FINAL REPORT
FOR
STUDY ON MEASURES TO PREVENT OIL POLLUTION
OF
THERMAL ELECTRIC POWER STATIONS
AND
SEA WATER DESALINATION PLANTS
IN
UMM AL NAR, ABU DHABI
THE UNITED ARAB EMIRATES
SUPPLEMENT
(DATA BOOK)

OCTOBER 1989

JAPAN INTERNATIONAL COOPERATION AGENCY

MPN

JR 5

89-189%

v. 1			
: • :			
:			
:			
:			

JIM LIBRARY

FINAL REPORT FOR STUDY ON MEASURES TO PREVENT OIL POLLUTION OF THERMAL ELECTRIC POWER STATIONS AND SEA WATER DESALINATION PLANTS IN UMM AL NAR, ABU DHABI THE UNITED ARAB EMIRATES SUPPLEMENT (DATA BOOK)

OCTOBER 1989

JAPAN INTERNATIONAL COOPERATION AGENCY

国際協力事業団

20421

Table of Contents

the second secon		
Fig. 3.10.1(1)	Consecutive Anchored Observations of Tidal Currents	1
Fig. 3.10.1(2)	in the Second Field Survey Consecutive Anchored Observations of Tidal Currents	2
Fig. 3.10.1(3)	in the Second Field Survey Consecutive Anchored Observations of Tidal Currents	3
Table 3.10.1(1)	in the Second Field Survey Harmonic Analysis Results of Tidal Currents	4
Table 3.10.1(2)	in the Second Field Survey Harmonic Analysis Results of Tidal Currents	5
Table 3.10.1(3)	in the Second Field Survey	6
Table 3.10.1(4)	in the Second Field Survey	7
	in the Second Field Survey	
Table 3.10.2	Predicted Hydrographic Conditions for Spring Tide Period in the Second Field Survey	8
Fig. 3.10.2(1)	Auto-covariance Curve of Tidal Currentsin the Second Field Survey	9
Fig. 3.10.2(2)	Auto-covariance Curve of Tidal Currentsin the Second Field Survey	10
Fig. 3.10.3(1)	Power Spectrum Density Curve of Tidal Currentsin the Second Field Survey	11
Fig. 3.10.3(2)	Power Spectrum Density Curve of Tidal Currents	12
Fig. 3.10.3(3)	in the Second Field Survey Power Spectrum Density Curve of Tidal Currents	13
the state of the s	in the Second Field Survey Average Movement of Tidal Currents over	14
	ty-Five Hour Period in the Second Field Survey Average Movement of Tidal Currents over	15
a Twent	ty-Five Hour Period in the Second Field Survey	
	Advance Vector of Tidal Currents in the Second Field Survey	
	Advance Vector of Tidal Currents in the Second Field Survey	
Fig. 3.10.5(3)	Advance Vector of Tidal Currents in the Second Field Survey	
Fig. 3.10.6(1)	Consecutive Anchorted Observations of Tidal Currents in the Third Field Survey	19
Fig. 3.10.6(2)	Consecutive Anchorted Observations of Tidal Currents	20
178. 0.10.0(E)	in the Third Field Survey	20
Fig. 3.10.6(3)	Consecutive Anchorted Observations of Tidal Currents	21
	in the Third Field Survey	
Table 3.10.3(1)	Harmonic Analysis Results of Tidal Currents	22
Tabla 2 10 2/9\	in the Third Field Survey Harmonic Analysis Results of Tidal Currents	9.9
Table 3.10.3(2)	Harmonic Analysis Results of Tidal Currents in the Third Field Survey	23
Table 3.10.3(3)		24
1.1	in the Third Field Survey	
and the second s	Harmonic Analysis Results of Tidal Currents	25
	in the Third Rield Survey	

Table 3.10.4	Predicted Hydrographic Conditions for Spring Tide Period in the Third Field Survey	26
Dr. 9 10 7/1)	A. L. C. C. L. T. J. Comparts	27
Fig. 3.10.7(1)	Auto-covariance Curve of Tidal Currents in the Third Field Survey	
Fig. 3.10.7(2)	Auto-covariance Curve of Tidal Currents	28
115. 0.10.1(2)	in the Third Field Survey	
Fig. 3.10.8(1)	Power Spectrum Density Curve of Tidal Currents	29
116. 0.10.0(1)	in the Third Field Survey	:
Fig. 3.10.8(2)	Power Spectrum Density Curve of Tidal Currents	30
1.15. 0.10.0(E)	in the Third Field Survey	
Fig. 3.10.8(3)	Power Spectrum Density Curve of Tidal Currents	31
118. 0.10.0(0)	in the Third Field Survey	
Fig. 3.10.9(1)	· · · · · · · · · · · · · · · · · · ·	32
	nty-Five Hour Period in the Third Field Survey	
Fig. 3.10.9(2)		33
	nty-Five Hour Period in the Third Field Survey	
Fig. 3.10.10(1)	•	34
Fig. 3.10.10(1)		
Fig. 3.10.10(2)		36
Table 3.10.5(1)	(Flood Tide Period on 10th October 1988)	0,
Table 3.10.5(2)		38.
Table 5.10.5(L)	(Flood Tide Period on 10th October 1988)	
Table 3.10.5(3)		39
14016 0:10:0(0)	(Ebb Tide Period on 11th October 1988)	
Table 3.10.5(4)		40
12016 0.10.0(1)	(Ebb Tide Period on 11th October 1988)	
Fig. 3.10.11(1)	Stream Trace of Current Drag in the Second Field Survey	41
118. 0.10.11(1)	(Flood Tide Period on 10th October 1988)	
Fig. 3.10.11(2)		42
rig. 0.10.11(2)	(Flood Tide Period on 10th October 1988)	**-
Fig. 3.10.11(3)		43
rig. 0.10.11(0)	(Flood Tide Period on 10th October 1988)	
Dia 2 10 11/4)		
Fig. 3.10.11(4)		- 1, ₽ -
Pt 9 10 11/E)	(Ebb Tide Period on 11th October 1988)	45
Fig. 3.10.11(5)		40
T-13 - 9 10 0/1\	(Ebb Tide Period on 11th October 1988)	46
Table 3.10.6(1)	Results of Current Drag in the Third Field Survey	
T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(Ebb Tide Period on 1st February 1989)	47
Table 3.10.6(2)	Results of Current Drag in the Third Field Survey	71
T 1 1 0 10 0(0)	(Ebb Tide Period on 1st February 1989)	18
Table 3.10.6(3)		40
m 1 2 0 10 0(A)	(Flood Tide Period on 7th February 1989)	
Table 3.10.6(4)	Results of Current Drag in the Third Field Survey	
DI 10 40 40/43	(Flood Tide Period on 7th February 1989)	EΛ
Fig. 3.10.12(1)	Stream Trace of Current Drag in the Third Field Survey	OU.
n. 0 to to(o)	(Ebb Tide Period on 1st February 1989)	
Fig. 3.10.12(2)	• • • • • • • • • • • • • • • • • • •	υL
	(Ebb Tide Period on 1st February 1989)	

Fig. 3.10.12(3)	Stream Trace of Current Drag in the Third Field Survey (Ebb Tide Period on 1st February 1989)	
Fig. 3.10.12(4)	Stream Trace of Current Drag in the Third Field Survey (Flood Tide Period on 7st February 1989)	
Fig. 3.10.12(5)	Stream Trace of Current Drag in the Third Field Survey (Flood Tide Period on 7st February 1989)	
Fig. 3.10.12(6)	Stream Trace of Current Drag in the Third Field Survey (Flood Tide Period on 7st February 1989)	
Table 3.10.7(1)	Observations of Vertical Current Profile	
in the Secondary Table 3.10.7(2)	ond Field Survey (Ebb Tide Period on 25th October 1988) Observations of Vertical Current Profile	
in the Secondary Table 3.10.8(1)	ond Field Survey (Flood Tide Period on 26th October 1988) Observations of Vertical Current Profile	
in the Thir Table 3.10.8(2)	d Field Survey (Ebb Tide Period on 2nd February 1989)	
in the Thir	d Field Survey (Flood Tide Period on 8th February 1989)	
Table 3.10.9(1)	Observations of Tidal Elevation at Typical Sites	
Table 3.10.9(2)	Observations of Tidal Elevation at Typical Sites	
Table 3.10.9(3)	Observations of Tidal Elevation at Typical Sites	
Table 3.10.9(4)	Observations of Tidal Elevation at Typical Sites	
Table 3.10.9(5)	Observations of Tidal Elevation at Typical Sites	
Table 3.10.9(6)	Observations of Tidal Elevation at Typical Sites	
Fig. 3.10.13(1)	Variation of Daily Water Temperature near UAN Intake	
Fig. 3.10.13(2)	Variation of Daily Water Temperature near UAN Intake	
Fig. 3.10.13(3)	Variation of Daily Water Temperature near UAN Intake	
Fig. 3.10.13(4)	Variation of Daily Water Temperature near UAN Intake	
Fig. 3.10.13(5)	Variation of Daily Water Temperature near UAN Intake	
Fig. 3.10.14(1)	Variation of Daily Average Water Temperature at Each Layer near UAN Intake	
Fig. 3.10.14(2)	Variation of Daily Average Water Temperature	
	at Each Layer near UAN Intake	
Fig. 3.10.14(3)	Variation of Daily Average Water Temperature	
167	at Each Layer near UAN Intake	
Fig. 3.10.14(4)	Variation of Daily Average Water Temperature at Each Layer near UAN Intake	
Fig. 3.10.14(5)	Variation of Daily Average Water Temperature	
1	at Each Layer near UAN Intake	

Fig.	3.10.15 V	Variation of Monthly Average Water Temperature	76
Fig.	3.10.16(1)	Consecutive Observations of Water Temperature	77
			:
Fig.	3.10.16(2)	Consecutive Observations of Water Temperature	78
		in the Second Field Survey	
Fig.	3.10.16(3)	Consecutive Observations of Water Temperature	79
		in the Second Field Survey	
Fig.	3.10.17(1)	Variation of Daily Water Temperature at Typical Sites	80
	0 10 15(0)	in the Second Field Survey	
Fig.	3.10.17(2)	ter resort of berry most restrict as a reference	81
	0.40.45(0)	in the Second Field Survey	
Fig.	3.10.17(3)	Variation of Daily Water Temperature at Typical Sites	82
		in the Second Field Survey	83
Fig.	3.10.18(1)	Consecutive Observations of Water Temperature	
	0 10 10 (0)	in the Third Field Survey	84
Fig.	3.10.18(2)	Consecutive Observations of Water Temperature	
	0 10 10(0)		0.0
Fig.	3.10.18(3)	Consecutive Observations of Water Temperature	00
,	0.40.40(4)	in the Third Field Survey	06
Fig.	3.10.19(1)	Variation of Daily Water Temperature at Typical Sites	
	0.10.10(0)	in the initial lead but ver	07
Fig.	3.10.19(2)	Variation of Daily Water Temperature at Typical Sites	87.
-	0 10 10(0)	in the Third Field Survey	88
Fig.	3.10.19(3)	Variation of Daily Water Temperature at Typical Sites	00
m 1 1	0 10 10/1)	in the Third Field Survey	89
lable	e 3.10.10(1)		O.V
m 1 1		the Second Field Survey (Ebb Tide Period on 25th October 1988)	90
12016	e 3.10.10(2)		
ም_1 1		e Second Field Survey (Flood Tide Period on 26th October 1988)	91
rabre	•	Vertical Observations of Water Temperature and Salinity	
יים או אוריים אוריים אוריים אוריים		the Third Field Survey (Ebb Tide Period on 2nd February 1989)	0.2
19016		Vertical Observations of Water Temperature and Salinity	<i>32</i>
13.		Third Field Survey (Flood Tide Period on 8th February 1989)	93
rıg.	3.10.20(1)	Consecutive Observations of Salinity	
Q 1	2 10 20(2)	in the Second Field Survey	94
rig.	3.10.20(2)	Consecutive Observations of Salinity	77.
D:~	2 10 20(2)	in the Second Field Survey Consecutive Observations of Salinity	95
rig.	3.10.20(3)		
Ð:	2 10 21/1)	in the Second Field Survey Variation of Daily Salinity at Typical Sites	96
rig.	3.10.21(1)		
G:~	2 10 21/2)	in the Second Field Survey	97
rıg.	3.10.21(2)	Variation of Daily Salinity at Typical Sites	
f7 i ~	3 10 91/91	in the Second Field Survey Variation of Daily Salinity at Typical Sites	98
rıg.	3.10.21(3)	in the Second Rield Company	
185 ~	3 10 99(1)	in the Second Field Survey Consecutive Observations of Salinity	99
LTR.	3.10.22(1)	in the Third Field Survey	
Ri ~	3.10.22(2)	Consecutive Observations of Salinity	100
rag.	0.10.44(4)		
		in the Third Field Survey	

Fig. 3.10.22	(3) Consecutive Observations of Salinity
rig. 3.10.22	in the Third Field Survey
Fig. 3.10.23	
rig. Oilvid	in the Third Field Survey
Fig. 3.10.23	
9	in the Third Field Survey
Fig. 3.10.23	(3) Variation of Daily Salinity at Typical Sites
	in the Third Field Survey
Table 3.10.1	
0.40.4	in the Second Field Survey
Table 3.10.1	
m. i. 10 10 1	in the Second Field Survey 3(1) Tabulation at Each Class of Phytoplankton
Table 3.10.1	3(1) labulation at Each Class of Phytoplankton
Table 3.10.1	of Sampling Water Method in the Second Field Survey 3(2) Tabulation at Each Class of Phytoplankton
TANTE 9.10.1	of Sampling Water Method in the Second Field Survey
Table 3.10.1	
14010 0.10.1	in the Second Field Survey
Table 3.10.1	
	in the Second Field Survey
Table 3.10.1	5(1) Tabulation at Each Class of Zooplankton of
**	Sampling Water Method in the Second Field Survey
Table 3.10.1	
	Sampling Water Method in the Second Field Survey
Table 3.10.1	
m 1	in the Second Field Survey
Table 3.10.1	
Table 3.10.1	in the Second Field Survey 7(1) Tabulation at Each Class of Zooplankton of
lable 9.10.1	Net Method in the Second Field Survey
Table 3.10.1	
10010 0.10.1	Net Method in the Second Field Survey
Table 3.10.1	
	in the Third Field Survey
Table 3.10.1	8(2) Occurrence Phytoplankton of Sampling Water Method 1
	in the Third Field Survey
Table 3.10.1	
	Sampling Water Method in the Third Field Survey
Table 3.10.1	
m 1 3 0 40 0	Sampling Water Method in the Third Field Survey
Table 3.10.2	
Tabla 2 10 9	in the Third Field Survey
Table 3.10.2	0(2) Occurrence Zooplankton of Sampling Water Method in the Third Field Survey
Table 3.10.2	1
TOPIC 9.1V.Z	Sampling Water Method in the Third Field Survey
Table 3.10.2	and the contract of the contra
	Sampling Water Method in the Third Field Survey
Table 3.10.2	
	in the Third Field Survey
	(5)

Table 3.10.22(2)	Occurrence Zooplankton of Net Method	126
	in the Third Field Survey	
Table 3.10.23(1)	Tabulation at Each Class of Zooplankton of	
m 1 2 0 10 00 (0)	Net Method in the Third Field Survey Tabulation at Each Class of Zooplankton of	100
Table 3.10.23(2)	labulation at Each Class of Zooplankton of	140
	Net Method in the Third Field Survey	1.00
Table 3.10.24(1)	Occurrence Benthos in the Second Field Survey	129
Table 3.10.24(2)	Occurrence Benthos in the Second Field Survey	130
Table 3.10.24(3)	Occurrence Benthos in the Second Field Survey	131
Table 3.10.24(4)	Occurrence Benthos in the Second Field Survey	132
Table 3.10.25(1)	Tabulation at Each Division of Benthos	133
	in the Count Diald Convert	
Table 3.10.25(2)	Tabulation at Each Division of Benthos	134
	in the Second Field Survey	
Table 3.10.26(1)	Occurrence Benthos in the Third Field Survey	135
Table 3.10.26(2)	Occurrence Benthos in the Third Field Survey	130
Table 3.10.26(3)	Occurrence Benthos in the Third Field Survey	137
Table 3.10.26(4)	Occurrence Benthos in the Third Field Survey	138
Table 3.10.27(1)	Tabulation at Each Division of Benthos	139
	in the Third Field Survey	
Table 3.10.27(2)	Tabulation at Each Division of Benthos	140
.,	in the Third Rield Survey	
Fig. 3.10.24(1)	Vertical Profile of Coastal Organism	141
2	in the Casend Rield Cumuou	
Fig. 3.10.24(2)	Vertical Profile of Coastal Organism	142
114, 01,0121(=)	in the Second Field Survey	
Fig. 3.10.24(3)	Vertical Profile of Coastal Organism	143
1181 0110121(0)	in the Canad Dield Commer	
Fig. 3.10.24(4)	Vertical Profile of Coastal Organism	144
116. 0.10.11(1)	in the Second Field Survey	
Fig. 3.10.25(1)	In the Second Field Survey Vertical Profile of Coastal Organism	145
118. 0.30.40(1)	in the Third Kield Survey	
Fig. 3.10.25(2)	Vertical Profile of Coastal Organism	146
115. 0.10.20(2)	in the Third Field Survey	
Fig. 3.10.25(3)	Vertical Profile of Coastal Organism	147
TIE. O.TO.CO(O)	in the Third Field Survey	
Fig. 3.10.25(4)	Vertical Profile of Coastal Organism	148
Fig. 0.10.40(4)	in the Third Field Survey	-
	THE CHIEF THERE IS TO DOING ACA.	

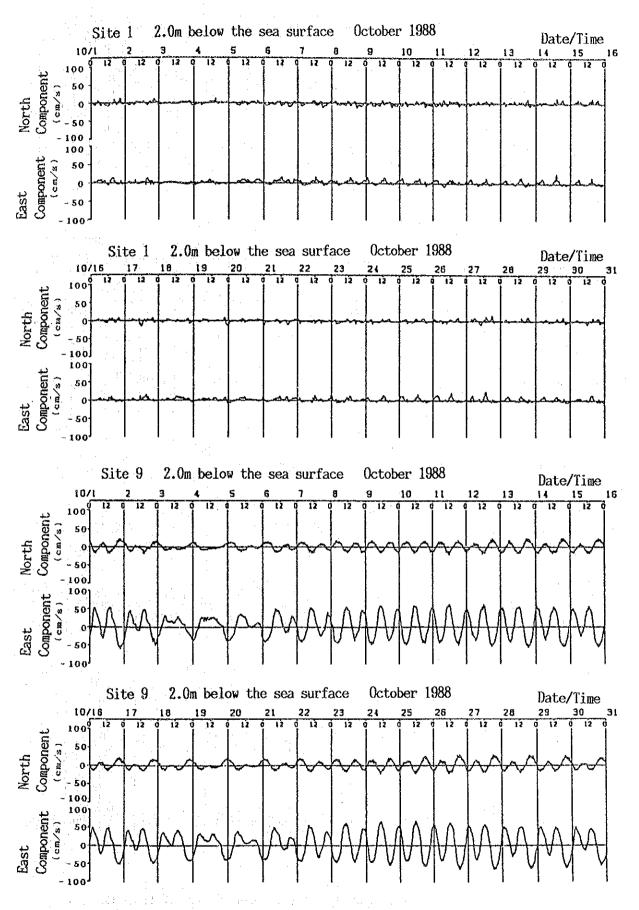


Fig. 3.10.1(1) Consecutive Anchored Observations of Tidal Currents in the Second Field Survey

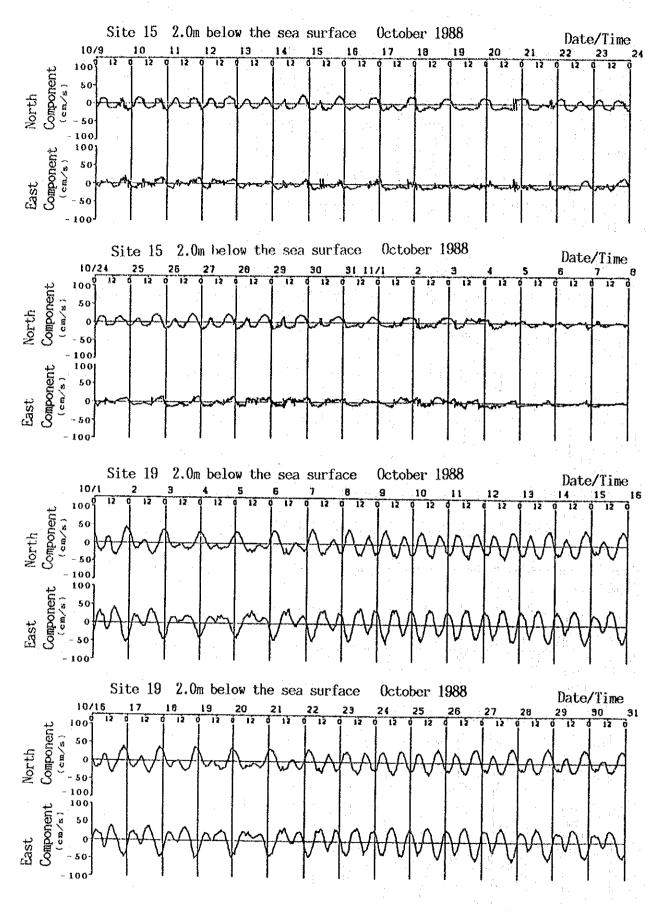


Fig. 3.10.1(2) Consecutive Anchored Observations of Tidal Currents in the Second Field Survey

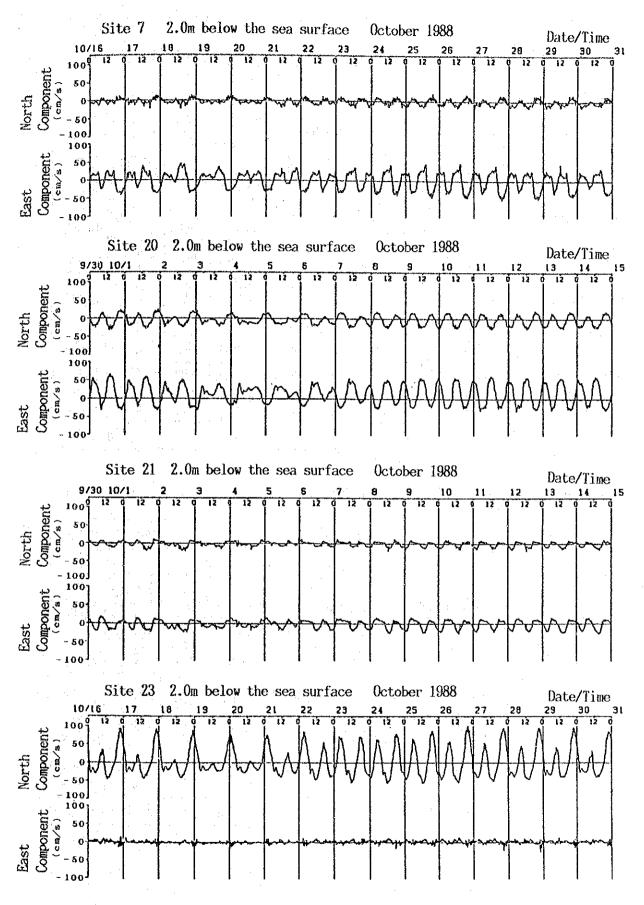


Fig. 3.10.1(3) Consecutive Anchored Observations of Tidal Currents in the Second Field Survey

Table 3.10.1(1) Harmonic Analysis Results of Tidal Currents in the Second Field Survey

Observation Location : Site 1 $\,$ 2.0m below the sea surface Duration of Observation : 1st-30th October 1988

	Elliptic Element							rrent	
	Long	Axis Com	ponent	Short A	xis Comp	onent	Direction 74 deg		
Component	Dir.	Speed	Ph.	Dir.	Speed	Ph.	Speed	Ph.	
Current	(deg)	(cm/s)	(deg)	(deg)	(cm/s)	(deg)	(cm/s)	(deg)	
M ₂	61	3.1	25	151	0.6	295	3.1	23	
S ₂	271	1.6	227	1	0.6	137	1.6	54	
K ₂	271	0.4	227	1	0.2	137	0.4	54	
N ₂	60	0.6	21	150	0.0	91	0.6	2	
K ₁	60	2.4	132	150	0.7	42	2.4	128	
O ₁	285	1.6	253	15	0.0	163	1.4	74	
P ₁	60	0.8	132	150	0.2	42	0.8	128	
Q ₁	278	0.3	231	8	0.1	321	0.3	45	
M4	271	0.2	262	1	0.1	352	0.2	75	
MS4	320	1.0	232	50	0.8	322	0.9	352	
Uo	1.9 cm/s				95 deg			1.8 cm/s	

Observation Location: Site 7 2.0m below the sea surface Duration of Observation: 16th-30th October 1988

		Elliptic Element						rrent	
	Long	Long Axis Component			Short Axis Component			Direction 285 deg	
Component	Dir.	Speed	Ph.	Dir.	Speed	Ph.	Speed	Ph.	
Current	(deg)	(cm/s)	(deg)	(deg)	(cm/s)	(deg)	(cm/s)	(deg)	
M ₂	286	22.9	147	16	1.0	237	22.9	147	
S ₂	285	10.2	224	15	0.3	134	10.2	224	
K ₂	285	2.8	224	15	0.1	134	2.8	224	
N ₂	74	4.4	118	164	0.1	28	3.8	297	
K1	284	17.3	300	14	1.0	210	17.3	300	
01	287	8.5	236	17	0.0	326	8.5	236	
P1	284	5.7	300	14	0.3	210	5.7	300	
Q1	287	1.7	205	17	0.1	295	1.7	205	
M₄	280	2.8	292	10	0.2	202	2.8	292	
MS₄	279	3.6	285	9		15	3.6	285	
Uo	1.9 cm/s				182 deg			-0.4 cm/s	

Table 3.10.1(2) Harmonic Analysis Results of Tidal Currents in the Second Field Survey

Observation Location: Site 9 2.0m below the sea surface Duration of Observation: 1st-30th October 1988

	Elliptic Element						Main Current		
	Long Axis Component			Short Axis Component			Direction 287 deg		
Component	Dir.	Speed	Ph.	Dir.	Speed	Ph.	Speed	Ph.	
Current	(deg)	(cm/s)	(deg)	(deg)	(cm/s)	(deg)	(cm/s)	(deg)	
M ₂	287	34.5	141	17	0.3	231	34.5	141	
S ₂	286	16.0	186	16	0.3	276	16.0	186	
K ₂	286	4.4	186	16	0.1	276	4.4	186	
N ₂	74	6.7	128	164	0.4	218	5.6	310	
K ₁	288	28.1	274	18	0.5	184	28.1	274	
O ₁	287	13.0	233	17	0.7	323	13.0	233	
P ₁	288	9.4	274	18	0.2	184	9.4	274	
Q ₁	287	2.5	212	17	0.2	302	2.5	212	
M ₄	299	1.0	132	29	0.1	42	1.0	134	
MS ₄	289	1.0	73	19	0.1	343	1.0	73	
Uo	3.1 cm/s			71 deg			-2.5 cm∕s		

Observation Location: Site 15 2.0m below the sea surface Duration of Observation: 9th October-7th November 1988

		E	Main Current Direction					
	Long	Axis Com	xis Component Short Axis		Axis Com	xis Component		deg
Component	Dir.	Speed	Ph.	Dir.	Speed	Ph.	Speed	Ph.
Current	(deg)	(cm/s)	(deg)	(deg)	(cm/s)	(deg)	(cm/s)	(deg)
M ₂	349	8.8	126	79	4.0	216	7.9	140
S ₂	15	4.0	205	105	1.6	295	4.0	206
K ₂	15	1.1	205	105	0.4	295	1.1	206
N ₂	339	1.8	88	69	0.6	178	1.4	103
K ₁	35	13.2	256	125	2.2	166	12.6	259
O ₁	13	6.2	221	103	1.2	311	6.2	222
P ₁	35	4.4	256	125	0.7	166	4.2	259
Q ₁	6	1.2	199	96	0.3	289	1.2	202
M ₄	14	0.8	290	104	0.6	200	0.8	286
MS ₄	45	0.7	237	135	0.3	147	0.6	251
Uo		2.3 cm/s 238 deg			-1.8	cm/s		

Table 3.10.1(3) Harmonic Analysis Results of Tidal Currents in the Second Field Survey

Observation Location: Site 19 2.0m below the sea surface Duration of Observation: 1st-30th October 1988

		F	lliptic	Element				Main Current Direction			
	Long	Axis Com	ponent	Short A	xis Comp	onent	308	deg			
Component Current	Dir. (deg)	Speed (cm/s)	Ph. (deg)	Dir. (deg)	Speed (cm/s)	Ph. (deg)	Speed (cm/s)	Ph. (deg)			
M ₂ S ₂ K ₂ N ₂	308 308 308 52	32.0 13.7 3.7 6.2	162 217 217 217 141	38 38 38 142	$\begin{array}{c} 0.7 \\ 0.5 \\ 0.1 \\ 0.6 \end{array}$	252 307 307 231	32.0 13.7 3.7 1.5	162 217 217 343			
K ₁ O ₁ P ₁ Q ₁	309 307 309 307	28.9 14.6 9.6 2.8	297 248 297 224	39 37 39 37	0.7 0.3 0.2 0.1	27 338 27 314	28.9 14.6 9.6 2.8	297 248 297 224			
M4 MS4	308 306	1.4 1.7	323 341	38 36	$\begin{array}{c} 0.3 \\ 0.3 \end{array}$	233 251	1.4 1.7	323 341			
Uo	1.8 cm/s				118 deg		-1.7	cm/s			

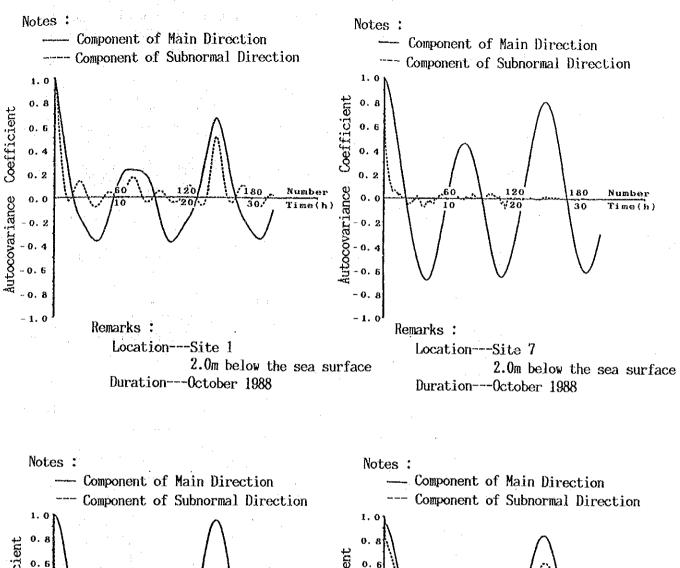
Observation Location: Site 20 2.0m below the sea surface Duration of Observation: 30th September-14th October 1988

		E	lliptic	Element			Main Current Direction	
	Long	Axis Com	ponent	Short	Axis Com	ponent	297 deg	
Component Current	Dir (deg)	Speed (cm/s)	Ph. (deg)	Dir. (deg)	Speed (cm/s)	Ph. (deg)	Speed (cm/s)	Ph. (deg)
M ₂ S ₂ K ₂ N ₂	296 294 294 65	30.6 14.4 3.9 5.9	162 207 207 207 148	26 24 24 155	0.5 0.3 0.1 0.5	252 297 297 238	30.6 14.4 3.9 3.6	162 207 207 334
K ₁ O ₁ P ₁ Q ₁	298 302 298 301	21.4 8.7 7.1 1.7	295 246 295 221	28 32 28 31	0.4 0.2 0.1 0.1	205 336 205 311	21.4 8.7 7.1 1.7	295 246 295 221
Ma MSa	275 51	1.2 0.6	122 332	5 141	$\begin{array}{c} 0.1 \\ 0.3 \end{array}$	212 242	1.1 0.4	123 108
Uo		13.2 cm/	S		109 deg		-13.1	cm/s

Table 3.10.1(4) Harmonic Analysis Results of Tidal Currents in the Second Field Survey

Observation Location: Site 21 2.0m below the sea surface Duration of Observation: 30th September-14th October 1988

		E	lliptic	Element			Main Current Direction	
	Long	Axis Com	ponent	Short A	xis Comp	onent		deg
Component	Dir.	Speed	Ph.	Dir.	Speed	Ph.	Speed	Ph.
Current	(deg)	(cm/s)	(deg)	(deg)	(cm/s)	(deg)	(cm/s)	(deg)
M ₂	63	11.6	200	153	$\begin{array}{c c} 0.9 \\ 0.3 \\ 0.1 \\ 0.3 \end{array}$	290	11.6	200
S ₂	60	5.6	243	150		153	5.6	243
K ₂	60	1.5	243	150		153	1.5	243
N ₂	64	2.2	178	154		268	2.2	177
K ₁	60	9.5	332	150	0.2	62	9.5	332
O ₁	60	4.4	269	150	0.9	179	4.4	269
P ₁	60	3.2	332	150	0.1	62	3.2	332
Q ₁	62	0.8	237	152	0.3	147	0.8	237
M4	64	2.7	275	154	0.3	5	2.7	275
MS4	57	2.4	271	147	0.1	1	2.4	271
Uo	2.7 cm/s				244 deg		-2.7	cm/s


Observation Location: Site 23 2.0m below the sea surface Duration of Observation: 16th-30th October 1988

		E	lliptic	Element			Main Current Direction			
	Long	Axis Com	ponent	Short	Axis Com	ponent		deg		
Component	Dir.	Speed	Ph.	Dir.	Speed (cm/s)	Ph.	Speed	Ph.		
Current	(deg)	(cm/s)	(deg)	(deg)		(deg)	(cm/s)	(deg)		
M ₂	357	37.5	175	87	0.0	265	37.5	175		
S ₂	355	15.3	248	85	0.4	338	15.3	248		
K ₂	355	4.2	248	85	0.1	338	4.2	248		
N ₂	3	7.3	135	93	0.2	225	7.2	135		
K ₁	358	30.2	304	88	0.0	34	30.2	304		
O ₁	358	14.5	255	88	0.3	165	14.5	255		
P ₁	358	10.1	304	88	0.0	34	10.1	304		
Q ₁	358	2.8	231	88	0.1	141	2.8	231		
M4	357	7.2	357	87	0.6	87	7.2	357		
MS4	6	5.5	35	96		125	5.5	35		
Uo		3.2 cm/s			21 deg		-2.9	cm/s		

Table 3.10.2 Predicted Hydrographic Conditions for Spring Tide Period in the Second Field Survey

Si te	1	7	9	15	19	20	21	23
Parameter Time(h)	Dir. Sp. (deg) (cm/s)	Dir. Sp. (deg) (cm/s)	Dir. Sp. (deg) (cm/s)	Dir. Sp. (deg) (cm/s)	Dir. Sp. (deg) (cm/s)	Dir. Sp. (deg) (cm/s)	Dir. Sp. (deg) (cm/s)	Dir. Sp. (deg) (cm/s)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 22 23	67.4 7.2 59.5 7.1 49.7 5.8 30.0 3.7 332.7 2.4 280.2 3.9 262.4 5.7 253.0 6.4 244.7 5.8 231.5 4.0 113.8 3.0 113.8 3.0 113.8 3.0 94.4 5.1 88.7 6.5 87.8 6.7 91.0 5.9 100.5 4.5 120.8 3.2 145.9 2.8 145.0 2.8 145.1 2.9 113.9 3.3 90.3 4.7	108.6 31.0 115.4 13.3 269.5 9.7 280.6 31.7 282.7 48.8 283.6 57.3 284.0 55.2 284.1 43.4 283.2 24.8 268.8 4.3 112.6 14.2 110.9 26.1 111.6 29.7 113.7 25.3 119.4 15.7 147.5 5.2 254.9 5.6 271.1 8.0 268.4 3.7 108.6 6.9 105.4 20.6 105.4 33.4 106.0 41.2	105.0 36.1 97.8 6.9 289.2 27.4 288.1 59.3 288.0 81.5 288.2 89.1 288.6 80.4 289.8 57.5 294.0 25.9 83.4 8.3 101.7 35.3 103.7 51.7 104.3 54.6 104.4 45.5 103.8 28.7 100.5 28.7 100.5 4.6 306.4 3.0 295.0 7.0 4.7 1.1 102.3 15.2 104.6 34.5 105.3 51.2 105.5 59.2	210.1 3.0 339.9 6.2 355.0 15.3 1.6 23.1 7.4 27.8 13.8 28.6 22.4 25.4 35.6 19.2 61.8 12.3 115.3 9.3 160.9 12.6 184.4 16.8 200.9 19.4 215.6 20.1 229.2 19.6 240.6 18.2 247.2 16.1 245.5 13.4 231.1 11.2 207.7 11.3 191.0 13.5 184.0 15.2 182.9 14.4	129.3 51.4 130.8 30.0 233.2 1.6 305.8 33.7 307.3 62.9 308.0 81.9 308.6 86.5 309.2 76.2 310.1 53.5 313.0 24.1 108.9 5.9 125.0 29.1 126.7 42.0 127.4 43.3 127.8 34.7 128.1 20.8 127.8 34.7 128.1 20.8 127.5 0.8 41.3 0.5 123.9 9.9 126.5 26.1 127.5 43.8 128.0 57.0	114.1 59.4 113.3 41.4 108.7 14.7 303.0 15.3 298.8 41.4 298.3 57.9 298.6 61.2 299.6 50.5 303.1 28.9 9.8 3.8 108.2 26.0 112.2 45.9 113.6 55.2 114.4 52.8 115.2 40.9 116.3 24.3 119.6 8.6 263.9 1.2 276.4 1.1 115.2 8.7 114.4 25.5 114.3 44.4 114.3 59.5	237.9 25.7 239.3 24.4 240.6 18.2 243.3 8.0 54.7 4.2 59.8 15.7 61.0 24.2 61.8 27.7 62.5 25.8 63.0 19.0 63.3 9.1 250.9 1.4 246.8 10.2 247.8 15.4 257.9 13.5 257.9 3.1 257.9 3.1 250.9 1.4 249.5 16.4 252.3 13.5 257.8 3.1 220 1.4 67.6 1.4 212.2 2.3 229.1 8.5 233.8 16.0	174.8 60.4 173.9 42.6 166.8 12.5 1.5 24.6 358.5 60.3 357.9 87.1 357.7 99.2 357.7 94.2 358.0 73.7 359.0 42.8 7.8 9.0 172.1 20.6 174.6 39.4 175.2 44.8 175.4 37.7 175.4 22.2 174.0 4.6 357.0 8.4 356.8 12.2 358.8 4.8 174.5 12.1 175.2 33.5 175.3 52.8

Si te	1	7	9	15	19	20	21	23
Parameter Time(h)	Dir. Sp. (deg) (cm/s)	Dir. Sp. (deg) (cm/s)	Dir. Sp. (deg) (cm/s)	Dir. Sp. (deg) (cm/s)	Dir. Sp. (deg) (cm/s)	Dir. Sp. (deg) (cm/s)	Dir. Sp. (deg) (cm/s)	Dir. Sp. (deg) (cm/s)
0 1 2 3 4 5 6 7 8 9	73.1 6.6 69.9 5.8 67.8 4.0 68.6 1.5 229.8 0.9 232.6 2.7 227.4 3.3 214.8 2.9 175.5 1.9 110.8 2.6 87.1 4.5 78.0 6.1	115.0 18.1 170.4 3.6 274.0 15.4 280.1 27.7 282.1 32.6 283.1 28.7 283.2 17.0 250.2 0.8 107.7 16.0 107.7 28.5 108.5 33.5 110.3 29.7	103.3 24.2 325.8 2.1 289.5 26.3 288.6 43.2 288.7 47.9 289.5 39.1 293.1 99.2 87.8 7.0 102.6 31.3 104.2 48.2 104.6 52.9 104.5 44.1	236.1 8.5 282.3 8.3 314.8 10.6 333.4 12.1 347.6 11.2 5.2 7.9 54.1 3.9 135.6 6.0 160.3 10.6 173.7 13.4 186.5 13.6 204.3 11.3	128.9 35.2 130.7 15.2 303.7 8.4 307.4 29.3 308.3 41.9 309.0 42.8 310.1 31.8 112.0 11.9 126.4 32.8 127.5 45.4 128.2 46.3	113.9 45.7 113.4 25.9 97.7 2.7 298.4 17.9 297.7 30.1 298.3 30.7 301.0 19.6 35.1 2.2 109.9 23.8 112.6 44.2 113.5 56.3 113.9 56.9	242.7 19.8 245.0 16.8 249.5 10.0 292.3 1.8 52.9 7.3 59.3 13.0 62.6 11.5 75.8 4.8 225.3 4.3 237.5 12.6 240.6 18.3	174.5 42.5 173.0 23.0 16.4 3.8 358.7 29.9 357.8 49.0 357.6 55.7 357.6 55.7 357.9 28.8 26.6 2.6 173.1 24.1 174.5 43.2 174.7 49.9

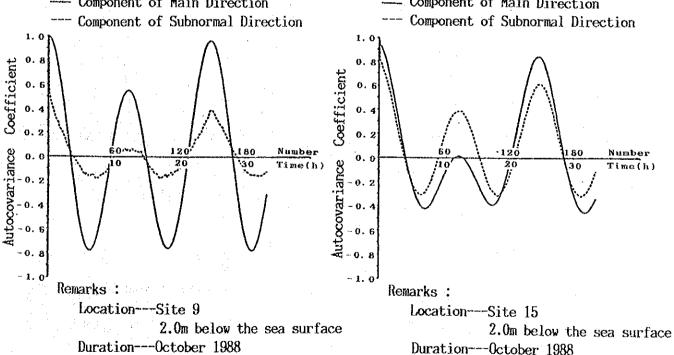
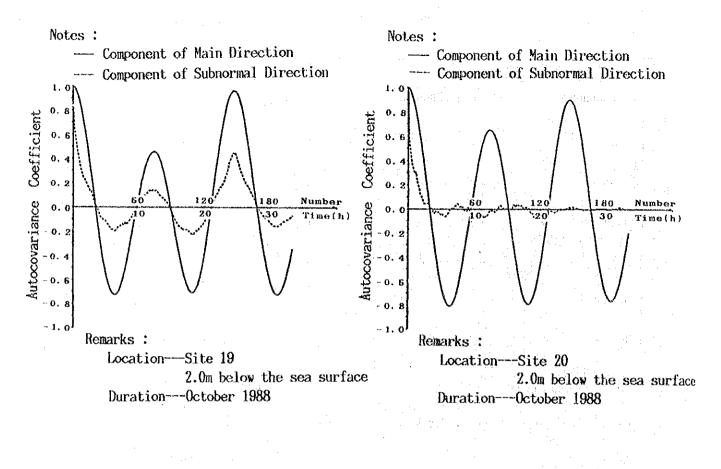



Fig. 3.10.2(1) Auto-covariance Curve of Tidal Currents in the Second Field Survey

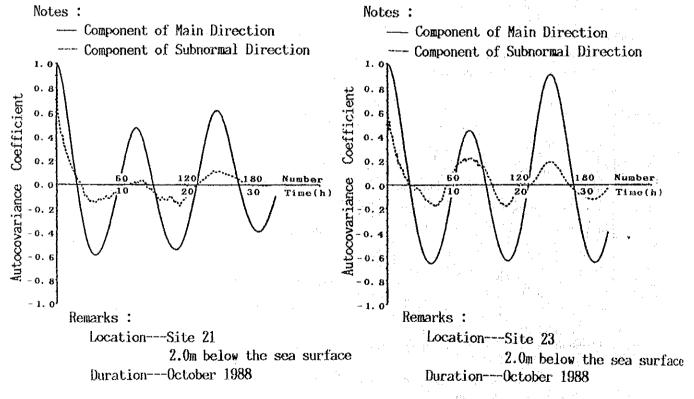


Fig. 3.10.2(2) Auto-covariance Curve of Tidal Currents in the Second Field Survey

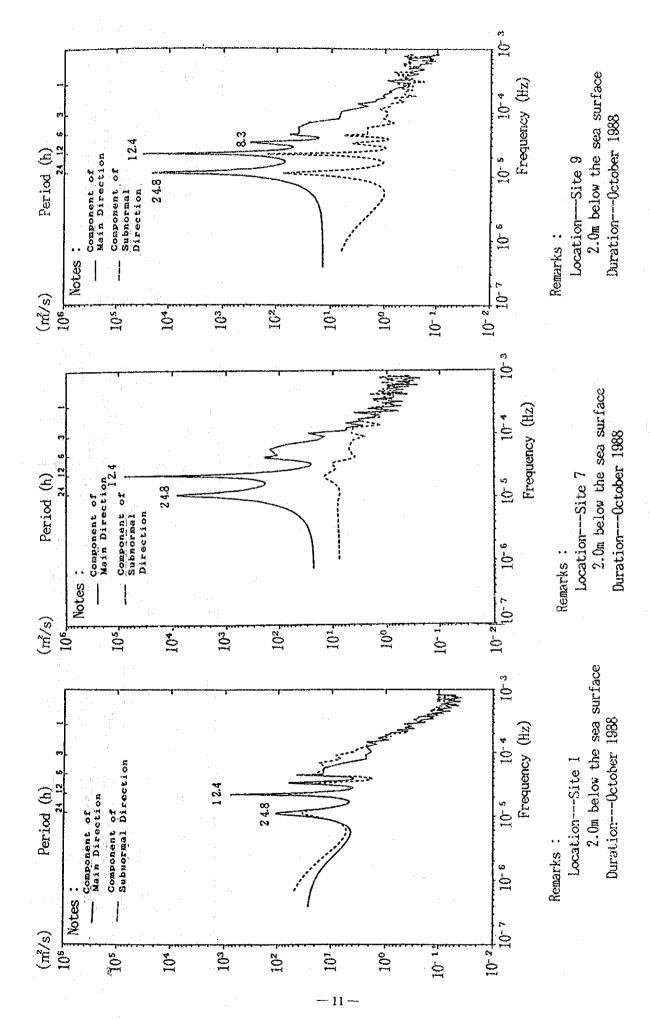


Fig. 3.10.3(1) Power Spectrum Density Curve of Tidal Currents in the Second Field Survey

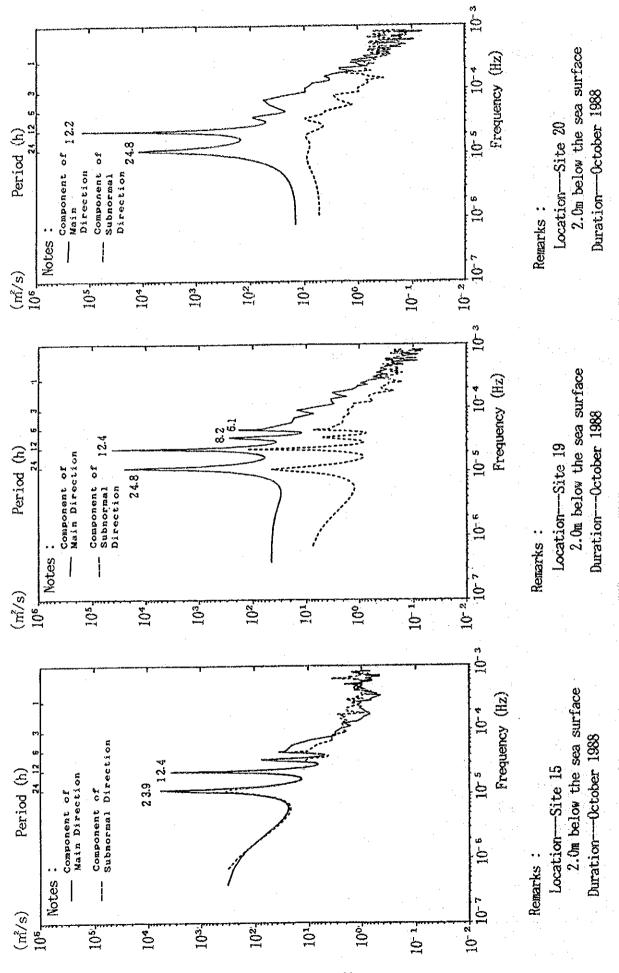


Fig. 3.10.3(2) Power Spectrum Density Curve of Tidal Currents in the Second Field Survey

--- 12 ---

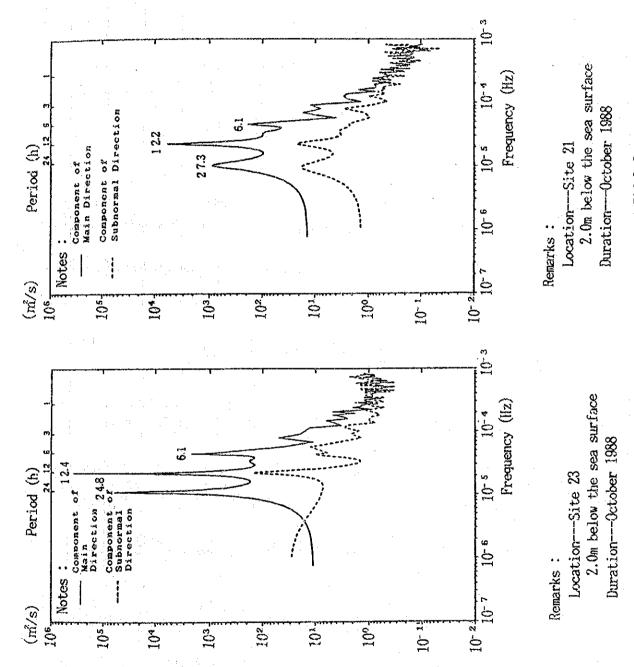


Fig. 3.10.3(3) Power Spectrum Density Curve of Tidal Currents in the Second Field Survey

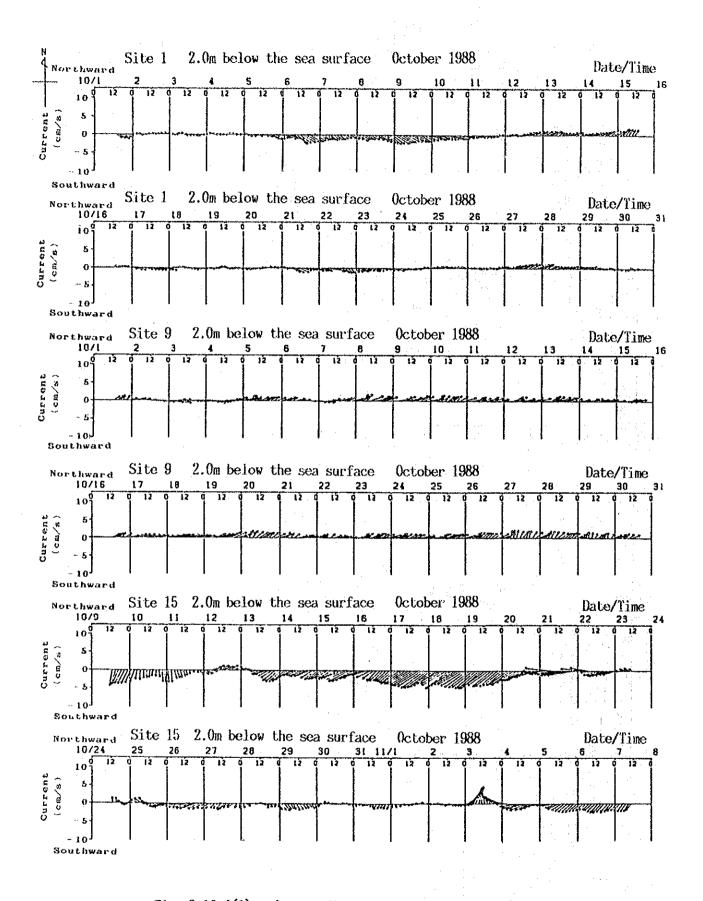


Fig. 3.10.4(1) Average Movement of Tidal Currents over a Twenty-Five Hour Period in the Second Field Survey

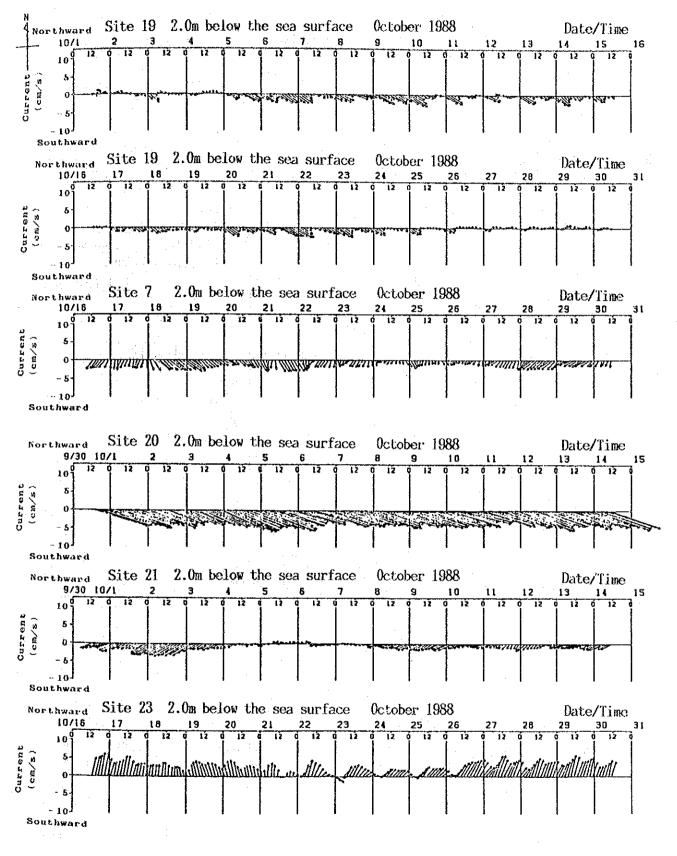


Fig. 3.10.4(2) Average Movement of Tidal Currents over a Twenty-Five Hour Period in the Second Field Survey

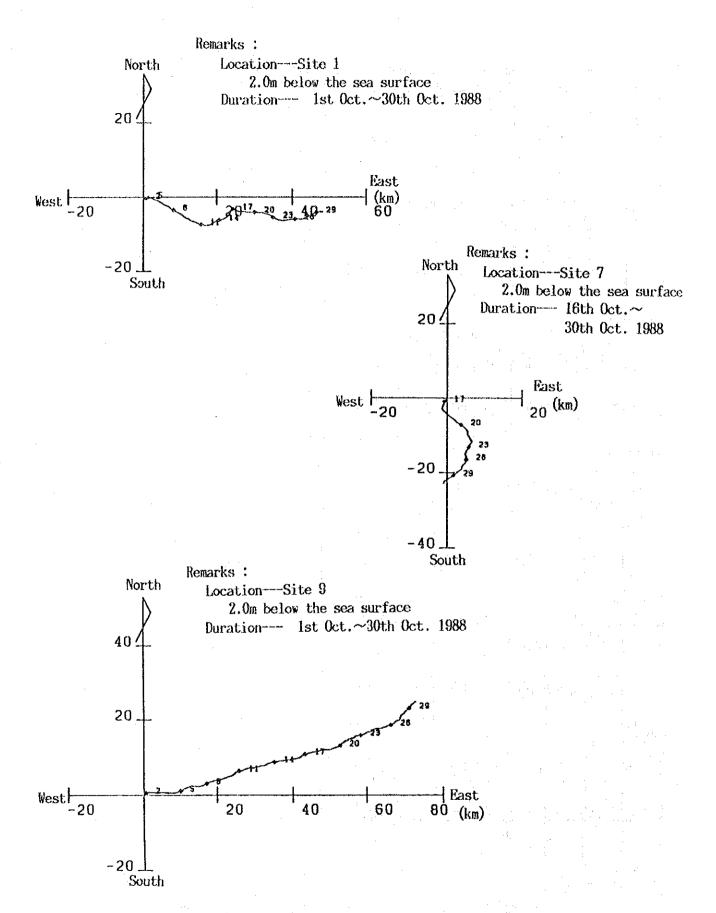
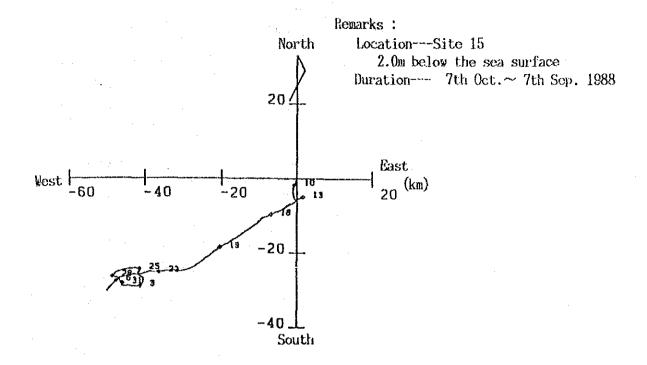



Fig. 3.10.5(1) Advance Vector of Tidal Currents in the Second Field Survey

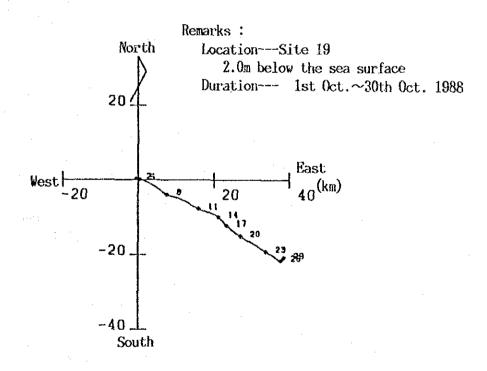


Fig. 3.10.5(2) Advance Vector of Tidal Currents in the Second Field Survey

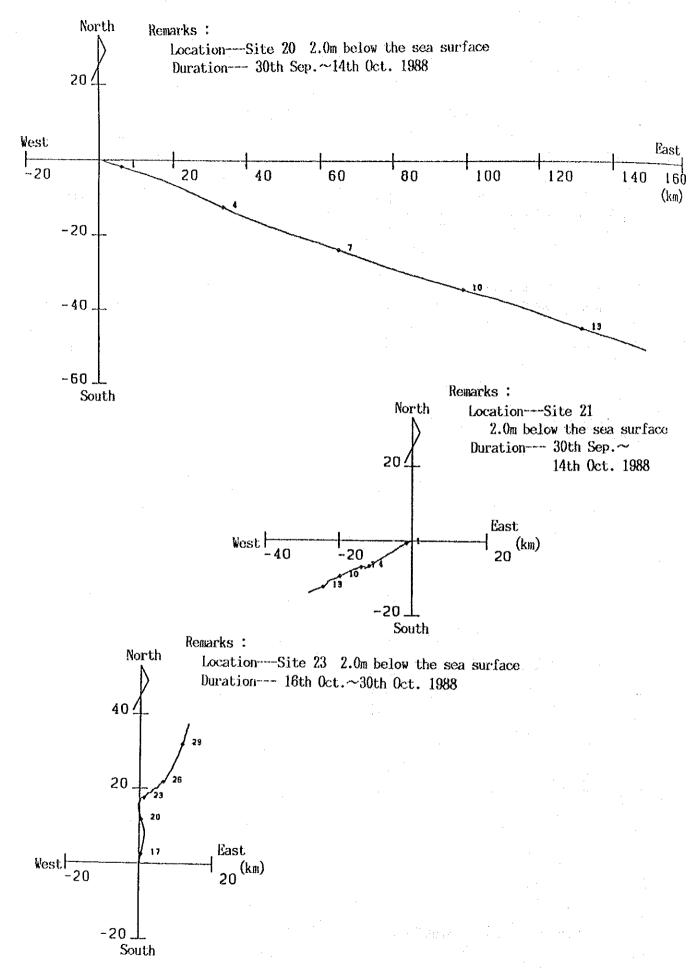


Fig. 3.10.5(3) Advance Vector of Tidal Currents in the Second Field Survey

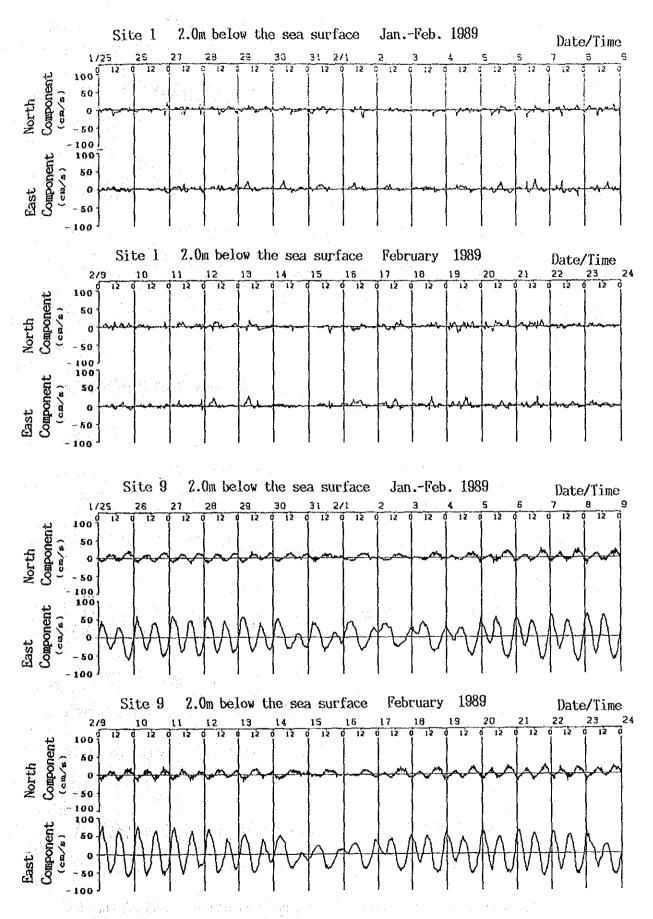


Fig. 3.10.6(1) Consecutive Anchorted Observations of Tidal Currents in the Third Field Survey

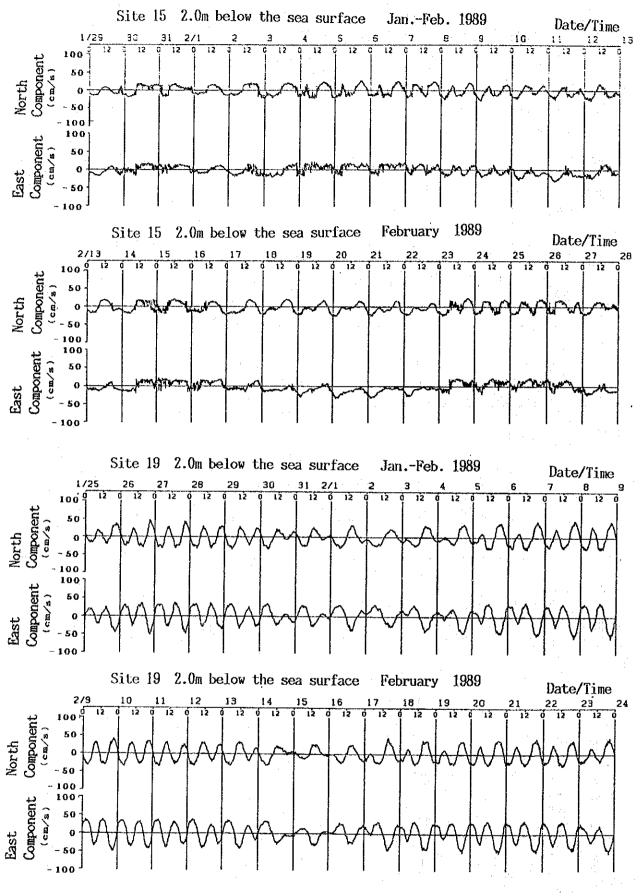


Fig. 3.10.6(2) Consecutive Anchorted Observations of Tidal Currents in the Third Field Survey

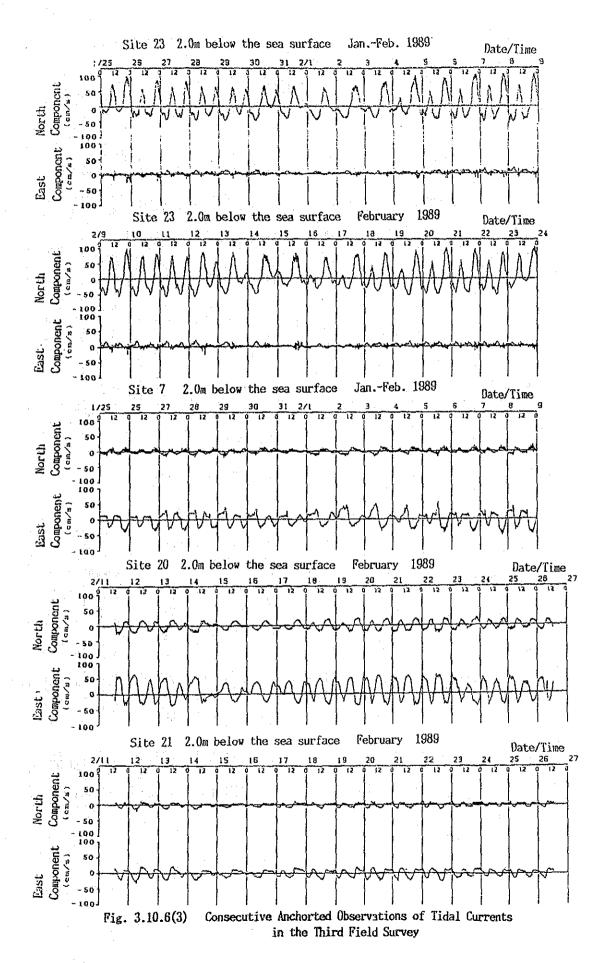


Table 3.10.3(1) Harmonic Analysis Results of Tidal Currents in the Third Field Survey

Observation Location: Site 1 2.0m below the sea surface Duration of Observation: 25th January-23th February 1989

		E	lliptic	Element			Main Current Direction			
	Long	Axis Com	ponent	Short A	xis Comp	onent	62	deg		
Component Current	Dir. (deg)	Speed (cm/s)	Ph. (deg)	Dir. (deg)	Speed (cm/s)	Ph. (deg)	Speed (cm/s)	Ph. (deg)		
M ₂ S ₂ K ₂ N ₂	44 44 44 43	2.7 1.0 0.3 0.5	31 115 115 346	134 134 134 133	1.2 0.4 0.1 0.2	301 25 25 25 256	2.6 1.0 0.3 0.5	23 108 108 338		
K ₁ O ₁ P ₁ Q ₁	271 64 271 83	1.8 1.6 0.6 0.3	325 159 325 160	1 154 1 173	0.0 0.1 0.0 0.1	55 69 55 250	1.6 1.6 0.5 0.3	145 159 145 150		
M ₄ MS ₄	282 282	$\begin{array}{c} 0.6 \\ 1.0 \end{array}$	163 234	12 12	0.1 0.3	253 324	0.5 0.8	334 42		
U _o	1.3 cm/s				82 deg		1.2	cm/s		

Observation Location: Site 7 2.0m below the sea surface Duration of Observation: 25th January-8th February 1989

		Main Cu						
	Long	Axis Com	ponent	Short	Axis Com	ponent	Directi 285	on deg
Component	Dir.	Speed	Ph.	Dir.	Speed	Ph.	Speed	Ph.
Current	(deg)	(cm/s)	(deg)	(deg)	(cm/s)	(deg)	(cm/s)	(deg)
M ₂	285	20.1	116	15	0.9	206	20.1	116
S ₂	283	8.6	224	13	0.2	314	8.6	224
K ₂	283	2.3	224	13	0.1	314	2.3	224
N ₂	74	3.9	70	164	0.0	160	3.3	250
K ₁	288	11.4	291	18	0.1	201	11.4	291
O ₁	283	6.2	248	13	0.8	338	6.2	248
P ₁	288	3.8	291	18	0.0	201	3.8	291
Q ₁	280	1.2	226	10	0.2	316	1.2	227
M ₄	280	2.3	179	10	0.1	89	2.3	179
MS ₄	278	3.9	323	8	0.1	233	3.9	323
Uo	0.5 cm/s				159 deg		-0.3	cm/s

Table 3.10.3(2) Harmonic Analysis Results of Tidal Currents in the Third Field Survey

Observation Location: Site 9 2.0m below the sea surface Duration of Observation: 25th January-23th February 1989

j e		Е	lliptic	Element				Main Current Direction			
	Long	Axis Com	ponent	Short A	xis Comp	onent	Directi 282	on deg			
Component	Dir.					Ph.	Speed	Ph.			
Current	(deg)					(deg)	(cm/s)	(deg)			
M ₂	282	34.6	125	12	0.3	215	34.6	125			
S ₂	281	21.4	219	11	0.2	129	21.3	219			
K ₂	281	5.8	219	11	0.1	129	5.8	219			
N ₂	78	6.7	86	168	0.2	176	6.1	267			
K ₁	283	17.0	283	13	0.2	13	17.0	283			
O ₁	285	9.8	238	15	0.0	148	9.8	238			
P ₁	283	5.6	283	13	0.1	13	5.6	283			
Q ₁	285	1.9	215	15	0.0	125	1.9	215			
M4	80	$\begin{array}{c} 0.4 \\ 1.2 \end{array}$	287	170	0.2	197	0.4	98			
MS4	295		76	25	0.2	346	1.1	78			
Uo	2.5 cm/s				39 deg		-1.1	cm/s			

Observation Location: Site 15 2.0m below the sea surface Duration of Observation: 29th January-27th February 1989

		E	lliptic	Element			Main Current Direction	
	Long	Axis Com	ponent	Short	Axis Com	ponent		deg
Component Current	Dir. (deg)				Speed (cm/s)	Ph. (deg)	Speed (cm/s)	Ph. (deg)
M ₂ S ₂ K ₂ N ₂	356 10 10 347	9.1 5.8 1.6 1.8	118 218 218 218 64	86 100 100 77	4.8 2.2 0.6 0.9	208 308 308 154	8.6 5.8 1.6 1.6	130 221 221 79
K ₁ O ₁ P ₁ Q ₁	35 6 35 3	12.5 6.0 4.1 1.2	265 226 265 207	125 96 125 93	0.9 0.7 0.3 0.2	355 316 355 297	11.8 5.9 3.9 1.1	263 227 263 210
M4 MS4	273 28	0.5 0.8	74 266	3 118	$\begin{array}{c} 0.4 \\ 0.4 \end{array}$	164 176	0.4 0.7	184 273
Uo		2.4 cm/s			230 deg		-2.0	cm/s

Table 3.10.3(3) Harmonic Analysis Results of Tidal Currents in the Third Field Survey

Observation Location: Site 19 2.0m below the sea surface Duration of Observation: 25th January-23th February

		E	lliptic	Element			Main Cu Directi	
	Long	Axis Com	ponent	Short A	xis Comp	onent		deg
Component Current	Dir. (deg)	Speed (cm/s)	Ph. (deg)	Dir. (deg)	Speed (cm/s)	Ph. (deg)	Speed (cm/s)	Ph. (deg)
M ₂ S ₂ K ₂ N ₂	310 310 310 50	31.7 15.8 4.3 6.1	136 230 230 92	40 40 40 140	1.0 0.7 0.2 0.5	226 320 320 182	31.7 15.8 4.3 1.2	136 230 230 299
K ₁ O ₁ P ₁ Q ₁	310 309 310 309	17.3 11.2 5.8 2.2	297 246 297 221	40 39 40 39	0.5 0.5 0.2 0.1	27 336 27 311	17.3 11.2 5.8 2.2	297 246 297 221
Ma MS4	309 308	$\begin{array}{c} 1.5 \\ 2.7 \end{array}$	286 350	39 38	$\begin{array}{c} 0.3 \\ 0.1 \end{array}$	196 260	1.5 2.7	286 350
Uo	0.8 cm/s				117 deg		-0.7	cm/s

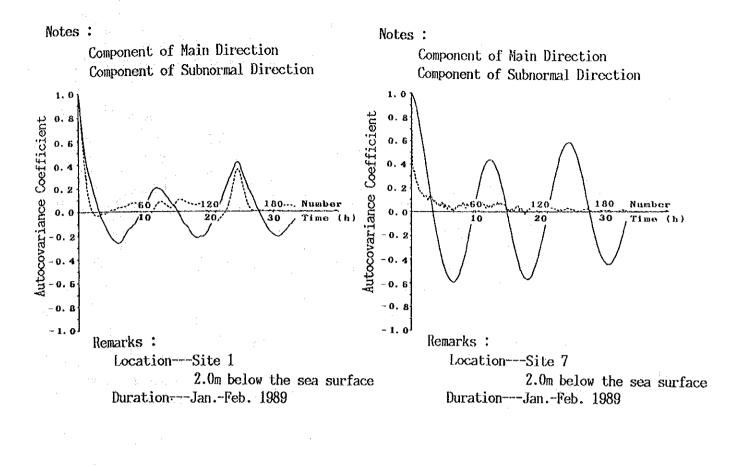
Observation Location: Site 20 2.0m below the sea surface Duration of Observation: 11th-26th February 1989

		E	lliptic	Element			Main Cu Directi	
	Long	Axis Com	ponent	Short	Axis Com	ponent	293	deg
Component Current	Dir. (deg)	Speed (cm/s)	Ph. (deg)	Dir. (deg)	Speed (cm/s)	Ph. (deg)	Speed (cm/s)	Ph. (deg)
M ₂ S ₂ K ₂ N ₂	292 292 292 292 68	33.0 15.5 4.2 6.4	142 218 218 112	22 22 22 158	1.0 0.5 0.1 0.3	232 308 308 202	32.9 15.5 4.2 4.5	142 218 218 295
K ₁ O ₁ P ₁ Q ₁	294 300 294 300	15.6 7.3 5.2 1.4	295 268 295 255	24 30 24 30	0.4 0.7 0.1 0.2	25 178 25 165	15.5 7.3 5.2 1.4	295 269 295 256
M4 MS4	84 293	$\begin{array}{c} 1.1 \\ 3.0 \end{array}$	268 339	174 23	0.2 0.2	178 249	$\begin{array}{c} 0.9 \\ 3.0 \end{array}$	84 339
Uo	9.9 cm/s				96 deg		-9.5	cm/s

Table 3.10.3(4) Harmonic Analysis Results of Tidal Currents in the Third Field Survey

Observation location: Site 21 2.0m below the sea surface Duration of Observation: 11th-26th February 1989

	Elliptic Element						Main Current	
	Long	Axis Com	ponent	Short A	xis Comp	onent	Direction 65 deg	
Component Current	Dir. (deg)	Speed (cm/s)	Ph. (deg)	Dir. (deg)	Speed (cm/s)	Ph. (deg)	Speed (cm/s)	Ph. (deg)
M ₂ S ₂ K ₂ N ₂	67 67 67 67	11.4 5.0 1.4 2.2	181 270 270 133	157 157 157 157 157	0.1 0.3 0.1 0.1	271 180 180 223	11.4 5.0 1.4 2.2	181 270 270 133
K ₁ O ₁ P ₁ Q ₁	63 61 63 61	4.7 5.5 1.6 1.1	332 297 332 280	153 151 153 151	0.4 0.2 0.1 0.0	242 207 242 190	4.7 5.5 1.6 1.1	331 297 331 279
M4 MS4	61 60	1.5 3.2	224 280	151 150	0.6 0.4	314 10	1.5 3.2	225 281
Uo		0.4 cm/	s		223 deg		-0.3	cm/s

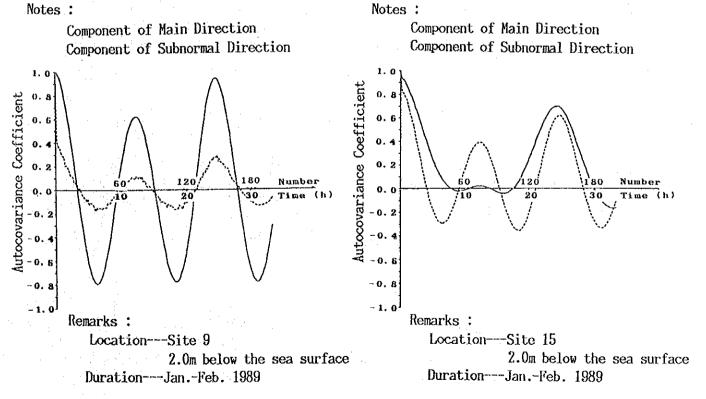
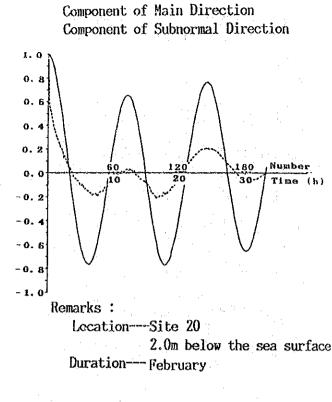

Observation Location: Site 23 2.0m below the sea surface Duration of Observation: 25th January-23rd February 1989

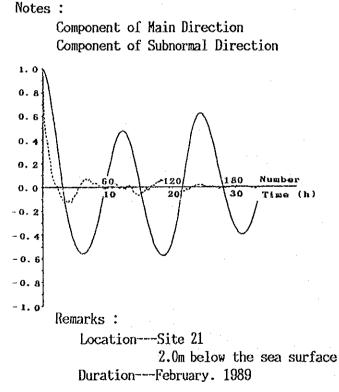
	Elliptic Element					Main Current Direction			
	Long	Axis Com	ponent	Short	Axis Com	ponent	356	356 deg	
Component	Dir.	Speed	Ph.	Dir.	Speed	Ph.	Speed	Ph.	
Current	(deg)	(cm/s)	(deg)	(deg)	(cm/s)	(deg)	(cm/s)	(deg)	
M ₂	355	38.4	157	85	0.5	247	38.4	157	
S ₂	355	20.1	248	85	0.3	158	20.1	248	
K ₂	355	5.5	248	85	0.1	158	5.5	248	
N ₂	5	7.5	108	95	0.1	18	7.4	108	
K ₁	355	21.0	302	85	0.3	212	21.0	302	
O ₁	0	13.6	259	90	0.6	169	13.5	259	
P ₁	355	7.0	302	85	0.1	212	7.0	302	
Q ₁	2	2.6	238	92	0.1	148	2.6	238	
M4	3	5.4	323	93	0.5	53	5.3	322	
MS4	358	8.0	17	88		107	8.0	17	
Vo		5.4 cm/	S		24 deg	. 4	-4.8	cm/s	

Table 3.10.4 Predicted Hydrographic Conditions for Spring Tide Period in the Third Field Survey

						-		V
Site	. 1	7	9	15	19	20	21	23
Parameter Time(h)	Dir. Sp. (deg) (cm/s)	Dir. Sp. (deg) (cm/s)	Dir. Sp. (deg) (cm/s)	Dir. Sp. (deg) (cm/s)	Dir. Sp. (deg) (cm/s)	Dir, Sp. (deg) (cm/s)	Dir. Sp. (deg) (cm/s)	Dir. Sp. (deg) (cm/s)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	75.2 7.1 64.4 7.1 54.3 6.2 42.1 4.5 17.7 2.5 305.1 1.6 259.0 2.9 236.5 4.0 231.1 3.2 227.0 1.7 32.3 0.2 37.0 1.7 32.3 0.2 37.0 1.7 38.5 2.9 22.8 2.2 13.9 1.0 198.9 0.6 183.0 2.0 198.3 3.0 149.5 3.8 127.3 4.5 105.9 5.4 88.5 6.4	113.8 17.2 226.9 3.2 278.2 20.7 282.1 35.5 283.8 43.1 285.1 42.0 286.6 33.0 289.7 18.6 319.9 3.0 97.2 11.3 101.8 19.3 103.7 20.4 105.4 15.0 110.1 5.5 277.4 4.8 282.5 12.1 283.9 13.7 285.1 8.7 99.6 2.1 104.5 15.9 105.2 37.4 107.2 38.6 108.9 31.5	99.1 35.7 71.7 3.5 285.4 32.0 284.0 61.3 283.8 78.1 284.1 78.5 284.9 62.9 287.5 35.5 329.7 4.7 94.8 26.1 98.3 45.0 99.2 50.1 99.2 41.3 97.9 22.3 349.4 1.5 285.6 19.8 284.6 29.2 285.4 25.7 292.2 9.8 94.4 14.7 99.0 40.2 100.0 59.6 100.3 66.7 100.1 58.5	241.7 9.1 309.8 10.0 342.1 17.8 356.2 25.1 6.0 29.3 15.6 29.2 27.2 25.1 45.2 18.7 78.4 12.8 127.1 11.9 161.8 14.9 183.1 17.4 200.1 17.9 216.9 16.8 233.9 14.9 248.1 12.8 253.9 10.9 242.5 8.4 213.0 8.8 193.7 12.7 188.5 17.1 189.9 19.6 195.7 18.9 208.1 14.8	132.6 41.2 139.1 14.6 302.3 17.2 307.7 46.2 309.1 66.4 310.0 73.2 310.8 65.6 312.1 45.9 115.9 7.8 127.0 28.2 128.7 38.2 129.6 36.2 130.4 24.2 132.5 7.0 309.4 9.6 311.1 19.7 312.6 19.7	109.8 57.5 108.3 33.6 76.1 4.1 298.4 26.5 296.4 48.4 296.5 58.7 297.6 54.3 300.8 37.4 317.5 13.2 92.5 15.8 105.3 35.8 108.4 46.5 109.8 45.1 110.0 32.9 111.6 14.5 291.2 4.1 292.8 16.9 294.5 19.4 300.7 10.3 97.6 8.9 107.3 32.4 109.0 54.3 109.7 68.2 110.0 69.7	244.0 24.1 244.0 21.1 243.3 13.6 235.3 3.2 70.0 7.9 67.8 17.2 66.9 22.7 66.4 23.4 65.6 19.1 54.1 3.6 259.2 4.3 253.1 9.1 252.3 10.4 253.3 7.5 262.6 2.3 61.6 3.6 67.0 7.9 69.3 9.1 73.4 6.4 149.4 1.0 238.5 8.2 242.3 16.4 243.6 22.3	171.2 60.4 168.5 36.0 90.7 4.2 1.3 38.4 358.5 71.4 357.8 91.6 357.8 94.5 358.3 80.1 359.6 52.5 6.3 18.9 162.4 13.3 171.8 35.0 173.6 42.9 174.7 36.3 176.1 18.8 344.9 3.3 353.9 22.1 355.1 31.5 356.6 27.6 3.2 11.1 165.5 14.1 170.8 41.1 171.7 61.5 171.8 69.1

Site	1	7	9	15	19	20	21	23
Parameter Time(h)	Dir. Sp. (deg) (cm/s)	Dir. Sp. (deg) (cm/s)	Dir. Sp. (deg) (cm/s)	Dir. Sp. (deg) (cm/s)	Dir. Sp. (deg) (cm/s)	Dir. Sp. (deg) (cm/s)	Dir. Sp. (deg) (cm/s)	Dir. Sp. (deg) (cm/s)
0 1 2 3 4 5 6 7 8 9 10	54.9 4.8 45.4 4.4 34.7 3.2 13.7 1.6 274.6 0.8 227.6 2.0 210.8 2.8 193.1 2.8 164.0 2.4 119.4 2.4 85.2 3.3 66.7 4.3	174.6 1.7 278.7 13.9 282.4 24.4 283.9 28.4 285.2 24.7 287.4 14.4 12.2 0.8 102.1 14.4 104.2 25.0 105.5 29.0 107.0 25.3 110.3 15.0	92.6 10.3 287.0 18.7 284.3 42.2 284.0 54.1 284.5 51.3 286.2 34.4 300.7 8.4 94.5 21.0 98.6 44.4 99.5 56.3 99.7 53.5 99.1 36.6	252.2 9.4 298.4 9.8 328.1 12.4 346.3 13.5 27.2 7.8 92.7 5.2 147.8 9.2 168.4 13.9 181.9 16.3 195.9 15.5 216.1 12.4	134.2 17.4 299.8 7.3 308.2 29.6 309.6 43.8 310.6 46.1 311.9 35.9 315.8 15.9 119.3 8.8 127.7 31.1 129.2 45.3 130.2 47.6 131.3 37.4	109.4 31.4 101.5 6.9 296.9 17.1 295.5 33.8 296.1 39.0 298.4 31.2 310.1 12.9 93.4 13.0 105.8 36.4 108.4 53.0 109.4 58.0 109.8 50.1	246.7 15.3 246.8 9.9 246.5 2.0 67.4 6.4 67.4 13.0 67.6 16.0 67.9 14.6 68.7 9.2 79.7 1.3 244.9 7.1 246.1 13.7 246.5 16.6	171.5 34.2 160.1 7.3 359.5 23.3 357.2 62.1 357.6 60.3 359.1 43.7 6.4 16.9 161.2 14.1 170.3 39.1 171.9 52.6 172.2 50.8


Fig. 3.10.7(1) Auto-covariance Curve of Tidal Currents in the Third Field Survey

Notes: Component of Main Direction Component of Subnormal Direction 1.0 0.8 0. 6 0.4 0. 2 0. 0 20 - 0. 2 -0.4 -0.6 -0.8 - 1. 0 ^j Remarks: Location---Site 19 2.0m below the sea surface Duration---Jan.-Feb. 1989

Notes:

Notes:

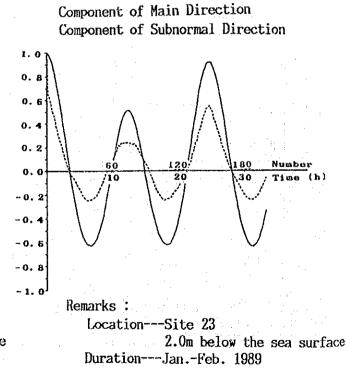


Fig. 3.10.7(2) Auto-covariance Curve of Tidal Currents in the Third Field Survey

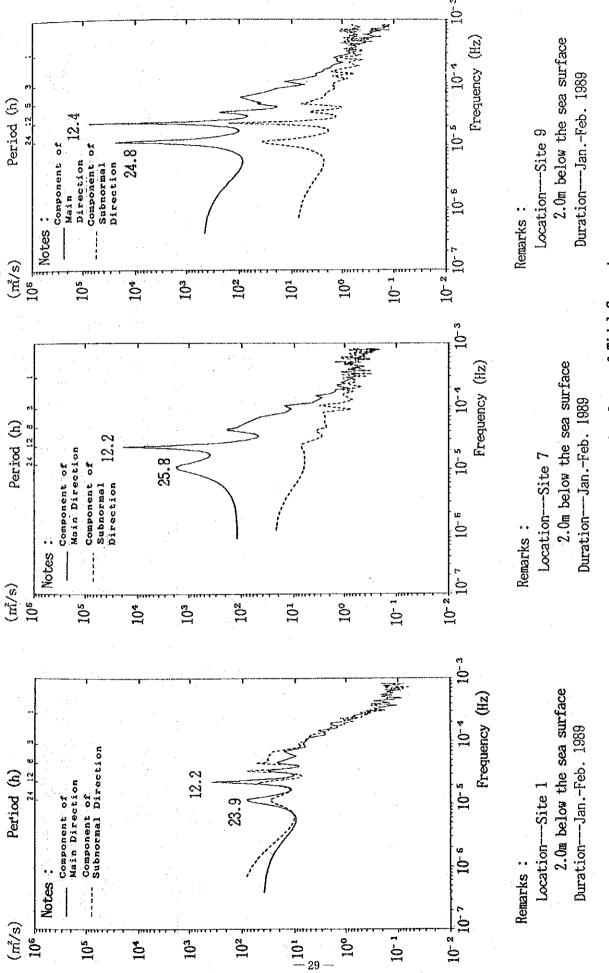


Fig. 3.10.8(1) Power Spectrum Density Curve of Tidal Currents in the Third Field Survey

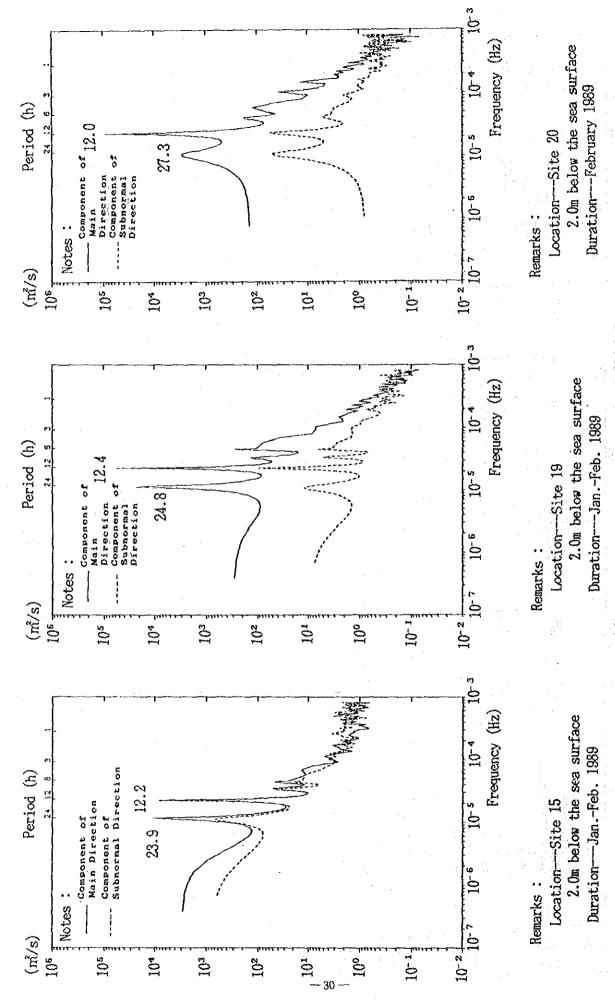


Fig. 3.10.8(2) Power Spectrum Density Curve of Tidal Currents in the Third Field Survey

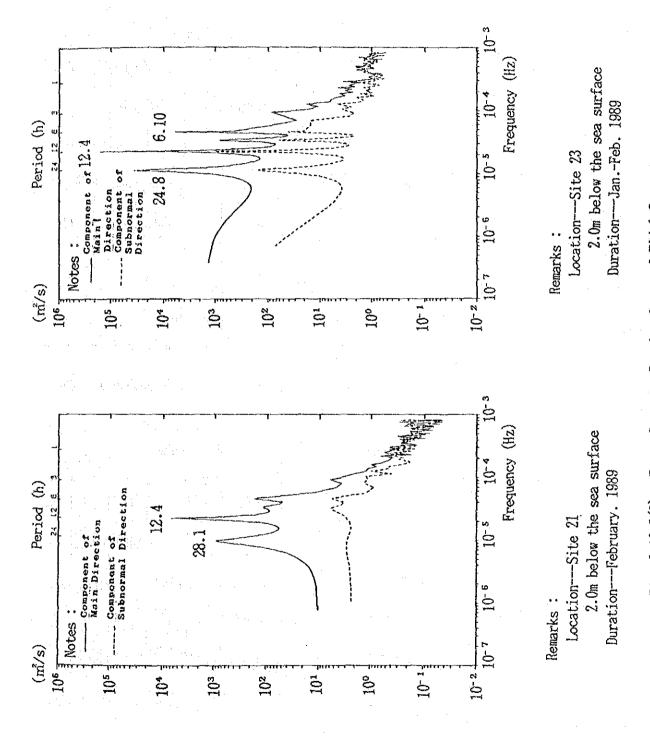


Fig. 3.10.8(3) Power Spectrum Density Curve of Tidal Currents in the Third Field Survey

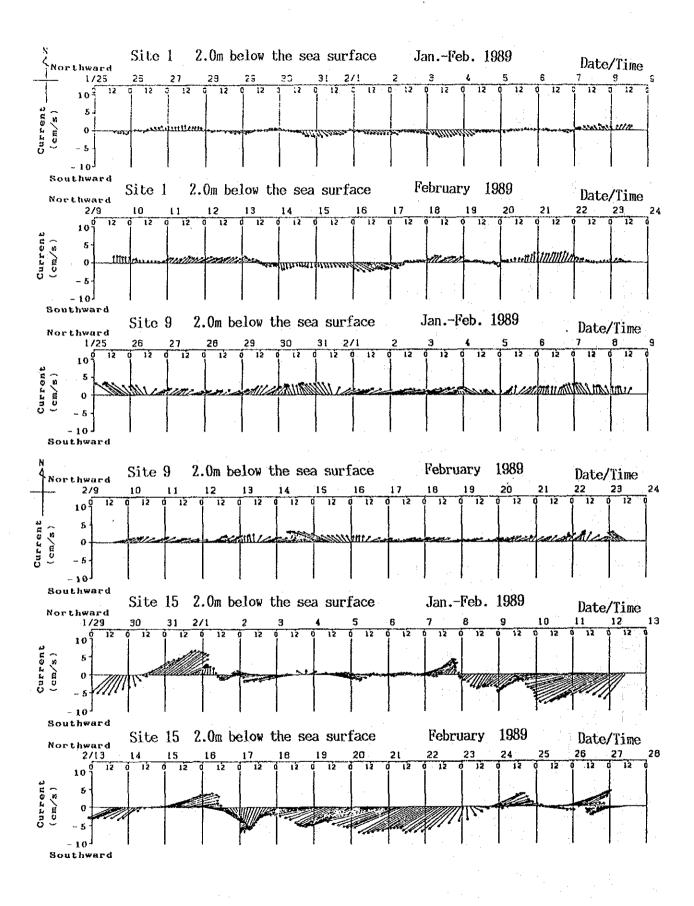
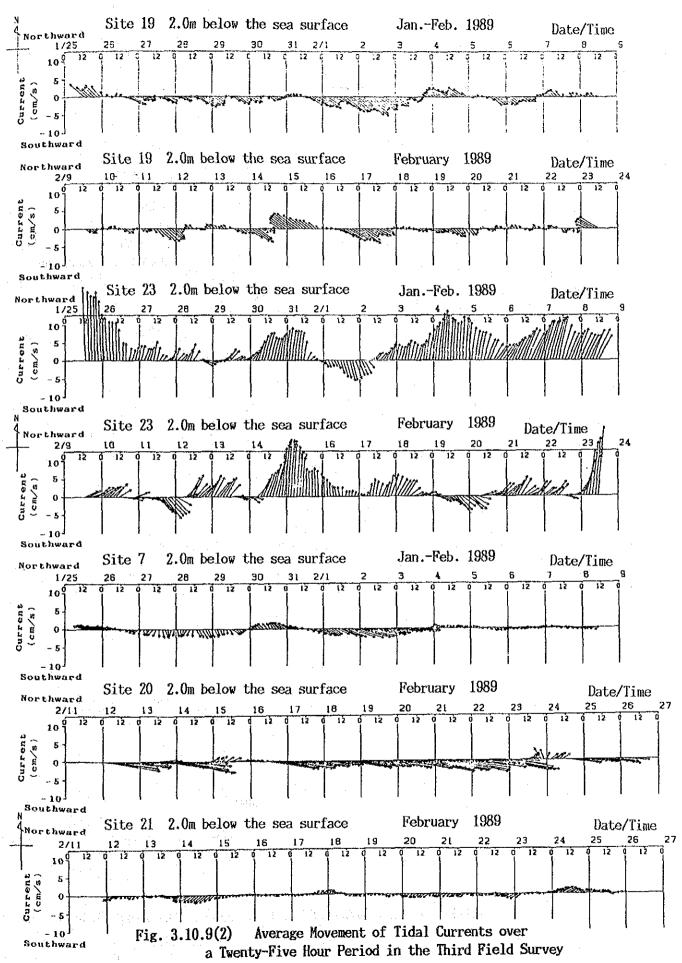
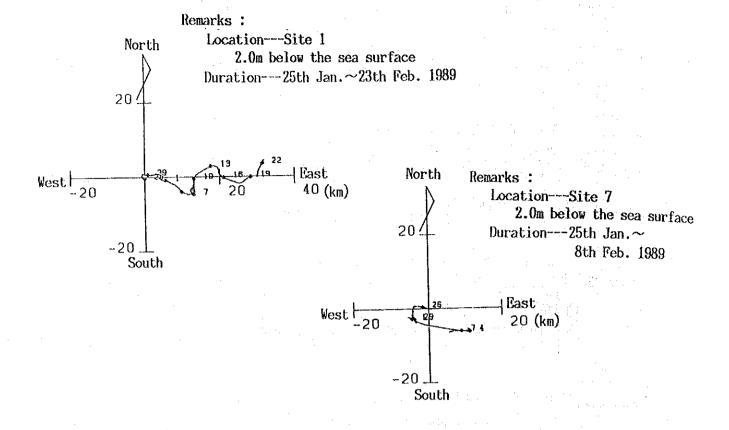




Fig. 3.10.9(1) Average Movement of Tidal Currents over a Twenty-Five Hour Period in the Third Field Survey

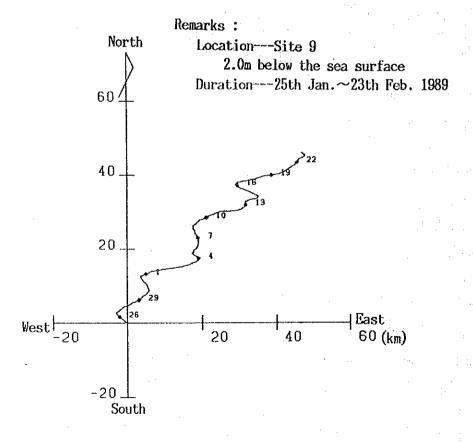
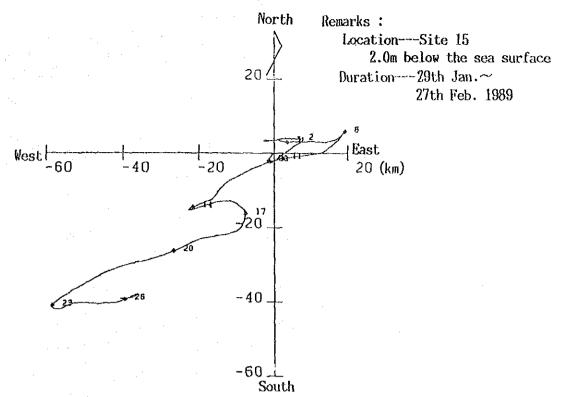
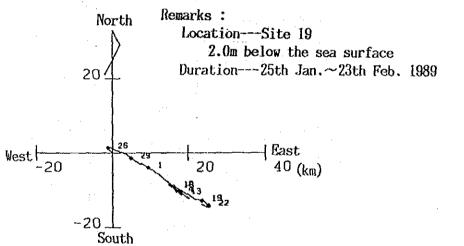




Fig. 3.10.10(1) Advance Vector of Tidal Currents in the Third Field Survey

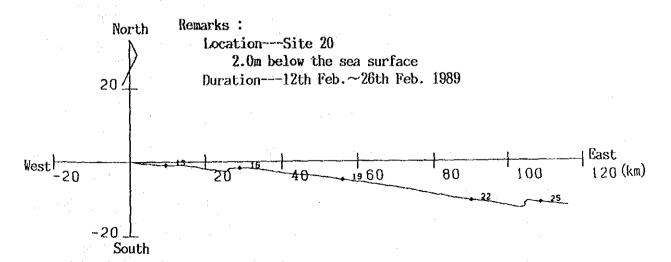
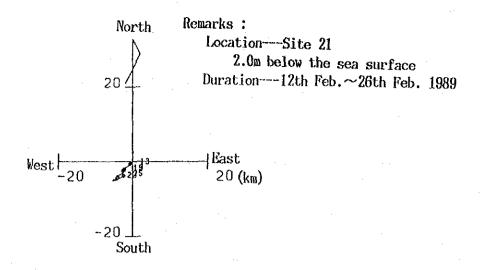



Fig. 3.10.10(2) Advance Vector of Tidal Currents in the Third Field Survey

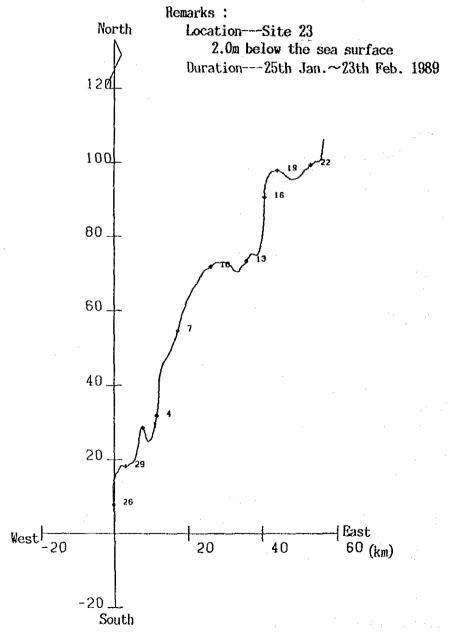


Fig. 3.10.10(3) Advance Vector of Tidal Currents in the Third Field Survey

Table 3.10.5(1) Results of Current Drag in the Second Field Survey (Flood Tide Period on 10th October 1988)

Location	Time	Interval (s)	Distance (m)	Speed (m/s)
1-1 1-2 1-3	09h 06min 09h 37min 10h 10min	1,860 1,980	925 875	0.50
2-1 2-2 2-3	09h 17min 09h 53min 10h 25min	2,160 1,920	1,025 1,300	0.47
3-1 3-2 3-3	10h 30min 10h 57min 13h 17min	1,620 8,400	850 2,075	0.52 0.25
4-1 4-2 4-3	10h 43min 11h 10min 11h 37min	1,620 1,620	200 225	0.12
5-1 5-2	13h 23min 15h 34min	7,860	2,275	0.29
6-1 6-2 6-3	12h 35min 12h 57min 13h 06min	1,320 540	600 350	0.45 0.65
7-1 7-2	10h 05min 11h 18min	4,380	2,125	0.49
8-1 8-2	09h 00min 09h 51min	3,060	825	0.27

Table 3.10.5(2) Results of Current Drag in the Second Field Survey (Flood Tide Period on 10th October 1988)

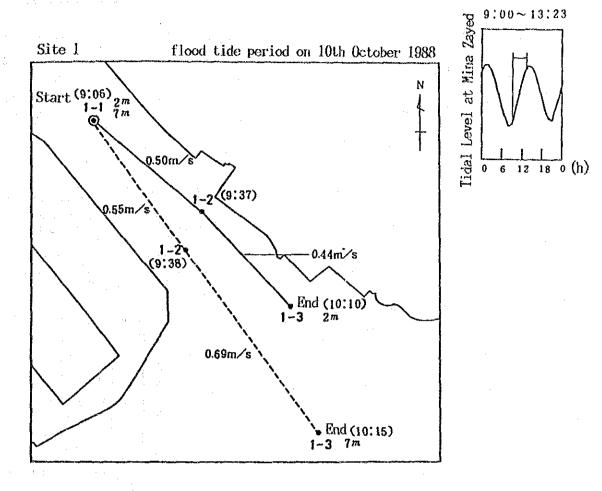

Location	Time	Interval (s)	Distance (m)	Speed (m/s)
1-1	09h 06min	1,920	1,050	0.55
1-2	09h 38min			
1-3	10h 15min	2,220	1,525	0.69
2-1	09h 17min	2 220	700	0.32
2-2	09h 54min	2,220		
2-3	10h 22min	1,680	1,075	0.64
3-1	10h 30min	1 740	705	. 0.49
3-2	10h 59min	1,740	725	0.42
6-1	12h 35min	1,200	325	0.27
6-2	12h 55min	1,200	520	0.21
6-3	12h 57min	660	250	Λ Ε2
6-4	13h 08min	660	350	0.53
7-1	10h 06min	5,760	2 075	0.26
7-2	11h 42min	3,700	2,075	0.36
8-1	09h 00min	2,580	650	0.25
8-2	09h 43min	2,000	000	V. 20

Table 3.10.5(3) Results of Current Drag in the Second Field Survey (Ebb Tide Period on 11th October 1988)

Location	Time	Interval (s)	Distance (m)	Speed (m/s)
1-1 1-2	15h 08min 15h 50min	2,520	150	0.06
2-1 2-2	14h 53min 15h 25min	1,920	275	0.14
3-1 3-2	13h 31min 14h 41min	4,200	2,000	0.48
4-1 4-2	13h 35min 14h 31min	3,360	450	0.13
5-1 5-2	13h 40min 14h 24min	2,640	1,050	0.40
6-1 6-2	13h 42min 14h 18min	2,160	400	0.19
7-1 7-2	12h 57min 14h 19min	4,920	875	0.18
8-1 8-2 8-3	12h 48min 14h 32min 15h 05min	6,240 1,980	1,550 525	0.25
9-1 9-2	14h 37min 15h 25min	2,880	700	0.24
10-1 10-2 10-3	15h 58min 16h 20min 17h 10min	1,320 3,000	100 1,225	0.08

Table 3.10.5(4) Results of Current Drag in the Second Field Survey (Ebb Tide Period on 11th October 1988)

Location	Time	Interval (s)	Distance (m)	Speed (m/s)
1-1	15h 08min	0 000	150	Δ ΔΩ
1-2	15h 51min	2,520	150	0.06
2-1	14h 53min	1 020	975	0.14
2-2	15h 32min	1,920	275	0.14
9-1	14h 37min	9 700	700	0.10
9-2	15h 40min	3,780	700	0.19
10-1	15h 58min	4 608	1 077	0.00
10-2	17h 16min	4,680	1,375	0.29

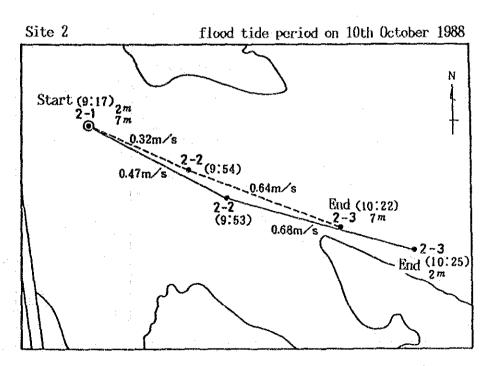


Fig. 3.10.11(1) Stream Trace of Current Drag in the Second Field Survey (Flood Tide Period on 10th October 1988)

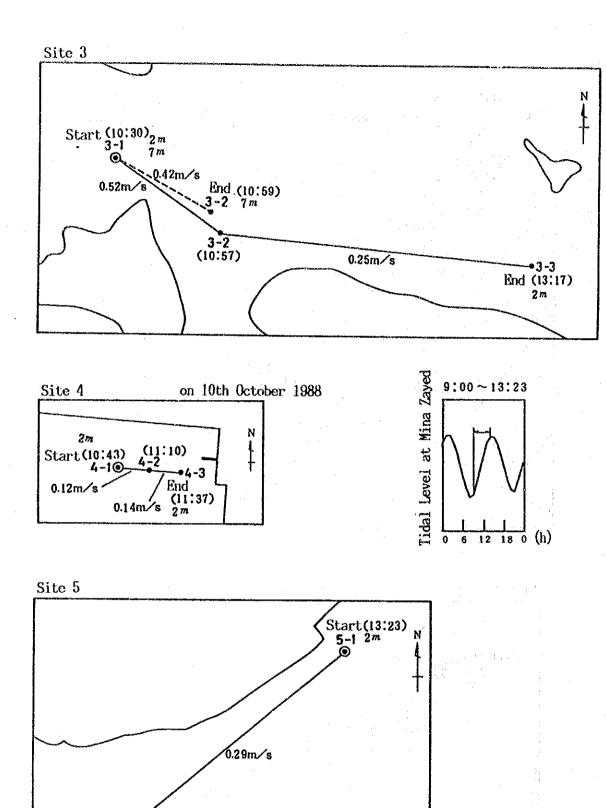
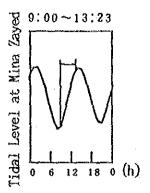
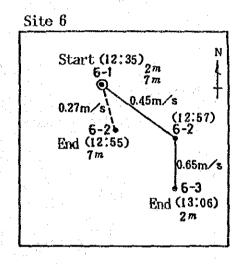
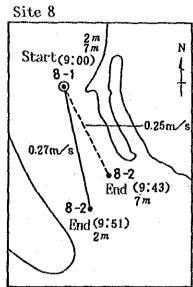





Fig. 3.10.11(2) Stream Trace of Current Drag in the Second Field Survey (Flood Tide Period on 10th October 1988)

5-2 End (15:34)

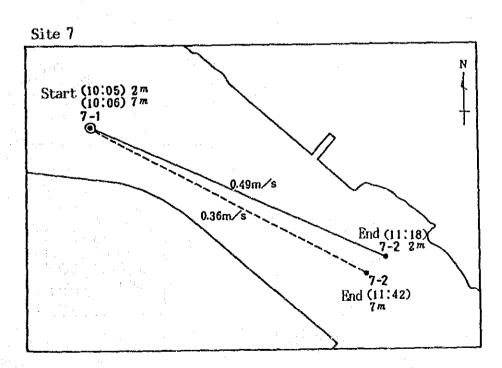


Fig. 3.10.11(3) Stream Trace of Current Drag in the Second Field Survey (Flood Tide Period on 10th October 1988)

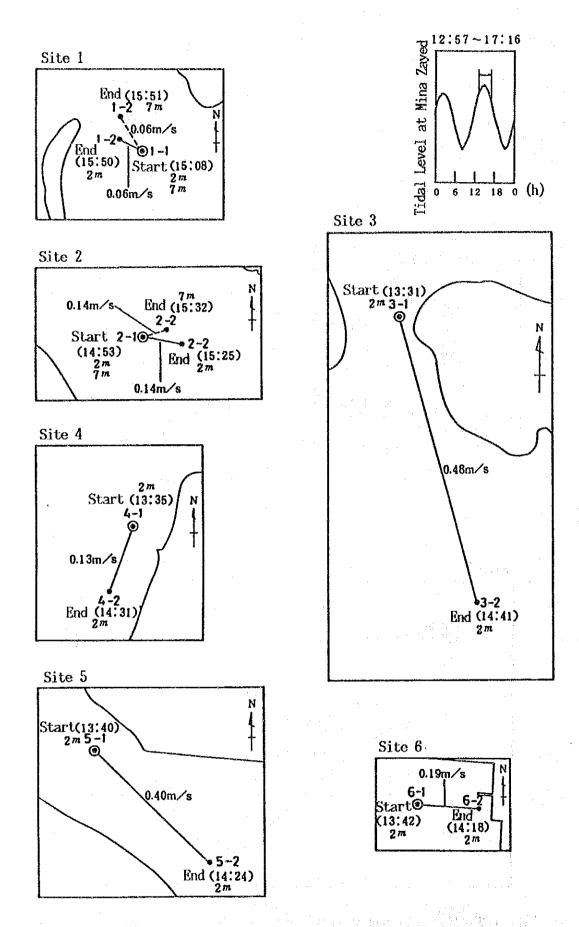
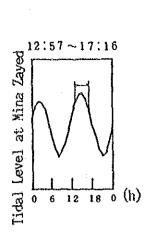
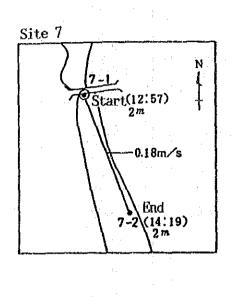
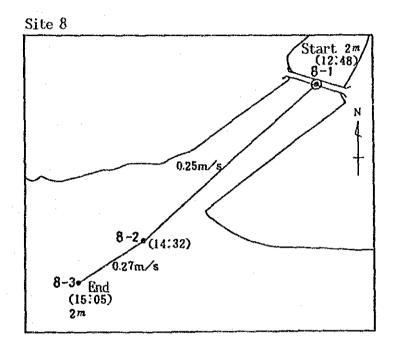
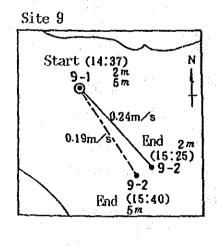






Fig. 3.10.11(4) Stream Trace of Current Drag in the Second Field Survey (Ebb Tide Period on 11th October 1988)

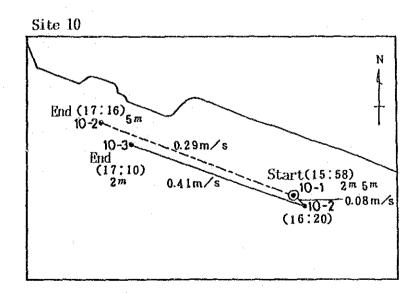
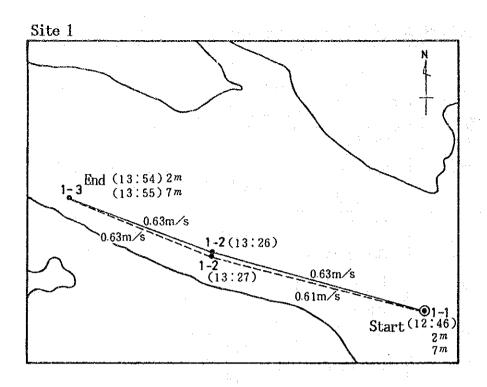


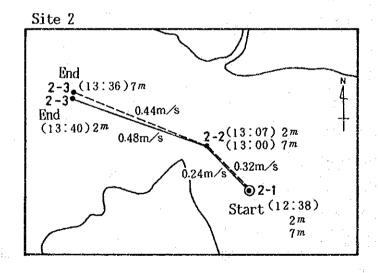
Fig. 3.10.11(5) Stream Trace of Current Drag in the Second Field Survey (Ebb Tide Period on 11th October 1988)

Table 3.10.6(1) Results of Current Drag in the Third Field Survey (Ebb Tide Period on 1st February 1989)

Location	Time	Interval (s)	Distance (m)	Speed (m/s)
1-1	12h 46min	2,400	1,500	0.63
1-2	13h 26min	1		1
1-3	13h 54min	1,680	1.050	0.63
2-1	12h 38min	1,740	425	0.24
2-2	13h 07min		Ì	
2-3	13h 40min	1,980	950	0.48
3-1	11h O7min	4 900	200	0.00
3-2	12h 28min	4,860	300	0.06
4-1	10h 46min	2 000	200	0.10
4-2	11h 34min	2,880	300	0.10
4-3	12h 12min	2,280	950	0.42
5-1	09h 00min	1 900	200	0.11
5-2	09h 30min	1,800	300	
5-3	09h 55min	1,500	300	0.20
6-1	09h 10min	3,300	950	0.90
6-2	10h 05min	3,300	850	0.29
7-1	10h 40min	790		0.07
7-2	10h 52min	720	50	0.07
8-1	10h 27min	4 140	000	A 10
8-2	11h 36min	4,140	800	0.19
9-1	11h 18min	9 990	EAA	Λ 22
9-2	11h 55min	2,220	500	0.23
10-1	12h 07min	1 440	900	0.50
10-2	12h 31min	1,440	800	0.56

Table 3.10.6(2) Results of Current Drag in the Third Field Survey (Ebb Tide Period on 1st February 1989)


Location	Time	Interval (s)	Distance (m)	Speed (m/s)
1-1 1-2 1-3	12h 46min 13h 27min 13h 55min	2,460 1,680	1,500 1,050	0.61
2-1 2-2 2-3	12h 38min 13h 00min 13h 36min	1,320 2,160	425 950	0.32
4-1 4-2 4-3	10h 46min 11h 33min 12h 08min	2,820	400 850	0.14
5-1 5-2 5-3	09h 00min 09h 30min 09h 55min	1,800 1,500	200 300	0.11
8-1 8-2 8-3	10h 27min 11h 02min 11h 39min	2,100 2,220	150 75	0.07
9-1 9-2	11h 18min 11h 56min	2,280	600	0.26
10-1 10-2	12h 07min 12h 34min	1,620	750	0.46


Table 3.10.6(3) Results of Current Drag in the Third Field Survey (Flood Tide Period on 7th February 1989)

Location	Time	Interval (s)	Distance (m)	Speed (m/s)
1-1	09h 36min	1,560	550	0.35
1-2	10h O2min	1,300	000	0.00
2-1	09h 51min	1,560	575	0.37
2-2	10h 17min	1,320	525	0.40
2-3	10h 39min	1,320	020	V.40
3-1	10h 56min	600	400	0.67
3-2	11h O6min	660	425	0.64
3-3	11h 17min	000	420	V.0x
4-1	11h 01min	600	350	0.58
4-2	11h 11min	1,740	950	0.55
4-3	11h 40min	1,740	300	0.00
5-1	11h 25min	1,800	800	0.44
5-2	11h 55min	1,000	800	V.41
6-1	12h 12min	2,760	1,275	0.46
6-2	12h 58min	2,700	1,275	0.40
7-1	12h 22min	2,460	1,025	0.42
7-2	13h 03min	2,400	1,020	0.42
8-1	12h 26min	2 460	425	0.17
8-2	13h 06min	2,460	420	0.17
9-1	11h 54min	2 400	900	0.38
9-2	12h 34min	2,400	300	V.JO
10-1	11h 43min	1 200	AOE	0.35
10-2	12h 02min	1,200	425	0.36
10-3	12h 24min	1,260	450	0.00
11-1	10h 25min	2 590	1 000	0.40
11-2	.11n 07min	2,520	1,000	0.40
12-1	08h 33min	1 020	EOE	0.51
12-2	08h 50min	1,020	525	0.91

Table 3.10.6(4) Results of Current Drag in the Third Field Survey (Flood Tide Period on 7th February 1989)

Location	Time	Interval (s)	Distance (m)	Speed (m/s)
1-1	09h 08min 09h 36min	1,680	575	0.34
1-2 1-3	10h 02min	1,560	550	0.35
2-1 2-2	09h 19min 09h 51min	1,920 1,560	575 575	0.30
2-3 2-4	10h 17min 10h 41min	1,440	525	0.35
3-1 3-2 3-3	10h 56min 11h 06min 11h 18min	600 720	400 425	0.67 0.59
4-1 4-2 4-3	11h 01min 11h 12min 11h 40min	660 1,680	350 900	0.53 0.54
5-1 5-2	11h 25min 11h 58min	1,980	800	0.40
6-1 6-2	12h 12min 12h 55min	2,580	1,250	0.49
10-1 10-2 10-3	11h 43min 12h 04min 12h 25min	1,260 1,260	425 325	0.34
11-1	10h 25min 11h 15min	3,000	1,080	0.36
12-1 12-2	08h 33min 08h 51min	1,080	500	0.46

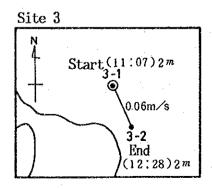
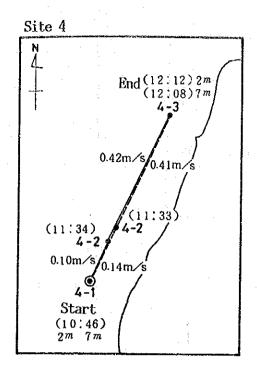
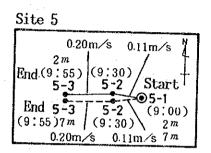
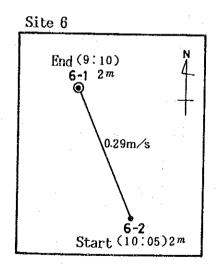





Fig. 3.10.12(1) Stream Trace of Current Drag in the Third Field Survey (Ebb Tide Period on 1st February 1989)

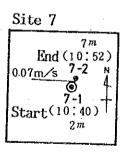
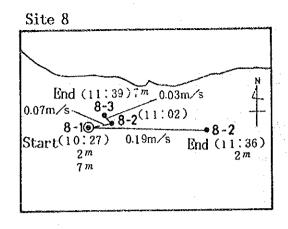
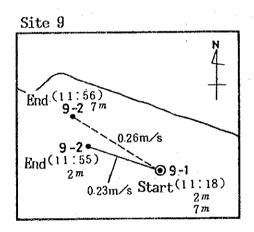




Fig. 3.10.12(2) Stream Trace of Current Drag in the Third Field Survey (Ebb Tide Period on 1st February 1989)

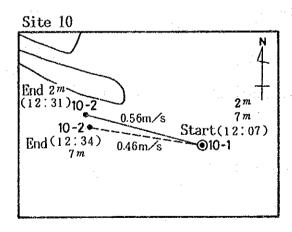
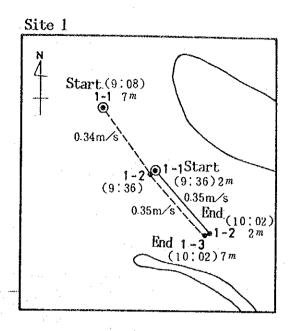
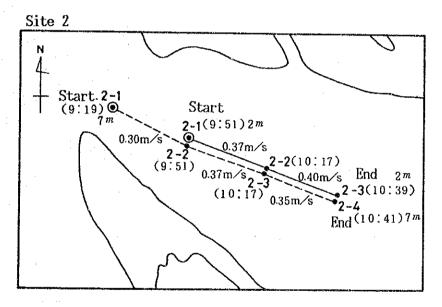




Fig. 3.10.12(3) Stream Trace of Current Drag in the Third Field Survey (Ebb Tide Period on 1st February 1989)

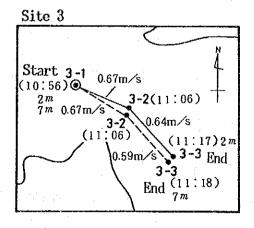
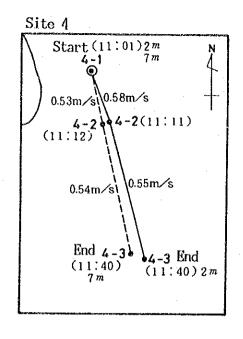
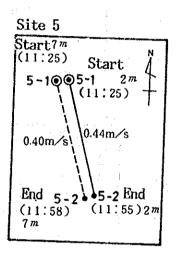
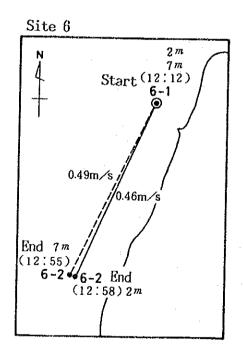





Fig. 3.10.12(4) Stream Trace of Current Drag in the Third Field Survey (Flood Tide Period on 7st February 1989)

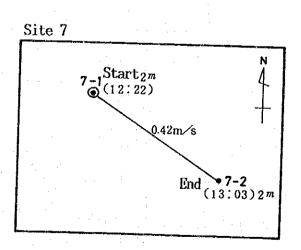
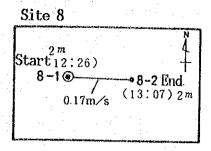
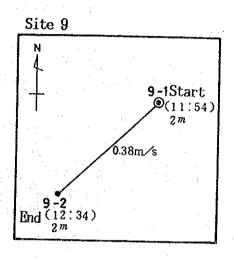
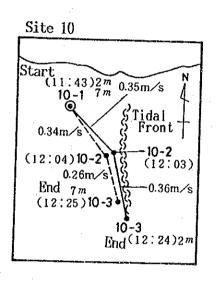
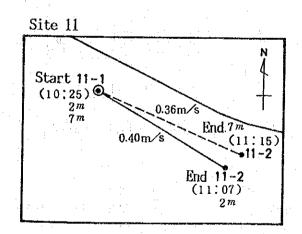






Fig. 3.10.12(5) Stream Trace of Current Drag in the Third Field Survey (Flood Tide Period on 7st February 1989)

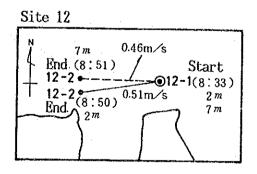


Fig. 3.10.12(6) Stream Trace of Current Drag in the Third Field Survey (Flood Tide Period on 7st February 1989)

Table 3.10.7(1) Observations of Vertical Current Profile in the Second Field Survey (Ebb Tide Period on 25th October 1988)

Site	[-	I-A 1-B 1			-C	1	-D	1	-B	1	.p	1	G	H-1		
Depth(m)	6.	6.0		6.8		.7	8	.0	7	.7	8.	5	9.	.3	9.5	
Parameter iyer(m)	Dir. (deg)	Sp. (cav/s)	Dir. (deg)	Sp. (cm/s)	Dir. (deg)	Sp. (cm/s)	Dir. (deg)	Sp. (cm/s)	Dir. (deg)	Sp. (cat/s)	Dir. (deg)	Sp. (cm/s)	Dir. (deg)	Sp. (cs/s)	Dir. (deg)	Sp. (cm/s)
0.3 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0	310 0 380 350 355 0	8 18 19 18 20 22	320 30 5 10 0	14 16 25 29 38 44 38	330 340 340 340 340 0 320	15 10 14 9 7 4 3	270 200 255 265 280 275 260	8 12 27 30 15 20 18	260 255 270 270 260 260 270 270	19 22 27 26 28 27 23 15	220 250 255 270 270 260 250 250	11 22 22 22 23 24	200 250 240 260 240 240 260 260 260 260	21 17 25 20 20 28 23 24 18 25	250 250 270 270 270 270 270 260 260 260	23 15 16 14 13 24 22 30 27 13
Max. Min.	0 310	22 8	30 320	44 14	0 320	15 3	280 255	30 8	270 255	28 15	270 220	29 4	260 200	28 17	275 250	30 13
Site	1-1			3		4		5	6			7		9	17	2
Depth&m9	9.	6	i	1.0	1.	.5	9.	.0	13	2.0	9.	0	11	1.0	14.0	
Parameter ayer(s)	Bir. (deg)	Sp. (cas/s)	Dir. (deg)	Sp. (cm/s)	Bir. (deg)	Sp. (cw/s)	Dir. (deg)	So. (c≡/s)	Dir. (deg)	Sp. (cw/s)	Dir. (deg)	Sp. (cm/s)	Dir. (deg)	Sp. (cm/s)	Oir. (deg)	Sp. (cm/s)
0.3 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 11.0 12.0 13.0	50 250 250 280 270 270 280 250 280 280	25 15 17 12 23 18 15 15 5	70 85 67 325 340 340 340 346 329 340 334 334	4 3 12 18 17 18 20 19 20 19 20 19	350 340	8 10	48 41 32 32 25 22 22 22 22 22	20 25 32 37 41 45 35 34 33	18 0 351 355 359 1 2 0 2 2 2 351 340	45 75 75 75 75 75 75 75 75 75 75 75 75 75	279 279 285 281 283 290 318 280	\$\$ 65 65 74 66 55 53	290 302 300 300 290 290 310 302 300 305	90 93 96 94 92 91 82 85 80	110 125 155 156 123 150 150 132 133 132 131 125 128	33340 35387 3535 3544 4033 433
Max. Min.	60 250	25 5	85 325	20 3	350 340	10 8	48 22	45 20	18 340	83 45	318 279	76 53	310 290	96 80	156 110	40 30
Site		15		16	19		20		24		25					
Depth8#9	14	1.0	9.	0	9.0		8.0		6.	6.0		0		194. [
Parameter oyer (m)	Dir. (deg)	Sp. (cm/s)	Dir. (deg)	Sp. (cm/s)	Dir. (deg)	Sp. (cm/s)	Dir. (deg)	Sp. (cm/s)	Dir (deg)	Sp. (cm/s)	Dir. (deg)	Sp. (cm/s)	Dir. (deg)	Sp. (cw/s)	Dir. (deg)	Sp. (csu/s)
0.3 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0	325 341 310 298 305 12 8	14 12 14 15 13 7 7 0	175 175 200 210 260 260 280 289 300	10 12 12 9 5 8 5 5 6	340 286 300 288 325 318 340 352 338	20 12 6 8 13 12 16 15	280 270 280 292 298 290 298 285	18 25 20 25 27 35 32 25	188 222 270	5 5 3 0 0	52 52 333 310 235 300 300	7 5 0 6 15 25 25				
10.0	-	0		•						;						-
10.0 11.0 12.0 13.0	-	0		·		20 6	<u> </u>		270	15	ļ	25 0	 -		 	

Table 3.10.7(2) Observations of Vertical Current Profile in the Second Field Survey (Flood Tide Period on 26th October 1988)

Site	I-A	1-B	1-C	1-D	1-E	1-f	1-G	1-11
Depth (m)	5.1	6.5	5.5	6.8	6.8	7.9	6.0	8.5
Parameter Layer(m)	Dir. Sp. (deg) (cm/s)	Dir. Sp. (deg) (cm/s)	Dir. Sp. (deg) (cm/s)	Dir. Sp. (deg) (cm/s)	Dir. Sp. (deg) (cm/s)	Dir. Sp. (dog) (cm/s)	Dir. Sp. (deg) (cm/s)	Dir. Sp. (deg) (cm/s)
0.3 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0	35 5 15 22 10 22 30 22 30 25 0 28	20 10 35 12 10 20 350 24 350 28 5 35 340 25	340 7 10 8 10 11 35 14 30 15 340 15	140 8 120 5 110 3 85 5 80 9 80 5 80 5	70 16 95 11 95 14 110 10 80 10 80 10 110 11	120 15 130 10 140 13 140 13 130 17 110 17 110 15 85 15	120 2 150 3 200 3 170 5 160 5	80 18 80 17 80 18 70 16 40 10 30 9 25 8 30 9 40 7
Max. Hin.	35 28 0 5	35 35 340 10	35 15 340 7	140 9 80 3	110 16 70 10	140 17 85 10	200 5 150 0	80 18 25 7
Site	1-1	3	4	5	6	7	9	12
Depth8#9	9.5	14.0	1.5	9.0	13.0	11.0	11.0	13.0
Parameter Layer(m)	Dir. Sp. (deg) (cm/s)	Dir. Sp. (deg) (cm/s)	Dir. Sp. (deg) (cm/s)	Dir. Sp. (deg) (cm/s)	Dir. Sp. (deg) (cm/s)	Dir. Sp. (deg) (cm/s)	Dir. Sp. (deg) (cm/s)	Dir. Sp. (deg) (cm/s)
0.3	120 14	140 32	126 17 129 14	255 15	188 52	85 96	107 42	162 27
1.0 2.0 3.0	130 13 130 13 170 4	133 32 140 17	169 14	225 17 222 20	180 52 172 46	90 95 95 85	110 64 123 65	151 45 140 49
4.0 5.0	210 5 220 8	148 10		208 18	172 52	107 88	120 72	140 47
6.0 7.0 8.0	240 10 0 0	350 5		205 17 220 12	172 51	108 78	120 55	140 48
9.0 10.0 11.0	- 0	350 5			172 48	98 57	120 48	140 54
11.0 12.0 13.0		350 5			182 38			132 41
Max. Min.	240 14 120 0	148 32 350 5	129 17 126 14	255 20 205 12	188 52 172 38	108 96 85 57	123 72 107 42	162 54 132 27
Site	15	16	19	20	24	25		
Depth8#9	13.0	8.0	8.0	8.0	5.5	8.0		
Parameter Layer(m)	Dir. Sp. (deg) (cm/s)	Dir. Sp. (deg) (cm/s)	Dir. Sp. (deg) (cm/s)	Dir. Sp. (deg) (cm/s)	Dir. Sp. (deg) (cm/s)	Dir. Sp. (deg) (cm/s)	Dir. Sp. (deg) (ca/s)	Dir. Sp. (deg) (cm/s)
0.3	208 18	170 45	130 45	112 46	220 20	154 49		
1.0 2.0 3.0	193 15 210 12	203 55 200 57	128 43 130 39	108 60 108 56	220 22 220 26	135 52 130 64		
4.0 5.0 6.0	206 13	220 60	127 32	108 45	218 18	121 52		
1 70	194 14	220 54	130 23	98 37		118 39		
8.0 9.0 10.0	174 IC							
10.8 11.0 12.0 13.0	174 16 175 15							
Max. Min.	210 18 174 12	220 60 170 45	130 45 127 23	112 60 98 37	220 26 216 18	154 64 118 39		

Table 3.10.8(1) Observations of Vertical Current Profile in the Third Field Survey (Ebb Tide Period on 2nd February 1989)

Site	1.	- A	1-8			-C	Į.	-D	Ţ	- E : :	1	F	1	-G	1-11		
Depth (m)	5.	.5	6.0		6.	.5	7.	.0	8.	.5	8.	5 .	7.	.0	7.	.5	
Parameter Layer (m)	Dir, (deg)	Sp. (cm/s)	Dir. (deg)	Sp. (cm/s)	Dir. (deg)	Sp. (cm/s)	Dir. (deg)	Sp. (cm/s)	Dir. (deg)	Sp. (cm/s)	Dir. (deg)	Sp. (cm/s)	Dir, (deg)	Sp. (cm/s)	Dir. (deg)	Sp. (c#/s)	
0.3 1.0 2.0 3.0	280 350 350	7 17 19	30 30 30	8 15 18	355 8 9	3 7 5	270 275 285	7 6 6	260 275 285	7 15 12	280 265 285	15 25 25	280 280 290	22 20 17	290 280 315	15 17 15	
4.0 5.0 6.0 7.0 8.0 9.0	0	18	20	23	9 13	7	290 295	6 5	290 290 295	17 18 23	262 288 255	24 15 5	295 235	17 12	305 305	15 15	
10.0 11.0 12.0 13.0						 						• :			1.		
Max. Min.	280 280	19 7	30 20	23 8	13 355	3 7	295 270	7 5	295 260	23 7	288 255	25 5	295 280	22 12	315 280	17 15	
Site	1	- I		3		5		6		7		9		12	15		
Depth(m)	11	0.0	13.0		1	0.0	13	3.5	1.	14.0		1.0	1	5.0	15.0		
Parameter Layer(m)	Dir. (deg)	Sp. (cm/s)	Dir. (deg)	Sp. (cm/s)	Dir. (deg)	Sp. (cm/s)	Dir. (deg)	Sp. (cm/s)	Oir. (deg)	Sp. (cm/s)	Dir. (deg)	Sp. (cm/s)	Dir. (deg)	Sp. (cm/s)	Dir. (deg)	Sp. (cm/s)	
0.3 1.0	280	12	278	55	75	60	82	24	271	28	273	21	122	15	22	15	
2.0 3.0 4.0	275 282	15 15	272 300	46 55	78 80	66 66	29 10	48 50	272 282	30 26	274 331	27 12	62 70	20 18	340 314	13 20	
5.0 6.0	315	25	322	60	78	60	32	50	298	17	282	24	98	16	30	10	
7.0 8.0	318	25	322	70	76	56	22	48	300	40	288	. 15	75	17	357	13	
9.0 10.0 12.0 13.0	318	25	330 310	70 60	49	45	20 342	48 77	299 292	26 27	319	15 14	80	16	88	24	
14.0					ļ				:		-		87	16	276	13	
Hax. Hin,	318 275	25 12	330 272	70 46	80 49	66 45	82 342	77 24	300 271	40 17	319 273	27 12	122 62	20 15	88 276	24 10	
Si te		16	19		20		24		25								
Depth(m)	8	.5	8	.5	9	.5	5.0			0.0							
Parameter Layer(m)	Dir. (deg)	Sp. (cm/s)	Dir. (deg)	Sp. (cas/s)	Dir. (deg)	Sp. (cm/s)	Dir. (deg)		Dir. (deg)	Sp. (cm/s)	Dir. (deg)	Sp. (cm/s)	Dir. (deg)	Sp. (cm/s)	Dir. (deg)	Sp. (cas/s)	
0.3 1.0 2.0	200 220	45 44	128 128	45 43	100 110	27 31	130 220	15 27	70 60	70 65							
3.0 4.0	220	43	110	48	175	Ĭ2 5	230 175	25 10	91	45 70							
5.0 6.0	222	40	135	35 ~	220				0								
7.0 8.0 9.0	222 220	38 30	155 145	26 24	270 270	15 5			342 70	50 70							
10.0 11.0 12.0 13.0								•		:				 		- :	
Həx. Hin.	222 200	45 30	155 110	48 24	270 100	31 5	230 130	27 10	91 342	70 45							

Table 3.10.8(2) Observations of Vertical Current Profile in the Third Field Survey (Flood Tide Period on 8th February 1989)

Site	1-	A	1-B		1-C		1-	·D	1-	E	1-	lı.	1-G		1-11	
Depth(m)	6.5		6.0		6.0		8.	.0	8.0		9.0		9.0		9.0	
Parameter Layer(m)	Dir. (deg)	So. (cm/s)	Dir. (deg)		Dir. (deg)	Sp. (cm/s)	Dir. (deg)	Sp. (cm/s)	Dir. (deg)	Sp. (cm/s)	Dir. (deg)	Sp. (cm/s)	Dir. (deg)	Sp. (cm/s)	Dir. (deg)	Sp. (cm/s)
0.3 1.0	330	15	52	16	70	5.	130	4	70	15	150	14	100	15	45	20
2.0 3.0 4.0	0	15 17	358 358	19 25	50 30	10 10	90 60	10 15	60 60	25 15	90 90	22 20	100 90	10 10	75 70	15 12
5.0	. 5 20	20 17	0	35	355	12	45	10	80	7	110	15	110	10	50	10
6.0 7.0 8.0	20	• •					60	15	80	7	90 115	5 10	100 90	15 10	90 90	5 2
9.0 10.0 11.0 12.0 13.0												10	3			
Nox. Nin.	20 330	20 15	52 3 58	35 16	70 355	12 5	130 45	15 4	80 60	25 7	150 90	22 10	110 90	15 10	90 45	20 2
Site	l-	l		3		4		5		6		7		9		12
Depth(m)	9.	5	13.0		5	0	9.	.5	13	2.0	13	3.5	13	3.0	14.0	
Parameter Layer(m)	Dir. (deg)	50. (cm/s)	Dir. (deg)	Sp. (cm/s)	Dir. (deg)	Sp. (com/s)	Dir. (deg)	Sp. (cne/s)	Dir. (deg)	Sp. (cm/s)	Dir. (deg)	Sp. (cm/s)	Dir. (deg)	Sp. (cm/s)	Dir. (deg)	Sp. (cm/s)
0.3 1.0	120	20	125	33	138	35	224	33	195	52	109	67	104	57	190	33
2.0 3.0 4.0	90 110	20 21	115 123	47 32	110 113 102	47 35 47	222 232	32 36	168 173	46 47	107 107	68 64	901 011	72 53	173 190	29 28
5.0 6.0	110	5	271	30	10%	41	236	27	156	47	107	61	106	43	178	32
7.0 8.0	120 5		281	. 5			220	23	171	38	102	48	102	33	175	26
0.0			0 262				260	23	169	35	109	36	102	22	153	26
10.0 11.0 12.0 13.0			125	2 17					221	16	109	42	- 98	21	133	27
Hax. Min.	120 90	21	281 115	47 2	138 102	47 35	260 220	36 23	221 168	47 16	109	68 36	110 98	72 21	190 133	33 26
Site		15	16		19		20		24		25					
Depth(a)	ļ	.0	7,	.0	8.0		9.0		4.5		. 1	1.0				
Parameter Layer(m)	Dir.		Dir. (deg)	Sp. (cm/s)	Dir. (deg)	Sp. (cm/s)	Dir. (deg)	Sp. (cm/s)	Dir. (deg)	Sp. (cm/s)	Dir. (deg)		Dir. (deg)	Sp. (cav/s)	Dir. (deg)	Sp. (cm/s)
0.3	172	15	20	30	340	17	105	45	115	25	190	58				
1.0 2.0 3.0	171 158	18 17	12 20	32 26	265 22	5 4	110 100	45 42	115 170	10 15	228 200	67 61				
4.0 5.0 6.0	158	11	30 20	25 25	110	4	108	38	170	20	190	49				
7.0	99	6	20 25			0	98	34			200	44				
8.0 9.0			• 				110	23			100	Ω'n				
10.0 11.0	134	7									196	26				
12.0 13.0	98	10				· • • • • • • • • • • • • • • • • • • •			ļ				-			
Hax. Hin.	172 88	18 6	30 12	32 25	265 110	17 0	110 98	45 23	170 115	25 10	228 190	67 26				

Table 3.10.9(1) Observations of Tidal Elevation at Typical Sites

Sito	1-1	(Um	m Al	Nai	r St	atio	on)						hine hitti		Dur	atio	on	-3re	1 ()c	t.^	271	h No	ov.	1988
D/H	0	1		3	4	5	ó	7	8	9	10	11	12	13	14	13	16	17	15	19	ŞO,	21	2.5	23
1003							***		***	***	200		132	137	150	164	177	184	139	167	177	161	142	121
1005		58	65 81	. 55	5 t	70	90								151									
1006	149	131	111	90	70	54	47	58	. 82	104	156	143	157	163	162	154	-146	138	139	114	157	167	176	101
1007						78 92	61 70	54 54	- 68 58						174									172
1009			174				88	69	66	73	101	130	154	172	181	176	161	141	120	103	97	107	159	149
1010								77 80	63	69 73					180						78	75 63	70	117
1011							104	95	75	49					187						84	61	50	68
1013									57	79	95	121	145	170	190	200	197	178	133	124	95	67	47	46
1014	72						140			-87 91					188					139		82	58	40
1018	38	56	85	110	127	136	137	128	115	103	98	109	128	152	173	190	200	105	187	165	143	116	88	64
1017	4.5	42			110	152	127	127	120	107	101	105	120	140	160 154	177	190	195	189	175	154	128	101	77
1019	73	54	47	67	90	.85		112	119	155	123	123	124	130	142	136	168	176	181	183	176	161	141	
1020		77	57	41	37	50	76	76	112	123	133	137	138	138	136	143	151	161	169	176	180	178	169	151
1021			87	\$6 98	45 74	35 52	47 38	74 51							150						104 128	146		
1023	178	167	147	123	98	72	48	4i	64	98	.125	156	176	186	183	166	1 - 3	120	99	57	93	112	134	155
1024						9.6	71	73	3 Z 60						194					95	65 70	72	97	125
1025								78	80						205						. 58	.62	45	60
1027	92	124	149	164	168	156	137		95	83	102	130	136	185	206	216	212	191	165	135	105	74	45	37
1028	60 32	94					147								195							93	83	40 57
1030	38	44		104	152	139	144	142	130	117	107	114	132	154	174	170	202	207	199	177	155	125	99	73
1031	52 75	42	36												172							144		96
1105	45	59 75	53 63	67	74										164									
1103		87	73	63	6.3	76	96	113	126	139	149	154	152	147	141	137	137	141	146	150	155	156	150	148
1104		105	87	70	61 75	62	77 70								157							151		
1106					87	72	66	77	99	124	146	165	179	182	173	156	135	110	100	92	97	113	131	147
1107					107	89		- 77							187					83	65	91	113	133
1109			158			121	90 104	91							196 207					. 95	72	. 57	63	88
1110							119								211						80	57	47	67.
1111															210						95	83	58	43
1113	50		110	135	146	152	147	135	121	113	119	125	159	180	199	211	214	504	182	156	127.	98	71	49
1114	42 75	61 73													199									88 95
1115	73	59	58												179 154									109
1117	88	71	64	68	86	109	127	143	153	159	158	153	145	145	149	163	175	154	191	194	189	176	159	
1118	118	98 109	83 90	76 74	83 67										139									148
1120		125		85	70	67	84	111	131	160	178	190	193	186	167.	145	126	112	106	110	120	139	154	165
1121			134		98	85									206					96	96 78	107.	129	149
1122		172													216					96	69	52	50	111
1124	107	130	147	156	152	140	122	109	109	128	151	174	176	214	223	220	202	177	167	116	87	64	51	62
1125	92														224 204							77 78	54	30
1127	35														888								* 6 5	***
اـــــا	<u></u>							···					 -				-			 -				

Remarks : Average Water Level = ACD+132cm

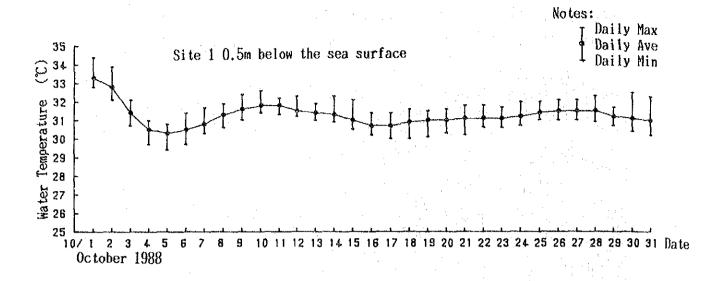
Table 3.10.9(2) Observations of Tidal Elevation at Typical Sites

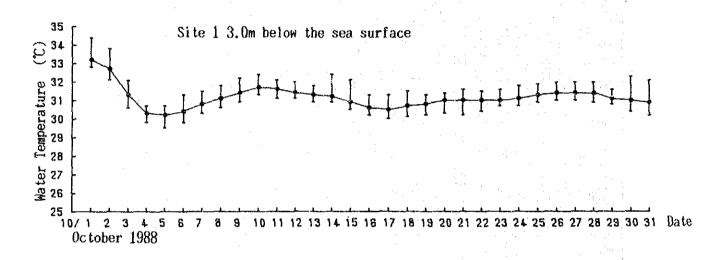
Site 1-2 (Umm Al Nar Station) Duration---25th Dec. 1988~28th Feb. 1989 9 10 11 12 13 14 15 16 17 18 19

Table 3.10.9(3) Observations of Tidal Elevation at Typical Sites

1001 160 35 35 35 36 45 79 110 133 134 135 137 163 133 160 160 160 160 161 161 160 161 162	1001 1.1	Site	10	(Mia	:a 7	าบกร	a) i								n	únat		1	ot	n _{o+}	- 10	188	~27	es. I	îob	1090
1001 1.0.	1001 137		<u> </u>		-									**********	-			·		·	<u></u>					100;
1007 52 57 75 95 117 130 136 136 128 120 115 120 134 135 127 170 201 203 190 130 135 123 171 120 130 135 130 135 130 135 146 120 130 135 146 120 130 130 130 130 130 130 130 130 130 13	1002 132 37 75 75 117 130 136 136 128 120 113 120 134 135 137 100 120 100 133 137 137 130						<u> </u>		٠				·····							····		,				
1210 108 136 154 160 157 146 133 127 136 154 169 220 231 227 212 183 146 104 68 43 35 43 60 1211 84 111 138 156 164 159 145 133 132 144 163 184 207 226 233 225 204 172 131 88 55 35 34 47 1212 69 98 127 149 162 162 152 139 129 130 143 164 187 210 225 227 215 190 155 114 75 46 35 40 1213 57 84 116 145 164 171 167 154 142 136 142 158 178 200 220 233 232 216 189 153 112 75 53 47 1214 56 74 102 134 158 172 176 169 157 144 139 147 161 180 197 215 222 216 196 168 131 94 64 68 1215 148 163 164 164 131 144 135 145 158 170 173 166 154 140 135 142 153 170 187 202 209 202 186 163 134 103 78 1216 63 61 72 91 118 143 165 180 184 177 165 152 145 147 155 165 177 187 192 186 172 150 126 101	1218 91 80 75 82 97 118 145 152 195 207 206 196 177 159 142 133 131 133 140 148 152 152 144 134 132 131 132 132 132 134 135 131 133 140 148 152 152 144 134 132 132 132 140 143 132 132 132 140 143 132 132 140 143 132 132 140 143 132 132 140 143 132 132 140 143 132 132 140 143 132 132 142 132 140 143 132 132 142 132 132 142 132 132 142 132 132 142 132 132 132 142 132 132 132 132 132 132 132 132 132 13	0/H 1001 1002 1003 1006 1007 1008 1007 1008 1007 1008 1007 1008 1007 1008 1017 1018 1019 1020 1021 1022 1023 1024 1027 1020 1021 1021 1021 1022 1023 1024 1027 1020 1021 1021 1022 1023 1024 1027 1028 1027 1028 1027 1028 1027 1028 1027 1028 1027 1028 1027 1028 1027 1028 1027 1028 1027 1028 1027 1028 1027 1028 1027 1028 1027 1028 1028 1029 1020 1021 1020 1021 1020 1021 1020 1021 1020 1021 1020 1021 1020 1021 1020 1021 1020 1021 1020 1021 1020 1021 1020 1021 1020 1021 1020 1021 1020 1021 1020 1021 1020 1021 1021 1020 1021 1020 1021 1020 1021 1022 1023 1024 1025 1026 1027 1027 1028 1028 1028 1028 1028 1028 1028 1028	0 11.2 15.6 10.6 11.3 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	1 ***	2 **** **** **** **** **** **** **** *	3 	4 **** 177 90 688 779 622 785 1043 131 147 81 143 115 62 162 163 163 163 163 163 163 163 163 163 163	108 84 65 65 66 7 80 910 120 8 8 8 100 120 125 125 125 125 125 125 125 125 125 125	136 123 123 123 129 136 136 137 137 136 137 137 136 137 137 138 137 138 137 146 147 148 148 148 148 148 148 148 148	136 130 113 98 274 46 66 66 67 77 99 120 115 115 115 115 116 117 116 117 118 118 119 119 119 119 119 119 119 119	**************************************	120 130 131 131 131 131 131 131 131 131 13	115 135 146 157 179 116 16 16 16 16 16 16 16 16 16 16 16 16	120 127 140 164 163 163 163 163 163 163 163 163 177 127 127 127 127 127 127 127 127 127	12 134 143 143 143 177 177 183 179 179 179 179 179 179 179 179	13 151 151 153 151 159 168 180 188 194 200 202 183 167 163 167 168 179 168 179 183 167 176 187 176 187 187 187 188 188 189 189 189 189 189 189	14 14 17:16:16:16:16:16:16:16:16:16:16:16:16:16:	15 190 180 160 163 155 155 163 163 163 163 163 164 161 163 164 161 163 164 163 164 164 164 165 165 165 166 167 168 168 168 168 168 168 168 168	16 162 163 163 163 163 163 163 163 163 163 163	17 218 193 173 183 173 184 181 181 181 181 181 181 181 181 181	18 1978 1974 1764 1764 1764 1764 1764 1764 1764 17	17 170 180 186 169 160 136 117 101 17 87 167 67 67 67 67 67 67 67 67 67 67 67 67 6	20 134 134 147 167 113 63 52 77 78 88 57 77 78 88 57 77 78 88 152 40 60 63 145 146 147 148 148 148 148 148 148 148 148	21 97 123 146 148 131 175 176 161 148 138 170 171 148 170 171 148 170 171 148 170 171 148 170 171 148 170 170 171 170 170 170 170 170	22 75 120 146 151 153 153 153 153 153 153 153 153 153	23 55 72 74 71 181 181 181 175 181 187 175 187 187 187 187 187 187 187 187

Table 3.10.9(4) Observations of Tidal Elevation at Typical Sites


Site	10	(Mi	na Z	Zaye	d):								Ďu	rat.	ion~	<u>l</u> s	st ()	ct.	198	8 ~	·27t	h Fe	еb.	1989
078	0	1	S	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	55	53
101	105	105	115	130 100	147	165	182	192	196	192	181	166	153	141	133	130	131	133					110	
103	95	91	92	101	115	130	149	165	182	194	201	197	189	176	158	142	128	124	126	132	138	144	147	149
105	143	148	149	148	147	150	157	169	182	198	208	213	216	005	170	140	106	93	85	8 S	92 54	104 59	66	132 75
106	88	78 108	155	117	138	139	137	138	143	152	165	179	194	505	204	199	185	166	143	121	92 101	83 87	80 80	84 81
108	71	104		132 119																		83	71 76	67 67
110	66 65	76		111	127	137	139	136	131		128	135	147	164	150	192	197	192	177	156	131	105	85 97	71
112	71	71	82	100	123	143	159	169	173	171	169	168	174	187	199	209	210	553	219	200	185	175	160	133
113	75	101 67	67	77	94	115	134	147	152	150	162	131	121	116	114	118	127	138	147	150	148	141	130	88 117
115	107	98		105													132 96	132 93	135 93			134		117
117				104																114	114	117	123	129
119		112	116	116	113	110	108	117	120	132	144	154	158	156	146	120	111	90	.71	57 95	46	46 73	51 74	63 83
120	98	1,17	133	115	144	146	142	140	141	148	160	175	188	198	200	174	179	157	131	105	84	70	64	67
153	80			130																110	86 118	88 95	57 83	55 77
124	81 77	94		131																158		110	83	79 70
126	76	80	78	95	113	126	132	130	123	113 133	104	101	105	117	131	147	160	165	161	150	132	111	92 98	. 86 : 85
128	78	60	91	109	128	143	152	153	147	137	125	116	111	111	113	129	140	147	149	145	135	122	104	94
129	93	90		115	132	148	162	171	174	157 171	163	153	142	133	128	125	152	128	131	135	130		•	
201	101	98		104											95 118	90 104	89 95	87 93	96 92	97 96	97 162	92 110	113	116
202				138															97	90 84	90	97 89	109	119
204	130	138	140	140	138	134	140	150	162	173	185	191	194	186	171	152	127		80 47	41 28	27	48 37	66 57	90 86
500	115	143	156	158	148	131	117	113	152	140	161	182	200	212	512	503	185	154	122	90	67	54	53	70
207	94			154							161								90 158	133	28 105	82 82	29 67	43 60
209	65 65	-		137						110 125								183 173			132	106	75 86	45 72
211	68	76	94		144	162	171	166	152	133	112	96	90	93	106	126	147	163	169		151		117	
513	96	9.7	104	153	141	159	173	180	179	168	151	135	114	98	84	84	86	93		107	108	105	99	92
214	89 114	.90 115	121	114 130	142	157	173	187	198	197	186	169	145	120	98	82	72	69	71	77	84	91	98	100
216	101	100 136		101						168						89 124	72 95	73	. 56 59	59 54	70 59	86 74	93	115
218	133	144	147	141 130	131	121	117	123	136	152	171	186	193	185	167	141	107	77 112	51	34 56	35 48	48 54	71	77 88
220	101	118	133	143	149	147	135	123	122	134	150	169	189	502	207	196	176	151	119	87	63 58	50 41	55 44	64 52
255	79 65		104	131	132	134	126	113	101	9.2	100	116	136	161	179	189	182	162	135	106	83	67 82	58	62
557	76		151	143						147 94	147 85	156 92	107	129	151	166	171	162	1.0	110	79	52	38	-46
225	64.	121	123	146	157	156	143	120	93	74 86	69 70	78 86	74	90	142 113	137	152	154	144	135 124	104 99	81 78	72 69	79 73
227	89	115	143	167	184	188	175	156	129	***	•••	111			***	***	***	***	***	***	-1	***		135om


Table 3.10.9(5) Observations of Tidal Elevation at Typical Sites

Site 18 (Public Marina) Duration--- 28th Sep. 1988~27th Feb. 1989 10 11 12 13 14 15

Table 3.10.9(6) Observations of Tidal Elevation at Typical Sites

	Sito	18	(Put	lic	Mar	ina)					····		Dur	atio	on	- 28	th S	ср.	198	8~	27u	Fe	b. 1	1989
	074	0	1	5	3	٤	5	ó	7	8	9	10	11	12	13	14	15	16	17	18	19	50	21	52	5.2
j	1201	75 84	73	70 73	88 54	106	125	139	147	152	153	150	143	143	143	151	154	156		168				117	99
	1203	91	79 85	72 84	73 72	84 78	100 87	117	133	145 137	154 150	158 156	157 157	150 152	138	131 127	125	123	122	153	126. 111	157	123	117	108
١	1502	134	130	122			104	114	130	150	169	184	193	184	156	155	135	115	95 86	87 81	6? 78	5 9 8 1	95	112	135
	1207 1206 1209	129		141	137	129	120	118	126	142	161	183	198	805		187	166	136 143 165	112 117 140	90 96 112	73 81 87	66 67	70 61 57	89 71 57	95 77
١	1210			142	148	148	141	130	124	130	147	166	186	203	214	205	197	172	151	130	104 120	80 94	63 72	57 59	66
	1512	75 61	84	111	135	152 151	154 157	147 158	137 152	128	129 135	141	158 154	178 168	195 175	204 191	202 202	195 206	179 197	163 179	137	108 128	85 102	. 66 88	57 72
Ì	1214	66	76 65	82	106	128	148	158	161	158	151	136	134	141	172	165	171	182	188	181		150	121	98 110	89
	1216	85 93	67 72 82	72 71	94 81	98	155	145	160	170	170	162	150	138	134 128 147	125	127		141		150	157 146 140		129 140	115
Ì	1219 1220	118	107	97 118	113	104	119 117	141 130	162 147	181 166	197	205	203 203	192 198	165 184	145	129 131	116			103	110 78	118	125	127
	1221	142	156	162	162	155	147	166	150	164	178	194	805	217		204	185	145	131	110	92	86 75	88 67	103 73	95
	1223	103	136		155	159	153	145	137	137	148	164	183	500	214	221	216	200		150	104 123 123	83 99 95	68 81 72	66 71 57	78 74 55
	1226	69 87	95	119	139	149	150	142	132	122	119	126	145	166	187	202	205	201	190	171	145	123	101	85 111	81
	1228	71	122	143 102	160 124	178	190 159	191 165	189 166	178 160	164 150	157 140	155	156 133	165 140	174 148	184 158	190 164	187 165	174 158	156 145	135 125	110	90 63	75 67
	1230	58 72 101	61 77 96	77 93 102	110	120	146	159	169	173	174	165	154	143		140	144	153	158	161			111 140 107	95 125 97	110 85
	102	76 58	71	76 78.	86	99	115	130	144	152	155	152	142	130	116	103	74	88	84	88	93	96 130	97	94 139	88 142
1	104	136		144	145	145	148	155.	167	150	196	908	211	214	170 202	189	169	147	128	97 108	91 93	82	101	114	95
١	106 107		134	132 146 145	150	149	143	139	141	151	165	180	195	902	510	206	185	171	147	106	86 98 92	72 79 68	67 68 51	74 65 46	94 82 53
١	109	82 67		135	148	125	147	133	124	120	124	144	184	182	199	207	500	190	192		108	80	57	4.2 50	£3
	111 112	51 . 49	80 71	109	135	151 158	156 173	152	188	125 179	114 170	113 164	127 172	145 184	165 194	184 206	198 216	201 201	192 219	148 205	142 185	113 160	86 132	53 109	49 89
١	113	. 80 47	81	69	96	123	147	161	166	161	150	130	115	106	106	106	129	143	155	167	158	146	107 130 131	82 113 117	60 96 102
	115 116 117	85 90 104	87 100	75	110	127	145	161	173	176	176	164	146	128		74	84	81 117	87 109			139 112 114		114	107
	118	144	146 128	146	147	151	163 110	175	190 119	205 133	216 148	223 159	224 166	214 166	203 155	185 136	163 114	143 90	127 66	110 45	20 84	94 27	95 41	101 63	111 85
		125	145	155	158	156	149	138.	137	146	161	177	193	204	210	204	187	163	137	110	76 85	62 65 21	53	79 55 61	78
	123		110 117		146	150	145	134	120	114	120	137	157	177	193 194 187	204	205	193	171		88 120 140	95 114	46 77 92	68	55 70 72
ļ	125	80 54	103	125	147		167	162	152	140	128		132	145		174	183	186	176	157	132 136	106	81 90	61 70	51
	127	69 67		114	137	153 150	161 160	161 162	152 155	135 137	120 122	108	100	100	126	128	144	167 153	157	152		119	96 103	75 85	64 73
	130	77 80	94	113 113 103	136	154	169	179	182	179	167	152	140	129				141 127 89	147 134 93		138 136 97		108 120 92	92 107 87	81 94 82
	131 201 202	88 83 120	90	100	116	131	147	158	168	174 193	174	168	157	185	130 167	117	105 135	96 121	91 107	91 97	97 90	103	110 97	113 109	116 119
	203	127	131	133	134	136	143.	153	165	180	170	197	199	194 195	187	164	145	128	107	92 80	82 60	81	48	103 65	90
-	204	110	174	134 147 156	157	149	138	126	119	174	160	157	176	193	204	205	142	1/>	100	91 122 134	67 98 105	51 77 79	46 64 60	57 63 53	84 79 61
-	208	90	150	150 147 135	163	168	163	147	125	109	103	113	131	151	372	1.40	3 Y ((An	LIV	144 155	113	87	63 73	47 54	49 50
	210	67	97	127	157	172	177	170	151	127	106	93	91 70	102	124	143	163	175	175	170	157	138	87 120	96	5.5 8.7
	212	90 87	108	130	156	180	195	191	186	179	156	155	112	95	80	74	,,,	0.7	103	116	113	110	103	102 93	
	214 215	115	114	108 122 101	120	141	154	167	179	187	190	187	174	158	142	124	104	90. 91	81 76	76 63	78 61	84	91 84	97 97	100
1	217	124	131	132	131	130	130	138	148	160	173	184	176	183	181	167	148	122	100 100	82 75	89 55	64	71 49	80 67	107 93
	219	114	133	142	142	135	124	113	108	114	131	148	168	180	196	188	189	167	144	110	80 91	65 69	59 57	73 57	79
	222	106	155	149 140 153	156	155	145	128	112	.103	107	103	143	163	178	179	183	173	154	129	98 104 149	72 78 123	55 61 100	5 L 5 4 8 4	70
ĺ	223	87	107	129	146	156	154	144	127	110.	97	91	83	95	115	137	156	167	169	163	146	125	72 105	55 91	53 89
	226	0.0	. 1 1 7	138	124	147	170		150	170	110	97	A A	-79	92	111	130	145	148	146	132	114	95	18	
1															 -		 -		I.I.						

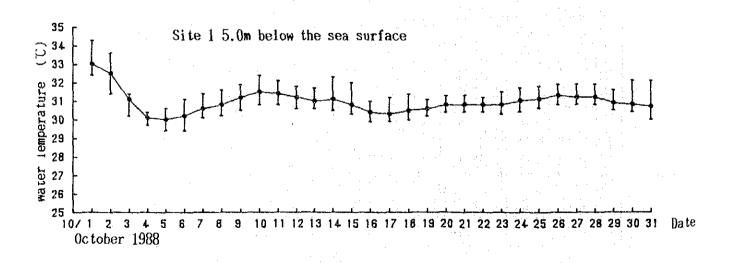
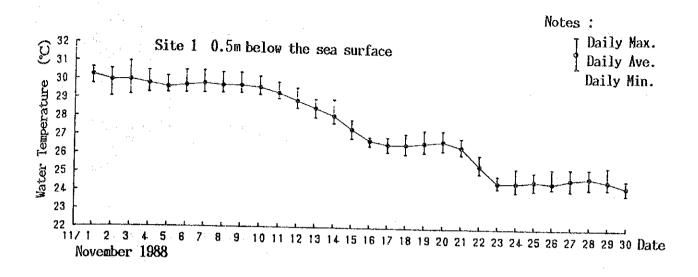
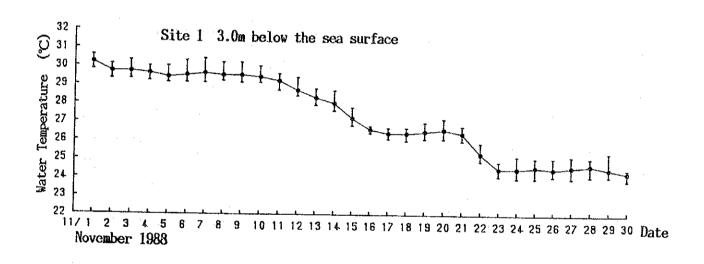




Fig. 3.10.13(1) Variation of Daily Water Temperature near UAN Intake

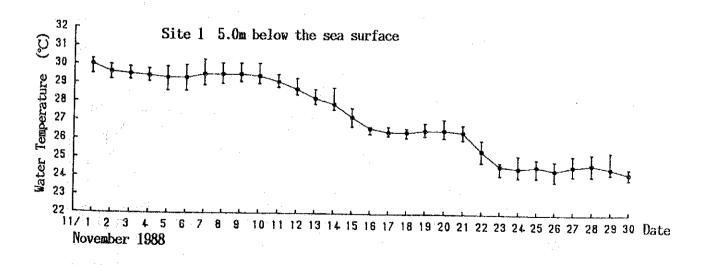
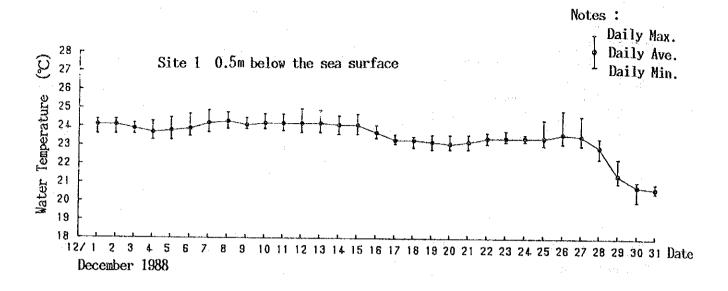
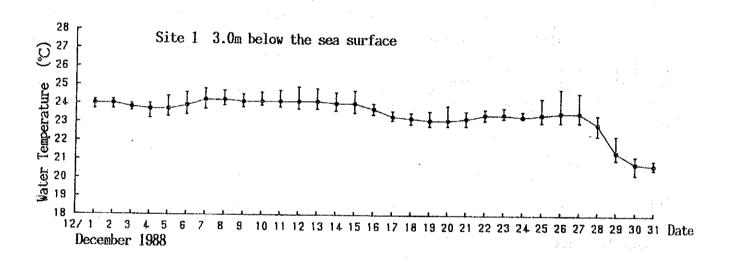




Fig. 3.10.13(2) Variation of Daily Water Temperature near UAN Intake -67-

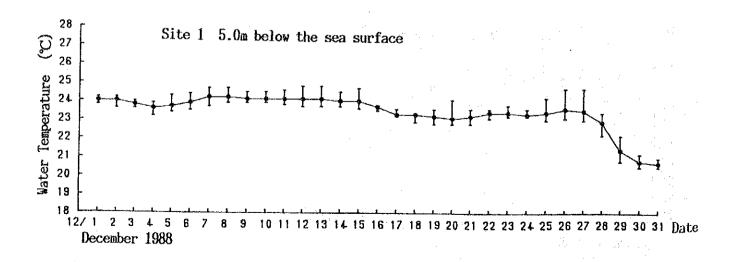
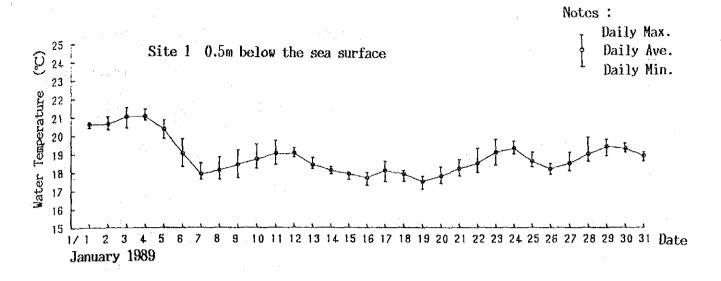
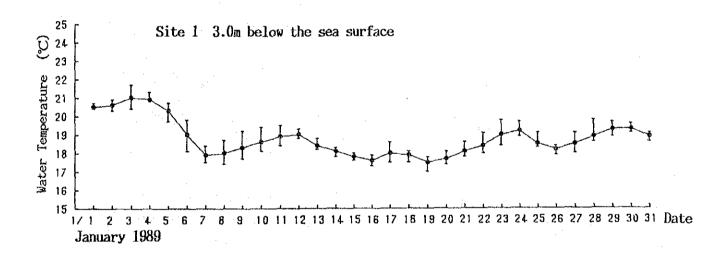




Fig. 3.10.13(3) Variation of Daily Water Temperature near UAN Intake

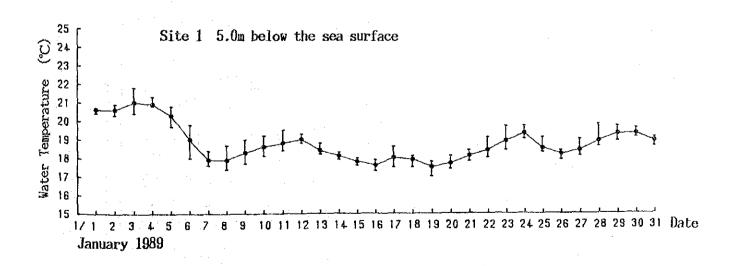
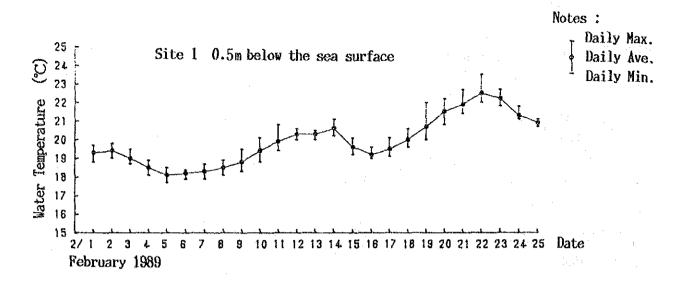
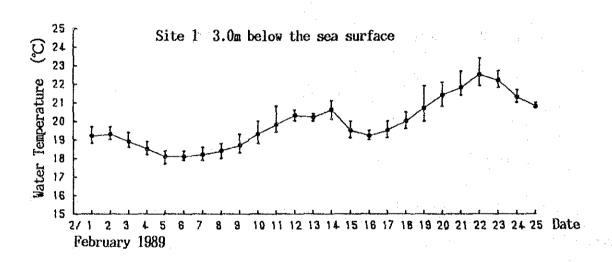




Fig. 3.10.13(4) Variation of Daily Water Temperature near UAN Intake

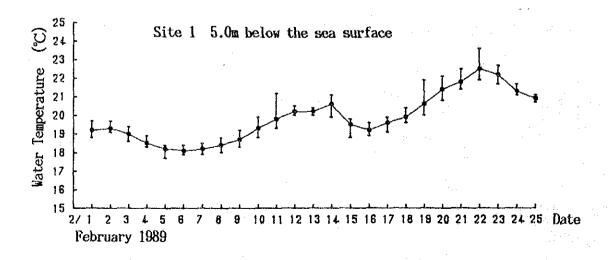


Fig. 3.10.13(5) Variation of Daily Water Temperature near UAN Intake -70-

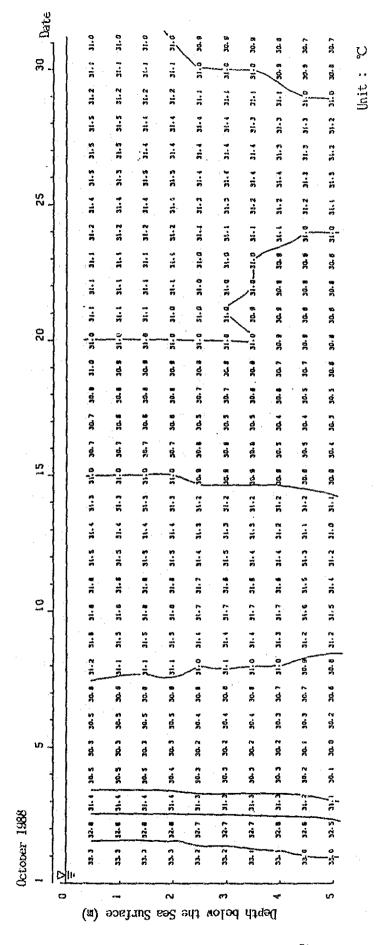


Fig. 3.10.14(1) Variation of Daily Average Water Temperature at Each Layer near UAN Intake

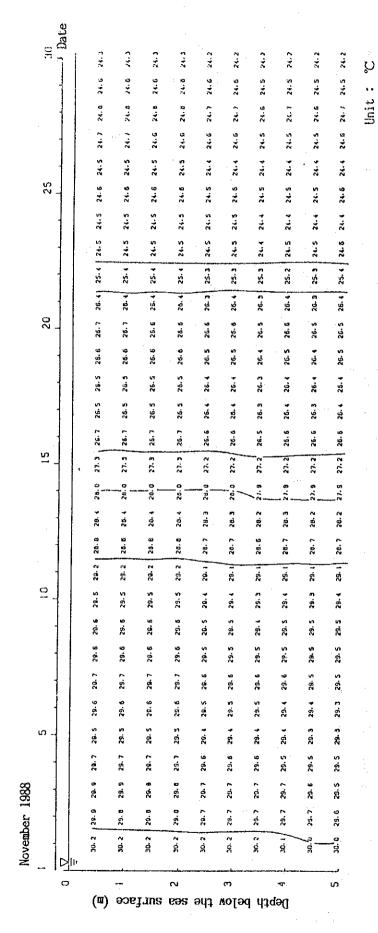


Fig. 3.10.14(2) Variation of Daily Average Water Temperature at Each Layer near UAN Intake

		23.9 24.2 24.3	23.9, 24.2 24.2	23.0 24.2 24.2	23.9 24.2 24.2	23.9 24.1 26.2 24.0	23,9 24.1 24.2	23.8 24.1 24.1	23.9 24.1 24.2	23.8 24.1 24.2	23.9 24.1 24.2
10		24.1 24.2 24.2	24.1 24.2 24.2	24.1 24.2 24.2	24.1 24.2 24.2	24.0 24.1 24.1	24.1 26.1 24	24.0 24.0 24	24.1 24.1 24	24.0 24.1 24	24.1 24.1 24
		24. 2	24.2	2:3	21.2	36.1	24.1 24.1 24	24.0 24.1 24	24.1 24.1 24	24.0 24.1 24	24.1 24.1 24
-		36.1 26.1	26.1 26.1 3	24.1 24.1	24.1 24.1	24.1 . 24.0	24.1 24.0 24.0	24.0 21.0	24.1 24.0	24.0 24.0	24.1 24.0
51		24.5 23.7	24.0 23.7 	34.6 23.7	24.0 23.7	24.0 23.7	7.4.0 23.7	23.9 23.6	24.0 23.7	23.9 23.6	24.0 23.7
-		27.3	23.3	23.3	23.3	23.3	2 45 5	23,2	7 23.3	23.3	7 23.3
		23.3	23.3	23.3	23. 3. 2	23.2	23:2 2	23.2 2	23.2 2	23.2	23.2 2
,,,		23.2 23.1	23.2 23.1	23. 2 23. 1	23. 2 23.1	23, 1 23, 1	23, 2 23, 1	23, 1 23.0	23, 2 23, 1	23.1 23.1	23. 2 23. 1
0	: .	1 23.2	23.2	1 23.2	23.2	13.5	, 1 2	23.1	1 23.1	1 23.1	.1 23.1
		23.4	23.4	23.4	23. 4	23.4 23.4	23.4	23.3	23.4	25.0	23.4
		23.4 2	2 7:52	23.4. 2	27.4.2	23.4	23.4 23.3	23.3	23.4. 2	23.3 2	23.4 2
``	:	23.3 23.4	23.3 23.4	23.3 23.4	25.3 23.4	25.3 23.4	3.3 23.4	23. 3 23. 3	23. 3 23. 4	23. 3. 23. 3	23.3 23.4
25		23.6	4 25.5	4 23.6	23.6	23.55	23.5	3 23.5	23.5	23.5	4 23.6
4		23.5	33.5	23.5	23.5	5.55	5 5 5	5 23.4	5 23.5	23.5	6 23.5
			%-	-2-		2			5- 	75.0	22.9
		21.4	21.4	*:	31.4	31.4	21.6	21.3	3.1.	21: 4	21.4
9,		20.6 20.7	70.8 20.7	70.5 \$.0C	70.0 70.1	ZG fl 20.7	7.02 å.0 <i>7</i>	20.1 20.6	20.7 20.1	20. 1 24.6	.u. 7 2d. 7

Fig. 3.10.14(3) Variation of Daily Average Water Temperature at Each Layer near UAN Intake

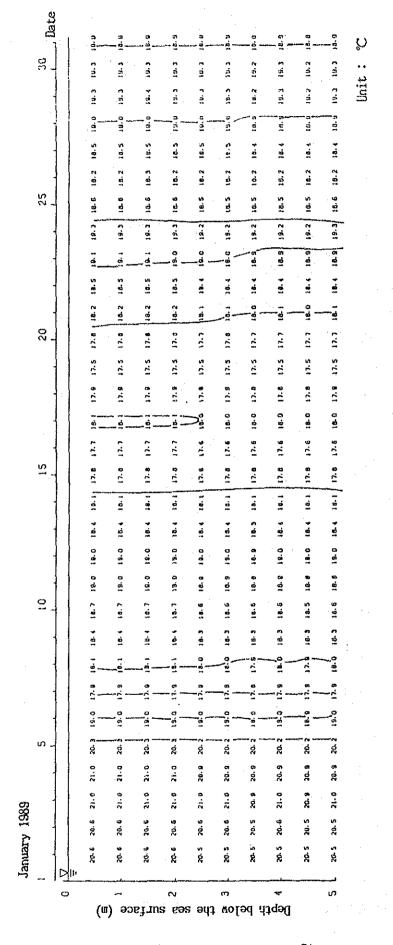


Fig. 3.10.14(4) Variation of Daily Average Water Temperature at Each Layer near UAN Intake

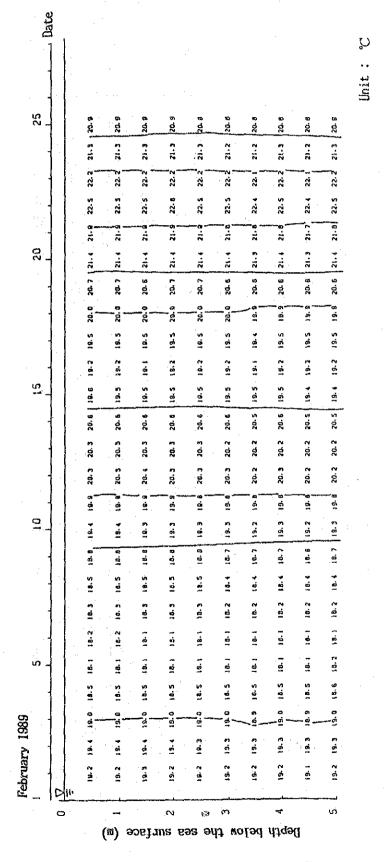
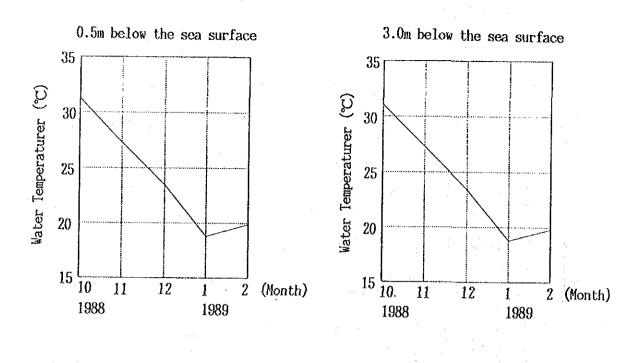



Fig. 3.10.14(5) Variation of Daily Average Water Temperature at Each Layer near UAN Intake

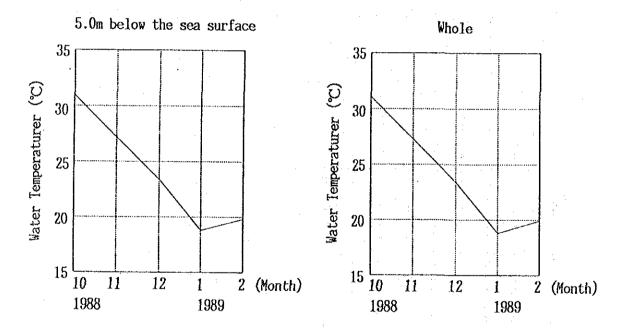
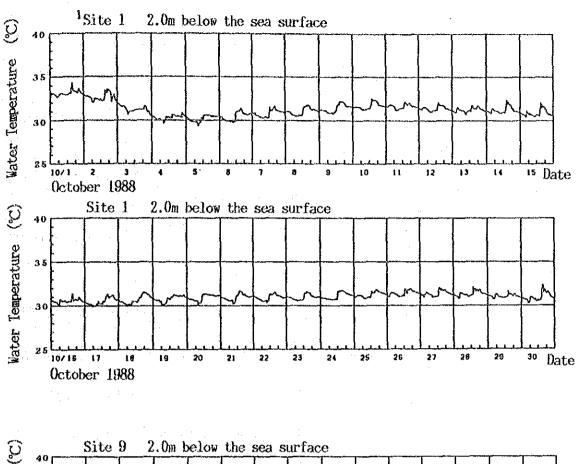



Fig. 3.10.15 Variation of Monthly Average Water Temperature

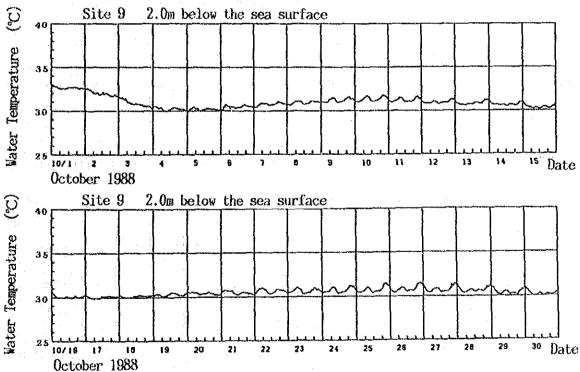
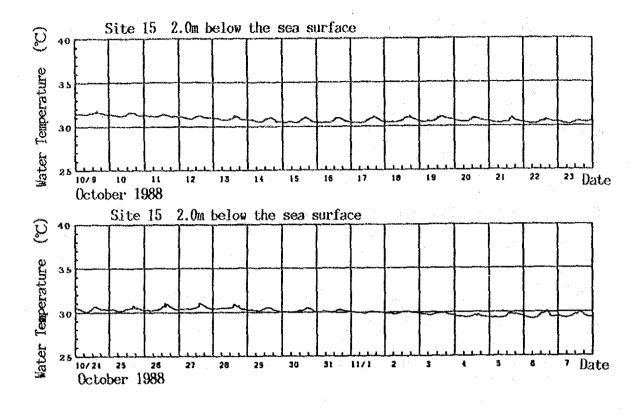



Fig. 3.10.16(1) Consecutive Observations of Water Temperature in the Second Field Survey

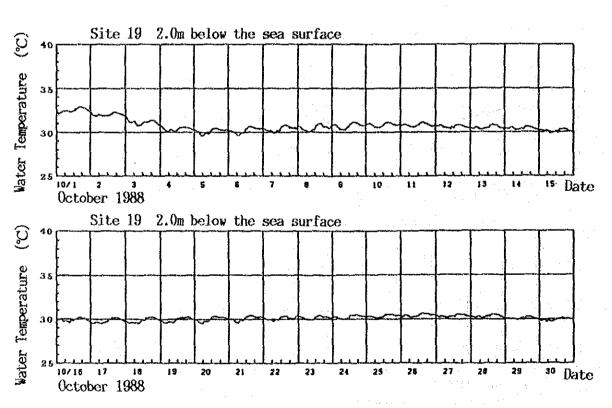


Fig. 3.10.16(2) Consecutive Observations of Water Temperature in the Second Field Survey

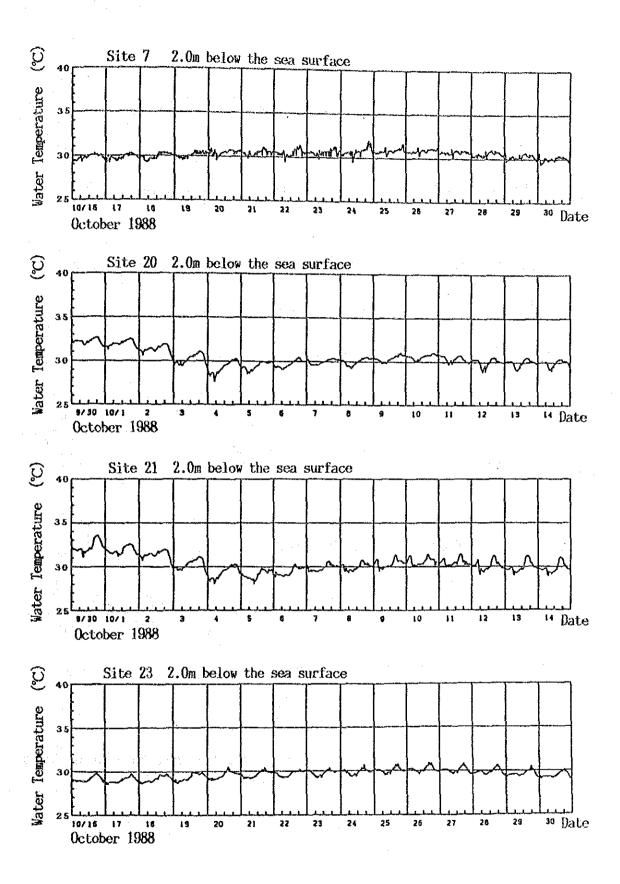
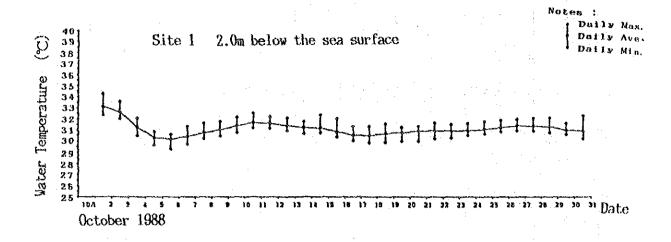



Fig. 3.10.16(3) Consecutive Observations of Water Temperature in the Second Field Survey

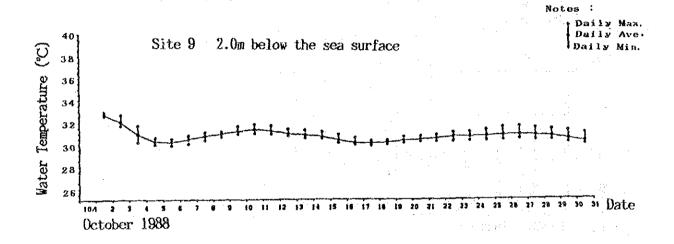
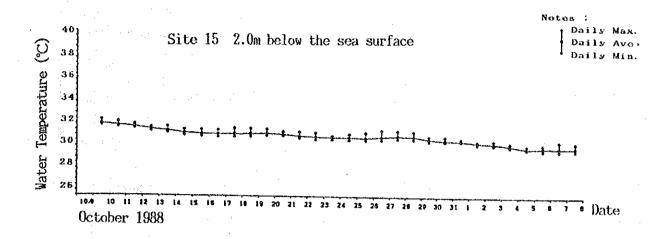



Fig. 3.10.17(1) Variation of Daily Water Temperature at Typical Sites in the Second Field Survey

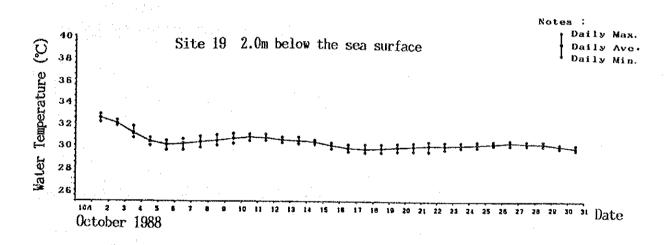
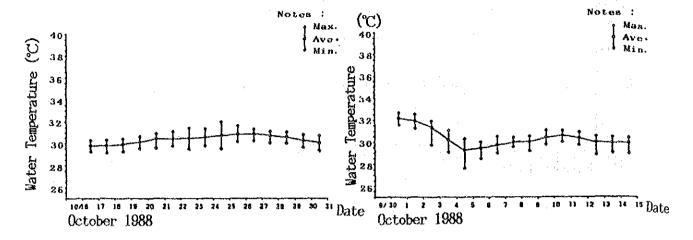



Fig. 3.10.17(2) Variation of Daily Water Temperature at Typical Sites in the Second Field Survey

Site 21 2.0m below the sea surface

Site 23 2.0m below the sea surface

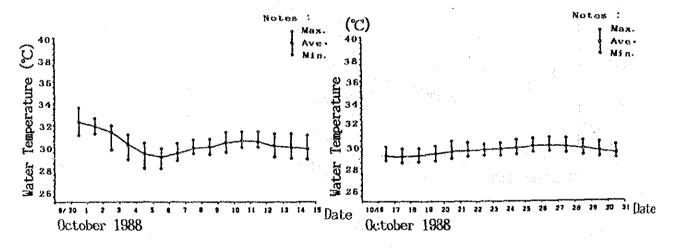


Fig. 3.10.17(3) Variation of Daily Water Temperature at Typical Sites in the Second Field Survey

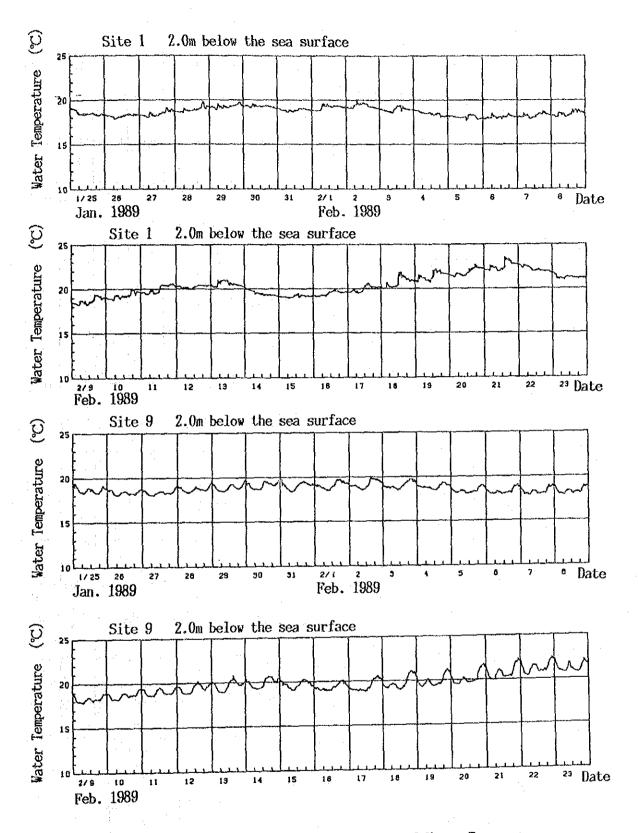


Fig. 3.10.18(1) Consecutive Observations of Water Temperature in the Third Field Survey

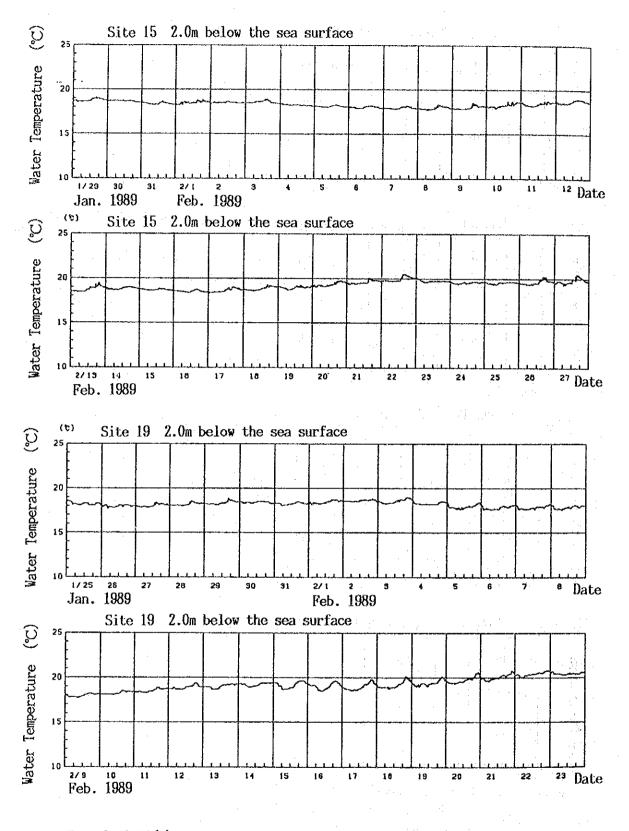
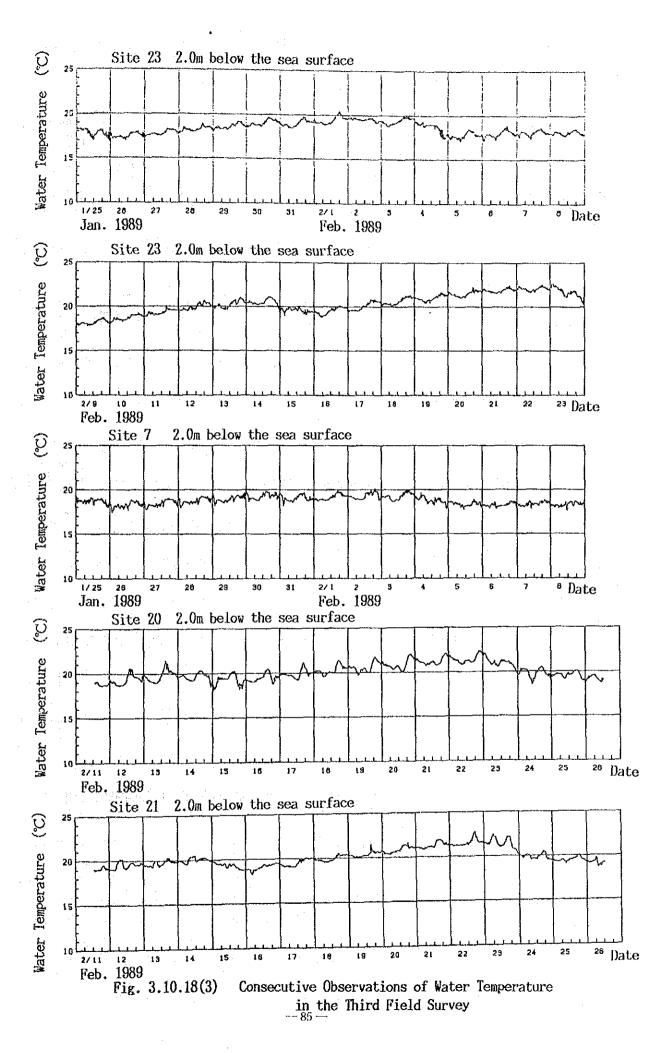
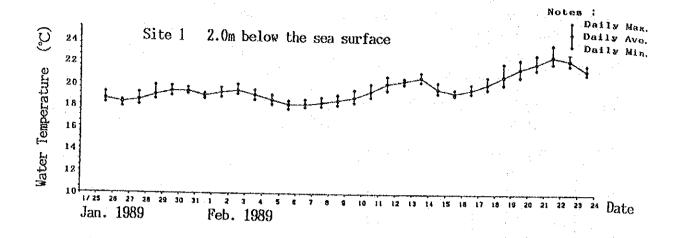




Fig. 3.10.18(2) Consecutive Observations of Water Temperature in the Third Field Survey

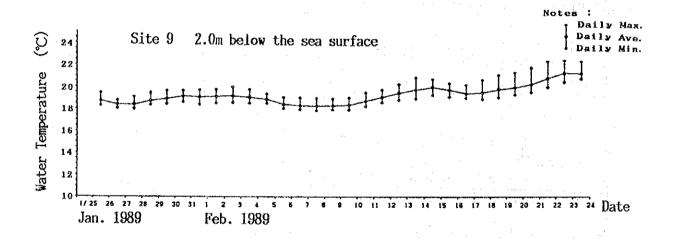
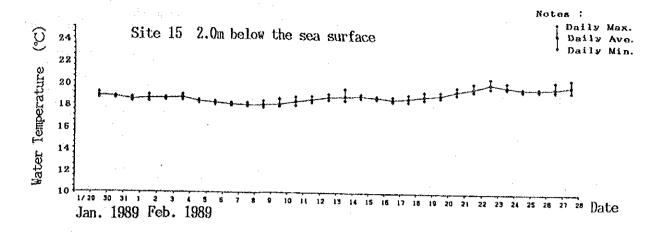
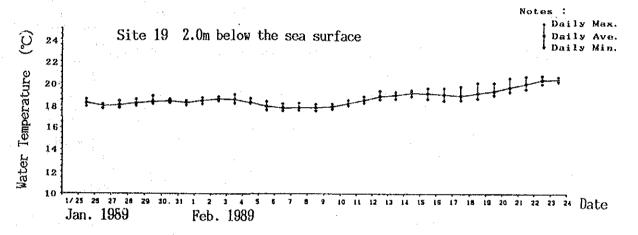




Fig. 3.10.19(1) Variation of Daily Water Temperature at Typical Sites in the Third Field Survey

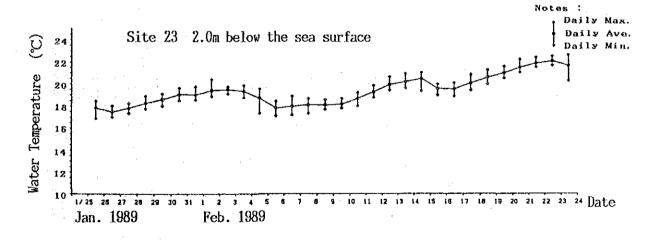
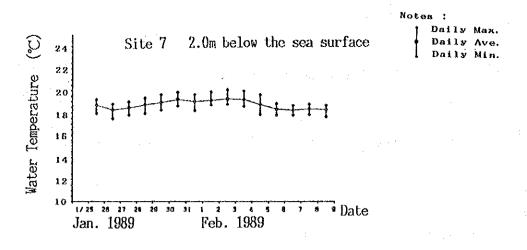
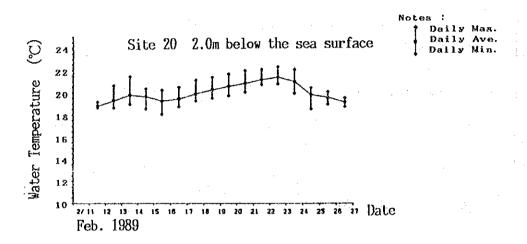




Fig. 3.10.19(2) Variation of Daily Water Temperature at Typical Sites in the Third Field Survey

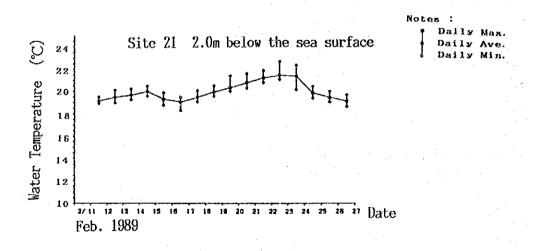


Fig. 3.10.19(3) Variation of Daily Water Temperature at Typical Sites in the Third Field Survey