Figure 5-2 is the flow chart of the foregoing basic requirements. When these basic requirements are applied, the optimum route plan for the domestic satellite system in Thailand turns out to be the compound route plan consisting of the satellite system plus the terrestrial radio system for part of the route. By this route plan, 129 stations out of the 469 objective stations of this Study are to be incorporated in the terrestrial radio system.

The study of cable system application, including entrance cable, shares the same philosophy as the terrestrial system study in Part IV 3-4. (Refer to Table 5-2.)

The route plan formulated by the basic routing requirements clarified in the foregoing is shown in Figure 5-3. An example of circuit assignment diagram for satellite system appears in Figure 5-4. The channel accommodation plan for the same four areas as of the terrestrial system route plan is shown in Figure 5-5.

3-2 Channel Plan

3-2-1 Scale of Domestic Satellite System in Thailand

(1) Number of Earth Stations

The number of sites required for Rural Long Distance Public Telephone Service by the satellite system is, in the first half of the Project period, 340 rural earth stations and one master earth station. The similar number in the latter half of the period is 194 rural earth stations and one master earth station, excluding 146 stations where the equipment replacement to facilitate the incorporation to the terrestrial radio system is expected pursuant to the introduction of telephone exchange in and after 1994.

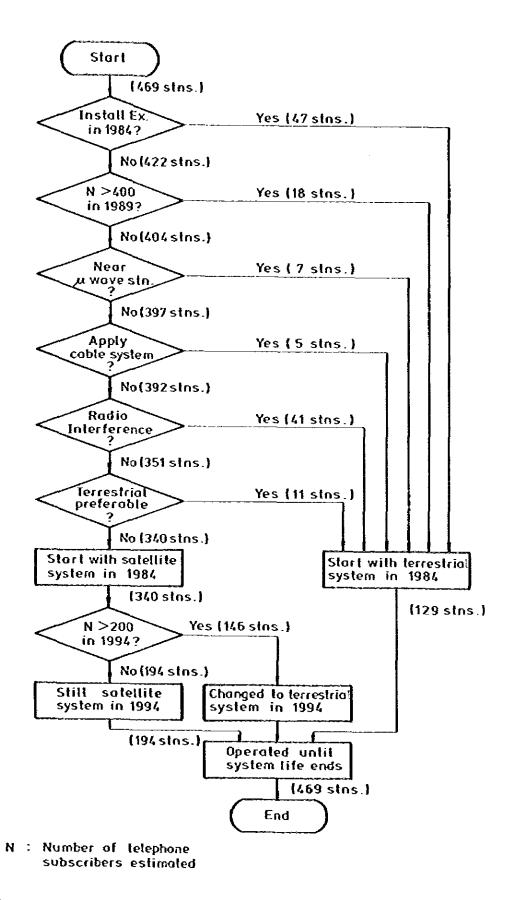
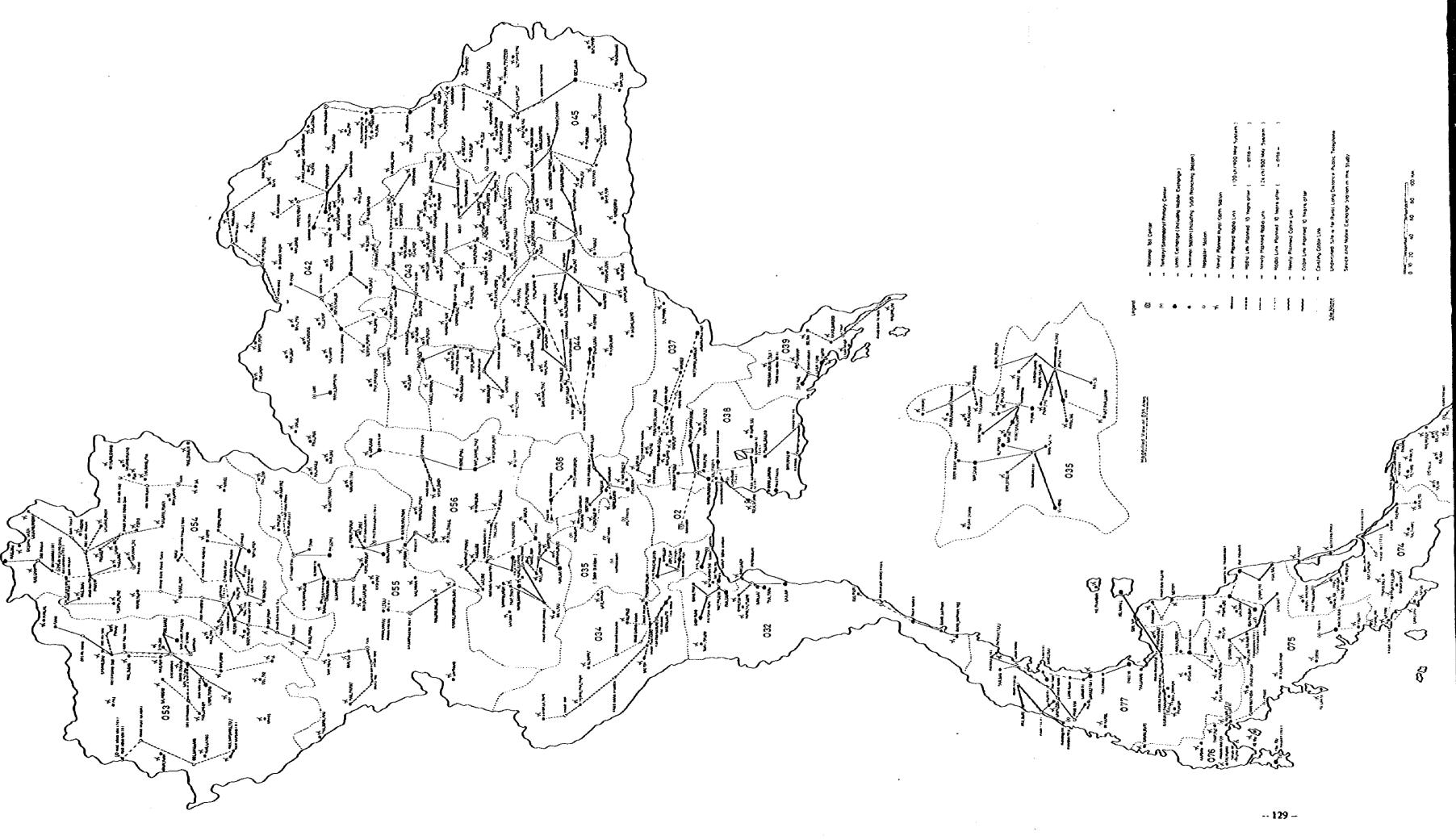
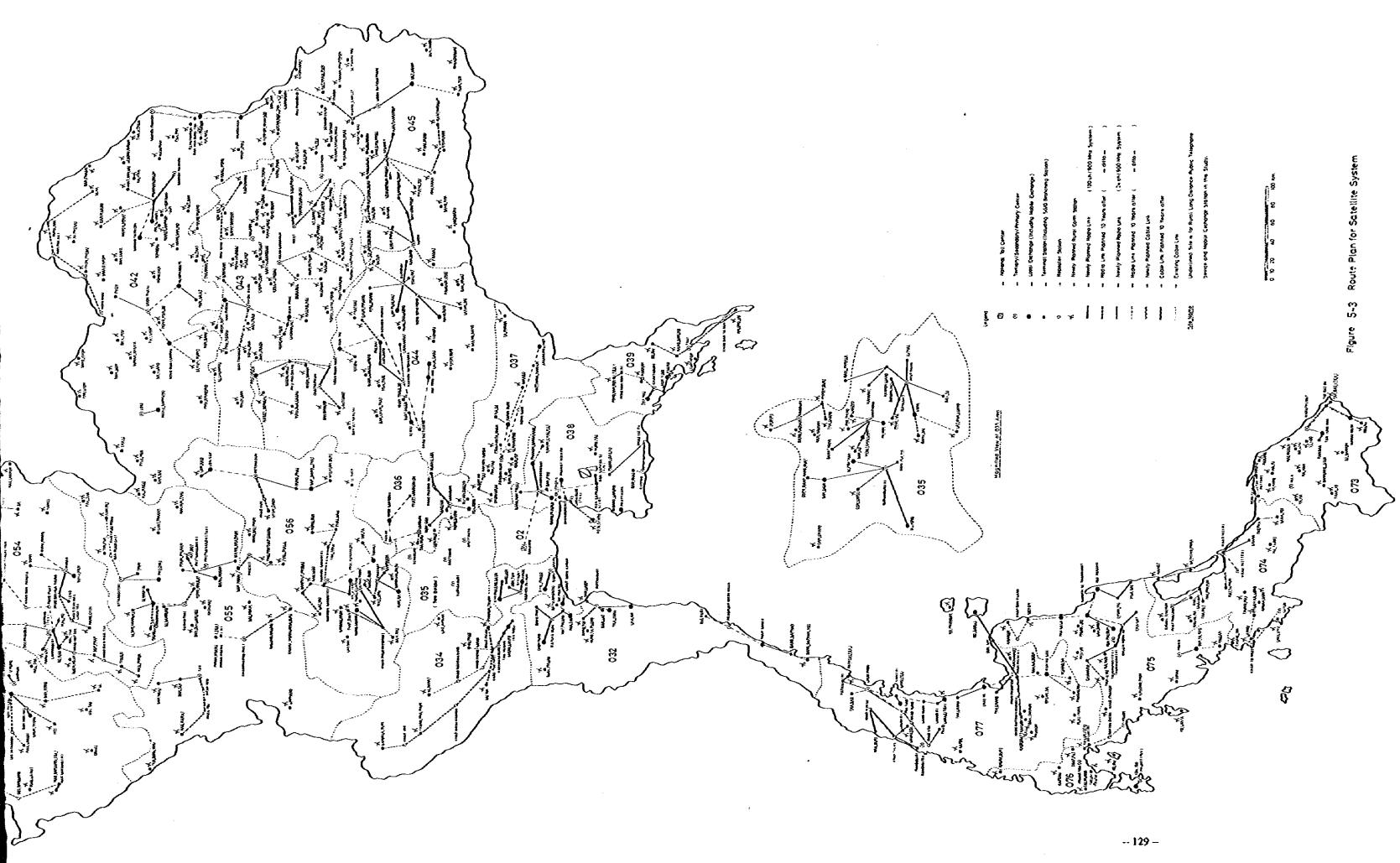


Figure 5-2 Basic Philosophy of Route Plan for Satellite System

Area (Code)	Socrion	Dist. in Km	Circuic Requirements in 1984/1989/1994	Required Trans. Loss in dB	Cuble Sy Applied 1984	System ied in 1994	Remarks
Kanchanaburi (3413)	Saeng Chuto -Kanchanaburi	28.5	36/50/64	0.4	PCM 2 SYS	PCM 1 SYS	Note 1
Rayong (308)	Ban Khai - Ruyong	12.0	4/5/20	0.4	549L	i	
Chanbur1 (3815)	Ban Lamung-Phatthaya	6.5	2/3/3	4.0	g	۱	Note 2
Chantaburi (3905)	Ропк Nam Ron -Ропк Num Ron (R)	2.9	-/-/20	3.35	Ľ	10065NL	Note 3 & 4
Mac Hong Son (5301)	Xae Sariang Mae Sariang (R)	3, 3	-/-/26	3.35	8	15065L	Note 3 & 4
Lamphun (5322)	U-Mong - Lamphun	0.9	3/4/5	4.0	289L	1	
Chiangraí (5401)	Phan - Khao Ban Doi	2.0	8/30/40	3.35	15065NL	ŧ	Note 3 & 4
Khamphacng Phet (5523)	Phran Kratal -Phran Kratal (R)	2.1	-/-/30	3.35	1	15065NL	Note 3 & 4
Narachíwac (7314)	Rangae - Tan Yong Mas	1.8	2/3/3	4.0	B	ŧ	Note 5
Narathiwat (7314)	Tak Bai - Tak Bai (R)	1.5	-/-/20	3.35	ı	10065NL	Note 3 & 4


Table 5-2 Cable System Plan for Demestic Satellite System (1/2)

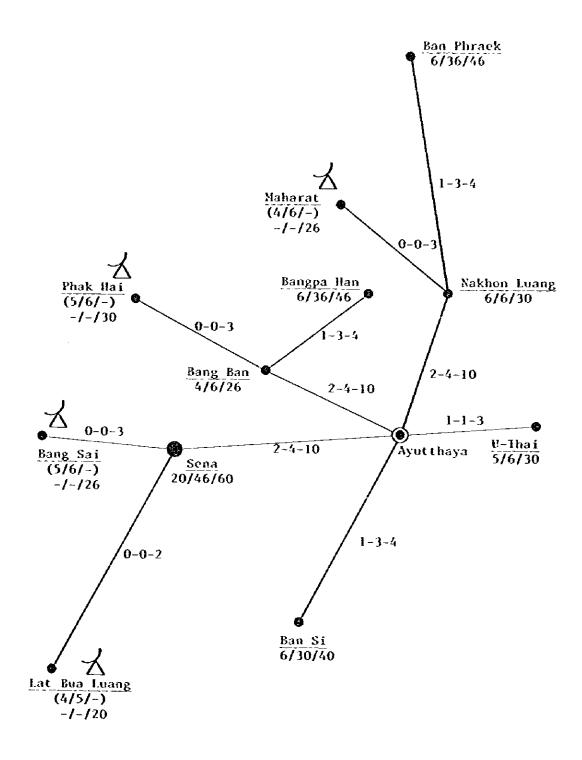

- 127 --

SectionDist. (LivuitCitutit Requirements in (1 d)Requirements in (1 d)Requirements in (1 d)Remarka (1 d)Ao Luk - Ao Luk (N)3.0 $-/-/20$ 3.25 $ 196$ Note 3 & 4Ao Luk - Ao Luk (N)3.0 $-/-/20$ 3.25 $ 100$ $-65NL$ Note 3 & 4Ao Luk - Ao Luk (N) 3.0 $-/-/20$ 3.25 $ 100$ $-65NL$ Note 3 & 4Ao Luk - Pathiu (N) 4.0 $-/-/20$ 3.35 $ 150$ $-65L$ Note 3 & 4Nati - Suwi (N) 4.5 $20/26/20$ 4.0 3.35 $ 150$ $-65L$ Note 3 & 4Nati - Suwi (N) 4.5 $20/20/40$ 3.35 150 $-65L$ Note 3 & 4Lanue - Lamae (N) 1.4 $-/-/26$ 3.35 $ 150$ $-65L$ Note 3 & 4La-Un - La-Un (N) 1.4 $-/-/26$ 3.35 $ 150$ $-65L$ Note 3 & 4Subscriber cable has been installed from Plathyni exchange. 3.35 $ 150$ $-65KL$ Note 3 & 4Subscriber cable has been installed from Plathyni exchange. $-/-/26$ 3.35 $ 150$ $-65KL$ Note 3 & 4Subscriber cable has been installed from Plathyni exchange. $-/-/26$ 3.35 $ 150$ $-65KL$ Note 3 & 4Subscriber cable has been installed from Plathyni exchange. $-/-/26$ 3.35 $ 150$ $-65KL$ Note 3 & 4Subscriber cable has been installed from Plathyni exchan	1							
3.25 - 10065NL Nore 3 & 4.0 549L - - 8 3.35 - 15065L Nore 3 & 3.35 - 15065NL Nore 3 & 9.35 - 15065NL Nore 3 & 9.35 - 15065NL Nore 3 & 9.35 - 15065NL Nore 3 & 9.50 - 15065NL Nore 3 &		Section	Dist. in km	Circuit Requirements in 1984/1989/1994	Required Trans. Loss in dB	Cable : Applie 1984	System ed in 1994	Remarks
4.0 549L - - 9L - 8 3.35 - 15065L Note 3 & 8 3.35 15065L Note 3 & 8 3.35 - 15065L Note 3 & 3.35 - 15065L Note 3 & 3.35 - 15065NL Note 3 & 3.35 - 15065NL Note 3 & 3.35 - 15065NL Note 3 & .0.150 - 15065NL Note 3 & .0.150 - .65NL Note 3 &		Ao Luk - Ao Luk (R)	•	-/-/20	3.25	8	1	Note 3 &
3.35 - 15065L Note 3 & 3.35 15065L - Note 3 & 3.35 - 15065L Note 3 & 3.35 - 15065L Note 3 & 3.35 - 15065L Note 3 & 3.35 - 15065NL Note 3 & % - 15065NL Note 3 & %<		Kra Too - Phuket		20/26/30	4.0		1	
3.35 15065L - Note 3 & 3.35 - 15065NL Note 3 & - 15065NL Note 3 & 15065NL Note 3 & 15065NL Note 3 &		ı		-/-/26	3.35		1	ം ന
3.35 - 150 - 65NL Note 3 & 3.35 - 150 - 65NL Note 3 & 151 and distribution point of exchange. wire basis.		Sawi - Sawi (R)		26/30/40	3.35	150651	8	4
3.35 - 65NL Note 3 & inal and distribution point of exchange. wire basis.		4	4	-/-/26	3.35	1	15065NL	3 5
sting cable is available for PCM system. scriber cable has been installed from Phatthaya exchange. le circuit is used as entrance circuit between radio terminal and distribution point or exchange. cance circuit between radio terminal and exchange is on 6-wire basis. scriber cable has been installed from Tan Yong Mas exchange.		La-Un - La-Cn (R)	3.0	-/-/26	3.35	Ē	15065NL	رد. ص
		sting cable is available scriber cable has been it scriber cable has been it se circuit is used as ent ance circuit between rad scriber cable has been in	for PCM subscript of the second of the secon	ystem. rom Phatthaya excha cuit between radio al and exchange is rom Tan Yong Mas ex	nge. terminal and d on 6-wire basi change.	í stríbutíon s.	point or exe	bange.

ŝ

-- 128 --

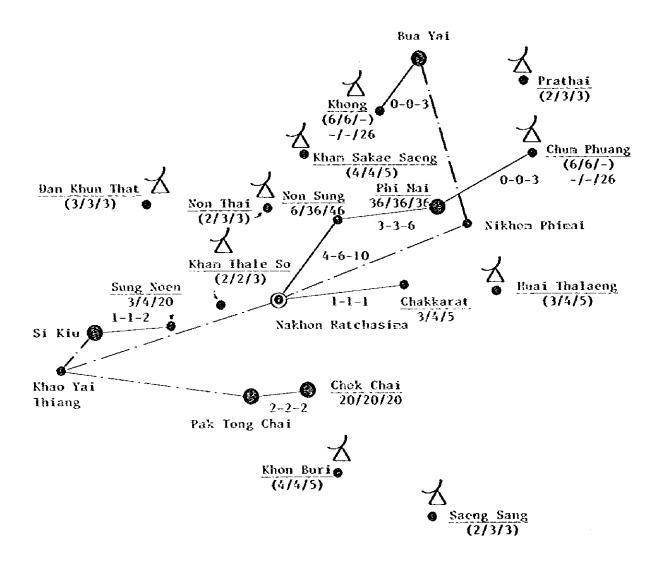
•


·

-

•

. .


.

Ayutthaya Area(3516)

Circuit Assignment Diagram for Satellite System(1/5)

. . .

Nakhon Ratchasina Area(4421)

Circuit Assignment Diagram for Satellite System(2/5)

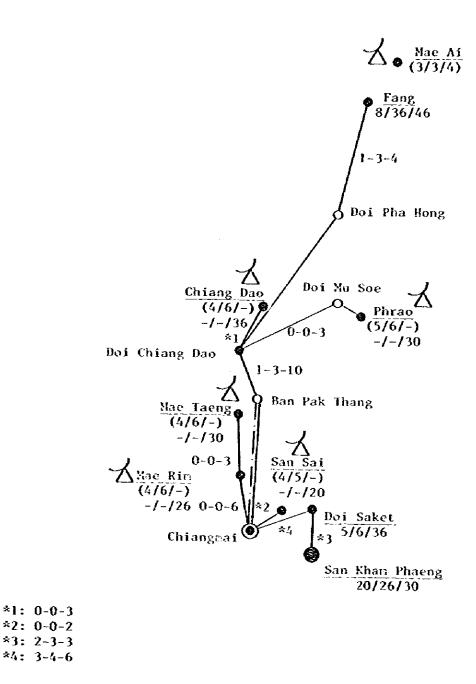
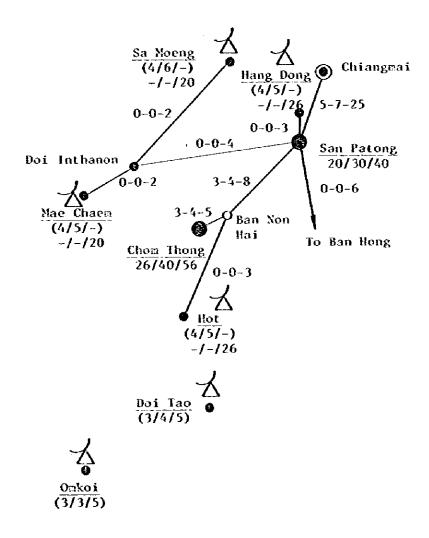
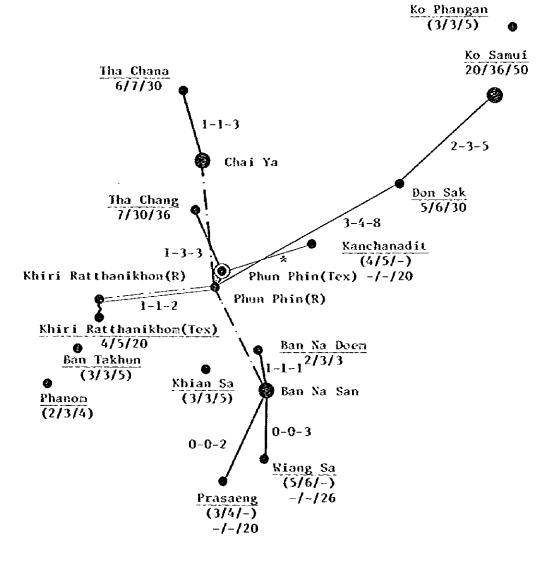



Figure S-4


Chiangmai Area(5313)1/2

Circuit Assignment Diagram for Satellite System(3/5)

Chiangmai Area(5313)2/2

Circuit Assignment Diagram for Satellite System(4/5)

* : 0-0-2

Figure S-4

Phun Phin Area(7711)

Circuit Assignment Diagram for Satellite System(5/5)

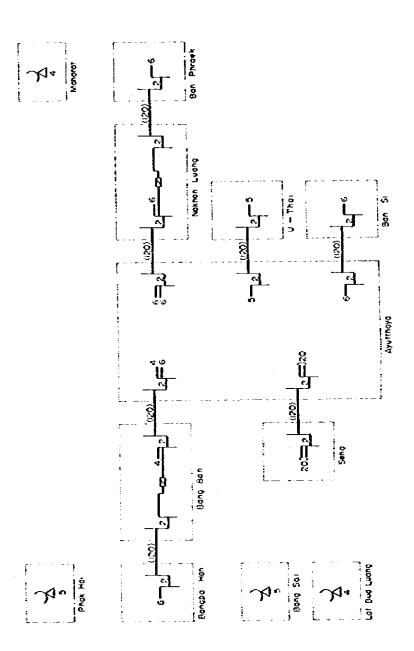
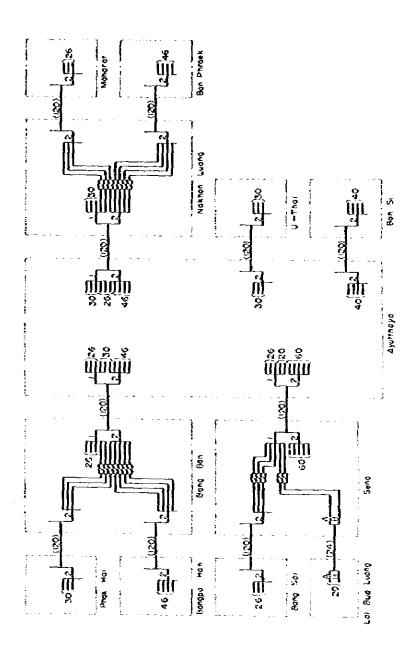
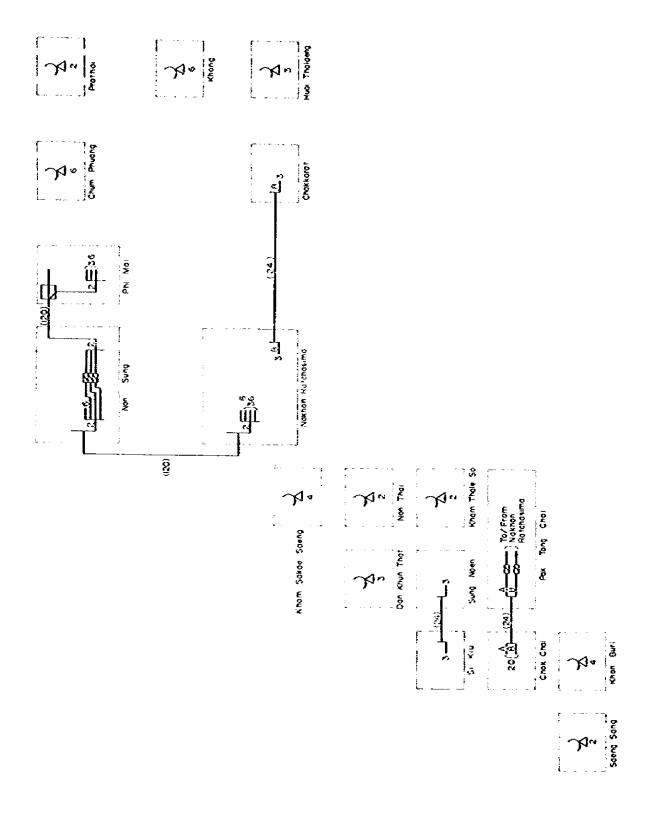



Figure 5-5


Ayutthaya Area (3516)

Typical Channel Accommodation Plan for Satellite System (Initial Stage)(1/10)

Ayutthaya Area (3516)

Typical Channel Accommodation Plan for Satellite System (Final Stage) (2/10)

Nakhon Ratchasima Area (4421)

Typical Channel Accommodation Plan for Satellite System (Initial Stage)(3/10)

Nakhon Ratchasima Area (4421)

Typical Channel Accorgodation Plan for Satellite System (Final Stage)(4/10)

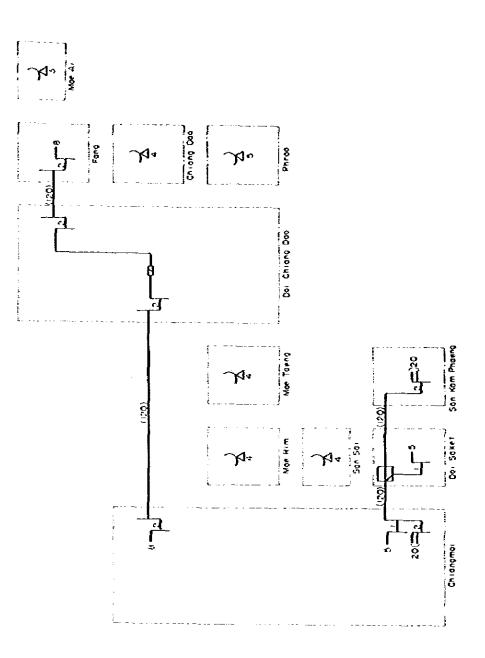
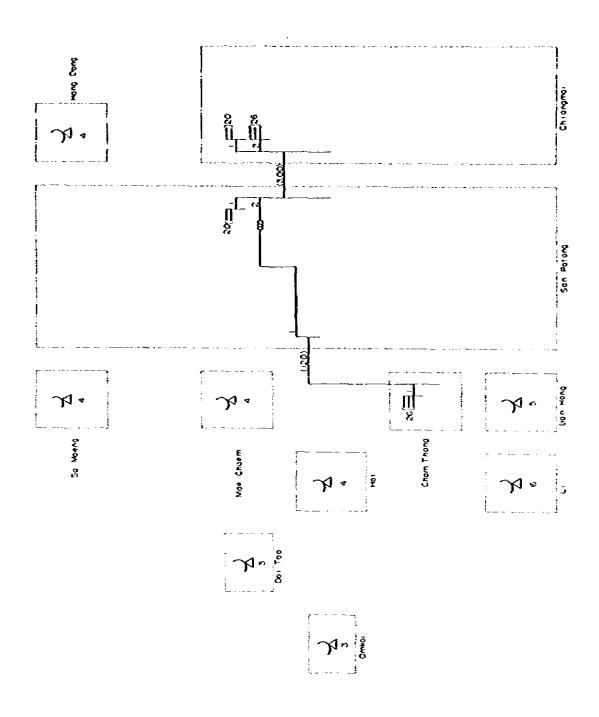



Figure 5-5

Chiangeai Area (5313) 1/2

Typical Channel Accommodation Plan for Satellite System (Initial Stage)(5/10)

Chiangeai Area (5313) 2/2

Typical Channel Accommodation Plan for Satellite System (Initial Stage) (6/10)

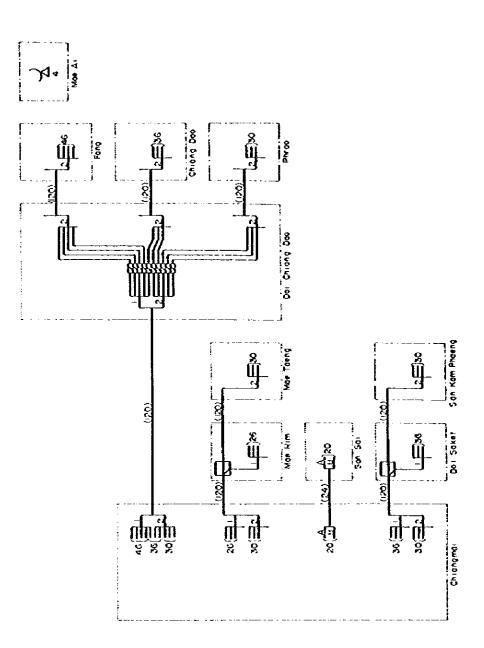
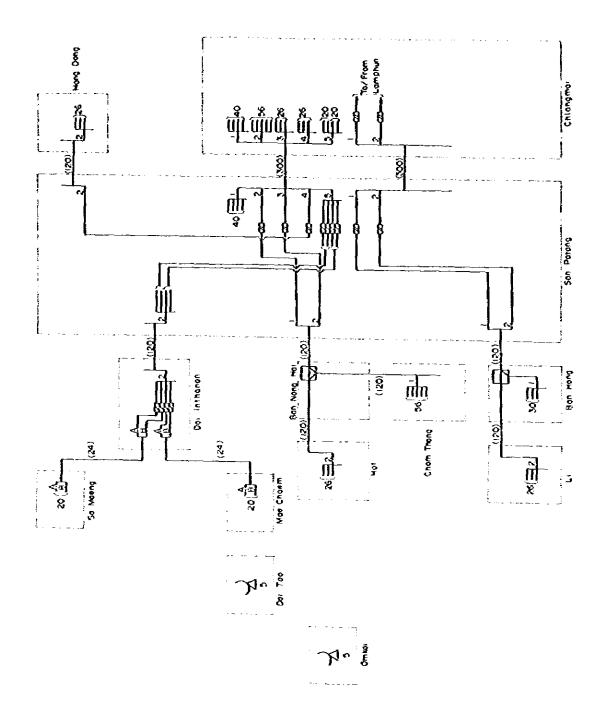
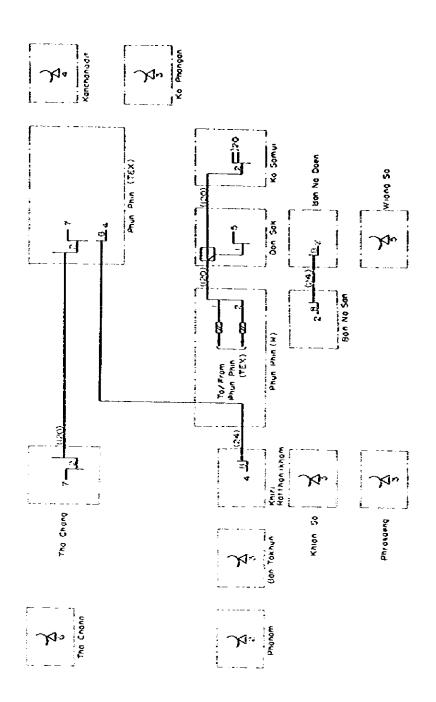
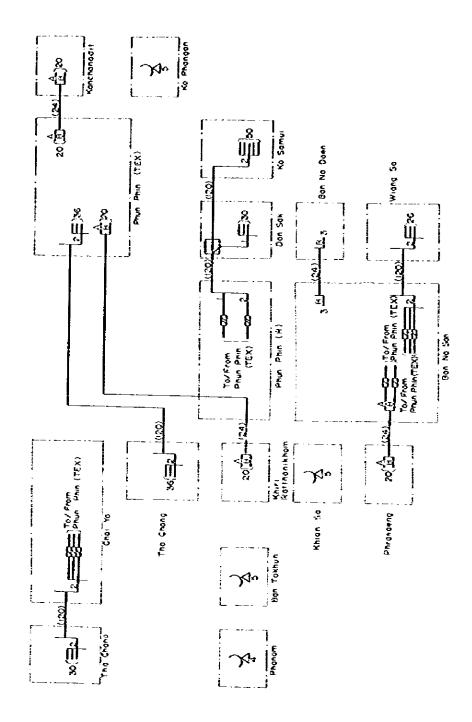



Figure 5-5


Chiangmai Area (5313) 1/2

Typical Channel Accormodation Plan for Satellite System (Final Stage)(7/10)


Chiangmai Area (5313) 2/2

Typical Channel Accommodation Plan for Satellite System (Final Stage)(8/10)

Phun Phin Area (7711)

Typical Channel Accommodation Plan for Satellite System (Initial Stage)(9/10)

• •

Figure 5-5

Phun Phin Area (7711)

Typical Channel Accommodation Plan for Satellite System (Final Stage)(10/10)

(2) Traffic Volume

Forecasted traffic volume originating from rural earth stations is:

1984	406.0	Erl.	(1.19	Er1./RS)
1989	560.0	Erl.	(1.65	Erl./RS)
1994	275.5	Erl.	(1.42	Erl./RS)

The decrease in 1994 is because, in that year, not a few objective stations of the service will be transferred to the terrestrial radio system and only the small scale rural earth stations will continue to be operated by the satellite system.

(3) Number of Speech Channel Units to Be Installed in Rural Earth Stations
 The total number of speech channel units to be installed in rural earth stations is:
 1984

1304	1,144	сно	13.30	CRU/RS)
1989	1,413	CHU	(4.16	CHU/RS)
1994	749	сни	(3.86	CHU/RS)

The number of channel units appearing above is the number of speech channel units only. In addition to these speech channel units, two channel units per rural earth station are required. One is for signal transmission/receiving to/from the master earth station, and the other for engineering service channel (order wire).

3-2-2 Channel Capacity Required for Satellite

(1) For Speech Channel

Rural earth stations are scattered all over Thailand. They number as many as 340 in the first half of the Project period and 194 in the latter half. To apply the satellite system to Rural Long Distance Public Telephone Service is to use the satellite as a kind of subscriber line concentrator. The busy hour traffic from earth stations will vary from station to station. The channel capacity required for the satellite depends upon the variation of busy hour traffic from one rural earth station to another. This is the key point for economic operation of the domestic satellite system.

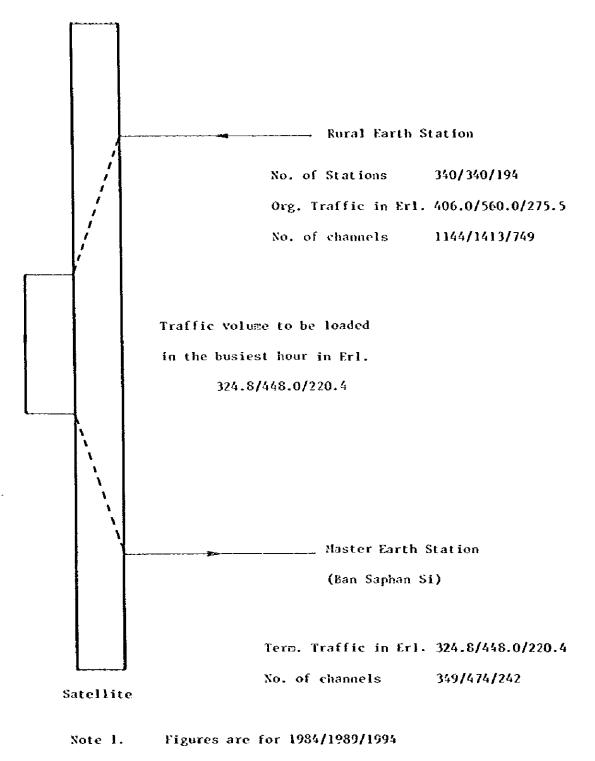
In this Study, the station to station busy hour variation could not be fully ascertained. However, it cannot be considered that any two rural earth stations share exactly the same busy hour, so that the busy hour variation coefficient is set at 0.8 whereby to obtain the channel capacity required for the satellite.

Based on the busy hour variation coefficient of 0.8, the busy hour traffic that passes the satellite is calculated to be

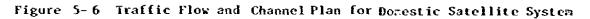
1984	$406.0 \times 0.8 = 324.8 \text{ Erl.}$
1989	560.0 x 0.8 = 448.0 Er1.
1994	275.5 x 0.8 = 220.4 Er1.

When the grade of service is set at 1/100, the number of speech channels required for the satellite is calculated to be

1984	349 ch
1989	474 ch
1994	242 ch


Keanwhile, the number of channels shown above is equal to the number of speech channel units to be installed in the master earth station.

This relationship is explained in Figure 5-6.


(2) For Data Channel

The DAMA system introduction necessitates data channels for sending and receiving of necessary information between each rural earth station and the master earth station, besides the speech channels.

In case the FM-SCPC modulation system is adopted, it is considered that the data channel with the working speed of approximately 2,400 BPS will be employed. Concerning the burst format for data transmission, there is no internaional standard. Therefore, on the assumption that

Note 2. No. of channels indicated does not include the data channels for demand assignment control, and the engineering service channels.

the 120 BPS or thereabouts is necessary for the burst which will comprise front guard, carrier detection, bit synchronization, data, check code and back guard, and in consideration of the fact that the traffic volume from one rural earth station may sometimes be small, it is so arranged that one data channel be commonly used by 30 rural earth stations.

Hence, the number of necessary data channels is 12. Although it is possible to reduce the number of data channels in accordance with the reduction of the number of rural earth stations, the arrangement this time is to maintain 12 data channels at all times. For, reducing the number of data channels requires the data alteration of the DAMA system, and, moreover, a rural earth station, if withdrawn from the rural sites where the terrestrial radio system will be introduced, may be used for another area where telephone service will not be provided even then.

(3) Number of Channels Required for Satellite

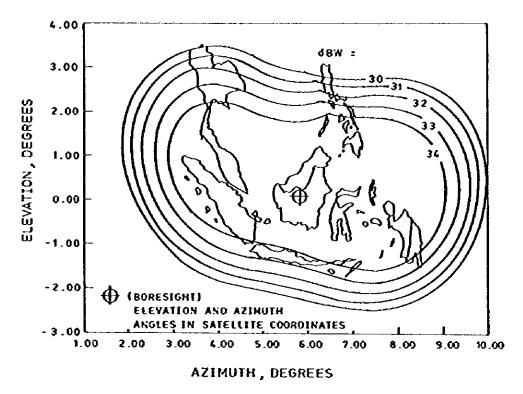
As the result of the preceding (1) and (2) studies the number of channels required for the satellite will be

1984	349 +	12 =	361 ch
1989	474 +	12 =	486 ch
1994	242 +	12 =	254 ch

For engineering service (order wire), idle channels are assigned.

3-3 PALAPA Transponder

The Indonesian communication satellite, PALAPA I, was launched in 1976. At present, two units, one operational and the other spare or backup, are in the geostationary satellite orbits. They are located at 83° and 76°, East Longitude, respectively. Antenna coverage and G/T contours are shown in Figures 5-7 and 5-8, respectively. They cover five ASEAN countries. The satellite attitude and position on the orbit are periodically regulated from the master earth station. Each satellite unit holds 12 transponders, each having 36 MHz transmission bandwidth. The 6 GHz broad band receiver unit holds the spare system though the output unit holds no spare system. The design life span of the PALAPA satellite is seven years. Figure 5-9 and Figure 5-10 present the PALAPA satellite radio frequency arrangement and functional block diagram, respectively.


Nine transponders (Channel Nos. 1 - 8 and No. 11 of the operational satellite unit) are used for domestic communication in Indonesia. Idle transponders of the spare satellite unit will be leased to the ASEAN countries. At present, the Philippines uses half transponder by lease.

The long term lease rates for PALAPA satellite transponders are as follows:

For a minimum period of 1 year : US\$850,000 per year For a minimum period of 3 years: US\$800,000 per year For a minimum period of 5 years: US\$750,000 per year

The partial transponder lease rate is proportionate to the bandwidth used.

In case of trouble with any leased transponder of the spare satellite unit, the operation will be switched over to another transponder of the same satellite unit. When all transponders of the spare satellite unit come into trouble, the operation will be switched over to the transponders of the operational satellite unit. Indonesian authorities will do their utmost for smooth functioning of such emergency arrangement.

PALAPA Satellite Transmit Antenna Coverage Contours

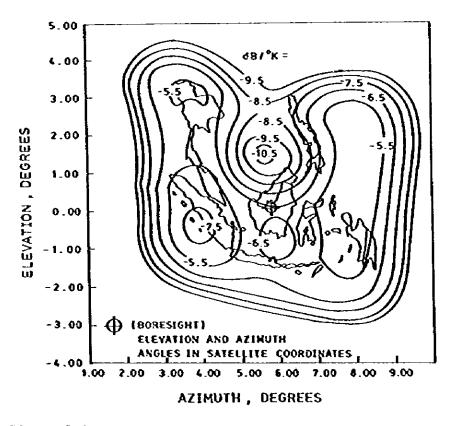


Figure 5-8 PALAPA Satellite G/T Contours

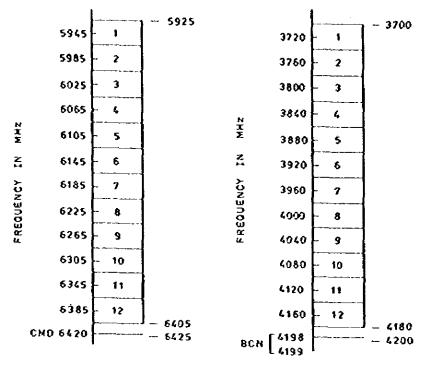
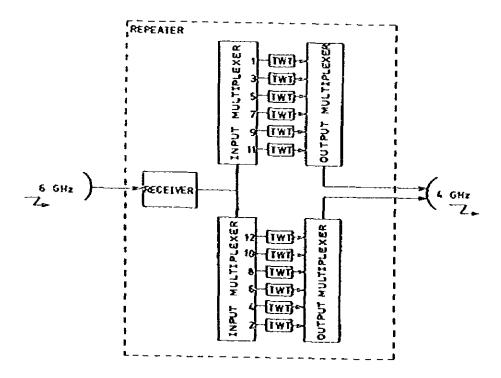



Figure 5-9 Radio Frequency Arrangement of PALAPA Satellite

Note : Redundant receivers are provided, but the output stages are not redundant.

Figure 5-10 Functional Block Diagram of PALAPA Satellite

PART VI Detailed Transmission Route Study and Field Survey

.

· ••

.

.

PART VI Detailed transmission Route Study and Field Survey

1. General

This Part VI carries out the sampling review of the UHF system design so far made by TOT and the confirmation thereof by the field survey findings. The establishment of design criteria and the system performance estimation are also made. Furthermore, studies are conducted for the typical RF channel arrangement plan with respect to the UHF system as well as the radio system configuration and the capacity of power plants required.

The route plan for the cable system that constitutes part of the terrestrial system is illustrated on a map of a scale of 1 to 50,000.

The site selection for earth stations of the projected domestic satellite system, design criteria for earth stations, and system performance are also described. Regarding the radio interference from earth stations, the forecast was made, using an extra-large capacity computer, and the methodology of forecast and the result obtained are introduced in this Part VI.

In the detailed system study by sampling, consideration is made in order that the design procedures, calculation results, drawings and related data will be fully usable to TOT.

- 2. Terrestrial Radio System
 - 2-1 TOT Survey Result Review and Field Survey

In accordance with the Scope of Work arrangement with TOT, the Study Team has carried out a detailed review of UHF system route plan, path profiles and system designs in the representative four areas with a total of 75 radio stations. These four areas have been picked up from TOT's preliminary study of the UHF system plan, for which TOT has carried out the survey for the whole districts of Thailand. The four areas are the Chiangnai area (northern area), Ayutthaya area (central area), Nakhon Ratchasima area (northeastern area) and Phun Phin area (southern area). Figure 6-1 is the detailed study flow chart.

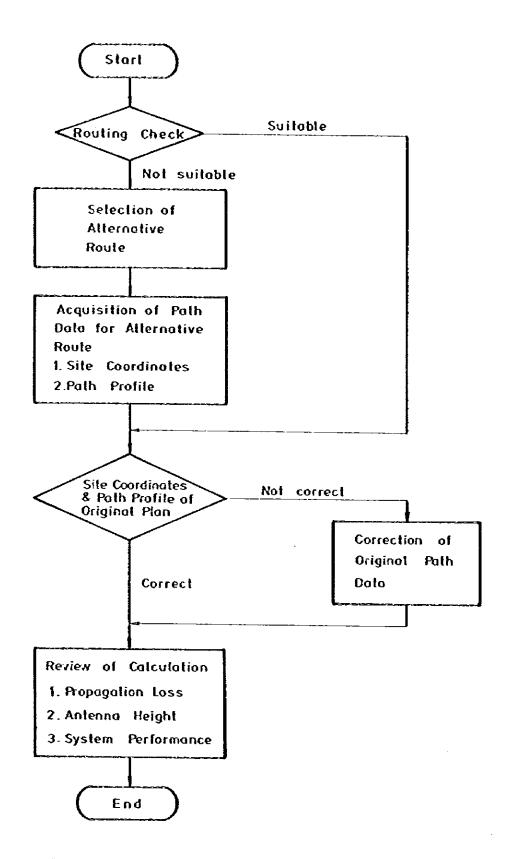


Figure 6-1 Study Flow of UHF Radio Relay System Planned by TOT

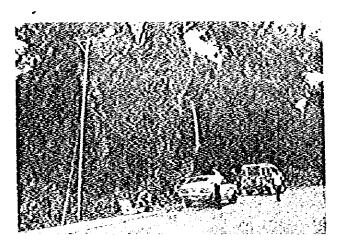
The four areas were selected, based on the agreement between the Study Team and TOT to the effect that a review be made by the Study Team on TOT's survey result, with major emphasis on the following subjects:

- Site selection
 in mountain
 district Chiangmai area
- Radio frequency interference -Ayutthaya area
- Site selection

 selection
 selection
 selection
 selection
 selection
 selection
 selection
 selection
 selection
 selection
 selection
 selection
 selection
 selection
 selection
 selection
 selection
 selection
 selection
 selection
 selection
 selection
 selection
 selection
 selection
 selection
 selection
 selection
 selection
 selection
 selection
 selection
 selection
 selection
 selection
 selection
 selection
 selection
 selection
 selection
 selection
 selection
 selection
 selection
 selection
 selection
 selection
 selection
 selection
 selection
 selection
 selection
 selection
 selection
 selection
 selection
 selection
 selection
 selection
 selection
 selection
 selection
 selection
 selection
 selec

Survey at Samui Island

4) Over-the-sea propagation path design - Phun Phin area


The detailed review of TOT's study result and the corroborative field survey by the Study Team were carried out according to the following basic principles:

- (1) TOT would rearrange in good order the findings in its detailed investigations and deliver those data to the Study Team. Based on those data, the Study Team would make its own detailed study.
- (2) For the terrestrial radio system design, the Study Team would propose to TOT what it considered to be optimal, based on its experiential data. This proposal would be discussed jointly by the Study Team and TOT from the technical viewpoint in order to have the final design methodology agreed upon between both parties.

- (3) System performance determined by the mutual discussion between the Study Team and TOT should satisfy the relevant CCITT/CCIR recommendations or conform with other authoritative standard.
- (4) Efforts should be made to achieve the system construction economy by reducing the number of repeater stations to the possible minimum with the adoption of over-the-horizon system also.
- (5) Field survey items should include, besides technical investigations, the interviews with local inhabitants (community survey) to know the telephone demand among them, in order to use information obtained as reference data for forecast and financial evaluation. (Refer to Part III-5.)

Following are the findings in the review of TOT study result and in the newly conducted field survey:

(1) TOT field survey has so far been completed for approximately 160 stations out of a total of 422 scheduled rural sites and 47 scheduled

Contact Test at Doi Inthanon Site

mobile exchange stations. For the remaining stations, only the map study has been completed.

(2) Many of rural sites where TOT has so far completed the field survey do not have the locations finally decided. However, the most part of rural sites are scheduled to be constructed in plain land towns so that, wherever in the towns their final locations may be, the radio propagation will in no way be disturbed.

- (3) The UHF route plan made by TOT is considered to be generally acceptable as it is based on the experience of site selection for the existing microwave system. However, when the UHF band radio propagation characteristics are taken into account in system design, greater system operation economy can be realized with the elimination of through repeater stations, for instance.
- (4) As regards the telephone demand forecast in and after 1989 for this Project, there is need for reinvestigation aimed at demand forecast readjustment. (Refer to Part III-5.)

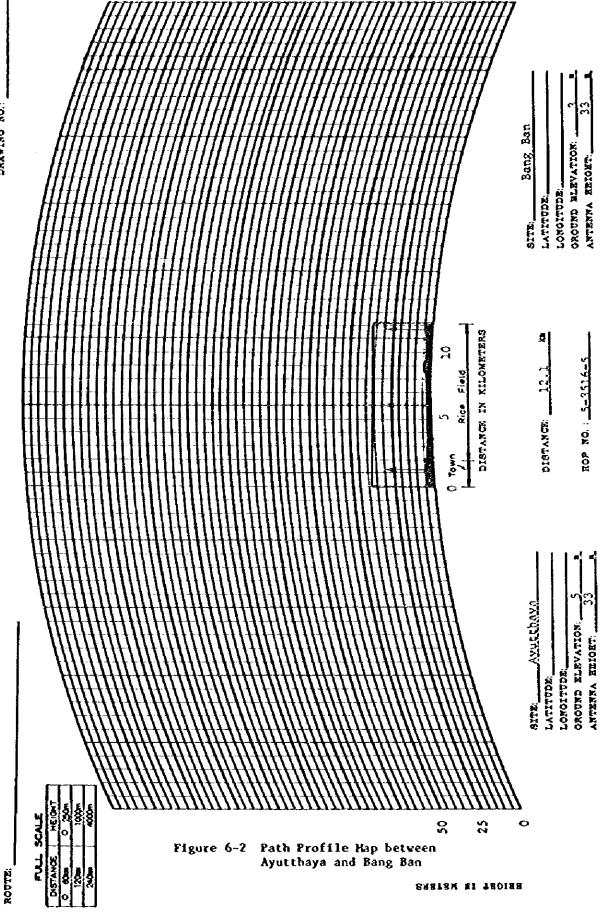
In the following Chapter 2-2 through Chapter 2-5 appears the detailed study result for the terrestrial radio system.

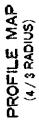
- 2-2 Design Criteria Establishment and System Performance Estimation
 - 2-2-1 Determination of Radio Station Location and Antenna Height
 From the optimum transmission route obtained in Part IV-2
 (refer to Figure 4-1) the four areas, i.e., Chiangmai area,
 Ayutthaya area, Nakhon Ratchasima area and Phun Phin area, have
 been picked up and the locations of all 75 radio stations in
 these four areas have been plotted on the map of a scale of 1 to
 50,000. The coordinates have been read out and from their values
 the basic propagation path parameters, including path distance
 and azimuth, have been calculated with the aid of a small sized,
 programmable calculator. A calculation example appears in Table
 6-1. The typical revised path profile maps are shown in Figures
 6-2 through 6-5.

For the antenna height determination criteria, the following have been decided as the result of technical discussion with TOT:

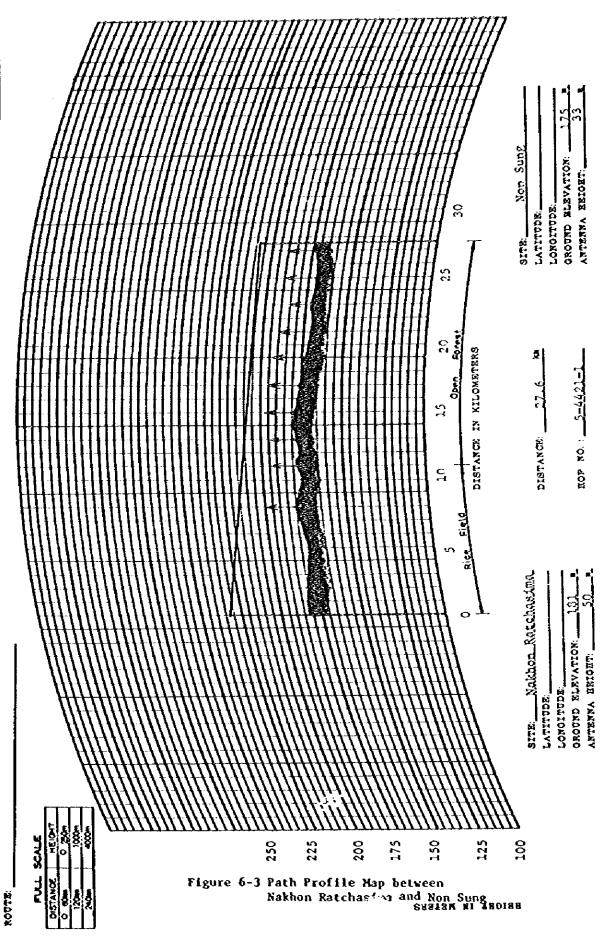
- (1) To use 4/3 for coefficient of effective earth's radius (K).
- (2) To set the minimum antenna height at 30 m in urban and plain areas and 15 m at mountain-top repeater stations.

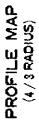
					
Table 6-1 P	ROPAGATION PATH DATA	(1/2)	Path No. 3516-1		
Site P					
	Ayutthaya Nakhon Luang				
Map No. 51	27 YV	Mar. No. 612	7 + 41		
·			7_1V		
14.25		14.30_/	l l		
/					
	158.8	184.1	55.4		
45.	3 [179.9]	102.	3 179.3		
		M			
14.20		14.25			
100.30	[100.35	<u>000.35</u>	100.40		
Long-1(D.MS)	100.3000	Long-1(D.MS)	100.3500		
Long-2(D.HS) Lati-1(D.MS)	100.3500	Long-2(D.MS)	100.4000		
Lati-2(D.MS)	14.2000 14.2500	Lati-1(D.MS) Lati-2(D.MS)	14.2500 14.3000		
			44. JUUU		
X 1-2(EB) X 1~0(EB)	179.9 158.8	X 1-2(EB)	179.3		
X 1~0(mm) Y 1-2(mm)	130.0	X 1-0(EST) Y 1-2(EST)	55.4 184.1		
Y 1-0(ED)	45.3	Y 1-0(ma)	104.1		
Long. (D.HS)	100.3425				
Lati. (D.MS)	14.2114	Long. (D.MS) Lati. (D.MS)	100.3633 14.2747		
G.Elevation		G.Elevation			
Profile No.	5 (12)		4 (m)		
	5 - 3516 - 1	Type of Path	L/S (no reflection)		
	TTL	Antenna Height	& Diffraction Loss		
िल न	T [2]				
	へ 招告				
		d (kra)	12.7		
Ψ, T		dl (ka)	5.5		
]]]] []]		ha (B)	35.0		
		hgl (m) hg2 (m)	5.0		
	.5}		4.0		
	[12.7]	hal (¤)	33.0		
Pa	ath Distance & Azimuth	hal (m)	38.0		
Long-P (D.MS)		ba2 (B)	38.0		
Lati-P (D.MS)		(k = 4/3) bp (m)	40.2		
Long-Q (D.HS)	100.3633	Rs (13)	32.2		
Lati-Q (D.HS)	14.2747	Cs (ໝ) ປ	5.2		
d (km)	12.7	U M	0.16		
	12.2007	(k = 1)	Ld50 = 10 db		
& P → Q(D.HS) & Q → P(D.HS)	17.3556 197.3627	บ ห	0.14		
	177.3027		9. Lagg.g=12 ab		
		ll			


hai (m) 38.0 50 50 50 60.7 40 40 55 2.8 -2.8 40 -4.0 30 30 30 20 30 20 30 20 20 20 30 20 20 30 20 30 20 20 30 20 20 30 20 20 10 20 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 10 20 10 <th>Table 6-1</th> <th>PROPAGATION PATH</th> <th>DAT</th> <th>Ă (2/2)</th> <th>Pa</th> <th>ath No. 3516-</th> <th>1</th>	Table 6-1	PROPAGATION PATH	DAT	Ă (2/2)	Pa	ath No. 3516-	1
f (Hitz) 900.00 k ^{41,1} 1.000 hg1 (a) 5.0 k ⁵⁰ 1.333 hg2 (a) 4.0 k ^{41,1} 3.000 d (ka) 12.7 ha1' (c) 38.0 ha2' (a) 38.0 ha2' (c) 38.0 ha2' (a) 38.0 ha2' (c) 38.0 ha2' (a) 5.0 Lr ⁴⁷ (dB) -4.5 hr (a) 5.0 Lr ⁴⁷ (dB) -4.3 Lr ⁴⁰ (dB) -3.9 bl -4.3 J1 (a) 6.4 ha1' (c) 38.0 d1 (a) 6.4 ha1' (c) -3.9 d1 (a) 6.4 ha1' (c) -3.9 bv 0.34 Lr ⁴⁴ (dB) -4.5 Lr sin(dB) -5.9 Lr ⁴⁴ (dB) -4.3 Lr sin(dB) -4.6 38 (c) -50 lt sin(dB) -4.6 -50 -50 1c sin(dB) -2.6 -3.9 -4.6 30 -2.7 -2.7 -2.7 ha2' (a) 38.0 -2.5	Site P	Ayutthaya	••••••••	Site Q	Nakho	on Luang	
k 1.333 k 1.000 hg1 5.0 5.0 1.333 hg2 (m) 5.0 K** 1.333 hg2 (m) 4.0 12.7 haf' (m) 38.0 ha2' (m) 38.0 ha2' (m) 38.0 ha2' (m) 5.0 Lr #f' (dB) -4.5 hr (m) 6.4 ha1' (m) -4.5 hr (m) 6.4 ha1' (m) -4.5 hr (m) 6.4 ha1' (m) -4.3 Lr #f' (dB) -4.3 Lr #f' (dB) J1 (km) 5.9 Lr #f' (dB) p'' (D,S) 0.1857 ha1' (m) p'' (deg) 180.0 Lr #f' (dB) Lr max(dB) -0.5 2.8 -0.7 Height Pattern ha1' (m) 38.0 -0.7 -0.7 -0.7 -0.7 -0.7 50 -2.8 -0.5 -2.6	R	eflection Area(011A-1/3)		Variation of Reflection Loss(011A-3/			011A-3/3)
h_{g1} (a) 1.333 K^{sp} 1.333 h_{g2} (b) 4.0 K^{sp} 1.333 h_{g2} (b) 4.0 K^{sp} 1.333 h_{a1}^{sp} (c) h_{a1}^{sp} (c) h_{a1}^{sp} (c) h_{a1}^{sp} (c) $ha1'$ (c) $ha2'$ (c) $ha1'$ (c) $ha2'$ (c) $ha2'$ (c) $ha2'$ (c) $ha1'$ (c) $ha2'$ (c) hr (c) 5.0 Lr^{sp} (dB) -4.5 Lr^{sp} (dB) -4.5 hr' (c) 5.0 Lr^{sp} (dB) -4.3 Lr^{sp} (dB) -4.3 $d1$ (c) 6.3 $ha1'$ (c) $ha1'$ (c) $ha1'$ (c) $ha1'$ (c) $ha1'$ (c) br' (deg) 180.0 $Lr^{sp'}$ (dB) $Lr^{sp'}$ (dB) $ha1'$ (c) $ha1$ determined 38.0 $Lr con(dB)$ 6.6 10.5 $ha2'$ determined 38.0 $ha2'$ (c) $ha1$ determined 38.0 $Lr con(dB)$ 8.6 50 -0.7 65 10.5 $05 -10$ 10 $Lr 60n(dB)$ 7.9 20 10.5 10.5 $05 -10$ <			<u></u>	K 91.1		1.000	
hg2 hg3 hg3 hg3				K 50			
d (km) 12.7 ha1' (m) 38.0 ha1' (m) 38.0 ha2' (m) 38.0 hr' (m) 38.0 ha2' (m) 38.0 hr' (m) 5.0 L_r^{eff} (dB) -4.5 hr (m) 6.3 ha1 (m) -4.5 d1 (m) 6.4 ha1' (m) -4.5 d2 (m) 6.3 ha1' (m) -3.9 d1 (m) 6.4 ha1' (m) -3.9 d2 (m) 6.3 ha1' (m) -4.5 y' (D, MS) 0.1857 ha1' (m) -3.9 Dv 0.94 Lr^{eff} (dB) -4.5 Lr max(dB) -4.6 ha1 determined 38 (m) Relection Loss(011A-2/3) Height Pattern -7.8 ha1' (m) 38.0 -7.8 -7.8 30 -0.7 -7.8 -7.8 30 -2.6 -2.7 -7.8 30 -2.6 -2.7 -7.9 30 -2.7 -7.9 -7.9 30 -2.7 -7.9 -7.9 30 <t< td=""><td></td><td></td><td></td><td>K **</td><td></td><td></td><td></td></t<>				K **			
hai' (m) hai'		1					
ha2' (n) 38.0 hr '(n) 38.0 hr (n) $1r^{ff}(4B)$ hr (n) $1r^{ff}(4B)$ d1 (n) 6.4 d2 (n) 6.3 hr (n) $1r^{ff}(4B)$ d1 (n) 6.4 d2 (n) 6.3 hr (deg) 6.3 hr (deg) 0.94 Lr ** (dB) -4.5 $r^{ff}(4B)$ $r^{fff}(4B)$ $r^{ff}(4B)$ $1r^{ff}(4B)$ $r^{ff}(4B)$ $1r^{ff}(4B)$ $r^{ff}(4B)$ $1r^{fff}(4B)$ $r^{ff}(4B)$ $1r^{fff}(4B)$ $r^{ff}(4B)$ $1r^{fff}(4B)$ $r^{ff}(4B)$ $1r^{fff}(4B)$ $r^{ff}(4B)$ $1r^{fff}(4B)$ $r^{ff}(4B)$ $1r^{fff}(4B)$ $r^{ff}(a)$ 38.0 $1r ras(dB)$ 10.5				hal (m)		38.0	-
hr' (m) 5.0 $L_r^{fff}(dB)$ -4.5 hr (m) $L_r^{eff}(dB)$ -4.3 hr (m) 6.4 hal' (m) d1 (m) 6.3 hal' (m) d2 (m) 6.3 hal' (m) ϕ' (D.HS) 0.1857 hal' (m) Dv 0.94 $L_r^{eff}(dB)$ ϕ' (D.HS) 0.1857 hal' (m) fe 0.7 $L_r^{eff}(dB)$ fe 0.7 $L_r^{eff}(dB)$ fe 0.7 $L_r^{eff}(dB)$ fe 0.7 $L_r^{eff}(dB)$ fe 0.7 $L_r^{efff}(dB)$ $L_r fasterial 10.5 hal determined fe 0.7 L_r^{efff}(dB) fe 0.7 L_r^{efff}(dB) fe 1$				ha2' (a)		38.0	
hr (n) L_r^{ref} (d) -4.5 hr (n) L_r^{ref} (d) -4.3 d1 (n) 6.4 hal' (n) d2 (n) 6.4 hal' (n) d2 (n) 6.3 hal' (n) d1 (n) 5.9 L_r^{ref} (d) p' (0.85) 0.1857 hal' (n) p' 0.94 L_r^{ref} (d) L_r^{ref} (d) p' (deg) 180.0 L_r^{ref} (d) hal determined 38 (n) hal' (n) 38.0 hal determined 38 (n) ha2/determined 30 (n) hal' (n) 38.0 ha2/determined 30 (n) ha2/determined 30 (n) ha2/determined 30 (n) ha2/determined 30 (n) ha2/determined (n) (
Image: difference of the second s		5.0		Lr ^{97,7} (dB)			1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	hr (m)			Lr ⁵⁹ (dB)			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				Lr 💞 (dB)		-3.9	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		6.4					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		6.3					
Dv 0.94 $1.r^{H,r}$ (d8) fe 0.7 $1.r^{H,r}$ (d8) gr (deg) 180.0 Lr min(d8) -4.6 Lr max(d8) 10.5 Reflection Loss(011A-2/3) Height Pattern hai 0.7 hai 0.7 10.5 10.5 Reflection Loss(011A-2/3) Height Pattern hai 0.7 10.5 2.8 0.7 -4.6 30 -4.6 30 -4.6 30 -4.6 30 -4.6 30 -2.6 20 -2.6 25 20 2.7 10 10 2.7 10 2.7 10 2.7 10 2.7 10 2.7 10 2.7 10 2.7 10 2.7 10 2.7 10 2.7 10 </td <td></td> <td>6) 0.1857</td> <td></td> <td>nai (b)</td> <td></td> <td></td> <td></td>		6) 0.1857		nai (b)			
h^{0}				Inthe Car			
f_c 0.7 Lr *' (dB) gr (deg) 180.0 Lr min(dB) -4.6 Lr max(dB) 10.5 Reflection Loss(011A-2/3) Height Pattern hai (m) 38.0 Lr60m(dB) 8.6 55 2.8 50 -0.7 40 -4.6 30 -4.6 30 -4.6 30 -4.6 30 -2.6 15 -0.5 20 -2.6 15 -0.5 20 -2.6 15 -0.5 20 -2.7 10 2.7 hai -4.6 30 -4.5 20 -2.6 15 -0.5 20 -2.7 10 2.7 hai -4.6 30 -4.5 20 -2.7 10 2.7 10 -2.7 10 -2.7 15 -0.8	Dv	0.94					
\hat{gr} (deg) 180.0 Lr min(dB) -4.6 Lr max(dB) 10.5 Reflection Loss(011A-2/3) Height Pattern hai (m) hai 38.0 Lr60m(dB) 8.6 55 2.8 50 -0.7 45 -2.8 40 -4.6 30 -4.6 30 -4.6 30 -4.6 30 -2.6 15 -0.5 10 2.7 10 2.7 hai/ (m) 38.0 Lr60n(dB) 7.9 55 -10 10 2.7 hai/ (m) 38.0 Lr60n(dB) 7.9 40 -4.0 35 -0.5 50 -0.9 40 -4.0 35 -1.0 50 -2.9 40 -4.0 35 -2.5 50 -2.9 40 -4.0	P	0.7		$Lr^{\prime\prime}$ (dB)			
Lr min(di) -4.6 hal determined 38 (m) Lr max(di) 10.5 ha2 determined 38 (m) Reflection Loss(011A-2/3) Height Pattern ha2(m) hai (m) 38.0 Height Pattern hai (m) 38.0 Height Pattern hai (m) 38.0 Height Pattern hai (m) 38.0 40 Jos -2.8 -0.7 -4.5 40 -4.0 -4.6 -2.6 30 -4.6 -2.6 -2.7 10 2.7 Lr Pattern at Q (db, hal' = 38 m) ha2' (m) 38.0 Internat Q (db, hal' = 38 m) ha2' -2.9 -4.6 40 -4.0 -2.9 40 -4.6 -2.9 40 -4.6 -2.9 40 -4.6 -2.9 40 -4.6 -2.9 40 -4.5 -2.9 40 -2.7 -2.7 15 -0.8 -3.9 20 -2.7 -3.9 <							
Lr $nax(dB)$ 10.5 ha2 determined 38 (m) Reflection Loss(011A-2/3) Height Pattern ha2 (m) hai (m) 38.0 Height Pattern hai (m) 38.0 $ha2 (m)$ br60m(dB) 8.6 55 50 -0.7 55 50 -0.7 50 40 -4.6 30 30 -4.6 30 30 -4.6 20 25 -3.9 20 20 -2.6 10 15 -0.5 25 20 16 2.7 Lr Pattern at Q (dB, hal' = 38 m) ha2' (m) 38.0 Lr fon(dB) 10 2.7 Lr Pattern at Q (dB, hal' = 38 m) ha2' (m) 38.0 Intern at Q (dB, hal' = 38 m) Lr60n(dB) 7.9 Intern at Q (dB, hal' = 38 m) 40 -4.0 -4.0 33 -4.6 -4.0 34 -2.7 Intern at Q (dB, hal' = 38 m) 10 -2.7 Intern at Q (dB, hal' = 30 m) 10				hal determi	ned	38	(m)
Reflection Loss (011A-2/3) Height Pattern hai (m) hai (m) hai (m) </td <td></td> <td></td> <td></td> <td>ha2 determi</td> <td>ned</td> <td></td> <td>(២)</td>				ha2 determi	ned		(២)
hai (n) 38.0 Lr60m(dB) 8.6 55 2.8 50 -0.7 45 -2.8 40 -4.0 35 -4.6 30 -4.6 30 -4.6 30 -4.6 30 -4.6 30 -4.6 30 -4.6 30 -4.6 30 -4.6 30 -4.6 30 -4.6 30 -4.6 30 -4.6 30 -4.6 30 -2.6 10 2.7 Lr Pattern at Q (dB, hal' = 38 m) hal 50 50 -0.9 45 -2.9 40 -4.5 35 -4.6 30 -4.5 50 -2.9 40 -4.5 51 -0.8 25 -10 50 30 -2.7 15 -0.8 25 </td <td></td> <td></td> <td></td> <td>He</td> <td>ight Pa</td> <td></td> <td></td>				He	ight Pa		
55 2.8 0.7 40 50 -0.7 -2.8 0.1 0.1 40 -4.0 30 20 20 35 -4.6 0.1 0.1 0.1 30 -4.6 0.1 0.1 0.1 25 -3.9 0.1 0.1 0.1 20 -2.6 0.5 0.5 05 -10 10 2.7 10.5 05 -10 10.5 $ha2'$ 10 38.0 10.5 05 -10.5 10 2.7 10.5 05 -10.5 $ha2'$ 10.5 05 05 0.6 40.5 -2.9 0.6 05 0.6 0.0 0.0 20 -2.7 0.5 0.5 05 0.0 0.0 20 -2.7 0.5 0.5 05 0.0 0.0 20 -2.7 0.5 05 05 <td>hal (m)</td> <td>38.0</td> <td></td> <td></td> <td></td> <td></td> <td>i ha2(m)</td>	hal (m)	38.0					i ha2(m)
50 -0.7 45 -2.8 40 -4.0 35 -4.6 30 -4.5 25 -3.9 20 -2.6 15 -0.5 10 2.7 $ha2'$ (m) 38.0 $ha2'$ (m) 38.0 $1r60n(dB)$ 7.9 55 2.5 50 -0.9 40 -4.6 30 -4.6 30 -4.6 30 -4.6 30 -4.6 30 -2.7 15 -0.8 10 7.2							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							当 40
40 -4.0 -4.6 35 -4.6 -4.5 30 -4.5 -3.9 20 -2.6 -2.6 15 -0.5 25 20 10 2.7 10 5 10 2.7 10 5 10 2.7 10 5 10 2.7 10 5 10 2.7 10 10 10 2.7 10 10 10 2.7 10 10 10 2.7 10 10 10 1.7 1.7 1.7 10 1.7 1.7 1.7 10 -4.6 1.9 1.0 20 -4.5 -3.9 2.5 20 10 10 2.7 2.5 20 10 50							12
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							H 30
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							轊 20
20 -2.6 -2.6 10 15 -0.5 25 20 15 10 5 0 -5 -10 10 2.7 10 5 0 -5 -10 $ha2'$ (m) 38.0 11 10 10 10 10 $ha2'$ (m) 38.0 11 10 10 10 10 $ha2'$ (m) 38.0 10 10 10 10 10 10 $ha2'$ (m) 38.0 10 10 10 10 10 10 $ha2'$ (m) 38.0 10							
15 -0.5 25 20 15 10 5 0 -5 -10 $ha2'$ (m) 38.0 $1r$ Pattern at Q (dB, hal' = 38 m) $ha1$ $ha2'$ (m) 38.0 $1r$ Pattern at Q (dB, hal' = 38 m) $ha1$ $Lr60n(dB)$ 7.9 55 2.5 60.9 40 45 -2.9 -4.6 7.9 40 -4.6 30 30 -4.6 -4.6 7.9 7.9 30 25 -3.9 -3.9 7.9 7.9 7.9 10 27 25 20 15 10 50 10 7.9 7.9 7.9 7.9 7.9 7.9 40 -2.9 -4.6 7.9 7.9 7.9 7.9 10 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9							10
10 2.7 Lr Pattern at Q (dB, hal' = 38 m)ha2' (m) 38.0 Lr60n(dB) 7.9 55 2.5 50 -0.9 45 -2.9 40 -4.0 35 -4.6 30 -4.5 25 -3.9 20 -2.7 15 -0.8 10 25 20 -5				25 20 15	10	5 0 -5	
Lr $60n(dB)$ 7.9 50 55 2.5 50 -0.9 45 -2.9 40 -4.0 35 -4.6 30 -4.5 25 -3.9 20 -2.7 15 -0.8 10 22 20 15 25 2.0 10 25	10	2.7		Lr Patte	rn at Q	(dB, hal' = ;	38 п)
Lr60n(dB) 7.9 40 55 2.5 0.9 45 -2.9 40 40 -4.0 30 35 -4.6 30 25 -3.9 -2.7 15 -0.8 25 20 15 10 5 0 -5 -10		38.0					涯 hal(ŋ) 王 so
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Lr60n(dB)	7.9					調
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-0.9					罰 40
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							期 30
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							翻 20
$\begin{array}{c} 15 \\ 10 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ $							
							圕 10
		-0.8					-10
Lr Pattern at P (dB, ha2'= 38 m)				Lr Patte	rn at P	(dB, ha2'=3	8 11)


-- 161 --

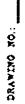
101 -

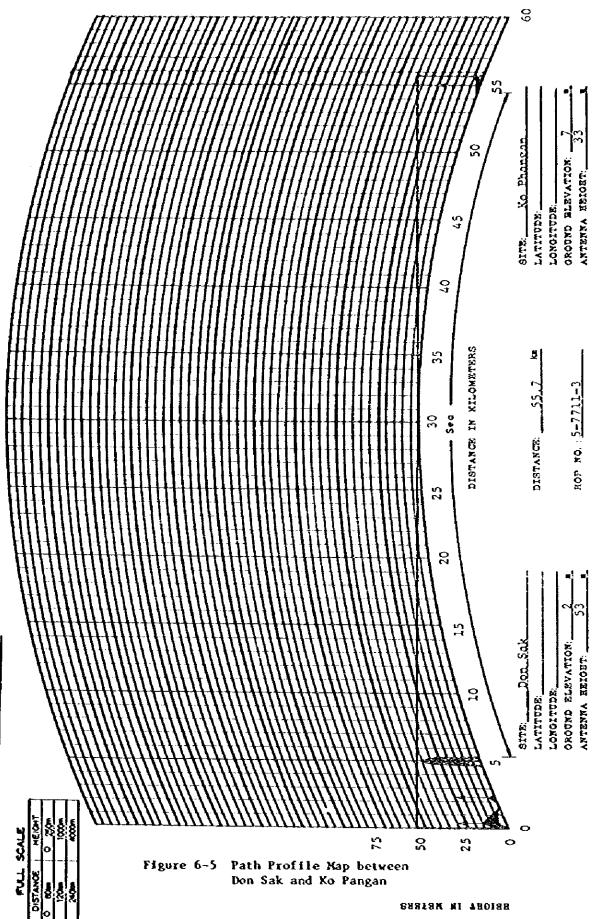

PROFILE MAP (4/3 RADIUS)



-- 163 --

والمراجع والمعود المعرو والعام المراجع





-- 164 --

PROFILE MAP (4/3 RADIUS)

XOUTE

-- 165 --

e a la esta esta a social de la

- (3) To set path clearance at the obstruction point at 5 m when the path distance is 30 km or less and at zero when the path distance exceeds 30 km.
- (4) To calculate the height pattern in case the strong reflected wave exists on the propagation path and determine the optimum antenna height in due consideration of the variation of K (K = 1 to 3).
- (5) To consider the height of obstacle, such as trees or buildings, in the neighborhood of the radio station when determining the antenna height, in case the propagation path is the mountain diffraction path.

A list of antenna heights in the four areas, calculated by the above criteria, appears in Table 6-2. Meanwhile, the average antenna tower height in the four areas is 46 m.

- 2-2-2 System Performance Estimation
 - Allowable Noise and Noise Distribution
 The noise objectives established in Part II-4 are to be distributed as follows per radio hop:
 Allowable median noise: 2,000 pWOp for single hop

2,000 pHOp (S/Np = *57 dB)	- Radio link 1,540 p%Op (58.1 dB=Op)	Thermal noise at RX input	1,000 p₩0p (60 dB±0p)
		- Equipment thermal noise	100 рЖОр (70 dBшОр)
	- XUX noise	Intermodulation noise	200 рЖОр (67 dBaOp)
	460 p₩0p (63.4 dB≘0p)	- Interference noise	240 ржор (66.2 дваор)
		Echo & propagation distortion noise	on Kegligible

Radio Path	Antenna Height (m)
(Ayutthaya area)	
3516-1 Ayutthaya - Nakhon Luang	38 - 38
-2 Nakhon Luang - Ban Phraek	33 - 33
-3 Nakhon Luang - Maharat	33 - 33
-4 Ayutthaya - U-Thai	43 - 43
-5 Ayutthaya - Bang Ban	33 - 33
-6 Bang Ban - Bangpa Han	33 - 33
-7 Bang Ban - Phak Hai	33 - 33
-8 Ayutthaya - Sena	45 - 33
-9 Sena - Bang Sai	33 - 33
-10 Sena - Lat Bua Luang	33 - 33
-11 Ayutthaya - Ban Si	33 - 33
(Nakhon Ratchasima area)	
4421-1 Nakhon Ratchasima - Non Sung	50 - 33
-2 Non Sung - Phi Mai	33 - 33
-3 Phi Hai - Chum Phuang	33 - 33
-4 Chum Phyang - Prathai	33 - 33
-5 Bua Yai - Khong	40 - 43
-6 Nakhon Ratchasima - Non Thai	55 - 33
-7 Non Thai - Kham Sakae Saeng	33 - 33
-8 Non Thai - Dan Khun That	43 - 43
~9 Nakhon Ratchasima - Chakkarat	55 - 63
-10 Chakkarat - Huai Thalaeng	63 - 58
-11 Kham Thale So - Nakhon Ratchasima	33 - 35
-12 Si Kiu - Sung Noen	33 - 33

Table 6-2 List of Antenna Heights for 4 Areas (1/3)

.

2

Radio Path	Antenna Height (m)
-13 Pak Thon Chai - Chok Chai	43 - 48
-14 Pak Tong Chai - Khon Buri	38 - 38
-15 Khon Buri - Sa Pratheep	38 - 68
-16 Sa Pratheep - Saeng Sang	63 - 73
(Chiangmai area)	
5313-1 Chiangmai – Ban Pak Thang	40 - 15
-2 Ban Pak Thang - Doi Chiang Dao	30 - 18
~3 Doi Chiang Dao - Doi Pha Hong	18 - 18
-4 Doi Pha Hong - Fang	18 - 33
-5 Fang - Xae Ai	33 - 33
-6 Doi Chiang Dao - Chiang Dao	18 - 33
-7 Doi Chiang Dao - Doi Mu Soe	18 ~ 18
-8 Doi Hu Soe - Phrao	18 - 33
-9 Mae Rin - Chiangnai	68 - 40
-10 Mae Ric - Mae Taeng	68 - 57
-11 Chiangmai - San Sai	38 - 33
-12 Chiangmai – Doi Saket	35 - 33
-13 Doi Saket - San Kan Phaeng	33 - 33
-14 Chiangnai - San Patong	40 - 58
-15 San Patong - Ban Non Hai	78 - 78
-16 Ban Non Hai ~ Hot	50 - 45
-17 Hot - Doi Pae Po Hak	63 - 48
-18 Doi Pae Po Xak - Khao Huai Bon	48 - 86
-19 Khao Huai Bon - Oakoi	63 - 78
-20 San Patong - Hang Dong	60 - 33

Table 6-2 List of Antenna Heights for 4 Areas (2/3)

Radio Path	Antenna Height (ໝ)
-21 Ban Non Hai - Chom Thong	30 - 33
-22 Doi Pae Po Mak - Doi Tao	15 - 33
-23 San Patong - Doi Inthanon	40 - 33
-24 Mae Chaem - Doi Inthanon	58 - 58
~25 Doi Inthanon ~ Sa Koeng	58 - 33
(Phun Phin area)	
7711~1 Phun Phin (R) - Don Sak	10 - 33
-2 Don Sak - Ko Samui	33 - 33
-3 Don Sak - Ko Phangan	53 - 33
-4 Phun Phin (Tex) - Kanchanadit	47 - 43
-5 Phun Phin (Tex) – Tha Chang	36 - 33
~6 Chai Ya - Tha Chana	45 - 33
-7 Phun Phin (R) - Khiri Ratthanikhom	10 - 35
-8 Khiri Ratthanikhon – Ban Takhun	58 - 33
-9 Khiri Ratthanikhom – Phanom	68 - 43
-10 Ban Na San - Khian Sa	55 - 63
-11 Ban Na San - Ban Na Doen	55 - 48
-12 Ban Na San - Wiang Sa	43 - 33
-13 Ban Na San - Prasaeng	58 - 33
-14 Phun Phin (Tex) - Phun Phin (R)	25 ~ 10

Table 6-2 List of Antenna Heights for 4 Areas (3/3)

.

÷ •

-

*50 dB in the case of mountain diffraction path. For short term noise, no specification is provided. Suffice it to say that the 99.9% value is estimated as a reference value for system design.

(2) Equipment Parameters

Equipment parameters used	ín	the system design are as
follows:		
Transmission capacity	:	24 ch, 120 ch
Radio frequency	:	900 MHz
Transmitting power	:	37 dBa
Frequency deviation	:	35 kHz r.m.s./ch (24 ch)
		100 kHz r.m.s./ch (120 ch)
Baseband frequency	:	12-108 kHz (24 ch)
		60-552 kHz (120 ch)
Noise figure	:	7 dB
IF bandwidth	:	1.5 MHz (24 ch)
		5 KHz (120 ch)
Threshold level	:	-95 dBm (24 ch)
		-90 dBa (120 ch)
Equipment thermal noise	:	100 рХОр
Equipment intermodulation		
noise	:	200 рХОр
MUX equipment noise	:	80 pwop (SG TR)
	:	80 Phop (G TR)
	:	300 рхор (Сн тк)

(3) Noise Calculation

Kedian noise in the radio section including carrier multiplex equipment is calculated by the following expression:

$$N_p = N_{ta} + N_{te} + N_{im} + N_{if} + N_{pm}$$

where

N_p: Total noise (psophometrically weighted) N_{ta}: Thermal noise N_{ta} = 10^{a} where $a = \frac{(90 - S/N_{ta})}{10}$

- 170 -

N_{te}: Equipment thermal noise N_{im}: Equipment intermodulation noise N_{if}: Interference noise N_m: Carrier multiplex noise Signal to thermal noise ratio, S/N_{ta} , can be obtained by the following expression: $S/N_{ta} = F_m - L_n$ $= P_t - F + 20 \log (S_0/f_p) + 141.6 + K_{emp} - L_n$ where F_m: Figure of merit (dB) P_t: Transmitting power (dBn) F : Noise figure (dB) S_o: Frequency deviation (kHz r.m.s./ch) f_p: Highest baseband frequency (kHz) K_{emp}: Emphasis improvement factor (= 4 dB) L_o: Net loss between transmitter and receiver (dB)

(4) Propagation Loss Calculation From Figure 6-6 the additional propagation loss to the free space loss can be obtained.

(5) Threshold Margin The objective threshold margin on each path is 33 dB or more.

- (6) Short Term Noise Calculation Fading depth, A_p (99.9%), is obtained by the following expression to estimate short term noise, N_{ta} (99.9%): A_p (99.9%) = 10 log L x f (dB) where L : Path distance (km)
 - f : Radio frequency (GHz)

الأراب المأبو بالواجيا

A system performance calculation example by the foregoing conditions appears in Table 6-3. The list of system performances for the four areas appears in Table 6-4.

.

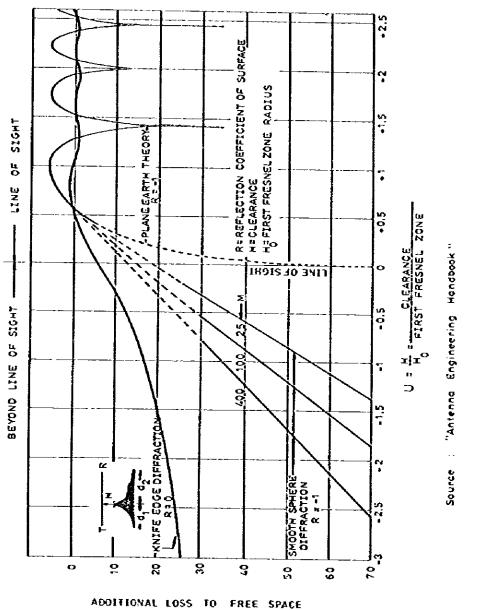


Figure 6-6 Transmission Loss ve Clearance

Table UHF SYSTEM PERFORMANCE CALCULATION 6-3 (900 MHz, $24=ch/120$ ch, 5 W/ $50=W=$) Path No. 3516-1					
Station P Ayutthaya	T. R		ion Q	Nakhon Luang	T.#
Path Type: L/S (no reflection)	. <u>₩t</u> -D	iffract	100	P	9
Antenna Height		ha	m	38	38
Antenna Type & Size (Yagi,Parab	olic)			1.8	1.8
Antenna Gain		Ga	dBi	21	21
Feeder Type				H20	<u>H20</u>
Feeder Length		1f	Ð	48	48
Feeder Loss(ha + 10) x ALf		Lf	dB	2.5	2.5
Antenna Height at P		hal	D)		38.0
Antenna Height at Q		ha2	E9		38.0
Path Loss					
Path Distance		ď	kn		12.7
Free Space Propagation Loss		Lo	dB		113.6
Additional Propagation Loss(5	02)	La	dB		10.0
Total Propagation Loss(50%)		Lp	dB		123.6
Required Antenna Gain		Ga	dB		39.6
Antenna Gain at P		Ga1	dBi		21.0
Antenna Gain at Q		Ga2	dBi		21.0
Branching Loss		Lb	dB		5.0
Feeder Loss at P		Lf1	dB		2.5
Feeder Loss at Q		lf2	dB		2.5
Net Loss(50%)		_Ln	dB		91_6
Nedian Noise(50%)		n_	מנ		140 0
Figure of Merit Signal/Thermal Noise		Fn S/Nta	dB		160.0
Thermal Noise			dB		68.4
Equipment Thermal Noise		Nta Nte	ք₩0p ք₩0p		145.0
Intermodulation Noise		Nim	ркор		100.0
Interference Noise	1	Nif	pW0p		200.0
Radio Link Noise	:	Npr	pNOp		240.0 685.0
Carrier Nultiplex Noise		Np©	pNOp		469.0
Total Noise		Np	pN0p		1145.0
Signal/Total Noise(≥ 57/50	dB)	S/Np	dB		
Short Period Noise(99.9%)					
Fading Depth		Af	dB		11.0
Signal/Thermal Noise		S/Nta	dB		57.4
Thermal Noise		Nta	pVOp		1820.0
Radio Link Noise		Npr	pNOp		2360.0
Total Noise		Np	руор		2820.0
Signal/Total Noise		S/Np	dB	_	55.5
Fading Hargin					
Tx Output Power		Pt	d Bar		37.0
Rx Input Level(50%)		Pri	dBa	-54.6	
Threshold Level	:	Pth	dB3	-90.0	
Hargin to Threshold(50%)(≥ 3	3/23dB)	Mth	dB		35.4
Program No.	Antenna	a Gain (ðbí)	Feeder L	oss(dB/m)
120 ch, 5 W : T301 *	14 ele			RG-17 /U	
24 ch, 5 W : T302 1.2 πØ			18	F13	0.091
24 ch, 50 W : T303 1.8		11	21 *		0.052 *
	2.4		23.5	A20	0.048
Nux Noise(pWOp)	3.0	••	26	A39	0.026
CH G SG SG G CH-TR	4.2	**	28.5		
150+40+40+40+40+150 = 460	6.0		32		
	8.0	#1	34.5		

Radio Path	S/N _P (50%) dB	s/N _p (99.9%) dB
(Ayutthaya area)		
3516-1 Ayutthaya - Nakhon Luang	59.4	55.5
-2 Nakhon Luang - Ban Phraek	60.1	54.7
-3 Nakhon Luang - Maharat	59.8	54.7
-4 Ayutthaya - U-Thai	59,3	55.8
-5 Ayutthaya - Bang Ban	59.4	55.4
~6 Bang Ban ~ Bangpa Han	59.7	55.2
-7 Bang Ban - Phak Hai	59.6	54.1
~8 Ayutthaya ~ Sena	59.2	52.8
-9 Sena - Bang Sai	59.2	55.4
-10 Sena - Lat Bua Luang	59.5	52.9
-11 Ayutthaya - Ban Si	59.0	53.1
(Nakhon Ratchasima area)		
4421-1 Nakhon Ratchasi⊞a - Non Sung	59.1	51.6
-2 Non Sung - Phi Mai	59.7	51.8
-3 Phi Mai - Chum Phuang	59.3	52.1
-4 Chum Phyang - Prathai	60.1	53.1
-5 Bua Yai - Khong	59.2	52.8
-6 Nakhon Ratchasima - Non Thai	59.6	52.9
-7 Non Thai - Kham Sakae Saeng	60.7	54.8
-8 Non Thai - Dan Khun That	60.3	51.3
-9 Nakhon Ratchsima - Chakkarat	59.7	52.4
-10 Chakkarat - Kuai Thalaeng	60.5	53.3
-11 Kham Thale So - Nakhon Ratchasima	59.4	53.6
-12 Si Kiu - Sung Noen	59.5	54.6
-13 Pak Tong Chai - Chok Chai	60.3	54.8

Table 6-4 List of System Performances for 4 Areas (1/3)

Radío Path	S/N _p (50%) db	s/N _p (99.9%) dB
-14 Pak Tong Chai - Khon Buri	59.4	50.9
-15 Khon Buri - Sa Pratheep	60.3	53.9
-16 Sa Pratheep - Saeng Sang	60.4	55.2
(Chiangmai area)		
5313–1 Chiangmai – Ban Pak Thang	60.4	51.7
-2 Ban Pak Thang - Doi Chiang Dao	61.2	54.0
-3 Doi Chiang Dao - Doi Pha Hong	61.0	48.8
-4 Doi Pha Hong - Fang	60.4	52.6
-5 Fang - Mae Ai	60.4	55.0
-6 Doi Chiang Dao - Chiang Dao	59.6	53.4
-7 Doi Chiang Dao - Doi Mu Soe	61.3	51.7
-8 Doi Mu Soe - Phrao	60.1	56.1
-9 Mae Rim - Chiangmai	59.2	55.2
-10 Mae Rim - Mae Taeng	60.4	53.5
-11 Chiangmai - San Sai	59.5	55.1
-12 Chiangmai - Doi Saket	59.5	54.3
-13 Doi Saket - San Kam Phaeng	60.4	\$5.8
-14 Chiangmai – San Patong	62.4	50.8
-15 San Patong - Ban Non Hai	59.9	51.5
-16 Ban Non Hai - Hot	60.1	51.2
-17 Hot - Doi Pae Po Mak	61.2	50.4
-18 Doi Pae Po Mak - Khao Huai Bon	61.5	51.3
-19 Khao Huai Bon - Oskoi	60.2	56.6
-20 San Patong - Hang Dong	59.2	55.7

Table 6-4 List of System Performances for 4 Areas (2/3)

Radio Path	s/n _p (50%) db	s/N _p (99.9%) db
-21 Ban Non Hai - Chom Thong	60.2	57.0
-22 Doi Pae Po Mak - Doi Tao	60.4	55.1
-23 San Patong - Doi Inthanon	59.9	51.3
-24 Nae Chaem - Doi Inthanon	60.5	55.5
-25 Doi Inthanon - Sa Moeng	55.3	43.5
(Phun Phin area)		
7711-1 Phun Phin (R) - Don Sak	60.1	49.2
-2 Don Sak - Ko Samui	59.8	50.4
-3 Don Sak - Ko Phangan	60.3	50.7
-4 Phun Phin (Tex) - Kanchanadit	59.5	52.1
-5 Phun Phin (Tex) - Tha Chang	59.1	52.5
-6 Chai Ya - Tha Chana	59.2	53.1
-7 Phun Phin (R) - Khiri Ratthanikhom	59.8	50.7
-8 Khiri Ratthanikhom - Ban Takhun	60.1	53.8
-9 Khiri Ratthanikhom - Phanom	60.5	54.0
-10 Ban Na San - Khian Sa	59.4	53.4
-11 Ban Na San - Ban Na Doem	59.7	56.2
-12 Ban Na San - Wiang Sa	59.2	52.9
-13 Ban Na San - Prasaeng	59.7	53.0
-14 Phun Phin (Tex) - Phun Phin (R)	61.2	60.6

Table 6-4 List of System Performances for 4 Areas (3/3)

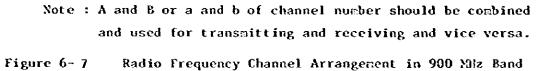
•

2-2-3 Radio Frequency Assignment Plan

Radio frequency assignment must be accomplished in such a way that noise due to radio interference between radio links will be smaller than the allowable value. Radio interference includes the following types:

- 1) Co-channel interference
- 2) Adjacent channel interference
- 3) Transmitter spurious interference
- 4) Receiver spurious interference
- 5) Interference due to intermodulation
- 6) Transmitter to receiver interference

Out of these types of interference, types (1) and (5) require special consideration in the case of radio links that use UHF band.


Since antenna directivity characteristic in UHF band is inferior to that in SHF band, it is inevitable to use different radio frequencies between stations that do not have the interference radiowave attenuated to a great extent by intermediate obstacle. In this Project, 10 or so different radio frequencies per area are required for transmitting and receiving, respectively.

Study of TOT'S RF channel arrangement plan (808.2 to 873.7 MHz and 900.5 to 958.5 MHz) has revealed that the number of RF channels that can be used in one area is 8 or thereabouts, and this number is not sufficient in this Project. Therefore, the TOT plan mentioned above has to be altered to such RF channel arrangement as shown in Figure 6-7. This channel arrangement uses 790 to 960 MHz frequency band.

When assigning these radio frequencies among radio links, attention must be paid to the following points:

- (1) In principle, one Primary Center area constitutes one zone. Either frequency group, L or H, is assigned to each zone.
- (2) Different frequency groups are used between adjacent zones.

Group L Odd Even	Group H Odd Even	
$\begin{array}{c} (MHz) (CH No.) & (CH No.) (MHz) \\ 792.5 & 1A - & 2A & 795.0 \\ 797.5 & 3A - & -4A & 800.0 \\ 802.5 & 5A - & -6A & 805.0 \\ 807.5 & 7A - & -8A & 810.0 \end{array}$	(MHz)(CH No.) (CH No.)(MHz)	790 MIZ
	812.5 9A	
835.0 1B - 2B 837.5 840.0 3B - 4B 842.5 845.0 5B - 6B 847.5 850.0 7E - 8B 852.5	855.0 9B	42.5 MHz
877.5 la	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	42.5 MHz
882.5 3a 2a 880.0 887.5 5a 4a 885.0 892.5 7a 6a 890.0 8a 895.0	897.5 9a	
920.0 1b - 2b 922.5	902.5 11a $-10a 900.0$ 907.5 13a $-12a 905.0$ 912.5 15a $-14a 910.0$ -16a 915.0	Ŧ
925.0 3b - 4b 927.5 930.0 5b - 6b 932.5 935.0 7b - 8b 937.5	940.0 9b	25.0 Mz
	940.0 9b	2.5 Miz 2.5 Miz 2.5 Miz 960 Miz

-- 178 --

- (3) In case the odd and even numbers of RF channels are commonly used in one zone, minimum spacing between RF channels which are used at one station must be 5 MHz.
- (4) Consideration must be made so that interference due to intermodulation will not take place between RF channels which are used at one station.
- (5) It is essential to calculate interference noise volume of each radio link and make sure that the noise volume is below the allowable limit.
- (6) Transmitting and receiving frequencies to be used at the same radio station should be 25 MHz or more apart even where they are mutually nearest.

The radio frequency assignment plan applicable to Ayutthaya area, for example, is presented in Figure 6-8.

2-3 Study of Power Plant

2-3-1 Power Plant Type

In order to know the capacity of essential load (communication equipment load) at each station to be constructed in this Project, the essential load analysis has been made for 75 stations in the four sample areas. The result of analysis is as follows:

Type of Station	Essential Load
TC/SC/PC (4)	1,000 - 3,600 %
Multiplex terminal (21)	500 - 1,100 W
Single terminal (43)	400 - 900 W
Baseband repeater (7)	400 - 500 W

In this Project, power plant will be installed at 639 stations. Out of them, 518 stations can have commercial power supply for 24 hours. Usually, when commercial power is available, the commercial power plus battery (BATT) floating

a かんしわせい そうりば ひっから かたいで

k shine bara ta sa

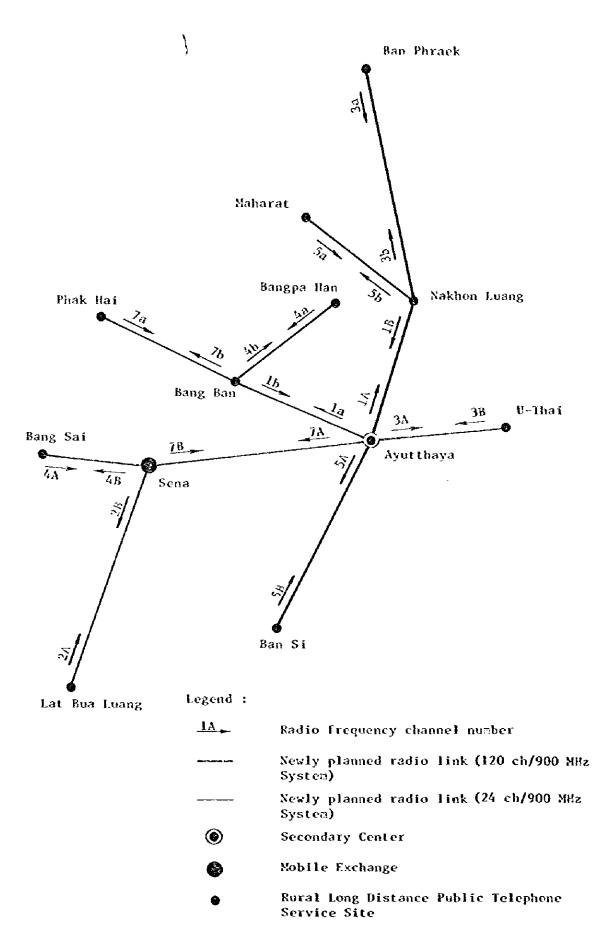


Figure 6-8 Frequency Assignment Plan for Ayutthaya Area

system is adopted. This system is to float BATT with commercial power while it is being rectified and supplied to the load. In this Project, the adoption of this system is advisable. For power supply to 121 stations (70 terminal stations and 51 repeater stations) where commercial power is unavailable for 24 hours, various systems can be considered. Power supply systems to small capacity load now in common use are as follows:

- 1) Solar battery system;
- 2) Thermoelectric generator system;
- 3) EC plus BATT floating system.

1) and 2) are suitable for power supply to load of up to 300 W. When the load power exceeds 300 W, it is economical to use 3) system. Therefore, the adoption of EG plus BATT floating system even in case the commercial power supply is unavailable is preferable in this Project. When this system is adopted, it is advisable to install two EG units so that they can operate alternately at weekly intervals, for instance.

Out of 639 stations where dc power source is to be installed in this Project, 147 are the existing radio stations. Each of these 147 stations is equipped with a standby engine generator even if cornercial power is available. On the other hand, out of 492 stations to be newly constructed, 371 can expect commercial power supply, but this commercial power supply is subject to failure due to supply system trouble, electric work and so forth. Fact-finding at several places disclosed that 10 minutes to one hour power failure would occur from time to time.

This fact notwithstanding, it is not advisable from the viewpoint of Project cost economy to have all 371 stations equipped with standby engine generators. Instead, it will be preferable to have trailer type engine generators, which can be drawn by maintenance vehicles, distributed among 35 Haintenance Centers except the Bangkok Maintenance Center. An average of one such trailer type engine generator should preferably be assigned to each maintenance center.

The ac power requirement at each station to be newly constructed in the four sample areas is calculated to be 1.8 -6.9 kVA. Therefore, the capacity per unit of trailer type engine generators to be assigned to the 35 Maintenance Centers can be safely calculated to be 7.5 kVA, barring few exceptions.

2-3-2 Power Plant Capacity

Power plant capacity has been calculated by the following conditions:

- (1) Kolding time of storage battery should be four hours at the attended station and eight hours at the unattended station.
- (2) Storage battery should be of lead acid type.
- (3) Battery should be charged by the maximum 12 hours charging rate current.
- (4) Rectifier should be of half-redundant type and should have capacity large enough to endure the charging current or the load current, whichever the larger.
- (5) Since the ac load at each station in the four sample areas, where commercial power is unavailable, is in the range of 4.2 - 6.9 kVA, each engine generator unit should have capacity of 7.5 kVA.

Figure 6-9 and Figure 6-10 are the charts by which to obtain the required battery capacity and rectifier capacity to meet the total dc load. Power plant capacities of 57 stations in the four sample areas, calculated by the foregoing conditions, are shown in Table 6-5.

2-4 Typical Radio System Configuration and Site Layout

Figure 6-11 presents typical terrestrial radio system configuration. Figure 6-12 and Figure 6-13 carry typical site layout and equipment floor layout, respectively, for the terrestrial radio system.

- -

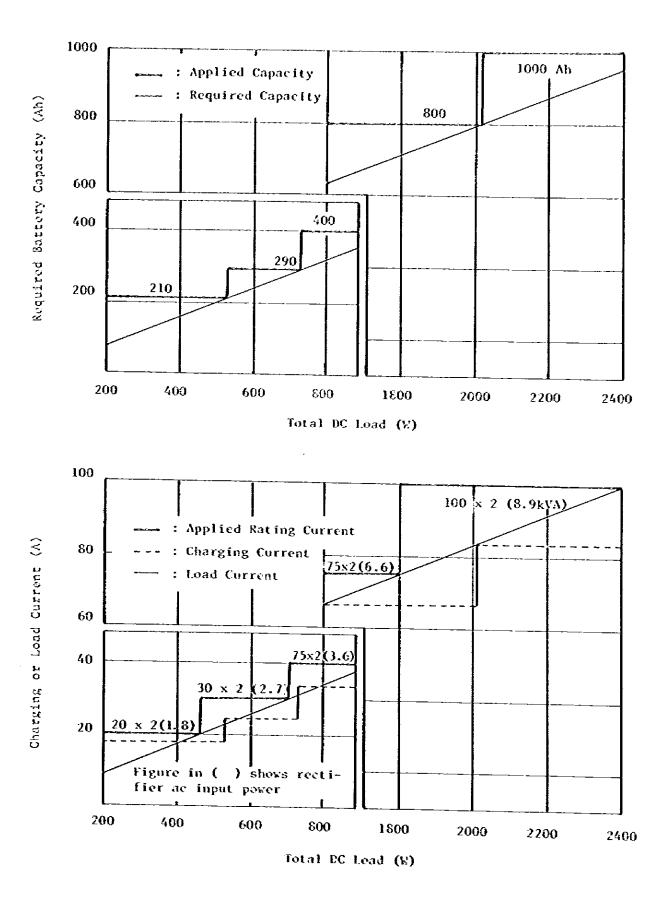


Figure 6-9

Battery and Rectifier Capacities for Attendant Station

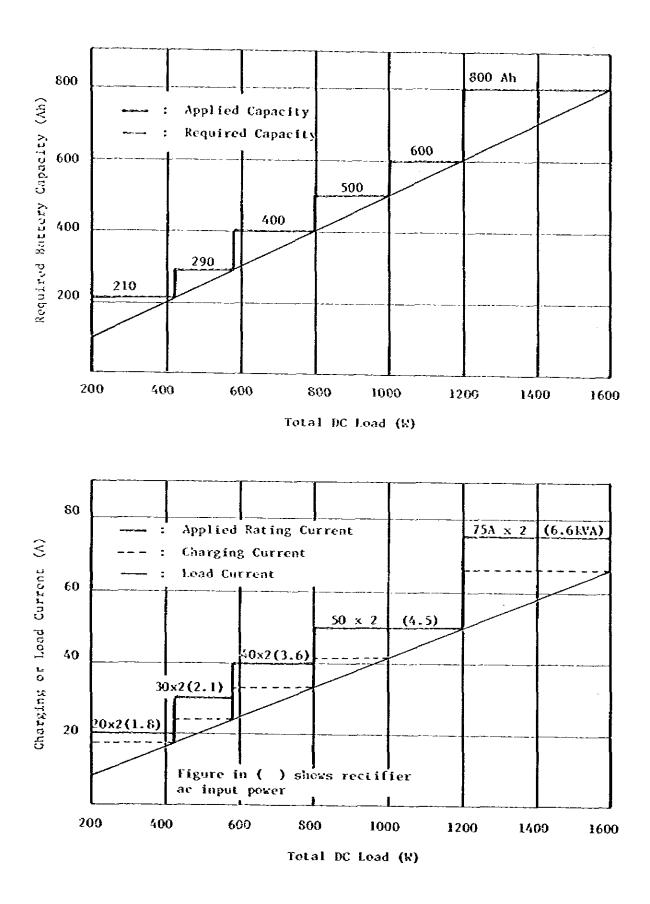


Figure 6-10 Battery and Rectifier Capacities for Unattendant Station

Table 6-5 List of Power Plants for 4 Areas (1/4)

Station	Total DC	Battery	Rectifier	AC Load (kVA)		
Station	Load (W)	Cap.(Ah)	Cap.(Ax2)	Essential	Non~ess.	Total
(Ayutthaya area)						
Ayutthaya	2563	1200	150	13.3	Existing	13.3
Bang Ban	1070	600	50	4.5	1.7	6.2
Lat Bua Luang	510	290	30	2.7	2.4	*5.1
Maharat	780	400	40	3.6	1.7	5.3
Nakhon Luang	1070	600	50	4.5	1.7	6.2
Ban Phraek	830	500	50	4.5	1.7	6.2
Bangpa Han	830	500	50	4.5	1.7	6.2
Bang Sai	780	400	40	3.6	1.7	5.3
Phak Hai	780	400	40	3.6	1.7	5.3
U-Thai	780	400	40	3.6	1.7	5.3
Ban Si	830	500	50	4.5	1.7	6.2
Sena	940	500	50	4.5	1.7	6.2
(Nakhon Ratchasima a	rea)					
Nakhon Ratchasima	2167	1000	100	8.9	Existing	8.9
Khon Buri	560	290	30	2.7	1.7	4.4
Prathai	440	290	30	2.7	1.7	4.4
Non Thai	680	400	40	3.6	1.7	5,3
Khong	780	400	40	3.6	1.7	5,3
Chun Phuang	970	500	50	4.5	1.7	6.2
Dan Khun That	440	290	30	2.7	1.7	4.4
Kham Thale So	440	290	30	2.7	1.7	4.4
Kham Sakae Saeng	440	290	30	2.7	1.7	4.4
Huai Thalaeng	440	290	30	2.7	2.1	4.8

Note: Figure with * wark shows that the station requires engine generators (7.5 kVA x 2).

.

Table	6

5-5 List of Power Plants for 4 Areas (2/4)

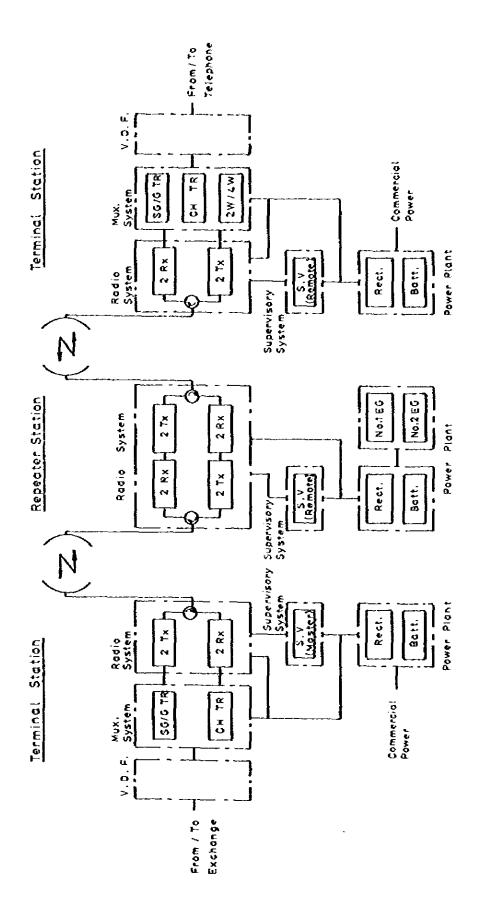
Station	Total DC	Battery	Rectifier	AC Load (kVA)		
Station	Load (W)	Cap.(Ah)	Cap.(Ax2)	Essential	Non~ess.	Total
Saeng Sang	440	290	30	2.7	2.1	4.8
Sung Noen	510	290	30	2.7	1.7	4.4
Chakkarat	560	290	30	2.7	2.1	4.8
Non Sung	1020	600	50	4.5	1.7	6.2
Phi Mai	740	400	40	3.6	1.7	5.3
Chok Chai	390	210	20	1.8	1.7	3.5
Bua Yai	600	290	30	2.7	Existing	2.7
Si Kiu	370	210	20	1.8	Existing	1.8
Pak Tong Chai	580	290	30	2.7	Existing	2.7
Sa Pratheep	390	210	20	1.8	2.8	*4.6
(Chiang⊡ai area)						
Chiangmai	3564	1400	150	13.3	Existing	13.3
Mae Ai	440	290	30	2.7	1.7	4.4
Onkoi	440	290	30	2.7	2.8	*5.5
Doi Tao	440	290	30	2.7	2.4	*5.1
Fang	1000	500	50	4.5	1.7	6.2
San Sai	510	290	30	2.7	1.7	4.4
Doi Saket	920	500	50	4.5	1.7	6.2
Phrao	780	400	40	3.6	2.4	*6.0
Hae Taeng	780	400	40	3.6	2.1	5.7
Chiang Dao	780	400	40	3.6	1.7	5.3
Sa Koeng	510	290	30	2.7	2.4	*5.1
Mae Rim	920	500	50	4.5	2.1	6.6
Hot	950	500	50	4.5	2.1	6.6

Note: Figure with * mark shows that the station requires engine generators (7.5 kVA x 2).

Table 6-5 List of Power Plants for 4 Areas (3/4)

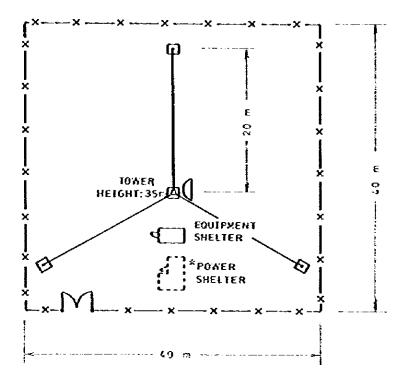
	Total DC	Battery	Rectifier	AC Load (kVA)		
Station	Load (X)	Cap.(Ah)	Cap.(Ax2)	Essential	Non-ess.	Total
Hang Dong	780	400	40	3.6	1.7	5.3
Mae Chaem	510	290	30	2.7	2.8	*5.5
San Kam Phaeng	620	400	40	3.6	1.7	5.3
San Patong	2112	1200	100	8.9	2.1	11.0
Chom Thong	670	400	40	3.6	1.7	5.3
Doi Pha Hong	390	210	20	1.8	2.4	*4.2
Doi Mu Soe	390	210	20	1.8	2.4	*4.2
Doi Chiang Dao	850	500	50	4.5	2.4	*6.9
Ban Pak Tang	390	210	20	1.8	Existing	1.8
Doi Inthanon	710	400	40	3.6	2.8	*6.4
Ban Non Hai	510	290	30	2.7	2.8	*5.5
Doi Pae Po Xak	510	290	30	2.7	2.4	*5.1
Khao Huai Bon	390	210	20	1.8	3.8	*5.6
(Phun Phin area)						
Phun Phin (Tex)	1030	500	50	4.5	Existing	4.5
Khian Sa	440	290	30	2.7	2.1	4.8
Prasaeng	510	290	30	2.7	1.7	4.4
Phanoa	440	290	30	2.7	1.7	4.4
Tha Chang	780	400	40	3.6	1.7	5.3
Tha Chana	780	400	40	3.6	1.7	5.3
Don Sak	1070	600	50	4.5	1.7	6.2
Khiri Ratthanikhom	1070	600	50	4.5	Existing	4.5
Ban Na Doem	440	290	30	2.7	1.7	4.4
Ko Phangan	440	290	30	2.7	2.4	*5.1

Note: Figure with * mark shows that the station requires engine generators (7.5 kVA x 2).

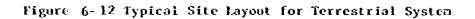

.

.

	Total DC	Battery	Rectifier	AC Load (kVA)		
Station	Station Load (W) Cap.	Cap.(Ah)	Cap.(Ax2)	Essential	Non-ess.	Total
Ban Takhun	440	290	30	2.7	1.7	4.4
Wiang Sa	780	400	40	3.6	1.7	5.3
Kanchanadit	510	290	30	2.7	1.7	4.4
Ko Samui	680	400	40	3.6	1.7	5.3
Phun Phin (R)	560	290	30	2.7	Existing	2.7
Chai Ya	600	290	30	2.7	Existing	2.7
Ban Na San	990	400	50	4.5	Existing	4.5


Table 6-5 List of Power Plants for 4 Areas (4/4)

Note: Figure with * mark shows that the station requires engine generators (7.5 kVA x 2).



~ 189 --

Note : * Power shelter with dual engine-generator will be installed where the commercial power is not available.

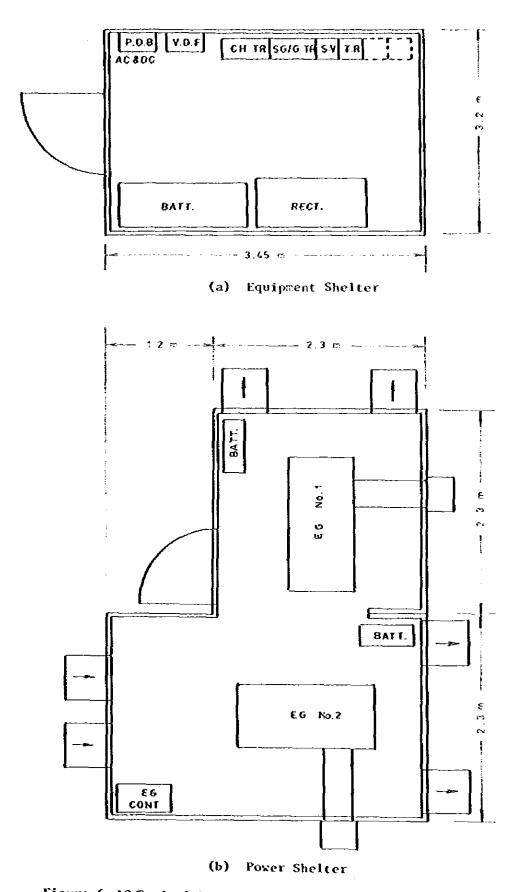


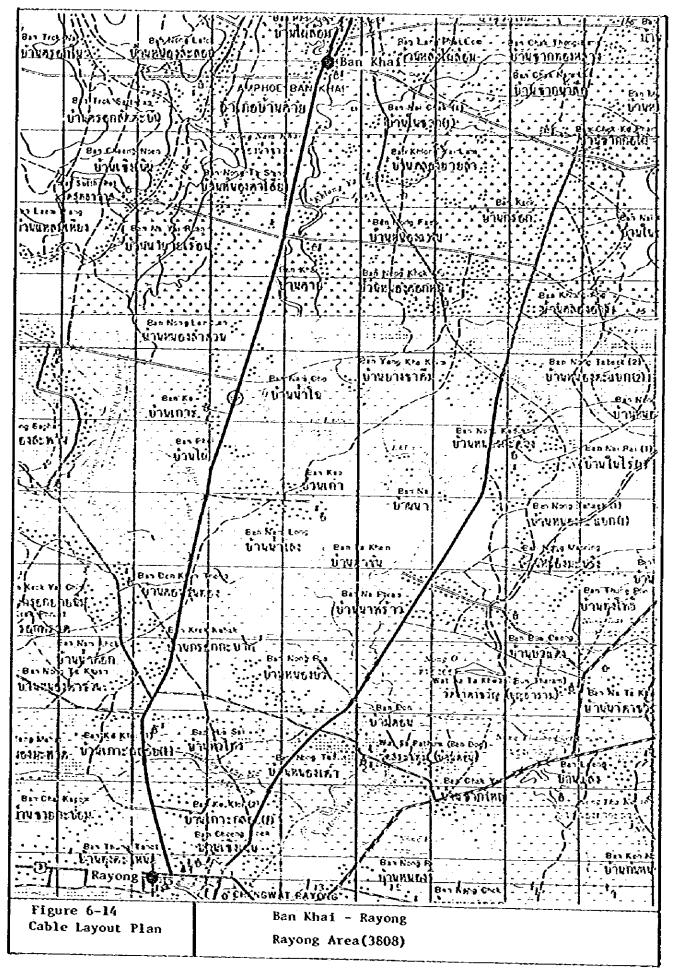
Figure 6-13 Typical Equipment Floor Layout for Terrestrial System

2-5 Cable Route Study

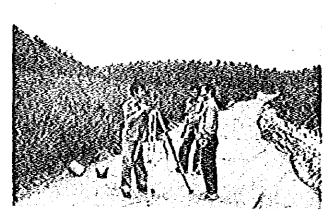
The Study Team had no time to carry out field survey to determine optimum cable route. Therefore, map study based on TOT data was conducted to select the route where cable length required could be the minimum. In case where access road would have to be newly constructed, on-the-map route selection was made in consideration of the difference of elevation and gradient (not exceeding 1/10) between the existing road and the mountain-top terminal radio station site.

Figure 6-14 shows a typical cable layout plan.

3. Domestic Satellite System


-

3-1 Master Earth Station Site Selection

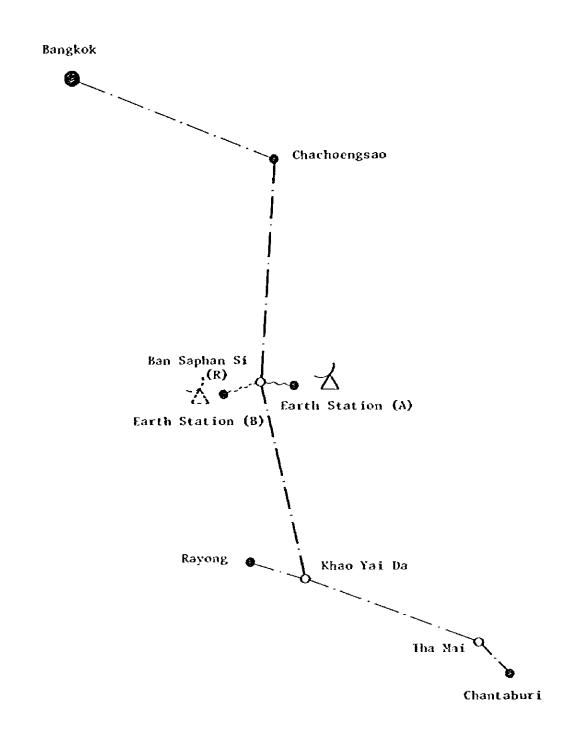

At present, in Bangkok, the existing terrestrial microwave systems (6 GHz lower band) extending to northern, northeastern and southern parts of Thailand are concentrated. Therefore, in order to avoid mutual radio interference between these existing systems and the projected domestic satellite system, the master earth station of the latter has to be established sufficiently distant from the Bangkok Metropolitan area.

TOT holds a plan to construct a new microwave system that extends from Bangkok to Rayong southeast of Bangkok. From the viewpoint of saving the domestic satellite system construction cost and of avoiding radio interference with the existing terrestrial radio system, it is desirable to utilize part of the planned Bangkok - Rayong microwave system as a terrestrial approach link between Bangkok and the master earth station.

For this purpose, however, the planned microwave system should be of different frequency band from that to be used in the domestic satellite system. The field survey carried out this time placed special emphasis on this point. For the selection of the master earth station site, the field survey was conducted for two locations in the neighborhood of the land where the Ban Saphan Si radio repeater station (the second radio repeater station from Bangkok) is scheduled to be constructed. These two locations can be connected by

coaxial cable to the abovementioned radio repeater station. The proposed site A (Ban Saphan Si shown in Figure 6-15) commands greater advantage than the other in the undermentioned respects, though there is no much difference between the two as far as the radio interference to the existing microwave system is concerned.

Survey at Ban Saphan Si


- (1) To gain the access road, the existing road has only to be repaired. This means small access road construction cost.
- (2) Coaxial cable length required to connect the radio repeater station and the master earth station is short.
- (3) Drainage in the rainy season is good.

However, no information could be obtained with respect to the site location, radio frequency, transmitter output and so forth of the radio system operated by other administration than TOT. If the domestic satellite system is to be adopted in this Project, such information is essential for the radio interference study.

It is desirable to make the field survey for other site or sites than the aforementioned two for the purpose of determining the technically and economically optimum site for the master earth station.

3-2 Rural Earth Station Site Selection

Field survey result shows that the most part of rural station sites selected by TOT on the assumption that the terrestrial radio system be introduced for the projected Rural Long Distance Public Telephone Service are located in plain town areas without obstacles to radio propagation. Therefore, even if the rural earth stations are established at those sites, it seems that no problem relating to radio propagation to and from the satellite will arise.

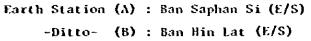
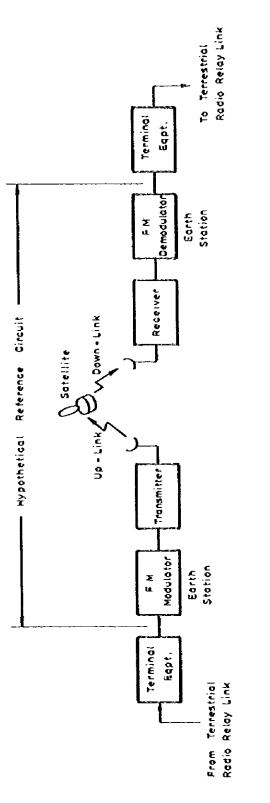
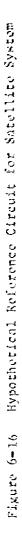


Figure 6-15 Terrestrial Approach Link for Bangkok Master Earth Station

However, with regard to the possible radio interference from the rural earth stations to the existing microwave system that uses the same radio frequency band as the rural earth stations, there is need for a thorough study aimed at the selection of proper sites for rural earth stations. (Refer to Section 3-4 of this Part VI.)

As in the case of the site selection for the master earth station, information concerning the communication system of other administration than TOT must be obtained when introducing the domestic satellite system and, based on such information, a complete study on inter-system radio interference must be made.


3-3 Design Criteria Establishment and System Performance Estimation


3-3-1 Circuit Performance Requirements

For the designing of domestic satellite system, hypothetical reference circuit and system performance requirements must be specified. However, there is no CCIR recommendation applicable to the domestic satellite link.

System establishment and maintenance costs for the satellite communication service depend critically upon overall signal to noise performance requirements. Therefore, the performance requirements for telephone circuits recommended by CCIR are referred to as the sole system performance standards for the domestic satellite system.

- (1) Hypothetical Reference Circuit for Telephony CCIR recommends the hypothetical reference circuit for use in the intercontinental telephony transmission via communication satellite, which is as follows:
 - The hypothetical reference circuit for the satellite system consists of one earth-satelliteearth radio link as shown in Figure 6-16.

- 2) The circuit includes one pair of modulator and demodulator. The modulator translates the baseband to the radio frequency carrier. The demodulator translates the radio frequency carrier to the baseband. However, the circuit does not include frequency division multiplex equipment.
- (2) Noise Objectives for Frequency Division Multiplex Telephony CCIR recommends that in the hypothetical reference circuit for the satellite link the allowable noise power at the zero relative level point on a telephone channel should not exceed:
 - 10,000 pW psophometrically weighted mean power in any hour;
 - 10,000 pW psophometrically weighted one-minute mean power for more than 20% of any month;
 - 3) 50,000 pW psophometrically weighted one-minute mean power for more than 0.3% of any month; and
 - 4) 1,000,000 pW unweighted (with an integrating time of 5 us) for more than 0.3% of any month.

The overall noise in a hypothetical reference circuit includes thermal noise produced in the up-link and down-link, noise caused by the transmitter/receiver at the earth station and by the satellite transponder, and interference noise from a terrestrial microwave link.

(3) Noise Budget Allowable to Domestic Satellite System The noise power of 10,000 pW allowable to the domestic satellite telephony circuit is to be assigned to the satellite link and equipment listed in Table 6-6.

Item	Noise Power (pWOp)
Satellite link	
Vp-link thermal noise	
Intermodulation noise in satellite	7,500
Down-link thermal noise	(-51.3 dBmOp)
Equipment noise in transmitting and	1,500
receiving earth stations	(-58.2 dB=0p)
Interference noise from other system	1,000
	(-60.0 dB⊒Op)
Total noise	10,000
	(-50.0 dB∷Op)

Table 6-6 Noise Budget Allowable to Domestic Satellite System.

3-3-2 System Performance Estimate

 Noise Produced in Satellite Link
 Signal to total weighted noise performance on the satellite link is given by

$$(S/N)_{t} = (C/T)_{t} - 10 \log k + 10 \log \frac{3f_{r}^{2}}{f_{ra}^{3} - f_{a}^{3}}$$

+ $E_{ra} + W (dB).....(6.1)$

where

(S/N).: Signal to total weighted noise ratio (51.3 dB) $(C/T)_t$: Carrier to total noise temperature (dBW/°K) : Boltzmann's constant (1.38 x 10^{-23} J/°K) ĸ : Test tone r.m.s. frequency deviation (4,310 Hz f r.m.s.) : The highest frequency of telephone channel f (3,400 Hz) : The lowest frequency of telephone channel (300 Hz) f : Emphasis improvement factor (5.8 dB) E : Psophometric weighting factor (2.5 dB) ¥ By the application of actual parameters the above equation can be reduced to $(S/N)_{+} = (C/T)_{+} + 208.4 (dB)....(6.2)$ Required (S/N), for the satellite link is 51.3 dB. Accordingly, carrier to total noise temperature at operating point (where total noise temperature corresponds to 7,500 pWOp) is $(C/T)_t = (S/N)_t - S - 208.4....(6.3)$ = 51.3 - 17 - 208.4 $= -174.1 (dBW/^{\circ}K)$

where

S : Gain of syllabic compander (dB)

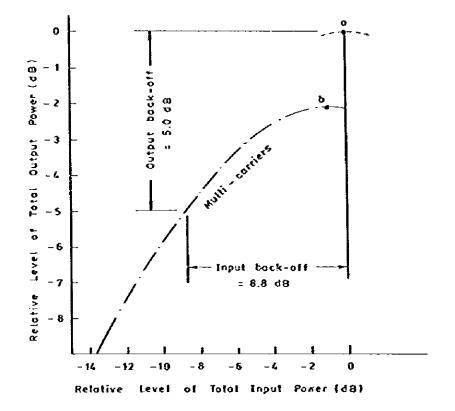
There are three kinds of noises which must be considered in the satellite link in order to satisfy the assigned noise power of 7,500 pWOp. The three kinds of noises are:

1) Up-link Thermal Noise

The up-link thermal noise is given by substituting the up-link C/T as defined in Equation (6.4) with that in Equation (6.2). The up-link C/T is given by $(C/T)_{U} = (EIRP)_{E} - L_{U} + (G/T)_{S} (dBW/^{\circ}K)....(6.4)$ $= W_{S} - BO_{i} - ((EIRP)_{S \ sat} - BO_{o} - (EIRP)_{sat})$ $-10 \ \log \frac{4\pi}{\lambda^{2}} + (G/T)_{S}$

where

(EIRP) _E :	Earth station EIRP (dBW)
ւ	Up-link transmission loss including
	satellite and earth station pointing errors,
	and atmospheric absorption (dB)
(G/T) _s :	Figure of merit of satellite
	transponder (dB/°K)


พ _ิ	:	Input flux density of a single carrier for
		saturation of satellite transponder (dBW/m ²)

BO _i : Inpu	t back-off of satellite transponder (dB)
(EIRP) s sat:	EIRP at saturation of satellite
	transponder (dBW)

(EIRP)_{sat} : Satellite EIRP per carrier (dBW) BO_o : Output back-off of satellite transponder (dB) (For BO₁ and BO₀, refer to Figure 6-17.)

2) Satellite Intermodulation Noise

In the multiple-access operation by SCPC-FX carriers, a number of carriers are simultaneously amplified by a common amplifier in the satellite transponder. In this case, the amplifier must be operated near its saturated output power for the purpose of efficient use of

<u>Note</u>

a : Saturation Power at Single Carrier Input

b : Saturation Power at Multi-Carrier Input

satellite BIRP. As a consequence, intermodulation noise due to multi-carrier operation is produced in the satellite transponder. This intermodulation noise is caused by amplitude non-linearity and by AM/PX conversion. In the SCPC-FM system, the carrier start-stop system, whereby a carrier is transmitted only during voice activities, is adopted so as to use the available satellite power efficiently. The voice activity factor is approximately 40% in the case of 1,000 carriers. This means that 400 carriers are accessed and amplified simultaneously in the transponder. Therefore, the necessary total EIRP of all earth stations can be given by

 $(\text{EIRP})_{\text{Et}} = W_{\text{s}} - BO_{\text{i}} + L_{\text{U}} - 10 \log \frac{4\pi}{\lambda^2} (\text{dBW})....(6.5)$

where

W_s: Input flux density which gives saturated output power of satellite transponder

BO₁: Level difference between W_s and operational point. Amplifier of satellite transponder is operated below its saturation output power so as to keep intermodulation noise low.

L_{II} : Up-link transmission loss

Input back-off is the ratio of the single carrier input power which yields the saturated output power to the total input power of the nulti-carriers at their operating point. Output back-off is the ratio of the saturated output power by the single carrier input to that by multi-carriers input.

(C/T) is given by

 $(C/T)_{IM} = (EIRP)_{sat} - N_0 + K \quad (dBN/^{\circ}K).....(6.6)$ where

N_o : Intermodulation noise power density (dBW/Hz) (Refer to Figure 6-18.)

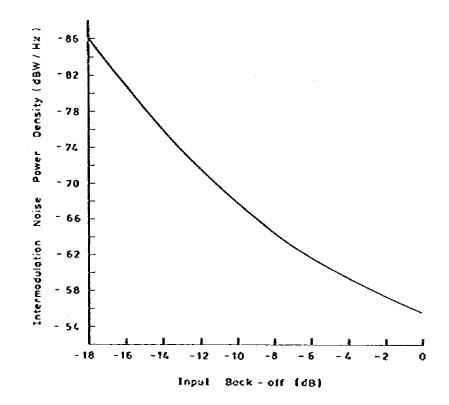


Figure 6-18

.

Intermodulation Noise Power Density Produced in PALAPA Satellite Transponder

3) Down-link Thermal Noise

The down-link thermal noise consists of the thermal noise of antenna, feeder and receiver of a receiving earth station. It is given by $(C/T)_{-} \approx (EIRP) - L + (C/T) \dots (6.7)$

(2) Total Carrier to Noise Temperature Ratio in Satellite Link
 (C/T)_t

 $(C/T)_{+}$ is expressed by

where $(T/C)_{U}^{i}$, $(T/C)_{IM}^{i}$ and $(T/C)_{D}^{i}$ are inverse numbers of values which are expressed in antilogarithm of $(C/T)_{U}^{i}$, $(C/T)_{IM}^{i}$ and $(C/T)_{D}^{i}$, respectively.

- (4) Threshold Margin

Threshold margin is a tolerance of received carrier level to the threshold level.

In the satellite system, carrier to noise ratio varies according to the meteorological condition, especially the rainfall. Therefore, it is necessary to have appropriate threshold margin. Thershold level of threshold extended demodulator is expressed by $(C/T)_{TH} = 5 \log f_{TES} - 181.3 (dBW/^{\circ}K).....(6.10)$ where f_{TES} : r.m.s. frequency deviation of telephone signal (KHz)Accordingly, the threshold margin H (dB) is defined by $M = (C/T)_{t} - (C/T)_{TH} (dB).....(6.11)$ (5) Rain Margin The rain margin M_n is expressed by the following equation:

where each (T/C)' is an inverse number of the value which is expressed in antilogarithm of (C/T).

3-3-3 System Design Examples

The telephony transmission performance estimates in the direction from Bangkok master earth station to rural earth station and in the opposite direction are shown below. Estimates are made for transmission performance expected when the system parameters shown in Table 6-7 are used.

(1) Carrier to noise temperature ratio in each circuit (master earth station to rural earth station circuit)

1) Up-link thermal noise

$$(C/T)_{U} = (EIRP)_{EM} - L_{U} + (C/T)_{S}$$

 $= W_{S} - BO_{I} - ((EIRP)_{S \text{ sat}} - BO_{O} - (EIRP)_{S})$
 $-10 \log \frac{4\pi}{\lambda^{2}} + (C/T)_{S}$
 $= -80 - 8.8 - (30 - 5.0 - 0.8) - 37 + (-6.5)$
 $= -156.5 (dBW/^{O}K)$

(where (EIRP)_{EH} is EIRP of master earth station.)

Table 6-7 System Design Parameters

Satellite

Maximum EIRP	: 30 dBW
Saturation flux density	: -80 dBW/m ²
Input-output characteristics of	
transponder	: Refer to Figure 6-17
Intermodulation noise power	
density produced in a	
transponder of PALAPA Satellite	: Refer to Figure 6-18
C/T	: -6.5 dB/°K (Refer to Figure 5-8)
Input back-off	: 8.8 dB (Output back-off: 5.0 dB)
Transponder bandwidth	: 36 XHz/Transponder
	(Available bandwidth: 30 MHz)

Earth Station

	Haster Satation	Rural Station
EIRP (dBW)	50	45
Antenna diameter (mþ)	11	4.5
C/T (dB)	31.7	21.9
LNA noise temperature (°K)	55	90

Satellite Communication System

.

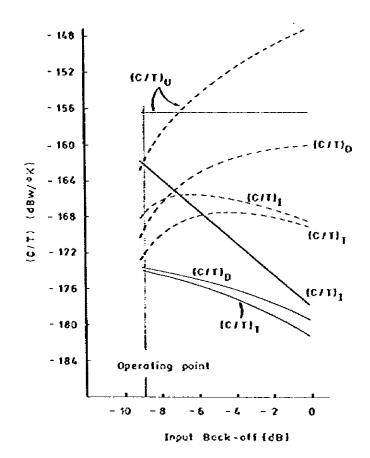
System	: SCPC-FX with carrier start-stop system	n
Number of carriers	: 1,000 (Carrier separation: 30 kHz)	
Voice activity factor	: 40%	
r.m.s. test tone freq. deviation	: 4.31 kHz r.m.s.	

2) Satellite intermodulation noise

$$(C/T)_{IM} = (EIRP)_{sat} - N_{o} + K$$

= 0.8 - (-65.5) - 228.6
= -162.3 (dBW/°K)

- 3) Down-link thermal noise $(C/T)_D = (EIRP)_{sat} - L_D + (G/T)_{ER}$ = 0.8 - 196.4 + (21.9) $= -173.7 (dBW/^{\circ}K)$ (where $(C/T)_{ER}$ is C/T of rural earth station.)
- 4) Carrier to total noise temperature ratio


$$(C/T)_{t} = \log \frac{1}{(T/C)_{U}^{\dagger} + (T/C)_{IM}^{\dagger} + (T/C)_{D}^{\dagger}}$$

= -174.1 (dBW/°K)

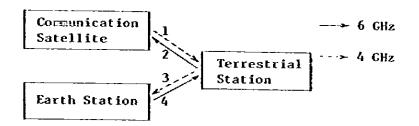
 $(S/N)_t = 208.4 - 174.1 + 17 = 51.3 dB (7,415 pWOp)$ The result of system performance calculations in the direction from rural earth station to master earth station, made by the same method as aforementioned, appears in Table 6-8.

Table 6-8 Overall Signal to Noise Ratio

Noise Circuit	Radio Link (pXOp)	Eqpt in E/S (pWOp)	Inter- ference (pWOp)	Total Noise (pXOp)	Objectives (p%Op) Margin (dB)
M/S to R/S	7,415	1,500	1,000	9,915 (50.0 dB)	10,000 (0 dB)
R/S to M/S	4,170	1,500	1,000	6,670 (51.8 dB)	10,000 (1.8 дв)

Figure 6-19 presents the relationship between (C/T) of each component and total circuit $(C/T)_t$ in the event the satellite transponder input back-off is varied. By decreasing the input back-off, i.e., by increasing the

- Note : Master Earth Station EIRP is fixed at 50 dBW. Rural Earth Station EIRP varies in the range from 41.2 to 51.0 dBW.
- ---- : Carrier from Master to Rural Earth Stations
- ---- : Carrier from Rural to Master Earth Stations


Figure 6-19 Selection of Optimum Operating Point of Transponder

transmission power, thermal noise can be reduced. However, intermodulation noise increases and total circuit $(C/T)_t$ varies according to the input back-off. It is important to obtain the input back-off point where $(C/T)_t$ becomes maximal and thereby determine the transmission output of the earth station.

3-4 Study of Radio Interference from Earth Stations

- 3-4-1 Basic Philosophy
 - (1) Interference Paths

Radio frequencies to be used at each earth station are 6 GHz for up-link (earth station to satellite) and 4 GHz for down-link (satellite to earth station). Conceivable interference paths are the following four:

The radio interference study carried out this time pertains to Path 4 in the above illustration. Radio interference on this path is apt to affect public communications. Three other interference paths are not taken up for study here.

(2) Standard Parameters

Parameters of equipment to be installed at each earth station and of equipment already installed at each existing terrestrial radio station are not necessarily uniform. Sometimes they differ from station to station. Therefore, to ease comparison of the degrees of interference suffered and to obtain a macro-perspective of system performance, the standard equipment parameters are specially used.

(3) Paths to be Studied

Reletionships between the earth stations apt to exert harmful radio interference and the existing terrestrial radio stations to suffer such radio interference vary, depending upon the curvature of the earth and the path condition. It follows that not all path combinations between the 423 earth stations and the existing 70 terrestrial stations pose problems. Therefore, preliminary study is made with regard to the distance between each earth station and each existing terrestrial radio station, as well as the line-of-sight condition. Paths within the predetermined distance between the said two categories of stations and paths in the line-of-sight condition are selected, and detailed analysis is made for interference parameters that exist on such paths.

(4) DU Ratio

The degree of interference is evaluated by the level ratio (dB difference) at the receiving antenna between the desired wave (D) which the existing terrestrial radio station receives from its neighbor stations (1 to 4 stations) and the interference wave, i.e., the undesired wave (U), which the existing terrestrial radio station receives from the earth station. The said level ratio is expressed by "D/U (DU ratio)".

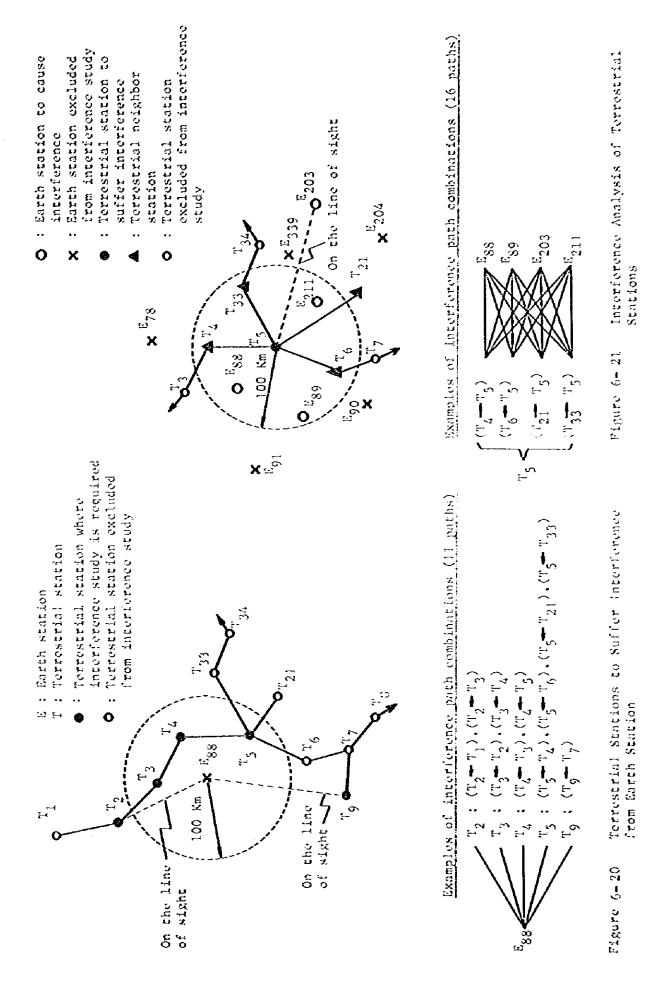
(5) Allowable DU Ratio

Allowable D/U is to be determined, based on the types of communication systems involved and, this time, especially on the international and national standards of the satellite system and existing terrestrial microwave system. The allowable D/U standard for this Project is 79 dB. This value holds true only when the interference propagation path is in free space condition. Actually, the propagation path is bothered by trees and, moreover, the shielding effect of approximately 10 dB can be expected. Therefore, D/U of 79 dB corresponds to D/U of 89 dB.

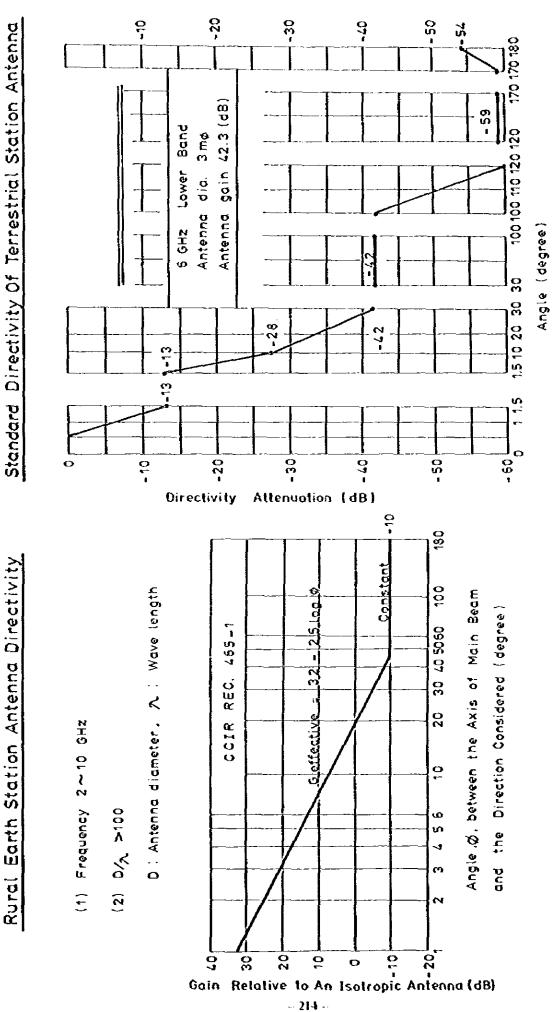
3-4-2 Preconditions of Study

The preconditions of interference study are as follows:

- (1) Scope of Study
 - To study geographic conditions between the 423 earth stations and the existing 70 terrestrial stations for all station-to-station combinations (423 x 70 = 29,610).
 - 2) To select as target stations of radio interference study the existing terrestrial radio stations that belong to either of the following categories in the relationships to each earth station:
 - a) Being located in a circle with a radius of 100 km from any earth station.
 - b) Being located on the line-of-sight (K = 4/3: standard refraction) from any earth station.


For details, refer to Figures 6-20 and 6-21.

(2) Radio Frequency


4 GHz...Center frequency : 4,003.5 MHz 6 GHz...Center frequency : 6,175.0 MHz

(3)	Earth Station Parameters
	Radiation power
	Antenna height above ground4.5 🖬
	Antenna gainბის ი
	Antenna directivityRefer to Figure 6-22

(4) Terrestrial Station Parameters Radiation power......40 dBm Antenna height above ground.....Possible maximum at each station site is adopted. Antenna gain......42.3 dB (3.0 m) Antenna directivity......Refer to Figure 6-22

Standard Directivity Of Terrestrial Station Antenna

Antenna Directivity Used in Interference Study Figure 6-22 (5) Radio Propagation Path All free space.

3-4-3 Result of Study

The result of calculations for a total of 127,746 station-to-station path combinations, using an extra-large capacity computer, discloses that 41 station sites shown in Table 6-9 do not satisfy the requirements described in Section 3-4-1 and hence the earth station construction at those 41 sites is impracticable. Calculation results in terms of computer print-out are voluminous: they produce approximately 1000 pages. Only a part of calculation results are attached hereto in Report A through Report F.

3-5 Typical Earth Station Configuration and Site Layout

Typical master earth station configuration and typical rural earth station configuration are given in Figures 6-23 and 6-24. Typical site layout and equipment floor layout for the said two categories of stations appear in Figures 6-25 to 6-28.

3-6 Cable Route Study

Cable route study was made, using the same methodology as that used in the terrestrial system study.

Table 6-9 Rural Earth Stations to Cause Interference

Area Code	Station Name	Area Code	Station Name
32 01 02	Ban Lat	54 22 05	Mae Mo
32 15 02	Bang Saphan	54 32 01	Long
35 16 09	V-Thai	55 08 02	Si Nakhon
36 13 01	Muang Lek	55 22 02	Bang Krathum
36 13 02	Sao Ilai	55 22 04	Phom Phiran
36 13 05	Nong Don	55 27 02	Tron
37 05 01	Na Di	73 13 03	Nong Chik
38 01 01	Bang Nam Prieo	73 13 06	Yaring
38 01 02	Ban Pho	74 01 04	Tra Mot
38 08 01	Pluak Daeng	74 01 07	Khao Chaison
38 15 02	Phan Thong	74 05 01	Rattaphun
42 01 06	Non Sa-at	74 05 02	Thepha
44 01 10	Phen	74 05 05	Chana
44 12 03	Kra Sung	75 05 08	Cha-Vat
44 12 04	Khu Muang	77 91 02	Tha Sae
44 21 11	Sung Noen	77 01 03	Phato
44 21 12	Chakkarat	77 07 01	Kra Buri
45 22 08	Kanthararom	77 11 05	Tha Chana
45 22 09	Uthumphon Phisai	77 11 07	Khiri Ratthanikho:3
45 30 09	Saarong Thap	77 11 08	Ban Na Doem
54 22 02	Ngao		

- REPORT A - Pages 1 /106) NTC/1978 . NTC/1978	LONG,(E)= 90 42 3 LATI,(N)= 15 V 5 SITE ELEV= 65(M) TRAV. TIME +++ AZIMUTH +++ ELEVATION +++ BASIC TRANSMISSION LOSS ++++++++++++++++++++++++++++++++++	LÔNG (L)* 90 55 5 LATI.(N)* 13 3 4 SITE ELEV.* 4(M) TRAV. TIME *** AZIMUTH *** FLEVATION *** BASIC TRANSMISSION LOSS ******** 121(MSGC) 235.58(DEG) 05.28(DEG) 195.7(DB/4GHZ) 199.5(DB/0GHZ) 122(MSEC) 242.04(DEG) 59.54(DEG) 195.8(DB/4GHZ) 190.5(DB/0GHZ) 50.41(DEG) 59.54(DEG) 195.8(DB/4GHZ) 190.5(DB/0GHZ) 50.41(DEG) 59.54(DEG) 195.8(DB/4GHZ) 190.5(DB/0GHZ)	LONG.(E)= 99 49 52 LATI.(N)= 13 14 1 SITE ELEV. 6(M) TPAV. T.ME AZIMUTH LLEVATION BASIC TRANSMISSION LOSS	LONG, (E)* 90 59 10 LATI, (N)* 15 12 8 SITE ELEV.* 3(M) TRAV, TIME *** AZIMUTH *** LLEVATION *** BASIC TRANSMISSION LOSS ********* 1210MSEC) 255, 390 0EG) 55, 100 0EG) 195, 700B/46HZ) 199, 500B/66HZ) 51, 420 0EG) 59, 590 0EG) 195, 800B/46HZ) 199, 500B/06HZ) 1220MSEC) 241, 850 0EG) 59, 590 0EG) 195, 800B/46HZ) 199, 500B/06HZ) 59, 180 0EG) 45, 780 0EG)
 PROJECT NAME - RUPAL LONG DISTANCE RUPAL LONG DISTANCE PUBLIC TELEPHONE SERVICE IN THAILANO (INTERFERENCE STUDY) HASIC DATA 	ID.NO.(1) ST.NO.(0101) ST.hAME(N.YA PLONG Satellite 1 /E-S/ JoSoo(KM) / ZS4/(KM) Satellite 2 /E-S/ JoSoo(KM) / 2690(KM) Satellite 2 /E-S/ Joo13(KM) / 2690(KM) - Satellite 2 /E-S/	<pre>:D_NO.(2) ST.NO.(0102) ST.NAME(HAN LAT *********************************</pre>	ID.NO.(3) ST.NO.(0103) ST.NAME(KHAO YUI 	IO.NO.(4) ST.NO.(0104) ST.NAME(BAN LAEM) ************************************

.

AOIATEO) .	- 000000000 - 000000000 - 000000000
5 ST. 0642 R.	0 0 0 0 0 0 0 0 0 0 0 0 0 0
NN + + + + + + + + + + + + + + + + + + +	2 N NANOOONNO N NANOOONNO N NANOOONNO C
TRIAL STATION In Free-Space	NO. %
BASIC DATA OF THE TERRESTRIAL STATION • Receiving conditions in free-space (neignbor ST. OGHZ RADIATED)	17CM / NEIGHBOR ST. NO.(54) NO.(2) NO.(0) NO.(0) NO.(0) DISTANCL (xM) AZIMUTH (TTN) AZIMUTH (xM) AZIMUTH (NTT) (NTT) (DEG) (N
	 ST.NAME BANGKCK LONGITUDE (E 100 %0 \$8) LATITUDE (N 1.2 &5 20) SITE /S.L. \$0.0(M) ANTENNA /G.L. \$0.0(M)

- REPORT 8 -Page(1 / 70)

 PROJECT NAME – RURAL LONG UISTANCE PUBLIC TELEPHONE SERVICE IN THAILAND
 INTERFERENCE STUDY)

NTC/1978

		2 C C C C C C C C C C C C C C C C C C C	-د • •	4 00 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1. 10 1. 10 1. 10 10 10	אר אר הר הר הר הר הר הר הר הר הר הר הר הר הר	ר ה כ ה אר ה אר אר אר אר אר אר אר אר	* * 100 *		PAGEC NTC	1 / 603 TC/1978	^
 E A F F F F F F F F F F F F F F F F F F	*^^ ² 2* FW 0 55 5 54		91.01	LO4617U0 LAT11406 Sitt S. C	С (Е СО 42 С 15 60 • 55.0 0 • 55.0 0 • 6	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	276222416 276222416 276222416 216222416		RADIA VSATE	ד ב ב ב ב ב ל ב ד ה ה ד ה ה ד ה ה ד ה ד ה ד ד ה ד ד ה ה ל ה ל ה ל ה ל ה ל ה ל ה ל ה ל	50.0 COGM) 085 COGM) 077 COEG)/	
INTERFERING ITS		nosta -	545	346 35		AL STATION 355 367	50(55)	10.NO.CNE1 860.57)	N 02 70 N	0.) 57(58)	0 0	(0) 0
ATH UISTANCE /C Ang.distance		(KA) (KA)	× × •	2 2 2 2 2 2 2 2	7 45.	4.5.4 4.5.4	10 01 01	• ∝ • • • •		700 000 000	00	
AZ [MUTH AZ INUTH ELEVATION ELEVATION 11-1 11-1 11-1		000 000 000 000 000 000 000 000 000 00	ANOO NOT	4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0 NX N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200 200 200 200 200 200 200 200 200 200		102-05 282-10 0.04 20-21	200 200 200 200 200 200 200 200 200 200	200 200 200 200 200 200 200 200 200 200	0000	0000
REFER.ANGLEJ /51-E Refer.Angle2 /52-E Kefer.Angle /nt-1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0000 0000 0000	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	55. 54 54 54 54 54 54 54 54 54 54 54 54 54	200 200 200 200 200 200 200	929 905 915 925	100.4	800 80 80 80 80 80 80 80 80 80 80 80 80	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	000 •••	000
<pre>k.I.ANT.6AIN] /E-T E.I.ANT.6AIN2 /E-T E.I.ANT.6AIN2 /E-T E.I.ANT.6AIN /T-E.</pre>	~ ~ ~ ~	600 600 600 600	00x 771 71		400	00% 000 55	000 000 11	00A 704 77 77	00A 000 11	00N 000 111	000	
VESTREO INPUT / T UNDESTRED INPUT / / 1100/1 120/11 /		(220 (220 (220	1.00	070 070 070 1	0 N.N. 9 N.N.N. 9 N.N.N. 9 N.N.N. 9 N.N.N. 9 N.N.N. 9 N.N.N. 9 N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.	2 - 2 - 2 - 2 2 - 2 - 2 2 - 2 - 2 2 - 2 -	2000 2000 2000 2000 2000 2000 2000 200	00 200 200 11		0000 00 m 4 4 4 4 5 m 4 5 m 1 4	000	000
0/4 1 406) 465TIMA 0/4 2 406) 465TIMA	TTON C	(30)	117.46 0	47.47 1 9.47.91	121.75 0 121.75 0	103.34 0)	98.75 1) 98.76 1)	94.7C 0) 94.7C 0)	00.31 0) 99.31 0)	123.24 0)	<pre></pre>	0.00 0.00 0.00

- PKOJECT NAME -KUKAL LONG OISTANCE PUBLIC TELEPHONE SERVICE IN THAILAND (INTERFERENCE STUDY)

PAGEC 1 / 703 - KEPUNT U +

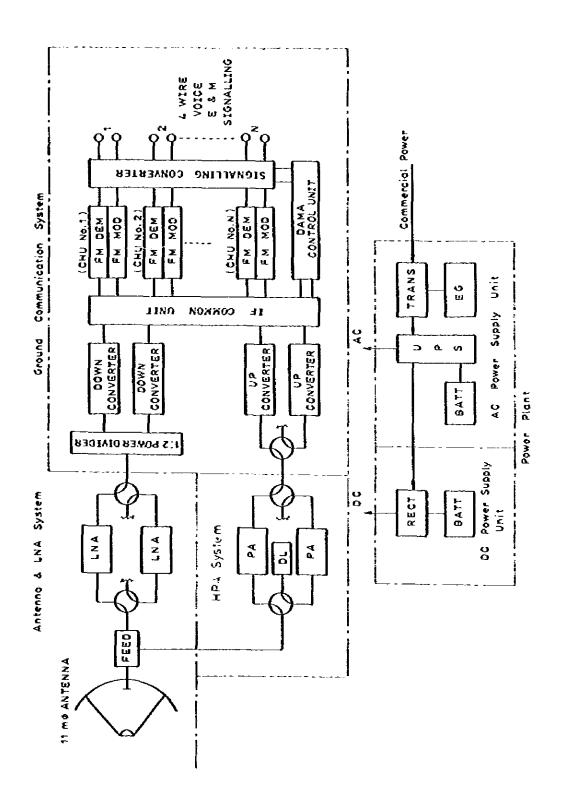
87917JY

* ** ANALYZED HATEKING PATH COMBINATION AND D/U VALUE

- TERRESTRIAL STATION --

+ 10.NU. (1) + 51.NAME (BANGKOK)

 SATELLITE EARTH STATION TERRESTRIAL NEIGHBOR STATION 	 SATELLITE EAKTH STATION SATELLITE EAKTH STATION TERRESTRIAL NEIGHBOR STATION IO.NG. 	** ••• ••• ••• •••	~ ≯	54 đ 11 13	র ম থ	ў а	r o F	क स्व 71	5.4 0	44 4	4 4	9.3 J.3
* * *	O/U KATIU 1 (OB)(UPERATI O/U ESTIMATIUN CUDE 1(OPERATI O/U RATIU 2 (OB)(SPAR	ATIONAL) +	1 6 A 7 - 6 A 7 - 6 A	6 + 0 9 0 7 0	4 5 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	5 • 0 ÷ 7 • 0 ÷	1. 2.5 7. 2.5	2 A A 0 C 2 C	4 4 4 4 4 6 4 4 7	0 0 0 0 0 0 0 0 0	4 (1 4 8 1 7 5 7 5	47.0 47.0
*	+ O/U ESTEMATEUN CODE 2(SPA	PAKE > +		1 9 2 3 9 8 8	i 4 1 1 1 1			1 7) 1 1 1	1 1 2 1 1 1 1 1			
i ••	 SATELLITE EARTH STATIUN TERRESTRIAL NEIGHBUR STATIUN 		1 90 1 90	- - - - - - - - - - - - - - - - - - -	264 26	1 33		00		00		00
* * * *	D/U KATIO I COB/CUPEKATI D/U ESTIMATIUN CODE ICUPEKATI D/U RATIU 2 COB/C SPAK D/U ESTIMATIUN CODE 20 SPAK	ATLONALU Atlonalu Pake Dake Dake	5 4 6 4 5 7 7 7	NCNC 4 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4	9404 • • • • • •	3373 3 3	3333 • • • •	0000 2000	2000 200	0 0 0 0 0 0	0030 2 3	0 0 0 0 0 0 0 0


- AEPURT E -

NTC/1478 - PRUJECT NAME -Kukal Lüng Uistance Public Telephöng Service in Thailand (interfekence Study)

** 2011:0VD3 345114744 ++	つきつりりく、今年	** ADDUAUTATIVE NOMBER OF STERIFIC OVC AAEUE **	10 0/0 AMENE ##
	Ú/U (US)	0/0 408) UPERATIONAL-SATELLITE SPAKE-SATELLITE	
PATH IN FREE SPACE (FREEDERGY SGREE) 		TTANC TTANA	
10111111111111111111111111111111111111		000	240
1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		2.6.4	274
こう ほうたいい かつううかい たい つつぜ とっぽう しょうしょう しょうしょうしょう シント・マントライン しょうかい しょうかい しょう シント・マントライン		404	404
「「こうしゅつ」のよう。 コンコンドラー インコンドラース アイ・シース アイ・シース アイ・シース アイ・ション シース アイ・ション アイ・ション アイ・ション アイ・ション アイ・ション アイ・ション	.0	10 m	
NUTAD EX DOL DAY DIRONA DIRANDA			240
	-11 (J N (J)	2 F 4 C	a Strive Market
	• • -	221	241
		104	オロイ
	2	252	99T
	40	127	127
	70	106	1001

U.M.N.M.W-1 52 (DD) MINIMUM-2 52 (DD)
 ANALY2ED E-1 PATM TUTAL (EACH SATELLITE) 2700
 ANALY2ED E-T-NT PATH TUTAL (EACH SATELLITE) 4.020

		мідь 5147104 (сонд) мідь 5147104 (сонд) Аме солбітирге	ТТЕ ХАОГО * * * * * * * * * * * * * * * * * * *	61ATLUVS (AVVEX 611E/5.F.	жерокт) . 	NELETAUR STATIONS
00000000000000000000000000000000000000	 ВАМОКТК ВАМОКТК РАМОКТК ГОР ТОКТАТ ГОР ТОКТАТ ВАКОСКТ ТАКСКТ ВТТ БАТСКТ ВТТ БАТСКТ СТТ ВТТ БАТСТ СТТ ВТТ БАТСТ СТТ ВТТ ВТТ ВТТ СТТ ВТТ	Contraction of the contract	2839222000000000000000000000000000000000	00000000000000000000000000000000000000	, , , , , , , , , , , , , , , , , , ,	

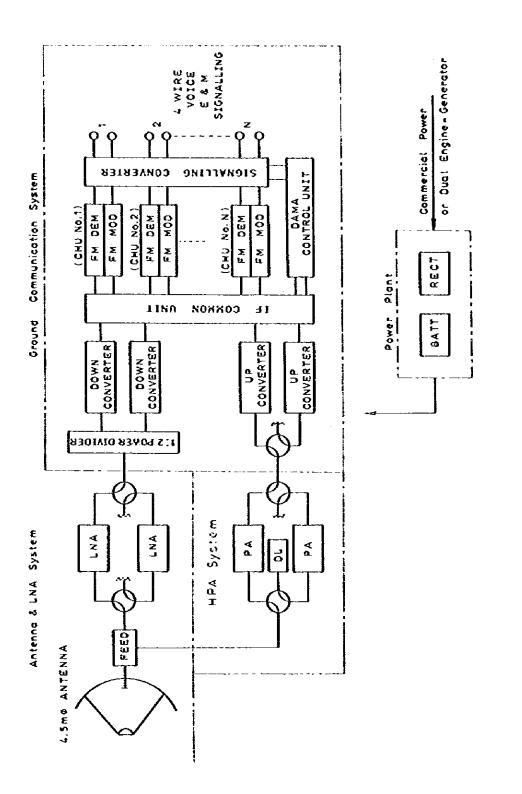


Figure 6-24 Typical Rural Earth Station Configuration

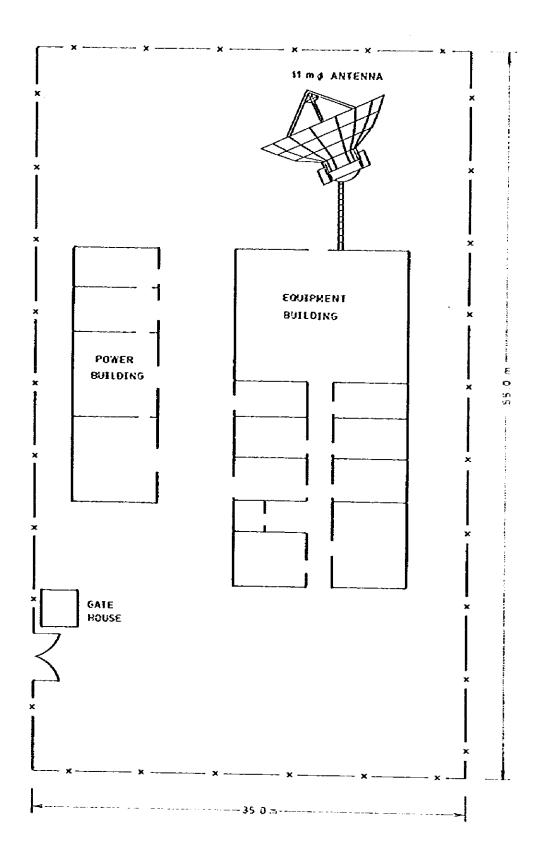
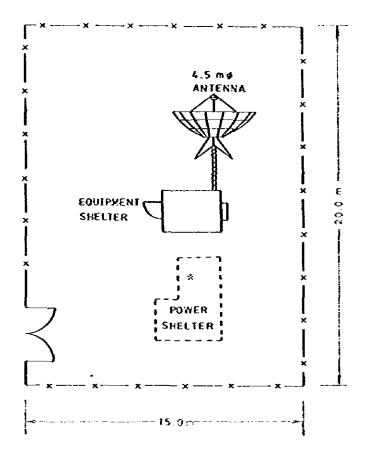



Figure 6-25 Typical Site Layout for Master Earth Station

-

Note : * Power shelter with dual engine-generator will be installed where the commercial power is not available.

Figure 6-26 Typical Site Layout for Kural Earth Station

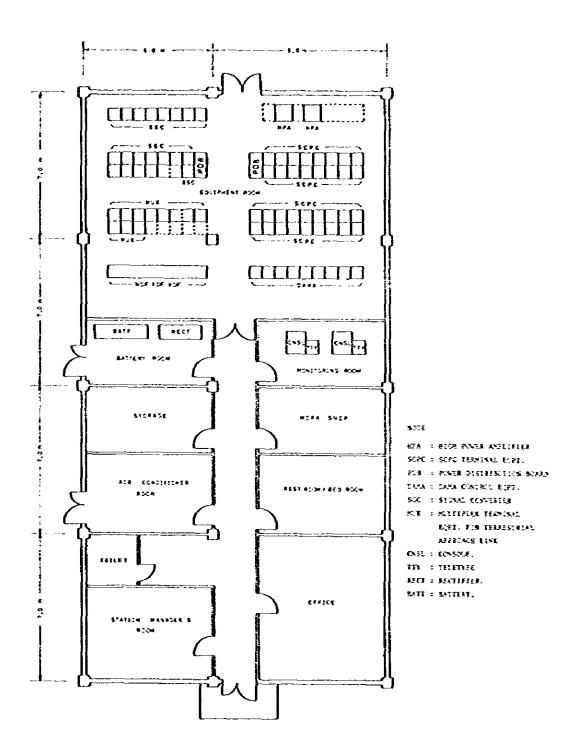
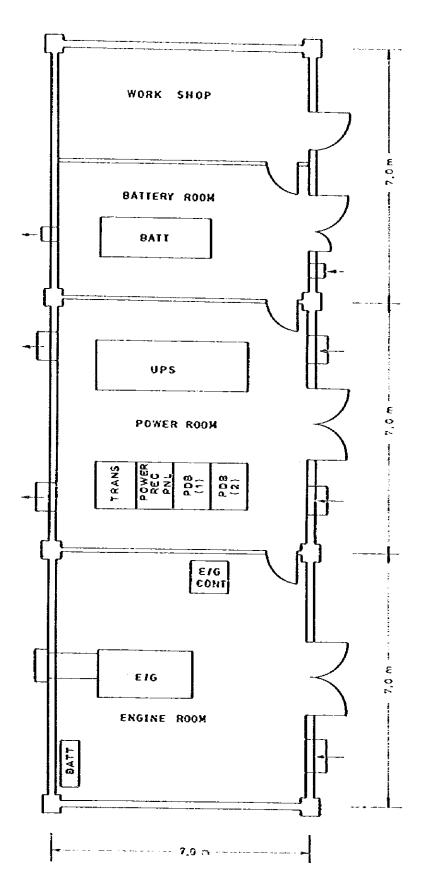



Figure 6-27 Typical Equipment Floor Layout for Master Earth Station (1/2)

i

Figure 6-27 Typical Equipment Floor Layout for Master Earth Station (2/2)

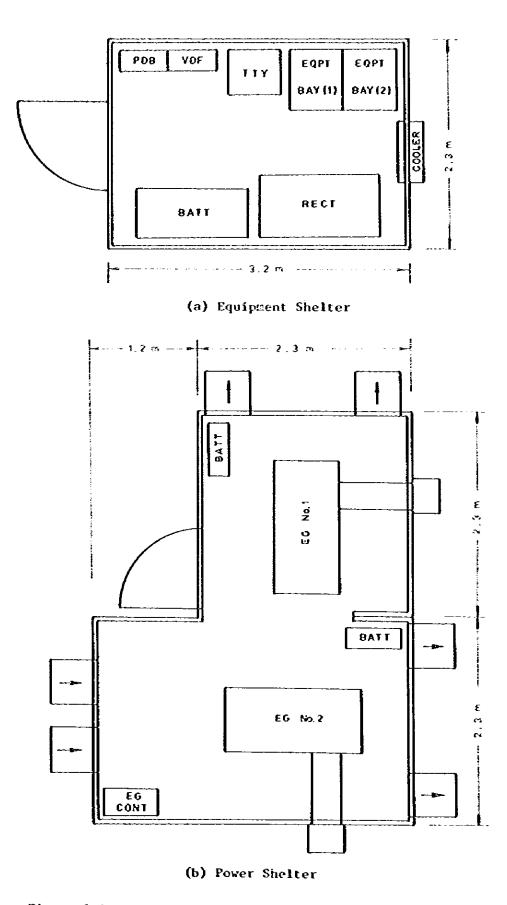


Figure 6-28 Typical Equipment Floor Layout for Rural Earth Station

.

the second s

PART VII System Maintenance

.

.

,

1. General

This Part VII describes the maintenance organization and practices for the existing terrestrial microwave system and, based on them, the maintenance philosophy used in this Study.

This projected system, no matter whether it will be implemented by the terrestrial radio system or the domestic satellite system, requires a large number of station sites. For this reason, it is so planned that the unattended operation system be adopted to the possible maximum for the radio stations including the earth stations, not to speak of through repeater stations, so that the effective system maintenance with a minimum manpower requirement will be possible.

Since TOT holds approximately 15 years experience in the maintenance of its existing trunk microwave system, the existing maintenance organization will be utilized as much as possible so that only the necessary personnel recruitment will be sufficient for maintenance service for the projected system.

2. Maintenance Organization and Practices

2-1 Existing Maintenance Organization and Practices

TOT's existing maintenance organization for the trunk microwave system consists of eight maintenance districts covering the whole country as shown in Figure 7-1. Each maintenance district holds Maintenance Centers. The total number of Maintenance Centers for the whole country is 30 (which will increase to 35 when the spur link project now in progress is completed in 1979).

Maintenance practices which include the supervision of system operation, keeping of measuring equipment and spare panels in good order, trouble-shooting, and periodic tests, are undertaken by the maintenance staff on permanent duty at the Maintenance Centers.

Remote supervisory items for each Maintenance Center are as follows :

- 1) Radio equipment failure
- 2) Hultiplex major failure
- 3) Multiplex minor failure

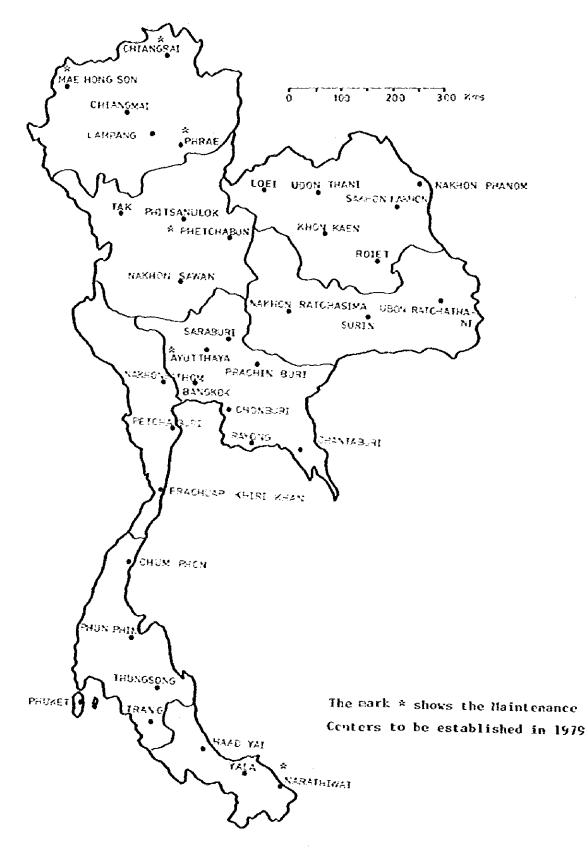
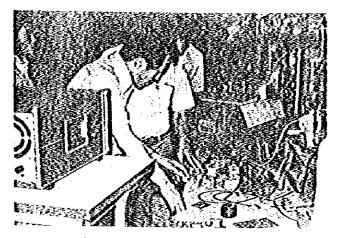
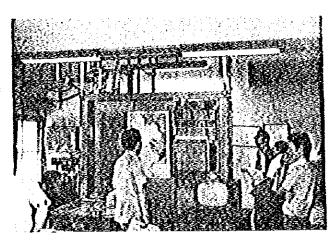



Figure 7-1 Locations of Maintenance Centers

- 4) Power supply failure to repeater
- 5) Fuse alarm
- 6) Cable alarm
- 7) Charger high-low alarm
- 8) ac power failure
- 9) Engine generator failure
- 10) Door open
- 11) Aircraft warning light failure
- At each Maintenance

Center, an average of 10 maintenance personnel are on duty on

around-the-clock basis in three shifts. After the completion of the spur link project now in progress, the assignment of five additional persons on the average at each Maintenance Center is scheduled. Each



At Chiangmai Maintenance Center

unattended repeater station is located within the radius of approximately 50 km from the Maintenance Center. The maintenance team from the Maintenance Center can reach an unattended repeater station in distress within two hours on the average.

Trouble-shooting beyond the ability of the Maintenance Center, such as replacement of parts in a panel, is carried out at the Repair Center located in the National Toll Center in Bangkok. Equipment unit repaired at the Repair Center is sent back in 48 hours to the Maintenance Center from which it came. The average number of repairs per month at the Repair Center is 100 panels.

At the Repair Center, spare parts of 10,000 kinds are kept in store at all times. Inventory management for such spare parts plus the repair of panels in trouble and annual periodic system test are carried out by 35 staff personnel. The annual spare parts purchase budget of the Repair Center amounts to approximately 15 million Baht. Spare parts to be purchased comprise radio equipment parts, multiplex equipment parts including PCM equipment parts, and power plant parts. Out of the spare parts purchase budget referred to above, 2

Workshop at Repair Center

million Baht is set aside for procurement of parts to be used for equipment installed in the Metropolitan Area of Bangkok, the capital city.

2-2 Maintenance Philosophy for Rural Long Distance Public Telephone Service

2-2-1 Terrestrial Radio System

The maintenance organization is, basically, to make a full use of 35 Maintenance Centers scattered throughout the country, provided that the necessary additional maintenance personnel will be recruited. The number of stations to be supervised (unattended repeater stations) envisaged in this Project is 17 per Maintenance Center and the average access time required for a maintenance team is two hours.

Therefore, assuming that the periodic inspection of repeater stations is carried out once every three months, the recruitment of not more than several personnel per Maintenance Center will be sufficient. Difficult repairs and overhauls of equipment units, which cannot be performed at the Maintenance Center, are to be undertaken by the Repair Center in Bangkok as in the case of similar repairs and overhauls of equipment units used in the existing microwave system. The maintenance philosophy adopted in this Study features the following:

- Maintenance practices, including system supervision, procurement of measuring equipment and spare units/parts, trouble-shooting, and periodic tests, will be undertaken at 35 Maintenance Centers.
- (2) One Maintenance Center will supervise an average of 17 supervised stations (unattended repeater stations) located in 2-3 Administrative Provinces. Maximum access time required for a maintenance team will be six hours.
- (3) Engineering service channels for maintenance use will consist of comfibus order wire and remote supervisory circuit, and for each of them one telephone channel will be assigned. To provide the engineering service channel, carrier multiplex equipment will be additionally installed in part of the existing microwave system.
- (4) One maintenance vehicle for periodic test/inspection will be assigned at each Haintenance Center.
- (5) Two respective sets of measuring equipment, spare units/parts, instruction handbooks and so forth will be distributed to each Maintenance Center, and one respective set of the same to the Repair Center in Bangkok.
- (6) One trailer type engine generator of 7.5 kVA capacity to be used during power failure at a supervised station will be assigned at each Haintenance Center.
- (7) Though not included in this Study, it is preferable to install centralized supervisory equipment at each Naintenance Center for the purpose of automatic recording of troubles at supervised stations under its control.

2-2-2 Domestic Satellite System

The maintenance philosophy for the domestic satellite system is essentially the same as that for the terrestrial radio system. Engineering service channel is planned as follows:

- (1) One dialling order wire channel will be established between each rural earth station and master earth station.
- (2) Each Maintenance Center will be equipped with supervisory display unit to facilitate supervision of the operating condition of rural earth stations under its control. Supervisory signal transmission route will consist of RS--Satellite--MS--existing microwave system--MC, where RS stands for rural earth station, MS for master earth station, and MC for Maintenance Center. One telephone channel of the existing microwave system will be assigned to each Maintenance Center for transmission of supervising signals. This telephone channel will be used for order wire circuit also.
- (3) Master earth station will make centralized supervision of all rural earth stations. Troubles at rural earth stations will be automatically recorded.

PART VIII Construction Cost Estimates and Economic Comparison by Systems

.

PART VIII Construction Cost Estimates and Economic Comparison by Systems

1. General

This Part VIII deals with construction cost estimates for Rural Long Distance Public Telephone Service by terrestrial radio system and by domestic satellite system, and presents economic comparison between the two systems.

Construction cost estimates are mainly based on overseas international tender prices. However, for rural communication service by the domestic satellite system, the examples to depend upon for construction cost estimate are few internationally so that the assistance from a Canadian telecommunications consulting firm having substantial experience in the utilization of the domestic satellite system was solicited for part of cost estimate work.

The methodology used in construction cost estimates was firstly to calculate in detail the construction cost for 75 stations included in the four objective areas of detailed study, i.e., northern, central, northeastern and southern areas of Thailand, according to the types of stations. Then, the average cost per station or per radio hop was calculated and by this average cost, in principle, the total construction cost for all stations involved in this Project was calculated.

Economic comparison between terrestrial radio system and domestic satellite system was made in terms of present worth of annual cost. For the satellite transponder lease rate and related lease conditions, data obtained directly from the Directorate General of Posts and Telecommunications of Indonesia was used.

2. Construction Cost Estimates

2-1 Project Size

Parameters that indicate the Project size, which are essential for the construction cost estimates, are shown below. Those parameters include the number of required transmission systems, total number of stations, and total access road length.

(1)	Terr	estrial Radio Link	1984	1989	<u>1994</u>
	1)	Radio System:			
		New radio station	491	491	491
		Existing radio station	137	137	137
		Radio hop	529	529	529
		Radio system	531	531	543
		Total distance of radio			
		hops in km (approx.)	12,000	12,000	12,000
	2)	Supervisory System:			
		Supervised station	604	604	604
		Supervising station	35	35	35
	3)	Carrier Multiplex System:			
		Total telephone channels	2,513	3,763	8,218
	4)	Tower:			
		New tower (guyed tower)	491	491	491
		Existing tower to be replac	ed 19	19	19
	5)	Power Plant:			
		de power plant	639	639	639
		Dual engine generator	121	121	121
		Trailer type engine generat	or 35	35	35
	6)	Building:			
		Shelter for radio equipment	491	491	491
	7)	Access Road:			
		Repeater station that			
		requires access road	46	46	46
		Total length of access			
		roads in ka	111.5	111.5	111.5

2-1-1 Terrestrial Radio System

2-1-2 Domestic Satellite System

(1)	Sate	ellîte Link	1984	1989	1994
	1)	Master Earth Station	1	1	1
		Total telephone channels	349	474	242
		Power plant	1	1	1
	2)	Approach Link:			
		Total telephone channels	384	509	277
		(including engineering service channels)			
		Coaxial cable length in km	2.5	2.5	2.5
	3)	Rural Earth Station	340	340	146
		Total telephone channels	1,144	1,413	749
		dc power plant	340	340	146
		Dual engine generator	65	65	49
	4)	Building:			
		Building for master earth			
		station	2	2	2
		Shelter for rural earth			
		station	340	340	146
(2)	Teri	restrial Radio Link	1984	1989	1994
	1)	Radio System:			
		New radio station	113	113	303
		Existing radio station	77	77	114
		Radio hop	134	134	329
		Radio system	134	134	337
		Total distance of radio			
		hops in km (approx.)	3,000	3,000	7,000
	2)	Supervisory System:			
		Supervised station	169	169	391
		Supervising station	33	33	35

		1984	1989	1994
3)	Carrier Multiplex System:			
	Total telephone channels	1,369	2,350	7,469
4)	Tower:			
	New tower (guyed tower)	113	113	303
	Existing tower to be replaced	11	11	16
5)	Power Plant:			
	dc power plant	178	178	351
	Dual engine generator	12	12	66
	Trailer type engine generator	35	35	35
6)	Building:			
	Shelter for radio equipment	113	113	303
7)	Access Road:			
	Repeater station that require	s		
	access road	8	8	33
	Total length of access roads			
	in ka	26.6	26.6	93.6

2-2 Construction Cost Estimate Conditions

Construction cost estimates are subject to the following conditions:

- Construction work will be carried out by the Contractor on full turn-key basis.
- 2) For station buildings except that of master earth station, equipment shelters will be used. This applies to both the terrestrial radio system and the domestic satellite system.
- 3) For power plant, both TOT information and field survey result concerning commercial power availability are taken into consideration. One trailer type engine generator for emergency use will be assigned to each of 35 Maintenance Centers.

- 4) In case the UHF system is additionally established on the existing microwave system, the station buildings, towers and ac power source of the existing system will be utilized.
- 5) Construction cost for extension of the existing microwave system is not included in the cost of this Project.
- 6) Cable length in the cable section is estimated by selecting cable route on a map of a scale of 1 to 50,000.
- 7) Entrance cable will be terminated in the distribution box installed on the pole. Drop wire and telephone set costs are not included in the cost of this Project.
- Access road length required for each radio repeater station is based on data supplied by TOT.
- 9) At the rural stations where switching equipment will be introduced, 2W/4W terminating set will not be installed on the radio equipment side. It will be installed on the switching equipment side.
- 10) For civil work cost, such as building and road construction cost, similar cost on TOT record is used.
- Costs pertaining to access road construction, inland transportation, part of installation, and on-the-job training are defrayed from the local currency budget.

2-3 Cost Estimates

Project cost estimates by terrestrial radio system and by domestic satellite system are given in Table 8-1 through Table 8-3.

3. Economic Comparison by Systems

Economic comparison between terrestrial radio system and domestic satellite system is carried out in terms of present worth of annual cost. Conditions by which the economic comparison is made are as follows:

			1984
Itom	Foreign Curr	ency Portion	Local Currency Portion
lten	Thousand Japanese Yen	Equivalent US Dollars	llundred Thai Baht
1. Terrestrial Radio System			
A. Radio, Multiplex & Power	13,293,253	73,879,183	-
8. Tower	1,555,791	8,643,283	-
C. Installation Materials	468,337	2,601,872	-
D. Maintenance Facilities	766,119	4,256,217	_
E. Sub-total (FO3)	16,088,500	89,380,555	-
Fditto- (CIF)	16,651,598	92,508,878	-
G. Tower Erection	301,702	1,676,122	703,971
H. Installation & Testing	723,983	4,022,128	1,689,294
I. Training	2,600	14,444	665
J. Access Road	~	-	2,230,000
K. Sub-total	17,679,883	98,221,572	4,623,930
2. <u>Cable System</u>			
A. Cable & Other Materials (FOB)	150,387	835,483	_
Bditto- (CIF)	155,650	864,722	_
C. Installation & Testing	39,355	218,639	91,828
D. Sub-totał	195,005	1,033,361	91,828
3. <u>Basic Cost</u>	17,874,888	99,304,933	4,715,758
4. Contingency			
A. Physical	536,247	2,979,150	141,473
B. Price	1,787,489	9,930,494	707,364
C. Sub-total	2,323,736	12,909,644	848,837
5. Total Project Cost	20,198,624	112,214,577	5,564,595
		1	1

fable 8-1 Project Cost of Terrestrial Radio System (1/3)

•

lable 8-1 Project Lost of	Terrestriar w		1989
lten	Foreign Curr	ency Portion	Local Currency Portion
	Thousand Japanese Yen	Equivalent US Dollars	Hundred Thai Baht
1. Terrestrial Radio System			
A. Radio, Multiplex & Power	177,349	985,272	-
8. Tower	-	_	-
C. Installation Materials	6,207	34,483	~
D. Maintenance Facilities	-	-	-
E. Sub-total (FOB)	183,556	1,019,755	-
Fditto- (CIF)	189,980	1,055,444	-
6. Tover Erection	-	-	-
H. Installation & Testing	8,260	45,889	19,273
I. Training	-	-	-
J. Access Road			-
K. Sub-total	198,240	1,101,333	19,273
2. Cable System			
A. Cable & Other Materials (FOB)		-	
8ditto- (CIF)	_	_	-
C. Installation & Testing	_	-	-
D. Sub-total	-	~	-
3. Rasic Cost	198,240	1,101,333	19,273
4. Contingency			
A. Physical	5,947	33,039	578
B. Price	19,824	110,133	2,891
C. Sub-total	25,771	143,172	3,469
5. Total Project Cost	224,011	1,244,505	22,742

Table 8-1 Project Cost of Terrestrial Radio System (2/3)

			1994
ften	Foreign Curr Thousand	ency Portion Equivalent	Local Currency Portion Hundred
	Japanese Yén	US Dollars	Thai Baht
 Terrestrial Radio System A. Radio, Multiplex & Power B. Tower C. Installation Materials D. Maintenance Facilities E. Sub-total (FOB) Fditto- (CIF) G. Tower Erection H. Installation & Testing I. Training 	850,152 - 29,755 - 879,907 910,704 - 39,596 -	4,723,067 - 165,306 - 4,888,373 5,059,467 - 219,978 -	- - - - - - - 92,391 -
J. Access Road	-	-	-
K. Sub-total	950,300	5,279,445	92,391
2. <u>Cable System</u>			
A. Cable & Other Materials (FOB)	5,846	32,478	-
Bditto- (CIF)	6,050	33,611	-
C. Installation & Testing	176	978	410
D. Sub-total	6,226	34,589	410
3. <u>Basic Cost</u>	956,526	5,314,034	92,801
4. <u>Contingency</u>			
A. Physical	28,696	159,422	2,784
B. Price	95,653	531,406	13,920
C. Sub-total	124,349	690,828	16,704
5. <u>Total Project Cost</u>	1,080,875	6,004,862	109,505

Table 8-1 Project Cost of Terrestrial Radio System (3/3)

.

Table 8-2 Project Cost of Domestic Satellite System (1/3)

1984

Foreign Curr	ency Portion	Local
······		Currency Portion
Thousand	Equivalent	Hundred
Japanese Yen	US Dollars	Thai Baht
		:
		70.000
		78,000
		~
129,500	/19,444	_
000.000		
		-
		-
		_
		2 194 400
I		3,184,490 665
	-	3,263,155
27,100,752	103, 336, 511	3,203,133
3 879 698	21 552 978	_
		_
		_
		206,085
	-	503,424
		665
-	_	532,000
5,269,004	29,272,244	1,242,174
65,930	366,278	-
68,237	379,094	- 1
15,571	86,506	36,332
83,808	465,600	36,332
34,753,744	193,076,355	4,541,661
1.042.612	5,792 280	136,251
		681,249
		817,500
		5,359,161
	Japanese Yen g 1,555,346 23,201,440 129,500 829,370 1,313,474 27,029,130 27,975,150 27,975,150 1,364,782 61,000 29,400,932 3,879,698 421,013 138,660 355,150 4,794,521 4,962,329 88,322 215,753 2,600 - 5,269,004 65,930 68,237 15,571 83,808 -	Japanese Yen US Dollars 2 1,555,346 3,640,811 23,201,440 128,896,889 129,500 719,444 829,370 4,607,611 1,313,474 7,297,078 27,029,130 150,161,833 27,975,150 155,417,500 1,364,782 7,582,122 61,000 338,889 29,400,932 163,338,511 3,879,698 21,553,878 421,013 2,338,961 138,660 770,333 355,150 1,973,056 4,794,521 26,636,228 4,962,329 27,568,494 88,322 490,678 215,753 1,198,628 2,600 14,444 - - 5,269,004 29,272,244 65,930 366,278 3,808 465,600 34,753,744 193,076,355 1,042,612 5,792,289 3,475,374 19,307,633 4,517,986 25,099,922

			1989
Item		ency Portion	Local Currency Portion
	Thousand Japanese Yen	Equivalent US Dollars	Ruodred Thai Baht
1. Satellite System			
 A. Master Earth Station (including Terrestrial Approach Link) B. Rural Earth Station C. Maintenance Center (Supervisory System) D. Installation Materials E. Maintenance Facilities F. Sub-total (FOB) 	170,683 240,755 - 14,400 - 425,838	948,239 1,337,528 - 80,000 - 2,365,767	- - - -
Gditto- (CIF)	440,742	2,448,567	_
H. Installation & Testing	19,163	106,461	44,713
I. Training & System Maintenance J. Sub-total	459,905	2,555,028	- 44,713
2. Terrestrial Radio System			
A. Radio, Multiplex & Power B. Tower	146,357 -	813,094	
C. Installation Materials D. Maintenance Facilities	5,122	28,456 -	~
E. Sub-total (FOB)	151,479	841,550	
F. ~ditto~ (CIF)	156,781	871,096	~
G. Tower Erection	-	-	_
H. Installation & Testing I. Training	6,817 -	37,872	15,906
J. Access Road	-		-
K. Sub-totai 3. <u>Cable System</u>	163,598	908,878	15,906
A. Cable & Other Materials (FOB) Bditto-	-	-	
	-	-	-
C. Installation & Testing D. Sub-total	~	-	-
1	-	-	-
4. <u>Basic Cost</u> 5. Contingency	623,503	3,463,906	60,619
A. Physical B. Price C. Sub-total	18,705 62,350 81,055	103,917 346,389 450,306	1,819 9,093 10,912
6. Total Project Cost	704,558	3,914,212	71,531

Table 8-2 Project Cost of Domestic Satellite System (2/3)

1989

Table 8-2 Project Cost of Doméstic Satellite System (3/3)

1994

			1994
Iten	Foreign Curr Thousand Japanese Yen	ency Portion Equivalent US Dollars	Local Currency Portion Hundred Thai Baht
1. Satellite System			
 A. Master Earth Station (including Terrestrial Approach Link) B. Rural Earth Station C. Maintenance Center (Supervisory System) D. Installation Materials E. Maintenance Facilities F. Sub-total (FOB) Gditto- (CIF) H. Installation & Testing I. Training & System Maintenance J. Sub-total 2. Terrestrial Radio System A. Radio, Multiplex & Power B. Jower C. Installation Materials D. Maintenance Facilities E. Sub-total (FOB) Fditto- (CIF) G. Tower C. Installation Materials D. Maintenance Facilities E. Sub-total (FOB) Fditto- (CIF) G. Tower Erection R. Installation & Testing I. Training J. Access Road K. Sub-total 3. Cable & Other Materials (FOB) Bditto- (CIF) C. Installation & Testing D. Sub-total 4. Cable & Other Materials (FOB) Bditto- (CIF) C. Installation & Testing D. Sub-total 4. Cable & Other Materials (FOB) Bditto- (CIF) C. Installation & Testing D. Sub-total 4. Sub-total 5. Contingency A. Physical B. Price C. Sub-total 6. Total Project Cost	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -
Exchange Rate + HSS 1			

	,refer to Tabl	le 6-2)	1984
Item		ency Portion	Local Currency Portion
	Thousand Japanese Yen	Equivalent US Dollars	Hundred Thai Baht
 Satellite System A. Master Earth Station (including Terrestrial Approach Link) B. Rural Earth Station C. Maintenance Center (Supervisory System) D. Installation Materials E. Maintenance Facilities F. Sub-total (FOB) Gditto- (CIF) H. Installation & Testing I. Training & System Maintenance J. Sub-total Terrestrial Radio System A. Radio, Multiplex & Power B. Tower C. Installation Materials D. Maintenance Facilities F. Sub-total 		8,640,811 90,964,222 719,444 3,279,967 5,334,061 108,938,505 112,751,356 5,815,422 338,889 118,905,667 21,553,878 2,338,961 770,333 1,973,056 26,636,228 27,568,494 490,678 1,198,628 14,444 29,272,244	78,000
3. <u>Cable System</u> A. Cable & Other Materials (FOB) Bditto- (CIF) C. Installation & Testing D. Sub-total	65,930 68,237 15,571 83,808	366,278 379,094 86,506 465,600	- - 36,332 36,332
 4. <u>Basic Cost</u> 5. <u>Contingency</u> A. Physical B. Price C. Sub-totał 	26,755,832 802,675 2,675,583 3,478,258	148,643,511 4,459,306 14,864,350 19,323,656	3,799,649 113,989 569,947 683,936
6. <u>Total Project Cost</u>	30,234,090	167,967,167	4,483,585

Table 8-3 Project Cost of Domestic Satellite System with Non-Redundancy (for 1989 & 1994, refer to Table 8-2)

- (1) The period of comparison is 15 years.
- (2) With respect to the maintenance cost for communication equipment, there is no much difference between the two systems, so that this item is withdrawn from the list of comparison. Only the access road maintenance cost is taken up for consideration.
- (3) In the terms of operation and hence in the cost of operation also, there is no much difference between the two systems. Only the satellite transponder lease rate is taken up for consideration.
- (4) Service life of communication equipment is based on ITU data.
- (5) Both systems need additional financial investment for their respective system extensions five years and 10 years after the service~in.
- (6) For interest rate, the interest rate of 7.9% per annum is used.

(7) Although the annual increase of corresodity prices and labor cost is the general trend, it is presumed that this price and labor cost uptrend can be offset by the equipment productivity improvement. This presumption is to simplify the comparison. Present worth of annual cost is given by the following equation: $P = ((C - S) \times A + S \times i + C_{D} + C_{O}) \times B$

- where P: Present worth of annual cost
 - C: Initial cost
 - S : Net salvage
 - n : Number of years
 - i : Interest rate (7.9%)
 - C_n: Maintenance cost
 - C : Operation cost

A : Annuity from present amount

$$\left(\frac{i (1 + i)^{n}}{(1 + i)^{n} - 1}\right)$$

B : Present worth of annuity
$$\left(\frac{(1 + i)^{n} - 1}{i (1 + i)^{n}}\right)$$

$$\left((C - S) \times A : Amortization cost \\ (C - S) \times A + S \times i + C_{0} + C_{0} : Annual cost\right)$$

-

Present worth of annual cost calculations for terrestrial radio system and domestic satellite system by the above equation appear in Table 8-4 through Table 8-6.

.

Table 8-4	t Present	t Worth of	Annual	Cost for To	Terrestrial	Radio System		Unit : Ni	Million Japo	Japanese Yen
Period (year)	Facility	Tnicial cost	Service Life (year)	Net salvage	Annuity from present amount	Amortizu- tion cost	Mainte- nance/ opcra+ tion cost	Annual. cost	Present worth of annuity	Present worth of annual cost
1-15	Radio S Mux	20.074	1.5	0	0.1161	2.331	1	2.331	5.6120	20.075
6-15	(Exten - ston of Mux)	213	ین -	73	0.1161	23	ş	23	4.6087	106
11-1.5	Radio & Mux	1,043	15	695	0.1161	95	ł	56	1.8715	178
1-15	Cable	287	1	o	0.1089	3.1	1	31	8.6120	267
11-15	-d1cco-	2	1	0	0.1089	-	1	1	1.8715	6.5
1-15	Access rond	2,230	ln£.	2,230	0.0790	176	22	361	S.6120	1,705
									Total :	22,333

Table 8-5	ורסצסת	Worth of	ληρυσί	Cost for Do	Domestic Sat	Satcllite Sys	System L	Urit : Xij	Million Japanese Yen	tese Yen
Pcriod (year)	Factlity	Intefal cose	Service 11fo (year)	Not salvage	Annuicy from present amount	Amortiza- tion cost	Mainte- nance/ opera- tion cost	Annual cost	Present worth of annuity	Present worth of annual cost
1-1S	Carth Stations	19.348	1.5	0	0.1161	2.246	135	2,381	8.6120	20.505
1-10	-ditto-	13.316	15	4,439	0.1161	1,381	J	1.381	6.7405	9.309
1-15	Radio & Mux	5.979	15	0	7977.0	769	9	694	8.6120	5,977
6-15	(Excen - sion of Mux)	180	15	60	0.1161	19	I	19	4.6087	SS
11-15	Radio & Mux	7.794	15	5,196	0.1161	712	4	712	1.8715	1,333
6-1.5	(Exten - sion of Terminol)	727	15	1.57	0.1161	49	3	49	4.6037	226
6-10	-ditto-	34	15	23	0.1161	ۍ ۲	I	6	2.7372	ω
1-15	Cable	120	17	0	0.1039	13	•	13	S.6120	112
11-15	-41550-	68	1.7	0	0.1089	10	1	10	1.8715	19
1-15	Access road	532	lní.	532	0.0790	42	S	47	8.6120	405
11-15	-dítto-	1.340	Inf.	1.340	0.0790	901	13	119	1.8715	223
									Total :	33,205

.

Tedle S-0		Fresent worth of Annual with Non-Redundancy	Annual Cost ncy		nescie adr	tor Domestic Safetlite System		Unit : Mi	Million Japanese Yen	nese Yen
Period (ycar)	Facility	Initial cost	Service 11fe (year)	Ne t sa lvage	Annuity from present amount	Amortiza- tion cost	Mainte- nance/ opera- tion cost	Annual cost	Present worth of annuity	Present worth of annual cost
1-15	Earth Station	14,384	15	0	0.1161	1.670	135	1.805	8.6120	15,545
1+10	=dirro-	9.540	1.5	3,180	0.1161	066	3	066	6.7405	6.673
1-15	Radio & Mux	5.979	15	0	0.1161	694	1	694	S.6120	5.977
6-15	(Exten - sion of Mux)	1,30	15	60	0.1161	61	1	19	4.6087	SS
11-15	Radio & Mux	7.794	15	5.196	0.1161	712	J	712	1.8715	1.333
6-15	(Exten - sion of Terminal)	471	1.5	157	0.1161	67	1	49	4.60S7	226
6-10	-dicto-	34	1.5	23	0.1161	n	1	£	2.7372	ø
1-15	Cable	120	17	0	0.1089	13	ı	13	\$.6120	112
11-15	-ditro-	68	17	С	0.1089	10	-	10	1.8715	19
1-15	Access road	532	Tnť.	532	0.0790	42	ß	t 1	8.6120	405
11-15	-ditto-	1,340	Inf.	1,340	0.0790	106	13	119	1.8715	223
									Total :	30,609

Table 8-6 Present Worth of Annual Cost for Domostic Satellite System

-

PART IX All-round Evaluation of Optimum Transmission System Plan

.

PART IX All-round Evaluation of Optimum Transmission System Plan

1. General

This Part IX makes an all-round comparative study of the terrestrial radio system plan (hereafter called Plan A) and the domestic satellite system plan (hereafter called Plan B) which were reviewed in all their essential aspects in the preceding Parts.

The all-round evaluation of both Plan A and Plan B from economic and technical viewpoints is intended to arrive at a conclusion concerning what the optimum transmission system for Rural Long Distance Public Telephone Service should be.

2. Iterwise Evaluation

For all-round evaluation of relative merits of a transmission system, the economic evaluation in terms of present worth of annual cost and the performance evaluation are necessary. The former takes up for evaluation the annual cost including initial cost, maintenance cost and operation cost. The latter considers transmission quality, system reliability, system extension flexibility and so forth.

Following is the result of item by item comparative study of Plan A and Plan B.

2-1 Comparison by Present Worth of Annual Cost
The present worth of annual cost is:
Plan A : 22,333 million Japanese Yen
(124,072 thousand U.S. Dollars)
Plan B : 38,205 million Japanese Yen
(212,250 thousand U.S. Dollars)

Plan A costs less than Plan B by 15,872 million Japanese Yen.

This advantage of Plan A reflects the fact that Plan B requires higher construction cost per rural station and hence higher amortization cost.

Although the initial cost of earth stations and the satellite transponder lease rate are considered to be remarkably reduced in the future as the result of continued technical renovation and productivity improvement, both these costs will remain at practically the same level as shown in this Study about the time the tender announcement for this Project is made in 1979-80.

If the non-redundant configuration which does not use standby equipment is adopted for the rural earth station system configuration, the present worth of annual cost decreases by 7,596 million Japanese Yen. In this case, however, the comparison cannot be made on equal base to the terrestrial radio system plan that uses standby equipment.

Therefore, in this Study, the non-redundant configuration with its cost estimate is taken up for the purpose of reference only but is not included in the system comparison.

2-2 Transmission Performance and System Reliability

The objective signal to noise ratios of both Plan A and Plan B, established in Part VI, are reproduced below.

	Plan A	Plan B
Terrestrial section	57 dB	57 dB
Satellite link	-	50 db

As far as the signal to noise ratio is concerned, Plan A commands greater advantage by several dB over Plan B.

Delay time is another demerit of Plan B in the aspect of transmission performance. More precisely, radio propagation from ground to satellite and back to ground takes approximately 0.3 seconds, and this means that the response of the other party is delayed by approximately 0.6 seconds.

As regards the reliability of communication equipment, there is no much difference between Plan A and Plan B because the full redundant configuration is adopted in both plans. Qualitative comparison of system reliability between Plan A and Plan B follows.

Traffic estimation is made on the assumption that one half of originating calls from each RS (rural earth station) is to Bangkok, the capital city, and the other half is to the nearby PC (Primary Center). In this case, the traffic route configuration is as follows: Plan A:

(1) Traffic to Bangkok:

RS ---- PC - existing microwave system Bangkok

(2) Traffic to nearby PC:

RS ----- PC

Plan B:

(1) Traffic to Bangkok:

(2) Traffic to nearby PC:

RS--- satellite --- MS ____ existing microwave system_PC

As shown above, in Plan A, calls to Bangkok are through the existing microwave system and calls to nearby PC are via UHF system which uses several repeater stations. However, in Plan B, calls to Bangkok are via satellite link and calls to nearby PC are via one satellite link plus the existing microwave system.

That is to say, in both plans, almost the same volume of calls is carried on the existing microwave system, though the call destinations are different, one being Bangkok and the other the nearby PC.

Therefore, it can be safely presumed that, in the system reliability also, there is little to choose between the two plans.

2-3 Maintenance/Operation Cost

Both Plan A and Plan B contemplate to maintain rural stations as unattended stations and to keep the maintenance staff at 35 Maintenance Centers. Thus, for maintenance personnel cost, no substantial difference can be found between the two plans. Master carth station in Plan B needs some 20 maintenance engincers.

Plan A requires 46 more through repeater stations than Plan B so that the number of maintenance personnel required increases to that extent, resulting in almost the same maintenance manpower level as in Plan B. Hence no major difference between the two plans in the maintenance staff cost. For other maintenance/operation cost, Plan B envisages higher operation cost corresponding to the satellite transponder lease rate whereas Plan A anticipates road and tower repair/improvement cost increase.

2-4 System Extension Flexibility

Plan A features that the terminal section of transmission route holds transmission capacity of 24 telephone channels and the section where circuits are concentrated holds transmission capacity of 120 telephone channels. Therefore, compared with Plan B wherein not more than several circuits are used, Plan A can more easily cope with a greater increase of circuit demand than expected if it arises in the future.

2-5 Work Period

Both Plan A and Plan B use equipment shelters for rural station buildings so that in the period required for equipment installation at rural stations, no much distinction exists between the two plans.

In Plan A, antenna tower erection work takes time; however, in Plan B, time requirement for master earth station construction is large. After all, in the required work period, neither plan is considered to predominate over the other. Meanwhile, it is hypothesized that by the time the equipment installation at rural stations begins, access roads to all those stations would have been completed by TOT.

Plan A also features that partial system service-in can be expected, beginning in the area where construction work and acceptance test have been completed. However, in Plan B, partial system service-in is impossible before the construction of master earth station and gateway exchange to be established in Bangkok as pivotal facilities of the whole system is completed.

3. All-round Evaluation Result

All-round evaluation of iterwise individual study results arrives at the following conclusions:

- (1) For the transmission system of Rural Long Distance Public Telephone Service, UHP terrestrial radio system of 900 MHz frequency band is the optimum system, considered from both technical and economic angles.
- (2) For the applicable UHF (900 MHz frequency band) terrestrial radio system, no much difference can be found between FDM system and PCH system.
- (3) Domestic satellite system will have its construction cost broadly reduced as the technical research and development make further progress and the greater productivity improvement is achieved. Therefore, when the introduction of domestic satellite system is planned in the future, the most effective use of the satellite must be considered. This can be realized by utilizing the system for wide-range signal transmission, such as telegram, telex, data and television signal transmission, without restricting the system utilization to telephone channel transmission alone.

.

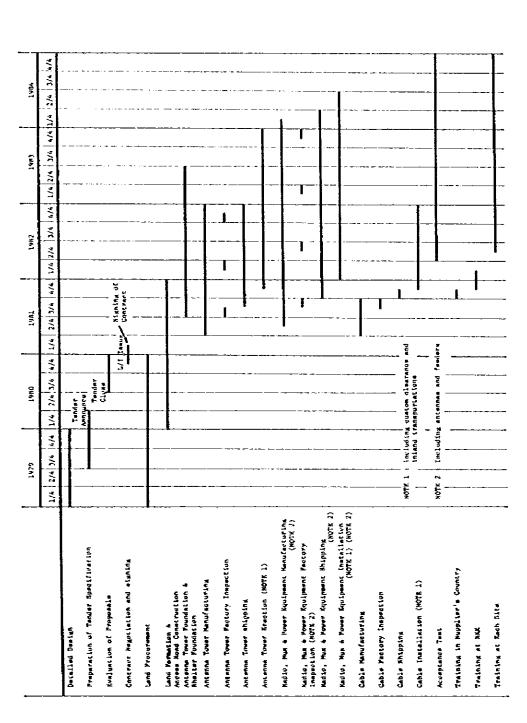
.

PART X Project Implementation Plan

-

PART X Project Implementation Plan

This Project not only covers the whole territory of Thailand but also comprises various divisions of engineering expertises in a long period. Therefore, to ensure satisfactory progress of project implementation, it will be necessary to reinforce the project implementation organization.


Tentative Work Schedule Chart

A tentative work schedule chart for implementation of Rural Long Distance Public Telephone Service Project is given in Table 10-1. This work schedule chart uses 1984 as the work completion target year in accordance with the TOT plan.

Items considered are as follows:

- 1) The construction work will be carried out by the Contractor on a full turn-key basis except land formation and access road construction.
- 2) As much time as required will be spent for detail design by which to make Tender Specifications.
- 3) In case the traffic reappraisal cannot be completed in time for tender announcement, the result of reappraisal will be taken into account in subsequent extension works.
- The system will begin service in one area after another where construction work has been completed.

PART XI Economic and Financial Evaluations

•

.

This Part XI presents economic and financial evaluations of Rural Long Distance Public Telephone Service Project, based on the conclusion drawn in Part IX, i.e., the decision in favor of terrestrial radio system as an optimum system.

1. Economic Analysis

1-1 Calculation of Economic Costs and Benefits

Project cost estimates are given in Part VIII. These cost estimates are for comparison between the two systems so that, to facilitate the economic evaluation of the Project, supplementation or streamlining of cost items is required. Project costs for the purpose of analysis are listed in Table 11-1.

For Economic analysis, all costs should be quoted in border prices. Although imported materials and equipments are quoted in border prices (CIF), other costs are quoted in market prices (local currency portion) and they should be converted into border prices, using CF (conversion factor).

1-1-1 Calculation of CF

SCF (standard conversion factor), which is the ratio of market prices to border prices, is calculated by the following equation, based on export and import values in the past five years, as well as import duties and export duties in the same period:

$$SCF = \frac{M + X}{(M + Tm) + (X - Sx)}$$

where

M : Total import value by CIF

X : Total export value by FOB

Tn: Total amount of import duties

Sx: Total amount of export duties

SCF in Thailand has been found to be 0.95. Besides SCF, CFC (conversion factor for consumption) has also to be obtained for economic evaluation. However, since data from Note : LP denotes Local Currency Portion. FP denotes Foreign Currency Portion. Year in parentheses is the year in which disbursement will take place.

1. Capital Invesment

1-1	Land Procurement (LP)	16,203,000 Baht
		(1979-1980)
1-2	Land Formation (LP)	16,749,330 "
		(1980-1981)
1-3	Access Road Construction (LP)	223,000,000 "
		(1980-1981)
1-4	Communication Equipment and	
	Maintenance Facilities (FP)	1,680,724,800 "
		(1981-1984)
		18,998,000 "
		(1989)
		91,675,400 "
		(1994)
1-5	Installation and Testing (LP, FP)	355,013,300 "
		(1981-1984)
		2,753,300 "

(1989)

13,257,300 " (1994)

-

which to obtain CFC is not sufficient, the following hypothesis is used to set CFC at 0.90. That is to say, the customs tariffs are established generally at high levels for consumers' goods and at low levels for producers' goods. Hence, a smaller value is expected for CFC than for SCF.

1-1-2 Calculation of Economic Costs (Accounting Prices)

(1) Land Acquisition Cost

Land acquisition cost includes land price and land measurement and registration fees collateral to land acquisition. 90% of land acquisition cost constitutes land price and 10% accounts for related skilled labor cost.

Land price calculation requires the accounting price based on the shadow price calculation. Here, for such accounting price, SCF is used because the ratio to total fixed capital cost is small. For skilled labor cost calculation, CFC is applied. The accounting price for land acquisition cost turns out to be 15,312,000 Baht.

(2) Land Formation Cost

Land formation cost comprises banking work cost, civil work cost including fence, gate and ditch building cost, commercial power lead-in cost, and ground leveling cost.

For imported goods, import tariff and domestic transportation cost have to be considered; however, SCF only is applied here. For domestic goods also, SCF is applied. For unskilled labor, CFC is used whereas, for skilled labor, although the calculation should be based on the value of marginal product to be lost in other field of labor, 0.7 x CFC (0.7 x 0.90 = 0.63) is used here for CF.

The accounting price for land formation cost turns out to be 15,409,000 Baht.

- (3) Access Road Construction Cost Access road construction cost consists of land-for-road acquisition cost and road construction cost. Cost distribution ratios are 10% for imported goods, 20% for domestic goods, 5% for skilled labor, 15% for unskilled labor, and 50% for land. CF for each cost item is the same as in the case of land formation cost. However, with respect to land-for-road acquisition cost, the accounting price calculation is subject to controversy, because the major part of land for road is the wooded land. Nevertheless, SCF is applied here. The accounting price for access road construction cost turns out to be 149,410,000 Baht.
- (4) Communication Equipment Installation Cost Communication equipment installation cost comprises domestic transportation cost for imported equipment, foundation work cost for towers and shelters, foreign and domestic labor cost, and so forth. All these are the essential costs for equipment installation work. Cost distribution ratios are 15% for labor to be financed by foreign currency, 10% for domestic goods, 40% for skilled labor, and 20% for unskilled labor. 30% of installation cost is covered by foreign currency. One half of this foreign currency portion is for domestic consumption (including tax payment). And this one half of foreign currency portion is appropriated for labor to be financed by foreign currency. Basides CF for foreign currency labor as unity, the aforementioned CF is applied. The accounting prices for equipment installation cost are 259,160,000 Baht for initial period, 2,010,000 Baht for middle period, and 9,678,000 Baht for final period.

Table 11-1 Project Cost Breakdown (2/3)	
1-6 Training (LP, FP)	326,500 Baht
	(1980-1981)
1-7 Vehicles (LP)	10,150,000 "
	(1981-1984)
	10,150,000 "
	(1990-1993)
1-8 Project Execution (LP)	17,010,000 "
	(1979-1984)
	756,000 "
	(1988-1989)
	1,260,000 "
	(1993-1994)
2. Operating Cost	
2-1 Electricity and Oil (LP)	3,914,175 "
	(1982)
	7,828,351 "
	(1983)
	58,712,630 "
	(1984–1988)
	60,343,540 "
	(1989-1993)
	78,283,512 "
	(1994–1999)
2-2 Spare Parts (FP)	1,166,666 "
	(1982)

.

-

.

2,333,333 Baht

(1983)

17,500,000 "

(1984-1988)

19,250,000 "

(1989-1993)

27,300,000 "

(1994-1999)

2,646,000 " (1982)

5,292,000 " (1983)

139,104,000 "

(1984-1999)

(Breakdown of cost items 1-4, 1-5 and 1-6 appears in Table 8-1 of Part VIII.)

2-3 Maintenance (LP)

•

(5) Work Management Cost

Work management cost includes personnel cost, general administration cost, office supplies cost, and domestic travel cost.
Cost distribution ratios are 10% for imported goods, 35% for domestic goods, and 55% for skilled labor.
CF for each cost item is based on the aforementioned corresponding value.
The accounting prices are 15,648,000 Baht for initial period, 696,000 Baht for middle period, and 1,160,000 Baht for final period.

(6) Vehicles

Vehicles are categorized as imported goods. The accounting price per vehicle turns out to be 276,000 Baht.

(7) Training Cost

CF for foreign currency portion out of total training cost is unity based. Skilled labor training is to be financed by domestic currency portion. The accounting price for training cost is 320,000 Baht.

(8) Electric Power and Fuel Cost

Since the final calculation requires detailed studies, the provisional decision is to apply SCF.

(9) Haintenance Cost

Maintenance cost includes maintenance personnel cost, office supplies cost, and spares/parts cost, besides maintenance management cost. Cost distribution ratios are 5% for imported goods, 40% for domestic goods, and 55% for skilled labor. CF for maintenance cost turns out to be 0.92. For imported goods, CIF prices quoted in Part VIII are observed. Furthermore, the accounting prices for Paragraphs (1) through (8) above are taken into consideration.

Economic cash outflow is presented in Table 11-3.

- 279 -

1-1-3 Economic Benefits

Benefits in this Project are the sum total of telephone service fees to be paid by users. However, this Project is essentially to construct transmission routes, part of which will be used as subscribers' lines and part as trunk routes. Therefore, it is important to distribute service fees paid by users according to the degrees of their utilization.

Investment required for telephone network construction consists, according to the standard distribution, of 10% for subscriber premise equipment (telephone sets), 35% for subscribers' lines, 25% for local exchanges, 10% for trunk lines, 5% for toll exchanges, and 15% for toll transmission routes.

Therefore, for the benefits in this Project, the revenues from telephone service distributed according to the investment distribution rates as per above are used. That is to say, 35% is for Rural Long Distance Public Telephone Service and 12.5% for junction routes on the assumption that one half of these routes are used as trunk lines and the other half as toll lines ((10% + 15%)/2 = 12.5%). As for call charges, it is estimated that one half of calls are local calls and the charge is two Baht per call, and the other half are toll calls to Bangkok and the charge is 30 Baht per call (distance: 350 km - 500 km; averabe call duration: 3 minutes). Table 11-2 presents the calculation methodology for benefits in this Project.

For conversion of benefits into the accounting prices, it is necessary to determine the rate of speeches for consumption purposes and the rate of speeches for production purposes. This time, benefits in terms of speeches for consumption purposes are set at 30% of all speeches and CFC is applied to those benefits, whereas benefits in terms of speeches for production purposes are set at 70% of all speeches and SCF is applied to those benefits. By this means, the accounting prices for benfits have been obtained.

Table 11-2 Calculation of Direct Benefits (1/2)

Benefits from portion to be used as subscribers' lines

Number of busy hour calls per channel	10 calls
Busy hour concentration rate	20%
Number of calls per channel per day	50 calls
Number of calls per channel per year	
(365 days)	18,250 calls
Half of calls : 2 Baht per call)	
Half of calls : 30 Baht per call))	102,200 Baht/ch/year
Degree of contribution as) subscribers' lines : 35%)	

Year	Number of Channels	Benefits
		(in 1,000 Baht)
1982	432	44,150
1983	864	88,301
1984	1,295	132,349
1985-1988	1,439	147,065 x 4
1989	1,531	156,468
1990-1993	1,623	165,871 x 4
1994	1,225	125,195
1955-1999	827	84,519 x 5

Benefits from portion to be used as junction lines

Number of busy hour calls per channel	12 calls
Busy hour concentration rate	10%
Number of calls per channel per day	120 calls

Table 11-2 Calculation of Direct Benefits (2/2)

Number of calls per channel per year (325 days) 39,000 calls Half of calls : 2 Baht per call)) Half of calls : 30 Baht per call) 78,000 Baht/ch/year) Degree of contribution as) junction lines) (junction lines + toll transmis-) sion routes)) 12.5%

Year	Number of Channels	Benefits (in 1,000 Baht)
1982	322	25,116
1983	644	50,232
1984	967	75,426
1985-1988	1,074	83,772 x 4
1989	1,067	125,346
1990-1993	2,140	166,920 x 4
1994	4,764	371,592
1995-1999	7,387	576, 186 x 5

Benefits from the project as a whole

Year	Benefits (in 1,000 Baht)
198 2	69,266
1983	138,533
1984	207,775
1985-1988	230,873 x 4
1989	281,814
1990-1993	332,791 x 4
1994	496,787
1995-1999	660,705 x 5

With respect to the fixed capital at the time of completion of the Project, the balance of benefits minus fixed capital depreciation is to be calculated as the final year benefits.

Economic cash inflow is presented in Table 11-3.

- 1-2 Calculation of Internal Rate of Return (IRR) IRR turns out to be 11.32%
 - $\frac{t}{\sum} \frac{Fi}{(1+r)^{i}} = 0$ Where Fi: Cash flow in year i i : Year r : Interest (Internal Rate of Return)
- 1-3 Sensitivity Analysis
 - (1) In case of 10% increase of equipment cost, IRR is 10.16%.
 - (2) In case of 10% decrease of operating revenues, IRR is 10.05%.
 - In case of combination of the above two variants, IRR is 8.94%.
- 2. Financial Analysis
 - 2-1 Cash Flow

Table 11-4 presents the cash flow based on market prices and in consideration of taxes. This cash flow features the following points:

(1) Import duties on imported equipments at the rate of 20% of their CIF prices.

Table 11-3 Cash Flow for Economic Analysis (Thousand B)

65100 10.0.27 20.310 21.0607 21.300 21.0607 21.300 21.060 21.060 21.060 21.060 21.061	1940 1541	1 1982	5861	1984	1985	19.86	1987	1980	1989	1 0001	1991	1992	1993	51 7661	1995 1996	6 1997	1996	565;
2011 2011	651	**	65,110 100.221						£ \$06'79			12,024 33	2,824 460		1,063 6210		63 621,06	
60:13 51:00 <th< td=""><td>\$ 6</td><td></td><td>6,619 13,077</td><td>20,711</td><td>21,230</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	\$ 6		6,619 13,077	20,711	21,230													
3.300 3.000 <td< td=""><td>2,938</td><td></td><td></td><td>8,813</td><td>9,792</td><td>264 6</td><td>262.6</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	2,938			8,813	9,792	264 6	262.6											
7.940 7.940 7.940 7.946 <td< td=""><td>1,167</td><td></td><td></td><td></td><td>3,500</td><td>005'0</td><td>3,500</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	1,167				3,500	005'0	3,500											
0 11 105,000 195,600 195,600 195,600 20,000 27,000 27,000 27,000 27,000 196,000 101,000	2,514			2,996	466'2	856%	966'2	866.2			2996							
400009 40000 3140 21,754 7,760 2760 1960 1960 1950 1950 1950 1950 1950 1950 1950 195	20'70		117,144		135,607	95,600 11							222 272					
420.161 64.70d 64.70d 1.200 1.200 1.200 1.200 2.700 2.800 2.800 2.800 2.80, 2.200 2.80, 2.200 2.80, 2.000 2.80, 2.000 2.80, 2.000 2.80, 2.000 2.80,	02004 572,603 490,455 490,000			690087										60				(506205)
420.161 64.700 54.760 13.67 54.760 13.67 2.000 2.760 13.60 2.760 13.60 2.760 13.67 2.000 2.760 13.60 2.760 13.60 2.760 13.60 2.760 13.60 2.760 13.60 2.760 13.60 2.760 13.60 2.760 13.60 2.760 13.60 2.760 13.60 2.760 13.60 2.760 13.60 2.760 2.760 13.60 2.760 2.760 13.60 2.760 2.760 13.60 2.750 2.750 2.750 2.750 2.750 2.60 2.750 2.60 2.																		(15,312.)
420.161 64.700 1.200 1.200 1.200 2.700 2.200	7,705														· 		- <u></u>	(115,410)
420.161 54.700 54.700 1.200 1.200 2.100 2.1750 2.750 2.750 1.260 2.750 1.260 2.750 2.750 1.260 2.750 2.750 2.750 2.750 2.750 2.750 2.750 2.750 2.750 2.750 2.750 2.750 2.750 2.750 2.750 2.750 2.750 2.750 2.750 2.200 2.750 2.20	74,705														<u> </u>			(017'671)
54,700 1,200 1,200 2,760 1,200 1,200 2,760 1,200 2,760 1,200 580 2,760 1,200 580 2,760 1,200 596,120 5	420,181 420,181			420,181	<u> </u>			¥	96C					545				(324,831)
1,200 2,316 2,316 3,19 3,19 5,507 195,507 195,507 195,057 195,	PC2.790 P4.790	-0-		b4,790	<u> </u>				2,010				ē 	678				
1,280 2,318 2,318 3,49 3,49 3,49 3,49 3,49 3,49 3,49 3,49	224 96	-	·	~					-,									
2316 231,077 195,097 195,097 195,129 227,204 287,804 287,804 287,804 286,120 596,120 596,120	2,760 2.760	-		0951	~								80					(1212)
A 313,077 195,097 195,097 195,209 195,229 287,804 287,804 287,804 287,804 288,604 340,704 596,120 596,120 596,120	2,316 2,316	-		2318				348	34.8					8		<u> </u>		
	A 92964 572663 631.654 372905		50524£	13,671			19				7,804 28							525201,1
-																	-,	~

Internal Rate of Return (IRR) + 11,32%

	1979	1980	1961	1982	1983	1984	1985	1985	1987	\$85	1989	0661	1991	1992	1993	7861	1995	1996	1991	\$ 561	1999
Revenues				992'69	\$9,266 138,523	207,775	230,827	230,837	230,837	230,837 2	261,814	332,791 3	332,791	332,791 3	332,791 4	496,787	660,705	660,705	660,705	\$60,705	660,70S
Operating Cost				7,138	14,276	22.171	23,201	23,201	23 201	23,201	23,201	24,274	24,274	24,274	24,274	27,201	27,201	27,201	27,201	27,201	27,201
Electricity a Oil				3,092	\$°\$87	9,277	10,00	10,307	10,207	10,207	10,960	10.9 60	10,960	10,960	10,960	470'61	13,047	13,047	13.047	270°E.	270'5.
Spare Ports				007'1	2,800	002'7	7,200	7,200	4,200	4,200	4,620	4,620	029'7	4,620	4.520	2,460	5,460	5,460	097'5	2,460	2,460
Mgintenance				21012	262'9	759'6	9 69%	759'8	9,69,6	8,094	769'9	8,694	9.69.6	769'9	3,694	8,694	8,594	8,694	8,694	969'8	8,694
Operol: JO Kevences				62,128	62,128 124,257	185,604	207.636 2	207,635 2	207,536 2	207, 63 6	258.617 3	308,517 3	308,517 3	308517 3	308.517 4	469,586 6	633,504	\$33504	633504 1	633,504	633,504
													,								u u
e 👘			640 67		, vec.ke	- rnc'977		Y ONY FR		000 077 0.7 077 900 077 100/ 307 100/ 307 1000 507 1000 607 1000 374 1000 56		×	9 0C0 07	v 3	1 070'00			-	-		
Corporate Tax											3,879	21,674	34,498	27,323 3	30.147	91, 292 11	81,292 133,291 136,115 138,940 141,764	36,115	1 076.96		144,588
	C 4 4 4		730.684	500 174	1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	50 A DO'					24, 020.	000 4	000 6	2 400	2 080 123 892	3.497				<u>~</u>	(6.2.2.9)
	400												Ĩ								
Land Procurement	A.:02	0,102					_													<u>.</u>	14,204)
Land Formation		8,375	A,375	-,			<u></u>						·							<u> </u>	(16, 750)
Access Road Const.		111,500	111,500 111,500																	<u> </u>	(223,000
Communication Equip.			506,174	506,174	506,174 506,174 506,174 506,174	306,174					22,798					110,010				. u	045.060
instailation A Testing			68,753	637,68	98.753	88,753					2,753					13,257					·
Training			229	66	··																
V+Pic[+5			2,900	2,900	2,900	1,450						2,900	2 900	2,900	1,450						(302.1)
Project Execution	3,780	3,150	2,520	2,520	4 5 20	2,520				378	37.6				630	630					
Net Cash Flow	A 1,882	â1,127	720,451	538,317	1,082 131,127 220,451 538,317 276,000 61	13,293 2	07,6116	07,636 20	7,636 2	3,243 207,616 207,636 207,836 207,258 228,805 283,943 281,119	32 35	2 C76'EI		278,294	276,290 264,397 500,213	64,397 5	00,213	497,389 494,564	94,564	5752557	57128
~			-•			-				_	_	_		-		~•					-

Internal Rate of Return (IRR) = 8.22%

Table 11-4 Cash Flow for Financial Analysis (Thousand B)

•

(3) Fixed capital depreciation by straight line method.

- (4) Corporate tax rated at 30% of ordinary profit.
 Ordinary profit is calculated by subtracting interest and depreciation from operating revenues.
- 2-2 Calculation of Internal Rate of Return (IRR) IRR is 8.22%.
- 2-3 Sensitivity Analyses
 - (1) In case of 10% increase of equipment cost, IRR is 7.42%.
 - (2) In case of 10% decrease of operating revenues, IRR is 6.98%.
 - (3) In case of combination of the above two variants, IRR is 5.96%.

Conclusion by Economic and Financial Analyses

This Project is a project to improve telecommunication service in the districts of Thailand, where such service is incomplete. Thus the Project constitutes an integral part of the country's national economic development plan. Economic and financial analyses have resulted in the economic IRR of 11.32% and the financial IRR of 8.22%, both of which are the reasonable values when it is considered that this Project is in the infrastructural field. However, noteworthy is the fact that the not so high level of IRR resulting from the financial analysis is considered to be attributable to the import tariffs of Thailand.

At present, in Thailand, the industry that produces telecomminication equipments still remains small in scale so that the equipments required for the implementation of this Project cannot help being procured by importation.

Benefits used in the economic analysis are primarily composed of telephone service fees. However, judging from the situation that prevails, or, more precisely, the fact that the people in the districts without telephones proceed by car, bus or other means of transportation to a town where the telephone system exists, it can be safely assumed that the willingness to pay of those people will be of greater value than telephone service fees. Hence, the economic IRR will also be of greater value than that obtained in the economic analysis.

The foregoing observation can be summarized as follows:

- 1) Economically, this Project is feasible;
- 2) Financially, also, this Project is a reasonable project.

This Project is to improve telephone service in the rural districts of Thailand along the line of the National Economic Development Plan, so that the project implementation is considered to contribute a great deal to the economic development of the country.

Since this Project is an extremely large-scale project, its implementation will impose a great financial responsibility upon TOT. Therefore, it will be desirable to substantiate State assistance, such as low interest loan(s) and/or subsidization from the national treasury, for the project implementation.

.

.

APPENDICES

.

.

•

APPENDIX 1 Study Team Organization

The Study Team is composed of six persons including the Team leader. All Team members are The Nippon Telecommunications Consulting Co., Ltd., employees. The six Team components and their respective responsibilities are listed below.

Name	Responsibility
Kenichi HATANO	Team leader
Hiroshi SEKIKAWA	Carrier transmission engineering
Junichi KUROBE	Radio engineering
Katsuhiko SATO	Radio engineering
Ryoji SASAKI	Satellite communication engineering
Nobuo NAKAJIMA	Network engineering

APPENDIX 2 Work Itinerary

August 10, 1978	:	Departure from Tokyo and arrival in Bangkok.
August 11, 1978	:	Courtesy calls to Japanese Embassy and JICA Office, and consultative meetings. Courtesy visit to Managing Director of TOT.
August 12, 1978 to September 10, 1978	:	Consultations with TOT, collection of data, feasibility study.
September 11, 1978 to September 30, 1978	:	Field survey of four areas by two groups.
October 1, 1978 to December 10, 1978	•	Feasibility study work and compilation of Interim Report (draft).
December 11, 1978 to December 24, 1978	*	Examination of interim Report (draft) by JICA Mission.
December 25, 1978 to December 27, 1978	:	Correction and finalization of Interim Report.
December 28, 1978	:	Presentation of Interin Report to TOT.
December 29, 1978 to January 7, 1979	:	Preparation of Final Report.
January 8, 1979	:	Courtesy visit to Managing Director of TOT.
January 9, 1979	f	Departure from Bangkok and arrival in Tokyo.

.

APPENDIX 3 Supporting Documents

Data and information used in the Study are listed below. From Telephone Organization of Thailand

Traffic Distribution for Rural Long Distance Public Telephone Service Transmission Loss Distribution Plan Inter-Exchange Signalling Plan Radio Frequency Assignment for Existing System Regulation on Telephone Service Charges and Deposit Statistical Report 1976 Annual Report 1976 Radio Frequency Assignmnt Plan for 900 MHz Band National Numbering Plan Basic Concept for Maintenance and Operations The Economic Development Project of TOT (1977-1984) The Economic Development Project of TOT (1977-1984), Additional Plan Radio Link Route Map (Planned up to 1984) System Channel Diagram for Long Distance Circuit Coordinates of Existing Radio Stations of TOT Coordinates of Rural Sites and Population Traffic and Long Distance Network for STD Project 1977-1984 Forecast of Telephone Demand 1977-1990 Rural Long Distance Public Telephone Service Routing Plan Basic Distance-Interval for Trunk Call Rates

From Others

National Economic and Social Development Board: "The Fourth National Economic and Social Development Plan (1977-1981)"

Meteorological Department : "Climatological Data of Thailand, 25 Year Period (1951-1975)", Jan. 1977

CCITT Orange Book, Geneva, 1976

CCIR Documents of the XIIIth Plenary Assembly, Geneva, 1974

SWEDTEL : "Radio Link Routes Supervision of System Design and Frequency Planning, Progress Report", May 1977

Philip L. Rice and Nettie R. Holmberg : "Cumulative Time Statistics of Surface-Point Rainfall Rates", IEEE Trans., COM-21, Oct. 1973

S. Yonezawa : "Microwave Communication", Maruzen, 1973

K. Bullington : "Radio Propagation Fundamentals", 1956

SIEMENS : "Planning and Engineering of Radio Relay Links", Hay 1978

ITU : "Economic and Technical Aspects of The Choice of Transmission System", 1971

T. Akiyama and K. Hatano : "Radio Refractivity Gradient in South-East Asia", Trans. IECE Jap., 60-E, 1, Jan. 1977

Japan Chamber of Commerce & Industry, Bangkok : "Overview of Thailand Economy, 1978", July 1978

K. Miya : "Satellite Communications Engineering", Lattice, July 1975

T. Kawahashi : "Satellite Communication", Corona, Dec. 1976

J. Sutanggar Tengker : "Indonesia Domestic Satellite System", EASCON'76, 1976

PERUMTEL : "Draft Agreement of Lease of Space Segment Capacity in The Indonesian Domestic Communications Satellite System"

PERUMTEL : "Mandatory Requirement of Perustel for The PALAPA User"

PERUMTEL : "PALAPA Tariff Manual"

~

R. Yanamoto : "Development Plans of Developing Countries and Evaluation Thereof", Kokusai Kaihatsu Journal, Mar. 1975

N. Mayama : "Traffic Theory and Practice", Hifumi Shobo, July 1977

Asian Economy Institute : "Annual Economic Report - Thailand - 1977", Mar. 1978

World Bank, Public Utilities Department : "Telecommunication Handbook", Feb. 1974

.

. .

.

-

.

• .

--.

.

`

•

THE KINGDOM OF THAILAND FEASIBILITY REPORT ON RURAL LONG DISTANCE PUBLIC TELEPHONE SERVICE JICA FEBRUARY, 1979 JAPAN INTERNATIONAL COO