A-3 TANK MODEL METHOD FOR RIVERFLOW ANALYSIS

1. BASIC CONCEPT OF THE TANK MODEL

1-1 Structure of the tank model

Tank model is a simple model composed of several tanks laid vertically in series as shown in Fig.1. Rain water is put into the top tank. Water in each tanks partly discharges through side outlets and partly infiltrates to the next lower tank through bottom outlets. River discharge can be simulated by the sum of output from side outlets. We can image that the tank model corresponds to zonal structure of groundwater as shown schematically in Fig.2.

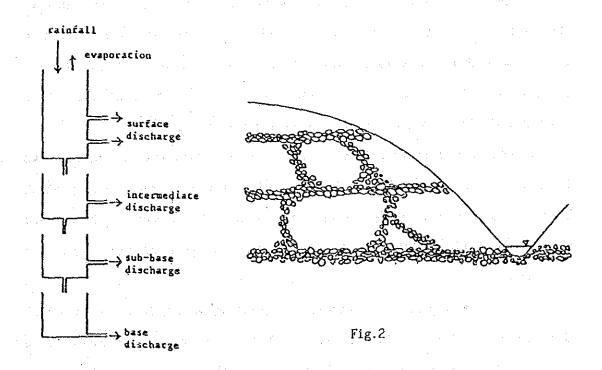


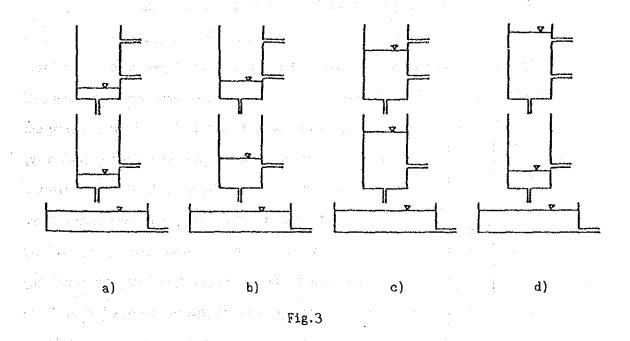
Fig.1

1-2 Behaviour of the tank model

In spite of its simple structure, response of the tank model is not so simple showing various response corresponding to types of input rainfall. In the

case of the tank model composed of three tanks, where the top tank corresponds to surface flow, the second tank to intermediate flow and the third tank to base flow.

If amount of rainfall or its intensity is small, water storage in the top tank and the second tank does not rise up to the level of side outlet and input water goes to the third tank without any discharge from the top and the second tanks as shown in Fig. 3 a). As the base flow is very stationary because of the large amount of groundwater strorage, it shows scarce change in river discharge by small supply of rain water. Accordingly, there appears scarce change in river discharge by such rainfall with small intensity.


If there is some amount of rainfall with small intensity, water storage in the top tank does not rise up to the level of side outlet, but water storage in the second tank rises up to the level higher than the side outlet, from which intermediate flow discharges, as shown in Fig. 3 b). In this case, river discharge slowly increases a little and disappears gradually.

In the case of heavy rainfall with large intensity, the tank model shows the state shown in Fig.3 c). In this case, there appears large discharge which is mainly composed of surface flow. The surface flow decreases quickly and there remains intermediate flow which is related to the slope part of the peak discharge.

In the case of very heavy rainfall with short time duration, the tank model shows the state shown in Fig.3 d) for a while. In this case, large surface flow appears without intermediate flow. After that, the state changes to the one shown in Fig.3 c) and intermediate discharge appears.

In some case of not so large rainfall with short duration, there appears only surface flow without any intermediate flow.

The tank model shows such various response corresponding to the character of input rainfall.

1-3 Time constants of the tank model

Each tank of the tank model can be regarded as a linear tank by moving the side outlet or outlets to the bottom as shown in Fig.4. This linear tank model is called an incomplete integral or a first order lag system with the time constant of $[1/(\alpha + \beta)]$, where both storage and outputs decrease exponentially in the form $[C \times e^{-(\alpha + \beta) t}]$ when there is no input supply.

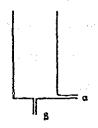
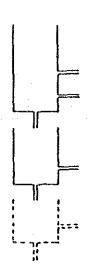



Fig. 4

By such a linear approximation, computed discharge by the tank model is composed of several exponential components each having their own time constants. For analysis of daily discharge by daily input data, the model with four tanks as shown in Fig.1 is often appllied, where time constants of each components are a day or a few days, several days or about ten days, a few months and years respectively.

1-4 The tank model for flood analysis

On the other hand, the tank model with two or three tanks as shown in Fig.5 is usually used for flood analysis. More two or three tanks should be required

constant discharge

Fig. 5

under this structure if wishing to represent the total discharge components completely, however, these lower tanks can be neglected because of their long time constants. These components are stationary and they show only small change during flood and moreover they are very small values campared with flood components. It can be assumed that these components are constant during the flood and a constant discharge can be applied instead of these stational components.

For flood analysis, the time constant

of the top tank changes relating with catchment area in rough approximation.

That relation is given by following formula from various analyses about Japanese river basins:

$$T = 0.15 \sqrt{s}$$

where T (hour) is the time constant and S (km²) is the catchment area. The time constant of the second tank is usually estimated to be about five times of that of the top tank.

CALIBRATION OF THE COEFFICIENTS

In spite of the long term research, no mathematical or objective method for coefficient calibration has developed because of variety and complexity of soil mechanism. Nevertheless the automatic calibration method was developed

recently, final adjustment had to be done by human judgement, and trial and error method is still the most effective way.

In general, coefficients of upper, first and second, tanks have relation to amount and shape of flood peak, and coefficients of lower tanks have relation to base flow. Primary calibration methods and its effects are as follows:

- a) If some runoff component is too large, decrease the runoff coefficient of the corresponding tank and increase the infiltration coefficient of the same tank, and vice Versa.
- b) If some runoff component decrease too fast, decrease both runoff and infiltration coefficients of the corresponding tank, and vice versa.
- c) If peaks of calculated hydrograph are smaller than the observed one, increase the runoff coefficient of the upper outlet of the top tank, and vice versa.
- d) If the base flow component is too large, decrease the infiltration coefficient of the third tank, and vice versa.

Besides the above factors, the influence by evapo-transpiration may be not negligible in the runoff analysis of the basin with considerable evaporation as tropical region. Modification of evapo-transpiration coefficients can be often an effective way to adjust total amount of runoff.

3. APPLICATION TO THE HYDROLOGICAL ANALYSIS OF THE NAM YUAM PROJECT

3-1 Genaral flow of the analysis

Runoff data from Sop Han and Ban Tha Rua were adopted for the hydrological analysis of the Nam Yuam Project, however, the periods of both existing data were judged to be not sufficient for the analysis. Tank model method was applied to extend these runoff data using precipitation data from Mae Sariang and Khun Yuam.

General flow of the analyzing process is shown in Fig.6. The tank model used in this study was composed of a series of four tanks having the soil moisture structure in the first tank, which is evaluated to be suitable for runoff analysis of the region with a long dry season.

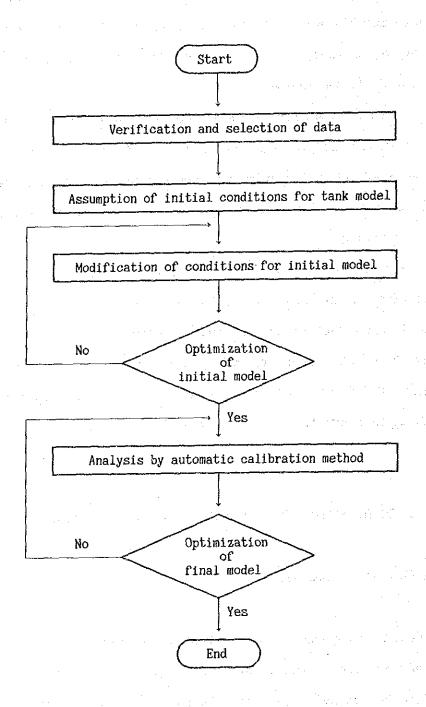


Fig. 6 Analyzing flow of establishment of tank model

3-2 Calculation of Ban Tha Rua runoff data

- (1) Used data to this continues are a continued as a second of the continues of the continu
 - a) Verification period: 13 years (1969 ~1981)
 - b) Precipitation data:

 Daily data from Mae Sariang and Khun Yuam, 1969~1981
 - c) Evaporation data :

 Monthly average data of 14 years (1970~1980, 1984~1986) from Ban Tha

 Rua

and the second of the second o

(2) Assumption of initial conditions

a) Weight of precipitation (WE)

Considering the difference of two stations' assigned areas, weights of both data were assumed as follows:

WE KRUN YUAN = 0.3×S

where S is the catchment area of 5,770 km².

- b) Adjustment coefficient of precipitation (CPM)

 CPM = 1.0 (for all months)
 - c) Evapo-transpiration
 Assumed as 70% of monthly evaporation data.
 - d) Adjustment coefficient of evapo-transpiration (CE)
 CE = 1.0 (for all months)

(3) Runoff and infiltration coefficients of initial tank model

建氯化铁 化物 化氯酚基苯酚 医动物性动物 化拉拉拉拉 医动物

In the case that the catchment area is less than 10,000 km², standard values of runoff and infiltration coefficients are obtained by following formula:

$$A_0 = A_1 = A_2 = 1 / (0.3 \times \sqrt{s})$$
 $B_0 = B_1 = A_0 / 5$

$$C_0 = C_1 = B_0 / 5$$

where A_0 , B_0 and C_0 are infiltration coefficients, A_1 , A_2 , B_1 and C_1 are runoff coefficients, and S is the catchment area. All the coefficients were obtained as follows with the figure of 5,770 km² for S:

$$A_0 = A_1 = A_2 = 0.05$$

$$B_0 = B_1 = 0.01$$

$$C_0 = C_1 = 0.002$$

$$D_0 = 0.0 \quad \text{(const.)}$$

$$D_i = 0.0003 \text{ (const.)}$$

(4) Optimization of initial tank model

Through several trial calculations, some coeffficients were modified.

- a) Increasing and decreasing rates of calculated hydrographs were larger than those observed hydrographs, then runoff coefficients of each tank were modified about a half of standard values.
- b) Calculated runoff were smaller than observed runoff through all the calibrating period, and this tendency was found obviously in rainy season (from April to September), then adjustment coefficients of evapo-transpiration were modified as follows:

From April to September
$$CE = 0.81$$

(5) Analysis by automatic calibration method

After the above modifications, initial tank model was established.

Automatic calibration analysis was performed using this initial model with a limit of nine iterations.

Final model showed a better result than initial model, and final model was adopted for expansion of Ban Tha Rua runoff data.

3-3 Calculation of Sop Han runoff data

- (1) Used data
 - a) Verification period: 15 years (1967 ~1981)
 - b) Precipitation data:

 Daily data from Mae Sariang and Khun Yuam, 1969~1981
 - c) Evaporation data :

 Monthly average data of 17 years (1967~1980, 1984~1986) from Sop Han
- (2) Assumption of initial conditions
- a) Weight of precipitation (WE)

Considering two stations' assigned areas, weights of both data were assumed as follows:

where S is the catchment area of 2,496 km²

- b) Adjustment coefficient of precipitation (CPM)

 CPM = 1.0 (for all months)
 - c) Evapo-transpiration

 Assumed as 70% of monthly evaporation data.
 - d) Adjustment coefficient of evapo-transpiration (CE)
 CE = 1.0 (for all months)
- (3) Runoff and infiltration coefficients of initial tank model

Standard values of runoff and infiltration coefficients are obtained by following formula:

$$A_0 = A_1 = A_2 = 1 / (0.3 \times \sqrt{s})$$
 $B_0 = B_1 = A_0 / 5$

$$C_0 = C_1 = B_0 / 5$$

where Ao, Bo and Co are infiltration coefficients, A1, A2, B1 and C1 are runoff

coefficients, and S is the catchment area. All the coefficients were obtained as follows with the figure of 2,496 km² for S:

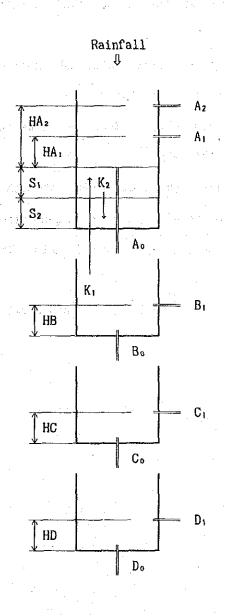
$$A_0 = A_1 = A_2 = 0.07$$
 $B_0 = B_1 = 0.014$
 $C_0 = C_1 = 0.0028$
 $D_0 = 0.0$ (const.)
 $D_1 = 0.0003$ (const.)

(4) Optimization of initial tank model

Through several trial calculations, some coeffficients were modified.

- a) Increasing and decreasing rates of calculated hydrographs were larger than those of observed hydrographs, then runoff coefficients of each tank were modified about a half of standard values.
- b) Calculated runoff was smaller than observed hydrographs during rainy season (from April to September) and it was oppositely larger than observed hydrographs in dry season (from October to March), then adjustment coefficients of evapo-transpiration were modified as follows:

From April to September CE = 0.85From October to March CE = 1.23


(5) Analysis by automatic calibration method

After the above modifications, initial tank model was established.

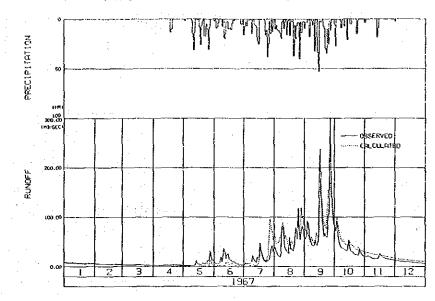
Automatic calibration analysis was performed using this initial model with a limit of nine iterations.

Final model showed a better result than initial model, and final model was adopted for expansion of Sop Han runoff data.

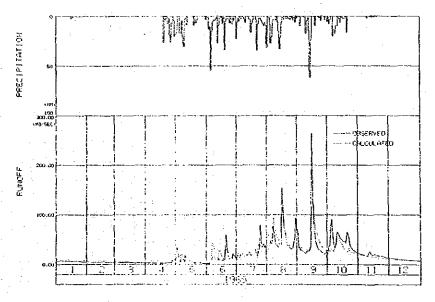
Final values of major coefficients applied for the runoff data generation are shown in Fig.7 on next page.

	· · · · · ·				
Coeffi- cient	for Ban Tha Rua	for Sop Han			
Ao	0.0416	0.110			
A ₁	0.0262	0.030			
A ₂	0.0262	0.0424			
Во	0.0094	0.0176			
Bı	0.0050	0.0066 0.0048 0.0013			
Co	0.0022				
C ₁	0.0011				
Do -	0.0	0.0			
D ₁	0.0003	0.0003			
HA ₁ (mm)	10	10			
HA ₂ (mm)	60	60			
HB (mm)	10	10			
HC (mm)	10	10			
HD (mm)	0	0			
S _i (mm)	50	50			
S ₂ (mm)	250	250			
K ₁	3	15			
K ₂	3	15			

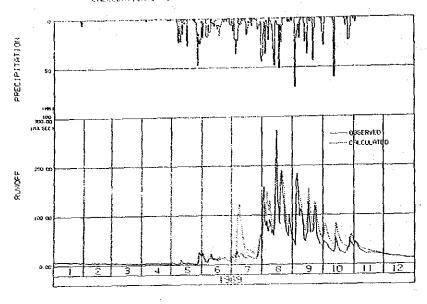
Fig.7 Adopted tank model and coefficients

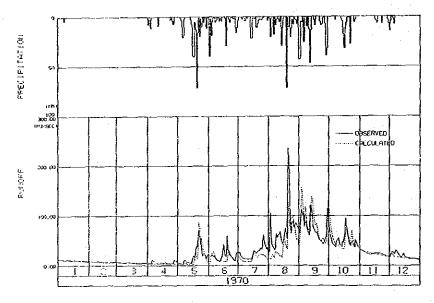

3-4 Final result

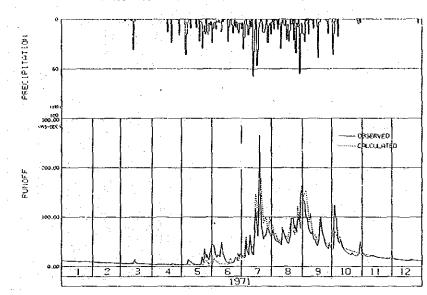
In this study, following conditions were assumed for the culculated results in order to perform the accurate analysis:

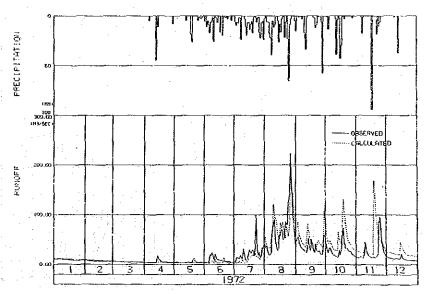

- a) The absolute accumulated difference between measured value and estimated of the annual total runoff shall be zero or negligible.
- b) Average ratios of the difference between actually measured value and estimated of monthly runoff shall be within 20%.

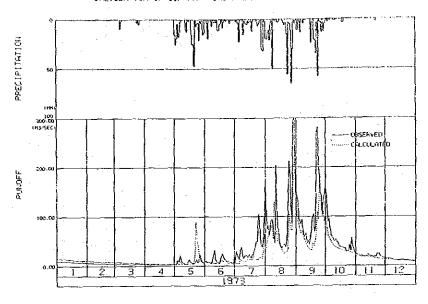
The results calculated by respective final tank models showed that they were sufficient to satisfy the above conditions and after that, data generation was made for required periods of both Ban Tha Rua and Sop Han runoff data using final models.

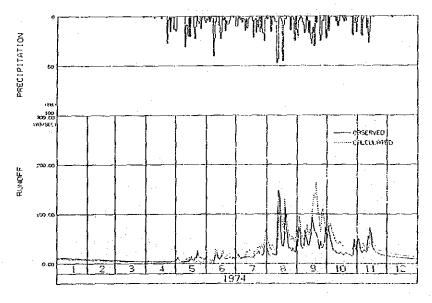

Hydrographs of both sites calculated by final models are attached hereinafter in this appendix. CALCULATION OF SOP HAT PUREST DATA (FINAL CASE: 1987)

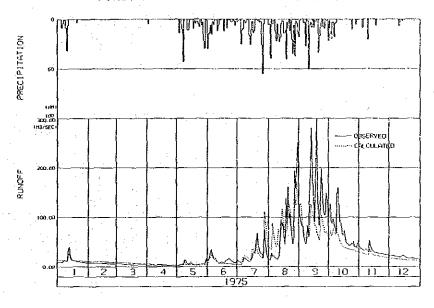

CALCULATION OF SOF HAD MURDLE DATA (FINAL CASE, 1968)

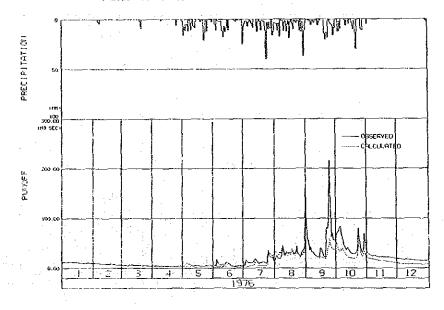

CRECULATION OF SOP HAY FROM FOR FROM FINAL COSE. 1985 (

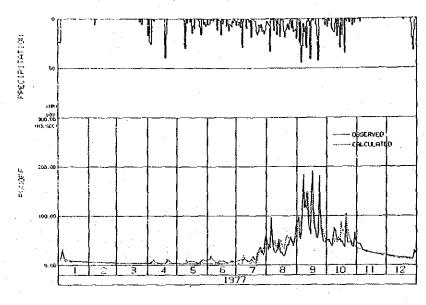

CRECULATION OF SOP HAN RUNOFF DATA (FINAL CASE, 1970)

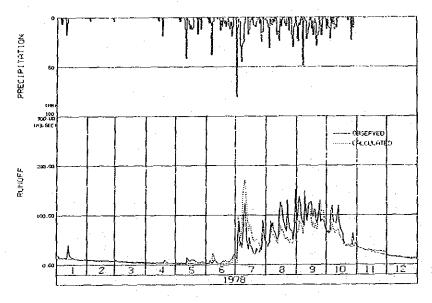

CALCULATION OF SOP HAN RUMOFF DATA (FINAL, CASE, 1971)

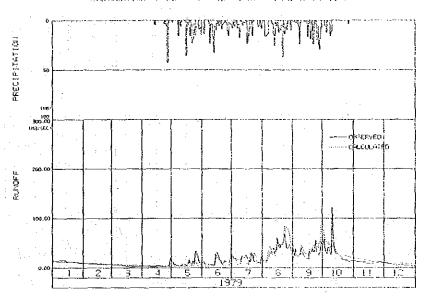

CALCULATION OF SOP HAN RUNOFF DATA (FINAL CASE, 1972)

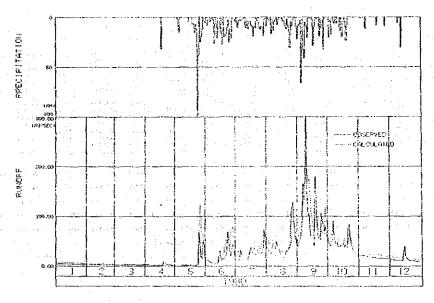

CALCULATION OF SQP HAN RUDDEF DATA (FINAL CASE, 1993°

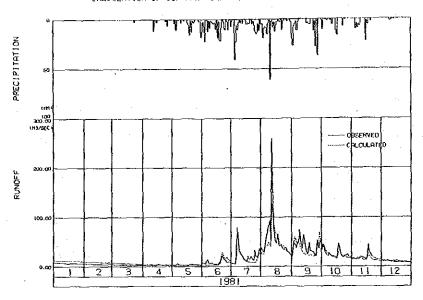

CALCULATION OF SOP HAD PURGER CATA FEITHER CASE. 1974 :


CALCULATION OF SOP HAM RUNOFF DATA (FINAL CASE, 1975)

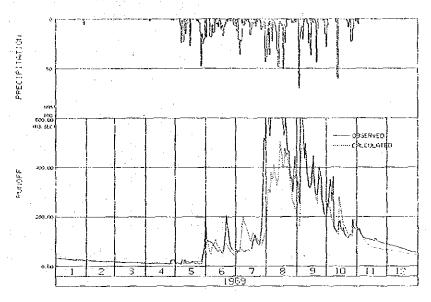

CALCULATION OF SOP HAN RUNOFF DATA (FINAL CASE, 1976)


COLCULATION OF SOP HAD RUNOFF DATA (FINAL COSE. 1977)

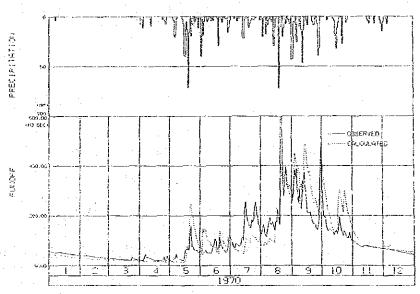

CALCULATION OF SOP HAN BURGER COTA (FINAL CASE, 1978)


CALCULATION OF SOUTHER FORMS FOR OTHER COST, 1979 -

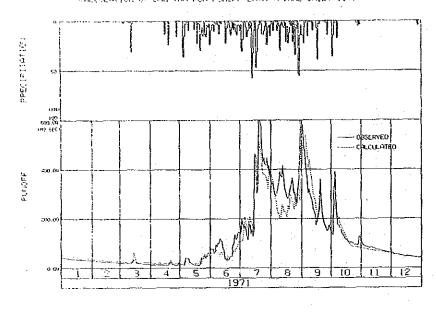
CALCOLATION OF COP HAS PISONE TASK (FINAL CASE, 1980)

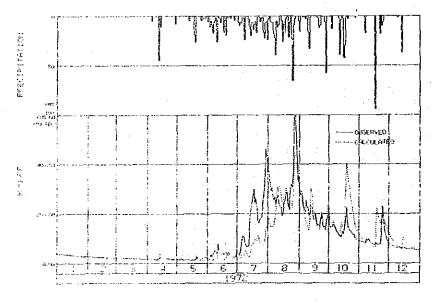


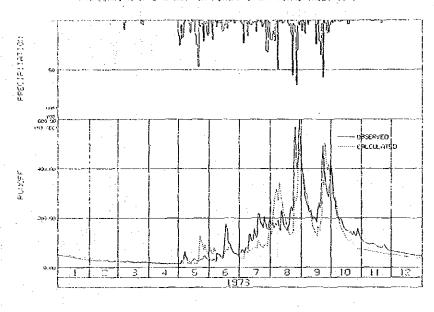
CALCULATION OF SOP HAN RUNOFF DATA LETNAL CASE. 1981 $^{\rm 3}$



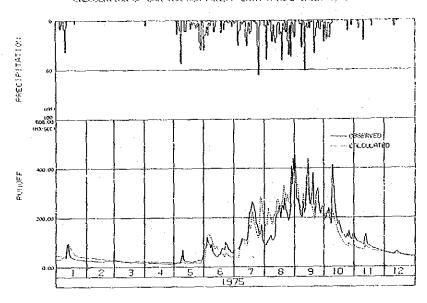
	CALCULATION OF SOP HAN RUNOFF DATA (FIMAL CASE, 1967-81)							< 90-9E >					
YY	Jaa,	FEB.	MAE.	APR.	MAT.	JOE	Jet.	AU6.	SEP	get,	101.	. DEC.	TOTAL
67	19500	14993	16358	19841	117173	240904	-153631	-480249	12713	-334880	-167056	-120409	-816720
68	-95536	-74180	-20540	41802	140404	-140891	152709	-148373	-66342	427411	84811	14156	293527
69	-27213	-1849	26722	32876	17333	24613	-310494	-227278	-439111	-560531	-95940	-13924	-1774818
70	-43391	-44113	-10429	6136D	80369	191851	319193	785373	-217476	-30911	7569	106147	1205562
71	-11527	-21378	-2744	13722	205978	298827	-598896	-77480	-325462	47320	-8291	14367	-465544
72	-45038	-37238	-8960	31373	35340	1344-9	288947	-222936	-490273	-661742	-699171	-358482	-1434011
73	-129971	-105984	-81004	-39896	-146033	105358	243369	1008078	1095929	411659	65676	-6269	2922142
74	57576	61627	20858	16438	131098	~40762	-232180	-545529	-1054791	-519711	-124627	-166227	-2436430
75	-33338	~91058	-92059	~50729	49978	103827	-162673	-290044	1363093	771827	217999	144640	1441365
76	-347	-26693	-29467	~19962	61340	74622	18284	134507	568287	551027	235944	232807	1890489
77	39953	9504	4544	43882	80080	144618	104578	-235327	47889	-114342	47927	43333	214637
7.5	43816	-20944	-34811	-4440	64047	47002	-724458	655027	251073	352471	105420	-23573	735570
79	33829	-28022	~51740	2916	181018	137453	83633	-230360	-312547	-168191	-106947	-03238	-542216
80	-75024	-46562	~40502	-23776	-271353	-279991	-271989	-3062	-173073	-242167	-212102	-92474	-1724257
61	-136724	-114256	-86126	-30536	. 13058	6560	167529	276784	175933	27502	100707	50327	447980
10	-385135	-559333	-566988	96176	259866	1050660	-710541	379100	£13 92 0	-31859	-344731	-236801	A9374
AV	-25696	-36559	-25935	6278	50658	70046	-47389	25274	27595	-2082	-22752	-15787	3272
AD	-829	-1298	-837	209	1634	2335	-1529	815	920	-67	-766	-509	٠
МА	63316	41487	24722	61350	203978	298827	743369	1000078	1363093	779827	235964	232207	1343093
MI	-136724	-514256	- 92069	-50729	-271353	-279991	-724418	-565529	-1054791	-662942	-459171	~356462	-1054791
				** X0*	KOKŲ NO.	. 5	** POINT	. 3 +*					

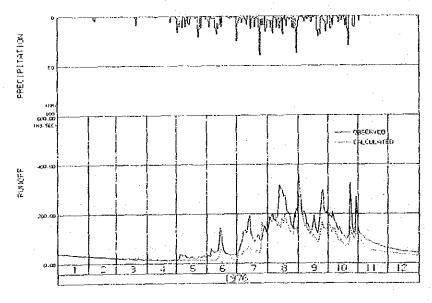

CALCALIN ION OF PART THA PUA FUNCEF COTA OFTICAL CASE. 1969 (

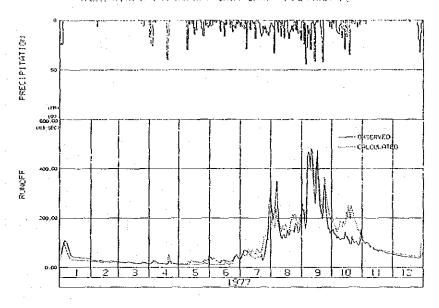

CALCULATION OF EAR THA RUA PUNDEF DATA (FIRAL CASE, 1970)

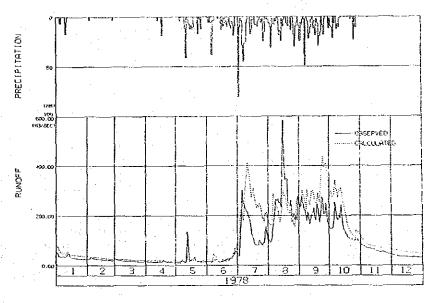

CRECOLATION OF BON THA PUR PUMOFF DATA (FIRST CASE, 1971)

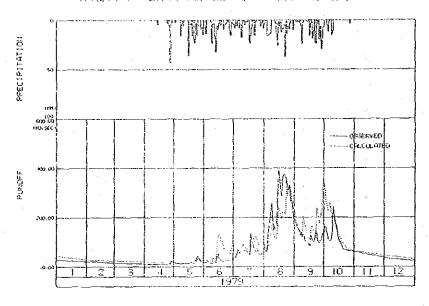
recognition of Ban the Pun Builder Data of NEW CASE. 1972)

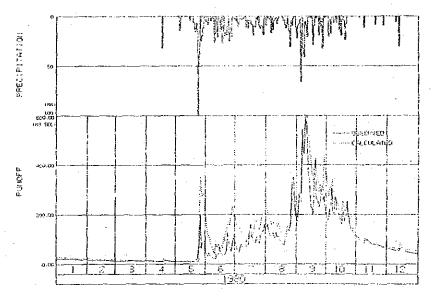

COURSE ATTOM OF BOIL THE FOR PURPLY CASE, 1973 1

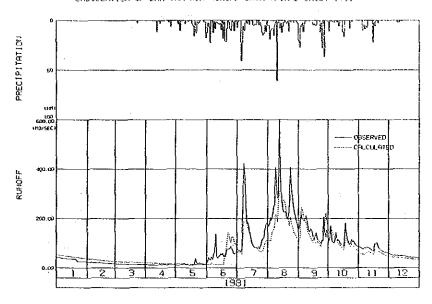

CALCULATION OF BAN THA RUA PUNDEF DATA (FINAL CASE, 1974)


CALCULATION OF BAN THA PUG PRINTE DATA (FINAL CASE, 1975.)


CALCULATION OF BOD THE RUE PURIOFF CETA (FINAL CASE, 1976)


CALCULATION OF NAVIOUS RUN FUNCEF DATA IF HAD THEE. TYPE ...


CALCULATION OF BAN THE PUR PUREYF DATA IF HEL CASE, 1978 3


THE CALL TOP, OF SAIL HAS FIX FOREST DATA (FURL OWE, 1979)

CALCULATION OF BAN THE MEA PLANT BATE OF THE CASE. 1980 .

CALCULATION OF BAN THE RUE RUNOFF DATA (FIDE CASE, 1981)

CALCULATION OF BAN THA RUA RUNOFF CATA (FINAL CASE, 1969-81)							< 90-9E >						
YY	M.	FEB.	NAF.	APR.	WAT.	J\$1.	JUL.	AUG.	SEP.	061.	kOY,	. 9£C.	TOTAL
69	55363	23060	-53693	34399	243086	472686	704354	8359287	1701281	58236	595766	477494	12671693
70	321871	247896	137037	252634	-575664	-629892	1863697	1277881	-2361493	-2503539	-303860	-232403	-2505611
71	-258515	-134165	-171398	-173765	88153	623347	769467	2520969	-984039	246761	223721	-30453	2700079
72	-9550	-62108	-86216	40003	99036	475759	3885400	1298851	140377	-1758247	-779417	-422733	2821156
73	-175237	-133698	-30386	-65160	-362361	74796	1648991	350207	305196	805863	777367	358555	3554093
74	193068	66716	-48885	55830	276813	-23173	-336717	-1071924	-2385267	-1363729	-629758	-479698	-5726724
75	~435555	-236343	-100708	-145652	169761	45509	135635	-1435501	296647	1134636	489748	12154	-271672
76	29852	7146	-96701	-100240	386737	781287	1199879	1723186	1468978	1400246	510671	402030	8081071
77	427608	118672	32924	-18566	169961	287231	~270135	-255910	-606585	-1979497	-81207	+335582	-2511086
18	-412361	-176372	-164018	~148791	148292	-161814	-3304126	771270	-2642313	-2151863	-513022	-605649	-93407B7
19	-363766	-194404	-266929	-151193	29783	-1031653	-760718	1640376	-1629891	-1211566	-189528	-283491	-4412980
80	-153466	-135234	-85415	-43275	-1280152	-1920061	-1607586	-746490	-1765927	-1070989	1603	-296113	-9101103
83	-355750	-304595	-276815	-184186	25511	178042	1053626	2296714	144250	210899	526045	231067	3544810
10	-1136436	-913450	-1231201	-647789	~\$61038	-831242	4981767	14530916	-0330706	1862208-	427609	-1294622	-497263
ΑV	-87418	-70265	-94708	-49830	-43157	-63942	383213	1271607	-641445	-620999	71370	-92679	-38251
¥0	-5950	-2489	-3059	-1661	-1392	-2131	12362	41020	-21382	-20032	2379	~2990	-105
MÀ	427603	247894	137037	252838	366737	781287	3885400	8359287	1701261	1468246	810671	477494	8359287
HI	-435555	-304595	~276613	-154186	-1280152	~1920061	-3304126	-1635501	-2662313	-2503539	-779417	~605649	-3304126
				** KC	MOXU NO.	. s	** POINT	1 3 44					

A-4 PROBABLE MAXIMUM FLOOD

A-4 PROBABLE MAXIMUM FLOOD

- 1. Preparation of Tank Model Parameters in Basin
 - (1) Sub-basin No. 1 (upstream basin of the Sop Hon G.S.)

Data used: runoff - hourly staff gauge heights during floods and rating curves at the Sop Han G.S.

rainfall - daily rainfall at the Khun Yuam, Mae Lama Luang and Sop Han St.

Floods concerned : July 17 - July 23, 1971

Sep. 14 - Sep. 21, 1977

Aug. 22 - Aug. 31, 1980

Area covered by : 832 km² for each station

rainfall station (total catchment area = $2,496 \text{ km}^2$)

Rainfall coefficient: Khun Yuam St. 0.3

Mae Lama Luang St. 0.3

Sop Han St. 0.6

Results of floods' simulation by tank model analysis are shown on Figs. 1-(1), 1-(2) and 1-(3).

(2) Sub-basin No. 2 (the Rit river basin)

Data used: runoff - hourly staff gauge heights during floods and rating curves at the Ban Mae Suat G.S.

rainfall - daily rainfall at the Ban Mae Suat St.

Floods concerned : Aug. 12 - Aug. 19, 1984

Sep. 16 - Sep. 23, 1985

Area covered by : 1,376 km² for the Ban Mae Suat St.

rainfall station

Rainfall coefficient: Ban Mae Suat St. 0.5

Results of floods' simulation by tank model analysis are shown on Figs. 2-(1) and 2-(2).

(3) Sub-basin No. 4 (the Ngao river basin)

Data used: runoff - hourly staff gauge height and rating curves at the Ban Mae Ngao G.S.

rainfall - hourly rainfall at the Ban Mae Ngao St.

Floods concerned : Aug. 13 - Aug. 23, 1984

Aug. 25 - Sep. 8, 1985

Area covered by : 935 km² for the Ban Mae Ngao St.

rainfall station

Rainfall coefficient: Ban Mae Ngao St. 1.0

Results of floods' simulation by tank model analysis are shown on Figs. 3-(1) and 3-(2).

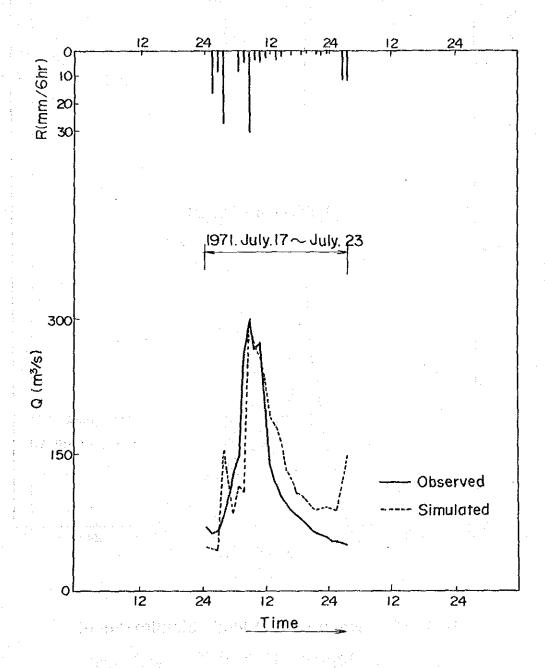


Fig. 1-(1) Result of Flood Simulation at the Sop Han G.S

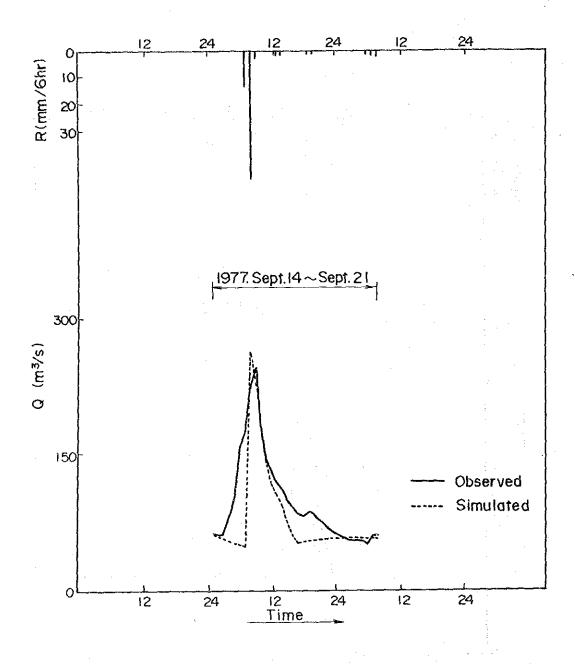


Fig.1-(2) Result of Flood Simulation at the Sop Han G.S

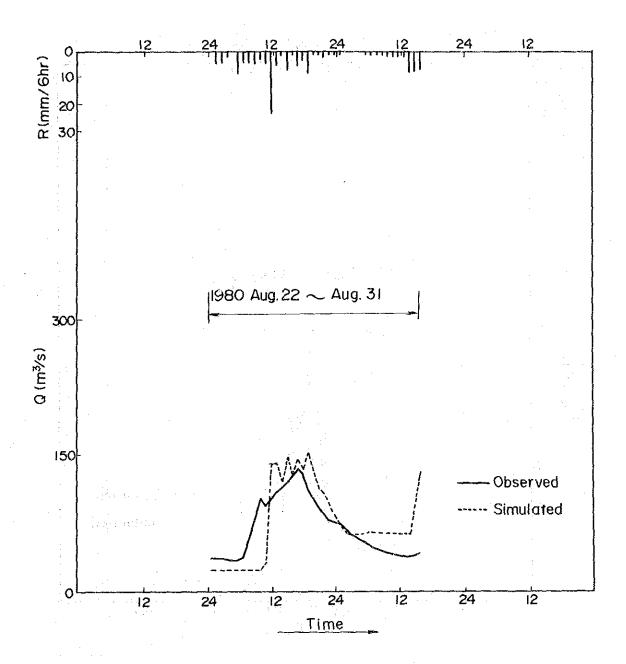


Fig. 1-(3) Result of Flood Simulation at the Sop Han G.S

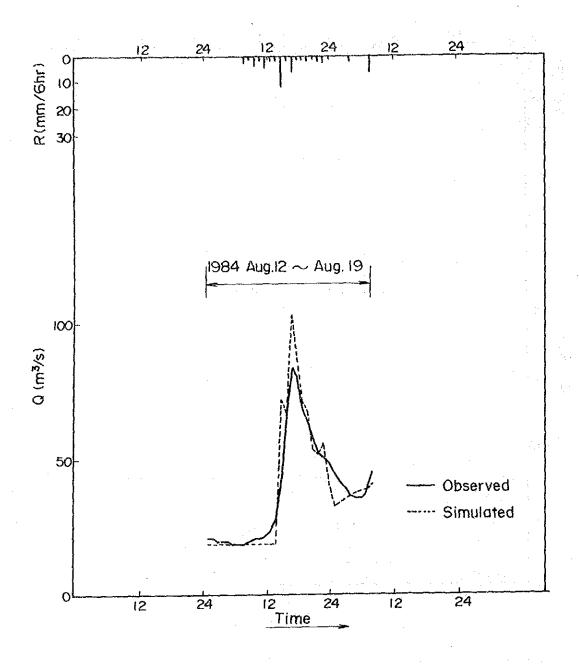


Fig. 2-(1) Result of Flood Simulation at the Ban Mae Suat G.S

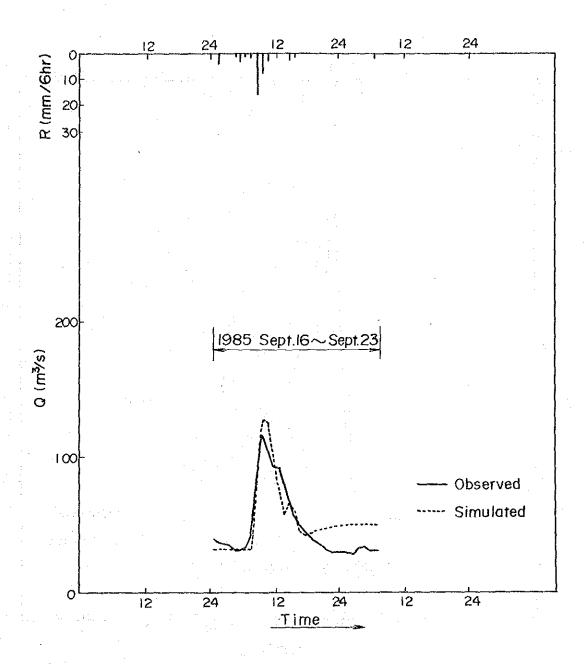


Fig. 2-(2) Result of Flood Simulation at the Ban Mae Suat G.S

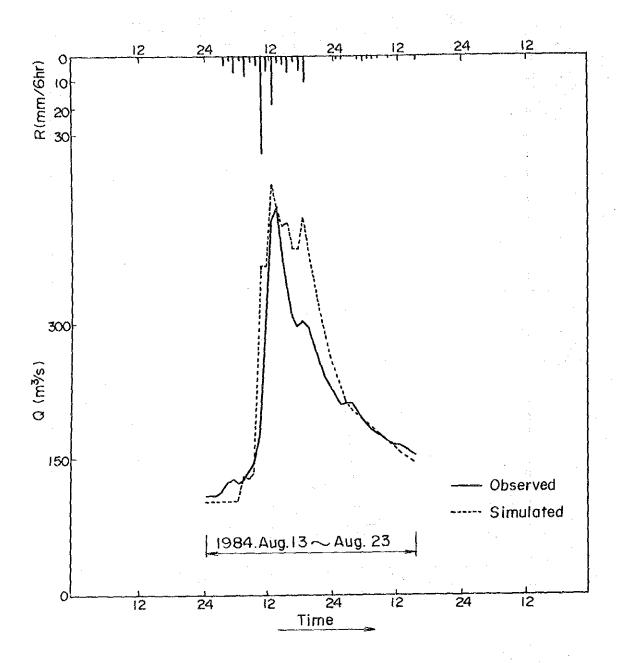


Fig. 3-(1) Result of Flood Simulation at the Ngao G.S

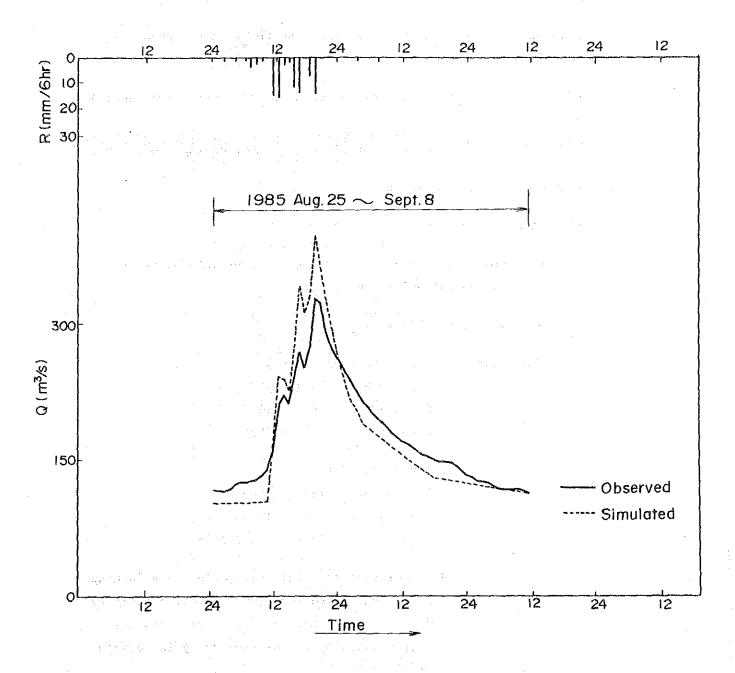


Fig. 3-(2) Result of Flood Simulation at the Ngao G.S

2. Estimation of Probable Maximum Precipitation

(1) General

Probable maximum precipitation (PMP) can be estimated from equations below.

PMP = (actual rainfall amount during a flood)*(maximizing factor)

Maximizing factor = (maximum precipitable water during flood time)

(actual precipitable water during flood time)

(2) Maximum Precipitable Water

1) Estimating Procedure

The estimating procedure of maximum precipitable water is shown on the following flow chart.

2) Maximum Precipitable Water

- Data used: Temperature (max., min.)*

Sop Han St. 1967 - 1985

Ban Tha Rua 1971 - 1985

Salawin 1970 - 1980

Relative Humidity

Sop Han St. 1971 - 1985

Ban Tha Rua 1971 - 1985

Salawin 1971 - 1981, 1985

* Temperature data for some periods are lacking, for which period there were relative humidity data. Hence, lacking temperature data are supplemented by correlation analysis between stations.

- Saturated vapour pressure (es)

Saturated vapour pressure (es mb) of a day is derived from Fig. 4 (Variation of Vapour Pressure with Temperature at Percentages of Saturation).

- Actual vapour pressure (e)

Actual vapour pressure (e, mb) of a day is derived by a equation below.

 $e \approx es * R.H/100$

where, e : actual vapour pressure (mb)

es: saturated vapour pressure (mb)

R.H: relative humidity

- Max. vapour pressure in 15 successive days (e max.)

In order to estimate the maximum precipitable water during flood time, maximum vapour pressure (e max.) in 15 successive days is found for each month.

- Max. Dew point temperature in 15 successive days

Maximum dew point temperature in 15 successive days is derived from maximum vapour pressure (e max.) in 15 successive days by using Fig. 4, and further be reducted at 1,000 mb.

- Dew point temperature for 50-year return period at 1,000 mb in 15 successive days

In order to draw envelope curves of dew point temperature for 50-year return period, maximum dew point temperatures at 1,000 mb in 15 successive days for observation periods are analysed with a normal distribution.

Plots of maximum dew point temperatures at 1,000 mb in 15 successive days and of dew point temperatures for 50-year return period, and envelope curves are shown on Figs. 5, 6 and 7.

- Max. precipitable water during the flood period concerned (May 20 - May 25, 1980)

The maximum precipitable water during the flood period concerned is estimated to be 116.2 mm as shown below.

Max. Precipitable Water

Item	Unit	Description
1. Flood period concerned	_	May 20 - May 25, 1980
2. Max. dew point temperature at 1,000 mb according to envelope curve	°C	31.7 (Sop Han) 33.0 (Ban Tha Rua) 32.6 (Salawin) 32.4 (average)
3. Precipitable water (200 mb - 1,000 mb)	mm	150.7
4. Precipitable water (200 mb - EL. 1,200 m*)	nam.	34.5
5. Precipitable water (EL. 1,200 m* - 1,000 mb)	mm	116.2

*): EL. 1,200 m - topographic barrier

The precipitable water corresponding to a dew point temperature is estimated from Table 1.

(3) Actual Precipitable Water

The actual precipitable water during the flood period concerned (May 20 - May 25, 1980) is estimated 78.5 mm as shown below.

Actual Precipitable Water

Item	Unit	Description
1. Flood period concerned		May 20 - May 25, 1980
2. Max. dew point temperature at 1,000 mb during the flood concerned	°C	27.2 (Sop Han) 29.0 (Ban Tha Rua) 29.4 (Salawin) 28.5 (average)
3. Precipitable water (200 mb - 1,000 mb)	mm	108.5
4. Precipitable water (200 mb - EL. 1,200 m*)	TOM)	30.0
5. Precipitable water (EL. 1,200 m* - 1,000 mb)	mm	78.5

^{*):} EL. 1,200 m - topographic barrier

(4) Maximizing Factor

A maximizing factor is estimated as below.

Maximizing Factor

- $= \frac{\text{maximum precipitable water during flood time}}{\text{actual precipitable water during flood time}}$
- = 116.2/78.5
- = 1.48

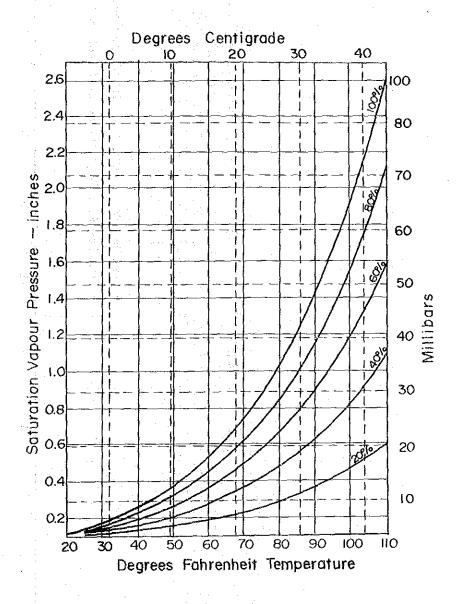
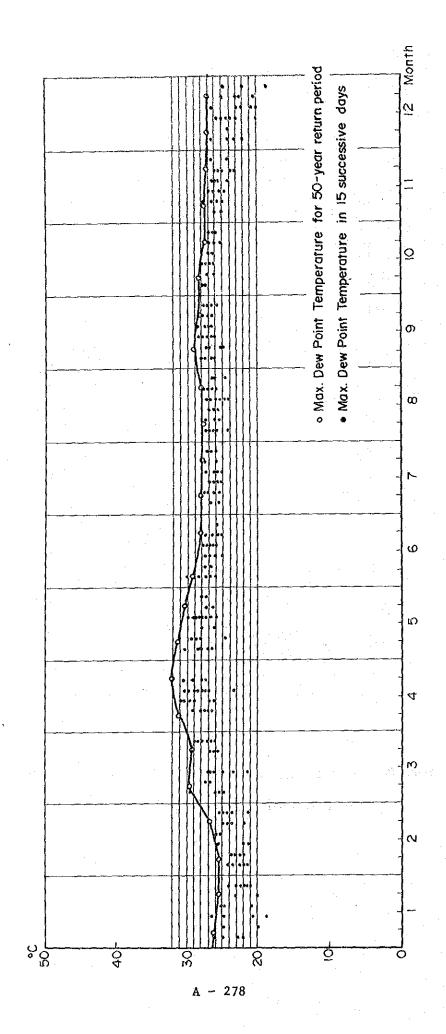
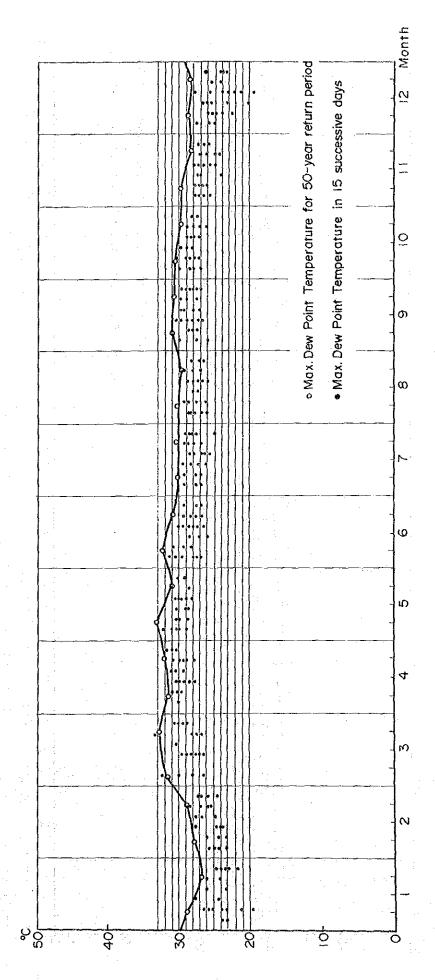




Fig. 4 Variation of Vapor Pressure with Temperature at Percentages of Saturation

Sop Han St. Envelope Curve of Max. Dew Point Temperature at Fig. 5

Envelope Curve of Max. Dew Point Temperature at Ban Tha Rua St. Fig. 6

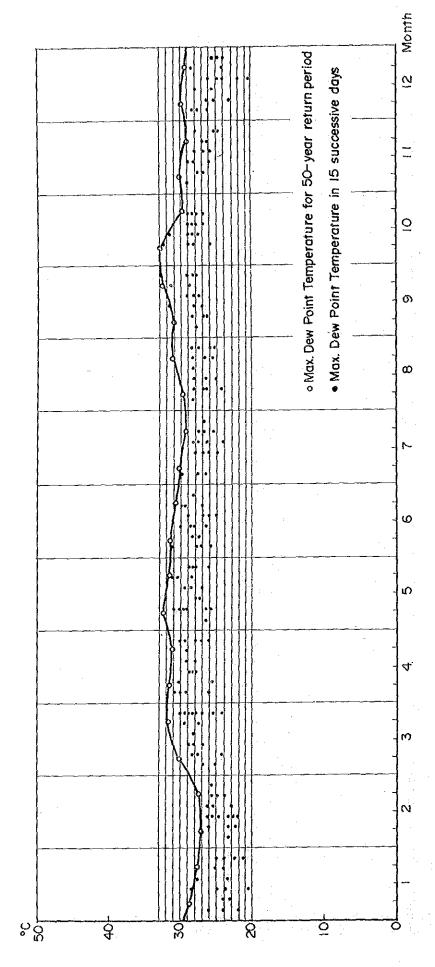


Fig. 7 Envelope Curve of Max. Dew Point Temperature at Salawin St.

Table 1 Dew Point Temperature and precipitable Water

Precipitable Water (mm)			6.47	75.9	76.2	77.0	78.0	78.5	79.5	80.0	80.5	81.5	82.0	82.8	83.3	84.1	8.4.8	85.3	86.1	86.9	87.9	88.9	90.2	6.06	91.7	92.7	93.0	0.46	2.76	95.3	0.96
Dew Point Temperature (°C)		24.0		2	m	4	Ŋ	90	_	80	on.	25.0	m	7	m	7	ŀΛ	9	^	œ		26.0	;1		m	4	2	9	7	∞	σ.
Precipitable Water (mm)		58.4		•		60.2		-	61.5		62.5	63.0		64,3	8.79	65.3			66.5	•	œ	œ	69.3	ö	70.6	71.1		72.1		•	•
Dew Point Temperature		21.0	t	2	m	4	١٠	. 9	7	80	Óì	22.0	Н	2	m	7	5	S	^	∞		23.0	Н	7	m	4	'n	9	7	00	σ
Precipitable Water (mm)		44.4	9.44		٠	· •	45.3			45.8	46.0	46.2	7.94	47.1	47.6	48.0	48.5	49.0		49.8	50.3	50.8	51.6	52.3	53.1	53.8	54.6	55.4	56.1	56.9	57.6
Dew Point Temperature (°C)	"	18.0	-	2	က	7	Ŋ	9	<i>`</i>	Ø	0	19.0		7	m	4	'n	9	_	∞	65	20.0		2	m	4	Ŋ	9		∞	6)
Precipitable Water (mm)		34.3		34.9	35.1	35.4	35.7							37.9		38.6		39.4	39.8	40.2	40.5	6.07	41.3	41.6	42.0	42.3		43.0		43.7	44.1
Dew Point Tempreature (°C)		15.0	-4	2	က	4	Ŋ	9	7	80	6	16.0	 -I	7	ന	4	Ŋ	9	I ~	∞	σv	17.0		5.	m	4	Ŋ	νφ		. «	0 0

·																			·										_
Precipitable	Water (mm)	4 4			161.2		_	64.	. 99	67.	168.5	, ,				-								-		- :			
Dew Point		33.0)		m	4	Ŋ	9	~	∞ «	, ,	0.45																	
Precipitable	Water (mm)	123.2		'n	126.6		128.9	30.	37.	32.	133.5		136.9	138.1	139.2	140.4	141.5	142.7	143.8	146.1				150.7	151.8	152.9	• 6	155.2	ċ
Dew Point	(1) O	30.0		2	m	7	5	9	<u></u>	οο «	5 C) - 1	. 2	er.	7	S	\o		∞ σ	32.0		2	e e	7	5	9	7	ж c	<u>۸</u>
Precipitable	Water (mm)	97.0	97.8	98.6	9.66		101.1	101.9	•		103.6	105.4	106.7	108.0	109.0	60	10		112.3	7	15.	2	9	\sim	18	9	20.	120.9	77
Dew Point		27.0		. 7	့တ	4	νn.	\$0	-	တ	on 6	70.07	1 73	m	4	'n	•0	<u> </u>	ж о	29.0	H ,	73	ຕ	7	5	9	7	00 0	۸

A-5 DAM BREACH ANALYSIS

984 15 1996 1978 1 1 1 A-5 DAM BREACH ANALYSTS

1. Nam Ngao Dam Breach

In order to obtain hydrographs of the river discharge and the river water level at Ban Mae Kha Tuan approximately 17 km upstream of the conjunction of the Nam Ngao river and the Yuam river when the Nam Ngao dam breaches, a calculation of flood wave propagation was carried out.

Conditions of the calculation are shown below.

and the second second

Nam Nam Ngao Dam

Reservoir water level when breached: 270 m (N.H.W.L.)

Sevel Elevation of breach bottom : 160 m

penu drascut prosta i i pie kaj filosoficio e in liberationi del si

Side slope of breach : 45°

Width of breach bottom : 80 m

Breach time : 1 h, 8 h

Mae Lama Luang Dam

Initial reservoir water level : 165 m (N.H.W.L.)

Reservoir water level when breached: 168.5 m

Elevation of breach bottom : 62 m

Side slope of breach : 45°

Width of breach bottom : 80 m

Breach time : 1 h, 8 h

	Nam Ng	ao Dam	Mae Lama	Luang Dam	
· [Width of	Breach	Width of	Breach	
	Breach	Time	Breach	Time	Manning n
	Bottom		Bottom		
	(m)	(hrs)	(m)	(hrs)	
l (Max. breach)	80	1.0	80	1.0	0.04
2 (Min. breach)	80	8.0	80	8.0	0.04

The hydrographs of the river discharge and the river water level at Ban Mae Kha Tuan for the maximum breach case and the minimum breach case are indicated in Fig. 1 and Fig. 2 respectively.

2. PMF of Nam Ngao Dam

In order to obtain a hydrograph of the river water levels at Ban Mae Kha Tuan when the PMF discharge occurs in the Ngao river, a calculation of flood wave propagation was carried out.

The PMF hydrograph in Fig. 5-24 of the Final report was used in the calculation. The initial river discharge at Ban Mae Kha Tuan was set $1,100~\text{m}^3/\text{sec}-1,500~\text{m}^3/\text{sec}$ which correspond to the river water level of EL. 164~m-166~m at Ban Mae Kha Tuan.

The result of the calculation showed no change of the river water level at Ban Mae Kha Tuan.

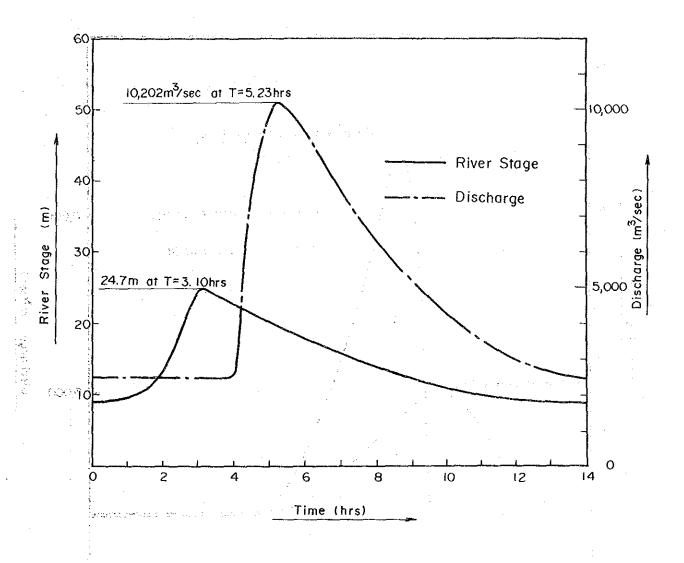


Fig. 1 Attenuation of Break Flood of
Nam Ngao Dam at Ban Mae Kha Tuan
(Max. Breach Case)

* River stage zero = EL. 158.00m

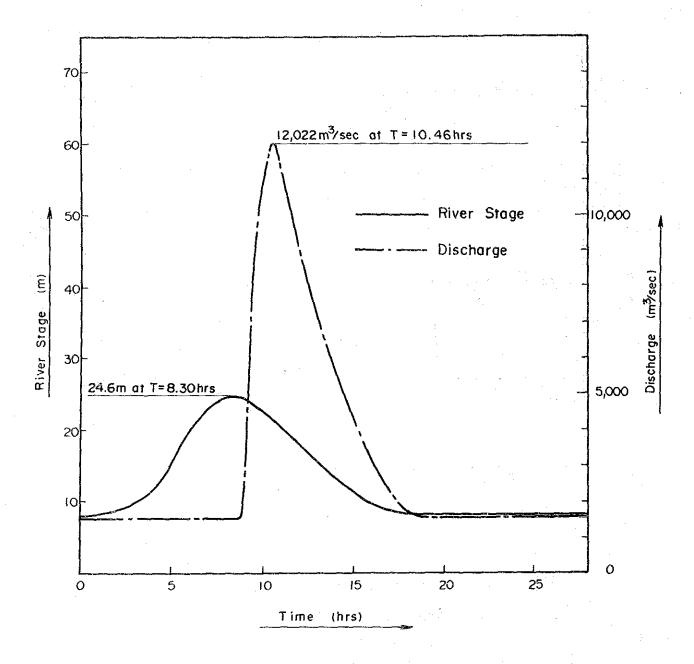


Fig. 2 Attenuation of Break Flood of
Nam Ngao Dam at Ban Mae Kha Tuan
(Min. Breach Case)

% River stage zero = EL.158.00m

A-6 HYDROLOGICAL FORECASTING SYSTEM

.

A-6 HYDROLOGICAL FORECASTING SYSTEM

1. Hydrological Forecasting System (alternative)

An objective of establishing the alternative hydrological forecasting system in the Yuam river basin is to estimate future states of hydrological phenomena in real time, for example, to estimate the natural inflow into the reservoir 7-day ahead.

The forecasting system is composed of three different sub-systems below.

- Data collection
 - Data transmission
 - Hydrological modelling
 - (1) Data Collection

The collection of rainfall data is taken at the following five stations; Khun Yuam, Mae La Luang, Mae Sariang, Ban Mae Ngao (or upstream of the Ngao river), Ban Tha Rua.

(2) Data Transmission

The rainfall data collected at the above stations is transmitted to the Mae Lama Luang dam site through two relay stations by VHF radio wave at a required time interval. (See Fig. 5-40 in the Main Report)

Since the number and the location of relay stations are temporarily decided, they should be examined at the next stage.

(3) Hydrological Modelling

In order to estimate the reservoir inflow from the rainfall data, a hydrological forecasting model is established in development and operational mode.

The tank model is recommended as the hydrological forecasting model in the Yuam river basin by reason that the reliability of the tank model in this basin is already verified by this study.

(4) Installation Cost

The installation cost of the alternative hydrological forecasting system is roughly estimated 28 million Baht shown in a table below, which cost is not including the establishment cost of the hydrological forecasting model in development and operational mode.

Table 1 Installation Cost of Alternative Hydrological Forecasting System

(Million Baht)

Description	Unit	Quantity	Unit Price	Cost
1. Rainfall Station 1) 2. VHF Relay St. 2) 3. Main Terminal 3) 4. CPU 4) 5. Others 5)	Station Station Station L.S. L.S.	5 2 1 1	2.0 3.2 3.0 	10.0 6.4 3.0 5.0 3.6
Total			111111111111111111111111111111111111111	28.0

1863 For Note 1) Installation cost of a rainfall station is listed for a good than a detailed items below.

	Measuring equipment	0.30
	Radio equipment	0.16
•	Solar battery	0.20
	Rain guage & auxiliaries	0.14
e e e e e e e e e e e e e e e e e e e	House construction	0.60
25000	Installation	0.60
e e negario di Compositione di	Total	2.0 million Baht
Sign of partial and the		* *

The unit price of 2.0 million Baht is a rough estimate to install a new rainfall station. Detailed estimation should be carried out if existing facilities or equipments could be used or not by a detailed investigation of the existing rainfall station.

Note 2) Installation cost of a VHF relay station is listed for detailed items below.

Relay equipment	0.70
Radio equipment	0.64
Solar battery (2 units)	0.40
Auxiliaries	0.34
House construction	0.60
Installation	0.52
Total	3.20 million Baht

The unit price of 3.2 million Baht is a temporary estimate, and a detailed study should be carried out to determine the number of VHF relay stations and their location.

Note 3) Installation cost of the main terminal at the Mae Lama
Luang power station is listed for detailed items below.

Installation	0.60 3.00 million Baht
Auxiliaries	0.52
Operation panel	0.44
Printing device	4.4. 024
Observatory equipment	1.20

Note 4) The cost CPU includes the cpu, on-line control program and CRT display.

Note 5) Other cost is roughly estimated for the inland transportation of equipments to the site.

1 - 12 2 Runoff Analysis (ARMA Model) Method

Cambridge Williams (1998) 4 March 2010 Control of the America

2.1 Outline of ARMA Model Method

The conditions required of a runoff model for predicting flood are as follows:

- i) That the model is simple and calculations can be made rapidly,
- ii) That the parameters of the prediction model are stable,
 - iii) That the accuracy of prediction is high, and
 - iv) That the calculation model has been structured on a physical basis

It may be considered that the ARMA Model Method is a run-off model which statisfies these conditions. There are two ways of predicting floods by the ARMA Model Method: (1) a method of predicting flood discharge from flood discharge data only, and (2) a method of predicting flood discharge from rainfall data.

The method of predicting flood discharge from discharge data only is according to the procedure below.

- Discharge-time series obtained from time to time are passed through a numerical filter each time and are divided into groundwater runoff components and intermediate-surface runoff components.
- ii) Effective component rainfall-time series are individually calculated inversely by the ARMA Model Method based on the individual component runoff-time series. Methods of inversely calculating available are the direct method, SLQ method, and LP method.
 - iii) Future rainfall is predicted from the time series of the individual component rainfalls (groundwater component rainfall, intermediate-surface component rainfall).

tipine di suntan signi na transita di suntano di sultano di sultano di sultano di sultano di sultano di sultano Superantano di supera di sultano d

ામનું લોક કરવા કરતાં છે. આવી છે જેવા જોઈ અને કહ્યું છે છે છે છે.

iv) The runoffs of the individual component systems are predicted from these rainfalls and the total flood discharge is predicted from these.

In the method of predicting flood discharge from rainfall data, the step of ii) above is altered as follows:

- ii-a) The measured rainfall is separated into ground-water component rainfall and other components according to the nonlinear separation law.
- ii-b) The other component rainfalls are separated into intermediatesurface component rainfall and loss component rainfall in accordance with the partial source area law.

2.1.1 Runoff Prediction from Flood Discharge Data

When discharge data can be obtained incessantly, the flood discharge until several hours later than the present is predicted. In such case, rather than simply applying the prediction theory to the discharge data, a high prediction accuracy can be expected by inversely calculating effective component rainfall by discharge-time series.

This method consists of repeatedly applying the discharge analysis technique according to the ARMA Model Method each time that flood discharge data are received, using the inversely estimated rainfall data obtained as a result to predict future rainfall, and predicting flood discharge from these rainfall data.

The procedure in concrete terms is as follows:

- Discharge-time series data are passed through a numerical filter to separate into ground-water runoff components and intermediate-surface runoff components.
- 2) From the individual component runoff-time series, the individual effective component rainfall-time series are inversely calculated by the ARMA Model Method (inverse)

estimation of rainfall). Methods of calculating available are the direct method, SLQ method, and LP method.

- 3) From these inversely estimated rainfalls the runoff amounts of the individual component systems are calculated using the AR equation, and the total flood discharge is obtained aggregating these runoffs.
- (1) Component Separation of Discharge

It is widely known in concept that runoff is made up of a number of component systems. Accordingly, the discharge-time series yi up to the present time i is separated into momentary underground runoff component yi (1) and intermediate-surface runoff component yi (2) using a numerical filter whose characteristics are determined by the past gradual flood decrease curve.

$$y_{i}(1) = \alpha \sum_{i=1}^{N} y_{i}(1) = \alpha \sum_{i=1}^{N} y_{i}(1)$$
(2.1-1)

where, : weight coefficient

Here, if necessary, the second component yi⁽²⁾ is further separated into two components.

(2) Inverse Calculation of Effective Rainfall

and the light of the least of the control of the co

Will to we keek he called the configuration of the

Actual rainfall changes form while infiltrating through soil to become effective rainfall components for a runoff system. The separation of the rainfall into each runoff system is nonlinear, but the runoff system itself can be handled as being linear. If one response system is linear and the dynamic characteristics (unit graph, AR coefficient, etc.) of the system are known, it will be possible to estimate output (discharge) from input (rainfall), of course, and conversely, to inversely calculate input (rainfall) from output (discharge).

With the ARMA Model Method, rainfall in units of an hour has the nature of white noise, and the characteristic of the systme is estimated using this nature. In effect, the component discharge yi(1) is expressed as follows by the AR equation:

$$y_{i}(1) = a_{1}y_{i-1} + a_{2}y_{i-2} + a_{3}y_{i-3} + \dots + \varepsilon$$
(2.1-2)

If discharge-time series Yi (1) (i = 0, 1, 2, ...) is given, even though white noise ε is unknown, the AR coefficient can be estimated by methods such as the Yule-Walker method and the Barg method, and the characteristics of the system determined.

Regarding the characteristics (unit graph, AR coefficient) of the system, it will be necessary for them to be decided performing runoff analyses beforehand.

(3) Inverse Estimation of Effective Component Rainfall

Prediction of flood, in case the prediction time is short, can be done by discharge-time series, but to accurately predict flood for a prediction time which is of a certain length, it is necessary to predict rainfall which is the input.

However, it is necessary first to separate actual rainfall into individual component systems, or to estimate component rainfall by some method. Accordingly, since the white noise ε is Eq. (2.2-2) corresponds to rainfall, Eq. (2.1-2) is altered and the component rainfall is inversely calculated by the following equation.

$$x_{i-1}(1) = (y_i(1) - a_1y_{i-1}(1) - a_2y_{i-2}(1) ...)/\lambda b$$
(2.1-3)

where,
$$i = 1, 2, \ldots, n$$

 $b = coefficient (b - 1 - a_1 - a_2, \ldots)$
 $\lambda = unit transformation coefficient$

For inversely estimating component rainfall from Eq. (2.1-3), there is 1 the direct method of solving Eq. (2.1-3) by each time step one by one, and the method of simultaneously setting up and solving the unit graph response function $(h_1 \text{ equation})$ for all $(i = 1, 2, \ldots, n)$ up to this time and Eq. (2.1-4).

where, hi: response function (unit graph)

There is further (3) the linear planning (LP) method in which solving is done with

$$xi > 0 \ (i = 1, 2,, n)$$
 (2.1-5)
$$\Sigma \mid \varepsilon \mid_{i} \rightarrow_{min}$$

As the optimum problem which minimizes error based on (2) smoothing out method of least squares (SLQ) and with negative value not taken for rainfall.

on agent (4) Prediction of Rainfall and the least

najos prosidente de la

The inversely estimated rainfall obtained in this manner is not actual rainfall itself, but is the effective component rainfall after lagging and alteration of actual rainfall in the process of infiltrating through soil. However, since this is prediction of flood, it would suffice if the effective component after lagging and being subjected to alteration can be predicted.

The method of predicting rainfall necessary for flood prediction will be described below.

(a) Extrapolation of Inversely Calculated Effective rainfall

It is only up to the present time that inversely calculated rainfall can be estimated and the future rainfall-time series required for flood prediction cannot be known. However, the groundwater component rainfall is smoothed out during the process of infiltrating through soil, and a gradual alteration occurs. Consequently, future effective rainfall can be determined by simple extrapolation.

$$xi + ip (1) = (p(1))LP xi(1)$$
 (2.1-6)

where, p(1): extrapolated load (p= 0.8)

On the other hand, the effective component rainfall for intermediate and surface runoff varies irregularly in accordance with the irregularity of actual rainfall. Because of this, since simple extrapolation would be meaningless, the rainfall $x^{(2)}(t)$ smoothed out over the past several hours is extrapolated.

(b) Rainfall Prediction from Rainfall Data (Estimate)

Even in the case that rainfall data up to the present time $t = i\Delta t$ can be obtained, it is not that those rainfall data will directly become effective component rainfalls, so that the value according to inverse calculation from actual discharge data will be used as effective component rainfall up to the present time.

Beyond the present tie, inversely calculated effective rainfall cannot be determined since measured discharge data are not available. However, in case there are rainfall data, there is generally a time lag (lag 2) until rainfall acts effectively on runoff, and there would be rainfall in advance by the amount of this time. Therefore, component rainfall is predicted by simple runoff ratio, or using the conception of the law of separation of rainfall described in 2.6 and P.S.A. (Partial Source Area).

However, in case the predicted time exceeds the time lag until runoff, component rainfall is predicted by the method of smoothed out extrapolation previously described.

Prediction of the intermediate-surface runoff component is done by the following equation i view of the facts that rainfall for several hours corresponding to the time lag has not yet acted on the runoff system and that change in the groundwater component rainfall is extremely gradual.

$$s(2)_{i+ip} = f.X_{i+ip-lag} 2-x_{i}(1)$$
 (2.1-7)

where, (ip = 0, 1, ..., lag 2)

on and the second

the second section is given by X(2) in $i = al(s)\{Xi + ip = xi^{(1)}\}$ (2.1-8)

where, ip: prediction time step

and the same and t

to deposits the second transfer of the runoff ratio

Company of the Compan

al(s): P.S.A. ratio to princial catchment area

The method of (a) is used for a prediction time exceeding this range.

In general, lag 2 is from 2 to 3 hours, so that this method can be used for prediction 2 to 3 hours ahead of time.

(5) Prediction of Flood Discharge

If rainfall can be predicted, it is a simple matter to predict flood discharge. This is done by Eq. (2.1-9) using the predicted values of these component rainfalls, or Eq. (2.1-10) the component unit graph hi equation obtained by conversion of the AR coefficient.

$$y_{i+ip} = a_1y_i+ip-1 + a_sy_i+i_{p-2} + ...+bx_{i+ip-1}$$
(2.1-9)

All Marine Training or a second

$$y_{i+ip-1} = h_1 x_{i+ip-1} + h_2 x_{i+ip=2} + \dots$$
 (2.1-10)

When substituting predicted values in y of the AR equation of Eq. (2.1-9) one after another, the predicted value according to the AR equation of Eq. (2.1-9) one after another, the predicted value according to the AR equation will exhibit an unstable behavior so that a better result is obtained with the hi equation of Eq. (2.1-10), namely, the unit graph method. However, an AR equation expression generally requires a small number of terms, but when this is transformed to the hi equation, the number of terms will be increased.

2.1.2 Prediction of Runoff from Measured Rainfall

A case of determining flood discharge from rainfall data will be considered. As is well known, rainfall can be divided into loss rainfall consisting of initial loss, tree canopy obstruction, evapotranspiration, etc., and effective rainfall contributing to runoff into streams. Effective rainfall is further divided into the runoff component rainfalls of intermediate-surface and groundwater inside ground strata. Here, the point of separation of rainfall observed into effective components will be discussed. The procedure in concrete terms is as follows:

- The observed rainfall is separated by the nonlinear law of separation into groundwater component and other components.
- (2) The other components are separated into intermediate-surface components and loss component rainfall according to the partial source area law.
- (3) The runoff quantities of the individual component systems are calculated from these separated rainfalls using the AR equation, and the total flood discharge is obtained by aggregating these quantities.
 - Effective Component Rainfall According to the Law of Separation of Rainfall

Rainfall is separated into groundwater component rainfall $xi^{(1)}$ and intermediate-surface component rainfall $xi^{(2)}$ by the law of separation below.

(a) Initial Loss

There is no contribution to runoff until the quantity of initial loss (L_0) is reached by the cumulative quantity (Σx) of observed rainfall.

$$xi^{(1)} = 0$$
 (2 = 1, 2) ($xi < Lo$) (2.1-11)

where, xi: observed rainfall (mm)

Lo: initial loss (mm)

(b) Groundwater Component Rainfall

When the cumulative quantity (x) of observed rainfall reaches the initial loss L_0 , the subsequent rainfall first becomes groundwater component rainfall.

$$= xi(1) \qquad (xi \leq xG)$$

$$Xi(1) \{ \qquad (2.1-12)$$

$$= xG \qquad (xi > xG)$$

(c) Intermediate-Surface Runoff Component Rainfall

When the groundwater component rainfall reaches a saturated condition, part of the surplus rainfall becomes diect rnoff (surface-intermediate runoff component) from P.S.A (partial source area, see 2.6) and the remainder of the rainfall is stored in soil.

$$= 0 (xi \le xG)$$

$$Xi(2)\{ (2.1-13)$$

$$= ap(s)(xi - xG)(xi > xG)$$

where, a_{p(s)}: partial source area ratio to total catchment area

This $a_{p(s)}$ is a function of catchment area storage quantity S.

$$S(t) = \int_0^t (x(t) - y(t)) dt$$

where, the form of function $a_{p(s)}$ is

$$a_p(s) = \frac{S}{So}$$
 (S \leq So)
 $a_p(s) = 0$ (S \req So)

where, S_0 : saturated storage quantity or, $a_p(s)$ = 1 - exp (-S/S₀) 2) Prediction of Rainfall

Rainfall is predicted in the same manner as in 2.1.4 (4).

3) Prediction of Flood Discharge

The individual component rainfalls having been obtained according to the foregoing, flood idscharge is predicted by the method of 2.1.1 (5).

2.1.3 Preparation of Parameters

In order to predict flood discharge by the ARMA Model Method, it is necessary to make known the characteristics (AR coefficient, unit graph, etc.) of the rainfall-runoff system performing runoff characteristics analyses beforehand.

The procedure is explained in brief below.

- (i) Several cases of flood data (rainfall, discharge, etc.)
 required for runoff analysis are selected. In selecting data,
 it is desirable for rainfall data to have small spatial and
 temporal dispersion, discharge data to have a single peak of a
 clean line, discharge data with the gradual decrease portion
 long, and the scale of the flood medium.
- (ii) The discharge-time series data yl are divided into groundwater runoff component Yi(1) and intermediate-surface runoff component yi(2) using a numerical filter w_i. If necessary, the second component yi⁽²⁾ is further divided into two components.

At this time, it is necessary for the time constant Tc of component division to be calculated beforehand and the dampingparameter of filter selected. (iii) The individual component AR coefficients are calculated by the AR equation which is an autoregressive equation using the separated runoff components yi(1) and yi(2).

Methods available for calculations are the Yule-Walker method and the Barg method.

garage and the arm of the control of the garage of the self-

(iv) The optimum degrees of the AR coefficients for the individual components are selected. As judgement criteria for optimum degrees, there are the method of least squares, the FPE method,

Actually, however, AR coefficients are decided referring to unit graphs obtained at the stage of (v).

view (v) The AR coefficient is transformed to a unit graph.

(Search of the sach will be see that the same

anaga tamba dina ant fil

- * As characteristics (AR coefficient, unit graph) of the rainfall-runoff system have been calculated to an extent, the phenomena of rainfall-runoff separated into components can be handled as linear systems.
 - (vi) Inverse estimation of the component rainfall-time series is done. The ARX equation considering the error term of the AR equation as rainfall is solved with regard to rainfall quantity, and the component rainfall solution series is obtained.

$$\overline{xi}(1) = \{y_i(1) - a_1(1)y_{i-1}(1) - a_2(1)y_{i-2}(1) \\ \dots \quad a_p(1)y_{i-p}\}/\lambda b$$

Methods available for calculation are the direct method, smoothed-out method of least squares (SLQ), and the linear planning method (LP).

- (vii) Considerations are given to parameters such as those below from the component effective rainfall-time series inversely estimated.
 - a) Runoff ratio (RATIO)
 - b) Initial loss rainfall (X loss)

- c) Time lag for start of effective rainfall
 - d) Elongation magnification of rainfall (ELG)
 - e) Ultimate infiltration capability of ground water (R-ground)
 - f) Maximum value of basin storage quantity (So)
- (viii) By calculating the steps from (i) to (vi) for individual cases of flood, the AR coefficient on average is determined for each component.

For AR coefficient, an average value or a representative value is taken.

The same applies for the parameters listed in (vii).

(ix) Studies are made of reproduceabilities performing runoff analyses for the individual cases of flood (see 2.1.2) using AR coefficients or unit graphs obtained by system identification.

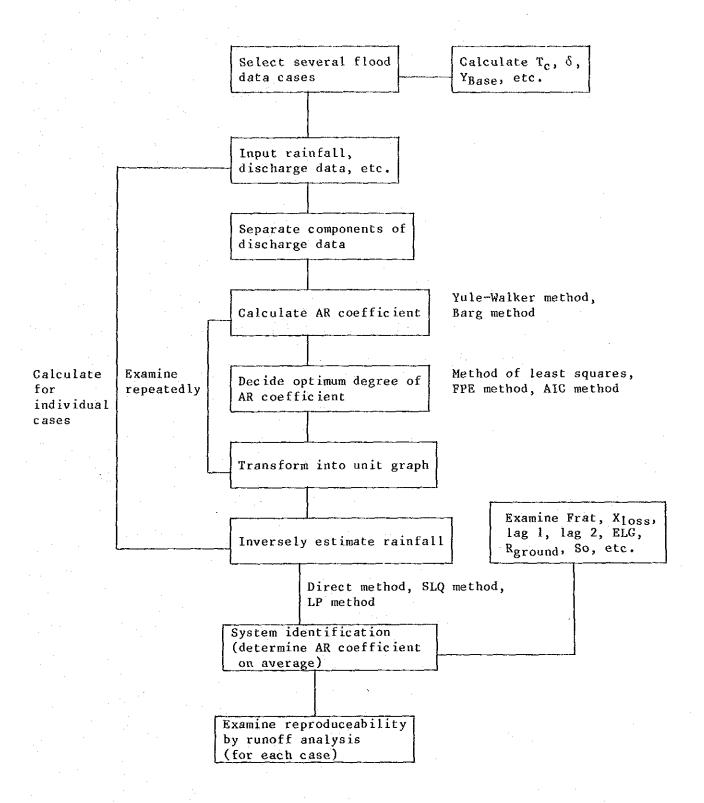


Fig. 2.1-2 System Identification Procedure

APPENDIX—B

GEOLOGY AND CONSTRUCTION MATERIALS

APPENDIX-B GEOLOGY AND CONSTRUCTION MATERIAL

CONTENTS

- B-1 SEISMIC PROSPECTING
- B-1-(1) HAGIWARA'S ANALYSIS METHOD
- B-1-(2) SEISMIC PROFILE AND TIME DISTANCE CURVE
- B-2 EVALUATION OF DRILLED CORE
- B-3 LOG OF BORING
 - B-3-(1) NAM NGAO SITE
 - B-3-(2) MAE LAMA LUANG SITE
- B-4 MICROSCOPIC OBSERVATION OF ROCK SAMPLES
- B-5 TEST RESULTS OF AUGUR DRILLING

B-1 SEISMIC PROSPECTING

- B-1-(1) HAGIWARA'S ANALYSIS METHOD
- B-1-(2) SEISMIC PROFILE AND TIME DISTANCE CURVE

B-1-(1) HAGIWARA'S ANALYSIS METHOD

 $\label{eq:continuous} \mathcal{A}_{i,j} = \{ (i,j) \in \mathcal{A}_{i,j} : i \in \mathcal{A}_{i,j}$

* Hagiwara's analysis method:

As shown in Fig. A, this method considers the ground to be a two layered structure, with velocity in the upper layer V_1 and velocity in the lower layer, V_2 . T_{AP} is travel time of refracted wave from shot point A, received at P; T_{BP} is travel time of the refracted wave from B to P; and T_{AB} is travel time of the refracted wave from A to B (The white circles in the figure represent travel times of refracted waves received at P. The X marks represent travel times of direct waves—those waves received at P that are propagated in the first layer only.) Here, T_{AP} , T_{BP} and T_{AB} are quantities obtainable through direct observation. The quantity t_0 , where

网络美国新闻 医多种性 电电阻 医电阻性

"我是我的身体,我就没有没有的事,我是我的,我们就会会看到这个人的。"

$$t_0 = T_{AP} + T_{BP} - T_{AB} \tag{a}$$

is called zero travel time. The quantities T_{AP} and T_{BP} , where

$$T_{AP}' = T_{AP} - t_0/2 = (T_{AP} - T_{BP} + T_{AB})/2$$

$$T_{BP}' = T_{BP} - t_0/2 = (T_{BP} - T_{AP} + T_{AB})/2$$
(b)

are called velocity travel time (the black circles in the figure indicate velocity travel time). The curve that successively joins the velocity travel times determined for each receiving point is called the velocity travel time curve. Theoretically, this is a straight line, and its slope indicates velocity V_2 of the lower layer. Velocity V_1 of the upper layer is determined from the travel time of the direct wave mentioned above.

If we designate the length of a perpendicular line drawn from receiving point P to the surface of the lower layer (depth of the lower layer) h_P ,

$$\frac{V_i(T_{AP} + T_{BC} - T_{AB})}{2\cos i}$$
 (c)

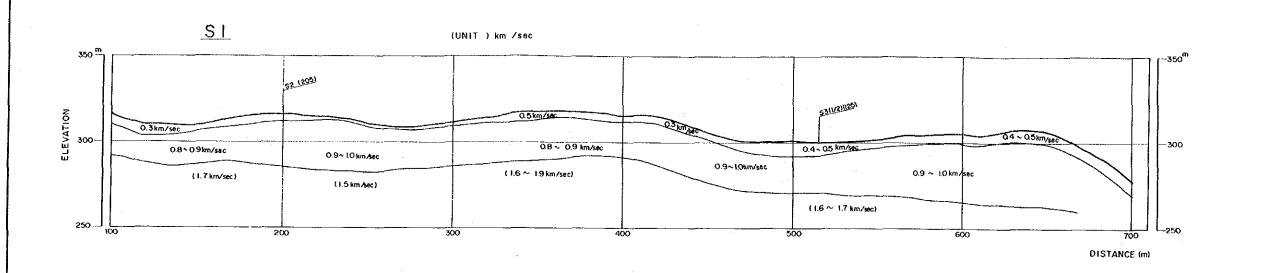
where $\sin i = V_1/V_2$, meaning that h_P may be determined.

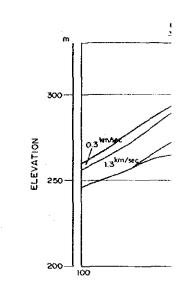
We have seen that where T_{AP} and T_{BP} are both known for the receiving point, depth of the lower layer can be determined using Formula (c). However, for the points marked \oplus in the figure, only one of the values, T_{AP} or T_{BP} is known. For these receiving points, Formula (b) is substituted into Formula (c), giving us:

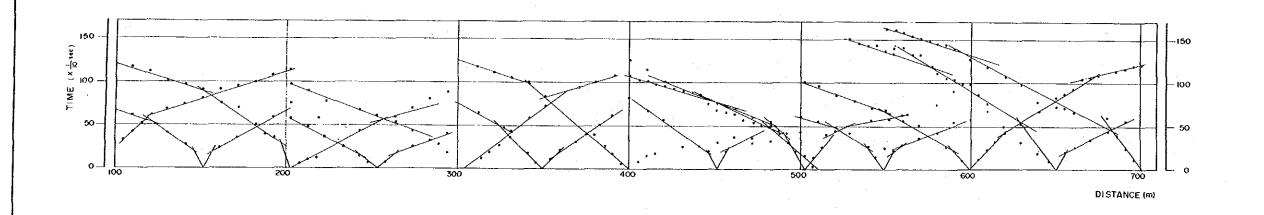
$$h_{P} = \frac{V_{1}(T_{AP} - T_{AP}^{i})}{\cos i}$$

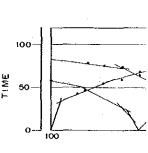
$$h_{P} = \frac{V_{i}(T_{BP} - T_{BP}^{i})}{\cos i}$$

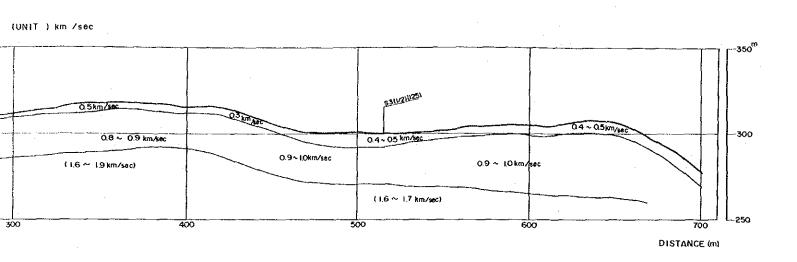
Here, the values T_{AP} or T_{BP} extend the velocity travel time curve. The values at P read off from this extended curve may be used.

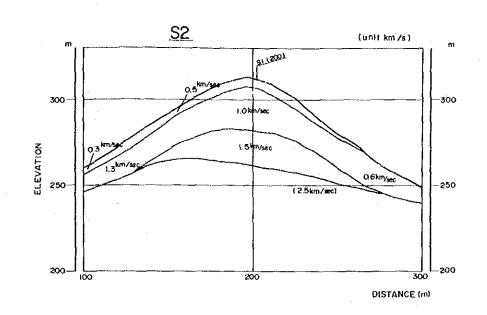

Also, if we designate the value of the point where velocity travel time curve T_{AP} intersects the vertical axis at shot point A as τ_{A} and the point where T_{BP} intersects the vertical axis at shot point B as τ_{B} , the following formulas are obtained:

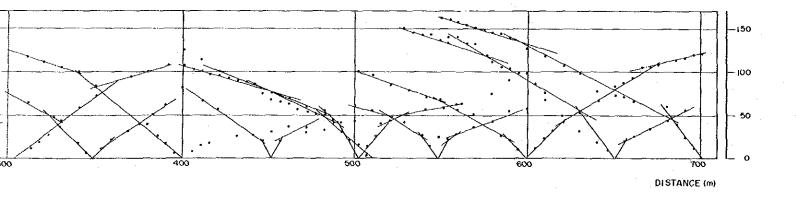

$$h_{\lambda} = \frac{V_1 \tau_{\lambda}^{I}}{\cos i}$$

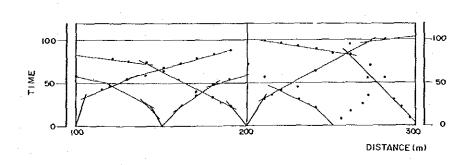

$$h_B = \frac{V_1 \tau_B t}{\cos i}$$


(d)

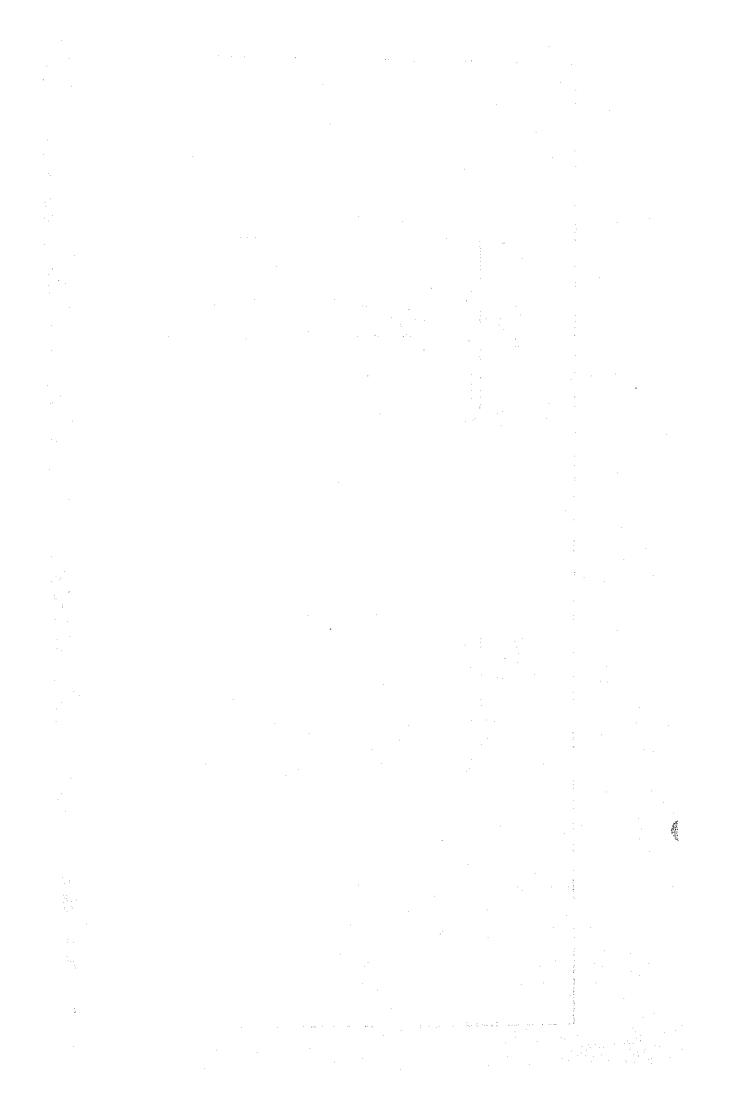

B-1-(2) SEISMIC PROFILE AND TIME DISTANCE CURVE

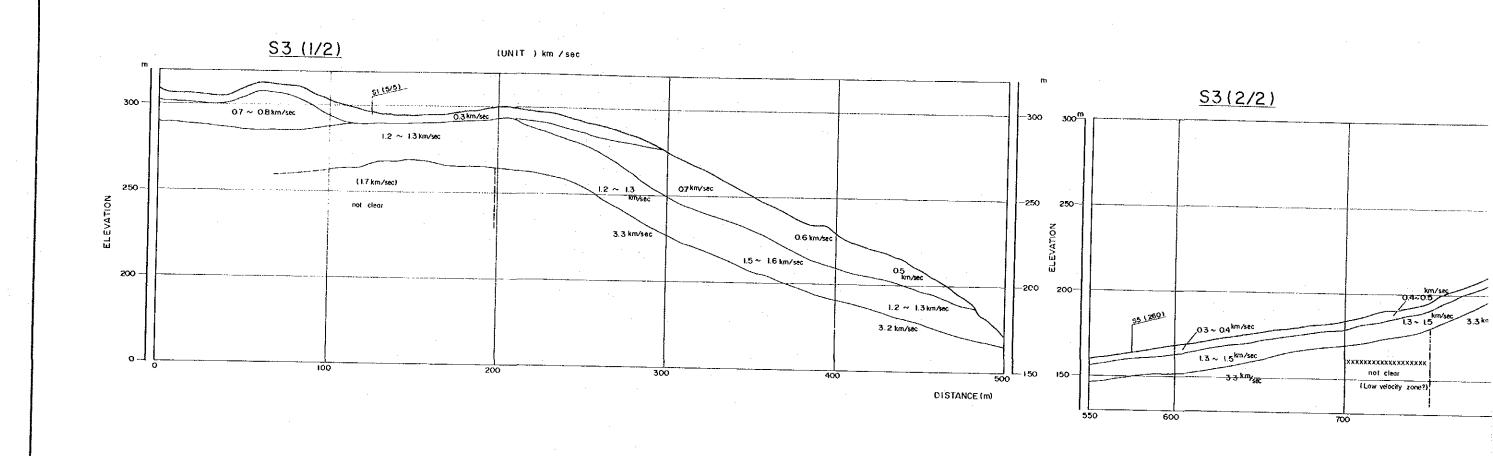


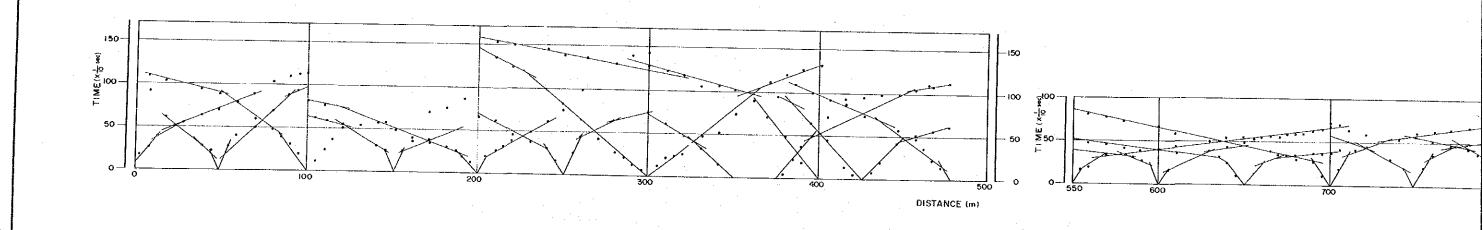


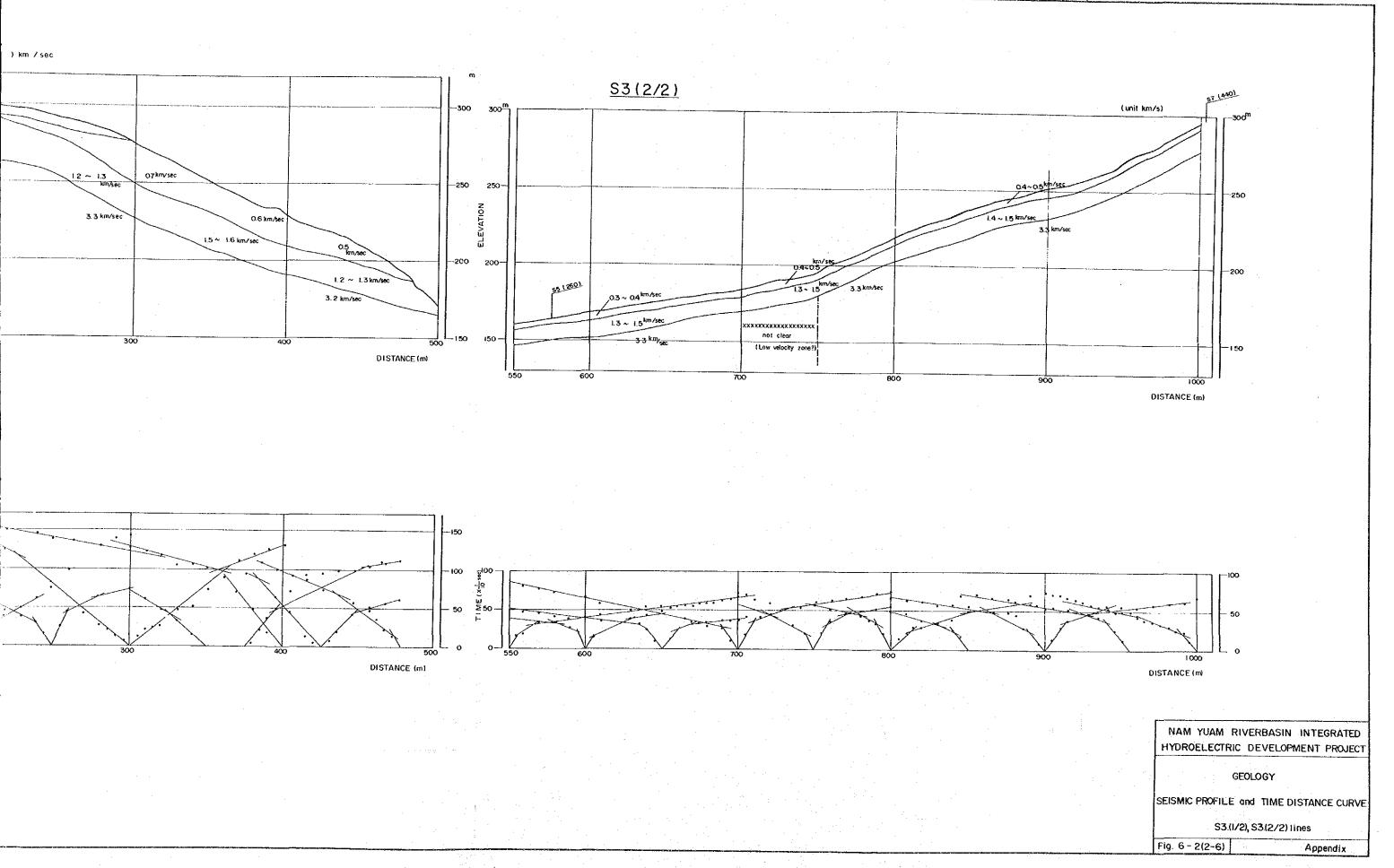


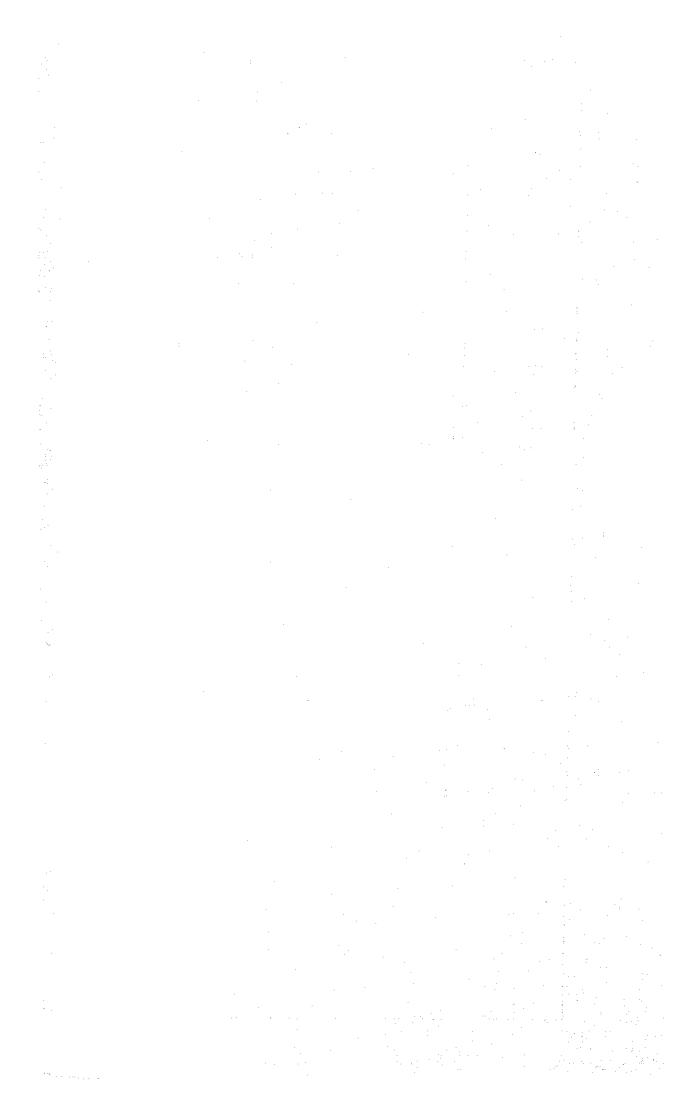
NAM YUAM RIVERBASIN INTEGRATED HYDROELECTRIC DEVELOPMENT PROJECT

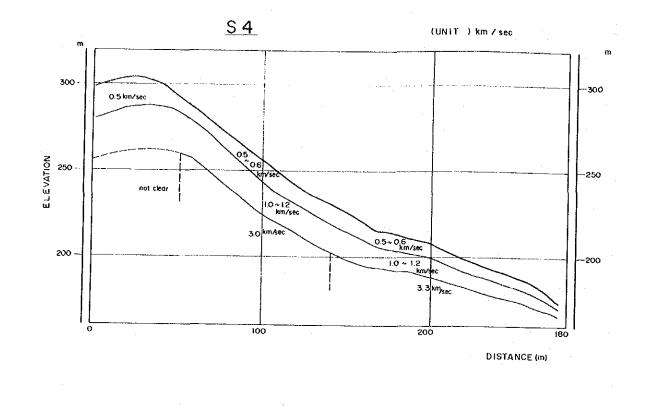

GEOLOGY

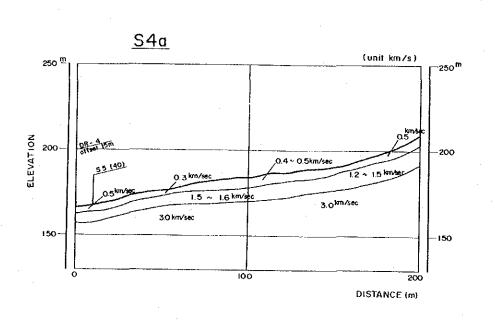

NAM NGAO DAM SITE NO.2 SEISMIC PROFILE and TIME DISTANCE CURVE

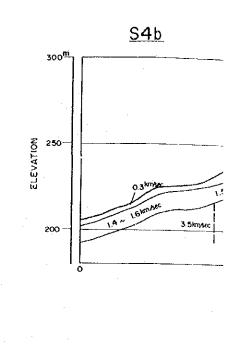

SI. S2 lines

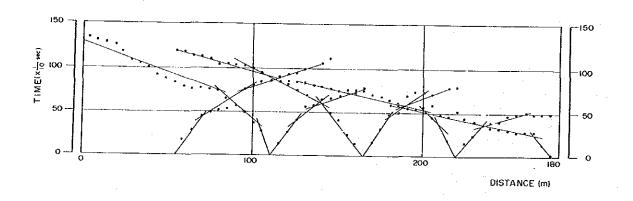

Fig. 6-2(1-6)

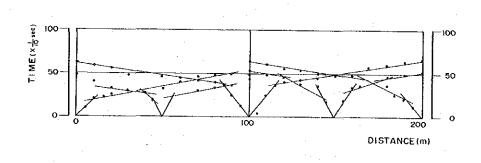

Appendix

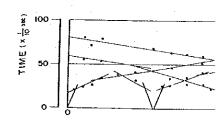


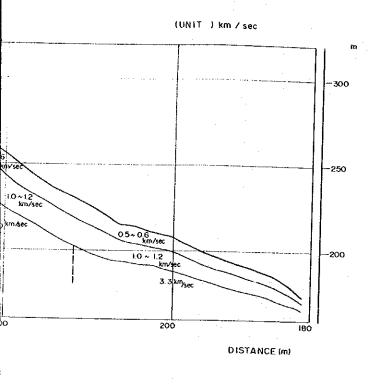


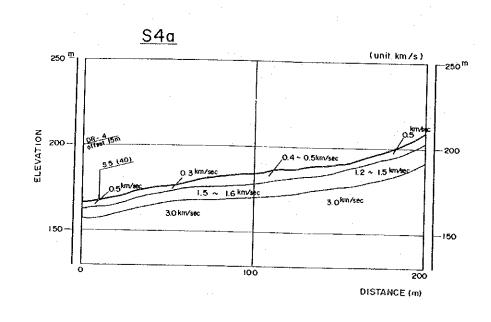


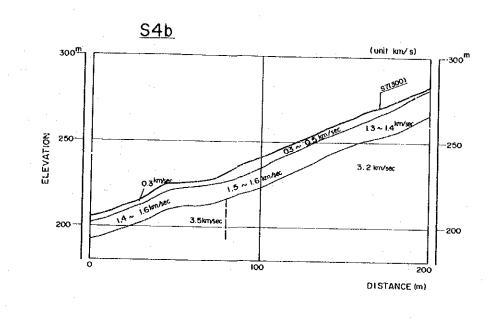


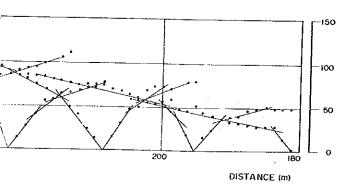


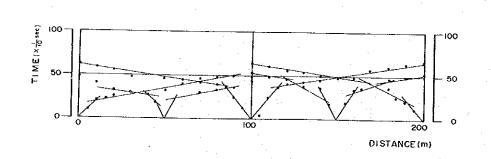


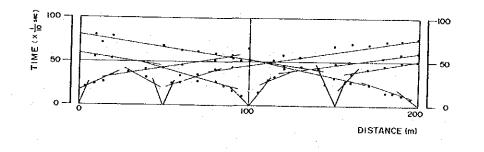


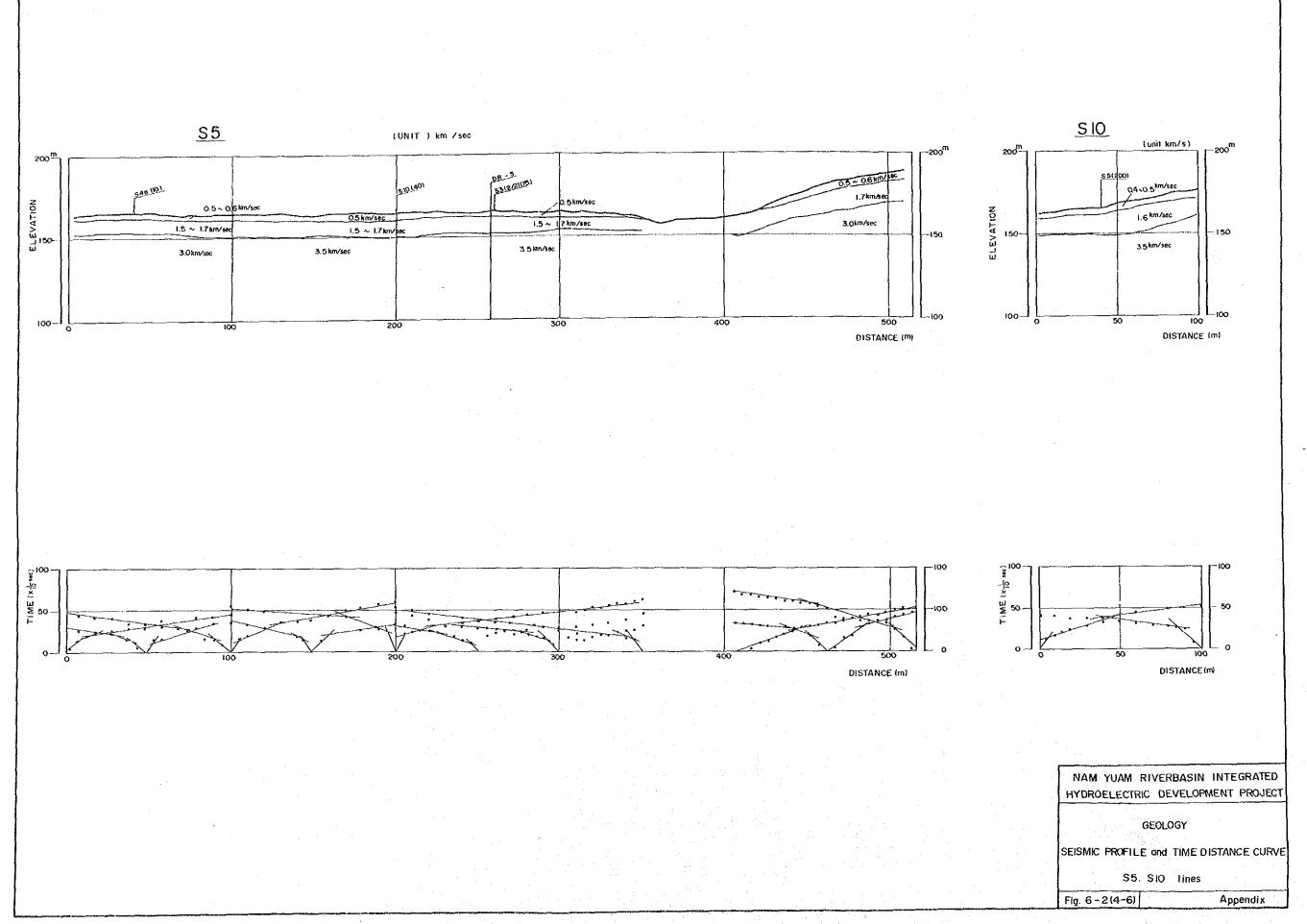


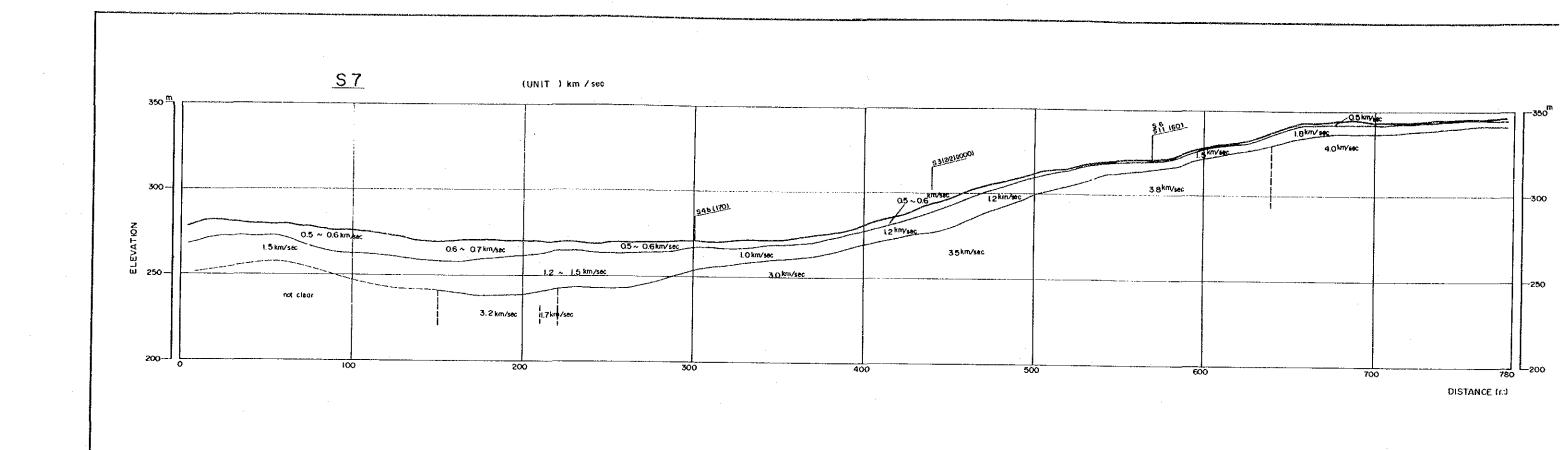


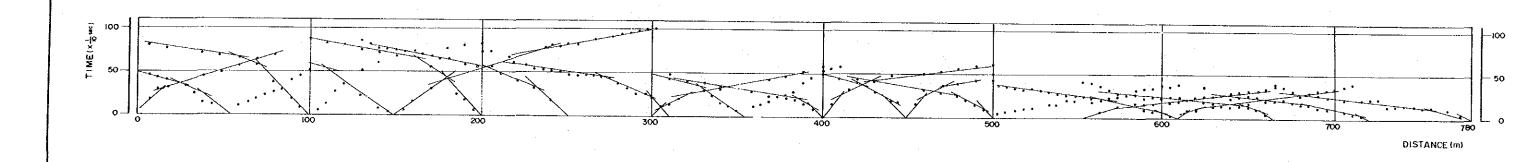


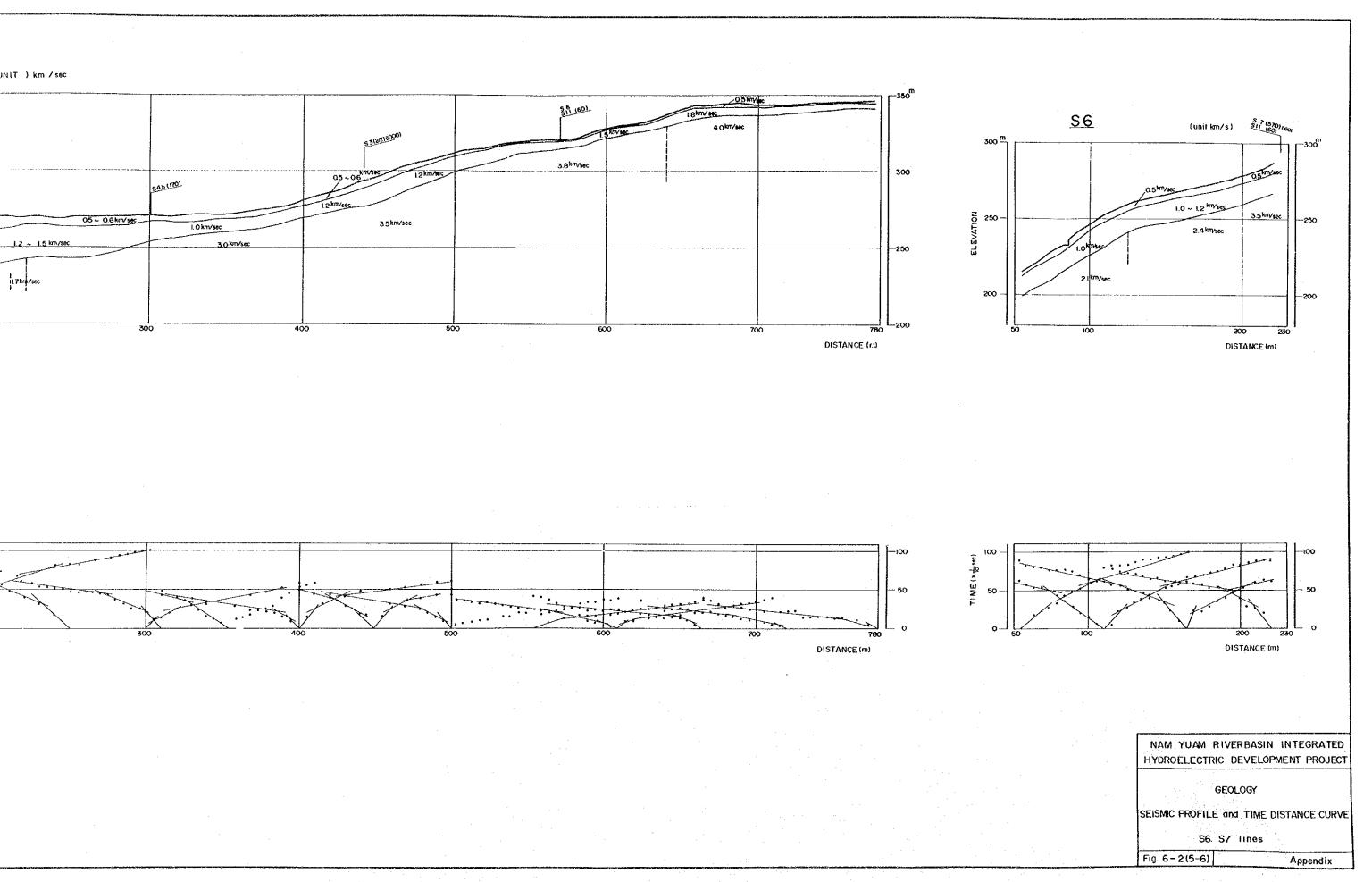


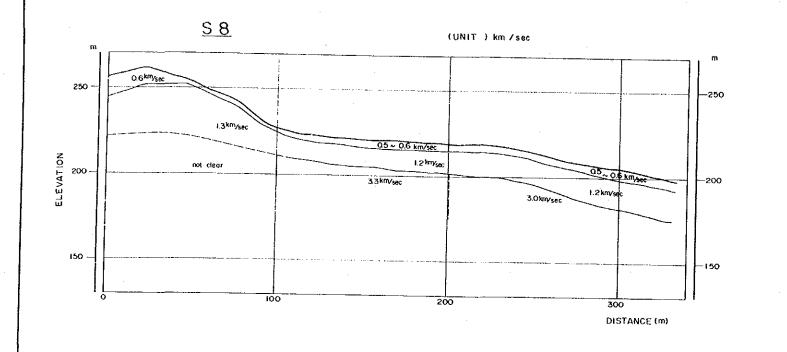


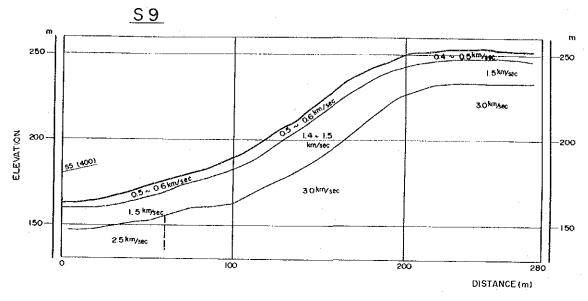


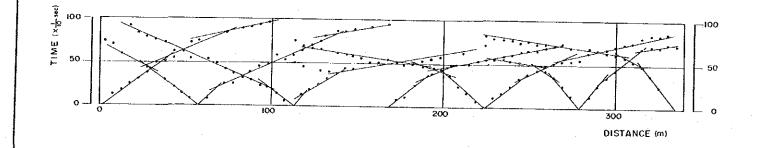

NAM YUAM RIVERBASIN INTEGRATED
HYDROELECTRIC DEVELOPMENT PROJECT
GEOLOGY
SEISMIC PROFILE and TIME DISTANCE CURVE

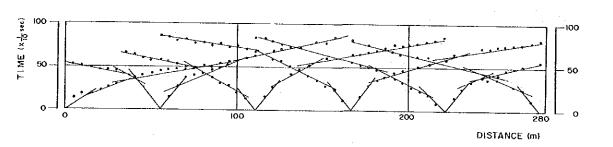

\$4.\$4a.\$4b lines

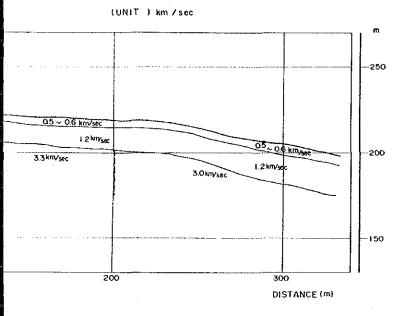

Fig. 6-2(3-6)

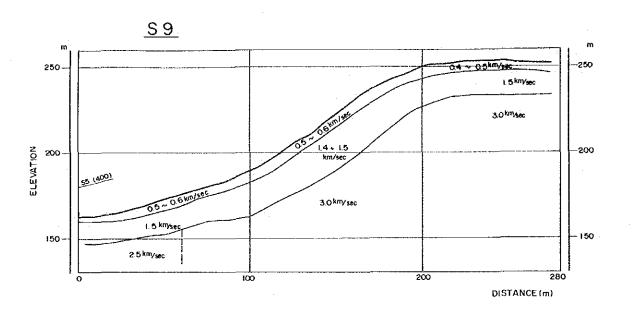

Appendix

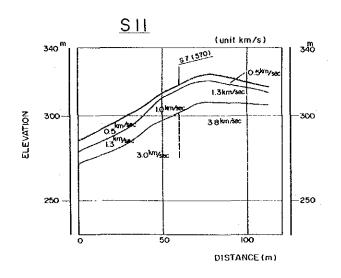


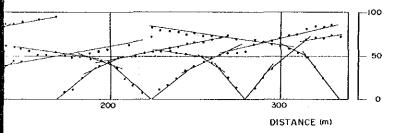


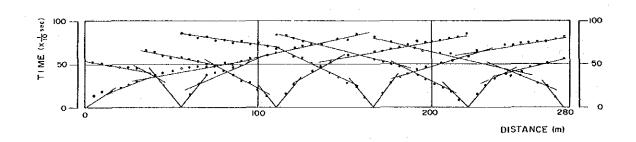


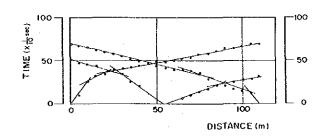


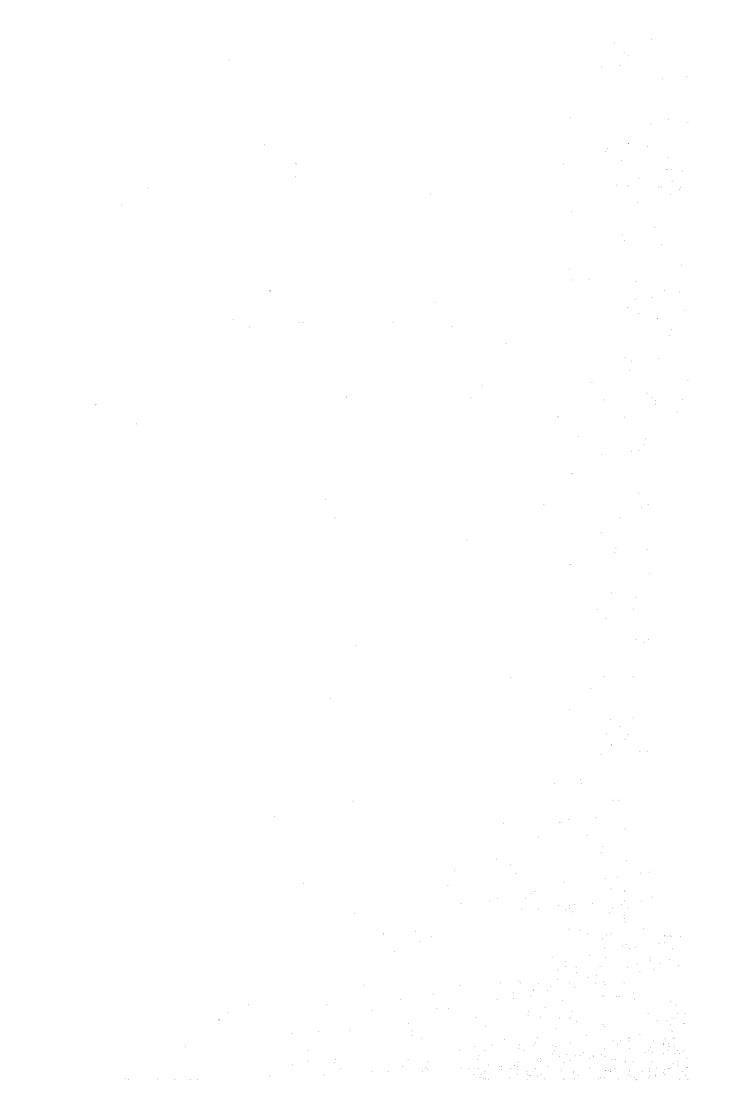












NAM YUAM RIVERBASIN INTEGRATED
HYDROELECTRIC DEVELOPMENT PROJECT
GEOLOGY
SEISMIC PROFILE and TIME DISTANCE CURVE
S8,S9,S11 lines
Fig. 6-2(6-6) Appendix

B-2 EVALUATION OF DRILLED CORE

Evaluation of Drilled Core

The logs of core boring give evaluations of drilled cores. The evaluations comprise three elements -- degree of weathering, hardness, and crack spacing.

Each element is further classified according to five levels based on the criteria given below.

Degree of Weathering (W)

- W = 1: Very fresh. No weathering of rock mineral component.
- W = 2: Fresh. Some rock minerals are slightly weathered. Usually, no brown cracks.
- W = 3: Fairly fresh. Some rock minerals are weathered. Cracks are stained and contain weathered materials.
- W = 4: Weathered. Fresh portions still remain partially.
- W = 5: Strongly weathered. Most of rock minerals are weathered and altered into secondary minerals.

Hardness (H)

- H = 1: Very hard. Broken to knife-edged pieces by strong hammer blow.
- H = 2: Hard. Broken to pieces by strong hammer blow.
- H = 3: Somewhat brittle. Broken to pieces by medium hammer blow.
- H = 4: Brittle. Easily broken to pieces by medium hammer blow.
- H = 5: Soft. Able to dig with hammer.

Crack Spacing (C)

- $C = 1 : C \ge 50 \text{ cm}$
- $C = 2 : 50 \text{ cm} > C \ge 20 \text{ cm}$
- $C = 3 : 20 \text{ cm} > C \ge 5 \text{ cm}$
- $C = 4 : 5 \text{ cm} > C \ge 1 \text{ cm}$
- C = 5 : 1 cm > C

and the second of the second o

B-3 LOG OF BORING

B-3-(1) NAM NGAO SITE

B-3-(2) MAE LAMA LUANG SITE

.

B-3-(1) NAM NGAO SITE

oject	٠.	NAI	M MAE	DADH	NO - 2		Local	tion Du	n Axis (Left Bonk)	Boring No. DL-3	Log No.	l of _3_
				6.917 E 3		365			02.043m MSL	-	00m Comme	and the state of the second state of
	J 10 11 15	1.19	ontal		90*				ry 75.6%	Depth of Overburden_10.		and the second second
aring	of A	ugle	Hole				Com	obiny	EGAT	Total length of core _56	.75m Logged	by V. Vicharn. K. Takeda
Date	Dopth	8, Q, D	Geology	Symbol of geology	Core recovery	Kind of Bit of Core (mm.)	Casing Cementation	Colour of rock	Westhering Hardness Average Vength of core	Description	WATER PRESSURE TEST LÜGEON VALUE WATER TABLE	50 Pressure Kg 100 Tome min S Depth Eleventon
	O majorita	3				• •		Brown		0.00 — 10.30m. Overburden	K=2.4xi0 ⁶	0 % 2 M
	3	:A::						Raddish		0.00—4.00m. Clayey slit with rock frogments Detritus deposit.	S PT N=5-5-8	1 Late 2 Late 3 Late 3
24/10/88	4 5	10 11 11 11 1	irden					· · · · · · · · · · · · · · · · · · ·		\$ 00 - 5.90m. Clayey sift with quartz. Andstone fragments rounded to subrounded	K=3.7x10 ⁵ S.PT.N=16-23-40	uluuluulu 5
24/	6 .7 %		Over burden					. G		grovets 6,90–10.30m. gravet bed. 4,00–10.30m	K=7.3x10 ⁵	7
-	10 sealandundundundundundundundundundundundundun						: :	Brown		Terrace deposit Care loss at 5.00-8,90m,9.00-10.30m		80 8 9
20/10/00	2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.9							THE LEAST	0, 30— 30 . 00 m. Non- Calcareous	K=7.95x10 ⁸	50 2
/63	3 4	0						 		sandstane, fine to medium grains broken rock, shale of core	K=4.3x 10 ⁴	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
1	5 minimum		Shale				:			loss must be sheared zone of 11.10-14.00 m. 17.45-18.00 m.		30 6
20/10/20	7 8 8		one and							24.70-26.30m.	K=3.4 x IÕ	30 E 8
	20 tanahari		of Sandsi					Gray			K= 7.5 x 10 4 K = 3.4 x 10 4	35 thu 9 1 20 minut 1
	. 2 3		Alternation of								19.1.	50 2
	5. 4 . 2		AITE								K=3.1x10 ⁻⁴	45 45 5
3	անագրությունում										K=7.2×10 ⁶ 14/11/88	20 6 20 7 25 7
DB / 01 / BO	30 00 00 00 00 00 00 00 00 00 00 00 00 0	A Tomorro Santi coco									K=7.2 x 10 ⁴	8 min 9 45 m 30

LOG OF BORING Location Dam Axis (Left Bank) Boring No. DL-3 Log No. _ . . Z ... of . Project NAM MAE NGAO SITE NO.2 Co-ordinates NI.966.936.917 E393,509.365 Elevation 2.02.043^m MSL. Depth of Hole 75.00^m Commenced 24/10/68 14/11/38 Core Recovery 75.6 % Depth of Overburden 10.30m Completed Angle from Horizontal 90° V. Vicharn Total length of core .65.75 m Logged by Company EGAT. Bearing of Angle Hole K. Takeda WATER PRESSURE TEST Kind of Bit of Core (mm.) LUGEON VALUE Cepts o d Average Description WATER TABLE -- W 30 K=2.5 x 10 5 30.00-75.00m 1 24/2/89 28/62/ Colcornous sandstone, 31.30m 2 2 = nedium grains britile, K= 2.2 x 10⁻⁴ hard. Shale interlaminer 3 with sondstone of 88/11/1 33.00 - 35.00m, $K = 2.3 \times 10^{-4}$ 43.00 -48.00m, 56.00 - 67.00 m Sheared zone at K=2.6 x10-4 88/11/8 8 8 -47.00 - 47.90m Joints 9 dip 10°, 45°, 60°, 80° rough joints, 40 - $K = 1.5 \times 10^{-4}$ slickenside ond 5 5 smooth Joints at 2 42.00-47.00m 98/11/4 Gray 52,00-53.80m K=1.9x10"4 4 -Bedding 70° at ₹ 33.00 - 56.00m 53 Bedding 60° at $K = 9.1 \times 10^{-5}$ 56.00-75.00m 7 -Core loss of 8 8 -30.00-30.80m, 30.85-31.00m, 32.00-32.80m, 33.40-33.90m, 50 -35.60 - 36.85m, 37.30 - 37.70m. 1 37.80 - 39.00m 44.00 - 75,00 m Fresh and hard rock 0.2 8 U (more than 50 cm), 2 (50 cm, 20 cm), 3 (20 cm, 5 cm), 4 (see than 5 cm) 5 (grained) Visathering F(fresh) – 5 (decomposed) - (IDSS))

Hardress 1 (hard) - 5 (soft)

ole I	rom i	loriz	ontil	te da t	900		Eleva Core	Recover	y	75.6 9	á	Depth of Overburden 10 Total length of core 56		d 14 y V.V K.T		
	W. Ospith	a o a %	Gaology	Symbol of geology	Core recovery	Kind of Bit Of Core (min.)	Cementation	Colour of rack	Weathering	Hardness		Description	WATER PRESSURE TEST LUGEON VALUE WATER TABLE —	O Drilli 50 Pressure, Kg 100 Timemin		Elevation
88	60	0:										As above		8	60	
11/11/88	.5 day	23										Fresh and hard rock		65	2	
	3 1	1	ole					:				Partialy cracky Claite veinlets are	(0.7)	25	3	
	4	33 33	and Shale									found at some parts.		25	4 5	
00/::/5	6	8				# . - -								20 80	ш 6	
	7	8	Sandstone					Gray						6:	7	-
	8 -	27	tion of											25	8	
	70		Aiternation										(0.4)	3.5	70	
3	1	1						÷.						50	1	
00//	2	Ω.												25	2 Heller Heller	
	3 4 day	-											0.4	25	արգրություրը Ծ	
	75 Tuesday					2	<u> </u>					Bottom of Hole			75 10 10 10 10 10 10 10 10 10 10 10 10 10	
	7							į							ահահա 7	7
	8						; *								արուր 8	
.	9														9	
	- 1	1 1													0 1	
	1 2			1											2	
	3														3	
	4 and 1		4.3					·							4 . 5	
	8														6 	
	7											Sergi di Cheri Switzer Suer Cher Sergi en Cart			7 10 10 10 10 10 10 10 10 10 10 10 10 10	
	8		7.6 5.3												9	
	0		X74					· 							E 0	

Project Co-ordinates Angle from I	NI,9	66,9				6 Eleva Core	tion Recover		Depth of Hole 92 Depth of Overburden	Com Com	No. nmenced npleted ged by	0 of 0/9 24/9 V. Vict	/ 88 1010	l Table Same
Bearing of A	ngle l	lote	£ 1			Com	any	EGAT	Total length of Core .			K. Tok	edo	
Date Depth	0 0 0	Geology	Symbol of gaology	Core recovery	Kind of Bit of Core (mm)	Casing	Colour of rock	Weathering Hardness Avvige length of core	Description	WATER PRESSURE TO LUGEON VALUE WATER TABLE	ST O N- 8	100 Time min	₩ Oebth	Elevation
2	*	Overburden					Reddish Brown		0.00 - 4.00m Overburden, clayey silts with sandstone fragments. Detritus deposit.	K=1.8x10 ⁻³ SPT N=11-7-6		The second company of the second control of	2 3	
5 6 7 88/6/8									4.00-23.00m Sandstone, medium groine, soft and poor cement lasy to break	K=1.0 x10 ⁻³ SPT. N=12-10-12 K=2.5x10 ⁻⁴ SPT.	2 10		5 8 7	
10	3 I							111118/1118/1111	by hand. Strongly weathered zone Coxe loss at 4.10-4.90m,5.00-5.90 m	N=16-19-31 K=2.1x10-4	120	35	8 9 10 -	
3	6	and Shale					Brown		600-6.70m, 7.50-8.60m 9.00-11.85m,12.50-13.20m 15.20-17.50m,19.00-19.50m 20.10-20.75m,21.00-22.20m 22.55-23.00m	N=14-16-19		5	որումուսիումուսիումու	
\$8/6/6	3 I	ortion of Sandstone							loss must be filled by site and clay with fragments.	N=18-24-40 K=6.6x10 ⁻⁵ SPT.		65	6 7 8	
20		Ai temat				. !			23.00-29.00 m	N=18-39-4 K=1.2×10-4 S PT. N = 40	, 1/3	5	9 20 1 2	
2 3 4 5									Sandstone interbedded with shale, bedding 45°. Weathered zone	K=8.95x10	-	50	ահումադիավումումումում Տ	
6 7 8 9									Core loss at 25.05-27.45m	K = 7.5 x 10 ⁻⁵		45	համասիակամամականա	
30 Co	loss —				rest) - 6	Weath		Hardness 1 (hard) - 5 (Average length of Core 11 more 3 (20 cm	than 50 cm), 2150 cm, n, 5 cm 1, 4 (less than 5		·	30	L

Project Co ord Angle I Bearing	inates from i	N I, torizo	966,9 20tul	09.788		77.688	Elevat	ion Recover	254 y	Depth of Hole 92 Depth of Overburden 4	L-4 Log No. Commenced Completed Logged by	2 of 9/9/88 24/9/88 V. Vicharn K. Takeda	1
0.000	W. Depth	о « %	Gadlogy	Symbol of geology	Core recovery	Kind of Bit of Core (mm.)	Cementation	Colour of rock	Weathering	Description	WATER PRESSURE TEST LUGEON VALUE O	50 Pressure Kg 100 Time min \$\overline{\overli	Elevation
12/9/88	30 1 2 2 3 4 4									29,00 - 41,40m Weathered. Sandstone, medium grains, Iron oxide fill in Joints. Core loss at	K=1.1x10 ⁻⁴	25 25 4	
	5 6 7 8							Вгомп	芦	29.45-29.80m,31.00-32.90m 34.45-35.30m,37.60-39.00m 40.25-41.40m	K=5.7×10 ⁻⁵	22) 5 16 6 1030mhudandu 7	
13/9/88	9 40 1 2		Sandstone and Shale							41.40-83.30m Shale		70 minute 40 minute 40 minute 1 minute	
	a 4 5 6		Alternation of San							interbedded with sandstone joints dip 30°, 45°, 80°, smooth to rough joints and	K=1.9 x 10 ⁻⁵	45 hudindhudiseludindh	
14/9/88	7 8 9 9 50 50	83	,		The second secon			Gray		fill with clay bedding 60°-70° Fresh and hard rock Core loss at 44.40-45.00m,48.00-49.90m		7 55 minutualination 9 145 minutualination 150 150	
/4/	1 2 3 4				A STATE OF THE STATE OF T				# 1	51.00-52.80m 47.70-53.50m The rock is patially altered to perous fulf by hydro thermal.	K=1.8x10 ⁻⁵	95 3 20 4	
8/6/5	5 6 7 8	ië O									K=4.2x10 ⁻⁵	25 5 20 4 35 6 30 7 30 7	
	9 63 Core	22 46			D.		Weather 5 (decompos			Average leggla of Care 1 imore to	K = 3,3 x 10 ⁻⁵ an 50 cm), 2150cm, 20 cm), 5 cm), 4 (less than 5 cm) 5 (gran	25 E 60	

21/9/88 20/9/88 50 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	tone and Shale	Symbol of geology	Core recovery	Or Cost thm 7	Colour of rack	Weathering	Hardness O Average leagth of core	Description As above. 61,00-83,30m Fresh, hard and messive sandstone, shale, Bedding 70°-80°	WATER PRESSURE TEST LUGEON VALUE WATER TABLE O.3	8 8	Glevation
21/9/88 9	ond	5						61,00~83,30m Fresh, hard and mossive sandstone, shale,		20 1 1 2 1 1 2 1 1 1 1	
20/9/88 20 5 1 0 8 2 4 5 8 4 5 10 10 10 10 10 10 10 10 10 10 10 10 10	ond								0.3	50 all 8 35 all 9 40 all 1	
98/6/12 4 5 8	ond									\	
	Alternation of Sandstone				Gray				No Test	50 limited 5 limited 6 limited 7	
20 001 08 001 08 001 005 005 005 005 005 005 005 005 005	Δite								0.3	20 20 20 3	
22/9/68 24 2 8 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								83.30-92.60m sandstons, coarse grains, interbadded with chair. Bedding 80°	0.3 0.6	10 4 10 5 15 15 15 15 15 15 15 15 15 15 15 15 1	

Co-ore	linates	NI,	966,9	09.788	E 393,	377.688	Elevat	ion	254.454	MSL	Boring No. Depth of Hole Depth of Overburden	92	.60 ^m Commen	ced	ol 8/9/ 24/9/	98	
Bearin _s	g of A	ngle	Hole _				_ Comp	апу	EG	AT.	Total length of core	64	4.45 ^m Logged	ογγ	V. Vict	orn.	
Cone	Z Depth	0.0 8 %	Gaology	Symbol of geology	+100%	Kind of Bit of Core (mm.)	Commentation	Colour of rock	Weathering	Avarage length of core	Description		WATER PRESSURE TEST LUGEON VALUE WATER TABLE	O Dedi Kg	,-	Depth.	Elevation
23-24/9/88	90 upapapagaa	.	Alternation of Sand, a Sh.					Gray			As above		0.3		9 Juniania	1 2 260	
	3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6										Bottom of Hole				վականուրնակականականականականականանանանանանականակ	3 4 5 6 7 8 9 0 1 2 3 4 5 6	
	7 8 9 0 Cove	Appropriate Appropriate					Wealth						han 50 cm), 2150 cm, 20 cm)			. [

				_				-4. -4. a	∵ ।	, b)	Boring No. 01	4A	Log No.	Lof		
Landings NI.	966.	181 906	F 193	380.05	4 Elevat	ìon	22	3.97	3		Depth of Hole	4:44	Colinianosa"			
															/8/88 Vicharn	. 9
earing of Angle	Hole _				Comp	any		Α θ	<u>T</u>		Total length of core	6.25"	Logged by	ĸ.	Tokedo	
Depth B C D	Guotogy	Symbol of geology	Core recovery	Kind of Bit of Core (mm.)	Casing Cementation	Colour of rock	Weathering	Hardness	Average length.	of core	Description	WATER PRES LUGEON VAL WATER TAE	UE O	50 Pressure Kg 100 Time min	₩ Depth	Elevation
\$8/8/61 88/9/61 88/9/61 88/9/07 2 3 4 5 6 7 8 8 6 7 8	Overburden		- 100 %	9		Brown			D. Control of the Con	11	0.00-9.00m Overburden 0.00-5.50m Claysy silt with sandstone tragments, residual soil and detritus deposit, low plosticity 5.50-9.00m Sandstone, strongly weathering Care loss at 3.75-4.50m, 5.25-5.50m 6.00-7.05m, 7.50-8.05m 8.25-8.40m	SPT N=	9-13-24		ավույնունունունունունունունունունունունունուն	
9 10 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 20 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 9 - 10 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 9 - 9 - 10 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 9 - 10 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 9 - 10 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 9 - 10 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 9 - 10 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 9 - 9 - 10 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 9 - 9 - 10 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 9 - 9 - 10 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 9 - 9 - 10 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 9 - 9 - 10 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 9 - 9 - 10 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 9 - 9 - 10 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 9 - 9 - 10 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 9 - 10 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 9 - 10 - 10 - 10 - 10 - 10 - 10 -											Bottom of Hole				րվորվորդիրդիրդիրդիրդիրդիրդիրդիրդիրդիրդիրդիրդիր	

roject o ordinates		NGAO NO.2	Location Do	m Axis (Left Book) 309,496 MMSL	Boring No		
ingle from t	2.00	and the second second	Core Recover	y 63.6%	Depth of Overburden		23/7/60
		200			1.5 5 4		v. Victorn K. Takeda
Dete:	Sections	Symbol of geology	P of Core Imm.) Ceting Cementation Colour of rock	Weathering Hardness Avenge langth	Description	WATER PRESSURE TEST LUGEON VALUE WATER TABLE	50 Pressure Kg 100 Time min Elevation
24/5/88 24/5/88 24	Overburden				0.00 - 2.35m Overburden Siltty clay with sittstane fragment. 2.35-12.00m Siltstane interbedded with shale core broken		authudundundandandandandandandandandandandandandan
6 7 8 8 8					Core loss at 1, 10 - 2, 35m, 3,00-3,80m 4,40-5,40m,6,00-6,65m 9,00 - 9,85m		30 mil 6 mil 7 7 35 mil 8 8 mil 8
29/2/88 10 1 2 29/2/88	Shail					SPT. N=5-24-53 82/45cm Can Not Set Packer SPT. N=65-43	28
1 5 6 7 6 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9			Gray to Brown		12:00-30,00m Siltatone interbeddeded with sandstone joints 20°, 45°, 60°, 80° Clay and iron axide coated at joints, Bedding 30° Weathered and cracky rack	IO8/I8cm SPT N=35-70-60 I65/38cm SPT.N=8-35-43	30 Let 4 30 Let 5 30 Let 6 25 Let 7 35 Let 8
8 1/5/88 8 0 0 1 2 3 3	A				Cere foss at 12.00-12.15m,15.00-16.00n 16.45-16.90m,19.00-19.20n 19.35-23.65m,24.00-24.80n 27.75-28.40m	86/45cm	25 g g g g g g g g g g g g g g g g g g g
4 5 6 7						S PT. N= 50	5 25 Line 7
2/6/88 2	loss 1		Westering		Average langth of Core 1 timor	than 50 cm 1, 2 (50 cm, 20 cm).	50 E 30

									THE AGE UNITS	O Boring No.	10.	40 COMMONY		The same of the same of	
4 1	f				dU _p		Core	Recove	rv 63.6%,	Depth of Overburden Total length of core	<u></u> .	23 Combine	***************************************	Vichorn. Takeda	
G	Depth	008	Gaology	mbot of geology	È	Kind of Bir of Core (mm.)	Casting	Colour of rock	Westhering Hardness Average length	Description		WATER PRESSURE TEST LUGEON VALUE O	Drdl Pressure Kg	100 Time min	Elevation
10/6/88 4/6/88 3/6/88 2/6/88	MM 30 1 2 3 4 5 5 6 7 8 40 1 1 4 4 5 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1	83	Shale					Gray		30,00-41.65m Sandstone, fine grained, brittle a few calcite veins joints filled with sulpher and clay 30,00-33.60m iron oxide coated at joints, 45°, 20° The rock must be altered by hydrotherm alteration. Core ioss at 31,00-31.55m,34,10-34.73 40,45-41.65m 41,65-49,00m Sheared zone of sandstone,	al.	Can Not Set Packer	45 25 20 20 20 25 20 25	աժումուհականականականականականականականականականակա	
13/6/88 11/6/88	1 2 3 4 5 6 7 8 8 0 0		Alternation of Sandstone and							49 00-52 50m Sandsto	10m 20m 50m		30 30 30 35 20 30	3 4 5 6 7 8 9	
88/1/8	50							Pale Gray		stickenside at 49.00-50.00m joints 10°, 45° Fresh and hard rock 52.50-76.40m Shedred		23/7/88'	30	1 1 2	
88/1/88	4 day and									sendstone, core broken Core tass at 55,20-55,40m,55,70-56,0 57,20-57,90m,59,50-60	Ют		20 20 15 15 20	5 de la constant de l	
88/1/8	9 60					. 77		Gray				24/2/89'		8 9	
	Core	loss —) tq	(resh) — !	Washe decompo		Hardness 5 (hard)	3 (20		on 50 cm.), 2 (50 cm, 20 cm.), 5 cm.), 4 (less than 5 cm.) 5 (1 - 12	

Project NAM MAE NGAO NO.2 Co-ordinates NI,966,683 £ 393,014	Elevation 309.496m MSL	Depth of Hole 76	.40 ^m Commenced 24/5/68
Angle from Horizontal 90° Bearing of Angle Hole	Core Recovery 63.6%	Depth of Overburden 2.	.35 ^m Campleted 23/7/88 1.60m Logged by V.Vicharm
Bearing of Angle Hole	Company	Total langui or core	K. Yok⊕do
Deta Depth Depth Gaslogy Symbol of geology Kind of Br:	Colour of rock Colour of rock Westhering Marchess Adverge fength of core	Description	WATER PRESSURE TEST LUGEON VALUE WATER TABLE O O O M M
1 7/38 8/7/39 13/7/88 13/7/39 13/7/3/39 13/7/3/39 13/7/3/39 13/7/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0.00-7640m Joints 20°, 0°, 30°, 45°, 60° lense Sandstone at 11.40 — 62.00m 14.80 — 67.90m leartz in broken 07e. 07e loss at 10.90-61.00m,61.0-61.40m 12.30-62.50m,61.40-61.80m 18.15-68.50m,64.40-64.80m 18.15-68.50m,69.40	55
28/7/88 19/7, 9 6 9 2 minutuminuminuminuminuminuminuminuminuminumin		Bottom of Hole	35
7 militari grandina para para para para para para para pa	Washing (scorposed)		minibulual 8 Indicate in the back of the

										- ·	n-du-Ala	DR = 5	Log No	i of	2	
				GAO No			Loc	ation0	om Axis (Rich	BONKI	Boring No	56.20m	Соттепсе	19/	5/88	
-ordi	nates	N 1,96	7,00	0. E3	393,60	<u> </u>	Elev	ation	166. I I M	MOL.	Depth of Overburden	7.80m	Completed	14/	8/68	
							Cor	e Recove	rγ83.4	D 70	Total length of core	46.9m		11 1114		
aring	of An	igle H	ole _	\$ 7	70*W		Cor	npany	<u>E</u>	<u> </u>	Total length of core	10. 5 12		K. Tol		
								T	· · · · · · · · · · · · · · · · · · ·	TT		T	1	2 E		
1	ì	- 1		S Ologi	Very	± €	. 8	្រុំ	8 8	er er			IESSURE TEST		£	: <u>6</u>
20	Pepth	o i	Своюду	Symbol of geologi	recover	Kind of Br. of Core (mm.	Casing	Colour of rock	Weathering	18 0	Description	LUGEON V	lä	Pressur	ga .	Elevation
ő	ి	æ	3	9	Co.	Kind	2 E) Š	3 2	Avera	E •	WATER T	ABLE -V-	10		. 0
1	M	%		Š	100%	200	٥	5		5				8 8	M	<u></u>
	0 1	- * †		4.4.4				 		Till	0.00 - 7.50 m.		7	10	0	ļ.,
}	1			[•] •]				1			0.00 1.30111.	1.	<i>\</i>		- 1	
ا ا ش	ં સ							1			Overburden	}	<i>k</i>	18 -		
19/5/88	5	- [2007				İ		[(Terrao deposit, River depsit 0.00-2.50m. Clayey silt.	1			2	
6			2	م م م				1			, F. Iv	ĺ		\	3	7 E.
_	3		OVERBURDEN	1.2.2				Вгожл						30		. 4
	Į,		E C)) .	1 &	111111111		2.50-4.00m. Gravel of	1	7		- 4	1.1
-	7	1	9	^^^				-	1111111111			1	-	\		
ļ	5 📆	- [3	6.0.4				-			quartz rounded gravel.	}		\	[°	: 5.
-[4 5 6		0	م م				Į			4.00 - 7.50 m. Clayey		- [$\mathbb{N} \mid \mathbb{I}$	- 6	
8				44.4							silt, fine to medium	1		\ 55		
20/2/88	, 2 Lundand			4.4				1	11111111111		sand with gravel.	1	1	111	7	
Ì	· =	-					- }	}			7.50-21.10m. Sandstone	┨ :		65	_ ∫	
٦,	8 🗒	1	.	888 i		[,		ţ		411	7.50-21.(On). 30(10 \$10)(F	1	1/		- 8	٠.
[. 1							ĺ		\mathcal{H}	medium grained.	12/	6/88	V	- 9	
- 1	9 1			888		}		1			Calcareous, calcite	^	9.30m	130	-	
	10 🖥	1		(C (C (C (C (C (C (C (C (C (C))		111111		1	K		- 10	:
-	- 1			**** <u>I</u>				1		1	veinlets, interbedded	\	k	25		
1	1 7		İ					(with sheared zone,	ļ	1	18	[:
,		7						1			l,	1		20	2	
21/5/88	2			888 i			.	1			Bedding 50° with core					1
<u>"</u> [3 =	() [i	SHALE	***		1		1			oxis (dip 70°) joints	İ	į.	35	- 3 ,	1.0
۱ ۳	1	- [Ψ	**** 				1			10°, 45°, 80° with core	}	ľ	\setminus	Ē., (
Ţ	4 🖥		လ	888 I				(ļ		10	- 1	100
	٦.		gra	8.83				1			oxis.	1 .		5	- 5	ž.,
- 1	`. <u>]</u>		a	***				1			12.30 - 21.10 m. Slightly			45		
. 1	6		삦	*****			1	1	*	1771	sheored	ĺ	T	7	- 8	
ĕ			SANDSTONE	₩				6			14.70 - 14.80 m	1			<u> </u>	
20/2/92	7 🖥	٠ [S	:::::U				Gray			Slickenside are found		L	35	7	ļ
N	<u>[</u>		Z	888 I				1						70	8	ĺ
-1	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 1	S	888 -				Ì			Coro loss of 8.00-9.00m, 9.90-10.50a		k	1-1-1		
}	ا∄ہ	j	8	88 P			.	1			10.75 - 11.00m, 13.20 - 13.80m	1	ľ	$\mathbf{M}_{\mathbf{a}}$	9	ĺ
- {	픸		- 1	***				1			15.90-16.50m,16.70-17.20m		Ļ	15	20	
- (» 20 լ 5 3 Աուկումումիումիումիումիումիումիո	ł	Alternation					1	IUHHT	HH	17.40-18.00m, 18.40-18.80m	- 1	in the L	20		[
:	.]	-	5						ILLHHII	\mathcal{H}	19.70-20.40m,21.20-21.55m	1.		35	1	ł
	`∄		=	**			1]			21.10-39.65m, Sheared	7	1		udit]
29/0/67	2	. }	5	***	: 1-	1		1		• • •		1		50	2	
1	1	- }	~	888 I			1	{			zoned, clay and	1	k		3	ł ·
l	3 🖥	Į	Į			1		(sandstane fragments,	1	4.	$X \sqcup \Box$, I	
1	4	j	- 1					i						60	4	l
-1	ં ∄	1]	i)		}			soma slickenside.	1	N			
1	2 8 ավադեպեսն	1	. 1	 			1	1			Core loss at	1	\	\	- 5.	
,	_ 뷬	- ([29.75 - 30.00m.	1		25	6	[:
	6 🖥	- (- [**** H								1	ŀ	1777	E 0	
1	, [- }				1				Barrier de la Company				7	
	· 🗐	1	1				1	1						95		
	७ 8 त्रामानामानामा	- {	- }				-	1				1	: :		В	
7	4	(- [₩₩Ħ								1	ķ		die.	
1	9 🖥	- 1											1	$V \perp V$	- 9	
, ,		١.	- 1	100 Oct 1		i)			ing Sami		1		/ 30	Ē 30	1
2	30 <u>1</u>			المنفينيا				_								

oject s-ordi	inates	Ŋ		000 E			Elevi	ation	166.	I Im MSL	Boring No. <u>DR</u> Depth of Hole 56	. 20m	Common				5
-	rom I			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	60°						Dapth of Overburden?		Complete		14/6		
aring	of A	ngle	Hole	5	70 ° W		_ Com	pany		EGAT	_ Total length of core _46	i. 90 m	_ Logged b	Υ	V. Vich K. Tak		
Oate	Depth	a 5	Gadegy	ABaroeo J	racovary	Core (mm.)	Casing	Colour of rock	Weathering	Hardness eraga length of core	Description	WATER FRE	SSURE TEST		Sura Ng	Depth	Elevation
1	å	n %	3	Symbol of	100%	Kind of of Core (r	S S	Colour	, We			WATER TA	NBLE — V—	6	100 T ₁ me	M	\$ #
7	0	70	-			-	T	-				1		22		30	
1	1 1911										The same as above.] :		25		1	
	2 m										Sheared zore.			\ 3	0	2	
,	յ 2 3 Որոգույանակար							}			Glay with rock fragments	}		4,	35	3	
			1 :				. J.	}						7	50	Ĭ	
	A										Core lass at			N		4	ı
	5 1			₩;							31.40-31.70m,33.65-34.10 m	1	e di la c	7	50	5	
	6									PH TI	35.30-36.00m,3640-37.00m	1			80	6	
4		ŀ						1			37.70 - 38.00m, 39.15 - 39.65 m	!		H	50		
,	7 =	٥		₩.								1	* . * :	4	35	7	
	8		E	l the				ļ ·			* 1			4		8	
١:	9 10		SHAL].			60	9	
													1.11.1	Z	30		- :
	10		gud		74.			1			39.65-50.00m.	1		1/2		40	
1	1		A.				· .	ļ			Shale interpodded	1		1/3	5	1	
	2	16.6	570				1	ĺ			with sandstone and				50	2	
	2 प्राप्त	0	ANDSTONE					İ			few shedred zone.	1	1.0		50		
	3 1	8	SA								Bedding 65° with core	\		N		3	
۱ ؛	4 m	ň	ō					Gray				 	7		40	4	
۷	1711	,	Ę.					ပ်			axis (dip 55°)		√	N		5	
-	5 mm	5.	atio					l			calcareous in		L	$\left\{ \cdot \right\}$	35	اسلسا	
1	8 1		ernation					ĺ		34-4427	sendstone			\square	30	6	
٦	7 1		AIT	₩Ţ							Some calcite veins		0.4)		45	7	Ì
1		0						1.			ore found.		\mathcal{L}	Ν.	so	8	
1	8			leet				ĺ			Core loss at	1		V	111		
	i. 6.										47.00 - 47.50m				43	9	
4	20					-								1	35	50	
	20 прин]			50.00 - 56.20 m.	1		11		Ē.,	
3	1 170	8					,	.]			Sandstone interbedded				No	·	
20 10 10	2 1				-		<u> </u>				with mudstone badding	1				2	
-	ં 3						. ÷ .	{			50° with core axis			N		3	
	o 4 5	2									(dip 70*)			1		E a	
	4	95					1	•				1 .			95	Ē	
•	5							Ì			Fresh and hard rock.				L	5	
	6	8	e, e.					<u> </u>					<u> </u>	H	30	8	
T	ulun			ļ [1		[[[]]]	Bottom of hole					1 7	
	7 .8						* *									E '	
1	8						, í	[atoti. Konsula ali			8	-
١	9		8.					1								9	
- 1	- 4	1	1. 4	1 1	ШШ		1	Ţ	Ш			. lt		-[[11	Ę.	1

Drainal		NAM	J NGA	O SITE	No.2		Loca	ition_Dan		Right Boo		Boring No. DR-	6 Log No.	lof	3
Project Co-ard				9.189 E 3		3.682	Elev	ation 20	1.725	m MSL		Depth of Hole 60.	OOm Commenc		 ;
	from t				0•		Core	Hecover	y	100%		Depth of Overburden 9.	completed	, — 11. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	
Bearing	g of A	ngle l	Hole .				Com	ралу	E	GAT		Total length of core 60.	Coddoo o	K. Takedo	
Date	W Depth	7 B D D	Gaology	Symbol of geology	Core recovery	Kind of Br of Core (mm.)	Cesing	Colour of rock	Weathering	Hardness Charage length	of core	Description	WATER FRESSURE TEST. LUGEON VALUE WATER TABLE —	50 Pressure Kg	ii)
10/10/86	0		REDN					Reddish				0.00-9.00m. Overburden 0.00-2.50m. Clayey silt, Top soil and detritus deposit. 2.50 -9.00 (n.	SPT. N= 20-24	անրակարհարհարհարհարհարհարհարհարհարհարհարհարհա	
31	1 2 3 4 5 6 7 8	0	OVERBUREON					Вгожп				Sandy silt. Strangly weathered rock.		վահորհանավայնությունակ	3
(2/10/88	6 5 1 5 3 <u>1911 թուրդուսիականական</u>	43 0		•••								9.00 - 60.00 in. Sandstone, fine to medium grains, dense. Joints din 10°, 30°, 45°, 60°, 80°, clay filled in joints, some calcite	15/10/88 	\\	1.
	4 5 6 7 8 9 20 1 2 2	62 32 0 0 56	SANDSTONE					, A				veinlets, iron oxide coated at Jaints at 9.00-16.50 m. Non calcareous at 9.00-60.00 m. Bedding 60° 15.00-19.00 m. Cracky and fragmented sandstone.	24/2/69 	15	
13/10/88	րարափումականականականականությունումու	58 63						Gray				19.70 - 20.00 m Thin shale layer. Fresh and sound rock.	0.3	60 ավարկակավարկայիայիայի անումարկային հայարակա	2 3 4 5 5 8 7 8 9
	30 =	4		 				<u> </u>						<u> </u>	0
	Core	014 —			J	1 (600.00)	West 5 (decomp	hering	_		_	Avarage length of Core 1 (more t	han 50 cm), 2 (50 cm, 20 cm), ,5 cm), 4 (lase than 5 cm) 5 (q	rathort I	<i>। ।</i>

Project	t	NA	M NG	O SITE	No.2		_ Locat	ion Do	m Axis	(Filght Bo	nk)	Boring No. OF	9-6 Log No	2	of2	
Ca-ara	linates	NI,	967,04	19, 189	E 393,	773.682	Eleva	ţìon	2	01.725m	MSL	Depth of Hole 60	0.00m Commi	nced 10/10/	/88	
Angle Beering	from I	Horiz nole	ontal Hale				Care : Camr	Recover	ry	EGAT		Depth of Overburden 9 Total length of core 60	0.00m Logged	by V. VI	choin	
, , , , , , , , , , , , , , , , , , ,		: , .	,											K. To	kedo	
				ASOJORŠ	Ž.	r ĉ	ا ۽		g	ss en			WATER PRESSURE TEST			
Date	Depth	a	Geology	6	recovery	Kind of Bit of Core (mm.	Castng Cementation	Colour of rock	Weathering	Hardness Average lengt	of core	Description	LUGEON VALUE	Pressure	Depty	Elevation
ا	Δ.	αċ	Ů	Symbol of	Š	Kind of Core	3 6	Color	Š	Ĭ .	ľ		WATER TABLE			₫.
	M:	%		ं के इंटर्ड	100%	-			1	5				\0 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	M	
	1	2									} }}	As above.	(0.3)			
)	1	62										30.20 - 30.60 m.		\\25	1 2	
.]	2		4 .				.)					Limestone lanse.		$N \square$: .
. }	3	82	11.			1	. }	. :				dense, at contact	(0.6)		3	
•	4						:	1 - 9				dip 40°	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		4	
	5	73					1							M + 1		
1			1 1			1						Fresh and sound rock		25		
1	6]									Ш	Some calcite veins				:
}	7	54										are found, the width		30	E 7	
_	8	_										of calcite veins		1131	8	: :
8	9	42	1									are 5 to 10 mm.		$\mathbb{N} \setminus \mathbb{N}$	E 9	
14/10/88	. 1						1.1					productive state of the second		25	40	
2	10		Ä										(2.5)	\mathbb{N}		
-	1	83	ğ				:							$\{N\}$	1	
}	2		SANDSTONE		100										2	
	, <u> </u>	-	SA											1 40	3	
	3 -	, 8				1		-						//50	اه	· .
	4 7						1.					1		\mathbb{N}	under	ļ.
}	5	м						Gray						X	5 بلسياد	
}	8	6					- /	9						55	8	
	7												(0.4)	1-1-1	7	
			4			1								\mathbb{N}	8	:
}	8	8								7				- N		
ļ	9	_						.*		5				1 6) E 9	
}	20	-				-								- 	- € 50 ·	
}	1 -					}								-1	1	
	2	93					·]							$-1 \setminus 1$	E 2	
ļ						}	:							50	E	
ا پي	3	_									[]		(1.4)		3	-
15/10/88	4	တ္	1.7				1						 -		4	}.
3	5										,		\ L	1 30	5	[.
.	6		·											$ \mathbf{N} $	E 6	
	Topic Control	٥						1.						50		
}	7 -	<u> </u>											(2.1)	 	7	
	8														8	
.	9	90	1.7												9	
	30						3				Ш	Bottom of hole			60	
. र १५५ है - १	Core	loss		≥≤۵	IJ	(fresh) — «	Westhe (decompo			1	L	Average length of Core I (more a 3120 cm	than 50 cm), 2 (50 cm, 20 cm , 5 cm), 4 (less than 5 cm)	5 (græned)	٠.	
				11775	1	(fresh) — 5	Ldecompo	sed) :	Herdr	`] waaa 1∦ ha <i>ed</i> ;	- 51		,5cm 1. 4 (less than 5 cm.)	p (Busueq)		

8		MAI	u NR	AO SITE N	0.2		Lacatio	so Dam	Axis(Right Bank)	Boring NoDF	1 - 7 Log No.		
Project Co.ord									279.969m MSL	Depth of Hole	00m Comment	ed 14/9/88	
Annie	from	Horiza	nntal	9	O*		Core P	lecover	ry 68. 9.%		6.70 m Complete	30/9/88	
											88.90m Logged b	y V. Vichorm	<u></u>
Dourne	9 51 7							,				K.Tokedo	
Dete	Depth	8 0.0	Geolegy	1 5 1	Vine of Br		Cesting	Colour of rock	Weatheing Hardness Average length of core	Description	WATER PRESSURE TEST LUGEON VALUE O WATER YABLE — V	50 Pressure Kg 100 Time mir	Elevation
	M	1%			å% 4	-						KTTTE 0	
14/9/86	0 1 2 3 4 5	માં તેમ તેમ તેમ તેમ તેમ તેમ તેમ તેમ તેમ તેમ	OVERBURDEN					Reddish brown		0.00-6.70 m. Overburden Residual Sall with fragments 0.00-2.00 m. Sittly Clay. 2.00-5.00 m. Sittly Clay with sandstone fragments. 5.00-6.70 m. Sittly clay with limestone fragments. 5.90-6.70 m. Sirragly weathers 6.70-51.40 m. Limestone) .	1 2 3 4 4 5 6 5 95 10 10 10 10 10 10 10 10 10 10 10 10 10	
15/9/88	3 - 10 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9	23 0	LIMESTONE					Gray and brown		with reddish clay in crack, iron oxide coated at joints. Joints dip 10°,30°,45°. Bedding 45°,70° Core loss at 7.75-9.40m, 9.50-12.10m 12.50-14.50m, 15.50-16.60m, 18.40-18.80m,19.70-20.00m 21.00-21.05m, 24.05-24.25m 25.70-26.35m, 27.40-27.80m 29.00-29.20m.		10 10 10 10 10 10 10 10	
89/8/91	20 - 1 - 2 - 3 - 3 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5	25 45 45					Western			Average length of Core 1 fmore	han 50 cm], 2 (50 cm, 20 cm),	30 and a 4 and and and and and and and and and and	

Co-ordinati Angle from	es <u>Ni</u> Horiza	967, i ontal	07.734 E 90	393.	974.11	Q Elevai	tion Recove	279.9 ry6	69 m M	SL	Depth of Hole	1-7 Log No. 2 100 m Commenced 6.70 m Completed 68.90 m Logged by	14/9/66 30/9/68	<u>. </u>
Date Oepsh	"	Gaology	Symbol of seology	Core recovery	Kind of Bit of Core (mm.)	Cesting Cementation	Colour of rack	Weathering	Hardness	of core	Description	WATER PRESSURE TEST LUGEON VALUE WATER TABLE — O		Elevation
88/6/21 3 4 5 6 7 8 9 9	ntacteologischer schoolschaften beda	LIMESTONE					Gray and brown				As above.	0.6	55	
20 1 2 2 3 3 4 4 5 5 6 7 8 8 9 30 30	induntuntuntuntuntuntuntuntuntuntuntuntuntu						Gray				51.40-100 m. Limestone interlarminar with shale dense and a few brittle, joints dip 10°, 45°, 75° Bedding 70° folded at 66.00-68.00 m. B4.00-98.00 m. Fresh, sound and massive limestone	26 52.2m 29/2/89	niminal minulminal min	

Co-ord	netes_f	(1,967,) rizontal	9	0• 393,97	4.110	Eleva Cora	tion Den	279 279	,969n 88,9	BONK MSL	Depth of Overburden 6	Om Comment 70 m Complete	d 03/9/88	
Bearing	to de	o co	Symbol of geology		Kind of Bit of Core (mm.)	Comentation	oany or noto	Weathering	T T	Average length of core	Total length of core 8	WATER PRESSURE TEST LUGEON VALUE WATER TABLE WATER TABLE	Pressure Kg Time min Depth	Elevation
24/3/88	O Market	%	"s HHHHH	÷ 100% =	9.		Ö	-		5	Fresh, sound and		0 0 0 M 10 60 15 1 1	
	3 4 8 վարհականականակա	92 25									Crucky and fragmen- ted at 60.00-63,50m 79,50-84.20m Waathered rock	(0.8)	25 thurd 4 thurburb 5 60	
26/9/88	9 11	82									Cracks stained		45 Luci 9	
	त्यामार्थे क्यांच्या स्थापन	98 86					Gray					0.2	35 milu 2	
88/6/2	5 6 7	LIMESTONE										(2,1)	75 line 4 5 line 5 40 line 6 40 7 30 kg 8	
	20 9 20 11-11-11-11-11-11-11-11-11-11-11-11-11-	23					brown			1		(0.3)	1 50 minutumin 1 55 m	
28/9/88	2	0					Gray and b						2 25 1 1 1 3 3 3 4	
	2 6 2 8 damhanlandandandanda	20°				:	Gray					0.1	further training to the first training to the first training to the first training training to the first training traini	
29/5/88	8 9 30 Core los	£				Whether I decompo	Wing				Average length of Care 1 (more to 3 (20 cm.)	han 60 cm], 2150 cm, 20 cm], 5 cm], 4 (less than 5 cm] 5 [

le f	rom-1	lorize	ontal	9	0.	: <u> ,-</u>	" Core	Recover	Y	00.9	9/6	Depth of Hole 10 Depth of Overburden 5 Total length of core 8	5.70 m	Completed	i <u> 3</u>	0/9/88 Victorn Takedo	
	3 Depth	7. A. O. D	Gaology	Aboloag to loguiks	Core recovery	Kind of Bit. of Core (min.)	Casing Camentation	Colour of rock	Weathening	Hardness.	Average length of core	Description	WATER PRES LUGEON VA WATER TA	- J	0 Oriti	100 Timemin	Elevation
	O 1 2 3	92										Fresh, sound and	(0.2)	30	udmidiadical	
			LIMESTONE					Gray			***************************************					and and and and and and and and and and	
	յուղակուկուկուկուրար 5 6 7 8	60	TIN				:						(1	•	25	6548	
	9 10 10 10 10 10 10 10 10 10 10 10 10 10											Bottom of hole			135	limburlum 100	
	1 2 3															ահացիումականակա	
	4 5															համավումանը 1	
7	6 7 8															11111111111111111111111111111111111111	
	30 Մասիակայի			A A FA TO TO TO TO TO TO TO TO TO TO TO TO TO												երբերում 9 	
	իտվակակակակակա															1 2 3	
	4						3	an si								diminimizadii	
	5 6 7 8 9	Production Section (1981)														ոկումիումիումիումիումիումիումիումիումիումի	
	9															90 milianihimi 30	

Co-ordinates 11,365,984,036 293,045,036 293,045,036 293,002 m MSL Depth of Note 27,002 m Completed 24,46,456	Project	<u>N</u> A	M MA	E NGAO N	. 2	Locati	on	Intok	6		Boring No DR	- 7 A	Log No.	ed 12	ol <u>!</u> /8/88	<u></u>
Bearing of Angle Hols Company ESAT Total length of cere Logged by A treescoule rest (usclowykut of WATER TABLE — A g B B Con 3 by B B Con 3 by B B Con 3 by B B Con 3 by B B B Con 3 by B B B Con 3 by						Core i	3000) <u>" " </u>	10.00			Depth of Overburden 3	.95 <u>m</u>	Complete	d 24	/8/88	
## A PART OF THE P	Angle from Bearing of	Horac Anale	antai . Hole			ູ Comp	any	EG	AT		Total length of core		Logged b	γ V.	Vichori Takeda	<u> 11: 41</u>
0 0 0 0 0 0 0 0 0 0		0 0		geology			of rock			core	(Confidence of the Confidence	WATER LUGEO	R PRESSURE TEST	Drill Pressure Kg	Depth	Elevation
Second S	88/8/2	akarinalandankarinala darikanbusha	Overburedn								Detritus deposits 0.00-2.00m. Silty clay with sandstone fragments. 2.00-3.95m. Silty sand with sandstone fragments. 3.95-10.20m. Sandstone interbedded with shale brittle; iron oxide			40 35 40 30 40	0 1 2 3 4 5 6	
10 10 10 10 10 10 10 10	88/8/81	odnich uder fra den den den den den fra	andstone and								Core loss at 4.15-4.60m, 5.70-7.00m 8.10-8.70m, 9.00-9.40m 10.20-27.00m. Shale interbedded with	١	ground water	20 30 45 20 30 45	7 8 9 10 1 2	
20 12.70 - 13.30 m 225 20 20 20 20 20 20 2	89/8/81	dentadadada	5								joints 30°, 60°, 85° rough, clay and iron exide coated at joints, calcureus in sandstone,			45 22 80 15 20 20	interpusion of 7	
23.25-23.65m,2440-24.60m 25.60-26.75m.	~ 1 9 ·	∄ I									12.70 - 13.30 m Sheared zone, clay with breccia Core loss of 11.00 - 12.00 m, 12.35 - 12.65 13.30 - 16.60 m, 17.40 - 17.65 m 18.30 - 18.40 m, 20.40 - 21.50	n g		\$ 0 R (5) \$2	20 limburgan 1 - 2 limburgan 3	
	88/8/2/5/8/8 6 - 7 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8	managangangangangangangangangangangangang									23.25-23.65m,2440-24.60≀ 26.60-26.75m	· §		23 83 7	ankenikudaniku	
30 Average length of Core 1 (more than 50 cm.). 2 (50cm. 20 cm.).	30							ЩШ	ЩЩ	Ш				لللل	30	<u></u>

	atas	. NJ	,966	,999	E 394	4.032	Elova	ation	293.682	m M S	k) Boring No. Di	0.00 m C	beanemm	5/7	/88	-
											_ Depth of Overburden					
Date	¥ Depth	0.08	Gaology	Symbol of geology	Core recovery	Kind of Bit of Core (mm.)	Casing	Colour of rock	Weathering	o Average length of core	Description	WATER PRESSURE LUGEON VALUE WATER TABLE -	- V	100 Time min	₹ Depth	Elovation
98/1/589/1/9	0 1 2							Вгомп			0.00-2.70m. Overburden 0.00-0.50m. Top soll 0.5-2.30m. Clayey silt 2.30-2.70m. Fragments weathered limostone.	SPT. N = 6 - 9 - 1 SPT.			0 1 - 2	
7/7/88	o 4 5	52	. :4								2.70-11.00m. Limestone dense covity at 4.30- 4.60 m , 5.15-5.30 m, 8.40-8.70 m. Joints	N = 50		70	- 3 - 4 - 5	:
87.7.88	9 7 8 (Sunstandardardardardardardardardardardardardard	98.8									40°-60° Clay and Iron oxide fill at Joints calcite vointets. Core loss at 10.95-12.35m.	18		60	- 6 - 7 - 8	
11/7/88	9 10 1 Ծանուհյունունուն	13 9.2						Pale gray			12.10-17.10 m.		12	5	- 9 - 10 - 1	
11/1	2. 3. 4.	0 24	LIMESTONE								Limestone interlaminar with shale, fold at 12.30 - 12.40 m. bedding 25° cavity at 13.50 - 13.95 m,			3	3	
12/7/86	րևակապակակարակայալ 1	0	.							<i></i>	14.10-15.55 m, 16.10-16.30 m. 17.10-24.00 m.	No fest	55m	30 35	- 5 - 6 - 7	
	. 6 6 %։ Մահադադադարակար	7									Limestone, cavity fill with clay. Sandy Limestone at 21.50-22.00 m.	21/2/89		45	9 20	
	արարությունում (1900)	22.1						and brown			Core loss of 1710-17:50m,17:75-19:00 n 19:55-21:40m,22:20-22:44			55	2	
13/7/88	dimpolantanta	0						Pale gray or			24.00-29.20 m. Limestone interlaminat with shale, brittle,			60	ահամամերոկայանում	
98	ammundingmin							ď			bedding 80° nearly vertical			40 30	mulmulmulmulmulm	
14/7/88	9 1	61 27											K	45	11 9 130	

					:. <u>L</u>	.00	OF	BORING			
Project	NAM MAN	E NGAO N	. 2	Loca	tion Dan	n Axis	(Right Bank	O Boring No. DR - DR - Depth of Hole 90.0	- 8 Log No.	2 of ced 5/7/88	3
Angle from H	Introntal	•00		Core	Recover	rý 87	1.2 1/4	Depth of Overburden 2.	<u> Combiete</u>	10 <u></u>	
Bearing of Ar	elcH olgr			Com	pany	E.	<u>g at</u>	Total length of core 78.	50m Logged I	y V. Vicho	<u>rn</u>
Dete	R. Q. D. Gaology	Symbol of geology	1 0	Casing	Colour of rock	Weathering	Hardness Average length of core	Description	WATER PRESSURE TEST LUGEON VALUE WATER TABLE —	50 PressureKg 100 Tenemm	Elevation
88/2/81 89/2/51 89 7 7 8 8 7 2 8 8 7 2 8 8 7 2 8 8 7 2 8 8 7 2 8 8 7 2 8 8 7 2 8 8 8 7 2 8 8 8 8	8.24				Pale gray and brown			29.20-40.00 m. Limestane, dense, brittle, interlarmingr with shale, few sheared zone. Solution cavity of 26.60-26.80 m, 31.10-31.20 m 36.00-49.00 m Fresh and hard	(81)	30 1 2 3 6 6 7 7 8 5 6 0 20 20 20 20 20 20 20 20 20 20 20 20 2	
28/2/91 38/2/81 28/2/91 28/2/91 38/2/9	8				Gray			limestone	7.0	20 25 9 9 50 1 1 1 2 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1	
88/4/61 88/4/02 2-8/8 9 9 1 2 3 4 5 6 7 7 8 9 9 1 2 3 4 5 6 7 7 8 9 9 7 9 9 7 9 9 7 9 9 9 7 9 9 9 7 9	0 53.8 0 42.8				Brownish gray			43.00-38.00m. Sheared zone limestone, 51.00-55.60 m. Recrystallize limestone, dense iron, coated at joints	(0.7) 30/7/88 — V (4.1)	50 15 55 50 10 10 10 10 10 10 10 10 10 10 10 10 10	
80 / 2 / 1 Z 60 Core 6	0 38		[friesh) =	Weath 5 [decompo				— Average length of Core 1 (more the 3120 cm.	0,4 an 50 cm], 2(50 cm, 20 cm) 5 cm], 4 (1888 than 5 cm, 15 (

Project	NAM MA	LE NAGO No. 2	Locati	on Don	Axis (F	Right Bank)	Boring No. DR	-8 Log No. 3 of 3
Co-ordinate	Horizontal	66.999 E 394.	032 Elevat	ion Recover	293.6 v 8	7.2 %	Depth of Hole90 Depth of Overburden 2	.00 m Commenced 3/7/88
								.50 m Logged by V. Vichern K. Takedo
Depth	Seology	Symbol of geology (%) Core recovery	5 E E E	Colour of rock	Weathering	Hardness Average langth of core	Description	WATER PRESSURE TEST LUGEON VALUE WATER TABLE — WATER TABLE
60 88/2/12 3				Brownkish gray			58.00-90.00m. Limestone, interforming r with shale bedding 30°-80° sheared zone at 63.80-64.30 m.	60 1 60
6				٠,			65.30 - 66.90 m. calcita veinleta dense	0.4 Entropy 5 70 miles 6 35 miles 7
8 9 70	Luduuhuu 3.3 SHALE						loints 20°, 45°, 60°, 80° clean and rough. 61.30 - 64.00m Weathered , crocks	80 Likurin 8 milimin 9 9 80 Milim 70 80 Milim 19 9 10 Milim 19 10
2 3 88 4	Ge.6 SRMINAR						are stoined	105 last last 4
7.	ultaritarinahaninahaninahani 66.6 83 LIMESTONE INTERL			dark gray				0.1) 58 with 8 7 60 kits 8
9 2/2/27 80 1	0 93			Gray to				20 60
3 88 4	15.3.5 73.5				Principles of the Control of the Con			0.1 2 60 in d 3 in d 4 in d 5 5
8 7 8 9	dedenhudenhuden 22.8							0 50 1 1 1 1 1 1 1 1 1
8 90	re loss ——		Weather)	3 (20 em	then 50 cm), 2 (50 cm, 20 cm)). 5 cm), 4 (less than 5 cm) 5 (grained)

ngle fr	om H	foriza	Hole		904		Core	Recover	у	74 %		Depth of Hole 59.	20 m	Complete	a	191	111 00	
aaring	of Ar	o o	Hole _		90*		_ Cam	Hacover Dany	γ	14 7/6		Debtit or Overporgen 3-6		•••••				
	Depth ₹	e e				·	Guing			TAR		Total length of core 43	.90m	Logged b	Y	V. V	ich arn akeda	
Orte	м	ø		à					<u> </u>	<u>.v</u>					<u></u>	к, і	акела	
1		ו " ו	Gaology	Symbol of geology	l .	* 8	Casing Cementation	Colour of rock	Westbering	Hardness Average length	of core	Description	LUGEON	RESSURE TEST VALUE TABLE —	Pro o		W Depth	Elevation
1	٧.≒	%		1 A 1	100%						П				0 8	<u>- </u>	0	
9/11/86	ր Հ 3 4		DEN				* -	Reddish brown				0.00~10.20 m. Overburden. 0.00~0.50 m. Top soil 0.50~4.60 m. Clayey silt with sandstone	·				— Չ 3 4	
	Turkuni		aus.]]		,				fragments					5	
	2 3 4 5 6 7 8		OVERBURDEN									Core 1055 at BOO-9.00m,10.00-10.20m					ոհումարկականումուն։	
10/11/66	ումիածիածիանիակումիանիակումիակումիակումիակումիանիանի 1 2 3 4 5 6 7 8 9											10.20-20.40m. Shale			20		գիտվավակում 10 1	
2	1 1		. !			1					ř	with sandstone			Ν,	5	2	
1	2 1		Ä						1,444	77	1	interbedded Joints			1	1	-	
Ì	3		570									dip 10°, 40°, 70° coafed	· ·		7/5:		3	
	4		SANDSTONE				-	Brown		}	\prod	with clay and iron			N		4	
}	, military							ង				oxide, bedding 40°				55	5	
	84		with		?		- 1					20.00-23.00 m. Chert			20	\prod	6	
	2 minutes		ATION		abba pa pa		•					bed. Core loss at					7	
	8 3 Imimimim		ALTERNATION		A STATE OF THE STA					\nearrow	\leftarrow	11.60-12.30m,13.30-14.30m, 17.50-20.40m,21.90-22.20m	I			55	րակավաց 9	
=	20 =		SHALE									2250-2265m,2285-2320m			N	40	20	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ည်								1				20	,	ավասկավայ 1 2	
	3 मा			盟					#			23.00-38.40 m. Joints	1		7	+-	3	
12/11/88	4 դեսակում		. [盟								dip 30°,45°,70°.			\		4	
1271	2 6 military		LIMESTONE					Gray				Bedding 25° Fresh and sound			7	30	իրուրույին 19	
	7		MES	盘			. •				H				1 2	-	1	
13/11/68	8 & 0. Hanglandanihan		٦				į								7 50		արասիսակար Մարդարակարակար	
	30	\sqcup		프				<u> </u>			Щ	Aurena bush of Care I Care	L	2/50= 20=	44	تلتالإ	E 30	1
	Core 1	loss -	·		.1 N	(fresh) – 5	WestN (decompo		 Have	esa 1 (hard)	-51			2 (50 cm, 20 cm.) sea thirt 5 cm.) 5 (