45: 30:	 	540: 350:	780: 350:																	•••	•••									•••		
		-	11.	75)	1040	1280	-							-	<u></u>	<u>!</u> 			! 																
		SLAB	LI	30		200	500				<u> </u>			<u> </u>															<u>. </u>							
			OL	45		540:	780:																													
	FLOOR LOAD [設計用床荷币]			ROOF		F100R	FLOOR																					•								
		LOOR		· · · · · · · · · · · · · · · · · · ·	·			1					-	d-11																						

4

()

	SHEET 8-11 OF
SEISMIC LOAD	
【地震荷重】	
ITEM	CALCULATION
2 2 20 4	OKBOODATION
TOWN ELOMOD (T)	
ZONE FACTOR (Z)	Z = 1.0
STANDARD SHEAR	
COEFFICIENT (Co)	Co = 0.15
GROUND CONDITION (Tc)	Tc = 0.6
CROOME COMPILION (10)	20 - 0.0
77 - 13	
Hard	Tc = 0.4
Medium	Tc = 0.6
Soft	Tc = 0.8
DIRECTION	X DIRECTION Y DIRECTION
	(x, y, y, y, y, y, y, y, y, y, y, y, y, y,
NATURAL PERIOD	
OF BUILDING	T = 0.107 $T = 0.107$
(T)	. 0,101
	Langth of Span De milioneth of Charles
	Length of Span D= m Length of Span D= m
$T=(0.01*\alpha +0.02)*h$	
$T=0.05*h/4\sqrt{D}$	
T=h/70	
CHARACTERISTICS OF	
VIBRATION OF	$Rt = 1.0 \qquad Rt = 1.0$
THE BUILDING (Rt)	
	T Rt T Rt
Rt=1	= 1.0
	Tc - Tc -
Rt=1-0.2*(T/Tc-1)^2	
RC-1-0.2-(1/10-1/.2	
,,,,,	2*Tc - 2*Tc
Rt=1.6*Tc/T	
2*T/(1+3*T)	= 0.162
SEISMIC LOAD	ROOF 0,045 x 6.0 x 7.5 = 2.03 x
FOR EACH FLOOR	WALL 0,58 x { (4,5460) x Z+50/2+30 x Z 0/2 } = \$2.191
(Qi)	Σ=34.22 ⁴
STORY	
	34.22 1.0 1.0 0.1 3.42 34.22 1.0 1.0 0.1 3.42
and the second s	tarres de la la lacia de la lacia de la lacia de la lacia de la lacia de la lacia de la lacia de la lacia de l
HIR GATT TRAKE (III. 1996)	
and the second of the second o	
	Leggerate with the street of the legger to t
10 10 10 10 10 10 10 10 10 10 10 10 10 1	
	O OF THE HEIGHT OF WHICH STRUCTURE IS STEEL
NOTE: \alpha RATIO	
NOTE: α RATIO	IST THE BUILDING HEIGHT h
NOTE: α RATIO AGAIN α i = Wi/ Σ W	IST THE BUILDING HEIGHT h
NOTE: α RATIO AGAIN α i = Wi/ Σ W	IST THE BUILDING HEIGHT h $1/\sqrt{\alpha 1} - \alpha 1)*2*T/(1 + 3*T)$

XX XX

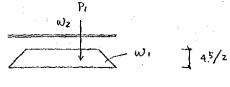
NOTATION: RA,RB,RC --- SUPPORT REACTION OF LEFT, CENTER AND RIGHT END

Mmax --- MAXIMUM BENDING MOMENT (tm)

Z,As --- SECTION COEFFICIENT, AREA FOR SHEAR (cm3,cm2)

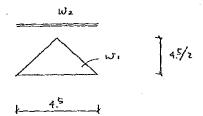
fb,fs --- ALLOWABLE STRESS FOR BENDING AND SHEAR (t/cm2)

G b,t --- STRESS OF BENDING AND SHEAR (t/cm2)


ô --- DEFLECTION (cm) L --- SPAN LENGTH (cm)

SIGN	LATION SHE				8-13
DIRECTION	SHO		S ₁	1.010	·
POSITION	END	CENTER	TALL	LONG	uann.
l (m)			END	·	NTER
<u> </u>	4.5	₹		6.00	
	0.071		0.5/	1,33	
α (*/ -1)		0.043	0.056		028
w (t/m²)	0.48 +			1, 04	
M (t.m)	1,50	0,91	1,18		59
t (cm)	20			20	
d (con)	17			16	
at (cal)	5.04	3.06	4. ^{Z1}		2.11
REINFORCED CONCRETE	#3, #4 @ 150	#3. #4@ 150	#3 @ 150	+	# 3 , 0 !!
CONCRETE		•			
	$\left \frac{1}{1 + 0.02} \times \left(\frac{1.33 - 0.7}{1.33 - 0.6} \right) \times \left(1 + \frac{1}{1 + 0.02} \right) \right $	560 450) 450			
	[20,92x(\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1000 1000 / 430			
	= 15.61				
REMARK		•	1		
	1				
•					
				· · ·	
SIGN			S z		
DIRECTION	SHO	RT	S z	LONG	
DIRECTION POSITION	END	R T CENTER	S 2 END	CE	NTER
DIRECTION POSITION £ (m)	i	R T CENTER		CE	NTER
DIRECTION POSITION	END	R T CENTER	END	CE	NTER
DIRECTION POSITION L (m) L A	END 3.04 1,33	RT CENTER		CE 4.°° 1.33	NTER oz8
DIRECTION POSITION £ (m) \$\lambda\$	END 3.00 1.33 0.071 0.72 + 0.	RT CENTER 0 3 0.043 56 = 1.28	END	4.00 1,33	
DIRECTION POSITION L (m) L A	END 3.04 1,33	RT CENTER	END	4.00 1,33 0	
DIRECTION POSITION L (m) A C K (t/m')	END 3.00 1.33 0.071 0.72 + 0.	RT CENTER 0 3 0.043 56 = 1.28	END 0,056	4.00 1,33 0	028
DIRECTION POSITION \$\ell\$ (m) \$\lambda\$ \$\alpha\$ (t/m') M (t,m)	END 3.04 1,33 0,071 0,72 + 0. 0.82	RT CENTER 0 3 0.043 56 = 1.28	END 0,056	CE 4.°° 1.33 0.1.28	028
DIRECTION POSITION L (m) A C W (t/m') M (t.m) t (cm)	END 3.09 3.09 1.33 0.071 0.72 + 0. 0.82 30	CENTER CENTER 0 3 0.043 56 = 1.28 0.50	0.056 0.65	CE 4.°° 1.33 0. 1.28 0	028
DIRECTION POSITION L (m) A C W (t/m') M (t.m) t (cm) d (cm) at (cm)	END 3.09 1,33 0,071 0,72 + 0. 0,82 30 27	RT CENTER 0 3 0.043 56 = 1.28	END 0,056	CE 4.°° 1.33 0. 1.28 0. 30 26	0.70
DIRECTION POSITION L (m) A A K (t/m') M (t.m) t (cm) d (cm)	END 3.09 1,33 0,071 0,72 + 0. 0.82 30 27	RT CENTER 0 3 0.043 56 = 1.28 0.50	0,056 0,65	CE 4.°° 1.33 0. 1.28 0. 30 26	0.70
DIRECTION POSITION £ (m) A A H (t/m') M (t.m) t (cm) d (cm) at (cm) REINFORCED CONCRETE	END 3.0° 1,33 0,071 0,72 + 0, 0.82 30 27 1,74 \$\$5	CENTER CENTER 0 3 0,043 56 = 1.28 0.50 1.06 #5 @ 200	0,056 0,65	CE 4.°° 1.33 0. 1.28 0. 30 26	0.70
DIRECTION POSITION £ (m) A A H (t/m') M (t.m) t (cm) d (cm) at (cm) REINFORCED CONCRETE	END 3.09 1,33 0,071 0,72 + 0. 0.82 30 27	CENTER CENTER 0 3 0,043 56 = 1.28 0.50 1.06 #5 @ 200	0,056 0,65	CE 4.°° 1.33 0. 1.28 0. 30 26	0.70
DIRECTION POSITION £ (m) A A H (t/m') M (t.m) t (cm) d (cm) at (cm) REINFORCED CONCRETE	END 3.0° 1,33 0,071 0,72 + 0, 0.82 30 27 1,74 \$\$5	CENTER CENTER 0 3 0,043 56 = 1.28 0.50 1.06 #5 @ 200	0,056 0,65	CE 4.°° 1.33 0. 1.28 0. 30 26	0.70
DIRECTION POSITION £ (m) A A H (t/m') M (t.m) t (cm) d (cm) at (cm) REINFORCED CONCRETE	END 3.00 3.00 1.33 0.071 0.72 + 0. 0.82 30 27 1.74 \$\$5 \text{ e zoo}\$ $t=0.02 \times \left(\frac{1.33-0.7}{1.33-0.6}\right) \times \left(1+\frac{1}{1}\right)$	CENTER CENTER 0 3 0,043 56 = 1.28 0.50 1.06 #5 @ 200	0,056 0,65	CE 4.°° 1.33 0. 1.28 0. 30 26	028

()


73.1 DESIGN OF FOUNDATION GIRDER

FG1

$$W_2 = 0.58 \cdot 5.0 + 2.4 \cdot 0.35 \cdot 0.9 + (0.045 + 0.03) \times 4.5/Z = 3.82$$

F62

$$W_1 = 0.98 \quad \frac{1}{2} \quad W_2 = 0.58 \times 5.0 + 2.4 \times 0.35 \times 0.7 = 3.49 \quad \frac{1}{2}$$

$$\frac{\omega_3}{\omega_2} \qquad \qquad \int_{\omega_2}^{\omega_3} \frac{3.0/2}{2.0/2}$$

$$\omega_1 = 1.28 \quad t_{m^2}^2 \qquad \omega_2 = 0.98 \quad t_{m^2}^2$$

FG1
$$\begin{pmatrix}
C_L = 18.80 & C_R = 21.04 \\
M_0 = 30.29 & Q_R = 18.95
\end{pmatrix}$$

(17.27)

1 (18.95)

CEND =
$$8.7^3$$
 $0 = 16.0^7 \text{ cm}^2 \rightarrow 5 - \#7$

CCENTER = 12.5^6 $0 = 23.1^4 \text{ cm}^2 \rightarrow 6 - \#7$
 $12.5^6 \rightarrow 17.7^9 \rightarrow 18.9^5 \rightarrow 17.7^9 \rightarrow 100$

$$\begin{cases}
C = 8.21 \\
M_0 = 12.55 \\
0 = 10.33
\end{cases}$$

()

(10.33)

CEND =
$$5.91$$
 $Qt = 8.36 \text{ cm}^2 \rightarrow 3-77$

CCENTER = 9.03 $Qt = 12.78 \text{ cm}^2 \rightarrow 4-77$
 $fs \cdot b \cdot j = 13.57$ > 10.33 $2-43 = 200$

4.1 LOADING DATA FOR DESIGN OF FOUNDATION

(2-B)

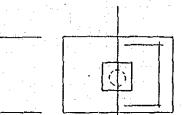
FLOOR
$$(1.13 + 1.50) \times 3.0 \times 4.0 \times 1/4 = 7.89$$

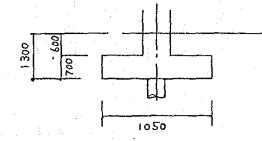
FLOOR
$$(0.89 + 0.30) \times 6.0 \times 4.5 \times 1/4 = 8.03 + 1.00$$

WALL
$$0.58 \times 5.0 \times (4.5 + 6.0)/2 = 15.23 \pm$$

1/Pile

j = 7/8d =


CM,


4.2 DESIGN OF FOUNDATION

(6-#4)

OUTLINE OF FOUNDATION

RC-	Pile
1-	450

Foundation weight

$$Nf = 2.0 \times 1.05 \times 1.05 \times 1.3 = 2.87$$

LOADING

)

	N (t)	Hx (t)	Hy (t)
D.L	31.99		
L.L	Ì		
S.Lx			
S. Ly			
W.Lx			
W.Ly			

Stress at bottom of foundation

CHECK OF BEARING PRESSURE

Check of Pile Reaction

$$P_1 = 34.86 \text{ t/pile} < 35$$

DESIGN OF FOOTING

Factored	Load		Pile R	eaction
Load case	ΣN (t)	ΣM (t,m)	P1 (t/n)	P1' (t/n)
D.L+ L.L	31.99		34.86	31.99
D.L+ L.L+W.L				·.
D.L+ L.L+S.L				
D.L+ W.L				

Stress

Reinforcement

- MF =

$$D = cm, d =$$

$$nec At = \frac{MF}{ft \cdot j} =$$

$$\phi = \frac{\mathbf{u}}{\mathbf{f}\mathbf{a} \cdot \mathbf{j}}$$

0

N,M,Q --- AXIAL FORCE(t), BENDING MOMENT(tm), SHEAR FORCE(t)

A,I,Z --- SECTION AREA (cm2), GEOMETRY MOMENT OF INERTIA (cm4), SECTION MODULUS (cm3)

A.STRESS --- ALLOWABLE STRESS

1,77 --- CONSTANTS FOR DECISION OF ALLOWABLE BENDING STRESS

imin --- MINIMUM RADIUS OF GYRATION (cm)

λ b, λ c --- SLENDER RATIO FOR BENDING MOMENT AND COMPRESSION

fb.fc --- ALLOWABLE STRESS FOR BENDING AND COMPRESSION (t/cm2)

5-9. FUEL OIL TRANSFER PUMP AREA

CONTENTS

§1 GENERAL	
1.1 OUTLINE OF BUILDING	t
1.2 APPLICABLE CODES AND STANDARDS	3
1.3 STRUCTURAL MATERIALS TO BE USED AND ALLOWABLE UNIT STRESS	3
1.4 LOAD COMBINATION	5
1.5 DESIGN LOAD	6
§2 DESIGN OF SECONDARY MEMBER	
2.1 DESIGN OF BEAM	10
2.2 DESIGN OF SLAB	12
§3 DESIGN OF FOUNDATION	13
§4 OUT PUT DATA	15
(DESIGN OF MAIN MEMBER)	

§1 GENERAL

1.1 OUTLINE OF BUILDING

1) Name of building
FUEL OIL TRANSFER PUMP AREA

2) Building dimensions

(1) Building area : 40.0 m^2

(2) Total floor area : 40.0 m^2

Ground floor area : 40.0 m²

(3) Maximum building height: 4.0 m

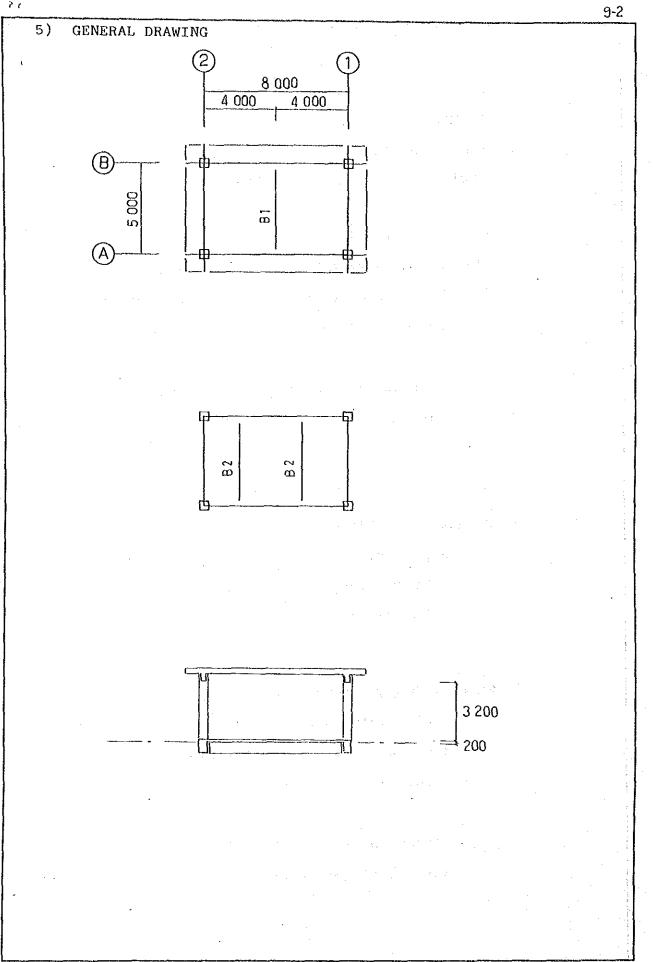
(4) Building volume storey : 163.0 m^3

(5) Number of story : 1

3) Weight of building

 (\cdot)

Superstructure : 73.6 t


Substructure : 59:14 t

Total weight : 132.74 ^t

4) General design conception

Design calculation to be analyzed as rigid frame with taken design rigidity of foundation girder in to considenation.

Stress analysis to be used by Electric computer with stiffness matrix method.

- 1.2 APPLICABLE CODES AND STANDARDS
 - 1) For design and allowable stress of structural materials

Reinforced concrete structure

AIJ : "Standards for calculation of reinforced concrete structures"

Foundation

AIJ : "Standards for structural design of building foundation"

- * AIJ: Architectural Institute of Japan
- 1.3 STRUCTURAL MATERIALS TO BE USED AND ALLOWABLE UNIT STRESS
 - 1) Qualities of materials

Concrete; Comperessive strength of 28 days

 $Fc' = 210 \text{ kg/cm}^2$

Reinforcement; Deformed reinforcement

ASTM A615 Grade 40

 $fy = 2,812 \text{ kg/cm}^2$

2) Physical constants for structural materials Modulus of elasticity

Concrete

210 t/cm²

Reinforcement

2100 t/cm²

3) ALLOWABLE UNIT STRESS

i) Allowable Unit Stress of Concrete (kg/cm²)

·	stresses	Perma	nent St	resse	s		Temporary	/ Stress	ses
	es e	Compress	Shear		Bond		Compress	shear	Bond
Materials				Α	В	C			
Normal concrete Fc-210	Normal Plain bar concrete Deformed		7.0		12.6 21.0		Permanent Stresses x 2.0		ses

* Remarks

11

A ; Top bar of flexural members

B : Bar, except "Item A", of flexural members

C : Anchors and lap splices

ii) Allowable Unit Stress of Reinforcing Bars (kg/cm²)

Stresses	Permanent S	tresses	Temporary S	tresses
Materials	Tension Compression	Shear Reinforcement	Tension Compression	shear Reinforcement
Deformed bar ASTM A615 Grade 40	1,870	1,870	2,812	2,812

1,4 LOAD COMBINATION

- Load combination for steel and concrete structure
 Long term loading
 - i) D.L+L.L+M.L+C.L

Short term loading

- i) D.L+L.L+M.L+C.D+W.L
- ii) D.L+L.L+M.L+C.D+S.L

where;

D.L ; Dead load

L.L ; Live load and over burden load

M.L ; Machine load

C.L ; Crane operation load

C.D.L ; Crane dead load

W.L ; Wind load

S.L ; Seismic load

			SHEET	<u>9-6 of</u>	
DEAD 1	IGN LOAD				The state of the s
同定で ROOM NAME R LOCATION	可限」 FIGURE (mm)		MATERIALS (THICKNESS-mm)	WEIGHT	TOTAL
ROOF		30 30 30 20 20	CONCRETE BLOCK (30) SAND (30) INSULATION (40) ASPHALT W/PROOFING (20) CONCRETE SLAB (120) CEILING		→ 460
1F FLOOR MACHINE ROOM)		30	MORTAR (30) CONCRETE SLAB (150)	60	 420
CONCRETE BLOCK WALL	23 25		C.B (150) MORTAR EXT (25) INT (25)		300
		-			
PARAPET	24 150 12 150	600	CONCRETE (200) ASPHALTW/PROOFING (20) MORTAR (55)	14	→ 370

FIGURE	,小梁·基礎 NAME FLOOR	SIZE	<u> </u>	w (t	/m)	Σω	REMARK
		В	D	CONC.	FINISH	(t/m)	KEMARK
							i
	COLUMN	500	500	0.60	0.20	0.80	
D					:		<u> </u>
	GIRDER	350	600	0.50		0.50	
В							
	FOUNDA TION	350	700	0.59		0.59	
THICKNESS OF	TION GIRDER					0.00	<u> </u>
FINISHING t = mm	BEAM	3 0 0	500	0.36		0.36	<u> </u>
UNIT WEIGHT OF		· 					<u> </u>
$FINISHING \\ w = t/m3$		300	600	0.43		0.43	<u> </u>
							1
						:	
							<u> </u>
							
				<u> </u>			-
							<u> </u>
						<u> -</u>	<u> </u>

NOTE: NAME --- COLUMN, GIRDER, BEAM OR UNDERGROUND BEAM SPECIFIC GRAVITY OF REINFORCED CONCRETE IS 2.4 t/m3.

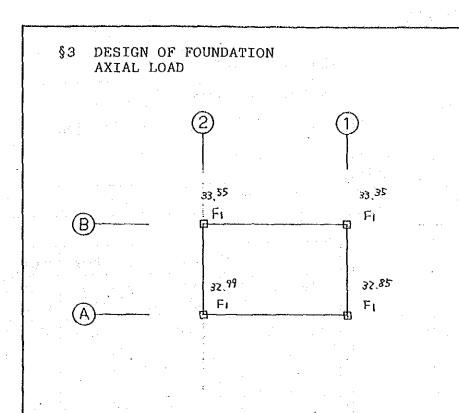
																																				9-	8	
7.0			7	490		770		Ī	Ī		Ī	Ī															Ī							2 2				
SOR LOAD	kg/m;	SEISMIC	CL PHL	30		350													•••			•	18) 1												1 -			
TOTAL FLOOR	Unit:		 2	460 :		420									•••			•••	•••		•				•••	•••	•••		•••	••••					•••			!
TOTA	,	1	11.	520	-	2,70		1			1	1																										-
 		& FOUND	111	<u> </u>			j	j	1	1	1		_									-																
TL	, -			09		350							•••		•••			••	••••	•••						•••		•••									•••	
19	•	COLUMN	DĽ	097		420 :									•••												•••			'''			;					
LOAD	•		T	520		770			j		Ì														Ī			•										Ī
LIVE		ΜM	PHL								-	Ì																										
1		1123	LL	9	1	350																																
11			DI	450		750														_																		
1			TL	520	;	770																																
		GIRDER	PHL								•••		ļ	ļ 		ļ	 			ļ	 		 	 		ļ 						ļ	ļ		ļ 		 	
		GIF	LL	g	.]	350							ļ	ļ			\ \			ļ.,	ļ												ļ,					
		_	II.	460	+	420								ļ. Ļ.	<u> </u>	-					_				<u> </u>			_		_	<u> </u>			-	_	_	<u> </u>	
		8	TL	520	 -	920	-						_	-						<u> </u>				_				_				<u> </u>	_	\ \-		 -	-	
		SLAB	77	00		09: 500		 			•••	ļ 		ļ						 							ļ	ļ										
			DI.	460:		420:	-										L				<u> </u> -	_		<u> </u>	<u> </u>				<u> </u>	-		-				<u> </u> _		
	FLOOR LOAD	ROOM NAME		ROOF		FLOOR			<i>J</i>																													
	ļ14	FLOOR											<u> </u>	<u> </u>			_		<u> </u>	<u> </u> _	<u> </u>	<u>l</u> .		_									<u> </u>		<u> </u>	1		-

7.5

4

()

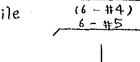
		·		·				SHE		JUF	
$\gamma_{ij} = I(s)$	÷	-									
	1 3										
SEISMIC	LOAD								. :		
【地震荷言	⊉]										
					A)	LCULA	TON				·
	:				011		12011	•		•	
		<u> </u>				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
ንርእነድ ምአመመሰው <i>!</i>	7 \					~ 4	<u>.</u>				1
ZUNE FACIOR (6)	: '		4,		Z = 1	. 0				
					· · ·				· ·		
	CIENT (Co) CONDITION (Tc) Rard Medium Tc: Soft TC: Medium Tc: Soft TC: Non AL PERIOD CIDING (T) Cigh h= m										
STANDARD SHEAD	₹										
COEFFICIENT (Co)	. :				Co = 1	0.1				
•											
					··			~ ~~~~			
GROUND CONDIT	TON (TO)					TC = (0.00				
Choon Condi	1011 (10)		,			1 - · ·	יטטיכ				
											
ļ						Tc = 1					· · · · · · · · · · · · · · · · · · ·
			· · ·			Tc =		12			·
	Soft		·			Tc = 0	0.8		<u> </u>	· ·	
DIRECTION	÷	j	X D	IRECT	ION	j		A. D	IRECT	ION	
		{ ,) }	(}
NATURAL PERIO	D									· ———	·
OF BUILDING		}		T = 0	080			er ji ta gi	T = 0	กลก	
	•	}		÷	000				÷, 0,	000	
	TD	Lone	+b af	Chan	D	הו	Long	th of	Cnon	D	
		Leng	00	Shen		111			30411	D-	m
		- U. U	100				= 0.0	ייסט.			
	<i>[</i>]] . 									
T=h/70		<u> </u>			·		=			:	·
CHARACTERISTI	CS OF	(
VIBRATION OF		į.	Rt =	1.0				Rt =	1.0		
THE BUILDING	(Rti)								-		
			T		Rt			T	<u> </u>	Rt	
Rt=1		1		= 1.0				·	= 1.0		
		Τ		[······		Tc				••••
Rt=1-0 2*(T/T	c-il-2								==	********	
	·····	D*T~				• • • • • • • • • • • • • • • • • • • •	2*Tc				
Rt=1.6*Tc/T		2.10					21.0				
KC-1.6-1C/1		1		<u> </u>				<u></u>	<u> </u>		
		1	^^							1 1	
2*T/	(1+3*T)	= U.1	29				j = 0.1	129			
		<u> </u>	,				<u> </u>				
SEISMIC LOAD		i								:	
FOR EACH FLOO	R									11	
(Qi)		i :					<u> </u>				
	STORY	Wi	ci	Ai	Ci	Qi	Wi	ci	Ai	Ci	l Qi
į		59 32	i i n	110			59.32	110	î l n		15.9
		100,06	,		' 	1-0,00	1 22.02	<u> </u>	<u> </u>		1
		1	<u> </u>	!			 		 	 	-
	<u> </u>	}	<u> </u>	1		1	 	1	 	<u> </u>	1
		 	1	<u> </u>	 	1	 	1	1	1	1
		ļ	<u>!</u>	<u>}</u>	1	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	-
	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u>ļ</u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	1:
		1	i	<u></u>	<u> 1</u>	<u>i </u>	<u> </u>		1	<u> </u>	<u> </u>
:"			!	Ĺ	<u> </u>	<u>l</u>	<u> </u>	1		<u> </u>	<u>t</u>
			;	1	Ī		i .	i	1	1	1
		1		}	T	1	<u> </u>	1	<u> </u>	T	1
NOTE: α -	<u>ሕኒጥፕ</u> ሶ	, 102 T	ur ur	TGHT	OF W	TCH S	TOURT	י יאוי	SSTE	EL	
U								ف سنجرت			
State of the second			ב סטב	نا ۱۱ ۱۲ لامد.	'urit	301 H				. •	* · · · · · · · · · · · · · · · · · · ·
. Al	= 1 + (1 = Z*Rt*A	// c	0	(1)*2	(*T/(]	! + 3*	I)				
	~ + ~ + *	- + -									

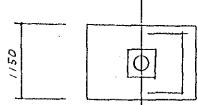

T			Y	·		9-10
ИО	SPANin	LOADING CONDITION	Ctm	Moth	Qot	Nember
1	5.0	$w_1 = 0.52 \text{ fm}^2$ $w_2 = 0.36 \text{ fm}$	3,97	6.23	4.02	
:		ν _λ				
2	2′0	3.5/z 2.5/z	6.82	10.26	6.65	
		$W_1 = 0.77 t/m^2 \qquad W_2 = 0.43 t/m$ $P_1 = 1.^2 + 2.4 \times 0.5 \times 1.0 \times 1.7 = 2.64 t$				
			· ·			
	į					

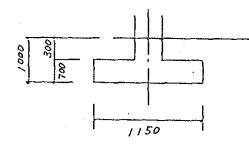
·		s	HEET 3410F
DICISION OF BEAM SEC	TTON ()		
[小梁の防画复定]	TION (
NUMBER B1	B 2 ,		
LOCATION E C E	E C E	E C E	<u> </u>
b x D (cm) 30 * 50	30 (60	<u> </u>	E : C : E
d [j] (cm) 43 (37.63)	53 (46,38)	·	
bxd^2(cm3) 55470	84270	······································	
M (tm) U 2.38 : 2.38	4.09 : 4.09		
L : 4.84 :	7.87		
Q (t) [4.02] 4.02	6.65 : 6.65		
(kg/cm ²) 4. ²⁹ 8. ⁷³	4 85 9 34		
1 1 N9/ Cm2/ 1	4.** 4.**		
Pt (%)			
	and the second of the second		
at (cm2) 3.38	4,72	: : :	-
(.88	9.07		
ψ (cm)			
n e e e e e e e e e e e e e e e e e e e			
min at(cm2)			
Q/bj. 3.56	4.78		
Pw (%) 0.20	_{0.} 20		
STIRRUP 0 113 @ 200	D #3 @ 200		
	3-46:2-46:		
[2- #6:3- #6:	2-76:3-46: 1		
RE-BAR			
ARRANGEMENT			
NOTATION: b,D WIDTH, DI			
d DISTANCE BY		RE-BAR AND COMP	RESSION END
U,L UPPER SII			
M, Q BENDING 1			
Pt TENSILE RI	E-BAR RATIO; = a	at/(bxd)	:
at SECTION A	REA OF TENSILE I	RE-BAR	

ψ --- REQUIRED CIRCUMFERENCE OF MAIN RE-BAR; = Q/faj
fa --- ALLOWABLE BOND STRESS (t/cm2)
n --- REQUIRED NUMBER OF MAIN RE-BAR
Pw --- STIRRUP RATIO; = aw/(bxX)
aw, X --- SECTION AREA OF A SET OF STIRRUP (cm2), PITCH OF STIRRUP (cm)

							•					.]
			2		the second							
											9	}
MAIN		D16	D19	D22	D25 D	29	STIRRUP	[D10	D10	D13	D13
BAR	2	3.98	5.74	7.74	10.1412	. 84			@200	@150	@200	§150
at	3	5.97	8.61	11.61	15.2119	. 26	Pw	30	0.237	0.316	0.423	0.564
(cm2)	4	7.98	11.48	15.48	20.2825	. 68	(%)	35	0.203	0.270	0.363	0.484
1	5	9.95	14.35	19.35	25.3532	. 10	•	40		0.237	0.318	0.423
	6	11.94	17.22	23.22	30.4238	.52		4.5	-	0.210		
	7	13.93	20.09	27.09	35.4944	. 94		50	i –	i - i).254	0,339


SIGK		5	31	
DIRECTION	SHO			ONG
POSITION	END	CENTER	END	CENTER
l (m)	4.			OCHIER
λ		25		25
α	0.067	0.040	0.056	0.028
w (t/ m²)	~	0.202 = 0.49		.49
fi (t.m)	0.53	0.31	0.44	0.22
t (cm)				
d (ca)	5		<u>/</u> .	
at (cd)	3.37	, 97	2.79	1.40
	#3. #4 @ 200	₹3@2∞	#3 @ 200	
REINFORCED CONCRETE		. пје≀∞	#3 6 200	#3@200
			-	
	$t=0.02 \times \left(\frac{1.25-0.7}{1.25-0.6}\right) \times \left(1+\frac{2}{10}\right)$	$\frac{102}{40} + \frac{400}{1000}$) × 400		
	1			
REMARK	= 10.84	••		
KEHHKK				
0.700				
SIGN			S 2	
DIRECTION	 	DRT		ONG ·
POSITION	END	CENTER	END	CENTER
<i>l</i> (m)		5		5.0
λ	<u> </u>	.43		, 43
α	0.074	0.046	0.057	0.028
к (t/ m³)	0.36 +	0.56 = 0.92		0.92
M (t.m)	0.83	0.52	0.64	0.32
t (con)	/:	5		·5
g (cm)	12	?	/	/
at (cn/)	3.95	2.48	3.32	1.66
DETHEODOED	#3. #4@200	#3 @ 200	#3 @≥00	#3 @200
REINFORCED CONCRETE		• •		en en en en en en en en en en en en en e
	//43-03	ELG. 35D]	
	$t = 0.02 \times \left(\frac{1.43 - 0.7}{1.43 - 0.6}\right) \times \left(1 + \frac{1}{1}\right)$	1000 1000) + 350		
	= 11.76			
REMARK	11.10			
•	1	er en en en en en en en en en en en en en		




< 45 Spile

DESIGN OF FOUNDATION

OUTLINE OF FOUNDATION

Foundation weight

$$Nf = 2.0 \times 1.15 \times 1.15 \times 1.0 = 2.65$$

LOADING

	N (t)	Hx (t)	liy (t)
D.L	33,55		
L.L	1)		
S.Lx		······································	
S. Ly			
W. Lx			
W. Ly			

Stress at bottom of foundation

$$N = 33.55 + 2.65 = 36.20$$

CHECK OF BEARING PRESSURE

Check of Pile Reaction

DESIGN OF FOOTING

Factored	Pile R	Pile Reaction		
Load case	ΣN (t)	· Σ M (t, m)	P1 (t/n)	P1' (t/n)
D.L+ L.L	33.55		36,20	33.55
D.L+ L.L+W.L				
D.L+ L.L+S.L				
D.L+ W.L				

Stress

Reinforcement '

$$D = cm, d = cm, j = 7/8d = cm$$

$$nec At = \frac{MF}{ft \cdot j}$$

$$\phi = \frac{Q}{f_{0} \cdot i}$$

$$\tau = \frac{b \cdot j}{b \cdot j}$$

§ 4. OUTPUT DATA (Design of Main Members)

*** Super Build / SS1 *** 136-101507 (FUEL OIL TRANSFER PUMP AREA) UNION SYSTEM 751216 PAGE- 5-9-16 【1】入力データししませ (INPUT LIST) 工 事 生: WEST WHARF THERMAL POWER PLANT PROJECT 禁: FUEL OIL TRANSFER PUMP AREA 日 付: 1989.06.09 但 当 者: T. U **独物形状 : X方向 1 スパン、 Y方向 1 スパン、** 本 + 芝匠用投高 [m] + □ R.FL-G.FL 3.800 **Xスパン表 [m] ** 2 -1 8,000 G.L.から1発床までの高さ 0.200 [m] パラペット部分の高さ 0.000 [m] ・地中深でMQの計算方法:通常荷重(独立高號) 1.2 コントロールデーナ ・住除力での注・整の自實は、腎高の中央で上下腎に分配する。 ・臭に対っの質定時、契の取り強い方法(様準)は、腎高の中央で上下の点に分配する。 ・ 計算法律の対象が違い。10 kc ・ 前力量の判定法(複数調口器の取り扱い)は、包格側口とする。 R、FL G,FL ・各層様体スラブ厚 12.0 15.0 1.3 建物特殊形状 指定なし * * * Super Build / SS1 * * * 136-101507 [FUEL DIL TRANSFER PUMP AREA] j.(使用材料 (1) コンクリート 单位重量 [t/元] (拉·袋) (床·亞) 充语症数 f c (2) 鉄 路 ---- 主店 ----- (兵) ---- 社人所 関別Y 径X 径Y 推列X 復別Y /~ 主数 (住) せん所 ~/ 推別 後 表別 径 &Υ SD30 | < 長期 > | 許容巧力度 [kz/ol] | 種別 | 圧・引 せん新 5030 1870 1670 2812 2812 (2) 住 上 (春年代上状態: 西媛化上) 技 (概算化上状型: 四面任上) 出上 #Ł 100 (3) 地震力計算用データ 推議係数 (2); 1.00 用送係数 (1); 1.00 独医斯状型の建築物にするための係数 (5p); 1.00

(4) 地面層せん断力係数 C1 の電接入力 (指定循所のみ) /-- 一次設計用 --/ 対方的 Y方向

0.100 0.100

*** Super Build / SSI *** 136-101507 [FUEL OIL TRANSFER PUMP AREA]

UNION SYSTEM 751216 PAGE- 5-9-18

1.6 解材形状发丝

(1) M (m)

No . 8 D 35 35

(2) th (m)

Dχ

(6) 水泉 [m] [k/m]

. . No В

1 2

(1) 承 (本祭なし) 【短/出】

No スラブ用 ラーメン用

520 920 520 770

(8) 床棍 [a] <スパンで 「-」の数値は、比を表します。>

No 小祭散 小架方向

1 400.0 2 200.0 1 2 350.0

(9) 片卉ち菜 [cm] [t] [t/m]

No B D D' L

04 03 EE 100.0 0.00 0.00

(10) 禁出床 【a】 {k/d】 {t/m}

龙箕用 L No スラブ芹 ラーメン月

100.0 520 520

*** Super Build / SS1 *** 136-101507 [FUEL OIL TRANSFER PUMP AREA]

UNION SYSTEM 751216 PAGE- 5-9-19

(11) 出席·入居 (ca) [ke/ml] [t/m]

No スラブ暦 ラーメン用

101 520 520

2

101 102

(7) フレーム外・重量 [m] [t]

2

Y座板

1 1

绝實用W

能力用W

```
*** Super Build / SS1 *** 138-101507 [FUEL OIL TRANSFER PUMP RREA]
                                                                       UNION SYSTEM 751216 PAGE- 5-5-22
1.9 衛性・応力
(1) 应力解析·關性計算条件
  1) 期性条件 (RC·SRC邮材)
  2) 均为条件
  1.せん断による姿形
2.枝魅力による変形
3.支点の状態
               : 考慮しない
: 鉛直・水平剤室時共考室する。
: ピン
```

```
Super Build / SSI *** 136-101507 [FUEL OIL TRANSFER PUMP RREA]
(1) 断型复定条件
1) 共建項目
 2) RC部材
```

(2) 鉄筋重心位置

着 X方向ノー・泉・ノソ方向

R.FL 6.FL 7.0 7.0

```
(4) 教施・教育(登録・記覚)
```

2)社務部受殊 [本] [m] [d] < nn の時、本数 nn-nn の時、本数・径 nn nn の時、新面積 >

No 主国X 主部Y 全鉄部 別路(zl)X 別路(zl)Y フーブX ピッチ フーブY ピッチ 1 4 3 10 4 3 2 150 2 150

3)奴铁筋配置

No 層 周 フレーム フレーム 戦 戦 安海 中央 右場
1 2 2 1 2 101 102 3 4 3
2 2 2 101 102 1 2 1 2 1 2 3
3 1 1 1 2 101 102 7 日 7
4 1 1 101 102 1 2 5 6 5

4)往朱笠配置

No 層 限 フレーム フレーム 戦 戦 柱度 往順 1 2 1 501 102 1 2 1 1

(6) 医面复定部材指定

1)フレーム指定 < * 付は、指定フレームを表します> 耐力契局りの部材: 祭の無定はする。 社の無定はする。

X方向フレーム A = Y方向フレーム 2 =

* * * Super Build / SS1 * * * 136-101507 [FUEL OIL TRANSFER PUMP AREA]

ENION SYSTEM 751216 PAGE- 5-9-25

[2] 準備計算結果 (ARRANGEMENT FOR CALCULATION)

2.2 知点就是終 单位: [t]

压分布区Qc: 压分布及V贴出压の有意

		1		ノ床分布 Σ Qo/					43.00.00			
	Y #	-X鞍	好(左)	T,L	殺自黨	复自重	小架符段	大袋特款	柱目重	福正	송합	极复胜力
	·A	-2	1 (R.FL) +9 (G.FL)	12.53 8.57	4,35 3,42		1.13		1.52 1.52		18.40	18. 40 33. 04
	•	-1	1 (R.FL) +V (G.FL)	12.53 8.47	4. 35 3. 42		0. 99	•	1.52 1.52		18.40 14.40	18, 40 32, 80
:	B	-2	1 (R.FL) ** (G.FL)	12,53 8,57	4, 35 3, 42		1.69		1.52 1.52		19.40 15.20	18. 40 33. 60
	B	-1	1 (R.FL)	12.53	4.35		1 49		1.52		18, 40 14, 90	18.40 33.30

18.40--18.40 18.40--18.40--18.40 16.40 18.40 18.40 1 3 < +y > 8 A

2 1 .

2.4 经数用重量

15

** * Super Build / SS1 *** 136-101507

宗分布エQo: 京分布及び執出宗の両倉 し.し : 様式両倉(地震用). D.L : 提記両倉(地震用). T.L : し.L + D.L 発目章 : 大原自倉と片持ち妖自査

セ、気含度 : 背高の中央で上下降に分配する
 小栄花底 : 呉将珠南重で、小県へかけた南重
 大柴神族 : 吳将珠南重で、大県へかけた南重と、片持ち祭・集出床の
 大柴神族 : 吳将珠南重で、大県へかけた南重と、片持ち祭・集出床の
 大塚有度、等分本南度
 は正 : ほ点で神正した重量(地質用)
 フレーム外 : フレーム外で神正した重量(地質用)

/--床分布 ΣQo---/ T.L 補正 フレーム外 숨計 集自重 祭育堂 小梁苍珠 大架特珠 牲品素 段 (推) 35, 84 34, 08 17.40 13.68 1 (R.FL) . ≠v (G.FL) 5.30

(FUEL OIL TRANSFER PURP AREA)

Cil:ipの地質層せん断力は数(一次設計用) Cil:ipの地質層せん断力は数(名下部力用) Cil:ipの地質層せん断力(一次設計用)[t] Qil:ipの地質層せん断力(一次設計用)[t] Qil:ipの地質層せん新力(食育耐力用)[t]

・根準せん紅力係数 (一次設計用) Col X方内 0.20 Y方内 0.20 ・根準せん脳力体数 (後有耐力用) Col 1.00

wr L QIZ 59.32 59. 32 0.100 5.93 1,000

* --- RATIO OF THE HEIGHT OF WHICH STRUCTURE IS STEEL AGAINST THE BUILDING HEIGHT h

oi = Vi/EV

AL = 1+(1/\(\varphi\)-2*T/(1+3*T)

C1 - Z*RT*A1*Co

*** Super Build / SS1 *** 136-101507 [FUEL OIL TRANSFER PURP AREA]

[3] 迈力解析结束 (STRESS ANALYSIS OF FRAMES)

1) 開性条件(RC·SRC器材)

, 2) 成为条件

1.せん時による交形 2.住時力による交形 3.支点の状態 : 考望しない : 始高・水平両重時共考達した。

3.交易の収益 4.独立徒の指定 5.節点同一野直製位の指定:なし

```
9-22
```

```
UNION SYSTEM 751216
                                             (FUEL OIL TRANSFER PUMP RREA)
*** Seper Bulld / SS1 *** 136-10150?
3.5 邮材成为
  (おカ図)
  203
                                               ・モーメントは部材の引張側(モーメント図を書く方向)に出力されます。
                                                                        圧縮の場合に「じ」を数値の後に出力します。
                                    N Q
                                                                   の場合、友N(右N)は友下(右下)へ向かうプレースの下場における給資方向成分です。
                                                       金エレメント無拘)の場合、左N(右N)は左下(右下)の気候塩におけるせん折力です。
   202
                                                                    の場合、左N(右N)は左下(右下)へ内かうブレース軽力です。
              ・技に接寄室がある場合、Mの反対側に立を出し、Hの下の行に中央Nを出力します。
                                               ・参配材の接合数でピン結合の場合は、「P」を表示します。
   201
                                               ・ 参短点において支点となっている気所には、「エ」を表示します。
  灰力 鈴鹿
                                               ・ダミー部付は、「・・・・」で表示します。
                                    102
               101
   (おかま)
                ・ の力の符号は矢田の方向が正です。制は反鳴計階りを正とします。

放では左尾を1階、古塔とJ場とします。中央制は下堤引張を正とします。

社では左肩を1階、世界と1階とします。中央制は下堤引張を正とします。

たち、駅力型付売がた即向の関い方にありむとおける髪の左列(右か)を加えた値です。

たち、駅力型付売がた即向の関い方にありむとおける髪の左列(右が)を加えた値です。

割力髪(ブレース実施)及び長舎返プレースでは、左列(右列)は左下(右下)へ向かうプレースの転力で、正が圧降、負が引張です。

割力髪(エレメント電池)では、髪柱における成力を出力します。
```

反力 鈴蕉 点げ。 32, 99

(8 フレーム) (鉛面内式内)

9.7

9.7

1.4

7.5

18.4C

18.4C

(4.1)

19.9

9.9

1.5.2

(4.1)

19.9

19.1

10.3)

6.FL

11.0.9)

13.7

33.35

Zo Zo

```
... Super Build / SS1 ... 136-101507 . (FUEL OIL TRANSFER PUMP AREA)
                                                                                                                            SE-6-3314 VILLE ALELE ALELE NOTAL
  反力 给宣
曲げ
                -1,58
            <5 2/-Y>
                 0,4]
| 1.1 | 1.1 |
| 1.1 | 1.1 |
| 2.5 | ---- | 2.5 | #
| 2.9 | 33.1
  G. FL
 反力 鈴蕉
白げ
               33.04
                                        33.60
    フレーム>
  Ğ.FL
                     1,4]----[
3,3 0.0
 反力 给藏
点げ
               -2.52
                                         2, 52
           Build / SS1 *** 135-101507
                                                    (FUEL OIL TRANSFER PUMP AREA)
                      (鉛面荷重等)
 反力 約萬 32.60
首げ
                                        33, 30
            | 1.3|----| 1.3|+
| 3.1 0.0 | 3.1
| 3.1 | 3.1
| 1.30 | 1.30
| 1.5| | 1.5|
| 3.3 | 3.3 |
| 1.4|----| 1.4|x
| -2.52 | 2.52
反力 给证
会计
```

A 18,40-- 16,40

2 i

INION SYSTEM 751216 PAGE- 5-9-35 *** Super Build / SS1 *** 135-101507 (FUEL OIL TRANSFER PUMP AREA) 《X方向如力時》 《Y方向加力吗》 Qc:性の負担せん努力 Qw:耐力を又は疾者プレース(新力型は「U」、佐貴プレ QR:当該別の水平パネの反力 2Q:Qc+Qw+QR 00000 . Q c , Q c 3 Qc Qс 2 Q٧ Qc Qc 1

101 103 104 < 1 階 G.FL-R.FL> ※ X方内部力時 ※ 1.48 1. 49 1.48 1 Ov/Oc+Ov OR/EQ FRAME免担率 Qc+Qw Q۵ Qw FRARE 0.:59538 0.159538 0.00 100.00 0.00 0.00 2.95 2.95 100.00 0.00 100.00 0.00

5. 92 合計 < 1 № G.FL-R.FL> ※ Y方向加力時 ※ 1.48 B 1,48 Q/8 [1/m] Qc/Qc+Q+ Qs/Qc+Q+ QR/EQ FRARE直担率 ΣQ Q¢ Qw Qc+Qw FRIRE 0,133020 1/ 3195 0,133020 1/ 3195 0.00 1 2

5, 92

g. 00

5. 92

습낡

5. 52

100.00

0,00

100.00

5

UNION SYSTEM 751216 PAGE- 5-9-36

```
・・・ Super Build / SS1 *・・ 135-101507 [FUEL OIL TRANSFER PUMP AREA]
4.3 符を上がりのチェック
```

g p e KR re Re Fe (方向 4.000 4.000 0.000 54 5.044 0.000 1.000 (方向 2.500 2.500 0.000 4.506 0.050 1.000

9-26 UNION SYSTEM 751216 PIGE-5-9-38

4.5 期往率、推阅交形角

R:開性率

F a : 形状特性体数

<雑畳を才座しない場合>

東米米 又方向 米米米 パの相加予均 2654

層間変位 [ce] 層間変形角(1/cs) R.s. 37, 10 1/ 2654 1.000 1.000

※米米 Y方向 ※米米 rsの相加平均 3195

是同类位(c。) 用同类形为(1/rs) R s Fs Q/8 [t/m]

44,50 0.133020 1/ 3195 1.000 1.000

DEJON SYSTEM 751216 PAGE- 5-9-30 (FUEL OIL TRANSFER PUMP AREA) * * * Super Build / SS1 * * * 136-101507 4.6 髮髮往星 ZWA1 (0.75ZWA1)

ΣAw' (1)式の質 (2)式の値 ΣAc 雅 主体領政 Σλ₩ 59320 (44490) 180000 10000 0 RC

2WA1 (0.752WA1) (2)式の賃 ΣAc (1)式の額 肾 主体構造 ΣΑ 47 160000 59320 (44490) 70000 RC

 $\cdot \left(\bar{x} \right)$

5.	DESI	GN OF M	AI F	N MEMBER GIRDER	
	(1)	CONDIT	10 I	N OF CALCULATION	
		· QD :	Х	DIRECTION QD=QL+n·QE n=1.5	
			Y	DIRECTION QD=QL+n·QE n=1.5	
	(2)	MATERIA	AL		
		(CONCR	ETI	Ξ)	
		Fc	:	DESIGN STANDARD STRENGTH OF CONCRETE	(kg/cm ²)
		Lfc	:	ALLOWABLE COMPRESSION STRESS AT PERMANENT CONDITION (TRANSIENT CONDITION: Lfc*2.0)	(kg/cm ²)
		Lfs	:	ALLOWABLE SHEAR STRESS AT PERMANENT CONDITION (TRANSIENT CONDITION : Lfs*1.5)	(kg/cm ²)
		(REINFO	ORO	CING BAR)	
		rft	:	ALLOWABLE TENSILE STRESS	(kg/cm ²)
		wft	:	ALLOWABLE TENSILE STRESS FOR STIRRUP	(kg/cm2)
	(3)	EXPLAN	AT]	ION OF MARK	
		POINT	:	DESIGN POINT OF MEMBER	(cm)
		Δ	:	ADOPTION POINT OF STRESS	(cm)
		B*D	;	WIDTH, DEPTH OF GIRDER	(cm)
		dt	:	DISTANCE BETWEEN TENSILE RE-BAR AND TENSION END	(cm)
		ML	:	BENDING MOMENT AT VERTICAL FORCE (NODAL POINT)	(tm)
		ME	:	BENDING MOMENT AT HORIZONTAL FORCE (NODAL POINT)	(tm)
		ML	:	DESIGN BENDING MOMENT AT PERMANENT CONDITION	(tm)
		MS	:	DESIGN BENDING MOMENT AT TRANSIENT CONDITION	(tm)
		QL	:	SHEAR FORCE AT VERTICAL FORCE	(it)
		QE	:	SHEAR FORCE AT HORIZONTAL FORCE	(t)
		Qo	:	SHEAR FORCE OF PERMANENT LOAD AT SIMPLE SUPPORT	(t)
		Pt	:	TENSILE RE-BAR RETIO ;at/B*(D-dt)	(%)
		at	:	SECTION AREA OF TENSILE RE-BAR	(cm²)
		Mu .	:	YIELD BENDING MOMENT	(tm)
		QD	:	DESIGN SHEAR FORCE	(t)
		fs*B*j	: (PERMANENT CONDITION	(t)
		α	:	4/(M/(Q*(D-dt))+1)	
-		Pw	:	STIRRUP RATIO =aw/(B*x)	(%)
		-		<pre>aw : SECTION AREA OF A SET OF STIRRUP x : PITCH OF STIRRUP</pre>	(cm²)

いいる

	*** Super Build / SS1 *	* * 135-1015	07 (FUEL DIL TRA	NSFER PUMP AREA)		1910年 5157EN 751216 P115-5-9-43 [RC集 核定計算2]
	コンクリート: Fc=210 Lfc=70. (春 通) Lfs= 7.		: [SD30] rft 長期=187 : [SD30] =1 t 長期=187		スラブは:{SD30} 短期=2812	A: 長院
-	,,,,,	部材長 800.0 左延 位置 0.0	750.0 一 1/4 中央 3/ 212.5 400.0 212 -3.0 (0E= -0.8) -4.8 -9.0 -4	.5 0.0 T 9.7 maL 3.0 maSL .6 9.7 T 14.2 mu L .0 T	が 1/4 中央 3/4 7.0 7.0 7.0 10.0 10.0 10.0 10.0 15.1 10.0 10.0 10.0 10.10.0 10.10.0 10.10.0 10.10.0 10.10.0 10.10.10.10.10.10.10.10.10.10.10.10.10.1	7.0 i 左唱. 右端 7.0 i0、 7.3 7.3 0 10.0 i0。 7.2 7.2 0 15.1 i00 9.1 9.1
	R.fL 5 2 -1] B-D 35= 60 L間 3-D22 2-D22 3-D221 下記・2-D22 3-D22 2-D22 アジ・2-D22 3-D22 2-D22 757-7* 2-D10 6200	数対表 800.0 を担 のの がに 9.7 ME -3.0 HL 9.7 HS 上 14.2	内注 750.0 一份 1/4 中央 3/ 212.5 400.0 212 -0.9 (0E= -0.8) -4.8 -8.9 -4	改目 dt 7.0 i 4 お稿 ldt上	左進 1/4 中央 3/4 7,0 7.0	・ 右降 1 - 7.0 左塚 右突 7.0 10.0 7.3 7.3 0 10.0 10a 7.2 7.2 0 15.1 100 9.1 9.1
	コンクリート:Fc*210 Lfc=70. (普通) Lfs* 7.	0 主 類 0 スクラップ		0 短期=2812 0 短期=2812	スラブ舞: (SD30) 短期=2812	A:長期 经点水平 低点
	B=D 35* 60 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	新材長 500.0 左端 位置 0.0	円置 450.0 一分 1/4 中央 3/ 137.5 250.0 137 -1.7 (05≈ -1.3) -0.6 -1.7 +0	0.0 F 3.6 Mat 3.1 Mask 3.5 F 4.4 8.2 Mu k 3.7 1.0 F	定域 1/4 中央 3/4 7.0 7.0 7.0 10.0 10.0 10.0 10. 15.1 10.0 10.0 10. 10.0 15.1 15.1 15. 17.1 11.4	古曜 左堤 古曜 7.0 左堤 古曜 7.0 7.0 10L 3.5 3.5 3.5 0 10.0 100 3.5 3.5 3.5 0 15.1 10D 6.4 5.4
,	T T T		内法 450.0 一局 1/4 中央 3/ 137.5 250.0 137 -1.6 (0E= -1.3) -0.5 -1.6 -0 1.5	gg dt 7.0! 4 右程(dt上	左端 1/4 中央 3/4 7.0 7.0	* お箱 7.0 友場 右箱 7.0 友場 右稿 7.0 2.5 3.5 3.5 0 10.0 10a 3.5 3.5 3.5 0 15.1 10B 5.4 5.4

013 D16 019

GIRDER

R.FL 2 B*D UPPER LOMER STIRRUP

DIO **∌** 3

LENGTH

POINT
I ME
I ME
I ME
I MS UP
I DOWN

SD 30

(DE*

fot UP 1 DOWN Phat UP 1 Pas DOWN 1 UP 1 DOWN

SLAB : (S030)

A : LONG HODAL FOINT HORAL FOUNT

9-30

				į,	(CR 表定打算》	
0 299+7*	: [SD30] vft 表稿=1870	規約=2612		短期=2812	e agas A.	A:長期 節点 水平 節点
数材美 800.0 左端 0.0 ht. 9.5 ht3.4 ht. 9.5 ht. 14.5	共進 750.0 一段 4 中央 3/4 212.5 400.0 212.5 -12.9 (0E= -0.9) -7.9 -12.9 -8.6 10.3 12.9 10.4	1 dt 7.0 l 5 dl 1 dt £ 5 0.0 l: F 9.4 mal 3.4 mas± 9.4 l: F 14.5 mu ±	EM 1/4, 7.0 7.0 15.9 15.9 23.9 11.9 11.9 23.9 27.1 13.5	中央 3/4 7.0 7.0 15.9 15.9 11.9 11.9 23.9 23.9	11.9 (0長 27.1) 性 13.5 lo長 1	17.5 17.5 26.5 26.5 .29 短 1.30
部材長 800.0 左編 位置 0.0 nl. 9.9 nl. 9.9 nl. 9.9	内法 750.0 一段目 1/4 中央 3/4 212.5 400.0 212.5 -13.7 (66= -0.9) -8.5 -13.7 -9.5	dt 7.0 古球 dt 上 0.0 上 9.9 maL 3.4 MaSL 5.9 下 15.0 Mu上	左線 1/4 7.0 7.0 15.9 15.9 23.5 11.9 11.9 23.9 27.1	中央 3/4 7.0 7.0 15.9 15.9 11.9 11.9 23.9 23.9	右編 [7.0] 7.0] 15.9] 23.9] 21.9] 24.5]	友権 右接 10.9 10.3 10.8 10.2 12.9 12.3 17.4 17.4
0 275+7*;	[5030] +11 長期=1870	短期=2812 短期=2812	スラブ店:[SD30]		* *	△:長期 野点 水平 節点
新材表 500.0 左端 0.0 (内法 450.0	6t 7.0 58 6t \(\frac{1}{2} \) 0.0 1.1 Hat 3.3 He5\(\frac{1}{2} \) 1.1 \(\frac{1}{2} \) 5.0 In \(\frac{1}{2} \)	左峰 1/4 7.0 7.0 15.9 15.3 23.9 11.9 11.9 23.9 27.1 13.5	中央 7.0 7.0 7.0 15.9 15.9 11.9 11.9 23.9 23.9	右塔 7.0 7.0 GL 15.9 IOo 23.9 IOD 11.9 IOA 27.1 1 短 13.5 a長 1	左端 右端 2.9 2.6 2.6 2.6 5.0 5.0 20.9 20.9 27.8 27.8 54 気 1.35
部材長 500.0 左端 位建 0.0 ni. 1.3 ng -3.3 ni. 1.3	内法 450.0 一尺目 1/4 中央 3/4 137.5 250.0 137.5 -3.2 (GE× -1.4)	dt 7.0 l 右端 ldt 上 0.0 l 下 1.3 lmaL 3.3 lmaS上 1.3 l 下 6.2 lmu 上	左端 1/4 7.0 7.0 15.9 15.9 23.9 11.9 11.9 23.9 27.1	中央 3/4 7.0 7.0 7.0 15.9 15.9 11.9 11.5 23.9 23.9	お職 7.0 7.0 0L 15.9 10s 23.9 10D 11.9 104系	左端 右端 3.2 3.2 3.1 3.1 6.3 6.3 20.9 20.9 26.3 26.3
	- 0 スクラーア・	1 移村長 800.0 内法 750.0 - 尺段 1 大阪 10.3 12.9 10.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1	- 0 主 預: [SD30] rft 長期=1870 短期=2812 スラブ語: [SD30] 短期=2812	数様

-				J J 1
	DESIGN OF	COLUMN		
(1)	CONDITIO	N OF CALCULATION		
•	· QD : X	DIRECTION QD=QL+n·QE n=1.5		
		DIRECTION QD=QL+n·QE n=1.5	i i	
(2)	MATERIAL			
	(CONCRET	E)		
	Fc :	DESIGN STANDARD STRENGTH OF CONCRETE	(kg/cm ²)	
7 	Lfc :	ALLOWABLE COMPRESSION STRESS AT	(kg/cm ²)	
		PERMANENT CONDITION (TRANSIENT CONDITION : Lfc*2.0)	(ug) cm-)	
	Lfs :	ALLOWABLE SHEAR STRESS AT PERMANENT CONDITION (TRANSIENT CONDITION : Lfs*1.5)	(kg/cm ²)	
	(REINFOR	CING BAR)		1
	rft :	ALLOWABLE TENSILE STRESS	(kg/cm ²)	
*		ALLOWABLE TENSILE STRESS FOR HOOP	(kg/cm^2)	
(3)		ION OF MARK	(Kg/Cmc)	
	•	DESIGN POINT OF MEMBER	(
		ADOPTION POINT OF STRESS	(cm)	-
		DEPTH OF COLUMN	(cm)	
	dt :	DISTANCE BETWEEN TENSILE RE-BAR	(cm)	
	·	AND TENSION END	(Cm)	
	μ :	ADITIONAL COEFFICIENT OF FORCE FOR LONG COLUMN	· ·	
	NL :	AXIAL FORCE AT VERTICAL FORCE	(t)	
	NE :	AXIAL FORCE AT HORIZONTAL FORCE	(t)	
	ML :	BENDING MOMENT AT VERTICAL FORCE (NODAL POINT)	(tm)	
	ME :·	BENDING MOMENT AT HORIZONTAL FORCE (NODAL POINT)	(tm)	-
	ML:	DESIGN BENDING MOMENT AT PERMANENT CONDITION	(tm)	
. *	NS :	AXIAL LOAD AT TRANSIENT	(t)	
	MS :	DESIGN BENDING MOMENT AT TRANSIENT CONDITION	(tm)	
	QL :	SHEAR FORCE AT VERTICAL FORCE	(t)	
	QE :	SHEAR FORCE AT HORIZONTAL FORCE	(t)	•
	Qo :	SHEAR FORCE OF PERMANENT LOAD AT	(t.)	
		SIMPLE SUPPORT	Ç. 8.7	
	Pt :	TENSILE RE-BAR RATIO , at/(dx,y * dy,x)	(%)	٠
	at :	SECTION AREA OF TENSILE RE-BAR	(cm ²)	
	Mu :	YIELD BENDING MOMENT	(tm)	
	NYMu:	TOTAL MU OF GIRDER USE FOR CALCULATION OD OF COLUMN	(tm)	•
	X	4/(M/(C (Dx,y-dt))+1)		
	QD :	DESIGN SHEAR FORCE	('t)	
	Qa :	ALLOWABLE SHEAR FORCE AT PERMANENT CONDITION	(t)	
	Pw :	HOOP RATIO =aw/(Dx.y*x)	(%)	
	and the second	aw : SECTION AREA OF A SET OF HOOP	(cm ²)	
		x : PITCH OF HOOP	(cm)	
				

)

٠	COLLINN

•													3.0	1.5											
	CONCR	ETE	(F c	:*210 RMAL)	lie Lie	*70,0 * 7,0	HAIN	H 39-1	R: [50 P: [50	30	* [t LONG*	1870 1670	SINT SINT	*2812 *2812					٨	, LONG HORIZON		X) NODAL P			
**** X)IRECT	ION ##	222E		**==	****	~×+6	*******	****	****	****	****	****		****	*****	*****		3 T E S E E P B S		******	- 1
{R.f I:X# [TOP BOT		-D	*	٠ħ 0-	100 H 150		тигоч) 16) 16		191.	HE HE	HL.		łis	HS	•	Hat	HAS	i OL	OE	Itu	กรมเล	60	DAS	
1100		-D		-D	ico										,	- -	1.1		Da=	in=) LENGTH OF COLUMN	. •		\$ -
	-					TOTAL		-0	BOTTC	M ~	Đ							i de	04=	(a =) LENGTH OF COLLIMI			
	*****		****		****	*****	*****						*****	****		****	******	******	*******	FUPERE	E#88	*******	. ****	*******	
					SD.	30		ASTM Grad	A615		٠			. `			-1.	:			•				
																									-

SD 30 ASTM A615
Grade 40

D10 #3

D13 #4

D16 #5

D19 #6

D22 #7

D25 #8

** Super Build / SS1 *** 136-101507 (FUEL OIL TRANSFER PUMP AREA)

(NION SYSTEM 751215 PIG- 5-9-47 【RC性 被定計算2】

		-				100			••••	
コンクリート:Fc:	-210 14-220	. + 45	· [5030] -/: #	10=1970 短	G=2012				A:長期(X) 草森(Y) 草魚	
コンクリート: F C* (登	送) はた7.	0 ラーデ	(5030) +ft \$	第=1870 知	A=2912				水平(X) 恒点(Y) 知点	
======================================	.=.				=======	*****	******		*************************************	
	2) 影材長	425.0 NL=	18.# .dt	÷ 7.0		HS	Mei	MaS (OL OE No AVMu DD GaS	
DX=DY 50 = 5	D 1 -D22 / <x>在双</x>	位置 松花				11. B+-	11.9	18.9	4.0 1.5 23.8. 2.3 23.4	
	-D22 1 在間	0.0	-8.5 3.		19.6	14. 5-	11.9	10.9	4.0 23.8 3.3 Qa= 13.1 (a=1.00) 内法 350.0	
7-7 2-D13 2	-D13 / 150 1(Y)社類	0.0 -1.3	0.4 -3.	1 0.4	20.3	5.0-	10.3	15.3	0.4 1.5 19.2 3.3 23.4	
www.ma	3 柱路	0.0	~1.1 3.	3 -1.1		6. D-		15.3	nea (11) / ast (10) 内沙 350.0	
柱戶 4	3)全数路	柱別 10-022	柱房 10-022		*******	***===*6:	z======	*******	- CREEKTARTERETEETAREEETAREEETAREE	
	1)) 都村美	425,0 NL=	18.4 05	= 1.0	NS			NaS I	OL OE No NYMU OD DAS	
DX*DY 50 * 5		位置 25年	71. ME -7.4 -3.		19,6	11,9-	11.9	18.9	4.0 1.5 23.B 3.3 23.4	
	-D22 <×>柱類 -D22 柱脚	0,0			19.6	14.5-	11.9	18.9	4.0 23.8 3.3 Qa= 13.1 (a=1.00) 内装 360.0	
7-7° 2-D13 2	-D13 I 150 (Y)柱列	0.0 -1.3	0.4 -3.	1 0.4	20, 3	5.0-		15.3	0.4 1.5 19.2 3.3 23.4	
YEST SEED O	3 1 1215	0, Ŭ	-3.3 3.	3 -1.3	23.3	**	10.3		04# 13 1 (##1:00) PS 350.0	
推開 4	3 全鉄箱	柱質 10-D22	技費 10-D22	-veretesia	****			exzz##	* 選手事業とアジネテスと下午年末 三名 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本	
	2)」 密付長	425.0 NL*	19.4 01	= 1.0			Hal	Mas I	DL OE My JUMP OD GAS	
DX*DY 50 * 5	D I -D22 I <x>柱取</x>	位置 NÉ 0.0 -0.8	n. ne 7.4 -3.		19.5	11.9-	11.9	10.9	4,1 1,5 23.6 3.3 23.4	
	-D22 社算	0.0	-5.9 3.	4 -9.9	19.6	15.0~~	11.9	18.9	4.1 23.8 3.3 Oa= 13.1 (a=1.00) 内差 360.0	
2-2° 2-013 2	-D13 i	0.0 1.3	-0.4 -3.	1 -0.4	20.3	5.0-	10.3	15.3 1	0.4 1.5 19.2 3.3 23.4	
Frest: 17 4	150 (Y) 柱頃 3 柱質	0.0	1.1 3.	3 1-1		6.0			0.4 19.7 3.3 Qa= 13.1 (α=1.00) 内装 350.0	
世日 4 3 全数 作列 10-D22 住房 10-D22										
ir.fl-G.fl B	1) 部材長	425.0 NL=	18,4 61	= 7.0		MS	MAL	MAS		
DX*DY 50 = 50	0 1	位置	H∟ HĒ -7.5 -3.		19.6	12.0-	11.9	18.9	4,1 1,5 23.8 3.3 23.4	
	-D22 <x>柱類 -D22 柱質</x>	0.0 0.8	9.9 3.		19.6	15.0-	11.9	18.5	4.1 23.8 3.3 Ge= 13.1 (a=1.00) 内法 360.0	
7-7' 2-D13 2-	-D13 I		-0.4 -3.	1 -0.4		5.0→		15.3	0.4 1.5 19.2 3.3 23.4	
6150 年1 新春桂月 4	150 (イン住所 3 1 柱戸	0.0	1.3 3.	3 1.3		6.2-	10.3	\$5.3	G.4 15.2 3.3 Da= 13.1 (σ=1.00) 内法 360.0	
	3 (全族链	柱页 10-D22	技算 10-022	**********	*****	nukuaar:		#=E&##</td><td>· 工作工作的工作工作工作工作工作工作工作工作工作工作工作工作工作工作工作工作工作</td></tr><tr><td>・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr></tbody></table>		

30

```
9-33
WION SYSTEM 751216 PAGE- 5-0-48
ENION SYSTEM 751216 PAGE- 5-9-69
```

• Super Build / SS1 *** 136-101507

35 = 60 0--D22 3 2 3 --B 1 2 3 2 1 1 2-D10 #200 1

35 * 60 D22 3 2 3 D22 3 2 3 2 3 2 2 2 3 2 2-D10 6200 2-D10 9200 1 0-D22 3 2 3 2 2-D10 6200 2-D10 9200

35 × 70 D22 4 2 4 2 4 2 2-D10 9200

(G.FL用)

35 * 70 D27 4 2 4 2 4 2 2-P10 \$200 (FUEL OIL TRANSFER PUMP AREA)

(FUEL OIL TRANSFER PUMP AREA)