2-4 Results of Chemical Analyses of Ores

2-4-1 Sampling and chemical analysis

The 81 ore samples, intersected by diamond drill, were collected and were chemically analysed for the 8 REE of lanthanum (La), cerium (Ce), neodymium (Nd), samarium (Sm), europium (Eu), telbium (Tb), ytterbium (Yb) and lutecium (Lu), and the related 7 elements of phosphorus (P), barium (Ba), strontium (Sr), neobium (Nb), yttrium (Y), uranium (U) and thorium (Th), totally for 15 elements.

The methods of chemical analysis and analysis accuracy are identical with those for the samples of Buru Hill cores (Refer to 1-4-1).

2-4-2 Statistic values of analysis data and statistic interpretations

(1) Statistic values

The statistic values of the chemical analysis informations on 81 ore samples are shown in Table II -2-2.

The average values of the chemical contents of the elements show approximately a half of those of the mineralized zone in the Buru Hill body, supergene enriched, and approximately two third of those of the primary zone in the Buru Hill body (Refer to Section 1-4-2), estimated to be considerably low-graded. They are, however, fairly higher than those of ferrocarbonatite body samples collected by the ground surface geochemistry of the first-year work (Phase I), i.e., 1.35 times of LREE (La + Ce + Nd: 0.98 percent). It, consequently, shows that the average values of the chemical contents of the elements are higher in the occasions of drill core than those of ground surface specimen, however, is still on a considerably low-graded level.

(2) Interpretations of mutual correlations

The mutul correlation coefficients among the 15 elements are shown in Table II -2-3. Major relations are summarized below:

- i) Ba: Highly correlated to REE, particularly to LREE.
- ii) Nb: Weakly correlated to the other elements.
- iii) Y: Highly correlated to REE, particularly to MREE and HREE.
- iv) U and Th: Highly correlated to MREE.
- v) LREE, MREE and HREE: Highly mutually correlated to the elements of the individual group, i.e., La is to Ce and Nd, and etc..

(3) Principal component analysis

The summarized results of the principal component analysis are shown in Table II -2-4. The contribution ratio of more than 5 percent is produced by from the 1st through 5th principal components, by what some 90 percent of the entire results of the chemical analyses are represented by the above five principal components.

Table II-2-2 Summary of Statistics of Analysis - Drill Core Samples -

omponent	Unit	No. of	PUBLISH	Miniaua	Hean(m)	Standard deviation	m - 26	m - σ	m + σ	m + 2σ
P	PPM	81	15850	732	3338.1	0.337	706.8	1536.0	7254.6	15766.0
BA	K	81	10.60	0.21	2.787	0.3374	0.589	1.281	6.062	13.184
SR	PPM	81	4010	675	1579.8	0.172	714.8	1062.6	2348.7	3491.9
NB	PPM	81	1500	78	454.4	0.238	151.9	262.7	785.8	1359.0
Y	PPN	81	1250	71	239.5	0.226	84.4	142.2	403.4	679.4
U	PPM	81	32.6	1.6	8.85	0.265	2,61	4.80	16.30	30.04
TH	РРМ	81	2893.0	81.0	527.29	0.357	101.64	231.51	1200.98	2735.38
LA	8	81	2.460	0.008	0.2746	0.5819	0.0188	0.0719	1.0487	4.0D45
CE	*	81	2.13	0.02	0.542	0.3811	0.094	0.225	1.303	3.133
ND	×	81	0.41	0.01	0.163	0.3222	0.037	0.077	0.342	0.717
SM	PPM	81	349.0	19.4	133.93	D.225	47.53	79.79	224.80	377.34
EU	.PPM .	81	91.6	6.6	39.49	0.218	14.45	23.89	65.28	107.92
тв	PPM	81	43.0	2.6	10.04	0.219	3.66	6.06	16.63	27.54
YB	PPM	81	65.5	3.3	11.56	0.272	3.30	6.18	21.66	40.55
LU	PPM	81	9.5	0.4	1.87	0.227	0.66	1.11	3.16	5.32

	Table	II-2-3	Corre	lation Co	efficients	– Drill C	ore Samp	oles —		·
	P	BA	SR	NB	Y	U	TH	LA	CE	ND
P BA SR NB Y U TH LA CED SM EU SM YB LU	1.0000 -0.1029 0.5450 0.2350 0.3672 0.2548 0.4061 -0.1382 -0.0902 0.0212 0.1812 0.2164 0.2598 0.2751	D.1596	0.5450 0.2862 1.0000 0.0413 0.0748 0.4845 0.1854 0.2272 0.2827 0.2827 0.2362 0.2379 0.2362 0.2379 0.2368	0.2350 0.0928 0.0943 1.0000 0.1771 0.0067 0.2137 0.2292 0.1697 0.0150 0.0200 0.1187 0.0436 0.1172	0.3672 0.2504 0.10748 0.1771 1.0000 0.2032 0.3546 0.1937 0.3146 0.3922 0.4872 0.5882 0.7623 0.8386 0.7433	0.2548 0.3322 0.4445 0.0610 0.2032 1.0000 0.5642 0.0589 0.3176 0.5975 0.7120 0.6693 0.4659 0.1860 0.2176	0.4061 0.1596 0.1854 -0.0067 0.3546 0.5642 1.0000 -0.3085 0.0095 0.4648 0.7779 0.6866 0.5913 0.3255 0.1866	-0.1382 0.6422 0.2272 0.2137 0.1937 0.9589 1.0000 0.9070 0.5099 0.0781 0.1347 0.1785 0.1481 0.3961	-0.0902 0.8287 0.2827 0.2292 0.3146 0.3176 0.0095 0.9070 1.0000 0.8122 0.4293 0.4424 0.4097 0.2236 0.4051	0.0212 0.8341 0.2971 0.1697 0.3922 0.5975 0.4648 0.5099 0.8122 1.0000 0.8093 0.7503 0.6080 0.2724 0.2936
	SH	EU	ТВ	YB	LU					
P BA SR NB U THA LAE NO SM U EB U SM U EB U SM U SM U SM U SM U SM U SM U SM U SM	0.1812 0.4983 0.2362 0.0150 0.4872 0.7120 0.7779 0.0781 0.4293 0.8093 1.0000 0.9464 0.7942 0.3949	0.2164 0.4741 0.2379 0.0200 0.5882 0.6663 0.1347 0.4424 0.7503 0.9464 1.0000 0.6521 0.4345 0.3762	0.2598 0.3687 0.1528 0.1187 0.7623 0.4659 0.5913 0.1785 0.4097 0.6080 0.7942 0.8521 1.0000 0.6005 0.5593	0.2751 0.1479 0.0503 0.0436 0.8386 0.1860 0.3255 0.1481 0.2236 0.2724 0.3949 0.4345 0.6005 1.0000 0.8010	0.2627 0.2271 0.2748 0.1172 0.7433 0.2176 0.1866 0.3961 0.4951 0.2936 0.2957 0.3762 0.5593 0.8010					

0.128 0.338 0.735 0.023 0.013 0.013 0.013 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.038 0.059 0.032 0.350 0.022 <u>ښ</u> 0.344 0.872 0.760 0.204 0.204 0.262 0.262 0.262 0.034 0.045 0.045 ဝုဝုဝ 0.238 0.238 0.238 0.334 0.311 0.000 0.058 0.058 0.008 Samples 0.715 0.267 0.020 0.025 0.035 0.003 0.003 0.003 0.003 0.003 강 Drill Core -0.189 -0.109 0.012 0.161 0.167 0.167 0.1683 0.083 0.025 0.025 0.092 0.012 0.005 0.005 0.002 0.002 5 0.037 0.088 0.088 0.088 0.008 0.008 0.354 0.334 0.253 0.352 0.124 1 of Principal Component Analysis 0.260 0.101 0.162 0.207 0.207 0.164 0.164 0.056 000 0.858 0.858 0.732 0.137 0.017 0.079 0.068 0.172 0.030 0.030 0.035 0.021 0.021 0.021 0.368 0.368 8 | | 0.649 0.612 0.612 0.377 0.138 0.003 0.017 0.027 0.001 0.0135 0.153 ä 000 0.055 8 Summary 0.246 0.116 0.696 0.039 0.039 0.039 -0.404 0.078 0.308 Eigen vector Factor loading -Contribution Eigen vector Factor loading Contribution Elgen vector Factor loading Contribution Eigen vector Factor loading Contribution Zigen vector Pactor loading Contribution Table II-2-4 68.0 76 0 6.73 0.83 0.92 0.60 0.171 0.097 0.065 6.032 0.971 6.476 1.94.1 2.561 **.**

- The 1st principal component: Factor loading values of the 12 elements, other than P,
 Sr and Nb, are high 0.41 to 0.89. Show joint behaviours as the group of REE.
- ii) The 2nd principal component: La and Ce particularly show high factor loading values. The values are estimated to be shown by a concentration of La and Ce, which are highly contained in ores in comparison with other REE.
- iii) The 3rd principal component: Y, Yb and Lu show high factor loading values, which are probably caused by a similar concentration mechanism of Y and HREE.
- iv) The 4th principal component: Phosphorus solely shows a high factor loading value, which is probably caused by an independent behaviour of cencentration of phosphorus of the other elements.
- v) The 5th principal component: Nb solely shows a high factor loading value, which is probably caused by an independent behaviour of concentration of Nb of the other elements, similar to that of phosphorus.

2-4-3 Chemical contents of the element in ores by each drill hole

The weighted average values, [The sum of (Content × Width) / The sum of Width], of the chemical contents of the elements in ores by individual drill hole are shown in Table II-2-5. The 10 samples of low-graded section, deeper than 17.70 metres depth of the Hole KG-4, were omitted from the processing. Assay cross section through each drill hole is shown in Fig. II-2-7.

An obvious REE-mineralization in ferrocarbonatite dyke is observed in the continuous section of massive ferrocarbonatite of Hole KG-2, where mineralized zone is some 30 metres wide (an apparent width: 32.9 metres), chemical grades of which are La+Ce+Nd: 2.1 percent, Sm + En + Tb: 200 ppm and Yb + Lu: 15 ppm.

A notable mineralization of LREE is also observed in Holes KG-1 and KG-3, operated on both sides of Hole KG-2, where LREE content shows 1.6 percent, respectively. The mineralization in Hole KG-1 is hosted in a swarm of ferrocarbonatite dykelets, 15 metres apparently wide by a hole-intersection, meanwhile, the mineralization is laterally debilitated in short distance. In Hole KG-3, an interposition of unmineralized rock, basement rock or phonolite and etc., some 20 metres wide, is situated, so that an overall average grade of ferrocarbonatite dyke body is low-gradedly estimated to be of LREE: 1.16 percent, considerably low. In Hole KG-4, the mineralized zone, while a weak mineralization in lower section of the hole is excluded, shows LREE: 1.48 percent in the 18 metre-width. In Hole KG-5, a weak mineralization, LREE: 1.26 percent, is observed in a wide ferrocarbonatite dyke body, meanwhile, a similar grade of mineralization is also observed in Hole KG-6, where the width of ferrocarbonatite dyke body is of some 14 metres wide and the mineralization is considered to be likely terminated.

It is, therefore, summarized that the concentration grade of REE in the Kuge Hill area, which is to be compared with that in the oxydized zone of the Buru Hill area, is limitedly defined in narrow area in the vicinity of the hole site KG-2 and has a limited extension northerly and

Table II-2-5 Average Value of Elements and Component by Drill Hole

DDH No.	Number of Samples	Number Total p of length P Samples Analyzed (m) (ppm)	(mdd)	B2 (%)	Sr (ppm)	Nb (mag)	Y (mgq)	U (mdd)	Th (ppm)	La (ppm)	් ව් ව්	(wád) PN	Sm (ppm)	Eu (ppm)	Tb (ppm)	Yb (ppm)	Lu (ppm)	La+Ce+Nd (ppm)	Sm+Eu+To (ppm)	Yb+Lu (ppm)
KG-1	11	14.90	5191.1	3.747	2441.1	559.6	202.0	18.14	894.04	5961.7	7681.2 2	2361.1 194.15	194.15	58.25	11.86	7.39	1.76	16004.0	264.26	9.15
KG-2	13	32 90	4906.4	4.320	2108.4	410.4	331.6	11.49	476.71	8562.9	10507.3	2069.6 140.01		47.62	13.63	13,41	2.13	21139.8	201.26	15.54
KG-3	316	41.95	5471.4	3,618	1374.2	699.5	436.3	8.38	777.23	5480.1	8799.4	2319.9	179.50	56.73	17.38	21.30	3.10	16599,4	253.61	24.40
KG4	9	18.10	6284.5	4.341	2093.5	546.1	241.0	8.90	841.91	5437.0	7561.9	7561.9 1887.3 141.18	141,18	37.20	9.39	14.80	2.24	14886.2	187.77	17.04
KG-5	18	51.50	3511.3	3,458	1782.4	563.4	209.7	8,03	502.29	4462.6	6502.4	6502.4 1680.8 113.58		29.20	8.36	12.09	2.05	12645.8	151.14	14.14
KG-6	7	14.40	1991.4 4.086		1306.6	476.5	241.1	6.75	248.68	4448.9	5968.4	5968.4 1599.3 103.71		31.45	7.47	11.14	1.70	12016.6	142.63	12.84
Total	71	173.75	4555,7 3.828 .1795.0	3.828	.1795.0	558.0	292.7	9.62	611.78	5713.6	7982.5	1977.8	7982.5 1977.8 143.47	42.85	11.87 14.36	14,36	2.28	15674.0	198.19	16.64

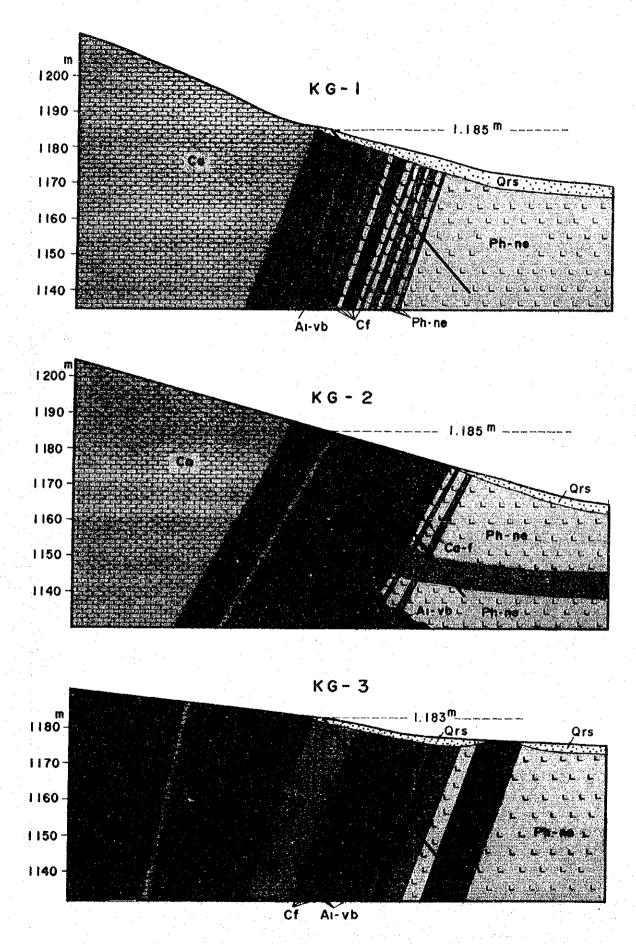
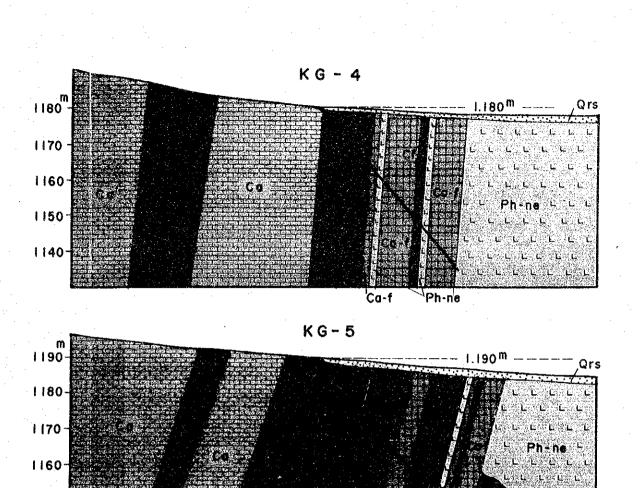
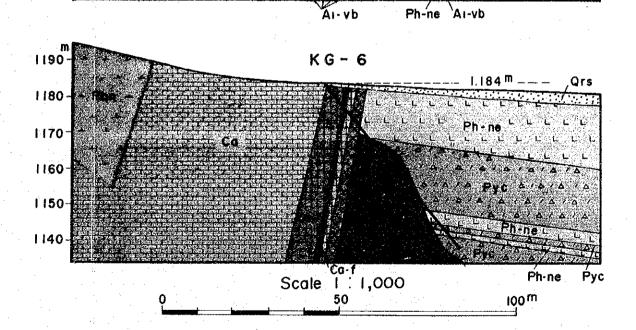




Fig. II-2-6 Geological Cross Sections along Drill Holes, Kuge Hill

Qrs : Colluvial deposits, Ca : Alvikite, Cf : Ferrocarbonatite Ca-f : Alvikite to Ferrocarbonatite (middle type)

Ph-ne: Phonolitic nephelinite, Pyc: lapilli tuff

Al-vb: Metabasalt (Nyanzian System), Phn: Phonolite

1150-

Abbreviations

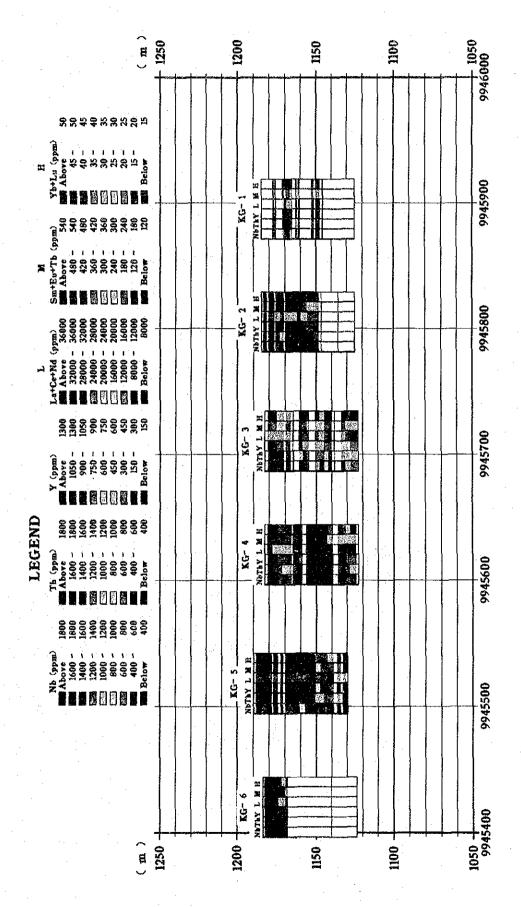


Fig. II-2-7 Assay Cross Sections along Drill Holes, Kuge Hill

southerly, respectively. The average ore grade of the Kuge Hill body is estimated to be lower-graded than that of the Buru Hill body in a whole.

A remarkable mineralization of P, Nb, Y Ba and etc., associated with REE, is unobserved in Kuge Hill area.

2-5 Results of Petrological and Mineralogical Examinations

2-5-1 Microscopic examinations of thin sections

The eight (8) rock specimen were microscopically examined by thin sections. The summary of examination results and the related explanatory descriptions are shown in Apxs. 3 and 4.

(1) Phonolite and nephelinite

Phonolite and nephelinite are generally altered intensely and are fractured. The alteration is remarked to be of carbonate-mineralization, epidotization, smectitization, iron-mineralization and etc.. An appropriate petrological nomenclature of rock is mostly hardly made due to an intense alteration of phenocrysts, e.g., feldspars and feldspathoids.

(2) Metabasalt - basement rock

Metabasalt is of aphanitic altered rock, majorly composed of euhedral plagiculase, anhedral epidote, clotted chlorite and opaque minerals. Unaltered mafic minerals are unobserved. They are abundantly associated with fine veins of carbonate minerals.

(3) Carbonatite

Carbonatite is majorly composed of carbonate minerals and opaque minerals (goethitic in weathered rock), associated with biotite and etc.. It also occasionally includes altered phonolite breccias.

2-5-2 Microscopic examinations of polished thin sections

The five (5) carbonititic rock specimen, two of carbonatite and three of ferrocarbonatite, were examined by polished thin sections. The summary of examination results and the related explanatory descriptions are shown in Apxs. 5 and 6.

(1) Carbonatite

Carbonatite is majorly composed of carbonate minerals and opaque minerals, which are majorly of goethite, hematite, lepidochrocite, meanwhile, are associated with remnant magnetite in one specimen.

The specimen KG-2-2 contains carbonate minerals in the forms of replacement products of phenocrysts, of fine veins or networks or irregularly intersertal products, by what a possible

occurrence of carbonatite body is to be of replacemental character. Pyrochlore and bastnaésite are unobserved under the microscope.

(2) Ferrocarbonatite

Ferrocarbonatite is majorly composed of carbonate minerals and opaque minerals. One of three specimen are rich in carbonate minerals, meanwhile, another two specimen are considerably rich in opaque minerals with a likely feature of iron ore. Opaque minerals are majorly composed of goethite, hematite, lepidochrocite, magnetite and etc., with pseudomorphs of pyrite in occasions of hematite and goethite. A productive sequence of iron minerals, observed in the specimen with pseudomorphs of pyrite, is estimated to be by preceding order of pyrite, followed by magnetite, hematite, goethite and latestly lepidochrosite. Pyrochlore, bastnaésite, biotite were identified in one of three specimen.

2-5-2 Results of whole rock chemical analysis

The whole rock chemical analysis was implemented for two specimen, i.e., for ferrocarbonatite and for a rock with intermediate features of ferrocarbonatite and alvikite by unaided eye. The results of whole rock chemical analysis are shown in Apx. 7.

The results provide little differences of chemical compositions between two specimen, even though making a trial petrological distinction by unaided eye.

The average chemical compositions of two specimen show 27.30 percent of Fe₂O₃, 25.58 percent of CaO, 4.76 percent of MnO, 4.07 percent of BaO and 4.27 percent of SiO₂. The Fe₂O₃ and CaO values correspond to those of intermediate-compositional rock of carbonatite and ferrocarbonatite in the Buru Hill area as shown in the Report, 2nd-year work. It is also noted that the values, the above, are rich in SiO₂ content, compared with that of carbonatite and ferrocarbonatite in Buru Hill area.

2.5.4 Quantitative analysis of ore minerals by electron probe microanalyser

Identifications and quantitative analyses of ore minerals on four (4) specimen of diamond drill cores were implemented by the current work. An outline of samples and mineral compositions are shown in Apx. 8, the results of quantitative analyses of ore minerals are in Apx. 9, the SEM images are in Apx. 10, respectively.

(1) Mineral Composition

Carbonatite is majorly composed of calcite, hematite and goethite and is associated with barite, bastnaésite and phlogopite, and minorly with rancieite.

Ferrocarbonatite is majorly composed of calcite, manganiferrous siderite, hematite, goethite and etc., and is associated with barite, rancieite, phlogopite and etc.. Bastnaesite and pyrochlore are discernible in one of four specimen.

(2) Quantitative analysis of ore mineral

The eight (8) ore mineral grains of four (4) mineral species in Kuga Hill carbonititic body were chemically analysed by using an electron probe microanalyser; those are 1) bastnaésite as the major REE mineral, 2) pyrochlore as the Nb-bearing mineral, 3) rancieite as the manganiferrous mineral and 4) barite, abundantly associated with various types of carbonatite.

<u>Bastnaésite</u>: Bastnaésite shows an occurrence of aggregates of acicular or tabular crystals. The total content values of the major REE - La₂O₃ + CeO₂ + Nd₂O₃ - show 46.3 percent in an acicular crystal and 59.42 percent in a tabular crystal. The former value is presumed to have been under an effect of background during the

processing.

Pyrochlore: Pyrochlore is observed in a form of euhedral crystals. It shows 66.72 percent of

Nd2O3, approximate to that in Buru Hill. It also shows a slightly low content of

Ta₂O₅ and a considerably high content of TiO₂.

Rancieite: Rancieite shows an occurrence of aggregates of very fine acicular crystals or

irregular intersertal minerals. The chemical compositions is approximate to that

in Buru Hill, rich in barium content.

<u>Barite</u>: Barite shows an occurrence of granular euhedral crystals. The total value of BaO

and SO₃ occupy some 99 percent of the total, considered to be of less impurity.

2-6 Discussion

2-6-1 Features of mineralization

The primary contents of REE, associated with ferrocarbonatite dykes in Kuga Hill, which were selected for one of the exploration targets by the current works, are fairly approximate to those of the primary body of Buru Hill carbonatite. However, the supergene enrichment of the REE are unobserved in Kuge Hill caused by that having a narrow width of mineralization zone, 60 metres wide in maximum, and that have been out of a geostructural shelter to sustain weathered earthy materials in-situ sites of the carbonatitic body. Consequently, the concentrations of REE in the Kuge Hill carbonititic dykes are estimated to be low-graded to be ranked to the level of industrial/economical standard, as the dykes have long been retained the primary ore grades unenriched.

2-6-2 Potential of mineralized zone

The industrial/economical potentials of the REE mineral development, associated with the carbonititic dykes in Kuge Hill area, are estimated to be likely low based on the current backgrounds of industry/economy, due to that the REE concentrations in the area are poor in world-wide comparisons with other carbonatite ore body and that having low contents of phosphorus, niobium, etc. The further exploration works for REE in the area are unlikely warranted under the current industrial/economical backgrounds.

PART III CONCLUSION AND RECOMMENDATION

CHAPTER 1 BURU HILL

1-1 Conclusion

Geological and geochemical research works, and diamond drill operations of thirty (30) holes, with total depths of 1,750 metres for a two-year programme, were implemented during the term from 1987 to 1989 as a part of the Homa Bay Project, Nyanza Province, Republic of Kenya.

In accordance with the results of the above works, the Buru Hill area is geologically elucidated to be majorly composed of massive intrusive carbonatite bodies, associated with the REE minerals, and is to be surrounded by granitoid gneiss of the basement rock in the area. The carbonatite itself is zonally divided to two zones; i.e., the upper zone of oxydized-weathered part and the lower zone of reduction part.

Concentrations of REE minerals by the supergene enrichment form an ore body in upper zone of the carbonatite body. Bastnaésite is the main REE mineral of the carbonatite ore body in the Buru Hill.

The inferred geological ore reserves are estimated to be of 10,700,000 tonnes of crude ore, the average grade is La + Ce + Nd: 2.07 percent, Sm + Eu + Tb: 370 parts per million, Yb + Lu: 38 parts per million, to be re-calculated to be of Total REO: 2.63 percent, and 280,000 tonnes of Total Rare Earths Oxides.

The mineral content in the Buru Hill ore body is inevitably estimated to be low-graded for the industrial/economical production under the current economical backgrounds in world-wide comparisons with other REE mines in operations. However, the Buru Hill ore body is with a favourable configuration for a facile applicability of open pit mining operation and with a favourable accessibility. It is presumed that the ore body should be warrantedly examined with some economical possibility in a future when ore reserves and ore-grade values for the mining operation will be satisfactorily ameliorated by additional exploration activities and when an industrially favourable extration technology of REE minerals will be developed.

1-2 Recommendation

It should be pointed out that the followings are the major factors to be examined in compliance with a future consideration to establish an industrial/economical estimation of economical possibility of the mining development of Buru Hill ore body, those are;

- To establish a more reliable estimation of ore reserves and ore grade based on the results by sufficient quantities of diamond drills.
- To establish a favourable extraction technology of REE minerals by feasible crushing and metallurgical tests.

- 3) To estimate reasonable capital and operation costs based on the programmes related to mine development, plant construction and mining/mineral processing operations.
- 4) To establish infrastructural and environmental researches related to the social impacts and associated terms.

For a further reliable establishment of the re-estimation of ore reserves and ore grade, the diamond drill operations on the modes of 50 metre-interval on grid-patterns covering the mineralized zone should be appropriately operated.

The Buru Hill mineralized zone has been intersected by twenty (20) diamond drill holes among thirty (30) on approximately 100 metres to 120 metres intervals by the current works. The drill exploration programme in future considerations, to be reached down to the lowermost elevation of the oxidized zone, some 1,295 metres high above sea level, are presumed to be fixed to an aim of an extent of some additional forty (40) holes, totaling 2,000 metres.

The recovered drill cores are to be quarter-splitted in every 2 metres to 3 metres section to produce the samples for tests as that the first quarter is to be for chemical assays, the second quarter is for a preservation for spare and a remaining half is for metallurgical test.

The chemical assay of ores and mineralized materials are to be made on 14 rare earths elements, such as, lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, telbium, dysprosium, holmium, erbium, thulium, ytterbium and lutecium, and with yttrium and thorium. Neutron activation analysis, X-ray fluorescene analysis and Inductively coupled plazma are usually recommended for the analysis technology and further an application of Inductively coupled plazma-Mass spectrometry of high accuracy is to be examined.

The value of specific gravity of ore is to be determined by using the representative specimen of drill cores of the ore body itself. The value is to be determined under the air-dried, dried and wet conditions. The distribution frequency of cavities in the ore body is also to be estimated to make a correction of the specific gravity value of ore in over-whole, if it is required.

CHAPTER 2 KUGE-LWALA

2-1 Conclusion

Geological and geochemical research works, and diamond drill operations of six (6) holes, with total depths of 360 metres for a 1989-programme, were implemented during the term from 1987 to 1989 as a part of the Homa Bay Project, Nyanza Province, Republic of Kenya.

In accordance with the results of the above works, the Kuge Hill area is geologically elucidated to be majorly composed of the dykes of ferrocarbonatite and carbonatite, which has an intermediate petrological character of ferrocarbonatite and alvikite. The general occurrence of the dykes in the area is observed in an extension of 600 metres long, 30 metres to 40 metres wide in average, 60 metres in maximum, and is extended north-southerly, dips 60 degrees to 80 degrees westerly. The results of diamond drill works by the current programme show that the oxydation zone in Kuge Hill area is insufficiently developed, resultant in that the concentration of REE minerals, associated with carbonititic dykes, is very limitedly formed. In accordance with the chemical research works of drill cores by the current works, the average grade of ore in the area shows 1.57 percent of La + Ce + Nd, which is approximate to that of the primarily mineralized zone in Buru Hill, that is 1.5 percent. The Kuge Hill ore body is with a limited quantity and quality, which are with less extension and less high concentration of REE. Consequently, it is to be concluded that the REE mineralization in Kuge Hill area is less economical for a future consideration.

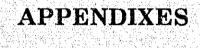
2-2 Recommendation

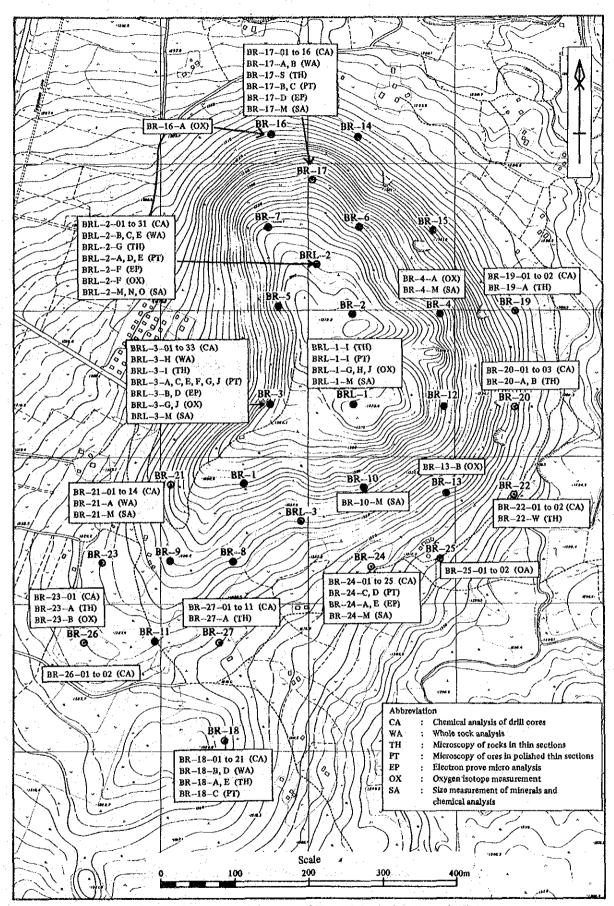
Future examinations of exploration programming for an industrial/economical development of the REE minerals in Kuge Hill area are to be unlikely warranted in accordance with the conclusion, the above.

REFERENCES

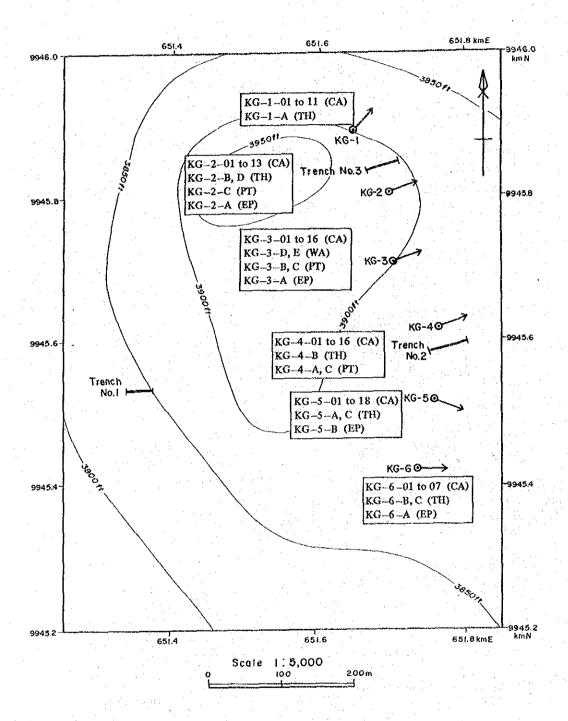
- Alviola, R., Korman, C., Githinji, I., Mulaha, T., and Nzau, K. (1985): Report on cement raw materials investigations in the Koru and Songhor areas, Western Kenya. Geological Survey of Finland.
- Binge, F. W. (1962): Geology of the Kericho Area. Geological Survey of Kenya.
- Cluver, A. F. (1958): Buru Hill E.P.L. 110, Kericho District, Kenya. Unpublished internal report of New Consolidated Gold Fields Limited, Johannesburg.
- Deans, T. (1966): Economic Mineralogy of African Carbonatites. p.385-413 in Carbonatites. (ed)
 Tuttle, O. F. and Gittins, J.
- Deins, P. and Gold, D. P. (1973): The isotopic composition of carbonatite and Kimberlite carbonates and their bearing on the isotopic composition of deep-seated carbon. Geochim. Cosmochimi. Acta, 37, p.1709-1733
- Dubois, C. G. B. and Walsh, J. (1970): Minerals of Kenya. Bull. Geol. Surv. Kenya. No. 11.

 Geological Survey of Japan (1987): Research on Mineral Deposits associated with carbonatite in Brazil. Report of International Research and Development Cooperation. ITIT Projects No. 8316.
- Geological Survey of Kenya (1962a): Geological Map of Kenya.
- Geological Survey of Kenya (1962b): Mineral Map of Kenya.
- Haskin, L. A., Frey, F. A., Wildeman, T. R. (1968): Relative and absolute terretrial abundances of the rare earths. In: Origin and distribution of the elements (Ahrens, L. H. ed.). Pergamon Int. Ser. Monogr. Earth Sci. 30,889 912. New York, USA
- Heinrich, E. W. (1966): The Geology of Carbonatites. Rand McNally & Co., Chicago, USA.
- Huddleston, A. (1951); Geology of the Kisii District. Rep. Geol. Surv. Kenya 18.
- Idman, H. and Mulaha, T. (1986): Report on an assessment for phosphates and niobium in carbonatitic and alkaline silicate complexes in Western Kenya, South Nyanza District. Geological Survey of Finland.
- Kamitani, M. (1984): Carbonatite deposits in Brazil (1) (in Japanese), Geological News. No. 362, p.24-33.
- Kamitani, M. and Hirano, H. (1985): Carbonatite deposits in Brazil (2) (in Japanese), Geological News No. 372, p.6-16.
- Kamitani, M. (1986): Niobium-Study on rare metal resources (in Japanese), p.100-120. Geol. Surv. of Japan.
- Kamitani, M. and Hirano, H. (1987): Important carbonatite-alkaline/alkaline complex and related resources in the world. In Research on Mineral Deposits associated with carbonatite in Brazil. p.116-129. Geological Survey of Japan.
- Kano, T., Yanagida, H. (ed.) (1989): Rare earths; its physical property and application. (in Japanese). Gihodo-Shuppan Ltd.


- King, B. C. and Sutherland, D. S. (1966): The carbonatite complexes of Eastern Uganda. p.73-126, ed. Tuttle O. F. and Gittins, J. Interscience Publishers, N. Y., USA.
- Metal Mining Agency of Japan (1981): Report of Study on Development of Exploration Technology (in Japanese).
- LeBas, M. J. (1977): Carbonatite-Nephelinite Volcanism-an African Case History. John Wiley & Sons
- Masuda, A., Nakamura, N., and Tanaka, T. (1973): Fine structures of mutually normalized rare earth patterns of chondrites. Geochim. Cosmochim. Acta, 37, p.239-248.
- McCall, G. J. H. (1958): Geology of the Gwasi Area. Geological Survey of Kenya.


 Mulaha, T. O. (1986): Report on the assessment of phosphorous and niobium in the Ndiru

 Hill Carbonatite complex, South Nyanza District. Geological Survey of Finland.
- Ohde, S., Suwa, K., and Kitano, Y. (1979a): Trace element geochemistry of carbonatites from Homa Mountain, Kenya. 4th prelim. Rept. Afr. Studies, Nagoya Univ., 169-174.
- Ohde, S., Suwa, K., Yusa, Y. and Kitano, Y. (1979b): Rare earth element geochemistry of carbonatites from the Kangankunde Mine, Malawi. 4th Prelim. Rept. Afr. Studies, Nagoya Univ., 175-179.
- Okano, T. (1981): New metal resources (in Japanese). Mining Geol. Japan 31, 407-414.


 Otsu, H., Kubota, R., Matsuda, Y. (1983): Determination of statistical frequency distribution of geochemical data (in Japanese). Mining Geol. Japan 33, 427-431.
- Pulfrey, W. and Walsh. J. (1969): The geology and mineral resources of Kenya. Bull. Geol. Surv. Kenya No. 9.
- Roskill Information Services Ltd. (1986): The economics of rare earths and yttrium, Sixth Edition, Roskill Information Services Ltd.
- Saggerson, E. P. (1952): Geology of the Kisum district. Rep. Geol. Surv. Kenya 21.
- Sakamaki, Y., Kamitani, M. (1986): Study of assessment of rare earths resources (in Japanese) p.121-154. Geol. Surv. of Japan.
- Suwa, K. (1981): Petrology of carbonatites. Mining Geol. Japan, 31, 457-465.
- Suwa, K., Oana, S., Wada, H. and Osaki, S. (1975): Isotope geochemistry and petrology of African carbonatites. Phys. Chem. Earth, Pergamon, 9, 735-746.
- Sato, T. et al. (1985): Research on mineral deposits containing carbonatite in Brazil. The Japan Industrial & Technological Bulletin. 12, 10, 7-8, JETRO.
- Takenouchi, S. (1973a): Carbonatite deposits (I) (in Japanese) Mining Geol. Japan. 23, 367-382.
- Takenouchi, S. (1973b): Carbonatite deposits (II) (in Japanese) Mining Geol. Japan. 23, 437-451.
- Takenouchi, S. (1981): Carbonatite deposits (in Japanese). Mining Geol. Japan. 31, 415-420.
- Tanaka, T. (1981): Rare-earth behavior in magmatism and genesis of carbonatite. (in Japanese)
 Mining Geol. 31, 6, 467-478.
- Tatsumi, T. (1965): Ore deposits associated with carbonatite and alkaline complex (in Japanese) Bull. Geogr. Soc. Tokyo. 74, 1, 744.

Tuttle, O. F. and Gittins, J. (ed) (1966): Carbonatites. Interscience Publishers. N. Y., USA United Nations Revolving Fund for Natural Resources Exploration (1978): Mineral Exploration in Western Kenya-Final Reprot. DP/KEN-NR-78-00.

Apx. 1 Location Map of Tested Samples, Buru Hill Area

Apx. 2 Location Map of Tested Samples, Kuge-Lwala Area

Summary of Microscopic Observation - Thin Sections -Apx. 3

ž

Nepth (a) 1ype Neph Kf Ser Utz C 5.40 Frac. Ga C C C 34.00 Carbonatite C C C 14.30 Brec. Ga C C C 15.30 Garbonatite C C C 57.30 Brec. Ga C C C 57.30 Brec. Ga C C C 57.30 Brec. Ga C C C 57.30 Brec. Fan C C C C C		Sample description	tion	-	-						Hinerals	(I)		:				···-
Surface Frac. 6a O	Number		Type	Neph	K	¥	0tz	Carb	Ы	Biot	Flu	Ē	ĕ	Ramph	Æ	Opaque	Others	1
5.40 Frac. Ga O <th< th=""><th>R-17-S</th><th></th><th>Brrac. Ga</th><th></th><th>0</th><th>٥</th><th>0</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>4</th><th></th><th>Γ</th></th<>	R-17-S		Brrac. Ga		0	٥	0									4		Γ
S1.60 Frac. 6a O <t< th=""><th>R-28-A</th><th>431</th><th>Frac. Gr</th><th></th><th>0</th><th>0</th><th>0</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>0</th><th></th><th>Γ</th></t<>	R-28-A	431	Frac. Gr		0	0	0									0		Γ
31.00 March, Ea C <	7-18-E		Frac. Ga		0	۵	0							◁		0	smectite	l
35.30 Brec. Ge O A O A O A 34.00 carbonatite O A O A A A 18.30 Geeiss O A O A O A A 14.30 Brec. Ga O A O A O A A 55.30 Phonolite A A A A A A A 67.30 Brec. Ga A <t< th=""><th>R-19-4</th><td></td><th>Ampt. Ga</th><td></td><td></td><td></td><td></td><td>◁</td><td>0</td><td>٥</td><td></td><td>0</td><td>8</td><td>actinolite © </td><td></td><td>٥</td><td></td><td></td></t<>	R-19-4		Ampt. Ga					◁	0	٥		0	8	actinolite ©		٥		
34.00 carbonatice © D O D O D D 18.30 Gneiss O D D O D <th>2.20-A</th> <td></td> <th>Brec. Ga</th> <td></td> <td>0</td> <td>٥</td> <td></td> <td>0</td> <td>0</td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td>٥</td> <td></td> <td>r</td>	2.20-A		Brec. Ga		0	٥		0	0				0			٥		r
Surface Frac. 6n ⊗ ∆ ○	-20-E		carbonsti te					0			۵	٥				X		
18.30 Gneiss O A O A 14.30 Garbonatite O A O A 95.30 Pronolite A A O A 67.30 Brec. Ga A A O O A 67.30 Brec. Ga A A O O A A 57.80 Garbonatite A A O O A A A 57.80 Brec. Flux A A O A <t< th=""><th>22</th><td></td><th>Frac. Gn</th><td></td><td>0</td><td>4</td><td>0</td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td>×</td><td></td><td>_</td></t<>	22		Frac. Gn		0	4	0					0				×		_
14.30 Brec. Ga O A O A O A 143.00 Garbonatite A + O O A O A 55.30 Phonolite A + O O A O A 57.30 Maphelinite O A O O O A A 15.30 Garbonatite A A O O A	82				0	4	0		0	9						٥		
96.50 Carbonatite A + O A 67.30 Brec. Ga A + C O A 57.80 Brec. Ga A A O O A 57.80 Garbonetite A A O O A 57.80 Brec. Plus A O O A A 57.80 Brec. Plus A O O A A 25.10 Allt. Ret A O O A A A 21.10 Allt. Ret A A O A A A A 25.30 Carbonatite A <t< th=""><th>V-12-1</th><td></td><th>Brec. Ga</th><td></td><td>0</td><td>⊲</td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>٥</td><td></td><td></td></t<>	V-12-1		Brec. Ga		0	⊲	0									٥		
35.90 Phonolite A + C A C A 67.30 Rec. Gn O A C C A 57.80 Rec. Pm A C C C A 57.80 Rec. Pm A C C C C 25.10 Alt. Pm A C C C C C 25.30 Carbonatite Amidine C C C C C C	2-1-1		Carbonatite					0	·	0	۵					٥	pyrochlore	I
67.30 Brec. Gn O <t< th=""><th>2-2-C</th><td></td><th>Phonolite</th><td></td><td>4</td><td>+</td><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>٥</td><td>glass</td><td></td></t<>	2-2-C		Phonolite		4	+		0								٥	glass	
57.80 Wephelinite O O 15.30 Carbonetite A O O 57.30 Brec. Pln A O O 25.10 Alt. Pln O O O 21.10 Alt. Bst Sanidine O O O Asc. 50 Carbonatite Sanidine O O O	3.1		Brec. Ga		©	V	٥	0	0	·	◁					∇		
15.20 Carbonetite A Image: Carbonetite	1-1-4		Mephelinite	0				0					alkali	iamphibole O	ole	◁	olivine, spinel(?)	5
57.80 Brec. Plu A Image: Control of the properties of the proper	-2-B		Carbonatite	۵				0								O.		
26.10 Alt. Fin O © 21.10 Alt. Bst \triangle \text{ Sanidine} \triangle \text{ Sanidine} 36.50 Carbonatite Sanidine \triangle \text{ Sanidine}	-2-D		Brec. Plus	۵				0								О		
21.10 Alt. Bst	1-4-8	<u> </u>	Alt. Pm		0			0			7,					۵	smectite	
86.50 Carbmetite Sanidine	3.5-A		Alt. Bst					◁	0			◁	0			0	-	
C	3-5-C		Carbonatite		Sanidine			0		٥						0		
*0.10 Bit. Just	KG-6-B	48.70	Alt. pin	0				0							٥	٥	smectite	
KG-6-C Surface Phonolite ○ △	ပု	-	Phonolite	0	◁							•	a]ka	alkaliamph	4		smectite, sphene	

△:little O: common ○ : abundant

Abbreviations

Neph; napheline Kf; k-feldspar Ser; sericite Utz; quartz
Carb; carbonate minerals P1; plagicolase Biot; biotite Amph; amphibole
Flu; fluorite Epi; epidote Ch1; chlorite Amph; amphibole
Px; alkali pyroxene
Brec. Gn; brecciated gneiss, Frac. Gn; fractured gneiss, Amph. Gn; amphibole gneiss
Brec. Phn; brecciated phonolite, Alt. phn; altered phonolite, Alt. Est; altered basalt

Apx. 4 Microscopic Observation of Rocks in Thin Sections

BR-17-S: brecciated gneiss.

Breccias composed of anhedral K-feldspar grains (up to 0.8mm in size), aggregates of tiny quartz grains and film-like sericite (ca. 0.1 \times 0.02mm in size) are present in a glassy matrix.

3R-18-A: fractured gneiss

Anhedral K-feldspar grains (up to 0.8 x 0.4mm in size), tiny quartz aggregates, and film - like sericite (up to 0.2 x 0.02mm in size) are cut by many veinlets of opaque minerals, probably goethite and hematite (up to 0.5mm in width).

8R-18-E: fractured gneiss

Anhedral K-feldspar grains (up to 2.0 x 1.5mm in size) and tiny quartz aggregates (which are very similar to texture of chert) are cut by networks of goethite - smectite - amphibole. Amphibole ruins are altered to goethite and smectite, probably nontronite.

BR-19-A: actinolite - epidote schist

Acicular crystals of amphibole, probably actinolite - tremolite series minerals (ca. 0.4 x 0.1mm in size), and anhedral to subhedral plagioclase grains (up to 1.0 x 0.4mm in size) show lepidoblastic texture. Short prismatic epidote (up to 0.3 x 0.2mm in size), euhedral biotite grains (up to 0.4 x 0.1mm in size) and carbonate minerals (probably calcite) veins (up to 0.2mm in width) are present.

BR-20-A: brecciated gneiss

Breccias composed of anhedral K-feldspar (up to 2.4 x 1.0mm in size) and plagioclase (up to 2.6 x 1.2mm in size) with sericite are cemented by carbonate minerals (up to 0.6 x 0.5mm in size), aggregates of fine-grained sericite along their rims and cracks.

8R-20-B: carbonatite (alvikite ?)

Carbonate minerals (up to 1.0 x 0.8mm in size, but most of them are Very fine - grained) show a saccharoidal texture. Small amounts of euhedral to subhedral fluorite (up to 0.4 x 0.4mm in size), euhedral to

subhedral epidote (up to 0.1 x 0.05mm in size) and apaque minerals are associated with carbonate minerals.

BR-22-W: aftered, fractured gneiss

It is composed of anhedral K - feldspar (up to $2.0 \times 1.5 mm$ in size), euhedral to subhedral plagioclase (up to 1.0 \times 1.0 mm in size), and anhedral quartz grains. It is fractured and altered to form sericite (up to 0.2 \times 0.05 mm in size) and long prismatic epidote (up to 0.2 \times 0.04 mm in size).

BR-23-A: gneiss

Porphyroblastic plagioclase (up to 2.0 x 1.0mm in size) and K - feldspar (up to 1.6 x 1.0mm in size) are present in the groundmass of fine - grained plagioclase, K - feldspar, quartz, sericite and opaque minerals (mainly goethite).

BR-27-A: brecciated gneiss

Breccias composed of porphyroblastic K - feldspar (up to 1.2 x 1.2mm in size) and aggregates of tiny grains of sericite and quartz are cemented mainly, by opaque minerals, probably goethite.

BRL-1-1: carbonatite (alvikite?)

Carbonate minerals (ca. 0.2 x 0.2mm in size) with euhedral biotite grains (up to 0.4 x 0.4mm in size) show a saccharoidal texture. Small amounts of euhedral opaque minerals (pyrochlore up to 0.5 x 0.5mm in size, and probably pyrite etc.) and anhedral fluorite around the opaque minerals are present.

BRL-2-6: phonolitic fine tuff? (welded tuff?)

It consists of glassy fine - grained particles with lamination. Some of them are identified to K - feidspar (up to 0.1 x G.1mm in size). Devitrified brownish glasses (up to 0.8 x 0.1mm in size) and carbonate mineral veinlets (0.2 - 0.3mm in width) are also present.

BRL-3-1: brecciated gneiss

Porphyroblastic K - feldspar (up to 3.2 x 2.0mm in size) and plagioclase (up to 1.0 x 0.5mm in size) with fine - grained quartz and

sericite etc. are brecciated and altered to form cabonate minerals (up to 0.8 x 0.5mm in size), massive fluorite, and opaque minerals as networks. Earbonate minerals also occur as veinlets up to 0.8cm in width.

MG-1-A: altered porphyritic olivine nephelinite

Phenocrysts of nepheline (up to 1.8 x 1.8mm in size), alkali amphibole (up to 1.0 x 0.8mm in size), olivine (up to 1.2 x 0.6mm in size), spine] (?) (up to 0.8 x 0.8mm in size), are strongly altered to fine - grained carbonate minerals.

KG-2-8: carbonatite (ferrocarbonatite?)

Carbonate minerals, probably siderite (ca. 0.4 - 0.5mm in size), euhedral nepheline crystals (up to 0.8 x 0.5mm in size) and anhedral opaque minerals, perhaps goethite are constituents.

KG-2-D: brecciated phonolite

Phenocrysts of sanidine (up to 1.6 x 0.2mm in size) and nepheline or leucite (up to 0.4 x 0.4mm in size) in a fine - grained groundmass are strongly altered to carbonate minerals. This phonolitic rock is brecciated and cemented by carbonate and opaque minerals. Veins of nepheline - carbonate minerals - opaque minerals - smectite (the width ranges from 0.5 to 1.5mm) are present.

XG-4-B: strongly altered phonolite ?

Phenocrysts (up tc 1.6 x 1.2mm in size) and groundnass are strongly altered to carbonate minerals. Smectite, and opaque minerals. Some of phenocrysts are identified to K - feldspar.

KG-5-A: altered aphyric basalt

It consists of euhedral plagioclase (ca. 0.6 x 0.1mm in size), anhedral epidote (probably clinozoisite, up to 0.8 x 0.1mm in size), massive chlorite and opaque minerals. Carbonate mineral veins (0.3 - 1.0 mm in width) are present.

KG-5-C: carbonatite (ferrocarbonatite ?)

Carbonate (ca. 0.4 x 0.4mm in size) and opaque minerals are

predominant. Phonollitic breccias composed of phenocrysts of sanidine (ca. 2.0 x 0.6 mm in size) and biotite (ca. 0.7 x 0.6 mm in size) in a fine - grained groundmass are included and partly altered to carbonate minerals.

KG-6-B: altered phonolite

Phenocrysts of nepheline (up to 0.7 x 0.7mm in size) and alkali pyroxene (up to 0.3 x 0.2mm in size) and fine - grained groundmass are altered to carbonate minerals. Veinlets (up to 1.2mm in width) of carbonate minerals, smectite and opaque minerals are present. KG-6-C: phonolite

Phenocrysts of nepheline (up to 4.5 x 2.5mm in size), partly altered to K - feidspar, alkali amphibole (up to 1.6 x 1.0mm in size) with alkali pyroxene relicts in the cores, isotropic brownish crystals (probably spinel up to 0.4 x 0.4mm in size), sphene (up to 1.0 x 0.5mm in size) and fine - grained and partly glassy groundmass show porphyritic texture. Some of alkali amphibole are altered to epidote.

Apx. 5 Summary of Microscopic Observation - Polished Thin Sections -

8	Sample description	ion		1			පි	adute a	Opaque minerals					-				Transp	Transparent minerals	ninera	Si				Reservice
Number	Depth (w)	Type	8	He	.8	Seg.	å	£.	3	હ	<u>~</u>	PS:	a de la	Pyc Carb	Flu Flu	u Otz"	7X	Biot	Kont	33	ප	Best	Bar	Ne ph	.21B
BB-17-B	25.50	Fe-In ore	0	0	٥			_			4		-	_	٥			 			×	×	×		
D-71-88	44.10	Fe-An ore	O	0	×						4		×	-	٥							×	×		
38-18-c	15.50	Brec. Ga	0						-		×			×		0	0			×					quartz>opal
BB-24-C	3.00	Carbonatite	♦				4					-		0	0	_				-	×	◁			
BR-24-D	46.50	Carbonati te		۵			٥					\vdash	<u> </u>	0	0			<u> </u>	×		×	×			
BBL-1-1	155.00	Carbonatite	♦	×			0			×		-	<u> </u>	© ×	4			◁	ļ			×	×	◁	
BEL-2-A	9.20	Fe orre	0	0	-					-	 				٥	4				ļ					opei
BR-2-0	33.80	Fe-Ma ore	0	0	4						0		4		٥	×		_	0						quartz
3-2-78	42.00	Fe-M ore		0						-		0		_	٥	×							×		z, send
BEL-3-A	7.80	Fe-Carb	0	0	۵								0		∇			◁	ļ		٥				
BEC-3-C	097/2	Fe-Carb	0	©		7				-				9	0				◁						
38.7M	41.70	Carbonatite	0	0		,			7		-			9	O	4		-	◁						opel
887-3F	01 96	Carbonatite				∇					٥	0	0	0	∇ ⊚		◁		-						
32.3.G	27.40	Carbonatite	0	77			0	◁	×					×	∇ ⊚										
BBL-3-J	05.148	Brec. Carb					×						-	٩	∇ ⊚		٥					11			
KG-2-C	45.30	Carbonatite	۵	٥	×	×								9	∇ @	0							-		opel
8-2-98	14.80	Carbonatite	٧	×	×	0)	0 0						,				
J-8-54	08.78	Fe-Carb	0	∇	×	∇							#1 1	*	0 0	0		1							opaí
NC-4-A	13.30	Fe-ore	0	0	×	∇								7	0 0			×				×			
J-7-51	41.80	Fe-ore	0	0	×									7	\ \ \ \				<u></u> ,				:		

Carb; carbonate minerals (calcite, siderite; dolomite etc.)
Flu; fluorite dtz: quartz Opal; chalcedonic quartz
Kf; K-feldspar Biot; Biotite Ser; sericite
Kont; smectite group mineral, probably nontronite
Cr; crandallite group mineral
Bast; bastnæesite Bar; barite Neph; nepheline Abbreviations

X:rare

△: little

Apx. 6 Microscopic Observation of Ores in Polished Thin Sections

BR-17-B: Fe - Mn ore

It is composed of aggregates (up to 5 x 5mm in size) of hematite, gethite, and lepidocrocite, radiated pyrolusite crystals (ca. 0.1mm in length), and a small amount of manganite. Some goethite and hematite show a dendritic texture. Anhedral fluorite, crandallite group minerals, bastnaesite (up to 0.04 x 0.02mm in size) and barite (up to 0.04 x 0.02mm in size) and barite (up to 0.04 x 0.02mm) in size) occupy irregular interspaces.

8R-17-C: Fe - Mn ore

Aggregates of fine - grained hematite, goethite, lepidocrocite, and pyrolusite and a less amount of anhedral manganite (up to 0.1 x 0.05mm in size) are predominant. These minerals seems to have replaced short prismatic crystals (ca. 0.2 x 0.1mm in size). Small amounts of fluorite, bastnaesite (up to 0.08 x 0.04mm in size), and barite (up to 0.05 x 0.02mm in size), and barite (up to 0.05 x 0.02mm in size).

8R-18-C: brecciated gneiss

Gneiss composed mainly of massive quartz (partly chalcedonic) and K - feldspar (altered to sericite up to 0.06 x 0.03mm in size along the rims or cracks) are fractured, brecciated, and cemented by carbonate minerals, goethite (up to 0.1 x 0.04mm in size) and pyrolusite.

BT-24-C: carbonatite (alvikite ?)

Carbonate minerals (ca. 0.1-0.2mm in size) and massive fluorite are predominant. Aggregates of fine - grained bastnaesite, crandallite group minerals (up to $0.2 \times 0.2mm$ in size), anhedral pyrite (up to $0.05 \times 0.03mm$ in size) and fine - grained goethite around pyrite grains are also present.

BR-24-D: carbonatite (alvikite ?)

It is composed of carbonate minerals (ca. 0.1 - 0.2mm in size), fluorite (as cubes up to $0.5 \times 0.5mm$ in size) or massive aggregates), and small amounts of crandallite group minerals (up to $0.2 \times 0.1mm$ in size in massive fluorite) and subhedral aggregates of fine - grained

bastnaesite, pyrite (up to 0.2 x 0.1mm in size) and hematite (up to 0.1 x 0.1mm in size).

BRL-1-1: weakly layered carbontite (alvikite?)

It consists of carbonate minerals (up to 3.8 x 3.0mm in size, but most of them are fine - grained and anhedral), massive fluorite, euhedral biotite (up to 0.6 x 0.4mm in size), nepheline (ca. 0.2 x 0.2mm in size), bastnaesite (up to 4.0 x 3.5mm in size), barite veinlets (ca. 0.2mm in width) and pyrite (up to 0.6 x 0.5mm in size). Small amounts of goethite and hematite occur as replacement products of pyrite. Native gold (?) particles are included in anhedral pyrite grains. Euhedral pyrochlore crystals (ca. 0.15 x 0.15mm in size) are associated with euhedral pyrite

3RL-2-A: Fe ore

Anhedral goethite and hematite are predominant. Small anounts of anhedral fluorite and chalcedonic quartz occur as irregular interspaces or as veinlets. Some of nematite grains show cubelike grains as pseudomorphs of pyrite (up to 0.1 x 0.1mm in size).

3RL-2-D: weakly layered Fe - Mn ore

It is composed mainly of massive aggregates of goethite, hematite and lepidocrocite, in which some layers of anhedral pyrolusite and manganite enriched, and interstitial fluorite and quartz are present.

BRL-2-E: Fe - Mn ore

Anhedral hematite, psilomelane and fluorite are predominant. Hematite and psilomelane sometimes show dendrific texture. Small amounts of euhedral barite grains (up to $0.3 \times 0.2 \, \mathrm{mm}$ in size), quartz (cz. $0.05 \, \mathrm{mm}$ in size, 0001) and aggregates of tiny smectite grains are present.

BRL-3-A: weakly layered carbonatite (ferrocarbonatite?)

Aggregates of goethite, hematite and lepidocrocite with long prismatic manganite grains (up to 0.8 x 0.1mm in size) indicate layered texture in carbonate minerals (ca. 0.1 - 0.2mm in size) - euhedral biotite (up to 0.3 x 0.2mm in size) - massive fluorite assemblage. Some

of hemalite and goethite show cubeshaped forms (up to 0.4 \times 0.4mm in size) probably indicating pseudomorphs of pyrite.

BRL-3-C: carbonatite (ferrocarbonatite ?)

Anhedral carbonate minerals (ca. 0.3mm in size), fluorite, goethite and hematite are predominant. Anhedral magnetite grains (up to 0.04 x 0.02mm in size) occur in hematite. Hematite - goethite veins (ca. 0.4mm in width) are present.

BRL-3-E: carbonatite

Carbonate minerals (ca. 0.3 x 0.3mm in size) and aggregates of fine grained goethite and hematite are predominant. Small amounts of massive smectite and chaicedonic quartz are also present.

BRL-3-F: carbonatite

Carbonate minerals (up to 0.4 x 0.3mm in size) and aggregates of psilomelane and manganite are predominant. Subhedral to anhedral pyrolusite grains (ca. 0.2 x 0.1mm in size), euhedral to subhedral magnetite grains (ca. 0.02 - 0.04mm in size), anhedral K - feldspar (up to 0.3 x 0.5mm in size) and fluorite are also constituents.

8RL-3-6: carbonatite (alvikite ?)

It consists mainly of carbonate minerals (ca. 0.4 x 0.4mm in size), fluorite, pyrite, hemalite and goethlite. Pyrite and marcasite occur as pseudomorphs of prismatic crystals (ca. 0.6 x 0.2mm in size). Aggregates of galona cubes (up to 0.15 x 0.15mm in size) are associated with hematite. Euhedral to subhedral pyrochlore grains (ca. 0.2 x 0.2mm in size) are present.

BRL-3-J: brecciated carbonatite (alvikite ?)

This rock is brecciated. Carbonate minerals (euhedral crystals up to 0.4 x 0.3mm in size, but fine - grained aggregates are predominant) and less amounts of smectite, K - feldspar and fluorite are main constituents. Isolated euhedral crystals of pyrite (up to 0.04 x 0.04mm in size) are rarely present.

KG-2-C: carbonatite (carbonatized phonolite ?)

It is composed of anhedral carbonate minerals, fluorite, massive smectite, chalcedonic quartz, cube - shaped hematite (up to 0.8 x 0.8mm in size, probably as pseudomorphs of pyrite), goethite, lepidocrocite and fine - grained magnetite (up to 0.01 x 0.01mm in size). Carbonate menerals occur as replacement products of phenocrysts, veinlets, networks and irregular interspaces.

KG-3-B: carbonatite (ferrocarbonatite?)

Euhedral to subhedral magnetite (up to $0.4 \times 0.3 mm$ in size) are replaced by hematite along the rims and cracks. Carbonate minerals and fluorite occur as irregular interspaces of magnetite, hematite, goethite and lepidocrocite.

KG-3-C: carbonatite (ferrocarbonatite ?)

Magnetite occurs in cores of hematite grains (cube - shaped, up to 0.5 x 0.4mm in size). Aggregates of cube - shaped hematite and goethite are also present. These observations suggest that pyrite was originally formed, but replaced by magnetite, and magnetite was replaced by hematite, goethite and lepidocrocite.

Sequence of formation of these opaque minerals is estimated; pyrite magnetite — hematite — goethite + lepidocrocite. (arbonate minerals, rounded fluorite grains (up to 0.2mm in diameter) and chalcedonic quartz occur as irregular interspaces.

KG-4-A: Fe ore

Aggregates of goethite, hematite and lepidocrocite and aggregates of fine - grained carbonate minerals are predominant. Magnetite (up to 0.5 x 0.5mm in size) occurs in cores of hematite. Euhedral pyrochlore (up to 0.5 x 0.5mm in size) is present. Aggregates of fine - grained bastnaesite, euhedral biolite grains (up to 0.4 x 0.2mm in size) and massive fluorite are also present.

KG-4-C: Fe ore

It is composed of aggregates of goethite, hematite and lepidocrocite (totally up to $0.6 \times 0.6 mm$ in size, but each grain size is ca. 0.08-0.1 mm), and interstitial carbonate minerals and fluorite.

Apx. 77 Results of Whole Rock Analysis of Carbonatites and Related Rocks

RE-17-A 16.10m 4.67 1.24 63.64 0.19 6.71 0.17 0.20 0.12 0.18 6.36 1.84 12.62 97.95 4.58 0.5 RE-17-B 25.50m 4.67 1.24 0.07 0.19 0.01 0.32 15.23 1.56 10.67 98.81 0.27 0.02 RE-18-B 6.60m 40.17 10.31 24.21 0.17 0.61 0.30 8.89 0.49 0.30 3.27 3.33 5.91 97.97 0.23 0.02 IR-18-B 6.60m 40.17 10.31 0.48 0.21 4.40 0.46 0.88 2.54 2.56 6.48 97.50 0.10 IR-24-B 36.70m 4.47 0.50 51.17 0.48 8.17 0.10 0.18 0.09 0.16 17.02 0.13 0.14 0.36 4.41 4.65 97.30 8.13 4.41 4.65 97.30 8.13 4.41 4.65	SAMPLE DESCRIPTION	TION	SiO2	A1203	%1203 Fe203 % % %	. 08 %	0 %	Na 20	K20 %	Tio2	P205	Mbo %	BaO %	ioi Se	TOTAL %	EL S&	Ω2 % inor8	й 8 8
25.50m	BR-17-A	16.10m	4.67	1.24	63.64	0.19	6.71	0.17	0.20	0.12	0.18	6.36	1.84	12.62	97.95	4.58		8
6.60m 40.17 10.31 24.21 0.17 0.61 0.30 8.89 0.49 0.30 3.27 3.33 5.91 97.97 0.23 29.90m 44.78 5.81 28.67 0.23 0.48 0.21 4.40 0.46 0.88 2.54 2.56 6.48 97.50 25.30m 11.18 1.82 43.15 0.37 7.12 0.17 1.03 0.11 0.38 10.27 8.13 15.76 99.50 4.58 25.30m 4.47 0.50 51.17 0.48 8.17 0.10 0.18 0.09 0.16 12.92 4.41 14.65 97.30 5.34 17.10m 4.95 1.09 44.26 0.16 17.02 0.13 0.34 0.66 0.35 3.54 6.18 13.71 91.47 10.90 22.10m 2.50 0.93 51.98 0.47 5.98 0.09 0.36 0.66 0.61 12.11 6.70 11.85 96.42 3.36 66.40m 14.70 3.29 27.45 1.54 10.76 0.64 1.90 0.47 0.85 6.48 9.16 17.61 94.85 3.36 24.60m 4.37 1.15 27.26 1.01 25.80 0.09 0.75 0.01 6.91 5.46 2.93 26.12 94.85 0.61 24.60m 4.17 1.02 27.35 0.78 25.37 0.09 0.59 0.15 0.91 5.46 2.93 26.12 94.94 0.34 0.34	五十二十五	.25.50m	T. 52	1.32	67.12	0.36	0.43	0.07	0.19	0.0	0.32	15.23	1.56	10.67	98.81	0.27		8
29.90m 44.78 5.81 28.67 0.23 0.48 0.21 4.40 0.46 0.88 2.54 2.56 6.48 97.50 < 0.10 25.30m 11.18 1.82 43.15 0.37 7.12 0.17 1.03 0.11 0.38 10.27 8.13 15.76 99.50 4.58 < 36.70m 4.47 0.50 51.17 0.48 8.17 0.10 0.18 0.09 0.16 12.92 4.41 14.65 97.30 5.34 17.10m 4.05 1.09 44.26 0.16 17.02 0.13 0.34 0.66 0.35 3.54 6.18 13.71 91.47 10.90 < 1.22.10m 1.92 1.26 61.63 0.37 4.61 0.07 0.18 1.02 0.16 11.70 1.65 11.85 96.42 3.36 42.00m 2.50 0.93 51.98 0.47 5.98 0.09 0.36 0.66 0.61 12.11 6.70 11.60 93.97 4.58 6.40 14.70 3.29 27.45 1.54 10.76 0.64 1.90 0.47 0.85 6.48 9.16 17.61 94.85 3.36 8.00m 4.37 1.15 27.26 1.01 25.80 0.09 0.72 0.27 0.24 4.06 5.21 24.66 94.85 0.61 24.60m 4.17 1.02 27.35 0.78 25.37 0.09 0.59 0.15 0.91 5.46 2.93 26.12 94.94 0.34	HR-18-B	6.60m	40.17	10.31	24.21	0.17	0.61	0.30	8.89	0.49	0.30	3.27	3.33	5.91	97.97	0.33		8
25.30m 11.18 1.82 43.15 0.37 7.12 0.17 1.03 0.11 0.38 10.27 8.13 15.76 99.50 4.58 36.70m 4.47 0.50 51.17 0.48 8.17 0.10 0.18 0.09 0.16 12.92 4.41 14.65 97.30 5.34 17.10m 4.05 1.09 44.26 0.16 17.02 0.13 0.34 0.66 0.35 3.54 6.18 13.71 91.47 10.90 22.10m 1.92 1.26 61.63 0.37 4.61 0.07 0.18 1.02 0.16 11.70 1.65 11.85 96.42 3.36 42.00m 2.50 0.93 51.98 0.47 5.98 0.09 0.36 0.66 0.61 12.11 6.70 11.60 93.97 4.58 6.40 14.70 3.29 27.45 1.54 10.76 0.64 1.90 0.47 0.85 6.48 9.16 17.61 94.85 3.36 8.00m 4.37 1.15 27.26 1.01 25.80 0.09 0.72 0.27 0.24 4.06 5.21 24.66 94.85 0.61 24.60m 4.17 1.02 27.35 0.78 25.37 0.09 0.59 0.15 0.91 5.46 2.93 26.12 94.94 0.34	H-18-19	29.90m	44.78	5.81	28.67	0.23	0.48	0.21	4.40	0.46	0.88	2.54	2.56	6.48	97.50	< 0.10 < 10	9.0	0.
36.70m 4.47 0.50 51.17 0.48 8.17 0.10 0.18 0.09 0.16 12.92 4.41 14.65 97.30 5.34 17.10m 4.05 1.09 44.26 0.16 17.02 0.13 0.34 0.66 0.35 3.54 6.18 13.71 91.47 10.90 22.10m 1.92 1.26 61.63 0.37 4.61 0.07 0.18 1.02 0.16 11.70 1.65 11.85 96.42 3.36 42.00m 2.50 0.93 51.98 0.47 5.98 0.09 0.36 0.66 0.61 12.11 6.70 11.60 93.97 4.58 6.40m 14.70 3.29 27.45 1.54 10.76 0.64 1.90 0.47 0.85 6.48 9.16 17.61 94.85 3.36 8.00m 4.37 1.15 27.26 1.01 25.80 0.09 0.72 0.27 0.24 4.06 5.21 24.66 94.85 0.61 24.60m 4.17 1.02 27.35 0.78 25.37 0.09 0.59 0.15 0.91 5.46 2.93 26.12 94.94 0.34	IR-21-A	25.30m	11.18	1.82	43.15	0.37	7.12	0.17	1.03	0.11	0.38	10.27	8.13	15.76	99.50	4.58	< 0.2	6 6 6
17.10m 4.05 1.09 44.26 0.16 17.02 0.13 0.34 0.66 0.35 3.54 6.18 13.71 91.47 10.90 < 22.10m 1.92 1.26 61.63 0.37 4.61 0.07 0.18 1.02 0.16 11.70 1.65 11.85 96.42 3.36 42.00m 2.80 0.93 51.98 0.47 5.98 0.09 0.36 0.66 0.61 12.11 6.70 11.60 93.97 4.58 66.40m 14.70 3.29 27.45 1.54 10.76 0.64 1.90 0.47 0.85 6.48 9.16 17.61 94.85 3.36 8.00m 4.37 1.15 27.26 1.01 25.80 0.09 0.72 0.27 0.24 4.06 5.21 24.66 94.85 0.61 24.60m 4.17 1.02 27.35 0.78 25.37 0.09 0.59 0.15 0.91 5.46 2.93 26.12 94.94 0.34	HR-24-R	36.70m	4 47	0.50	51.17	0.48	8.17	0.10	0.18	0.0	0.16	12.92	4.41	14.65		5.34	0.7	0.0
22.10m 1.92 1.26 61.63 0.37 4.61 0.07 0.18 1.02 0.16 11.70 1.65 11.85 96.42 3.36 42.00m 2.30 0.93 51.98 0.47 5.98 0.09 0.36 0.66 0.61 12.11 6.70 11.60 93.97 4.58 66.40m 14.70 3.29 27.45 1.54 10.76 0.64 1.90 0.47 0.85 6.48 9.16 17.61 94.85 3.36 8.00m 4.37 1.15 27.26 1.01 25.80 0.09 0.72 0.27 0.24 4.06 5.21 24.66 94.85 0.61 24.60m 4.17 1.02 27.35 0.78 25.37 0.09 0.59 0.15 0.91 5.46 2.93 26.12 94.94 0.34	HRI J-B	17,10m	4 05	00	44.26	0.16	17.02	0, 13	0.34	. 99.0	0.35	3.54	6.18	13.71		S. 8.	V 0.5	స ం
42.00m 2.50 0.93 51.98 0.47 5.98 0.09 0.36 0.66 0.61 12.11 6.70 11.60 93.97 4.58 [6.40m] 14.70 3.29 27.45 1.54 10.76 0.64 1.90 0.47 0.85 6.48 9.16 17.61 94.85 3.36 8.00m 4.37 1.15 27.26 1.01 25.80 0.09 0.72 0.27 0.24 4.06 5.21 24.66 94.85 0.61 24.60m 4.17 1.02 27.35 0.78 25.37 0.09 0.59 0.15 0.91 5.46 2.93 26.12 94.94 0.34	HR!	22, 10m	- 92	1.26	61.63	0.37	4.61	0.07	0.18	1.02	0.16	11.70	1.65	11.85		3.36	0.3	°.0
I 66.40m 14.70 3.29 27.45 1.54 10.76 0.64 1.90 0.47 0.85 6.48 9.16 17.61 94.85 3.36 8.00m 4.37 1.15 27.26 1.01 25.80 0.09 0.72 0.27 0.24 4.06 5.21 24.66 94.85 0.61 24.60m 4.17 1.02 27.35 0.78 25.37 0.09 0.59 0.15 0.91 5.46 2.93 26.12 94.94 0.34	HRI -2-E	42.00m	. 05	0.93	51.98	0.47	5.98	60.0	0.36	99.0	0.61	12.11	6.70	11.60		4.58	0.5	<u>ဝ</u>
8.00m 4.37 1.15 27.26 1.01 25.80 0.09 0.72 0.27 0.24 4.06 5.21 24.66 94.85 0.61 24.60m 4.17 1.02 27.35 0.78 25.37 0.09 0.59 0.15 0.91 5.46 2.93 26.12 94.94 0.34	HSC-3-H	66.40m	14.70	3.29	27.45	1.54	10,76	0.64	1.90	0.47	0.85	6.48	9.16	17.61		3.36	12.0	0.07
24.60m 4.17 1.02 27.35 0.78 25.37 0.09 0.59 0.15 0.91 5.46 2.93 26.12 94.94 0.34	KG-1-D	8.00m	4 37	1.15	27.26	1.01		0.0	0.72	0.27	0.24	4.06	\$.21	24.66	94.85	0.61	22.1	0.05
	KG-3-E	24.60m	4.17	1.02	27.35	0.78		0.0	0.59	0.15	0.91	5.46	2.93	26.12	94.94	0.34	20.9	0.05

Description of samples

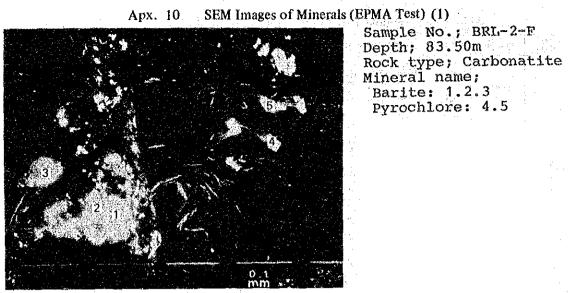
Weathered brecciated granitic gneiss cemented by goethite rich matrix Strongly brecciated gneiss filled with khaki goethite rich matrix Weathered brown iron ore (possibly ferrocarbonatite dyke) Laterite (weathered fine porous carbonatite) BRL-2-C Weathered fine porous ore (MN FE ore) BRL-2-E Weathered black porous MN-FE ore Weathered brown amorphous iron ore Weathered black porous MN-FE ore BR-17-A BR-17-B BR-18-B BR-21-A BR-24-B BRL-2-B

Pale grey slightly banded carbonatite (transitional facies to ferrocarb. Brown massive ferrocarbonatite

Fresh pale grey carbonatite brecciarrich in chlorite matrix

BRL-3-H

Apx. 8 Summary of EPMA Test-1, Mineral List Identified by Qualitative Analysis


			Consti	Constituents of Minerals	
Sample Number	Depth(m)	Rock Type	Major	Common	Rare
BRL-2-F	83.50	Carbonatite	Cal, Mn-Sid,	Ba,	Pyc, Py, Sp,
					Bst, Ap, Fnl,
BRL-3-B	10.75	Carbonatite	Cal, Mn-Sid, Goe	Hem, Ba, Sd, Ap,	Pyc, Ply, Bst,
BRL-3-D	30.30	Carbonatite	Cal, Mn-Sid, Goe	Flu, Ba, Hem,	Ran, REE-Carb,
BR-17-D	20.00	Carbonatite	Flu, Goe,	Ba, Ap. Ran	
BR-24-A	34.50	Ferrocarbonatite	Hem, Mn-Sid, Cal,	Flu,	Pyc, Ran,
	- 1 - 1		çoe,		Bst
BR-24-E	48.30	Carbonatite	Cal, Mn-Sid, Hem	Ba, Ank, Ph1,	Ga
KG-2-A	5.00	Ferrocarbonatite	Mn-Sid, Hem,	Ran, Bar, Goe, Phl,	Pyc, Bst
KG-3-A	5.30	Carbonatite	Cal, Hem, Goe,	Ba, Bst, Ph1,	Ran
KG-5-B	29.40	Ferrocarbonatite	Cal, Mn-Sid, Hem,	Goe, Ba, Ran,	Phl
KG-6-A	12.80	Ferrocarbonatite	Cal. Mn-Sid, Hem, Ap Ba, Goe, Phl,	Ba, Goe, Phl,	

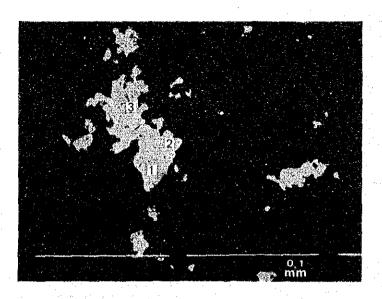
Abbreviations


Cal; calcite, Mn-Sid; Mn-rich siderite, Ba; barite; Pyc; pyrochlore, Py; pyrite, Sp; sphalerite, Bst; bastnaesite, Ap; apatite, Phl; phlogopite, Goe; goethite, Hem; Hem; hematite, Mn-Sid; Mn rich siderite, Flue; flourite, Ran; rancieite (Ba-rich), REE-Carb; Ree-rich carbonate, Ank; ankerite, Ga; galena,

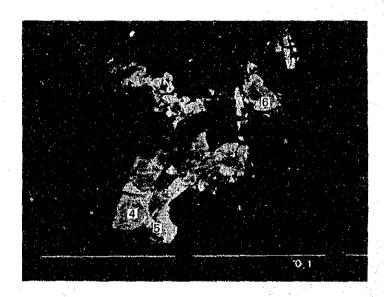
Apx. 9 Summary of EPMA Test-2, Quantitative Analysis of Minerals

Sample Humber	Minerals	Components	Results (volg)	t \$)	Average	Sample Number	tilnerals	Components	Results(weigh)	l \$)	Average
	Berite	BaC SU3 CaC Fe ₂ O3 SrC Total	1 2 66.65 66.17 33.25 31.74 0.24 0.18 0.02 0.10 1.22 0.12 101.38 98.61	3 66.58 32.89 0.18 0.05 99.88	66.47 32.63 0.20 0.10 0.56 99.96	BR-24-A	Bastnessite	CaO Fe ₂ O ₃ SrO CeO ₂ ta ₂ O ₃ Nt ₂ O ₃ Total	7 8 9.73 7.79 0.21 3.48 1.22 1.58 26.33 28.51 4.23 5.36 16.15 14.02 57.87 60.73	9 7.21 2.52 29.6 15.77 62.77	8.24 2.07 1.65 28.07 5.23 15.20 60.46
BRL-2-F	Pyrochlore	No. 0. Ta, 0. TiQ. Fe. 0. CaD Na. 0 Total	4 5 65.50 65.65 6.69 6.41 2.91 2.72 1.95 1.39 11.12 11.37 11.36 11.10 98.73 98.64	6 65.39 6.67 1.00 11.09 11.86 98.93	65, 18 6, 74 2, 77 1, 45 11, 19 11, 14 98, 77	BR-24-8	Barite	BeO SO ₃ CaO Fe ₃ O ₃ SrO Total	67.07 66.06 33.20 33.24 0.47 0.23 0.34 0.51 0.50 0.21 101.58 100.25	3 66.51 33.72 0.08 0.69 0.39 101.39	66.55 33.39 0.26 0.51 0.37 101.07
	Bastmesite	CeC, La, O., N.C. O., S.O. CeO Fe, O., Into	7 8 26.02 24.06 21.39 5.92 5.55 1.86 6.27 6.03 1.10 5.31 69.50 66.86	9 27,06 22,10 5,87 2,56 6,09 1,27 0,10 65,05	27, 52 22, 52 5, 91 2, 31 6, 13 2, 57 0, 18 67, 14		Pyrochlore	No. 0s Tes 0s Tio. Fes 0s Cao No. 0 No. 0 Total	1 2 66.67 66.10 6.13 6.46 3.92 4.08 0.57 0.78 13.84 13.74 6.97 8.05 98.19 99.22	3 67.40 5.91 4.25 0.57 14.37 7.20 100.50	66, 72 6, 17 4, 08 0, 64 13, 98 7, 59 0, 08 99, 30
	Barite	850 SO ₅ C50 Fe ₇ O ₅ SrO Total	1 2 67.05 65.55 34.65 33.74 0.34 0.46 0.03 0.00 0.31 0.29 102.38 100.06	3 65.51 33.10 0.47 0.04 0.25 99.37	66.04 33.83 0.43 0.02 0.28 100.60	KO-2-A	Rencieite	B=0 C=0 Fe ₂ O ₃ HnO SrO Total	4 5 15.91 16.35 0.61 0.65 4.48 5.79 59.11 57.15 0.45 0.47 80.56 80.41	6 16.70 0.57 2.82 61.01 0.52 81.62	16.32 0.61 4.36 59.09 0.48 80.86
81.~3-8	Pyrochlare	Mo, O ₅ Te, O ₅ TiO, Fe, O ₃ ThO CaO Na, O Total	4 5 65.17 66.03 7.30 6.63 3.56 3.49 1.10 0.70 0.43 0.60 11.96 11.96 93.00 98.37	6 64.82 7.52 3.66 0.51 0.16 12.33 98.10	65.34 7.15 3.57 0.40 12.09 98.47		Bastneesite	BeO CaO SrO OsO, La, O ₃ Nd, O ₃ Total	7 8 362 271 955 7.52 267 221 18.78 20.59 19.41 22.02 3.68 3.59 57.71 58.55	9 3.81 5.81 21.53 24.53 24.88 62.88	3.35 7.63 2.43 20.30 22.00 4.00 59.71
	Barite	BaO SO ₃ CaO Pe ₃ O ₃ SrO Total	1 2 67.04 65.90 32.96 33.76 0.01 0.19 0.00 0.00 0.20 1.40 100.23 101.25	3 66.50 33.23 0.18 0.00 0.74 100.65	66.48 33.32 0.13 0.00 0.78 100.71		Barite	BeO SO ₃ CaO Fe ₂ O ₃ HnO SrO Total	1 2 65.95 65.49 33.24 33.48 0.39 0.55 0.17 0.22 0.08 0.10 0.44 0.55 100.27 100.40	3 64,68 32,85 0,20 0,0 0,15 1,03 98,94	65.37 33.19 0.38 0.14 0.11 0.68 99.87
B₹3-D	REE-rich Carbonate Mineral	CeO ₂ La ₂ O ₃ Nci ₄ O ₃ BeO SeO CeO Fe ₂ O ₃ PhO Totel	4 5 11.76 12.70 6.15 7.07 7.51 6.61 4.41 0.95 1.21 8.52 8.63 3.56 1.65 68.59 57.30	6 11.29 6.47 6.27 6.34 1.16 7.56 1.98 20.23 61.30	11.92 6.56 6.50 5.61 8.24 2.39 23.66 55.73	KG-3-A	Bastnaesite	CaO CeO, La, O ₃ Nd, O ₃ Pe, O ₃ hhO SrO Total	4 5 4 92 4 64 30.70 30.28 23.73 22.84 6.01 5.45 0.03 0.10 0.42 0.22 1.57 1.86 67.38 64.95	6 349 30.37 53.35 5.00 1.66 64.65	4.35 30.45 23.37 5.60 0.21 1.55 65.66
DD 47 D	Rancielte	BaO SrO CaO Fe ₂ O ₃ HnO Total	1 2 16.33 15.91 0.084 0.61 2.05 1.88 59.21 59.85 78.49 78.69	3 15.32 0.26 1.16 2.24 58.53 77.51	15.85 0.25 0.87 2.06 59.20 78.23	K0-5-B	Barite	BaO SO ₁ CaO Fe ₂ O ₃ thrO SrO Total	1 2 66. 10 66. 50 33. 48 33. 31 0. 22 0. 14 0. 71 0. 35 0. 20 0. 12 0. 39 0. 39 101. 70 100. 81	3 65 15 32 76 0.39 0.26 0.03 0.66 99.27	0. 12 0. 68
BR-17-D	Berite	BaO SO ₃ CaO Pa ₂ O ₃ ScO Total	4 5 66.02 67.07 32.47 33.19 0.02 0.40 0.00 0.21 0.33 0.70 98.84 101,57	6 67.25 32.99 0.25 0.00 0.00 100.49	66.78 32.88 0.67 0.22 0.34 100.30		Rancieite	Pro Pro Pro Cro Sro Total	4 5 58.74 58.64 13.70 14.24 3.74 4.20 0.78 0.69 0.90 0.92 77.66 78.69	6 58.64 14.24 5.18 1.01 0.91 80.31	4.31
	Pyrochlore	Nb, O ₅ Ta, O ₅ TiO, Fa, O ₅ CaO Na, O tho Total	1 2 67. 18 66, 12 10. 66 10. 01 4. 89 4. 1. 86 11. 85 11. 54 3. 39 1. 86 0. 16 0. 40 99-93 95-95	3 66,29 9,54 1,19 11.86 2,26 0,16 95,70	66.53 10.07 4.47 1.63 11.74 2.50 0.24 97.20	103-6-A	Barite	BaO ₃ SO ₃ SO ₃ CaO Fe ₂ O ₃ HnO SrO Total	1 2 66.83 65.95 33.54 33.39 0.12 0.12 0.10 0.05 0.08 0.05 0.25 0.54 100.92 100.10	3 66. 29 33. 57 0. 26 0. 06 0. 07 100. 73	0.17 0.07 0.07 0.42
βR+2A-A	Rancieité	Bs0 Cs0 Fe, O ₃ Sc0 th:0 Total	4 5 15.64 15.52 4.61 4.60 3.53 4.60 0.50 0.40 55.12 53.07 79.60 78.25	6 16.03 5.02 3.31 0.55 54.30 79.21	15.73 4.83 3.81 0.48 54.16 79.02	* Number	e on anelytic	al results s	ticu analysed point	s in X	-ray Isages

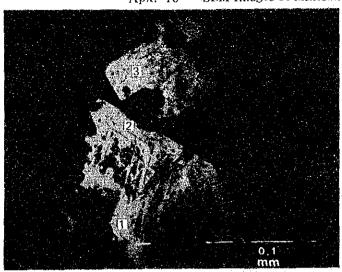
Mineral name; Barite: 1.2.3 Pyrochlore: 4.5



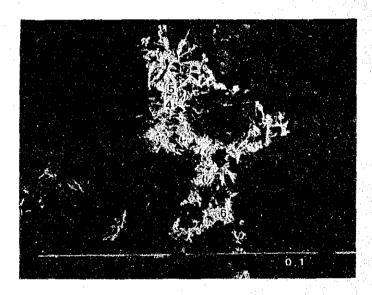
Sample No.; BRL-2-F Depth; 83.50m Rock type; Carbonatite Mineral name; Pyrochlore: 6

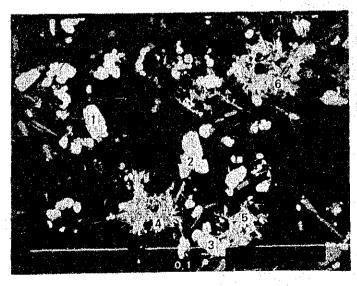


Sample No.; BRL-2-F Depth; 83.50m Rock type; Carbonatite Mineral name; Bastnaesite: 7.8.9


Apx. 10 SEM Images of Minerals (EPMA Test) (2)

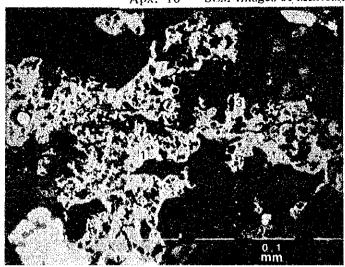
Sample No.; BRI-3-B Depth; 10.75m Rock type; Carbonatite Mineral name; Barite: 1.2.3


Sample No.; BRL-3-B Depth; 10.75m Rock type; Carbonatite Mineral name; Pyrochlore: 4.5.6

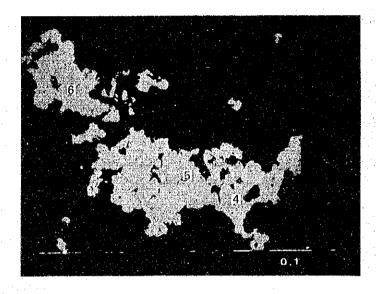

SEM Images of Minerals (EPMA Test) (3)

Sample No.; BRL-3-D

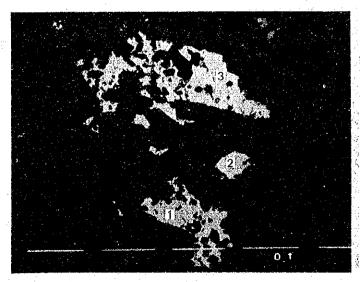
Depth; 30.30m Rock type; Carbonatite
Mineral name;
Barite: 1.2.3

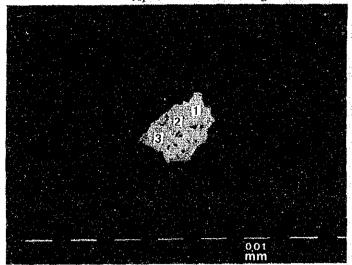


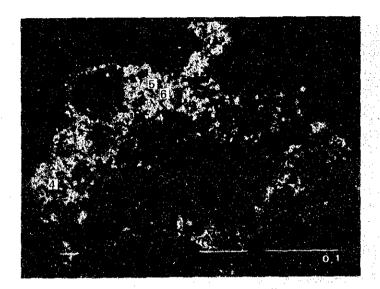
Sample No.; BRL-3-D Depth; 30.30m Rock type; Carbonatite Mineral name; REE-rich carbonate mineral: 4.5.6

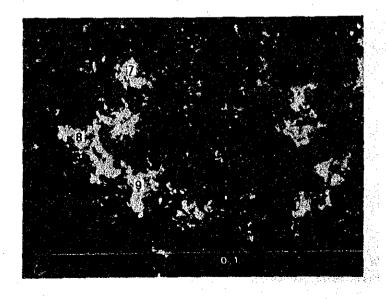


Sample No.; KG-3-A Depth; 5.30m Rock type; Carbonatite Mineral name; Barite: 1.2.3 Bastnaesite: 4.5.6

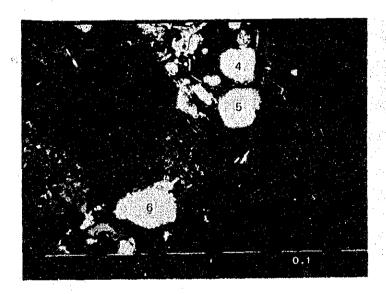

Apx. 10 SEM Images of Minerals (EPMA Test) (4)
Sample No.; BR-17-D

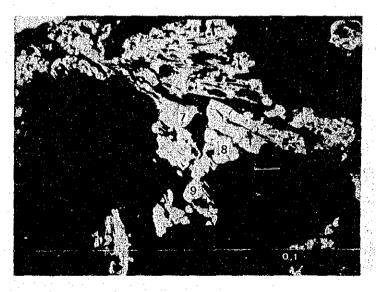

Sample No.; BR-17-D
Depth; 50.00m
Rock type; Carbonatite
Mineral name;
Rancieite: 1.2.3


Sample No.; BR-17-D Depth; 50.00m Rock type; Carbonatite Mineral name; Barite: 4.5.6

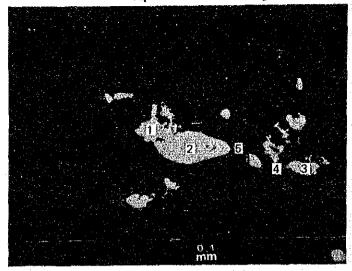

Sample No.; BR-24-E Depth; 48.30m Rock type; Carbonatite Mineral name; Barite: 1.2.3 Apx. 10 SEM Images of Minerals (EPMA Test) (5)

Sample No.;BR-24-A Depth; 34.50m Rock type; Ferrocarbonatite Mineral name; Pyrochlore: 1.2.3

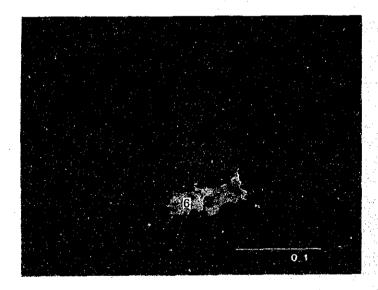

Sample No.; BR-24-A
Depth; 34.50m
Rock type; Ferrocarbonatite
Mineral name;
Rancieite: 4.5.6


Sample No.; BR-24-A Depth; 34.50m Rock type; Ferrocarbonatite Mineral name; Bastnaesite: 7.8.9 Apx. 10 SEM Images of Minerals (EPMA Test) (6)

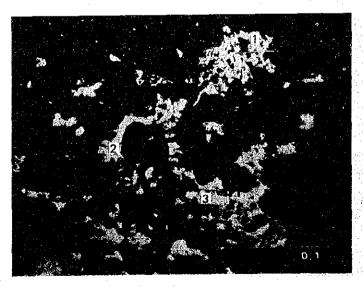
Sample No.; KG-2-A
Depth; 5.00m
Rock type; Ferrocarbonatite
Mineral name;
Pyrochlore: 1.2.3



Sample No.; KG-2-A
Depth: 5.00m
Rock type; Ferrocarbonatite
Mineral name
Rancieite: 4.5.6



Sample No.; KG-2-A Depth; 5.00m Rock type; Ferrocarbonatite Mineral name; Bastnaesite; 7.8.9


Apx. 10 SEM Images of Minerals (EPMA Test) (7)

Sample No.; KG-5-B Depth; 29.40m Rock type; Ferrocarbonatite Mineral name Barite:1.2.3 Rancieite:4.5

Sample No.; KG-5-B Depth; 29.40m Rock type; Ferrocarbonatite Mineral name; Rancieite: 6

Sample No.; KG-6-A
Depth; 12.80m
Rock type; Ferrocarbonatite
Mineral name;
Barite: 1.2.3

Land of the second of the second of the second

Results of Measurement of Size of Rare Earth Minerals Apx. 11

	Sample description	ion		Size of mea	Size of measured bastonasite*	
Sample No.	Depth(m)	Type of ore	Maximum (mm)		Minimum (mm) Number of grains Average size (mm)	Average size (u
BRL-1-M	198.0	Fe-carb	90.0	10.0	12	0.027
BRL-2-M	42.3	Mn-Fe ore	0.04	0.01	6	0.020
BRL-2-N	75.0	Carbonatite	0.20	0.01	22	0.053
BRL-2-0	83.5	Carbonatite	0.10	10.01	15	0.10
BRL-3-M	12.7	Fe-carb	0.04	0,005	19	0.025
BR4-M	9.6	Silic ore	0.02	0.01	10	0.015
BR-10-M	31.8	Ca-Fe ore	0.04	0.01	6	0.022
BR-17-M	45.4	Mn-Fe ore	05.0	0.01	5 1	0.14
BR-21-M	13.0	Silic ore	0.20	0.01	20	0.046
BR-24-M	35.8	Ca-Fe ore	0.10	0.01	18	0.034

* Measurement: by microscopic observation

Abbreviations

Manganiferous iron ore Siliceous ore Ferrocarbonatite Fe-carb: Mn-Fe ore: Silic ore: Ca-Fe ore:

Calcareous iron ore

Apx. 12 Results of Analysis of Ore Minerals

Sample number Depth	h Type of Tho2 NA ore %	7hO2 NA %	P205 %	Ba NAA	S. S.	Ce NAA	La NAA %	Nd NAA %	N. 88	Y2O3 %	
BRL-1-M 198.0 BRL-2-M 42.3 BRL-2-N 75.0 BRL-2-O 83.5 BRL-3-M 12.7	7 Fe-carb 3 Mn-Fe ore 0 Carbonatite 5 Carbonatite 7 Fe-carb	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.77 00.324 0.090 0.090	22.72.8 .0.1.5 .0.3.46 .0.3.46	00.00	0000 0000 0000 0000 0000 0000 0000	00.74 00.3990 00.990 00.0990	00.00	0.028 0.026 0.170 0.040	00000	
BR-4-M 9.6 BR-10-M 31.8 BR-17-M 45.4 BR-21-M 13.0 BR-24-M 35.8	6 Silic ore 8 Ca-Fe Ore 4 Mn-Fe ore 0 Silic ore 8 Ca-Fe ore	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0000 000 000 000 000 000 000 000 000 0	2	0 . 10 0 . 04 0 . 04 0 . 04	00-10-0 00-0 00-10-0 0-0 0 0-0 0-0 0 0-0 0 0-0 0-0 0 0-0 0 0-0 0-0 0 0-0 0 0-0 0-0 0 0-0 0 0-0 0 0-0 0 0-0 0 0-0 0 0-0 0 0-0 0 0-0 0 0-0 0 0-0 0 0-0 0 0 0 0-0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.490 0.081 0.021 0.100	00.00	00000 00000 00000 00000	00000 00000 00000 00000 00000	

Sample number	Depth	Type of Sm NAA ore ppm		Lu NAA ppen	Eu NAA ppm	Xe NAA	Te NAA ppm	U NAA ppm	124 H.	
BRL-1-M BRL-2-M BRL-2-N BRL-2-O BRL-3-M	198.0 42.3 75.0 83.5	Fe-carb Mn-Fe ore Carbonatite Carbonatite	1221 1221 1122 1937 1937 1937	<i>νωνο4</i> 	0.44.7 0.80.0 0.0.0	22 2 60 21 4 60 4 4	011114	2 2 2 2 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4		
BR-4-M BR-10-M BR-21-M BR-21-M BR-21-M	9.5 37.8 13.0 35.8	Silic ore Ca-Fe Ore Mn-Fe ore Silic ore Ca-Fe ore	169 193-0 893-0 315-8	4004×	220 736 736 736 736 736	3.6 9.0 7.0 8.0	04844 41-680	22 22 24 24 24 20 20 20		

Abbreviations

Fe-carb: Ferocarbonatite
Mn-Fe ore: Manganiferous iron ore
Silic ore: Siliceous ore
Ca-Fe ore: Calcareous iron ore

Apx. 13 Results of Chemical Analysis of Drill Core Samples, Buru Hill Area (1)

y (XRF) ppet	00000 00000 00000	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1777 1770 1770 1770 1780	44440	00000 00000	00000 00000	310 670 680 540	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
N6-XRF ppm	0 0 7 5 1 0 0 0 9 0 0 9 0 0 9 1 3 4 0	00000 00000 00000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 mm 80 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000 000 000 000 000	1200 7000 1700 730	125 1200 1200 1500	% 6 8 4 8 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Sr ppm (1Ce)	2080 2340 3250 3890 7750	2600 11600 883 633 1540	1030 2010 1225 1325 1365 1505	1755 2009 2880 2730 2730	1845 21865 1660 2370	2000 3300 3300 3000	25.50 27.80 27.50 26.90	1 6 4 0 2 1 9 0 2 7 7 0 3 8 0 0 2 9 3 0
P ppm (ICP)	1055 11290 11290 1395	13050 13050 13050 13050	2030 2270 3240 1635 1270	1130 1375 2610 4600	21 - 22 - 23 - 23 - 23 - 23 - 23 - 23 -	84488 94448 94448	2 1 3 0 0 2 0 2 0 0 2 0 2 0 0 1 1 3 7 0	5180 9400 7890 1470
Nd NAA	0.26 0.23 0.23 0.24	0.40 00.32 0.27 0.24	0.30 0.30 0.35 0.35	00000	0.26 00.16 00.27 0.27	00000 4112000	0.70 0.26 0.28 0.28	0000 222 0000 312 222 223
% L. NAA	0.55 0.340 0.310 0.310	0.830 0.640 0.480 0.480	0.650 0.580 0.410 0.450 0.250	0.500 2.850 1.060	0.710 0.330 0.500 0.450 0.660	0.440 0.260 0.640 0.300 0.580	0.540 1.330 0.660 0.970	0.730 0.980 1.210 2.26 1.660
% C NAA	00000 8.2.5.0 2.7.5.0 4.7.0	1.39 1.06 0.88 0.76 0.75	0.91 0.93 0.82 0.89 0.63	0.93 1.23 1.20	0.55 0.55 0.85 0.65 0.85	0.59 0.73 0.33 0.85	0.86 1.35 1.22 0.79	2.22
S B NAA	20.4.0.4. 20.4.0.4. 20.4.0.4.	7.09 4.10 3.41 1.91 3.84	2.48 3.20 2.23 3.10	5.17 5.35 4.29 4.29	3.48 3.73 2.15 2.15	2.03 1.36 2.06 2.56	5.81 5.73 3.88	65.43 8.65 8.30 8.30
VVV D	200-0 4468	57.4 172.5 180.0 147.0 171.0	170.0 154.0 119.5 71.7 69.0	88.0 73.0 96.4 170.0	70.4 49.4 114.5 31.2 29.0	31.2 33.2 23.0 19.5	30.8 30.8 21.9 13.0	13.4 16.8 19.3 23.6 20.2
L MAY CLEA	834.0 644.0 9848.0 989.0	1166.0 1103.0 1117.0 1061.0	1257.0 1405.0 1439.0 1749.0	1004.0 1011.0 1684.0 1413.0	1092.0 975.0 1699.0 810.0 918.0	566.0 481.0 622.0 373.0 509.0	452.0 651.0 694.0 607.0 541.0	741.0 794.0 765.0 649.0 471.0
To NAA	25.1 20.6 26.8 29.1	34.0 27.2 18.2 24.2 35.6	28.9 24.0 26.3 35.7	14.3 24.3 29.4 25.1	25.2 27.7 77.6 28.9 30.9	33.0 13.6 23.7 16.8 17.7	25.5 25.5 23.1 18.5	20.1
Yb NAA 1	20.02	24.3 14.7 14.4 20.5	14.6 19.6 21.5 21.7	20.2 11.8 11.2 6.2 20.9	21. S 22. 7 57. 3 22. 7 20.1	19.8 12.1 19.5 18.8 29.0	35.8 30.9 32.3 33.3	30 9 30 9 22 30 9 28 38 3
Eu NAA 1	25.25 25 25 25 25 25 25 25 25 25 25 25 25 2	93.7 93.4 85.0	80.7 95.3 127.0 128.0 86.6	86.6 77.9 106.0 129.0 97.9	93.3 83.7 198.0 86.6 94.7	78.9 58.7 61.7 41.7	35.3 77.8 85.4 67.6 59.5	58.5 72.3 78.9 51.4
Lu NAA 1	N-44.4		2.44.4 7.087.0	2.74.04 00-	44040	47478	U-04-04.	4400V
Sm NAA 1	235 215 248 233	263 237 260 274 221	236 295 343 265	241 213 252 276 205	232 184.0 294 195.0 244	172.0 144.0 149.0 97.0	161.0 213 238 179.0 171.0	177.0
ROCK TYPE S	WETH MAT WETH CB WETH CB SI ORE WETH CB	WETH CB MN-FE ORE MN-FE ORE SI-ORE WETH CB	WETH CB WETH CB WETH CB MN-FE ORE WETH CB	FE-CB MN-FE ORE WETH CB WETH CB	WETH CB WETH CB WETH CB CB-FRESH CB-FRESH	CB-FRESH CB-FRESH CB-FRESH CB-FRESH CB-FRESH	CB-FRESH WETH CA WETH CB WETH CB CB-FRESH	FE-CB CB-FRESH CB-FRESH FE-CB CB-FRESH
HIDTH (#)	0.4.4.4.4.0.4.2.0.5.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	3.50 3.70 4.25 1.25	2.30 2.80 3.80 4.20	1.55 1.35 2.75 3.25 3.70	ww44	2.50 2.50 4.50 5.90	2.50 2.50 1.50 4.95	3.35 3.60 1.10 2.20
OLP III OF SAMPLE (8)	0.00 - 0.45 0.45 - 4.50 4.50 - 9.00 9.00 - 11.25 11.25 - 16.20	6.20 - 9.70 - 3.40 - 7.65 - 8.90 -	50.40 - 32.70 52.70 - 35.50 55.50 - 39.30 59.30 - 43.50 53.50 - 47.60	48.10 - 49.65 49.65 - 51.80 51.00 - 53.75 53.75 - 57.00 57.00 - 60.70	7.70 - 7.	7.70 - 79.05 9.05 - 81.55 11.55 - 85.00 15.00 - 89.50 11.40 - 95.30	98.30 - 98.55 0.00 - 3.00 3.00 - 5.50 5.50 - 7.00 7.00 - 11.95	11.95 - 15.30 15.30 - 18.80 18.80 - 22.40 22.40 - 25.50 23.50 - 25.50
SAMPLE Number	BRL-2-01 BRL-2-02 BRL-2-03 BRL-2-04 BRL-2-05	22-02-22-02-22-02-22-02-22-02-22-02-22-02-22-02-22-02-22-2	881-2-11 3 881-2-12 3 881-2-14 3 881-2-14 3	2-14 2-19 2-20	22222	881-2-26 7 881-2-27 7 881-2-28 8 881-2-29 8	9RL-2-31 BRL-3-01 BRL-3-02 BRL-3-03 GRL-3-04	8RL-3-05 8RL-3-06 8RL-3-07 8RL-3-08 8RL-3-09 8RL-3-09
, ,		, ,	•	A	21		·	•
			•					

Apx. 13 Results of Chemical Analysis of Drill Core Samples, Buru Hill Area (2)

Y (XRF) ppm	8 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	86 86 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	00000 0000 0000	40NL0 NW440 00000	0.82 0.83 0.83 0.83 0.83 0.83	2880 2880 7610 7000	0880 0880 000 000 000	77 94 11 14 14 16 16 16 16 16 16 16 16 16 16 16 16 16
N6-3/RF PPm	8670 970 1200 660	04444 00748 24700	4 9 N Q Q ~ 4 4 4 9 0 0 0 0 0	2777 777 778 770 004 000 000	820 7250 7250 720 720	7 200 7 900 1 4 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	4 00 0 00 0 0 0 00 0 0 0	00000 00000 00000 00000
Sr ppm (ICP)	2222 2326 2326 2326 2326 2326	2270 2140 2340 2450 9810	29600 7580 2400 2670 2870	2330 1793 1795 4210	2222	3145 31032 3346	22879 27879 27879 27879 27879	217 7109 7478 7247
P ppm (ICP)	9000 13180 7340 7340	7640 7770 11250 6190	6800 4100 6410 15360 11030	10690 10690 11330 11330	16160 7370 7370 1525	1310 1310 1749 1770	22 22 22 23 23 23 23 23 23 23 23 23 23 2	2010 3150 4820 11840
Nd NAA	0, 11 0, 17 0, 17 0, 14 0, 35	0.25 0.21 0.16 0.12 0.12	0 0 0 124 0 0 127 0 0 127	0.16 0.24 0.36 0.36	0.15 0.37 0.23 0.23	0.20	0.25 0.23 0.23 0.23 0.23	0.22
La NAA	0.380 0.380 0.260 0.310 0.720	0.810 0.520 0.380 0.200 0.570	0.890 0.360 0.340 0.580	0.490 0.600 0.630 0.570 1.270	0.380 0.280 0.610 0.380 0.610	0.130 0.130 0.130 0.430	9.250 9.250 9.350 9.350 9.350	0.500 0.340 1.170 1.680
S Co NAA	0.46 0.39 0.49	0.94 0.72 0.51 0.68	0.1.00	0.62 0.72 0.72 0.70 1.45	0.17 0.17 0.71 0.71 0.71	20000 24400	0.81 0.88 0.88 0.68 0.77	861-58
Ba NAA	1.37 1.69 1.37 1.86	4 8244 W	5.23 2.56 3.14 7.01 5.06	3.11 4.35 7.23	3.64 8.27 8.27 3.01	1.88 2.38 2.19 2.24	2.13 1.87 2.41 1.97	3.54 7.03 7.03 7.03 7.03
U NAA	13 22.6 23.3 23.8	14.9 10.8 7.7	11.2 2.7.7 26.0	13.1 15.2 18.8 26.8 26.8	31.0 36.7 40.7 22.2 18.5	26.6 21.5 21.6 19.7	20.2 24.8 21.7 21.7 25.6	888 80.11 86.05
Th NAA	374.0 700.0 515.0 585.0	823.0 709.0 556.0 566.0	949.0 463.0 1202.0 864.0	704.0 765.0 836.0 942.0	676.0 588.0 724.0 607.0 1564.0	879.0 961.0 944.0 938.0 528.0	594.0 424.0 715.0 720.0 680.0	840.0 950.0 2084 1338.0 1309.0
Th NWA ppm	22.0 22.0 38.0	22.0 22.9 14.4 16.7	20.0	11.2 21.7 21.7 19.2 15.8	15.8 27.7 31.5 39.7	24.0 27.2 19.2 26.5 26.5	25.22	27.0 38.0 39.9 43.9
Yb NAA	332.3 30.9 30.9	25.7 28.7 28.0 34.5 22.4	25.6 18.4 19.7 36.2 38.4	24.0 23.3 37.7 25.8	40.5 40.7 24.5 57.2	22.77.7 20.00 30.00 8.7.7.7	28.1 18.3 30.2 27.1 28.5	31,3 39.0 59.8 82,1 57,9
Eu NAA	35. 70.6 76.6 123.0	77.3 77.3 58.2 62.8	78.1 38.8 43.7 72.9	46.9 67.8 73.2 84.4 95.4	73.0 86.3 73.2 135.0	25.4 4.08 4.08 4.74 4.74	61.2 73.2 73.2 76.0	72.8 73.6 109.0 67.4 93.5
Lu NAA	444444 44684	444NW WWWW	44400	44.44.44 0.0000000000000000000000000000	47.00.4	พอ44พ์ พญญน์จ	8-10-8-4	2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20
Sm NAA ppm	116.0 230 185.0 201 370	250 232 190.0 158.0	199.0 121.0 129.0 242 210	157.0 202 217 241 286	193.0 230 262 223 427	265 239 352 278 142.0	184.0 157.0 188.0 181.0	229 187.0 249.0 196.0
ROCK TYPE	CB-FRESH CB-FRESH CB-FRESH CB-FRESH CB-FRESH FE-CB	CB-FRESH CB-FRESH CB-FRESH CB-FRESH CB-BRC	CB-BRC CB-BRC CB-BRC GOSSAN VETH CB	CB-FRESH CB-BRC CB-BRC CB-FRESH GOSSAN	GOSSAN WETH CB GOSSAN ALVIKITE SI.ORE	MN-FE ORE FE-CB MN-FE ORE GNEISS MN-FE ORE	FE-CB MN-FE ORE WETH CB WETH CB	MN-FE ORE NN-FE ORE WETH CB WETH CB
HIDIN R	3.60 2.80 4.10 3.10	3.20	2.5.00 2.5.00 2.5.00 2.5.00 2.5.00	3.30 3.30 3.10 3.10	2.70 7.90 1.00 2.10 0.55	1.20 1.90 1.85 0.95	2.25	2.10
(E)	29.10 - 31.90 - 36.00 - 39.10 - 39.10	0 - 45.20 0 - 49.40 0 - 53.80 0 - 58.80 0 - 62.00	0 - 65.00 0 - 68.00 0 - 71.00 0 - 72.40 0 - 76.20	2 - 77, 10 - 81,60 - 84,90 - 87,00 - 90,00	7 - 92.70 - 97.60 - 98.60 - 100.70	22.80 - 24.65 - 25.60	2 + 52.05 3 + 34.50 3 + 36.70 3 + 39.50 3 + 43.00	2 - 45.00 2 - 47.10 3 - 49.90 3 - 50.20
DEPTIL	25.50 29.10 31.90 36.00 39.10	45.20 45.20 49.40 8 53.80 58.80	65.00 68.00 7.27 7.27	5 76.20 5 77.10 7 81.60 8 84.90 8 87.00	90.00 92.70 97.60 88.60 15.95	19.60 20.70 21.90 22.80 24.65	29.80 32.05 34.50 36.70	43.00 45.00 47.10 48.20 48.20
SAMPLE NUMBER	8RL-3-10 8RL-3-11 8RL-3-12 8RL-3-12	BRL-3-15 BRL-3-16 BRL-3-17 BRL-3-18 GRL-3-19	881-3-20 881-3-22 881-3-22 881-5-23 881-5-24	BRL-3-25 BRL-3-26 BRL-3-27 BRL-3-28 BRL-3-29	8813-30 881-3-31 881-3-32 881-3-33 88-17-01	BR-17-02 BR-17-03 BR-17-04 BR-17-05 BR-17-05	BR-17-07 BR-17-08 BR-17-09 BR-17-10 BR-17-11	88-17-13 88-17-14 88-17-14 88-17-15

Apx. 13 Results of Chemical Analysis of Drill Core Samples, Buru Hill Area (3)

Y (XRF	\$2.400 42.0000	87478 80000	3 - 8 8 8 8 9 6 6 8 9 9 9 9 9 9	00000 0000 0000	2000 2000 2000 2000 2000	1222 1222 1220 1220 1220	00000
No-306	1100 820 770 980 1350	4 4 4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 0 0 0 0 0 0 0 0 0	1000 8000 1300 8000	990 410 740 620	120 180 270 305 235	1050 1050 1050 2900
Sr ppm	0 8 5 7 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9886 907 907 907 907 907 907	10000 00000 000000	2244 290 290 200 200	4330 2770 2160 808	702 340 2740 695 1270	1255 892 1250 3410 1665
P ppm (ICP)	20000 2000 20000 20000 20000	www.44 243-44 00000	12.1 72.1 72.2 72.2 72.2 72.2 73.2 73.2 73.2 73.2	256 274 274 1795 5860	4230 774 708 708 763	2530 2530 25530 2550 3860 5550	5640 3330 7240 36500 11400
₹ 2 2 &	0.20 0.26 0.16 0.16	00.24	0000	00.25	0.17 0.12 0.18 0.18	0.22 0.19 0.18 0.16	0.37
La NAA % La	0.300 0.430 0.110 0.380	0.560 0.520 1.120 0.330	0.280 0.990 0.540 0.520	0.520 0.520 0.520 0.510	0.320 0.470 0.600 0.300 0.088	0.300 0.140 0.450 1.450	0.820 0.430 1.350 1.130
≸ Č≈	0.00	0.081	0.45	0.0000	0.55 0.75 0.75 0.10	0.60 0.35 1.78 1.86	0.80 0.80 2.01 1.41
Br NAA	8. 48 6. 35 5. 79 11. 10	3.46 3.46 3.46	2.2.2.4.4 8.0.6.4.4 8.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0		2.86 2.23 2.23 1.66	4,92 3.35 10.20 4.60 9.14	7.16 7.16 9.15 5.40 5.40
D NAA	8 1.41 1.0 7.9 0.51	8 4 4 5 C	13.9 22.4 22.6 19.5 16.9	19.8 17.8 20.8 17.6	15.6 36.8 20.4 15.2 11.6	18.3 19.3 45.0 19.3 48.2	37.6 38.1 63.9 64.1 60.6
Th NAA	998.0 1401.0 1394.0 680.0 1301.0	1235.0 744.0 899.0 619.0 703.0	705.0 1299.0 1035.0 658.0 764.0	1113.0 974.0 999.0 1019.0 958.0	906.0 1460.0 1563.0 783.0	1023.0 710.0 1644.0 571.0 905.0	783.0 496.0 735.0 447.0 518.0
To NAA	333.0 33.0 30.0 30.0	37.3 22.2 24.8 27.2	36.0 277.9 177.90 18.03.90	37.4 40.2 111.7 10.0	30.4 38.4 31.5 24.2 16.4	17.3 29.6 9.3 17.9	16.0 15.6 22.6 30.3
Ys NAA	20.5 30.5 19.1 26.7 51.8	22.05.05.05.05.05.05.05.05.05.05.05.05.05.	34.8 8.45.8 30.8 8.00	275 277 1044 1044 1044	27.5 27.5 17.8 38.9	23.6 15.2 40.3 16.7	26.4 20.8 33.0 49.0 35.4
Ppm NAA	69.8 84.4 20.3 50.4 105.0	101 112 56.0 83.5 83.5	71.9 102.0 64.6 45.7 72.1	57.5 105.5 101.0 81.3 55.3	95.2 110.0 93.1 100.5 58.0	70.2 69.3 103.5 42.7 84.1	71.8 47.9 79.2 82.8 104.5
Lu NAA	74 W W W	0.04.04 0.00%	74.7 8 7.7 8 6.0 8 .0	0.0 0.0 0.0 0.0	4.0, w.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	7.4.4.4. 7.4.4.9.4	2.24 W.A.
AAN mada	180.0 260 151.0 137.0	248 238 183.0 158.0	187.0 245 206 123.0 187.0	2827 2667 231 213	253 329 230 320 197.0	208 234 224 156.0	237 194.0 305 335 335
ROCK TYPE	ORE ORE MN-FE ORE OX-MI GN	OX-MI GN OX-MI GN WETH CB ORE	WETH CB GOSSAN GOSSAN WETH CB FE-CB	WETH CB	WETH CB ORE ORE ORE	MN-FE ORE ORE ORE ORE WETH CB	WETH CB MN-FE ORE WETH CB WETH CB WETH CB
HIDIH (a)	0.45 0.45 0.45 2.65	2.15	2.50 1.00 2.25 0.55	20 30 50 20 30 20 30 20 30	1,70 1,00 0.55 0.55	4. 05 1.20 0.15 1.10 2.20	3.70 3.70 3.70 2.40
OEPIN OF Sample (a)	9.80 - 10.20 3.75 - 16.70 5.70 - 17.15 5.90 - 24.80 4.80 - 27.45	7.45 - 29.60 60 - 30.70 7.70 - 32.30 2.30 - 35.50 5.00 - 35.50	5.50 - 38.00 8.00 - 39.00 9.00 - 39.90 9.90 - 42.15	2. 70 - 43. 90 5. 90 - 44. 40 1. 40 - 47. 40 7. 40 - 47. 70	50.80 - 52.50 36.00 - 37.00 37.40 - 37.95 13.70 - 14.75 20.60 - 21.40	.45 - 15.50 .20 - 17.40 .60 - 22.75 .10 - 26.20	29.00 - 32.70 32.70 - 33.80 33.80 - 37.50 37.50 - 40.90 40.90 - 43.30
SAHPLE NUMBER S	BR-18-01 9 BR-18-02 13 BR-18-03 16 BR-18-04 23 SR-18-05 24	8R-18-06 27 8R-18-07 29 BR-18-03 30 GR-18-09 32 BR-18-10 33	68-18-11 35 68-18-12 38 68-18-13 39 68-18-14 39 88-18-14 39	68-18-16 42 68-18-17 43 88-18-18 44 88-18-19 47 88-18-20 47	8R-18-21 50 8R-19-01 36 8R-19-02 37 5R-20-01 13	BR-21-01 11 BR-21-02 16 BR-21-03 22 BR-21-04 25 BR-21-05 26	8R-21-06 29 8R-21-07 32 8R-21-08 33 8R-21-09 37 8R-21-10 40

Apx. 13 Results of Chemical Analysis of Drill Core Samples, Buru Hill Area (4)

Y (XRF)	and d	30000 00000 00000	746 32 22 24 25 20 00 00	24247 20000	00000 00000 00000	934 UV 9UV44 99000	4 W W W A	44222 84924 00000	67.000 82000 00000	390
N:-XB	pid.	500 500 1250 1600 1600	12 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1 950 900 1 750 1 950 1 450	2000 0000 0000 00000	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 4 4 0 4 0 0 0 0 0	28002 28003 28000	70000 70000 70000	4 4 5 5
Sr ppm	(<u>1</u>	422 733 1090 1235 534	226 782 982 1375 2160	2.25 2.35 2.35 2.35 3.35 3.35 3.35 3.35	3 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	13000 272000 20000	2474 4746 0074 0074	2001 2005 2005 2005	1000 1000 1000 1000 1000 1000	8 5 7
P ppm	Ü	11.45 608 5620 1730	2 2 2 2 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9	20880 88030 3240 400	8620 4446 6710 8510	2600 1205 2710 9740 12380	1.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00	1.21.5 4.25.93 4.25.90 5.90 6.90 6.90	42 42 42 67 67 10 62 10 62 10 62 10 64 10 64 10 64 10 64 10 64 64 64 64 64 64 64 64 64 64 64 64 64	2540
YN PN PN	86	00.37	20000	0.28	00000	00000	00000	00000	00000	00.17
La NAA	88	0.460 0.280 0.470 0.630	0.000	0.840 0.840 0.840	0.330 0.330 0.330	0.00 0.430 0.630 0.630 0.70	00.120	0-00-0	0.5.2.0 0.5.0.0 0.0.0.0 0.0.0.0 0.0.0.0	1 0.320 3 0.300
AN S	8	0.87	0.10 0.23 1.01 2.02	42220	-000-	000 8888	0-00 4552	0-00.57	0.67 0.85 1.40 1.40	00
Bs NAA	8	2.23 2.23 2.23 2.23	- 5.55 -	7 4 6 4 7 8 2 3 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8	\$25.55 \$3.45	2.2.4.4 4.7.7.28	9.E. 8.	2,76 11,39 11,30 2,29	24.9.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	5 4.59
NAA II	ndd	21.5 86.5 21.2 13.7	201.040	102 0.08 1.4 0.05 1.4 0.05 1.4 1.4	63.85.2	22.9 22.9 16.7 25.1	27.2 37.6 22.3 17.1 8.8	3.8.8.4.4.7.4.4.7.4.4.4.4.4.4.4.4.4.4.4.4	74.8 87.7 81.5 77.9 81.5	26.
447	S do	1048 850 6557 6557 6576 6576	197.0 403.0 657.0 736.0	499.0 368.0 513.0	612:0 371:0 563:0 636:0 1031:0	930.0 799.0 450.0	398.0 1384.0 1045.0 813.0	84.0 84.0 1471.0 670.0	935.0 1259.0 1253.0 791.0	681 651
4.7 4.7		24. 24.0 2.1.1.0 2.1.0 3.0	24.00	8-12-1	-8448 	25.3	12.6 17.6 14.3	2.00.4 0.85.4.0	20.72.20.3	13.6
NA.	E G	24.25 20.25 20.44 20.44 30.44	21.2	7. C.	27.27 34.25.6	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	18444 46-22	22.52 20.52 22.53 22.53	32,22.8 33,42.8	23.
Eu NAA	andd	24.58 34.54.5 31.53	0 8 9 4 8 6 4 6 6 6	88388 24666	8.55 8.55 8.55 8.55 8.55 8.55 8.55 8.55	107 118 60 86 86 88 86 86 86 86 86 86 86 86 86 86	28.6 13.2.2 67.8 67.8 60.6	252.2 29.8 76.1 6.1.2	25.55 20.55 20.55 20.55	3 53.5
Lu NAA	ppm	41-84W		uunuu Leunuu	44440	480404	444444 40444	ก๋⊸่ก่งจังกั	4 2 4 4	e, e,
N. S.	Diga.	331 271 165.0 165.0 155.0	42.0 129.0 197.0 187.0 231	179.0 164.0 189.0 151.0 113.0	181.0 85.9 167.0 202 312	356 425 272 130.0	202 202 414 239 150.0	0.00 100 100 100 100 100 100 100	265 212 242 234 194.0	170.0
ROCK TYPE		ORE ORE WETH MAT WETH CB	GNEISS SI-ORE WETH CB SI-ORE WETH CB	WETH C8 SI-ORE WETH C8 WETH C8 WETH C8	WETH CB OX-MI GN WETH CB FE-CB	FE-CB WETH CB CB-FRESH CB-FRESH CB-FRESH	CB-FRESH CB-FRESH ORE ORE	ORE SI-ORE SI-ORE WETH CB	WETH CB WETH CB WETH CB WETH CB	3.H 3.H 3.H
WIDIN REC	i	00333	0.30 1.20 2.70 8.72 8.72 8.25 9.84	2.80 th 1.40 S 1.10 W	3.10 2.80 1.30 1.90	3.25 0.85 2.20 2.20 0.22	1.10 1.30 0.15 0.15 0.25		2.80 WE 3.10 WE 1.10 WE	2.00 ORE 1.00 WET
10	3	10.00 18.75 1.00 2.30 3.80	6.10 8.30 10.70 13.20	- 16.00 - 17.40 - 18.50 - 21.20 - 24.50	- 27.60 - 28.20 - 31.00 - 34.20	38.45 - 38.30 - 42.40 - 45.90 - 48.30	49.20 - 20.50 - 27.50 - 31.60	21.70 23.10 25.20	28.00 - 31.10 - 35.00 - 39.00 - 40.10	- 47.50 - 50.50
nrpin		8288	3,80 0,70 00,8 00,00	13,20 16,00 17,40 18,50 21,20	24.50 27.60 28.20 31.00 32.30	34.20 37.45 38.30 42.40 45.90	48.10 49.20 27.35 31.20 17.40	3885 5	25.20 28.00 31.10 35.00 39.00	- 05.67
SAMPLE	NUMBER	1 1 1 1 1	68-24-04 88-24-05 88-24-06 88-24-07 88-24-07	68-24-09 68-24-10 68-24-11 68-24-12 68-24-13	88-24-14 88-24-15 88-24-16 88-24-17 88-24-17	BR-24-19 BR-24-20 BR-24-21 BR-24-22 BR-24-22	BR-24-24 BR-24-25 BR-25-01 BR-25-02 BR-25-02	68-26-02 88-27-01 88-27-02 88-27-03 68-27-04	BR-27-05 BR-27-06 BR-27-07 BR-27-08 BR-27-09	BR-27-10 BR-27-11
1	, 2 2	கையைவ	വാഹാര്വന	ගෙන නිකින				កល្យល្បា	2 20 C C C	යා සහ

Apx. 14 Results of Chemical Analysis of Drill Core Samples, Kuge - Lwal Area (1)

	Y(XRF)	22-22 8088 90000	00000	2000x	70000	1227 2220 2220 1650 1650	2000 0800 0000	044AU WWW000	224 2474 2474 2476 2476 2476 2476 2476 2
	N6-XRF		1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	24.21.0 7.2.0 8.00.0 8.00.0	24444 2440 2600 2600 2600	3 3 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2472 270 270 200 200 200 200	247 247 200 200 200 200	1 2 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	Sr ppm (JCP)	00000	22.290 22.290 22.250	22	1700 1700 17360 37360	2760 1775 1470 1900 752	893 1315 1872 1675	2222 22022 24930 26000	# 8 2 2 0 0 0 4 0 0 0 4 0 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 0 4 0
	P ppm	73.20 73.20 73.00 73.00 73.00 73.00 73.00	2630 2630 2630 2630 2630	732 1302 1065 1710 1700	21.0 2050 33.50 1.810 69.70	12310 8760 8570 4610 1340	2 9 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 4 8 0 0 4 4 0 8 0 0 0 0 0 0 0 0 0 0 0	2000 2000 2000 2000 2000 2000 2000
(1)	Nd NAA.	00000	00.23	0.00 11.00 0.20 71.00	0.0000	00.37	0.20	00000	00000
Area	La NAA	0.870 0.840 0.820	00000	0.017 0.360 1.060 1.070	0.610 0.770 0.780 1.320 0.810	0.840 0.970 0.093 0.770	0.910 0.670 0.650 0.430 1.180	00.430	0.110 0.050 0.260 0.260
— Lwal	Ce NAA	0000	00000	0.32	0.63 0.99 0.99 70	1.122	0.02	0.76	7 0.28 2 0.28 4 0.78 7 0.47
s, Kuge	Ba NAA	7.54 11.83 2.20 2.32 2.32	41.61.1	8.5. 2.5. 2.5. 2.5.	2.58 4.51 6.95 7.41	9 4 7 33 3 4 4 5 3 3 4 5 5 5 5 5 5 5 5 5 5 5	3.4.66 3.37 3.19 3.19 5.62	3 2.94 8 1.42 5 1.22 8 3.98 9 3.66	30 0 0 E
Samples,	wdd D Ww	77,000	44604	2.3	11.3	9.11.17.	93.54.6	0000	0000
ill Core	Th NAA	219.0 219.0 221.0 221.0 221.0	723.0 1073.0 1245.0 1347.0	2549 234.0 155.0 331.0 296.0	831.0 263.0 437.0 326.0	227.0 760.0 1 862.0 2154	3 409.0 9 408.0 3 345.0 6 289.0 3 817.0	5 1371 3 661.0 2 755.0 9 873.0	7 343.0 9 1030.0 4 973.0 7 1072.0
sis of Drill	Th NAA	₩-00 4400w	9 I I I I	4.00 V 8	00000	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 32.	\$ 43 \$ 43 \$ 43 \$ 64 \$ 64 \$ 64 \$ 64 \$ 64 \$ 64 \$ 64 \$ 64	2 10. 6 20. 8 13.
l Analysis of	Yb NAA ppm	34.87.V	L 0 L 0 U	4.7.4.4.9	0 4 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.2.4 2.2.8 2.2.8	6.32.23 5.32.23	20.55 20.55	0.007.2
Results of Chemical	Eu NAA	8,707.8 8,707.8	7.12.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	1000000 100000000000000000000000000000	6.00-4 7.55.74	00000 0000 0000 0000 0000 0000 0000 0000	5 40 0 0 87.13 87.13 87.13 87.13 87.13	1 80.2 0 70.0 71.6 7 48.2	8 8 8 8 8 8 8 8 8 8 1 1 3 8 1 3 8 1 8 1
ults of C	Lu NAA	uuuuu muo-4	70	0-4-4			-4446	ommni	00-
Kesı	See NAA ppm	150.0 155.0 165.0 169.0	190.0 206.0 236.0	349 1721 116.0 106.0	885.4 107.0 111.0 153.0	200 203 213 293 112.0	192.0 192.0 135.0 248	255 190.0 180.0 175.0	134.0 159.0 196.0 191.0
Apx. 14	ROCK TYPE	0000 11111 2000 111111 2000 2000 2000 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 T T T T B B B B B B B B B B B B B B B	76-03 08-760 76-08 08-7608	CB-FECB CBE-FECB FE-CB FE-CB	FE-CB CB-FECB CB-FECB FE-CB CG-FECB	000 000 000 000 000 000 000 000 000
7	HIDTH R (m)	2-000	21 - 20	23.30 23.70 23.70 23.70	2.250 2.20 2.20 2.20 2.20	4.10 3.80 1 0.90 1 20 1 20	2.40 2.40 2.70 2.30	23.20	2.35 0.30 3.30 1.4.80
	0£	8.20 9.30 14.40 15.70	22.80 24.60 33.60	39.60 3.40 3.40 1 8.20	14.30 18.30 22.30 1.70 24.70 1.28.60	33.00 38.83 38.83 49.64 5.50	12.70 16.40 18.40 24.00	26.70 - 28.70 - 34.90 - 38.20 - 40.50	1 + 43.15 1 - 45.00 1 - 52.00 1 - 55.30 1 - 60.10
	DEP TII SAMPI I	7.30 8.70 13.50 14.40 0.75	18.40 23.40 32.10 34.80	39.00 2.00 2.60 4.50 9.10	11.80 15.10 18.70 22.50 24.90	28.90 33.00 37.90 49.30 2.10	5.30 7.70 13.40 17.70	24.00 26.70 32.10 34.90 38.20	40.80 44.70 49.30 52.00 55.30
	SAMPLE	KG- 1-01 KG- 1-02 KG- 1-02 KG- 1-04 KG- 1-04	KG- 1-06 KG- 1-07 KG- 1-08 KG- 1-09 KG- 1-10	KG- 1-11 KG- 2-01 KG- 2-02 KG- 2-05 KG- 2-04	KG- 2-05 KG- 2-06 KG- 2-07 KG- 2-08 KG- 2-09	KG- 2-11 KG- 2-11 KG- 2-12 KG- 3-01	KG- 3-07 KG- 3-03 KG- 3-04 KG- 3-05 KG- 3-05	KG- 3-08 KG- 3-08 KG- 3-10 KG- 3-10 KG- 3-11	KG- 3-12 KG- 3-13 KG- 3-14 KG- 3-14 KG- 3-15 KG- 3-15
	l:. • (l	l	l	l 	[]		t l

Apx. 14 Results of Chemical Analysis of Drill Core Samples, Kuge - Lwal Area (2)

				r .					
Y (XRF)	00000 TMNNO NMMNO	3000	2227	00000	10000	00000 00000	2250 2250 17850 17850	04000	130
Ne-XRF	046 00000	2000 2000 2000 2000	4 4WV 	40004 20044 00000	30000 340000	222 222 222 200 200 3	800 900 1970 1000 1000	20042 00000 00000	4 + 0
Sr ppm (ICP)	22.22 22.22 22.22 20.20 20.00	1430 2080 860 675 1625		10000 10000 13000	1720 1730 1730 1920	2380 2380 2365 2365	104 104 104 104 104 100 100	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1350
P ppm (1CP)	10 2 8 9 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000	1183 3700 31600 3120	3820 1650 1270 1392	3340 21140 21180 31130	4160 3716 2890 4910 7680	9960 6210 9120 1505	24 24 24 24 26 26 26 26 26 26 26 26 26 26 26 26 26	2790
VVV PX	00.20	00000	0.01 0.15 0.27 0.30	0.28 0.16 0.13 0.13	00000	00000	0.24 0.18 0.30 0.15 0.15	C 0 0 0 0	0.08
La NAA	0.330 0.730 0.630 0.660 0.640	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.008 0.012 0.044 0.046 0.075	0.530 0.530 0.430 0.520	0.000	0.350 0.350 0.350 0.310	00.310 0.670 0.670	00000	0.033
Ce NAA	0.45 0.92 0.98 0.98 0.79	0000	0.03 0.15 0.32 0.32	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.24 0.76 0.73 0.74	00.00	0.85 0.85 0.85 0.20	0.48	0.12
Ba NAA	94 KW R	2.71 00.23 0.21	0.37 2.22 2.33 4.85	2.61 7.61 7.69 7.05 5.32	2.56	2.22.23	3.982 10.50 1.38 1.38	2000 2000 2000 2000 2000 2000 2000 200	0.82
U NAA ppm	6.3 8.6 1.8 1.9 7.0	23.9 23.9 22.3 7.2	3.9 14.1 12.8 16.9 16.8	24 % 4 W V	444.00	V8-120 4404€	7.6	4 8 7 8 9 6 7 8 7 8 7 8 7 8 7 8 7 8 7 8 9 8 9 8 9 9 9 9	17.5
Th NAA ppm	453.0 676.0 764.0 943.0 957.0	1305.0 2893 120.0 235.0 170.0	385.0 1701.0 1253.0 1681.0 1206.0	917.0 191.0 248.0 221.0	147.0 257.0 328.0 398.0 521.0	527.0 561.0 777.0 1158.0	1349.0 673.0 873.0 150.0 81.0	154 155 155 155 155 155 155 155 155 155	1767.0
T's NAA. ppm	1.00 2.00 2.00	7.00 7.00 7.00 7.00	2.500 5.	40,700	74.888 50.47.0	86.880	200 200 200 200 200 200 200 200 200 200	8.8 3.2 8.4 1.7.1	0.1
Yb NAA	13.9	\$.0.0 8.1.0 8.1.0	22.7.2		46077	21.25 1.25 1.25 1.25 2.25 2.25 2.25 2.25	17.8 22.6 13.4 10.1 6.0	8 3 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3
Eu NAA ppm	25.0 33.7 39.0 44.6	41.7 89.1 6.6 11.9	20.1 68.8 52.3 54.4 50.4	22.7.2 22.4 22.2.4 17.9	24.7 31.7 28.0 28.6	30.5 20.5 21.8 47.1 40.4	41.9 38.1 28.2 21.3	25.25 20.25 20.65 20.65	35.9
Lu NAA ppm	-14644 92094	00	2.1.9	8.00 8.00 9.00 1.00	670VL		0.0 0.0		1.5
Sm NAA ppm	87.0 126.0 155.0 151.0	188.0 330.0 19.4 28.0	53. 2 248 201 235 203	197.0 86.5 89.7 91.9 61.2	1138 1138 113 113 13 13 13 13 13 13 13 13 13 13 1	118.5 130.0 133.0 169.0	179.0 157.0 144.0 67.3 69.7	104.0 82.8 96.8 92.5	129.0
ROCK TYPE	76-08 76-08 76-08	FE-CB CB-FECB CB-PYLC CB-PYLC CB-PYLC	CB-PYLC FE-CB CB-FECB CB-FECB	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	FFFFF BBBBBB BBBBBBB BBBBBBBBBBBBBBB	CB-FECB CB-FECB FE-CB FE-CB	FE-CB CS-FECB CS-FECB CS-FECB	CB-FECB CB-FECB CB-FECB FE-CB	FE-CB
MIDTH RO (m)	23.30	3.50 3.50 3.50 3.50	2.70 2.70 2.55 2.45	3.80	2.70 2.70 3.50 3.50	0 3.20 0 3.20 5 0.45 0 2.95 0 2.40	2.30 2.40 3.10	2.28 0 2.28 0 2.75 0 1.30 0 1.30	5 0.30
OF (R)	- 5.00 - 8.00 - 11.00 - 14.00 - 16.80	- 20.70 - 23.70 - 30.00 - 33.50 - 37.00	- 39.90 - 43.60 1 - 49.70 - 52.25	3 - 58.50 3 - 4.80 3 - 3.00 3 - 11.50 3 - 15.20	18.55 1 - 22.50 2 - 26.00 2 - 29.00 1 - 32.50	35.7 39.3 1.42.3	5 - 47.0 - 51.0 - 55.6 - 60.1	2000 N	1 - 43.75
DEPTH SAMP.	1.70 5.00 8.00 11.00	17,76 20,70 26,15 30,00 33,50	37.00 39.90 47.00 49.70 52.25	54, 70 1,40 4,80 8,00 12,20	16.90 19.80 7 22.50 8 26.00 8 29.00	32.50 35.70 38.90 3 39.35	5 44,70 6 47.00 7 53.20 8 57.00	2 4 00 2 7 4 00 2 11 60 2 14 20	43.70
SAMPLE	KG- 4-01 KG- 4-02 KG- 4-03 KG- 4-03 KG- 4-04	KG- 4-06 KG- 4-07 KG- 4-09 KG- 4-09 KG- 4-10	XG- 4-11 XG- 4-12 XG- 4-13 XG- 4-14 XG- 4-15	XG- 4-16 XG- 5-01 XG- 5-02 XG- 5-03 XG- 5-04	KG- 5-05 KG- 5-06 KG- 5-07 KG- 5-08 KG- 5-08	KG- 5-10 KG- 5-11 KG- 5-12 KG- 5-13	KG- S-18 KG- S-18 KG- S-17 KG- S-18	KG- 6-02 KG- 6-03 KG- 6-04 KG- 6-05 KG- 6-05	KG- 6-07
		•			l		j		1

•	_
•	_
٠,	_
	~ 1
•	٠,٠
	٠ ['
	_)
•	7
(Ľ
ŧ	ነገ
,	
- 1	으
•	7
	⋍
i	ų
٠	
	엪
	-
;	-
9	=
-	H
1	ኅ
,	_
	71
	ĕ
	≍
	ũ
	Ξ
	Ξ
	H
. 1	Ť
١	
•	***
	О
	٠.
	엿
	Q
,	ᆈ
•	Geological Log of Diamond Drilling Hole, BRL—2(1)
•	ਰ
	ö
	×
	ĆĮ)
	o
7	≍
	Q
	ψ
Į	つ
•	_
ı	n
•	•
	نب
	ድ
	DX. 15

	2 m 1 m		H1930, Ē	6		المستحدث	<u>.</u>		مراد المراد ا	8 1		, 	}		<u>ئىنىڭ</u> ئانداسلىنا	1		, , , L]
٠			RECOVERY			TIVE			HH										
		Contact	عبيب نسب	1.640	S	8	85 77/77	§	5 5	80%	8	08	8 8	- 80 0	8	88	§ 3	[] E	
		<u>ا</u>	E E.	30.		872	9.5	ing Må	2	83	22		2 5	3,5	eg ri	7	8;	3.2	inerals
			Z (#g	862	24.7	18,2	20.9	ž	242	7.41	4::4	4	14.6	Q.	2.5	2,92	21.7	20.2	окуделе isotopes size measurament of minerals
•			4 to 49	Ŕ	13.7	82	26.9	23.1	*	27.2	83 2,		\$ £5	δ. 8.	26.3	55.7	<u>\$</u>	<u> </u>	oxygene sotopes size measurement
			щ <u>§</u>	8 3	C 61.7	5 4	85.55	3,4	ğ.	5.36	*	1	8 6	85.3	0 (27.0	0 128:0	998	98	oxygen oxygen
			Sm (mode)	2350	1900	215.0	248.0	2550	2630	28.70	560.0	+	2360	2820	3480	332.0	3 265.0	2 241.0	ခဲ ທိ
			N 3	25.0	0.20	6 6.23	8 0 24	4 0.25	0	0 32	62.29		12:0	0.93 0.30	0.82	92 20	62 023	93 0.32	ection
?			8 3	0.550 0.83	S20 0.51	0.340 0.38	0,310 0.66	0.420 0.74	0.880	90'1	0,640	 	0.650	0.580	φ δ	82 82	0.250	99	\$ E &
	· 1	S	T, 1, (mos)	934	o	8 8	0 686	20	1.66	201	0 111	 	K 23		φ 62.¥1	0 1749	192 0	8	polished thin saction EPMA test
		RESULTS		15.4 B	, to	5.0	 	9.61	11 +/25	172.4	1.081		1702	6. Z	5 5	7.17	0.63	2 0 88	О. Ш
) (wdd)	3	8	85	6	8	e F	8	8	╼╂╌┼╌╸	28	8	£ .	730	96	일	inglysis
		ANALYTICAL	qN (mod)	88	90	8	25	<u>7</u>	1490	1 550	395	360	3	2992	57.4	310	46	745	ted Samples WAwhole rock analysis Tithin section
0	: .	AN	<i>i</i> 5 €	2090	982	3250	2882	82.2	2600	. 9	883	635	5 8	<u>8</u>	1225		1505	: 78 26	Tested Samples WA:whole rock T:thin section
1			89 (%	3,65	5	ts.	3.28	13	7.09	9.	3	167		8	22.	01.0		5.17	Testé
			ο. §	5 7 10.55	05) 1290	-150	0 S	S S	2 69 1	9 <u>7</u>	3 <u>8</u>	20.00		22.270	27.00	8 9 8	12.70	85 88 55	
i S	Ë		DEPTH WIDTH (m)	54.0	1	<u> </u>	+	.	•		•	+-+-	-	2 (2.30			•	6 (1.38) 6 (1.38)	Rinat veined
0	-90° 100.50		SAMPLE No.	86-2-01	BR!2-02	BR2-03	BR-2-04	BRI205	B6L-2-06	BRL-2-07	882-06	882-2-09 89L-2-10	88L-2-II	9RL-2-12	BR(=-213	9RL-2-14	BRL-215	BRI2-16	Rirare
			TESTED SAMPLES				9.20m 8RL-2-4		F (7.10m BRL-2-B (WA)	+ 22.10m 9€-2-10m	£			33.90m 8R(20 (P)		BR (P) 87-2-E	45.00m BRL-2-14 (S)		n Vivein part Aisbundant Cicommon
	3		AEIM		Œ	0:	0¢	œ	U	œ	OZ.	<u>«</u>	0	α	Q:	>	œ	α α (x	Vein V:ve V:ve C:cc
BEARING	INCLINATION LENGTH	-	REACTION 1	1	1 t	i i	+	1	1	l I	1	-	1	1	1		i	1 1 1	1
BE/	S S	ON	WEATHER	8	v	Ś	s	s	¢,	,	v.	· · · · · ·	5 در	.co	vs .	,	W	V 20 V	netic test +:magnetic -:non magnetic
	1.					. •							oxide o		ss	N		origin)	
•	Ę.		8		d secon			nematit	iliceous ork veir	hite rich origin	cide on	origin	origin	bonatit	siliceon	e porou		bonatite	:
(X: 740.812mE	. Y : 9,979.113.mN : 1,365.5 m		CRIPT		thite an	9	ic rock	biack	partly siliceous. on network vein	ck, goet r-Fe ore fetrocar	iron-o	bonatite	bonatite	ock (cm	partiv	red, tim re (carl	J	(Ferrocari	i i
X: 74	۲ : 9,9 ا :		DES	red roc	s of go	artly ha	iron ore ty laterit	ck with	rock, dizeo ir	ock (Mi brown	ch porou	ck (car	ock (car	rich r	n rock,	urplish	out rock Fe ore?	rock ()	Reaction to HCI Fireact
			GEOLOGICAL DESCRIPTION	Reddish brown surface weathered rock	axi laternto rock. very fine porous, consisting of goethite and secondary chalcedonic quartz.	Khaki laterite, partiy earthy, partiy bard	Khaki to brown hard silocous iron ore, 9,50–10,50m; Khaki earthy lateritic rock	Khaki Tine porous lateritic rock with black hematite spots, original rock : carbonatte	ki fine povous laterific rock, party siliceotis. 16.20–16.70m: black oxidized iron network vein	Brown to purplish brown lateratic rock, goethite fich Black to dark grey porous rock (Mn-Fe ore origin) 22.80—23.40m: Purplish brown ferroarbonatic	Dark grey to black hematite rich porous ore original rock .: Mr-Fe öre 27,65–28.20m; Brown .siliceous iron-oxide ore	Grey porous leached out rock (carbonatite origin)	y porous leached out tock (carbonatite origin) 30.40-30.70m, 31.30-32.00m; orange brown iron-oxide ore	Khaki fine porous goethire rich rock (earbonatite origine) with black spots	Khaki to brown goethite rich rock, parity sliceous	k grey to black, partly purplish red, tine porous Fre ore. 43,00.—43,50m: banding structure (carbonatite)	Dark grey line porous leached out rock original rock: Calcarcous Fe ore?	Brown to dark brown porous rock (Fetrocarbonatte origin)	National Control of Mark Specials from Wiesek Lineset Fifesh - India
NO.	GRID)		3E0∟0	n Surface	rock orous, c donic q	parely e	n hard si Om: Kha	rous lat	porous J	grey p	lack hen k : M 20m: B	leached	leached 70m, 31.	orous g	wn goet	olack 50m: t	porous ck : Calc	ack her	o plack
LOCATION	(UTM GRID) ELEVATION			word us	lateritic y fine p y chalce	laterite,	to brow	fine po original	fine p 20-16	to pur to dark 80-23	k grey to blac original rock 27,65–28.20	porous	porous 40-30.	fine p () with t	50 01	ore, co	rey line ginal ro	to bl	Wweak Fifresh
				Redo	Kliaki Ver day	Khaki	Khaki 9.8	Khaki spots,	Knaki 16	Brown Black	Dark g	S _{ee}	Grey 30	Khaki origine	Khak	Dark grey Mn-Fe ore, 43.00	Dark g	Brown	S S
2.5	#Oc - 0	BOUNDARY	DEPTH(m) and CORE ANGLE(')	0.45	٤	}	90 00	ឆ្ន	8	6 2 2 2 6 8 8	Q KX	28.20	30.00	5 S		or or	88 8	47.60 48.10 49.65	Weathering S:strong M:moderate
No. BRL-2	0	ă.	COLUMN CX	0		# 1	2000 0000 0000 0000 0000 0000 0000 000												Kea
N HOO			8 8 E	0	<i>.</i> (2.7.4)	441 6		5 			Ε			(3) (3)	147	0,0	\$ ************************************	2 2 2	Key.
-		i	<u> </u>	L						····							·		1
										A-27	ľ			-	-				

_
(4
-2(2)
BRL
\exists
BRI
144
e
Hole
, L
Drilling Hole,
rillin
<u>,</u> ⊑
\Box
ď
~
Ē
13
1 Log of Diamor
77
20
Õ
- (
ical
. <u>p</u>
Ö
ੌ
(4)
U
vo
7
×
Apx.

	H	-	ន	L. Lad	-1-1-1-	أبب		<u> </u>		1	Till Till	,,,,,			1111111	<u>L</u>	177777	innn	Z T 8
		COPIE RECOVERY	77	47.77	<i>[[]][A</i>														
+	ONGINED		930	2.590	§ (1)	\$ \$	88	3	1.620		5	021:1	0.00	520	8	1777	8	009	771
-	8		-		4.	 	4				0, 	0	ý V	<u>-</u>	, , , , , , , , , , , , , , , , , , ,	-	E 50	3.2	-
		Yb Lu	8 2.9	2.4.0	in in	20.9	₩ ₩	22.7 4.4	12.0	90 . Pr	20.1	2.8.6	2 2	100	8.81 8.81	-	Si N	1-1-1	
		Tb Yb	1=	28,4	89	25.1	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	27.72	77.6 57	57 69 67	0 0	35.0	13.6	237 19	89	-	7.7	5,.2	~-
1		(in the contract of the contra	77.9 2	1060	28.0	5 979	82 83 84	83.7	1980	96.6	7.48	78.9 3	58.	61.7 2	<u>.</u>	-	\$7.A	35. 2.	
		Sm S	-	2220	276.0 1:	5020	232.0	0.0	0380	98.0	244.0	720 7	9	0 64	026	-	\$0.0	0 (9	
		9 3 2 3	-1-	2 22	6 8 9	0.24	0.26	310	72.0	71.0	20	4	5,12	0.13	900		6.	0 80	1
}	į	& ફે		\$2	2 2 2 2	8	<u>ō</u>	0.55	0.85	0.65	0.85	0.59	0.40	0.73	85 60		28.5	(è	
		3 %	4-1	0.930	2.040	8	0.710	0.330	0.500	0.490	0990	0.440	0380	0,640	0.300		0.580	0.540	
	ST.	T (Mag	150	889	4. E	46::	1092	975	1699	8 0		366	60	622	373	1	203	452	
	RESULTS	ے آ	73.0	96.4	1.07.1	13.4	5	9.	154.6	<u>15</u>	29.0	5.12	33.2	88	หา ช		, 9 9	, a	
- 1	. I	> @g	400	\$	9	6.40	700	670	899	0 69	\$	630	94	22 0	500		0 E 9	Sio	
	ANALYTICAL	2 (wed)	_	38.5	0 8	0061	0 6 6	9 2 0	4 4 50	88	1300	1200	8	90	000	:: 	730	0 125	_
	Ā	Ø (metd)	2090	2 380	, 28 co	2730	1845	2180	1365	1600	2370	3 1965	455	06 2070	0 2360		3330	3310	-
		8 §	533	4 8 1	6. 8.	4.29	348	0 373	2.15	2.3	2 88	9	9 - 36	(4		-	2.56	1.7 4	_
		a §	1375	. 8 8 8 €	53.75 13.25s 4600	(3.70) 2750	60 80 80 80 80 80	02	200	(4.30) 6.50	500 850	11.10	79.05 (2.50) B78	6.55	(4, 50) 59.2	S :	(3.90) 1855	28.38 28.38 28.38 28.38 28.38	\dashv
E		DEPTH wiDTH (m)	96 E	 -	5. S.	h	8 5	3.20	52 50 50 60		£ =	•	4	ळ ७ ट	•	**************************************			
#00 00 00		SAMPLE		8PL-2-18		3RL-?-20	84-2-2	BR-2-22	BR - 2-23	BRL-2-24	\$2-2-	BR-2-26	BR-2-27	82-2-388),0, BRL-2-25		991- 2-30	BR-2-3/	
	POSITION	of TESTED SAMPLES						-			75,00 77,00m	ĝ		83.50 m	85.00m BRL-2-0, (P,S)			P. 95.90m 8RL-2-6 (T)	
		NEN	>	2	<u>a</u>		œ	œ	œ		U	U	u	œ	z z	z	=	2	
т_		NOITOA 3R OXT 3HOAM	1	- 	1		1	1	1		1	.+	+	4	4 4		J. <u>₹</u>)	1
r R	DNI	ээнтаэм	s	· v	s		vs .	v	ß		*	35	¥	>=	LL tL	ls.	En.	L.	\parallel
									pottor						veinhet 1			U 71	$\ \ $
. 1 365.5 m		GEOLOGICAL DESCRIPTION	te rich ore (Mn-Fe ore)	irbonatite origin	forous rock consisting of	în some part.		out rock,	ments; grey clay at the	black, weakly weathered	Original colour 1. white, Veinlets of Tron-Oxide are common. Siliceous fron ore: 73.15–73.20m, 73.80–73.35m 74.45–74.50m	black,, weakly, weathered	chlorite rich carbonatite containing Inne-grained carbonatite	oxidation of veiniets of ical carbonatite, Sporadit	carbonatite with chlorit, y to dark grey, fine-grainec e irregularly, developed in	nolite with chlorite vein	as fine-grained carbonatite lassy phonolite. 3me part.	y glasy thinty banded phonoine 98.30–98.35m: fine banded exponsitite dyke 100.40–100.56m: grey leterogeneous fine-grained exbonatite dyke	
ELEVATION			Dark brown to black goethite rich ore (Mn-Fe ore	Brown porous fragile rock ; ca	Pale brown to brown very porous rock consisting of ferrie-oxide and secondary quartz, i.e. leached out carbonatic	Dark grey porous fragile rock Siliceous fragments occur in some part.		Orange brown porous leached out rock carbonatite origin	Grey very porous rock fragments; grey clay at the bottom	69.00m; Water Table Pale brown, partly stained black, weakly weathered massive carbonatite.	Original colour: white, Veinlets of iron-oxide are common. Siliceous iron ore: 73.15-73.20m. 74.45-74.50m	Pale brown, partly stained black, weakly weathered	Dark greenish grey chlorite rich carbonatite tragments of white fine-graned carbonatite	Pale grey, parity brown by oxidation of veinlits of iron ore, banded, finegrained surbonatite, Sporadic latest abilities veinlets developed.	Grey brecuited linegrained carbonatice with chlorite venlers Pale grey, parly greenist grey to dark grey. Integrained banded embonatite; chloric irregularly developed in the section.	Grey glassy brewated phonolite with chlorite vein, alvikite veinlets, and banded carbonatite vein	!	<u>[</u> 8	
	BOUNDARY	CORE ANGLEC	5:00		8 5	60)X		8 \$	67.70	00.69		2.	8 8	2 / S	8 3	8 .	2. A.	95.30 98.30 98.55	100.50
	טפטו טפט	COLUMN																	
1	DEPTH	Ē	જ	1		8		. 13.		8	. K		8	ě	3	8	ä	,	8

	_
RPT_3(1)	_
	7
,**	7
m	۱
٠,	r
. !	L
100	1
	;
μ	÷
C	١
,	٠
	•
ď	,
~	₹
	2
ı	3
od Drilling Hole	7
b	û
. C	3
•	4
- ==	1
- 1	٠i
٠,	ŧ
\mathcal{C}	3
_	7
4	ŧ
- 2	4
	•
_ ()
~	3
Ç	4
0	d
**	ð
	١
-	•
4	4
C)
٥	Ų,
- 0)
	'n
-	4
Gentlogical I no of Diamond	4
σ	ż
- (>
4 24	1
Q	Ų
c)
-	٠
C.)
ď	¥
r F	'n
-	,
_	,
_	,
•	•
17 A	

				11930	Ê	0	المستعدد	مناند	بأيب	المتاب المسلم	خاسبان المساند	, <u>8</u>			با ساد	المساسعات	<u> </u>	المالمالمالمالمالمالمالمالمالمالمالمالما	بنساح دارسا	<u>.</u>	اسلسلية	1		
				CORE	*6		H	111	HHH	MA	HH	H				HHH	IIII	HHH	IIII		HHH	HHH		
				器	. 0	H		H			HH.	H		7	11		M		H	Ħ			7	
			O HARRIED	S NG NG	(%)	2.940	2,630	0.630	2.280	1,880	2.260	2.65		4.610	3.440	0.950	1.020	0.770	0.940	2.090	2.000	1.450		
				3	(myd)	4.9		5.6	100	4	4			0.0	I	3.1	S.	0	8	1.0	ų,	4.3		nerals
				\$	(mdd)	35,8	6.05	32,3	5	9 02	36.9	30.6		8 32 32	8 8	19.8	36.3	4	6 15	30.9	7.	28.7		e E
				g.	(mdd)	25.5	26.2	23.1		12.5	- S	10 10	-	-	2	12.5	25.9	24.7	25.0	38.2	22.0	6.22		setope:
	:			ı ii	. (udd)	77.8	4,28	9.79	8	85	72.3	4 88 4	7	6.9	4.16	35.4	83.9	9.07	437	1228	77.3	977	1	Oxygana isotopas size medasurement of minerals
				e,	(mdd)	215.0	22.8.0	0.673	016	177.0	0.161	2,2		196.0	63.0	116.0	2200	193.0	201.0	80	5200	222.0	1	\$ 18 0 0
					(%)	0.26	920	8		12.0	27 0	22		20	0.25	1	2	<u>8</u>	*	0.33	0.25	0.21	1	
				ļ	(%)	8	122	0.79	1.07	*	8	121		2 04	, N	946	252	8E 0	64.0	- 05	46.0	57.0	1	saction
				·	(%)	3.00	6 -	0990	02.60	95.70	086.0	1210		8	999	0.380	0.330	0.250	0310	0.720	0.80	05.50	1	d thin test
Ì	. :	:	S	<u>=</u>) (mad)	199	469	109	<u> </u>	1 42	79.4	76.5		649		374	400	ស	585	986	823	607	1	P:polished thin saction E:EPMA test
			RESULTS) (wdd)	80	8.08	6.15	0.51	4.	8, 20	5.6		23.6	20.2	13.2	e 9	22.3	28.8	23.5	. <u>4</u>	80	1	œω
֝֝֝֝֝֝֝֝֝֝֟֝֝֝֝֓֓֓֓֝֝֟֝֓֓֓֓֓֓֓֓֓֡			1 .	>-) (wdd)	670	089	079	520	0.4	030	0		540	084	330	720	00	8	920	0 4	0 30	1	analysis
41.0			ANALYTICAL		(Egoti)	250	200	8	8	830	740	096		340	524	029	8 70	976	8	099	80 80 80	£ 9		x 2
			ANAL		(mon)	2780	750	3260	5690	0 4 9 1	0 9 0	2770		000	2930	2960	2430	2580	2320 1	23.50	2270	<u>v</u>	1	ted Samples WA:whole rock (Tithin section
1) %	8	8.7.8	3.18	3.88	£ 2, E	4.57	8		3.66	923	. 37	8	3.	98	7.27	, 4 6	*2	1	Tested Samples WA:whote root Tithin secti
				<u> </u>	(mod)	2:300	9060	20200	11370	0818	848	7830		11470	2180	0606	13180	6940	7340	0188	7640	C874		H
ğ		· ;		OEPTH IND WIOTH	-1			88 88 88			<u> </u>	1 60 E		= \ = \ \ \ \	8	S				원: 8 58 년 기술 1		4 20 64 64 64 64 64 64 64 64 64 64 64 64 64	П	. Decigo
5		, EQ			-		+	•	•			1	_7	11						***	•		Н	Rirare Ninot veined
i i	٥	100.70m		SAMPLE	2	-3-4-3-6-3-6-3-6-3-6-3-6-3-6-3-6-3-6-3-6	94L-3-02	BRL-3-03	5 25 26 27 28		1881-3-06	BR-3-07	4	8 7 8	BRL-3-09	.meRt-3-10. c.		88-3-42	2 - 7 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	BR(-3-4	8 ™ 84 × 3 × 3 × 3 × 3 × 3 × 3 × 3 × 3 × 3 ×	- 316 - 316		
		•		TESTED SAMPLES		· .			981-3-A (P) + 10.75m 882-3-8	7. 12,70 13,50 m 882-3-05 882-3-14						— 27.60m BRL~3—C	2030m GR[-3-11 BR[-3-0				+ 41.70m 8R±-3−E (₽)			Vivein part Aisbundent Cicommon
	. Z	Š		NI3A			U	U	· ·	z	ļ	ں آ		z	z 1	z		<u>ac</u>	0	2	<u>د</u>	z		Vein S . S .
9	BEAKING INCLINATION	LENGTH		NOTE TIC		. 1	+	+	1 7	+	ļ	+		1	+	+ 1	+	+	+	1	+	+	H	
	2 N	<u> </u>	DN	яэнтаэм		so .	=	2	35	7		¥	_	S	*	*	*	*	*	≥	≱	u.		ast rtic Iagnetic
*	ກ <u>ເ</u>	2		NO			thy rock	Khaki to brown curthy rock or weathered porous rock	y and variously stained banded carbonatite, moderately veind by orange brown Freeside, 8.30-9.10m; magnetite remained as dissemination bands	dish brown massive ferrocarbonatite [4.50–14.85m: pute brown banded carbonatite	Brown to khaki stained funcgruined banded carbonatite banded structure : disseminated bands of magnetite			100000	Brown nematice (after magnethe) fich ounled caroonante	bonatife,	Pale grey to white (stained brown) line-grained banded carbonatite, veinlets of Fe-axide developed	Pale grey to white fine-grained banded carbonastic banded structure : Nematite after magnetite	Pale grey to white (staned brown) banded carbo- natite; moderately veined by Fe-oxide o.5cm in width	Dark grey to brown, porous leached out ferrocarbonatite	Pale grey to brown (by stain) fine-grained banded carbonative. fron-oxide veinlets sponadically developed.	(45.20m: Water Table) Pale grey to white fresh carbonatite with clots and desomination of magnetite. 49.00—49.40m: brown mussive ferrocarbonatite		Magnetic test +:magnetic -:non magnetic
į	X: /40,/91mE	1,332 5m		DESCRIPTION			co para	od para	bonatite srown as disse	ite ided ca	inded on inds of 7			ا بران بران	ound us	igo pop	e-graine oped	nded er after	bande e o.5em	out fe	e grey, to brown (by stain) fine-grained pondite, fron-oxide veinlets sporadically developed,	e with		당 유
i	× ,	· .		DES		iy rock	weath	r weath	ded car ange b mained	rbonati nn bar	ated ba			Donat	(1) (1) (1) (1) (1) (1) (1) (1)	po pa	wn) lin e devel	ned bay	brown e-oxid	leached	in) fin cally de	bonatite		Reaction to HGI +react -not react
				JICAL		בן המען סק המען	brown	ock o	by or	ferroca ite bro	issemi Issemi	. ^.		errocar	magne	bands	ned bro Fe-axid	ne-graii her	staned ed by I	porous	by sta	tite.		Reacti:
į	£ 6	NO.		GEOLOGICAL		veathor	ro olive	carthy	sly stair veind : magn	nassive Jm: pu	stained sture : c			papue	i (aller	hite in 18metite	te (star lets of	Aire fracture	white (rown,	rown (fater In hite fin magne	ì	_
Ì	LOCATION (UTM GRID)	ELEVATION		Ö		orown v	brown	brown	various rrately -9.10m	brown)-14.8	s khaki ed struc			orous b		to w	to whi	y to y ed str	y to y	y to b	y to b ife, exide y	(45.20m : Water Table) : grey to white fresh unination of magnetite. 49.00-49.40m: brown		W.weak F.fresh
-	í Ə	F				Reddish brown weathered carthy rock	Purplish brown to olive brown weathered earthy rock	Khaki to	Grey and variously stained banded carbonatite, moderately veind by orange brown. Fr 8.30-9.10m: magnetite remained as dissem	Reddish brown massive ferrocarbonatite 14.5014.85m: pale brown bande	Brown to band			Brown porous banded retrocarbonatite	n nword	Pale groy to white Integrained banded carbonatite partly rich in magnetite bands	Pale grey carbonat	Pale grey : banded	Pale gre natite, m	Dark gr	Pale grey t carbonatite, fron-oxi	(45 Pate gre dissemin 49.00		
	~ ∈		BOUNDARY	DEPTH(m) and CORE ANGLE ()				8 8		g §		7.		_1,			8 8		<u> </u>	8 8 0 6		8 \ \ 88		ithering Sistrong Mimoderate
'	BRL-3		800	S COR										~ !!!!								3 8 2 2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	H	Weathering Sistrong Mimoder
	DOT No.			COLUMIN																				Key:
i	1 0 0	ÿ. 1	, and the second	E.	(m)	o	, (-] -		9	Σ		20	r	•	25		8	<u>.</u>	, _F -	6	4 1		3	ž,
-		N - →				-				N702		·								Marrie .		COLUMN DE LA COLUM	اري	

	_	
	ć	V
	•	-
	Capitorior I or of Diamond Drilling Hole DDI 2 (0)	ņ
		į
	_	1
	۵	ć
	۵	٥
	•	
		2
	7	j
	I	
	٠,	
	ž	4
		11
	:;	4
	٤	7
	١.	
	٠	J
	5	7
	Ç	2
	3	7
	٤.	₫
	ř	
	;	_
	÷	
	`	
	ř	۲
	١	`
	_	_
	7	d
	٠.	2
	ξ	Ų
	_	2
	`	5
	4	P
	C	J
	~	_
	<u>ب</u>	_
	OX.	
	è	۶
	2	ŕ

06-

INCLINATION

BEARING

LOCATION (X: 740,791 mE (UTM GRID) (Y: 9,979.113mN

DDH No. BRL -3 50-100m

)	11430 E	8		. گ	4.4.4.	اساسا	۽ آب	مجسم.		٠	با الس			8	ß.	جبيب. إحابيا		8	
		CORE RECOVERY									H					777		H		
	COMBINED	L C Conferre	050	0.660	2, 4 XX	2.190	0.910	0.910	2340	1.470	12.70	8	1.720	2 4 70	3.0.60	8	080.1	2.030	1320	
	۱] [5.	N)	4.0	6,	2.8	2	6.3	2 9	5.9	4 66	4 0	8	بر ق	4	5.7	2		minerals
		d (gr	26.0	3,	52.2	25.6	4.67	Č	36.2	4.88	24.0	2 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	23.9	57.7	18	40.9	4	4	- 1	
		P E	4.4		8. S.	200	0.	Š	24.7	17.7	1.2		2	4 Qi	52 52		5 27.7	31.5	9.81	oxygene isatopes size messurement of
	Į	<u>п</u> <u>§</u>	88 28	n 4	67.8	g g	8	43.7	90.0		0.46.9	8 29	0 75.2	8	8	730	86.3	6	++	O: oxygene S: size mea
		S Sm	6 190.0	85	274.0	4 (1995)	121.0	52 52 53	27 2420	20.00	157.0	8 2020	24 217.0	241.0	36 286.0	\$ 193.0	2300	37 2620		
	.	PN S	ō	9 6	68 0.18	96 0.24	0	, ,	1.09 0.2	91.0	0.62	0.72	0.85	0.70 0.20	24 0	0.49	057 0.23	1.10 0.37		section
. .		<u>ु इ</u> -	0.380 0.51	0.200	05.00	0.830	0360 0.44	0.340	0380	Š	0.490 0.	0 0090	S	0.570	1.270	0.580	0.280	090	1	d thin s
١	,	- L (mg)	0 22	9 9	- 8 - 8 - 8	948	463 0	645	2021	964	704 0.	26.5	98.36	24	86	676	58.6	ř	1	P:polished thin s E:EPMA test
2T 11 22 G	200	 	 	 5.	6.2	2.11	8.9	4	27.1	260 8	- 1		19.6	26.8	8 8	0	36.2	104	├ -1	L W
1	. 1		0.40	670	530	0 69	8	28	720	720	450	9	540	8	099	0.7	069	730		analysis
ANA! VTICAL	<u> </u>	д [ed	375	25	086	<u>6</u>	040	8	940	0 9 6	620	7.80	0 10	04.0	28	920	1250	750	550	1
N N N	Ž	ග් දී	2340	8 N	9810	29620	7580	2400	2670	2870	2 330	2460	267	0152	O.S.	2800	848	2130		ted Samples WA:whole roc T:thin secti
		6 3	2.58	2.62	363	5 2 3	2.56	60 4	10.7	3,08	ių.	4. 25.	4	4 60	7.23	3.64	4 85	8.27	1	Tested WA:
		o. 🗿	7.770	11250	6190	8	901	Š	15360	980	6330	0630	4650	1330	7270	8 2	69	7370		
		OEPTH and WIDTH (m)	104.40		(3.20)	(3.00	(3.00)	(3.00)	(\$4 (\$4 (\$4	(3.8)	95 95 100 100 100 100 100 100 100 100 100 10		***************************************	8 8 8 9 0 5	8.8	1	92.70	-94 -95 -95	8 n8	Rinaire Ninot veined
00.70m		SAMPLE No.	BRt=317	-2-T-8	84L-3 -1S	92-3-50	9KL-5-2	2-F-18	BR-3-23	98-3-24	9R-3-25	86-7-38	3K-3-27	BR3-28	BRL-3-23	BR-3-30	9R-3-3	25-F-198	P 7 8	R.r.a.
	POSITION			(P) BRL-3-F F 56.10 m F 57.40 m BRL-3-6	ê		+ 66.40m	je je					S S	BRL-3-7 (P,0)					-	Vivein part Alabundant
+	<u>δ</u>	NEIN SEIN	z	2 E		z	1 1		1>		F	œ	or I	2		>		>	z	Vein V ve A vab
Ξ -		REAOTION 1	+	+		+			1	1	+	+	+	+		t -	1	1	+	
S C		ие и тнен	tı.	ts.		<u></u>			s	us .	ls.	lr.	L.	ь 5		υ	v,	V	L.	est etic regnetic
			ona-	xcar	pale bona-	-ugnc				ng a	retite	linely	lorite	inkets	ng of		pents filling	sterial	stage	Magnetic test 4-magnetic non magnetic
I,332.5m		GEOLOGICAL DESCRIPTION	Pale grey to white iresh banded line-grained carbona tite, partly brectaised 53.80-53.90m : fractured zone	disseminated zones occur	bonatite brecia with green chlorite matrix, Factes of intrusive become organic rock is pale grey to white fluorite bearing fine-grained curbonatite with very fine magnetite.	Beige alvikite veinlets of latest stage occur throughout the section.				Brownish grey to brown eartly material, Strongly weathered zone of carbonatite along a fault,	Pale grey to white banded carbonatite rich in magnetite	Yale grey, 'parly dark greenish grey (chlorite) finely bracciated heterogeneous carbonatite, fintuded by beige alvikite veinlets.	Pale grey brecciated carbonatite with irregular chlorite veinlets.	horite w	Brown to orange brown porous gossan consisting of goethite and chalcednic quartz		Dark brown earthy material consisting of line fragments of humatte and brown powder; possibly cave filling material or weathered carbonatite	Orange brown to brown gossan or earthy material	bale grey, very, incognained alvikite of the latest stage.	ō
25		DESC	ine-gr	minated	origina S fine-gr	st stage			nesso	naterial i carbo	natite ric	grey (quatite, inlets,	with in	natite with e	s gossar		isting of	an or	kite of	Reaction to HCI +:react
		CAL	banded tured zo		green cl breccia; c bearin ignetite.	s of late			porcus	corthy zone o	d carbo	greenish s carbor rikite ve	bonatite	d carbo	n porou		ral cons powde rbonatil	SSOS UA	hed alvi	leaction to +react
Z		10	te îresh ated m : frac	bonatite same as above Magnetite bands and throughout the section.	bonatite breccia with green ci Facies of intrusive breccia; grey to white fluorite bearin tite with very fine magnetite.	r veinlet on			brown	athered	te bande	y dark ogeneou beige al	ated car	te bande	cednic		ny mater t brown hered ca	to brov	ine-grai	
ELEVATION		병	to whi y brecei -53.90	ite same ctite ba	ite brec s of in to white	Beige alvikite voout the section.			orange	igly we	to whi	y, parti- id heten ided by	, brecci	to while	o orang and cha		wn eartl tite and or westl	brown	/ very 1	W.week F.fresh
			ale grey ite, parti 53.80	Carbonatite same as above Magnetite bands and throughout the section	Carbonatite breccia with green chlorite matrix, Facies of intrusive breccia; original rock grey to white fluorite bearing fine-grained cite with very fine magnetite.	Beige out ti			Brown to orange brown porcus gossan	Stron Stron fault,	'sle gre	rale gre orecciate Intru	Pale groy veinlets	Pale grey to white banded carbonatite Pale grey brecciated carbonatite with	Brown to exange brown pore goethite and chalcednic quartz		Dark brown earthy material consist of hematite and brown powder; material or weathered carbonatite	range	ale gre	
-	BOUNDARY	OCRE ANGLE (*)		<u> </u>	8 \$ 5					74 0 7 Ni	76.20		بسمجل		•		5 5 13 0 €	77.7	98 60 100.70	thering Sistrong Mimoderate
-	90C	ANG.														。 [{\infty}			<u></u>	Weathering Sestrong Memoder
	000										攤									X ey:
	PEPTH	Ē	S.	ኤ ነ ነ ' '	· · ·	13 I	.	8	•	5		8		58		8	8	• .	8.	Ž