MASTER PLAN STUDY
 ON

 SWAT DISTRICT

 SWAT DISTRICT integrated rural development project

ANNEX

FEBRUARY 1990

JAPAN INTERNATIONAL COOPERATION AGENCY

JIICA LIBRARY

$1080082(9)$
20584

MASTER PLAN STUDY ON SWAT DISTRICT

INTEGRATED RURAL DEVELOPMENT PROJECT

ANNEX

CONTENTS

ANNEX A.	METEOROLOGY AND HYDROLOGY
ANNEX B.	SOIL AND LAND USE
ANNEX C.	AGRICULTURE AND AGRO-ECONOMY
ANNEX D.	AGRICULTURAL INFRASTRUCTURE
ANNEX E.	RURAL INFRASTRUCTURE
ANNEX F.	RURAL ELECTRIFICATION
ANNEX G.	PROJECT FACILITIES AND COST ESTIMATION
ANNEX H.	PROJECT ECONOMY
ANNEX I.	STUDY ON PROPOSED PRIORITY DEVELOPMENT PLANS
ANNEX J.	COLLECTED DATA AND PAKISTANI GOVERNMENT
	OFFICIAL CONNECTED BY STUDY TEAM

CONTENTS

Page

1. Meteorological Data A-1
2. Daily Rainfall at Hydrological Design Year A-2
3. Probability: 1/5 Year Drought A-4
4. Unit River Discharges in the Project Area A-5
LIST OF TABLES
Table A-1 Meteorological Data in Project Area A-1
Table A-2 Daily Rainfall at Char Bagh Raingauge Station (1981) A-2
Table A-3 Daily Rainfall at Karora Raingauge
Station (1970) A-3
Table A-4 List of Annual Rainfall \& River Discharge A- 4
Table A-5 Unit Discharge in the Project Area A-5
table a－1 meteorological data in project area

育 が

ELEMENT	UNIT	PLACE	YEAR
Temperature	${ }^{\circ} \mathrm{C}$	Saidu Sharif	1963－66
		Besham	1971－72
		Dagar	1971－72
Rainfall	mm	Saidu Sharif	1963－72
		Karora	1963－72
		Dagar	1963－72
Humidity	\％	Saidu Sharif	2963－66
		Besham	2970－72
		Dagar	$1970-72$ 11
Evaporation	mm	Saidu Sharif	1963－66
	nun	Besham	1970－72
		Dagar	1970－72
Wind velocity		Saidu Shariz	1963－66
	m／s	Kalam	1963－66
		Tarbela Dam	1961－72

		onosor 莽			ज二小心式总	Nangonn	$\stackrel{\infty}{\infty}$	g
哭	$\begin{array}{r} \dot{0} \mid 000000 \\ 0.00000 \\ 0.0000 \end{array}$	000006 0.000°	900000 $\$ 00000$		000000 －000000	000000 O －0．00000	0000 $\dot{0} 00^{\circ}$	으으응
苟		000006 o்00000		000000 ㅇ․0．00＇	000 mo公 ooonion		OMn	\bigcirc
		－000000		mo00의	$\begin{aligned} & 090000 \\ & 0.0000 \end{aligned}$	$00-1000$ ． oorioos	ywirs	－9\％os
		－0융의	000006 －0．000．	00noon －osoón	00000 ô co．0000		הnơo	－903
	呺 0	900900 000	00000 O $00^{\circ 00} 0^{\circ}$	000006 000000°	mNoooo Mơooㅇ․․		～oc： ○○号官	
		900900	－0．00\％	$\begin{aligned} & 0.0000 \\ & 0.00000 \\ & 0.00 \end{aligned}$		－000000E 	$\begin{aligned} & \text { oovo } \\ & \text { ioniog } \end{aligned}$	
		00000 응 －0．0000	$\begin{aligned} & \sim 0.000 \\ & \underset{\sim}{9} 0000 \mathrm{E} \end{aligned}$	000006 $00^{\circ 0} 0^{\circ}$	－000000			－
		000 0．0 onosoras	000000 ónsjos	00000 O －0．0．0．0	00000 O óojóo	웅ㅇㅇ․․ oncooos	$\stackrel{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty}$	
		응ㅇㅇㅇㅇㅇㅇㅇㅇ		－ 0	anoooo no ioco e		¢n¢	
				00020 				
		000000 $.0^{\circ 0} 0^{\circ \circ}$	00000 O $\dot{0} 0^{\circ 00} 0^{\circ}$	000000 －்．0．0．0	00000 0 $\therefore 0^{\circ} 0^{\circ \circ}$		0090	응ㅇㅇㅇㅇㅇ
		000000 ©0ㅇㅇㅇㅇ	00000 ô －0．0．0．0	00000 － $\therefore 0^{\circ 0} 0^{\circ \circ}$		$\stackrel{\circ n m o g r o}{\circ}$	Hovin	
		oncoor tet				ッNañon范		
								$\begin{aligned} & \text { 品. } \\ & \text { 品 } \\ & \text { 出 } \\ & \text { 出 } \end{aligned}$

	DATE	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JuIx	AUG.	SEP.	OCT.	Nov.	DEC.	DATE
	1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
	2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2
	3	0.0	0.0	0.0	0.0	0.0	0.0	5.1	0.0	0.0	0.0	0.0	0.0	3
	4	0.0	0.0	0.0	2.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4
	5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5
	iotail	(0.0)	(0.0)	(0.0)	(2.5)	(0.0)	(0.0)	(5.1)	(0.0)	(0.0)	($\mathrm{v} \cdot \mathrm{u}$)	(0.0)	(0.0$)$	total
	6	0.0	0.0	0.0	0.0	0.0	0.0	11.4	0.0	0.0	38.1	0.0	0.0	6
	7	0.0	0.0	0.0	0.0	8.9	0.0	7.6	0.0	0.0	16.0	0.0	0.0	7
	8	0.0	0.0	0.0	0.0	9.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	8
	9	0.0	0.0	7.6	0.0	0.0	0.0	0.0	0.0	21.6	0.0	0.0	0.0	9
	10	0.0	0.0	15.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10
	toras	(0.0)	(0.0)	(22.9)	(0.0)	(18.5)	(0.0)	(19.0)	(0.0)	(21.6)	(54.1)	(0.0)	(0.0)	TOTAL
	11	0.0	0.0	4.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	11
	12	0.0	0.0	12.7	0.0	0.0	5.1	0.0	0.0	0.0	0.0	0.0	0.0	12
	23	0.0	0.0	6.6	0.0	0.0	16.5	0.0	12.7	0.0	0.0	0.0	0.0	23
	14	0.0	0.0	25.4	7.1	0.0	0.0	0.0	0.0	26.2	0.0	0.0	0.0	14
	15	0.0	0.0	33.0	0.0	0.0	0.0	0.0	0.0	7.6	0.0	0.0	0.0	15
	rotal	(0.0)	(0.0)	(81.8)	(7.1)	(0.0)	(21.6)	(0.0)	(12.7)	(33.8)	(0.0)	(0.0)	(0.0)	TOTAL
	16	0.0	0.0	22.7	22.4	0.0	0.0	0.0	0.0	7.6	0.0	0.0	41.1	26
	17	0.0	0.0	6.1	0.0	0.0	0.0	0.0	2.5	17.8	0.0	0.0	0.0	17
	1.8	0.0	0.0	0.0	0.0	0.0	0.0	5.1	0.0	0.0	0.0	0.0	0.0	18
	19	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.3	0.0	0.0	0.0	19
	20	0.0	0.0	0.0	0.0	0.0	0.0	8.9	0.0	0.0	0.0	0.0	0.0	20
	total	(0.0)	(0.0)	(18.8)	(22.4)	(0.0)	(0.0)	(14.0)	(2.5)	(31.7)	(0.0)	(0.0)	(41.1)	total
	21	0.0	0.0	0.0	0.0	0.0	0.0	7.6	0.0	0.0	0.0	0.0	0.0	21
	22	0.0	0.0	0.0	0.0	5.1	5.1	15.2	0.0	0.0	14.5	0.0	0.0	22
	23	0.0	25.4	16.3	0.0	6.3	0.0	1.3	3.0	0.0	0.0	0.0	0.0	23
	24	0.0	12.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	27.9	0.0	0.0	24
	25	10.2	25.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	25
	total.	(10.2)	(63.5)	(16.3)	(0.0$)$	(21.4)	(5.1)	(24.1)	(3.0)	(0.0)	(42.4)	(0.0)	(0.0)	total
	26	22.9	10.2	0.0	0.0	7.6	0.0	0.0	49.5	0.0	0.0	0.0	0.0	26
	27	63.5	19.0	0.0	13.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	27
	28	0.0	8.9	0.0	0.0	0.0	0.0	5.1	0.0	0.0	0.0	0.0	0.0	28
	29	0.0	****	0.0	0.0	0.0	6.3	5.3	0.0	0.0	0.0	0.0	0.0	29
	30	0.0	****	0.0	0.0	0.0	0.0	3.8	0.0	0.0	0.0	0.0	0.0	30
	31	0.0	****	0.0	****	0.0	****	5.3	0.0	****	0.0	****	0.0	31
	total	(86.4)	(38.1)	(0.0)	(13.2)	(7.6)	(6.3)	(19.6)	(49.5)	(0.0)	(0.0)	(0.0)	(0.0)	total
Rainfali	Ist 10 days	0.0	0.0	22.9	2.5	18.5	0.0	24.1	0.0	21.6	54.1	0.0	0.0	
	2nd 10 days	0.0	0.0	100.6	29.5	0.0	21.6	14.0	15.2	65.5	0.0	0.0	41.1	
	Rest	96.6	101.6	16.3	13.2	19.0	11.4	43.7	52.5	0.0	42.4	0.0	0.0	
	total	96.6	102.6	139.8	45.2	37.5	33.0	81.8	67.7	87.1	96.5	0.0	41.1	828
Effective	15510 days	0.0	0.0	18.3	0.0	14.8	0.0	19.3	0.0	17.3	43.3	0.0	0.0	
rain	2nc 10 days	0.0	0.0	77.3	23.6	0.0	17.3	11.2	10.2	52.4	0.0	0.0	32.9	
	Rest	76.5	81.3	13.0	10.6	15.2	9.2	30.8	39.6	0.0	33.9	0.0	0.0	
	total	76.5	81.3	108.6	34.2	30.0	26.5	61.3	49.8	69.7	77.2	0.0	32.9	648

Year
Probability
$1 / 5$ Year

TABLE A-5 UNIT DISCHARGE IN THE PROJECT AREA

	Item	Jan.	FES.	MAR.	APR.	MAY	Jun.	Jul.	Aug.	SEP.	ост.	nov.	DEC.	TOTAL
At Gauging Period (1970-72):														
											12			
Monthl	ly Runcff Depth (mm)	9	10	13	9	8	11	19	22	22	12	10.	9	153
Run-of	ff Percentage, ($\%$)	13	17	17	15	23	33	18	23	32	36	45	28	22
2. MONTHLY MEAN RUN-OFF (UNIT DISCHARGE) In ten years (1963-1972)														
SubDivision	Item	Jan.	FEb.	MAR.	APR.	MAY	Jun.	5ut.	avg.	SEP.	002.	Nov.	bec.	Totas
Swat	Monthly Rain (man)	51	100	114	110	62	23	130	138	59	49	22	49	907
	Run-off Percentage (\%)	13	17	17	15	23	33	18	23	32	36	45	28	22
	Run-off Depth (mm)	7	17	19	17	14	8	23	32	19	28	10	14	198
	Unit Discharge ($\mathrm{m}^{3} / \mathrm{ha}$)	70	170	190	170	140	80	230	320	190	180	100	140	1,980
$\begin{gathered} \text { Shangla } \\ \text { Par } \end{gathered}$	Monthly Rain (mm)	54	159	164	161	68	68	148	1.04	78	62	30	78	1,174
	Run-off Percentage (\%)	13	17	17	15	23	33	18	23	32	36	45	28	22
	Run-off Depth (max)	7	27	28	24	16	22	27	24	25	22	14	22	258
	Unit Discharge (ms/ha)	70	270	280	240	160	220	270	240	250	220	140	220	2,580
Buner	Monthly Rain (mm)	93	77	101	83	47	44	139	126	86	44	30	43	913
	Run-off Percentage (\%)	13	17	17	15	23	33	18	23	32	36	45	28	22
	Run-off Depth (rm)	12	13	1.7	12	21	15	25	29	28	16	14	12	204
	Unit Discharge ($\mathrm{m}^{3} / \mathrm{ha}$)	120	130	170	120	110	150	250	290	280	160	140	120	2,040
3. Unit discharge at design year (r.p. 1/5 year drought)														
SubDivision	Item	JAN.	FEB.	MAR.	APR.	MAX	JuN.	JU.	AUG.	SEP.	OCT.	Nov.	DEC.	TOTAL
Swat (1981)	Monthly Rain (mm)	69	0	100	140	67	20	110	81	10	33	9	0	638
	Run-off Percentage (\%)	13	17	17	15	23	33	18	23	32	36	45	28	22
	Run-off Depth (mm)	9	0	1.7	21	15	7	20	19	3	1.2	4	0	127
	Unit Discharge ($\mathrm{m}^{3} / \mathrm{ha}$)	90	0	170	210	150	70	200	190	30	1.20	40	0	1,270
$\begin{aligned} & \text { Shangla } \\ & \text { Par } \\ & (1970) \end{aligned}$	Monthly Rain (mm)	97	102	140	45	38	33	82	68	87	97	0	41	828
	Run-off Percentage (\%)	13	17	17	1.5	23	33	18	23	32	36	45	28	22
	Run-off Depth (mm)	13	17	24	7	9	11	2.5	16	28	35	0	11	186
	Unit Discharge ($\mathrm{m}^{3} / \mathrm{ha}$)	130	170	240	70	90	110	150	160	280	350	0	110	1,860
$\begin{aligned} & \text { Buner } \\ & (1970- \\ & 72) \end{aligned}$	Monthky Rain (mm)	70	58	76	62	35	33	104	95	65	33	22	32	685
	Run-off Percentase (\%)	13	17	17	15	23	33	18	23	32	36	45	28	22
	Run-off Depth (mm)	9	10	13	9	8	11	19	22	21	12	10	9	153
	Unit Discharge ($\mathrm{m}^{3} / \mathrm{ha}$)	90	100	1.30	90	80	110	190	220	210	120	100	90	1,530

ANNEX B. SOIL AND LAND USE
Page
Table B-1. Mapping Units of the Soil Map B-3
Table B-2. Area of the Soil Mapping Units B-4
Table B-3. Mapping Units of the Land Capability Map B-5
Table B-4. Area of the Mapping Units in the Land Capability Map B-6
Table B-5. Area of Swat District and Each Sub-Division by Elevation Groups B-7
Table B-6. Area of Cultivated Land by Elevation Groups and Sub-Division B-8
LIST OF FIGURES
Figure B-1. Soil Map B-9
Figure B-2. Land Capability Map B-10
Figure B-3. Land Use Map B-11

CONTENTS

Page
CHAPPER I. SOIL AND LAND CAPABILTY B-1
1.1. Mapping Units of the Soil Map B-1
1.2. Mapping Units of the Land Capability Map B-1
1.3. Area of Lands by Elevation Groups B-2
CHAPTER II. FERTILIZER EXPERIMENTS ON CEREAL CROPS IN SWAT DISTRICT B-12
2.1. Introduction B-12
2.2. Wheat B-12
2.3. Maize B-13
2.4. Rice B-14
2.5. Recommendations B-14
2.6. Comments on Fertilizer Experiments B-14
CHAPTER III. LAND USE B-15
3.1. Description of Land Use Pattern B-15
REFERENCES

CHAPTER I. SOIL AND LAND CAPABILITY

1.1 Mapping Units of the Soil Map

The soil series is the main soil identification unit used in the soil survey of Pakistan. However it is not possible to differentiate individual soil series on the reconnaissance soil maps because of the limited scale of mapping ($1: 250,000$).

The soil associations and soil complexes are used for the mapping unit in the reconnaissance soil map of Swat District. The mapping units of the accompanying soil map were defined by combining those of the soil maps of Swat District. The occurrence, characteristics and area of the mapping units are shown in Table B-1 and Table B-2.

1.2. Mapping Units of the Land Capability Map

The land capability classification in Pakistan is designed to suit the conditions of the country. It is similar to the basic structure of the

USDA $1 /$ classification, but the definitions of the classes have been modified and the number of sub-classes were extended to suit the conditions of Pakistan.

In Pakistan, eight land capability classes are recognized. These classes are numbered from I to VIII. Soils placed in the highest class (I) have the least limitations for agricultural use and relatively little effort is required to produce high yields of a wide range of crops. In lower classes (II to IV), there are increasingly severe limitations and increasingly greater effort is required. Soils in Classes V to VII are generally not suited to cultivation. However, they can be used for range land or forestry. Soils classified under the lowest class (VIII) are not used for any kind of commercial plant and are restricted to recreation, wildlife or water supply use.

[^0]Major limitation to agricultureal production is the shortage of moisture in most parts of the country. Therefore, it is necessary first to indicate whether a soil is classified as irrigated or non-irrigated cultivation. Where irrigation is generally practised, the word "irrigated" (ir) is included in the land capability class. Where soils are unfit or wherethere is no conceivable water supply within the next ten years or so, classification without irrigation (d) has been used.

The characteristics and area of the mapping units of the land capability map are shown in Table B-3 and Table B-4, respectively.

1.3. Area of Land by Elevation Groups

The elevation of land is an important factor for land use in Swat District. The area of Swat District and each sub-division by elevation groups which were obtained by using map scaled $1: 250,000$ are shown in Table B-5 and Table B-6.

TABLE B-1 MAPPING UNITS OF THE SOLL MAP

\qquad
\qquad Charactoristics ! ${ }^{\prime} \quad$ Land Capabiliity

(Mountains)

1. Soils from amphibolites and hornblendites

$\binom{\mathrm{S}_{\mathrm{w}-1} \cdot 2}{\mathrm{Ta}-1}^{2!}$	Upper and steeper parts of mountain slopes	Exposed bedrock and gr. SL, shallow

2. Soils from diorites etc.
$\binom{\mathrm{Sw}-4,-5}{\mathrm{Ta}-3}$

> Upper parts of
> mountain slopes

Sligh. gr. L-SiL, in
shallow and exposed bedrock W
3. Soils from granites etc.
(SW-6) Upper parts of

Exposed bedrock and	W7
gr. LS, shallow	细

4. Soils from granites etc.

$$
\binom{\text { SW-7,-12-13,14 }}{\mathrm{Ta}-6,-7 \mathrm{Bu}-19}^{2 \prime} \quad \begin{aligned}
& \text { Upper and steeper parts } \\
& \text { of mountain slopes }
\end{aligned}
$$

Exposed bedrock and
sligh.gr. L, shallow
5. Soils from limestone and calcareous schists

$\binom{\mathrm{Sw}-8}{\mathrm{Ta}-12} \quad$| Upper parts of mountain |
| :--- |
| slopes |

6. Soils from micaceous and silicious schists

$\binom{$ Sw-9,-10,-11 }{$T_{\mathrm{a}}-14,-15,-19 \mathrm{Bu}-19} \quad$| Middle and lower parts of | Gr. SiL - SL, shallow to |
| :--- | :--- |
| mountain slopes | mode, deep and exposed bedrock |

7. Sois from Swat-Buner schistose group, ultramafic rocks formations

$\binom{\mathrm{Sw}-3}{\mathrm{Ta}-22} \quad$| Upper and lower parts | Gr. $\mathrm{L} \sim$ Sil, shallow |
| :---: | :---: |
| of mountain slopes | and exposed bedrock |

(Piedmonts)
8. Pied mont association

$$
\binom{\text { Sw-15, Bu-11,-14 }}{\mathrm{Ta}-25,-26,-27,-28}: \begin{aligned}
& \text { Terraced lands, gently sloping } \\
& \text { upland }
\end{aligned}
$$

(Loess Plains)
9. Loess association

$\binom{$ Sw-25, -26, Bu-5 }{ Ta-32, -33}	Table lands, nearly level to gently sloping	SiL \sim SiCl, Deep

10. Water reworked loess association

$(S w-27, \mathrm{Ta}-37,-39) \quad$| Main partorthe plains and valleys | SiL $\sim \operatorname{SiCL}$, Deep |
| :--- | :--- |
| gently sloping to nearly level | |\quad| ir Π |
| :---: |
| dilil |

(Alluvial Plains)
11. Silty soils association

$\left(\begin{array}{l}\text { SW-17, } \\ \mathrm{Ta}-43\end{array}\right.$	Main parts of the plains gently sloping	Sil \sim SiCl, Deep to mode. deep	$\operatorname{ir}_{\mathrm{V}]} \mathrm{I}-\mathrm{a}$
12. Loamy soils association			
(Sw-16,-18, -19, -20)	Main parts of the plains, terraced lands,gently sloping to sloping	L~SL, Deep	II ~ III

1/ gr-gravelly, sligh.-slightly, mode-moderately, LS-Loamy sand, SL-Sandy loum, SiL-SiLT loam, L-Loam, CL-Clay loam SiCL Silty clay toam.
2) Mapping units in the soil maps of the Reconnaissance Soil Survey of-Swat Chatchment (1976), Tarbela Watershed (1976), - Buner Valley (1975) ; Soil Survey of Pakistan.

TABLE B-2 AREA OF THE SOIL MAPPING UNITS ${ }^{1 /}$															
$\underset{\substack{\text { Dub } \\ \text { Division }}}{\text { Mapping }} \underbrace{2 /}_{\text {Unit }}$	Mountains							Piedmonts	Loess. Plains		$\begin{gathered} \text { Alluvial } \\ \text { Plains } \\ \hline \end{gathered}$		Glacier	Others	Total
	(1)	(2)	(3)	(4)	(5)	(6)	(7)		(9)	(10)	(11)	(12)			
Swat	578	1,958	66	1,650	194	210	101	33	113	22	112	83	280	52	5,452 km ${ }^{2}$
	10.6	35.8	1.2	30.2	3.6	3.9	1.9	0.6	2.1	0.4	2.1	1.5	5.1	1.0	100.0\%
Shangla Par	24	255		271		790	109			21				10	1,480 km^{2}
	1.7	17.3		18.3		53,4	7.3			1.4				0.6	100.0\%
Buner		7		395	371	603	3	133	264	5	65			10.0	$1,856 \mathrm{~km}^{2}$
		0.4		21.2	20.0	32.5	0.2	7.2	14.2	0.3	3.5			0.5	100.0 \%
Swat District	602	2,220	66	2,316	565	1,603	213	166	377.	48	177	83	280	72	$8,788 \mathrm{~km}^{2}$
	6.9	25.3	0.7	26.4	6.4	18.3	2.4	1.9	4.3	0.5	2.0	0.9	3.2	0.8	100.0 \%

[^1]
TABLE B－3 MAPPING UNITS OF THE LAND CAPABLLTTY MAP

Mapping Unit ${ }^{\prime \prime} \quad$ Slope，Drainage，Soil depth ${ }^{2 \prime} \quad$ Soil texture ${ }^{3 /}$

1．Lands with a very high potential under irrigation
Sw－1（ir I ，ir II）Nearly level to gently sloping well to somewhat excess．drained
Silly to loamy soils
2．Lands with a high potential under irrigation
Sw－2（dr II）

Gently sloping well to somewhat excess．drained
Sw－3（ir II，dili） －do－
Ta－3（irll，irl）
Gently sloping to level，well drained
Ta－4（ir II，dII）
Sloping to nearly level somewhat excess．drained
3．Lands with a moderate potential under irrigation
Sw－4（ir I ）Sloping to mode．steep，terraced，well to imperfectly drained
Sw－5（irII，irIV）Gently sloping，mode．deep to shallow，excess．drained
4．Lands with a moderate potential under dry－farming
Sw－6（dII）：Sloping to gently sloping
Sw－7（dill ；dV）Gently sloping，excess．drained，mode．deep to shallow
Sw－8（d⿴囗十⺝丶 ，Sloping to mode．steep，excess．drained，mode．deep and exposed
Ta－7（dili） bedrock nearly level to sloping，well drained

Ta－8（dIII，dV）
Nealy level to sloping，well drained
Nearly level to sloping，mode．deep to shallow
Tr－10（dIII，谓）Sloping to steep，mode．deep and exposed bedrock
5．lands with a low potential under dry farming
$\mathrm{Ta}-12$（ dN ，酒，dll ）Steep to gently sloping mode．deep and exposed bedras．
Ta－15（낙，dW）Sloping，exposed bedrock and shatlow soil depth
6．Lands with a fair potential for timber
Sw－9（V，伴，dIII）
Ta－16（保，प）
Ta－18（经， V, 组）Steep，exposed bedrock and mode．deep to shallow
Steep，mode．deep and exposed bedrock
Steep，exposed bedrock and shallow soil depth

7．Lands with a poor potential for timber

8．Lands with a fair potential for range
Sw－10（VI，酤，dM）Steep，mode．deep and exposed bedrock
Ta－13（네，diII，dV）Sloping to gently sloping well drained，including gullied land
9．Lands with a poor potential for range
Ta－12（H，谐）
Steep to very steep，shallow and exposed bedrock．
Ta－9（惯，V1，W）
Steep，mode．deep to shallow and exposed bedrock

10．Agriculturally unproductive lands
Sw－13（细，W）Steep to very steep，exposed bedrock and steeply dessected area，

Sw－14（细，证）$\}$
Ta－17（1．V1）
Ta－20（畨，柾，V）
Ta－21（1（H，V）
shailow
Steep，exposed bedrock and shallow
Very steep to steep，exposed bedrock and shallow
Vary steep to steep，exposed bedrock and shallow

1 ／Sw－1－Mapping unit on the Land Capability Map of Swat Catchment area Ta－3－Mapping unit on the Land Capability Map of Tarbela Watershed area
$\underline{2}$ excess．－excessively，mode．－moderately
3／grav．－gravelly，sligh．－slightly
TABLE B-4 AREA OF THE MAPPING UNITS IN THE LAND CAPABLITY MAP

1/ Measurement of the mapping units on the land capability map (scale I: 250,000) 2) See Table B-3
3/ Agriculturally unproductive lands
TABLE B-5 AREA OF THE SOIL MAPPING UNITS

.

2,000
$\sim 4000 \mathrm{ft}$
677
12.4
319
21.5
1,161
62.6
2,157
24.6

1/ Measurement of the contour map (scale 1:250,000)

Swat
Shangla Par Buner
Buner Swat District 203
10.9
203
2.3 Swat D
TABLE B-6 AREA OF CUITTVATED LAND BY ELEVATION GROUPS AND SUB-DIVISION

	Total	Caltivated Land		
		$<4,000 \mathrm{ft}$	$>4,000 \mathrm{ft}$	Sub-total
Swat	5,452	403	588	$991 \mathrm{~km}^{2}$
	(100.0)	(7.4)	(20.8)	(18.2) \%
		(40.7)	(59.3)	(100.0) \%
Shangla Par	1,480	163	252	$415 \mathrm{~km}^{2}$
	(100.0)	(11.0)	(17.0)	(28.0) \%
		(39.3)	(60.7)	(100.0) \%
Buner	1,856	540	12	$552 \mathrm{~km}^{2}$
	(100.0)	(29.1)	(0.1)	(22.3) \%
		(97.8)	(2.2)	(100.0) \%
Swat District	8,788	1,106	852	$1,958 \mathrm{~km}^{2}$
	(100.0)	(12.6)	(9.7)	(22.3) \%
		(56.5)	(43.5)	(100.0) \%

1/ Measurement of the contour map (scale $1: 250,000$) and the distribution map of cultivated
land (scale 1:250,000) originating from the topographic maps (scale $1: 50,000$)

Legend

Moundolos.

Alluyal lloins.
II Silly sells assoctolion
I2 Laomy soils ossociation
Miscelloneous Areos
G Giocier
[IET] Ohhers! Piver, Urban bond,

Sources: Soil Survey of pokision, Soii Survey of Pokision,
Reconnoissonce Soll Survey - Buner Valley (1975).
-Svoi Chatchmen! 11976 ,

- Iorbela Wolershed (1976I

FIGURE B~2 LAND CAPABILITY MAP

Legend

[.].] Lond with o vear high pofeutiat under iribation
[2] Land wilh o nigh posentiol undet lstigotiua II (iti. on)
[3] Lens will a inodetule poteantal urnter itrigutrex ? (an
[4] tünd wilh a maderate potential undet dy tarikis?

[5] iond wilh a foir potention for tunber (vive ldiv. iso
[?] tand vilth o pasir potentia! tor tintes 4viva)
$\left[\bar{\theta}^{-}\right]$Lorid with a tait polential tor runge

- 9 V.g区a (dx.dN.MT
[9] Lord wills a poor polentiot tor roxye

- malia,gkitu.gh!

G] Glocier


```
moio is-irrigation. d-diy tomining.
    9-gioting , t-loresiony
    4 Priecipal lond Copobifily Closses
    - Accessay Land Copobitity classes
```

\qquad $\stackrel{\infty}{\infty}$ -30^{204}

Sources: Solt Sutvey of Pakiston, Sell Satyey of Pakiston,
Reconmissunce Suil Surve; - Bunet Volity 11975). - Shar chaidtifuens 119765

- Turbelu Watershiell (19/6)

FIGURE B-3 L.AND USE MAP

Legend

crocoting with letigation[2]
Fastricted crepping under diy-farroingResitcted crosping under dry-forenh
Tinsber lorest
[5] Groing ond lirexooss
6 Seosonal geoting iniphe poslure 3
6 Glacter
[IS] olbers (River, Uibon tand)

Sonices : Soll Suvey of robistan, necamaissarce Soit suivey

- Buner Vollay 11975 t
-Swat Chotchmest i!976),
- Tarbefo Wilenstied lis76)

CHAPTERII. FERTILIZER EXPERIMENTS ON CEREAL CROPS IN SWAT DISTRICT $1 /$

2.1. Introduction

The Department of Agriculture conducted the fertilizer experiments on wheat, maize and rice in Swat District during the period of 1971/72 to 1981/82.

The main objectives of the experiments are as follows:

- To assess the original fertility status of the soils
- To recommend the proper methods of fertilizer application and popularize the use of mineral fertilizer among the farmers.

Experimental trials were carried out on many farmers' fields in five Tehsils of the District; namely, Saidu Sharif, Barikot, Khawazakhela, Matta, and Daggar. The total number of trials in the District was 906.

The soils of the fields used for experiments were of moderately coarse to moderately fine-textured, neutral to strongly alkaline and well drained soils.

2.2. Wheat

The average yields obtained by farmers in the area were 1,524 $\mathrm{kg} / \mathrm{ha}$ and $703 \mathrm{~kg} / \mathrm{ha}$ under irrigated and Barani conditions, respectively. The results of the experiments show that the yields were more than 5,000 $\mathrm{kg} / \mathrm{ha}$ under irrigated and more than $3,000 \mathrm{~kg} / \mathrm{ha}$ under the Barani conditions when fertilizers are used, as shown below:

[^2]| Treatment(kg/ha) | | | | | | | Yield $1 /$ Variety (kgha) | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N | $\mathrm{P}_{2} \mathrm{O}_{5}$ | $\mathrm{~K}_{2} \mathrm{O}$ | Mexipak | Blue Silver | Local | | | | | |
| Irrigated | | | | | | | | | | |
| 0 | 0 | 0 | 1,036 | 1,137 | 1,234 | | | | | |
| 80 | 80 | 0 | 2,830 | 2,437 | 2,000 | | | | | |
| 120 | 80 | 0 | 4,243 | 2,643 | 1,280 | | | | | |
| 160 | 80 | 0 | 5,053 | 3,072 | 2,850 | | | | | |
| Barani | | | | | | | | | | |
| 0 | 0 | 0 | 1,035 | 1,135 | 938 | | | | | |
| 90 | 40 | 0 | 3,005 | 3,045 | 2,032 | | | | | |
| 120 | 40 | 0 | 3,232 | 3,132 | 2,545 | | | | | |
| 150 | 40 | 0 | 3,255 | 3,145 | 2,625 | | | | | |

I/ Yields are average of trials.

2.3. Maize

The average yield of maize was about $1,400 \mathrm{~kg} /$ ha under irrigated cultivation, while in the trials the yields have increased to more than $4,000 \mathrm{~kg} / \mathrm{ha}$.

Treatment(kg/ha)		Yield 2/ Variety (kg/ha)		
N	$\mathrm{P}_{2} \mathrm{O}_{5}$	$\mathrm{~K}_{2} \mathrm{O}$	Synthetic	
0	0	0	1,072	
120	60	0	4,260	
180	60	0	4,580	
180	120	0	4,860	
			Changez	Zia
0	0	0	1,053	1,111
120	60	0	3,035	3,445
150	60	0	3,245	4,542
150	120	0	4,548	4,544

2/Average of trials

2.4. Rice

When fertilizers were used, the yields have registered to more than $5,000 \mathrm{~kg} / \mathrm{ha}$ in some case as against the farmer's average yield 1,450 $\mathrm{kg} / \mathrm{ha}$. In some varieties, the yields were quadrupled or more due to the use of fertilizers.

Treatment(kg/ha)			Yied $1 /$, Variety(kg/ha)		
N	$\mathrm{P}_{2} \mathrm{O}_{5}$	$\mathrm{~K}_{2} \mathrm{O}$	IRRI-6	JP-5	Local
0	0	0	1,435	1,135	1,009
60	60	0	2,005	1,835	1,648
90	60	0	3,246	2,293	2,008
120	60	0	3,940	4,037	2,434
150	60	0	6,072	5,263	2,625

1/ Average of trials

2.5. Recommendations

On the basis of experimental results, the Department of Agriculture has made recommendations for the farmers and extension workers to boost up rice production in Swat District.

2.6. Comments on the Fertilizer Experiments

Crop yields have increased due to use of fertilizers, ignoring the other input factors. The crop yields were determined by a number of factors such as climate, soil, variety, cultivation method, etc. A single factor at an optimum level does not cause higher and sustained increase in yield.

It is essential to adopt not a single technique but the improved package of technology. In order to acquaint the farmers, especially the small farmers with the latest technology, promotion of the agricultural research and extension work is necessary. Agricultural Technology Transfer and Demonstration Farm are expected to play an important role in this regard.

CHAPTER III. LAND USE

3.1. Descriptions of Land Use Pattern

The land in the Project Area is used in different manner depending upon elevation, slope, climate, soil properties, relief, water supply and socio-economic conditions.

The following mapping units are used in the land use map:

1) Cropping with irrigation
2) Restricted cropping under dry-farming
3) Restricted cropping under dry-farming with little grazing and coniferous forest
4) Timber forest
5) Grazing and firewood
6) Seasonal grazing (Alphine pasture)
7) Glacier
8) Others

1) Cropping with Irrigation

This mapping unit covers almost flat to gently sloping, well to moderately well-drained areas composed of medium and moderately fine textured soils. It occurs along the Swat River in the southern part of the valley and on the flood plains of the streams in Buner. Elevations of both areas are below $1,200 \mathrm{~m}$.

Irrigation water used for common cropping is provided by uncontrolled diversion channels, canals, open wells, tubewells and springs.

The main kharif crops are maize and rice. Wheat and fodders are the most common rabi crops. Other important crops are tobacco, pulses, oil-seeds and barley. The growth of vegetables, fodders and orchards are the major land use around the main towns. Among the vegetables, tomato and onion are mostly common and exported outside the Project area. Citrus, apple and walnut are valuable fruits, followed by peach, apricot
and plum. These vegetables and fruits give considerable economic returns to the farmers.

The management level of crop cultivation ranges from low to moderate, and yields are generally moderate. The uses of fertilizers and improved crop varieties are gradually increasing.

2) Restricted Cropping under Dry-Farming

This unit covers flat to sloping, well to excessively drained areas of medium to moderately coarse textured soils. It occurs mainly in the southern part of Swat Sub-division and the central part of Buner Subdivision. The land is used for restricted dry-farming. Wheat, oil-seeds and maize are main crops grown in flat area, and potato and maize are cropped on the higher parts of mountain slopes.

The management level of crop cultivation is low and yields are moderate. Shortage of moisture, soil erosion, relief, snow fall and traditional management are the major factors affecting crop yields.

3) Restricted Cropping under Dry-Farming with Little Grazing and Coniferous Forest

This unit covers sloping to moderately steep slopes and lower parts of the mountains. The soils are generally shallow to moderately deep, medium to coarse textured and well to excessively drained. The lands are usually terraced with little care towards their proper maintenance. They occur in Buner and Shangla Par and generally have an elevation of less than 2,000 meters.

Wheat is the main winter crop while maize and potato are main summer crops. The slopes are often steep, from where soil is readily washed away due to heavy rainfalls. After a few years, such lands are abandoned and fresh lands are brought under cultivation. These lands have a low suitability for agricultural use. The uncultivated parts in the unit provide grazing or forest.
4) Timber Forest

This unit covers mountainous lands generally between 1,100 and 3,300 meters elevation and occupies wide range of slopes. The soils are excessively drained, medium to coarse textured and shallow to moderately deep soils.

The area has a sub-humid to humid temperate climate and is covered with fairly dense forest. Forest plays an important role for controlling soil erosion and provides recreational sites and wildlife habitats.
5) Grazing and Firewood

This unit is quite extensive and occupies mountain slopes below $3,300 \mathrm{~m}$ elevation. It comprises sloping to steep mountain slopes and consists of excessively drained, shallow to moderately deep, gravelly medium to coarse textured soils. The land grows from sparse to moderate vegetative cover of native grasses and shrubs. They provide poor to moderate grazing throughout the year and fuels for local people. Overgrazing, ruthless cutting and extensive clearance of land for cultivation have severely damaged the quality and density of the vegetation.

6) Seasonal Grazing (Alpine Pasture)

Seasonal grazing extensively occupies a wide range of slopes between 3,300 and 5,200 meters elevation in the northern part of the Area. The land consists of excessively drained, shallow to moderately deep, medium to coarse textured soils.

It occurs above the tree limit and remains under snow for major part of the year. The area is covered with natural meadows that provide good seasonal grazing during summer.

At present, alpine pasture is under heavy grazing by the large herds of cattleduring summer every year. Thus overgrazing and cutting of the meadows should be controlled for sustained seasonal grazing.

References:

1) Soil Survey of Pakistan, 1975, Reconnaissance Soil Survey of Buner Valley.
2) 1976, Reconnaissance Soil Survey of Swat Catchment.
3) 1976, Reconnaissance Soil Survey of Tarbela Watershed.
4) H.Rehman, A.Bhatti, B. Amin and A.H. Raja, 1983. Fertilizer Experiment on Cereal Crops.Agricultural Research Institute, Tarnab, Peshawar,NWFP
5) H.Rehman, 1987, Concept for Upgradation of Agricultural Research Station Mingora, Swat to the Status of Agricultural Research Institute.

ANNEX C. AGRICULTURE AND AGRO-ECONOMY

CONTENTS

PAGE
CHAPTER I PRESENT AGRICULTURE C-1
1.1 Farm size and progress of Land Reform $\mathrm{C}-1$
1.2 Land Use C-2
1.3 Crop Production C-2
1.4 Supply of Crop loan and Farm Inputs C-3
1.5 Farm Mechanization C-3
1.6 Animal Husbandry C-4
CHAPTER II AGRICULTURAL DEVELOPMENT SUPPORTING PLAN C-5
2.1 Proposed Cropping Pattern C-5
2.2 Target Yield of Crops C-5
2.3 Proposed Agricultural Supporting Facilities C-6
CHAPTER III PRESENT AGRICULTURE IN SIRDP AREA C-7
CHAPTERIV MARKETING PLAN C-8

LIST OF TABLES

Page
Table C-1 Number of Farms by Size in Swat District C-9
Table C-2 Result of Land Reform in Swat-District C-10
Table C-3 Estimated Number of Farm Household and Farm Size (1988) C-11
Table C-4 Land Use by Sub-Tehsil C-12
Table C-5 Summary of Crop Production Data (1983/84 to 1987/88) C-12
Table C-6 Crop Production, Maize C-14
Table C-7 Crop Production, Rice C-15
Table C-8 Crop Production, Mong (Black Gram) C-16
Table C-9 Crop Production, Potato C-17
Table C-10 Crop Production, Sucarcane C-18
Table C-11 Crop Production, Apple C-19
Table C-12 Crop Production, Apricot $\mathrm{C}-20$
Table C-13 Crop Production, Plum $\mathrm{C}-21$
Table C-14 Crop Production, Pears $\mathrm{C}-22$
Table C-15 Crop Production, Wheat C-23
Table C-16 Crop Production, Barley $\mathrm{C}-24$
Table C17 Crop Production, Rape and Mustard C-25
Table C-18 Crop Production, Onion $\mathrm{C}-26$
Table C-19 Crop Production, Citrus Fruit C-27

Table C-20	Summary on Crop Yield in the Project Area	C-28
Table C-21	Crop Production in Swat District (1)	C-29
Table C-22	Crop Production in Swat District (2)	C-30
Table C-23	Cropped Area and Cropping Intensity (1986/87) (Swat Sub-Division)	C-31
Table C-24	Cropped Area and Cropping Intensity (1986/87) (Shangla Par Sub-Division)	C-32
Table C-25	Cropped Area and Cropping Intensity (1986/87) (Buner Sub-Division)	C-33
Table C-26	Distribution of Crop Loan through Agricultural Cooperative (1987-87)	C-34
Table C-27	Distribution of Agricultural Inputs and Farm Machinery through Agricultural Cooperatives	C-34
Table C-28	Distribution of Improved Seeds and Fruit Samplings in Swat District	C-35
Table C-29	Off-Take of Fertilizer in swat District	C-35
Table C-30	Number of Agricultural Machinery by Sub-Division (1989)	C-36
Table C-31	Estimated Livestock Population (1988)	C-37
Table C-32	Number of Veterinary Facilities	C-38
Table C-33	Annual Nutrient Requirement	C-39
Table C-34	Fish Production	C-40
Table C-35	Proposed Cropping Pattern and Intensity	C-41
Table C-36	Target Yield (Barani to Barani)	C-42
Table C-37	Target Yield (Barani to Irrigated)	C-43
Table C-38	Target Yield (Irrigated to Irrigated)	C-44

Table C-39	Quantity of Agricultural Supporting Facilities	C-45
Table C-40	Proposed Agricultural Supporting Facilities by	
	Term of Plan	C-51
Table C-41	Location of Agricultural Supporting Facilities	
	(Long Term Development Plan) .	C-52
Table C-42	Aguricultural Supporting Facilities Schemes	C-53
Table C-43	Land Use Sub-Tehsil Chakesar	C-54
Table C-44	Land Use Sub-Tehsil Puran	C-55
Table C-45	Land Use Sub-Tehsil Martung	C-56
Table C-46	Cropped Area by Season and Crop (1987/88)	C-57
Table C-47	Incation and Scale of Marketing Facilities	C-61
Table C-48	Location of Information System Center and	
	Terminal	C-61

LIST OF FIGURES

Figure C-1 Crop Calendar (Present) ... C-58

CHAPTER I PRESENT AGRICULTURE

1. Farm Size and Progress of Land Reform

The average farm size in both terms of farm area per farm and cultivated area per farm are respectively 1.5 hectare and 1.2 hectares in Swat District according to 1980 Pakistan Census of Agriculture. The comparison on farm size (cultivated area) at each level of Swat area are shown below;

Comparison of Farm Size (cultivated Area Basis)

Area	Cultivated Area		No. of Farm	
	$(1000 \mathrm{ha})$		Farm Size	
Pakistan 1/	19,059		4,070	$(\prime 000)$
NWFP 1/	1,061		528	4.6
Swat District 1/	137		110	2.0
- Swat 2/	99	76	1.2	
- Shangla Par 2/	31	42	1.3	
- Buner 2/	51	32	1.3	

Source: I/ 1980 Census of Agriculture
2/ Estimated by Study Team for 1988

About 41 percent of the total farm area are held by 11 percent of the total farm. This shows a considerable skewed distribution of land (See table C-1).

As of 1988 only, 540 hectares of land have been distributed to 586 of tenants under the land reform in Swat District (See Table C-2). The estimated farm size in term of cultivated area per farm in 1988 in the District is estimated at 1.4 hectares, where there are about 139,000 hectare of farm households exclusive of the livestock holders who hold no farm lands.

1.2 Land Use

The land use data by Sub-Tehsil in Swat District are collected from the Swat District Revenue Office. About 24 percent of the total area or 196 thousand hectares are cultivated, which comprise 49 thousand hectares of the irrigated area and 147 thousand of the unirrigated area (See Table C-4).

1.3 Crop Production

The average yields of the major crops in Swat District, maize, rice and wheat for latest five years are respectively 1.27 ton/ha, 1.58 ton/ha and $1.09 \mathrm{ton} / \mathrm{ha}$ according to the statistical data (See Table C-5).

The total production of maize and wheat in 1987/1988 have increased to more than 2.5 times of that in ten years ago (1978/79), On the other hands, the production of rice have been almost maintained during the period. The yields of these crops have not been raised significantly, although the cropped areas of maize and wheat in $1987 / 88$ increased to about three times of these in $1978 / 79$. This may cause the following problems;
(i) Tremendous land have been converted into cultivated land from the uncultivated lands.
(ii) The large-scaled development of mountainous lands threatens to increase the erosion hazard.

Comparing the yields of irrigated crops with those of unirrigated crops, the formers are as high as about 1.5 to 2.0 times of the latters for the most existing crops (See Table C-6 to C-22).

The overall cropping intensities in Swat and Buner SubDivisions are respectively 120 percent and 135 percent, while the intensity in Buner Sub-Division is 156 percent. The reason for the higher intensity in Buner Sub-Division would be the less area coverage of the low altitude lands to compare with that in the other two Sub-Divisions.

The cropping intensity in the irrigated areas is as high as 194 percent in the unirrigated areas of Swat Sub-Division. However, the cropping intensities in the Shangla Par and Buner are 136 percent and 155 percent respectively. It is considered that the low intensities are
derived from the shortage of water supply in the irrigation system (See Table C-23 to C-25).

1.4 Supply of Crop Loan and Farm Inputs

In 1987/88, about 21,000 thousand Rupies of formal crop loan were rented by about 2,200 members of multipurpose cooperative societies' in Swat District. The repayment ratio of the rented loans were about 70 percent (See Table C-26).

The supplied amount of fertilizers and seeds through the cooperative societies are 654 tons and 2,251 tons respectively (See Table C-27).

On the other hand, about 178 tons of cereals and pulses' seeds, 18 thousands of fruit saplings are distributed through Agricultural Development Authority (ADA) in the District averagely for 1985/86 to 1986/87. Also about 8,800 tons of fertilizers in term of nutrient weight are distributed through ADA in the District (See Table C-30 and C-31).

1.5 Farm Mechanization

The number of units for the total machinery in 1989 in Swat District are estimated as follows (See Table C-32);

No. of Units
Tubewell pump 36
Lift Pump : 760
Tractors 1,553
Wheat Threshers 235
Rice Husker 204
Maize Shellers 216
Wheat Harvester 1
Buldozer 19
Most of machinery concentrate in Swat Sub-Division, while the number of these machinery units in Shangla Par and Buner Sub-Divisions are quite limited.

1.6 Animal Husbandry

1) Livestock Population

About 81 percent of total farm households including livestock holders raise about four heads of cattle (all ages) on the average, while about 50 percent of them do about three heads of buffaloes on the average. About 51 percent and 38 percent of total sheep and goats are raised by the migratory herds (See Table C-31).
2) Veterinary Facilities

There is no Veterinary Hospitals and Artificial Insemination Center in Shangla Par Sub-Division. Therefore, a large number of farmers are willing to have the services of Veterinary Hospitals. (See Table C-28)

3) Animal Nutrient Requirement

The annual nutrient requirement of TDN and DCP are respectively estimated at 553 tons and 49 tons for the converted cow units for all kinds of animals in Swat District.

4) Fish Production

The fish production, irrespective of the fish catch in rivers and the production in fishponds has been increased upto 45 ton per year from 1970/71 to 1985/86 in Swat District (See Table C-34).

CHAPTER II AGRICULTURAL DEVELOPMENT SUPPORTING PLAN

2.1 Proposed Cropping Pattern

'There are two types of proposed irrigation systems namely, the reservoir type and the traditional irrigation improved systems type. The irrigation water in the reservoir type irrigation system will be able to supply water throughout year. Therefore, it is possible to apply the proposed cropping pattern A in Table C-35, where fruits and vegetables are included. However, the proposed cropping pattern B in Table C-35 will be applied in the improved traditional irrigation systems, because the systems will supply irrigation water only seasonally.

2.2 Target Yield of Crops

The target yields are studied for the following three cases of development (See Table c-35 to C-37);
(i) The Barani lands are planned to be developed to raise crop productivity by land leveling and various kinds of soil conservation works like improvement of terraces. How ever the crop yields could be raised only slightly because the lands will remain as Barani lands even after the Project.
(ii) The Barani lands will be developed to the irrigated land by the proposed irrigation schemes. Then, it will be possible to raise crop yields significantly.
(iii) The traditional irrigation systems will be improved by improvement of the existing irrigation systems, where the crop could be improved by efficient water supply in the improved irrigation systems. The on-farm water management and drainage will be improved in the irrigation areas.

2.3 Proposed Agricultural Supporting Facilities

The quantity of staff, building space and equipments by agricultural supporting facilities are shown in Table C-39. The location of the proposed agricultural supporting facilities are formulated for the short, middle and long development terms by Sub-Division in Table C-40. The location of the facilities in the long term development plan for each Sub-Tehsil are as shown as in Table C-41. The target to establish each agricultural supporting facilities is shown in Table C-42.

CHAPTER III PRESENT AGRICULTURE IN SIRDP AREA

The village-wise land use data in the three Sub-Tehsils in the SIRDP Area were collected from the respective Tehsil Offices. (See Table $\mathrm{C}-43$ to $\mathrm{C}-45$). About 14 percent of the total cultivated lands are irrigated in the Puran Sub-Tehsil, while only six to seven percent of the total cultivated lands are irrigated in the Chateser and Martung Sub-Tehsil. The average number of farmers and cultivated area per village are as follows;

Sub-Tehsil	No. of Village	No. of farmers			Farm Size (Cultivated)
		Total	Land Owner	Tenant	
Chakesar	18	10,309	6,199	4,110	0.66 ha
Puran	21	12,010	8,562	3,448	0.70 ha
Martung	28	8,621	6,494	2,127	0.52 ha

The average area of cultivated area per villages in Chasesar, Puran and Martung Sub-Tehsils are 380 hectares, 400 hectares and 161 hectares respectively. The cropped area by crop in the irrigated and unirrigated areas are shown in Table C-46.

CHAPTER IV MARKETING PLAN

The two proposed major marketing plan are as follows;

1) Marketing Facilities Plan

Swat Sub-Division	6 plots
Shangla Par Sub-Division	4 plots
Buner Sub-Division	2 plots
Total	12 plots

2) Information System Plan for Agricultural Marketing
i) Computer center to be established
at ADBP Swat Regional Office 1 center
ii) Computer terminal 2 sets

The proposed marketing facilities and information system are located in 12 large towns of the Study Area. The facilities are classified into large-, medium-, and small-scaled one,. The large scale is about $9,780 \mathrm{~m}$ (2.4 acres including car park) in Mingora, capital city of Swat District; the medium scale is about 2.940 m (0.7 acres) in Sawari, Matta and others are the small-scale with about $1,470 \mathrm{~m}$ (0.4 acre) would be established.

Details of the marketing facilities are shown in the following Table C-47,48.
\(\left.$$
\begin{array}{cc}\text { Average Farm Size } \\
\hline \begin{array}{c}\text { Farm Area } \\
\text { (ha) }\end{array} & \begin{array}{c}\text { Cultivated } \\
\text { Area }\end{array}
$$

\&

I. ha)\end{array}\right]\)| 0.20 | 0.20 |
| :---: | :---: |
| 0.61 | 0.57 |
| 1.33 | 1.25 |
| 2.31 | 2.06 |
| 3.76 | 3.20 |
| 6.52 | 5.10 |
| 12.71 | 8.66 |
| 30.51 | 13.07 |
92.80	35.69

NUMBER OF FARYS BY SIZE IN SWAT DISTRICT TABLE C-1

Cultivated Area	
Total	
136,731	
136,731	100
3,390	2
24,841	18
33,299	24
23,617	17
23,658	17
14,072	10
6,980	5
4,730	3
2,141	2

Farm Area	
$\frac{\text { Total }}{}$	
(ha)	(\%)
164,653	
164,653	100
3,461	2
25,743	16
36,376	22
26,443	16
27,776	17
17,999	11
10,245	6
11,043	7
5,568	3

Farms	
Number	
	$(\%)$
110,058	
110,068	100
17,558	16
42,662	39
26,966	24
11,501	10
7,396	7
2,758	3
805	1
362	-
60	-
	-

Size of Farm

1. All Farms
2. Private Farms (Total)
under 0.4 ha
0.4 to under 1.0
1.0 to under 2.0
2.0 to under 3.0
3.0 to under 5.1
5.1 to under 10.1
10.1 to under 20.2
20.2 to under 60.0
60.0 and above
3. Government Farm
TABLE C-2 RESULT OF LAND REFORM IN SWAT DISTRICT

Sub-Tensil	No.of Tenant	Total Area	Cultivated Area			Uncultivated Area			
			Subtotal	Irrigated	Unirrigated	Sub total	Cultutable waste	Grazing Land	Hill Land
		(ha)							
1. Matta	65	36.9	35.1	24.0	11.1	1.8	-	-	1.8
2. Khwazakhela	23	41.5	41.3	3.2	38.1	0.2	0.2	-	0.2
3. Charhagh	269	247.3	240.3	6.2	234.1	7.0	5.6	1.4	-
4. Babuzai	193	167.0	149.8	57.3	92.5	17.2	2.4	-	14.8
5. Kabal	31	30.5	30.2	27.0	3.2	0.3	0.3	-	-
6. Barikot	5	16.8	16.0	9.6	6.4	0.8	0.6	-	0.2
Total	586	540.0	512.7	127.3	385.4	27.5	9.1	1.4	17.0

Source: Land Reform office, Swat District

TABLE C-3 ESTIMATED NINBER OF FARM WOUSBMOLD AND FARM SIZR (1988)

2.one/Tehsil/Sub-Tehsil	No, of Household	No. of Agricultural		Houschold	Farm	Cultivated Area		
		Total	Farm Household	hivestock Holder	Size	$\frac{\text { Total }}{\text { (ha) }}$	$\frac{\text { Irri. }}{\text { (ha) }}$	$\frac{\text { Unirri. }}{-(h a)}$
2one 1	18,240	15,212	11,783	3,429	0.73	8,656.	5,959	2, 2697
$\frac{\text { Ka }}{\text { Kam }}$	7,845	6,543	5,068	1,475	0.42	2,152	2,100	52
-Bahrain	10,395	8,669	6,715	1,954	0.97	6,504.	3,859	2,645
Zone 2	52,955	44.165	34,209	9,956	1.32	45,253	14,990	30,263
-Matta/Shangwatai	31,040	25,888	20,052	5,836	1.32	26,551	8,255	18,296
-Xhawazakhela/Charbagh	21,915	18,277	14,157	4,120	1.32	18,702	6,735	11,967
Zone-3	46,895	39,111	30,295	8,816		45,055	18,271	26,784
-Rabal	18,630	15,537	12,035	3,502	1.75	21,083	7,533	13,550
-Mingora/Kanja	19,535	16,293	12,620	3,673	0.92	11,660	4,583	6,677
-Barikot	8,730	7,281	5,640	1,641	2.18	12,312	5,755	6,557
Zone 4								
-Arpuri	19,790	16,505	12,784	3,721	1.29	16,522	3,298	38,290
Zone 5	20,880	17,410	13,484	3,926	1.47	19,778	2,145	17,633
-Puran	7,870	6,560	5,080	1,480	1.65	8,399	1,337	7,062
-Chakesar	8,440	7,039	5,4.52	1,587	1.23	6,713	454	6,259
-Martung	4,570	3,811	2,952	859	1.53	4,515	354	4,161
Zone 6								
-Besham	7,680	6,405	4,961	1,444	1.07	5,288	481	4,807
Zone 7	32,570	27,162	21,039	6,123	1.70	35,929	3,693	32,235
- Daggar	9,070	7,564	5,859	1,705	1.73	10,151	1,691	8,461
-Gadezai	9,400	7,839	6,072	1,767	1.73	10,526.	586	9,940
-Chagharzai	6,920	5,771	4,470	1,301	2.00	8,938	842	8,096
-Gagra	7,180	5,988	4,638	1,350	1.36	6,313	574	5,739.
Zone 8								
-Chanla/ Anazai	9,880	8,239	6,382	1,857	1.47	9,395	938	8,457
Zone 9 -Khudukhel	7,740	6,455	5,000	1,455	1.97	9,855	1,490	8,365
Total	216,630	180,664	139,937	40,727	1.40	195,731	48,639	147,092

Sontce: Master Plan Study Team
TABLE C-4 LAND USE BY SUB-TEHSIL

Sab-Tehsil	$\begin{gathered} \text { No or } \\ \text { or } \\ \text { or } \\ \text { ds } \end{gathered}$	$\begin{aligned} & \text { Total } \\ & \text { Trato } \\ & \text { reporied } \end{aligned}$tanc		Sub- tOE al	Chnual	$\begin{aligned} & \text { xre } \\ & \text { arch } \\ & \text { ard } \end{aligned}$	Pratece	clitivared Land		durcicater								$\begin{aligned} & \text { Thioer } \\ & \text { forest } \end{aligned}$	$\begin{aligned} & \text { SFrab } \\ & \text { Forest } \end{aligned}$		
							$\begin{array}{r} \text { Rree } \\ \text { onnly } \\ \hline \end{array}$	$\begin{aligned} & \text { Tube wel1 } \\ & \text { o Pump Ir } \\ & \text { rigation } \end{aligned}$	(eymational	¢	$\begin{gathered} \text { Two } \\ \text { Croo } \\ \text { Ring } \\ \hline \end{gathered}$	$\begin{gathered} \text { single } \\ \text { cropp- } \\ \text { cnn } \end{gathered}$	(Hild								
1. Swat Sub-Div:	493,000	506,100	98,980	39,230	26,620	3,100	5,100	2,300	2,110	59,750	20,040	39,520	390	407,120	5,280	20,220	100,540	140,330	1.460	122,920	16,370
2.: ${ }_{\text {2alam }}^{\text {Rancain }}$	54,771 54.092	206,770 85,650	2,150 6.500	${ }_{3,860}^{2,100}$	2,2,700 3,770			10	-				20	204,080 79,150	50 40	r $\begin{array}{r}380 \\ 2,450\end{array}$	+ $\begin{aligned} & 46,350 \\ & 20,7<0\end{aligned}$	52,600 53.730	480	122,570 1250	1,650 1.240
2. ${ }_{\text {Banrain }}^{\text {Sub-Total: }}$	54.092 108,263	85,650 291,880	6, 8,650	3,860 5,960	3,810	70	10 10	10 10	-	2,540 2,690	890 920	$\begin{aligned} & 1,750 \\ & 1,750 \end{aligned}$	20	78,150 2838	460 460	${ }_{2,850}^{2,}$	67,090	86,350	510	122,920	3,090
3. Matea	111,674	65,150 42.40	26,560 18,700	8,260	5,410 4,840 10	. 880	1.360 890	10	640	18,300	2,050	9,110	160	38,590	580	4, 250	8 8,050	22,850	${ }_{8}^{89}$	$=$	2,980 2,670
	189,046	107,590	45,260	14.990	-10,250	1.840	2,250	- 10	64.0	30,270	12,530	16,540	200	23,740 62,350	1,980 1,770	5,050 9,290	3,980 12,030	10,798 32,640	6 9	-	2,670 5,650
5. Kabal	98,055	40,510	21,080 11.670	7,530	5,690	290.	750 270	${ }_{260}^{450}$	(350	13,550	3,180 2,100	$\xrightarrow{10.070}$	140	19,450	1,230	2,650	7,350	5,170	-	-	3,050
	50,559	34,750	12, 2,20	S, 4.760	-	670	${ }_{1,820}^{27}$	1,570		6,560	2,10	6,520	${ }_{30}$	19.700 22,40	8880 980	-	, 4,2080	9,160	Z	Z	2, 2,650
Sub-Toca2:	195,691	106,630	45,070	18,280	10,500	, 190	2,840	2,280	1,470	26,790	5,590	21,030	170	62,560	3,050	8,100	21,420	21,360			7,630
2. Shangla Par $\begin{aligned} & \text { Sub-Division }\end{aligned}$	209,637	137.580	41,580	300	2,99		-	310	-	38,280	23,540	14.330	310	96,000	4.150	51,360	14,530.	39,800		-	6,160
1. Alpur ${ }^{\text {a }}$ Rer	75,236 4.6618	57,350 24.990	16,510 8,400	1.670 1.340	610 1.210	=	$=$, 680	=	15,840	8,890 4,910	6,920 2,150	30	40,860	:,640	- $\begin{array}{r}8,280 \\ 5,020\end{array}$	5,470	21,530	-	$=$	\%,020
2. Purane yar	- 3		6,860	1.350	${ }^{1} \cdot 12$	-	-	40	-	6,410	4,220	2,040	150	16,780	1,290	5 5,270	2, 980	6,170			1,070
4.: Marcung	33,634	15:920	4,510	350	320	-	-	30	-	4,160	2,970	1,190	\%	11,40	${ }^{180}$	7,660	${ }^{240}$	1,260	-	-	1.170
Sub-Total:	113,399	64,550	19,770	2,140	1.940	,	-	200	-	17,630	12,100	5,380	150	4.788	2,810	17,950	7.950	12,790	-	-	3,280
5. B.sh	21.052	15,680	5.300	490	40	-	-	so	-	4,810	2,650	2,030	130	10,380	. 700	5,130	1,190	2,480	-	-	960
3. Buner Sub-Div:	263.403	172,420	55,200	6,130	2,730	980	680	370	1,570	49,070	20, 140	28,010	920	117,220	5,810	18,150	52,680	3:790			8,790
1. Dasgar		29,030	10,150 10,530	1.690	¢ 520	${ }_{20}^{50}$	1080	10	$\begin{array}{r}1,080 \\ \hline 80\end{array}$	8,660	3, 3,900	\$5,610	4330	18,886	- 910	2,720 1,160	9,020	, 10.600	=	-	1,630
	${ }_{37} 97,65$	($\begin{aligned} & 22,8500 \\ & 25,920\end{aligned}$	8,940 6,520	880 580	-	340	=	160		8,100 5,740		-	io		¢880 680	- 1,690	7, 7,640	边, 2880	=	=	+1,170
4. Gagra suo-Total	$\begin{array}{r} 36,952 \\ 169,500 \end{array}$	$\begin{array}{r} 25,920 \\ 114,140 \end{array}$	6,320 35,940	580 3.700	1,820 1,820	${ }^{-10}$	20	170	1,280	5,720 32,240	4,040 14,650 1,	16,690 16,850	780	19,600 78,200	680 3,290	$\begin{array}{r} 7,390 \\ 19.060 \end{array}$	$\begin{aligned} & 5,180 \\ & 3,640 \end{aligned}$	4,760 22,610	-	-	$\begin{aligned} & 1,290 \\ & 5,600 \end{aligned}$
5. Cramla/Amazal	$\begin{aligned} & 55,829 \\ & 88,074 \end{aligned}$	$\begin{aligned} & 28,600 \\ & 29,680 \end{aligned}$	$\begin{aligned} & 9,410 \\ & 9,850 \end{aligned}$	$\begin{array}{r} 950 \\ 1,480 \end{array}$	650 260	$\begin{aligned} & 170 \\ & 400 \end{aligned}$	${ }_{620}$	${ }^{-200}$	90	$\begin{aligned} & 8,260 \\ & 8,770 \end{aligned}$	$\begin{aligned} & 4,220 \\ & i, 290 \end{aligned}$	$\begin{aligned} & 4,100 \\ & 4,080 \end{aligned}$	140	$\begin{aligned} & 99.190 \\ & 99 ; 850 \end{aligned}$	9,9 1,670	$\begin{aligned} & 3,010 \\ & 2,080 \end{aligned}$	15,740	7,960			1,570
Totas	966.090	816,100	195.760	48.660	32,340	4.080	5,780	2.980	3,180	147,100	63,820	8:,660	1,620	620,340	15,240	69,750	167,750	211,920		122,920	31,520

table C-5 Summary of crop production data

Crop	Pakistan			N.W.E.P.			Swat District		
	$\frac{\text { Area }}{(\text { '000ha) }}$	$\frac{\text { Yield }}{(\text { ton } / \mathrm{ha})}$	$\frac{\text { Productor }}{(' 000 \text { ton })}$	$\frac{\text { Area }}{(1000 \mathrm{ha})}$	$\frac{\text { Yield }}{(\text { ton } / \mathrm{ha})}$	$\frac{\text { Productor }}{(1000 \text { ton })}$	$\frac{\text { Area }}{(1000 \mathrm{ha})}$	$\frac{\text { Yield }}{(\text { ton } / \mathrm{ha})}$	$\frac{\text { Productor }}{(1000 \text { tor })}$
1. Maize	$\begin{aligned} & 816.1 \\ & (100.0) \end{aligned}$	$\begin{array}{r} 1.30 \\ (100.0) \end{array}$	$\begin{gathered} 1,057.5 \\ (100.0) \end{gathered}$	$\begin{aligned} & 452.5 \\ & (55.4) \end{aligned}$	$\begin{array}{r} 2.34 \\ (103.1) \end{array}$	$\begin{aligned} & 607.7 \\ & (57.5) \end{aligned}$	$\begin{aligned} & 106.2 \\ & (13.0) \end{aligned}$	$\begin{array}{r} 1.27 \\ (97.7) \end{array}$	$\begin{aligned} & 135.4 \\ & (12.8) \end{aligned}$
2. Rice	$\begin{aligned} & 1,977.8 \\ & (100.0) \end{aligned}$	$\begin{array}{r} 1.64 \\ (100.0) \end{array}$	$\begin{gathered} 3,260.1 \\ (100.0) \end{gathered}$	$\begin{aligned} & 69.2 \\ & (3.4) \end{aligned}$	$\begin{array}{r} 1.65 \\ (100.6) \end{array}$	$\begin{gathered} 1114.1 \\ (3.5) \end{gathered}$	$\begin{aligned} & 18.4 \\ & (0.9) \end{aligned}$	$\begin{array}{r} 1.58 \\ (96.3) \end{array}$	$\begin{aligned} & 29.1 \\ & (0.9) \end{aligned}$
3. Black Gram	$\begin{gathered} 96.2 \\ (100.0) \end{gathered}$	$\begin{array}{r} 0.46 \\ (100.0) \end{array}$	$\begin{gathered} 45.1 \\ (100.0) \end{gathered}$	$\begin{gathered} 10.7 \\ (11.1) \end{gathered}$	$\begin{array}{r} 0.63 \\ (137.0) \end{array}$	$\begin{gathered} 6.8 \\ (15.1) \end{gathered}$	$\begin{gathered} 2.6 \\ (2.7) \end{gathered}$	$\begin{array}{r} 0.76 \\ (165.2) \end{array}$	$\begin{gathered} 2.0 \\ (4.4) \end{gathered}$
4. Potato	$\begin{gathered} 55.6 \\ (100.0) \end{gathered}$	$\begin{gathered} 10.0 \\ (100.0) \end{gathered}$	$\begin{gathered} 557.2 \\ (100.0) \end{gathered}$	$\begin{gathered} 10.4 \\ (18.7) \end{gathered}$	$\begin{gathered} 10.1 \\ (101.0) \end{gathered}$	$\begin{aligned} & 105.1 \\ & (18.9) \end{aligned}$	$\begin{gathered} 2.9 \\ (5.2) \end{gathered}$	$\begin{gathered} 10.6 \\ (106.0) \end{gathered}$	$\begin{aligned} & 30.8 \\ & (5.5) \end{aligned}$
5. Sugarcane	$\begin{aligned} & 839.8 \\ & (100.0) \end{aligned}$	$\begin{gathered} 37.1 \\ (100.0) \end{gathered}$	$\begin{array}{r} 31,196.2 \\ (100: 0) \end{array}$	$\begin{gathered} 96.5 \\ (11.5) \end{gathered}$	$\begin{gathered} 39.1 \\ (105.4) \end{gathered}$	$\begin{gathered} 3,776.0 \\ (12.1) \end{gathered}$	$\begin{aligned} & 2.1 \\ & (0.3) \end{aligned}$	$\begin{gathered} 34.7 \\ (93.5) \end{gathered}$	$\begin{aligned} & 73.7 \\ & (0.2) \end{aligned}$
6. Apple	$\begin{gathered} 15.2 \\ (100.0) \end{gathered}$	$\begin{gathered} 9.6 \\ (100.0) \end{gathered}$	$\begin{gathered} 145.6 \\ (100.0) \end{gathered}$	$\begin{gathered} 5.7 \\ (37.5) \end{gathered}$	$\begin{gathered} 13.2 \\ (137.5) \end{gathered}$	$\begin{gathered} 75.3 \\ (51.7) \end{gathered}$	$\begin{gathered} 2.1 \\ (13.8) \end{gathered}$	$\begin{gathered} 12.7 \\ (132.3) \end{gathered}$	$\begin{gathered} 26.7 \\ (18.3) \end{gathered}$
7. Apricot	$\begin{array}{r} 4.6 \\ (100.0) \end{array}$	$\begin{gathered} 11.6 \\ (100.0) \end{gathered}$	$\begin{gathered} 53.4 \\ (100.0) \end{gathered}$	$\begin{gathered} 1.2 \\ (26.1) \end{gathered}$	$\begin{gathered} 10.0 \\ (86.2) \end{gathered}$	$\begin{gathered} 12.0 \\ (22.5) \end{gathered}$	$\begin{gathered} 0.4 \\ (8.7) \end{gathered}$	$\begin{gathered} 10.4 \\ (89.7) \end{gathered}$	$\begin{gathered} 4.1 \\ (7.7) \end{gathered}$
8. Plum	$\begin{gathered} 4.0 \\ (100.0) \end{gathered}$	$\begin{gathered} 10.9 \\ (100.0) \end{gathered}$	$\begin{gathered} 43.6 \\ (100.0) \end{gathered}$	$\begin{gathered} 2.8 \\ (70.0) \end{gathered}$	$\begin{gathered} 10.8 \\ (99.1) \end{gathered}$	$\begin{gathered} 30.1 \\ (69.0) \end{gathered}$	$\begin{gathered} 0.3 \\ (7.5) \end{gathered}$	$\begin{gathered} 9.7 \\ (88.9) \end{gathered}$	$\begin{gathered} 2.9 \\ (5.7) \end{gathered}$
9. Pears	$\begin{array}{r} 2.9 \\ (100.0) \end{array}$	$\begin{aligned} & 11.7 \\ & (100.0) \end{aligned}$	$\begin{gathered} 33.8 \\ (100.0) \end{gathered}$	$\begin{gathered} 2.5 \\ (86.2) \end{gathered}$	$\begin{gathered} 12.3 \\ (105.1) \end{gathered}$	$\begin{gathered} 30.7 \\ (90.8) \end{gathered}$	$\begin{gathered} 0.4 \\ (13.8) \end{gathered}$	$\begin{gathered} 16.3 \\ (139.3) \end{gathered}$	$\begin{gathered} 6.5 \\ (19.2) \end{gathered}$
8. Wheat	$\begin{aligned} & 7,392.2 \\ & (100.0) \end{aligned}$	$\begin{array}{r} 1.68 \\ (100.0) \end{array}$	$\begin{array}{r} 12,418.0 \\ (100.0) \end{array}$	$\begin{aligned} & 784.1 \\ & (10.6) \end{aligned}$	$\begin{array}{r} 1.14 \\ (67.9) \end{array}$	$\begin{gathered} 899.4 \\ (7.2) \end{gathered}$	$\begin{aligned} & 92.9 \\ & (1.3) \end{aligned}$	$\begin{array}{r} 1.09 \\ (60.0) \end{array}$	$\begin{aligned} & 94.3 \\ & (0.8) \end{aligned}$
9. Barley	$\begin{gathered} 180.7 \\ (100.0) \end{gathered}$	$\begin{array}{r} 0.72 \\ (100.0) \end{array}$	$\begin{gathered} 129.6 \\ (100.0) \end{gathered}$	$\begin{gathered} 78.6 \\ (43.5) \end{gathered}$	$\begin{array}{r} 0.76 \\ (105.6) \end{array}$	$\begin{gathered} 60.1 \\ (46.4) \end{gathered}$	$\begin{gathered} 3.3 \\ (1.8) \end{gathered}$	$\begin{gathered} 1.03 \\ (143.1) \end{gathered}$	$\begin{gathered} 3.4 \\ (2.6) \end{gathered}$
1.0. Rape \& Mustard	$\begin{gathered} 321.8 \\ (100.0) \end{gathered}$	$\begin{gathered} 0.70 \\ (100.0) \end{gathered}$	$\begin{aligned} & 225.5 \\ & (100.0) \end{aligned}$	$\begin{gathered} 40.8 \\ (12.7) \end{gathered}$	$\begin{array}{r} 0.43 \\ (61.4) \end{array}$	$\begin{aligned} & 17.3 \\ & (7.7) \end{aligned}$	$\begin{gathered} 3.5 \\ (1.1) \end{gathered}$	$\begin{array}{r} 0.37 \\ (52.9) \end{array}$	$\begin{gathered} 1.3 \\ (57.6) \end{gathered}$
11. Onion	$\begin{gathered} 48.3 \\ (100.0) \end{gathered}$	$\begin{gathered} 10.6 \\ (100.0) \end{gathered}$	$\begin{gathered} 514.2 \\ (100.0) \end{gathered}$	$\begin{gathered} 3.4 \\ (7.0) \end{gathered}$	$\begin{array}{r} 13.2 \\ (124.5) \end{array}$	$\begin{aligned} & 44.8 \\ & (8.7) \end{aligned}$	$\begin{gathered} 1.5 \\ (3.1) \end{gathered}$	$\begin{array}{r} 15.9 \\ (150.0) \end{array}$	$\begin{aligned} & 23.6 \\ & (4.6) \end{aligned}$
12. Citrus	$\begin{gathered} 115.8 \\ (100.0) \end{gathered}$	$\begin{gathered} 9.7 \\ (100.0) \end{gathered}$	$\begin{array}{r} 1,393.2 \\ (100.0) \end{array}$	$\begin{gathered} 3.4 \\ (2.9) \end{gathered}$	$\begin{gathered} 8.5 \\ (87.6) \end{gathered}$	$\begin{gathered} 28.9 \\ (2.1) \end{gathered}$	$\begin{gathered} 0.3 \\ (0.3) \end{gathered}$	$\begin{gathered} 3.5 \\ (36.1) \end{gathered}$	$\begin{gathered} 2.8 \\ (0.2) \end{gathered}$

TABLE C-6 CROP PRODUCTION, MATZE

Year		Pakistan			N.W.F.P.			Malakand Division			Swat District		
		Cropped Area	Yield P	Production	Cropped	Yield	duction	$\begin{gathered} \hline \text { Cropped } \\ \text { Area } \\ \hline \end{gathered}$	Vield Pr	uction	$\begin{gathered} \hline \text { Cropped } \\ \text { Area } \\ \hline \end{gathered}$	Yield	duction
		'000 (ha)	(ton/ha)	1000 $(t 0 n)$	$\begin{aligned} & 1000 \\ & \text { (ha) } \end{aligned}$	(ton/ha)	$\begin{aligned} & 1000 \\ & (t \circ n) \end{aligned}$	1000 (ha)	(ton/ha)	$\begin{aligned} & 1000 \\ & (\text { ton }) \end{aligned}$	$\begin{aligned} & 1000 \\ & (\mathrm{ha}) \end{aligned}$	(ton/ha)	$\begin{aligned} & 1000 \\ & \text { (ton) } \end{aligned}$
1.	1978/79	1,025.6	1.62	3,272.0	67.9	1.53	61.2	44.6	1.57	70.2	19.8	1.45	28.7
2.	1979/80	2,034.5	1.58	3,215.8	67.2	1.56	98.6	44.8	1.57	70.5	19.8	1.45	28.8
3.	1980/81	1,933.1	1.62	3,123.2	66.2	1.43	106.5	45.0	1.62	72.8	20.1	1.53	30.9
4.	1981/82	1,976.0	1.74	3,429.7	69.3	1.59	110.7	46.1	1.62	74.9	20.3	1.55	31.4
5.	1982/83	1,978.1	1.74	3,444.7	70.5	1.60	112.7	46.8	1.62	76.0	20.4	1.54	31.5
6.	1983/84	1,998.5	1.67	3,339.5	72.2	1.60	115.8	46.8	1.63	76.6	20.5	1.55	31.8
7.	1984/85	1,998.5	1.66	3,315.2	72.4	1.60	115.5	47.0	1.64	77.1	20.6	1.55	32.0
8.	1985/86	1,863.2	1.57	2,918.9	70.1	1.60	113.8	46.1	1.67	76.9	20.6	1.57	32.3
9.	1986/87	2,066.0	1.69	3,486.0	70.5	1.67	1.18 .1	46.2	1.68	77.7	20.6	1.58	32.7
10.	1987/88	1,963.0	1.65	3,241.0	60.9	1.76	107.5	6.9	1.81	12.6	9.7	1.73	16.7
Mean		1,983.7	1.65	3,278.6	68.7	1.54	106.0	42.0	1.63	68.5	20.5	1.48	30.4
Last	5 years	1,977.8	1.64	3,260.1	69.2	1.65	114.1	38.6	1.66	64.2	18.4	1.58	29.1

Source: Agricultural Statistics of Pakistan: MFC
table C-8 CROp production, mong (black gram)

Year	Pakistan			N.W.F.			Malakand Division			Swat District		
	$\begin{aligned} & \text { Cropped } \\ & \text { Area } \end{aligned}$	Yield	Production	Cropped Area	Yield	Production	$\begin{aligned} & \text { Cropped } \\ & \text { Area } \\ & \hline \end{aligned}$	Yield	Production	$\begin{aligned} & \text { Cropped } \\ & \text { Area } \\ & \hline \end{aligned}$	Yield	Production
	$\begin{aligned} & 1000 \\ & \text { (ha) } \end{aligned}$	(ton/ha)	1000 (ton)	(ha) 000	(ton/ha)	(ton)	$\begin{aligned} & 1000 \\ & \text { (ha) } \end{aligned}$	(ton/ha)	$\frac{{ }^{1000}}{\text { (ton) }}$	$\begin{aligned} & 7000 \\ & \text { (ha) } \end{aligned}$	(ton/ha)	:000 (ton)
1. 1978/79	65.9	0.45	30.0	9.9	0.55	5.5	2.5	0.68	1.7	0.8	0.63	0.5
2. 1979/80	69.0	0.47	32.7	8.7	0.57	4.9	2.5	0.68	1.7	0.8	0.50	0.4
3. 1980/81	67.0	0.48	31.0	7.7	0.58	4.4	2.2	0.73	1.6	0.4	0.50	0.2
4. 1981/82	65.6	0.48	31.8	8.6	0.61	5.2	2.3	0.82	1.9	0.7	0.85	0.6
5. 1982/83	79.0	0.50	31.6	9.5	0.66	6.3	4.4	0.81	3.6	2.8	0.82	2.3
6. 1983/84	91.0	0.46	41.8	10.4	0.66	6.9	4.4	0.84	3.7	3.0	0.83	2.5
7. 1984/85	93.6	0.48	44.6	11.0	0.65	7.2	4.4	0.84	3.7	3.0	0.83	2.5
8. 1985/86	104.1	0.47	48.8	10.8	0.66	7.1	4.4	0.84	3.7	3.0	0.83	2.5
9. 1986/87	N.A.	N. A.	N.A	13.8	0.65	9.0	4.5	0.84	3.8	3.0	0.83	2.5
10. 1987/88	N. A	N.A	N. A	7.3	0.50	3.7	2.8	0.50	1.4	1.2	0.09	0.1
Mean	79.4	0.45	36.5	9.8	0.61	6.0	3.4	0.82	2.8	1.9	0.77	1.5
Last 5 Years	96.2	0.46	45.1	10.7	0.63	6.8	4.1	0.80	3.3	2.6	0.76	2.0

Source: Agricultural Statistics of Pakistan, MFC
Note : Whole area are undex rainfed conditions
TABLE C-9 CROP PRODUCTION, POTATO

	Pakistan			N.W.F.P.			Malakand Division			Swat District		
Year	Cropped Area	Yield P	Production	$\begin{gathered} \text { Cropped } \\ \text { Area } \end{gathered}$	Yield Pr	Production	Cropped Area	Yield P	Production	Cropped \qquad	Yield P	oduction
	'000 (ha)	(ton/ha)	1000 $(t o n)$	$\begin{aligned} & 1000 \\ & \text { (ha) } \end{aligned}$	(tori/ha)	$\begin{aligned} & 1000 \\ & \hline \\ & \hline \end{aligned}$	$\begin{aligned} & \frac{1000}{(h a)} \end{aligned}$	(ton/ha)	1000 (ton)	$\begin{aligned} & \text { (ha) } \\ & \text { (hao } \end{aligned}$	(ton/ha)	$\begin{aligned} & 000 \\ & (\text { ton }) \end{aligned}$
1. 19.78/79	37.7	10.4	392.4	8.2	9.3	76.2	3.4	8.6	29.3	2.1	9.4	19.8
2. 1979/80	42.9	10.4	448.5	8.4	9.4	78.8	3.5	8.5	29.7	2.1	9.4	19.8
3. 1980/81	38.0	10.4	394.3	7.6	9.3	75.8	3.7	9.0	33.3	2.3	9.7	22.3
4. 1981/82	45.3	10.5	476.6	8.1	9.3	95.8	4.1	9.5	39.0	2.5	1.0 .2	25.4
5. 1982/83	51.5	10.1	518.1	10.3	9.7	92.9	4.6	9.2	42.3	3.0	9.5	28.6
6. 1983/84	49.5	10.3	509.8	10.2	9.7	99.5	4.7	9.2	43.4	3.0	9.6	28.7
7. 1984/85	54.5	10.0	543.4	10.5	9.7	102.1	4.8	9.3	44.5	3.0	9.6	28.8
8. 1985/86	62.9	9.8	618.3	10.6	9.8	104.3	4.9	9.1	44.8	3.0	9.6	28.9
9. 1986/87	N. A.	N. A.	N.A.	11.7	10.6	124.5	4.9	11.2	55.0	3.0	12.4	37.4
10. 1987/88	N.A.	N.A.	N. A.	8.8	10.8	95.2	4.3	11.0	47.3	2.4	12.3	30.3
Mean	47.8	10.2	487.7	9.4	10.1	94.5	4.3	9.5	40.9	2.3	11.7	27.6
Last 5 years	55.6	10.0	557.2	10.4	10.1	105.1	4.7	10.0	47.0	2.9	10.6	30.8

Source: Agricultural Staristics of Pakistan: MFC
Note : About 86% of the total cropped area are under irrigation, and about 98% of those are Kharif cropped area.

	Year	Pakistan			N.W.F.P.			Malakand Division			Swat District		
		Cropped Area	Yield Pr	duction	Cropped Area	Yield	Production	$\begin{gathered} \hline \text { Cropped } \\ \text { Area } \\ \hline \end{gathered}$	Yield Pr	duction	Cropped Area	Yield	duction
		1000 (ha)	(ton/ha)	$\begin{aligned} & 1000 \\ & \text { (ton) } \end{aligned}$	$\begin{aligned} & 1000 \\ & \text { (ha) } \end{aligned}$	(ton/ha)	000 (ton)	$\begin{aligned} & 000 \\ & (\mathrm{ha}) \end{aligned}$	(ton/ha)	$\begin{aligned} & 1000 \\ & \text { (ton) } \end{aligned}$	$\begin{aligned} & 1000 \\ & \text { (ha) } \end{aligned}$	(ton/ha)	$\begin{aligned} & 000 \\ & (\text { ton }) \end{aligned}$
1.	1978/79	752.5	36.3	27,325.5	95.0	38.0	3,606.1	5.4	36.6	197.9	0.9	38.6	34.7
2.	1979/80	718.5	38.3	27,497.7	87.1	39.2	3,417.0	5.4	36.8	198.8	1.0	36.3	36.3
3.	1980/81	824.7	39.2	32,359.4	90.5	39.8	3,598.0	6.0	36.9	221.3	1.1	37.9	41.7
4.	1981/82	946.7	38.6	36,579.7	101.2	40.1	4,057.2	6.6	37.0	243.9	1.7	38.3	65.1
5.	1982/83	911.7	35.7	32,533.5	100.3	40.1	4,017.6	6.8	36.6	249.1	1.9	36.7	69.8
6.	1983/84	896.5	38.2	34,287.3	104.7	38.8	4,065.3	7.3	36.3	264.9	2.3	36.2	83.2
7.	1984/85	903.6	35.6	32,139.6	95.9	38.8	3,722.4	7.3	36.2	264.4	2.4	34.5	82.7
8.	1985/86	779.8	35.7	27,856.3	91.4	38.9	3,553.1	7.3	35.7	261.0	2.4	33.1	79.4
9.	1986/87	762.0	39.3	29,966.0	91.6	38.4	3,518.5	7.3	37.1	271.7	2.3	37.3	85.8
10.	1987/88	857.0	37.0	31,707.0	98.7	40.7	4,020.5	4.9	36.6	179.4	1.1.	31.0	34.1
Mean		835.3	37.4	31,225.2	95.6	39.3	3,757.6	6.4	36.8	235.2	1.7	36.1	61.3
Last	5 years	839.8	37.1	31,191.2	96.5	39.1	3,776.0	6.8	36.5	248.3	2.1	34.7	73.7

Source: Agricultural Statistics of Pakistan: MFC
TABLE C-11 CROP PRODUCTION, APPIE

	Pakistan			N.W.F.P.			Molakand Division			Swat District		
Year	Cropped Area	Yield Pr	oduction	Cropped Area	Yield Pr	duction	$\begin{gathered} \text { Cropped } \\ \text { Area } \end{gathered}$	Yield Pro	duction	$\begin{gathered} \hline \text { Cropped } \\ \text { Area } \\ \hline \end{gathered}$	Yield P	duction
	'000 (ha)	(ton/ha)	$\begin{aligned} & T 000 \\ & (\text { ton }) \end{aligned}$	$\begin{aligned} & 1000 \\ & \text { (ha) } \end{aligned}$	(ton/ha)	$\begin{aligned} & 1000 \\ & (t o n) \end{aligned}$	$\begin{aligned} & 1000 \\ & (\text { ha) } \end{aligned}$	(ton/ha)	$\begin{aligned} & 1000 \\ & \text { (ton) } \end{aligned}$	$\begin{aligned} & 1000 \\ & (\mathrm{ha}) \end{aligned}$	(ton/ha)	$\begin{aligned} & 000 \\ & (t o n) \end{aligned}$
1. 1978/79	10.3	9.1	93.7	3.8	11.5	43.7	2.2	12.5	27.5	2.1	9.7	20.3
2: 1979/80	10.8	9.2	99.2	3.9	11.7	45.6	2.3	12.2	28.0	2.1	12.7	26.7
3. 1980/81	11.4	9.4	107.4	4.1	11.8	48.2	2.4	12.4	29.8	2.3	12.3	28.4
4. 1981/82	11.9	9.6	114.3	4.4	11.7	51.6	2.6	12.2	31.8	2.4	12.6	30.3
5. 1982/83	12.9	10.0	128.6	4.6	12.0	55.1.	2.7	12.4	33.4	2.5	12.8	31.9
6. 1983/84	13.3	9.6	128.1	4.2	12.1	50.8	2.2	12.9	28.3	2.0	13.3	26.5
7. 1984/85	14.8	9.6	142.7	5.0	11.8	59.0	2.3	12.6	28.9	2.0	13.3	26.7
8. 1985/86	17.4	9.5	166.0	6.4	1.1.4	72.9	2.3	13.0	30.0	2.0	13.3	26.7
9. 1986/87	N. A.	N. A.	196.0	6.5	14.7	95.7	2.3	13.2	30.3	2.1	12.8	26.8
10. 1987/88	N. A.	N. A.	N. A.	6.6	14.9	98.3	2.3	13.2	30.4	2.4	11.4	26.7
Mean	12.9	10.1	130.6	5.0	12.4	62.1	2.3	12.9	29.8	2.2	12.3	27.1
Last 5 years	15.2	9.6	145.6	5.7	13.2	75.3	2.3	12.9	29.6	2.1	12.7	26.7

[^3]TABEE C-12 CROP PRODUCTION, APRJCOT

TABLE C-13

	Pakistan			N.W.F.P.			Malakand Division			Swat District		
Year	$\begin{gathered} \hline \text { Cropped } \\ \text { Area } \\ \hline \end{gathered}$	Yield P	Production	$\begin{gathered} \hline \text { Cropped } \\ \text { Area } \\ \hline \end{gathered}$	Yield Pr	uction	$\begin{gathered} \hline \text { Cropped } \\ \text { Area } \\ \hline \end{gathered}$	Yield Pr	uction	$\begin{gathered} \text { Cropped } \\ \text { Area } \\ \hline \end{gathered}$	Yield P	uction
	1000 (ha)	(ton/ha)	1000 (ton)	1000 (ha)	(ton/ha)	$\begin{aligned} & 1000 \\ & \text { (ton) } \end{aligned}$	$\begin{aligned} & 1000 \\ & \text { (ha) } \end{aligned}$	(ton/ha)	$\begin{aligned} & 1000 \\ & \text { (ton) } \end{aligned}$	1000 (ha)	(ton/ha)	$\begin{aligned} & 1000 \\ & \text { (ton) } \end{aligned}$
1. 1978/79	2.6	14.0	36.5	1.9	14.2	26.9	0.4	10.0	4.0	0.2	10.0	2.0
2. 1979/80	2.7	11.9	32.1	1.9	11.1	21.2	0.4	10.5	4.2	0.2	6.5	1.3
3. 1980/81	3.4	11.2	38.2	2.5	10.9	27.2	0.4	10.0	4.4	0.2	11.0	2.2
4. 1981/82	3.4	11.2	38.2	2.6	10.6	27.5	0.4	12.3	4.9	0.2	12.0	2.4
5. 1982/83	3.6	11.2	40.4	2.6	10.9	28.4	0.4	12.5	5.0	0.3	8.7	2.6
6. 1983/84	3.9	11.0	42.8	2.8	10.5	29.4	0.5	10.8	5.4	0.3	9.3	2.8
7. 1984/85	4.0	11.0	43.8	2.8	10.7	30.0	0.5	1.1.2	5.6	0.3	9.7	2.9
8. 1985/86	4.1	10.8	44.2	2.8	10.7	30.0	0.5	11.2	5.6	0.3	9.7	2.9
9. 1986/87	N.A.	N. A.	N. A.	2.8	10.9	30.5	0.5	11.4	5.7	0.3	10.0	3.0
10. 1987/88	N. A.	N. A.	N.A.	2.8	10.9	30.6	0.5	11.4	5.7	0.3	10.0	3.0
Mean	3.5	11.3	39.5	2.6	10.8	28.2	0.5	10.2	5.1	-0.3	8.3	2.5
Last 5 years	4.0	10.9	43.6	2.8	10.8	30.1	0.5	11.2	5.6	0.3	9.7	2.9

Source: Agricultural Statistics of Pakistan: MFC
TABLE C-14 CROP PRODUCTION, PEARS

	Pakistan			N.W.F.P.			Malakand Division			Swat District		
Year	Cropped Area	Yield Pr	production	$\begin{gathered} \hline \text { Cropped } \\ \text { Area } \\ \hline \end{gathered}$	Yield Pr	duction	Cropped \qquad	Yield Pr	Production	Cropped Area	Yield P	duction
-	1000 (ha)	(ton/ha)	$\begin{array}{ll} & 1000 \\ & \text { (ton) } \end{array}$	$\begin{aligned} & 1000 \\ & \text { (ha) } \end{aligned}$	(ton/ha)	$\begin{aligned} & T 000 \\ & \text { (ton) } \end{aligned}$	1000	(ton/ha)	$\begin{aligned} & 1000 \\ & \text { (ton) } \end{aligned}$	1000 $(h a)$	(ton/ha)	$\begin{aligned} & 1000 \\ & (\text { ton }) \end{aligned}$
1. 1978/79	3.3	10.1	33.3	1.9	12.2	23.2	0.4	17.8	7.1	0.3	19.0	5.7
2: 1979/80	2.6	10.7	27.7	1.9	12.4	23.5	0.4	18.3	7.3	0.3	19.3	5.8
3. 1980/81	3.0	11.2	33.5	2.3	12.6	28.9	0.5	15.4	7.7	0.3	20.3	6.1
4. 1981/82	3.1	10.7	33.1	2.4	12.2	29.2	0.5	15.8	7.9	0.4	15.5	6.2
5. 1982/83	3.1	10.9	33.8	2.4	12.4	29.7	0.5	16.4	8.2	0.4	15.8	6.3
6. 1983/84	2.8	12.0	33.5	2.4	12.6	30.3	0.5	16.6	8.3	0.4	16.0	6.4
7. 1984/85	2.9	11.8	34.1	2.5	12.3	30.7	0.5	17.2	8.6	0.4	16.3	6.5
8. 1985/86	2.9	11.7	33.9	2.5	12.2	30.6	0.5	17.4	8.7	0.4	16.5	6.6
9. 1986/87	N. A.	N.A.	N. A.	2.5	12.3	30.8	0.5	17.4	8.7	0.4	16.5	6.6
10. 1987/88	N. A.	N.A.	N. A.	2.5	12.4	31.0	0.5	17.4	8.7	0.4	16.5	6.6
Mean	3.0	11.0	32.9	2.3	12.5	28.8	0.5	17.2	8.6	0.4	15.5	6.2
Last 5 years	2.9	11.7	33.8	2.5	12.3	30.7	0.5	17.0	8.6	0.4	16.3	6.5

Source: Agricultural Statistics of Pakistan: MFC
TABLE C-I 5 CROP PRODUCTION, WHEAT

Source: Agricultural Statistics of Fakistan: MFC

	Pakistan			N.W.F.P.			Malakand Division			Swat District		
Yeax	$\begin{gathered} \hline \text { Cropped } \\ \text { Area } \\ \hline \end{gathered}$	Yield P	Production	$\begin{gathered} \hline \text { Cropped } \\ \text { Area } \\ \hline \end{gathered}$	Yield Pr	Production	Cropped Area	Yield Pr	Production	Cropped Area	Yield P	duction
	$\begin{aligned} & 1000 \\ & \text { (ha) } \end{aligned}$	(ton/ha)	1000 (ton)	$\begin{aligned} & 1000 \\ & \text { (ha) } \end{aligned}$	(ton/ha)	1000 (ton)	$\begin{aligned} & 1000 \\ & (\mathrm{ha}) \end{aligned}$	(ton/ha)	$\begin{aligned} & 1000 \\ & \text { (ton) } \end{aligned}$	$\begin{aligned} & 1000 \\ & \text { (ha) } \end{aligned}$	(ton/ha)	$\begin{aligned} & 000 \\ & \text { (ton) } \end{aligned}$
1. 1978/79	177.7	0.73	129.3	61.3	0.81	49.7	15.2	1.05	15.9	2.0	1.05	2.1
2. 1979/80	159.3	0.74	118.1	54.6	0.80	43.6	14.7	1.07	15.8	2.0	0.40	0.8
3. 1980/81	259.4	0.68	175.5	63.3	0.82	52.2	17.7	0.90	15.9	3.4	0.97	3.3
4. 1981/82	221.6	0.71	157.5	68.6	0.83	56.9	18.8	1.10	20.7	3.4	0.97	3.3
5. $1982 / 83$	263.1	0.70	185.3	76.2	0.82	62.8	20.0	1.11	22.2	3.3	1.00	3.3
6. 1983/84	199.9	0.70	139.5	85.3	0.73	62.1	18.8	1.04	19.6	2.4	0.92	2.2
7. 1984/85	190.0	0.69	131.6	85.4	0.73	62.2	18.9	1.04	19.7	2.4	0.92	2.2
8. 1985/86	188.8	0.71	133.7	79.8	0.75	60.1	19.1	1.03	19.7	2.4	0.92	2.2
9. 1986/87	182.0	0.71	134.0	82.0	0.78	64.3	21.7	1.11	24.2	5.1	1.12	5.7
10. 1987/88(E)	143.0	0.76	109.0	60.4	0.86	52.0	20.6	1.03	21.2	4.3	1.14	4.8
Mean	198.5	0.71	141.4	71.7	0.77	55.6	18.6	1.05	19.5	3.1	0.96	3.0
Last 5 years	180.7	0.72	129.6	78.6	0.76	60.1	19.8	1.05	20.9	3.3	1.03	3.4

Source: Agricultural Statistics of Pakistan: MFC
TABLE C-17 CROP PRODUCTION, RAPE AND MUSTARD

	Pakistan			N.W.E.P.			Malakand Division			Swat District		
Year	$\begin{gathered} \hline \text { Cropped } \\ \text { Area } \\ \hline \end{gathered}$	Yi.eld P	Production	Cropped Area	Yield P	duction	Cropped Area	Yield P	Production	Cropped Area	Yield	uction
	$\begin{aligned} & 1000 \\ & \text { (ha) } \end{aligned}$	(ton/ha)	1000 $(t o n)$	$\begin{aligned} & 1000 \\ & \text { (ha) } \end{aligned}$	(ton/ha)	$\begin{aligned} & 000 \\ & \text { (ton) } \end{aligned}$	$\begin{aligned} & 1000 \\ & (\mathrm{ha}) \end{aligned}$	(tom/ha)	$\begin{aligned} & 1000 \\ & (\text { ton }) \end{aligned}$	$\begin{aligned} & 1000 \\ & \text { (ha) } \end{aligned}$	(ton/ha)	$\begin{aligned} & 1000 \\ & (t o n) \end{aligned}$
1. 1978/79	433.0	0.57	248.2	50.7	0.53	26.9	15.6	0.57	8.7	8.3	0.57	4.8
2: 1979/80	409.4	0.60	247.1	42.6	0.48	20.5	11.6	0.36	4.2	6.9	0.23	1.6
3. $1980 / 81$	417.0	0.61	252.5	41.6	0.51	21.1	13.7	0.45	6.2	4.4	0.23	1.0
4. $1981 / 82$	390.9	0.61	238.8	46.0	0.48	22.5	11.1	0.45	5.1	4.3	0.32	1.4
5. 1982/83	385.5	0.64	246.0	44.2	0.48	21.2	14.3	0.50	7.2	4.3	0.37	1.6
6. 1983/84	313.3	0.69	217.0	43.0	0.42	18.2	13.3	0.47	6.3	3.7	0.35	1.3
7. 1984/85	346.9	0.68	234.8	50.9	0.43	21.9	13.3	0.47	6.3	3.7	0.32	1.2
8. 1985/86	350.6	0.71	249.9	36.4	0.44	16.1	13.4	0.51	6.9	3.7	0.46	1.7
9. 1986/87	303.0	0.72	213.0	40.6	0.44	17.8	12.8	0.49	6.2	3.1	0.35	1.1
10. 1987/88	295.0	0.72	213.0	33.3	0.38	12.7	13.1	0.44	5.8	3.5	0.36	1.3
Mean	364.5	0.65	236.0	42.9	0.46	19.9	13.2	0.47	6.3	5.51	10.40	2.2
Last 5 years	321.8	0.70	225.5	40.8	0.43	17.3	13.2	0.47	6.3	3.5	0.37	1.3

Source: Agricultural Statistics of Pakistan: MFC
Note : About 96 percent of the cropped area are under rainfed condition.
TABLE C-18 CROP PRODUCTION, ONTON

	Pakistan			N.W.F.P.			Malakand Division			Swat District		
Year	Cropped Area	Yield P	Production	$\begin{gathered} \text { Cropped } \\ \text { Area } \end{gathered}$	Yield Pr	Production	$\begin{aligned} & \text { Cropped } \\ & \text { Area } \end{aligned}$	Yield Pr	roduction	Cropped Area	Yield Produr	oduction
	$\begin{aligned} & 1000 \\ & \text { (ha) } \end{aligned}$	(ton/ha)	$\begin{aligned} & 1000 \\ & \text { a) } \quad \text { (ton) } \end{aligned}$	$\begin{aligned} & 0000 \\ & \text { (ha) } \end{aligned}$	(ton/ha)	$\begin{aligned} & \text { To00 } \\ & \text { (ton) } \end{aligned}$	$\begin{aligned} & 000 \\ & (\text { ha) } \end{aligned}$	(ton/ha)	$\begin{aligned} & 0,000 \\ & \text { (ton) } \end{aligned}$	$\begin{aligned} & 1000 \\ & (\mathrm{ha}) \end{aligned}$	(ton/ha)	$\begin{aligned} & 7000 \\ & \text { (ton) } \end{aligned}$
1. 1978/79	38.7	10.1	389.7	2.1	12.3	25.8	1.0	14.4	14.4	0.7	15.3	10.7
2. 1979/80	41.9	10.4	434.0	2.6	12.1	31.4	1.0	14.7	14.7	0.7	15.6	10.9
3. 1980/81	43.2	10.4	447.6	2.4	12.2	29.2	1.3	13.7	17.8	0.9	14.8	13.3
4. 1981/82	43.4	10.4	451.8	2.6	11.9	30.9	1.3	14.1	18.3	0.9	15.2	13.7
5. 1982/83	45.3	10.5	474.8	2.3	12.4	28.3	1.3	13.8	18.0	0.9	14.9	13.4
6. 1983/84	47.3	10.6	503.4	2.7	12.4	32.8	1.5	14.0	21.1	1.1	14.7	16.2
7. 1984/85	48.2	10.7	514.6	2.9	12.3	36.4	1.5	14.3	21.4	1.1	14.9	16.4
8. 1985/86	49.4	10.6	524.7	3.0	12.7	38.1	1.5	14.3	21.4	1.1	15.0	16.5
9. 1986/87	N.A.	N.A.	N.A.	3.9	13.0	50.9	2.3	14.2	34.0	1.9	15.3	29.0
10. 1987/88	N.A.	N.A.	N.A.	4.7	14.0	65.9	2.8	16.2	45.4	2.3	17.4	40.2
Mean	44.6	10.2	455.1	2.9	12.8	37.0	1.6	14.2	22.7	1.1	16.4	18.0
Last 5 years.	48.3	10.6	514.2	3.4	13.2	44.8	1.9	15.1	28.7	1.5	15.9	23.6

Source: Agricultural Statistics of Pakistan: MFC
Note : About 96 percent of the total cropped area are under irrigation

	Pakistan			N.W.F.P.			Malakand Division			Swat District		
Year	Cropped Area	Yield P	Production	Cropped Area	Yield Pr	oduction	$\begin{gathered} \hline \text { Cropped } \\ \text { Area } \\ \hline \end{gathered}$	Yield P	Production	Cropped Area	Yield Prod	oduction
	$\begin{aligned} & 1000 \\ & \text { (ha) } \end{aligned}$	(ton/ha)	1000 (ton)	$\begin{aligned} & 1000 \\ & \text { (ha) } \end{aligned}$	(ton/ha)	$\begin{aligned} & 1000 \\ & \text { (ton) } \end{aligned}$	$\begin{aligned} & 1000 \\ & \text { (ha) } \end{aligned}$	(ton/ha)	'000 (ton)	1000 (ha)	(ton/ha)	$\begin{aligned} & 1000 \\ & \text { (ton) } \end{aligned}$
1. 1978/79	72.2	10.2	737.1	3.0	8.3	24.8	1.5	7.7	11.5	0.7	7.4	5.2
2. 1979/80	86.7	10.0	870.6	3.0	8.5	25.5	1.5	7.9	11.9	0.7	7.7	5.4
3. 1980/81	94.5	9.8	926.2	3.1	8.5	26.3	1.6	7.6	12.1	0.7	8.0	5.6
4. 1981/82	118.0	9.8	1,159.8	3.2	8.4	27.0	1.6	7.8	12.4	0.8	7.4	5.9
5. 1982/83	124.7	10.0	1,245.1	3.3	8.3	27.3	1.6	7.7	12.6	0.8	7.3	5.9
6. 1983/84	136.2	9.5	1,300.3	3.3	8.5	28.0	1.6	7.9	12.7	0.8	7.4	5.9
7. 1984/85	144.1	9.5	1,372.9	3.4	8.3	28.3	1.7	7.6	12.9	0.8	7.5	6.0
8. $1985 / 85$	149.7	9.6	1,434.5	3.4	8.4	28.6	1.7	7.6	13.0	0.8	7.5	6.0
9. $1986 / 87$	N. A.	N.A.	1,465.0	3.4	8.5	29.0	1.7	7.6	13.0	0.8	7.5	6.0
10. 1987/88	N.A.	N.A.	N.A.	3.7	8.2	30.4	1.7	7.6	13.0	0.8	7.5	6.0
Mean	115.8	10.1	1,167.9	3.3	8.3	27.5	1.6	7.8	12.5	0.8	4.5	3.6
Last 5 years	143.3	9.7	1,393.2	3.4	8.5	28.9	1.7	7.6	12.9	0.8	3.5	2.8

Source: Agricultural Statistics of Pakistan: MFC
$\frac{\text { Crop }}{\text { Irrigated }} \frac{\text { Unirrigated }}{\text { (ton/ha) }}$

1. Kharif Crops

(1) Maize	1.80	1.10
(2) Rabi	1.60	-
(3) Pulses (Black Gram)	0.80	0.60
(4) Potato	11.20	6.90
(5) Vegetables (Tomato)	11.70	$* 6.10$
(6) Fodders (Maize)	18.60	$* 11.20$

2. Rabi Crops

(1) Wheat	1.60	0.80
(2) Barley	1.20	1.00
(3) Rape \& Mustard	0.60	0.40
(4) Pulses (Lenti1)	1.00	0.70
(5) Onion	16.10	7.30
(6) Vegetables (Cauliflower)	9.00	$* 5.40$
(7) Fodders (Shaftal)	18.90	$* 11.30$

3. Sugarcane
38.00
21.80
4. Fruits (Apple)
12.70
7.60

Note : * Estimated yields

Source: Agricultural Statistics

TABLE C-21 CROP PRODUCTION IN SWAT DISTRIGY (1)

Crop	Year	Total			Irrigated			Unirrigated		
		$\frac{\text { Area }}{\text { (ha) }}$	$\frac{\text { Yield }}{(\text { ton/ha) }}$	$\begin{aligned} & \text { Produc- } \\ & \text { tion } \\ & (\operatorname{ton}) \end{aligned}$	$\begin{aligned} & \text { Area } \\ & \text { (ha) } \end{aligned}$	$\frac{\text { Yield }}{(\operatorname{ton} / h a)}$	$\begin{aligned} & \text { Produt } \\ & \text { tion } \\ & (\text { ton }) \end{aligned}$	$\frac{\text { Area }}{\text { (iat) }}$	$\frac{\text { Yield }}{(\text { ton/ha) }}$	$\begin{aligned} & \text { Produc- } \\ & \text { tion } \\ & \hline \text { (ton) } \end{aligned}$
Maize	1983/84	94,947	1.27	120,263	23,731	1.71	40,500	71,216	1.12	79,763
	1984/85	98,700	1.25	123,745	25,100	1.71	42,828	73,600	1.10	80,917
	1985/86	98,000	1.29	126,074	25,150	1.83	45,997	72,850	1.01	80,077
	1986/87	98,250	1.43	140,860	25,250	1.88	47,561	73,000	1.28	93,299
	1987/88	141,322	1.18	166,163	24,381.	1.79	43,607.	116,941	1.05	122,496
	Average	106,244	1.27	135,421	24,722	1.78	44,111	81,521	1.12	91,310
Rice	1983/84	20,475	1.55	31,754	20,475	1.55	31,754			
	1994/85	20,600	1.55	32,000	20,600	1.55	32,000			
	1985/86	20,630	1.57	32,340	20,630	1.57	32,340:			
	1986/87	20,635	1.59	32,740	20,635	1.59	32,740			
	1987/88	9,698	1.73	.16,733	9,698	1.73	16,733			
	Average	18,408	1.58	29,113	18,408	1.53	29,113			
Black Gram	1983/84	2,964	0.83	2,460	2,964	0.83	2,450			
	1984/85	2,970	0.83	2,465	2,970	0.83	2,465			
	1985/86	2,970	0.83	2,467	2,970	0.83	2,467			.
	1986/87	3,045	0.83	2,529	3,045	0.83	2,529			
	1987/88	1,187	0.09	114	1,170	0.08	99.			
	Average	2,627	0.76	2,007	2,624	0.76	2,004			
Potato	1983/84	2,883	9.71	27,980	2,521	10.16	25,615	362	6.53	2,365
	1984/85	2,905	9.77	28,377	2,546	10.16	25,868	359	6.99	2,509
	1985/86	2,975	9.73	28,945	2,560	10.18	26,061	415	6.95	2,884
	1986/87	2,980	12.42	37,003.	2,750	12.41	34, 154	410	6.95	2,849
	1987/88	2,463	12.30	30,300	1,958	13.68	26,787	505	6.96	3,513
	Average	2,841	10.74	30,521	2,467	11.23	27,697	410	6.89	2,824
Tomato (Xharif)	1983/84	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.			
	1984/85	ก. A.	N.A.	N.A.	N.A.	N.A.	N.A.			
	1985/86	1,181	11.74	13,876	1,181	11.74	13,876			
	1986/87	1,190	11.74	13,979	1,190	11.74	13,979			
	1987/88	1,454	11.58	16,849	1,458	11.56	16.849			
	Average	1,275	11.68	14,901	1,276	11.68	14,901			
Xharif Fodder (Maize)	1983/84	$N . A$.	N.A.	N.A.						
	1984/85	N N. A.	N.A.	N.A.						
	1985/86	2,192	18.60	40,765						
	1986/87	2,195	18.60	40,822				.		
	1987/88	6,966	18.56	129,291						
	Average	3,784	18.58	70,293						
Sugarcane	1983/84	2,380			1,943	37,90	73,640	435	22.00	9,570
	1984/85	2,385	34.69	82,729	1,917	37.85	72,563	469	21.72	10,166
	1985/86	2,385	33.30	79,347	1,925	36.00	69,355	460	21.70	9,992
	1986/87	2,390	37.17	88,831	1,930	40.85	78,839	460	21.72	9,992
	1987/88	1,062	32.14	34,134	738	36.72	27,097	324	21.72	7,038
	Average	2,120	34.74	73,650	1,691	38.02	64,299	429	21.80	9,352
Apple	1983/84	2,040	13.00	26,530	2,040	13.00	26,530			
	1984/85	2,050	13.00	26,660	2,050	13.00	26,660			
	1985/86	2,055	13.00	26,725	2,055	13.00	26,725			
	1986/87	2,063	13.00	26,830	2,063	13.00	26,830			
	1987/88	2,359	11.41	26,921	2,359	11.41	26,921			
	Average	2,113	12.65	26,733	2,113	12.65	26,733			

(Contimued)

TABLRC-22 CROP PRODUCTION is SUAT DISTRICT (2)

Crop	Year	Total			Irrigated			Unirrigated		
		$\frac{\text { Area }}{(\text { ha) }}$	$\begin{gathered} \text { Yield } \\ (\text { ton/ha) } \end{gathered}$	$\begin{aligned} & \text { Produc- } \\ & \frac{\text { tion }}{(\text { ton })} \end{aligned}$	$\frac{\text { Area }}{\text { (ha) }}$	$\frac{\text { Yield }}{(\text { ton } 7 a)}$	$\begin{aligned} & \text { Produc- } \\ & -(\operatorname{tion}) \end{aligned}$	$\frac{\text { Area }}{(1+a)^{-}}$	$\frac{\text { Yield }}{(\text { ton } / \mathrm{ha})}$	$\begin{aligned} & \text { Produc } \\ & \frac{\operatorname{tin}}{(\operatorname{ton})} \end{aligned}$
Wheat	1983/84	81,185	0.90	73,117	23,585	1.57	36,940	57,602	0.63	36,177
	1984/85	81,850	0.91	74,144	23,650	1.57	37,104	58,200	0.64	37,040
	1985/86	81,950	0.97	79,726:	23,750	1.69	40,150	58,200	0.68	39,576
	1986/87	104,914	1.14	119,992	20,200	1.69	34,050	84,714	1.01	85,942
	1987/88	114,443	1.09	124,746	20,377	1.66	33,821	94,066.	0.97	90,925
	Average	92,868	1.01	94,345	22,312	1.63	36,413	70,556	0.82	57,932
Barley	1983/84	2,372	0.92	2,187	97	1.16	113	2,275	0.91	2,074
	1984/85	2,420	0.91	2,210	160	1.16	186	2,260	0.89	2,024
	1985/86	2,420	0.91	2,212	155	1.17	182	2,265	0.90	2,030
	1986/87	5,177	1.11	5,747	480	1.17	563	4,697	1.11	5,184
	1987/88	4,268	1.14	4,849	424	1.17	497	3,844	1.13	4,352
	Average	3,331	1.03	3,441	263	1.17	308	3,068	1.02	3,133
Rape 8	1983/84	3,684	0.34	1,265	23	0.56	13	3,661	0.34	1,252
Mustard	1984/85	3,685	0.34	1,260	31	0.58	18	3,654	0.34	1,242
	1985/86	3,689	0.45	1,646	31	0.58	18	3,658	0.44	1,628
	1986/87	3,070	0.37	1,137	137	0.58	80	2,933	0.36	1,057
	1987/88	3,485	0.36	1,272	173	0.58	101	3,312	0.35	1,171
	Average	3,523	0.37	1,316	79	0.58	46	3,444	0.37	1,270
Lent 11	1983/84	100	0.86	86						
	1984/85	102	0.85	87						
	1985/86	103	0.85	88		-		103	0.85	88
	1986/87.	1,455	0.86	1,248	27	1.00	27	1,428	0.86	1,221
	1987/88	1,510	0.53	805	23	1.00	23	1,487	0.86	782
	Average	654	0.71	463	25	1.00	25	1,006	0.69	697.
Onion	1983/84	1,055	15.39	16,238	1,050	15.40	16,168	5	14.00	70
	1984/85	1,065	15.10	16,089	1,062	15.13	16,068	3	10.30	21
	1985/86	1,067	15.44	16,517	1,067	15.46	16,496	3	7.00	21
	1986/87	1,918	15.13	29,018	1,843	15.46	28,493	75	7.00	525
	1987/88	2,315	17.38	40,240	2,245	17.71	39,750	70	7.00	490
	Average	1,484	15.92	23,620	1,453	16.10	23,395	31	7.27	225
Cauliflower	1983/84	N. A.	N. A .	*.A.	N.A.	N.A.	N.A.			
	1984/85	N, A.	N.A.	N.A.	N.A.	N.A.	N.A.			
	1985/86	202	9.05	1,828	202	9.05	1,828			
	1986/87	165	9.05	1,493	165	9.05	1,493			
	1987/88	166	9.05	1,502	166	9.05	1,502			
	Average	178	9.03	1,608	178	9.03	1,608			
Rabi Fodder (Shatal)	1983/84	N.A.	*.A.	N.A.	N.A.	N.A.	N.A.			
	1984/85	N, A.	N.A.	N.A.	N.A.	N.A.	N.A.			
	1985/86	8,089	15.78	127,682	6,120	17.39	106,400	1,978	10.76	21,282
	1986/87	8,550	16.60	141,925	7,564	16.16	122,205	986	20.00	19,720
	1987/88	12,149	15.63	189,918	9,189	17.48	160,661	2,960	9.88	29,257
	Average	9,596	15.96	153,175	7,624	17.01	129,755	1,974	11.86	23,420
Citrus	1983/84	760	7.77	5,907	760	7.77	5,907			
	1984/85	768	7.75	5,950	768	7.75	5,950			
	1985/86	772	7.75	5,982	172	7.75	5,982			
	1986/87	774	7.55	5,998	774	7.55	5,998			
	1987/88	780	7.76	6,045	780	7.75	6,045			
	Average	771	7.76	5,976	771	7.75	5,976			

 (SWAT SUB-DIVISION)

Area	Intensity
(ha)	(\%)
56,878	57.5
26,099	26.4
18,703	18.9
4,647	4.7
2,980	3.0
1,523	11.5
2,926	3.0
62,582	63.2
45,055	45.5
3,158	3.2
2,146	2.2
1,564	1.6
1,885	1.9
1,070	1.1
7,704	7.9
1,456	1.5
5,257	5.3
119,460	120.7
98,964	

$0 乙 z^{6} 6 \varepsilon$
$8 l^{6} 9$

1. Kharif Crop
(1) Maize
(3) Pulses
(4) Potato
(5) Vegetables
(6) Fodders and Others
2. Rabi crops 2. Rabi crops
(1) Wheat (2) Barley
(3) Rape and Mustard
(4) Pulses
(5) Onion
(6) Vegetables
(7) Fodders and Others (7) Fodders and Others
3. Sugarcane
4. Fruits
Total
5. Cultivated Area
Source: Agricultural Statistical Office, Swat District

Total	
Area	Intensity
(ha)	(\%)
36,991	88.9
35,323	84.9
1,580	3.8
18	0.0
-	-
70	0.2
-	-
19,070	45.9
18,404	44.4
304	0.7
9	0.0
-	-
3	0.0
40	0.1
310	0.7
80	0.2
97	0.2
56,240	135.2
41,588	

TABLE C-24 CROPPED AREA AND CROPPING INTENSTTY (1986/87)

Area	Intensity (ha)
$\frac{34,056}{(\%)}$	$\frac{88.9}{88.9}$
34,038	-
18	0.0
-	-
-	-
-	-
17,583	$\frac{45.9}{44.9}$
17,210	0.7
281	0.0
8	-
-	0.0
20	0.3
64	0.1
48	0.2
74	135.1
1,761	

Uni
$\begin{array}{r}\hline \text { (ha) } \\ 34,056 \\ \hline 34,038 \\ - \\ 18 \\ - \\ - \\ \hline 17,583 \\ \hline 17,210 \\ 281 \\ 8 \\ - \\ - \\ 20 \\ 64 \\ 48 \\ 74 \\ 51,761 \\ \hline\end{array}$
O
$\stackrel{2}{2}$
∞
∞

$$
\frac{\text { Irrigated }}{\text { Area } \quad \text { Intensity }}
$$

Crop

1. Kharif Crop
(1) Maize
(2) Rice
(3) pulses
(4) Potato
(5) Vegetables
(6) Fodders and Others 2. Rabi Crops
2. Rabi Crops
(1) Wheat
(2) Barley
(3) Rape and Mustard
(4) Pulses
(5) Onion
(6) Vegetables
(7) Fodders and Others
3. Sugarcane
4. Fruits
Total
5. Cultivated Area

$$
\begin{array}{cc}
\hline \text { Area } & \frac{\text { Intensity }}{\text { (ha) }} \\
\frac{2,935}{(\%)} & \frac{89.0}{39.0} \\
\frac{1,285}{1,580} & 47.9 \\
- & -
\end{array}
$$

Source: Agricultural Statistical Office, Swat District
TABLE C-25 CROPPED AREA AND CROPPING INTENSTTY (1.986/87) (BUNER SUB-DIVISION)

Total	
Area	Intensity
40,249	72.9
36,828	66.8
353	0.6
2,480	4.5
-	-
150	0.3
438	0.7
44,967	81.5
41,455	75.1
1,715	3.1
915	1.7
75	0.1
30	0.1
200	0.4
577	1.0
854	3.5
14	0.0
86,084	155.9
55,179	
17	

 Crop

1. Kharif Crop
(1) Maize
(2) Rice
(3) Pulses
(4) Potato
(5) Vegetables
(6) Fodders and Others
2. Rabi Crops
(1) Wheat
(2) Barley
(3) Rape and Mustard
(4) Pulses
(5) Onion.
(6) Vegetables
(7) Fodders and Others
3. Sugarcane
4. Fruits
Total
5. Cultivated Area

TABLE C-26 DISTRIBUTION OF CROP LOAN THROUGH AGRICULTURAL COOPERATIVES (1987/88)

Sub-Division	No. of Beneficilies	$\begin{gathered} \text { Loan } \\ \frac{\text { Amount }}{\left(\text { Rs. }^{\prime} 000\right)} \end{gathered}$	$\begin{aligned} & \text { Repaid } \\ & \left(\frac{\text { Amount }}{\text { Rs. } 000)}\right. \end{aligned}$	$\begin{gathered} \text { Balance } \\ (\overline{\text { Rs. } 000}) \end{gathered}$	$\begin{aligned} & \begin{array}{l} \text { Ratio of } \\ \text { Repayment } \end{array} \\ & (\%) \end{aligned}$
Swat	1,440	13,408	9,200	4,208	68.6
Shangla Par	388	3,824	2,727	1,097	71.3
Buner	400	3,850	3,399	451	88.3
Total	2,228	21,882	15,326	5,756	70.0

Source: Assistant Registrar of Cooperative Societies, Swat

TABLE C-27 DISTRIBUTTON OF AGRICULTURAL INPUTS AND FARM MACHINERY THROUGH AGRICULTURAL COOPERATIVES

Item		Sub-Division			Total
		Swat	Shangla Par	Buner	
1. Fertilizer					
- Urea	ton	77	31	42	150
- Ammonium Sulfate	1	56	24	20	100
- D.A.P.	"	350	104	200	654

2. Seeds

- Wheat	$"$	1,200	300	500	2,000
- Maize	$"$	55	20	25	100
- Sugarcane	$"$	-	20	30	50
- Potato	$"$	70	31	-	101

3. Farm Machinery (Loan)

- Tractor	unit	7	2	3	12
- Pick up truck	$"$	13	4	5	22
- Pump	$"$	20	-	5	25
- Dug Well	$"$	8	-	2	10

Source: Assistant Registrar of Cooperative Societies, Swat

TABLE C-28 DISTRIBUTION OF IMPROVED SEEDS AND FRUIT SAPLINGS IN SWAT DISTRICT

Item		Amount			Remarks
		$1985 / 86$	$1986 / 87$	Average	
1. Seeds					Source: - Maize
- Paddy	$"$	11.2	12.5	11.9	Agricultural
- Groundnut	$"$	0.6	-	0.3	Development
- Gram	$"$	-	0.6	0.3	Authority
- Wheat	$"$	165.6	165.0	165.3	
2. Fruit Plants					
- Apple	No. of				
- Appricot	$"$	N.A	7,213	7,213	Source:
- Plum	$"$	N.A	1,452	2,352	Agriculture
- Peach	$"$	N.A	1,068	1,420	Extension
- Walnut	$"$	N.A	4,150	4,150	
- Persimmon	$"$	N.A	3,041	3,041	
- Pear	$"$	N.A	157	157	

TABLE C-29 OFF-TAKE OF FERTILIZER IN SWAT DIS'IRICT
(unit: ton)

Nutrition Element	$1984 / 85$	$1985 / 86$	$1986 / 87$	Average
N	3,487	7,917	8,321	6,575
P	1,561	1,924	2,460	982
K	55	213	567	278
Total	5,103	10,055	11,348	8,835

Source: Agricultural Development Authority N.W.F.P.

TABLE C-30 NUMBER OF AGRICULTURAL MACHINERY BY SUB-DIVISION (1989)

Item	Swat	Shangla Par	Buner	Total
1. Pumps	11	-		
- Tubewell (pumps)	603	82	75	760
- LiftPumps	$\underline{614}$	$\underline{82}$	100	796
Total				
2. Farm Machinery	1,073	65	415	1,553
(1) Tractors	155	10	70	235
(2) Wheat Threshers	152	44	8	204
(3) Rice Husker	122	4	90	216
(4) Maize Sheller	1	-	-	1
(5) Wheat Harvestor	11	-	8	19
3. Buldozer				

Source : EADA of Agriculture, Swat District

Animal	No. of Households			No. of Raised Animals				No of Animals per Raised Household
	Total	Farm Household	Non-Farm Household	Total	Farm Household	Non-Farm Household	Migratory Animals 3/	
1. No. of Households with Animals								
(1) Cattle	146.4	114.7(82.0)	31.7(77.9)	580.2	458.7	102.2	19.3	4.0
- Bull/Bullock $2 /$	N.A	N.A	N.A	155.5	146.1	7.9	1.5	1.3
- Cow 21	N.A	N.A	N.A.	226.0	166.0	50.5	9.5	1.5
(2) Buffaloes	91.0	78.5 (56.1)	12.5 (30.7)	270.3	229.6	33.3	7.4	$\underline{2.9}$
- Bull/Bullock 2/	N.A	N.A	N.A.	8.5	7.3	1.0	0.2	0.1
- Cow 2/	N.A	N.A	N.A.	162.1	142.9	15.7	3.5	1.8
(3) Mules/Donkey	19.3	12.1(86)	17.1 (42.0)	36.1	18.6	17.4	1.9	1.5
(4) Sheep	13.6	10.8(7.7)	2.8 (6.9)	226.9	85.7	22.5	118.7	7.9
(5) Goats	46.9	33.3(23.8)	13.6 (33.4)	437.5	210.4	60.5	166.6	6.3
(6) Poultry	171.2	112.7(80.6)	58.5 (143.7)	2,194.6	1,401.8	792.8	N.A	12.4
2. No of Households with and without Animals	180.6	$139.9(100.0)$	40.7 (100.0)	*				

Note: 1/ The figures in the parenthesis shows the percent of farm households with animals

TABLE C-32 NUMBER OF VETENARY FACILITIES

Animal		$\begin{aligned} & \text { No. of } \\ & \frac{\text { Cow Unit }}{(1000)} \end{aligned}$	Annual Nutrient Requirement			
		$\begin{gathered} \text { Dry } 1 / \\ \text { Mattor } \\ \left(\frac{000 \operatorname{ton})}{}\right. \end{gathered}$	$\frac{\operatorname{TDN} 21}{(000 \operatorname{ton})}$	$\left(\frac{\text { DCP } 3 /}{(000 \operatorname{ton})}\right.$		
1.	Cattle		224.3	499	222	20
	- Adult	192.3	428	190	17	
	- Young	32.0	71	32	3	
2.	Buffaloes	207.5	462	204	18	
	- Acult	186.8	416	184	16	
	- Young	20.7	46	20	2	
3.	Sheep	24.4	54	24	2	
4.	Coats	79.8	178	78	7	
5.	Poultry	25.7	57	25	2	
	Total	561.7	1,250	553	49	

Notes: Annual requirement per head are assumed as follows:
1/ $6.1 \mathrm{~kg} /$ day $\times 365$ days $=2,226 \mathrm{~kg}$
2/ $2.7 \mathrm{~kg} /$ day $\times 365$ days $=986 \mathrm{~kg}$
3/ $0.24 \mathrm{~kg} /$ day $\times 365$ days $=88 \mathrm{~kg}$

TABLE C-34 FISH PRODUCTION

Year	N.W.F.P.		Swat District	
	Production	Value	Production	Value
	(kg)	(lac. Rs)	(kg)	(lac. Rs)
$1970 / 71$	150,000	5.0	3,075	0.10
$71 / 72$	135,000	6.0	8,050	0.36
$72 / 73$	210,000	10.40	23,150	1.14
$73 / 74$	121,000	7.20	11,050	0.66
$74 / 75$	140,000	9.80	9,900	0.69
$75 / 76$	243,000	17.10	1,900	0.13
$76 / 77$	273,910	19.17	5,340	0.37
$77 / 78$	413,790	26.86	12,240	0.86
$78 / 79$	471,709	33.57	14,500	1.02
$79 / 80$	692,542	69.10	13,020	1.55
$80 / 81$	481,102	47.17	35,112	3.32
$81 / 82$	500,000	50.00	25,000	2.50
$82 / 83$	709,000	70.90	15,000	1.50
$83 / 84$	642,271	64.21	-	-
$84 / 85$	700,000	146.20	27,000	8.10
$85 / 86$	702,500	71.60	45,000	4.50

Source: Fisheries Dept., N.W.F.P.

TABLE C-35 PROPOSED CROPPING PATTERN AND INTENSITY
(Unit: \%)

Crop	Swat	Shangla Par	Buner
	Sub-Division	Sub-Division	Sub-Division

1. Pattern A (Reservor Irrigation)

Kharif

(1) Maize	30	20	40
(2) Rice	30	50	-
(3) Potato	-	-	-
(4) Sugarcane	-	-	20
(5) Fodders	20	10	20
(6) Vegetables	20	20	20
(7) Fruits	100.0	100.0	100.0
	Sub-Total		

Rabi

(1) Wheat	30	40	30
(2) Onion	20	20	-
(3) Sugarcane	-	-	20
(4) Fodders	10	10	10
(5) Vegetables	20	10	20
(6) Fruits	20	20	20
Sub-Total	$\underline{100.0}$	$\underline{100.0}$	100.0
	200.0	200.0	200.0

2. Pattern E (Improved Traditional Irrigation)

Nharif

Rice	100	100	100
Rabi			
Wheat 100 100 Total 200 200		$\underline{200}$	

	P \&	ω / p																			
	W/OP	1	2	3	4	5	6	7	8	9	10	11	12	23	14	1516	17	18	19	20	
Kharif Crops																					
1. Maize	1.1	1.2	1.2	1.2	1.3	1.3	1.3	1.3	1.3	-1.3	1.3	1.3	1.3	1.4	1.4	1.4					
2. Rice	-						.														
3. Pulses	0.6	0.6	0.7	0.7	0.7	0.8	0.8	0.9	0.9	0.9	0.8	0.9	1.0	1.0	1.0	1.0					Black Gram
4. Potato	6.9	6.9	6.9	7.0	7.0	7.2	7.2	7.5	7.5	7.7	7.7	7.8	7.8	7.9	7.9	8.0					
5. Vegetables																					
6. Sugarcane	21.8	21.9	21.9	22.5	22.5	23.0	23.0	23.5	23.5	24.0	24.0	24.5	25.0	25.0	25.5	26.0.				\cdots	
7. Fruits (Apple)																					
8. Fooders \& Others																					
Rabi Crops																					
1. Wheat	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.9	0.9	0.9	0.9	0.9	0.9	0.9	$0.9-$				-	
2. Rape \& Muscard	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5					
3. Puises	0.7	0.7	0.7	0.7	0.8	0.3	0.8	0.8	0.9	0.9	0.9	0.9	0.9	1.0	1.0	2.0				-	Lentiz
4. Onion	7.3	7.5	7.5	7.8	7.8	8.0	8.0	8.0	8.2	8.2	8.4	8.4	8.6	8.6	8.8	8.9				-	
3. Vegetables	-																				
6. Fodders	-																-	-			

TARGET YIELD (BARANI TO IRRIGATED)
$\stackrel{a}{3}$

Crop	$\begin{aligned} & \mathrm{P} \& \\ & \text { W/OR } \end{aligned}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	
Kharif Crops																						
1. Maize	1.0	1.3	1.5	1.7	2.0	2.2	2.3	2.4	2.5	2.5	2.6	2.7	2.7	2.8	2.8	2.9						
2. Rice	0.6	1.6	1.8	2.0	2.4	2.6	2.8	3.0	3.2	3.4	3.5	3.6	3.7	3.8	3.9	4.0						
3. Pulses	0.6	0.6	0.7	0.7	0.8	0.8	0.9	0.9	0.9	1.0	1.0	1.1	1.1	1.1	1.1						-	Black Gram
4. Potato	6.9	7.7	8.7	10.1	11.3	12.0	12.5	13.0	13.5	13.5	14.0	14.0	14.5	14.5	14.5	15.0					-	
5. Vegetables	-	5.0	6.5	8.5	10.5	12.0	12.5	12.5	13.0	13.0	13.0	13.0	13.5	13.5	13.5	14.0					\sim	Tomato
6. Sugarcane	12.8	25.0	28.0	32.0	36.0	38.5	39.5	40.0	40.0	40.5	40.5	41.0	41.5	41.5	41.5	42.0						
7. Fruits	-	-	-	-	-	-	3.0	5.0	7.0	9.0	11.0	12.0	13.0	13.5	14.0	14.0	14.0	14.5	14.5	14.5 :	15.0	Apple
8. Fodders	-	11.0	15.0	17.0	19.0	19.0	20.5	21.5	-	-	-	-	-	-	-	-						Maize
Rabi Crops																						
1. Wheat	0.8	0.9	1.2	1.7	2.2	2.5	2.7	2.9	3.0	3.1	3.2	3.3	3.4	3.5	3.5	3.6					-	
2. Rape \& Mustard	0.4	0.4	0.5	0.5	0.6	0.6	0.7	0.8	0.8	0.8	0.8	0.9	0.9	0.9	0.9	1.0					-	
3. Pulses	0.7	0.8	0.8	0.9	0.9	1.0	1.0	1.0	1.0	2.0	1.0	1.1	1.1	1.1	1.1	1.2						Lenil
4. Onion	7.3	8.0	9.5	12.0	14.5	15.5	16.5	16.5	17.0	1.7 .0	17.0	17.0	17.0	17.5	17.5	18.0						
5. Vegetables	-	4.0	6.0	8.0	9.0	9.5	10.0	10.5	11.0	11.0	11.0	11.5	11.5	11.5	11.5	12.0						
6. Fodcers	-	8.0	10.0	14.0	19.0	21.0	23.0	24.0	24.5	24.5	24.5	25.0	25.0	25.5	25.5	26.0						Shaftal

TABLE C-38 TARGET YIELD (IRRIGATED TO IRRIGATED)

													$1 P$								
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	$15 \quad 16$	17	18	19	20	
Kharif Crops																					
1. Maize	1.8	1.8	2.9	2.0	2.1	2.2	2.3	2.4	2.5	2.5	2.6	2.7	2.7	2.8	2.8	2.9					
2. Rice	1.6	1.8	2.0	2.2	2.4	2.6	2.8	3.0	3.2	3.4	3.5	3.6	3.7	3.8	3.9	4.0				-	
3. Pulses	0.8	0.9	0.9	0.9	0.0	1.0	1.0	1.0	1.0	1.0	1.0	2.1	1.1	1.1	1.1	1.2				-	Black Gram
4. Potato	11.2	11.3	11.4	21.5	12.5	12.0	12.5	13.0	13.5	13.5	14.0	14.0	14.5	14.5	24.5	15.0				-	Tomato
5. Vegetables	11.7	11.8	11.8	11.8	12.0	12.0	12.5	12.5	13.0	13.0	13.0	13.0	13.5	13.5	13.5	14.0					
6. Sugarcane	38.0	38.5	38.5	39.0	39.0	39.5	39.5	40.0	40.0	40.5	40.5	41.0	41.5	41.5	41.5	42.0					
7. Fruits	-	-	-	-	-	3.0	5.0	7.0	9.0	11.0	12.0	13.0	13.5	13.5	14.0	$14.0 \quad 14.0$	14.5	14.5	1.4 .5	15.0	Apple
8. Focders	18.6	19.0	19.5	20.0	20.5	21.0	21.5	22.0	22.5	23.0	23.5	24.0	24.0	24.5	24.5	25.0					Maize
Rapi Crops																					
1. Wheat	1.6	1.7	1.8	2.0	2.2	2.5	2.7	2.9	3.0	3.1	3.2	3.3	3.4	3.5	3.5	3.6				-	
2. Rape \& Mustard	0.6	0.6	0.6	0.6	0.7	0.7	0.7	0.8	0.3	0.8	0.8	0.9	0.9	0.9	0.9	1.0				-	
3. Pulses	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	2.0	1.1	1.1	1.1	1.1	1.2				-	Lentil
4. Onion	16.01	16.0	16.0	16.0	16.5	16.5	16.5	17.0	17.0	17.0	17.0	17.0	17.5	17.5	17.5	18.0				-	
5. Vegetables 9.0 (Cauliflower)		9.5	9.5	9.5	10.0	10.0	10.5	10.5	11.0	11.0	11.0	11.0	11.5	11.5	11.5	12.0					Cauliflower
6. Fodders	18.9	18.9	19.0	20.0	21.0	22.0	23.0	24.0	24.5	24.5	24.5	25.0	25.0	25.5	25.5	26.0					Shaftal

table c-39
$\frac{\frac{\text { Size ot bld' } \xi}{}}{\frac{\text { Bld'g }}{\left(\mathrm{m}^{2}\right)} \frac{\text { Residemce }}{\left(\mathrm{m}^{2}\right)}}$
QUANTETY OF AGRICULIURAL SUPFORTING FACILITIES

Equiprient	
1. Analytical Equipments	
2. Tools	
3	Farm Machinery
	- Tractor (20 - 30HP)
	- एower Tiller (5-10HP)
	- Plot Planter
	- Sprayer
	- Cuitivator
4	Bicycles
	- Pick-up
	- Motorcycle
5	Audio-visual Aids \& Others
	Analytical Equipment
	Furniture/Office Equipments
3	Bicycles
	- Minibus
	- Jeep
	- Pick-up

Facility/No. of Staff

 $\infty \mathrm{NG}$
Equipment

1. Stud Eull
2. Gear Article
3. Others
Total
4. Licuid Nitrogen Contrainer
5. Microscope
6. Injector \& others
7. Motorcycle
8. Liquid Nitroger Container
9. Microscope
10. Injector \& others
11. Motorcycle
12. Scale and Measures
13. Motorcycle
14. Brooder
15. Drinker (Large/Small)
16. Feeder
17. Generator and others
$\frac{\text { Size of Bld!g }}{\frac{\text { BIdg }}{\left(\mathrm{m}^{2}\right)} \frac{\text { Residence }}{\left(\mathrm{m}^{2}\right)}}$
) -
$1 \quad 1$
$\underset{\rightarrow}{\circ} \quad \infty$
∞
∞
므N
0
n
8
옹
$\underset{\substack{\mathrm{C}}}{\mathrm{C}}$
1,000
aciljty/No. of Staff
3.2. Natural Breeding Center

- Bull Attendant
3.3. Artificial Insemination
Center
- Veterinary Officer
- Inseminatos
- Cattie Attendant
\quad Total
3.4. Artificial Insemination Subcenter
- Inseminator
- Cattle Attendant
Total 3.5. Animal Nutrition Center
- Veterinary Officer - Production Assistant - Production Assistant 3 Total
3.6. Poultry Hatehery $\begin{array}{r}\text { - Manager } \\ -\quad \text { Attendant } \\ \text { Iotal }\end{array}$

$\begin{gathered} \stackrel{4}{3} \\ 0 \\ 0 \\ \vdots \\ 0 \\ \vdots \\ 0 \\ 0 \\ 0 \end{gathered}$			

TABYE C-60 PROPOSED AGRICULTURAL SUPPORTING FACILITIES EY TERM OF PHAN

Facilities	Target	Unit	Swat			Shangla Par			gunct			District Tocal		
			Shore	Micale	Long	Shore	Midele	Long	Short	Middle	Loras.	Short	siddle	200\%
1. Research														
1.1 Kalam Subscacion of the Mingora Station 1.2 Agricultural Research Instituee (Mingora)	District District	PIace	1	1								I	1	
2. Exteasion and Seed Production														
2.1 ATTD Farm (Main)	Discrice	"	1									1		
2.2 ATTD Farm (Branch)		"	2	4										
2.3 Agricultural Training Center	Every 3 co 5 UCS	${ }^{11}$	2	2	б	2	3	-	1	-	-	5	5	6
2.4 Agricultural Training Subcenter	All UCS	"	10	14.	24	6	3	4	2			27	17	18
2.5 Seed rarm	dill Su-bivisions	"	2			1			2			4		
2.6 Nutsery Stacion	All Sub-Divisions	s"		1		:					1	1	1	1
2.7 Fruits \& Vegetable Training Center	Districe .	"							2			2		
2.8 Eruits \& Vegecables Training Subcenter	All Sub-Tebsils	"	4			,			i	2	2	6	2	2
2.9 Bee-keeping Cencer	All Sub-Divisions	s "		1		1					1	1	1	1
3. Animal Husbandry Development														
3.1 Vecerinary Hospical	Every 3 to 5 UCS	"				4	1				1	4	1	\div
3.2 Nacural Ereeding Center		"	1			3	1				4	4	4	4
3.3 A.l Cencer	All Sub-Divisions					1			1			2		
3.4 A. 1 Subcenter	Every 3 to 5 UCS									1	1		i	2
3.5 Animal Nurition Center	All Sub-Divisions	s "	1			1				1		2	1	
3.6. Poulzry hachery	All Sub-Divisions	s "		1		1						1	1	
4. Soil Censervation Project	Throughoue Districe	r "										$1 / 3$	$1 / 3$	1/3
5. Earm Mectanizacion														
3.1 rractor station		${ }^{\prime}$				2						3		
á. Cooperatives/rnpuc Supply														
6.1 Cooperatives Inspector Office	Every 3 to 3 UCS	"				1	2	-				1	2	
6.2 Agricultural Cooperative Bank	All Sub-Divisions					2		-				1		
6.3 aDA Soil Point Warehouse	dll Sub-Divisions	"			1							1		
7. Markecing system														
7.I Vegetable and Fruit Market		"		6		4				2		4	8	
7.2 Computer System .		"	1									1		
8. Small Industry														
8.1 Women Gandicraft Inspectoress Office and Women Handicraft Center	Al. Sub-Divisions	"				1						1		
8.2 Fruit Processing Industry		${ }^{\prime \prime}$		$:$										1
8.3 Nooderafe Center		"					1						1	
8.4 Gabion Manufaceure Factory		:				1						:		

TABLE C-41 LOCATION OF AGRICULTURAL SUPPORTING FACILITIES (LONG TERM DEVELOPMENT PLAN)

TABLE C-42 AGRICULTURAL SUPPORTING FACDITIES SCHEMES

TABLE C-43 LAND USE SUB-TEHSL CHAKESAR

Village	No. of Land Owner	No. of Tenants	No. ofFieldsTotal Area	Total	Cultivatod Land							Uncultivated Land							
					Imigated							Total	Cuitu- rob?e Waiste	Pesture Land	Graming	Timber	Shrub Forest	Hill of Kelarc	Not Available Cultivation
					Sub- Total	Annual Crops	Orchard	$\begin{aligned} & \text { Mainly } \\ & \text { Rice } \end{aligned}$	$\begin{aligned} & \text { Tube } \\ & \text { weil } \\ & \text { Pump } \\ & \text { Irri. } \end{aligned}$	National	Un-i.xrigation								
1. Bar Paw	4,034	2,852	14,554	5,173	232	-	-	232	-	-	4,941	938	887	3.017	1,274	2,220	2,339	-	644
1. Chakesar	1,022	800	2,037	789	110	.	-	110	-	-	679	1,248	145	468	326	52	121	-	136
2. Khadang	594	300	1,339	594	7	.	-	7	-	-	587	745	102	387	50	81	74	-	51
3. Kadona	392	180	1.098	404	7	-	-	7	-	-	397	694	35	135	179	71	243	-	31
4. Langbar	618	500	1,937	589	22	-	-	22	-	-	567	1,348	140	418	197	405	100	-	88
5. Bunerwall	200	100	1,633	407	4	-	-	4	-	-	403	1,226	61	415	85	135	486	-	44
6. Katkor	300	100	1,129	358	35	-	-	35	-	-	323	771	89	108	52	364	112	-	46
7. Danakol	501	201	2,559	595	15	-	-	25	-	-	580	964	49	312	54	446	48	-	55
8. Chedam	249	149	625	255	4	-	-	4	-	-	251	370	39	181	6	81	23	-	40
9. Opal	38	200	1,268	392	4	.	-	4	-	-	388	876	88	92	58	526	74	-	38
10. Punial	39	80	397	132	6	-	-	6	-	-	126	265	13	85	109	8	23	-	27
11. Gulibat	41	190	896	426	10	-	-	10	-	-	416	470	98	205	36	52	35	-	45
12. Karora	40	52	636	232	8	-	-	8	-	-	224	404	28	211	122	-	-	-	43
2. $\mathrm{Kuz}^{\text {Paw }}$	2,165	1,258	9,185	1,662	177	-	-	177	-	-	1,485	7,523	396	2.253	1,699	2,429	321	-	425
13. Taloon	680	680	3,838	605	25	-	-	15	-	-	590	3,233	157	679	250	2,024	29	-	94
14. Sarkool	319	280	1.004	201	39	.	-	39	-	-	162	803	59	389	265	4	14	-	72
15. Droot	361	203	729	137	1	.	-	1	-	-	136	592	35	148	175	175	9	-	50
16. Counagar	210	109	860	129	40	-	-	40	-	-	89	731	29	327	308		-	.	67
17. Tatkul	258	129	1,779	273	74	.	-	74	-	-	199	1,504	91	417	469	202	229	.	95
18. Danday	337	137	977	317	8	.	-	8	-	-	309	660	25	293	232	24	40	-	46
1 Total	6,199	4,120	23,739	6.835	409	.	-	409	-	-	6,426	6.904	1,283	5.270	2,973	4.649	1.660	-	2,069

TABLE C-44 LAND USE SUB-TEHSU PURAN (1989)

TABLE C-45 LAND USE SUB-TEESK MARTUNG

Village	$\begin{aligned} & \text { No of of } \\ & \text { land } \\ & \text { owner } \end{aligned}$	No of Tenants	Na of Fields Total area	Cultivated Land								Uncultivated Land							
				Total	Irrigated						Unirr igated	Total	$\begin{gathered} \text { Cultura } \\ \text { ble } \\ \text { waiste } \end{gathered}$	Pasture land	Grazing land	Truber Forest	Shrub Forest	Finill of Kalam	$\begin{gathered} \text { Not } \\ \text { availabie } \\ \text { for } \\ \text { curtivati } \\ \text { on } \end{gathered}$
					Sub Total	Annual crops	Orchard	Mainly Rice	Tube well Pump Irri	$\begin{aligned} & \text { Nation } \\ & \text { al } \\ & \text { Project } \end{aligned}$									
Martung U.C.	3,460	1.455	9.737	2,779	206	-	-	206	-	-	2.573	6,958	$\underline{295}$	4,745	622	547	-	-	749
1. Manz Kolay	280	134	1,297	333	31	.	-	31	-	-	302	964	75	394	283	237	-	-	35
2. Koz-Kalay	349	235	773	354	31	-	-	31	-	-	202	419	30	273	35	40	-	-	41
3. Mondoris	65	50	365	126	5	-	-	5	-	-	121	239	15	163	9	37	-	-	15
4. Mirjalay	120	9	253	81	6	-	-	6	-	\sim	75	172	1	143		19	-	-	9
5. Serai	181	43	235	41	20	-	-	10	-	-	31	194	2	167		.	-	-	25
6.Alamas-Banda	284	37	542	158	10	-	-	10	.	-	148	384	5	326	23		.	.	30
7. Shaga	83	55	161	74	6	-	.	6	-	-	68	87	3	- 47	28	.	-	.	9
8. Kotki-Mart	105	25	132	57	3	-	-	3	-	-	64	65	1	55		-	-	-	9
9. Ashara Sar	30	6	158	28	-	-	*	-	-	-	28	130	15	79	22	11	-	-	3
10. Dora Sar	82	10	130	68	1	-	-	1	-	-	67	62	5	53		-	-	-	4
11. Kabail Gram	547	260	2,050	448	23	-	-	23	-	-	425	1,602	77	2,224	134	-			167
12. Geer	184	20	310	94	8	-	.	8	-	-	86	216	12	167	18	-	-	-	19
13. Behar	410	141	887	212	45	-	-	45	-	-	167	675	67	489		-	-	-	119
14. Hasham Khel	138	28	363	59	6	-	-	6	-	-	53	304	5	239	70°	12	-	-	48
15. Kamach	602	402	2,081	636	21	-	-	21	-	-	675	1,445	42	926	70	191	-	-	216
Balikhel U.C.	3,034	720	6,146	1,735	144	-	-	114	-	-	$\underline{1.621}$	4,411	$\frac{180}{57}$	2.896	$\frac{168}{137}$	$\frac{797}{306}$	-	-	$\frac{420}{220}$
16. Dedal	517	310	2,254	533	43	-	-	43	-	-	490	1,721	57	999	137	306	-	-	222
17. Mosakhel Sar	160	46	237	75	-	-	\cdot	-	\cdot	-	75	162	3	116	2	30	-	-	11
18. Solay	114	13	179	73	-	-	-	-	-	-	73	106	2	99		-	-	-	5
19. Nask	179	23	228	73		-	-	-	-	-	73	155	19	70	7	59	-	-	7
20. Codo-Garee	197	10	281	88	4	-	-	4	-	-	84	193	5	167	7	-	-	.	14
21.Charg Bala-Khel	46	31	136	34	4	-	-	4	-	-	30	102	5	89			\cdot	-	8
22. Torani	373	41	465	129	6	-	-	6	-	-	123	336	25	200	-	84			27
23. Dankool	325	66	398	116	9	-	-	9	-	-	107	282	14	228	2	18	-	-	20
24. Thitwalan	396	72	811	207	22	-	-	22	-	-	185	604	17	374	11	165	-	-	37
25. Thirauope!	111	3	157	78	-	"	-	-	-	-	78	79	11	47	-	15	-	-	6
26. Rich-Ban	110	18	233	68	1	-	-	1	-	-	67	165	3	91	1	64	-	-	6
27. Rish-Kand	203	44	264	92	11	-	-	11	-	-	81	172	6	144	-	1	-	-	21
23. Pishlore	303	43	503	169	14	-	-	1.4	-	*	155	334	13	272	8	5	-	-	36
Total	6,494	2,127	15,883	4,514	320	\cdots	-	320	-	-	7,194	1,369	475	7,641	790	1,294	-	-	1,169

(Unit: ha)																								
Crop	Total						Chakesar						Puran						Martung					
	Total		Irrigated		Unirrigated		Total		Irrigated		Ünirrigated		Total		Irrigated		Unirrigated		Total		Irrigated		Unirrigated	
	(ha)	(\%)																						
a.C ultivated Area	19.770	100	$\underline{1.940}$	100	17,830	100	6,860	100	410	1.00	6,450	100	8,400	100	1.210	100	7.190	100	4.510	100	320	100	4,190	100
2.Cropped Area (Total)	32,624	165	$\underline{2,734}$	141	$\underline{29,890}$	168	10,967	160	667.	162	10,300	160	13,982	166	$\underline{1,554}$	129	12,428	173	7,675	170	513	$\underline{160}$	7,162	171
Kharif Ncrops	18,335	93	1,917	99	16,418	$\underline{92}$	6.797	$\underline{99}$	411	100	6.386	99	7.831	93	1,186	98	6,645	$\underline{92}$	$\underline{3,707}$	$\underline{82}$	320	100	3,387	81
- Maize	16,806	85	501	26	16,305	91	6,470	94	132	32	6,338	98	6,864	81	253	21	6,605	92	3,472	77	110	34	3,362	80
- Rice	1,413	7	1,392	72	21	.	320	5	279	68	41	1	904	11	903	75	1	.	210	4	210	66	0	-
- Pulses\&Beans	34	-		-	34	1	6	-	-	-	6	-	3	-	-	-	3	-	25	1	-	.	25	1
-Sugarcane	46	1	17	2	29	-	-	-	-	-	-	-	46	1	27	2	29	-	-	-	-	-	-	-
		-	-			-	-	.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
- Vegerables	5	-	4	-	1.	-	1	-	-	-	1	-	4	\bullet	4	-	0	-	-	-	-	-	-	-
-Fruits	1	-	1	-	0	-	-	-	-	-	-	-	1	-	1	-	0	-	-	-	-	-	.	-
- Others	9	-	2	-	7	-	-	-	-	-	-	-	9	-	2	-	7	-	-	-	-	-	-	
Rabi Croos	$\underline{14.289}$	72	817	42	13,472	76	4,170	61	256	62	3,914	61	6,151	73	368	31	5,783	81	3,968	88	193	60	3.775	$\underline{9}$
- Wheat	13,698	69	732	38	12,966	73	4,104	60	229	56	3,875	60	5,721	68	359	30	5,362	80	3,873	86	144	45	3,729	89
- Barley	261	1	12	2	249	1	41	1	2	-	39	1	180	2	5	1	175	1	40	1	5	2	35	1
$\begin{aligned} & \text { - Rape and } \\ & \text { Mustard } \end{aligned}$	24	0	-		24	-	-	-	-	-	-	-	22	1	.	.	22	-	2	-	-	-	2	.
- Fodders	138	1.	4	-	234	2	-	-	-	-	-	-	125	1	-	-	125	-	13	-	4	1	s	1
- Others	168	1	69	3	99	1	25	-	25	6	0	-	103	1	4	-	99	-	40	1	40	12	0	-

[^4]

FIGURE C-2 PROPOSED CROPPING PATTERN

PATTERN A (RESERVOIR IRRIGATION)

Area	JAN.	FEB.	mar.	APR.	may	JuN.	JUL.	AUG.	SEP.	ост.	NOV.	DEC	Remarks
$\begin{aligned} & \text { Swat } \\ & \text { Sub-Diviaion } \\ & \\ & 80 \\ & \\ & 0 \\ & 40 \\ & \\ & 20 \end{aligned}$							Maize Rice bles				$\underbrace{0}_{\text {etab }}$		L.P.: Land Prepara tion S : Sowing T : Transpor tation H: Harvesting
							Maiz Ric les	\square					*
Buner Sub-Division 80 60 40 20							Maiz es						

pattern b (Improved trational. frrigation)

FIGURE C-3 CROSS SECTION SHOMING MAIN FEATURES OF BENCH TERRACES

'TABLE C-4'7 IOCATION AND SCALE OF MARKETING FACILITLES

$$
\text { (unit: } m^{2} \text {) }
$$

Sub-Division	Location	Scale of Marketing Facilities			
		Auction/0ffice			Total
		Size	Facilities	Car Park	
	(lown)				
Swat					
	Mjngora	Big	1,680	8,100	9,780
	Matta	Medium	840	2,100	2,940
	Khawazakhela	Medium	840	2,100	2,940
	Bahrain	Small	420	1,050	1,470
	Kalam	Small	420	1,050	1,470
	Kabal	Small	420	1,050	1.470
Shangla Par					
	Alpuri	Small	420	1,050	1,470
	Chakesar	Small	420	1,050	1,470
	Aloch	Small	420	1,050	1,470
	Martung	Small	420	1,050	1,470
Buner					
	Sawari	Medium	840	2,100	2,940
	Pir Baba	Snal1	420	1,050	1,470

TARLE C-48 LOCATION OF INFORMATION SYSTEM CENTER AND TERMINAL

| | ADBP Swat
 Sub-Division
 (Facilities) | Kegional Office
 (Conmputer Center) |
| :--- | :--- | :--- | | (Computer Terminal) |
| :--- |

ANNEX D. AGRICULTURAL INFRASTRUCTURE

CONTENTS

Page

1. Existing National Irrigation Schemes and Flood Protection Works in the Project Area D- 1
2. Consumptive Use and Irrigation Water Requirement in Every a Third Month in Accordance with the Proposed Cropping Pattern D-2
3. Case Study on Irrigation and Hydel Power Scheme D-10
4. List of Facility Plan for Agriucltural Infrastructure D-29
5. List of Existing Irrigation Channels D-30

LIST OF TABLES

Page
Table D-1 Irrigation Area in Proposed Scheme D-2
Table D-2 Consumptive Use of Water in Every a Third Month in Accordance with the Proposed Cropping Pattern
-(1) Swat D-3
-(2) Shangla Par D-4
-(3) Buner D-5
Table D-3 Irrigation Water Requirement in Every a Third Month in Accordance with the Proposed Cropping Pattern

- (1) Swat D-6
- (2) Shangla Par D-7
- (3) Buner D. 8
Table D-4 Irrigation Water Requirement at Improved
Traditional Irrigation System Area in Swat, Shangla Par \& Buner D. 9
Table D-5. Result of Case Study on Irrigation and Hydel Power Scheme D-12
Table D-6. Reservoir's Behaviour Trial
- (1) to (4) Sandai-Aloch Case-1 to 4 D-17
- (5) to (8) Choga Case-1 to 4 D-21
- (9) to (12) Chakesar Case-1 to 4 D-25
Table D-7 Agricultural Infrastructure: Facility Plan D-29
Table D-8 List of Existing Irrigation Channels D-30

LIST OF FIGURES

Page

Figure D-1 Existing National Irrigation Schemes and Food Protection Works in the Project Area D-1
Figure D-2 H-V,H-A Curves
-(1) Sandai Dam D-13
-(2) Choga Dam D-14
-(3) Chakesar Dam D-15
Figure D-3 Behaviour Trial at Sandai Dam D-16

TABLE D-1 IRRIGABLE AREA IN PROPOSED SCHEMES

TABLE D-2-(1) CONSUMPTIVE USE OF WATER IN EVERY A THIRD MONTH IN ACCORDANCE WTTH THE PROPOSED CROPPING PATTERN

TABLE D-2-(2) CONSUMPTIVE USE OF WATER IN EVERY A THIRD MONTH IN ACCORDANCE WITH THE PROPOSED CROPPING PATTERN

TABLE D-2-(3) CONSUMP'TVE USE OF WATER TN EVERY A THIRD MONTH IN ACCORDANCE WITH THE PROPOSED CROPPING PATTERN

						UNER							: mom	
	CROP	EVAIO-TRANS-	MAI	7E.	Silgar	Canf.	WHE		FOnOE		veget	BLES	FRUI	
TERM		$\frac{\text { Piration }}{\text { ETO }}$	RC	ETC	KC	ETC	KC	ETC	X ${ }^{-}$	ETC	KC	ETC	KC	ErC
MONTII	$\overrightarrow{\text { AYS }}$	(mm)												
JAN.	110	18.0			1.25	22.5	0.68	12.2	0.57	10.3	1.01	18.2	0.85	15.3
Eto	LI 10	18.0			1.25	22.5	0.78	14.0	0.64	11.5	1.02	18.4	0.85	15.3
1.8	1111	19.8			1.25	24.8	0.84	16.6	0.71	14.1	0.91	18.0	0.85	16.8
num/diny														
FE.B.	110	25.0			0.95	23.8	0.88	22.0	0.78	19.5	0.80	20.0	0.85	21.3
	1110	25.0			0.95	23.8	0.91	22.8	0.87	21.8	0.80	20.0	0.85	21.3
2.5	II 8	20.0			0.95	19.0	0.96	19.2	0.97	19.4			0.85	17.0
Mar.	110	37.0			0.70	25.9	0.99	36.6	1.02	37.7			0.85	31.5
	1110	37.0			0.70	25.9	1.02	37.7	1.04	38.5			0.85	31.5
3.7	W11	40.7			0.70	28.5	1.01	41.1	1.90	40.7			0.85	34.6
APR.	110	55.0			0.40	22.0	0.98	53.9	0.93	51.2			0.95	52.3
	II 10	55.0			0.40	22.0	0.78	42.9	0.80	44.0			0.95	52.3
	1110	55.0			0.40	22.0	0.54	29.7	0.67	36.9			0.95	52.3
Mâ	110	74.0			0.75	55.5	0.37	27.4	0.63	46.6	0.36	26.6	1.05	77.7
	1110	74.0			0.75	55.5	0.35	25.9	0.60	44.4	0.42	31.1	1.05	77.7
7.4	It 11	81.4			0.75	61.1	0.32	26.0	0.58	47.2	0.49	39.9	1.05	85.5
SIN.	110	84.0	0.38	31.9	0.95	79.8					0.66	55.4	1.15	96.6
	1110	84.0	0.41	34.4	0.95	79.8					0.84	70.6	1.15	96.6
8.4	In 10	84.0	0.44	37.0	1.10	79.8					0.98	82.3	1.15	96.6
.Jut.	110	67.0	0.50	33.5	1.10	73.7					1.03	69.0	1.15	77.1
	1110	67.0	0.59	39.5	1.10	73.7					0.93	62.3	1.15	77.1
6.7	mil	73.7	0.68	50.1	1.10	81.1					1.05	77.4	1.15	84.8
atic.	110	57.0	0.76	43.3	1.25	71.3					0.93	53.0	1.15	65.6
	[1 10	57.0	0.82	46.7	1.25	71.3					0.81	46.2	1.15	65.6
5.7	III 11	62.7	0.87	54.5	1.25	78.4					0.80	50.2	1.15	72.1
SEP.	110	50.0	0.89	44.5	1.25	62.5					0.80	40.0	1.10	55.0
	I 10	50.0	0.89	44.5	1.25	62.5					0.80	40.0	1.10	55.0
5.0	[i 10	50.0	0.87	43.5	1.25	62.5					0.36	18.0	1.10	55.0
оСт.	I 10	38.0	0.84	31.9	1.25	47.5					0.42	16.0	0.90	34.2
	1110	38.0	0.83	31.5	1.25	47.5					0.49	18.6	0.90	34.2
3.8	m 11	41.8	0.82	34.3	1.25	52.3	0.35	14.6			0.57	23.8	0.90	37.6
NOV.	110	24.0			1.25	30.0	0.38	9.1	0.34	8.2	0.66	15.8	0.85	20.4
	[1 10	24.0			1.25	30.0	0.41	9.8	0.37	8.9	0.82	19.7	0.85	20.4
2.4	III 10	24.0			1.25	30.0	0.43	10.3	0,42	10.1	0.96	23.0	0.85	20.4
DEC.	110	16.0			1.25	20.0	0.50	8.0	0.45	7.2	1.04	16.6	0.85	13.6
	U 10	16.0			1.25	20.0	0.55	8.8	0.47	7.5	0.77	12.3	0.85	13.5
1.6	[111	17.6			1.25	22.0	0.61	10.7	0.52	9.2	0.92	16.2	0.85	15.0
TOTAL	(36) 365	1,660.7		601.1		30.5		499.3		534.9		018.6		708.9

[^0]: 1/ United States Department of Agriculture

[^1]: 1/ Measurement of the mapping units on the soil map (scale 1:250,000)

[^2]: 1/ Source: H.Rehman, A.Bhatti, B.Aimin and A.H.Raja, "Fertilizer
 Experiment on Cereal Crops" Agricultural Research Institute, Tarnab, Peshawar ,NWFP in 1983.

[^3]: Source: Agricultural Statistics of Pakistan: MFC

[^4]: Note: It is observed that Kharif Potato is grown in the above area.
 Source: Land Revenue Office, Swat District

