Table 3.10.10(1) Vertical Observations of Water Temperature and Salinity in the Second Field Survey (Ebb Tide Period on 25th October 1988)

Site	1-A	1-B	1-C	1-D	I-E	1-F	1-6	1-11
(kepth(m)	6.0	6,8	6.7	8.0	7.7	8.5	9.3	9.5
Parameter Layer(m)	Tensp. Sal. (℃) (-)	Temp. Sal. (°C) ()	Temp. Sal. (°C) (-)	Temp. Sal. (°C) (-)	Temp. Sat. ('C) (-)	Temp. Sal. (°C) (-)	Temp. Sal. (°C) (-)	Temp. Sal. (℃) (-)
0.3 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0	31.3 45.80 31.3 31.2 31.1 45.82 31.0 45.87	31.9 45.90 31.9 31.9 45.87 31.9 45.89 31.9 45.89	31.9 45.98 31.8 31.8 45.90 31.8 31.8 45.89	31.4 45.82 31.4 31.0 45.81 31.0 31.0 30.9 45.88	31.8 45.98 31.8 31.8 45.93 31.6 31.6 31.5 31.3 45.89	31.9 45.88 31.9 31.9 45.88 31.9 31.9 31.9 31.8 31.8 31.8 31.8 45.91	31.6 45.84 31.6 31.5 45.81 31.3 31.7 31.1 31.0 30.9 45.90	31.7 45.93 31.7 31.7 31.6 45.89 31.4 31.4 31.4 31.4 31.4 31.4 31.1 30.9 45.90
Max. Miņ.	31.3 45.87 31.0 45.80	31.9 45.90 31.9 45.87	31.9 45.98 31.8 45.89	31.4 45.88 30.9 45.81	31.8 45.98 31.3 45.89	31.9 45.91 31.8 45.88	31.7 45.90 30.9 45.81	31.7 45.93 30.9 45.89
Site	1-1	2	3	4	5	6	7	9
Depth(m)	9.6	0.5	14.0	1.5	9.0	12.0	9.0	11.0
Parameter Layer(m)	Temp. Sal. ('C') ()	Temp. Sal.	Temp, Sal.	Temp. Sal.	Temp. Sal. (℃) (-)	Temp. Sal. (°C) (-)	Temp. Sal. (C) (-)	Temp. Sal. (℃) (—)
0.3 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0	32.1 45.83 32.1 32.1 45.81 32.1 45.81 31.9 31.8 31.9 31.8 31.9 31.8 31.8 45.96	36.9 48.76	30.9 43.82 30.9 30.9 31.6 44.30 32.4 32.9 32.6 33.1 33.1 33.1 33.2 33.3 33.3 46.54	31.4 44.10 31.4	31.2 44.98 31.2 31.3 44.53 31.4 31.5 31.6 31.5 31.5 44.86	30.9 43.65 30.9 31.2 31.1 44.04 31.3 31.3 31.3 31.3 31.4 31.4 31.5 44.38	31.1 44.17 31.2 31.2 44.17 31.2 31.3 31.3 31.3 31.3 44.63	31.1 43.30 31.1 31.1 43.30 31.1 43.30 30.9 30.9 30.9 30.9 30.9 30.9 30.9
Yax. Min.	32.1 45.95 31.8 45.81	36.9 48.76 36.9 48.76	33.3 46.54 30.9 43.82	31.4 44.10 31.4 44.10	31.6 44.98 31.2 44.53	31.6 44.38 30.9 43.65	31.1 44.17	31.1 43.47 30.9 43.30
Site	12	15	16	19	20	24	25	
Depth(m)	14.0	14.0	9.0	9.0	8.0	6.0	8.0	
Parameter Layer(m)	femp, Sal, (℃) (-)	Temp. Sal.	Tessp. Sai. (°C) (-)	Temp. Sal. (°C) (-)	femp, Sai. (℃) (−)	Temp. Sal. (°C) (-)	Temp. Sal. (°C) (-)	Temp. Sal. (°C) (-)
0.3 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0	30.5 41.72 30.5 30.5 30.5 30.5 30.5 30.5 30.5 30.4 30.4 30.4 30.4 30.4 30.4 30.4 30.4	30.8 30.6 30.5 41.82 30.5 30.5 30.5 30.6 30.6 30.6 30.6 30.6 30.7 30.7 42.29	31.0 30.4 30.4 30.3 30.3 30.3 30.2 30.2 42.38	30.4 30.4 30.4 30.4 30.4 30.4 30.4 30.4	30.3 30.4 30.3 43.15 30.4 30.4 30.4 30.4 43.55	31.5 31.5 31.5 45.68 31.4 31.4 45.69	31.8 31.8 31.7 45.47 31.7 31.6 31.1 31.1 45.80	
Max. Hin.	30.5 41.74 30.4 41.68	31.2 42.29 30.5 41.78	31.0 42.38 30.2 42.34	30.4 42.3 30.4 42.3	30.4 43.55 30.3 43.15		9 31.8 45.8 6 31.1 45.3	9

Table 3.10.10(2) Vertical Observations of Water Temperature and Salinity in the Second Field Survey (Flood Tide Period on 26th October 1988)

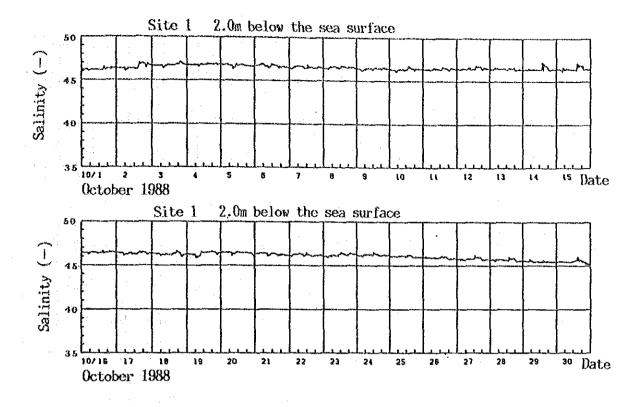

Site	I-A	1-B	1-C	1-D	I-B	1-F	l-G	1-11
lkepth(m)	5.1	6.5	5.5	6.8	6.8	7.9	6.0	8.5
Parameter Layer(m)	Temp. Sal. (℃) ()	Temp, Sai. (℃) (—)	Temp, Sal,	Temp. Sal. (*C) ()	Temp. Sal.	Temp, Sat. (°C) ()	Temp. Sal. (C) (-)	Temp. Sal. (°C) ()
0.3 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0	31.2 45.42 31.2 31.2 31.1 45.69 31.1 31.1 45.68	31.1 31.1 31.1 45.73 31.1	31.3 45.71 31.3 31.2 31.2 45.72 31.2 45.73	31.3 45.59 31.3 31.2 31.2 45.68 31.2 31.2 31.2 45.73	31.2 31.2	31.3 45.72 31.2 31.2 45.72 31.2 45.72 31.2 31.2 31.2 31.1 45.76	31.4 45.67 31.3 31.3 31.2 45.68 31.2 31.1 45.70	31.5 45.54 31.3 31.2 31.2 45.70 31.1 31.1 31.1 31.1 31.1 45.84
Mox. Nin.	31.2 45.69 31.1 45.42	31.1 45.81 31.0 45.69	31.3 45.73 31.2 45.71	31.3 45.73 31.2 45.59	31.4 45.82 31.2 45.67	31.3 45.76 31.1 45.72	31.4 45.70 31.1 45.67	31.5 45.84 31.1 45.54
Si te	1-1	2	3	4	5	6	7	9
Depth(m)	9.5	1.0	14.0	1.5	9.0	13.0	11.0	11.0
Parameter Layer(x)	Temp. Sal. ('C) ()	Temp. Sal. (°C) (-)	Temp. Sal. (°C) (-)	Temp. Sal. ('C) (-)	Temp. Sal. ('C) ()	Temp, Sal. (℃) (¬)	Temp. Sal. (°C) ()	Temp, Sai. (*C) ()
0.3 1.0 2.0 3.0 4.0 5.0 6.0 7.0	31.3 45.72 31.3 31.2 31.2 45.73 31.1 31.1 31.1		31.6 44.84 31.1 44.98 31.2 31.2 45.13	30.8 44.43 30.8	31.4 45.20 31.4 45.29 31.3	31.1 44.49 31.1 31.0 44.50 31.0 44.57	30.8 43.06 30.6 30.7 43.06 30.8	30.6 41.69 30.5 30.5 41.66 30.5 30.5
8.0 9.0 10.0 11.0 12.0 13.0	31.0 30.9 45.75		31.5 31.3 45.4 9		31.3 45.31	31.0 31.0 44.56	30.9 43.12	30.5 41.66
Max. Min.	31.3 45.75 30.9 45.72	36.8 48.31 36.8 48.31	31.6 45.49 31.1 44.84	30.8 44.43 30.8 44.43	31.4 45.31 31.3 45.20	31.1 44.57 31.0 44.49	30.9 43.12 30.6 43.06	30.6 41.69 30.5 41.66
Si te	12	15	16	19	20	24	25	
Depth(m)	13.0	13.0	8.0	8.0	8.0	5.5	8.0	
Parameter Layer(m)	Temap. Sal. (℃) (+)	Темр. Sal. (°C)√ (−)	Temp, Sal. (°C) (-)	Temmp. Sal. (℃) (—)	Temp. Sal. (℃) ()	Temp. Sal. (℃) (—)	Temp. Sal. (°C) ()	Temp. Sal. (°C) ()
0.3 1.0 2.0 3.0	30.7 41.59 30.7 30.7 41.59	30.5 41.76 30.4 30.4 41.75	30.4 42.40 30.4 30.4 42.40	30.3 42.98 30.2 30.2 43.03	30.2 44.35 30.1 30.0 44.47	30.5 45.24 30.5 30.5 45.31	31.8 45.91 31.8 31.7 45.89	:
4.0 5.0 6.0 7.0 8.0 9.0	30.6 30.6 41.60	30.4 30.5 41.84	30.4 30.4 42.42	30.2 30.2 43.16	30.0 29.9 44.48	30.5 45.33	31.7 31.7 45.89	
10.0 11.0 12.0 13.0	30.6 30.5 41.61	30.6 30.6 41.88			-			
Max. Min.	30.7 41.61 30.5 41.59	30.6 41.88 30.4 41.75	30.4 42.42 30.4 42.40	30.3 43.16 30.2 42.98	30.2 44.48 29.9 44.35	30.5 45.33 30.5 45.24	31.8 45.91 31.7 45.89	

Table 3.10.11(1) Vertical Observations of Water Temperature and Salinity in the Third Field Survey (Ebb Tide Period on 2nd February 1989)

Site	1-A	1-B	1-C	1-D	1-E	1-F	1-G	1-11
Depth (m)	5.5	6.0	6.5	7.0	8.5	8.5	7.0	7.5
Parameter Layer(m)	Tesp. Sal. (°C) ()	Temp, Sal. (T) (-)	Temp. Sal. (°C) (-)	Temp. Sal. ('C') ()	Temp. Sal.	Temp. Sai. (°C) (-)	Temp. Sal. (℃) (—)	Temp. Sal. (°C) ()
0.3 1.0 2.0	19.5 46.48	19.7 46.45 19.6	20.0 46.52 19.8	19.7 46.50 19.6	19.5 46.47 19.5	19.5 46.45 19.5	19.6 46.48 19.6	19.9 46.49 19.7
3.0 4.0 5.0 6.0	19.4 46.49 19.4 46.54	19.5 46.46 19.4 46.50	19.7 46.48 19.7 19.7 46.49	19.6 46.50 19.5 19.5 46.53	19.5 46.46 19.4	19.5 46.44	19.6 46.49 19.5 19.5 46.50	19.7 46.49
7.0 8.0 9.0 10.0 11.0 12.0 13.0					19.4 19.4 46.55	19.5 19.5 46.50		19.4 46.60
Max. Min.	19.5 46.54 19.4 46.48	19.7 46.50 19.4 46.45	20.0 46.52 19.7 46.48	19.7 46.53 19.5 46.50	19.5 46.55 19.4 46.46	19.5 46.50 19.4 46.44	19.6 46.50 19.5 46.48	19.9 46.60 19.7 46.49
Si te	1~I	2	3	4	5	6	7	9
Depth (m)	10.0	3.5	13.0		10.0	13.5	14.0	14.0
Parameter Layer(m)	Temp. Sal. (°C) (-)	Temp, Sai. (で) (一)	Temp. Sal.	Temp. Sal.	Temp. Sal. (°C) (-)	Temp. Sal. (T) (-)	Temp. Sal. (°C) (-)	Temp. Sal.
0.3 1.0	19.7 46.43	23.6 48.91	19.8 45.62	·	19.5 45.44	19.1 44.52	19.0 44.25	18.7 43.46
2.0 3.0 4.0	19.6 19.5 46.43	23.6 23.5	19.8 19.8 45.72		19.3 19.4 45.44	19.3 19.8 45.49	19.0 18.9 44.40	18.7 18.7 43.49
5.0 6.0	19.3		19.9		19.4	19.9	19.0	18.7
7.0 8.0 9.0	19.2 19.2 46.53		20.5 46.68		19.7 19.7 46.05	20.3 46.33	19.2 44.67	18.7 43.50
10.0 11.0 12.0 13.0	1010		21.0 21.3 46.79			20.5	21.6 21.7 47.56	18.7
Max. Min.	19.7 46.53 19.2 46.43	23.6 48.91 23.5 48.91	21.3 46.79 19.8 45.62		19.7 46.05 19.3 45.44	20.6 47.08 19.1 44.52	21.7 47.56 19.0 44.25	18.7 43.51
Site	12	15	16	19	20	24	25	:
Depth(m)	15.0	15.0	8.5	8.5	9.5	5.0	10.0	
Parameter Layer(m)	Temp. Sal.	Temp, Sal. (°C) (-)	Temp. Sal. (°C) ()	Temp. Sal.	Temp. Sal.	Temp. Sal. (°C) (-)	Temp. Sal. (°C) (-)	Temp. Sal. (°C) (-)
0.3	18.6 43.37	18.4 43.03	18.5 43.44	19.0 43.57	19.0 44.36	19.4 46.27	19.3 46.23	
1.0 2.0 3.0 4.0	18.6 18.6 43.50	18.5 18.4 42.97	18.4 18.5 43.42	18.7 18.7 43.54	18.8 18.8 44.47	19.4 19.4 46.27 19.4 46.27	19.2 19.2 46.21	
5.0 6.0	18.6	18.4	18.6	18.6	18.7	10.1	19.2	
7.0 8.0	18.6 43.55	18.4 42.96	18.6 18.6 43.42	18.6 18.6 43.54	18.7 18.8 44.71		19.2 19.2 46.40	
9.0 10.0 11.0	18.6	18.4			10.0 44.11		10.0 40.40	
12.0 14.0	18.6 43.63	18.4 43.20					<u> </u>	
Max. Min.	18.6 43.63 18.6 43.37	18.5 43.20 18.4 42.96	18.6 43.44 18.4 43.42	19.0 43.57 18.6 43.54	19.0 44.71 18.7 44.36		19.3 46.40 19.2 46.21	

Table 3.10.11(2) Vertical Observations of Water Temperature and Salinity in the Third Field Survey (Flood Tide Period on 8th February 1989)

Si to	1.	Α	1-	D	1-1-	C	1-	n		E	1	p	1-	6	[-	<u> </u>
···	 						8.		8.		9.		9.		9.	
Depth (m)		.5	6.		6.		·		ļ		ļ				 	
Parameter Layer(m)	Temp.	\$al. ()	Temp.	Sal. (-)	Temp.	Sal. ()	Tesso.	Sal. (-)	Temp.	Sal. (-)	Temp.	(-)	 	(-)	Temp.	(-)
0.3 1.0	18.4	46.19	18.2	46.23	18.3	46.22	18.4	46.19	18.3	46.19	18.3	46.23	18.4	46.19	18.4	46.23
2.0 3.0	18.3 18.2	46.21	18.3 18.3	46.21	18.2 18.0	46.20	18.3 18.2	46.19	18.3 18.3	46.20	18.2 18.2	46.24	18.4 18.4	46.18	18.3 18.2	46.21
4.0 5.0	18.1		18.3	46.22	17.9	46.21	18.1	: : :	18.2	٠.	18.1	1	18.4		18.1	
6.0 7.0 8.0	18.1	46.21		;			18.1	46.18	18.1	46.21	18.0 18.0	46.20	18.4 18.4	46, 28	18.0 17.9	46.23
9.0 10.0]					٠				:		
11.0 12.0 13.0								i								
Max. Min.		46, 21 46, 19		46.23 46.21	18.3 17.9	46.22 46.20	18.4 18.1	46.19 46.18	18.3 18.1	46.21 46.19	18.3 18.0	46.24 46.20		46.28 46.18		46.23 46.21
Site	1-	I		2		3		4		5		6		7		9
Depth (m)	9.	5	3.	5	13	3.0	5.	0	9.	5	12	.0	13	3.5	13	.0
Parameter Layer(m)	Temp.	Sal. ()	Tesp.	Sal. (~)	Temp,	Sal. (-)	Temp.	Sal. (-)	Temp.	Sal. ()	Temp.	Sal. (-)	Temp.	Sal. ()	Temp.	
0.3	18.4	46.23	20.7	48.67	18.9	46.25	18.4	45.29	18.5	46.08	18.3	45.88	18.2	45.79	18.4	44.53
1.0 2.0 3.0	18.4	46.21	20.6 20.6	i	18.9 18.9	46.24	18.4 18.6	45.31	18.5 18.5	46.11	18.3 18.3	45.95	18.2 18.4	45.85	18.3 18.3	44.80
4.0 ' 5.0	18.2				18.9		18.7	45.53	18.4		18.3		18.4	i,	18.3	
6.0 7.0	18.2	:			18.9	46.44		÷	18.3		18.3	45.95	18.4	45.89	18.3	44.90
8.0 9.0	18.1	46.21		:	20.2				18.1	46.15				: :,		•
10.0 11.0											18.3 18.3	46.24	18.4		18.3	
12.0 13.0				·	20.5	47.06						·	18.4	45.91	18.3	45.04
Max. Min.		46.23 46.21	20.7 20.6	48.67 48.67	20.5 18.9	47.06 46.24	18.7 18.4	45.53 45.29	18.5 18.1	46.15 46.08	18.3 18.3	46.24 45.88	18.4 18.2	45.91 45.79		45.04 44.53
Si te		12		15	<u></u>	16		19		20		24		25		· .
Depth (m)	14	.0	- 14	.0	7.	0	8.	0	9.	0	4.	5	11	.0		
Parameter Layer(m)	Temp.	Sal. (-)	Temp. (°C)	Sal. (-)	Temp.	Sal. (-)	Temp.	Sai. (-)	Temp. (T)	Sal. ()	Temp.	Sal. (-)		Sal. (-)	Temp.	Sal. ()
0.3	17.8	43.74	17.8	43.03	17.3	43.70	17.7	44.29	17.6	45.75	17.5	46.13	18.8	46.27	l ji	
1.0 2.0 3.0	17.8 17.8	43.74	17.8 17.8	42.99	17.3 17.3	43.70	17.5 17.5	44.26	17.5 17.4	45.72	17.5 17.4	46.12 46.14	18.8 18.9	46.31		
4.0 5.0	17.8		17.8		17.4	in 70	17.5		17.3		11.0		18.9			
6.0 7.0 8.0	17.8	43.90	17.8	43.05	17.4	43.70	17.5	44.31	17.3 17.3	45.84			18.9	46.31		
9.0 0.0 11.0	17.8		17.8										18.9	46.35		
12.0 13.0	17.9	43.97	17.8	43.06				:				- 5 <u>1</u> 51				
řax. Hin.	17.9 17.8	43.97 43.74	17.8 17.8	43.06 42.99	17.4 17.3	43.70 43.70	17.7 17.5	44.31 44.26	17.6 17.3	45.84 45.72		46.14 46.12		46.39 46.27		

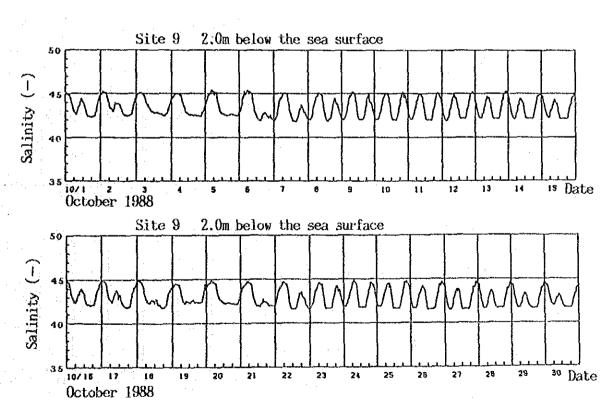
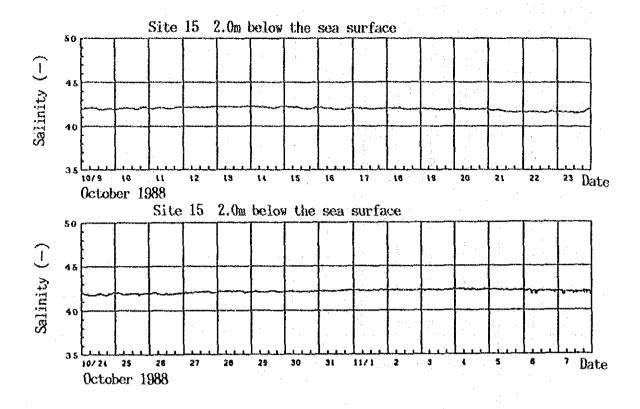



Fig. 3.10.20(1) Consecutive Observations of Salinity in the Second Field Survey

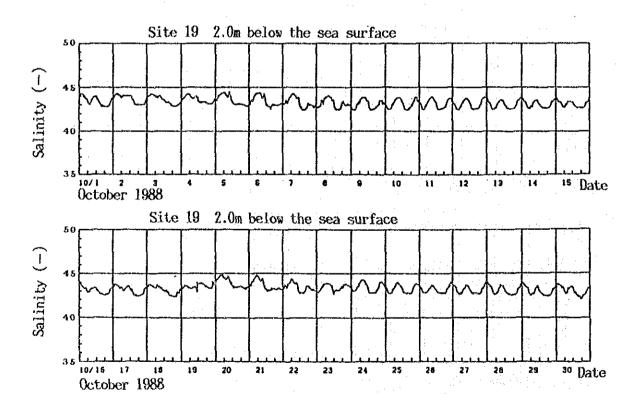


Fig. 3.10.20(2) Consecutive Observations of Salinity in the Second Field Survey

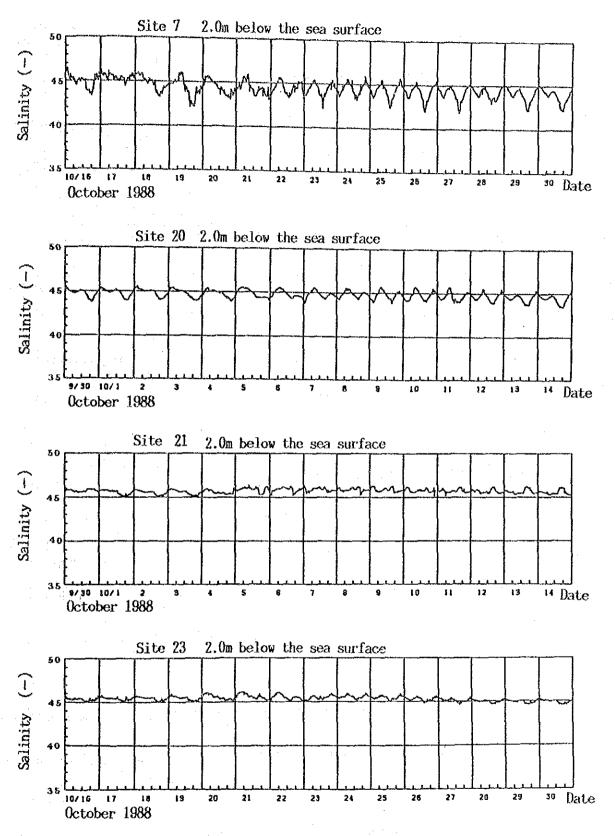


Fig. 3.10.20(3) Consecutive Observations of Salinity in the Second Field Survey

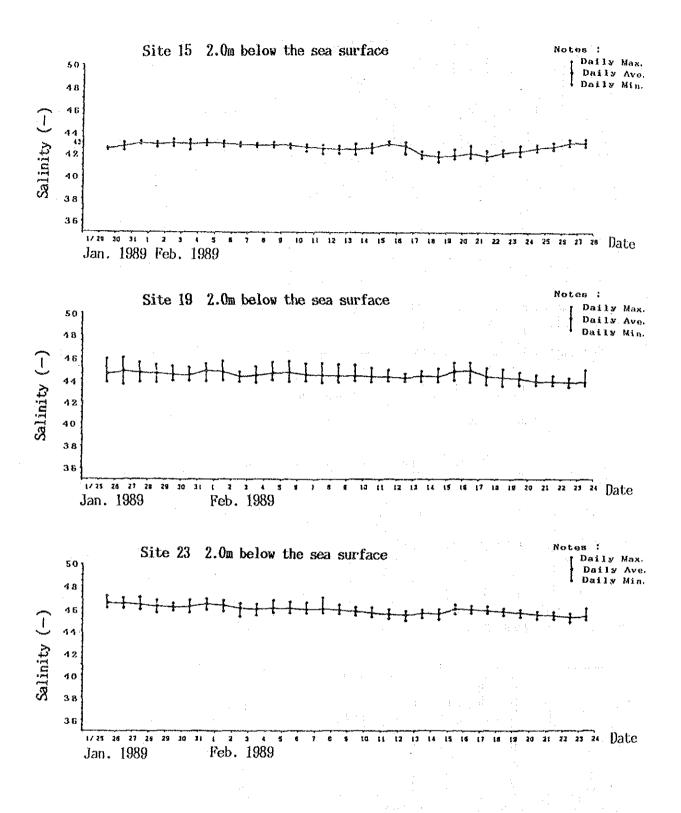
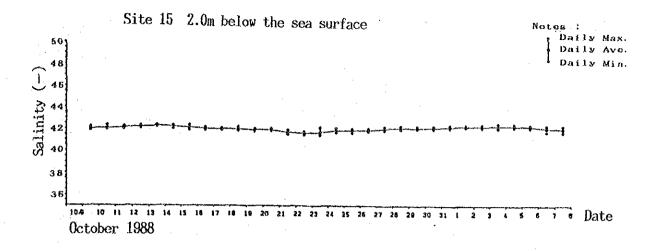



Fig. 3.10.21(1) Variation of Daily Salinity at Typical Sites in the Second Field Survey

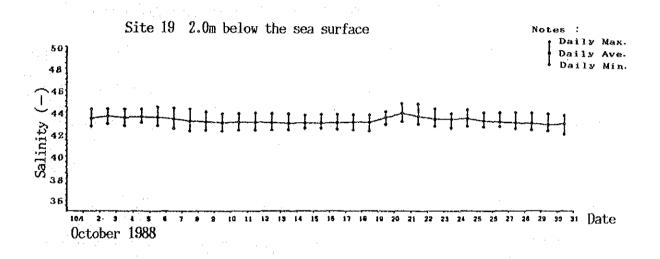
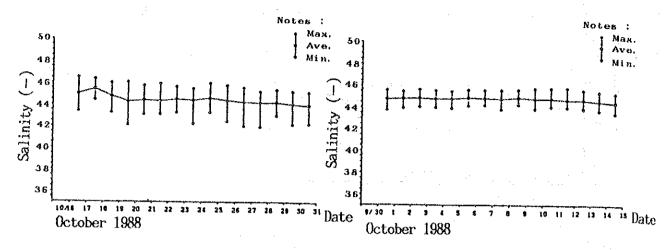



Fig. 3.10.21(2) Variation of Daily Salinity at Typical Sites in the Second Field Survey

Site 21 2.0m below the sea surface

Site 23 2.0m below the sea surface

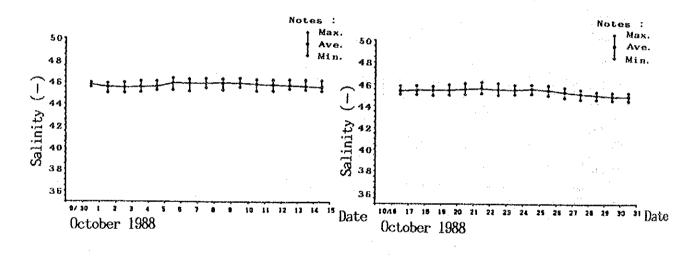


Fig. 3.10.21(3) Variation of Daily Salinity at Typical Sites in the Second Field Survey

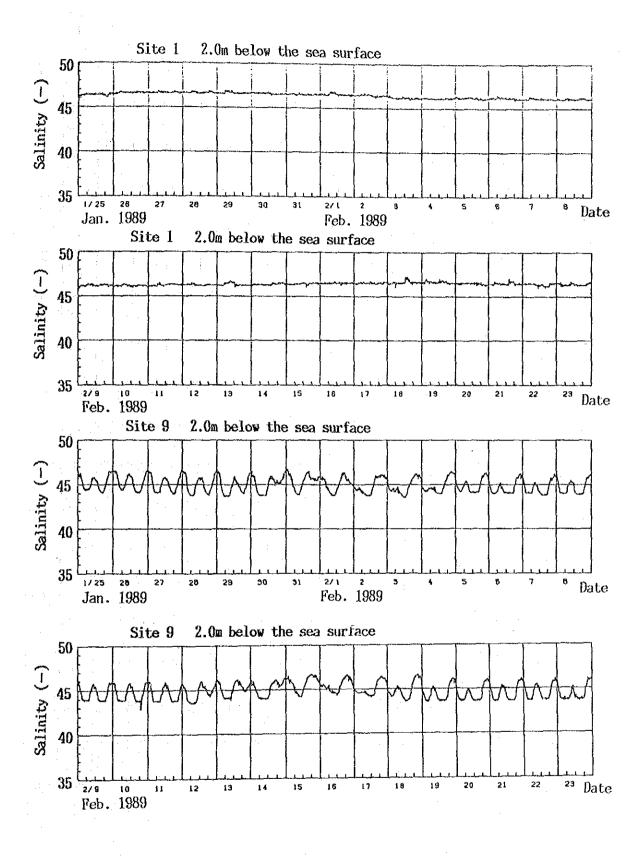


Fig. 3.10.22(1) Consecutive Observations of Salinity in the Third Field Survey

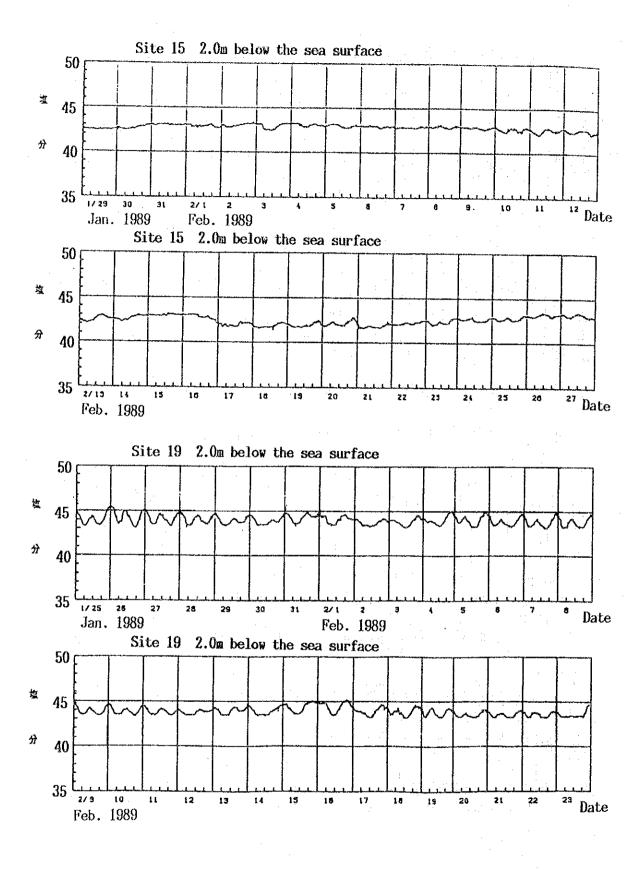
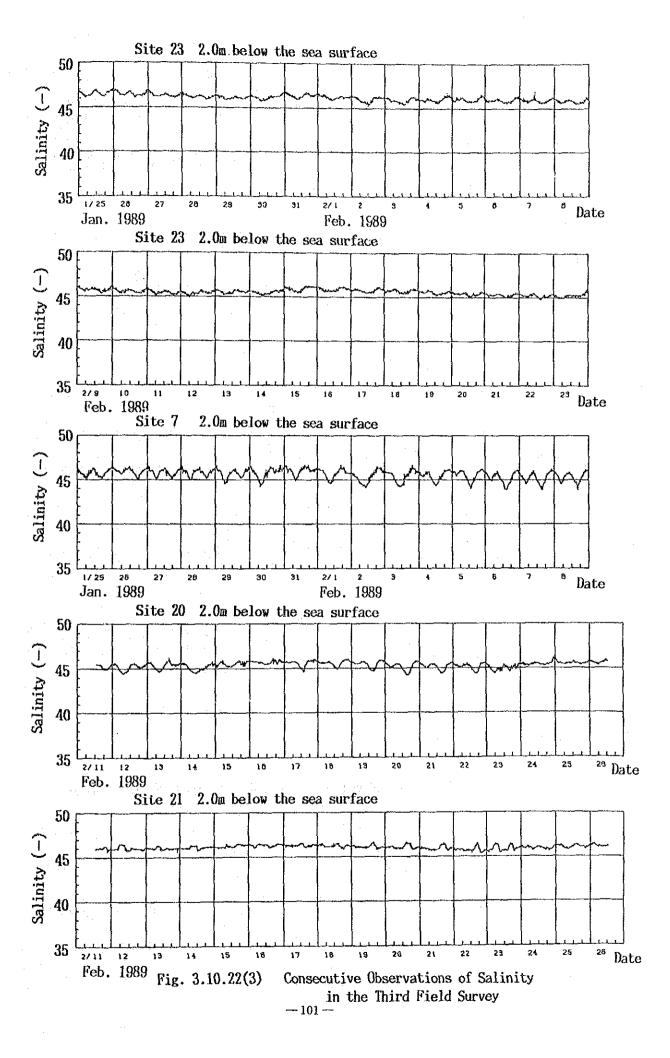
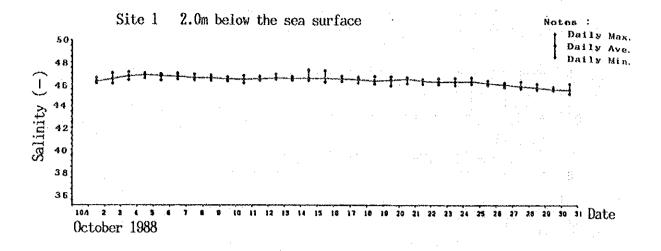




Fig. 3.10.22(2) Consecutive Observations of Salinity in the Third Field Survey

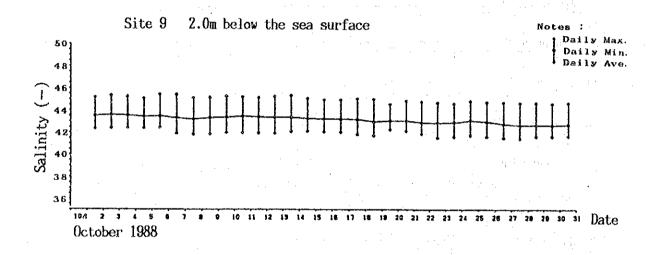
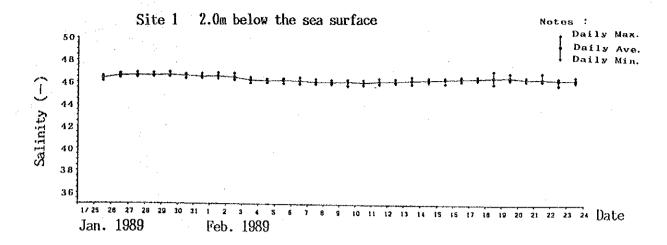



Fig. 3.10.23(1) Variation of Daily Salinity at Typical Sites in the Third Field Survey

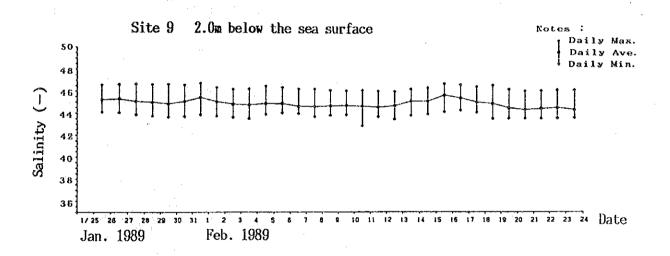


Fig. 3.10.23(2) Variation of Daily Salinity at Typical Sites in the Third Field Survey

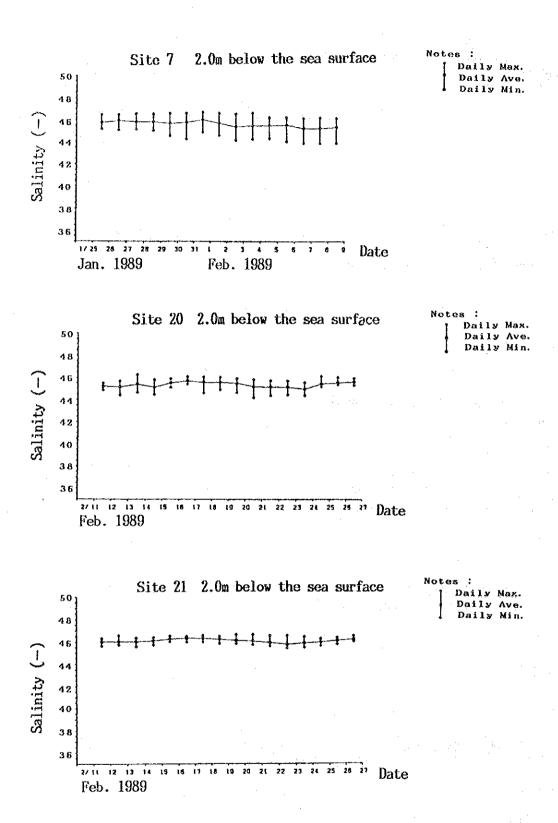


Fig. 3.10.23(3) Variation of Daily Salinity at Typical Sites in the Third Field Survey

fable 3.10.12(1) Occurrence Phytoplankton of Sampling Water Method in the Second Field Survey

Date: 2nd October 1988 (Low tide period)	Occured	Part Part	points	24 3	٠				25.00	3		80 72 5	٠.			28 9.	m (i	0 23		4.01			\)	80 4		131	
(Low ti		Tota		1824	60 (n vo	62	300		24(e e	5.0	33.	₹.	- 4	3728	88	2 4	144	187	292	21	747	11.4	22316		
1988	-		-	0.7	·		100			ļ						0						o			_		
ober		13	25.	3744		12	284	3								24	;	⊅ →	36	12	12	43		120	4344	1	
2nd 0c1	1.5	0	15.0	68352	1.	- 49	80 10 10 10	2	182	ď						336	4 1 00	0 /7	7 7 7	4	ታል	;	288	•	72576	15	
Date		വ	30.0	9	120	ø	009			1320	-	240		120	120	240		120	720	240	360	2	2520	120	13560	18	
	13	0.3	20.0	432		72	936	-		504					İ	504			216	432	72	·~ ·	4 5	272	7632	15	
		→	35.0	3000	**	240	840	œ		-	N	380	360		0.7.1	120			-	120	œ	120		120	8000	17	
*	6	0.3	35.0	1152			288	18144		576		720	288		144	144	77!			432	288	141	764	432	27936	- 17	
	2	0	70.0		-,			28608				300 200 200 200	578	192		096		-			182	384			31680	σ	
		7	50.0		æ	-	-				Q)	336	576		æ0	384	96		,	9 69	28.4 C 8.4	576		192	3264	14	
	1 - A	0.3	55.0		256		128	5248	256			L(2)	128 1536	O	128	512				384	C	256		3 3 5 5 5 5 5	08	15	
			(mk/ m³)	costatum danicus	er er	calcar avis	fragillima	S D	curvise lum lorenzianum	spp.	* 55.	spp. closterium	Longissima v. reversa sp. (pungens)	Ω. :	· das	s p. m.cons	sigmoides	. S.			app. jurca				ls	species	18/8
	te	Layer(m)	Settling volume (ml/ml)	Skeletonema Leptocylindrus	Thatassiosira Thatassiosiracese	Rhizosolenia	R.	Becteriastrum	Chattoreros C.	C. Eucampia	Navioula	Pleurosigma Nitzschia	N. Congi.	Amphiprora	Amphora Cymbella	Cocconsis	A. 4	Cympodinium	Gymnodiniales	Conyautar Sorippsie bla	Protoperidinium Ceratium	Peridiniales	Cryptophycese	Euglenophycese	number of cells	number of spec	RemarksUnit:cells/ @
	Site	e]	Kind Se	BACILLARIOPHYCEAE Skeletonema Leptocylindi												DINOPHYCEAE							CRYPTOPHYCEAE	EUGLENOPHYCEAE MASTIGOPHORA	Total	Total	Remark
.,		No.			es -	÷ LD	9 ~	. 00	w G	12			1.0	œ :	- C	·		→ 10		282	800	8	° €	3 (1) (1)			

Table 3.10.12(2) Occurrence Phytoplankton of Sampling Water Method in the Second Field Survey

tide period)	Occured		points		N 67 (- ~				tn					:				·. ::.								131	
(High tid		Total		135168	47952 576 576	72	3 00 6 00 00 00 00	576	360	218	078	98	67.92	200 F	288	744		2112	72	3000	288	2	370	2592	5400	1080	2688	749120		
October 1988		<u>ت</u>	20.0	34656	192	3 0				288	•	හ	Ċ	0			288	1056	0	1536	98	ю ·	ರ ರಾ	80 60	oleo	Ó	, -	43392	13	
nd Octo	\$1	0.3	10.0	90384	240	3 4	!			240	•						528	1056		283		→ 0	၀ လ ၀	44	√			36240	14	
Date:2nd	3	မ	35.0	5:	7 4 4 W							288	***			**	74:		*	*		***	•	1720	07/1		144	44928	1.4	
	-	0.3	30.0	t32	13824	5	864			576	288	77.	2160		288		884		;					0	600		. *	21168	11	
		→	40.0	480 4560	240	~	1800	360	366	4440	N	·				120	120			360	CVI.	20	20	4 00 00				14640	17	
	o	6.3	15.0	3456		72	360			216		;	72			72	771		72	132	72	2 0 C		1080		216	432	12036	21.	
	2	0.3	60.0	576			5376				192	192	80 CO	,			986			192				90			8 8	9024	-1	
	4	7	30.0	9	192				-		3		29 e9 29 *	384	1.7.1		→ →			192	1	27	•	2 60)		\$29	3408	15	
	-	0.3	30.0							\ 	98	00 t	`	720			8					9 07		624			8771	4224	Ø	
	Site		tling volume	DACILLIAN IOFRICEAE SPECETUM Leptocytindrur danicus Thalassicairaceae	Rhizosobenia calcar avis R. fragillima	R. imbricata R. stollarfothii	Bacteriastrum sp. Chastoceros costatum	C. Curvingetum	***************************************		ravecuca spp.	Diploners op. Pleurosigna spp. Nitraelia	M. longissima v. reversa		Amphiprora sp.		CEAE Prorocentrum micans P. signoides	Pronoctives sp.		Gymnodiniales Gonnandan	170	E M	Ceratium fures	ω		ANAL ENOUGH CEAN Presinophy ceas	,	number of	lotal number of species	RemarksUnit:cells/2
	/		Kind		- tu												DINOPHYCEAE													
1	7	Š.	ľ	- W 60	- 41	.o.	o on c		12	y ₩ 	-1-	106 -		2	22.	80	52 K	27	28	00 E	m	32	ဗ	າ ຕ ຕ	36) e	9 m			

Table 3.10.13(1) Tabulation at Each Class of Phytoplankton of Sampling Water Method in the Second Field Survey

Site	1-A		2	σ		13		15		
Layer (m)	0.3	7	0,3	0.3	4	0.3	123	6.3	13	Total
Kind Settling volume (mg/m)	55.0	50.0	70.0	35.0	35.0	20.0	30.0	15.0	25.0	
BACILLARIOPHYCEAE	8064 57.3	1344	29952	25632 91.8	8160 90.7	5328 69.8	6240 46.0	69792 96.2	40560	195072
BINOPHYCEAE	2176	1728 52.9	1728	5440	720	1368	1800	1344	2760	15064
CRYPTOPIIYCEAE			·	432		8 8 8 8	2520	1152		4752
PRASINOPHYCEAE							2160	288		2448
EUGLENOPIIYCEAE	384	192			1.30	72 0.8	120		120	000 800 800
MASTIGOPHORA	3456		, , , , , , , , , , , , , , , , , , , ,	1.5		216	5.3			4824

Remarks....Unit:cells/ @ lower column....%

Table 3.10.13(2) Tabulation at Each Class of Phytoplankton of Sampling Water Method in the Second Field Survey

Site	1-A		~	GD.		13		15		
Layer (m)	0.3	7	0.3	6.3	*	0.3	ဖ	6.3	13	Total
Kind Settling volume (ml/m)	30.0	30.0	60.0	15.0	40.0	30.0	35.0	10.0	20.0	
BACILLARIOPHYCEAE	1680 39.8	35.2	7104	70.2	13320	19440	42048 93.6	93188 96.8	37824	224280
DINOPHYCEAE	. 8 . 8 . 8 . 8	720	1536	1872	1320	864	578	2352	4128	14184
CRYPTOPHYCEAE		864 25.4	·	1080 8.9		884	1728 3.8	576	288	5400
HAPTOPHYCEAE			A33					744	288	432
PRASINOPHYCEAE				218 1.8					2.0	080
EUGLENOPIIYCEAE	1728	18.3	192				144			2688
MASTIGOPHORA	·		1.92	432 3.6			432			1058

Remarks....Unit:cells/ & lower column....%

Table 3.10.14(1) Occurrence Zooplankton of Sampling Water Method in the Second Field Survey

Children	tide period)	Occured	Total	Dointe	17	217 8	* °	368	٠- (O) ()		es e	വ								~- °			د			· ·	*** 0	226	IC) ~	~ c	4 FQ		- + (7 e	750	170	
Kind Settling voltane (alf/nl) 0.3 7 0.3 0.3 4 0.3 5 0.3 13	(Log		-			10.0					~~~							n. Princess a				·			000	······································										~	2		
Site			13	ري اي		400	•,								σ,	(D)	ന			(C)			æ	(C)				-	a) LO	m	ď						21	
Site		15	m	ري اي				*		. "			- 12	•	S		-					•			4	⊃ ~ -		7			n -	- ka	. ~	_	•		lωi	25	
Kind Softling volume (all/nl) 55.0 50.0 70.0 35.0 20.0 2	Date		ហ	;		₹ 0 7	4			12	Č	2	ເກ		14		2				,	C4	-			.	- 6	9	ď	53	`	0	2	5		\ N	346		
Nite		23	۳	5					ć	. 00			ω Λ	· -	-		-		-						r	7					Đ.	9	*	<	7			21	
Site			-	100	1	22	÷	4	-	0					12		•	•	1	_		0			æ	5				80	-	12	2	*	4 1	÷	207		
Site		on	. •	8				97	7	. 9		2			38	~	-					2	7	d	× 10	•			5	24	c	10	co.	មេ	າ ແ	מ	384	21	
Kind Settling volume (ml/n) 55.0 50.0 Ciliata Helerinida volume (ml/n) 55.0 50.0 Ciliata Helerinida volume (ml/n) 55.0 50.0 Ciliata Helerinida volume (ml/n) 34 22 Tratinapsis Arrojacensis 113 12 Tratinapsis Arrojacensis 113 12 Tratinapsis Arrojacensis 55 Enintinala Spr. 12 Fandla Spread of Spread		2				40	•	158	7		-		•				40	~											407				99	•	*		277		
Kind Settling volving (ME/m²) 65.0 CILIATA Didinima sp. Didinima sp. Holotrichida sp. Holotrichida sp. Holotrichida sp. Tratinaspois tavojacansis 112 Tratinaspois tavojacansis 112 Tratinaspois tavojacansis 112 Tratinaspois tavojacansis 112 Futicostante sp. E. E. Landersida sp. Tritinalda sp. Foraminitera sp. Tritinalda sp. Foraminitera sp. Tritinalda sp. Foraminitera sp. Tritinalda sp. Foraminitera sp. Tritinalda sp. Trit				6	-	76	<u>,</u>	38		17	27	-			2			LC.					-		-	-			90			o—	7	c	7 17	,	141	13	
Kind Settling voltane (mil/mi) CILIATA Didinum sp. CILIATA Didinum sp. T. Patiense sp. Tatiense sp. Corycease sp. Corpopodite stage larva of Corycease sp. Corpopodite stage larva of Corycease of Scopinal sp. Corycease sp.		1.		5.0						15	V. V.			cr •	2	2			2						•	,						2	12	011	•		-+>	17	
Kind CILIATA FORAMINIFER HYDROZOA ROTATORIA ROTATORIA COPEPODA COPEPODA LARVA	-			(IIIR)	· dn		mucicola	harajacensi s	nana platensis	2 d d s	azortea	shrenbergit	Jraknoss cusus—undas	dd s			· dn	breuzoornes	sinplex	epp.	SPP.	actifrons	larva of	larva of	larva of	larva of	larve of	larva of	larva of Harpacticoid	sicula	לפו לו מו לו מו לו	app.			to of Bivelvie	#i >	individuals	species	individuals/2
Kind CILIATA FORAMINIFER HYDROZOA ROTATORIA ROTATORIA COPEPODA COPEPODA LARVA		Site	Layer(m)	ing	Didingum	Oligotrichida	Tintinnidium	SISCOULINE C	<i>I.</i>	T	Favella	Ge. G	Eutratrans E.	F	Special state of	Hydroids	Synchosta	Oithons	0.	• •	Corycaeus Viorosete	Euterpina	ļ .								Or kopt cura	50	Polychaets lary	Gautropoda larv	Unsumpes in variation	Pluteus stage la	number of	number of	Remarks Unit:individuals,
0 -004000000000000000000000000000000000			// 	Kind											-						-														•		To	To	Re

Table 3.10.14(2) Occurrence Zooplankton of Sampling Water Method in the Second Field Survey

Table 3.10.15(1) Tabulation at Each Class of Zooplankton of Sampling Water Method in the Second Field Survey

		. i			Ä	te:2nd	Octobe	r 1988	(Low ti	Date: 2nd October 1988 (Low tide period)
Site	1-A	} 	~	6		13		15		
Layer (m)	0.3	7	6.0	0.3	•	0.3	വ	0.3	23	Total
Kind Settling volume (ml/m)	55.0	20.0	70.0	35.0	35.0	20.0	30.0	15.0	25.0	
CILIATA	182 73.1	95	205 74.0	170	30.0	82 45.6	32.4	273 48.2	10.4	1223
FORAMINIFERA									0.7	98
HYDROZOA	6.8				· ,				. Production programming species	0.72
ROTATORIA			44	6.3		0.6	0.6	0.2	0.7	122
NEMATODA			0.7							0.7
COPEPODA	42 16.9	32 22.7	15.9	164 27.1	8. 8.	38 21.6	106 30.6	213	5.02	33.1
APPENDICULARIA	0			39	10.1	48 27.3	22.8	74	20.0	344
LARVA	B 21	→ o	22	17.3	34	4.0	47 13.6	0	83.3	25.1
									-	

Remarks....Unit:individuals/ & lower column...%

Table 3.10.15(2) Tabulation at Each Class of Zooplankton of Sampling Water Method in the Second Field Survey

Site	1-A		2	on on		13		1.5		13
Layer(m)	0.3	7	0	0.3	-		8	0.3	13	Total
Kind Settling volume (ml/m)	30.0	30.0	80.0	15.0	40.0	30.0	35.0	10.0	20.0	
CILIATA	41.7	38 50.0	50.4	33.3	76 27.6	46 28.6	79 32.1	327 38.8	24.0	935 34.4
FORAMINIFERA			ထ သူဆ		· en		6 6			G G
ROTATORIA					0.7		2.8	0.5	÷.	(A) (A)
NEMATODA		2.6	2.7		·		- 0			. R. C.
СОРЕРОВА	60 52.2	34	30.1	31.0	17.1	53.¢	100	33300	33.1	34.7
APPENDICULARIA				. S.	20.02	12.4	16.3	200	25.5	453
LARVA	6.1	2 9	හ ග	144	33.52	ත ශ	7.38	14.		350

Remarks....Unit:individuals/ & lower column...%

Table 3.10.16(1) Occurrence Zooplankton of Net Method in the Second Field Survey

75	24	18	9	*	narks Unit:
58002	28080	15150	8274	16498	Total number of species
71 5				7.1	Pish larva
700 2	007	300			Pluteus stage larva
	9		75		None with the state of the stat
1389			675	714	Nauplius stage larve of Cirripodia Calvotopia stage larve of Bunkuneis
4422 4	2640	450	975	357	
357	-			357	
5,007	2400	1200	1050	357	Gastropods larva
# c	2 C) }	;		
1503	- «	2 4	38	214	LARVA Polychaets larva
530	20 0	2 4	-		.0
	0021	0000	6/		Orkonteura
16829	1280	1500	1763	12286	APPENDICULARIA Appendicularia sicula
••	1280	750	225	;	Cowepodite stage larks o
20 00 00 00 00 00 00 00 00 00 00 00 00 0	12160	2700	2250	1286	Copepodite stage larva of
2071	1440	300	188	143	
2 00 00 00 00 00 00 00 00 00 00 00 00 00	000				Copepodite stage larva of
4 ·	222	2))	2	Copepodite stage larva of
533 2	007		133		Copendite stage larva of Paracalanidae
- v.	080		75		
		2		7.1	0
1485	940	000	188	357	3 Cithona breutcornis
000	1601				Acartia
	30 0		יט פי		Centropages
268 3	•	25.0	о с С		P
		150			A DATE OF PARTY OF PA
300		150	150		
A 4				7.7	Eutintinnus
100		150		7.1	Epiplocylis
600		900			Favella chemberain
38			38		CILIATA Oligotrichida
points	2.0	2.5	-	:	
1000	0-13	0-5	4-0	0-7	No. Layer(m)
Occured	22	13	00	1-A	31 te
Date: 2nd October 1988 (Low tide period)	tober 19	2nd 0c	Date		
		•	-		

Table 3.10.16(2) Occurrence Zooplankton of Net Method in the Second Field Survey

(High tide period)	Occured	Total	points	83		~ C	2 to C	218 2	138	80	2431 4	1 78	208 2	814 3	65.91	470 4	180	218 2	25280	88.	2012	1/8/	97	19243	2837 4	න :	1088 2	1686	35.55	20 (C)	2/2	\$ 50 CG	1667 3	((5.26 2	78736	78
Date:2nd October 1988	15	0-13	2.0		001	e e	<u> </u>	080	3 ;	08	984		1991	080	3440	9	240	80	8400	,	240	1360		1200	2240	90	400	240	1600		1	2880	080	0	480	24320	24
1 Octob	13	0-5	2.5		*****		275	138	38		963		-	889	2063	275	888	138	12650	CC (272			11000	£13		888	963	825	138	275	822	1375			35344	22
Jate: 2no	ග	7-0	3			40	n O				756		-		206	69	206		2956	٠,		344		1100	138			344	1031			828				9419	13
	1-A	0-7	-:	93							232	94	97	97	882	97	48		1254		•	93	46	5943	9+	9		139	138			232	232		99	9653	13
	Site	No. Layer(m)	Kind Settling volume (ml/m²)	s is de	Z shrendergir	A WYNDOSO.	S COPEDODA Paracalanus crassirostris	d	Clausocalanus	Acartia	Oithona	10 0. simplex	0,	acutifrons	Copepodite stage larve of	CODEDOGINE STANDS OF	TO MAJET BENEFIC BETTO MONDO	Copepodite atage larva of	Copepodite stage larva of	Stage larva of	Control of the state of the control	21 Copopodite stage larva of Lucarpina		Nauplius stage la	APPENDICULARIA Appendicularia	Orkoplaura	25.	26 LARVA Polychaeta larva	Gastropoda	Egg capsule of		Umbo stage larva of		32 Zone attack of Macritis	WALES APPENDATED	lotal number of individuals	Total number of species

Remarks....Unit:individuals/m³

Table 3.10.17(1) Tabulation at Each Class of Zooplankton of Net Method in the Second Field Survey

Date: 2nd October 1988 (Low tide period) 46464 6395 Total 15 0-13 2.0 20080 1520 6480 13 6900 45.5 4800 2400 5198 62.8 2813 34.0 9 - -14286 86.6 2070 A-1-1-1 Settling volume (ml/m) Layer (m) Site APPENDICULARIA COPEPODA HYDROZOA CILIATA LARVA Kind

lower column...%

Remarks... Unit:individuals/m²

Table 3.10.17(2) Tabulation at Each Class of Zooplankton of Net Method in the Second Field Survey

	המח י	יייייייייייייייייייייייייייייייייייייי	יניסחמי	1 00001	nagn Li	pare true of topes 1300 (mgm rine per 100)
Site		1-A	ø	13	51	
Layer (m)	(2)	0-7	1	9-5	0-13	Total
Kind Settlin	Settling volume (ml/m)		.	2.5	2.0	
CILIATA		83 0 .	3,7		160	597
HYDR020A			68		0 0 0 0	149
COPEPODA	·	88 88 89 80 80 80	5837	29429	15920	59866 75.8
APPENDICULARIA		1.92	138	1514	2800	₹. ₹. ₹.
LARVA		788	3231	4401	5380	13780
					:	

Remarks....Unit:individuals/m lower column...%

Table 3.10.18(1) Occurrence Phytoplankton of Sampling Water Method in the Third Field Survey

									1.	Date:6	th Febr	uary	Date:6th February 1989 (Low tide period)	de period)	
	Site			A-1		2	on.	-	13		15	10		0ccured	
Š	Laye	Layer (m)		0.3	6.5	0.3	0.3	12	0.3	en ·	0.3	14	Total	·	
	Kind Sett	Settling volume (ml/m)	(ml/m³)	30.0	35.0	25.0	25.0	20.0	20.0	30.0	15.0	10.0		points	
	BACILLARIOPHYCEAE Skeletonema	Skeletonema	costatum				4032	768	28656	12480	144	336	1797	9	
		Leptocylindrus	dani cus							240				10	
	-	Rhizosolenia	fragillima		96			192					22	288 2	
		Chastocaros	o u	4560	23328	2496			÷				30384	34 3	
)	Ceratautina	pelagica					192						92	
	7	Chimacodium	frauenfeldianum									98		1 1	
_	•	PLeurosigna	· de						72					72	
	V	Witzschia	closterium		288		480	1632	432	1080	72	192	11.4	7	
		×.	longissima		96	-								36	
		N	.de				96						3	96	
 	DINOPHYCEAE	Prorocentrum	balticum			96							96	16	
		Ω	compressum			_					72		_	7	
	•	۵.	micans	8				93	72				2	ලා ග	
	•	•	tricotinum	480	384	4224	96	192		360			573	9	
	9	Gymnodiniales		192		36							28	2	
9)	Gonyantar	sp.			96		96					192	2 2	
٠.,		Seripposetta	sp.	624	192	9	192	192	72	240			160	^	
æ	•	Protoperidinium	pillucidum				96	_					53	<u></u>	
o)	7	Ceratium	furea						72				~	~	
	~	· ·	enenf		_		96					43	9 .	2	
2		Peridinialen		768	192	192	-	96		240	72		021		
7	63	Cryptophycese		288	-		498	1152	648	4680	864		8496		
C		Haptophycese	i	1152	1728	_	20160	42624	(V)	11880	85104	147744	33048	89	
		Prasinophyceae		964	576		****	578		1800			448		
	EUGLENOPHYCEAE 1	Euglonophycese		144				96		120	7.2		50	_	
1	Total nur	number of cells	S	9120	26880	7236	28112	47904	50876	33120	86400	86400 148416	43622	7	
	Total nu	number of species	891	10	σ	7	on	13	1.1	10	7.	tr		to:	
		COME TO TOOM		3	1		,			3	,	,			

Remarks....Unit:cells/2

Table 3.10.18(2) Occurrence Phytoplankton of Sampling Water Method in the Third Field Survey

tide period)	Occured		points	7 27		20,	3.04	108	50 50 50 50 50 50 50 50 50 50 50 50 50 5		£0 3	İ	32 8	84 2			20 4	989	28 8		84 2		32 7	000	80	හ	12 4	44	0
(lligh tid		Total		196	(D 6	7	m		23	8	907	• 	26		-	60	31	9		673			1032	4	1046	œ	(7)	1518	
January 1989		13	25.0				384			96	087	•			96			-		****		38		288	36000			37440	1
Januar	15	0.3	20.0				ě			144	288		48					87	8.4		64		98	798	25056			26640	
Date:31st		•	15.0	10008	288					···· •		72	792				72	72	288				360	648	4968	864		18432	
Dat	13	0.3	20.0	8160	-								864	•		384	:	286	384	9			192	864	14668	2018		27938	
İ		12	15.0	77:	900	000	9		,		72	36	204			36			144	36			971	864	11016	1080	72	14868	L
	တ	0.3	15.0	1332		ď	3	108	**				360			36	72		252		36	.		884	11448	432	144	15284	
	2	6.3	15.0						261		,				96	384	2880	288	288	192			98					4416	c
	ا مد	9	30.0		Č.	*			200					35	*orrin				ψ.			- Control	16		964	576	32	2784	٥
	4-1	0.3	30.0						e C C C				₽ 9	32		35	38		180				128	576	576	1440	64	1901	-
											5											:							
			mg/m³)	costatum	denicus	Jregittine filippe	coarctatum	decipiens		managuog 20	ni trochioides	8 p.	Closterium	tongers and	Dalticum.	macana	triestimm		*p.	* 00	furca	fusus							00
	əį	Layer (m)	Settling volume (ml/m)	Skeletonema	Leptocylindrus	natzorotenta P	Chastoceros	۰,	: › د	Clinacodium	Inclassionema	Licmophora	Nitzschia	Ά.	Prorocentrum	۰. ۱	P	Gymnodinisles	Serippeialla	Protoperidinium	Caratium	c.	Peridiniales	Cryptophycese	Haptophyceae	Prasinophycese	Zuglenopby cene	Total number of cells	number of enerior
	Site	(er	Kind Set	BACILLARIOPHYCEAE Skeletonema										;	DINOPHYCEAE									CRYPTOPHYCEAE	HAPTOPHYCEAE	PRASINOPHYCEAE	EUGLENOPHYCEAE	Total n	Total
		Š			٥ ٧	7 4	l LO	60 (× (00	တ	0		2	~	*	2	16		æ	<u></u>	20	5	ž	23	24	25		

Table 3.10.19(1) Tabulation at Each Class of Phytoplankton of Sampling Water Method in the Third Field Survey

					Da te	Date:6th February	ebruary		(Low ti	1989 (Low tide period)
Si te	1-A	 	2	တ		13		15		
Layer (m)	0.3	2	6.3	0.3	12	0.3	es.	0.3	*	Total
Kind Settling volume (mg/m)	30.0	35.0	25.0	25.0	20.0	20.0	30.0	15.0	10.0	
BACILLARIOPHYCEAE	4560 50.0	23808 88.6	34.2	4608 17.6	2784	29160 57.2	13800	216	624 0.4	82056 18.8
DINOPHYCEAE	23.2	2.8	4800 65.8	4.80 8.1	672	360	8 40 2.5	144	0.0	10224
CRYPTOPHYCEAE	288 3.2			80 K 4 C .	1152	64 84 8	14.1	86. 1.0		80 80 80 80 80 80
нарторнусеае	1152	1728		20160	42624	20088 39.4	11880	8510¢ 98.5	147744	330480
PRASINOPHYCEAE	86.4 9.5	576 2.1	***************************************		576	648 1.3	1800			4 6 4 4 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5
EUGLENOPHYCEAE	144				9.0	72	120	72		80 0.
		1							1	

Remarks....Unit:cells/2 lower column...%

Table 3.10.19(2) Tabulation at Bach Class of Phytoplankton of Sampling Water Method in the Third Field Survey

Site	1-A		2	တ	1	13		15		13
//	0.3	ဖ	0.3	0		e. 0	-	0.3	13	Total
Kind Settling volume (ml/ml)	30.0	30.0	15.0	•	15.0	20.0	15.0		25.0	
BACILLARIOPHYCEAE	992 24.4	1232	192	1980 13.0	1476 9.9	9024 32.3	11160	1.8	960	27496
DINOPHYCEAE	418 10.2	2.9	4224	396 2.6	360	1344	792	0.40 0.9	0.0	80 80 84 84
CRYPTOPHYCEAE	578	· 		85 C	80 C → 83	864 3.1	0 E	3.2	0 0 8 8	9 9 9 9 8 8 8 8
HAPTOPHYCEAE	578	31.0		11448	11018	14688	4968	25056	36000	10. 88. 88.
PRASINOPHYCEAE	1440	576		2 t 3 2 8 3 2 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	7.3	2016	964			6408
EUGLENOPHYCEAE		1.1		+ 67 + 	72	**			. :	312

Remarks....Unit:cells/2 lower column....%

Table 3.10.20(1) Occurrence Zooplankton of Sampling Water Method in the Third Field Survey

Occured	[a]	points		1986 1145 1145 1145 1145 1145 1145 1145 114	8 -		22	53	Ν-	O 404	3	<u>-</u>	4	e3 (7	22.	~ ~	سو م	63 c	14	900 9C	G	. c.	39	,,, ,	2 5	212				636	
	Total																•														-	
	*	10.0	,	8	9	***************************************	(J)	-8	m				18		,	2	7			7		er	en.	- 0			2	~- (c)	g=1	_	208	
£	0.3	15.0		9	9		22.0	12	•		-	(*3	හ	es	,	n			•	-						•	⊃ ~	es	č.		175	
	6	30.0		63	9	80					-		**		3	2			-					12	-	(35				185	Ì
13	6.3	20.0		87	6	50		12					æ		,	0		; ;						9			מ	es	مبر		871	
	27	20.0	2	20	-			- 5				-	-		1				*	-		2	1	11	-	2.5	32		~-	٠ ،	92	1
Ø	63	25.0	ຄ.ບ	G (7)	25	,		8	•		m				6			•	c	***		- ~					88		es	,,,	203	
2	6:3	25.0			=			+							7		***************************************		-		- 		-				,	!		-	28	
		35.0	172	9	0	·		\dagger					_~-			*								,			æ			, , , , , , , , , , , , , , , , , , , 	421	1
\$-1	6.3		0.8	→ 00	18											7 -								-		ı	1 0				177	
		s (ull/m³)	entro.	mercola	9 p p.	, Ca	morchella	Out of the contract of the con	4	biorbicuéaca 8 p.	fracknoi	furus andae	n. 6	-		,d.s.	crassirostris	rythraca	davivae	nana st m pd ex	ap. acutifrons		larva of Ten	larva o	a larva of Oncasa	larva of Eu	larva of Copepada acteuld	sicula	. d	ve s of Bivalvia tarva of Cistinedia		I VIOLUTE
Site	Layer (m)	Settling volume (ml/m)	Didinium	Holotrichida Oligotrichida Tintinnidam	Tintinnoprie	S.	Codonellopsis	4		Und 16 6 4	Eutintinnu.	હ્યું હ	Solainos Lla	Tintinnida	Foraminitera	Synchaela Nemetoda	Paracalanus	Acartia	Oithona	ં લ	O. Eutervins	Harpacticolds	Copenonite sings	Copepodite stage	Copepodite stage		1 A g e		0.	Proceedings larve of Hivalvia	1	number of
S		Kind	CILIATA												FORAM INI FERA	ROTATOR IA NEMATODA	COPEPODA										PTEROPODA	APPENDICULARIA	. ;	LARVA	Totol	10101

Occurrence Zooplankton of Sampling Water Method in the Third Field Survey Table 3.10.20(2)

	Site		1-4		2	တ	-	13	-	15	-	15 Coursed	Great ed
	Layer(m)		0.3 6		9	-	~	0.3	-	Į.		Total	
Kind	Settling volume (ml/ni)	; (ml/ ni)	30.0		5.0	15.0	5.0	20.02	15.0	20.0	25.0		points
CILIATA			170	32		_	2		9	c ·	9	22.	
v 61	Holotrichida	Justs	~					-			<u></u>		
	Sectorida			,		ć	00 0		(ç		9636	. , ,
				22	- -	325	1		9	D C	7	41	חור
		Augustoca Spp.	38	72	48		2	3:	, p	າຕ	12	8	. ~
		nivation	12			,	 		1	es		-	8
	Codenstlepris m	Np. morchella				Ø	9	20	e3		e,	ei `	•••
		0207100			7		-		-		-		
	Amphorates 9	quadrilineala				P~	~	-	ധ	27	80	7	(D)
	11.40110	W. D. W. D. D. D. D. D. D. D. D. D. D. D. D. D.						-	**				··· -
	5742	fracknot				J	•					•	
		Jusus-undae					-		3		-	6	-
		a,						ო	(r)	œ 	e3	7	~*·
- add the second	Tintingida								(7)				~~ (°
	Synchatta	ů,	1.0		- OC		- ^	17	9	46	n) (c)	` cc	×
,				<u> </u>	-		-						-
SAGITTIDEA	Sagiffa larva										-	•	·-· ·
		**************************************				<u>.</u> : .	- .						~ ~
:							 -			#m	-		• •
		acutifrons		-			-		-	-	_		3
	Harpacticoida					. •							0
	Copenalis athe	0 1 P 5 6 1		*	_	-	- - - -			-	<u>,</u>		r»
	Copepodite stage larve	Cano											
	Copepodite stage larva	of Acay		-	;	t	•		(٠		•	(
	Coorposite stage larva	Intva of Orcass	7	_	7	v	7-		ō	o	,	•	o ⊷
	Copepodite stage larva	of Suph					•				*****		- 8
	Coprpodite stage larva	larva of Euterpine					-		-	-	63		
APPENDICIT ARTA	Nauplina stage li	Arva of Copepods	_	.	ω -	ως.	20	- 	53	ក្សិ ឧ	 	0)	
	0	400	2		7	-		-			2 6	4	
39 LARVA	hophors larv		•			•		10	(7)	į	•	, may	· (*)
	Polycherte larva										es.	•	~~
	Umbo state larva		, <u>-</u>								,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		→ (
7.7	Nucplina stage larva of Cirrip	ITVE of Cirripedia		,		<u>-</u>		~			-		v
	Total number of individuals	viduals	321	171	538	99	105	181	115	227	184	1888	827
Tota	I number of spec	les	10	60	9	13	3	Ξ	9	17	23		121

Table 3.10.21(1) Tabulation at Each Class of Zooplankton of Sampling Water Method in the Third Field Survey

					Date	:6th Fe	bruary	1989	(Low ti	Date:6th February 1989 (Low tide period)
Site	1~A		2	o		13		15		
Layer (m)	0.3	7	0.3	0.3	12	0.3	6	0.3	*	Total
Kind Settling volume(mg/m³)	30.0	35.0	25.0	25.0	20.0	20.0	30.0	15.0	10.0	
TA	148 83.6	364	18.2	135 66.5	34.8	123	116	114	120	71.1
FORAMINIFERA			7.7	.53	· ·		4 ∞⇔		·	6 2
ROTATORIA	6.8	10.5		7.4		4 60	2.2	ν. αν -	11.5	7.0
NEMATODA							6.5			0.7
COPEPODA	17.	2.1	38.10	46	59.8	10.7	24.3	33 9.9	58	289
PTEROPODA								0.6	У <u>—</u> (У	0
APPENDICULARIA				ក ហ 	2.2	2.7		10.3	2.4	32
LARVA		40.	. a		e e				- W	ය ය.
		1								

Remarks....Unit:individuals/ 2 lower column....%

Table 3.10.21(2) Tabulation at Each Class of Zooplankton of Sampling Water Method in the Third Field Survey

					Date:	31st Ja	nuary	1989	High ti	Date:31st January 1989 (High tide period)
Site	1-A		~	6		13		15		
Layer(m)	0.3	ဖ	0.3	6.3	12	6.3	4	0.3	13	Total
Kind Settling volume (mg/m)	30.0	30.0	15.0	15.0	15.0	20.0	15.0	20.0	25.0	
OH TATA	299	132	492	25	7	127	75	141	933	1480
urari.	 	93.6	4.	75.8	67.6	70.2	85.2	62.1	47.9	78.4
FORAMINIFERA		·			-0:				en (n)	9.5
ROTATORIA	3.1			1.5	6.7	17	5.08	6 6	e	3.2
NEMATODA			41.		·-··					40.
SAGITTIDEA								0.4		Ö
COPEPODA	o 8	დ თ ა	5.8	18.2	23.8	13.3	31	55 24.2	36.10	14.0
APPENDICULARIA			4.0	- 65		0.6		24 10.6	8.8	2,40
LARVA	6.3			, 60 0.00	-0	6.6	გ		2 2	46.
									~	

Remarks....Unit:individuals/ & lower column....%

Table 3.10.22(1) Occurrence Zooplankton of Net Method in the Third Field Survey

Remarks....Unit:individuals/m

Table 3.10.22(2) Occurrence Zooplankton of Net Method in the Third Field Survey

Date:31st January 1989 (High tide period)	Occured	3 Total	9 points		25			115 115 1	92 1				577 652 2				1452 2			288 288		173				1/31	0 cc	2	58	115 198 2	173 244 3	346	···	58 721 4	62 42190	27 72
January 1	13 15	0-4 0-13	1.9		25		20	•		:	125 6:		·	50 2019			125 1327				75	1625 12462		275 23	1	70071		125 1	نـــن			500		300	4575 27482	18
te:31st	σn	0-12	0.8				:37		92		229			137	85			687		-	321	2282			. •	2 6						228		321	8278	13
De	1-A	9-0	0.8	354		42					42						,	62	21			937		23	E7 :	2125		23		83	21	21.	,	42	3875	71
	Site	No. Layer (m)	Kind Settling volume (mg/m³)	CILIATA		ROTATORIA Rotatoria	4 COPEPODA Paracalanus partuus		6 Acartia hudsonica		8 davisa	.0.		11 0. simplex		Corycaeus	Euterpina acutifrons		Copeposite stage larva of	Copepodite stage larva of	Copepodite stage larva of	TO MALKE PARTE STITOPENOU	TO MAKET PRESE PILDOCOCO	Copepodite stage larva of	New State State Larva of Maryachicolds	APPENDICHLARIA Ottonbura	Ö	28 0, spp.	LARVA Trochophora larv		Gastropoda larva	U-shaped larva of Bi	Umbo stage larva of Biv	1	Total number of individuals	Total number of species

Remarks... Unit:individuals/m

Table 3.10.23(1) Tabulation at Each Class of Zooplankton of Net Method in the Third Field Survey

Da	te:6th F	ebruary	1930	(Low t	Date:6th February 1989 (Low tide period)
Site	1-A	6	13	15	
Layer (m)	0-6.5	0-12	6-0	0-14	Total
Kind Settling volume(ml/m)	0.8	- 2	5.0	1:1	
CILIATA	392 8.8	68 G			1.6
ROTATORIA		6.4			42
CLADOCERA				0.7	0.2
COPEPODA	3300 88.0	9751	4208 82.8	8643	25502 87.8
APPENDICULARIA			208	3.6	565 1.9
LARVA	138	867 7.0	13.1	9 8 9 8 9 8	2402
]		

Remarks....Unit:individuals/ m lower column....%

Table 3.10.23(2) Tabulation at Each Class of Zooplankton of Net Method in the Third Field Survey

Table 3.10.24(1) Occurrence Benthos in the Second Field Survey

										-	Date:	Date:16th~18th	th October	er 1988
		Si te			1-A	1-8	2	•	S-A	5-B	3-S	6	*	4-0
		İten			H.W.	**************************************	3.3	3.3	3:	3.4	3	3	33	3
_	NTA HYDROZOA ANTHOZOA	Hydroids Activings	Sortuinriidas							08.0				1
S ANNELIDA	IDEA SIPUNCULOIDEA POLYCHAETA	Sipunculida Brrantin	Signicalidae	Sthungkeis up.		3 0.10		13 0.65	8 0 38	4 0 13	900	9 0.10	5 60.00	1 6.04
\$ ~ •			Phyllodocidae Menienidae	Segeelton ap.					2 0.01	1				
B 0			Pilargidae Sylüidae	Sigambra up, Syllina						00.00	000	Congression and the second	6	
- (4)	:		Nereldae	Hephtys .p.	1 8.00	1 0.00		14 0.03	13 0.04		12 0.02	000	600	
m → t∪	. :		Glyceridae Geniadidae Onuphidae	Clycera 19.			1 0 00		00		0.08			
18			Danie ldn o	Eunice spp.					10.01	5 0.09		£ 0.03		3 0 03
C		2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Lumbrineridae Dervilleidae Orbinitae	Constraints up.							30.00	7 9.03	900	
21		4.14.114.114.114.114.114.114.114.114.11	Disomidae	Poecifochastne up.		-		10 0.03	2 0.01	4 0.02	- 1		7 6.03	
233			Chautopteridae Cirratulidae	Gerrsformia up.				2 0.08		1 0.03				
25			Flabelligeridse					5 0.03	5 6.02	3 0,05	1 0 0 1	30.0	300	6
27			Oppellidas	Opheline ap.	34 0.89	3 0.01	22 0.23		9	ı	0.00		3	i
29			Capitellidae Meldanidae		ه ا	0.0	1 0.07	20.03	200		.			1 0.00
30			Dweb! Idne			;			:	 -	•		š	
-65			Ampharatidae Terebeliidae	Terebellides up.	16 0.30	11 6.10	4 0.14	1 0.47	2 0.09		1 0.02		3 0.12	
3 ÷ €			Sabellidae	Clene by.					6	900		20.0	0.00	
37 TENTACULATA	FA BRYOZOA	Ctenostomata	Serpulidee Verlouisriidee	Hydraides up.					Ì	•	-	1		3 0.00
39 MOLLUSCA	POLYPLACOPHORA GASTROPODA	Lachnechitonida	Suskijane Isrbaschitoniane Cerithildse					96 51		00.00	+	00.0		
		wpodallwegosk	Calyptracidus Natifidas Muricidas Pyrosidas Nassaridas			2 0.30		=		'	٠		0.00	1 0.05
8.5			Ollvidse Kitridse						3.0	7 0.78	0.23		1.21	f 0.28
2 4 6		Materogantropoda Epitonidae Cephalaspiden Asteonidae	Marginellidae a Epitoniidae Aofennidae					·-•, <u>-</u>				1 0.01		
N 50 50 50 50 50 50 50 50 50 50 50 50 50		Ned Dranchia	Bulliday Atyelday Philiniday Dorliday					5.75					2	1 0.12
55	SCAPHOPODA						-			0.04		1 0.02	1 9.03	
0 0 0 0 0 0 0 0 0	BIVALVIA	Setaxodenta Pteriogerphia	Arcidae Kylilides Isegaemonidae	Sefamen type	1 0.07	5 0.18		-						4 0.4:
			Prevides	Pincleda sp.						6 63.72				
Remarks	Remarks····Unit:I:individuals/0.15 m, W.W.wet weight(g)/0.15 m 0.00:less than 0.01g †:uncountable	individuals/0.15 m, k 0.00:less than 0.01g	W.W:wet weight g +:uncountab	(g)/0.15 m [†] le				į						

Table 3.10.24(2) Occurrence Benthos in the Second Field Survey

100 100			Site			2) - C	12	13	11	15	16	13-4	13-81	20-4	20-8	Total
Processor Proc	Kind		Item			1. H. H.	æ	H.W 1	H.H.			3:	3.	4.4	78.	*
Comparison Com	COELENTERATA	HYDROZOA ANTHOZOA	Mydroide Autigisela	Sertuler ildae	:		. 0.63	1 0.04			3.80	87.0		4 2.50	4 0.00	Ī
	JEMERTINEA TIPUNCULOIDE UNNELIDA	A SIPUNCHLOIDEA POLYCHAETA	S.puncultan Errentla	Sipuncufidae			2 0 63		4.00							22.0
					Sigution bp.									***	1	1
Section Sect				Physicalds: Hebianids: Pileralds:						-				0.00		- -
				Syllidae									_		2 9.01	
Continue				Nephividas	•				=							
Continue				Clyceridee	-				•						20.3	3 4 8 ~
				Onuthidae								100		90 0		₩,
				Sunlessee	E	3 0.01			1 0.00						5 0.26	200
STREETING Divinition Divi				Lumbrineridae					0	*****	20.0		-			en (
Continued Cont			٠	Derville idae	•							1 6.00				• 52
Continue Continue				0681681				1	Ш			11 0.03		6 9.03	14 0.05	82
				Charleylerides					3 0.64			2				en en
Continued Cont	-				segue obsesses			-	•							es es
Continue				Flabelflerridas	- 1				9					. [8 0.04	37
Description Description				Opportuges		1 0.01					3 0,02		ule*			Ç.
Annieste Annieste				C. plts 1114 ke					1 0.90							120
Trinitides Tri				Meldenidee Owenidee			10.01						me ele			ñ
School S				Arrehore lides	Tree believes as										1	
Samplides Samp					secre species					-	-	:	-		3 8	
### ##################################				Sebell144.	Clone 19.							90			a e	
### STANDOOL CINTENSIS STANDOOL CONTINUES CONT			ŧ	Serpulidas	"yalroide							***			2	1
### POLYPLACONDOM International Controlled	ENTACULATA	BAYOZOA		Vasteular istat										,		• •
	IOLLUSCA	Polyplacophora Castropoda	Jacknerhitonico Mosages lyspode	Sychneckite pides Carlthildse				2	10.01							
				Calretradas				1	90 0	2 0.03		1			1	
			٠,					,	•							D >
								1 0.36	•							2.5
				Olividae Bilridae					1 0.12	1 0.02	:					
### Capationists Extraction 1 0.00 1 0.00 2 0.00 2 0.00 3 0.00 4 0.00 5 0.00 5 0.00 5 0.00 5 0.00 6 0.00 6 0.00 6 0.00 6 0.00 7 0.00				Marginellide.	:											n <u>-</u>
## Bulliate Pulliate Pulliate Pulliate Distriction D			Setevens trepeda Copletes pides	Egitonidae Artvenidae					. 4			00.00				
Delinates Politation Poli				Bullicae								1 0.53				-
Designation Designation				Philades		_			- -							e4 =
Pictomorphis Aprillate Safema type 2 0.07 1 0.02 1 0.02 2 0.08 1 0.02 2 0.08 1 0.02 2 0.08 1 0.02 2 0.08 1 0.02 2 0.08 1 0.02 2 0.08 1		*CANADADA		Derlidee										: :		
National 2002 1 0.02 1		BIVALVIA	Substadente	Arcidos					1	-		1			1	1
1-1			***********	My 1131644	come proupor		-			90		0			⇔ €	
				i segnamonidae Pieriidae	Pincindo ep.	.5					٠	•		-	2 47 6	

—130 —

Table 3:10.24(3) Occurrence Benthos in the Second Field Survey

1000 1-0	Date:16th~18th October 1988	5-8 5-8 7 8 8-8				3 0.08	1 0.02 t 9.14 2 0.10 1 0.05 1 0.55	1 0.08	, 6,12 , 0,12 , 0,12 , 0,00 , 10 , 0,00 , 10 , 10 , 10 , 10			1 0.00	0.00			0.00	1	00000000000000000000000000000000000000	22 0.08	0.24	1 6.03		6 16.76	
160 1-4 1-8 1 160 1 1 1 1 1 1 1 1 1		*	38.			90.0				0.00	· ·		00.00		000	99.6			1 0.03					
Site Site		_		70.0 +			-26		•	-							10.01	90		4,2				
Picriomorphia Spendyllidae Picriomorphia Spendyllidae Berriomorphia Ammiddae Condition Expendidae Expendidae Condition Privication Privilence Pri		1-4	35			ł	1		vs.					1		Ī	1							
Side 16cs 15cs 1				Spondylldan Anomildan Kashalidan	Ung wilnistee							ļ	hyperan Bodotriktee Aperanidae	Antheridae Chrejacidae	Ampetiera	Newschidae Pheresphalidae Liftleberglidae Generalidae	Grandidserables	Caprellide Calibration	Districtions Leaves 1840 Caperidae	阿斯里山南部城市中 伊里·阿斯尔亚山南非	Coreman Libra Palyaster I dan	Aug. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10	emidas Branchigelomp	
STRAINTA CRUST ACEA A OPHITHOLOGA I WROGTWAND TO I WROGTWAND TO I WROGTWAND TO A WROGTWAND TO A WROGTWAND TO A STRAINTAND TO A STRAINTAND TO A STRAINT TO THE STRAINT THE STRAINT TO THE STRAINT TO THE STRAINT TO THE STRAINT TO THE S		Site	Itea	Pieriomorphie Reterodenta						Anomitadasmits			Transace Transace Transace	Japada	* P * C * A * * *					Cnathrphierids	l	Plauregan	iato amphica; Percida	
				BIVALVIA		-					CHUSTACEA									ECHINODERMATA OPHIUROIDEA	NOCOTION DE		CEPHALOCHORS 0STEICHTHYES	

Table 3.10.24(4) Occurrence Benthos in the Second Field Survey

	Site			98	12	-2	*	57	.9	18-4	19-8	20-A	20-6	Total
	Item			35. 32.	3. 3.	- H. H.	N.K.	I II II	7.7	H.H.	1 H H I	1 8 8	1 H.H	H
MOLLUSCA BIVALVIA	Pierlemerable	Spandylidea						2 1.68					00 0	~
	Heteredenin	Carditidae					6							· -• ·
		Ungutinien					ı	- 1						123
		Thy sairidge Lucinides	Pitturine ay.			1 6.92	- 47	7 9.07	-A-12-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-	200	, 1 (1 (1 (1 (1 (1 (1 (1 (1 (1 			
		Ergelnidae Chomidae	Chang op.			1 9.03				7 e			7.55	0 ¥
		Cardildas	Collecto type				2000			10 0.1			1	ĺ
			Mercenaria 1794										مر ,	
:		Petricolden			:	200		9.0		2.0		2 3.28	45	 √; ~
		Mpotridae Garildae	Geet se	31 3.30		-	12 3.12	2 6.01	¢ 6.03	80.0	80.0		3 8.08	3/
		Telsialdas	Acempaginala 1790 Nicialities 1790 Jacintina 1790			12 3.41	4 0.07			25 0.88			18 0.52	1000 1000 1000 1000
			some appelled					1		,			10.01	1
	Atoms ledes so Le	Penderlase Threetene	Pandere ap.							57 CO			20.00	rv ⊶
ARTHROPODA CRUSTACEA	My oder eys	Vertienrälän						-		0 0 1				
	Therester News and a	Relations	Rebeite op.			0 0						1 9.05		
	Mystaseer	Myelday			1 0.00							1.		
	Camaras	Brack tildae Aperialdes								0.00				
	leapade	Asthuridae												~~
	:	Spherematica												• (~)
	ABANASA	Ly elenancidae Ampalaneldan	Ampelisco app.			į				9.80	.	6.00		•
		New Sterlidge			3 6.90				1 5.40		3 0.00	6 0.01		w E
		Lillieborgildes												
		Deseministe				3 0.00				00.7		80.6		n =
		Amphil belds	Grendidieruite bp.			7 4.62								25
	4 4	Astidas Copreblicas Calibanas idea				9.0	£				,,,			ø⊷r
		Diegenitee				2 6.03	3 3.83	1 8.82	2 0.01	1	3 0.02	3 0.03	2 3.10	**
	B. D. C. D. C. D.	Cancrida			<i>,</i>	•				**************************************			. 6.01	·
ECHINODERMATA OPHIUROLDEA	A Gasthophicelde	Xan thidae Ar phin idea				· ·	6				•.		1 0.02	~ 5
MOLOTINISOIDEA	3	Countridae											96.6	~
PROTOCHORDATA UNOCHORDA	Erio ratore	Ancidation Ancidation											1 1.79	•
	98880455	War I ha												
	CEPHALOCHORDATA Amphiexi	Mulgulidas Branchiastemidas dranchiosts	o dreactiontent th.	1 0.92				2 0.12	4 0.04				. 23	200
VENTEBRATA OSTEICHTH	Table 1 to the	Cellidae		- 1		Щ.	•	,				-	٩	1 1 12
	Otal (I m, m,	20,000	***************************************	75 77	85.5	74.46		25.)	71.8	20.71	46 44 38	2	23.63	2
		ol succies		*		•	4.4	• ?		3/	a.	4	200	

Table 3.10.25(1) Tabulation at Each Division of Benthos in the Second Field Survey

Remarks....Unit:1:individuals/0.15 nf, W.M.wet weight(g)/0.15 nf 0.00:less than 0.01g, +:uncountable lower column....%

Table 3.10.25(2) Tabulation at Each Division of Benthos in the Second Field Survey

											4						ä	Date:16th~18th October 1988	$5 ext{th} \sim$	1381	Octo	er 1	888
	Site	8-8	-	13		13	-	=	_	15		92	<u> </u>	19-A		19-8	<u> </u>	20-A	-	20-8	-	Total	-
Phylum	Item	:3:	æ æ	3:	3.	¥.₩	3	3÷	3.	.±	32]]	3:	¥. ₩.	3	3.	3	35	35	3	.32	35	35
COELENTERATA				0.0	37.5	6.	70.0					9		, a.	0.46		+	0.0	2.50	6.5	9.03	2	
NEMERTINEA	·							- 8.0	0.03						·							2	6.0
SIPUNCULOIDEA							· · · · · · · · · · · · · · · · · · ·	~ 8.	0.00					~ 67	 					85.55.	35.	82	1.82
ANNELIDA		.0. * 8.	0.02 5	55.6	6.08 5.08	51.8	6.3	25	0.22 7.6 10.5	30,5	0.05	31.35	29.65	118	4.93	8 4	31.3	36 62.1	4.27	86 4.3	1.07	759	7.42
TENTACULATA		0.0	6. 6. 6.	÷									9.0									e - e -	00. 00.
MOLLUSCA		32	80.38 .5			278 3	30.51	87 75.8	2.50 73	7.3	3.87	25.0	17.8	85.8	8.68 89.0	8 6 . 9 4	58.3		3.50 55.0	1 2 17	83.7 51.3	308 21	217.65
АКТНКОРОДА				44.4	0.00		9.3	2 3	0.63	- 2	0.02	er eo	5.9	a a.	1.7 22.7	2.7	6.62	13	9.03	4. 7	0.83	370	6.5
ECHINODERMATA			•				·	en en	 											~ 6.	0.00	<u>ი</u> ი	85 KL
PROTOCHORDATA		2.7	6.92								6. 4 20	25.0	0.00						······································	20,	2.12	32.	14.5
VERTEBRATA		·										7.4										- 0.0	0.4

Remarks....Unit:1:individuals/0.15 m', W.H:wet weight(g)/0.15 m' 0.00:1ess than 0.01g, +:uncountable lower column...%

Table 3.10.26(1) Occurrence Benthos in the Third Field Survey

1	×.		, s			0.00 0.00 0.00	9.0	6.10	0.0 25.0	8 8 8	90.9	0,00	6, 5 6, 4 6, 4	0.20	9.01	9.0
			00	7 20		~	a n	9 2		N	-	-	§	**	- 64	
1	H. H.		0.0	1 9.0		4. 10 0. 10 0. 10	0.00	50 0.43	1 6.93 6 9.37	9.0	0.00		7	6 9.76 1 0.38	\$ 9.02	
2-8 8-9	35	"	0.23	1 0.01		9.00	2 - ee c	6 0.92	1 0.00	2 0.05	l	25 8 4 4 6 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6	5.5. 4.6.	1 0.21 3 0.91 2 0.18		242
-		2	9.03	-				.0.	72.		-	00		9,68		
5-2	35	-	-			22 -	-	ъ Б	(,		- -	- G	11 59	2 -		
5-B	35	0.00	13 6.69	3 0.05		20 20 20	11 6.21	# 0 0 0 0 0	9.00	2 8.00	2 .0.40	20022	2 0.54	2 0.16		0.52
4-5	35	•	2.8.	0.02	•	3.0	0.12	6.62	9.0	9 4 C 0 0 G 0 0 G		. 6. 6.				
L	-	- · ·	74. 30	-	o phores to grant	78	2 2	- ~	9 5		6	~	2	2		
-	3.5	3 5.36	-0			75	1 0.00	2 p. 60		2 6.05 20 0.02 1 0.08	1.0		26 8.00	0.83	:	
9-1	3:			_		9,0		9,00	[,	30°35 05		-		0.10		
8-1			6:13			80.0	9.63	6.93		60.00 60.00 60.00 60.00	00.00		- -	0.23		9
-	-	_		- 1	-	25	000			28 2		-	83	c +1 .0		5
1-1	3.4		8 0.19			-E	 - 	r.		6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			3 6,	0 1		-
				Silvestels	Siration and	Egilingo Nepalya up. Meronopalkya up. Giyera up.	Oamples op. Easter 23. Marphys op. Apridies op.	Lambrinesic op. Dereillen op. Friensopie op.	Percelandarias op. Corrifornia op.	Opherine ap.	Tereboffides sp. some species Close sp. Erctone sp.	Aptrecedes upp.				Selents 1750
		\$4+4+4+4+44++	Szpuneutldan	Polynoldan Signilanidan	<u>.</u>		1	l_		Ophetities Capturities Hatenies Perting files	f	Serbelliter lackachicalda Ackalhebiterid	Tyachlan Carlenidas Calyptrosdas Naticidas	Pyresides Naterilides Fareboortides Olivides Velucides	Tripheselder Pyramidalidae Atycidee Palinidae	Arridos
Site	Item	Mydraida Prateitheas Arillatela Petratada		Errentie.				Sedenterio				Inchaschitenies Annyberbitunies Avebraegastropote	Managaritrapada.	{	Relation of the Control of the Contr	Setzgedente
S		<i>1</i> 1 s	1 3	POLYCIIAETA								POLYPLACOPHORA				SCAPHOPODA
	Kind	Portera Collentrata Plathelm intues	MEMERTIMEA RIPUNCULOIDEA SIPUNCULOID	ANNEL 1DA								моггласа				

Remarks....Unit:1:individuals/0.15 mf, W.W. wet weight(g)/0.15 mf 0.00:1ess than 0.01g truncountable

Table 3.10.26(2) Occurrence Benthos in the Third Field Survey

		Site			E2-08	12	13	2	15	16	19-1	19-61	₹-02	26-8	ze-s Total
Kind		- FOR			 ₩.₩	H.H.	3.35	35.35	3. 3.	35	35	30	38	35	_
PORIFERA COELENTERATA PLATHELMINTH	A RYDROZOA ANTROZOA HEZ TURBELLARIA	Mydreign Pomotuleres Astinieris Petreises	Sartulariidan									. 2	1 6.94		
SIFUNCULOIDI SIFUNCULOIDI SIFUNCULOIDI SIFUNCULOIDI SIFUNCULOIDI	NEMENTINEA STRUNCULOIDEA SIPUNCULOIDEA ANNELIDA POLYCHAETA	Stynkaulida Keraulia	G (prescribited Asplantiped Pelyneller Glosses	61160000000000000000000000000000000000	99 64		2 0.13	12 8.95	00.0 1		00.0	0.0	60.00	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11 12 12 12 12 12 12 12 12 12 12 12 12 1
			i	Signifon op.	0.03	0.01			* ° ° °		1 0.04				
]	Byllians Nepálys sp. Macrosopálkys sp. Glycera sp.		1 9.14	2 0,03 84.6 84.6		1 0.00	1 9.63	5 0.01	1 0.65		7 6.05	
			. '	Ousphie ag. Kandes ap. Marghysa, ap. Myrides, ap.			20.00 0.00 0.00 0.00 0.00 0.00	99 9 1	- 18 -			1 0.62	5 5	3 0.05	3
		Sedenterta		dunderners og, Dervicke op, Prennespio og, some sporites	1 6.03		24 9.13	2 0.01	3 9.80		2 6.50		67 9.25 1 8.50 1 9.59	25 0.18	~~ <u>#</u>
		. :	Ragafenidae Disemidae Cirrefusióne Fishesilgeridae	Pessiockastas 19. Circlerase 23. Semi apoclos	6.0		6.07) 	00.00	10.01			
#1. 2000 0000				Opietica ep. come aperico	9.60	11 0.18	2000	9. 6	1 0.00		3 6.51	1 0.50	26 4.3¢	9 9 9	27.32
수 후 수 수 대 산 원 수 전 산 원 수 전)	Taredoffedor op. come epietra Clona no. Espiese op.	1 0.00		44 40 60 60 60 60 60 60 60 60 60 60 60 60 60		1 4.65			6. 9.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	~~ ෆහ	2000
MOLLUSCA	POLYPLACOPHORA Castropoda	Serpatidae Serpatidae Araniperitando Aranbochiton Araniperatiopada Finarellidos	3 = 1	Aydraida opp.			9		1 0.03						
- CO - 10		Merepathy and	Trorblese Certibitése Calygerauties Naticiées Mariciése				334 22.42					00.8			
	a a ta a t		Prenidos Nacetaleidas Facetaleidas Oteridas			50.5	27.1		2 0.04					·	
- CE 4 87		Heleragestropeda Ceptabapites Sedibrahedia	Tripportides Premidelides Atprides Phillsides Derlides	:		ı			1.04		10.01		00'8 2		C4 80 83 an
2 / # G	SCAPHOPODA BIVALVIA	Masuradeose Pécciosesphia	Areldae Mytiftiae	Sofemen 17pe		! ! !	2	1 4.01	**************************************		9 6	9	26 9.16	4 9.0	2. 22

Remarks....Unit:1:individuals/0.15 m, H.H:wet weight(g)/0.15 m 0.01g 1:umcountable

Table 3.10.26(3) Occurrence Benthos in the Third Field Survey

	5	Site			1-1	9-1	2.0	-	5-4	#I-S		^	_	_	4-59
Kind		len			N. N.	¥.	# T	建	 ₹.	35.35	3:				35 35
OLLUSCA	BIVALVIA	Presidentella.	Pierlidae	Pinciado ap.					-			26 216.84	2 78	e.	
			Kattyalltan Ungeleden		66.8.77	22	1.41 8 0.07				-	9 0	v1 .	9	
			Luchister	Pillueina op.	1 0.04	0.0	10		·		-	1	v3 ↔	0.02	2 0 0.03 0.03
			Christian	Chesa sp.							36.47	20 32		7	2 0.13
			Vand / Idae	CELLIFE INPO		9	91	1		2.00	2 2	1	29	+	
			Petriculiano Registas									· ·	-		
			Į	decemberate 1790	- 1					0.00	- 1	0.05 5 p.	p. 21	0.03	2 9.97
		i		Militabelline 1790 Jerielline 1790	90.0	<u>~</u>	20.0	~ ~	÷	_	. 60. 60	8		6,40	
		Asemalsdesmale	Mysobemides Theorites										75.0	200	01.0
			Laterarifdas										_	-	
AHTHROPODA	pychogonida Crustacea	Mysteres No Water Park	Cyprodizides Nebelildes Sepect (Les				-	-	·			-	0.00		
		Topoldo tes	Paratandido	ten species	ŀ					,		6	00.0		
			Appendates Garl Mildae			: :	0.82 30 6.02	2 2		n	3		000		
			Ciretalder		7.7.7		7.7.7	<u> </u>		•	0.04	ì		700	1
		Amphipses	Sphaerematider Lynlanatider Ampetinglüse Reacterfilie	Ampeliore spp.				26.0	100	vi e	0.01	22.5	600 600 600	86	2 0.0
			Page et haldas					2	- 6			· ·	3		
			Chemicate			• ~	-		00	10	0.03	39 .0	82		ļ
			Desembles.			ļ					0.00		200		
			Amphilanidae Caraphilan	Gradidiaritto sp.	32 6.03	. 28	0.02 20 6.01	-				1			
			Capratitue									e n	000		0.00
		# # # # # # # # # # # # # # # # # # #	Presides Presides Ostiteration				60.0						2.00		
			Distantas					2 0.03	=	0.34 18	0.62		52.5	,	2 0.12
		4 1 5 1 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	No contraction							r	0.34	2 0	0.00		1 0.37
CHINDERMATA	ATA OPHIUROIDEA	I .	Į.						2	1.18	0.35 20.25	0.08 2 0.	0.02	9.15	2 0.33
PROTOCIORDATA		A 9 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4						_		-	0.82	ة -	9.30	1	
	1	Plantogone							-	'n	23.36		6.66		
77	ASCIDIACEA CEPHALOCHORDATA AMPANUEL	TA Amphoer	Branchisetam (dae	te disserbiseleme sp.	į				-	=	ļ	=		- 1	- 1
ĭ	tal (I H.H)				15.7 581	513	3,45 113 5.67	178 38	122 33	702 77	258.88 129 13.28	585 334.	7.5 832	27.92	340 29.13
1	lotal number of species	specias			-		7		35	311	1/1	-	57.	121	

Table 3.10.26(4) Occurrence Benthos in the Third Field Survey

		Site			9-6	12	53).4	51	16	19-A	13-8	20-A	20-8	20-8	Tota
Kind		Item			1 8.6	*	*.¥	**************************************	*	7.7.	A. A.	78 N	3.5	3	1	:#: -4:
MOLLUSCA	BIVALVIA	Pieriemerphia Haterodobía	Physiologo Cardiologo Relipelidas Ungalistas	Finefode 19.	0.03			1 7.43			3 6.00	5 2.18	2 0.02		90.0	30 379,61 1 7,43 4 0.00 82,83
			Luchidea	Pillupine ep.	+				0.00		14 0.05	-	59	5	0.02	. [
	٠		Chemidae	Chess of	•		1 0.07		00.0			-				. c
		;	Carditas	Callesta typu			1 0 39	2 6.03				0.03	2 0.22	-	1, 22	125
			Politications				2 7.13		3 0.08			*	67	1 5	0.40	3, 26,
. •			Nactridge Gardidge Zettbeiden	Cari sp.	0.0						3 0.92	2 0.00	-		0.00	
					1 0.05		18 9.80	2 0.17	1 0.00		23 1.10		161 6.37			200
- -	:	Anemalotegasts	Mysekamidos Thereidsa					·	2 0.00		8 0.15		4	····		uñ.
ARTHROPODA	PYCHOGONIDA		Laternations		-							10.01				ļ.,
	CRUSTACEA	Mysdeenga Nebs fixes Cunsees	Coprintates Nebel Hase Bedetribes	Redalin ap.					00.0	• .	00.0			200		· 64 52
		Tangidaces	Parstanaidae	TOBE PERIOR									1 0.0	G	-	- 00
	· ·.	loopeda	Approveded of Cast Wisdon						1 0.00		7 8,00	*0.0	ф ;			(O e7)
			Cirelanidas		-				10.01				11 0.0	-	00.0	g (2
		****	Lysia rama indus Lysia rasaidas Ampeliaeldas Manadas indus	Ampeliace opp.		•					200	22 0.02	8 0.00 15 0.02	200	4,00	- 48.
			Phoxorophalitae		14 0.02	7 0.02			44.7	7 0.01		-		s,	00.00	
			Leucotholder Lillistergilder Ondirerenidae			0.09						·	-	00	·	به ده وی در
			Gramaridae									00.0			-	3.
		-	Pactitus Amphilhaidea Carebbildea	Gradidireella 19.								- +	5 0.00	0 0	6. 6. 6.	4 th C th
			Astidos		1				0.00		2 0.06					n
		Maccura	Captellidas Fattphesidas Pretesidas Callianesaidas						. 6. 63	· · ·	0.0					444
		Brachura	Diegenidas				1 0.02		2 3.94				1 0.0	0.0	_	
			Na Jidan Paptunidas Xanthidas				0				- Chin					
ECHINODERMATA	A OPHUROTOEA	Canthophiuride	Genepheldse						2 0.04		5 0.00	1 0.02	3 0.02	1 2	0.00	
PROTOCIMADATA	NOLOTHUROTDEA N UROCHORDA	Dongreenings Appds Exteressa	Syne productions And Ididas							-	:		9,03	<u>.</u>		
132		Pleafagene	Styn 11don Pycrides Motoulides												-	
	CEPHALOCHORDATA Amphinat	A Amphicat	-	Bracklastane ap.		i		0.05		3 0.17						, ii
Tot	Total (! 14.14)				37 0.25	22 5.38	456 35.80	25	45 1.42	ſ '	86 1,59	102 0.51	689 5.16	8 162	5.20 44	8 5577
1	Total amende of enoring	DOCIOS								١				L	_	ļ

Table 3.10.27(1) Tabulation at Each Division of Benthos in the Third Field Survey

9-A	3÷				·	6.16	 	11.24	6.95	2.33	32.7
	-			~~~		2.5	23.2	56.4	6.4	6.8	0.8
	38°		٠		0 0 0		800	56.30	0.39	2.0	
		. 						8 28	3.28		
	32	16.80		0.03	. 0 . 0 . 0	0.23	0.68	295.70	0.60	0.02	26.47
		· .			*	2.	139 23.8	147 2	253 43.9	9.3	28
2-0 /	3. 3.		0.02	-		0.03	5.72	12.45 93.6		0.0	
	1-45		- *			- 8:	36.7	60.8		-6	
80-12	3E		0.00			0,63	0.38	75 210.84 36.2 81.5		0.58	17.4
	-		, <u>c</u>			 	38.	36.2	25.6		12.1
S-4	3±.					2.5	9.20	16.59	0.24	5.3	13.56
43						30	21.3	36.9	10.7	~	
	3E		26.38		0.00	3.7	25.16	43.83	0.12		
	-		¢3		- 9	5.8	63.7	16.8	12.8		···
5-0	3:						50.34	31.3	17.8		
							37.2	5.65	56 49.6		
1-8	3:					3.13	29.93	2.24	0.05		
	-			<u> </u>		7.9	107	18.8	37.4		
4-7	3. 3.					2,5	4.4	00 00 00 00 00 00 00 00 00 00 00 00 00	9.00 0.00		-
-						~ ;	34.5	23.4	32.0		
Site	Item										
	Phylum	PORIFERA	COELENTERATA	PLATHELMINTHES	NEMERTINEA	SIPUNCULOIDEA	ANNELIDA	MOLLUSCA	ARTHROPODA	ECHINODERMATA	PROTOCHORDATA
	ā.										

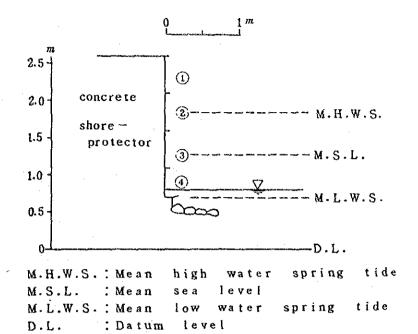

Remarks....Unit: 1:individuals/0.15 m', W.W.wet weight(g)/0.15 m 0.018, +:uncountable lower column....%

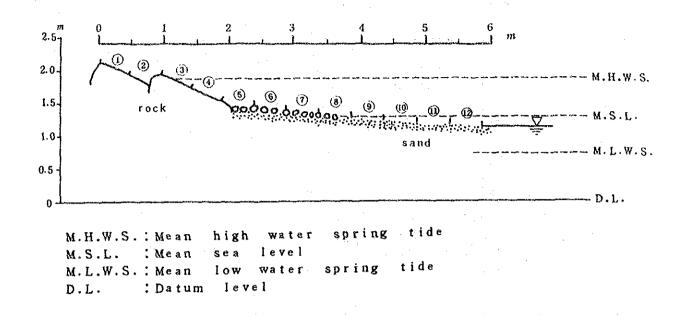
Table 3.10.27(2) Tabulation at Each Division of Benthos in the Third Field Survey

1989	Total	3E 3E	16.60	5.69	0.0	0.12	3.27	16.04	674, 49	5.22	2.43	85. 10. 10. 10.
	2		+ 0			# ? .	105	25.4	227 i 51.0		9.6	
ebrua		35.		20.0		0.0	90.	4 60 4 60 4 60	4.04	20 0 0 0	30 30 4	
इस्	26-E	=		 		7 4	2. 8.	20°	32	12.7		
y~4€		3£ 3÷		→ 0 0 0		0.00		8 .	63.5	2.3	4.5	
ınuar	Y-02	3		6.2		· 6		175	232	 	**	
th J	_	.a:		20.0	,	00.0		80.2	62.7	15.7	3.62	
Date:25th January~4th Rebruary	9-61];];		~ 0		- 0		21.8	18.7	28. Ca. Ca.	- 5	
Sa	<u> </u>	3				0.0		6	36.36	2.5	0.00	
	1-61	.3E				~ 0			8 2. 5 8. 50	5.8	, NJ NJ 60	
	 - -							14.3 16.7		5.		91.8
	2	**									÷	27.3
	-						20	6.3		1 02 7	5.0	.,
	5	3± 3=				•	0.00		13.6	,		
			: '				- 2	13.2	- .	20.0	÷	
i		3:					0.0 0.8	5.3	98.5 31.1			0.05
	=	_					6.12		28.5			4.0
		35					6.12 0.3	***	34.21 7	0.63		
i	2	-£					- -	15.1	380 83.3	N 4		
		3: 3:							23.03	5.93		
	12	3						58.1	÷	36. 4 4		
		H.H		· · · · · · · · · · · · · · · · · · ·			0.00	28.0 58.1	0.16 64.0	0.05	·	
	9-6	*					3.7	22.2	22.2	51.5		
	-											
	Site	i tem										
İ								;				
٠		$/\!\! $		AT#	NTHES	S) DEA			5	MATA	EDATA
į	$\ \ _{l}$		PORIFERA	COELENTERATA	PLATHELMINTHES	NEMERTINEA	SI PUNCULOI DEA	ANNEL I DA	MOLLUSCA	ARTHROPODA	ECHINODERMATA	PROTOCIORDATA
i	$/\!\!/$	Phy lua	P08	8	Z	New	S	ANN	JO.	ART	EC	PRO
		T.										

Remarks....Unit:11:individuals/0.15 m, W.W:wet weight(g)/0.15 m 0.00:less than 0.01g, +:uncountable lower column...%

-- 140 ---

kind of the organ	quadrate 1/6	1	2	3	(4)	unit
Littorinidae			. 2			ind.
Peasiella	roepstorffiana		1 .			ind.
Planaxis	sulcatus		1	130	4	ind.
Chthamalus	sp.		10	20		%
Balanus	amphitrite]	R	30	10	%
Isognomon	sp,			R(5)		%(ind.)
Mytilidae				R(5)	R(70)	%(ind.)
Pomatoleios	kraussii			10	55	%
CYANOPHYTA				\mathbf{R}	10	96
Halichondria	sp.	1			\mathbf{R}	%
ASCIDIACEA	(group)				R	96
Siphonaria	sp,				2	ind.
Tectus	sp.				11	i nd.


Date:9th October 1988

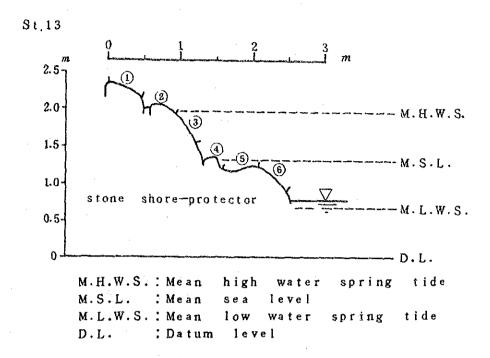
ind.: individuals

% : rate of covering

R: rare less than 5%

Fig. 3.10.24(1) Vertical Profile of Coastal Organism in the Second Field Survey

kind quadrate 16 of the organism	Œ.	(2)	(3)	•	③	6	Ø	®	(9)	(1)	0	(2)	unit
Littorinidae Chthamalus sp.		5 R	5	43	37 R	41 R	R				•		ind.
Planaxis sulcatos Peasiella roepstorffiana		20		3	544 6	290	436	52	15	31	27	11	ind.


Date:9th October 1988

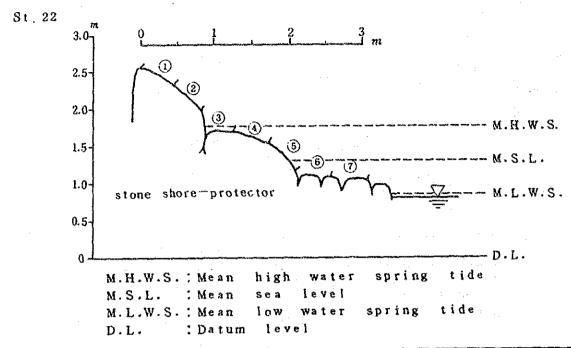
ind. individuals

% : rate of covering

R : rare less than 5%

Fig. 3.10.24(2) Vertical Profile of Coastal Organism in the Second Field Survey

kind of the orga	quadrate //6	(3)	(2)	3	4)	(3)	6	unit
Chthamalus	sp.		5	25	R			%
Lsognomon	sp.			R	5	R	R	%
Balanus	amphitrite				R	\mathbf{R}	\mathbf{R}	%
Pomatoleios	kraussii				R		R	%
Planaxis	sulcatus				2			ind.
Tectus	sp.				4	2		i nd.
Siphonaria	sp.				3	4	39	i nd.
CYANOPHYT	A				5	20	10	%
Monilea	sp.					1		i nd.


Date: 10th October 1988

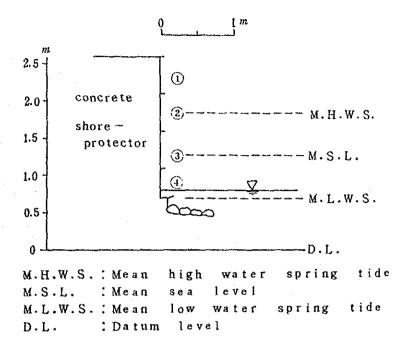
ind. : individuals

% : rate of covering

R : rare less than 5%

Fig. 3.10.24(3) Vertical Profile of Coastal Organism in the Second Field Survey

kind of the orga	quadrate 1/6	(j)	. (2)	3	4	(5)	6	(7)	unit
Littorinidae			7	6	7	23			ind.
Chthamalus	sp.		$\mathbf R$	15	5	45	\mathbf{R}	\mathbf{R}	%
I sognomon	sp.			R	R	R	R	R	96
Monodonta	dama			3	6	21	1		ind.
Peasiella	roepstorffiana			1					ind.
Planaxis	sulcatus			2	1				ind
Balanus	amphitrite					R	\mathbf{R}	5 .	%
Siphonaria	sp.		:			11	18	50	ind.
Pomatoleios	kraussii						${f R}$	\mathbf{R}	96
Enteromorpha	sp.						R	R	96
Muricidae	77.						2	1	ind


Date: 10th October 1988

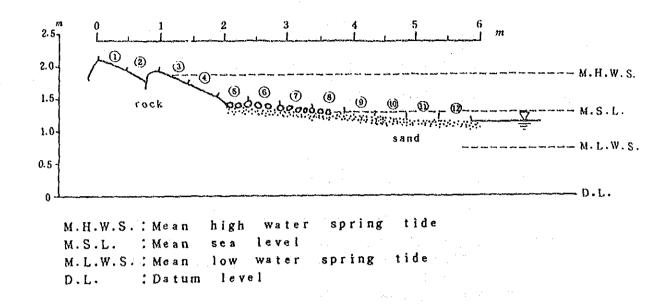
ind. : individuals

% : rate of covering

R: rare less than 5%

Fig. 3.10.24(4) Vertical Profile of Coastal Organism in the Second Field Survey

kind quadrate Na of the organism	①	2	3	4	unit
Littorinidae		14	4		ind.
Peasiella roepstorffiana		18	48		i nd.
Planaxis sulcatus		1	55	3	i nd.
Chthamalus sp.		10	20		%
Balanus amphitrite		R	35	10	%
I sognomon sp.			R (9)		%(ind.)
Mytilidae			R (20)	R(62)	%(ind.)
Pomatoleios kraussii			10	60	%
CYANOPHYTA			R	25	%
Halichondria sp.				\mathbf{R}	%
ASCIDIACEA(group)				\mathbf{R}	%
Tectus sp.				1	i nd-
Doridacea				1	i nd.
Enteromorpha sp.				R	%
Arcidae				1	ind.


Date: 12th February 1989

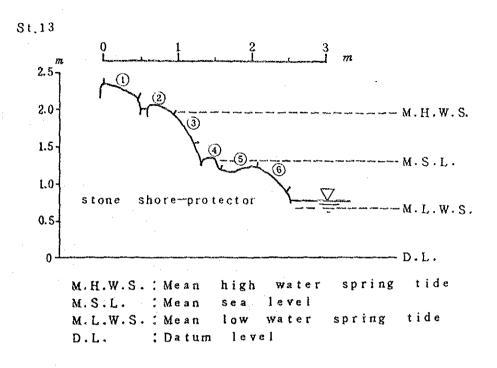
ind: individuals

% : rate of covering

R : rare less than 5 %

Fig. 3.10.25(1) Vertical Profile of Coastal Organism in the Third Field Survey

kind quadrate No.	①	2	3	③	6	6	0	(8)	9 0	0	0	unit
Littorinidae	12	155	233	24		3	4		ing the state of the			ind.
Chthamalus sp.		R		R	R	R	R					%
Pianaxis suicatus		3		13	437	409	597	173	.8	1	5	ind.
Peasiella roepstorifiana				1	3		1					ind.
Enteromorpha sp						R	R	R	R	<u> </u>	R	%


Date: 15th February 1989

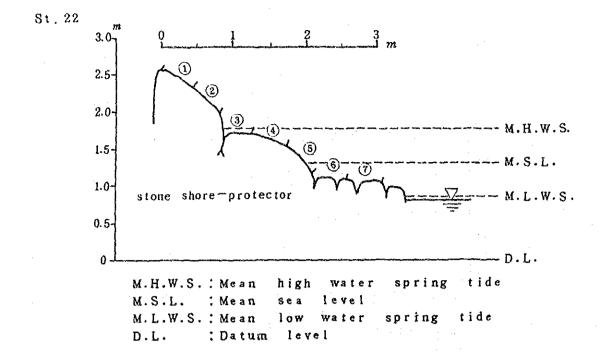
ind. : individuals

% : rate of covering

R : rare less than 5 %

Fig. 3.10.25(2) Vertical Profile of Coastal Organism in the Third Field Survey

kind quadrate No of the organism	①	2	3	4	\$	6	unit
Littorinidae	2	2					ind.
Chthamalus sp		5	20	R			%
Peasiella roepstorffiana			3		•		i nd.
I sognomon sp.			R	5	R		%
CYANOPHYTA			25	5	R		%
Balanus amphitrite				R	5	25	%
Pomatoleios kraussii		•		R		R	%
Siphonaria sp.				11	44	88	ind.
Tectus sp				1			ind.
Enteromorpha sp				R	R		%


Date: 14th February 1989

ind. : individuals

% : rate of covering

R : rare less than 5 %

Fig. 3.10.25(3) Vertical Profile of Coastal Organism in the Third Field Survey

kind quadrate No of the organism	①	2	3	4	⑤	6	Ø	unit
Littorinidae Chthamalus sp. Isognomon sp. Peasiella roepstorffiana Siphonaria sp. Balanus amphitrite Pomatoleios kraussii Enteromorpha sp. Muricidae		6 R	9 15 R 2	1 5 R 67 7	45 R 114 4 R	R R 34 5 R 5 3	R 30 5 R	ind. % ind. ind. % % ind. % % ind.
Asterinidae Cellana radiata Chamidae Pteridae						1	1 1 1	ind. ind. ind. ind.


Date: 14th February 1989

ind. : individuals

% : rate of covering

R : rare less than 5%

Fig. 3.10.25(4) Vertical Profile of Coastal Organism in the Third Field Survey

